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Introduction

The Apache Hadoop software library has come into it’s own. It is the basis for advanced distributed
development for a host of companies, government institutions, and scientific research facilities. The
Hadoop ecosystem now contains dozens of components for everything from search, databases, and data
warehousing to image processing, deep learning, and natural language processing. With the advent of
Hadoop 2, different resource managers may be used to provide an even greater level of sophistication and
control than previously possible. Competitors, replacements, as well as successors and mutations of the
Hadoop technologies and architectures abound. These include Apache Flink, Apache Spark, and many
others. The “death of Hadoop” has been announced many times by software experts and commentators.

We have to face the question squarely: is Hadoop dead? It depends on the perceived boundaries of
Hadoop itself. Do we consider Apache Spark, the in-memory successor to Hadoop’s batch file approach, a
part of the Hadoop family simply because it also uses HDFS, the Hadoop file system? Many other examples
of “gray areas” exist in which newer technologies replace or enhance the original “Hadoop classic” features.
Distributed computing is a moving target and the boundaries of Hadoop and its ecosystem have changed
remarkably over a few short years. In this book, we attempt to show some of the diverse and dynamic aspects
of Hadoop and its associated ecosystem, and to try to convince you that, although changing, Hadoop is still
very much alive, relevant to current software development, and particularly interesting to data analytics
programmers.
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PART |

Concepts

The first part of our book describes the basic concepts, structure, and use of the distributed analytics
software system, why it is useful, and some of the necessary tools required to use this type of
distributed system. We will also introduce some of the distributed infrastructure we need to build
systems, including Apache Hadoop and its ecosystem.




CHAPTER 1

Overview: Building Data Analytic
Systems with Hadoop

This book is about designing and implementing software systems that ingest, analyze, and visualize big data
sets. Throughout the book, we’ll use the acronym BDA or BDAs (big data analytics system) to describe this
kind of software. Big data itself deserves a word of explanation. As computer programmers and architects,
we know that what we now call “big data” has been with us for a very long time—decades, in fact, because
“big data” has always been a relative, multi-dimensional term, a space which is not defined by the mere size
of the data alone. Complexity, speed, veracity—and of course, size and volume of data—are all dimensions
of any modern “big data set”.

In this chapter, we discuss what big data analytic systems (BDAs) using Hadoop are, why they are
important, what data sources, sinks, and repositories may be used, and candidate applications which
are—and are not—suitable for a distributed system approach using Hadoop. We also briefly discuss some
alternatives to the Hadoop/Spark paradigm for building this type of system.

There has always been a sense of urgency in software development, and the development of big data
analytics is no exception. Even in the earliest days of what was to become a burgeoning new industry, big
data analytics have demanded the ability to process and analyze more and more data at a faster rate, and at
a deeper level of understanding. When we examine the practical nuts-and-bolts details of software system
architecting and development, the fundamental requirement to process more and more data in a more
comprehensive way has always been a key objective in abstract computer science and applied computer
technology alike. Again, big data applications and systems are no exception to this rule. This can be no
surprise when we consider how available global data resources have grown explosively over the last few
years, as shown in Figure 1-1.
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Figure 1-1. Annual data volume statistics [Cisco VNI Global IP Traffic Forecast 2014-2019]

As aresult of the rapid evolution of software components and inexpensive off-the-shelf processing
power, combined with the rapidly increasing pace of software development itself, architects and
programmers desiring to build a BDA for their own application can often feel overwhelmed by the
technological and strategic choices confronting them in the BDA arena. In this introductory chapter, we
will take a high-level overview of the BDA landscape and attempt to pin down some of the technological
questions we need to ask ourselves when building BDAs.

1.1 A Need for Distributed Analytical Systems

We need distributed big data analysis because old-school business analytics are inadequate to the task of
keeping up with the volume, complexity, variety, and high data processing rates demanded by modern
analytical applications. The big data analysis situation has changed dramatically in another way besides
software alone. Hardware costs—for computation and storage alike—have gone down tremendously. Tools
like Hadoop, which rely on clusters of relatively low-cost machines and disks, make distributed processing
a day-to-day reality, and, for large-scale data projects, a necessity. There is a lot of support software
(frameworks, libraries, and toolkits) for doing distributed computing, as well. Indeed, the problem of
choosing a technology stack has become a serious issue, and careful attention to application requirements
and available resources is crucial.

Historically, hardware technologies defined the limits of what software components are capable of,
particularly when it came to data analytics. Old-school data analytics meant doing statistical visualization
(histograms, pie charts, and tabular reports) on simple file-based data sets or direct connections to a
relational data store. The computational engine would typically be implemented using batch processing on
a single server. In the brave new world of distributed computation, the use of a cluster of computers to divide
and conquer a big data problem has become a standard way of doing computation: this scalability allows us
to transcend the boundaries of a single computer's capabilities and add as much off-the-shelf hardware as
we need (or as we can afford). Software tools such as Ambari, Zookeeper, or Curator assist us in managing
the cluster and providing scalability as well as high availability of clustered resources.

4
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1.2 The Hadoop Core and a Small Amount of History

Some software ideas have been around for so long now that it’s not even computer history any more—it’s
computer archaeology. The idea of the “map-reduce” problem-solving method goes back to the second-
oldest programming language, LISP (List Processing) dating back to the 1950s. “Map,” “reduce.” “send,” and
“lambda” were standard functions within the LISP language itself! A few decades later, what we now know
as Apache Hadoop, the Java-based open source-distributed processing framework, was not set in motion
“from scratch.” It evolved from Apache Nutch, an open source web search engine, which in turn was based
on Apache Lucene. Interestingly, the R statistical library (which we will also be discussing in depth in a later
chapter) also has LISP as a fundamental influence, and was originally written in the LISP language.

The Hadoop Core component deserves a brief mention before we talk about the Hadoop ecosystem.
As the name suggests, the Hadoop Core is the essence of the Hadoop framework [figure 1.1]. Support
components, architectures, and of course the ancillary libraries, problem-solving components, and sub-
frameworks known as the Hadoop ecosystem are all built on top of the Hadoop Core foundation, as shown
in Figure 1-2. Please note that within the scope of this book, we will not be discussing Hadoop 1, as it has
been supplanted by the new reimplementation using YARN (Yet Another Resource Negotiator). Please note
that, in the Hadoop 2 system, MapReduce has not gone away, it has simply been modularized and abstracted
out into a component which will play well with other data-processing modules.

Hadoop 2

Other Components
including Tez

MapReduce

YARN

HDFS

Figure 1-2. Hadoop 2 Core diagram

1.3 A Survey of the Hadoop Ecosystem

Hadoop and its ecosystem, plus the new frameworks and libraries which have grown up around them,
continue to be a force to be reckoned with in the world of big data analytics. The remainder of this book
will assist you in formulating a focused response to your big data analytical challenges, while providing

a minimum of background and context to help you learn new approaches to big data analytical problem
solving. Hadoop and its ecosystem are usually divided into four main categories or functional blocks as
shown in Figure 1-3. You'll notice that we include a couple of extra blocks to show the need for software
“glue” components as well as some kind of security functionality. You may also add support libraries and
frameworks to your BDA system as your individual requirements dictate.
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Operational Services Apache Ambari, Oozie,
Ganglia, NagiOS, Falcon, etc.

Data Services:
Hive,
HCatalog, PIG,
HBase, Flume,
Sqoop, etc.

Hadoop 2 Core: YARN,
Map/Reduce, HDFS, Apache Tez

Security
Services and
Messaging Secure g
Components: Ancillary R

Combonants Camel, Spring
Apache Kafka p Framework,
such as

Accumulo Spring Data

"Glue"
Components

Figure 1-3. Hadoop 2 Technology Stack diagram

Note Throughout this book we will keep the emphasis on free, third-party components such as the Apache
components and libraries mentioned earlier. This doesn’t mean you can’t integrate your favorite graph database
(or relational database, for that matter) as a data source into your BDAs. We will also emphasize the flexibility
and modularity of the open source components, which allow you to hook data pipeline components together
with a minimum of additional software “glue.” In our discussion we will use the Spring Data component of the
Spring Framework, as well as Apache Camel, to provide the integrating “glue” support to link our components.
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1.4 Al Technologies, Cognitive Computing, Deep Learning,
and Big Data Analysis

Big data analysis is not just simple statistical analysis anymore. As BDAs and their support frameworks have
evolved, technologies from machine learning (ML) artificial intelligence (AI), image and signal processing,
and other sophisticated technologies (including the so-called “cognitive computing” technologies) have
matured and become standard components of the data analyst’s toolkit.

1.5 Natural Language Processing and BDAs

Natural language processing (NLP) components have proven to be useful in a large and varied number of
domains, from scanning and interpreting receipts and invoices to sophisticated processing of prescription
data in pharmacies and medical records in hospitals, as well as many other domains in which unstructured
and semi-structured data abounds. Hadoop is a natural choice when processing this kind of “mix-and-
match” data source, in which bar codes, signatures, images and signals, geospatial data (GPS locations) and
other data types might be thrown into the mix. Hadoop is also a very powerful means of doing large-scale
document analyses of all kinds.

We will discuss the so-called “semantic web” technologies, such as taxonomies and ontologies, rule-
based control, and NLP components in a separate chapter. For now, suffice it to say that NLP has moved
out of the research domain and into the sphere of practical app development, with a variety of toolkits and
libraries to choose from. Some of the NLP toolkits we'll be discussing in this book are the Python-based
Natural Language Toolkit (NLTK), Stanford NLP, and Digital Pebble’s Behemoth, an open source platform for
large-scale document analysis, based on Apache Hadoop.'

1.6 SQL and NoSQL Querying

Data is not useful unless it is queried. The process of querying a data set—whether it be a key-value pair
collection, a relational database result set from Oracle or MySQL, or a representation of vertices and edges
such as that found in a graph database like Neo4j or Apache Giraph—requires us to filter, sort, group,
organize, compare, partition, and evaluate our data. This has led to the development of query languages
such as SQL, as well as all the mutations and variations of query languages associated with “NoSQL’
components and databases such as HBase, Cassandra, MongoDB, CouchBase, and many others. In this
book, we will concentrate on using read-eval-print loops (REPLs), interactive shells (such as [Python)

and other interactive tools to express our queries, and we will try to relate our queries to well-known SQL
concepts as much as possible, regardless of what software component they are associated with. For example,
some graph databases such as Neo4j (which we will discuss in detail in a later chapter) have their own
SQL-like query languages. We will try and stick to the SQL-like query tradition as much as possible
throughout the book, but will point out some interesting alternatives to the SQL paradigm as we go.

'One of the best introductions to the “semantic web” approach is Dean Allemang and Jim Hendler’s “Semantic Web for
the Working Ontologist: Effective Modeling in RDFS and OWL”, 2008, Morgan-Kaufmann/Elsevier Publishing,
Burlington, MA. ISBN 978-0-12-373556-0.
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1.7 The Necessary Math

In this book, we will keep the mathematics to a minimum. Sometimes, though, a mathematical equation
becomes more than a necessary evil. Sometimes the best way to understand your problem and implement
your solution is the mathematical route—and, again, in some situations the “necessary math” becomes the
key ingredient for solving the puzzle. Data models, neural nets, single or multiple classifiers, and Bayesian
graph techniques demand at least some understanding of the underlying dynamics of these systems. And,
for programmers and architects, the necessary math can almost always be converted into useful algorithms,
and from there to useful implementations.

1.8 A Cyclic Process for Designing and Building BDA
Systems

There is a lot of good news when it comes to building BDAs these days. The advent of Apache Spark with
its in-memory model of computation is one of the major positives, but there are several other reasons why
building BDAs has never been easier. Some of these reasons include:

e awealth of frameworks and IDEs to aid with development;

e  mature and well-tested components to assist building BDAs, and corporation-
supported BDA products if you need them. Framework maturity (such as the Spring
Framework, Spring Data subframework, Apache Camel, and many others) has
helped distributed system development by providing reliable core infrastructure to
build upon.

e avital online and in-person BDA development community with innumerable
developer forums and meet-ups. Chances are if you have encountered an
architectural or technical problem in regard to BDA design and development,
someone in the user community can offer you useful advice.

Throughout this book we will be using the following nine-step process to specify and create our BDA
example systems. This process is only suggestive. You can use the process listed below as-is, make your own
modifications to it, add or subtract structure or steps, or come up with your own development process. It’s
up to you. The following steps have been found to be especially useful for planning and organizing BDA
projects and some of the questions that arise as we develop and build them.

You might notice that problem and requirement definition, implementation, testing, and
documentation are merged into one overall process. The process described here is ideally suited for a rapid-
iteration development process where the requirements and technologies used are relatively constant over a
development cycle.

The basic steps when defining and building a BDA system are as follows. The overall cycle is shown in
Figure 1.4.
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1. Identify requirements for the BDA system. The initial phase of development
requires generating an outline of the technologies, resources, techniques and
strategies, and other components necessary to achieve the objectives. The initial
set of objectives (subject to change of course) need to be pinned down, ordered,
and well-defined. It's understood that the objectives and other requirements
are subject to change as more is learned about the project’s needs. BDA systems
have special requirements (which might include what’s in your Hadoop cluster,
special data sources, user interface, reporting, and dashboard requirements).
Make a list of data source types, data sink types, necessary parsing,
transformation, validation, and data security concerns. Being able to adapt
your requirements to the plastic and changeable nature of BDA technologies
will insure you can modify your system in a modular, organized way. Identify
computations and processes in the components, determine whether batch or
stream processing (or both) is required, and draw a flowchart of the computation
engine. This will help define and understand the “business logic” of the system.
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Define the initial technology stack. The initial technology stack will include a
Hadoop Core as well as appropriate ecosystem components appropriate for the
requirements you defined in the last step. You may include Apache Spark if you
require streaming support, or you're using one of the machine learning libraries
based on Spark we discuss later in the book. Keep in mind the programming
languages you will use. If you are using Hadoop, the Java language will be part
of the stack. If you are using Apache Spark, the Scala language will also be used.
Python has a number of very interesting special applications, as we will discuss
in a later chapter. Other language bindings may be used if they are part of the
requirements.

Define data sources, input and output data formats, and data cleansing
processes. In the requirement-gathering phase (step 0), you made an initial
list of the data source/sink types and made a top-level flowchart to help define
your data pipeline. A lot of exotic data sources may be used in a BDA system,
including images, geospatial locations, timestamps, log files, and many others,
so keep a current list of data source (and data sink!) types handy as you do your
initial design work.

Define, gather, and organize initial data sets. You may have initial data for your
project, test and training data (more about training data later in the book), legacy
data from previous systems, or no data at all. Think about the minimum amount
of data sets (number, kind, and volume) and make a plan to procure or generate
the data you need. Please note that as you add new code, new data sets may

be required in order to perform adequate testing. The initial data sets should
exercise each module of the data pipeline, assuring that end-to-end processing is
performed properly.

Define the computations to be performed. Business logic in its conceptual
form comes from the requirements phase, but what this logic is and how it is
implemented will change over time. In this phase, define inputs, outputs, rules,
and transformations to be performed on your data elements. These definitions
get translated into implementation of the computation engine in step 6.

Preprocess data sets for use by the computation engine. Sometimes the data
sets need preprocessing: validation, security checks, cleansing, conversion to a
more appropriate format for processing, and several other steps. Have a checklist
of preprocessing objectives to be met, and continue to pay attention to these
issues throughout the development cycle, and make necessary modifications as
the development progresses.

Define the computation engine steps; define the result formats. The business
logic, flow, accuracy of results, algorithm and implementation correctness, and
efficiency of the computation engine will always need to be questioned and improved.

Place filtered results in results repositories of data sinks. Data sinks are the
data repositories that hold the final output of our data pipeline. There may be
several steps of filtration or transformation before your output data is ready to

be reported or displayed. The final results of your analysis can be stored in files,
databases, temporary repositories, reports, or whatever the requirements dictate.
Keep in mind user actions from the UI or dashboard may influence the format,
volume, and presentation of the outputs. Some of these interactive results

may need to be persisted back to a data store. Organize a list of requirements
specifically for data output, reporting, presentation, and persistence.
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9. Define and build output reports, dashboards, and other output displays and
controls. The output displays and reports, which are generated, provide clarity
on the results of all your analytic computations. This component of a BDA system
is typically written, at least in part, in JavaScript and may use sophisticated data
visualization libraries to assist different kinds of dashboards, reports, and other
output displays.

10. Document, test, refine, and repeat. If necessary, we can go through the steps
again after refining the requirements, stack, algorithms, data sets, and the rest.
Documentation initially consists of the notes you made throughout the last seven
steps, but needs to be refined and rewritten as the project progresses. Tests need
to be created, refined, and improved throughout each cycle. Incidentally, each
development cycle can be considered a version, iteration, or however you like to
organize your program cycles.

There you have it. A systematic use of this iterative process will enable you to design and build BDA
systems comparable to the ones described in this book.

1.9 How The Hadoop Ecosystem Implements Big
Data Analysis

The Hadoop ecosystem implements big data analysis by linking together all the necessary ingredients for
analysis (data sources, transformations, infrastructure, persistence, and visualization) in a data pipeline
architecture while allowing these components to operate in a distributed way. Hadoop Core (or in certain
cases Apache Spark or even hybrid systems using Hadoop and Storm together) supplies the distributed
system infrastructure and cluster (node) coordination via components such as ZooKeeper, Curator, and
Ambari. On top of Hadoop Core, the ecosystem provides sophisticated libraries for analysis, visualization,
persistence, and reporting.

The Hadoop ecosystem is more than tacked-on libraries to the Hadoop Core functionality. The
ecosystem provides integrated, seamless components with the Hadoop Core specifically designed for
solving specific distributed problems. For example, Apache Mahout provides a toolkit of distributed
machine learning algorithms.

Having some well-thought-out APIs makes it easy to link up our data sources to our Hadoop engine and
other computational elements. With the “glue” capability of Apache Camel, Spring Framework, Spring Data,
and Apache Tika, we will be able to link up all our components into a useful dataflow engine.

1.10 The Idea of “Images as Big Data” (IABD)

Images—pictures and signals of all kinds in fact—are among the most widespread, useful, and complex
sources of “big data type” information.

Images are sometimes thought of as two-dimensional arrays of atomic units called pixels and, in fact
(with some associated metadata), this is usually how images are represented in computer programming
languages such as Java, and in associated image processing libraries such as Java Advanced Imaging
(JAI), OpenCV and BoofCV, among others. However, biological systems “pull things out” of these “two-
dimensional arrays”: lines and shapes, color, metadata and context, edges, curves, and the relationships
between all these. It soon becomes apparent that images (and, incidentally, related data such as time series
and “signals” from sensors such as microphones or range-finders) are one of the best example types of big
data, and one might say that distributed big data analysis of images is inspired by biological systems. After
all, many of us perform very sophisticated three-dimensional stereo vision processing as a distributed
system every time we drive an automobile.

11
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The good news about including imagery as a big data source is that it’s not at all as difficult as it once
was. Sophisticated libraries are available to interface with Hadoop and other necessary components, such
as graph databases, or a messaging component such as Apache Kafka. Low-level libraries such as OpenCV
or BoofCV can provide image processing primitives, if necessary. Writing code is compact and easy. For
example, we can write a simple, scrollable image viewer with the following Java class (shown in Listing 1-1).

Listing 1-1. Hello image world: Java code for an image visualizer stub as shown in Figure 1-5

package com.kildane.iabt;

import java.awt.image.RenderedImage;
import java.io.File;

import java.io.IOException;

import javax.media.jai.JAI;
import javax.imageio.ImagelIO;
import javax.media.jai.PlanarImage;

import javax.media.jai.widget.SereltingImagePanel;

import javax.swing.JFrame;

/**
* Hello IABT world!
* The worlds most powerful image processing toolkit (for its size)?
*/
public class App
{
public static void main(String[] args)
{
JAT jai = new JAI();
RenderedImage image = null;
try {
image = ImageIO.read(new File("/Users/kerryk/Documents/SA1_057 _62_
hr4.png"));
} catch (IOException e) {
e.printStackTrace();
}

if (image == null){ System.owut.println("Sorry, the image was null"); return; }
JFrame f = new JFrame("Image Processing Demo for Pro Hadoop Data Analytics");
SerollingImagePanel panel = new SerollingImagePanel(image, 512, 512);
f.add(panel);
f.setSize(512, 512);
f.setVisible(true);
System.out.println("Hello IABT World, version of JAI is: " + JAI.getBuildVersion());

12
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Image Processing Demo for Pro Hadoop Data Analytics

Figure 1-5. Sophisticated third-party libraries make it easy to build image visualization components in just a
few lines of code

A simple image viewer is just the beginning of an image BDA system, however. There is low-level image
processing, feature extraction, transformation into an appropriate data representation for analysis, and
finally loading out the results to reports, dashboards, or customized result displays.

We will explore the images as big data (IABD) concept more thoroughly in Chapter 14.

1.10.1 Programming Languages Used

First, a word about programming languages. While Hadoop and its ecosystem were originally written in Java,
modern Hadoop subsystems have language bindings for almost every conceivable language, including Scala
and Python. This makes it very easy to build the kind of polyglot systems necessary to exploit the useful
features of a variety of programming languages, all within one application.

1.10.2 Polyglot Components of the Hadoop Ecosystem

In the modern big data analytical arena, one-language systems are few and far between. While many of

the older components and libraries we discuss in this book were primarily written in one programming
language (for example, Hadoop itself was written in Java while Apache Spark was primarily written in Scala),
BDAs as a rule are a composite of different components, sometimes using Java, Scala, Python, and JavaScript
within the same application. These multilingual, modular systems are usually known as polyglot systems.

13
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Modern programmers are used to polyglot systems. Some of the need for a multilingual approach is
out of necessity: writing a dashboard for the Internet is appropriate for a language such as JavaScript, for
example, although one could write a dashboard using Java Swing in stand-alone or even web mode, under
duress. It’s all a matter of what is most effective and efficient for the application at hand. In this book, we
will embrace the polyglot philosophy, essentially using Java for Hadoop-based components, Scala for
Spark-based components, Python and scripting as needed, and JavaScript-based toolkits for the front end,
dashboards, and miscellaneous graphics and plotting examples.

1.10.3 Hadoop Ecosystem Structure

While the Hadoop Core provides the bedrock that builds the distributed system functionality, the attached
libraries and frameworks known as the “Hadoop ecosystem” provide the useful connections to APIs and
functionalities which solve application problems and build distributed systems.

We could visualize the Hadoop ecosystem as a kind of “solar system,” the individual components of
the ecosystem dependent upon the central Hadoop components, with the Hadoop Core at the center “sun”
position, as shown in Figure 1-6. Besides providing management and bookkeeping for the Hadoop cluster
itself (for example, Zookeeper and Curator), standard components such as Hive and Pig provide data
warehousing, and other ancillary libraries such as Mahout provide standard machine learning algorithm
support.

Ambari ZooKeeper

Figure 1-6. A simplified “solar system” graph of the Hadoop ecosystem
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Apache ZooKeeper (zookeeper.apache.org) is a distributed coordination service for use with a variety
of Hadoop- and Spark-based systems. It features a naming service, group membership, locks and carries
for distributed synchronization, as well as a highly reliable and centralized registry. ZooKeeper has a
hierarchical namespace data model consisting of “znodes.” Apache ZooKeeper is open source and is
supported by an interesting ancillary component called Apache Curator, a client wrapper for ZooKeeper
which is also a rich framework to support ZooKeeper-centric components. We will meet ZooKeeper and
Curator again when setting up a configuration to run the Kafka messaging system.

1.11 A Note about “Software Glue” and Frameworks

“Glue” is necessary for any construction project, and software projects are no exception. In fact, some
software components, such as the natural language processing (NLP) component Digital Pebble Behemoth
(which we will be discussing in detail later) refer to themselves as “glueware.” Fortunately, there are also
some general purpose integration libraries and packages that are eminently suitable for building BDAs, as
shown in Table 1-1.

Table 1-1. Database types and some examples from industry

Name Location Description
Spring Framework  http://projects.spring.io/ a Java-based framework for application
spring-framework/ development, has library support for virtually
any part of the application development
requirements
Apache Tika tika.apache.org detects and extracts metadata from a wide
variety of file types
Apache Camel Camel.apache.org a “glueware” component which implements
enterprise integration patterns (EIPs)
Spring Data http://projects.spring.io/ data access toolkit, tightly coupled to the rest of
spring-data/ Spring Framework
Behemoth https://github.com/ large-scale document analysis “glueware”

DigitalPebble/behemoth

To use Apache Camel effectively, it's helpful to know about enterprise integration patterns (EIPs). There
are several good books about EIPs and they are especially important for using Apache Camel.”

2The go-to book on Enterprise Integration Patterns (EIPs) is Gregor Hohpe and Bobby Woolf’s Enterprise Integration
Patterns: Designing, Building, and Deploying Messaging Solutions, 2004, Pearson Education Inc. Boston, MA. ISBN
0-321-20068-3.
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1.12 Apache Lucene, Solr, and All That: Open Source
Search Components

Search components are as important to distributed computing, and especially big data analysis, as the query
engine itself. In fact, sometimes a search engine such as Apache Lucene or Apache Solr is a key part of the
query engine implementation itself. We can see the interactions between some of these components in
Figure 1-7. It turns out that Lucene’s Solr components have an ecosystem of their own, albeit not as large in
size as the Hadoop ecosystem. Nevertheless, the Lucene ecosystem contains some very relevant software
resources for big data analysis. Besides Lucene and Solr, the Lucene ecosystem includes Nutch, an extensible
and highly scalable web crawler (nutch.apache.org). The Lily project from NGDATA is a very interesting
software framework we can use to leverage HBase, Zookeeper, Solr, and Hadoop seamlessly. Lily clients can
use protocols based on Avro to provide connectivity to Lily. Recall that Apache Avro (avro.apache.org) is a
data serialization system which provides a compact and fast binary data format with simple integration with
dynamic languages.

Apache

Ludsie Apache Solr
Apache
Nutch Apache Hadoop Apache Mahout

Figure 1-7. A relationship diagram between Hadoop and other Apache search-related components

1.13 Architectures for Building Big Data Analytic Systems

Part of the problem when building BDAs is that software development is not really constructing a building.
It’s just a metaphor, albeit a useful one. When we design a piece of software, we are already using a lot of
metaphors and analogies to think about what we’re doing. We call it software architecture because it’s an
analogous process to building a house, and some of the basic principles apply to designing a shopping
center as designing a software system.

We want to learn from the history of our technology and not re-invent the wheel or commit the same
mistakes as our predecessors. As a result, we have “best practices,” software “patterns” and “anti-patterns,”
methodologies such as Agile or iterative development, and a whole palette of other techniques and
strategies. These resources help us achieve quality, reduce cost, and provide effective and manageable
solutions for our software requirements.
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The “software architecture” metaphor breaks down because of certain realities about software
development. If you are building a luxury hotel and you suddenly decide you want to add personal spa
rooms or a fireplace to each suite, it’s a problem. It’s difficult to redesign floor plans, or what brand of carpet
to use. There’s a heavy penalty for changing your mind. Occasionally we must break out of the building
metaphor and take a look at what makes software architecture fundamentally different from its metaphor.

Most of this difference has to do with the dynamic and changeable nature of software itself.
Requirements change, data changes, software technologies evolve rapidly. Clients change their minds
about what they need and how they need it. Experienced software engineers take this plastic, pliable nature
of software for granted, and these realities—the fluid nature of software and of data—impact everything
from toolkits to methodologies, particularly the Agile-style methodologies, which assume rapidly changing
requirements almost as a matter of course.

These abstract ideas influence our practical software architecture choices. In a nutshell, when designing
big data analytical systems, standard architectural principles which have stood the test of time still apply. We
can use organizational principles common to any standard Java programming project, for example. We can
use enterprise integration patterns (EIPs) to help organize and integrate disparate components throughout
our project. And we can continue to use traditional n-tier, client-server, or peer-to-peer principles to
organize our systems, if we wish to do so.

As architects, we must also be aware of how distributed systems in general—and Hadoop in particular—
change the equation of practical system building. The architect must take into consideration the patterns
that apply specifically to Hadoop technologies: for example, mapReduce patterns and anti-patterns.
Knowledge is key. So in the next section, we'll tell you what you need to know in order to build effective
Hadoop BDAs.

1.14 What You Need to Know

When we wrote this book we had to make some assumptions about you, the reader. We presumed a lot:
that you are an experienced programmer and/or architect, that you already know Java, that you know some
Hadoop and are acquainted with the Hadoop 2 Core system (including YARN), the Hadoop ecosystem,
and that you are used to the basic mechanics of building a Java-style application from scratch. This means
that you are familiar with an IDE (such as Eclipse, which we talk about briefly below), that you know about
build tools such as Ant and Maven, and that you have a big data analytics problem to solve. We presume
you are pretty well-acquainted with the technical issues you want to solve: these include selecting your
programming languages, your technology stack, and that you know your data sources, data formats, and
data sinks. You may already be familiar with Python and Scala programming languages as well, but we
include a quick refresher of these languages—and some thoughts about what they are particularly useful
for—in the next chapter. The Hadoop ecosystem has a lot of components and only some of them are relevant
to what we'll be discussing, so in Table 1-3 we describe briefly some of the Hadoop ecosystem components
we will be using.

It's not just your programming prowess we're making assumptions about. We are also presuming
that you are a strategic thinker: that you understand that while software technologies change, evolve, and
mutate, sound strategy and methodology (with computer science as well as with any other kind of science)
allows you to adapt to new technologies and new problem areas alike. As a consequence of being a strategic
thinker, you are interested in data formats.

While data formats are certainly not the most glamorous aspect of big data science, they are one of
the most relevant issues to the architect and software engineer, because data sources and their formats
dictate, to a certain extent, one very important part of any data pipeline: that initial software component
or preprocessor that cleans, verifies, validates, insures security, and ingests data from the data source
in anticipation of being processed by the computation engine stage of the pipeline. Hadoop is a critical
component of the big data analytics discussed in this book, and to benefit the most from this book, you
should have a firm understanding of Hadoop Core and the basic components of the Hadoop ecosystem.
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This includes the “classic ecosystem” components such as Hive, Pig, and HBase, as well as glue components
such as Apache Camel, Spring Framework, the Spring Data sub-framework, and Apache Kafka messaging
system. If you are interested in using relational data sources, a knowledge of JDBC and Spring Framework
JDBC as practiced in standard Java programming will be helpful. JDBC has made a comeback in components
such as Apache Phoenix (phoenix.apache.org), an interesting combination of relational and Hadoop-based
technologies. Phoenix provides low-latency queries over HBase data, using standard SQL syntax in the
queries. Phoenix is available as a client-embedded JDBC driver, so an HBase cluster may be accessed with

a single line of Java code. Apache Phoenix also provides support for schema definitions, transactions, and

metadata.

Table 1-2. Database types and some examples from industry

Database Type = Example Location Description

Relational mysql mahout.apache.org This type of database has been
around long enough to acquire
sophisticated support frameworks
and systems.

Document Apache Jackrabbit ~ jackrabbit.apache.org a contentrepository in Java

Graph Neo4j Neo4j.com a multipurpose graph database

File-based Lucene Lucene.apache.org statistical, general purpose

Hybrid Solr+Camel Lucene.apache.org/ Lucene, Solr, and glue together as one

solr ,

Camel.apache.org

Note One of the best references for setting up and effectively using Hadoop is the book Pro Apache
Hadoop, second edition, by Jason Venner and Sameer Wadkhar, available from Apress Publishing.

Some of the toolkits we will discuss are briefly summarized in Table 1-3.

Table 1-3. A sampling of BDA components in and used with the Hadoop Ecosystem

Name Vendor Location Description

Mahout Apache mahout.apache.org machine learning for Hadoop

MLIib Apache Spark.apache.org/mllib machine learning for Apache Spark

R https://www.r-project.org statistical, general purpose

Weka University of Waikato, NZ http://www.cs.waikato. statistical analysis and data mining
ac.nz/ml/weka/ (Java based)

H20 H20 H2o.ai JVM-based machine learning

scikit_learn scikit-learn.org machine learning in Python

Spark Apache spark.apache.org open source cluster-computing

framework
Kafka Apache kaftka.apache.org a distributed messaging system
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1.15 Data Visualization and Reporting

Data visualization and reporting may be the last step in a data pipeline architecture, but it is certainly as
important as the other stages. Data visualization allows the interactive viewing and manipulation of data
by the end user of the system. It may be web-based, using RESTful APIs and browsers, mobile devices, or
standalone applications designed to run on high-powered graphics displays. Some of the standard libraries
for data visualization are shown in Table 1-4.

Table 1-4. A sampling of front-end components for data visualization

Name Location Description

D3 D3.org Javascript data visualization

Ggplot2 http://ggplot2.org data visualization in Python

matplotlib http://matplotlib.org Python library for basic plotting

Three.js http://threejs.org JavaScript library for three-dimensional graphs and plots
Angular JS http://angularjs.org toolkit allowing the creation of modular data visualization

components using JavaScript. It’s especially interesting because
Angular]S integrates well with Spring Framework and other
pipeline components.

It's pretty straightforward to create a dashboard or front-end user interface using these libraries or
similar ones. Most of the advanced JavaScript libraries contain efficient APIs to connect with databases,
RESTful web services, or Java/Scala/Python applications.
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Data Visualization for Pro Hadoop Big Data Analytics by Kerry
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Figure 1-8. Simple data visualization displayed on a world map, using the DevExpress toolkit

Big data analysis with Hadoop is something special. For the Hadoop system architect, Hadoop BDA
provides and allows the leverage of standard, mainstream architectural patterns, anti-patterns, and
strategies. For example, BDAs can be developed using the standard ETL (extract-transform-load) concepts,
as well as the architectural principles for developing analytical systems “within the cloud.” Standard system
modeling techniques still apply, including the “application tier” approach to design.

One example of an application tier design might contain a “service tier” (which provides the
“computational engine” or “business logic” of the application) and a data tier (which stores and regulates
input and output data, as well as data sources and sinks and an output tier accessed by the system user,
which provides content to output devices). This is usually referred to as a “web tier” when content is
supplied to a web browser.
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ISSUES OF THE PLATFORM

In this book, we express a lot of our examples in a Mac OS X environment. This is by design. The main
reason we use the Mac environment is that it seemed the best compromise between a Linux/Unix
syntax (which, after all, is where Hadoop lives and breathes) and a development environment on a more
modest scale, where a developer could try out some of the ideas shown here without the need for a
large Hadoop cluster or even more than a single laptop. This doesn’t mean you cannot run Hadoop on a
Windows platform in Cygwin or a similar environment if you wish to do so.

input from Processing
onginal data step input to step 2
source 1

Processing step

2 output

Figure 1-9. A simple data pipeline

A simple data pipeline is shown in Figure 1-9. In a way, this simple pipeline is the “Hello world” program
when thinking about BDASs. It corresponds to the kind of straightforward mainstream ETL (extract-
transform-load) process familiar to all data analysts. Successive stages of the pipline transform the
previous output contents until the data is emitted to the final data sink or result repository.

1.15.1 Using the Eclipse IDE as a Development Environment

The Eclipse IDE has been around for a long while, and the debate over using Eclipse for modern application
development rages on in most development centers that use Java or Scala. There are now many alternatives
to Eclipse as an IDE, and you may choose any of these to try out and extend the example systems developed
in this book. Or you may even use a regular text editor and run the systems from the command line if you
wish, as long as you have the most up-to-date version of Apache Maven around. Appendix A shows you
how to set up and run the example systems for a variety of IDEs and platforms, including a modern Eclipse
environment. Incidentally, Maven is a very effective tool for organizing the modular Java-based components
(as well as components implemented in other languages such as Scala or JavaScript) which make up any
BDA, and is integrated directly into the Eclipse IDE. Maven is equally effective on the command line to
build, test, and run BDAs.

We have found the Eclipse IDE to be particularly valuable when developing some of the hybrid
application examples discussed in this book, but this can be a matter of individual taste. Please feel free to
import the examples into your IDE of choice.
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Untitied

I:[--. d ::'-.-n -::'-‘:-T 5rc/ {ellc :'-‘\ '_'-."__:._: .':- ipse
=i =2 1 F R B Qe 150 Oy Qe (B0 e £ v e
&) Console [5] HelloBDA.scala 53
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* @author kerryk
* A very simple example of using the Scalg IDE in Eclipse
L
import scala.io.Source
) class HelloBDA {
0 def mainCargs: Array[String]){

}

1
11 Console.err.println("Welcome to the world of Big Data Hadoop Analysis!");
1
1

}

Figure 1-10. A useful IDE for development : Eclipse IDE with Maven and Scala built in

DATA SOURCES AND APPLICATION DEVELOPMENT

In mainstream application development—most of the time—we only encounter a few basic types of
data sources: relational, various file formats (including raw unstructured text), comma-separated values,
or even images (perhaps streamed data or even something more exotic like the export from a graph
database such as Neo4j). In the world of big data analysis, signals, images, and non-structured data

of many kinds may be used. These may include spatial or GPS information, timestamps from sensors,
and a variety of other data types, metadata, and data formats. In this book, particularly in the examples,
we will expose you to a wide variety of common as well as exotic data formats, and provide hints on
how to do standard ETL operations on the data. When appropriate, we will discuss data validation,
compression, and conversion from one data format into another, as needed.

1.15.2 What This Book Is Not

Now that we have given some attention to what this book is about, we must now examine what it is not.

This book is not an introduction to Apache Hadoop, big data analytical components, or Apache Spark.
There are many excellent books already in existence which describe the features and mechanics of “vanilla
Hadoop” (directly available from hadoop.apache.org) and its ecosystem, as well as the more recent Apache
Spark technologies, which are a replacement for the original map-reduce component of Hadoop, and allow
for both batch and in-memory processing.
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Throughout the book, we will describe useful Hadoop ecosystem components, particularly those which
are relevant to the example systems we will be building throughout the rest of this book. These components
are building blocks for our BDAs or Big Data Analysis components, so the book will not be discussing the
component functionality in depth. In the case of standard Hadoop-compatible components like Apache
Lucene, Solr, or Apache Camel or Spring Framework, books and Internet tutorials abound.

We will also not be discussing methodologies (such as iterative or Agile methodologies) in depth,
although these are very important aspects of building big data analytical systems. We hope that the systems
we are discussing here will be useful to you regardless of what methodology style you choose.

HOW TO BUILD THE BDA EVALUATION SYSTEM

In this section we give a thumbnail sketch of how to build the BDA evaluation system. When completed
successfully, this will give you everything you need to evaluate code and examples discussed in the
rest of the book. The individual components have complete installation directions at their respective
web sites.

1. Set up your basic development environment if you have not already done so. This
includes Java 8.0, Maven, and the Eclipse IDE. For the latest installation instructions
for Java, visit oracle.com. Don’t forget to set the appropriate environment variables
accordingly, such as JAVA_HOME. Download and install Maven (maven.apache.
org), and set the M2_HOME environment variable. To make sure Maven has been
installed correctly, type mvn —version on the command line. Also type ‘which mvn’
on the command line to insure the Maven executable is where you think it is.

2. Insure that MySQL is installed. Download the appropriate installation package from
www.mysql.com/downloads. Use the sample schema and data included with this
book to test the functionality. You should be able to run ‘mysql’ and ‘mysqld’.

3. Install the Hadoop Core system. In the examples in this book we use Hadoop
version 2.7.1. If you are on the Mac you can use HomeBrew to install Hadoop, or
download from the web site and install according to directions. Set the HADOOP_
HOME environment variable in your.bash_profile file.

4. Insure that Apache Spark is installed. Experiment with a single-machine cluster by
following the instructions at http://spark.apache.org/docs/latest/spark-
standalone.html#tinstalling-spark-standalone-to-a-cluster. Spark is a key
component for the evaluation system. Make sure the SPARK_HOME environment
variable is set in your.bash_profile file.
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localhost <&

Spofﬁg 5o Spark Master at spark://Kerrys-MacBook-

Pro.local:7077

URL: spark://Kerrys-MacBook-Pro.local: 7077

REST URL: spark://Kerrys-MacBook-Pro.local:6066 (c/uster moda)
Alive Workers: 0

Cores in use: 0 Total, 0 Used

Memory in use: 0.0 B Total, 0.0 B Used

Applications: 0 Running, 0 Completed

Drivers: 0 Running, 0 Completed

Status: ALIVE

Workers

Worker Id Address State Cores

Running Applications

Application ID Name Cores Memory per Node Submitted Time

Completed Applications

Application ID Name Cores Memory per Node Submitted Time

Memory

User State

User State

Duration

Duration

Figure 1-11. Successful installation and run of Apache Spark results in a status page at localhost:8080
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SPARK_HOME directory.
./bin/run-example SparkPi 10

You will see a result similar to the picture in Figure 1-12.
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Kerrys-MacBook-Pro:spark-1.5.0 kerryk$ ./bin/run-example SparkPi 18

Using Spark's default log4j profile: org/apache/spark/logdj-defaults.properties

15/18/21 15:54:34 INFO SparkContext: Running Spark version 1.5.9

4 WARN NativeCodeloader: Unable to load native-hadoop library for your platferm... using builtin-java classes where applicable

4 INFO SecurityManager: Changing view acls to: kerryk

15/18/21 15 4 INFO SecurityManager: Changing modify acls to: kerryk

15/108/21 15:54:34 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set{kerryk): users
with modify permissions: Setl{kerryk)

15/18/21 INFO Slf4jLogger: SLf4jLogger started

15/18/21 INFO Remoting: Starting remoting

15/18/21 INFD Remoting: Remoting started; listening on addresses :[akka.tecp://sparkDriver@l?.115.177.187:68698]
15/10/21 INFO Utils: Successfully started service ‘sparkDriver' on port 60698.

15/18/21 INFO SparkEnv: Registering MapOutputTracker

15/18/21 INFO SparkEnv: Registering BlockManagerMaster

15/18/21 - INFO DiskBlockManager: Created local directory at fprivate/var/folders/kf/6Twdssg883x6hqTy@fdgfhxcdd@dgn/T/blockmgr-3Gebdf@c-cThc~
4ebT-alfc- 25?!Ub83ﬂ!91
15/18/21 15:54:35 INFO MemoryStore: MemoryStore started with capacity 530.8 MB
15/18/21 15:54:35 INFD HttpFileServer: HTTP File server directory is fprivate/var/folders/kf/6fwdssgi@3x6hq7y@fdgfhxc@@@0gn/T/spark-3314672a-19ad-42
ec-2669-850e8e6306c7/httpd-deaBdbdd-ced7-49b2-80b1-80b640166561
:54:35 INFO HttpServer: Starting HTTP Server
5 INFO Utils: Swccessfully started service 'HTTP file server' on port 60708,
15/18/21 15 5 INFO SparkEnv: Registering OutputCommitCoordinator
15/18/21 15 5 INFD Utils: Successfully started service 'SparkUI® on port 4849,
15/10/21 15:54:35 INFO SparkUI: Started SparkUI at http://17.115.177.187:4040
15/18/21 ‘.I.5 54:35 INFO SDarkCcnuxt Added JAR file: .fl.lurs!kerryk!Dmluldi!snark-l 5.0/examples/target/scala-2.10/spark-exarples-1.5.0-hadoop2.2.9.

15/18/21 .I.M HclrlcsSysten Using dl:lnult name Dlﬁs:heduler 1'ur source because spark.app.id is not set.

15/18/21 INFD Executor: Starting executor ID driver on host localhost

15/18/21 INFO Utils: Successfully started service ‘org.apache.spark.network.netty.NettyBlockTransferService' on port 68701.
15/18/21 INFO NettyBlockTransferService: Server created on 60701

15/10/21 INFO BlockManagerMaster: Trying to register BlockManager

15/18/21 INFO BlockManagerMasterEndpoint: Registering block manager localhost:68701 with 530.8 MB RAM, BlockManagerId(driver, localhost, 60
701)

15/18/21 INFD BlockManagerMaster: Registered BlockManager

15/10/21 INFO SparkContext: Starting job: reduce at SparkPi.scala:3s

15/18/21 INFO DAGScheduler: Got job @ {(reduce at SparkPi.scala:36) with 18 output partitions

15/10/21 INFO DAGScheduler: Final stage: ResultStage @(reduce at SparkPi.scala:36)

15/18/21 INFD DAGScheduler: Parents of final stage: List()

15/18/21 INFO DAGScheduler: Missing parents: List()

15/108/21 INFO DAGScheduler: Submitting ResultStage @ (MapPartitionsRDD[1] at map at SparkPi.scala:32), which has no missing parents
15/18/21 INFO MemoryStore: ensureFreeSpace(1888) called with curMem=9, maxMem=555755765

15/10/21 INFO MemoryStore: Block broadcast_@ stored as values in memory (estimated size 1888.8 B, free 530.9 MB)

15/18/21 INFO MemoryStore: ensureFreeSpace(1202) called with curMem=1888, maxMem=555755765

15/18/21 INFO MemoryStore: Block broadcast_8_piece® stored as bytes in memory (estimated size 1202.9 B, free 530.0 MB)
15/18/21 INFO BlockManagerInfo: Added broadcast_@_piece® in memory on localhost:68781 (size: 1282.0 B8, free: 530.8 MB)
15/10/21 INFO SparkContext: Created broadcast @ from broadcast at DAGScheduler.scala:B6l

15/18/21 INFO DAGScheduler: Submitting 1@ missing tasks from ResultStage @ (MapPartitionsRDO[1] at map at SparkPi.scala:32)
15/18/21 INFO TaskSchedulerImpl: Adding task set 0.8 with 10 tasks

15/18/21 INFO TaskSetManager: Starting task 8.0 in stage 8.8 (TID @, localhost, PROCESS_LOCAL, 2164 bytes)

15/18/21 INFD TaskSetManager: Starting task 1.8 in stage 8.8 (TID 1, localhost, PROCESS_LOCAL, 2164 bytes)

15/108/21 INFO TaskSetManager: Starting task 2.9 in stage 8.8 (TID 2, localhost, PROCESS_LOCAL, 2164 bytes)

15/18/21 INFO TaskSetManager: Starting task 3.0 in stage 0.9 (TID 3, localhost, PROCESS_LOCAL, 2164 bytes)

15/18/21 INFO TaskSetManager: Starting task 4.9 in stage 8.9 (TID 4, localhost, PROCESS_LOCAL, 2164 bytes)

15/18/21 INFO TaskSetManager: Starting task 5.0 in stage 8.0 (TID 5, localhost, PROCESS_LOCAL, 2164 bytes)

15/18/21 INFD TaskSetManager: Starting task 6.8 in stage 8.0 (TID 6, localhost, PROCESS_LOCAL, 2164 bytes)

15/108/21 INFO TaskSetManager: Starting task 7.0 in stage 8.0 (TID 7, localhost, PROCESS_LOCAL, 2164 bytes)

15/18/21 INFD Executor: Running task 6.9 in stage 9.2 (TID 6)

Figure 1-12. To test your Spark installation, run the Spark Pi estimator program. A console view of some
expected results.

5. Install Apache Mahout (mahout.apache.org). This is a very useful distributed
analytics toolkit. Set appropriate environment variables including MAHOUT_HOME.
Run the Mahout test suite to insure it is installed correctly.

6. Install Apache Kafka (kafka.apache.org). This messaging system will figure
prominently in our examples. Chapter 3 lists all the steps necessary to set up and
thoroughly exercise the Kafka system.

7. Install your favorite NoSQL and graph databases. These might include
Cassandra (Cassandra.apache.org), mongoDB (https://www.mongodb.org/
downloadst#tproduction), etc. If you are interested in the graph analytics part of
this book, Neo4j (http://neo4j.com) is a very popular graph database. Our graph
analytics examples are all based on Neo4j. In this book, we use Cassandra as our
NoSQL database of choice.
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8. Install Apache Solr (lucene.apache.org/solr). Download the Solr server zip file,
unzip, and follow additional directions from the README file. This configurable
Java-based search component can be seamlessly coupled with Hadoop to provide
sophisticated, scalable, and customizable search capabilities, leveraging Hadoop
and Spark infrastructure.

9. Install the Scala programming languages and Akka. Make sure that you have a
support Scala plug-in in your Eclipse IDE. Make sure Scala and the Scala compiler
are installed correctly by typing ‘scalac —version’ and ‘which scala’ on the
command line.

10. Install Python and IPython. On MacOS systems, Python is already available. You may
wish to install the Anaconda system, which provides Python, interactive Python, and
many useful libraries all as one package.

11. Install H20 (h20.ai) and Sparkling Water. Once Apache Spark and Akka are installed,
we can install H20 and Sparkling Water components.

12. Install appropriate “glue” components. Spring Framework, Spring Data, Apache Camel,
and Apache Tika should be installed. There are already appropriate dependencies for these
components in the Maven pom.xml shown in Appendix A. You may wish to install some
ancillary components such as SpatialHadoop, distributed Weka for Hadoop, and others.

When you have installed all these components, congratulations. You now have a basic software
environment in which you can thoroughly investigate big data analytics systems (BDAs). Using this basic
system as a starting point, we are ready to explore the individual modules as well as to write some extensions
to the basic BDA functionality provided.

1.16 Summary

In this introductory chapter we looked at the changing landscape of big data, methods to ingest, analyze,
store, visualize, and understand the ever-increasing ocean of big data in which we find ourselves. We learned
that big data sources are varied and numerous, and that these big data sources pose new and challenging
questions for the aspiring big data analyst. One of the major challenges facing the big data analyst today is
making a selection between all the libraries and toolkits, technology stacks, and methodologies available for
big data analytics.

We also took a brief overview of the Hadoop framework, both core components and associated
ecosystem components. In spite of this necessarily brief tour of what Hadoop and its ecosystem can do for
us as data analysts, we then explored the architectures and strategies that are available to us, with a mind
towards designing and implementing effective Hadoop-based analytical systems, or BDAs. These systems
will have the scalability and flexibility to solve a wide spectrum of analytical challenges.

The data analyst has a lot of choices when it comes to selecting big data toolkits, and being able to
navigate through the bewildering list of features in order to come up with an effective overall technology
stack is key to successful development and deployment. We keep it simple (as simple as possible, that
is) by focusing on components which integrate relatively seamlessly with the Hadoop Core and its
ecosystem.

26



CHAPTER 1 * OVERVIEW: BUILDING DATA ANALYTIC SYSTEMS WITH HADOOP

Throughout this book we will attempt to prove to you that the design and implementation steps
outlined above can result in workable data pipeline architectures and systems suitable for a wide range of
domains and problem areas. Because of the flexibility of the systems discussed, we will be able to “swap out”
modular components as technology changes. We might find that one machine learning or image processing
library is more suitable to use, for example, and we might wish to replace the currently existing application
library with one of these. Having a modular design in the first place allows us the freedom of swapping out
components easily. We'll see this principle in action when we develop the “image as big data” application
example in a later chapter.

In the next chapter, we will take a quick overview and refresher of two of the most popular languages
for big data analytics—Scala and Python—and explore application examples where these two languages are
particularly useful.
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CHAPTER 2

A Scala and Python Refresher

This chapter contains a quick review of the Scala and Python programming languages used throughout the
book. The material discussed here is primarily aimed at Java/C++ programmers who need a quick review of
Scala and Python.

Note A painless way to install Python is to install the Anaconda Python distribution, available at www.
continuum.io/downloads. Anaconda provides many additional Python libraries for math and analytics,
including support for Hadoop, Weka, R, and many others.

2.1 Motivation: Selecting the Right Language(s) Defines
the Application

Selecting the right programming languages for the right tasks defines the application. In many cases, the
choices may seem natural: Java for Hadoop-centric components, Scala for Spark-centric ones. Using Java as
the main language of a BDA allows access to Spring Framework, Apache Tika, and Apache Camel to provide
“glueware” components. However, strategically (and depending upon the nature of your BDA application)
you may need to include other languages and other language bindings. This in turn influences the overall
technology stack and the nature of the development process itself. For example, a mobile application
might require interfacing with low-level code for the mobile device, possibly including the Erlang language,
C++ or C, or others.

Another area in which careful programming language choice is key is in the front-end components
for displaying and reporting BDA results. Front-end dashboarding and reporting modules may
consist only of JavaScript libraries of varying complexity, if they are web-based. Stand-alone scientific
applications, however, may be another story. These may use sophisticated visualization libraries in C,
C++, Java, or Python.

Careful control, development, and questioning of the technology stack is very important; but in order
to select the technology stack components and their language bindings, we must first compare language
features.
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2.1.1 Language Features—a Comparison

We are now going to do a quick comparison of the ten most important features Java, Scala, and Python have
to offer us, specifically in terms of developing BDA systems. Each feature we discuss is an essential part

of modern programming languages, but has particular usefulness when it comes to BDAs. These useful
features (the ones we're mostly concerned with) are:

e standard logical, arithmetic, and control structures. Java, Scala, and Python have
much in common as far as fundamental language constructs go.

e  object orientation. All three of our languages have an object system, and syntax and
semantics vary considerably between Java, Scala, and Python.

e database connectivity. Because the whole point of building a BDA is to establish
end-to-end data processing pipelines, efficient handling of the data sources—and
the exporting to data sinks—is a key consideration of overall design and technology
stack choices.

e functional programming support. Functional programming has always been an
important part of distributed application development.

e  library support, especially machine learning and statistic library support. A host
of different libraries exist written in Java, Scala, or Python. Library and framework
selection is one of the most challenging problems facing the BDA designer.
Modularity and extensibility of the libraries you select, however, is a key requirement
to an effective BDA design. Task-specific libraries, like MLIib for machine learning,
are particularly useful but create a dependency on Spark and Scala. These
dependencies are particularly important to keep in mind.

e dashboard and front-end connectivity. Usually JavaScript toolkits and libraries (such
as Angular]S, D3, and others) are sufficient to build sophisticated dashboards and
front-end controls, but—as we will see in the rest of the book—there are exceptions
to this, particularly in mobile application development.

e  ‘“glueware” connectivity and support. This will include both Java-centric connections
as well as connectivity to other libraries and frameworks, even those, like Vowpal
Wabbit machine learning library, which are written in C++. We can access VW
through web services, or even with a Java-native interface (JNI) support library,
if we wish.

e read-eval-print loop support. All modern languages have read-eval-print loops
(REPLs) except Java, and this is remedied in the Java 9 specification.

e native, multi-core support, and explicit memory management. This varies
considerably between our languages, as we will discuss.

e  connectivity with Hadoop, Spark, NoSQL databases and their ecosystems. Tools such
as PySpark, Spring Data Hadoop, Apache Camel-neo4j, and many others are used to
connect the different components you may require in your BDA.
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2.2 Review of Scala

This short review of the Scala language consists of five simple code snippets which highlight a variety of
language features that we described in our introductory sections. Scala is particularly interesting because of
built-in language features such as type inference, closures, currying, and more. Scala also has a sophisticated
object system: each value is an object, every operation a method invocation. Scala is also compatible with
Java programs. Modern languages always include support for standard data structures, sets, arrays, and
vectors. Scala is no exception, and because Scala has a very close affinity to Java, all the data structures
familiar to you from Java programming still apply.

Note In this book we will be discussing Scala version 2.11.7. Type ‘scala —version’ on the command line
to check your installed version of Scala. You may also check your Scala compiler version by typing ‘scalac —
version’ on the command line.

2.2.1 Scala and its Interactive Shell

Let’s start with a simple implementation of the quicksort algorithm, and follow that up by testing the routine
in the Scala interactive shell. You can see that Listing 2-1 is a simple declarative style Scala program using
recursion. If you were to throw the code into your interactive Scala shell, you would see the result shown in
Figure y.y. Java programmers can immediately see the similarity between Java and Scala: Scala also uses the
JVM and works hand-in-hand with Java. Even the “package” and “import” statements are similar, and the
organization of code modules by “packages” in Scala is also similar to that of the Java package system.

Please note that, like Java, Scala provides a convenient object-oriented packaging system. You can also
define a Runnable “main” method in a similar way to Java, as shown in Listing 2-1.

Listing 2-1. Simple example of a Scala program which can be tried out in the interactive shell

/** An example of a quicksort implementation, this one uses a functional style. */
object Sorter {
def sortRoutine(lst: List[Int]): List[Int] = {
if (1st.length < 2)
1st
else {
val pivel = 1st(lst.length / 2)
sortRoutine(lst.filter(_ < pivel)) :::
1st.filter(_ == pivel) :::
sortRoutine(lst.filter(_ > pivel))
}
}

def main(args: Array[String]) {
val examplelist = List(11,14,100,1,99,5,7)
println(examplelist)
println(sortRoutine(examplelist))
}
}
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Kerrys-MBP:bin kerryk$ scala

Unable to find a $JAVA_HOME at "/usr", continuing with system-provided Java...
Welcome to Scala version 2.11.7 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_69).
Type in expressions to have them evaluated.

Type :help for more information.

scala> object Sorter {
|  def sortRoutine(lst: List([Int]): List[Int] = {

if (lst.length < 2)

st

else {

val pivel = lst(1lst.length / 2)

sortRoutine(lst.filter(_ < pivel))
lst.filter(_ == pivel)
sortRoutine(lst.filter(_ > pivel))

)

def main(args: Array[Stringl) {
val examplelist = List(11,14,10@,1,99,5,7)
println(examplelist)

|

|

|

|

|

|

|

| }
|

|

|

|

|

| println({sortRoutine(examplelist))
|

I}

defined object Sorter

scala> Sorter.main(null)
List(11, 14, 100, 1, 99, 5, 7)
List(1, 5, 7, 11, 14, 99, 100)

scala> [|

Figure 2-1.

Listing 2-2. An example of functional programming in Scala

Functional programming in Scala [includes the results from the Scala REPL as well]

scala> def closure1(): Int => Int = {
| val next = 1
| def addit(x: Int) = x + next
| addit
|}

closure1: ()Int => Int

scala> def closure2() = {

| valy =2

| val f = closure1()
| println(f(100))
|}

closure2: ()Unit

You can easily use Spark in any of the interactive Scala shells, as shown in Listing 2-3.
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Listing 2-3. Simple use of Apache Spark in Scala

NOTE: Please make sure the bdasourcedatafile.dat file is present in your HDFS before running.

val bdaTextFile = sc.textFile("hdfs://bdasourcedatafile.dat")

val returnedErrors = bdaTextFile.filter(line => line.contains("ERROR"))

// Count all the errors

returnedErrors.count()

// Count errors mentioning ‘Pro Hadoop Analytics’

errors.filter(line => line.contains("Pro Hadoop Analytics")).count()

// Fetch the Pro Hadoop Analytics errors as an array of strings...
returnedErrors.filter(line => line.contains("Pro Hadoop Analytics")).collect()

Listing 2-4. Scala example 4: using Apache Kafka to do word counting

KafkalWordCount program in Scala
package org.apache.spark.examples.streaming

import java.util.HashMap
import org.apache.kafka.clients.producer.{ProducerConfig, KafkaProducer, ProducerRecord}

import org.apache.spark.streaming.
import org.apache.spark.streaming.kaftka._
import org.apache.spark.SparkConf

Veis
* Consumes messages from one or more topics in Kafka and does wordcount.

* Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>
*  <zkQuorum> is a list of one or more zookeeper servers that make quorum

*  <group> is the name of kafka consumer group

*  <topics> is a list of one or more kafka topics to consume from

*  <numThreads> is the number of threads the kafka consumer should use

*

* Example:

* *$ bin/run-example \

* org.apache.spark.examples.streaming.KatkaWordCount z0001,z0002,z0003 \
* my-consumer-group topici,topic2 1°

*/

object KafkaWordCount {
def main(args: Array[String]) {
if (args.length < 4) {
System.err.println("Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>")
System.exit(1)
}

StreamingExamples.setStreamingloglevels()

val Array(zkQuorum, group, topics, numThreads) = args

val sparkConf = new SparkConf().setAppName("KafkaWordCount")
val ssc = new StreamingContext(sparkConf, Seconds(2))
ssc.checkpoint("checkpoint™)
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val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap
val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map( . 2)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1L))

.reduceByKeyAndWindow(_+ , - _, Minutes(10), Seconds(2), 2)
wordCounts.print()

ssc.start()
ssc.awaitTermination()

}
}

// Produces some random words between 1 and 100.
object KafkaWordCountProducer {

def main(args: Array[String]) {
if (args.length < 4) {
System.err.println("Usage: KafkaWordCountProducer <metadataBrokerList> <topic> " +
"<messagesPerSec> <wordsPerMessage>")
System.exit(1)

val Array(brokers, topic, messagesPerSec, wordsPerMessage) = args

// Zookeeper connection properties

val props = new HashMap[String, Object]()

props.put(ProducerConfig.BOOTSTRAP_SERVERS CONFIG, brokers)

props.put(ProducerConfig.VALUE_SERIALIZER CLASS CONFIG,
"org.apache.kafka.common.serialization.StringSerializer")

props.put(ProducerConfig.KEY SERIALIZER CLASS CONFIG,
"org.apache.kafka.common.serialization.StringSerializer")

val producer = new KafkaProducer[String, String](props)

// Send some messages
while(true) {
(1 to messagesPerSec.tolInt).foreach { messageNum =>

val str = (1 to wordsPerMessage.toInt).map(x => scala.util.Random.nextInt(10).toString)
.mkString(" ")

val message = new ProducerRecord[String, String](topic, null, str)
producer.send(message)

}

Thread.sleep(1000)

}
}

Lazy evaluation is a “call-by-need” strategy implementable in any of our favorite languages. A simple
example of a lazy evaluation exercise is shown in Listing 2-5.
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Listing 2-5. Lazy evaluation in Scala

/* Object-oriented lazy evaluation in Scala */
package probdalazy
object lazylLib {

/** Delay the evaluation of an expression until it is required. */
def delay[A](value: =» A): Susp[A] = new SuspImpl[A](value)

/** Get the value of a delayed expression. */
implicit def force[A](s: Susp[A]): A = s()

/X%
* Data type of suspended computations. (The name froms from ML.)
*/

abstract class Susp[+A] extends FunctionO[A]

/¥*
* Implementation of suspended computations, separated from the
* abstract class so that the type parameter can be invariant.
*/

class SuspImpl[A](lazyValue: =» A) extends Susp[A] {

private var maybeValue: Option[A] = None

override def apply() = maybeValue match {
case None =>
val value = lazyValue
maybeValue = Some(value)
value
case Some(value) =»
value

}

override def toString() = maybeValue match {
case None =» "Susp(?)"
case Some(value) =» "Susp(" + value + ")"
}
}
}

object lazyEvaluation {
import lazylib._

def main(args: Array[String]) = {
val s: Susp[Int] = delay { println("evaluating..."); 3 }

println("s =" +5s) // show that s is unevaluated
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println("s() =" + s()) // evaluate s

println("s =" +5s) // show that the value is saved
println("2 + s = " + (2 + s)) // implicit call to force()

val sl = delay { Some(3) }
val sli: Susp[Some[Int]] = sl
val sl2: Susp[Option[Int]] = sl1 // the type is covariant

println("sl2 =" + sl2)
println("sl12() = " + sl2())
println("sl2 =" + sl2)
}
}

2.3 Review of Python

In this section we provide a very succinct overview of the Python programming language. Python is a
particularly useful resource for building BDAs because of its advanced language features and seamless
compatibility with Apache Spark. Like Scala and Java, Python has thorough support for all the usual

data structure types you would expect. There are many advantages to using the Python programming
language for building at least some of the components in a BDA system. Python has become a mainstream
development language in a relatively short amount of time, and part of the reason for this is that it’s an easy
language to learn. The interactive shell allows for quick experimentation and the ability to try out new ideas
in a facile way. Many numerical and scientific libraries exist to support Python, and there are many good
books and online tutorials to learn the language and its support libraries.

Note Throughout the book we will be using Python version 2.7.6 and interactive Python (IPython) version
4.0.0. To check the versions of python you have installed, type python -version or ipython -version
respectively on the command line.
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Note To run database connectivity examples, please keep in mind we are primarily using the MySQL
database from Oracle. This means you must download and install the MySQL connector for Python from the
Oracle web site, which is located at https://dev.mysql.com/downloads/connector/python/2.1.html The
connector is easy to install. On the Mac, simply double-click on the dmg file and follow the directions. You can
then test connectivity using an interactive Python shell.

Kerrys-MacBook-Pro:~ kerryk$ ipython
Pythen 2.7.6 (default, Sep 9 2014, 15:84:36)

Type “copyright", “"credits" or “license" for more information.
IPython 4.8.@8 —- An enhanced Interactive Python.

7 == Introduction and overview of IPython's features.
%quickref —> Quick reference.

help == Python's own help system.

object? -= Details about 'object', use 'object??' for extra details.

In [1]: from sqlite3 import dbapi2 as sqlite
In [2]: db_connection = sqlite.connect('sample.db’)

In [3]: dir(db_connection)
Out[3]:
['DataError’',
‘DatabaseError’,
‘Errar',
‘IntegrityError’,
‘InterfaceError’,
‘InternalError’,
‘NotSupportedError’,
'OperationalError’,
‘ProgrammingError',
‘Warning',
‘__ecall__',
‘__class__"',
‘__delattr__"',
‘__doc__"',
enter.
_exit__ ",
‘__format__",
'__getattribute ',
‘__hash__",
' init__",
‘__new__',
‘__reduce__",
‘__reduce_ex__ ",
‘__repr__"',
‘__setattr__',
sizeof
—str__",
' __subclasshook__',
‘close’,
‘commit®,
‘create_aggregate’,
‘ereate_collation',
‘create_function®,
‘cursor’,
‘execute’,
‘executemany’,

Figure 2-2. Simple example of an IPython program, showing database connectivity

A simple example of database connectivity in Python is shown in Listing 2-6. Readers familiar with Java
JDBC constructs will see the similarity. This simple example makes a database connection, then closes it.

Between the two statements the programmer can access the designated database, define tables, and perform
relational queries.

Listing 2-6. Database connectivity code with Python
Database connectivity example in Python: import, connect, and release (close)

import mysql.connector

cnx = mysql.connector.connect(user="admin', password="",
host='127.0.0.1",
database="test")
cnx.close()
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Algorithms of all kinds are easily implemented in Python, and there is a wide range of libraries to assist
you. Use of recursion and all the standard programming structures are available. A simple example of a
recursive program is shown in Listing 2-7.

Listing 2-7. Recursive Python code that flattens a list

A simple Python code example using recursion

def FlattenList(a, result=None):
result = []
for x in a:
if isinstance(x, list):
FlattenList(x, result)
else:
result.append(x)
return result

FlattenlList([ [0, 1, [2, 3] 1, [4, 5], 6])

Just as with Java and Scala, it’s easy to include support packages with the Python “import” statement. A
simple example of this is shown in Listing 2-8.

Planning your import lists explicitly is key to keeping a Python program organized and coherent to the
development team and others using the Python code.

Listing 2-8. Python code example using time functions

Python example using time functions

import time
size of vec = 1000
def pure python version():
t1 = time.time()
X = range(size of vec)
Y = range(size_of vec)
Z=1[]
for i in range(len(X)):
Z.append(X[1i] + Y[i])
return time.time() - t1
def numpy version():
t1 = time.time()
X = np.arange(size_of vec)
Y = np.arange(size_of vec)
Z=X+Y
return time.time() - t1
t1 = pure_python version()
t2 = numpy_version()
print(t1, t2)
print("Pro Data Analytics Numpy in this example, is: " + str(t1/t2) + " faster!")

The answer returned in IPython will be similar to:

Pro Data Analytics Hadoop Numpy in this example, is: 7.75 faster!
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The NumPy library provides an extension to the python programming language.

Listing 2-9. Python code example 4: Using the NumPy Library

Python example using the NumPy library
import numpy as np
from timeit import Timer
size_of vec = 1000
def pure_python version():

X = range(size of vec)

Y = range(size_of vec)

Z=1]

for i in range(len(X)):

Z.append(X[i] + Y[i])

def numpy_version():

X = np.arange(size_of vec)

Y = np.arange(size_of vec)

Z=X+Y
#timer obj = Timer("x = x + 1", "x = 0")
timer obj1 = Timer("pure python version()", "from _main__ import pure python version")
timer_obj2 = Timer("numpy_version()", "from _ main__ import numpy version")
print(timer obji.timeit(10))
print(timer obj2.timeit(10))

Listing 2-10 shows an automatic startup file example.

Listing 2-10. Python code example 5: automatic startup behavior in Python

Python example: using a startup file

import os
filename = os.environ.get('PYTHONSTARTUP')
if filename and os.path.isfile(filename):
with open(filename) as fobj:
startup_file = fobj.read()
exec(startup_file)

import site

site.getusersitepackages()

2.4 Troubleshoot, Debug, Profile, and Document

Troubleshooting, regardless of what language you are doing it in, involves identifying and solving immediate
and serious problems when running your program. Debugging is also troubleshooting, but implies a less
serious difficultly, such as an unexpected error condition, logic error, or other unexpected program result.
One example of this distinction is a permissions problem. You can’t run your program if you don’t have
execute permissions on a file. You might need to do a ‘chmod’ command to fix this.

Additionally, we would suggest that troubleshooting is a mental process. Debugging, on the other
hand, can be supported with explicit tools for helping you find bugs, logic errors, unexpected conditions,
and the like.
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2.4.1 Debugging Resources in Python
In Python, the pdb debugger can be loaded by typing:

import pdb
import yourmodule
pdb.run (‘yourmodule.test()’)

or you may use pdb with Python directly by typing:
python -m pdb yourprogram.py

For profiling Python, Robert Kern’s very useful line profiler (https://pypi.python.org/pypi/line_
profiler/1.0b3) may be installed by typing the following on the command line:

sudo pip install line_ profiler

Successful installation looks like the picture in Figure 2-3.

Kerrys-MacBook-Pro:~ kerryk$ sudo pip install line_profiler
Password:
Collecting line-profiler
/Library/Python/2.7/site-packages/pip-7.1.2-py2.7.egg/pip/_vendor/requests/packages/urllib3/util/ss1_.py:98: InsecurePlatfor
mWarning: A true 55LContext object is not available. This prevents urllib3 from configuring SSL appropriately and may cause
certain 55L connections to fail. For more information, see https://urllib3.readthedocs.org/en/latest/security.html#insecurep
latformwarning.

InsecurePlatformwWarning

Using cached line_profiler-1.@.tar.gz
Installing collected packages: line-profiler

Running setup.py install for line-profiler
Successfully installed line-profiler-1.9
/Library/Python/2.7/site-packages/pip-7.1.2-py2.7.egg/pip/_vendor/requests/packages/urllib3/util/ssl_.py:98: InsecurePlatfor
mwWarning: A true 55LContext object is not available. This prevents urllib3 from configuring SSL appropriately and may cause
certain S5L connections to fail. For more information, see https://urllib3.readthedocs.org/en/latest/security.html#insecurep
latformwarning.

InsecurePlatformWarning
Kerrys-MacBook-Pro:~ kerryk$

Figure 2-3. Successful installation of the line profiler package

http://www.huyng.com/posts/python-performance-analysis/ has a very good discussion on
profiling Python programs.
Install a memory profiler by typing:

sudo pip install -U memory profiler

Why not test your profilers by writing a simple Python program to generate primes, a Fibonacci series,
or some other small routine of your choice?
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IPython 4.8.8 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.

help -> Python's own help system.

object? -> Details about ‘object', use 'object??' for extra details.

In [1]: load_ext memory_profiler

In [2]: load_ext line_profiler

In [3]: from primes import getprimes

In [4]): smprun -f getprimes getprimes(1000)

/Library/Python/2.7/site-packages/memory_profiler.py:75: UserWarning: psutil module not found. memory_profiler will be slow
warnings.warn{"psutil module not found. memory_profiler will be slow")

Filename: primes.py

Line # Mem usage Increment Line Contents

2 208.3 MiB 2.2 MiB def getprimes(n):

3 20.3 MiB 8.8 MiB if n==2:

4 return [2]

5 208.3 MiB 2.8 MiB elif n<2:

6 return []

7 20.3 MiB 0.8 MiB s=range(3,n+1,2)

8 28.3 MiB 8.8 MiB mroot = n s 0.5

9 28.3 MiB .9 MiB half=(n+1)/2-1

18 28.3 MiB 2.2 MiB i=p

11 28.3 MiB 0.8 MiB m=3

12 28.3 MiB 0.9 MiB while m <= mroot:

13 208.3 MiB 2.8 MiB if s[i]:

14 208.3 MiB 0.2 MiB j=(m*xm-3)/2
15 20.3 MiB 0.8 MiB s[jl=0

16 28.3 MiB 0.8 MiB while j<half:
17 20.3 MiB 2.8 MiB s[jl=0
18 20.3 MiB 2.8 MiB j+=m

19 28.3 MiB 0.2 MiB i=1+1
28 20.3 MiB 8.9 MiB m=2wi+3

0.9 MiB return [2]+[x for x in s if x|

21 2@.3 MiB
")

In [5]:

Figure 2-4. Profiling Python code using memory and line profilers

2.4.2 Documentation of Python

When documenting Python code, its very helpful to take a look at the documentation style guide from
python.org. This can be found at

https://docs.python.org/devguide/documenting.html.

2.4.3 Debugging Resources in Scala

In this section we’ll discuss resources available to help you debug Scala programs. One of the easiest ways to
debug programs is simply to install the Scala plug-in within the Eclipse IDE, create and build Scala projects
within Eclipse, and debug and run them there as well. For extensive tutorials on how to do this, please refer
to http://scala-ide.org.

2.5 Programming Applications and Example

Building a BDA means building a data pipeline processor. While there are many other ways to conceive and
build software systems—including the use of methodologies such as Agile, technological concepts such as
object orientation, and enterprise integration patterns (EIPs)—a constant is the pipeline concept.
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2.6 Summary

In this chapter, we reviewed the Scala and Python programming languages, and compared them with Java.
Hadoop is a Java-centric framework while Apache Spark is written in Scala. Most commonly used BDA
components typically have language bindings for Java, Scala, and Python, and we discussed some of these
components at a high level.

Each of the languages has particular strengths and we were able to touch on some of the appropriate
use cases for Java, Scala, and Python.

We reviewed ways to troubleshoot, debug, profile, and document BDA systems, regardless of what
language we’re coding the BDAs in, and we discussed a variety of plug-ins available for the Eclipse IDE to
work with Python and Scala.

In the next chapter, we will be looking at the necessary ingredients for BDA development: the
frameworks and libraries necessary to build BDAs using Hadoop and Spark.
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CHAPTER 3

Standard Toolkits for Hadoop and
Analytics

In this chapter, we take a look at the necessary ingredients for a BDA system: the standard libraries and
toolkits most useful for building BDAs. We describe an example system (which we develop throughout the
remainder of the book) using standard toolkits from the Hadoop and Spark ecosystems. We also use other
analytical toolkits, such as R and Weka, with mainstream development components such as Ant, Maven,
npm, pip, Bower, and other system building tools. “Glueware components” such as Apache Camel, Spring
Framework, Spring Data, Apache Kafka, Apache Tika, and others can be used to create a Hadoop-based
system appropriate for a variety of applications.

Note A successful installation of Hadoop and its associated components is key to evaluating the
examples in this book. Doing the Hadoop installation on the Mac in a relatively painless way is described in
http://amodernstory.com/2014/09/23/installing-hadoop-on-mac-osx-yosemite/ in a post titled
“Installing Hadoop on the Mac Part I.”

3.1 Libraries, Components, and Toolkits: A Survey

No one chapter could describe all the big data analytics components that are out there to assist you in
building BDA systems. We can only suggest the categories of components, talk about some typical examples,
and expand on these examples in later chapters.

There are an enormous number of libraries which support BDA system building out there. To get an
idea of the spectrum of available techniques, consider the components shown in Figure 3-1. This is not an
exclusive list of component types, but when you realize that each component type has a variety of toolkits,
libraries, languages, and frameworks to choose from, defining the BDA system technology stack can seem
overwhelming at first. To overcome this definition problem, system modularity and flexibility are key.
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Figure 3-1. A whole spectrum of distributed techniques are available for building BDAs

One of the easiest ways to build a modular BDA system is to use Apache Maven to manage the
dependencies and do most of the simple component management for you. Setting up a simple Maven
pom.xml file and creating a simple project in Eclipse IDE is a good way to get the evaluation system going.
We can start with a simple Maven pom.xml similar to the one shown in Listing 2-1. Please note the only
dependencies shown are for the Hadoop Core and Apache Mahout, the machine learning toolkit for Hadoop
we discussed in Chapter 1, which we use frequently in the examples. We will extend the Maven pom file to
include all the ancillary toolkits we use later in the book. You can add or subtract components as you wish,
simply by removing dependencies from the pom.xml file.

Keep in mind that for every technique shown in the diagram, there are several alternatives. For each
choice in the technology stack, there are usually convenient Maven dependencies you can add to your
evaluation system to check out the functionality, so it’s easy to mix and match components. Including the
right “glueware” components can make integration of different libraries less painful.

44


http://dx.doi.org/10.1007/978-1-4842-1910-2_1

CHAPTER 3 © STANDARD TOOLKITS FOR HADOOP AND ANALYTICS

Note The following important environment variables need to be set to use the book examples effectively:
export BDA HOME="/Users/kerryk/workspace/bdt"

Listing 3-1. A basic pom.xml file for the evaluation system

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0 0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupIld>com.kildane</groupId>
<artifactId>bdt</artifactId>
<packaging>war</packaging>
<version>0.0.1-SNAPSHOT</version>
<name>Big Data Toolkit (BDT) Application</name>
<url>http://maven.apache.org</url>
<properties>
<hadoop.version>0.20.2</hadoop.version>
</properties>
<dependencies>
<dependency>
<groupIld>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupIld>org.apache.hadoop</groupId>
<artifactId>hadoop-core</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupIld>org.apache.mahout</groupId>
<artifactId>mahout-core</artifactId>
<version>0.9</version>
</dependency>
</dependencies>
<build>
<finalName>BDT</finalName>
</build>
</project>

The easiest way to build a modular BDA system is to use Apache Maven to manage the dependencies
and do most of the simple component management for you. Using a simple pom.xml to get your BDA
project started is a good way to experiment with modules, lock in your technology stack, and define system
functionality—gradually modifying your dependencies and plug-ins as necessary.
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Setting up a simple Maven pom.xml file and creating a simple project in Eclipse IDE is an easy way to
get the evaluation system going. We can start with a simple Maven pom.xml similar to the one shown in
Listing 3-1. Please note the only dependencies shown are for the Hadoop Core and Apache Mahout, the
machine learning toolkit for Hadoop we discussed in Chapter 1, which we use frequently in the examples.
We will extend the Maven pom file to include all the ancillary toolkits we use later in the book. You can add
or subtract components as you wish, simply by removing dependencies from the pom.xml file.

Let's add a rule system to the evaluation system by way of an example. Simply add the appropriate
dependencies for the Drools rule system (Google “drools maven dependencies” for most up to date versions
of Drools). The complete pom. xml file (building upon our original) is shown in Listing 3-2. We will be
leveraging the functionality of JBoss Drools in a complete analytical engine example in Chapter 8. Please
note that we supply dependencies to connect the Drools system with Apache Camel as well as Spring
Framework for Drools.

Listing 3-2. Add JBoss Drools dependencies to add rule-based support to your analytical engine. A complete
example of a Drools use case is in Chapter 8!

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupld>com.kildane</groupId>
<artifactId>bdt</artifactId>
<packaging>war</packaging>
<version>0.0.1-SNAPSHOT</version>
<name>Big Data Toolkit (BDT) Application, with JBoss Drools Component</name>
<url>http://maven.apache.org</url>
<properties>
<hadoop.version>0.20.2</hadoop.version>
</properties>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>

<scope>test</scope>
</dependency>
<!-- add these five dependencies to your BDA project to achieve rule-based support -->
<dependency>

<groupId>org.drools</groupld>
<artifactId>drools-core</artifactId>
<version>6.3.0.Final</version>

</dependency>

<dependency>
<groupId>org.drools</groupld>
<artifactId>drools-persistence-jpa</artifactId>
<version>6.3.0.Final</version>

</dependency>
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<dependency>
<groupIld>org.drools</groupld>
<artifactId>drools-spring</artifactId>
<version>6.0.0.Beta2</version>
</dependency>
<dependency>
<groupld>org.drools</groupld>
<artifactId>drools-camel</artifactId>
<version>6.0.0.Beta2</version>
</dependency>
<dependency>
<groupld>org.drools</groupld>
<artifactId>drools-jsr94</artifactId>
<version>6.3.0.Final</version>
</dependency>
<dependency>
<groupld>org.apache.hadoop</groupId>
<artifactId>hadoop-core</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupIld>org.apache.mahout</groupId>
<artifactId>mahout-core</artifactId>
<version>0.9</version>
</dependency>
</dependencies>
<build>
<finalName>BDT</finalName>
</build>
</project>

3.2 Using Deep Learning with the Evaluation System

DL4j (http://deeplearning4j.org) is an open source-distributed deep learning library for Java and Scala.
It is integrated with Hadoop and Spark.
To install:

git clone https://github.com/deeplearning4j/dl4j-0.4-examples.git
To build the system:
cd $DL4]_HOME directory
Then:
mvn clean install -DskipTests -Dmaven.javadoc.skip=true
To verify the dl4j component is running correctly, type:
mvn exec:java -Dexec.mainClass="org.deeplearning4j.examples.tsne.TSNEStandardExample"

-Dexec.cleanupDaemonThreads=false
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You will see textual output similar to that in Listing y.y. if the component is running successfully.

Listing 3-3. Output from the deep learning 4;j test routine

[INFO] --- exec-maven-plugin:1.4.0:java (default-cli) @ deeplearning4j-examples ---
o.d.e.t.TSNEStandardExample - Load & Vectorize data....

Nov 01, 2015 1:44:49 PM com.github.fommil.jni.JIniloader liberalload

INFO: successfully loaded /var/folders/kf/6fwdssg903x6hq7yofdgthxcoo00gn/T/jniloader54508704
4337083844netlib-native_system-osx-x86_64.jnilib

o.d.e.t.TSNEStandardExample - Build model....

o.d.e.t.TSNEStandardExample - Store TSNE Coordinates for Plotting....
o.d.plot.Tsne - Calculating probabilities of data similarities..

o.d.plot.Tsne - Mean value of sigma 0.00

o.d.plot.Tsne - Cost at iteration 0 was 98.8718490600586

o.d.plot.Tsne - Cost at iteration 1 was 98.8718490600586

o.d.plot.Tsne - Cost at iteration 2 was 98.8718490600586

o.d.plot.Tsne - Cost at iteration 3 was 98.8718490600586

0.d.plot.Tsne - Cost at iteration 4 was 98.8718490600586

o.d.plot.Tsne - Cost at iteration 5 was 98.8718490600586

o.d.plot.Tsne - Cost at iteration 6 was 98.8718490600586

o.d.plot.Tsne - Cost at iteration 7 was 98.8718490600586

o.d.plot.Tsne - Cost at iteration 8 was 98.87185668945312

0.d.plot.Tsne - Cost at iteration 9 was 98.87185668945312

o.d.plot.Tsne - Cost at iteration 10 was 98.87186431884766

o.d.plot.Tsne - Cost at iteration 98 was 98.99024963378906

o.d.plot.Tsne - Cost at iteration 99 was 98.99067687988281

[INFO] == == o m = o oo oo o o o
[INFO] BUILD SUCCESS

[INFO] = - o - mmm oo oo o oo o
[INFO] Total time: 23.075 s

[INFO] Finished at: 2015-11-01T13:45:06-08:00

[INFO] Final Memory: 21M/721M

[INFO] == == o - oo oo oo o o e

To use the deeplearning4j component in our evaluation system, we will now require the most
extensive changes to our BDA pom file to date. The complete file is shown in Listing 3-4.

Listing 3-4. Complete listing to include deeplearning 4j components

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance"

xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.kildane</groupIld>

<artifactId>bdt</artifactId>

<packaging>war</packaging>

<version>0.0.1-SNAPSHOT</version>

<name>Big Data Toolkit (BDT) Application</name>

<url>http://maven.apache.org</url>

<properties>
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<!-- new properties for deep learning (dl4j) components -->
<nd4j.version>0.4-rc3.5</nd4j.version>
<dl4j.version> 0.4-rc3.4 </dl4j.version>
<canova.version>0.0.0.11</canova.version>
<jackson.version>2.5.1</jackson.version>

<hadoop.version>0.20.2</hadoop.version>
<mahout.version>0.9</mahout.version>
</properties>
<!-- distribution management for dl4j -->
<distributionManagement>
<snapshotRepository>
<id>sonatype-nexus-snapshots</id>
<name>Sonatype Nexus snapshot repository</name>
<url>https://oss.sonatype.org/content/repositories/snapshots</url>
</snapshotRepository>
<repository>
<id>nexus-releases</id>
<name>Nexus Release Repository</name>
<url>http://oss.sonatype.org/service/local/staging/deploy/maven2/</url>
</repository>
</distributionManagement>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.nd4j</groupld>
<artifactId>nd4j-jcublas-7.5¢/artifactId>
<version>${nd4j.version}</version>
</dependency>
</dependencies>
</dependencyManagement>
<repositories»
<repository>
<id>pentaho-releases</id>
<url>http://repository.pentaho.org/artifactory/repo/</url>
</repository>
</repositories>
<dependencies>
<!-- dependencies for dl4j components -->
<dependency>
<groupld>org.deeplearning4j</groupld>
<artifactId>deeplearning4j-nlp</artifactId>
<version>${d14j.version}</version>
</dependency>
<dependency>
<groupld>org.deeplearning4j</groupld>
<artifactId>deeplearning4j-core</artifactId>
<version>${d1l4j.version}</version>
</dependency>
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<dependency>
<groupld>org.nd4j</groupld>
<artifactId>nd4j-x86</artifactId>
<version>${nd4j.version}</version>

</dependency>

<dependency>
<groupld>org.jblas</groupld>
<artifactId>jblas</artifactId>
<version>1.2.4</version>

</dependency>

<dependency>
<artifactId>canova-nd4j-image</artifactId>
<groupId>org.nd4j</groupId>
<version>${canova.version}</version>

</dependency>

<dependency>
<groupId>com.fasterxml.jackson.dataformat</groupId>
<artifactId>jackson-dataformat-yaml</artifactId>
<version>${jackson.version}</version>

</dependency>

<dependency>
<groupld>org.apache.solr</groupld>
<artifactId>solandra</artifactId>
<version>UNKNOWN</version>

</dependency>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>

<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-core</artifactId>
<version>${hadoop.version}</version>

</dependency>

<dependency>
<groupIld>pentaho</groupld>
<artifactId>mondrian</artifactId>
<version>3.6.0</version>

</dependency>

<!-- add these five dependencies to your BDA project to achieve rule-based
support -->

<dependency>

<groupld>org.drools</groupld>

<artifactId>drools-core</artifactIdy

<version>6.3.0.Final</version>
</dependency>
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<dependency>
<groupIld>org.drools</groupld>
<artifactId>drools-persistence-jpa</artifactId>
<version>6.3.0.Final</version>

</dependency>

<dependency>
<groupld>org.drools</groupld>
<artifactId>drools-spring</artifactId>
<version>6.0.0.Beta2</version>

</dependency>

<dependency>
<groupld>org.apache.spark</groupld>
<artifactId>spark-streaming 2.10</artifactId>
<version>1.5.1</version>

</dependency>

<dependency>
<groupld>org.drools</groupld>
<artifactId>drools-camel</artifactId>
<version>6.0.0.Beta2</version>

</dependency>

<dependency>
<groupld>org.drools</groupld>
<artifactId>drools-jsr94</artifactld>
<version>6.3.0.Final</version>

</dependency>

<dependency>
<groupId>com.github.johnlangford</groupld>
<artifactId>vw-jni</artifactId>
<version>8.0.0</version>

</dependency>

<dependency>
<groupId>org.apache.mahout</groupId>
<artifactId>mahout-core</artifactId>
<version>${mahout.version}</version>

</dependency>

<dependency>
<groupId>org.apache.mahout</groupId>
<artifactId>mahout-math</artifactId>
<version>0.11.0</version>

</dependency>

<dependency>
<groupIld>org.apache.mahout</groupId>
<artifactId>mahout-hdfs</artifactId>
<version>0.11.0</version>

</dependency>

</dependencies>

<finalName>BDT</finalName>
<plugins>
<plugin>
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<groupld>org.codehaus.mojo</groupIld>
<artifactId>exec-maven-plugin</artifactId>
<version>1.4.0</version>
<executions>
<executiony
<goals>

<goal>exec</goal>
</goals>
</execution>
</executions>
<configuration>
<executable>java</executable>
</configuration>
</plugin>
<plugin>
<groupIld>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>1.6</version>
<configuration>
<createDependencyReducedPom>true</
createDependencyReducedPom>

<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>org/
datanucleus/**</exclude>
<exclude>META-INF/*.SF</
exclude>
<exclude>META-INF/*.DSA</
exclude>
<exclude>META-INF/*.RSA</
exclude>
</excludes>
</filter>
</filters>
</configuration>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<transformers>
<transformer

implementation="org.
apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>reference.
conf</resource>
</transformer>
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<transformer
implementation="org.
apache.maven.plugins.shade.resource.ServicesResourceTransformer" />
<transformer
implementation="org.
apache.maven.plugins.shade.resource.ManifestResourceTransformer">
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.7</source>
<target>1.7</target>
</configuration>
</plugin>
</plugins>
</build>
</project>

After augmenting your BDA evaluation project to use this pom.xml, perform the maven clean, install,
and package tasks to insure your project compiles correctly.

3.3 Use of Spring Framework and Spring Data

Spring Framework (https://spring.io), and its associated framework Spring Data (projects.spring.io/
spring-data), are important glueware components, but the Spring frameworks provide a wide variety of
functional resources as well. These include security, ORM connectivity, model-view-controller (MVC)-based
application development, and more. Spring Framework uses an aspect-oriented programming approach to
address cross-cutting concerns, and fully supports a variety of annotations called “stereotypes” within the
Java code, minimizing the need for hand-crafted boilerplate.

We will use Spring Framework throughout this book to leverage the sophisticated functional resources
it provides, as well as investigating the Spring Data Hadoop component (projects.spring.io/spring-
hadoop/), a seamless integration of Hadoop and Spring. In particular, we will use several Spring Framework
components in the complete analytical system we develop in Chapter 9.

3.4 Numerical and Statistical Libraries: R, Weka, and Others

In this section, we will discuss R and Weka statistical libraries. R (r-project.org) is an interpreted high-level
language developed specifically for statistical analysis. Weka (http://www.cs.waikato.ac.nz/ml/weka) is

a powerful statistics library, providing machine learning algorithms for data mining and other analytical
tasks. An interesting new development is the Distributed R and Distributed Weka toolkits. Information about
DistributedWekaBase and Distributed Weka, by Mark Hall, may be found at

e  http://weka.sourceforge.net/packageMetaData/distributedWekaBase/index.html
e  http://weka.sourceforge.net/packageMetaData/distributedWekaHadoop/index.html
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3.5 OLAP Techniques in Distributed Systems

OLAP (online analytical processing) is another venerable analytic technique—it's been around since the
1970s—that has had a renaissance in the “big data era.” Several powerful libraries and frameworks have
been developed to support big data OLAP operations. Two of the most interesting of these are Pentaho's
Mondrian (http://community.pentaho.com/projects/mondrian/) and a new incubator project at Apache,
Apache Kylin (http://kylin.incubator.apache.org). Pentaho Mondrian provides an open source
analytical engine and its own query language, MDX. To add Pentaho Mondrian to your evaluation system,
add this repository, and dependency, to your pom.xml:

<repository>
<id>pentaho-releases</id>
<url>http://repository.pentaho.org/artifactory/repo/</url>
</repository>

<dependency>
<groupIld>pentaho</groupld>
<artifactId>mondrian</artifactId>
<version>3.6.0</version>
</dependency>

Apache Kylin provides an ANSI SQL interface and multi-dimensional analysis, leveraging Hadoop
functionalities. Business intelligence tools such as Tableau (get.tableau.com) are supported by Apache
Kylin as well.

We will be developing a complete analytical engine example using Apache Kylin to provide OLAP
functionality in Chapter 9.

3.6 Hadoop Toolkits for Analysis: Apache Mahout and
Friends

Apache Mahout (mahout.apache.org) is a machine learning library specifically designed for use with
Apache Hadoop and, with more recent versions of Mahout, Apache Spark as well. Like most modern
software frameworks, Mahout is coupled with Samsara, an additional component cooperating with Mahout,
to provide an advanced math library support for Mahout functionality. Apache Mahout may also be used
with compatible libraries like MLlib. More information about high-level functionality can be found in the
numerous tutorials and books on Apache Mahout and other Hadoop-based machine learning packages.

Mahout contains many standard algorithms implemented for distributed processing. Some of
these algorithms include classification algorithms such as the random forest classification algorithm, an
implementation of the muli-layer perceptron neural net classifier, the naive Bayes classifier, and many other
classifier algorithms. These can be used singly or as stages in a data pipeline, or even in parallel with the
right configuration setup.

Vowpal Wabbit (https://github.com/JohnLangford/vowpal wabbit) is an open source project
initiated at Yahoo! Inc. and continued by Microsoft Research. Some of VW's features include sparse
dimension reduction, fast feature lookups, polynomial learning, and cluster parallel learning, all effective
techniques to use in our BDA systems. One of the most interesting extensions of VW is the RESTful web
interface, which is available at
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For a good discussion of Vowpal-Wabbit, and how to set up and run VW correctly, see http://zinkov.
com/posts/2013-08-13-vowpal-tutorial/.

To install the VW system, you may need to install the boost system first.

On Mac OS, type the following three commands (re-chmod your /usr/local/1lib afterwards if you wish):

sudo chmod 777 /usr/local/lib
brew install boost
brew link boost

git clone git://github.com/JohnLangford/vowpal wabbit.git
cd $VW_HOME

make

make test

You may also want to investigate the very interesting web interface to VW, available at https://github.
com/eHarmony/vw-webservice. To install:

git clone https://github.com/eHarmony/vw-webservice.git
cd $VW_WEBSERVICE_HOME
mvn clean install package

3.7 Visualization in Apache Mahout

Apache Mahout has built-in visualization capabilities for clustering, based on the java.awt graphics
package. A simple example of a clustering visualization is shown in Figure 3-2. In the visualization
technology chapter, we will discuss extensions and alternatives to this basic system with a mind towards
providing more advanced visualization features, extending the visualization controls and displays to include
an “image as big data” display as well as some Mahout-centric dashboards.
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Figure 3-2. A simple data point visualization using Apache Mahout

3.8 Apache Spark Libraries and Components

Apache Spark libraries and components are essential to the development of the BDA systems developed in
this book. To assist the developer, Spark comes with both Python interactive shell as well as an interactive
shell for Scala. As we progress through the book, we will be looking at Apache Spark in detail, as it is one of
the most useful alternatives to Hadoop MapReduce technologies. In this section, we will provide a high-level
overview of what to expect from the Spark technologies and its ecosystem.

3.8.1 A Variety of Different Shells to Choose From

There are many Python and Scala shells to choose from and in Java 9 we can look forward to a Java-based
read-eval-print loop (REPL).
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To run the Spark Python shell, type:
/bin/pyspark --master spark://server.com:7077 --driver-memory 4g --executor-memory 4g
To run the Spark Scala shell, type:

./spark-1.2.0/bin/spark-shell --master spark://server.com:7077 --driver-memory 4g
--executor-memory 4g

Once you have the sparkling-water package installed successfully, you can use the Sparkling shell as
shown in Figure 3-4 as your Scala shell. It already has some convenient hooks into Apache Spark for your
convenience.

3.8.2 Apache Spark Streaming

Spark Streaming is a fault-tolerant, scalable, and high throughput stream processor.

Note Apache Streaming is actively under development. The information about Spark Streaming is
constantly subject to change. Refer to http://spark.apache.org/docs/latest/streaming-programming-
guide.html in order to get the latest information on Apache Streaming. In this book, we primarily refer to the
Spark 1.5.1 version.

To add Spark Streaming to your Java project, add this dependency to your pom.xml file (get the most
recent version parameter to use from the Spark web site):

<dependency>
<groupld>org.apache.spark</groupld>
<artifactId>spark-streaming 2.10</artifactId>
<version>1.5.1</version>

</dependency>

A simplified diagram of the Spark Streaming system is shown in Figure 3-3. Input data streams are
processed through the Spark engine and emitted as batches of processed data.
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Figure 3-3. A simplified diagram of the Spark Streaming system

Spark Streaming is also compatible with Amazon Kinesis (https://aws.amazon.com/kinesis/), the
AWS data streaming platform.

3.8.3 Sparkling Water and H20 Machine Learning

Sparkling Water (h20.a1i) is the H20 machine learning toolkit, integrated into Apache Spark. With Sparkling

Water, you can use Spark data structures as inputs to H20s algorithms, and there is a Python interface which

allows you to use Sparkling Water directly from PyShell.

58


https://aws.amazon.com/kinesis/

CHAPTER 3 © STANDARD TOOLKITS FOR HADOOP AND ANALYTICS

Kerrys-MacBook-Pro:sparkling-water kerryk$ bin/sparkling-shell

Spark master (MASTER) local-cluster(3,2,2048)

Spark home (SPARK_HOME) fUsers/kerryk/downloads/spark-1.5.9
H20 build version : 3.1.0.3118 (master)

Spark build version : 1.4.0

Unable to find a $JAVA_HOME at “/usr", continuing with system-provided Java...

Unable to find a $JAVA_HOME at "/usr", continuing with system-provided Java...

Java HotSpot(TM) 64-Bit Server VM warning: ignoring option MaxPermSize=384m; support was removed in 8.0

15/18/26 14:52:53 WARN NativeCodelLoader: Unable to load native-hadoop library for your platform... using builtin-java cl
asses where applicable
Welcome to

[ S A
NE NS

oINS /NN version 1.5.0
/7

/
Y
[—

Using Scala version 2.1@.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_608)

Type in expressions to have them evaluated.

Type :help for more information.

15/10/26 14:52:57 WARN MetricsSystem: Using default name DAGScheduler for source because spark.app.id is not set.
Spark context available as sc.

SOL context available as sglContext.

scala> sc
res@: org.apache.spark.SparkContext = org.apache.spark.SparkContext@4dfedofs

scala> sqlContext
resl: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@13398a96

scala> :quit
Stopping spark context.

15/10/26 14:54:86 WARN QueuedThreadPool: 1 threads could not be stopped
Kerrys-MacBook-Pro:sparkling-water kerryks

Figure 3-4. Running the Sparkling Water shell to test your installation

3.9 Example of Component Use and System Building

In this section we will use the example of the Solandra (Solr + Cassandra) system as a simple example of
building a BDA which has all the ingredients necessary to perform big data analytics. In Chapter 1 we had a
brief introduction to Solr, the open source, RESTful search engine component which is compatible with both
Hadoop and Cassandra NoSQL database. Most of our setup can be done using Maven as shown in Listing 3-4.
You'll notice that the pom file listed here is the same as our original project pom file, with dependency
additions for Solr, Solandra, and Cassandra components.

1. To download Solandra from the Git source (https://github.com/tjake/Solandra):
git clone https://github.com/tjake/Solandra.git

2. cdto the Solandra directory, and create the JAR file with Maven:

cd Solandra
mvn -DskipTests clean install package

3. Addthe]JAR file to your local Maven repository, because there isn't a standard
Maven dependency for Solandra yet:

mvn install:install-file -Dfile=solandra.jar -DgroupId=solandra
-DartifactId=solandra -Dpackaging=jar -Dversion=UNKNOWN

59


http://dx.doi.org/10.1007/978-1-4842-1910-2_1
https://github.com/tjake/Solandra

CHAPTER 3 © STANDARD TOOLKITS FOR HADOOP AND ANALYTICS

4. Modify your BDA system pom.xml file and add the Solandra dependency:

<dependency>
<groupld>org.apache.solr</groupId>
<artifactId>solandra</artifactId>
<version>UNKNOWN</version>
</dependency>

5. Test your new BDA pom.xml:

cd $BDA_HOME
mvn clean install package

BUILDING THE APACHE KAFKA MESSAGING SYSTEM

In this section, we will discuss in detail how to set up and use the Apache Kafka messaging system, an
important component of our example BDA framework.

1. Download the Apache Kafka TAR file from http://kafka.apache.org/downloads . html

2. Set the KAFKA_HOME environment variable.

3. Unzip file and go to KAFKA_HOME (in this case KAFKA_HOME would be /Users/
kerryk/Downloads/kaftka_2.9.1-0.8.2.2).

4. Next, start the ZooKeeper server by typing
bin/zookeeper-server-start.sh config/zookeeper.properties

5. Once the ZooKeeper service is up and running, type:
bin/kafka-server-start.sh config/server.properties

6. To test topic creation, type:

bin/kafka-topics.sh -create -zookeeper localhost:2181 -replication-factor 1 -
partitions 1 -topic ProHadoopBDAO

7. To provide a listing of all available topics, type:
bin/kafka-topics.sh -1list -zookeeper localhost:2181
At this stage, the result will be ProHadoopBDAO, the name of the topic you defined in step 5.

8. Send some messages from the console to test the messaging sending functionality. Type:
bin/kafka-console-producer.sh -broker-list localhost:9092 -topic ProHadoopBDAO

Now type some messages into the console.

9. You can configure a multi broker cluster by modifying the appropriate config files. Check the
Apache Kafka documentation for step-by-step processes how to do this.
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3.10 Packaging, Testing and Documentation of the
Example System

In this section we discuss BDA unit and integration testing. We will discuss Apache Bigtop (bigtop.apache.com)
and Apache MRUnit (mrunit.apache.com).

Listing 3-5. Example of Python unit testing from https://docs.python.org/2/1ibrary/unittest.html

import unittest
class TestStringMethods(unittest.TestCase):

def test_upper(self):
self.assertEqual('foo'.upper(), 'F0O0")

def test_isupper(self):
self.assertTrue('FO0'.isupper())
self.assertFalse('Foo'.isupper())

def test split(self):
s = 'hello world'
self.assertEqual(s.split(), ['hello', 'world'])
# check that s.split fails when the separator is not a string
with self.assertRaises(TypeError):
s.split(2)
if _name__ == "'_main_ ':
unittest.main()

For testing, throughout the book we will use test data sets from http://archive.ics.uci.edu/
ml/machine-learning-databases/ as well as the database from Universita de Bologna at http://www.
dm.unibo.it/~simoncin/DATA.html. For Python testing, we will be using PyUnit (a Python-based version
of the Java unit testing JUnit framework) and pytest (pytest.org), an alternative Python test framework.
A simple example of the Python testing component is shown in Listing 3-5.

Sparkling
application

Programmer

Spark Master

Executor JVM Executor IVM il Executor JVM

Figure 3-5. An architecture diagram for the “Sparkling Water” Spark + H20 System
61


https://docs.python.org/2/library/unittest.html
http://archive.ics.uci.edu/ml/machine-learning-databases/
http://archive.ics.uci.edu/ml/machine-learning-databases/
http://www.dm.unibo.it/~simoncin/DATA.html
http://www.dm.unibo.it/~simoncin/DATA.html

CHAPTER 3 © STANDARD TOOLKITS FOR HADOOP AND ANALYTICS

3.11 Summary

In this chapter, we used the first cut of an extensible example system to help motivate our discussion about
standard libraries for Hadoop- and Spark-based big data analytics. We also learned that while there are
innumerable libraries, frameworks, and toolkits for a wide range of distributed analytic domains, all these
components may be tamed by careful use of a good development environment. We chose the Eclipse IDE,
Scala and Python plug-in support, and use of the Maven, npm, easy_install, and pip build tools to make our
lives easier and to help organize our development process. Using the Maven system alone, we were able to
integrate a large number of tools into a simple but powerful image processing module possessing many of
the fundamental characteristics of a good BDA data pipelining application.

Throughout this chapter, we have repeatedly returned to our theme of a modular design, showing how
a variety of data pipeline systems may be defined and built using the standard ten-step process we discussed
in Chapter 1. We also learned about the categories of libraries that are available to help us, including math,
statistical, machine learning, image processing, and many others. We discussed in detail how to install
and use the Apache Kafka messaging system, an important component we use in our example systems
throughout the rest of the book.

There are many language bindings available for these big data Hadoop packages, but we confined
our discussion to the Java, Scala, and Python programming languages. You are free to use other language
bindings when and if your application demands it.

We did not neglect testing and documentation of our example system. While these components are
often seen as “necessary evils,” “add-ons,” “frills,” or “unnecessary,” unit and integration testing remain
key components of any successful distributed system. We discussed MRUnit and Apache Bigtop as viable
testing tools to evaluate BDA systems. Effective testing and documentation lead to effective profiling and
optimization, as well as overall system improvement in many other ways.

We not only learned about Hadoop-centric BDA construction using Apache Mahout, but also about
using Apache Spark as a fundamental building block, using PySpark, MLIlib, H20, and Sparkling Water
libraries. Spark technologies for machine learning and BDA construction are now mature and useful ways to
leverage powerful machine learning, cognitive computing, and natural language processing libraries to build
and extend your own BDA systems.
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CHAPTER 4

Relational, NoSQL, and Graph
Databases

In this chapter, we describe the role of databases in distributed big data analysis. Database types include
relational databases, document databases, graph databases, and others, which may be used as data sources
or sinks in our analytical pipelines. Most of these database types integrate well with Hadoop ecosystem
components, as well as with Apache Spark. Connectivity between different kinds of database and Hadoop/
Apache Spark-distributed processing may be provided by “glueware” such as Spring Data or Apache

Camel. We describe relational databases, such as MySQL, NoSQL databases such as Cassandra, and graph
databases such as Neo4j, and how to integrate them with the Hadoop ecosystem.

There is a spectrum of database types available for you to use, as shown in Figure 4-1. These include flat
files (even a CSV file is a kind of database), relational databases such as MySQL and Oracle, key value data
stores such as Redis, columnar databases such as HBase (part of the Hadoop ecosystem), as well as more
exotic database types such as graph databases (including Neo4]J, GraphX, and Giraph)

Eey el
Databases
ik
Fain
Casnandra (hybrid of LA and
typa)

ohumnar datsbase

CouchDn

Figure 4-1. A spectrum of database types
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We can “abstract out” the concept of different database types as generic data sources, and come up
with a common API to connect with, process, and output the content of these data sources. This lets us
use different kinds of databases, as needed, in a flexible way. Sometimes it’s necessary to adopt a “plug
and play” approach for evaluation purposes or to construct proof-of-concept systems. In these instances,
it can be convenient to use a NoSQL database such as MongoDB, and compare performance with a
Cassandra database or even a graph database component. After evaluation, select the right database for your
requirements. Using the appropriate glueware for this purpose, whether it be Apache Camel, Spring Data, or
Spring Integration, is key to building a modular system that can be changed rapidly. Much of the glueware
code can remain the same, or similar to, the existing code base. Minimum re-work is required if the glueware
is selected appropriately.

All database types shown above can be used as distributed system data sources, including relational
databases such as MySQL or Oracle. A typical ETL-based processing flow implemented using a relational
data source might look like the dataflow shown in Figure 4-2.

1. Cycle Start. The start of the processing cycle is an entry part for the whole
system’s operation. It’s a point of reference for where to start scheduling the
processing task, and a place to return to if the system has to undergo a reboot.

2. Reference Data Building. “Reference data” refers to the valid types of data which
may be used in individual table fields or the “value” part of key-value pairs.

3. Source Extraction. Retrieve data from the original data sources and do any
necessary preprocessing of the data. This might be a preliminary data cleansing
or formatting step.

4, Validation Phase. The data is evaluated for consistency.

5. Data Transformation. “Business logic” operations are performed on the data sets
to produce an intermediate result.

6. Load into staging tables/data caches or repositories, if used. Staging tables are
an intermediate data storage area, which may also be a cache or document
database.

7. Report auditing (for business rule compliance, or diagnosis/repair stage).
Compute and format report results, export to a displayable format (which may
be anything from CSV files to web pages to elaborate interactive dashboard
displays). Other forms of report may indicate efficiency of the data process,
timings and performance data, system health data, and the like. These ancillary
reports support the main reporting task, which is to coherently communicate the
results of the data analytics operations on the original data source contents.

8. Publishing to target tables/ repositories. The results so far are exported to the
designated output tables or data repositories, which may take a variety of forms
including key/value caches, document databases, or even graph databases.

9. Archive back up data. Having a backup strategy is just as important for graph
data as traditional data. Replication, validation, and efficient recovery is a must.

10. Log Cycle Status and Errors. We can make use of standard logging constructs,
even at the level of Log4j in the Java code, or we may wish to use more
sophisticated error logging and reporting if necessary.

Repeat as needed. You can elaborate the individual steps, or specialize to your individual domain
problems as required.
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4.1 Graph Query Languages : Cypher and Gremlin

Cypher (http://neo4j.com/developer/cypher-query-language/) and Gremlin (http://tinkerpop.
incubator.apache.org/gremlin.html ) are two of the more well-known graph query languages. Most of
the time, graph query languages are designed to be relatively intuitive for programmers with an SQL-style
query language background. Graph query languages use nodes, edges, relationships, and patterns to form
assertions and queries about data sets modeled as graphs. Refer to Apache TinkerPop’s web page (http://
tinkerpop.incubator.apache.org) for more information about the Gremlin query language.

To use the new TinkerPop 3 (incubating project at the time this book was written) simply include the
following dependency in your pom.xml file:

<dependency>
<groupld>org.apache.tinkerpop</groupld>
<artifactId>gremlin-core</artifactId>
<version>3.2.0-incubating</version>
</dependency>
Once the dependency is in place in your Java project, you may program to the Java API as shown in

Listings 4-1 and 4-2. See the online documentation at: https://neo4j.com/developer/cypher-query-
language/ and http://tinkerpop.incubator.apache.org for more information.

4.2 Examples in Cypher

To create a node in Cypher:

CREATE (kerry:Person {name:"Kerry"})

RETURN kerry

MATCH (neo:Database {name:"Neo4j"})

MATCH (arubo:Person {name:"Arubo"})

CREATE (anna)-[:FRIEND]->(:Person:Expert {name:"Arubo"})-[:WORKED WITH]->(neo)
To export to a CSV file using cURL:

curl -H accept:application/json -H content-type:application/json \
-d '{"statements":[{"statement":"MATCH (p1:PROFILES)-[:RELATION]-(p2) RETURN ... LIMIT
4ll}]}l \
http://localhost:7474/db/data/transaction/commit \
| jq -r '(.results[0]) | .columns,.data[].row | @csv'

And to time performance, use
curl -H accept:application/json -H content-type:application/json \
-d '{"statements":[{"statement":"MATCH (p1:PROFILES)-[:RELATION]-(p2) RETURN ..."}]}" \

http://localhost:7474/db/data/transaction/commit \
| jq -r '(.results[0]) | .columns,.data[].row | @csv' | /dev/null
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4.3 Examples in Gremlin

The Gremlin graph query language is an alternative to Cypher.
Add a new vertex in the graph

g.addVertex([firstName: 'Kerry',lastName:'Koitzsch',age:'50']); g.commit();

This will require multiple statements. Note how the variables (jdoe and mj) are defined just by assigning
them a value from a Gremlin query.

jdoe = g.addVertex([firstName:'John',lastName: 'Doe’,age:'25"']); mj = g.addVertex([firstName
:'Mary',lastName: 'Joe',age:'21']); g.addEdge(jdoe,mj, 'friend'); g.commit();

Add a relation between two existing vertices with id 1 and 2
g.addEdge(g.v(1),g.v(2), 'coworker'); g.commit();
Remove all vertices from the graph:

g.V.each{g.removeVertex(it)}
g.commit();

Remove all edges from the graph

.E.each{g.removeEdge(it)}
g.commit();

[o)°]

Remove all vertices with firstName = 'Kerry'

g.V('firstName', 'Kerry').each{g.removeVertex(it)}
g.commit();

Remove a vertex with id 1:

g.removeVertex(g.v(1));
g.commit();

Remove an edge with id 1

.removeEdge(g.e(1));
g.commit();

[0¢]

This is to index the graph with a specific field you may want to search frequently. For example, "myfield"

g.createKeyIndex("frequentSearch",Vertex.class);
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Graphs may also be constructed using the Java API for TinkerPop. In these examples, we will be using
the cutting edge version (3-incubating) at the time this book was written.
For a thorough discussion of the TinkerPop system, please see http://tinkerpop.apache.org.

Figure 4-2. Extract-Transform-Load (ETL) processing lifecycle

For the purposes of managing data, reference data consists of value sets, or status codes or classification
schemas: these are the data objects appropriate for transactions. If we imagine making an ATM withdrawal
transaction, for example, we can imagine the associated status codes for such a transaction, such as
“Succeeded (S),” “Canceled (CN),” “Funds Not Available (FNA),” “Card Cancelled (CC),” etc.

Reference data is generally uniform, company-wide, and can be either created within a country or
by external standardization bodies. Some types of reference data, such as currencies and currency codes,
are always standardized. Others, such as the positions of employees within an organization, are less
standardized.

Master data and associated transactional data are grouped together as part of transactional records.

Reference data is usually highly standardized, either within the company itself, or by a standardization
code supplied by external authorities set up for the purposes of standardization.

Data objects which are relevant to transaction processes are referred to as reference data. These objects
may be classification schemas, value sets, or status objects.

Logging cycle status and errors can be as simple as setting the “log levels” in the Java components of the
programming and letting the program-based logging do the rest, or the construction of whole systems to do
sophisticated logging, monitoring, alerts, and custom reporting. In most cases it is not enough to trust the
Java logs alone, of course.

A simple graph database application based on the model-view-controller (MVC) pattern is shown in
Figure 4-3. The graph query language can be either Cypher or Gremlin, two graph query languages that we
discussed earlier in the chapter.
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generation (or

templates)

Figure 4-3. MVC and graph database components

4.4 Graph Databases: Apache Neo4J

Graph databases are relative newcomers to the NoSQL database arena. One of the most popular and widely
used graph databases is the Apache Neo4j package (neo4j.org). Integrating Neo4j graph databases to your
distributed analytics application is easy using the Spring Data component for Neo4j (http://projects.
spring.io/spring-data-neo4j/). Simply make sure the appropriate dependency is present in your pom.
xml Maven file:

<dependency>
<groupIld>org.springframework.data</groupId>
<artifactId>spring-data-neo4j</artifactId>
<version>4.1.1.RELEASE</version>
</dependency>

Be sure to remember to supply the correct version number, or make it one of the properties in your
pom.xml <properties> tag.

Graph databases can be useful for a number of purposes in a Hadoop-centric system. They can be
intermediate result repositories, hold the final results from a computation, or even provide some relatively
simple visualization capabilities “out of the box” for dashboarding components, as shown in Figure 4-4.
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Figure 4-4. Simple Neo4] data graph visualization

Let’s try a simple load-and-display Neo4j program to get started. The program uses the standard pom.
xml included with the “Big Data Analytics Toolkit” software included with this book: This pom.xml includes
the necessary dependencies to run our program, which is shown in Listing 4-1.

Listing 4-1. package com.apress.probda.database;

import org.neo4j.driver.vi.*;
public class Neo4JExample {

public static void main (String... args){
// NOTE: on the next line, make sure you have a user defined with the appropriate
password for your
// authorization tokens.
Driver driver = GraphDatabase.driver( "bolt://localhost", AuthTokens.basic( "neo4j",
"datrosa2016" ) );
Session session = driver.session();

session.run( "CREATE (a:Person {name:'Kerry', role:'Programmer'})" );

StatementResult result = session.run( "MATCH (a:Person) WHERE a.name = 'Kerry' RETURN
a.name AS name, a.role AS role" );
while ( result.hasNext() )
{
Record record = result.next();
System.out.println( record.get( "role" ).asString() +
asString() );

+ record.get("name").
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System.out.println("..... Simple Neo4J Test is now complete....");
session.close();
driver.close();

}

}

4.5 Relational Databases and the Hadoop Ecosystem

Relational databases existed a long time before Hadoop, but they are very compatible with Hadoop, the
Hadoop ecosystem, and Apache Spark, too. We can use Spring Data JPA (http://docs.spring.io/spring-
data/jpa/docs/current/reference/html/) to combine mainstream relational database technology with a
distributed environment. The Java Persistence API is a specification (in Java) for managing, accessing, and
persisting object-based Java data and a relational database such as MySQL (dev.mysql. com). In this section,
we will use MySQL as an example of relational database implementation. Many other relational database
systems may be used in place of MySQL.

4.6 Hadoop and Unified Analytics (UA) Components

Apache Lens (lens.apache.org) is a new kind of component which provides “unified analytics” (UA) to

the Hadoop ecosystem, as shown in Figure 4-5. Unified analytics evolved from the realization that the
proliferation of software components, language dialects, and technology stacks made standardization of at
least part of the analytics task essential. Unified analytics attempts to standardize data access semantics in
the same way that RESTful APIs and semantic web technologies such as RDF (using RDF-REST: http://
liris.cnrs.fr/~pchampin/rdfrest/) and OWL (http://owlapi.hets.eu) provide standardized
semantics.

Applications (ad-hoc queries and reporting)

REST API JDBC Client Commang-line Java Client
interface (CLI)

OLAP Cube

(Metastore) Apache LENS Server

HIVE (Map-Reduce) Spark SQL | Shark

Columnar data
Redshift warehouse

(Apache

Parquet)

Figure 4-5. Apache LENS architecture diagram
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As with most of the components we discuss in this book, Apache Lens is easy to install. Download the
most recent version for the web site (for our version this was http://www.apache.org/dyn/closer.lua/
lens/2.5-beta), expand the zipped TAR file, and run

mvn -DskipTests clean package

The LENS system, including the Lens Ul component, will build, including the Apache Lens UI as shown
in Figure 4-6.

[INFO] Exclude: »»/=,log L]
[INFO] Exclude: »=/=.png
[INFO] Exclude: ==/+.pptx
[INFO] Exclude: #=/%.data
[INFO] Exclude: #=/codemirror.min.=
[INFO] Exclude: ==/=,js
[INFO] Exclude: #=/+.properties
[INFO] Exclude: s/, json
[INFO] 7 resources included (use -debug for more details)
Warning: org.apache.xerces.jaxp.SAXParserlmpl$)AXPSAXParser: Property 'http://www.oracle.com/xsl/jaxp/properties/entity
ExpansionLimit' is not recognized.
Compiler warnings:
WARNING: ‘'org.apache.xerces.jaxp.SAXParserImpl: Property 'http://javax.xal.XMLConstants/property/accessExternalDTD' 1
s not recognized.'
Warning: org.apache.xerces.parsers.SAXParser: Feature 'http://javax.xml.XMLConstants/feature/secure-processing’ is not
recognized.
wWarning: org.apache.xerces.parsers.SAXParser: Property 'http://javax.xml.XMLConstants/property/accessExternalDTD' is no
t recognized.
Warning: org.apache.xerces.parsers.SAXParser: Property 'http://www.oracle.com/xml/jaxp/properties/entityExpansionLimit’
is not recognized.
[INFO] Rat check: Summary of files. Unapproved: @ unknown: B generated: @ approved: 7 licence.

[INFO]

[INFO] --- maven-checkstyle-plugin:2.9.1:check (checkstyle-check) @ lens-ui ---
[INFO] Starting audit...

Audit done.

[INFO]

[INFO] Reactor Sumsary:

[INFO]

[INFO] Lens Checkstyle RULES sucvevussnsas «+ SUCCESS [ 1.422 s)
[INFO] Lens ++ SUCCESS [ 1.836 s
[INFO) Lens API .uuvvvsvnsnssrassanssoscnnsnnssnsanssnsanas SUCCESS [ 5.468 5]
[INFO] Lens API for server and extensions .. ++ SUCCESS [ 4.540 s)
[INFO] Lens Cube SUCCESS [ 7.582 s)
[INFO] Lens DB storage «vsvesves SUCCESS [ 1.169 sl
[INFO] Lens Query Library .. SUCCESS [ 1.671 s)
[INFO] Lens Hive Driver .... SUCCESS [ 1.9088 s)
[INFO] Lens Driver for JOBC ...... . SUCCESS [ 3.612 s)
[INFO)] Lens Elastic Search Driver SUCCESS | 2.272 s)
[INFO] Lens Server . SUCCESS [ 18.297 s]
[INFO] Lens client . SUCCESS [ 2.642 s]
[INFO] Lens CLI sivvvevnns SUCCESS [ 2.884 s)
[INFO] Lens Examples .cocvevcisssacnss SUCCESS [ 1.087 s)
[INFO] Lens Ship Jars to Distributed C. SUCCESS [ 0.794 s]
[INFO] Lens Distribution ...ovsesssssnases SUCCESS | 8.508 s)
[INFO] Lens ML LiD .cveuvnanias . SUCCESS [ 3.465 s)
[INFO] Lens ML Ext Distribution SUCCESS [ 1.823 s)
[INFO] Lens Regression ..ouuvesss SUCCESS [ 2.152 s)
[INFO] Lens UX ..iceinvanunaanas SUCCESS [ 2.972 s)
(INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: @1:88 min

[INFO] Finished at: 2016-24-82T16:25:54-287:00

[INFO] Final Mesory: 143M/1530M

FINFO ] oo e e e e e e e e e e e en

Figure 4-6. Apache LENS installed successfully using Maven on MacOSX

Log in to Apache Lens by going to the localhost:8784 default Lens web page in any browser. Your login
screen will appear as in Figure 4-8.

Run the Lens REPL by typing:
./lens-cli.sh

You will see a result similar to Figure 4-7. Type ‘help’ in the interactive shell to see a list of OLAP
commands you can try.
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Kerrys-MBP-2:bin herrykd o/lens-cli.sh L]
Unable to Tind & SJAVA_MOME at “/usr™, continuing with systes-provided Java...

Figure 4-7. Using the Apache Lens REPL

Sign in

Kkpitzsch@kildane.com

Figure 4-8. Apache LENS login page.Use ‘admin’ for default username and ‘admin’ for default password.

Apache Zeppelin (https://zeppelin.incubator.apache.org) is a web-based, multipurpose notebook
application which enables data ingestion, discovery, and interactive analytics operations. Zeppelin is
compatible for use with Scala, SQL, and many other components, languages, and libraries.

mvn clean package -Pcassandra-spark-1.5 -Dhadoop.version=2.6.0 -Phadoop-2.6 -DskipTests

@ Zeppelin rowax - rmpme  covgreen IR -
Welcome to Zeppelin! (.

Fergeic 8 mer ) cavelre Tl sratie o
¥ e e Emact et e, reeractun CoARtrate dorurert wih BOL Crrie a6l e v
Notebook = Help

Fraasn eel free 13 ) U830 SEIDVE Zap0mT,
iy Lt Lo s wwire

0

Figure 4-9. . Successfully running the Zeppelin browser UI
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[INFD) --—- maven-clean-plugin:2.6.1:clean (default-clean) @ reppelin-distributieon —--

[INFO] Deleting sUsers/kerryk/incubator-zeppelin/zeppelin-distribution/target

[INFOD)

[INFO] --- maven-checkstyle-plugin:2.13:check (checkstyle-fail-build) @ zeppelin-distribution ---—

[INFD] --- maven-resources—plugin:2.7:copy-rescurces (copy-resources) @ zeppelin-distribution ---
[INFO] Using ‘UTF-8° encoding to copy filtered resources.

[INFO] Copying 17 resources

[INFO) --- maven-enforcer-plugin:l.3.1l:enforce (enforce) @ zeppelin-distribution ---

[INFO] --- maven-remote-resources-plugin:l.4:process (default) @ zeppelin-distribution ---

[INFO] === maven-dependency-plugin:2.8:copy P ies l(copy L ies) @ reppelin-distributic

[INFO] Skipping plugin execution

[INFO] --- maven-site-plugin:3.4:attach-descriptor (attach-descriptor)} @ zeppelin-distribution --—-

[INFO] Reactor Summary:

[INFO] Zeppelin ..... .
[INFO] Zeppelin: Interpreter A 5
[INFO] Zeppelin: ZENgiNe ..ssessssrsssscssnaas
[INFO] Zeppelin: Display system apis . . .
[INFO] Zeppelin: Spark dependencies ..
[INFO] Zeppelin: Spark ..eeeeesseenass
[INFO] Zeppelin: Markdown interpreter
[INFO] Zeppelin: Angular interpreter .
[INFO] Zeppelin: Shell interpreter
[INFO] Zeppelin: Hive interpreter . .
[INFD] Zeppelin: HBase interpreter ....... =
[INFO] Zeppelin: Apache Phoenix Interpreter ..
PostgreSQL interpreter
JDBC interpreter
[INFO] t Tajo interpreter 3
[INFO] Zeppelin File System Interpreters .
[INFD] Zeppelin: FLINK ..casseavsssnnsannas
[INFO] Zeppelin: Apache Ignite interpreter ...
[INFD) Zeppelin: Kylin interpreter
[INFO] Zeppelin: Lens interpreter

SUCCESS
« SUCCESS
. SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
« SUCCESS
- SUCCESS

SUCCESS

SUCCESS

[INFO] Zeppelin: CASSANArS ..oceeereses SUCCESS
[INFO] Elasticsearch interpreter ... - SUCCESS
[INFD] Alluxio interpreter . - SUCCESS
[INFO] Zeppelin: web AppLICAtiONn ..cccesecssss « SUCCESS
[INFO] Zeppelin: SErver ....ccssescsssssss . SUCCESS

[INFD] Zeppelin: Packaging distribution
[INFO]
[INFD] BUILD SUCCESS
[INFO)
[INFD] Total time: ©2:22 min

[INFO] Finished at: 2016-04-02T18:32:31-07:00
[INFD] Final Memory: 281M/1678M

[INFD]
Kerrys-MacBook-Pro: incubator-zeppelin kerryks |

SUCCESS

Figure 4-10. Successful Maven build of the Zeppelin notebook

And then
mvn verify

Use
bin/zeppelin-daemon.sh start
to start Zeppelin server, and

bin/zeppelin-daemon.sh stop

to stop the Zeppelin server. Run the introductory tutorials to test the use of Zeppelin at https://zeppelin.

apache.org/docs/0.6.0/quickstart/tutorial.html. Zeppelin is particularly useful for interfacing with

Apache Spark applications, as well as NoSQL components such as Apache Cassandra.

73


https://zeppelin.apache.org/docs/0.6.0/quickstart/tutorial.html
https://zeppelin.apache.org/docs/0.6.0/quickstart/tutorial.html

CHAPTER 4 * RELATIONAL, NOSQL, AND GRAPH DATABASES

Data Sources

£

Cassandra
PROBDA Java Database

Spring XD Data Program

Ingestion

Zeppelin
Notebook

Apache Lens Framework

Processor

Figure 4-11. Zeppelin-Lens-Cassandra architecture, with data sources

OLAP is still alive and well in the Hadoop ecosystem. For example, Apache Kylin (http://kylin.
apache.org) is an open source OLAP engine for use with Hadoop. Apache Kylin supports distributed
analytics, built-in security, and interactive query capabilities, including ANSI SQL support.

Apache Kylin depends on Apache Calcite (http://incubator.apache.org/projects/calcite.html)to
provide an “SQL core”

To use Apache Calcite, make sure the following dependencies are in your pom.xml file.

<dependency>
<groupld>org.apache.calcite</groupIld>
<artifactId>calcite-core</artifactId>
<version>1.7.0</version>
</dependency>

M kerryk — bash — 80x24
Last login: Tue May 1@ 15:86:21 on ttyseld B

Kerrys-MacBook-Pro:~ kerryk$ curl -L -0 http:!fsearch.maven.orq!remutecontent?fi'
lepath=org/hsqldb/sqltool/2.3.2/sqltool-2.3.2.jar

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

180 161 18e 161 ] ] 187 B ——i==i== —=j——i—= —=;-—i—— 186
180 143k 100 143k [} @ 54176 @ ©:00:02 ©0:00:02 --:--:-- 89736

Kerrys-MacBook-Pro:~ kerryks curl -L -0 http://search.maven.org/remotecontent?fi
lepath=org/hsqldb/hsqldb/2.3.2/hsqldb-2.3.2,jar
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
iee 161 1@e@ 161 '] '] 488 B ——i-=i- : H 487
180 1438k 100 1438k [:] B 71854 @ 9:00:20 0:00:20 —-:--: 389k
Kerrys-MacBook-Pro:~ kerryks [|

Figure 4-12. HSQLDB installation from the command line
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curl -L -0 http://search.maven.org/remotecontent?filepath=org/hsqldb/sqltool/2.3.2/sqltool-
2.3.2.jar

and

curl -L -0 http://search.maven.org/remotecontent?filepath=org/hsqldb/hsqldb/2.3.2/hsqldb-

2.3.2.jar

on the command line. You should see an installation result similar to Figure 4-13. As you can see, Calcite is

compatible with many of the databases we have been talking about. Components for use with Cassandra,

Spark, and Splunk are available.

[WARNING) - com.fasterxml.jackson.core.sym.BytesToNameCanonicalizer
[WARNING] - com.fasterxml.jackson.core.JsonGenerator$Feature
[WARNING] - com.fasterxml.jackson.core.io.SegmentedStringWriter
[WARNING] - com,fasterxml.jackson.core,type.ResolvedType

[WARNING) - com.fasterxml.jackson.core.TreeNode

[WARNING] - com.fasterxml.jackson.core.sym.Name

[WARNING] - com.fasterxml.jackson.core.util.)sonGeneratorDelegate
[WARNING] - B3 more...

[WARNING] maven-shade-plugin has detected that some .class files

[WARNING]
[WARNING]
[WARNING]
[WARNING]
[WARNING]

[WARNING] output

[WARNING]

calcite-ubenchmark-1.7.8-shaded. jar

[INFO)
[INFO]
[INFO)
[INFO)
[INFO)
[INFO)
[INFO)
[INFO]
[INFQ)
[INFO)
[INFO)
[INFO]
[INFO]
[INFO]
[INFO)
[INFO)
[INFO)
[INFO]
[INFO]
[INFO)
[INFO)
[INFO)
[INFO]

are present in two or more JARs. When this happens, only
one single version of the class is copied in the uberjar.
Usually this is not harmful and you can skeep these
warnings, otherwise try to manually exclude artifacts
based on mvn dependency:tree -Ddetail=true and the above

See http://docs.codehaus.org/display/MAVENUSER/Shade+Plugin
[INFO] Replacing /Users/kerryk/Downloads/apache-calcite-1.7-2.8-src/ubenchmark/target/ub
enchmarks.jar with /Users/kerryk/Downloads/apache-calcite-1.7-2.@-src/ubenchmark/target/

Reactor Summary:

Caleite suvvssssassssavanssssnnnsaassrsnnnnssssnrnas
Calcite Lingd] ..
Calcite Core suvevvvnnnns ersesessarnas

Calcite Cassandra .....
Calcite Examples .....
Calcite Example CSV ......
Calcite Example Function ..
Calcite MongoDB ....eevsues
Calcite Piglet ..
Calcite Plus ..
Calcite Spark ...
Calcite Splunk ...evuus

Calcite Ubenchmark .covvvssvrssssnsanssssansnnnnnnas

SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS

. SUCCESS

SUCCESS
SUCCESS
SUCCESS

I
[

[03:27 mi

7.259
8.100

8.859
8.181
2,496
1.77@
1.361
2.649
2.940
14.866
8.901
4.121

s]
s]
n]
5

BUILD SUCCESS

Total time: @4:15 min
Finished at: 2016-04-22T15:49:14-87:00
Final Memory: 142M/1589M

Kerrys-MacBook-Pro:apache-calcite-1.7-2.8-src kerryks ||

Figure 4-13. Successful installation of Apache Calcite
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4.7 Summary

In this chapter, we discussed a variety of database types, available software libraries, and how to use the
databases in a distributed manner. It should be emphasized that there is a wide spectrum of database
technologies and libraries which can be used with Hadoop and Apache Spark. As we discussed, “glueware”
such as the Spring Data project, Spring Integration, and Apache Camel, are particularly important when
integrating BDA systems with database technologies, as they allow integration of distributed processing
technologies with more mainstream database components. The resulting synergy allows the constructed
system to leverage relational, NoSQL, and graph technologies to assist with implementation of business
logic, data cleansing and validation, reporting, and many other parts of the analytic life cycle.

We talked about two of the most popular graph query languages, Cypher and Gremlin, and looked at
some simple examples of these. We took a look at the Gremlin REPL to perform some simple operations
there.

When talking about graph databases, we focused on the Neo4j graph database because it is an easy-to-
use, full-featured package. Please keep in mind, however, that there are several similar packages which are
equally useful, including Apache Giraph (giraph.apache.org),TitanDB (http://thinkaurelius.github.
io/titan/), OrientDB (http://orientdb.com/orientdb/), and Franz’s AllegroGraph (http://franz.com/
agraph/allegrograph/).

In the next chapter, we will discuss distributed data pipelines in more detail—their structure, necessary
toolkits, and how to design and implement them.
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CHAPTER 5

Data Pipelines and How to
Construct Them -

In this chapter, we will discuss how to construct basic data pipelines using standard data sources and the
Hadoop ecosystem. We provide an end-to-end example of how data sources may be linked and processed
using Hadoop and other analytical components, and how this is similar to a standard ETL process. We will
develop the ideas presented in this chapter in more detail in Chapter 15.

A NOTE ABOUT THE EXAMPLE SYSTEM STRUCTURE

Since we are going to begin developing the example system in earnest, a note about the package
structure of the example system is not out of place here. The basic package structure of the example
system developed throughout the book is shown in Figure 5-1, and it’s also reproduced in Appendix A.
Let’s examine what the packages contain and what they do briefly before moving on to data pipeline
construction. A brief description of some of the main sub-packages of the Probda system is shown in
Figure 5-2.

© Kerry Koitzsch 2017 77
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com.anress.orobda.core

com.apress.orobda.infrastructure

com.apress.orobda.aoplications

com.apress.orobda.geospatial

com.apress.orobda com.apress.orobda.algorithms

com.apress.orobda.iahdt

com.apress.orobda.pipeline

com.apress.orobda.database

> com.apress.orobda.search

com.apress.orobda.rules

> com.apress,orobda.learning

Figure 5-1. Fundamental package structure for the analytics system
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COmMm.

COm.

com

COmMm.

com.

com

com

com.

com.

com

com.

Package

apress.probda

apress.probda.core

.apress.probda.infrastructure

apress.probda.applications

apress.probda.geospatial

.apress.probda.agorithms

.apress.probda.iabdt

apress.probda. database

apress.probda.search

.apress.probda.learning

apress.probda.pipeline

The root package of the Probda system

The home of the sample applications

Description

Core wrapper classes and fundamental support classes

Infrastructure classes and methods

Geospatial support classes

Algorithm and algorithm support classes

Image as big data toolkit example application classes
Support classes for the databases used in this book
Support classes for the dilferent varieties of search

Machine learning and deeplearning support and example
classes

Datapipeline classes and support classes

Figure 5-2. Brief description of the packages in the Probda example system

In this chapter, we will be concentrating on the classes in the package com.apress.probda.pipeline.
There are five base java classes provided in the code contribution which will enable you to work with
reading, transforming, and writing different data sources using a basic data pipelining strategy. See the code

contribution notes for more details.

9.1

The Basic Data Pipeline

A basic distributed data pipeline might look like the architecture diagram in Figure 5-3.
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Data
Source
1

A

BEE] Distributed Dashboard

Ingestion File System Analyzer | and
(such as Components Visualizers,

HDFS] Repcrts

Hadoop
Infrastructure
Components

Figure 5-3. A basic data pipeline architecture diagram

We can use standard off-the-shelf software components to implement this type of architecture.
We will use Apache Kafka, Beam, Storm, Hadoop, Druid, and Gobblin (formerly Camus) to build our
basic pipeline.

5.2 Introduction to Apache Beam

Apache Beam (http://incubator.apache.org/projects/beam.html) is a toolkit specifically designed for
constructing data pipelines. It has a unified programming model and is designed to be such, since the core
of our approach throughout this book is to design and construct distributed data pipelines. Whether using
Apache Hadoop, Apache Spark, or Apache Flink as core technologies, Apache Beam fits into the technology
stack in a very logical way. At the time this book was written, Apache Beam was an incubating project, so
check the web page for its current status.

The key concepts in the Apache Beam programming model are:

e  “PCollection”: representing a collection of data, which could be bounded or
unbounded in size

e  “PTransform”: representing a computation that transforms input PCollections into
output PCollections

e  “Pipeline”: manages a directed acyclic graph of PTransforms and PCollections that is
ready for execution

e  “PipelineRunner”: specifies where and how the pipeline should execute

80


http://incubator.apache.org/projects/beam.html)

CHAPTER 5

DATA PIPELINES AND HOW TO CONSTRUCT THEM

These basic elements may be used to construct pipelines with many different topologies, like in the

example code in Listing 5-1.

Listing 5-1. Apache Beam test code snippet example

static final String[] WORDS_ARRAY = new String[] {
"probda analytics", "probda", "probda pro analytics",
"probda one", "three probda", "two probda"};

static final List<String> TEST WORDS = Arrays.asList(WORDS_ARRAY);

static final String[] WORD_COUNT ARRAY = new String[] {

"probda: 6

@Test

@Category(RunnableOnService.class)
public void testCountWords() throws Exception {

Pipeline p = TestPipeline.create();

, "one: 1", "pro: 1", "two: 1", "three: 1", "analytics: 2"};

PCollection<String> input = p.apply(Create.of(TEST_WORDS).withCoder(StringUtf8Coder.of()));

PCollection<String> output = input.apply(new CountWords())
.apply(MapElements.via(new FormatAsTextFn()));

PAssert.that(output).containsInAnyOrder (WORD_COUNT ARRAY);

p.run().waitUntilFinish();

cd to contribs/Hadoop and run the Maven file installation

mvn clean package

[INFO]

[INFO] Building Apache Beam :: Examples @.1.@8-incubating-SMAPSHOT

[InFO) —

[INFO]

[INFO] -—- maven-clean-plugin:2.5:clean (default-clean) @ exasples-parent --—-
[InFO]

[INFD] --- maven-remote-resources-plugin:l.S:process (default) @ examples-parent -—-—-
[INFO]

[INFO] -—- maven-site-plugin:3.4:attach-descriptor (attach-descriptor) @ examples-parent ——-
[InFO]

[INFO] Reactor Summary:

[INFO]

[INFO] Apache Beam :: PAFEAT ...eevvvessscassrsssnsnsssnsss SUCCESS [ 0.938 3]
[INFO] Apache Beam :: SOKS .....eeus ... SUCCESS [ 0.015 s
[INFO] Apache Beam :: SDKS :: JOWA ..ucesnsss +e.. SUCCESS [ ©.012 3]
[INFO] Apache Beam :: SOKs :: Java :: sess SUCCESS [91:46 min]
[INFO] Apache Beam :: SDKs :: Java :: Tests . «« SUCCESS [ 3.080 s
[INFO] Apache Beam :: Runners :: Google Cloud .« SUCCESS [ 12.642 s]
[INFO] Apache Beam :: Examples :: Java All .. «+ SUCCESS [ 11.949 s]
[INFO] Apache Beam :: RURNErS ...cveenennns .. SUCCESS [ ®@.011 s)
[INFO] Apache Beam :: Runners :: Flink .. .. SUCCESS [ @.064 s]
[INFO] Apache Beam :: Runners :: Flink :: Core ... ... SUCCESS [ 24.248 s
[INFO] Apache Beam :: Runners :: Flink :: Examples . .« SUCCESS [ 0.478 s
[INFO] Apache Beam :: 2 SPArK coienceinnans .« SUCCESS [02:12 min]
[INFO] Apache Beam :: Maven Archetype: SUCCESS [ @.e09 s)

[INFO] Apache Bea

11 Maven Archetypes
[INFO] Apache Beam :: SDKs :: Java :: Maven Archetypes ::

Starter 5U

[INFO] Apache Beam :: Examples :: Java 8 ALl SUCCESS [ 3.485 s)
[INFO] Apache Beam :: EXaMPles vocviesersssrecvaanens SUCCESS [ ©.008 s)
[INFO]

[INFO] BUILD SUCCESS

L R e e e e s L e o U

[INFO] Total time: @4:58 min

[INFO] Finished at: 2016-84-12T89:26:35-07:80
[INFO] Final Memory: 139M/1527M

[INFO]

Kerrys-MacBook-Pro: incubator-beas kerryks

ICCESS [ @.547 s)
Examples SUCCESS [ 0.031 s

Figure 5-4. Successful Maven build of Apache Beam, showing the reactor summary
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5.3 Introduction to Apache Falcon

Apache Falcon (https://falcon.apache.org) is a feed processing and feed management system aimed
at making it easier for end consumers to onboard their feed processing and perform feed management on
Hadoop clusters.

Apache Falcon provides the following features:

Apache Falcon (https://falcon.apache.org) can be used to process and manage “feeds” on Hadoop
clusters, thus providing a system of management which makes it much more straightforward to implement
onboarding and establish data flows. It has other useful features, including:

e establishes relationship between various data and processing elements on a Hadoop
environment

¢ feed management services such as feed retention, replications across clusters,
archival, etc.

e easy to onboard new workflows/pipelines, with support for late data handling and
retry policies

e integration with metastore/catalog such as Hive/HCatalog

e  provides notification to end customer based on availability of feed groups (logical
group of related feeds, which are likely to be used together)

e enables use cases for local processing in colo and global aggregations

e  captures Lineage information for feeds and processes

5.4 Data Sources and Sinks: Using Apache Tika to
Construct a Pipeline

Apache Tika (tika.apache.org) is a content analysis toolkit. See the installation instructions for Apache Tika
in Appendix A.

Using Apache Tika, almost all mainstream data sources may be used with a distributed data pipeline.

In this example, we will load a special kind of data file, in DBF format, use Apache Tika to process the
result, and use a JavaScript visualizer to observe the results of our work.

DBEF files are typically used to represent standard database row-oriented data, such as that shown in Listing 5-2.

Map: 26 has: 8 entries...
STATION-->Numeric

5203

MAXDAY - - >Numeric

20

AV8TOP-->Numeric
9.947581
MONITOR-->Numeric

36203

LAT-->Numeric
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34.107222
LON-->Numeric
-117.273611
X_COORD- ->Numeric
474764.37263
Y_COORD-->Numeric
3774078.43207

DBEF files are typically used to represent standard database row-oriented data, such as that shown in Listing 5-3.
A typical method to read DBEF files is shown in Listing 5-3.

public static List<Map<String, Object>>readDBF(String filename){
Charset stringCharset = Charset.forName("Cp866");
List<Map<String,Object>> maps = new ArraylList<Map<String,Object>>();
try {
File file = new File(filename);
DbfReader reader = new DbfReader(file);
DbfMetadata meta = reader.getMetadata();
DbfRecord rec = null;
int i=0;
while ((rec = reader.read()) != null) {
rec.setStringCharset(stringCharset);
Map<String,Object> map = rec.toMap();
System.out.printIn("Map: " + i + " has: " + map.size()+

entries...");

maps.add(map) ;
i++;
}
reader.close();
} catch (IOException e){ e.printStackTrace(); }
catch (ParseException pe){ pe.printStackTrace(); }
System.out.println("Read DBF file: " + filename + " , with : " + maps.
size()+ " results...");
return maps

Gobblin (http://gobblin.readthedocs.io/en/latest/)—formerly known as Camus—is another
example of a system based on the “universal analytics paradigm” we talked about earlier.

“Something is missing here: is a universal data ingestion framework for extracting, transforming, and
loading large volume of data from a variety of data sources, e.g., databases, rest APIs, FTP/SFTP servers,
filers, etc., onto Hadoop. Gobblin handles the common routine tasks required for all data ingestion ETLs,
including job/task scheduling, task partitioning, error handling, state management, data quality checking,
data publishing, etc. Gobblin ingests data from different data sources in the same execution framework,
and manages metadata of different sources all in one place. This, combined with other features such as
auto scalability, fault tolerance, data quality assurance, extensibility, and the ability of handling data model
evolution, makes Gobblin an easy-to-use, self-serving, and efficient data ingestion framework.”

Figure 5-5 shows a successful installation of the Gobblin system.
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sgobblin—utility/reports/findbugs/test.xml =
:gobblin—utility:test

objc[435@8]: Class JavalLaunchHelper is implemented in both /Library/Java/JavaVirtualMachin
es/jdkl.8.0_60.jdk/Contents/Home/bin/java and /Library/Java/JavavirtualMachines/jdkl.8.8_6
@.jdk/Contents/Home/jre/lib/libinstrument.dylib. One of the two will be used. Which one is
undefined.

Pass 1: Analyzing classes (39 / 66) - 59% complete Pass 1: An
alyzing classes (66 / 66) — 100% complete

javadoc: warning = Error reading file: /Users/kerryk/gobblin/build/gobblin-rest—-api/docs/j
avadoc/package-1list

Scanning archives (139 s 258) iScanning a
rchives (287 / 258) iScanning archives (2
58 / 258)

Pass 2: Analyzing classes (1 / 1) — 10@% complete

Done with analysis

FindBugs rule violations were found. See the report at: file:///Users/kerryk/gobblin/build
/gobblin-rest-server/reports/findbugs/test.xml
:gobblin—-rest—-service:gobblin-rest-server:test

objc[43539]: Class JavalLaunchHelper is implemented in both /Library/Java/JavaVirtualMachin
es/jdkl.8.0_60. jdk/Contents/Home/sbin/java and sLibrary/Java/sJavavVirtualMachines/jdkl.8.8_6
B.jdk/Contents/Home/jre/lib/libinstrument.dylib. One of the two will be used. Which one is
undefined.

1l warning

:gobblin—-azkaban: javadocldar

:gobblin—-distribution: javadoc UP O0-DAT

:gobblin—-distribution: javadocJdar

:gobblin—-distribution:assemble

:gobblin—distribution:build

:gobblin—azkaban:assemble

:gobblin—azkaban: build

2 analysis passes to perform

Pass 1: Analyzing classes (39 / 164) - 23% complete Pass 1: An
alyzing classes (78 / 164) — 47% complete tPass 1: Analyzing cl
asses (156 / 164) - 94% complete 1Pass 1: Analyzing classes (164

/ 164) — 1@0% complete

Pass 2: Analyzing classes (17 / 17) - 100% complete

Done with analysis

:gobblin-yarn: test

objc[43591]: Class JavalLaunchHelper is implemented in both /Library/Java/JavaVirtualMachin
es/jdkl.8.8_60.jdk/Contents/Home/sbin/java and /Library/Java/JavavVirtualMachines/jdkl.8.8_6
@.jdk/Contents/Home/jre/lib/libinstrument.dylib. One of the two will be used. Which one is
undefined.

:gobblin—-rest—-service:gobblin-rest-server:check
:gobblin—-rest—-service:gobblin—-rest-server:build

:gobblin—-yarn:check

:gobblin—-yarn:build

tgobblin—-runtime:check

:gobblin—runtime: build

igobblin—utility:check

rgobblin—-utility:build

BUILD SUCCESSFUL

Total time: B mins 2.297 secs
Kerrys—-MacBook—-Pro:gobblin kerryks || .

Figure 5-5. A successful installation of Gobblin

5.5 Computation and Transformation

Computation and transformation of our data stream can be performed with a small number of simple steps.
There are several candidates for this part of the processing pipeline, including Splunk and the commercial
software offering Rocana Transform.

We can either use Splunk as a basis for this, or use Rocana Transform. Rocana is a commercial product,
so in order to use it you can purchase it or use the free evaluation trial version.

Rocana (https://github.com/scalingdata/rocana-transform-action-plugin) Transform is a
configuration-driven transformation library that can be embedded in any JVM-based stream processing or
batch processing system such as Spark Streaming, Storm, Flink, or Apache MapReduce.

One of the code contribution examples shows how to build a Rocana transformation engine plug-in,
which can perform event data processing within the example system.

In Rocana, a transformation plug-in is made up of two important classes, one based on the Action
interface and one based on the ActionBuilder interface, as documented in the code contribution.
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5.6 Visualizing and Reporting the Results

Some visualization and reporting can best be done with a notebook-oriented software tool. Most are based
on Python—such as Jupyter or Zeppelin. Recall that the Python ecosystem looks something like Figure 5-6.
Jupyter and Zeppelin would be under the “Other Packages and Toolboxes” heading, but this does not mean
they are not important.

User Programs

Other Packages and Toolboxes

matplotlib or
other plotters

Core Python and Python Ecosystem

Figure 5-6. Basic Python ecosystem, with a place for notebook-based visualizers

85



CHAPTER 5 ' DATA PIPELINES AND HOW TO CONSTRUCT THEM

Welcome to the Anaconda3 Installer

s! introduction You will be guided through the steps necessary to install this
software.
Read Me
License

Destination Select
Installation Type
Installation

Summary

o

ANACONDA

AN

Continue

Figure 5-7. Initial installer diagram for the Anaconda Python system
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o

The installation was completed successfully.

Anaconda is a modern open source analytics platform powered
Introduction by Python.

szl Share your notebooks and packages on Anaconda Cloud!
License Sign up for free

Destination Select

Installation Type

Installation

Summary

ANACONDA

Close
Figure 5-8. Successful installation of the Anaconda Python system

We'll be looking at several sophisticated visualization toolkits in chapters to come, but for now let us
start out with a quick overview of one of the more popular JavaScript-based toolkits, D3, which can be used
to visualize a wide variety of data sources and presentation types. These include geolocations and maps;
standard pie, line, and bar charting; tabular reports; and many others (custom presentation types, graph
database outputs, and more).

Once Anaconda is working correctly, we can proceed to installing another extremely useful toolkit,
TensorFlow. TensorFlow (https://www.tensorflow.org) is a machine learning library which also contains
support for a variety of “deep learning” techniques.
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Last login: Tue Aug 9 15:39:4@ from ::1
[Kerrys-MBP:~ kkoitzsch$ which jupyter

/Users/kkoitzsch/anaconda/bin/jupyter
Kerrys-MBP:~ kkoitzsch$ jupyter notebook |
W 12:01:49.927 NotebookAppl Unrecognized JSON config file version, assuming ver
sion 1

[I 12:01:50.152 NotebookApp] [nb_conda_kernels] enabled, 1 kernels found

[T 12:01:50.163 NotebookApp] Writing notebook server cookie secret to /Users/kko
itzsch/Library/Jupyter/runtime/notebook_cookie_secret

[I 12:01:50.622 NotebookApp] » nbpresent HTML export ENABLED

[W 12:01:50.622 NotebookApp] x nbpresent PDF export DISABLED: No module named 'n
bbrowserpdf'

[T 12:01:50.626 NotebookApp] [nb_conda] enabled

[T 12:01:50.701 NotebookApp] [nb_anacondacloud] enabled

[T 12:01:50.706 NotebookAppl Serving notebooks from local directory: /Users/kkoi
tzsch

[T 12:01:50.706 NotebookApp] @ active kernels

[T 12:01:50.7087 NotebookApp] The Jupyter Notebook is running at: http://localhos
t:8888/

[T 12:01:50.707 NotebookApp] Use Control-C to stop this server and shut down all
kernels (twice to skip confirmation).

Figure 5-9. Successfully running the Jupyter notebook program
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Kerrys-MBP:~ kkoitzsch$ git clone https://github.com/bokeh/bokeh.git
Cloning into 'bokeh'...

remote: Counting objects: 117738, done.

remote: Compressing objects: 10@% (281/281), done.

remote: Total 11773@ (delta 156), reused 17 (delta 17), pack-reused 117431
Receiving objects: 100% (117730/117730), 132.66 MiB | 1.63 MiB/s, done.
Resolving deltas: 100% (81821/81821), done.

Checking connectivity... done,

Kerrys-MBP:~ kkoitzsch$ which conda
/Users/kkoitzsch/anaconda/bin/conda

Kerrys-MBP:~ kkoitzsch$ conda install bokeh

Fetching package metadata .......

Solving package specifications: .....vuues

Package plan for installation in environment /Users/kkoitzsch/anaconda:

The following packages will be downloaded:

package | build
|

anaconda-custom | py35_0 3 KB
conda-env-2.5.2 | py35_0 27 KB
conda-4.1.11 | py35_0 204 KB
bokeh-98.12.1 | py35_0 3.3 MB

Total: 3.5 MB

The following packages will be UPDATED:

anaconda: 4.1.1-nplllpy35_@ --> custom-py35_0
bokeh: 0.12.0-py35_0 --> 0.12.1-py35_0
conda: 4.1.6-py35_0 --> 4,1.11-py35_0
conda-env: 2.5.1-py35_0 --> 2.5.2-py35_0

Proceed ([yl/n)? y

Fetching packages ...
anaconda-custo 100% |###E¥ssstssts sty aiytintntassssy| Tine:

90  2.19 MB/s

@:00:
conda-env-2.5. 100% |#####4SSsdESRassyasy BH#HHEHE| Time: 0:00:00 270.90 kB/s
conda-4.1,11-p 100% |####F#4FSIRELBEFBENBHVHIVERBLREE]| Time: 0:00:00 512,18 kB/s
bokeh-0.12.1-p 100% |#####84388R840440EREERHHR#HB#REE| Tine: 0:00:02 1.17 MB/s
Extracting packages ...

[ COMPLETE | | #EFHEHEEFEHREFESFHEF SV EHRHFHED SR HI B BEHHHBEHBEHH | 100%
Unlinking packages ...

[ COMPLETE 1 HREHHIRE | 100%
Linking packages ...

[ COMPLETE | |#E##E#EEBEHREFEEFHEFEFHEH R AV BV EH B HH BB BEREHREHBEHH | 100%

Kerrys-MBP:~ kkoitzsch$ []

Figure 5-10. Successfully installing Anaconda

Note recall that to build Zeppelin, perform the following steps:

mvn clean package -Pcassandra-spark-1.5 -Dhadoop.version=2.6.0 -Phadoop-2.6

-DskipTests
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Figure 5-11. Sophisticated visualizations may be created using the Jupyter visualization feature.

5.7 Summary

In this chapter, we discussed how to build some basic distributed data pipelines as well as an overview of
some of the more effective toolkits, stacks, and strategies to organize and build your data pipeline. Among
these were Apache Tika, Gobblin, Spring Integration, and Apache Flink. We also installed Anaconda (which
makes the Python development environment much easier to set up and use), as well as an important
machine learning library, TensorFlow.

In addition, we took a look at a variety of input and output formats including the ancient but useful
DBF format.

In the next chapter, we will discuss advanced search techniques using Lucene and Solr, and introduce
some interesting newer extensions of Lucene, such as ElasticSearch.

5.8 References

Lewis, N.D. Deep Learning Step by Step with Python. 2016. www.auscov.com
Mattmann, Chris, and Zitting, Jukka. Tika in Action. Shelter Island, NY: Manning Publications, 2012.
Zaccone, Giancarlo. Getting Started with TensorFlow. Birmingham, UK: PACKT Open Source Publishing, 2016.
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CHAPTER 6

Advanced Search Techniques with
Hadoop, Lucene, and Solr

In this chapter, we describe the structure and use of the Apache Lucene and Solr third-party search engine
components, how to use them with Hadoop, and how to develop advanced search capability customized for
an analytical application. We will also investigate some newer Lucene-based search frameworks, primarily
Elasticsearch, a premier search tool particularly well-suited towards building distributed analytic data
pipelines. We will also discuss the extended Lucene/Solr ecosystem and some real-world programming
examples of how to use Lucene and Solr in distributed big data analytics applications.

6.1 Introduction to the Lucene/SOLR Ecosystem

As we discussed in the overview of Lucene and Solr in Chapter 1, Apache Lucene (lucene.apache.com) is a
key technology to know about when you're building customized search components, and for good reason.
It’s one of the most venerable Apache components around and has had a long time to mature. In spite of its
age, the Lucene/Solr project has been the focus of some interesting new developments in search technology.
Lucene and Solr have been merged into one Apache project as of 2010. Some of the main components of the
Lucene/Solr ecosystem are shown in Figure 6-1.
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The greater Hadoop
ecosystem: Hive, Pig, and
HBase, including Apache

Mahout

Katta:
Distributed real time data Apache SOLR
storage

Apache Nutch

NGDATA Lily
(SOLR + Hadoop)

Apache Lucene

Solandra
(SOLR + Cassandra)

Figure 6-1. The Lucene/SOLR ecosystem, with some useful additions

SolrCloud, a new addition to the Lucene/Solr technology stack, allows multicore processing with a
RESTful interface. To read more about SolrCloud, visit the information page at https://cwiki.apache.org/
confluence/display/solr/SolrCloud.

6.2 Lucene Query Syntax

Lucene queries have evolved over the life of the Lucene project to include some sophisticated extensions to
the basic query syntax of yesteryear. While Lucene query syntax may change from version to version (and it
has evolved considerable since its introduction at Apache in 2001) most of the functionality and search types
remain constant, as is shown in Table 6-1.
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Table 6-1. Lucene query types and how to use them

Type of Search ~ Syntax Example Description
Component
free form text word or "the phrase" "to be or not to be" either un-quoted words or phrases

keyword search  field name : colon value

boosting term or phrase followed
by boost value

wildcard search  The * symbol can be used
for wild carding.

fuzzy search Use the tilde to indicate
metric distance.

grouping Normal parentheses
provide grouping.

field grouping Parentheses and colons
are used to clarify the
query string.

range search field name and colon
followed by range clause

proximity Search term tilde proximity value

city:Sunnyvale
term"3
*kerry

Hadoop~™

(java or C)

title: (+gift +"of
the magi")

startDate:[20020101
TO 20030101]
heroes:{Achilles TO
Zoroaster}

Term~10

with double-quotes

field to be searched, a colon, and the
string to search for

Use the caret to provide a new
boosting value for a term.

wild card searches with the *’ or “?”
symbol
Fuzzy search uses the symbol tilde

to indicate closeness using the
Levenschein distance metric.

Use parentheses to provide sub-
queries.

grouping with field name
qualifications, use ordinary
parentheses to provide grouping

Square brackets and the keyword
TO allow construction of the range
clause, i.e. {Achilles TO Zoroaster}.

Proximity search uses tilde symbol
to indicate “closeness” to the match.

INSTALLING HADOOP, APACHE SOLR, AND NGDATA LILY

In this section we are going to take a brief overview of how to install Hadoop, Lucene/Solr, and NGData’s
Lily project and suggest some “quick start” techniques to get a Lily installation up and running for

development and test purposes.

First, install Hadoop. This is a download, unzip, configure, and run process similar to the many others

you have encountered in this book.

When you have successfully installed and configured Hadoop, and and set up the HDFS file system, you
should be able to execute some simple Hadoop commands such as

hadoop fs -1s /

After executing this, you should see a screen similar to the one in Figure 6-2.
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munishs-machook-pro:bin kerryks which hadoop
fusr/locals/bin/hadoop
munishs=sacbook=pro:bin kerryk$ hadoop fs =ls /
2016-04-19 15:40:41.341 java[3827:1983] Unable to load realm info from SCOynamicStore

16/84/19 15:40:

Found 32 item
[ EE S )

drwxr=xr=x
A FWX PR P =X
drwxr=xr-x
drwEr=xr=x
drwxr=xr=x
o WX P =
drwxr=xr=x
o P P Wt
drwxr=xr=x
drwxrexr-t
& P P P
dr-xr-xr-x
drwxr=xr=x

dr-xr-xr-x
drwxr=xr=x
drwxr=xr=x
drwxr=xr=x
d WX P P
o Wi P Pt
drwxr=xr-x
drwxr=xr=-x

—PW—Pe—F—
sunishs-macbo

5

1

ok=-pro:

41 WARN util.MNativeCodeloader:

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

wheel
wheel
wheel
wheel
adein
wheel
wheel
wheel
admin
wheel
wheel
wheel
admin
admin
admin
wheel
admin
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel

72

68

178

68

@

204

1441792
6

4318
2414
68
136
204
204
204
1326
68
238
4588
3468

-

8154272
1
204
204
2108
178
442
1982
476
119¢
5

bin kerryks ||

2013-85-22
2012-11-16
2912-11-16
2013-85-22
2012-08-22
2016-04-18
2016-02-02

8 2012-86-16

2016-04-14
2016-81-14
2012-08-22
2013-01-22
2013-85-22
2016-81-14
2016-04-18
2013-06-14
2012-08-22
2014-11-12
20156-04-18
2016-04-18
20156-04-18
2913-85-01
2016-04-18
2014-08-20
2012-11-16
2013-06-14
2014-03-21
2016-84-19
2013-10-29
2013-12-20
2016-04-19
2016-82-10

16:23
0B:38
BB:44
16:00
1 5
13:18
087:02
10:41
14:44
13:16
15:35
14:16
15:57
13:16
13:19
17:13
15:25
14:48
12:55
12:59
12:57
17:57
12:57
1e:@2
ee:3e
17:13
15:29
15:31
13:57
11:14
14:44
15:48

|4 bin — bash — 147x39

Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

£ .DocumentRevisions=-V1e@
/.PKInstallSandboxManager
/.Spotlight-v1e@
/.Trashes

f.file

/. fseventsd
f-hotfiles.btree
fovol
fApplications
JLibrary

fMetwork

fSysten

fUser Information
fUsers

fVolumes

fbin

feores

fdata

fdev

fetc

/hone
Jmach_kernel

fnet

fopt

fprivate

fsbin

fremp

ftmp

fuser

fusr

fvar
frookeeper_server.pid

Figure 6-2. Successful test of installation of Hadoop and the Hadoop Distributed File System (HDFS)

Second, install Solr. This is simply a matter of downloading the zip file at, uncompressing, and cd’ing to
the binary file, where you may then start the server immediately, using the command.

A successful installation of Solr can be tested as in Figure 6-3.

Last login: Tue Apr 19 ©98:10:50 on ttys@e9 B8
Kerrys-MBP:~ kerryk$ cd Downloads
Kerrys-MBP:Downloads kerryk$ cd solr-5%

Kerrys-MBP:solr-5.3.0 kerryk$ cd bin

Kerrys-MBP:bin kerryks$ ./solr start

Waiting up to 3@ seconds to see Solr running on port 8983 [|]
Started Solr server on port 8983 (pid=31671). Happy searching!

Kerrys-MBP:bin kerryks$ []

Figure 6-3. A successful installation and start of the Solr server
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lilyproject.

Getting Hadoop, Lucene, Solr, and Lily to cooperate in the same software environment can be tricky, so
we include some tips on setting up the environment that you may have forgotten.

TIPS ON USING HADOOP WITH SOLR AND LUCENE

10.

Make sure you can log in with ‘ssh’ without password. This is essential for Hadoop
to work correctly. It doesn’t hurt to exercise your Hadoop installation from time to
time, to insure all the moving parts are working correctly. A quick test of Hadoop
functionality can be accomplished on the command line with just a few commands.
For example:

Make sure your environment variables are set correctly, and configure your init
files appropriately. This includes such things as your .bash_profile file, if you are on
MacOS, for example.

Test component interaction frequently. There are a lot of moving parts in distributed
systems. Perform individual tests to insure each part is working smoothly.

Test interaction in standalone, pseudo-distributed, and full-distributed modes when
appropriate. This includes investigating suspicious performance problems, hang-
ups, unexpected stalls and errors, and version incompatibilities.

Watch out for version incompatibilities in your pom.xml, and perform good pom.
xml hygiene at all times. Make sure your infrastructure components such as Java,
Maven, Python, npm, Node, and the rest are up-to-date and compatible. Please
note: most of the examples in this book use Java 8 (and some examples rely on
the advanced features present in Java 8), as well as using Maven 3+. Use java —
version and mvn —version when in doubt!

Perform “overall optimization” throughout your technology stack. This includes
at the Hadoop, Solr, and data source/sink levels. Identify bottlenecks and
resource problems. Identify “problem hardware,” particularly individual “problem
processors,” if you are running on a small Hadoop cluster.

Exercise the multicore functionality in your application frequently. It is rare you will
use a single core in a sophisticated application, so make sure using more than one
core works smoothly.

Perform integration testing religiously.

Performance monitoring is a must. Use a standard performance monitoring
“script” and evaluate performance based on previous results as well as current
expectations. Upgrade hardware and software as required to improve performance
results, and re-monitor to insure accurate profiling.

Do not neglect unit tests. A good introduction to writing unit tests for current versions of

Hadoop can be found at https://wiki.apache.org/hadoop/HowToDevelopUnitTests.
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Apache Katta (http://katta.sourceforge.net/about) is a useful addition to any Solr-based
distributed data pipelining architecture, and allows Hadoop indexing into shards, as well as many other
advanced features.

HOW TO INSTALL AND CONFIGURE APACHE KATTA

1. Download Apache Katta from the repository at https://sourceforge.net/
projects/katta/files/. Unzip the file.

2. Add the Katta environment variables to your .bash_profile file if you are running
under MacQS, or the appropriate start-up file if running another version of Linux.
These variables include (please note these are examples only; substitute your own
appropriate path values here):

export KATTA HOME= /Users/kerryk/Downloads/kata-core-0.6.4

and add the binary of Katta to the PATH so you can call it directly:
export PATH=$KATTA HOME/bin:$PATH

3. Check to make sure the Katta process is running correctly by typing
ps -al | grep katta
on the command line. You should see an output similar to Figure 6-4.

Kerrys-MacBook-Pro-2:~ kerryk$ ps -al | grep katta

501 46783 1 4006 © 31 © 4991200 128572 - S B ttysees

0:86.12 fusr/bin/java -Xmx1@@@m -Dkatta.log.dir=/Users/kerryk/Downloads/katta-core-.6

.4/bin/../logs -Dkatta.log.file=katta-startMaster-Kerrys-MacBook-Pro-2.local.log -Dkatta.h
ome.dir=/Users/kerryk/Downloads/katta-core-8.6.4/bin/.. -Dkatta.id.str=kerryk -Dkatta.root
.logger=INF0,DRFA -classpath /Users/kerryk/Downloads/katta-core-@.6.4/bin/../conf:/Users/k
erryk/Downloads/katta-core-0.6.4/bin/../katta-core-0.6.4.jar:/Users/kerryk/Downloads/katta
-core-8.6.4/bin/../lib/activation-1.1.jar:/Users/kerryk/Downloads/katta-core-8.6.4/bin/../
lib/commons-cli-1.2.jar:/Users/kerryk/Downloads/katta-core-0.6.4/bin/../lib/commons-codec-
1.3.jar:/Users/kerryk/Downloads/katta-core-@.6.4/bin/../1lib/commons=httpclient-3.0.1.jar:/
Users/kerryk/Downloads/katta-core-@.6.4/bin/../1lib/commons-logging-1.8.4.jar:/Users/kerryk
/Downloads/katta-core-0.6.4/bin/../lib/commons-logging-api-1.0.4.jar:/Users/kerryk/Downloa
ds/katta-core-0.6.4/bin/../lib/commons-math-1.2.jar:/Users/kerryk/Downloads/katta-core-9.6
«4/bin/../lib/commons-net-1.4.1.jar:/Users/kerryk/Downloads/katta-core-8.6.4/bin/../lib/qu
ava-r@8.jar:/Users/kerryk/Downloads/katta-core-9.6.4/bin/../1ib/hadoop-0.208.2-core.jar:/Us
ers/kerryk/Downloads/katta-core-@.6.4/bin/../1lib/jets3t-0.6.1.jar:/Users/kerryk/Downloads/
katta-core-@.6.4/bin/../lib/jetty-6.1.14,jar:/Users/kerryk/Downloads/katta-core-0.6.4/bin/
o /lib/jetty-util-6.1,14,jar:/Users/kerryk/Downloads/katta-core-0.6.4/bin/../lib/jms-1.1.j
ar:/Users/kerryk/Downloads/katta-core-0.6.4/bin/../lib/jmxri-1.2.1.jar:/Users/kerryk/Downl
oads/katta-core-0.6.4/bin/../lib/jmxtools-1.2.1.jar:/Users/kerryk/Downloads/katta-core-8.6
.4/bin/../1ib/jsch-8.1.41.jar:/Users/kerryk/Downloads/katta-core-8.6.4/bin/../lib/jsp-2.1.
jar:/Users/kerryk/Downloads/katta-core-0.6.4/bin/../1ib/jsp-api-2.1.jar:/Users/kerryk/Down
loads/katta-core-@.6.4/bin/../1ib/log4j-1.2.15.jar:/Users/kerryk/Downloads/katta-core-0.6.
4/bin/../lib/lucene-core-3.0.3.jar:/Users/kerryk/Downloads/katta-core-8.6.4/bin/../lib/mai
1-1.4.jar:/Users/kerryk/Downloads/katta-core-@.6.4/bin/../lib/serviet-api-2.4.jar:/Users/k
erryk/Downloads/katta-core-0.6.4/bin/../lib/typica-1.5.1.jar:/Users/kerryk/Downloads/katta
-core-08.6.4/bin/../1lib/xmlenc-0.52.jar: /Users/kerryk/Downloads/katta-core-@.6.4/bin/../lib
/zkclient-0.2.dev.jar:/Users/kerryk/Downloads/katta-core-8.6.4/bin/../1ib/zookeeper-3.3.2.
jar net.sf.katta.Katta startMaster --config /Users/kerryk/Downloads/katta-core-@.6.4/bin/.
./conf

501 48217 47792 4006 @ 31 © 2432772 676 - S+ @ ttys@26

0:00.00 grep katta

Kerrys-MacBook-Pro-2:~ kerryks$ ||

Figure 6-4. A successful initialization of the Katta Solr subsystem
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4. Successfully running the Katta component will produce results similar to those in Figure 6-4.

fUsers/kerryk B
Kerrys-MacBook-Pro-2:~ kerryk$ cd Downloads

Kerrys-MacBook-Pro-2:Downloads kerryk$ cd katta-cx

Kerrys-MacBook-Pro-2:katta-core-@8.6.4 kerryks sh bin/katta addIndex testIndex src/test/testIndexA 2

Unable to find a $JAVA_HOME at “/fusr", continuing with system-provided Java...

.16/07/06 ©9:38:27 INFO protocol.InteractionProtocol:149 - unregistering component net.sf.katta.client.IndexDeployFuture
@18efos: {}

deployed index 'testlndex' in 432 ms

Kerrys-MacBook-Pro-2:katta-core-8.6.4 kerryks sh bin/katta search testIndex foo:bar 4
Unable to find a $JAVA_HOME at “/fusr", continuing with system-provided Java...
16/07/06 @9:38:41 INFO client.Client:123 - indices=[testIndex]

4 hits found in @.@51sec.

| Hit | Node | Shard | Docld | Score

| @ | Kerrys-MacBook-Pro-2.local:20808 | testIndex#alndex | @ | 6.3088315
| 1 | Kerrys-MacBook-Pro-2.local:20808 | testIndex#cIndex | @ | 6.388315
| 2 | Kerrys-MacBook-Pro-2.local:2800@ | testIndex#bIndex | @ | 5.4562325
| 3 | Kerrys-MacBook=-Pro=-2.local:2000@ | testIndex#alndex | 1 | 5.4562325

Kerrys-MacBook-Pro-2:katta-core-8.6.4 kerryks

Figure 6-5. Successful installation and run of Apache Katta screen

6.3 A Programming Example using SOLR

We are going to work through a complete example of using SOLR to load, modify, evaluate, and search a
standard data set that we download from the Internet. We're going to highlight a few features of Solr as we
go. As we noted earlier, Solr contains separate data repositories called “cores.” Each one may have a separate
defined schema associated with it. Solr cores may be created on the command line.

First, download the sample data set as a csv file from the URL http://samplecsvs.s3.amazonaws.com/
SacramentocrimeJanuary2006.csv

You will find it in your downloads folder with the file name

yourDownLoadDirectory/SacramentocrimeJanuary2006.csv
Create a new SOLR core with the command:
./solr create -c crimecorel -d basic_configs

You will see a screen similar to the one in Figure 6-2 if your core creation is successful.
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Last login: Thu Feb 18 16:26:46 on ttys@@9 =]
Now using node v0.12.0 (npm v2.5.1)

Kerrys-MBP:~ kerryk$ cd Downloads

Kerrys-MBP:Downloads kerryk$ cd solr-5%

Kerrys-MBP:solr-5.3.@ kerryk$ cd bin

Kerrys-MBP:bin kerryk$ ./solr create -c crimecorel -d basic_configs

Unable to find a $JAVA_HOME at "/usr", continuing with system-provided Java...

Setup new core instance directory:
/Users/kerryk/Downloads/solr-5.3.0/server/solr/crimecorel

Creating new core 'crimecorel' using command:
https://localhost:8983/solr/admin/cores?action=CREATE&name=crimecorel&instanceDi
r=crimecorel

{

"responseHeader":{
"status":0,
"QTime":63},

“core":"crimecorel"}

Kerrys-MBP:bin kerryks$ ||

Figure 6-6. Successful construction of a Solr core

Modify the schema file schema.xml by adding the right fields to the end of the specification.
<!= much more of the schema.xml file will be here -->

............

<!-- you will now add the field specifications for the cdatetime,address,district,beat,gri
d,crimedescr,ucr_ncic_code,latitude,longitude
fields found in the data file SacramentocrimeJanuary2006.csv
-->
<field name="cdatetime" type="string" indexed="true" stored="true" required="true"
multiValued="false" />
<field name="address" type="string" indexed="true" stored="true" required="true"
multiValued="false" />
<field name="district" type="string" indexed="true" stored="true" required="true"
multiValued="false" />
<field name="beat" type="string" indexed="true" stored="true" required="true"
multiValued="false" />

<field name="grid" type="string" indexed="true" stored="true" required="true"
multiValued="false" />

<field name="crimedescr" type="string" indexed="true" stored="true" required="true"
multiValued="false" />
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<field name="ucr_ncic_code" type="string" indexed="true" stored="true" required="true"
multiValued="false" />

<field name="latitude" type="string" indexed="true" stored="true" required="true"
multivValued="false" />

<field name="longitude" type="string" indexed="true" stored="true" required="true"
multiValued="false" />

<field name="internalCreatedDate" type="date" indexed="true" stored="true"
required="true" multiValued="false" />

<!-- the previous fields were added to the schema.xml file. Field type definition for
currentcy is shown below -->

<fieldType name="currency" class="solr.CurrencyField" precisionStep="8"
defaultCurrency="USD" currencyConfig="currency.xml" />

</schema>

It's easy to modify data by appending keys and additional data to the individual data lines of the CSV
file. Listing 6-1 is a simple example of such a CSV conversion program.

Modify the Solr data by adding a unique key and creation date to the CSV file.

The program to do this is shown in Listing 6-1. The file name will be com/apress/converter/csv/
CSVConverter. java.

The program to add fields to the CSV data set needs little explanation. It reads an input CSV file line by
line, adding a unique ID and date field to each line of data. There are two helper methods within the class,
createInternalSolrDate() and getCSVField().

Within the CSV data file, the header and the first few rows appear as in Figure 6-7, as shown in Excel.
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Figure 6-7. Crime data CSV file. This data will be used throughout this chapter.
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Listing 6-1. Java source code for CSVConverter.java.

package com.apress.converter.csv;

import
import
import
import
import
import
import
import
import
import
import
import
import
import

public

100

java.
java.
java.
java.
java.
java.
java.

java
java

java.
java.
java.
Jjava.
Jjava.

io.
io.
io.
io.
io.
io.
io.
.text.DateFormat;

.text.SimpleDateFormat;

File;
FileNotFoundException;
FileOutputStream;
FileReader;
FileWriter,
IOException;
LineNumberReader;

util.Arraylist;
util.Date;
util.Llist;
util.TimeZone;
util.logging.Logger;

class CSVConverter {
Logger LOGGER = Logger.getAnonymousLogger();

String targetSource = "Sacramentocrimelan2006.csv";
String targetDest = "crimeO.csv";

/** Make a date Solr can understand from a regular oracle-style day string.

*

* @param regular]avaDate
* @return

*/

public String createlnternalSolrDate(String regularJavaDate){

}

if (regularJavaDate.equals("")||(regularJavaDate.equals("\"\""))){ return
String answer = "";

TimeZone tz = TimeZone.getTimeZone("UTC");

DateFormat df = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm'Z'");
df.setTimeZone(tz);

try {

answer = df.format(new Pate(regularJavaDate));

} catch (IllegalArgumentException e){

}

return "°;
return answer;

nn,
)

/** Get a CSV field in a CSV string by numerical index. Doesnt care if there are
blank fields, but they count in the indices.

ES

* @param s
* @param fieldnum
* @return

*/

}
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public String getCSVField(String s, int fieldnum){
String answer = "";
if (s != null) { s = s.replace(",,", ", ,");
String[] them = s.split(",");
int count = 0;
for (String t : them){
if (fieldnum == count) answer = them[fieldnum];

count++;
}
}

return answer;

}

public CSVConverter(){
LOGGER. info("Performing CSV conversion for SOLR input");

List<String>contents = new Arraylist<String>();
Arraylist<String>result = new ArraylList<String>();
String readline = "";

LineNumberReader reader = null;

FileOutputStream writer = null;
try {

reader = new LineNumberReader(new FileReader(targetSource));
writer = new FileOutputStream (new File(targetDest));
int count = 0;
int thefield = 1;
while (readline != null){
readline = reader.readline();
if (readline.split(","))<2){
LOGGER.info("Last line, exiting...");
break;

if (count != 0){
String origDate = getCSVField(readline, thefield).split(“ “)[0];
String newdate = createInternalSolrDate(origDate);
String resultline = readline + "," + newdate+"\n";
LOGGER.info("===== Created new line: " + resultline);
writer.write(resultLine.getBytes());
result.add(resultlLine);
} else {
String resultline = readline +",INTERNAL_CREATED DATE\n";
// add the internal date for faceted search
writer.write(resultLine.getBytes());
}
count++;
LOGGER. info("Just read imported row:
}
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
// TODO Auto-generated catch block

+ readline);
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e.printStackTrace();

}

for (String line : contents){
String newlLine = "";

}

try {

reader.close();

writer.close();

} catch (IOException e){ e.printStackTrace(); }
LOGGER. info("...CSV conversion complete...");

}

/** MAIN ROUTINE
*

* @param args

*/

public static void main(String[] args){
new CSVConverter(args[o0], args[1]);

}

Compile the file by typing:
javac com/apress/converter/csv/CSVConverter.java

After setting up the CSV conversion program properly as described above, you can run it by typing
java com.apress.converter.csv.CSVConverter inputcsvfile.csv outputcsvfile.csv

Post the modified data to the SOLR core:
./post -c crimecorel ./modifiedcrimedata2006.csv

Now that we've posted the data to the Solr core, we can examine the data set in the Splr dashboard.
Go to localhost:8983 to do this. You should see a screen similar to the one in Figure 6-4.
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Figure 6-8. Initial Solr dashboard
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=  localhost o

{
"responseHeader”:{
"status”:0,
"QTime":1,
"params”:{
"g":"title:*MONEY*",
"indent”:"true®,
"wt"1"json"}},
"response"”:{"numFound":250, "start":0, "docs":[
{
"id":"3001",
"title":["U.K. MONEY MARKET SHORTAGE FORECAST AT 250 MLN STG"],
“dateline”:[ "LONDON, March 9 -"],
"text":["The Bank of England said it forecast a\nshortage of around 250 mln stg in the money market today.\n Among the
factors affecting liquidity, it said bills‘nmaturing in official hands and the treasury bill take-up would\ndrain around 1.02
billion stg while below target bankers'\nbalances would take out a further 140 mln.\n Against this, a fall in the note
circulation would add 345\nmln stg and the net effect of exchequer transactions would be\nan inflow of some 545 mln stg, the Bank
added.\n REUTER"],
"places”:["uk”"],
"topics”:[ "money-£x"],
"date”:["1987-03-09T12:58:41.0122"],
"_wersion_":1516128122063290368},

"id":"3002"%,

“title”:["BANK OF FRANCE SETS MONEY MARKET TENDER"],

"dateline”:[ "PARIS, March 9 -"],

"text":["The Bank of France said it invited offers\nof firat category paper today for a money market
intervention\ntender.\n Money market dealers said conditions seemed right for the\nBank to cut its intervention rate at the
tender by a quarter\npercentage point to 7-3/4 pect from eight, reflecting an easing\nin call money rate last week, and the French
franc's steadiness‘non foreign exchange markets since the February 22 currency\nstabilisation accord here by the Group of Five and
Canada.\n Intervention rate was last raised to eight pet from 7-1/4\non January 2. Call money today was guoted at 7-11/16 7-3/4
pet.\n REUTER"],

"places”:["france"],

"topics”:[ "money-£fx",

“interest” ],

"date”:["1987-03-09T713:03:09.0752" ],

“_version_":1516128122066436096},

"id":"3044"%,

"title":["U.K. MONEY MARKET GIVEN FURTHER HELF AT NEW RATES"],

“dateline”:[ "LONDON, March 9 ="],

"text”":["The Bank of England said it provided the\nmarket with further assistance during the afterncon, buying\nbills
worth 166 mln stg at the lower rates introduced this\nmorning.\n It bought 45 mln stg of local authority bills plus 27 mln\nstg
of bank bills in band cne at 10-3/8 pct together with 94\nmln stg of band two bank bills at 10-5/16 pet.\n The bank also
revised its estimate of the market shortage\nup to 300 mln stg from 250 mln this morning. It has given total\nassistance of 213
mln stg today.\n REUTER"],

“places”:["uk"],

“topics”:[ "money-fx",

“interest"],
“date”:["1987-03-09T17:30:35.0652" ],
"_wversion_":1516128122220576768},

{

Figure 6-9. Result of Solr query, showing the JSON output format

We can also evaluate data from the Solandra core we created earlier in the chapter, as shown in Figure _ _.

Now select the crimedata0 core from the Core Selector drop-down. Click on query and change the
output format (‘wt’ parameter dropdown) to csv, so that you can see several lines of data at once. You will
see a data display similar to the one in Figure 6-9.
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Figure 6-10. Result of Solr query using the dashboard (Sacramento crime data core)

Because of Solr’s RESTful interface, we can make queries either through the dashboard (conforming to
Lucene’s query syntax discussed earlier) or on the command line using the CURL utility.

6.4 Using the ELK Stack (Elasticsearch, Logstash, and
Kibana)

As we mentioned before, there are alternatives to Lucene, Solr, and Nutch. Depending on the overall
architecture of your system, a variety of technology stacks, languages, integration and plug-in helper
libraries, and functionality are available to you. Some of these components may use Lucene or Solr, or be
compatible with Lucene/Solr components through integration helper libraries, such as Spring Data, Spring
MVC, or Apache Camel, among others. An example of an alternative to the basic Lucene stack, known as the
“ELK stack,” is shown in Figure 6-6.

Elasticsearch (elasticsearch.org) is a distributed high-performance search engine . Under the hood,
Elasticsearch uses Lucene as a core component, as shown in Figure 6-3. Elasticsearch is a strong competitor
to SolrCloud, and is easy to scale out, maintain, monitor, and deploy.

Why would you use Elasticsearch instead of Solr? Taking a careful look at the feature matrices for Solr
and Elasticsearch reveals that, in many ways, the two toolkits have similar functionality. They both leverage
Apache Lucene. Both Solr and Elasticsearch can use JSON as a data exchange format, although Solr also
supports XML.
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Table 6-2. Feature comparison table of Elasticsearch features vs. Apache Solr features

JSON XML CSV HTTP JMX Client Lucene Self Sharding Visualization Web
REST Libraries Query  Contained Admin
Parsing Distributed Interface
Cluster
Solr X X X X X Java X X Kibana
Port
(Banana)
Elastic X X Java X X X Kibana
Search Python
Javascript

Logstash (logstash.net) is a useful application to allow importing of a variety of different kinds of data
into Elasticsearch, including CSV-formatted files and ordinary “log format” files. Kibana (https://www.
elastic.co/guide/en/kibana/current/index.html) is an open source visualization component which
allows customizable . Together Elasticsearch, Logstash, and Kibana form the so-called “ELK stack,” which
can be principally used to. In this section, we’ll look at a small example of the ELK stack in action.
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Kibana Visualization Plugin

Elasticsearch results and
queries

Elasticsearch Search Engine

Index logs

Logstash (message listener)

New log entries from multiple
data sources

Figure 6-11. The so-called “ELK stack”: Elasticsearch, Logstash, and Kibana visualization
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Figure 6-12. ELK stack in use: Elasticsearch search engine/pipeline architecture diagram

INSTALLING ELASTICSEARCH, LOGSTASH, AND KIBANA

Installing and trying out the ELK Stack couldn’t be easier. It is a familiar process if you have followed
through the introductory chapters of the book so far. Follow the three steps below to install and test the
ELK stack:

1. Download Elasticsearch from https://www.elastic.co/downloads/
elasticsearch.

Unzip the downloaded file to a convenient staging area. Then,

cd $ELASTICSEARCH_HOME/bin/
./elasticsearch

Elasticsearch will start up successfully with a display similar to that in Figure 6-3.
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Kerrys-MacBook-Pro:bin kerryks ./elasticsearch B
Unable to find a $JAVA_HOME at "/usr", continuing with system-provided Java...

[2016-84-15 21:51:45,351] [INFO ] [node 1 [Lady Lark] version[2.3.1], pid[35066], build[bd98@92/2016-04-084T12:25:05Z)]

[2016-04-15 21:51:45,352] [INFO ] [node ] [Lady Lark] initializing ...

[2016-84-15 21:51:45,733] [INFO ] [plugins 1 [Lady Lark] modules [reindex, lang-expression, lang-groovyl, plugins [], sites []

[20816-

-15 21:51:45,749] [INFO ] [env 1 [Lady Lark] using [1] data paths, mounts [[/ (/dev/diskl}]], net usable_space [251.1
gbl, net total_space [464.7gb), spins? [unknown], types [hfs]
[2016-04-15 21:51:45,751] [INFO ] [env 1

[Lady Lark] heap size [989.Bmb], compressed ordinary object pointers [true]

[2016-04-15 21:51:45,751] [WARN ] [env 1 [Lady Lark] max file descriptors [18248] for elasticsearch process likely too low, ¢
onsider increasing to at least [65536]

[2016-84-15 21:51:46,867) [INFO ] [node
[2016-84-15 21:51:46,867] [INFO ] [node
[2016-04-15 21:51:46,917]1 [INFO ] [transport

[Lady Lark] initialized
[Lady Lark] starting ...
[Lady Lark] publish_address {127.0.0.1:9300}, bound_addresses {[fe8@::1]:930@}, {[::

1]:9300}, {127.9.8.1:9300}

[2016-04-15 21:51:46,920] [INFO ] [discovery
[2016-84-15 21:51:49,945] [INFD ] [cluster.service

[Lady Lark] elasticsearch/bNbMkEtIR-mBDBxATOXBTA
[Lady Lark] new_master {Lady Lark}{bNbMKEtIR-mBDBxATQXBTA}{127.8.8.1}{127.0.08.1:938@

}, reason: zen-disco-join(elected_as_master, [0] joins received)

[2016-84-15 21:51:49,969] [INFO ] [http 1 [Lady Lark] publish_address {127.9.8.1:9208}, bound_addresses {[fe8@::1]:9200}, {[::
11:9200}, {127.0.08.1:9200}

[2016-04-15 21:51:49,969] [INFO ] [node 1 [Lady Lark] started

[2016-04-15 21:51:5@,846] [INFO ] [gateway ] [Lady Lark] recovered [11] indices into cluster_state

[2016-84-15 21:51:5@,951] [INFO ] [cluster.routing.allocation] [Lady Lark] Cluster health status changed from [RED] to [YELLOW] (reasen: [shards s
tarted [[.kibanal[@], [.kibana](el] ...1).

Figure 6-13. Successful start-up of the Elasticsearch server from the binary directory

Use the following Java program to import the crime data CSV file (or, with a little
modification, any CSV formatted data file you wish):

public static void main(String[] args)

{

System.out.println( "Import crime data" );

String originalClassPath = System.getProperty("java.class.path");
String[] classPathEntries = originalClassPath.split(";");
StringBuilder esClasspath = new StringBuilder();

for (String entry : classPathEntries) {

if (entry.contains("elasticsearch") || entry.contains("lucene")) {
esClasspath.append(entry);

esClasspath.append(";");

}

}
System.setProperty("java.class.path", esClasspath.toString());

System.setProperty("java.class.path", originalClassPath);
System.setProperty("es.path.home", "/Users/kerryk/Downloads/elasticsearch-2.3.1");
String file = "SacramentocrimeJanuary2006.csv";

Client client = null;

try {

client = TransportClient.builder().build()
.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("localho
st"), 9300));

int numlines = 0;
XContentBuilder builder = null;

int i=0;

String currentLine = "";
BufferedReader br = new BufferedReader(new FileReader(file));
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while ((currentlLine = br.readlLine()) != null) {
if (1 » 0){
System.out.println("Processing line:

String[] tokens = currentline.split(",");

String city = "sacramento";

String recordmonthyear = "jan2006";

String cdatetime = tokens[0];

String address = tokens[1];

String district = tokens[2];

String beat = tokens[3];

String grid = tokens[4];

String crimedescr = tokens[5];

String ucrnciccode = tokens[6];

String latitude = tokens[7];

String longitude = tokens[8];

System.out.println("Crime description = " + crimedescr);

i=i+1;

System.out.println("Index is: " + i);

IndexResponse response = client.prepareIndex("thread", "answered", "400"+new
Integer(i).toString()).setSource(

+ currentline);

jsonBuilder()

.startObject()
.field("cdatetime", cdatetime)
.field("address", address)
.field("district", district)
.field("beat", beat)
.field("grid", grid)
.field("crimedescr", crimedescr)
.field("ucr_ncic_code", ucrnciccode)
.field("latitude", latitude)
.field("longitude", longitude)
.field("entrydate", new Date())
.endObject())
.execute().actionGet();

} else {
System.out.println("Ignoring first line...");
i++;

}

}

} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
}
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Run the program in Eclipse or in the command line. You will see a result similar to
the one in Figure 6-14. Please note that each row of the CSV is entered as a set
of fields into the Elasticsearch repository. You can also select the index name and
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index type by changing the appropriate strings in the code example.

eSS BN B Gy Qe 0 Qi PR o et G e

Figure 6-14. Successful test of an Elasticsearch crime database import from the Eclipse IDE

i) #ppan IT fd itpomamt [ procdapomamd L] HMM.jeve 7

} etse {

Svatem.out.orintind*lonoring first line.

" weiwation (5 Conscle B

o 7

Processing line: L/30706 23:00.X ST / 33A0 5T.6,64
Crime description = ISESLCAJVE TAKE VEH W/0 OWNER
Index is: 7574

Processing line: L/31/06 23:08,3543 15T AVE,6,64
Crime description « 459 PC  BURGLARY VEMICLE

Index in: 7575

Frocessing line: L/31706 23100, 3650 BRANCH 5T,2,24
Crime description - 459 PO BURCLARY VIMICLL

Index is: 7576

Processing line: L/31/706 23:00,1857 OISCOVERY mAY 6,68
Crime description = 484 PC PETTY THEFT/ OUTSIDE
Index is: 7877

Processing line: 1/31/86 23:11 MATOMA WAY / ROAMOKE AVE,2,2A

Crime description = 19853 VO MALTC MISCMIEF TO VEW
Index i5: 7578
1

iption = ZB2(AY WIT/RUN
Index is: 7579

Processing line: L/30/06 23:31,30TH ST / STOCKTON BAVD,6.60
EPORT

Crime description = CASUALTY REPOR

Index is: 7580

Processing Line: 1/31/86 23:36,.26TH 5T / G 57,3, 38
Crime description = S84(R)(ZI(AY VANDALTSMS -f4bd
Index in: TSA1

Processing line: 1/731/06 23:40,4011 FRECPORT BLVD 4,44
Criee description = 459 PC BURGLARY BUSINESS

Index is: 7582

Processing Line: L/3L/06 23:41,30TH ST / K §T,3,3C
Crime description = TRAFFIC-ACCIDENT INJURY

Tndex is: 7383

Processing Tine: 1730786 23:45,5303 FRANCLIN BLVD 4 48
Crime description = 356 PARGLE VIO - I RPT

Index i5: 7584

[Apr 18, 2016, T:15:04 AM)

20,60,
JI001, 10E51(AIVE TAKE VM W/0 OWNER, 2424, 38.55634283, - 121, 4693916

J1813,450 PO BURGLARY VEWICLE,2209,38. SS378047,-121 468571

(513,450 PC  BURGLARY VEMICLE,Z299,38. 63444541, -121, 4441675

J1006 484 PO PETTY THEFTS OUTSIOE, 2309, 38, 55665053, -121. 4477075

J516,10453 VO MALIC MISCHIEF TO VEW,2999,38,6MS8772,-121, 4221738

JBAE, Z00G2CA) WIT/RUN,SS01, 38, 55790107, -121 4186352

<1005, CASUALTY REPORT, 7009, 38. 5566347, -121. 4597445

JTEE,SOACRIC2I0A) WANDALTSMY -5409, 2999, 38, STTEMDE, - 121, 4704595

J957,459 PC  BURGLARY BUSINESS, 2200, 38, 53759951, -121.4925914

JBAL TRAFFIC-ACCIDENT INJURT 5400, 38, 57200845, - 1214670118

960, 3056 PARDLE VIO - 1 RPT,7000,38. 51718667, -121 4712477

Processing line: 1/31/06 23:50,C0BBLE COVE LN / COSSLE SHORES OR, 4,40

Crime description = TRAFFIC-ACCIDENT-MON IMJUSY
Index is: 7585

You can test the query capabilities of your new Elasticsearch set-up by using ‘curl’

1294, TRAFFIC-ACCIDENT-NON INJURY, 5480, 38,4 7962503, -121. 5286345

Wiitatia Senart Insart 10:0

on the command line to execute some sample queries, such as:

[2016-04-19 108:38:58,288] [INFO ] [discovery
[2016-04-19 10:31:01,321] [INFO ] [cluster.service
eason: zen-disco-join(elected_as_master, [0] joins received)

[2016-04-19 10:31:81,354] [INFO
19208}, {127.0.0.1:9200}
[2016-04-19 10:31:01,354] [INFO
[2016-04-19 10:31:81,483] [INFO
[2016-04-19 10:31:82,535] [INFO
rted [[.kibanallel] ...]),
[2016-04-19 18:33:32,555] [INFO
[2016-04-19 11:56:12,984] [INFO
ings [messages2]

[2016-84-19 11:56:13,042] [INFO
rted [[threads2] [4]] ...]).
[2016-04-19 11:56:57,926] [INFO

1lnhttp

] [node
1 [gateway

1 [Redneck]
1 [Redneck]

1 [Redneck]

] [Redneck]
1 [Redneck]

elasticsearch/ZTCCHZBDRLaWeKyLv7XXeld

Piavaee [0 Bliea

LM -]

new_saster {Redneck}{ZTCCH2ZBORLaWeKyLv7XXeQ}{127.0.08.1}{127.0.0.1:9300}, r

publish_address {127.2.0.1:9200}, bound_addresses {[fe8@::1]:920e}, {[::1]

started
recovered [14] indices into cluster_state

1lcluster.routing.allocation] [Redneck] Cluster health status changed from [RED] to [YELLOW] (reason: [shards sta

1lcluster.metadata
]lcluster.metadata

1 [Redneck]

[crime2] update_mapping [crime2]

] [Redneck] [threads2] creating index, cause [apil, templates (], shards [5)/[1], mapp

llcluster.routing.allocation] [Redneck] Cluster health status changed from [RED] to [YELLOW) (reason: [shards sta

]lcluster.metadata

] [Redneck]

[threads2] update_mapping [messages2]

Figure 6-15. You can see the schema update logged in the Elasticsearch console
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Figure 6-16. Successful test of an Elasticsearch crime database query from the command line

2. Download Logstash from https://www.elastic.co/downloads/logstash. Unzip

the downloaded file to the staging area.
cd <your logstash staging area, LOGSTASH_HOME>

After entering some text, you will see an echoed result similar to Figure 6-6.

You will also need to set up a configuration file for use with Logstash. Follow the
directions found at to make a configuration file such as the one shown in Listing 6-2.
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Last login: Fri Apr 15 20:35:45 on ttys@e3 =]
Kerrys-MBP:~ kerryk$ cd Downloads

Kerrys-MBP:Downloads kerryk$ cd xlogstashx

Kerrys-MBP: logstash-2.3-2.1 kerryk$ 1s

CHANGELOG.md Gemfile.jruby-1.9.lock bin
CONTRIBUTORS LICENSE lib
Gemfile NOTICE.TXT vendor

Kerrys-MBP: logstash-2.3-2.1 kerryk$ cd bin
Kerrys-MBP:bin kerryk$ bin/logstash -e 'input { stdin { } } output { stdout {} }

-bash: bin/logstash: No such file or directory

Kerrys-MBP:bin kerryk$ ./logstash —e 'input { stdin { } } output { stdout {} }'
Unable to find a $JAVA_HOME at "/usr", continuing with system-provided Java...
this is Settings: Default pipeline workers: 8

Pipeline main started

“R

this is my Pro Data Analytics test entry!

2016-04-16T05:05:09.840Z Kerrys-MBP.attlocal.net this is my Pro Data Analytics t
est entry!

Figure 6-17. Testing your Logstash installation. You can enter text from the command line.

Listing 6-2. Typical Logstash configuration file listing
input { stdin { } }

filter {
grok {
match => { "message" => "%{COMBINEDAPACHELOG}" }

}
date {

match => [ "timestamp" , "dd/MMM/yyyy:HH:mm:ss Z" ]
}
}

output {
elasticsearch { hosts => ["localhost:9200"] }
stdout { codec => rubydebug }

}
3. Download Kibana from https://www.elastic.co/downloads/kibana
Unzip the downloaded file to the staging area.
In a similar way to starting the Elasticsearch server:

cd bin
./kibana
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-

Kerrys-MacBook-Pro:kibana-4.5.@-darwin-x64 2 kerryk$ cd bin
Kerrys-MacBook-Pro:bin kerryk$ ./kibana
log [11:43:48.874] [infol[status][plugin:kibanal Status changed from uninitialized to green - Ready
log [11:43:49.126] l[plugin:elasticsearch] Status changed from uninitialized to yellow - Waiting for
Elasticsearch
log [11:43:49.257]
log [11:43:49.292]
log [11:43:49.377]

l[plugin:kbn_vislib_vis_types] Status changed from uninitialized to green - Ready
l[plugin:markdown_vis] Status changed from uninitialized to green - Ready
l[plugin:metric_vis] Status changed from uninitialized to green - Ready

log [11:43:49.428]) ] [plugin:spyModes] Status changed from uninitialized to green - Ready

log [11:43:49.461] ] [plugin:statusPage] Status changed from uninitialized to green - Ready

log [11:43:49,.560] [infol[status][plugin:table_vis] Status changed from uninitialized to green - Ready

log [11:43:49.611] [infel[listening] Server running at http://9.0.0.0:5601

log [11:43:49.629] [infollstatus])[plugin:elasticsearch] Status changed from yellow to green - Kibana index ready

log [15:45:20.158] [error][status] [plugin:elasticsearch] Status changed from green to red - This version of Kiban
a requires Elasticsearch ~2.3.@ on all nodes. I found the following incompatible nodes in your cluster: Elasticsearch
v1.5.2 @ inet[/17.115.177.187:9200@] (17.115.177.187)

log [15:45:32.751] [infol[status]) [plugin:elasticsearch] Status changed from red to green - Kibana index ready

log [15:56:13.491] [error][status] [plugin:elasticsearch] Status changed from green to red - This version of Kiban
a requires Elasticsearch ~2.3.@ on all nodes. I found the following incompatible nodes in your cluster: Elasticsearch
v1.5.2 @ inet[/17.115.177.187:92@0] (17.115.177.187)

log [15:56:46.162] [error][status] [plugin:elasticsearch] Status changed from red to red - Elasticsearch is still
initializing the kibana index.
log [15:56:48.674] [infoll i5s] [plugin:elasticsearch] Status changed from red to green - Kibana index ready

log [16:06:16.594] [error][ tus] [plugin:elasticsearch] Status changed from green to red - This version of Kiban
a requires Elasticsearch ~2.3.0 on all nodes. I found the following incompatible nodes in your cluster: Elasticsearch
v1.5.2 @ inet[/17.115.177.187:92@0] (17.115.177.187)

log [16:06:22.837) [error][status] [plugin:elasticsearch] Status changed from red to red - Elasticsearch is still
initializing the kibana index.

log [16:86:24.546] [info] [st

log [16:39:20.422] [error][
3008ms

log [18:50:40.150] [info][st

tus] [plugin:elasticsearch] Status changed from red to green - Kibana index ready
tus] [plugin:elasticsearch] Status changed from green to red - Request Timeout after

itus] [plugin:elasticsearch] Status changed from red to green - Kibana index ready

log [19:09:86.389] [error][status] [plugin:elasticsearch] Status changed from green to red - Request Timeout after
3eeems

log [19:09:88.902) [infe]l[status] [plugin:elasticsearch] Status changed from red te green - Kibana index ready

log [19:40:59.476] [error][status] [plugin:elasticsearch] Status changed from green to red - Request Timeout after
3eeems

log [19:41:08.880] [infoll

log [20:05:26.004] [error][
30eems

log [20:85:31.425] [info][st

log [20:17:24.683] [error][
30eems

log  [28:17:27.193] [infoll

log [21:40:30.077] [error]([s
30eems

log [21:40:34.103] [infol[status][plugin:elasticsearch] Status changed from red to green - Kibana index ready

log [21:51:43.581] [error][status] [plugin:elasticsearch] Status changed from green to red - This versien of Kiban
a requires Elasticsearch *2.3.8 on all nodes. I found the following incompatible nodes in your cluster: Elasticsearch

151 [plugin:elasticsearch] Status changed from red to green - Kibana index ready
tus] [plugin:elasticsearch] Status changed from green to red - Request Timeout after

5] [plugin:elasticsearch] Status changed from red to green - Kibana index ready
tus] [plugin:elasticsearch] Status changed from green to red - Request Timeout after

1[plugin:elasticsearch] Status changed from red to green - Kibana index ready
us] [plugin:elasticsearch] Status changed from green to red - Request Timeout after

Figure 6-18. Successful start-up of the Kibana visualization component from its binary directory
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Figure 6-19. Kibana dashboard example with crime dataset

You can easily query for keywords or more complex queries interactively using the
Kibana dashboard as shown in Figure 6-19.

Figure 6-20. Kibana dashboard example: highlighted search for “FRAUD.”

115



CHAPTER 6 * ADVANCED SEARCH TECHNIQUES WITH HADOOP, LUCENE, AND SOLR
Add this schema for the crime data to Elasticsearch with this cURL command:

curl -XPUT http://localhost:9200/crime2 -d '

{ "mappings" :

{ "crime2" : { "properties" : { "cdatetime" : {"type" : "string"}, "address" : {"type":
"string"}, "district" : {"type" : "string"}, "beat": {"type" : "string"}, "grid":
{"type" : "string"}, "crimedescr" : {"type": "string"}, "ucr ncic_code": {"type":
"string"},"latitude": {"type" : "string"}, "longitude": {"type" : "string"}, "location":
{"type" : "geo point"}}

FHY

Notice the “location” tag in particular, which has a geo_point-type definition. This
allows Kibana to identify the physical location on a map for visualization purposes,
as shown in Figure 6-21.
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Figure 6-21. The crime data for Sacramento as a visualization in Kibana

Figure 6-21 is a good example of understanding a complex data set at a glance. We can immediately
pick out the “high crime” areas in red.
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6.5 Solrvs. ElasticSearch : Features and Logistics

In this section we will use as an example, the so-called CRUD operations (create, replace, update, and delete
methods, with an additional search utility method) in a code example using Elasticsearch.

Listing 6-3. CRUD operations for Elasticsearch example

package com.apress.main;

import java.io.IOException;

import java.util.Date;

import java.util.HashMap;

import java.util.Map;

import org.elasticsearch.action.delete.DeleteResponse;

import org.elasticsearch.action.get.GetResponse;

import org.elasticsearch.action.search.SearchResponse;

import org.elasticsearch.action.search.SearchType;

import org.elasticsearch.client.Client;

import static org.elasticsearch.index.query.QueryBuilders.fieldQuery;
import org.elasticsearch.node.Node;

import static org.elasticsearch.node.NodeBuilder.nodeBuilder;
import org.elasticsearch.search.SearchHit;

/**
*

* @author kerryk
*/

public class ElasticSearchMain {

public static final String INDEX_NAME = "narwhal";
public static final String THEME_NAME = "messages";

public static void main(String args[]) throws IOException{

Node node = nodeBuilder().node();
Client client = node.client();

client.prepareIndex(INDEX_NAME, THEME_NAME, "1")
.setSource(put("ElasticSearch: Java",
"ElasticSeach provides Java API, thus it executes
all operations " +
"asynchronously by using client object.."”,
new Date(),
new String[]{"elasticsearch"},

"Kerry Koitzsch", "iPad", "Root")).execute().actionGet();
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client.prepareIndex(INDEX_NAME, THEME_NAME, "2")
.setSource(put("Java Web Application and ElasticSearch (Video)",
"Today, here I am for exemplifying the usage of

ElasticSearch which is an open source, distributed " +

"and scalable full text search engine and a data

analysis tool in a Java web application.”,

118

}

new Date(),
new String[]{"elasticsearch"},
"Kerry Koitzsch", "Apple TV", "Root")).execute().
actionGet();
get(client, INDEX _NAME, THEME_NAME, "1");

update(client, INDEX NAME, THEME_NAME, "1", "title", "ElasticSearch: Java API");
update(client, INDEX_NAME, THEME_NAME, "1", "tags", new String[]{"bigdata"});

get(client, INDEX _NAME, THEME_NAME, "1");
search(client, INDEX_NAME, THEME_NAME, "title", "ElasticSearch");
delete(client, INDEX_NAME, THEME NAME, "1");

node.close();

public static Map<String, Object> put(String title, String content, Date postDate,

}

String[] tags, String author,
String communityName, String
parentCommunityName){

Map<String, Object> jsonDocument = new HashMap<String, Object>();

jsonDocument.put("title", title);

jsonDocument.put("content”, content);
jsonDocument.put("postDate", postDate);
jsonDocument.put("tags", tags);

jsonDocument.put("author", author);
jsonDocument.put("communityName", communityName);
jsonDocument.put("parentCommunityName", parentCommunityName);
return jsonDocument;

public static void get(Client client, String index, String type, String id){

GetResponse getResponse = client.prepareGet(index, type, id)
.execute()
.actionGet();

Map<String, Object> source = getResponse.getSource();

System.out.println("-----=----cmmmmmmme oo ");
System.out.println("Index: " + getResponse.getIndex());
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System.out.println("Type: " + getResponse.getType());
System.out.println("Id: " + getResponse.getId());
System.out.println("Version: " + getResponse.getVersion());
System.out.println(source);
System.out.println("----------mmmmm oo ");

}

public static void update(Client client, String index, String type,
String id, String field, String newValue){

Map<String, Object> updateObject = new HashMap<String, Object>();
updateObject.put(field, newValue);

client.prepareUpdate(index, type, id)
.setScript("ctx. source." + field + "=" + field)
.setScriptParams(updateObject).execute().actionGet();
}

public static void update(Client client, String index, String type,
String id, String field, String[] newValue){
String tags = "";
for(String tag :newValue)

tags += tag + ", ";
tags = tags.substring(o, tags.length() - 2);

Map<String, Object> updateObject = new HashMap<String, Object>();
updateObject.put(field, tags);

client.prepareUpdate(index, type, id)
.setScript("ctx. source." + field + "+=" + field)
.setScriptParams(updateObject).execute().actionGet();
}

public static void search(Client client, String index, String type,
String field, String value){

SearchResponse response = client.prepareSearch(index)
.setTypes(type)
.setSearchType(SearchType.QUERY_AND_FETCH)
.setQuery(fieldQuery(field, value))
.setFrom(0).setSize(60).setExplain(true)
.execute()
.actionGet();

SearchHit[] results = response.getHits().getHits();

System.out.println("Current results:
for (SearchHit hit : results) {

+ results.length);
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System.out.println("-----------ccommmmmmeeee oo ");
Map<String,Object> result = hit.getSource();
System.out.println(result);

}

public static void delete(Client client, String index, String type, String id){

DeleteResponse response = client.prepareDelete(index, type, id).execute().actionGet();
System.out.println("===== Information on the deleted document:");
System.out.println("Index: " + response.getIndex());

System.out.println("Type: " + response.getType());

System.out.println("Id: " + response.getId());

System.out.println("Version: " + response.getVersion());

Defining the CRUD operations for a search component is key to the overall architecture and logistics of
how the customized component will “fit in” with the rest of the system.

6.6 Spring Data Components with Elasticsearch and Solr

In this section, we will develop a code example which uses Spring Data to implement the same kind of
component using Solr and Elasticsearch as the search frameworks being used “under the hood.”

You can define the two properties for Elasticsearch and Solr respectively for your pom.xml file as
shown here:

<spring.data.elasticsearch.version>2.0.1.RELEASE</spring.data.elasticsearch.version>
<spring.data.solr.version>2.0.1.RELEASE</spring.data.solr.version>

<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-elasticsearch</artifactId>
<version>2.0.1.RELEASE</version>

</dependency>

and

<dependency>
<groupIld>org.springframework.data</groupIld>
<artifactId>spring-data-solr</artifactId>
<version>2.0.1.RELEASE</version>

</dependency>

We can now develop Spring Data-based code examples as shown in Listing 6-5 and Listing 6-6.
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Listing 6-4. NLP program—main() executable method

package com.apress.probda.solr.search;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Import;
import com.apress.probda.context.config.SearchContext;
import com.apress.probda.context.config.WebContext;
@Configuration
@ComponentScan
@EnableAutoConfiguration
@Import({ WebContext.class, SearchContext.class })
public class Application {
public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

import org.apache.solr.client.solrj.SolrServer;

import org.apache.solr.client.solrj.impl.HttpSolrServer;

import org.springframework.beans.factory.annotation.Value;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.data.solr.repository.config.EnableSolrRepositories;

@Configuration

@EnableSolrRepositories(basePackages = { "org.springframework.data.solr.showcase.product” },
multicoreSupport = true)

public class SearchContext {

@®Bean

public SolrServer solrServer(@Value("${solr.host}") String solrHost) {
return new HttpSolrServer(solrHost);

}

}

File: WebContext.java

import java.util.list;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.data.web.PageableHandlerMethodArgumentResolver;

import org.springframework.web.method.support.HandlerMethodArgumentResolver;
import org.springframework.web.servlet.config.annotation.ViewControllerRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurerAdapter;

/**
* @author kkoitzsch
*/
@Configuration
public class WebContext {
@Bean
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public WebMvcConfigurerAdapter mvcViewConfigurer() {
return new WebMvcConfigurerAdapter() {
@verride
public void addViewControllers(ViewControllerRegistry registry) {

registry.addViewController("/").setViewName("search");
registry.addviewController("/monitor").setViewName("monitor");
}
@0verride
public void addArgumentResolvers(List<HandlerMethodArgumentResolver>
argumentResolvers) {
argumentResolvers.add(new
PageableHandlerMethodArgumentResolver());

};

Listing 6-5. Spring Data code example using Solr

public

static void main(String[] args) throws IOException {

String text = "The World is a great place";

Properties props = new Properties();

props.setProperty("annotators”, "tokenize, ssplit, pos, lemma, parse, sentiment");
StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

Annotation annotation = pipeline.process(text);
List<CoreMap> sentences = annotation.get(CoreAnnotations.SentencesAnnotation.class);
for (CoreMap sentence : sentences) {
String sentiment = sentence.get(SentimentCoreAnnotations.SentimentClass.class);
System.out.println(sentiment + "\t" + sentence);

Listing 6-6. Spring Data code example using Elasticsearch (unit test)

package com.apress.probda.search.elasticseaxch;

import
import
import
import
import
import
import
import
import
import
import
import
import
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com.apress.probda.search.elasticsearch .Application;
com.apress.probda.search.elasticsearch .Post;
com.apress.probda.search.elasticsearch.Tag;
com.apress.probda.search.elasticsearch.PostService;
org.junit.Before;

org.junit.Test;

org.junit.runner.Runlith;
org.springframework.beans.factory.annotation.Autowired;
org.springframework.boot.test.SpringApplicationConfiguration;
org.springframework.data.domain.Page;
org.springframework.data.domain.PageRequest;
org.springframework.data.elasticsearch.core.ElasticsearchTemplate;
org.springframework.test.context.junit4.SpringJUnit4aClassRunner;
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import java.util.Arrays;

import static org.hamcrest.CoreMatchers.notNullValue;
import static org.hamcrest.core.Is.is;

import static org.junit.Assert.assertThat;

@RunWith(SpringlUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = Application.class)
public class PostServiceImplTest{

@Autowired

private PostService postService;

@Autowired

private ElasticsearchTemplate elasticsearchTemplate;

@Before
public void before() {
elasticsearchTemplate.deleteIndex(Post.class);
elasticsearchTemplate.createIndex(Post.class);
elasticsearchTemplate.putMapping(Post.class);
elasticsearchTemplate.refresh(Post.class, true);
}
//@Test
public void testSave() throws Exception {
Tag tag = new Tag();
tag.setId("1");
tag.setName("tech");
Tag tag2 = new Tag();
tag2.setId("2");
tag2.setName("elasticsearch");
Post post = new Post();
post.setId("1");
post.setTitle("Bigining with spring boot application and elasticsearch");
post.setTags(Arrays.asList(tag, tag2));
postService.save(post);
assertThat(post.getId(), notNullValue());
Post post2 = new Post();
post2.setId("1");
post2.setTitle("Bigining with spring boot application");
post2.setTags(Arrays.asList(tag));
postService.save(post);
assertThat(post2.getId(), notNullValue());

public void testFindOne() throws Exception {

}

public void testFindAll() throws Exception {
}

@Test

public void testFindByTagsName() throws Exception {
Tag tag = new Tag();
tag.setId("1");
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tag.setName("tech");

Tag tag2 = new Tag();
tag2.setId("2");
tag2.setName("elasticsearch");

Post post = new Post();

post.setId("1");

post.setTitle("Bigining with spring boot application and elasticsearch");
post.setTags(Arrays.asList(tag, tag2));

postService.save(post);

Post post2 = new Post();

post2.setId("1");

post2.setTitle("Bigining with spring boot application");
post2.setTags(Arrays.asList(tag));
postService.save(post);

Page<Post> posts = postService.findByTagsName("tech", new PageRequest(0,10));
Page<Post> posts2 = postService.findByTagsName("tech", new PageRequest(0,10));
Page<Post> posts3 = postService.findByTagsName("maz", new PageRequest(0,10));
assertThat(posts.getTotalElements(), is(1L));
assertThat(posts2.getTotalElements(), is(1L));
assertThat(posts3.getTotalElements(), is(0L));

6.7 Using LingPipe and GATE for Customized Search

In this section, we will review a pair of useful analytical tools which may be used with Lucene and Solr to
enhance natural language processing (NLP) analytics capabilities in a distributed analytic application.
LingPipe (http://alias-i.com/lingpipe/) and GATE (General Architecture for Text Engineering, https://
gate.ac.uk) can be used to add natural language processing capabilities to analytical systems. A typical
architecture for an NLP based analytical system might be similar to Figure 6-22.
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Apache Tika Data

Document
Import

Sources

Spring Data Data
“Glueware” Repository
Data Preprocessor

Additional NLP

‘ Components

LingPipe

NGDATA Lily

Analytic Engine
Component Modules (Mahout with similarity, recommendation, and
categorization)

Reports and Visualization [ d3 Angularls components ]

Figure 6-22. NLP system architecture, using LingPipe, GATE, and NGDATA Lily

Natural language processing systems can be designed and built in a similar fashion to any other
distributed pipelining system. The only difference is the necessary adjustments for the particular nature of
the data and metadata itself. LingPipe, GATE, Vowpal Wabbit, and StanfordNLP allow for the processing,
parsing, and “understanding” of text, and packages such as Emir/Caliph, ImageTerrier, and HIPI provide
features to analyze and index image- and signal-based data. You may also wish to add packages to help
with geolocation, such as SpatialHadoop (http://spatialhadoop.cs.umn.edu), which is discussed in more
detail in Chapter 14.

Various input formats including raw text, XML, HTML, and PDF documents can be processed by GATE,
as well as relational data/JDBC-mediated data. This includes data imported from Oracle, PostgreSQL, and
others.

The Apache Tika import component might be implemented as in Listing 6-7.
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Listing 6-7. Apache Tika import routines for use throughout the PROBDA System

Package com.apress.probda.io;

import java.io.*;

import java.nio.file.Paths;
import java.util.Arraylist;
import java.util.list;
import java.util.Map;
import java.util.Set;

import com.apress.probda.pc.AbstractProbdaKaftkaProducer;
import org.apache.commons.lang3.StringUtils;

import org.apache.tika.exception.TikaException;

import org.apache.tika.io.TikaInputStream;

import org.apache.tika.metadata.Metadata;

import org.apache.tika.metadata.serialization.JsonMetadata;
import org.apache.tika.parser.ParseContext;

import org.apache.tika.parser.Parser;

import org.apache.tika.parser.isatab.ISArchiveParser;
import org.apache.tika.sax.ToHTMLContentHandler;

import org.dia.kafka.solr.consumer.SolrKafkaConsumer;
import org.json.simple.JSONArray;

import org.json.simple.JSONObject;

import org.json.simple.JSONValue;

import org.json.simple.parser.JSONParser;

import org.json.simple.parser.ParseException;

import org.xml.sax.ContentHandler;

import org.xml.sax.SAXException;

import static org.dia.kafka.Constants.*;

public class ISAToolsKafkaProducer extends AbstractKafkaProducer {

%%

/* Tag for specifying things coming out of LABKEY

*

puélic final static String ISATOOLS SOURCE VAL = "ISATOOLS";
k%

/* ISA files default prefix

ES

private static final String DEFAULT_ISA FILE PREFIX = "s ";
*%

/* Json jsonParser to decode TIKA responses

*

private static JSONParser jsonParser = new JSONParser();

/**

* Constructor

*/

public ISAToolsKafkaProducer(String kafkaTopic, String kafkaUrl) {
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initializeKafkaProducer(katkaTopic, kafkaUrl);
}

Vioio
* @param args
*/
public static void main(String[] args) throws IOException {
String isaToolsDir = null;
long waitTime = DEFAULT_WAIT;
String kafkaTopic = KAFKA_TOPIC;
String kafkaUrl = KAFKA_URL;

// TODO Implement commons-cli
String usage = "java -jar ./target/isatools-producer.jar [--tikaRESTURL <url>]
[--isaToolsDir «<dir>] [--wait <secs>] [--kafka-topic <topic_name>] [--kafka-url]\n";

for (int i = 0; i < args.length - 1; i++) {

if (args[i].equals("--isaToolsDir")) {
isaToolsDir = args[++i];

} else if (args[i].equals("--kafka-topic")) {
kafkaTopic = args[++i];

} else if (args[i].equals("--kafka-url")) {
kafkaUrl = args[++i];

}

}

// Checking for required parameters
if (StringUtils.isEmpty(isaToolsDir)) {
System.err.format("[%s] A folder containing ISA files should be specified.\n",
ISAToolsKafkaProducer.class.getSimpleName());
System.err.println(usage);
System.exit(0);
}

// get KafkaProducer
final ISAToolsKafkaProducer isatProd = new ISAToolsKafkaProducer(kafkaTopic, kafkaUrl);
DirWatcher dw = new DirWatcher(Paths.get(isaToolsDir));

// adding shutdown hook for shutdown gracefully
Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() {
public void run() {
System.out.println();
System.out.format("[%s] Exiting app.\n", isatProd.getClass().getSimpleName());
isatProd.closeProducer();
}
N);

// get initial ISATools files
List<JSONObject> newISAUpdates = isatProd.initialFileload(isaToolsDir);
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// send new studies to kafka
isatProd.sendISAToolsUpdates(newISAUpdates);
dw.processEvents(isatProd);

}

/**
* Checks for files inside a folder
*
* @param innerFolder
* @return
*/
public static List<String> getFolderFiles(File innerFolder) {
List<String> folderFiles = new ArraylList<String>();
String[] innerfFiles = innerFolder.list(new FilenameFilter() {
public boolean accept(File dir, String name) {
if (name.startsWith(DEFAULT ISA FILE PREFIX)) {
return true;
}

return false;

}
1;

for (String innerFile : innerFiles) {
File tmpDir = new File(innerFolder.getAbsolutePath() + File.separator + innerfile);
if (!tmpDir.isDirectory()) {
folderFiles.add(tmpDir.getAbsolutePath());
}

}

return folderFiles;

}

/**

* Performs the parsing request to Tika

*

* @param files

* @return a list of JSON objects.

*/

public static List<JSONObject> doTikaRequest(List<String> files) {
List<JSONObject> jsonObjs = new ArraylList<JSONObject>();

try {
Parser parser = new ISArchiveParser();
StringWriter strWriter = new StringWriter();

for (String file : files) {

JSONObject jsonObject = new JSONObject();

// get metadata from tika
InputStream stream = TikaInputStream.get(new File(file));
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ContentHandler handler = new ToHTMLContentHandler();
Metadata metadata = new Metadata();

ParseContext context = new ParseContext();
parser.parse(stream, handler, metadata, context);

// get json object

jsonObject.put(SOURCE_TAG, ISATOOLS SOURCE_VAL);

JsonMetadata.toJson(metadata, strWriter);

jsonObject = adjustUnifiedSchema((JSONObject) jsonParser.parse(new

String(strWriter.toString())));

//T0D0 Tika parsed content is not used needed for now

//jsonObject.put(X_TIKA CONTENT, handler.toString());

System.out.format("[%s] Tika message: %s \n", ISAToolsKafkaProducer.class.
getSimpleName(), jsonObject.toJSONString());

jsonObjs.add(jsonObject);

striWriter.getBuffer().setLength(0);
}
stririter.flush();
striiriter.close();

} catch (IOException e) {
e.printStackTrace();

} catch (ParseException e) {
e.printStackTrace();

} catch (SAXException e) {
e.printStackTrace();

} catch (TikaException e) {
e.printStackTrace();

}

return jsonObjs;

}

private static JSONObject adjustUnifiedSchema(JSONObject parse) {
JSONObject jsonObject = new JSONObject();
List invNames = new Arraylist<String>();
List invMid = new Arraylist<String>();
List invLastNames = new Arraylist<String>();

Set<Map.Entry> set = parse.entrySet();
for (Map.Entry entry : set) {
String jsonKey = SolrKafkaConsumer.updateCommentPreffix(entry.getKey().toString());
String solrKey = ISA SOLR.get(jsonKey);
System.out.println("solrkey "
if (solrKey != null) {
System.out.println("jsonKey: " + jsonKey + " -> solrKey:
if (jsonKey.equals("Study Person First Name")) {

+ solrKey);

+ solrKey);
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invNames.addA11(((JSONArray) JSONValue.parse(entry.getValue().
tostring())));
} else if (jsonKey.equals("Study Person Mid Initials")) {
invMid.addA11(((JSONArray) JSONValue.parse(entry.getValue().
tostring())));
} else if (jsonKey.equals("Study Person Last Name")) {
invLastNames.addA11(((JSONArray) JSONValue.parse(entry.getValue().

tostring())));
}
jsonKey = solrKey;
} else {

jsonKey = jsonKey.replace(" ", " ");

}
jsonObject.put(jsonKey, entry.getValue());

JSONArray jsonArray = new JSONArray();

for (int cnt = 0; cnt < invLastNames.size(); cnt++) {
StringBuilder sb = new StringBuilder();
if (!StringUtils.isEmpty(invNames.get(cnt).toString()))
sb.append(invNames.get(cnt)).append(" ");
if (!StringUtils.isEmpty(invMid.get(cnt).toString()))
sb.append(invMid.get(cnt)).append(" ");
if (!StringUtils.isEmpty(invLastNames.get(cnt).toString()))
sb.append(invLastNames.get(cnt));
jsonArray.add(sb.toString());
}
if (!jsonArray.isEmpty()) {
jsonObject.put("Investigator"”, jsonArray.toJSONString());
}

return jsonObject;

}

/**

* Send message from IsaTools to kafka

*

* @param newISAUpdates

*/

void sendISAToolsUpdates(List<JSONObject> newISAUpdates) {

for (JSONObject row : newISAUpdates) {
row.put(SOURCE_TAG, ISATOOLS SOURCE VAL);
this.sendKaftka(row.toJSONString());
System.out.format("[%s] New message posted to kafka.\n", this.getClass().
getSimpleName());
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/**

* Gets the application updates from a directory

ES

* @param isaToolsTopDir

* @return

*/

private List<JSONObject> initialFilelLoad(String isaToolsTopDir) {
System.out.format("[%s] Checking in %s\n", this.getClass().getSimpleName(),

isaToolsTopDir);

List<JSONObject> jsonParsedResults = new ArraylList<JSONObject>();
List<File> innerFolders = getInnerFolders(isaToolsTopDir);

for (File innerFolder : innerFolders) {
jsonParsedResults.addAll(doTikaRequest(getFolderFiles(innerFolder)));
}

return jsonParsedResults;

}

/**
* Gets the inner folders inside a folder
*
* @param isaToolsTopDir
* @return
*/
private List<File> getInnerFolders(String isaToolsTopDir) {
List<File> innerFolders = new ArraylList<File>();
File topDir = new File(isaToolsTopDir);
String[] innerfFiles = topDir.list();
for (String innerFile : innerFiles) {
File tmpDir = new File(isaToolsTopDir + File.separator + innerFile);
if (tmpDir.isDirectory()) {
innerFolders.add(tmpDir);
}

}

return innerFolders;
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INSTALLING AND TESTING LINGPIPE, GATE, AND STANFORD CORE
NLP

1. Firstinstall LingPipe by downloading the LingPipe release JAR file from http://
alias-i.com/lingpipe/web/download.html. You may also download LingPipe
models that interest you from http://alias-i.com/lingpipe/web/models.html
. Follow the directions so as to place the models in the correct directory so that
LingPipe may pick up the models for the appropriate demos which require them.

2. Download GATE from University of Sheffield web site (https://gate.ac.uk), and
use the installer to install GATE components. The installation dialog is quite easy
to use and allows you to selectively install a variety of components, as shown in
Figure 6-24.

3. We will also introduce the StanfordNLP (http://stanfordnlp.github.io/
CoreNLP/#human-1languages-supported) library component for our example.

To get started with Stanford NLP, download the CoreNLP zip file from the GitHub link
above. Expand the zip file.

Make sure the following dependencies are in your pom.xml file:

<dependency>
<groupId>edu.stanford.nlp</groupId>
<artifactId>stanford-corenlp</artifactId>
<version>3.5.2</version>
<classifier>models</classifier>

</dependency>

<dependency>
<groupId>edu.stanford.nlp</groupId>
<artifactId>stanford-corenlp</artifactId>
<version>3.5.2</version>

</dependency>

<dependency>
<groupId>edu.stanford.nlp</groupId>
<artifactId>stanford-parser</artifactId>
<version>3.5.2</version>

</dependency>

Go to Stanford NLP “home directory” (where the pom.xml file is located) and do
mvn clean package
then test the interactive NLP shell to insure correct behavior. Type

./corenlp.sh

to start the interactive NLP shell. Type some sample text into the shell to see the parser in
action. The results shown will be similar to those shown in Figure 6-17.
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Entering interactive shell. Type g RETURN or EOF to quit.
NLP> now is the winter of our discontent
Sentence #1 (7 tokens):
now is the winter of our discontent
[Text=now Character0ffsetBegin=@ CharacterOffsetEnd=3 Part0fSpeech=RB Lemma=now
NamedEntityTag=DATE NormalizedNamedEntityTag=PRESENT_REF Timex=<TIMEX3 tid="t1"
type="DATE" value="PRESENT_REF">now</TIMEX3>]
[Text=is CharacterOffsetBegin=4 CharacterOffsetEnd=6 Part0fSpeech=VBZ Lemma=be N
amedEntityTag=0]
[Text=the CharacterOffsetBegin=7 CharacterOffsetEnd=10 Part0fSpeech=DT Lemma=the
NamedEntityTag=0]
[Text=winter CharacterOffsetBegin=11 CharacterOffsetEnd=17 Part0fSpeech=NN Lemma
=winter NamedEntityTag=DATE NormalizedNamedEntityTag=XXXX-WI Timex=<TIMEX3 tid="
12" type="DATE" value="XXXX-WI">winter</TIMEX3>]
[Text=of Character0ffsetBegin=18 CharacterOffsetEnd=2@0 PartO0fSpeech=IN Lemma=of
NamedEntityTag=0]
[Text=our CharacterOffsetBegin=21 CharacterOffsetEnd=24 Part0fSpeech=PRP$ Lemma=
we NamedEntityTag=0]
[Text=discontent CharacterOffsetBegin=25 Character0ffsetEnd=35 PartO0fSpeech=NN L
emma=discontent NamedEntityTag=0]
(ROOT
(SINV

(ADVP (RB now))

(VP (VBZ is))

(NP

(NP (DT the) (NN winter))
(PP (IN of)
(NP (PRP$ our) (NN discontent))))))

root (ROOT-@, is-2)

advmod(is-2, now-1)
det(winter-4, the-3)
nsubj(is-2, winter-4)
case(discontent-7, of-5)
nmod:poss(discontent-7, our-6)
nmod:of(winter-4, discontent-7)

NLP> []

Figure 6-23. StanfordNLP interactive shell in action

We can define an interface for generalized search as follows:

Listing 6-8. ProbdaSearchEngine java interface stub

public interface ProbdaSearchEngine<T> {
<0> List<T> search(fimal String field, final Q query, imt maximumResultCount);
List<T> search(final String query, int maximumResultCount);
Two different method signatures for search() are present. One is specifically for the field and query
combination. Query is the Lucene query as a string, and maximumResultCount limits the number of result

elements to a manageable amount.
We can define the implementation of the ProbdaSearchEngine interface as in Listing 6-8.
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| # Please read the following information:

ger)er':lf architecture

i GATE

*por‘ text enaineering

(Made with IzPack - http://izpack.org/)

| I'g'> Next 0 Quit

Figure 6-24. GATE Installation dialog. GATE is easy to install and use.

Simply click through the installation wizard. Refer to the web site and install all software components
offered.

To use LingPipe and GATE in a program, let’s work through a simple example, as shown in Listing 6-9.
Please refer to some of the references at the end of the chapter to get a more thorough overview of the
features that LingPipe and GATE can provide.

Listing 6-9. LingPipe | GATE | StanfordNLP Java test program, imports
package com.apress.probda.nlp;

import java.io.*;
import java.util.*;

import edu.stanford.nlp.io.*;
import edu.stanford.nlp.ling.*;
import edu.stanford.nlp.pipeline.*;
import edu.stanford.nlp.trees.*;
import edu.stanford.nlp.util.*;

public class ProbdaNLPDemo {
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public static void main(String[] args) throws IOException {
PrintWriter out;
if (args.length > 1) {
out = new PrintWriter(args[1]);
} else {
out = new PrintWriter(System.out);
}
PrintWriter xmlOut = null;
if (args.length > 2) {
xmlOut = new PrintWriter(args[2]);

}

StanfordCoreNLP pipeline = new StanfordCoreNLP();
Annotation annotation;
if (args.length > 0) {
annotation = new Annotation(IOUtils.slurpFileNoExceptions(args[0]));
} else {
annotation = new Annotation(“No reply from local Probda email site”);

}

pipeline.annotate(annotation);
pipeline.prettyPrint(annotation, out);
if (xmlOut != null) {
pipeline.xmlPrint(annotation, xmlOut);
}
List<CoreMap> sentences = annotation.get(CoreAnnotations.SentencesAnnotation.class);
if (sentences != null &3 sentences.size() > 0) {
CoreMap sentence = sentences.get(0);
Tree tree = sentence.get(TreeCoreAnnotations.TreeAnnotation.class);
out.println();
out.println("The first sentence parsed is:");
tree.pennPrint(out);

6.8 Summary

In this chapter, we took a quick overview of the Apache Lucene and Solr ecosystem. Interestingly, although
Hadoop and Solr started out together as part of the Lucene ecosystem, they have since gone their separate
ways and evolved into useful independent frameworks. This doesn’t mean that the Solr and Hadoop
ecosystems cannot work together very effectively, however. Many Apache components, such as Mahout,
LingPipe, GATE, and Stanford NLP, work seamlessly with Lucene and Solr. New technology additions
to Solr, such as SolrCloud and others, make it easier to use RESTful APIs to interface to the Lucene/Solr
technologies.

We worked through a complete example of using Solr and its ecosystem: from downloading, massaging,
and inputting the data set to transforming the data and outputting results in a variety of data formats. It
becomes even more clear that Apache Tika and Spring Data are extremely useful for data pipeline “glue.”
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We did not neglect competitors to the Lucene/Solr technology stack. We were able to discuss
Elasticsearch, a strong alternative to Lucene/Solr, and describe some of the pros and cons of using
Elasticsearch over a more “vanilla Lucene/Solr” approach. One of the most interesting parts of Elasticsearch
is the seamless ability to visualize data, as we showed while exploring the crime statistics of Sacramento.

In the next chapter, we will discuss a number of analytic techniques and algorithms which are
particularly useful for building distributed analytical systems, building upon what we’ve learned so far.
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PART Il

Architectures and Algorithms

The second part of our book discusses standard architectures, algorithms, and techniques to build
analytic systems using Hadoop. We also investigate rule-based systems for control, scheduling,
and system orchestration and showcase how a rule-based controller can be a natural adjunct to a
Hadoop-based analytical system.




CHAPTER 7

An Overview of Analytical
Techniques and Algorithms

In this chapter, we provide an overview of four categories of algorithm: statistical, Bayesian, ontology-driven,
and hybrid algorithms which leverage the more basic algorithms found in standard libraries to perform
more in-depth and accurate analyses using Hadoop.

7.1 Survey of Algorithm Types

It turns out that Apache Mahout and most of the other mainstream machine learning toolkits support a
wide range of the algorithms we're interested in. For example, see Figure 7-1 for a survey of the algorithms
supported by Apache Mahout.

Number  Algorithm Name Algorithm Type  Description
1 naive Bayes classifier simple Bayesian classifier: present in almost all
modern toolkits
2 hidden Markovmodel classifier system state prediction by outcome observation
3 (learning) random classifier Random forest algorithms (sometimes known
forest as random decision forests) are an ensemble

learning method for classification, regression, and
other tasks, that construct a collection of decision
trees at training time, outputting the class that

is the mode of the classification classes or mean
prediction (regression) of the individual trees.

4 (learning) multilayer classifier also implemented in the Theano toolkit and
perceptron (LMP) several others.
5 (learning) logistic classifier also supported in scikit-learn. Really a technique
regression for classification, not regression.
6 stochastic gradient optimizer, model an objective function minimization routine
descent (SGD) finding also supported in H20 and Vowpal Wabbit, among
others
(continued)
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Number  Algorithm Name Algorithm Type  Description
7 genetic algorithms (GA) genetic According to Wikipedia, “In the field of
algorithm mathematical optimization, a genetic algorithm
(GA) is a search heuristic that mimics the
process of natural selection. This heuristic (also
sometimes called a meta-heuristic) is routinely
used to generate useful solutions to optimization
and search problems.”
8 singular value dimensionality = matrix decomposition for dimensionality
decomposition (SVD)  reduction reduction
9 collaborative filtering recommender a technique used by some recommender systems
(CF)
10 latent topic modeler a powerful algorithm (learner) which
Dirichlet allocation automatically (and jointly) clusters words into
(LDA) “topics” as well as clustering documents into topic
“mixtures”
11 spectral clustering clusterer
12 frequent pattern mining data miner
13 k-means Clustering clusterer ordinary and fuzzy k-means are available using
Mahout
14 canopy clustering clusterer preprocessing step for k-means clusterer: two-

threshold system

Statistical and numerical algorithms are the most straightforward type of distributed algorithm we can use.
Statistical techniques include the use of standard statistic computations such as those shown in
Figure 7-1.

Mean

05

Standard deviation

Normal distribution

f@ =

Figure 7-1. Mean, standard deviation, and normal distribution are often used in statistical methods

Bayesian techniques are one of the most effective techniques for building classifiers, data modeling,
and other purposes.

Ontology-driven algorithms, on the other hand, are a whole family of algorithms that rely on logical,
structured, hierarchical modeling, grammars, and other techniques to provide infrastructure for modeling,
data mining, and drawing inferences about data sets.
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Hybrid algorithms combine one or more modules consisting of different types of algorithm, linked
together with glueware, to provide a more flexible and powerful data pipeline than would be possible
with only a single algorithm type. For example, a neural net technology may be combined with a Bayesian
technology and an ML technology to create “learning Bayesian networks,” a very interesting example of the
synergy that can be obtained by using a hybrid approach.

7.2 Statistical / Numerical Techniques

Statistical classes and support methods in the example system are found in the com.apress.probda.
algorithms.statistics subpackage.
We can see a simple distributed technology stack using Apache Storm in Figure 7-2.

Hadoop M/R HBase

‘ I Storm

Hadoop YARN

Hadoop

Figure 7-2. A distributed technology stack including Apache Storm

We can see a Tachyon-centric technology stack in Figure 7-4. Tachyon is a fault tolerant distributed
in-memory file system
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BlinkDB MLBase

Spark SharksQL
Streaming

Tachyon

File Systems such as HDFS,
53, etc.

Figure 7-3. An Apache Spark-centric technology stack

GraphX

Tachyon

GlusterFS

Figure 7-4. A Tachyon-centric technology stack, showing some of the associated ecosystem

7.3 Bayesian Techniques

The Bayesian techniques we implement in the example system are found in the package com.prodba.
algorithms.bayes.

Some of the Bayesian techniques (besides the naive Bayes algorithm) supported by our most popular
libraries include the ones shown in Figure 7-1.

The naive Bayesian classifier is based upon the Fundamental Bayes equation as shown in Figure 7-5.
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IR Class Prior Probability
Likelihood

4

1)< Plxle)Ple)

'

Posterior Probability Predictor Prior Probability

Figure 7-5. The fundamental Bayes equation

The equation contains four main probability types: posterior probability, likelihood, class prior
probability, and predictor prior probability. These terms are explained in the references at the end of the
chapter.

We can try out the Mahout text classifier in a straightforward way. First, download one of the basic data
sets to test with.

7.4 Ontology Driven Algorithms

The ontology driven components and support classes are to be found in the com.apress.probda.
algorithms.ontology subpackage.

To include the Protégé Core component, add the following Maven dependency to your project
pom.xml file.

<dependency>
<groupId>edu.stanford.protege</groupIld>
<artifactId>protege-common</artifactId>
<version>5.0.0-beta-24</version>
</dependency>
Register and download Protégé from the web site:

http://protege.stanford.edu/products.phptdesktop-protégé.

Ontologies may be defined interactively by using an ontology editor such as Stanford’s Protégé system,
as shown in Figure 7-5.
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Install Name Current version Available version
VI Change Tracker 2.0.2
ﬂ ELK: A Java-based OWL EL reasoner 0.4.3
7| FaCT++ reasoner 1.6.4
™ jeel 0.23.2
™ OntoGraf 2.0.2 2.0.3
»  Ontop OBDA Protege Plugin 1.17.1
4 OWL Difference 6.0.2
™  owlDoc 3.0.2 3.0.3
™ owwiz 5.0.1 5.0.3
4 Pellet Reasoner Plug-in 2.2.0
£4 Snap SPAROL Query 4.1.0
™ SWRLTab Protege 5.0+ Plugin 1.0.0.beta-19 1.03

Author: Stanford University
License: http://opensource.org/licenses/BSD-2-Clause

Snap SPARQL Query

A plug-in for querying ontologies with SPARQL-DL. This plug-in was developed for tutorial
purposes as part of the Protege Short Course series. We make no quality guarantees

regarding use in production environments.

Version info

v Always check for updates on startup.

Not now Install

Figure 7-6. Setting up SPARQL functionality with the Stanford toolkit interactive setup

You can safely select all the components, or just the ones you need. Refer to the individual online
documentation pages to see if the components are right for your application.
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@ untitled-ontology-3 (htt www.semanticweb.org/ kerryk fontologies/ 2016/ 4/untitled-ontology-3 Search...

Active Ontology = Entities = | Individuals by class = DL Query =

Ontology header: CEEE
Ontology IRI http:/ /www.semanticweb.org/kerryk fontologies /20164 funtitled logy-: Metrics

Ontology Version IRI

Annotations

DL expressivity AL

Class axioms

Object property axioms
Ontology imports  Ontology Prafixes = General class axioms

Imported ontologies: MEEE

Direct Imports

Reasoner active v Show Inferences

Figure 7-7. Using an ontology editor to define ontologies, taxonomies, and grammars

7.5 Hybrid Algorithms: Combining Algorithm Types

The hybrid algorithms implemented in the Probda example system are found in the com.apress.prodbda.
algorithms.hybrid subpackage.

We can mix and match algorithm types to construct better data pipelines. These “hybrid systems” might
be somewhat more complex—of necessity they usually have several additional components—but they make
up for it in usefulness.

One of the most effective kinds of hybrid algorithm is that of the so-called “deep learning” component.
Not everyone considers deep learners as a hybrid algorithm (they are essentially, in most cases, built on
multilayer neural net technology), but there are some compelling reasons to treat deep learners as hybrid
systems, as we will discuss below.

So-called “deep learning” techniques include those shown in Figure yy-yy. DeepLearning4] and
TensorFlow toolkit are two of the more popular and powerful deep learning libraries currently available.
Check out TensorFlow at https://www.tensorflow.org/versions/r0.10/get_started/basic_usage.
htmlautoenc. Theano is a Python-based multidimensional array library. Check out http://deeplearning.
net/tutorial/dA.html for more details about how to use Theano.
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Number  Algorithm Name  Algorithm Type Toolkit Description
1 Deep Belief neural net Deeplearning4j, multiple layers of hidden units,
Networks TensorFlow, with layer interconnectivity only
Theano
2 (Stacked, variations on Deeplearning4j, A stacked autoencoder is a neural
Denoising) basic autoencoder TensorFlow, net consisting of multiple layers
Autoencoders principles Theano of sparse autoencoders in which
(DA) each layer’s outputs are wired
to the successive layers’ inputs.
Denoising autoencoders can
accept a partially corrupted input
while recovering the original
uncorrupted input.
3 Convolutional neural net, Deeplearning4j, Sparse connectivity and shared
Neural Networks  variation of MLP TensorFlow, weights are two features of CNNs.
(CNN) Theano
4 Long Short-Term  recurrent neural Deeplearning4j, classification and time series
Memory Units net, classifier, TensorFlow prediction, even sentiment
(LSTM) predictor analysis
5 Recurrent Neural neural net Deeplearning4j, classification, time series
Networks TensorFlow prediction
6 computation complex network  Deeplearning4j, Computations are represented as
graph architecture TensorFlow graphs.
builder

7.6 Code Examples

In this section we discuss some extended examples of the algorithm types we talked about in earlier

sections.
To get a sense of some algorithm comparisons, let’s use the movie dataset to evaluate some of the
algorithms and toolkits we've talked about.

package com.apress.probda.datareader.csv;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FileReader;

import java.io.IOException;

import java.io.OutputStreamWriter;
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public class FileTransducer {

/**
* This routine splits a line which is delimited into fields by the vertical
* bar symbol '|'

* @param 1
* @return

public static String makeComponentsList(String 1) {

}

/**
* The main routine processes the standard movie data files so that mahout
* can use them.

String[] genres = l.split("\\|");

StringBuffer sb = new StringBuffer();

for (String g : genres) {
sb.append("\"" "

}

+g+"\"");
String answer = sb.toString();
return answer.substring(o, answer.length() - 1);

* @param args

public static void main(String[] args) {
if (args.length < 4){
System.out.println("Usage: <movie data input><movie output file><ratings input file>
<ratings output file>");

System.exit(-1);

File file = new File(args[0]);

if (!file.exists()) {
System.out.println("File:
System.exit(-1);

}

System.out.println("Processing file: " + file);
BufferedWriter bw = null;
FileOutputStream fos = null;
String line;
try (BufferedReader br = new BufferedReader(new FileReader(file))) {
int 1 = 15
File fout = new File(args[1]);
fos = new FileOutputStream(fout);
bw = new BufferedWriter(new OutputStreamWriter(fos));
while ((line = br.readlLine()) != null) {
String[] components = line.split("::");
String number = components[0].trim();
String[] titleDate = components[1].split("\\(");
String title = titleDate[0].trim();
String date = titleDate[1].replace(")", "").trim();

+ file + " did not exist, exiting...

");
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String genrelList = makeComponentsList(components[2]);
String outlLine = "{ \"create\" : { \"_index\" :
\"bigmovie\", \"_type\" : \"film\", \"_id\" : \"" + i
+ "\" F R\n" o AT\ A"+ 1+ M\,
\"title\" : \"" + title + "\", \"year\":\"" + date
+ "\" , \"genre\":[

+ genrelist + "] }";
i++;
bw.write(outLine);
bw.newLine();
}
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} finally {
if (bw !'= null) {
try {
bw.close();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}

file = new File(args[2]);
try (BufferedReader br2 = new BufferedReader(new FileReader(file))) {
File fileout = new File(args[3]);
fos = new FileOutputStream(fileout);
bw = new BufferedWriter(new OutputStreamWriter(fos));
while ((line = br2.readlLine()) != null) {
String lineout = line.replace("::", "\t");
bw.write(lineout);
}
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} finally {
if (bw !'= null) {
try {
bw.close();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}

}
}
Execute the following curl command on the command line to import the data set into elastic

search:
curl -s -XPOST localhost:9200/_bulk --data-binary @index.json; echo

148



CHAPTER 7 © AN OVERVIEW OF ANALYTICAL TECHNIQUES AND ALGORITHMS

Wed May 4 1B8:25:87 on ttys0es
=~ kerryks cd
Kerryks curl —s —XPOST Localhosti®208/ _bulk ——data—binary @1nu-x2 Jsgn: ech
<« tonk”:!!B.“errurh“'lruE,'llemh“ [ o index":"bigmovie
r{"total":12,"successful”:11l, " Tailed 1201} }.{"create" 1 {
shardse:{ total 2 Tailed":@}
. t2, UsuccessTul™ 1, “fal
- snarcs”-{"\o\ul“:2.“succeggrul“.1
Geeme “ah
_type
_index
1281k, A
Tailad 18}, status
 Csuccessful®:l,
104 hardan:irietal
‘G«A“IIH_«

versiontil,
_typet it film " _id
index":"bigmovie
f2@1rr, {"croeate’
“"failed":@),"status 4"
P2 ”suctu!s‘:u\“:l.”!ul.luﬂ";0
a by

biomovle'
croate’ "
},"status”

—typ o
—index" 1 "bigmowv l.l! .
791;} {"er

foiled"
'ﬂu€=‘ﬂi'ul“ 21,

succossfu
sr\ords”-{' tot.\.“cz
iz

s {"totnl.' |z."=ucce_sf
- shard:"‘{"totn
T1me, raion

i
Chigmovie Ey e
201}}. {*create': {"_index"
1'0.\leﬂ“lB}-“'tntu—“ldol)} £ crente"l('

1 -1
”},"'\-Iulll\”-’n Iy, {"create
.Z."su:ce::fu\.’ :1."\‘91\ed“'0} “stutus
_shards®i{“total":12, successful”il,

1

(“(r0u1¢ t
i@, “atatus®
“successfuls 1,

- tyue”

i
igmovie®, g
index®:“bigmovies

PiaroareT v
1Bk, “stntus
*11

successful:1,

€
@), "status":201)},.{"create
shords" {"total":2,"successful™:l,

ailed" @}, "status

"9ucec;sf %
N rasi{"tot

2."successfu
shards': {"ta‘:

id
igmovie®,
1 :1."falled"'ﬁ {"cl—eut
" total™: tsuccessfuld i@}, "status
1lm*, " .tu"u"As" “_wersiontil, _shardsei{“total®:2,"successful®il, fail

e

Figure 7-8. Importing a standard movie data set example using a CURL command

Data sets can be imported into Elasticsearch via the command line using a CURL command. Figure 7-8
is the result of executing such a command. The Elasticsearch server returns a JSON data structure which is
displayed on the console as well as being indexed into the Elasticsearch system.
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Figure 7-9. Using Kibana as a reporting and visualization tool

We can see a simple example of using Kibana as a reporting tool in Figure 7-7. Incidentally, we will
encounter Kibana and the ELK Stack (Elasticsearch - Logstash - Kibana) throughout much of the remaining
content in this book. While there are alternatives to using the ELK stack, it is one of the more painless ways to
construct a data analytics system from third-party building blocks.
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7.7 Summary

In this chapter, we discussed analytical techniques and algorithms and some criteria for evaluating
algorithm effectiveness. We touched on some of the older algorithm types: the statistical and numerical
analytical functions. The combination or hybrid algorithm has become particularly important in recent
days as techniques from machine learning, statistics, and other areas may be used very effectively in

a cooperative way, as we have seen throughout this chapter. For a general introduction to distributed
algorithms, see Barbosa (1996).

Many of these algorithm types are extremely complex. Some of them, for example the Bayesian
techniques, have a whole literature devoted to them. For a thorough explanation of Bayesian techniques in
particular and probabilistic techniques in general, see Zadeh (1992),

In the next chapter, we will discuss rule-based systems, available rule engine systems such as JBoss
Drools, and some of the applications of rule-based systems for smart data collection, rule-based analytics,
and data pipeline control scheduling and orchestration.
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CHAPTER 8

Rule Engines, System Control, and
System Orchestration

In this chapter, we describe the JBoss Drools rule engine and how it may be used to control and orchestrate
Hadoop analysis pipelines. We describe an example rule-based controller which can be used for a variety of
data types and applications in combination with the Hadoop ecosystem.

Note Most of the configuration for using the JBoss Drools system is done using Maven dependencies. The
appropriate dependencies were shown in Chapter 3 when we discussed the initial setup of JBoss Drools. All the
dependencies you need to effectively use JBoss Drools are included in the example PROBDA system available
at the code download site.

8.1 Introduction to Rule Systems: JBoss Drools

JBoss Drools (www.drools.org) is used throughout the examples in this chapter. It's not the only choice
for a rule engine. There are many rule engine frameworks which are freely available, but Drools is a high-
powered system that can be used immediately to define many different kinds of control and architecture
systems. JBoss Drools has another advantage. There is extensive online and in-print documentation on the
Drools system (docs.jboss.org), programming recipes, and details of optimization, as well as explanations
of the rule-based technology. Some of the Drools reference books are listed at the end of this chapter. These
provide a thorough introduction to rule-based control systems, rule mechanics and editing, and other
important details.

In this chapter, we will give a brief overview of rule-based technology with a specific application:
defining a complex event processor (CEP) example.

CEPs are a very useful variation on the data pipeline theme, and can be used in practical systems
involving everything from credit card fraud detection systems to complex factory control systems.

There are two kinds of data structures at work in all rule systems: rules, of course, which provide the
“if-then-else” conditional functionality in a rule-based system (however, we will soon learn that this type
of rule, called a “forward chaining” rule, is not the only variety of rule we will encounter; there are also
“backward chaining” rules which will be described shortly). An additional data structure used is facts, which
are the individual “data items.” These are kept in a repository called the working memory store. Please see
Figure 8-1 for a simplified view of how this works in the Drools system.
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Figure 8-1. Download the Drools software from the Drools web page

Note This book uses the latest released version of JBoss Drools, which was version 6.4.0 at the time of
writing this book. Update the drools.system.version property in your PROBDA project pom.xml if a new version
of JBoss Drools is available and you want to use it.

Let’s get started by installing JBoss Drools and testing some basic functionality. The installation process
is straightforward. From the JBoss Drools homepage, download the current version of Drools by clicking the
download button, as shown in Figure 8-1.

cd to the installation directory and run examples/run-examples.sh. You will see a selection menu
similar to that in Figure 8-2. Run some output examples to test the Drools system and observe the output in
the console, similar to that in Figure 8-3, or a GUI-oriented example, as in Figure 8-4.
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Which GUI example do you want to see?
SudokuExample
PetStoreExample
TextAdventure

Pong
WumpusWorld
Which output example do you want to see?
HelloWorldExample
FibonacciExample
ShoppingExample
HonestPoliticianExample
GolfingExample
SimpleRuleTemplateExample
TroubleTicketExample
TroubleTicketExampleWithDT
TroubleTicketExampleWithDSL
StateExampleUsingSalience
StateExampleUsingAgendaCroup
PricingRuleTemplateExample
PricingRuleDTExample
DataDrivenTemplateExample
WorkltemConsequenceExamplel

WorkltemConsequenceExample2

Figure 8-2. Select some Drools examples and observe the results to test the Drools system

The built-in Drools examples has a menu from which you can select different test examples, as shown
in Figure 8-2. This is a good way to test your overall system set-up and get a sense of what the JBoss Drools

system capabilities are.
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List Table
Gold Fish 5.0 Name Price
Fish Tank 25.0 Gold Fish 5.0
Fish Food 2.0 Fish Food 2.0
Checkout Reset
Gold Fish 5.0

Fish Food Sample 0.0

gross total=5.0

Figure 8-3. JBoss Drools GUI-oriented example

Some of the example components for JBoss Drools have an associated UI, as shown in Figure 8-3.
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Production Memory Pattern Matching Working Memory
Store Component Store

Agenda
Repository

Figure 8-4. JBoss Drools rule system architecture

The basic JBoss Drools rule system architecture is shown in Figure 8-4.

Note All of the example code found in this system is found in the accompanying example system
code base in the Java package com.apress.probda.rulesystem. Please see the associated README file and
documentation for additional notes on installation, versioning, and use.

The interface for timestamped Probda events in our system couldn’t be easier:
package com.probda.rulesystem.cep.model;
import java.util.Date;
public interface IEvent extends Fact {

public abstract Date getTimestamp();
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The implementation of IEvent looks like this:

Listing 8-1. A basic JBoss Drools program

Let’s add a rule system to the evaluation system by way of an example. Simply add the appropriate
dependencies for the Drools rule system (Google “drools maven dependencies” for the most up-to-date
versions of Drools). The complete pom.xml file (building upon our original) is shown in Listing 3-2. We
will be leveraging the functionality of JBoss Drools in a complete analytical engine example in Chapter 8.
Please note that we supply dependencies to connect the Drools system with Apache Camel as well as Spring
Framework for Drools.

8.2 Rule-based Software Systems Control

Rule-based software systems control can be built up from a scheduling component such as Oozie combined
with the appropriate functionalities in JBoss Drools or other rule frameworks, as shown in an example
architecture in Figure 8-5.
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RULE REPOSITORY

JBOSS DROOLS RULE SYSTEM
COMPONENTS

DATA

SOURCES HADOOP SUPPORT ECOSYSTEM
COMPONENT

TASK QUEUE (INTERIM DATA CACHE) OOZIE SCHEDULING

RESULT LOG AND DASHBOARD

Figure 8-5. Rule-based software systems control architecture, using JBoss Drools as a controller

8.3 System Orchestration with JBoss Drools

In this section, we’ll discuss a brief example of how to do system orchestration tasks using JBoss Drools as a
controller. We will use the Activiti open source project (http://activiti.org) with some examples on how
to integrate a workflow orchestrator/controller into a Spring Framework-based project.

git clone https://github.com/Activiti/Activiti.git
export ACTIVITI_HOME=/Users/kkoitzsch/activiti

cd $ACTIVITI_HOME
mvn clean install
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Don’t forget to generate the documentation by
cd $ACTIVITI_HOME/userguide
mvn install
Insure Tomcat is installed. On the Mac platform, do
brew install tomcat
Tomcat will then be installed at /usr/local/Cellar/tomcat/8.5.3

®@ o bin — ssh localhost — 80x30

[INFO] --- maven-jar-plugin:2.3.2:jar (default-jar) @ activiti-engine ---

[INFO] Building jar: /Users/kkoitzsch/Activiti/modules/activiti-engine/target/ac
tiviti-engine-5.22.0-SNAPSHOT.jar

[INFO]

[INFO] --- maven-install-plugin:2.4:install (default-install) @ activiti-engine
[INFO] Installing /Users/kkoitzsch/Activiti/modules/activiti-engine/target/activ
iti-engine-5.22.0@-SNAPSHOT.jar to /Users/kkoitzsch/.m2/repository/org/activiti/a
ctiviti-engine/5.22.08-SNAPSHOT/activiti-engine-5.22.0-SNAPSHOT.jar

[INFO] Installing /Users/kkoitzsch/Activiti/modules/activiti-engine/pom.xml to /
Users/kkoitzsch/.m2/repository/org/activiti/activiti-engine/5.22.0-SNAPSHOT/acti
viti-engine-5.22,@-SNAPSHOT. pom

[INFO]

[INFO] Reactor Summary:

[INFO]

[INFO] ACtAVAItL wuvuuvnonnnonsnsnsnsnsnsnsnnnssnnssnnnnnnsns SUCCESS [ ©.234 s]
[INFO] Activiti — BPMN Model ...vsussnsssnsnsnsnsansssssass SUCCESS [ 3.613 s]
[INFO] Activiti - Process Validation ....cevevnnsensnnnnans SUCCESS [ 1.152 s]
[INFO] Activiti — BPMN Layout ...evvvssnnnsnnnnssnnnannnnns SUCCESS [ 1.991 s]
[INFO] Activiti - Image Generator ..vesssssssssasssnnssssas SUCCESS [ 0.787 s]
[INFO] Activiti — BPMN CONVErter ...sssssssssssnnnsssssnnns SUCCESS [ 5.121 s]
[INFO] Activiti — ENgine .ususessssssnsssssnsnsassssssssass SUCCESS [04:10 min]
[INFO]

[INFO] BUILD SUCCESS

[INFO]

[INFO] Total time: @4:27 min

[INFO] Finished at: 2016-07-26T06:36:00-07:00
[INFO] Final Memory: 72M/769M

[INFO]
Kerrys-MBP:activiti kkoitzsch$ I

Figure 8-6. Maven reactor summary for Activiti system install

Figure 8-6 shows what you can expect from the Maven reactor summary at the end of the Activiti build.

export TOMCAT_HOME=/usr/local/Cellar/tomcat/8.5.3
cd $ACTIVITI _HOME/scripts

Then run the Activiti script
./start-rest-no-jrebel.sh

You will see successful startup of Activiti as shown in Figure 8-7.
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©7:29:40,145 [localhost-startStop-1] INFO org.springframework.web.servlet.mvc.method.annotatinn.Requestnappingﬂ_l
andlerMapping - Mapped "{[/runtime/tasks/{taskId}/variables],methods=[PD5T],params=[],headers=[],consumes=[],pr
oduces=[application/json],custom=[]}" onto public java.lang.Object org.activiti.rest.service.api.runtime.task.Ta
skVariableCollectionResource.createTaskVariable(java.lang.String, javax.servlet.http.HttpServietRequest, javax.ser
vlet.http.HttpServletResponse)
07:29:40,145 [localhost-startStop-1] INFO org.springframework.web.servlet.mvc.method.annotation.RequestMappingH
andlerMapping - Mapped "{[/runtime/tasks/{taskId}/variables],methods=[DELETE],params=[],headers=[],consumes=[],
produces=[],custom=[]1}" onto public void org.activiti.rest,service.api.runtime.task.TaskVariableCollectionResour
ce.deleteAlllocalTaskVariables(java,lang.String, javax.servliet.http.HttpServletResponse)
07:29:40,146 [localhost-startStop-1] INFO org.springframework.web.servlet.mvc.method.annotation.RequestMappingH
andlerMapping - Mapped "{[/runtime/tasks/{taskId}/variables/{variableName}/data],methods=[GET],params=[],header
s=[1,consumes=[],produces=[application/json],custom=[]1}" onto public bytel[] org.activiti.rest.service.api.runtim
e.task.TaskVariableDataResource,getVariableData(java.lang.5tring, java.lang.String, java.lang.String, javax.servlet
«http.HttpServlietRequest, javax.servliet.http.HttpServlietResponse)
07:29:40,146 [localhost-startStop-1] INFO org.springframework.web.servlet.mvc.method.annotation.RequestMappingH
andlerMapping - Mapped "{[/runtime/tasks/{taskId}/variables/{variableName}],methods=[GET],params=[],headers=[],
consumes=[],produces=[application/json],custom=[]1}" onto public org.activiti.rest.service.api.engine.variable.Re
stVariable org.activiti.rest.service.api.runtime.task.TaskVariableResource.getVariable(java.lang.5tring,java.lan
g.String, java.lang.String, javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServietResponse)
07:29:40,146 [localhost-startStop-1] INFO org.springframework.web.servlet.mvc.methed.annotation.RequestMappingH
andlerMapping - Mapped "{[/runtime/tasks/{taskId}/variables/{variableName}],methods=[DELETE],params=[],headers=
[1,consumes=[],produces=[],custom=[]}" onto public void org.activiti.rest.service.api.runtime.task.TaskVariableR
esource.deleteVariable(java.lang.String, java.lang.String, java.lang.String,javax.servlet.http.HttpServietResponse
)
07:29:40,146 [localhost-startStop-1] INFO org.springframework.web.servlet.mvc.method.annotation.RequestMappingH
andlerMapping - Mapped "{[/runtime/tasks/{taskId}/variables/{variableName}],methods=[PUT],params=[],headers=[],
consumes=[],produces=[application/json],custom=[]}" onto public org.activiti.rest.service.api.engine,variable.Re
stVariable org.activiti.rest.service.api.runtime,.task.TaskVariableResource.updateVariable(java.lang.String,java.
lang.String, java.lang.5tring, javax.servlet.http.HttpServletRequest)
97:29:40,616 [localhost-startStop-1] INFO org.springframework.web.servlet.mvc.methed.annotation.RequestMappingH
andlerAdapter - Looking for @ControllerAdvice: WebApplicationContext for namespace 'dispatcher-servlet': startu
p date [Wed Jul 27 19:29:39 PDT 2016]; parent: Root WebApplicationContext
07:29:40,653 [localhost-startStop-1] INFO org.springframework.web.servlet.mvc.method.annotation.ExceptionHandle
rExceptionResolver - Detected @ExceptionHandler methods in exceptionHandlerAdvice
97:29:40,686 [localhost-startStop-1] INFO org.springframework.web.servlet.DispatcherServlet - FrameworkServlet
'‘dispatcher': initialization completed in 1162 ms
Jul 27, 2016 7:29:48@ PM org.apache.coyote.AbstractProtocol start
INFO: Starting ProtocolHandler ["http-bio-8088"]

Figure 8-7. Activiti script running successfully

A screen dump of the Activiti program running successfully is shown in Figure 8-7.
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A picture of the Activiti Explorer dashboard being run successfully is shown in Figure 8-8.

O ActivitiExplorer Al : Kecnik The Frog +

Database Deployments  Active Processes  Suspended Processes Jobs Users Groups  Administration  Crystalball

[ AcT_evr oG (0)

57 MxSystemFalure:137 53 55 subProcess
£] ACT_GE_BYTEARRAY (20)
E_"J ACT_GE_PROPERTY (3) 58 fxSystemFalure:1:37 53 55 subProcessStat M
[l ACT_HIACTINST (s83) 59 FxSystemFalure:1:37 53 5 subProcessFork
E‘ ACT_HI_ATTACHMENT (0) .
= 62 MxSystemFalure:137 53 ) task1 6 Investigate hardh
E‘ ACT_HI_COMMENT (0)
{4, ACT_HI_DETAL (108) 85  fxSystemFalure1-37 53 61 sh2 8 Investigate softn

© Activitl.org. Al rights reserved.

Figure 8-8. Activiti explorer dashboard running successfully

8.4 Analytical Engine Example with Rule Control

In this section, we will demonstrate an analytical engine example with rule control.

Data ' Displays
Sources Search User Interface or
Dashboard

Input
Devices

Content Acquisition, Query
Cleansing, and Query Result Execution

Validation Formatting against
Repository

Document Construction

Document Indexing Document Repository

Document Analyzer

Figure 8-9. An initial Lucene-oriented system design, including user interactions and document processing
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1
Data Processing
Cycle Begins

Time-Series
Oriented
Database

Result
Database

4
Persistence and

State Building

RULE ENGINES, SYSTEM CONTROL, AND SYSTEM ORCHESTRATION

7
Dashboard
Updating Process

6
Store Results and
Send Alert
Messages

5
Rule Based Data
Transformation

Figure 8-10. A Lucene-oriented system design, including user interactions and document processing, step 2
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Input
Devices

Search User Interface or
Dashboard

Displays

1
Data Processing

Cycle Begins Query

Result
Format

Time-Series
Oriented
Database

2
Data Ingestion and
Consolidation

Document Repository

3
Event Parsing

4
Persistence and
State Building

We can use the Splunk system for data ingestion.

Query
Execution
against
Repository

7
Dashboard
Updating
Process

6
Store Results and
Send Alert

5
Rule Based Data
Transformation

Figure 8-11. A Lucene-oriented system design, including user interactions and document processing, step 3

We can use a time series-oriented database such as OpenTSDB (https://github.com/OpenTSDB/

opentsdb/releases) as an intermediate data repository.
Rule-based transformation is provided by JBoss Drools.
The document repository functionality can be provided by an instance of a Cassandra database.
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Input

Devices
Search User Interface or

Dashboard

Displays

A m—h

1 Time-Series
Data Processing Oriented Query
Cycle Begins Database Result Query
Format Execution
EE
Repository

Data Ingestion and - 6

lidati . Store Results and
Custom Consolidation Document Repository Send Alert Messages

ingestion code

Dashboard
Updating
Process

Lucene/Solr or Elasticsearch Kafka

Spark on HBase or
3 Kudu
Event Parsing

JBoss Drools
4 5

KAFKA, Logstash Persisten.?e Iand Rule Based Data
or Flume State Building Transformation

Figure 8-12. An integrated system architecture with lifecycle, including the technology components used

Note Please note you are under no obligation use the technology components shown in Figure 8-12. You
could use an alternative messaging component such as RabbitMQ, for example, instead of Apache Kafka, or
MongoDB instead of Cassandra, depending upon your application requirements.

8.5 Summary

In this chapter, we discussed using rule-based controllers with other distributed components, especially
with Hadoop and Spark ecosystem components. We have seen that a rule-based strategy can add a key
ingredient to distributed data analytics: the ability to organize and control data flow in a flexible and logically
organized manner. Scheduling and prioritization is a natural consequence of these rule-based techniques,
and we looked at some examples of rule-based schedulers throughout the chapter.

In the next chapter, we will talk about using the techniques we have learned so far into one integrated
analytical component which is applicable to a variety of use cases and problem domains.
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CHAPTER 9

Putting It All Together: Designing
a Complete Analytical System )

In this chapter, we describe an end-to-end design example, using many of the components discussed so
far. We also discuss “best practices” to use during the requirements acquisition, planning, architecting,
development, testing, and deployment phases of the system development project.

Note This chapter makes use of many of the software components discussed elsewhere throughout the
book, including Hadoop, Spark, Splunk, Mahout, Spring Data, Spring XD, Samza, and Kafka. Check Appendix A
for a summary of the components and insure that you have them available when trying out the examples from
this chapter.

Building a complete distributed analytical system is easier than it sounds. We have already discussed
many of the important ingredients for such a system in earlier chapters. Once you understand what your
data sources and sinks are going to be, and you have a reasonably clear idea of the technology stack to be
used and the “glueware” to be leveraged, writing the business logic and other processing code can become a
relatively straightforward task.

A simple end-to-end architecture is shown in Figure 9-1. Many of the components shown allow some
leeway as to what technology you actually use for data source, processors, data sinks and repositories, and
output modules, which include the familiar dashboards, reports, visualizations, and the like that we will see
in other chapters. In this example, we will use the familiar importing tool Splunk to provide an input source.
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Analytics Simple

Business Logic Components Qutput

Data Source

(Splunk) g3prine AD and (Mahout and Dashboard
others) Friends) (D3)

Figure 9-1. A simple end-to-end analytics architecture

In the following section we will describe how to set up and integrate Splunk with the other components
of our example system.

HOW TO INSTALL SPLUNK FOR THE EXAMPLE SYSTEM

Splunk (https://www.splunk.com) is a logging framework and is very easy to download, install, and
use. It comes with a number of very useful features for the kind of example analytics systems we're
demonstrating here, including a built-in search facility.

To install Splunk, go to the download web page, create a user account, and download Splunk Enterprise
for your appropriate platform. All the examples shown here are using the MacOS platform.

Install the Splunk Enterprise appropriately for your chosen platform. On the Mac platform, if the
installation is successful, you will see Splunk represented in your Applications directories as shown in
Figure 9-2.

Refer to http://docs.splunk.com/Documentation/Splunk/6.4.2/SearchTutorial/StartSplunk
on how to start Splunk. Please note that the Splunk Web Interface can be found at
http://localhost:8000 when started correctly.
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Figure 9-2. Successful Splunk Enterprise installation for Mac OSX
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localhost

four download is starting Splunk

splunk>enterpi

First time signing in?

Figure 9-3. Login page for Splunk Enterprise

When you point your browser at localhost:8000, you'll initially see the Splunk login page. Use the
default user name and password to begin with, change as instructed, and make sure the Java code you use
for connectivity uses your updated username (‘admin’) and password(‘changename’).
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localhost

splunk>

Change password

Save password

Figure 9-4. Change password during initial Splunk Enterprise setup

Download the following very useful library, splunk-library-javalogging, from github:
git clone https://github.com/splunk/splunk-library-javalogging.git
cd splunk-library-javalogging

mvn clean install
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In your Eclipse IDE, import the existing Maven project as shown in Figure 9-5.

Select

Import Existing Maven Projects i E - E I

Select an import source:

. ~EJB
(= Git
= Install
.—Java EE
»Maven
% Check out Maven Projects from SCM
-, Existing Maven Projects
_|,Install or deploy an artifact to a Maven repository
".._J" Materialize Maven Projects from SCM

AVVYYVYY
G 60

%~ Plug-in Development

-

-Remote Systems
-Run/Debug

- Tasks

- Team

Web

»Web services

- XML

YVY VY VvYyYVYVYYY

PPPRPRRE

Next > Cancel

N\

Figure 9-5. Import an existing Maven to use splunk-library-javalogging

Figure 9-5 shows a dialog for importing the existing Maven project to use splunk-library-javalogging.
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& iCloud Drive ; S“““hmmd ! i .zinc e .::l:nom )
#% Applications = #:bashick , = CHANGELOG.md
@8 Desktop ~dboxManager » dmb“‘:""“”‘"“m'*‘ ¥ CONTRIBUTING.md
100 e LICENSE
!3 Documents : Slj:jk;o: ol : ® pom.xml
-0.4-examples
© Downloads b : [ Documents > ; :;ADME'Md .
Devices > W8 Downloads 5 [0 target >
© Remote Di ' ~Jonou :
mote Disc 1 falcon »
>
[ Rstudio-0.... = % I groundtruth...sophila-vnc
g JDK 8 Upd... = | Jrerequests i Nl il
" [ home >
Ll neosj-ce = % I incubator-beam >
M kudu >
i a >
Q OmniGraffle = £ i Library R
) Micro-Man... = 1l I lilyproject >
[ metastore_db >
a >
[ splunk6.4.2 ; o i S
Shared » : Movies >
Music >
ft, i »
- ARG i [ openimaj >
Tags > ™ Pictures >
@® Red [ probda-hipster >
[ probda-hipster2 >
© Orange [ Public L4
@ Yellow % RHadoop >
1 simple-drools-cep >
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New Folder Cancel Open

Figure 9-6. Select splunk-library-javalogging for import
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Maven Projects

Select Maven projects

Root Directory: U [kkoitzschfsplunk-library-javalogging v Browse...
Projects:
v fpom.xml com.splunk.logging:splunk-library-javalogging:1.5.1:jar Select All
Deselect All
Refresh

Add project(s) to working set

» Advanced

(?) < Back Cancel Finish

Figure 9-7. Select the appropriate root directory for Maven construction

As shown in Figure 9-7, selection of the appropriate pom.xml is all you need to do in this step.
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Figure 9-8. Eclipse IDE installation of Splunk test code

Seartinsert | 4680

As shown in Figure 9-8, modification to include appropriate username and password values is typically
all that is necessary for this step of installation.
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{ localhost

splunk>

Reliabily export data from Splunk to your HOFS cluster

Setup o secure connection between Sphunk and your HOFS
cluster with Kerberos

Input and index data from HOFS into Splunik for searching.
analysis and reporting

Explore your HDFS cluster 1o find useful data files and confirm
data delivery

¢ data from o file and proces

Explore

& This app needs to be configured!

You will need the following:

« Install and configure Hadoop comand line utilties (including Java if necessary)

» Ensune that the following command works: SHADOOP_HOME bin/hadoop f5 -1 hafs.it<namenode> <pants/
Configure the app by adding Hadoop ¢ o

If you need a secure connection you will need a Kerberos principal name and associated keytab file.

Figure 9-9. Configure the HadoopConnect component for Splunk

Configure the HadoopConnect component for Splunk as shown in Figure 9-9.
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Figure 9-10. Searching for Pro Data Analytics events in the Splunk dashboard

Textual search in the Splunk dashboard can be accomplished as in Figure 9-10. We can also select an
appropriate timestamped interval to perform queries over our data set.

Visualization is an important part of this integration process. Check out some of the D3 references at the
bottom of this chapter to get a sense of some of the techniques you can use in combination with the other
components of the data pipeline.

9.1 Summary

In this chapter, we discussed building a complete analytical system and some of the challenges architects
and developers encounter upon the way. We constructed a complete end-to-end analytics pipeline using
the now-familiar technology components discussed in earlier chapters. In particular, we talked about how to
use Splunk as an input data source. Splunk is a particularly versatile and flexible tool for all kinds of generic
logging events.

9.2 References

Mock, Derek, Johnson, Paul R., Diakun, Josh. Splunk Operational Intelligence Cookbook. Birmingham, UK:
PACKT Publishing, 2014.
Zhu, Nick Qi. Data Visualization with d3.js Cookbook. Birmingham, UK: PACKT Publishing, 2014.
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PART il

Components and Systems

The third part of our book describes the component parts and associated libraries which can assist
us in building distributed analytic systems. This includes components based on a variety of different
programming languages, architectures, and data models.




CHAPTER 10

Data Visualizers: Seeing and
Interacting with the Analysis

In this chapter, we will talk about how to look at—to visualize—our analytical results. This is actually quite
a complex process, or it can be. It’s all a matter of choosing an appropriate technology stack for the kind
of visualizing you need to do for your application. The visualization task in an analytics application can
range from creating simple reports to full-fledged interactive systems. In this chapter we will primarily be
discussing Angular JS and its ecosystem, including the ElasticUI visualization tool Kibana, as well as other
visualization components for graphs, charts, and tables, including some JavaScript-based tools like D3.js
and sigma.js.

10.1 Simple Visualizations

One of the simplest visualization architectures is shown in Figure 10-1. The front-end control interface

may be web-based, or a stand-alone application. The control UI may be based on a single web page, or a
more developed software plug-in or multiple page components. “Glueware” on the front end might involve
visualization frameworks such as Angular JS, which we will discuss in detail in the following sections. On the
back end, glueware such as Spring XD can make interfacing to a visualizer much simpler.
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Grouping
Sorting
Merging and
Collating

Perform Front-end Filter

Statistical Control
Analysis Interface

Display
Data Set

Selection

Presentation
Type Selection

Figure 10-1. Typical visualization component architecture

Let’s talk briefly about the different components in Figure 10-1. Each circle represents different facets of
typical use cases when using an analytics software component. You might think of the circles as individual
sub-problems or issues we are trying to solve. For example, grouping, sorting, merging, and collating might
be handled by a standard tabular structure, such as the one shown in Figure 10-2. Most of the sorting and
grouping problems are solved with built-in table functionality like clicking on a column to sort rows, or to
group items.

Providing effective display capabilities can be as simple as selecting an appropriate tabular component
to use for row-oriented data. A good example of a tabular component which provides data import, sorting,
pagination, and easily programmable features is the one shown in Figure 10-2. This component is available
athttps://github.com/wenzhixin/bootstrap-table. The control shown here leverages a helper library
called Bootstrap.js (http://getbootstrap.com/javascript/) to provide the advanced functionality. Being
able to import JSON data sets into a visualization component is a key feature which enables seamless
integration with other Ul and back-end components.
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@ c|m|a-| &

Item Detail
Item ID
Item Name Item Price Item Operate
| 0 ltem 0 $0 vx
+ 1 $1 vx
+ 2 X
+ 7 3 % Y
+ 4 X
+ 5 ltem 5 g vx
+ 6 vx
+ 7 ltem 7 vx
e 8 v x
+ 9 tem 9 $9 X
Showing 1to 10 of 800 rows 10 -« rows per page - 2 3 4 & 80

Figure 10-2. One tabular control can solve several visualization concerns

Many of the concerns found in Figure 10-1 can be controlled by front-end controls we embed in a web
page. For example, we are all familiar with the “Google-style” text search mechanism, which consists of
just a text field and a button. We can implement a visualization tool using d3 that does simple analytics on
Facebook tweets as an introduction to data visualization. As shown in Figure 10-2 and Figure 10-3, we can
control the “what” of the display as well as the “how”: we can see a pie chart, bar chart, and bubble chart
version of the sample data set, which is coming from a Spring XD data stream.
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Pro Data Analytics Display 2016

Field Counter (Ple): Field Value Counter (Bubble):
tweatlang ® hashtags B

other
ntht
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und

ja
Aggregate Counter:
tweetcount ¥
] 500 1000 1500 2000 200 2000

Figure 10-3. Simple data visualization example of Twitter tweets using Spring XD showing trending topics
and languages

Most of the concerns we see in Figure 10-1 (data set selection, presentation type selection, and the
rest) are represented in Figure 10-3 and Figure 10-4. Standard controls, such as drop-down boxes, are used
to select data sets and presentation types. Presentation types may include a wide range of graph and chart
types, two- and three-dimensional display, and other types of presentation and report formats. Components
such as Apache POI (https://poi.apache.org) may be used to write report files in Microsoft formats
compatible with Excel.

The display shown here dynamically updates as new tweet data arrives through the Spring XD data
streams. Figure 10-3 shows a slightly different visualization of the tweet data, in which we can see how some
circles grow in size, representing the data “trending” in Twitter.
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Pro Data Analytics Display 2016

Field Counter (Pie): Field Value Counter (Bubble):
hashtags ¥ hashtags

Figure 10-4. An additional simple data visualization example of Twitter tweets using Spring XD

We'll discuss Spring XD in the next section, as it is particularly useful as glueware when building visualizers.

SETTING UP THE SPRING XD COMPONENT

Setting up the Spring XD component, like all the Spring Framework components, is basically straightforward.
After installing Spring XD, start Spring XD in “single node mode” with

bin/xd-singlenode
cd bin

Run the XD shell with the command

./xd-shell
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Create the streams with the following commands
stream create tweets --definition "twitterstream | log"

stream create tweetlang --definition "tap:stream:tweets > field-value-counter
--fieldName=lang" --deploy

stream create tweetcount --definition "tap:stream:tweets > aggregate-counter" --deploy

stream create tagcount --definition "tap:stream:tweets > field-value-counter
--fieldName=entities.hashtags.text --name=hashtags" --deploy
stream deploy tweets

Visualization

SHENS using

Framework-

Twitter Data " AngularlS
Feeds and sl (JHipster or

Processing
(mostly using
Spring XD)

other ‘helper
libraries’ such
as D3)

Streams

Figure 10-5. Architecture diagram for Twitter » Spring XD » visualization
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// XD Shell 1.1.0.RELEASE log opened at
stream create —-definition "time | log"
quit

// XD Shell 1.1.0.RELEASE log closed at
// XD Shell 1.1.0.RELEASE log opened at
stream create --definition "time | log"
// XD Shell 1.1.0.RELEASE log opened at

2016-05-19 16:11:20
--name ticktock --deploy

2016-05-19 16:12:17
2016-05-19 16:13:42
--name pro-big-data-analytics —--deploy
2016-07-07 13:01:14

help

quit

// XD Shell 1.1.0.RELEASE log closed at 2016-07-07 13:01:51
Kerrys-MacBook-Pro-2:bin kerryk$ ./xd-shell

Unable to find a $JAVA_HOME at "/usr", continuing with system-provided Java...

/| (-) NN/ \
A S VA I
= NN N N
AN/ rrrr et s /NNy
VY IR AN (U U U I ) 1 VPR B VA VA 4
|| —/ |
[ [/

eXtreme Data

1.3.1.RELEASE | Admin Server Target: http://localhost:9393

Welcome to the Spring XD shell. For assistance hit TAB or type "help".
xd:>[]

Figure 10-6. Bringing up the Spring XD shell successfully
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IN__S ) | [ | ( | 7/ 7/ NN |/ / =
N S | I—1 1N | N/ NS s

| A

| | s
eXxtreme Data
l1.3.1.RELEASE | Admin Server Target: http://localhost:9393
Welcome to the Spring XD shell. For assistance hit TAB or type "help".

stream create tweets —-definition "twitterstream | log"

Command failed org.springframework.xd. rest.client.impl.SpringXDException: Error with

option(s) for module twitterstream of type source:
consumerSecret: You must provide a 'consumerSecret’' token to use this module.
consumerkKey: You must provide a 'consumerKey' token to use this module.

quit
Kerrys—MacBook—-Pro—-2:bin kerryk$ ./xd-shell
Unable to find a $JAVA_HOME at "/fusr", continuing with system-provided Java...

/ | (=) NN \
A A |
N N\ | A I SN |
IN__ S S ) | I I ( | 7 7/ N N |7/
N £ / | I I N e N NS /
| /|
| | /
eXtreme Data
1.3.1.RELEASIE | Admin Server Target: http://localhost:9393
Welcome to the Spring XD shell. For assistance hit TAB or type "help".
stream create tweets —-definition "twitterstream | log"
Created new stream 'tweets'
stream create tweetlang ——definition "tap:stream: tweets = field-value-counter --—
fieldName=lang" -—-deploy
Created and deployed new stream 'tweetlang'
. stream create tweetcount —-definition "tap:stream:tweets = aggregate-counter" -—-d
eploy
Created and deployed new stream 'tweetcount'
stream create tagcount ——definition "tap:stream:tweets > field-value-counter ——fi
eldName=entities.hashtags.text ——name=hashtags" -—-—-deploy
Created and deployed new stream 'tagcount’
x stream deploy tweets
Deployed stream 'tweets'

Figure 10-7. Using Spring XD to implement a Twitter tweet stream and then sdeploy the stream

In the next section we will go into some comprehensive examples of a particularly useful toolkit,
Angular JS.

10.2 Introducing Angular JS and Friends

AngularJS (https://angularjs.org) is a JavaScript-based toolkit that has become a very prominent
contender in the data visualization library arena. It has a straightforward model-view-controller (MVC)
architecture which enables a streamlined design and implementation process.

Incidentally, some Angular JS components such as Elastic UI (elasticui.com) are available directly out
of the box to use with the Elastic search engine. ElasticUI with Kibana is a quck and relatively painless way to
add visualization components.

We will spend most of the rest of this chapter discussing how to set up some examples using Angular JS
and some other visualization toolkits, including a very interesting new arrival on the scene, JHipster.

10.3 Using JHipster to Integrate Spring XD and Angular JS

JHipster (https://jhipster.github.io) is an open source Yeoman () generator designed to create
integrated Spring Boot and Angular JS components. This makes it possible to integrate additional
components from the rest of the Spring Framework ecosystem as well in a seamless manner. For example,
you could use a Spring Data Hadoop-based component to build a data pipeline with summary displays
written in Angular]JS on the front end.

We are going to build a simple JHipster mini-project to show how this might work.
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bda API, description=probda API documentation, version=0.8.1, termsOfServiceUrl=null, contactNamesnull, contactUrl=null, contactEmail=null, license=null, licenseUrl=nul
1}, ribbon={displayOnActiveProfiles=devi}}

15:11:04.245 [main] DEBUG org.springframework.beans.factory.config.YanlPropertiesFactoryBean - Loaded 1 document from YAML resource: class path resource [configfapplica
tion.ymll

H E N I I N N .

B | H == w ] |

T || I | u L

HE EE B || " L] L] n m =u

N = N n EELEEN [ ] I E .
{1 JHipster ™ :: Ruaning Spring Boot 1.3.5.RELEASE ::

: hitp:/fjhipster.github. ko

INFO 3321 . . v Starting ProbdaApp on Kerrys-MBP.attlocal.net with PID 33213 (/User
s/kkoitzsch/probda-hipster/target/classes started by kkoitzsch in /Users/kkoitzsch/probda-hipster])
DEBUG 33213 r Running with Spring Beot v1.3.5.RELEASE, Spring v4.2.6.RELEASE
The following profiles are active: dev
Logging Provider: org.jboss.logging.S1f4jLoggerProvider found via s
ystes property
Creating Async Task Executor
Registering JVM gauges
Initializing Metrics JMX reporting
Web application configuration, using profiles: [dev]
Initializing Metrics registries
Registering Metrics Filter
Registering Metrics Servlet
Web application fully configured
You listed localhost/0:0:0:0:0:8:0:1:9042 in your contact points, b

ut it wasn't found in the control host's system.peers at startup
0 3321 Configuring Cassandra session

Rurning with Spring profile(s) : [dev]

Mo cache

Starting Swagger

Started Swagger in 7 ms

Started ProbdaApp in 8.23 seconds (JVM running for 14.671)

Application 'probda‘ is running! Access URLs:
Local: http://127.0.0.1:8088
External: http://192,168.1.196: 8080

Figure 10-8. Successful setup of a “probda-hipster” project

HOW TO BUILD THE ANGULAR JS EXAMPLE SYSTEM

Building an Angular JS example system is relatively straightforward and we describe how to do it in
this section.

The first step in building the Angular JS example system is to make the archetype project on the
command line. Cd to the home directory you wish to build in. Then execute the following command, as
shown in Listing 13.1.

mvn archetype:generate -DgroupId=nl.ivonet -DartifactId=java-angularjs-seed
-DarchetypeArtifactId=maven-archetype-webapp -DinteractiveMode=false

This will create the directories and files shown in Listing 10-2. Cd to the directory and make sure they
are really there.

./pom.xml

./sxc

./src/main

./src/main/resources
./sxc/main/webapp
./src/main/webapp/index.jsp
./src/main/webapp/WEB-INF
./src/main/webapp/WEB-INF/web.xml
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Construct the new files and directories to configure the project, as shown in Listing 10-3.

mkdir -p src/main/java

mkdir -p src/test/java

mkdir -p src/test/javascript/unit

mkdir -p src/test/javascript/eze

mkdir -p src/test/resources

rm -f ./src/main/webapp/WEB-INF/web.xml
m -f ./src/main/webapp/index.jsp

mkdir -p ./src/main/webapp/css

touch ./src/main/webapp/css/specific.css
mkdir -p ./src/main/webapp/js

touch ./src/main/webapp/js/app.]js

touch ./src/main/webapp/js/controllers.js
touch ./src/main/webapp/js/routes.js
touch ./src/main/webapp/js/services.js
touch ./src/main/webapp/js/filters.js
touch ./src/main/webapp/js/services.js
mkdir -p ./src/main/webapp/vendor
mkdir -p ./src/main/webapp/partials
mkdir -p ./src/main/webapp/img

touch README.md

touch .bowerrc

Run the npm initialization to interactively build the program. ‘npm init’ will provide a step-by-step
question-and-answer approach towards creating the project, as shown in Listing x.y.

npm init

This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sane defaults.

See “npm help json™ for definitive documentation on these fields
and exactly what they do.

Use "npm install --save’ afterwards to install a package and
save it as a dependency in the package.json file.

Press ~C at any time to quit.

name: (java-angularjs-seed)

version: (0.0.0)

description: A starter project for Angular]S combined with java and maven
entry point: (index.js)

test command: karma start test/resources/karma.conf.js

git repository: https://github.com/ivonet/java-angular-seed

keywords:

author: Ivo Woltring

license: (ISC) Apache 2.0

About to write to /Users/ivonet/dev/ordina/LabTime/java-angularjs-seed/package.json:
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"name": "java-angularjs-seed",

"version": "0.0.0",

"description": "A starter project for AngularJS combined with java and maven",
"main": "index.js",

"scripts": {

"test": "karma start test/resources/karma.conf.js"
}s
"repository”: {

"type": "git",

"url": "https://github.com/ivonet/java-angular-seed"
1,

"author": "Ivo Woltring",
"license": "Apache 2.0",
"bugs": {
"url": "https://github.com/ivonet/java-angular-seed/issues

1

"homepage": "https://github.com/ivonet/java-angular-seed"

Is this ok? (yes)

Now add the following content to the file: .

{

"name": "java-angular-seed",
"private": true,
"version": "0.0.0",
"description": "A starter project for AngularJS combined with java and maven",
"repository": "https://github.com/ivonet/java-angular-seed"”,
"license": "Apache 2.0",
"devDependencies": {
"bower": "~1.3.1",
"http-server": "~0.6.1",
"karma": "~0.12",
"karma-chrome-launcher": "~0.1.4",
"karma-firefox-launcher": "~0.1.3",
"karma-jasmine": ""0.1.5",
"karma-junit-reporter": ""0.2.2",
"protractor": "~0.20.1",
"shelljs": ""0.2.6"
1
"scripts": {
"postinstall”: "bower install",
"prestart”: "npm install",
"start": "http-server src/main/webapp -a localhost -p 8000",
"pretest”: "npm install",
"test": "karma start src/test/javascript/karma.conf.js",

"test-single-run": "karma start src/test/javascript/karma.conf.js --single-run",

"preupdate-webdriver": "npm install",
"update-webdriver": "webdriver-manager update",
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}

"preprotractor”: "npm run update-webdriver",
"protractor": "protractor src/test/javascript/protractor-conf.js",

"update-index-async": "node -e \"require('shelljs/global'); sed('-i', /\\/\\/@@NG_
LOADER _START@@[\\s\\S]*\\/\\/@@NG_LOADER_END@@/, '//@@NG_LOADER START@@\\n' + cat('src/
main/webapp/vendor/angular-loader/angular-loader.min.js') + '\\n//@@NG_LOADER END@@',

"src/main/webapp/index.html");\

}

Kerrys-MacBook=-Pro:demo kerryk$ cd

Kerrys-MacBook-Pro:~ kerryk$ mvn archetype:generate -Dgroupld=com.apress -Dartifactld=probda -DarchetypeArtifact

Id=maven-archetype-webapp -DinteractiveMode=false
Unable to find a $JAVA_HOME at "/usr", continuing with system-provided Java...
[INFO] Scanning for projects...

[INFO)
[INFO]
[INFO)
[INFO)
[INFO]
[INFO]
[INFO]
[INFO)
[INFO]
[INFO)
[INFO)
[INFO]
[INFO]
[INFO]
[INFO]
[INFO)
[INFO]
[INFO)
[INFO)
[INFO)
[INFO)
[INFO)
[INFO)
[INFO]
[INFO]
[INFO)
[INFO)
[INFO)

Building Maven Stub Project (No POM) 1

»>>> maven-archetype-plugin:2.4:generate (default-cli) > generate-sources @ standalone-pom >>>

<<< maven-archetype-plugin:2.4:generate (default-cli) < generate-sources @ standalone-pom <<<

-—- maven-archetype-plugin:2.4:generate (default-cli) @ standalone-pom --—-

Generating project in Batch mode

Using follewing parameters for creating project from 0ld (1.x) Archetype:

maven-archetype-webapp:1.8

Parameter:
Parameter:
Parameter:
Parameter:
Parameter:
Parameter:

basedir, Value: sUsers/kerryk
package, Value: com.apress
groupld, Value: com.apress
artifactld, Value: probda
packageName, Value: com.apress
version, Value: 1.@-SNAPSHOT

project created from Old (1.x) Archetype in dir: /Users/kerryk/probda

BUILD SUCCESS

Total time: 4.637 s
Finished at: 2016-84-26T16:34:31-87:08
Final Memory: 12M/1B9M

Kerrys-MacBook-Pro:~ kerryks i

Figure 10-9. Building the Maven stub for the Angular JS project successfully on the command line
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? would you like to mark this package as private which prevents it from being accidentally published to the regi E

stry? Yes

stry? (y/N) ¥y

{try?
name:
descript
main: S /
authors: [

Kerry Ko

rldsS combined with java and maven'

tstrap: .
angular: '1l.3.08-be

}

7 Looks good? Ves
Kerrys-MacBook-Pro:probda kerryks ]

Figure 10-10. Configuration file for the Angular JS example

Kerrys-MacBook-Pro:probda kerryk$ npm init B8
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.

See “npm help json’ for definitive documentation on these fields
and exactly what they do.

Use “npm install <pkg> --save' afterwards to install a package and
save it as a dependency in the package.json file.

Press ~C at any time to quit.

name: (probda)

version: (1.0.0)

description: basic Pro Hadoop Analytics project with Angularls
entry point: (index.js)

test command: karma start test/resources/karma.conf.js
git repository:

keywords:

author: Kerry Koitzsch

license: (ISC)

About to write to /Users/kerryk/probda/package.json:

{
“name": "probda",
“version™: "1.0.0",
“description”: "basic Pro Hadoop Analytics project with Angularls",
“main": "index.js",
"scripts": {
“test": "karma start test/resources/karma.conf.js"
},
"author": "Kerry Koitzsch",
"license": “ISC"
}

Figure 10-11. Additional configuration file for the Angular ]S example application
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{
}

bower install angular#1.3.0-beta.14

bower install angular-route#1.3.0-beta.14
bower install angular-animate#1.3.0-beta.14
bower install angular-mocks#1.3.0-beta.14
bower install angular-loader#1.3.0-beta.14
bower install bootstrap

"directory": "src/main/webapp/vendor"

bower init
[?] name: java-angularjs-seed
[?] version: 0.0.0
[?] description: A java / maven / angularjs seed project
[?] main file: src/main/webapp/index.html
[?] what types of modules does this package expose?
[?] keywords: java,maven,angularjs,seed
[?] authors: IvoNet
[?] license: Apache 2.0
[?] homepage: http://ivonet.nl
[?] set currently installed components as dependencies? Yes
[?] add commonly ignored files to ignore list? Yes
?

[?] would you like to mark this package as private which prevents it from being
accidentally pub[?] would you like to mark this package as private which prevents it
from being accidentally published to the registry? Yes

[?] Looks good? (Y/n) Y

{
"name": "java-angularjs-seed"”,
"version": "0.0.0",
"authors": [
"IvoNet <webmaster@ivonet.nl>"
1,
"description”: "A java / maven / angularjs seed project",
"keywords": [
"java",
"maven",
"angularjs"”,
"seed"
1,
"license": "Apache 2.0",
"homepage": "http://ivonet.nl",
"private": true,
"ignore": [
“**/-*"’
"node_modules",
"bower_components",
"src/main/webapp/vendor",
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"test",
"tests"

1,

"dependencies": {
"angular": "1.3.0-beta.14",
"angular-loader": "1.3.0-beta.14",
"angular-mocks": "1.3.0-beta.14",
"angular-route": "1.3.0-beta.14",
"bootstrap": "3.2.0"

1

"main": "src/main/webapp/index.html"
}
rm -rf ./src/main/webapp/vendor
npm install

Now we configure ./src/test/javascript/karma.conf.js :

module.exports = function(config){
config.set({

basePath : '../../../",

files : [
'src/main/webapp/vendor/angular**/**.min.js",
'src/main/webapp/vendor/angular-mocks/angular-mocks.js",
'src/main/webapp/js/**/*.js’,
'src/test/javascript/unit/**/*.js’

1

autoWatch : true,
frameworks: ['jasmine'],
browsers : ['Chrome'],

plugins : [
'karma-chrome-launcher',
"karma-firefox-launcher',
'karma-jasmine',
'karma-junit-reporter’

1

junitReporter : {
outputFile: 'target/test_out/unit.xml',
suite: 'src/test/javascript/unit’

}

};
};

193



CHAPTER 10 - DATA VISUALIZERS: SEEING AND INTERACTING WITH THE ANALYSIS

Kerrys-MacBook-Pro:probda kerryks

Figure 10-12. Console result of Angular component install
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.

q{ B
“name": “probda",
“version": "1.0.0",
"description": "basic Pro Hadoop Analytics project with Angularls",
"main": "index.js",
“scripts': {
“test": "karma start test/resources/karma.conf.js"
h
"author": "Kerry Koitzsch",
"Llicense": “ISC"

}

-uu-:---F1 package.json All L1 (Fund al)
Loading image...done

Figure 10-13. Data configuration in the package.json file

Put the following content in ./src/main/webapp/WEB-INF/beans.xml:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.org/xml/

ns/javaee/beans_1 1.xsd"
bean-discovery-mode="annotated">

</beans>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/

maven-v4 0 0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>nl.ivonet</groupId>

<artifactId>java-angularjs-seed</artifactId>

<packaging>war</packaging>

<version>1.0-SNAPSHOT</version>

<name>java-angularjs-seed Maven Webapp</name>

<url>http://ivonet.nl</url>
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<properties>
<artifact.name>app</artifact.name>
<endorsed.dir>${project.build.directory}/endorsed</endorsed.dir>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>

<dependencies>

<dependency>
<groupIld>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
<scope>test</scope>

</dependency>

<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-all</artifactId>
<version>1.9.5</version>
<scope>test</scope>

</dependency>

<dependency>
<groupId>javax</groupId>
<artifactId>javaee-api</artifactId>
<version>7.0</version>
<scope>provided</scope>
</dependency>

</dependencies>
<build>
<finalName>${artifact.name}</finalName>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<compilerArguments>
<endorseddirs>${endorsed.dir}</endorseddirs>
</compilerArguments>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-war-plugin</artifactId>
<version>2.4</version>
<configuration>
<failOnMissingWebXml>false</failOnMissingWebXml>
</configuration>
</plugin>
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<plugin>
<groupIld>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<version>2.6</version>
<executions>
<execution>
<phase>validate</phase>
<goals>
<goal>copy</goal>
</goals>
<configuration>
<outputDirectory>${endorsed.dir}</outputDirectory>
<silent>true</silent>
<artifactItems>
<artifactItem>
<groupId>javax</groupld>
<artifactId>javaee-endorsed-api</artifactId>
<version>7.0</version>
<type>jar</type>
</artifactItem>
</artifactItems>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

10.4 Using d3.js, sigma.js and Others

D3.js (https://d3js.org) and sigma.js (http://sigmajs.org) are popular JavaScript libraries for data
visualization.
Examples of the graph visualizations which are possible with d3 and sigmajs toolkits

197


https://d3js.org/
http://sigmajs.org/

CHAPTER 10  DATA VISUALIZERS: SEEING AND INTERACTING WITH THE ANALYSIS

-
o
) load-external-json. htmi e
< »|let|m)[@ jsabaml - N 1O
63 [ B Twmer Apple (Clowd  Mews ™ Populir v

N -earernal- +

4
A A\

7/ V
i
-, .“?‘/."

\
W i

Figure 10-15. Another typical data visualization of a portion of a graph database
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We can handcraft user interfaces to suit our application, or we have the option to use some of the
sophisticated visualization tools already available as stand-alone libraries, plug-ins, and toolkits.

Recall that we can visualize data sets directly from graph databases as well. For example, in Neo4;,
we can browse through the crime statistics of Sacramento after loading the CSV data set. Clicking on the
individual nodes causes a summary of the fields to appear at the bottom of the graph display, as shown in
Figure 10-16.

MATCH (n) RETURN n LIMIT 100

Graph

<id>: 24 crimedescr: 45¢ BURGLAF address: 415 SEXTANT WAY uer_ncic_code: 39 grid: 213 4

Figure 10-16. Browsing crime statistics as individual nodes from a query in a Neo4j graph database

10.5 Summary

In this chapter we looked at the visual side of the analytics problem: how to see and understand the results of
our analytical processes. The solution to the visualization challenge can be as simple as a CSV report in Excel
all the way up to a sophisticated interactive dashboard. We emphasized the use of Angular JS, a sophisticated
visualization toolkit based on the model-view-controller (MVC) paradigm.

In the next chapter, we discuss rule-based control and orchestration module design and implementation.
Rule systems are a type of control system with a venerable history in computer software, and have proven
their effectiveness in a wide range of control and scheduling applications over the course of time.

We will discover that rule-based modules can be a useful component in distributed analytics systems,
especially for scheduling and orchestrating individual processes within the overall application execution.

199



CHAPTER 10 - DATA VISUALIZERS: SEEING AND INTERACTING WITH THE ANALYSIS

10.6 References

Ford, Brian, and Ruebbelke, Lukas. Angular JS in Action. Boston, MA: O’Reilly Publishing, 2015.

Freeman, Adam. Pro Angular]S. New York, NY: Apress Publishing, 2014.

Frisbie, Matt. Angular]S Web Application Development Cookbook. Birmingham England UK: PACKT
Publishing, 2013.

Murray, Scott. Interactive Data Visualization for the Web. Boston, MA: O’Reilly Publishing, 2013.

Pickover, Clifford A., Tewksbury, Stuart K. (eds). Frontiers of Scientific Visualization. New York, NY:
Wiley-Interscience, 1994,

Teller, Swizec. Data Visualization with d3.js. Birmingham England UK: PACKT Publishing 2013.

Wolff, Robert S., Yaeger, Larry. The Visualization of Natural Phenomena. New York, NY: Telos/
Springer-Verlag Publishing, 1993.

Zhu, Nick Qi. Data Visualization with D3.js Cookbook. Birmingham England UK: PACKT Publishing, 2013.

200



PART IV

Case Studies and Applications

In the final part of our book, we examine case studies and applications of the kind of distributed
systems we have discussed. We end the book with some thoughts about the future of Hadoop and
distributed analytic systems in general.




CHAPTER 11

A Case Study in Bioinformatics:
Analyzing Microscope Slide Data .

In this chapter, we describe an application to analyze microscopic slide data, such as might be found in
medical examinations of patient samples or forensic evidence from a crime scene. We illustrate how a
Hadoop system might be used to organize, analyze, and correlate bioinformatics data.

Note This chapter uses a freely available set of fruit fly images to show how microscope images can be
analyzed. Strictly speaking, these images are coming from an electron microscope, which enables a much higher
magnification and resolution of the images than the ordinary optical microscope you probably first encountered
in high school biology. The principles of distributed analytics on a sensors data output is the same, however. You
might, for example, use images from a small drone aircraft and perform analytics on the images output from the
drone camera. The software components and many of the analytical operations remain the same.

11.1 Introduction to Bioinformatics

Biology has had a long history as a science, spanning many centuries. Yet, only in the last fifty years or so has
biological data used as computer data come into its own as a way of understanding the information.

Bioinformatics is the understanding of biological data as computer data, and the disciplined analysis of
that computer data. We perform bioinformatics by leveraging specialized libraries to translate and validate
the information contained in biological and medical data sets, such as x-rays, images of microscope slides,
chemical and DNA analysis, sensor information such as cardiograms, MRI data, and many other kinds of
data sources.

The optical microscope has been around for hundreds of years, but it is only relatively recently that
microscope slide images have been analyzed by image processing software. Initially, these analyses were
performed in a very ad-hoc fashion. Now, however, microscope slide images have become “big data” sets in
their own right, and can be analyzed by using a data analytics pipeline as we've been describing throughout
the book.

In this chapter, we examine a distributed analytics system specifically designed to perform the
automated microscope slide analysis we saw diagrammed in Figure 8-1. As in our other examples, we
will use standard third-party libraries to build our analytical system on top of Apache Hadoop and Spark
infrastructure.
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For an in-depth description of techniques and algorithms for medical bioinformatics, see Kalet (2009).

Before we dive into the example, we should re-emphasize the point made in the node earlier in the
introduction. Whether we use electron microscopy images, optical images of a microscope slide, or even
more complex images such as the DICOM images that typically represent X-rays.

Note Several domain-specific software components are required in this case study, and include some
packages specifically designed to integrate microscopes and their cameras into a standard image-processing
application.

Figure 11-1. A microscope slide analytics example with software and hardware components
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The sample code example we will discuss in this chapter is based on the architecture shown in
Figure 11-1. Mostly we're not concerned with the physical mechanics of the mechanisms, unless we want
fine control over the microscope’s settings. The analytics system begins where the image acquisition part
of the process ends. As with all of our sample applications, we go through a simple technology stack-
assembling phase before we begin to work on our customized code. Working with microscopes is a special
case of image processing, that is, “images as big data,” which we will discuss in more detail in Chapter 14.

As we select software components for our technology stack, we also evolve the high-level diagram of
what we want to accomplish in software. One result of this thinking might look like Figure 11-2. We have data
sources (which essentially come from the microscope camera or cameras), processing elements, analytics
elements, and result persistence. Some other components, such as a cache repository to hold intermediate
results, are also necessary.

Data Ingestion Analytical Engine
Scheduler Controller

Data Source 1

Analytical
Engine
IABDT Components
Image
Processor

Data Source 2

Data Source 3

Data Source N

Intermediate
Result
Repository

Low-Level

Image
Analysis
Support
Libraries

Figure 11-2. A microscope slide software architecture: high-level software component diagram
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11.2 Introduction to Automated Microscopy

Figures 11-3 to 11-5 show the stages a slide goes through in automated microscopy.

Figure 11-3. Original electron microscope slide image, showing a fruit fly tissue slice

206



CHAPTER 11 A CASE STUDY IN BIOINFORMATICS: ANALYZING MICROSCOPE SLIDE DATA

Figure 11-4. Contour extraction from the microscope image
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Figure 11-5. Color-coded regions in the image
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We can use a geometric model of the tissue slices as shown in Figure 11-6.

L 321718
L 30178

Figure 11-6. Geometric computation of slice dimensions
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We can use three-dimensional visualization tools to analyze a stack of neural tissue slices, as shown in
the examples in Figures 11-7 and 11-8.

Figure 11-7. An example of analyzing slices of neural tissue

}
LAY
| V) #
1}
[0\
|“ |

Figure 11-8. Another example of organizing neural tissue

11.3 A Code Example: Populating HDFS with Images

We will use the HIPI package (http://hipi.cs.virginia.edu/gettingstarted.html) to ingest the images
into HDFS. Apache Oozie can be used to schedule the importing. We can start with a basic Hadoop job
following the online instructions for HIPI:

package com.apress.probda.image;

import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
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public class ImageProcess extends Configured implements Tool {
public int run(String[] args) throws Exception {
System.out.println("---- Basic HIPI Example ----");
return 0;
}
public static void main(String[] args) throws Exception {
ToolRunner.run(new ImageProcess(), args);
System.exit(0);
}
}

Edit, compile, and run the program to verify results.
The second iteration of the program is as follows:

package com.apress.probda.image;

import org.hipi.image.FloatImage;

import org.hipi.image.HipiImageHeader;

import org.hipi.imagebundle.mapreduce.HibInputFormat;

import org.apache.hadoop.conf.Configured;

import org.apache.hadoop.util.Tool;

import org.apache.hadoop.util.ToolRunner;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;

public class ImageProcess extends Configured implements Tool {

public static class ImageProcessMapper extends Mapper<HipilmageHeader, FloatImage,
IntWritable, FloatImage> {
public void map(HipiImageHeader key, FloatImage value, Context context)
throws IOException, InterruptedException {
}
}

public static class ImageProcessReducer extends Reducer<IntWritable, FloatImage,
IntWritable, Text> {
public void reduce(IntWritable key, Iterable<FloatImage> values, Context context)
throws IOException, InterruptedException {
}
}

public int run(String[] args) throws Exception {
// Check input arguments
if (args.length != 2) {
System.out.println("Usage: imageProcess <input HIB> <output directory>");
System.exit(0);
}
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// Initialize and configure MapReduce job

Job job = Job.getInstance();

// Set input format class which parses the input HIB and spawns map tasks
job.setInputFormatClass(HibInputFormat.class);

// Set the driver, mapper, and reducer classes which express the computation
job.setJarByClass(ImageProcess.class);
job.setMapperClass(ImageProcessMapper.class);
job.setReducerClass(ImageProcessReducer.class);

// Set the types for the key/value pairs passed to/from map and reduce layers
job.setMapOutputKeyClass(IntWritable.class);
job.setMapOutputValueClass(FloatImage.class);
job.setOutputKeyClass(InthWritable.class);
job.setOutputValueClass(Text.class);

// Set the input and output paths on the HDFS
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

// Execute the MapReduce job and block until it complets

boolean success = job.waitForCompletion(true);

// Return success or failure
return success ? 0 : 1;

}

public static void main(String[] args) throws Exception {
ToolRunner.run(new ImageProcess(), args);

System.exit(0);
Look for the complete code example in the code contributions.
Kerrys=MBP:hipi kkoitzsch$ tools/hibImport.sh /Users/kkoitzsch/groundtruth-drosophila=vnc/stackl//synapses flydata3.hib ]

Input image directory: fUsers/kkoitzsch/groundtruth-drosophila-vnc/stackl//synapses
Input FS: local FS

Output HIB: flydatal.hib
Overwrite HIB if it exists: false
16/87/2@ 21:28:39 WARN util.NativeCodeLoader: Unable to load native-hadeop library for your platferm... using builtin-java classes where appl
icable

=% added: @@.png

= added: @l.png

** added: 82.png

*» added: @3.png

** added: @4.png

=x added: @5.png

=* added: @6.png

=+ added: @7.png

*+ added: 88.png

»% added: @9.png

=% added: 18.png

=% added: 11.png

## added: 12.png

*# added: 13.png

w% added: 14.png

w% added: 15.png

=% jdded: 16.png

=% jdded: 17.png

*=* added: 18.png

** added: 19.png

Figure 11-9. Successful population of HDFS with University of Virginia’s HIPI system

Check that the images have been loaded successfully with the HibInfo.sh tool by typing the following on
the command line:

tools/hibInfo.sh flydata3.hib --show-meta
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You should see results similar to those in Figure 11-10.

Kerrys-MBP:hipi kkoitzsch$ tools/hibInfo.sh flydata3.hib --show-meta
16/07/2@ 21:29:00 WARN util.NativeCodelLoader: Unable to load native-hadoop library for your platform... using built
in-java classes where applicable

Input HIB: flydata3.hib
Display meta data: true
Display EXIF data: false
IMAGE INDEX: @

1024 x 1024

format: 2

meta: {filename=0@.png,
IMAGE INDEX: 1

1024 x 1024

format: 2

meta: {filename=01.png,
IMAGE INDEX: 2

1024 x 1024

format: 2

meta: {filename=82.png,
IMAGE INDEX: 3

1024 x 1024

format: 2

meta: {filename=83.png,
IMAGE INDEX: 4

1024 x 1024

format: 2

meta: {filename=04.png,
IMAGE INDEX: 5

1024 x 1024

format: 2

meta: {filename=85.png,
IMAGE INDEX: 6

1024 x 1024

format: 2

meta: {filename=06.png,
IMAGE INDEX: 7

1024 x 1024

format: 2

meta: {filename=87.png,
IMAGE INDEX: 8

1024 x 1024

format: 2

meta: {filename=08.png,
IMAGE INDEX: 9

1024 x 1024

format: 2

meta: {filename=09.png,
IMAGE INDEX: 18

1024 x 1024

format: 2

meta: {filename=1@.png,

source=/Users/kkoitzsch/groundtruth-drosophila-vnc/stackl/synapses/@@.png}

source=/Users/kkoitzsch/groundtruth-drosophila-vnc/stackl/synapses/@l.png}

source=/Users/kkoitzsch/groundtruth-drosophila-vnc/stackl/synapses/@2.png}

source=/Users/kkoitzsch/groundtruth-drosophila-vnc/stackl/synapses/@3.png}

source=/Users/kkoitzsch/groundtruth-drosophila-vnc/stackl/synapses/@4.png}

source=/Users/kkoitzsch/groundtruth-drosophila-vnc/stackl/synapses/@5.png}

source=/Users/kkoitzsch/groundtruth-drosophila-vnc/stackl/synapses/@6.png}

source=/Users/kkoitzsch/groundtruth-drosophila-vnc/stackl/synapses/@7.png}

source=/Users/kkoitzsch/groundtruth-drosophila-vnc/stackl/synapses/@8.png}

source=/Users/kkoitzsch/groundtruth-drosophila-vnc/stackl/synapses/@9.png}

source=/Users/kkoitzsch/groundtruth-drosophila-vnc/stackl/synapses/1@.png}

Figure 11-10. Successful description of HDFS images (with metadata information included)

11.4 Summary

In this chapter, we described an example application which uses distributed bioinformatics techniques to
analyze microscope slide data.

In the next chapter, we will talk about a software component based on a Bayesian approach to

A CASE STUDY IN BIOINFORMATICS: ANALYZING MICROSCOPE SLIDE DATA

classification and data modeling. This turns out to be a very useful technique to supplement our distributed
data analytics system, and has been used in a variety of domains including finance, forensics, and medical

applications.
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CHAPTER 12

A Bayesian Analysis Component:
Identifying Credit Card Fraud -

In this chapter, we describe a Bayesian analysis software component plug-in which may be used to analyze
streams of credit card transactions in order to identify fraudulent use of the credit card by illicit users.

Note We will primarily use the Naive Bayes implementation provided by Apache Mahout, but we will
discuss several potential solutions to using Bayesian analysis in general.

12.1 Introduction to Bayesian Analysis

Bayesian networks (which are also known as belief networks or probabilistic causal networks) are
representations of observations, experiments, or hypotheses. The whole concept of “belief” and “Bayesian
network” go hand in hand. When we perform a physical experiment, such as using a Geiger counter to
identify radioactive minerals, or a chemical test of a soil sample to infer the presence of natural gas, coal,
or petroleum, there is a “belief factor” associated with the results of these experiments. How accurate is
the experiment? How reliable is the “data model” of the experiment—its premises, data, relationships
within data variables, methodology? And how much do we believe the “conclusions” of the experiment?
Fortunately, a lot of the infrastructure we’ve built up over the last few chapters is very useful in dealing with
Bayesian technologies of all kinds, especially the graph databases. Almost all Bayesian network problems
benefit from being represented as graphs—after all, they are networks—and the graph database can assist
with a seamless representation of Bayesian problems.

Note Bayesian analysis is a gigantic area of continually evolving concepts and technologies, which now
include deep learning and machine learning aspects. Some of the references at the end of the chapter provide
an overview of concepts, algorithms, and techniques, which have been used so far in Bayesian analysis.

Bayesian techniques are particularly relevant to an ongoing financial problem: the identification of
credit card fraud. Let’s take a look at a simple credit card fraud algorithm, as shown in Figure 18-1. The
implementation and algorithm shown is based on the work of Triparthi and Ragha (2004).
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We will describe how to build a distributed credit card fraud detector based on the algorithm shown in
Figure 12-1, using some of the by now familiar strategies and techniques described in previous chapters.

Rule Based Filter 7

Rejected and
. e (based on Luhn or invalid iad
ransaction Data mxtended Likn OB

Stream algorithm) transaction

Input Credit Card

“Dempster-Shafer
Adder” (DSA)

old BAYESIAN P(alB) =0
transactions “Splitter”

Transaction History
Database

P(A|BI=D
Fraud Analyzer
“Dempster-Shafer
Adder” (D5A)
Rejected and
Thresholding Parameter logged as

fraudulent
transaction

Rejected and e abl
logged as nacceptable  1procholded Acceptable

suspicious ’Su:a|l:i:u5] Normal/Suspicious value Accepted and
transaction 1250 (normal) logged as legal
transaction

Figure 12-1. A credit card fraud detection algorithm, following Triparthi and Ragha (2004)

First things first: add an environment variable to your .bash_profile file for this application:
export CREDIT_CARD_HOME=/Users/kkoitzsch/probda/src/main/resources/creditcard

First, lets get some credit card test data. We start with the data sets found at https://www.cs.purdue.edu/
commugrate/data/credit_card/. This data set was the basis for one of the Code Challenges of 2009. We are
only interested in these files:
DataminingContest2009.Task2.Test.Inputs
DataminingContest2009.Task2.Train.Inputs
DataminingContest2009.Task2.Train.Targets

Download the files into $CREDIT_CARD HOME/data.
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Let’s look at the structure of the credit card transaction record. Each line in the CSV file is a transaction
record consisting of the following fields:

amount, hour1,state1,zip1,custAttr1, field1,custAttr2,field2,hour2,flagi,total,field3,field4,i
ndicator1,indicator2,flag2,flag3,flags,flags

000000000025.90,00,CA,945,1234567890197185, 3, redjhmbdzmbzg1226@sbcglobal.net,0,00,0,00000000
0025.90,2525,8,0,0,1,0,0,2

000000000025.90,00,CA,940,1234567890197186,0, puwelzumjynty@aol.com,0,00,0,000000000025.90, 3
393,17,0,0,1,1,0,1

000000000049.95,00,CA,910,1234567890197187, 3, quhdenwubwydu@earthlink.
net,1,00,0,000000000049.95,-737,26,0,0,1,0,0,1
000000000010.36,01,CA,926,1234567890197202, 2, xkjrjiokleeur@hotmail.com,0,01,1,000000000010. 3
6,483,23,0,0,1,1,0,1

000000000049.95,01,CA,913,1234567890197203,3,yzlmmssadzbmj@socal.rr.c
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...and more.

Looking at the standard structure for the CSV line in this data set, we notice something about field
number 4: while it has a 16-digit credit-card-like code, it doesn’t conform to a standard valid credit card
number that would pass the Luhn test.

We write a program that will modify the event file to something more suitable: the fourth field of each
record will now contain a “valid” Visa or Mastercard randomly generated credit card number, as shown in
Figure 12-2. We want to introduce a few “bad” credit card numbers just to make sure our detector can spot them.
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Figure 12-2. Merging valid and invalid “real” credit card numbers with test data
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12.2 A Bayesian Component for Credit Card Fraud Detection

A Bayesian component to identify credit card fraud from data sets is the same, in principle, to many of the
other kinds of data pipelines we've been discussing. It gets back to the fundamental principle of this book:
distributed analytics systems are always some kind of data pipeline, some kind of workflow processing.
Different arrangements, configurations, and technology choices may be used, but they share some
underlying identities as far as overall design goes.

12.2.1 The Basics of Credit Card Validation

We start with the fundamental principles of credit card validation. A credit card number can be determined
as valid using the Luhn check, shown in Listing 12-1.

public static boolean checkCreditCard(String ccNumber)

{
int sum = 0;
boolean alternate = false;
for (int i = ccNumber.length() - 1; i >= 0; i--)
{
int n = Integer.parseInt(ccNumber.substring(i, i + 1));
if (alternate)
{
n *= 2;
if (n > 9)
{
n=(n%10) + 1;
}
}
sum += n;
alternate = !alternate;
}
return (sum % 10 == 0);
}
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The Luhn credit card number verification algorithm is shown in the flowchart in Figure 12-3.

Start of Luhn
Algorithm, input credit
card numbers

Return
NON_NUMERIC_CARD
_NUMBER_ERROR

All Numeric?

Multiply each YES, ODD En A e Double every
odd digit by one Digit % 2 1=07 NO, EVEN even digit -> Mod
10

Sum(odd, even)->Mod 10

Match check digit Return
INVALID_CARD_NUMBER

Return
VALID_CARD_NUMBER

Figure 12-3. The simple Luhn credit card validation algorithm.

We can add machine learning techniques into the fraud-detecting mix.
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Take a look at the algorithm flowchart in Figure 12-4. The process involves a training phase and a
detection phase.

Cluster Creation Incoming Transaction

Process Stream

Generate a new
observation symbol

Identify Cardholder o

Spending Profile

Add new symbol to
existing sequence,
forming a new
Initial Probability Set sequence
Selection, based on

Spending Profile

Accept Both Old and
New Sequence

Calculate Delta

Generate Training
Data Sequences

Test for Normal?

Add Or+1 to the

Model Creation i
existing sequence

TRAINING PHASE DETECTION PHASE

Figure 12-4. Training and detection phases of a credit card fraud detection algorithm

In the training phase, a clustering process creates the data model.
In the detection phase, the model previously created is used to detect (identify) new incoming events.
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An implementation of the training/detecting program is shown in Figure 12-5 and Figure 12-6.

Kerrys-MBP:bin kkoitzsch$ ./zkServer.sh start L]
ZocKeeper JMX enabled by default

Using config: /Users/kkoitzsch/Downloads/zookeeper-3.4.8/bin/../conf/zo0.cfg

Starting zookeeper ... STARTED

Kerrys-MBP:bin kkoitzschs cd ..

Figure 12-5. Starting Zookeeper from the command line or script is straightforward

Kerrys-MBP:bin kkoitzschs ./storm supervisor -
Running: java -server -Ddaemon,name=supervisor -Dstorm,options= -Dstorm,homes/Users/kkoitzsch/Downloads/apache-store-1.0.1 -Dstorm, log.dir=/Users/k
koitzsch/Downloads/apache-stora-1.0.1/10gs -Djava. library.paths/usr/local/Lib: fopt/local/lib: fusr/Llib -Dstorm.conf.files -cp /Users/kkoitzsch/Downl

oads/apache-storm-1.8.1/1ib/ase-5.0.3. jar:/Users/kkoitzsch/Downloads/apache-storm-1.8.1/1ib/clojure-1.7.0. jar: /Users/kkoitzsch/Downloads/apache-sto
re=1.0.1/1ib/disruptor-3.3.2. jar: /Users/kkoitzsch/Downloads/apache-storn-1.0.1/1ib/kryc-3.0.3, jar: /Users/kkoitzsch/Downloads/apache-storn-1.0.1/1ib
j-8pi=-2.1.jar:/Users/kkoitzsch/Downloads/spache-storm=1.0.1/1ib/logdj-core-2.1. jar: /Users/kkoitzsch/Downloads/apache-store-1.0.1/11b/ logdj-ove
1-1.6.6. jar:/Users/kkoitzsch/Downloads/apache-storm-1,0.1/11b/logd)-s1f4)-1mpl-2. 1. jar: /Users/kkoitzsch/Down loads/apache-storn-1.0.1/1ib/ainl
+3.0, jar: /Users/kkoitzsch/Downloads/apache-storm-1,0.1/1ib/objenesis-2. 1. jar: /Users/kkoitzsch/Downloads/apache-storme-1.9.1/11b/reflectase-1
1.jar:/Users/kkoitzsch/Downloads/apache-storm «1/1ib/serviet-api=2.5. jar: /Users/kkoitzsch/Downloads/apache-storm-1.8.1/1ib/s T4 j-api-1.7.
Users/kkoitzsch/Downloads/apache-storn-1.0.1/ store-core-1.9.1.jar:/Users/kkoitzsch/Downloads/apache-store-1.0.1/11b/stors-renane-hack-1.0
: /Users/kkoitzsch/Downloads/apache-storn-1.0. 1/conf -Xmx256a -Dlogfile.nane=superviser.log -OLogdjContextSelector=org.apache. 1ogging. Loge]. core. asy
nc.AsyncloggerContextSelector -Dlogdj.configurationFiles/Users/kkoitzsch/Downloads/apache-storm=-1.0.1/l0g4j2/cluster.xnl org.apache.storm.daemon.su
pervisor

Figure 12-6. Starting the Apache Storm supervisor from the command line

You can run the complete examples from the code contribution.

12.3 Summary

In this chapter, we discussed a software component developed around a Bayesian classifier, specifically
designed to identify credit card fraud in a data set. This application has been re-done and re-thought
many times, and in this chapter, we wanted to showcase an implementation in which we used some of the
software techniques we’ve already developed throughout the book to motivate our discussion.

In the next chapter, we will talk about a real-world application: looking for mineral resources with
a computer simulation. “Resource finding” applications are a common type of program in which real-
world data sets are mined, correlated, and analyzed to identify likely locations of a “resource,” which might
be anything from oil in the ground to clusters of trees in a drone image, or a particular type of cell in a
microscopic slide.
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CHAPTER 13

Searching for Oil: Geographical
Data Analysis with Apache Mahout/

In this chapter, we discuss a particularly interesting application for distributed big data analytics: using

a domain model to look for likely geographic locations for valuable minerals, such as petroleum, bauxite
(aluminum ore), or natural gas. We touch on a number of convenient technology packages to ingest,
analyze, and visualize the resulting data, especially those well-suited for processing geolocations and other
geography-related data types.

Note In this chapter we use the Elasticsearch version 2.3. This version also provides the facility to use the
MapQuest map visualizations you will see throughout this chapter and elsewhere in the book.

13.1 Introduction to Domain-Based Apache Mahout
Reasoning

Big data analytics have many domain-specific applications, and we can use Apache Mahout to effectively
address domain-centric concerns. Sometimes the knowledge base involved in the analytical process is
extremely complex; data sets may be imprecise or incomplete, or the data model might be faulty, poorly
thought out, or simply inappropriate for the solution requirements. Apache Mahout, as a tried-and-true
machine learning infrastructure component—and the way in which it supplies well-trusted algorithms and
tools—takes some of the headache out of building domain-based systems.

A relevant example of this domain-centric application is the “resource finder” application type. This
includes analytical systems which process large amounts of timestamped data (sometimes over years or
decades, in fact); verifies, harmonizes, and correlates the data; and then, through the use of a domain-
specific data model, computes analytics (and the resultant data visualizations which are the outputs of those
analytics) to identify the location of specific “resources” (usually in the earth or in the ocean). Needless to
say, timestamping, collation and curation of the data, as well as accurate processing of the geolocation data,
is key towards producing accurate, relevant, and timely hypotheses, explanations, summaries, suggestions,
and visualizations from such a “resource finder” system.
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Data Source Importin
E - Hypothesis Generator

Hypothesis Repository

Hypothesis
Visualization

Temporary Results Cache

Figure 13-1. An abstract component view of a geographical data analytics process

In this type of system, four types of knowledge source are typically used, according to Khan “Prospector
Expert System” https://www.scribd.com/doc/44131016/Prospector-Expert-System: rules (similar to
those found in the JBoss Drools systems), semantic nets, and frames (a somewhat hybrid approach which
is discussed thoroughly in Shank and Abelson (1981). Like other object-oriented systems, frames support
inheritance, persistence, and the like.

In Figure 16.1, we show an abstracted view of a “hypothesis generator,” one way in which we can predict
resource locations, such as petroleum. The hypothesis generator for this example is based on JBoss Drools,
which we discussed in Chapter 8.
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ElasticSearch Kibana Map

DEIE] Visualization
Repository

DBF Based
Data Sources Mahout-
for Geological Based

and Other Predictor
Data

Figure 13-2. A Mahout-based software component architecture for geographical data analysis

In the example program, we use a DBF importer program, such as the one shown in Listing 13-1, to
import data from DBE.

Elasticsearch is a very flexible data repository and a wide variety of data formats may be imported into it.

Download a few standard data sets just to get used to the Elasticsearch mechanisms. There are some
samples in:

https://www.elastic.co/guide/en/kibana/3.0/snippets/logs.jsonl

aswell asin
Load sample data sets just for initially testing Elasticsearch and Kibana. You can try these:

curl -XPOST 'localhost:9200/bank/account/_bulk?pretty' --data-binary @accounts.json
curl -XPOST 'localhost:9200/shakespeare/_bulk?pretty' --data-binary @shakespeare.json
curl -XPOST 'localhost:9200/_ bulk?pretty' --data-binary @logs.jsonl

Note In a previous chapter we used Apache Tika to read DBF files. In this chapter, we will use an
alternative DBF reader by Sergey Polovko (Jamel). You can download this DBF reader from GitHub at
https://github.com/jamel/dbf.

Listing 13-1. A simple DBF reader for geological data source information

package com.apress.probda.applications.oilfinder;

import java.io.File;
import java.util.Date;
import java.util.list;

/** We use a standard DBF reader from github.
*

*/

import org.jamel.dbf.processor.DbfProcessor;
import org.jamel.dbf.processor.DbfRowMapper;
import org.jamel.dbf.utils.DbfUtils;
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public class Main {
static int rownum = 0;

public static void main(String[] args) {
File dbf = new File("BHL_GCS NAD27.dbf"); // pass in as args[0]

List<O0ilData> oildata = DbfProcessor.loadData(dbf, new DbfRowMapper<OilData>() {
@0verride

public OilData mapRow(Object[] row) {

for (Object o : row) {

System.out.println("Row object: " + o0);
}
System.out.println("....Reading row: " + rownum + " into elasticsearch..
Townum++;
System.out.println("-----==----=-cmmmmmmon ");
return new OilData(); // customize your constructor here
}
1;

// System.out.println("0il Data: " + oildata);

}
}

/** We will flesh out this information class as we develop the example.
ES

* @author kkoitzsch
*

*/
class OilData {
String _name;
int _value;
Date _createdAt;
public OilData(String... args){
}

public 0ilData(){

}
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public OilData(String name, int intValue, Date createdAt) {
_name = name;
_value = intValue;
_createdAt = createdAt;

Of course, reading the geographical data (including the DBEF file) is really only the first step in the
analytical process.
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Figure 13-3. A test query to verify Elasticsearch has been populated correctly with test data sets

Use the Elasticsearch-Hadoop connector (https://www.elastic.co/products/hadoop) to connect
Elasticsearch with Hadoop-based components of the application.

To learn more about the Hadoop-Elasticsearch connector, please refer to the web page
http://www.elastic.co/guide/en/elasticsearch/hadoop/index.html.
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Hadoop Es-Hadoop Elasticsearch
Ecosystem Connector

Figure 13-4. The Elasticserch-Hadoop connector and its relationship to the Hadoop ecosystem and HDFS

We can use the Elasticsearch-Hadoop connector in combination with SpatialHadoop to provide
distributed analytic capabilities for the kind of geolocation-based data we mean to process.
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Figure 13-5. Probability/evidence grid: a simple example of grid-based hypothesis analytic

We can threshold our values and supply constraints on “points of interest” (spacing, how many
points of interest per category, and other factors), to produce visualizations showing likelihood of desired
outcomes.

Evidence and probabilities of certain desired outcomes can be stored in the same data structure, as
shown in Figure 13-5. The blue regions are indicative of a likelihood that there is supporting evidence for
the desired outcome, in this case, the presence of petroleum or petroleum-related products. Red and yellow
circles indicate high and moderate points of interest in the hypothesis space. If the grid coordinates happen
to be geolocations, one can plot the resulting hypotheses on a map similar to those shown in Figure 13-6 and
Figure 13-7.
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Figure 13-6. Using Kibana and Elasticsearch for map visualiation in Texas example using latitude and
logitude, and simple counts of an attribute

We can run simple tests to insure Kibana and Elasticsearch are displaying our geolocation data correctly.

Now it is time to describe our Mahout analytical component. For this example, we will keep the
analytics very simple in order to outline our thought process. Needless to say, the mathematical models of
real-world resource finders would need to be much more complex, adaptable, and allow for more variables
within the mathematical model.

We can use another very useful tool to prototype and view some of our data content residing in Solr using
the Spatial Solr Sandbox tool by Ryan McKinley (https://github.com/ryantxu/spatial-solr-sandbox).
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Figure 13-7. Using the Spatial Solr Sandbox tool to query a Solr repository for geolocation data

13.2 Smart Cartography Systems and Hadoop Analytics

Smart cartography (SC) systems are a special type of data pipeline-based software application which
process satellite imagery, comparing the satellite images with an image database of known accuracy, called
the “ground truth” database. The ground truth database provides standardized geographical location
information (such as latitude and longitude of the four corners of the rectangular image, image resolution,
scale, and orientation parameters) as well as other information aiding the matching process.

SC systems provide useful image match feedback to the human evaluation team, and can assist
engineers and quality assurance personnel to interactively view, validate, edit, annotate, and compare
incoming satellite imagery with “ground truth” imagery and metadata. Use of an SC system can enable a
small team of analysts to perform the work of a much larger evaluation team in a shorter amount of time
with more accurate results, because of the elimination of human error due to fatigue, observation errors, and
the like.
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SC systems can use a variety of sensor types, image formats, image resolutions, and data ingestion rates,
and may use machine learning techniques, rule-based techniques, or inference processes to refine and
adapt feature identification for more accurate and efficient matching between satellite image features, such
as locations (latitude longitude information), image features (such as lakes, roads, airstrips, or rivers), and
man-made objects (such as buildings. shopping centers, or airports).

Users of an SC system may provide feedback as to the accuracy of the computed match, which in turn
allows the matching process to become more accurate over time as refinement takes place. The system may
operate specifically on features selected by the user, such as the road network or man-made features such as
buildings.

Finally, the SC matching process provides accuracy measures of the matches between images and
ground truth data, as well as complete error and outlier information to the user in the form of reports or
dashboard displays.

SC systems can provide an efficient and cost-effective way to evaluate satellite imagery for quality,
accuracy, and consistency within an image sequence, and can address issues of high-resolution accuracy,
task time to completion, scalability, and near real-time processing of satellite imagery, as well as providing a
high-performance software solution for a variety of satellite image evaluation tasks.

One useful component to include in geolocation-centric systems is Spatial4j (https://github.com/
locationtech/spatial4j), a helper library which provides spatial and geolocation functionality for Java
programs, evolved from some of the earlier work such as the Spatial Solr Sandbox toolkit discussed earlier.

TESTS

objc[56439]: Class JavalLaunchHelper is implemented in both /Library/Java/JavaVirtualMachines/jdkl.8.8_91.jdk/Contents/Home/jre/bin/java and /
Library/Java/JavaVirtualMachines/jdk1.8.8_91. jdk/Contents/Home/jre/lib/libinstrument.dylib. One of the two will be used. Which one is undefin
ed.

Running org.locationtech.spatialdj.context.jts.JtsSpatialContextTest

Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: @.891 sec - i
Running org.locationtech.spatialdj.context.SpatialContextFactoryTest

Tests run: 5, Failures: @, Errors: @, Skipped: @, Time elapsed: 8.8@1 sec - i
Running org.locationtech.spatialdj.distance.TestDistances

Tests run: 18, Failures: @, Errors: @, Skipped: @, Time elapsed: @.49 sec - i
Running org.locationtech.spatialdj.io.BinaryCodecTest

Tests run: 4, Failures: @, Errors: @, Skipped: @, Time elapsed: @.@@8 sec - in org.locationtech.spatialdj.io.BinaryCodecTest
Running org.locationtech.spatialdj.io.GeneralGeolSONTest

Tests run: 27, Failures: @, Errors: @, Skipped: @, Time elapsed: 8.07 sec - i
Running org.locationtech.spatial4j.io.GeneralPolyshapeTest

Tests run: 11, Failures: @, Errors: @, Skipped: @, Time elapsed: 8.@19 sec - in org.locationtech.spatialdj.io.GeneralPolyshapeTest
Running org.locationtech.spatiald4j.io.GeneralWktTest

Tests run: 11, Failures: @, Errors: @, Skipped: 3, Time elapsed: 8.823 sec - in org.locationtech.spatialdj.io.GeneralWktTest

Running org.locationtech.spatialdj.io.JtsBinaryCodecTest

Tests run: 5, Failures: @, Errors: @, Skipped: @, Time elapsed: 8.@15 sec - in org.locationtech.spatialdj.io.J)tsBinaryCodecTest

Running org.locationtech.spatial4j.io.JtsPolyshapeParserTest

Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: @ sec - in org.locationtech.spatialdj.io.JltsPolyshapeParserTest

Running org.locationtech.spatialdj.io.JtsWKTReaderShapeParserTest

Tests run: 3, Failures: @, Errors: @, Skipped: @, Time elapsed: @.812 sec - in org.locationtech.spatialdj.io.JtsWKTReaderShapeParserTest
Running org.locationtech.spatialdj.io.JtsWktShapeParserTest

Tests run: 17, Failures: @, Errors: @, Skipped: @, Time elapsed: 8.@852 sec - in org.locationtech,spatialdj.io.JtsWktShapeParserTest
Running org.locationtech.spatialdj.io.LegacyShapeReadWriterTest

Tests run: 6, Failures: @, Errors: @, Skipped: @, Time elapsed: 8.8@6 sec - in org.locationtech.spatialdj.io.legacyShapeReadWriterTest
Running org.locationtech.spatialdj.io.ShapeFormatTest

Tests run: 2, Failures: @, Errors: @, Skipped: @, Time elapsed: @.@@9 sec - in org.locationtech.spatialdj.io.ShapeFormatTest

Running org.locationtech.spatialdj.io.TestGeohashUtils

Tests run: 6, Failures: @, Errors: @, Skipped: @, Time elapsed: @.2@2 sec - in org.locationtech.spatialdj.io.TestGeohashUtils

Running org.locationtech.spatialdj.io.WktCustomShapeParserTest

Tests run: 11, Failures: @, Errors: @, Skipped: @, Time elapsed: 8.917 sec - in org.locationtech.spatialdj.io.WktCustomShapeParserTest
Running org.locationtech.spatialdj.io.WktShapeParserTest

Tests run: 9, Failures: @, Errors: @, Skipped: @, Time elapsed: @.889 sec - in org.locationtech.spatialdj.io.WktShapeParserTest

Running org.locationtech.spatialdj.shape.BufferedLineStringTest

Laps: 3888 CWIDbD: 41,106,752,75,2826

Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: @.147 sec - in org.locationtech.spatialdj.shape.BufferedLineStringTest
Running org.locationtech.spatialdj.shape.BufferedLineTest

Laps: 1557 CWIDbD: 39,48,407,72,991

Tests run: 1B, Failures: @, Errors: @, Skipped: @, Time elapsed: @.857 sec - in org.locationtech.spatialdj.shape.BufferedLineTest

Running org.locationtech.spatialdj.shape, impl.BBoxCalculatorTest

Tests run: 188, Failures: @, Errors: @, Skipped: @, Time elapsed: 2.875 sec - in org.lecationtech.spatialdj.shape.impl.BBoxCalculatorTest
Running org.locationtech.spatialdj.shape.)tsGeometryTest

3

org. locationtech.spatialdj.context. jts.JtsSpatialContextTest

3

org. locationtech.spatialdj.context.SpatialContextFactoryTest

>

org.locationtech.spatialdj.distance.TestDistances

3

org. locationtech.spatialdj.io.GeneralGeolSONTest

Figure 13-8. Running the tests for Spatialdj, a commonly used geolocation java toolkit library
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Another useful software library to use is SpatialHadoop (http://spatialhadoop.cs.umn.edu), a
MapReduce-based extension to Hadoop itself. SpatialHadoop provides spatial data types, indexes, and
operations which allow the use of a simple high-level language to control the processing of geolocation-
centric data with Hadoop-based programs.

e OO0 (] spatialhadoop — bash — 80x15 "o

hadoop jar spatialhadoop-2-b2.jar generate bigdata®.dat mbr:0,0,6000,4000 20000
51ze:20000 -overwrite

Unable to find a $JAVA_HOME at "/usr", continuing with system-provided Java...
Unable to find a $JAVA_HOME at "/usr", continuing with system-provided Java...
14/02/18 13:20:24 WARN spatialHadoop.CommandLineArguments: unknown shape type: n
ull

Generating a file with sindex:null file of size: 20000

To: bigdata@.dat

In the range: Rectangle: (0.0,0.0)-(6000.0,4000.0)

2014-02-18 13:20:25.015 java[1947:fef] Unable to load realm info from SCDynamic$S
tore

14/02/18 13:20:28 WARN util.NativeCodeLoader: Unable to load native-hadoop libra
ry for your platform... using builtin-java classes where applicable

Generation time: 19 millis

unknown4c8d79e9253a: spatialhadoop kerryks [

Figure 13-9. Generating a data file for use with SpatialHadoop

13.3 Summary

In this chapter, we talked about the theory and practice of searching for oil and other natural resources
using big data analytics as a tool. We were able to load DBF data, manipulate and analyze the data with
Mahout=based code, and output the results to a simple visualizer. We also talked about some helpful
libraries to include in any geolocation-centric application, such as Spatial4j and SpatialHadoop.

In the next chapter, we will talk about a particularly interesting area of big data analytics: using images
and their metadata as a data source for our analytical pipeline.
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CHAPTER 14

“Image As Big Data” Systems:
Some Case Studies

In this chapter, we will provide a brief introduction to an example toolkit, the Image as Big Data Toolkit
(IABDT), a Java-based open source framework for performing a wide variety of distributed image processing
and analysis tasks in a scalable, highly available, and reliable manner. IABDT is an image processing
framework developed over the last several years in response to the rapid evolution of big data technologies
in general, but in particular distributed image processing technologies. IABDT is designed to accept many
formats of imagery, signals, sensor data, metadata, and video as data input.

A general architecture for image analytics, big data storage, and compression methods for imagery
and image-derived data is discussed, as well as standard techniques for image-as-big-data analytics. A
sample implementation of our image analytics architecture, IABDT addresses some of the more frequently
encountered challenges experienced by the image analytics developer, including importing images into
a distributed file system or cache, image preprocessing and feature extraction, applying the analysis and
result visualization. Finally, we showcase some of the features of IABDT, with special emphasis on display,
presentation, reporting, dashboard building, and user interaction case studies to motivate and explain our
design and methodology stack choices.

14.1 An Introduction to Images as Big Data

Rapid changes in the evolution of “big data” software techniques have made it possible to perform image
analytics (the automated analysis and interpretation of complex semi-structured and unstructured data
sets derived from computer imagery) with much greater ease, accuracy, flexibility, and speed than has been
possible before, even with the most sophisticated and high-powered single computers or data centers. The
“big data processing paradigm,” including Hadoop, Apache Spark, and distributed computing systems, have
enabled a host of application domains to benefit from image analytics and the treatment of images as big
data, including medical, aerospace, geospatial analysis, and document processing applications. Modular,
efficient, and flexible toolkits are still in formative or experimental development. Integration of image
processing components, data flow control, and other aspects of image analytics remain poorly defined and
tentative. The rapid changes in big data technologies have made even the selection of a “technology stack”
to build image analytic applications problematic. The need to solve these challenges in image analytics
application development have led us to develop an architecture and baseline framework implementation
specifically for distributed big data image analytics support.

In the past, low-level image analysis and machine learning modules were combined within a
computational framework to accomplish domain-specific tasks. With the advent of distributed processing
frameworks such as Hadoop and Apache Spark, it has been possible to build integrated image frameworks
that connect seamlessly with other distributed frameworks and libraries, and in which the “image as big
data” concept has become a fundamental principle of the framework architecture.
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Our example toolkit IABDT provides a flexible, modular architecture which is plug-in-oriented. This
makes it possible to combine many different software libraries, toolkits, systems, and data sources within
one integrated, distributed computational framework. IABDT is a Java- and Scala-centric framework, as it
uses both Hadoop and its ecosystem as well as the Apache Spark framework with its ecosystem to perform
the image processing and image analytics functionality.

IABDT may be used with NoSQL databases such as MongoDB, Neo4j, Giraph, or Cassandra, as well
as with more traditional relational database systems such as MySQL or Postgres, to store computational
results and serve as data repositories for intermediate data generated by pre- and post-processing stages in
the image processing pipeline. This intermediate data might consist of feature descriptors, image pyramids,
boundaries, video frames, ancillary sensor data such as LIDAR, or metadata. Software libraries such as
Apache Camel and Spring Framework may be used as “glue” to integrate components with one another.

One of the motivations for creating IABDT is to provide a modular extensible infrastructure for
performing preprocessing, analysis, as well as visualization and reporting of analysis results—specifically
for images and signals. They leverage the power of distributed processing (as with the Apache Hadoop and
Apache Spark frameworks) and are inspired by such toolkits as OpenCV, BoofCV, HIP], Lire, Caliph, Emir,
Image Terrier, Apache Mahout, and many others. The features and characteristics of these image toolkits
are summarized in Table 14-1. IABDT provides frameworks, modular libraries, and extensible examples
to perform big data analysis on images using efficient, configurable, and distributed data pipelining
techniques.

Table 14-1. Mainstream image processing toolkit features and characteristics

Toolkit Name Location Implementation Description
Language
OpenCV opencv.org many Language general programmatic image
bindings, includingJava processing toolkit
BoofCV boofcv.org Java Java-based image processing
toolkit
HIPI hipi.cs.virginia.edu Java image processing for Hadoop
toolkit
LIRE/CALIPH/EMIR semanticmetadata.net Java image searching toolkits and
libraries using Lucene
ImageTerrier imageterrier.org Java image indexing and search
based using Lucene search
engine
Java Advanced oracle.com/ Java general purpose image
Imaging technetwork/java/ processing toolkit, venerable
javase/overview/in... but still useful

Image as Big Data toolkits and components are becoming resources in an arsenal of other distributed
software packages based on Apache Hadoop and Apache Spark, as shown in Figure 14-1.
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ECOSYSTEM
INCLUDING SPARK
SEARCH ENGINES
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Sok, Cstomied DATA TOOLKITS
search]

Figure 14-1. Image as Big Data tookits as distributed systems

Some of the distributed implementations of the module types in Figure 14-1 which are implemented in
IABDT include:

Genetic Systems. There are many genetic algorithms particularly suited to image analytics!, including
techniques for sampling a large solution space, feature extraction, and classification. The first two categories
of technique are more applicable to the image pre-processing and feature extraction phases of the analytical
process and distributed classification techniques—even those using multiple classifiers.

Bayesian Techniques. Bayesian techniques include the naive Bayesian algorithm found in most
machine learning toolkits, but also much more.

Hadoop Ecosystem Extensions. New extensions can be built on top of existing Hadoop components to
provide customized “image as big data” functionality.

Clustering, Classification, and Recommendation. These three types of analytical algorithms are present
in most standard libraries, including Mahout, MLib, and H20, and they form the basis for more complex
analytical systems.

Hybrid systems integrate a lot of disparate component types into one integrated whole to perform
a single function. Typically hybrid systems contain a control component, which might be a rule-based
system such as Drools, or other standard control component such as Oozie, which might be used for
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scheduling tasks or other purposes, such as Luigi for Python (https://github.com/spotify/luigi) ), which
comes with built-in Hadoop support. If you want to try Luigi out, install Luigi using Git, and clone itinto a
convenient subdirectory:

git clone

https://github.com/spotify/luigi?cm mc_uid=026295897013144626284768&cm_mc_
sid_50200000=1457296715

cd to the bin directory and start the server

./luigid

Apache
Spark

Apache
Mesos

Apache
Cassandra

Figure 14-2. Image as Big Data tookits as distributed systems

14.2 First Code Example Using the HIPI System

In this section, we will introduce the HIPI Hadoop image processing system and show some simple
examples of how it can be used as a distributed data processing pipeline component for images.

HIPI (hipi.cs.virginia.edu) Is a very useful Hadoop-based image processing tool, which originated at
the University of Virginia. It integrates with more mainstream standard image processing libraries such as
OpenCV to provide a wide palette of image processing and analytic techniques in a Hadoop-centric way.

Several basic tools for basic Hadoop-cenric image processing tasks are included with the HIPI system.

These include tools to create “HIB” files (HIPI image bundles) as shown used in the diagram Figure 14-3.
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Images

1K reduce

Images

Shuffle

reduce

Figure 14-3. A HIPI image data flow, consisting of bunding, culling, map/shuffle and reduce to end result

HIPI image bundle, or “HIB,” is the structured storage method used by HIPI to group images into one
physical unit. The cull phase allows each HIB to be filtered out based on appropriate programmatic criteria.
Images that are culled out are not fully decoded, making the HIPI pipeline much more efficient. The output
of the cull phase results in image sets as shown in the diagram. Each image set has its own map phase,
followed by a shuffle phase and corresponding reduce steps to create the final result. So, as you can see, the
HIPI data flow is similar to the standard map-reduce data flow process. We reproduce the Hadoop data flow
process in Figure 14-4 for your reference.
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Intermediate s
Input
Results
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Figure 14-4. A reference diagram of the classic map-reduce data flow, for comparison with 14-3

INSTALLING A BASIC HIPI SYSTEM

Basic HIPI installation instructions follow.
1. First, review the “getting started” page at
http://hipi.cs.virginia.edu/gettingstarted.html

for an overview of what'’s in store and updates and/or changes to the
system.

2. Install the basic HIPI software as shown in the “Getting Started” page:
git clone git@github.com:uvagfx/hipi.git

This will install the source code into a “hipi” directory. Cd to this “hipi” directory and “Is” the contents
to review. You will need a Gradle build tool installation to install from the source. The resulting build will
appear similar to Figure 14-5.
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Kerrys-MBP:~ kerryks cd hipi =
Kerrys-MBP:hipi kerryk$ 1s

README . md core settings.gradle util

build.gradle license, txt testdata web

conf release tools

Kerrys-MBP:hipi kerryk$ gradle
Unable to find a $JAVA_HOME at "/usr", continuing with system-provided Java...
icore:compilelava UP-TO-DATE

icore:processResources UP-TO-DATE

icore: classes UP-TO-DATE

icore: ]ar UP-TO-DATE

itools:covar: compileJava UP-TO-DAT
1tools:covar:processResources UP-TO-DATE

:tools:covar:classes UP 'C DATE
itools:icovar:jar UP-TI
:tools:hibDownload: complleJava UP-TO-DATE
:tools:hibDownload:processResources UP-TO-DATE
itools:ihibDownload:classes UP-TO-DA
itools:hibDownload: jar UP-TO-DA
itools:hibDump:compiledava L/P-TI
:tools:hibDump:processResources P
:tools:hibDump:classes UP-TO-DATE
itools:hibDump:jar UP-TO-DAT
itools:hibImport:compilelava UP-TO-DATE
:tools:hibImport: processResources JF TO-DATE
:tools:hibImport:classes UP \
:tools:hibImport:jar UP-T0-D
:tools:hibInfo:compilelava Uf
itoolsihibInfo: processResnurces UP=TO-DATE
:tools:hibInfo:classes UP-TO-DATE
itools:thibInfo:jar UP-TO-DATE
:tools:hibToJpeg:compilelava UP-TO-DATE
itools:hibToJpeg:processResources UP-TO-DATE
itools:ihibToJpeg:classes UP-TO-DATE
itools:hibToJpeg: jar UP-TO-DATE
rinstall

Finished building the HIPI library along with all tools and examples.

BUILD SUCCESSFUL

Total time: 3.935 secs

This build could be faster, please consider using the Gradle Daemon: https://docs.grad

le.org/2.7/userguide/gradle_daemon.html
Kerrys-MBP:hipi kerryk$ []

Figure 14-5. Successful Gradle installation of the HIPI toolkit

Gradle is another useful installation and build tool which is similar to Maven. Some systems, such as
HIPI, are much easier to install using Gradle than with other techniques such as Maven.
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tools bash 103x46

Munishs-MacBook-Pro:tools kerryk$s ./hibInfo.sh ./theImages®.hib L]
2016-93-06 18:32:43,371 javal[36496:1983] Unable to load realm info from SCDynamicStore
16/03/06 1B:32:45 WARN util.NativeCodelLoader: Unable to load native-hadoop library for your platform...
using builtin-java classes where applicable
Input HIB: ./thelmages®.hib
Display meta data: false
Display EXIF data: false
IMAGE INDEX: @
6000 x 4000
format: 1
IMAGE INDEX: 1
6000 x 4000
format: 1
IMAGE INDEX: 2
600 x 4000
format: 1
IMAGE INDEX: 3
6D x 4p0R
format: 1
IMAGE INDEX: 4
6000 x 4900
format: 1

IMAGE INDEX: 5
6000 x 4000
format: 1
IMAGE INDEX: 6
6eRR x 4000
format: 1
IMAGE INDEX: 7
6000 x 4008
format: 1
IMAGE INDEX: 8
6000 x 4008
format: 1
IMAGE INDEX: 9
6000 x 4000
format: 1
IMAGE INDEX: 1@
6D x 4000
format: 1
Found [11] images.
Munishs-MacBook-Pro:tools kerryks
Munishs-MacBook-Pro:tools kerryks
Munishs-MacBook-Pro:tools kerryks

Figure 14-6. Example using HIPI info utility: Mage info about a 10-image HIB in the HIPI system

Installation of HIPI is only the first step, however! We have to integrate our HIPI processor with the
analytical components to produce our results.

14.3 BDA Image Toolkits Leverage Advanced Language
Features

The ability to use modern interpreted languages such as Python—along with interactive read-eval-
print loops (REPLs) and functional programming—are features found with most modern programming
languages, including Java 9, Scala, and interactive Python. IABDT uses these modern programming language
features to make the system easier to use and the API code is much more succinct as a result.

IABDT integrates seamlessly with both Hadoop 2 and Apache Spark and uses standard distributed
libraries such as Mahout, MLib, H20 and Sparkling Water to provide analytical functionality. One of the case
studies we discuss also uses standard Java-centric statistical libraries with Hadoop, such as R and Weka.

242



CHAPTER 14 © “IMAGE AS BIG DATA” SYSTEMS: SOME CASE STUDIES

14.4 What Exactly are Image Data Analytics?

Image data analytics apply the same general principles, patterns, and strategies of generic data analytics.
The difference is the data source. We move away from the traditional ideas of analyzing numbers, line items,
texts, documents, log entries, and other text-based data sources. Instead of a text-based data source, we are
now dealing with data much less straightforward: the world of signals (which are essentially time series) and
images (which can be two-dimensional images of color pixels with RGB values, or even more exotic image
types with metadata, geolocations, and overlay information attached).

Specialized toolkits are needed to perform basic image data pipelining. At the top level, many pre-coded
and customizable methods are provided to assist you. An assortment of these methods are shown in
Table 14-2.

Table 14-2. A selection of methods from the Image as Big Data Toolkit

Method Name Method Signature Output Types Description
EJRCL EJRCL(Image, PropertySet) ComputationResult edges, junctions, regions,
contours, and lines
createlmagePyramid  imagePyramid(Image, ImagePyramid one image converted to an
PropertySet) image pyramid, parametrically
projectBayesian projectBayesian(ImageSet, BayesianResult project an image setinto a
BayesianModel, Bayesian hypothesis space
PropertySet)
computeStatistics computeStatistics(Image, ComputationResult basic statistics computed for
PropertySet) single image, or over an image
set or image pyramid
deepLearn deepLearn(ImageSet, LearnerResult use standard distributed deep
Learner, PropertySet) learning algorithms to process
an image set or pyramid
multiClassify multiclassify(ImageSet, ClassifierResult use multiple classifiers to
ClassifierModel, classify an image set or image
PropertySet) pyramid

Table 14-3. Display methods for visualization provided by the IABDT. Most object types in the IABDT may be
displayed using similar methods

Method Name Method Signature Leverages Toolkit Description
display display(Image, PropertySet) BoofCV
display display(ImagePyramid, PropertySet) BoofCV
display display(ImageSet, PropertySet) BoofCV
display display(Image, FeatureSet, PropertySet) BoofCV
display display(Image, GeoLocationModel, PropertySet) BoofCV
display display(Image, ResultSet, PropertySet) BoofCV
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Image Data Source Processor

Analytical Engine Intermediate
Components Data Stores

Control and Distributed
Configuration System
Modules Infrastructure

User Control
Dashboard

Persistent Result Repositories

Interaction Modules,

Reporting Modules including Dashboards

Visualization Modules

Figure 14-7. Architecture of the Image as Big Data Toolkit

The image data source processor is the component responsible for data acquisition, image cleansing,
format conversion, and other operations to “massage” the data into formats acceptable to the other pipeline
components.

The analytical engine components can be support libraries such as R and Weka.

Intermediate data sources are the outputs of initial analytical computation.

The user control dashboard is an event handler, interactive component.

The control and configuration modules consist of rule components such as Drools or other rule engine
or control components, and may contain other “helper” libraries for tasks such as scheduling, data filtering
and refinement, and overall system control and configuration tasks. Typically, ZooKeeper and/or Curator
may be used to coordinate and orchestrate the control and configuration tasks.

The distributed system infrastructure module contains underlying support and “helper” libraries.

The persistent result repositories can be any of a variety of types of data sink, including relational,
graph, or NoSQL type databases. In-memory key-value data stores may also be used if appropriate.

The reporting modules typically consist of old-school tabular or chart presentations of analytical results.

User interaction, control, and feedback is supplied by the IABDT interaction modules, which include
default dashboards for common use cases.
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Visualization modules consist of support libraries for displaying images, overlays, feature locations, and
other visual information which make interacting and understanding the data set easier.

14.5 Interaction Modules and Dashboards

The ability to develop appropriate displays and dashboards for distributed image processing systems are an
essential aid to evaluation, testing, proof-of-concept and optimization of completed implementations.

Building basic user interfaces and dashboards are supported directly in the IABDT. A picture of a simple
user interface is shown in Figure 14-8.

File Edit Image Grid Process Help

Sourced  Sourcel  Sourcel Adj  Sourcel Adj  Report Output
Flush Tile Cache

goetheneum.jpg Perfarm Bundle Adjustment Tile Cache Capacity

VNIR183_flarfield_Sbit.jpg
VNIR184_flarfield_Sbitjpg
VNIRZ13_flatfield_8bitjpg
VNIRZ 14 _fatfield_8bitjpg

Cenerate Intrusion Analysis Report e weas amee
Two-D Feaure Detection and Pairing No Border Extension
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Figure 14-8. A simple user interface build with the IABDT

Consolidated views of the same objects, image displays which process image sequences, and image
overlay capability are all provided by the IABD toolkit.

Dashboard, display, and interactive interfaces—both standalone application and web based—may
be built with the IABDT user interface building module. Support for standard types of display, including
overlays, and geolocation data, are provided in the prototype IABDT.
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14.6 Adding New Data Pipelines and Distributed Feature
Finding

Designing a new analytical dataflow using IABDT is straightforward. Equations from an algorithm may be
converted into stand-alone code, and from stand-alone code to a map/reduce implementation, leveraging a
number of toolkits provided for integration with the Hadoop/Spark ecosystems, including the University of
Virginia's HIPI system (hipi.cs.virginia.edu), as described below.

Some distributed image processing capabilities have been explicitly developed for Spark-based systems,
so a small digression on the Apache Spark vs. Hadoop controversy may be in order at this point. There
has been some debate recently in the literature about whether Apache Spark has killed the map/reduce
paradigm as well as “killed” the usefulness of the Hadoop ecosystem (for example, the Apache Mahout
library originally started with map/reduce support only, but evolved to support Apache Spark and even
H20 support). We changed our views as we evolved and developed the IABDT prototype system (Apache
Spark became, more and more, a force to be reckoned with over time) and came to the realization that
Hadoop and Spark are intimately complementary technologies, not at all meant to be separated. As a result,
we have designed the IABDT toolkit as a modular and extremely flexible system in order that we can use
Hadoop ecosystem components as well as Spark components easily, even when using Hadoop and Spark
technologies together in “hybrid” dataflow development, in which components from M/R and in-memory
(Hadoop and Spark) processing cooperate to provide the final results.

14.7 Example: A Distributed Feature-finding Algorithm

A distributed feature-finding algorithm may be constructed using the concept of a so-called “Hu Moment.”
Hu moments are used to compute characteristic shapes.
Following Kulkani (1994), we can express the mathematics of this in the following few equations.
Standard geometric moments can be computed as follows:

n n

my, =2, 2. x"y"g(x.y)

X=—ny=-n

Where g(x,y) is a two-dimensional index into the image g. A so-called central moment may be defined as

m,, = Z Z (x=x'Y (y-¥) g(x,y)

X=—ny=-n

S S
where X” = mm/ My, Yy = mm/ My,
And, when normalized for scale invariance.

—m’
Mpg =My,

where
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A map/reduce task in Hadoop can be coded explicitly from the moment equations, first in java
for experimental purposes — to test the program logic and make sure the computed values conform
to expectations — and then converted to the appropriate map/reduce constructs. A sketch of the
java implementation is shown in Listing 14-1. We use a standard java class, com.apress.probda.core.
ComputationalResult, to hold the answers and the “centroid” (which is also computed by our algoirithm):

Listing 14-1. Moment computation in Java

public ComputationResult computeMoments(int numpoints, double[] xpts, double[] ypts)
{
int i;
// array where the moments go
double[] moments = new double[7];
double xm.ym,x,y,xsq,ysq, factor;
xm = ym = 0.0;
for (i = 0; i<n; i++){
xm += xpts[i];
} ym += ypts[i];
// now compute the centroid
xm /= (double) n;
ym /= (double) n;
// compute the seven moments for the seven equations above
for (i=0; i<7; i++){
x =xpts[i]-xm;
y = ypts[i]-ym;
// now the seven moments
moments[0] += (xsq=x*x); // mu 20
moments[1] += x*y; // mu 11
moments[2] += (ysq =y * y); // mu 02
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moments[3] += xsq *x; // mu 30
moments[4] += xsq *y; // mu 21
moments[5] += x * ysq; // mu 12
moments[6] += y * ysq; // mu 03
}

// factor to normalize the size

factor = 1.0 / ((double)n *(double)n);

// second-order moment computation

moments[0] *= factor;

moments[1] *= factor;

moments[2] *= factor;

factor /= sqrt((double)n);

// third order moment computation

moments[3] *= factor;

moments[4] *= factor;

moments[5] *= factor;

moments[6] *= factor;

// a variety of constructors for ComputationalResult exist.
// this one constructs a result with centroid and
//moment array. ComputationResult instances are persistable.

return new ComputationResult(xm, ym, moments);

}

From this simple java implementation, we can then implement map, reduce, and combine methods
with signatures such as those shown in Listing 14-2.

Listing 14-2. HIPI map/reduce method signatures for moment feature extraction computation

// Method signatures for the map() and reduce() methods for
// moment feature extraction module
public void map(HipiImageHeader header, FloatImage image, Context context) throws
IOException,
InterruptedException

public void reduce(IntWritable key, Iterable momentComponents, Context context)
throws IOException, InterruptedException

Lets recall the microscopy example from Chapter 11. It’s a pretty typical un-structured data pipeline
processing analysis problem in some ways. As you recall, image sequences start out as an ordered list of
images — they may be arranged by timestamp or in more complex arrangements such as geolocation, stereo
pairing, or order of importance. You can imagine in a medical application which might have dozens of
medical images of the same patient, those with life-threatening anomalies should be brought to the front of
the queue as soon as possible.
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Other image operations might be good candidates for distributed processing, such as the Canny edge
operation, coded up in BoofCV in Listing 14-3.

Listing 14-3. Canny Edge Detection Using BoofCV, before parallelization

package com.apress.iabdt.examples;

import java.awt.image.BufferedImage;
import java.util.list;

import com.kildane.iabdt.model.Camera;

import boofcv.alg.feature.detect.edge.CannyEdge;
import boofcv.alg.feature.detect.edge.EdgeContour;
import boofcv.alg.filter.binary.BinaryImageOps;
import boofcv.alg.filter.binary.Contour;

import boofcv.factory.feature.detect.edge.FactoryEdgeDetectors;
import boofcv.gui.ListDisplayPanel;

import boofcv.gui.binary.VisualizeBinaryData;
import boofcv.gui.image.ShowImages;

import boofcv.io.UtilIO;

import boofcv.io.image.ConvertBufferedImage;
import boofcv.io.image.UtilImageIO;

import boofcv.struct.ConnectRule;

import boofcv.struct.image.ImageSInt16;

import boofcv.struct.image.ImageUInt8;

public class CannyEdgeDetector {

public static void main(String args[]) {
BufferedImage image = UtilImageIO
.loadImage("/Users/kerryk/Downloads/groundtruth-drosophila-
vnc/stack1l/membranes/00.png");

ImageUInt8 gray = ConvertBufferedImage.convertFrom(image, (ImageUInt8) null);
ImageUInt8 edgeImage = gray.createSameShape();

// Create a canny edge detector which will dynamically compute the

// threshold based on maximum edge intensity

// It has also been configured to save the trace as a graph. This is the
// graph created while performing

// hysteresis thresholding.

CannyEdge<ImageUInt8, ImageSInt16> canny = FactoryEdgeDetectors.canny(z,
true, true, ImageUInt8.class, ImageSInti6.class);
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// The edge image is actually an optional parameter. If you don't need
// it just pass in null
canny.process(gray, 0.1f, 0.3f, edgeImage);

// First get the contour created by canny

List<EdgeContour> edgeContours = canny.getContours();

// The 'edgeContours' is a tree graph that can be difficult to process.
// An alternative is to extract

// the contours from the binary image, which will produce a single loop
// for each connected cluster of pixels.

// Note that you are only interested in external contours.
List<Contour> contours = BinaryImageOps.contour(edgeImage,
ConnectRule.EIGHT, null);

// display the results

BufferedImage visualBinary = VisualizeBinaryData.renderBinary(edgeImage,
false, null);

BufferedImage visualCannyContour = VisualizeBinaryData.
renderContours(edgeContours, null, gray.width, gray.height, null);
BufferedImage visualEdgeContour = new BufferedImage(gray.width, gray.height,
BufferedImage.TYPE_INT_RGB);

VisualizeBinaryData.renderExternal(contours, (int[]) null,
visualEdgeContour);

ListDisplayPanel panel = new ListDisplayPanel();
panel.addImage(visualBinary, "Binary Edges");
panel.addImage(visualCannyContour, "Canny GraphTrace");
panel.addImage(visualEdgeContour, "Canny Binary Contours");
ShowImages.showWindow(panel, "Image As Big Data Toolkit Canny Edge
Extraction: ", txue);

Interest points are well-defined, stable image space locations which have “particular interests.” For
example, you might notice in Figure 14-9 that the points of interest occur at the junction points connecting
other structures in the image. Corners, junctions, contours, and templates may be used to identify what we
are looking for within images, and statistical analysis can be performed on the results we find.

250



CHAPTER 14 © “IMAGE AS BIG DATA” SYSTEMS: SOME CASE STUDIES
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Figure 14-9. Finding interest points in an image: the circled + signs are the interest points

A typical input process for the IABDT is shown in Figure 14-10.
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Figure 14-10. Input process for IABD Toolkit, showing image preprocessing components

Data sources may be processed in “batch mode” or in “streaming mode” by the data flow pipeline. The
data source preprocessor is . The image data source preprocessor may perform image-centric preprocessing
such as feature extraction, region identification, image pyramid construction, and other tasks to make the
image processing part of the pipeline easier.

14.8 Low-Level Image Processors in the IABD Toolkit

Low-level image processing routines are an important part of the IABDT. Most standard image processing
libraries, including JAI, OpenCV, and BoofCV may be used in a seamless fashion with IABDT, using Maven
dependencies with the IABDT pom.xml file. Some of the standard low-level image processes included in the
initial IABDT offering include Fourier operators. Fourier operators map image data into a frequency space,
as shown in the following equation:

N-IN-1 (%’f](wm,y)

1 -]
FP,, = szpwe

x=0 y=0

Canny Edge Operators. The Canny operator can be approximated by the steps of Gaussian smoothing,
the Sobel operator — a non-maximal suppression stage, thresholding (with hysteresis — a special kind of
thresholding) to connecting edge points. The extracted two dimensional shapes may be persisted to an
IABDT data source.

Line, Circle, and Ellipse Extraction Operators. There are feature extraction algorithms for line, circle,
and ellipse shape primitives from two dimensional image data. Several sample implementations are
included in the toolkit.
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14.9 Terminology

Below is a brief summary of some of the terms associated with image processing and ‘image as big data’
concepts.

Agency-Based Systems: Cooperative multi-agent systems, or agencies, are an effective way to design
and implement IABD systems. Individual agent node processes cooperate in a programmed network
topology to achieve common goals.

Bayesian Image Processing: Array-based image processing using Bayesian techniques typically
involves constructing and computing with a Bayes network, a graph in which the nodes are considered as
random variables, and the graph edges are conditional dependencies. Random variables and conditional
dependencies are standard Bayesian concepts from the fundamental Bayesian statistics. Following Opper
and Winther, we can characterize Bayesian optimal prediction as

y**(D,,, x)=sgn fdf p(fly)sgn f

Object hypotheses, prediction, and sensor fusion are typical problem areas for Bayesian image
processing.

Classification Algorithm: Distributed classification algorithms within the IABDT include large-
and small- margin (a margin is the confidence level of a classification) classifiers. A variety of techniques
including genetic algorithms, neural nets, boosting, and support vector machines (SVMs) may be used
for classification. Distributed classification algorithms, such as the standard k-means, or fuzzy-k-means
techniques, are included in standard support libraries such as Apache Mahout.

Deep Learning (DL): A branch of machine learning based on learning-based data representations, and
algorithms modeling high-level data abstractions. Deep learning uses multiple, complex processing levels
and multiple non-linear transformations.

Distributed System: Software systems based on a messaging passing architecture over a networked
hardware topology. Distributed systems may be implemented in part by software frameworks such as
Apache Hadoop and Apache Spark.

Image As Big Data (IABD): The IABD concept entails treating signals, images, and video in some
ways, as any other source of “big data’, including the 4V conceptual basis of “variety, volume, velocity,
and veracity” Special requirements for IABD include various kinds of automatic processing, such as
compression, format conversion, and feature extraction.

Machine learning (ML): Machine learning techniques may be used for a variety of image processing
tasks, including feature extraction, scene analysis, object detection, hypothesis generation, model building
and model instantiation.

Neural net: Neural nets are a kind of mathematical model which emulate the biological models of high-
level reasoning in humans. Many types of distributed neural net algorithm are useful for image analysis,
feature extraction, and two- and three- dimensional model building from images.

Ontology-driven modeling: Ontologies as a description of entities within a model and the
relationships between these entities, may be developed to drive and inform a modeling process, in which
model refinements, metadata, and even new ontological forms and schemas, are evolved as an output of the
modeling process.

Sensor fusion: Combination of information from multiple sensors or data sources into an integrated,
consistent, and homogeneous data model. Sensor fusion may be accomplished by a number of
mathematical techniques, including some Bayesian techniques.

Taxonomy: A scheme of classification and naming which builds a catalog. Defining, generating, or
modeling a hierarchy of objects may be helped by leveraging taxonomies and related ontological data
structures and processing techniques.
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1410 Summary

In this chapter, we discussed the ‘image as big data’ concept and why it is an important concept in the world
of big data analytics techniques. The current architecture, features, and use cases for a new image-as-big-
data toolkit (IABDT), was described. In it, the complementary technologies of Apache Hadoop and Apache
Spark, along with their respective ecosystems and support libraries, have been unified to provide low-level
image processing operations — as well as sophisticated image analysis algorithms which may be used to
develop distributed, customized image processing pipelines.

In the next chapter, we discuss how to build a general-purpose data processing pipeline using many of
the techniques and technology stacks we've learned from previous chapters in the book.
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CHAPTER 15

Building a General Purpose Data
Pipeline

In this chapter, we detail an end-to-end analytical system using many of the techniques we discussed
throughout the book to provide an evaluation system the user may extend and edit to create their own
Hadoop data analysis system. Five basic strategies to use when developing data pipelines are discussed.
Then, we see how these strategies may be applied to build a general purpose data pipeline component.

15.1 Architecture and Description of an Example System

We built some basic data pipelines in Chapter 5. Now the time has come to extend the ideas we touched on
into a more general purpose data pipelining application.

Please recall that the simplest data pipeline resembles Figure 15-1. It is a series of data processing stages
linked by data transmission steps. The data transmission steps collect data from a data source and emit it
to a data sink. The method of transmission might be different for different transmission steps, and the data
processing stages perform transformation on data inputs, emitting a data output to the subsequent stages.
The final output is output to a data store or visualization/reporting component.

Figure 15-1. A simple abstraction of a general purpose data pipeline

Let’s look at a more real-world example of a general purpose data pipeline. One of the simplest useful
configurations is shown in Figure 15-2. It consists of a data source (in this case HDFS), a processing element
(in this case Mahout), and an output stage (in this case a D3 visualizer which is part of the accompanying Big
Data Toolkit).

© Kerry Koitzsch 2017 257
K. Koitzsch, Pro Hadoop Data Analytics, DOI 10.1007/978-1-4842-1910-2_15


http://dx.doi.org/10.1007/978-1-4842-1910-2_5

CHAPTER 15 © BUILDING A GENERAL PURPOSE DATA PIPELINE

Visualization

Processing Element m, nen
Data Source B Component

(HDFS File System)

(Mahout processing (D3 based
elements) web page visualization
of results)

Figure 15-2. A real-world distributed pipeline can consist of three basic elements

Our first example imports a data set into HDFS, performs some simple analytics processing using
Mahout, and passes the results of the analysis to a simple visualization component.

15.2 How to Obtain and Run the Example System

The example system is a Maven-based Java/Scala-centric system similar to many of the software
components described throughout this book, and is available on the Apress code contribution site. See
Appendix A and B for further details. Installation of this example system is straightforward: just follow the
instructions included with the software download. Use of the infrastructure tools such as Java, Ant, and
Maven have all been thoroughly described throughout the book, although the version numbers of the
components may have changed. You can easily update version numbers within the pom.xml Maven file for
your project.

15.3 Five Strategies for Pipeline Building

Most of this book has referred to the different strategies of data pipeline building. While software
components, platforms, tools, and libraries may change, the fundamental strategic design methods of data
pipeline design remain the same.

There are many strategies for data pipeline building but, broadly speaking, there are five major
strategies based on “way of working.” These five basic strategy types are discussed briefly below.

15.3.1 Working from Data Sources and Sinks

Working from data sources and sinks is a good organizational strategy to use when you have pre-existing or
legacy data sources to use. In particular, these might include relational data, CSV flat files, or even directories
full of images or log files.

When working using this data-sources-and-sinks strategy, an organized approach would include the
following:

e Identify data source/sink types and provide components for data ingestion, data
validation, and data cleansing (if necessary). For the purposes of this example, we
will use Splunk, Tika, and Spring Framework.
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e Treat the “business logic” as a black box. Initially concentrate on data input
and output as well as the supporting technology stack. If the business logic is
relatively simple, already packaged as a library, well-defined and straightforward to
implement, we can treat the business logic component as a self-contained module or
“plug-in”” If the business logic requires hand-coding or is more complex

15.3.2 Middle-Out Development

Middle-out development means what it says: starting in the “middle” of the application construct and
working towards either end, which in our examples will always be the data sources at the beginning of the
process and the data sinks or final result repository at the end of the data pipeline. The “middle” we're
developing first is essentially the “business logic” or “target algorithms” to be developed. We can start with
general technology stack considerations (such as the choice to use Hadoop, Spark, or Flink, for example, or a
hybrid approach using one or more of these).

15.3.3 Enterprise Integration Pattern (EIP)-based Development

EIP-based development is a useful way to develop pipelines. As we've seen, some of the standard toolkits are
specifically designed to implement EIP components, and other parts of the system can be conceptualized
using EIPs. Let’s look at a couple of EIP diagrams to get started.

outQueue 1

inQueue

? — 0 ——

Message Router

Figure 15-3. A simple Enterprise Integration Pattern (EIP)

We can use any of the freely available EIP diagram editors, such as the draw.io tool (draw.io) or
Omnigraffle (omnigraffle.com), to draw EIP diagrams. We can then use Spring Integration or Apache Camel
to implement the pipelines.

A full description of the EIP notation can be found in Hohpe and Woolf (2004).

The components shown in the abstract diagram Figure 15-4 can be implemented using Apache Camel
or Spring Integration. The two endpoints are data ingestion and data persistence, respectively. The small TV
screen-like symbol indicates a data visualization component and/or management console.
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Figure 15-4. A more extended example of an EIP

15.3.4 Rule-based Messaging Pipeline Development

We discussed rule-based systems and how they may be used for control, scheduling, and ETL-oriented
operations in Chapter 8. However, rule-based systems can be used as the center or core control mechanism
of a data pipelining flow, as shown in Figure 15-5.

A Result
Persistence
a

Rule-based

=
Data Data ETE] Data Workflow
Sources Ingestion Staging Processor and Data
Management
Data

Visualizer

Distributed Software Support Systems: Hadoop, Spark, Flink, etc.

Hardware Infrastructure

Figure 15-5. A rule-based data flow pipeline architecture

Figure 15-5 shows a typical architecture for a rule-based data pipeline in which all the processing
components in the pipe are controlled by the rule-based workflow/data management component. Let’s look
at how such an architecture might be implemented.
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15.3.5 Control + Data (Control Flow) Pipelining

We can essentially go back to the classic pipe-and-filter design pattern when we define a control mechanism
and data stages to be controlled, as shown in the EIP diagram of Figure 15-7.

Spring XD Administration

Zookeeper

XD Container for Output XD Container for Input

Transport Provider: Redis, Rabbit, and others

Figure 15-6. An EIP diagram showing a different incarnation of the data pipeline

15.4 Summary

In this chapter, we discussed construction of a general purpose data pipeline. General purpose data
pipelines are an important starting point in big data analytical systems: both conceptually and in real world
application building. These general purpose pipelines serve as a staging area for more application-specific
extensions, as well as experimental proof-of-concept systems which may require more modification and
testing before they are developed further. Starting on a strong general-purpose technology base makes it
easier to perform re-work efficiently, and to “take a step back” if application requirements change.

Five basic pipeline building strategies were discussed: working from sources and sinks, middle-out
development (analytical stack-centric development), enterprise integration pattern (EIP) pipeline
development, rule-based messaging pipelines, and control + data (control flow) pipelining. Support
libraries, techniques, and code which supports these five general purpose pipelining strategies were also
discussed.

In the next and final chapter, we discuss directions for the future of big data analytics and what the
future evolution of this type of system might look like.
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CHAPTER 16

Conclusions and the Future of Big
Data Analysis

In this final chapter, we sum up what we have learned in the previous chapters and discuss some of the
developing trends in big data analytics, including “incubator” projects and “young” projects for data
analysis. We also speculate on what the future holds for big data analysis and the Hadoop ecosystem—
“Future Hadoop” (which may also include Apache Spark and others).

Please keep in mind that the 4Vs of big data (velocity, veracity, volume, and variety) will only become
larger and more complex over time. Our main conclusion: the scope, range, and effectiveness of big data
analytics solutions must also continue to grow accordingly in order to keep pace with the data available!

16.1 Conclusions and a Chronology

Throughout this book we’ve taken a technological survey of distributed business analytical systems—
specifically with Hadoop in mind—as a starting point and building block for architecture, implementation,
deployment, and application. We've discussed some of the languages, toolkits, libraries, and frameworks
which we have found to be the most useful ways to get new Hadoop BDAs up and running. We have
tried to abide by a few strategic principles as we went along to keep things flexible and adaptable to new
requirements and software components that might come along in the next few months or years.

These strategic principles include the following:

1. Use a modular design/build/test strategy to maintain software dependencies,
versions, and test/integration. In our case, we use Maven and related software
tools to manage builds, testing, deployment, and modular addition or
subtraction of new software modules or to update versions. This doesn’t mean
we exclude additional necessary build tools such as Bower, Gradle, Grunt,
and the like. On the contrary, all good build tools, content managers, and test
frameworks should be flexible enough to work together with the others. In our
experimental systems, for example, it is not uncommon to see Maven, Grunt,
Bower, and Git components existing together in harmony with little friction or
incompatibility.

2. Strategically select a technology stack that can be adapted for future needs
and changing requirements. Keeping an architectural “vision” in mind allows
system designers to work together to build and maintain a coherent technology
stack, which addresses the requirements. Making good initial choices as to
implementation technology is important and desirable, but having a flexible
approach, in order that mistakes may be corrected, is even more desirable.
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3. Beable to accommodate different programming languages appropriately, in
as seamless a manner as possible. As a consequence of the need to choose a
technology stack selectively, even some of the simplest applications are multi-
language applications these days, and may contain Java, JavaScript, HTML, Scala,
and Python components within one framework.

4. Select appropriate “glueware” for component integration, testing, and
optimization/deployment. As we have seen in the examples throughout this
book, “glueware” is almost as important as the components being glued!
Fortunately for the developer, many components and frameworks exist for this
purpose, including Spring Framework, Spring Data, Apache Camel, Apache Tika,
and specialized packages such as Commons Imaging and others.

5. Last but not least, maintain a flexible and agile methodology to adapt systems to
newly discovered requirements, data sets, changing technologies, and volume/
complexity/quantity of data sources and sinks. Requirements will constantly
change, as will support technologies. An adaptive approach saves time and
rework in the long run.

In conclusion, we have come to believe that following the strategic approach to system building
outlined above will assist architects, developers, and managers achieve functional business analytics
systems which are flexible, scalable, and adaptive enough to accommodate changing technologies, as well as
being able to process challenging data sets, build data pipelines, and provide useful and eloquent reporting
capabilities, including the right data visualizations to express your results in sufficient detail.

16.2 The Current State of Big Data Analysis

In the remainder of this final chapter we will examine the current state of Hadoop and note some future
possible directions and developments, speculating on “Future Hadoop”—and this, of course, includes
manifestations and evolutions of distributed technology—analogous to how Apache Spark, YARN, and
Hadoop 2 have been milestones in the evolution of Hadoop and its ecosystem up to the present day.

First, we have to go back to the nineteenth century.

The first rumblings of a crisis in data processing technology go back at least as far as 1880. In that year,
the United States Census was calculated to take eight years to process using the techniques commonly
used at that time. By 1952, the US Census was processed using the UNIVAC computer’s assistance. Since
then, challenges to the data processing techniques of the times have been met with one solution after
another: mechanical, electronic, and semiconductor hardware solutions, paired with the evolution—and
revolution—of software technologies (such as generalized programming languages), as well as organization
of media (from the earliest photographs and sound recordings to the latest electronic streaming, video
processing and storage, and digital media recording techniques).

In 1944, visionary and librarian Fremont Rider warned against the “information crisis”! (which in those
days meant the number of documents physically stored in a physical library) and proposed an innovative
solution which he called the “micro-card”: a way of representing what we now call “metadata” on one side of
a transparent microform sheet, while the individual pages of the book itself are shown on the opposite side.
Rider suggested that the preservation of precious one-of-a-kind books and manuscripts from the destruction
of the war that was currently raging could be achieved through the use of these “micro-cards,” and now, with
the “data immortality” to be found on the net in such projects as waw.archive.com, we see the archiving of
electronic books anticipated by Rider’s inventions.

'In The Scholar and the Future of the Research Library, Fremont Rider describes his solution to the information
explosion of the times. It’s good reading for anyone interested in how fundamental technical problems reassert them-
selves in different forms over time.
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We've come a long way from the perforated card and mechanical calculator, through microfilm
solutions like Rider’s and on to the electronic computer; but keep in mind that many computational and
analytical problems remain the same. As computational power increases, data volume and availability
(sensors of all kinds in great number putting out data) will require not only big data analytics, but a process
of so-called “sensor fusion,” in which different kinds of structured, semi-structured, and unstructured data
(signals, images, and streams of all shapes and sizes) must be integrated into a common analytical picture.
Drones and robot technology are two areas in which “future Hadoop” may shine, and robust sensor fusion
projects are already well underway.

Statistical analysis still has its place in the world of big data analysis, no matter how advanced software
and hardware components become. There will always be a place for “old school” visualization of statistics,
as shown in Figure 16-1 and Figure 16-2. As for the fundamental elements of classification, clustering,
feature analysis, identification of trends, commonalities, matching, etc., we can expect to see all these
basic techniques recast into more and more powerful libraries. Data and metadata formats—and, most
importantly, their standardization and adoption throughout the big data community—will allow us to evolve
the software programming paradigms for BDAs over the next few decades.
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Figure 16-1. Different kinds of “old school” bar graphs can be used to summarize grouped data
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Figure 16-2. “Old school” candlestick graphs can still be used to summarize chronological data

When we think about the current state of big data analysis, many questions immediately come to mind. One
immediate question is, when we solve a data analytics problem, how much ground do we have to cover? What
is the limit of business analytics as far as components go (keeping in mind our problem definition and scope)?
Where does business analytics end and other aspects of information technology and computer science begin?
Lets take a quick review of what “business analytics” really is, as far as components go. We might start
with a laundry list of components and functionalities like this:

1.

Data Warehouse Components. Apache Hive started out as the go-to data
warehousing technology for use with Hadoop, and is still intensively used by a
vast number of software applications.

Business Intelligence (BI) Functionalities. The traditional definition of “Business
intelligence” (BI) includes data and process mining, predictive analytics, and
event processing components, but in the era of distributed BI, may also include
components involving simulation, deep learning, and complex model building.
BI may offer a historical, current, or predictive view of data sets, and may assist in
the domain of “operational analytics,” the improvement of existing operations by
application of BI solutions.

Enterprise Integration Management (EIM). EIM is assisted by the whole area of
Enterprise Integration Patterns (EIPs). Many software components, including
“glueware” such as Apache Camel, are based on implementation of all or most of the
EIPs found in the classic book by Hohpe and Woolf, Enterprise Integration Patterns.

2Gregor Hohpe, Bobby Woolf. (2003) Enterprise Integration Patterns Designing, Building, and Deploying Messaging
Systems. Addison Wesley. ISBN 978-0321200686
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4. Enterprise Performance Management (EPM). EPM is an area of great interest
for some vendors, particularly Cloudera. One interesting and perceptive article
about this is “3 Ways ‘Big Data Analytics’ Will Change Enterprise Performance
Management,” by Bernard Marr.*

5. Analytic Applications (Individual Components and Functionality). Many
incubating and completely new libraries and frameworks await!

6. KeyFunctional Requirements: Governance, Risk, and Compliance Management
with Auditing.

7. Security and integrated security consistently provided throughout the core,
support ecosystem, and distributed analytics application. In the early days
of Hadoop development, many components within the Hadoop ecosystem
had inadequate security considerations. Data provenance and monitoring-
distributed systems in real time are only two of the challenges facing “future
Hadoop,” but they are important examples of the need for improved security
measures throughout Hadoop- and Apache Spark-distributed systems.

Big data analytics capabilities will only continue to grow and prosper. Hardware and software
technologies, including a new renaissance of Artificial Intelligence research and innovation, contributes to
the Machine Learning and Deep Learning technologies so necessary to the further evolution of Big Data
analytical techniques. Open source libraries and thriving software communities make development of new
systems much more facile, even when using off-the-shelf components.

16.3 “Incubating Projects” and “Young Projects”

”u

Throughout the book we've often referred to “mature software projects,” “incubating projects,” and “young
projects.” In this section, we’d like to take a look at what these terms mean and indicate how useful it is to
architects and developers to track the “incubating” and “young” projects that might be in the queue. Please
note that our examples are mostly drawn from the Apache.org web site, one of the most fertile hunting
grounds for mature and maturing technology components, but there are a wide variety of other sites
available for specific domain requirements. For example, a variety of image processing toolkits in various
stages of maturity, development, and use is listed at http://www.mmorph.com/resources.html and many
other similar websites.

If you take a look at the list of Apache software components on apache.org (http://incubator.apache.
org/projects/), you'll see a host of projects either currently in incubation, graduated from incubation, and
even “retired” from incubation. Graduates of the incubator go on to become full-fledged Apache projects in
their own right, while retired projects may enjoy continued development even after the “retirement” event.

While the list of incubating projects is constantly changing, it’s instructive to take a look at how
incubating projects match up with the list of business analytics components and functionalities shown
above. Some examples include Apache Atlas (http://atlas.incubator.apache.org) for enterprise
governance services using Hadoop, using “taxonomy business annotations” for data classification.

Auditing, search, lineage, and security features are provided. In contrast to the venerable Apache Hive data
warehousing component, Lens (http://incubator.apache.org/projects/lens.html) integrates Hadoop
with traditional data warehouses in a seamless manner, providing a single view of data. Lens graduated from
the incubator to become a full-blown Apache project on 08-19-2015.

http://www.smartdatacollective.com/bernardmarr/47669/3-ways-big-data-analytics-will-change-
enterprise-performance-management
Is the above link going to be valid as long as this book is in use?
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Apache Lenya (http://incubator.apache.org/projects/lenya.html), a content management
system, has also graduated and become an Apache project in its own right.

Security is a key concern in Hadoop-distributed systems, and several incubating components address
these concerns. Some of the currently incubating projects include:

Metron (http://incubator.apache.org/projects/metron.html), a centralized tool for security
organization and analysis, integrates a number of components from the Hadoop ecosystem to provide a
scalable security analytics platform.

Ranger (http://incubator.apache.org/projects/ranger.html), a management framework for
comprehensive data security across the Hadoop platform.

“Analytic Applications” is probably the most general category listed above in the components and
capabilities list, and there are currently several incubating implementations which support component
integration, dataflow construction, algorithm implementations, dashboarding, statistical analysis support,
and many other necessary components of any distributed analytics application.

A few of the analytic application-centric components currently incubating at Apache include:

1. Apache Beam (http://incubator.apache.org/projects/beam.html) is a set of
language-specific SDKs which define and execute data processing workflows as
well as other types of workflows including data ingestion, integration, and others.
Beam supports EIPs, (Enterprise Integration Patterns) in an analogous way to the
Apache Camel system.

2. HAWQ (http://incubator.apache.org/projects/hawq.html) is an enterprise-
quality SQL analytic engine containing an MPP (massively parallel processing)
SQL framework derived from Pivotal’s Greenplum Database framework. HAWQ
is native to Hadoop.

3. Apache NiFi (http://nifi.apache.org/index.html)is a highly configurable
dataflow system, a new addition to the Apache incubator as of this writing.
Interestingly, NiFi provides a web-based interface to design, monitor, and control
data flows.

4. MadLib (http://madlib.incubator.apache.org) is a big data analytic library
which depends on the HAWQ SQL framework (http://hawq.incubator.
apache.org), a “near real-time” enterprise database and query engine.

16.4 Speculations on Future Hadoop and Its Successors

Apache Hadoop has been with us for several years (2011-2016) at the time this book was written. Evolving
out of the Apache Lucene and Solr search engine projects, it has taken on a life of its own and inspired
potential “successors” like Apache Spark and others. What do the next steps in Hadoop core—and Hadoop
ecosystem—evolution have in store for the arena of big data analytics?

One current question with Hadoop developers and architects is “Is Hadoop obsolete?” or, more
precisely, “Given that Hadoop 1 has already been replaced by Hadoop 2, and Apache Spark seems to have
taken the place of Hadoop in some areas, how viable is using Hadoop and its ecosystem? Are there other and
perhaps better alternatives to the Hadoop ecosystem?”

We can only offer a tentative answer to these questions in this final section, basing our views on the
current state of the Hadoop ecosystem and possible avenues of future development.

Please keep in mind the current functional architecture of Hadoop as shown in Figure 16-3. Let’s draw a
few conclusions about these based on what we learned in previous chapters.

The figure shown in 16-3 will continue to evolve and some additional components may eventually be
added or subtracted over time (for example, “Programming Language Bindings” and “Backups, Disaster
Recovery, and Risk Management” are obvious additions we could make, but these subjects would require
book-length treatment of their own.
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1.  Workflow and Scheduling: Workflow and scheduling may be processed by
Hadoop components like Oozie.

2. Query and Reporting Capabilities: Query and reporting capabilities could also
include visualization and dashboard capabilities.

3. Security, Auditing, and Compliance: New incubating projects under the Apache
umbrella address security, auditing, and compliance challenges within a Hadoop
ecosystem. Examples of some of these security components include Apache
Ranger (http://hortonworks.com/apache/ranger/ ), a Hadoop cluster security
management tool.

4. Cluster Coordination: Cluster coordination is usually provided by frameworks
such as ZooKeeper and library support for Apache Curator.

5. Distributed Storage: HDFS is not the only answer to distributed storage. Vendors
like NetApp already use Hadoop connectors to the NFS storage system®.

6. NoSQL Databases: As we saw in Chapter 4, there are a wide variety of NoSQL
database technologies to choose from, including MongoDB and Cassandra.
Graph databases such as Neo4j and Giraph are also popular NoSQL frameworks
with their own libraries for data transformation, computation, and visualization.

7. Data Integration Capabilities: Data integration and glueware also continue
to evolve to keep pace with different data formats, legacy programs and data,
relational and NoSQL databases, and data stores such as Solr/Lucene.

8. Machine Learning: Machine learning and deep learning techniques have
become an important part of the computation module of any BDAs.

9. Scripting Capabilities: Scripting capabilities in advanced languages such as
Python are developing at a rapid rate, as are interactive shells or REPLs (read-
eval-print loop). Even the venerable Java language includes a REPL in version 9.

10. Monitoring and System Management: The basic capabilities found in Ganglia,
Nagios, and Ambari for monitoring and managing systems will continue to
evolve. Some of the newer entries for system monitoring and management
include Cloudera Manager ( http://www.cloudera.com/products/cloudera-
manager.html ).

4See http://www.netapp.com/us/solutions/big-data/nfs-connector-hadoop.aspx for more information about
the NetApp NFS | Hadoop Connector.
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Figure 16-3. A functional view of current Hadoop technologies and capabilities

16.5 A Different Perspective: Current Alternatives to
Hadoop

Hadoop is not the only way to go when it comes to distributed big data analytics these days. There are many
alternatives to the standard Hadoop platform and ecosystem evolving today, and some of them are already
supported by the Apache foundation. Please note that some of these include Apache Flink, (flink.apache.
org), which is a distributed big-data analytics framework which provides an infrastructure for batch and
stream data processing.

Flink can consume data from messaging systems such as Apache Kafka.

Apache Storm (storm.apache.org) is another potential competitor to Apache Spark. Storm is a real-time,
distributed stream processing computation system, and supports machine learning, ETL, and “continuous
computation.”
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16.6 Use of Machine Learning and Deep Learning
Techniques in “Future Hadoop”

Algorithm implementations, “helper libraries,” machine learning and deep learning libraries and
frameworks, as well as improvements of classic libraries such as Mahout and MLib are important
components of modern BDA implementations. They support a variety of the tasks we perform every time
we construct a data processing pipeline. We should point out the differences between “machine learning”
and so-called “deep learning,” a relatively new term for “multiple layer neural network” algorithms, among
other techniques. One very interesting example of this is the Apache Horn incubator project, described in
more detail below. Machine learning, as a whole, is often seen as a “prior stage of evolution” on the road to
“artificial intelligence,” while “deep learning” is one step more evolved. SVMs, naive Bayesian algorithms,
and decision tree algorithms are typically called “shallow” learning techniques because, unlike deep
learners, the inputs are not passed through more than one non-linear processing step before the output
data set is emitted. These so-called “shallow” techniques are relegated to “machine learning,” while more
advanced techniques, often using many processing stages, are part of the “deep learning” repertoire.

Some of the incubating libraries at Apache (and elsewhere) which address ML and DL concerns (and
their support on a variety of technology stacks and platforms) include:

1. Apache SystemML (http://systemml.apache.org): This library supports many
standard algorithms which may be run in a distributed fashion using Hadoop or
Spark. Efficient and scalable, SystemML may be run in a stand-alone mode as
well as on Hadoop clusters.

2. DL4J (http://deeplearning4j.org): DL4J has many advanced features, such as
GPU programming support.

3. H20 and Sparkling Water (http://h20.0rg): Sparkling Water is a machine
learning library based on H20 and Apache Spark. These components are
programmable in Scala and feature a variety of algorithms.

4. MLib for Apache Spark (spark.apache.org): MLib is a scalable machine learning
library for Spark.

5. Apache Mahout (apache.mahout.com): Mahout is a venerable and valuable part
of the Hadoop ecosystem.

6. Cloudera Oryx Machine Learning Library (https://github.com/cloudera/
oryx): Oryx is a machine learning library which supports a variety of algorithms.

7. Distributed R | Weka (https://github.com/vertica/distributedR, http://
weka.sourceforge.net/packageMetaData/distributedWekaHadoop/index.
html): Distributed R and Weka make a good pairing for distributed statistical
analyses of all kinds, and the wide range of implemented algorithms which
are available to R and Weka make implementing data pipelines much more
straightforward.

8. Apache Horn (https://horn.incubator.apache.org): Apache Hornis an
easy-to-use incubating project for deep learning. Although in its early stages of
development, Apache Horn is already useful for prototyping and building useful
neural net-based components for distributed analytics.

9. It’s useful to see the respective features of these toolkits side-by-side, so included
here is a “feature matrix” of machine learning toolkits for your reference.
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Naive Bayes Decision K Means Deep Logistic SVM Multi-Layer ALS Lnear NLP Support
Trees Learning Regression Perceptron Regression
Mahout X X X X X X X
H20 X X X X X X
Deeplearningd) X X X
MR X X
SCIKiL learn X X X X X X
Tensodilon. X
Apache Horn *
Ty X X
Oryx 2 X X X

Figure 16-4. A feaure matrix of ML toolkits

* For the latest information on Apache Horn, see the incubation site at https://horn.incubator.
apache.org.

16.7 New Frontiers of Data Visualization and BDAs

Data visualization has always been a key component of big data analytics, and with the emerging
combination of graph databases and sophisticated visualization libraries such as D3, sigmajs, and many
others. It has become much more straightforward to create, visualize, and interactively edit very complex—
and very large—data sets. We saw some examples of this in the visualization chapter, Chapter 10. Future
directions of data visualization are many, including the exploitation of holographic, virtual reality, and
“telepresence” technologies. While many of these have been around for a while, distributed software systems
will make sophisticated “reality systems” more and more possible as “near real-time” processing systems
becomes more efficient. This will help achieve the objectives of dealing with larger and more complex data
sets while maintaining compatibility, efficiency, and seamlessness with existing analytical libraries. In fact,
many modern machine learning and deep learning frameworks, as well as statistical frameworks which
support BDAs (such as R and Weka) contain their own visualization components and dashboards. Although
some of the old-school visualization libraries were written in Java and even in C, many modern visualization
libraries support a multitude of language bindings, particularly JavaScript, of course, but also Scala- and
Python-based APIs, as we saw in early chapters.

16.8 Final Words

While we’re considering the fate of “Future Hadoop,” let’s keep in mind future issues and challenges that are
facing big data technologies of today.
Some of these challenges are:

1. Availability of mature predictive analytics: Being able to predict future data from
existing data has always been a goal of business analytics, but much research and
system building remains to be done.

2. Images and Signals as Big Data Analytics: We dived into the “images as big data”
concept, in Chapter 14 and, as noted there, work is just beginning on these
complex data sources, which of course include time series data and “signals”
from a variety of different sensors, including LIDAR, chemical sensors for
forensic analysis, medical industrial applications, accelerometer and tilt sensor
data from vehicles, and many others.
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3. Even Bigger Velocity, Variety and Volumes of Input Source Data: As for the
required speed of data processing, the variety and level of structure and
complexity (or the lack of it!), as well as raw volume of data, these requirements
will become more and more demanding as hardware and software become
able to deal with the increased architectural challenges and more demanding
problem sets “future data analysis” will demand.

4. Combining Disparate Types of Data Sources into a Unified Analysis: “Sensor
fusion” is only one aspect of combining the data into one “unified picture” of
the data landscape being measured and mapped by the sensors. The evolution
of distributed AI and machine learning, and the relatively new area of “deep
learning,” provide potential paths to moving beyond simple aggregation and
fusion of different data sources by providing meaning, context, and prediction
along with the raw data statistical analyses. This will enable sophisticated
model building, data understanding systems, and advanced decision system
applications.

5. The Merging of Artificial Intelligence (AI) and Big Data Analytics: Al, big data,
and data analytics have always co-existed, even from the earliest history of Al
systems. Advances in distributed machine learning (ML) and deep learning
(DL) have blurred the lines between these areas even more in recent years. Deep
learning libraries, such as Deeplearning4j, are routinely used in BDA applications
these days, and many useful application solutions have been proposed in which
Al components have been integrated seamlessly with BDAs.

6. Infrastructure and low-level support library evolution (including security):
Infrastructure support toolkits for Hadoop-based applications typically
include Oozie, Azkaban, Schedoscope, and Falcon. Low-level support and
integration libraries include Apache Tika, Apache Camel, Spring Data and Spring
Framework itself, among others. Specialized security components for Hadoop,
Spark, and their ecosystems include Accumulo, Apache Sentry, Apache Knox
Gateway, and many other recent contributions.

It's a good time to be in the big data analysis arena, whether you are a programmer, architect, manager,
or analyst. Many interesting and game-changing future developments await. Hadoop is often seen as one
stage of evolution to ever more powerful distributed analytic systems, and whether this evolution moves
on to something other than “Hadoop as we know it,” or the Hadoop system we already know evolves its
ecosystem to process more data in better ways, distributed big data analytics is here to stay, and Hadoop is
a major player in the current computing scene. We hope you have enjoyed this survey of big data analysis
techniques using Hadoop as much as we have enjoyed bringing it to you.
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APPENDIX A

Setting Up the Distributed
Analytics Environment

This appendix is a step-by-step guide to setting up a single machine for stand-alone distributed analytics
experimentation and development, using the Hadoop ecosystem and associated tools and libraries.

Of course, in a production-distributed environment, a cluster of server resources might be available
to provide support for the Hadoop ecosystem. Databases, data sources and sinks, and messaging software
might be spread across the hardware installation, especially those components that have a RESTful interface
and may be accessed through URLs. Please see the references listed at the end of the Appendix for a
thorough explanation of how to configure Hadoop, Spark, Flink, and Phoenix, and be sure to refer to the
appropriate info pages online for current information about these support components.

Most of the instructions given here are hardware agnostic. The instructions are especially suited,
however, for a MacOS environment.

A last note about running Hadoop based programs in a Windows environment: While this is
possible and is sometimes discussed in the literature and online documentation, most components are
recommended to run in a Linux or MacOS based environment.

Overall Installation Plan

The example system contains a large number of software components built around a Java-centric maven
project: most of these are represented in the dependencies found in your maven pom.xml files. However,
many other components are used which use other infrastructure, languages, and libraries. How you install
these other components—and even whether you use them at all—is somewhat optional. Your platform
may vary.

Throughout this book, as we’ve mentioned before, we’ve stuck pretty closely to a MacOS installation
only. There are several reasons for this. A Mac Platform is one of the easiest environments in which to build
standalone Hadoop prototypes (in the opinion of the author), and the components used throughout the
book have gone through multiple versions and debugging phases and are extremely solid. Let’s review the
table of components that are present in the example system, as shown in Table A-1, before we discuss our
overall installation plan.
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Number Component Name  Discussed URL Description

in Chapter

1 Apache Hadoop All hadoop.apache.org map/reduce distributed

framework

2 Apache Spark All spark.apache.org distributed streaming

framework

3 Apache Flink 1 flink.apache.org distributed stream and batch

framework

4 Apache Kafka 6,9 kafka.apache.org distributed messaging

framework

5 Apache Samza 9 samza.apache.org distributed stream processing

framework

6 Apache Gora gora.apache.org in memory data model and

persistence

7 Neo4] neo4j.org graph database

8 Apache Giraph 4 giraph.apache.org graph database

9 JBoss Drools www.drools.org rule framework

10 Apache Oozie oozie.apache.org scheduling component for

Hadoop jobs

11 Spring Framework  All https://projects. Inversion of Control
spring.io/spring- Framework (I0C) and
framework/ glueware

12 Spring Data All http://projects.spring. Spring Data processing
io/spring-data/ (including Hadoop)

13 Spring Integration https://projects. support for enterprise
spring.io/spring- integration pattern-oriented
integration/ programming

14 Spring XD http://projects.spring. “extreme data” integrating with
io/spring-xd/ other Spring components

15 Spring Batch http://projects.spring. reusable batch function library
io/spring-batch/

16 Apache Cassandra cassandra.apache.org NoSQL database

17 Apache Lucene/Solr 6 lucene.apache.org

lucene. open source search

apache. engine

org/solr

18 Solandra 6 https://github.com/ Solr + Cassandra interfacing
tjake/Solandra

19 OpenIMA]J 17 openimaj.org image processing with Hadoop

20 Splunk 9 splunk.com Java-centric logging framework

21 ImageTerrier 17 www.imageterrier.org image-oriented search

framework with Hadoop
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Number ComponentName  Discussed URL Description
in Chapter
22 Apache Camel camel.apache.org general purpose glue-ware in
Java: implements EIP supports
23 Deeplearning4j 12 deeplearning4j.org deep learning toolkit for Java
Hadoop and Spark
24 OpenCV | BoofCV opencv.org
boofcv. used forlow-level
org image processing
operations
25 Apache Phoenix phoenix.apache.org OLTP and operational analytics
for Hadoop
26 Apache Beam beam.incubator.apache. unified model for creating data
org pipelines
27 NGDATA Lily 6 https://github.com/ Solr and Hadoop
NGDATA/lilyproject
28 Apache Katta 6 http://katta. distributed Lucene with
sourceforge.net Hadoop
29 Apache Geode http://geode.apache.org distributed in-memory
database
30 Apache Mahout 12 mahout.apache.org machine learning library with
support for Hadoop and Spark
31 BlinkDB http://blinkdb.org massively parallel, approximate
query engine for running
interactive SQL queries on
large volumes of data.
32 OpenTSDB http://opentsdb.net time series-oriented database:
runs on Hadoop and HBase
33 University of 17 http://hipi. image processing interface
Virginia HIPI cs.virginia.edu/ with Hadoop framework
gettingstarted.html
34 Distributed R and https://github.com/
Weka vertica/DistributedR
statistical analysis
support libraries
35 Java Advanced 17 http://www.oracle. low-level image processing
Imaging (JAI) com/technetwork/java/ package
download-1-0-2-140451.
html
36 Apache Kudu kudu.apache.org fast analytics processing library
for the Hadoop ecosystem
37 Apache Tika tika.apache.org content-analysis toolkit

(continued)

277


https://github.com/NGDATA/lilyproject
https://github.com/NGDATA/lilyproject
http://katta.sourceforge.net/
http://katta.sourceforge.net/
http://geode.apache.org/
http://blinkdb.org/
http://opentsdb.net/
http://hipi.cs.virginia.edu/gettingstarted.html
http://hipi.cs.virginia.edu/gettingstarted.html
http://hipi.cs.virginia.edu/gettingstarted.html
https://github.com/vertica/DistributedR
https://github.com/vertica/DistributedR
http://www.oracle.com/technetwork/java/download-1-0-2-140451.html
http://www.oracle.com/technetwork/java/download-1-0-2-140451.html
http://www.oracle.com/technetwork/java/download-1-0-2-140451.html
http://www.oracle.com/technetwork/java/download-1-0-2-140451.html

APPENDIXA © SETTING UP THE DISTRIBUTED ANALYTICS ENVIRONMENT

Number Component Name  Discussed URL Description
in Chapter
38 Apache Apex apex.apache.org unified stream and batch
processing framework
39 Apache Malhar https://github.com/ operator and codec library for
apache/apex-malhar use with Apache Apex
40 MySQL Relational 4
Database
41
42 Maven, Brew, All mxaven.apache.org build, compile, and version
Gradle, Gulp control infrastructure
components

Once the initial basic components, such as Java, Maven, and your favorite IDE are installed, the other
components may be gradually added to the system as you configure and test it, as discussed in the following
sections.

Set Up the Infrastructure Components

If you develop code actively you may have some or all of these components already set up in your
development environment, particularly Java, Eclipse (or your favorite IDE such as NetBeans, Intelli],
or other), the Ant and Maven build utilities, and some other infrastructure components. The basic
infrastructure components we use in the example system are listed below for your reference.

Basic Example System Setup

Set up a basic development environment. We assume that you're starting with an empty machine. You
will need Java, Eclipse IDE, and Maven. These provide programming language support, an interactive
development environment (IDE), and a software build and configuration tool, respectively.

First, download the appropriate Java version for development from the Oracle web site

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

The current version of Java to use would be Java 8. Use Java-version to validate the Java version is
correct. You should see something similar to Figure A-1.
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Last login: Tue Aug 2 20:33:17 on ttyseel

[Kerrys—-MBP:~ kkoitzsch$ java -version

java version "1.8.0_91"

Java(TM) SE Runtime Environment (build 1.8.0_91-b14)

Java HotSpot(TM) 64-Bit Server VM (build 25.91-b1l4, mixed mode)
Kerrys—MBP:~ kkoitzsch$ []

Figure A-1. First step: validate Java is in place and has the correct version

Next, download the Eclipse IDE from the Eclipse web site. Please note, we used the “Mars” version of
the IDE for the development described in this book.
http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/marsr

Finally, download the Maven-compressed version from the Maven web site https://maven.apache.
org/download.cgi.
Validate correct Maven installation with

mvn --version

On the command line, you should see a result similar to the terminal output in Figure A-2.
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Kerrys-MBP:~ kkoitzsch$ mvn --version ]
Apache Maven 3.3.9 (bb52d8502b132ec@a5a3f4c09453c07478323dc5; 2015-11-10T08:41:4
7-08:00)

Maven home: /Users/kkoitzsch/Downloads/apache-maven-3.3.9

Java version: 1.8.0_102, vendor: Oracle Corporation

Java home: /Library/Java/JavaVirtualMachines/jdk1.8.0_102.jdk/Contents/Home/jre
Default locale: en_US, platform encoding: UTF-8

0S name: "mac os x", version: "10.11.3", arch: "x86_64", family: "mac"
Kerrys-MBP:~ kkoitzsch$ []

Figure A-2. Successful Maven version check

Make sure you can log in without a passkey:
ssh localhost
If not, execute the following commands:

ssh-keygen -t rsa
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
chmod 0600 ~/.ssh/authorized keys

There are many online documents with complete instructions on using ssh with Hadoop appropriately,
as well as several of the standard Hadoop references.

Apache Hadoop Setup

Apache Hadoop, along with Apache Spark and Apache Flink, are key components to the example system
infrastructure. In this appendix we will discuss a simple installation process for each of these components.
The most painless way to install these components is to refer to many of the excellent “how to” books and
online tutorials about how to set up these basic components, such as Venner (2009).

Appropriate Maven dependencies for Hadoop must be added to your pom.xml file.

To configure the Hadoop system, there are several parameter files to alter as well.
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Add the appropriate properties to core-site.xml:

<configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration>

also to hdfs-site.xml:

<configuration>
<property>
<name>dfs.replication</name >
<value>1</value>
</property>

<property>
<name>dfs.name.dir</name>
<value>file:///home/hadoop/hadoopinfra/hdfs/namenode</value>
</property>

<property>
<name>dfs.data.dir</name>
<value>file:///home/hadoop/hadoopinfra/hdfs/datanode</value>
</property>
</configuration>

Install Apache Zookeeper

Download a recent release from the Zookeeper download page. Upzip the file, and add the following
environment variables to the .bash_profile or equivalent file in the usual way. Please note that an
installation of Zookeeper is necessary to use some of the other components, such as OpenTSDB. Review
the installation instructions at https://zookeeper.apache.org/doc/trunk/zookeeperStarted. html#sc_
InstallingSingleMode .

Make sure the appropriate Zookeeper environment variables are set. These include, for example:
export ZOOKEEPER_HOME = /Users/kkoitzsch/Downloads/zookeeper-3.4.8

A sample configuration file for Zookeeper is provided with the download. Place the appropriate
configuration values in the file conf/zoo.cfg .

Start the Zookeeper server with the command
bin/zkServer.sh start

Check that the Zookeeper server is running with

ps -al | grep zook

You should see a response similar to the one in Figure A-3.
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bin — -bash — 80x23

[Kerrys-MBP:bin kkoitzsch$ ./zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /Users/kkoitzsch/Downloads/zookeeper-3.4.8/bin/../conf/zo00.cfg
Starting zookeeper ... STARTED
[Kerrys-MBP:bin kkoitzsch$ ps -al | grep zook

501 16464 1 4006 @ 31 © 8262336 44788 - S

0 ttys@1o 0:00.47 /Library/Java/JavaVirtualMachines/jdk1.8.0_102.jdk/Content
s/Home/bin/java -Dzookeeper.log.dir=. -Dzookeeper.root.logger=INFO,CONSOLE -cp /
Users/kkoitzsch/Downloads/zookeeper-3.4.8/bin/../build/classes:/Users/kkoitzsch/
Downloads/zookeeper-3.4.8/bin/../build/1lib/*.jar:/Users/kkoitzsch/Downloads/zook
eeper-3.4.8/bin/../1ib/s1f4j-1og4j12-1.6.1.jar:/Users/kkoitzsch/Downloads/zookee
per-3.4.8/bin/../lib/s1f4j-api-1.6.1.jar:/Users/kkoitzsch/Downloads/zookeeper-3.
4.8/bin/../lib/netty-3.7.0.Final.jar:/Users/kkoitzsch/Downloads/zookeeper-3.4.8/
bin/../1ib/log4j-1.2.16.jar:/Users/kkoitzsch/Downloads/zookeeper-3.4.8/bin/../11
b/jline-0.9.94.jar:/Users/kkoitzsch/Downloads/zookeeper-3.4.8/bin/../zookeeper-3
.4.8.jar:/Users/kkoitzsch/Downloads/zookeeper-3.4.8/bin/../src/java/lib/*.jar:/U
sers/kkoitzsch/Downloads/zookeeper-3.4.8/bin/../conf: -Dcom.sun.management.jmxre
mote -Dcom.sun.management.jmxremote.local.only=false org.apache.zookeeper.server
.quorum.QuorumPeerMain /Users/kkoitzsch/Downloads/zookeeper-3.4.8/bin/../conf/zo
o.cfg

501 16468 16446 4006 @ 31 © 2434840 776 - S+
0 ttysole 0:00.00 grep zook
Kerrys-MBP:bin kkoitzsch$ []

Figure A-3. Successful Zookeeper server run and process check

Run the Zookeeper CLI (REPL) to make sure you can do simple operations using Zookeeper, as in Figure A-3.

Kerrys—MBP:bin kkoitzschs ./szli sh —server 127.9.9.1:2181
Connecting to 127.0.@.1:218

2ZVL6-1@-82 11:45:02,.0846 lmy:d 1 — INFO Imain: Envirenment®@lee] — Client envirenment:zockeeper.versio
n=3.4.8-—1, built on BP2/@6/2016 ©3:18 GMT

2016-10-02 11:45%:02,049 [myid:] - INFO mainiEnvironment@1e@] — Client enwvir trhost.n rrys
—mbp.attlocal.net

2016-10-082 11:45:82,049 [myid:] - INFO [main: Environment@1e0] — Client environment: java.version=1.8
-8_1az

Z016-10-02 11:45%:02,050 [myid:] — INFO [main:Environment®1®@] - Client environment: java.vendor=O0Orac
le Corporation

2016-10-e2 11:45:082,0851 [myid:]1 — INFO Imain:Environment®@18@] — Client environment: java.home=/sLibra
rlenva/Javavirtualnachxnesljdh: B B 1@z2. jdk/Contents/Homesjre

ZOL6-18-@2 11:45:@2,851 Ilmyid:] - Fo [main: Environment@l@@] - Client environment: java.class.paths

/UiﬂrE/Kkolt1Ech/DOHn\oad‘/zODKﬂQDer—B 4.8/bAin/ . . /bulld/classes: /Users/kkoitzsch/Down loads/zookeeper
—3.4.8/bin/. . /build/lib/*. jar: /Users/kkoitzsch/Downloads/zookeeper—3.4.8/bin/s. ./ lib/ss1lTaj—logaj12-1.
G.1l.jarr/uUsers/kkoitzsch/Downloads/zookeeper—3.4.8/bin/. . /lib/sslfaj—api-1.6.1. jarr/sUsers/kkoitzschs0
ownloads/zookeeper—3.4.8/bin/. . /libsnetty—3.7.8.Final. jar: sUsers/skkoltzsch/Downloads /s zookeeper—3.4.8
Fbins. . /lib/logaj—-1.2.16. jar: /Users/kkoiltzschs/Downloads/ zookeeper—-3.4.8/bin/. . /Lib/jLine-0.9.94. jar:
/usqrs/Kho1tg5:h/Downlnuﬂﬁ/zﬂDkaPQr—Z 4.8/bins . . fzookeeper—=3.4.8. jar: /Users/kkoltzschs/Downloadss 200
ceper—3.4.8/bins. . surc/javaslibsm. Jar: /Usersskkoltzsch/Downloadss zookeeper—3. 4. 8/bins/ . . fconf:
2016 19-82 11:45%:02,851 [myid:]1 — INFO Imain:Environment®@18@] - Client environment: java.library.pat
h—/userslkkattzschllerﬂryIJava/Extenniuns./Librsry/Juvu/Extens1onsA/Netwurk/Library/Java/Extensions
i/SystemsLlibrary/JavasExtensions: fusrs/libsjava: .

2Z916-10-82 11:45:02,051 Imyid:] INFO [main: Environment@®l1ea] Client envirenment: java.io.tmpdirs=s
VBrlfoLuerslha/nhnf:hs17vzdtw$vrx:rfkphueﬂeun/T/

2O16-10-e2 11:145%:182,e51 [myid:] — IN [mainEnvironment@lea] — Client environment: java.compiler==M
A

2V16-10—-@2 11:45:02,e51 [myid:] — INFO [main: Environment@le@] — Client environment:os.name=Mac 0SS X
2016-10—-02 11:45:02,0851 [myid:] — INFO [main: Environment@lee] — Client environment:os.arch=x86_64
ZO16-10-02 11:45%:02,0851 [myid:] = INFO [main:Environment®10®8] - Client environment:os.version=1.11
-3

2016-10-0e2 11:45:082,e51 [myid:]1 - INFO main:Environment@18a] — Client enwvir tiuser.n koite
sch

2016-18-82 11:45:82,851 Imyid:1 - INFO Imain: Environment@l@e] — Client envirenment:user.home=/sUsers
frkoitzsch

2016-10-02 11:145:92,051 [myid:] — INFO [main:Environment®le8] — Client environmentiuser.dirs/sUusers/
Kkoitzsch/Downloads/zookeeper—3.4.8/bin

2016-10—-@2 11:45:02,052 [myid:] — INFO [main: ZooKeeper@43g] — Initiating client connection, connect
STtring=127.@.9.1:2181 sessionTimecut=30000 watcher-org.apache. zookeeper.ZooKesperMaintMyWwatcher@a4a6c

daree

wWelcome to ZooKeeper!

2016-10-02 11:45%:02,0872 [myid:] - INFO [main—-SendThread(127.0.0.1:2181):ClientCnxn$SendThread@loa3z2])
— Opening socket connection to server 127.0.0.1/127.0.0.1:2181. Will not attempt to authenticate us
ing SASL (unknown errar)

dLine support is enabled

2016-10-82 11:45:82,137 Imyid:] — INFO [main-SendThread(127.8.8.1:2181):ClientCnxnsSendThreada876]
— Socket connection established to 127.09.0.1/127.0.0.1:2181, initiating session

[zk: 127.0.0.1:2181(CONNECTING) @] 2016-10-02 11:45:02,202 [myid:] — INFO Imain-SendThread(127.0.0.
1:2181):ClientCnxniSendThread@l299] — Session establishment complete on server 127.0.0.1/127.0.0.1:2
181, sessionid = @x15786b0abeceeed, negotiated timeocut = 30000

WATCHER: 1
WatchedEvent state:SyncConnected type:Mone path:null

[zk: 127.08.08.1:2181(CONNECTED) @] 1s s
Figure A-4. Zookeeper status check
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Try some simple commands in the Zookeeper CLI to insure it’s functioning properly. Executing

1s /
create /zk_test my data
get /zk_test

should show results as in Figure A-5.

[zk: 127.0.0.1:2181(CONNECTED) @] 1s /

[zookeeper]

[zk: 127.0.08.1:2181(CONNECTED) 1] create /zk_test my_data
Created /zk_test

[zk: 127.0.0.1:2181(CONNECTED) 2] 1s /

[zookeeper, zk_test]

[zk: 127.0.0.1:2181(CONNECTED) 3] get /zk_test

my_data

cZxid = @x2

ctime = Sun Oct @2 11:46:15 PDT 20816
mZxid = @x2

mtime = Sun Oct @2 11:46:15 PDT 2016
pZxid = @x2

cversion = @
dataVersion = @
aclVersion = @
ephemeralOwner = @x@
datalLength = 7
numChildren = @

Figure A-5. Successful Zookeeper process check on the command line

Refer to https://zookeeper.apache.org/doc/trunk/zookeeperStarted. html for additional setup and
configuration information.

Installing Basic Spring Framework Components

As with many of the Java-centric components we use, the Spring Framework components (and their
ecosystem components, such as Spring XD, Spring Batch, Spring Data, and Spring Integration) essentially
have two parts to their installation: downloading the sources and systems themselves, and adding the
correct dependencies to the pom.xml of your Maven file. Most of the components are easy to install and use,
and a consistent set of API standards runs through all the Spring components. There are also a great deal of
online support, books, and Spring communities available to assist you with problem solving.

Basic Apache HBase Setup

Download a stable version of HBase from the download site in the usual way. Unzip and add the following
environment variables to your .bash_profile or equivalent file.

Apache Hive Setup

Apache Hive has a few additional steps to its setup. You should have installed the basic components as
shown above, including Hadoop. Download Hive from the download site, uncompress in the usual way, and
set up a schema by running the schematool.
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Kerrys-MBP:~ kkoitzsch$ schematool --initSchema -dbType derby

SLF4): Class path contains multiple SLF4) bindings.

SLF4): Found binding in [jar:file:/Users/kkoitzsch/Downloads/apache-hive-2.1.0-bin/1ib/logdj-s\f4j-impl-2.4.1.jar!/org/s\14)/impl/StaticloggerBinder.class
I

SLF4): Found binding in [jar:file:/Users/kkoitzsch/Downloads/hadoop-2.7.2/share/hadoop/common/Lib/sifd)-1log4j12-1.7.10.jar!/org/sLfd)/impl/StaticloggerBin
der.class)

SLF4): See http://www.sl\f4j.org/codes . htaldsultiple_bindings for an explanation.

SLF4): Actual binding is of type [org.apache.logging.s\f4).LogdjLoggerfactory]

Metastore connection URL: jdbc:derby:;databaseNamesmetastore_db createstrue
Metastore Connection Driver : org.apache.derby. jdbc. EmbeddedDriver
Metastore connection User: APP

Starting metastore schesa initialization to 2.1.9
Initialization script hive-schesa-2.1.0.derby.sql
Initislization script cospleted

schesaTool completed

Kerrys-MBP:~ kkoitzschs

Figure A-6. Successful initialization of the Hive schema using schematool

Additional Hive Troubleshooting Tips

Some additional tips on Hive installation and troubleshooting.
Before you run Hive for the first time, run schematool -initSchema -dbType derby
If you already ran Hive and then tried to initSchema and it's failing:

mv metastore_db metastore_db.tmp

Re-run schematool -initSchema -dbType derby
Run Hive again.

Installing Apache Falcon

Apache Falcon architecture and use is discussed in Chapter __.
Installing Apache Falcon can be done using the following git command on the command line:

git clone https://git-wip-us.apache.org/repos/asf/falcon.git falcon

cd falcon
export MAVEN_OPTS="-Xmx1024m -XX:MaxPermSize=256m -noverify" && mvn clean install

Installing Visualizer Software Components

This section discusses the installation and troubleshooting of user-interface and visualization software
components, particularly the ones discussed in Chapter __.

Installing Gnuplot Support Software

Gnuplot is a necessary support component for OpenTSDB.
On the Mac platform, install Gnuplot using brew:

brew install gnuplot

on the command line. The successful result will be similar to that shown in Figure A-7.
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2

m=> Pouring lua-=5.2.4_3.el_capitan.bottle.tar.gzx =
=== Caveats

Please be aware due to the way Luarocks is designed any binaries installed

via Luarocks=5.2 AND 5.1 will overwrite each other in fusr/locals/bin.

This is,

for now, unavoidable. If this is troublesome for you, you can build

rocks with the "——tree=" command to a special, non-conflicting location and

then add that te your “SPATH .

=== Summary

I susr/local/Cellar/luas5.2.4_3: 143 Tiles, 697.3K

wwm= Installing gnuplot dependency: readline

=== Downloading https://homebrew.bintray.com/bottles/readline-6.3.8.el_capitan.bottle.tar.gz

198 . 0%

=== Pouring readline-6.3.8.el_capitan.bottle.tar.gz
==> Caveats
This formula is keg-only, which means it was not symlinked into Sfusr/local.

05 X provides the BSD libedit library, which shadows libreadline.
In order to prevent conflicts when programs look for libreadline we are
defaulting this GNU Readline installation to keg-only.

Generally there are no consequences of this for you. If you build your
own software and it reguires this formula, you'll need to add to your
build variables:

LOFLAGS: ~Lsusr/localsopt/readlineslib
CPPFLAGS: —-I/usr/local/opt/readline/include

=== Summary

w susr/local/Cellar/readlines6.3.8B: 46 files, 2.eM

=== Installing gnuplot

=== Downloading https://homebrew.bintray.com/bottles/gnuplot-5.8.3.el_capitan.bottle.tar.gz

#EHEHR 1LOD . 0%

SRR R

wu L
=== Pouring gnuplot-5.0.3.el_capitan.bottla.tar.gz

W susr/local/Cellar/gnuplot/5.9.3: 44 fTiles, 2.3M

Kerrys—MBP:~ kkoitzsch$ which gnupleot 1
Ausr/localsbinsgnuplot

Kerrys—MBP:~ kkoitzschs$ []

Figure A-7. Successful installation of Gnuplot

Installing Apache Kafka Messaging System

Many of the details of installing and testing the Kafka messaging system have been discussed extensively in
Chapter 3. We will just touch on a few reminders here.

1.

d

© e N o g &

11.
12.

Download the Apache Kafka tar file from http://kaftka.apache.org/
downloads.html

Set the KAFKA_HOME environment variable.

Unzip file and go to KAFKA_HOME (in this case KAFKA_HOME would be /
Users/kerryk/Downloads/kafka_2.9.1-0.8.2.2).

Next, start the ZooKeeper server by typing
bin/zookeeper-server-start.sh config/zookeeper.properties
Once the ZooKeeper service is up and running, type:
bin/kafka-server-start.sh config/server.properties

To test topic creation, type:

bin/kafka-topics.sh -create -zookeeper localhost:2181 -replication-factor 1 -
partitions 1 -topic ProHadoopBDAO

To provide a listing of all available topics, type:
bin/kafka-topics.sh -list -zookeeper localhost:2181

At this stage, the result will be ProHadoopBDAO, the name of the topic you
defined in step 5.
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Send some messages from the console to test the messaging sending
functionality. Type:

bin/kafka-console-producer.sh -broker-list localhost:9092 -topic
ProHadoopBDAO Now type some messages into the console.

You can configure a multi-broker cluster by modifying the appropriate config
files. Check the Apache Kafka documentation for step-by-step processes how to
do this.

Installing TensorFlow for Distributed Systems

As mentioned in the TensorFlow installation directions at https://www.tensorflow.org/versions/r0.12/
get_started/index.html, insure that TensorFlow runs correctly by verifying that the following environment
variables are set correctly:

JAVA_HOME: the location of your Java installation

HADOOP_HDFS_HOME : the location of your HDFS installation. You can also set this
environment variable by running:

source $HADOOP_HOME/libexec/hadoop-config.sh
LD_LIBRARY_PATH: to include the path to 1ibjvm.so. On Linux:

Export LD _LIBRARY PATH=$LD LIBRARY PATH:$JAVA HOME/jre/lib/amd64/
server

CLASSPATH: The Hadoop jars must be added prior to running your TensorFlow
program. The CLASSPATH set by $HADOOP_HOME/1ibexec/hadoop-config.

sh is insufficient. Globs must be expanded as described in the 1ibhdfs
documentation:

CLASSPATH=$($HADOOP_HDFS_HOME/bin/hdfs classpath --glob) python
your_script.py

Installing JBoss Drools

JBoss Drools (http://www.drools.org) is the core infrastructure component for rule-based scheduling and
system orchestration, as well as for BPA and other purposes that we described in Chapter 8. To install JBoss
Drools, download the appropriate components from the JBoss Drools download site and be sure to add the
appropriate Maven dependencies to you pom.xml file. For the example system, these dependencies are
already added for you.
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® (' ® drools-distribution-6.4.0.Final — java « sh examples/runExamples.sh — 80x24

For example: ./runExamples.sh
Some notes:
- Working dir should be the directory of this script.
- Java is recommended to be JDK and java 6 for optimal performance
- The environment variable JAVA_HOME should be set to the JDK installation direc
tory
For example (linux): export JAVA_HOME=/usr/lib/jvm/java-6-sun
For example (mac): export JAVA_HOME=/Library/Java/Home

Starting examples app...

2016-07-26 06:00:37,576 [main] INFO DroolsExamplesApp started.

2016-07-26 06:00:37,657 [main] INFO Found kmodule: jar:file:/Users/kkoitzsch/Do
wnloads/drools-distribution-6.4.0.Final/examples/binaries/drools-examples-6.4.0.
Final.jar!/META-INF/kmodule.xml

2016-07-26 06:00:37,871 [main] INFO KieModule was added: ZipKieModule[releaseld
=org.drools:drools-examples:6.4.0.Final, file=/Users/kkoitzsch/Downloads/drools-d
istribution-6.4.@0.Final/examples/binaries/drools-examples-6.4.0.Final.jar]
2016-07-26 06:00:37,871 [main] INFO Found kmodule: jar:file:/Users/kkoitzsch/Do
wnloads/drools-distribution-6.4.0.Final/binaries/drools-pmml-6.4.8.Final.jar!/ME
TA-INF/kmodule.xml

2016-07-26 06:00:37,898 [main] INFO KieModule was added: ZipKieModule[releaseld
=org.drools:drools-pmml:6.4.0.Final, file=/Users/kkoitzsch/Downloads/drools-distr
ibution-6.4.@.Final/binaries/drools-pmml-6.4.0.Final.jar]

Figure A-8. Successful installation and test of JBoss Drools

Verifying the Environment Variables

Please insure the environment variable PROBDA_HOME, which is the root project directory, is set correctly
inthe .bash_profile file.

Basic environment variable settings are essential. Most of the components require basic variables to be
set, such as JAVA_HOME, and the PATH variable should be updated to include the binary (bin) directories
so programs can be executed directly. Listing A-1 contains a sample environment variable file as used by the
example program. Other appropriate variables can be added as needed. A sample .bash_profile file is also
provided with the online example code system.

Listing A-1. A sample of a complete environment variable .bash_profile file

export PROBDA_HOME=/Users/kkoitzsch/prodba-1.0

export MAVEN_HOME=/Users/kkoitzsch/Downloads/apache-maven-3.3.9

export ANT_HOME=/Users/kkoitzsch/Downloads/apache-ant-1.9.7

export KAFKA_HOME=/Users/kkoitzsch/Downloads/

export HADOOP_HOME=/Users/kkoitzsch/Downloads/hadoop-2.7.2

export HIVE_HOME=/Users/kkoitzsch/Downloads/apache-hive-2.1.0-bin

export CATALINA_HOME=/Users/kkoitzsch/Downloads/apache-tomcat-8.5.4

export SPARK_HOME=/Users/kkoitzsch/Downloads/spark-1.6.2

export PATH=$CATALINA HOME/bin:$HIVE_HOME/bin:$HADOOP_HOME/bin:$ANT_HOME/bin:$MAVEN_ HOME/
bin:$PATH

Make sure to run the Hadoop configuration script SHADOOP_HOME/libexec/Hadoop-config.sh when
appropriate as shown in Figure A-9.
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hadoop-2.7.2 — -bash — 112x58
[Kerrys-MBP:hadoop-2.7.2 kkoitzsch$ 1s
LICENSE. txt bin lib sbin
NOTICE.txt etc libexec share

README. txt include logs

[Kerrys-MBP:hadoop-2.7.2 kkoitzsch$ source $HADOOP_HOME/libexec/hadoop-config.sh

[Kerrys-MBP:hadoop-2.7.2 kkoitzsch$ printenv

HADOOP_DATANODE_OPTS=-Dhadoop.security.logger=ERROR,RFAS

SPARK_HOME=/Users/kkoitzsch/Downloads/spark-1.6.2

TERM_PROGRAM=Apple_Terminal

HADOOP_IDENT_STRING=kkoitzsch

SHELL=/bin/bash

TERM=xterm-256color

CATALINA_HOME=/Users/kkoitzsch/Downloads/apache-tomcat-8.5.4

HADOOP_HOME=/Users/kkoitzsch/Downloads/hadoop-2.7.2

TMPDIR=/var/folders/hz/nhnfch5j7vzdtwbvrxcrfkphB@@dgn/T/

HADDOP_PID_DIR=

Apple_PubSub_Socket_Render=/private/tmp/com.apple. launchd.ABCMnMZhrf/Render
HADOOP_PREFIX=/Users/kkoitzsch/Downloads/hadoop-2.7.2

TERM_PROGRAM_VERSION=361.1

OLDPWD=/Users/kkoitzsch

TERM_SESSION_ID=CE4DC6D4-172A-4758-BOBA-BCF4C5FBC4DY

ANT_HOME=/Users/kkoitzsch/Downloads/apache-ant-1.9.7

USER=kkoitzsch

HBASE_HOME=/Users/kkoitzsch/Downloads/hbase-1.8.3

SSH_AUTH_SOCK=/private/tmp/com.apple. launchd.PCZAEMIKid4/Listeners

MALLOC_ARENA_MAX=4

__CF_USER_TEXT_ENCODING=@x1F5:0x@:0x@

HADOOP_SECURE_DN_PID_DIR=

HADOOP_SECURE_DN_LOG_DIR=/

MAVEN_HOME=/Users/kkoitzsch/Downloads/apache-maven-3.3.9

PATH=/Users/kkoitzsch/anaconda/bin: /Users/kkoitzsch/Downloads/spark-1.6.2/bin: /Users/kkoitzsch/Downloads/apache-
tomcat-8.5.4/bin: /Users/kkoitzsch/Downloads/apache-hive-2.1.@8-bin/bin:/Users/kkoitzsch/Downloads/hadoop-2.7.2/bi
n:/Users/kkoitzsch/Downloads/apache-ant-1.9.7/bin: /Users/kkoitzsch/Downloads/apache-maven-3.3.9/bin: /usr/local/b
in:/usr/bin:/bin: fusr/sbin:/sbin

HADOOP_HDFS_HOME=/Users/kkoitzsch/Downloads/hadoop-2.7.2

HADOOP_CLIENT_OPTS=-Xmx512m

HIVE_HOME=/Users/kkoitzsch/Downloads/apache-hive-2.1.8-bin
HADOOP_COMMON_HOME=/Users/kkoitzsch/Downloads/hadoop-2.7.2

PWD=/Users/kkoitzsch/Downloads/hadoop-2.7.2

HADOOP_YARN_HOME=/Users/kkoitzsch/Downloads/hadoop-2.7.2
JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8.@_182. jdk/Contents/Home
HADOOP_CLASSPATH=/Users/kkoitzsch/Downloads/hadoop-2.7.2/contrib/capacity-scheduler/. jar
HADOOP_CONF_DIR=/Users/kkoitzsch/Downloads/hadoop-2.7.2/etc/hadoop

LANG=en_US.UTF-8

PROBDA_HOME=/Users/kkoitzsch/probda

XPC_FLAGS=0x9

HADOOP_PORTMAP_OPTS=-Xmx512m

HADOOP_OPTS= -Djava.net.preferIPv4Stack=true -Dhadoop.log.dir=/Users/kkoitzsch/Downloads/hadoop-2.7.2/l0gs -Dhad
oop. log. file=hadoop.log -Dhadoop.home.dir=/Users/kkoitzsch/Downloads/hadoop-2.7.2 -Dhadoop.id.str=kkoitzsch -Dha
doop.root.logger=INFO,console -Djava.library.path=/Users/kkoitzsch/Downloads/hadoop-2.7.2/1ib/native -Dhadoop.po
licy.file=hadoop-policy.xml -Djava.net.preferIPv4Stack=true
HADOOP_SECONDARYNAMENODE_OPTS=-Dhadoop.security.logger=INF0O,RFAS -Dhdfs.audit.logger=INFO,NullAppender
XPC_SERVICE_NAME=0

SHLVL=1

HOME=/Users/kkoitzsch

HADOOP_SECURE_DN_USER=

HADOOP_NAMENODE_OPTS=-Dhadoop.security.logger=INFO,RFAS -Dhdfs.audit.logger=INFO,NullAppender
HADOOP_MAPRED_HOME=/Users/kkoitzsch/Downloads/hadoop-2.7.2

Figure A-9. Successful running of Hadoop configuration script and test with printenv

Use “printenv” on the command line to verify default environment variable settings on start-up of a
terminal window, as shown in Figure A-9.
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APPENDIX B

Getting, Installing, and Running
the Example Analytics System )

The example system supplied with this book is a standard Maven project and may be used with a standard
Java development IDE, such as Eclipse, Intelli], or NetBeans. All the required dependencies are included

in the top-level pom.xml file. Download the compressed project from the URL indicated. Uncompress and
import the project into your favorite IDE. Refer to the README file included with the example system for
additional version and configuration information, as well as additional troubleshooting tips and up-to-date
URL pointers. The current version information of many of the software components can be found in the
VERSION text file accompanying the software.

Some standard infrastructure components such as databases, build tools (such as Maven itself,
appropriate version of Java, and the like), and optional components (such as some of the computer vision-
related “helper” libraries) must be installed first on a new system before successfully using the project.
Components such as Hadoop, Spark, Flink, and ZooKeeper should run independently, and the environment
variables for these must be set correctly (HADOOP_HOME, SPARK_HOME, etc.). Please refer to some of the
references given below to install standard software components such as Hadoop.

In particular, check your environment variable PROBDA_HOME by doing a “printenv” command on
the command line, or its equivalent.

For required environment variable settings and their default values, please refer to Appendix A.

Run the system by executing the Maven command on the command line after cd’ing to the source
directory.

cd $PROBDA_HOME
mvn clean install -DskipTests

For additional configuration and setup information, see Appendix A.
For tests and example script pointers and directions, see the associated README file.

Troubleshooting FAQ and Questions Information

Troubleshooting and FAQ information can be referred to at the appropriate web page.
Questions may be sent to the appropriate e-mail address.

References to Assist in Setting Up Standard Components

Venner, David. Pro Hadoop. New York, NY: Apress Publishing, 2009.
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Algorithm
coding, examples, 146
survey, 139-141
types, 139-141
Anaconda Python system
initial installer diagram, 86
installation, 87
Analytical engine
rule control, 160
Analytic applications, 267, 268
Angular JS
configuration file, 191-192
console result, 194
d3.js, 197
directories and files, 187-188
elasticUI, 186
example system, 187
graph database, 198
handcraft user interfaces, 199
JHipster, 186
Maven stub, 190
Neo4j, 199
npm initialization, 188-189
package.json file, 195
sigma.js-based graph visualization, 198
./src/main/webapp/WEB-INFE/
beans.xml, 195-197
./src/test/javascript/karma.conf.js, 193
ANSI SQL interface and
multi-dimensional analysis, 54
Apache Beam, 80, 268
Apache Bigtop, 61-62
Apache Calcite, 74-75
Apache Cassandra, 73
Apache Falcon, 82
Apache Flink, 80
Apache Hadoop, 80, 268
Apache Hadoop Setup, 280
Apache Kafka, 12, 80
Apache Kafka messaging system, 60
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Apache Katta
configuration, 96-97
initialization, 96-97
installation, 96-97
solr-based distributed data pipelining

architecture, 96

Apache Kylin, 74

Apache Lens (lens.apache.org)
Apache Zeppelin, 72
architecture diagram, 70-71
installed successfully using

Maven on MacOSX, 71

login page, 72
OLAP commands, 71, 74
REPL, 71-72
zipped TAR file, 71

Apache Lenya, 268

Apache Lucene, 16

Apache Mahout
classification algorithms, 54
and Hadoop-based machine

learning packages, 54

software frameworks, 54
in visualization, 55
Vowpal Wabbit, 54

Apache Maven, 44-45

Apache MRUnit, 61

Apache NiFi, 268

Apache Phoenix, 18

Apache POI, 182

Apache software components, 267

Apache Solr, 16

Apache Spark, 8, 10-11, 13, 18, 22-26, 80

Apache Spark applications, 73

Apache Spark-centric technology stack, 142

Apache Spark libraries

and components

different shells to choose from, 56
Sparkling Water (h20.ai), 58
H20 Machine Learning, 58
Python interactive shell, 56
streaming, 57
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Apache Storm, 270
distributed technology stack, 141
Apache Tika, 82
NLP, 125
Apache Zeppelin, 72
Artificial intelligence (AI), 7
ATM withdrawal transaction, 67
Automated microscopy
color-coded regions, 208
contour extraction, 207
fruit fly tissue slice, 206
geometric computation, 209
neural tissue, 210
stages, 206

Bayesian analysis component
.bash_profile file, 216
Code Challenges, 216, 2009
credit card fraud algorithm, 215-216
credit card transactions, 215
CSvVfile, 217
data model, 215
Luhn test, 217
merging valid and invalid real
credit card numbers, 217
physical experiment, 215
Bayesian approach, 213
Bayesian techniques, 142-143, 237
Belief networks, 215
Big data analytic systems (BDAs)

analytic application-centric components, 268

Annual data volume statistics, 3-4
Apache Lucene, 16

Apache Solr, 16

architectures, 16

artificial intelligence (AI), 7
business analytics, 266

classic ecosystem components, 18
cognitive computing, 7
components and functionalities, 266
data and metadata formats, 265
database types and examples, 18
data formats, 17

data pipeline, 21

data sources and application dvelopment, 22

data visualization and reporting (see Data
visualization and reporting, BDAs )
deep learning, 7
designing and building
Apache Spark, 8
computation engine steps, 10
computations to be performed, 10
cyclic process, 9
dashboards, 11
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data cleansing processes, 10
data sources, 10
and defining, 8
document, test, refine and repeat, 11
frameworks and IDEs, 8
gather and organize initial data sets, 10
identify requirements, 9
initial technology stack, 10
input and output data formats, 10
output displays and controls, 11
output reports, 11
place filtered results, 10
preprocess data sets,
computation engine, 10
rapid-iteration development process, 8
result formats, 10
distributed technology, 264
Drones and robot technology, 265
Eclipse IDE, 21-22
evaluation system, 23
faster rate, 3
global data resources, 3
Hadoop (see Hadoop))
IABD (see (Images as Big Data (IABD))
image toolkits leverage, 242
JDBC, 18
key functional requirements, 267
micro-card, 264
microfilm solutions, 265
necessary math, 8
and NLP, 7
old school bar graphs, 265
old school candlestick graphs, 266
Phoenix, 18
programming applications and example, 41
Python and Scala programming languages, 17
security and integrated security, 267
sensor fusion, 265
in software development, 3
SQL and NoSQL querying, 7
standard toolkits (see Standard toolkits)
toolkits, 18
United States Census, 264
UNIVAC computer’s assistance, 264

Big data processing paradigm, 235
Bioinformatics

biological and medical data sets, 203

cache repository, 205

data analytics pipeline, 203

DICOM images, 204

distributed analytics, 203

high-level software component diagram, 205
image processing, 205

optical microscope, 203

software and hardware components, 204
third-party libraries, 203
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Biology, 203 Data pipelines
Bootstrap.js, 180 Apache Beam, 80
Business Intelligence (BI), 266 Apache Falcon, 82
Apache Tika, 82
C architecture diagram, 79-80
computation and transformation, 84
Cassandra database, 162 data sources and sinks, 82
CEP. See Complex event processor (CEP) package structure, 77-78
Chronology, 263-264 Probda system, 77, 79
Clustering, classification visualizing and reporting
and recommendation, 237 initial installer diagram,
Cognitive computing technologies, 7 Anaconda Python system, 86
Complex event processor (CEP), 151 JavaScript-based toolkits, 87
C++orC,29 Jupyter notebook program, 88
Cores, 97 Jupyter visualization feature, 90
Credit card validation notebook-oriented software tool, 85
Apache Storm supervisor, 221 Python ecosystem, 85
Luhn check, 218 successful installation of
Luhn credit card validation algorithm, 219 Anaconda Python system, 87
machine learning techniques, 219 successfully installing Anaconda, 89
principles, 218 TensorFlow, 87
training and detection phase, 220 Data visualization, 272
Zookeeper, 221 Data visualization and reporting, BDAs
CRUD operations, 117 data tier, 20
CURL command, 149 DevExpress toolkit, 20
Cypher graph query languages, 65 service tier, 20
standard ETL
D (extract-transform-load) concepts, 20
standard libraries, 19
Databases viewing and manipulation, 19
dataflow, 64 web tier, 20
distributed system data sources, 64 Data Warehouse components, 266
ETL processing lifecycle, 64, 67 DBEF files, 82-83
graph databases, 68 Deep learning, 145
graph query languages, 65 Digital Pebble’s Behemoth, 7
Hadoop and UA components, 70 Distributed analytics environment
Hadoop ecosystem, 70 Apache Hadoop Setup, 280
relational databases, 70 Apache HBase Setup, 283
types, 63-64 Apache Hive Setup, 283-284
Data pipeline, 21 Hive Troubleshooting, 284
abstraction, 257 infrastructure components, 278
architecture and description, 257-258 install Apache Zookeeper, 281
control + data (control flow) installation Plan, 275
pipelining, 261 installing Apache Falcon, 284
data sources and sinks, 258 installing Apache Kafka
EIP-based development, 259 Messaging System, 285-286
EIP diagram, 261 installing Gnuplot Support Software, 284-285
elements, 258 installing JBoss Drools, 286
example system, 258 installing TensorFlow for
middle-out development, 259 Distributed Systems, 286
rule-based messaging pipeline installing Visualizer Software Components, 284
development, 260 Linux/MacOS based environment, 275
transmission steps, 257 RESTful interface, 275
Data pipeline architecture, 19 Spring framework components, 283
data visualization and reporting (see Data system setup, 278
visualization and reporting, BDAs) verifying, environment variables, 287-288
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Distributed analytics system, 203

DL4j, 47

Domain-based Apache Mahout reasoning. See
Geographical data analytics process

Drools rule system, 46

Druid, 80

E

Eclipse, 289
Eclipse IDE, 21-22, 111
installation, 173
Elasticsearch, 149
binary directory, 109
crime data CSV file, 109-110
CRUD operations, 117
database query, command line, 112
schema update logged in elasticsearch
console, 111
Spring Data, 120
start up successfully, 108
successful test, 111
Elasticsearch, Logstash and Kibana (ELK) stack
definition, 106-107
elasticsearch features vs. Apache
Solr features, 106
installing, 108
search engine/pipeline architecture
diagram, 108
visualization, 107
Elasticserch-Hadoop connector, 228
ELK Stack, 149
Enterprise Integration Management (EIM), 266

Enterprise Integration Pattern (EIP), 17, 41, 259, 266
Enterprise Performance Management (EPM), 267

Environment variable, 289

Erlang language, 29

Extract-Transform-Load (ETL)
processing lifecycle, 64, 67

F

Flink, 289
Forward chaining, 151
Front-end dashboarding and reporting, 29

G

GATE
installing and testing, 132
Java test program, 134
General purpose data pipelines, 261
Genetic systems, 237
Geographical data analytics process
abstract component view, 224
Apache Mahout, 223
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DBF importer program, 225
DBF reader, 225-226
domain-centric application, 223
elasticsearch and Kibana testing, 225, 227
evidence and probabilities, 229
Hadoop ecosystem and HDFS, 228
hypothesis generator, 224
knowledge source types, 224
Mahout analytical component, 230
Mahout-based software component
architecture, 225
points of interest, 229
probability/evidence grid, 229
resource finder system, 223
Texas latitude and logitude and
simple counts, attribute, 230
valuable minerals, 223
Geolocation-centric application, 233
Glueware, 165, 179
Gobblin system, 80, 83
Gradle, 241
Graph databases, 68
Graph query languages, 65
Gremlin graph query language, 66-67
ATM withdrawal transaction, 67
data objects, 67
Java API, TinkerPop, 67
logging cycle status and errors, 67
master data and associated
transactional data, 67
and MVC pattern, 67
reference data, 67
vertex, 66
Ground truth database, 231

H

H20 Machine learning, 58
Hadoop, 80, 289

challenges, 272-273
cluster coordination, 269
core component, 5
core foundation, 5
data litegration capabilities, 269
distributed storage, 269
ecosystem
Polyglot components, 13
structure, 14
implements, 11
framework, 5
functional architecture, 268
installation, 93-94
LISP language, 5
machine learning, 269
machine learning and deep
learning techniques, 271-272



Monitoring and System Management, 269
NoSQL databases, 269
query and reporting capabilities, 269
R statistical library, 5
scripting capabilities, 269
security, auditing, and compliance, 269
Windows platform, 21
workflow and scheduling, 269
Hadoop 2 Technology Stack diagram, 5-6
Hadoop analytics. See Smart cartography (SC)
Hadoop-centric system, 68
HadoopConnect component, 174
Hadoop Distributed File System (HDFS), 94
Apache Oozie, 210
code contributions, 212
command line, 212
HIPI package, 210
online instructions, 210-211
program, 211-212
successful description, 213
University of Virginia's HIPI system, 212Hadoop
ecosystem, 63, 70, 74, 237
Hadoop-elasticsearch connector, 227
Hadoop/Spark ecosystems, 246
Hadoop system, 203
Hadoop technologies and capabilities, 270
HAWQ, 268
HIPI image bundle (HIB), 239
HIPI system
Gradle, 241
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