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Personlichkeiten werden nicht durch schone
Reden geformt, sondern durch Arbeit und
eigene Leistung.

Albert Einstein (1879-1955)



Preface

This book presents a novel concept for introducing the finite element method,
applied in the context of solid mechanics. It presents a major conceptual shift, i.e.,
taking away lengthy theoretical derivations from the face-to-face interaction with
students, focusing on the summary of key equations and concepts and to practice
these on well-chosen example problems. The theoretical derivations are provided as
additional reading, and students must study and review the derivations in a
self-study approach. The theoretical foundation is provided to solve a compre-
hensive design project in the context of tensile testing. A classical clip-on exten-
someter serves as the demonstrator on which to apply the provided concepts. The
major goal is to derive the calibration curve based on different approaches, i.e.,
analytical mechanics and based on the finite element method, and to consider
further design questions such as technical drawing, manufacturing, and cost
assessment. Working with two concepts, i.e., analytical and computational
mechanics, strengthens the vertical integration of knowledge and allows the student
to compare and understand the different concepts, as well as highlighting the
essential need for benchmarking any numerical result. It is beyond question that
such an approach can serve only as a first introduction to this powerful and complex
method and that further in-depth study is required for a reliable and confident
application of the finite element method.

Southport, Australia Andreas Ochsner
September 2017
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Chapter 1
Introduction and Problem Formulation

Abstract This chapter briefly reviews different teaching approaches for computa-
tional statics. The major focus is on the presentation of the design project which
serves to introduce the basic application of the finite element method. The project
is taken from the context of tensile testing of engineering materials and relates to
the design of a clip-on extensometer. The mechanical model of this sensor can be
simplified to a L-shaped frame structure which allows the application of classical
mechanics as well as a computational approach. Thus, the design problem also serves
toreview and strengthen classical applied mechanics and its comparison with modern
numerical approaches.

The incorporation of projects in the classical curriculum structure of higher educa-
tion dates back to the late 1960s. Nowadays, some institutions even have moved to
project-based curricula in engineering [15]. Traditional teaching approaches would
introduce the finite element method based on lectures, which focus on the underly-
ing theory, and tutorials, which deepen the topic, mainly based on hand calculations
of simple problems. Some universities may additionally offer computer laborato-
ries where either a classical programming language (e.g. FORTRAN or C++) or a
multi-paradigm numerical computing environment (e.g. Maple or MATLAB) is used
to write small finite element routines. Alternatively, a commercial package might be
used. A more recent approach, i.e., project-based learning (PBL), tries to incorporate
these different teaching elements and to focus around a certain design project. Such
approaches are believed to facilitate the learning process and are closer to engineer-
ing practice. In many cases, commercial finite element packages are used and quite
complex structures are investigated or even optimized [22, 37, 42]. The analysis
of complex structures is normally linked to the application of a larger number of
elements and the evaluation of results is, many times, based on contour plots of field
quantities (‘colored pictures’). The merit of this approach lies in showing the strength
of the method and to illustrate how the theory is transferred to a commercial pro-
gram. Despite the fact that there are numerous commercial finite element packages
available, the general steps to perform a finite element analysis do not change and
only the graphical interface needs to be mastered when moving from one package to
another one.

© Springer International Publishing AG 2018 1
A. Ochsner, A Project-Based Introduction to Computational Statics,
https://doi.org/10.1007/978-3-319-69817-5_1



2 1 Introduction and Problem Formulation

However, solely focusing on commercial packages and complex structures involves
many dangers for the finite element beginner. Without the knowledge of the under-
lying theory, a generation of an appropriate and accurate computational model (e.g.
element type, mesh size, and refinement) might be difficult. Furthermore, to rely
on displayed colors or values might be misleading if, for example, the difference
between nodal and integration point results is not known. Thus, a serious introduc-
tion to the finite element method must incorporate the corresponding theory and must
enable the user to judge the quality of the obtained results.

The project-based introduction to the finite element method in this book focuses
on a simple but real engineering structure which allows to connect analytical mechan-
ics to the computational approach based on the finite element method. Doing so, the
basics of applied mechanics are reviewed, strengthened, and linked to a numerical
approach. Furthermore, the project allows to address further questions from many
other subjects such as material selection, manufacturing, costs and lightweight poten-
tial. Nevertheless, it must be highlighted that this approach is only a first introduction
to the finite element method and a reliable application requires further studies into
the underlying theory, as well as comprehensive practice.

1.1 Project Outline

The proposed design project is related to the classical tensile test (see, for exam-
ple, [25]), i.e., the most important and common test to characterize the mechanical
behavior of engineering materials. The quantities to be measured are normally the
applied force and a distance in loading direction.' The measurements are then con-
verted to the acting stress and strain, normally expressed as so-called engineering
quantities. The force measurement is normally based on a load cell and does not
imply major problems if the capacity is chosen according to the expected force
range. The measurement of the strain is more demanding since the data recording
should happen in the gage section on the specimen and not, for example, be based
on the movement of the machine crosshead. The application of sensors, such as
strain gages or extensometers, directly on the specimen’s surface or noncontacting
optical approaches such as video or laser extensometers are the general options for
this task [19, 32]. Figure 1.1 shows a typical clip-on extensometer with knife edges
used to attach the sensor on the specimens via two clip-springs. These knife edges
ensure that the ends of the sensor legs and the corresponding part of the specimen
(gage length) perform the same movement, i.e., displacement but more or less ‘free’
rotation. Other configurations are possible where the feet would be fixed with small
screws on the specimen (quite common in fracture mechanics). The set-up of this
type of sensor looks like a Li-shaped frame structure? with an additional horizontal

ISome evaluation procedures require also a distance measurement perpendicular to the loading
direction in order to evaluate POISSON’s ratio.

2Civil engineers would call it a portal frame.



1.1 Project Outline 3

(a) Eyy, L, Iy

strain
gage

Ey, Ly Iy

(b)

F>0— D g — o

| L+ AL |

(5 specimen )

Fig. 1.2 Schematic sketch of the extensometer and tensile specimen: a undeformed and b deformed
state

mechanical protective mechanism to avoid overexpansion (elongation failure) of the
Sensor.

The extensometer shown in Fig. 1.1 can be simplified to a mechanical model as
shown in Fig. 1.2. From this representation it can be seen that all three members
of the frame undergo at least a bending deformation as soon as the specimen is
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(a)

beam with
strain gages

Fig. 1.3 Alternative design of an extensometer (Epsilon Technology, USA): a overall view and b
detail of the beam with strain gages

elongated. Based on the configuration with knife edges, a free rotation of ends of the
extensometers legs is assumed. Furthermore, the measuring principle is indicated,
i.e. the strain in the horizontal member is recorded via a strain gage (Esirain gage) and
must be related to the strain (&specimen) in the actual specimen (so-called calibration).
Thus, the engineering task is to relate the recorded signal in the extensometer to the
real strain in the specimen based on a factor or some kind of equation.

An alternative configuration based on the same measuring principle is shown in
Fig. 1.3. The beam with strain gages on both sides (i.e., one in the tension and the
other one in the compressive strain regime) does not span over the entire gage length
of this extensometer model.

A similar design to Fig. 1.1 is shown in Fig. 1.4 where the knife edges and the
mechanical protective mechanism can be clearly identified.

Based on the explanations regarding project-based introductions of the finite ele-
ment method presented at the beginning of this chapter and the peculiarities of the
sensor design as outlined in Figs. 1.1, 1.2, 1.3 and 1.4, a structure of the design
process as outlined in Fig. 1.5 has been created. The project has been split in two
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Fig. 1.4 Alternative design of an extensometer (NCS, China)
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6 1 Introduction and Problem Formulation

design phases. The initial design phase is restricted to classical analytical mechanics
in order to derive a general expression of the calibration curve. It is worth noting
that no specific numbers should be assigned to the derivation and a general, i.e. as a
function of the design variables (geometrical and material properties of the sensor),
expression should be derived. This will allow to later easily check different design
proposals in order to have a reasonable ratio between both strain values. In addi-
tion, reviewing analytical mechanics and applying it to a practical design problem
allows to strengthen the vertical knowledge integration and students should be able
to understand the different benefits and drawbacks to each method. In addition, it was
decided to avoid lengthly derivations in this first introduction to the finite element
method and to provide the derivations as additional reading for weekly self-study.
The textbooks mentioned in the literature section may serve for this purpose. Thus,
the following chapters collect only a summary of basic concepts and equations with
a focus on their application to relatively simple problems.

The design process as outlined in Fig. 1.5 contains components from other courses
such as material selection or manufacturing. This is not covered in this book but is a
valuable addition to the expected design reports since it relates to a complete design
approach as known from engineering practice.

1.2 Assessment Items and Marking Criteria

The proposed design project can be handled as a group or individual assignment.
Obviously, there are different benefits and drawbacks to each method. Working in
groups or teams is definitely closer to the industrial context where larger projects are
nowadays handled in multidisciplinary teams. Thus, it is essential for an engineer to
be trained to work in such a context. This ability is connected to many different soft-
skills, ranging from communication and presentation skills to simplifying complex
circumstances for team members from other areas of expertise. If students are work-
ing in groups, it is important to include a self-assessment component to evaluate the
contribution of each team member. It is sometimes not too uncommon that all team
members give each other the maximum score in order to increase their final mark.
Thus, the allocated weight for any self-assessment must be carefully chosen. Another
typical occurrence is that very good students do not really like classical group work
and the corresponding evaluation as a team. These students sometimes feel that they
are carrying someone else’s load in addition to their own work package. Another
point to consider is the grouping of students in teams. Giving the students freedom to
form their own team of x students is in general quite popular while a random selec-
tion of students by the course convenor is less popular. However, the latter avoids the
problem that some students are not able to join a team, or at least claim so. Once the
project is completed or at least has progressed to a certain stage, the findings should
be summarized and communicated. In the case of group projects, this may happen
in the form of group or individual reports and/or group presentations. Oral presenta-
tions are an important skill but group presentations involving all the team members
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with only a few minutes of presentation time (e.g. 2 to 3 min) for each member are
difficult to evaluate if individual marks are required. The aforementioned comments
also hold for the submission of group reports, i.e. top students are normally less in
favor of the procedure. Thus, reports should have at least an individual submission
component for students to have the possibility to distinguish from the other team
members. In any case, it is important to not only rely on non-supervised assessment
items, i.e. design reports. To avoid that a student or a group could ‘outsource’ the
preparation of the design project, a significant supervised assessment item (quiz or
exam) must be included. It is also recommended that the students must pass this
assessment item (hurdle) to pass the entire course.

Based on the above refections, the following assessment scheme is proposed:

e Initial design report (20% of total mark),
e final design report (30% of total mark), and
e final exam (50% of total mark).

The split into an initial and final design report allows to provide a qualified feedback
to the students at an intermediate stage of the semester. Furthermore, it allows to split
the calculation approach in the application of analytical mechanics (initial design)
and the finite element method (final design).

The selected marking criteria for the initial design report are summarized in
Table 1.1. It might be questioned why a course on computational methods should

Table 1.1 Initial design report: elements and marking criteria (20% of total mark)
Element Comment Weight

Formal aspects punctual submission; maximum number of pages 10%
(10; including everything, e.g. appendix etc.); PDF
format; each page with name and enrollment
number; only electronic submission; suitable font
size and line spacing; A4 format; naming of the file
as course code_family name_first
name .pdf

Initial sketches only freehand sketches of the sensor design; indicate | 15%
all dimensions with variables

Analytical calculations | use analytical mechanics (i.e., differential 50%
equation—based approach and energy approach) to
characterize the deformation behavior of your
sensor; compare the results of both approaches;
derive a general expression, i.e., based on variables,
to relate the specimen’s deformation/strain to the
measured strain in the sensor; justify the selection of
your structural members

Literature sufficient and appropriate references 10%

Peer-assessment assess the engagement of your group members; 15%
provide a small paragraph for each member and give
a final mark
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Table 1.2 Final design report: elements and marking criteria (30% of total mark)
Element Comment Weight

Formal aspects punctual submission; maximum number of pages 5%
(20; including everything, e.g. appendix etc.); PDF
format; each page with name and enrollment
number; only electronic submission; suitable font
size and line spacing; A4 format; naming of the file
as course code_family name_first
name .pdf

Technical drawings provide complete manufacturing drawings and 10%
specify the manufacturing process; if your sensor is
composed of different parts, provide assembly
instructions; explain in detail how the sensor
measures and records the deformation (e.g. use of
strain gages); explain the fixation on the specimen

FE calculations use finite-element ‘hand calculations’ to derive a 50%
general equation for the deformation behavior of
your sensor; compare and validate your results with
the analytical calculations and the commercial finite
element package, which was introduced in the
course; justify the element types and mesh density
used; explain in detail all chosen dimensions of the
sensor; estimate the weight of the sensor

Calibration provide clear instructions on the calibration process | 7.5%
of your sensor
Cost estimate predict the entire costs for a prototype, including 7.5%
material, manufacturing, and electronic components
Literature sufficient and appropriate references 5%
Peer-assessment assess the engagement of your group members; 15%
provide for each member a small paragraph and give
a final mark

include a major reference to analytical mechanics, which is the topic of a few other
courses. On the one hand, it definitely strengthens the vertical integration of knowl-
edge and shows a practical application of the classical engineering mechanics. On
the other hand, the analytical solution can serve to validate the results of the finite ele-
ment approach. It should be noted that the validation of computational results is the
most important and challenging task of an engineer. This becomes quite demanding
for complex engineering structures where no analytical solutions are available.

The marking criteria for the final design report are summarized in Table 1.2. It can
be seen that also areas of other courses are well represented (e.g., technical drawing,
manufacturing, cost assessment) in order to generate a complete design approach.



Chapter 2
Review of Analytical Mechanics

Abstract This chapter treats simple structural members based on two different
analytical approaches. On the one hand based on fundamental equations of contin-
uum mechanics, i.e., the kinematics, the equilibrium and the constitutive equation,
the describing partial differential equations are provided, including their general solu-
tion based on constants of integration. As an alternative approach, the total strain
energy of a system is introduced and applied in Castigliano’s theorems. The covered
structural members are rods (tensile deformation) as well as thin and thick beams
(bending deformation). The provided concepts are finally applied to the extensometer
design problem.

2.1 Overview: One-Dimensional Structural Members
2.2 Partial Differential Equation-Based Approaches

2.2.1 Rods

A rod is defined as a prismatic body whose axial dimension is much larger than its
transverse dimensions [2, 10, 16, 34, 36]. This structural member is only loaded
in the direction of the main body axes, see Fig.2.1. As a result of this loading, the
deformation occurs only along its main axis.

Derivations are restricted many times to the following simplifications:

e only applying to straight rods,

e displacements are (infinitesimally) small,
e strains are (infinitesimally) small, and

e the material is linear-elastic.

The three basic equations of continuum mechanics, i.e. the kinematics relationship,
the constitutive law and the equilibrium equation, as well as their combination to the
describing partial differential equation (PDE) are summarized in Table 2.1.

Under the assumption of constant material (E = const.) and geometric (A =
const.) properties, the differential equation in Table 2.1 can be easily integrated twice
© Springer International Publishing AG 2018 9
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Fig. 2.1 Schematic ()
representation of a > — ]
continuum rod e —>— >
'
—— ———————
E A
L

Table 2.1 Different formulations of the basic equations for a rod (x-axis along the principal rod
axis), with £;(...) = 42

Specific formulation ‘ General formulation
Kinematics

£ (x) = ) e (¥) = L1 (ux(x))
Constitution

0, (x) = Ez,(x) |02 (x) = Cer(x)
Equilibrium

do | 2 — g £ (o) +b=0

PDE
& (E@A®Y) + pe) =0 L] (EALY () + py =0

for constant distributed load (p, = pog = const.) to obtain the general solution of the
problem [24]:

1 1
U, (x) = =1 (—5 pox’ 4+ cix + Cz) , 2.1)

where the two constants of integration ¢; (i = 1, 2) must be determined based on the
boundary conditions (see Table2.2). The following equation for the internal normal
force N, was obtained based on one-time integration of the PDE and might be useful
to determine some of the constants of integration:

duy (x)
Ny(x) = FEA———— = —pox + ¢ . 2.2)
dx

The internal reactions in a rod become visible if one cuts — at an arbitrary location
x — the member in two parts. As a result, two opposite oriented normal forces N,
can be indicated. Summing up the internal reactions from both parts must result in
zero. Their positive direction is connected with the direction of the outward surface

normal vector and the orientation of the positive x-axis, see Fig.2.2.
Once the internal normal force N, is known, the normal stress o, can be calculated:

N (x)

n (2.3)

ox(x) =
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Table 2.2 Different boundary conditions and corresponding reactions for a continuum rod (defor-
mation occurs along the x-axis)

Case Boundary Condition Reaction
T
T
-~ R
.. u.(o=0)=0 Fra== .
/
= w0 us(er=L) = uo =t
_L _L
E= R pAteO N ()=, et
_L _L

Fig. 2.2 Internal reactions =T N, N,
for a continuum rod == ===

Fig. 2.3 Axially loaded rod: (a) strain
a strain and b stress
distribution
Ex —>
(b) stress
[ —» T

Application of HOOKE’s law (see Table 2.1) allows us to calculate the normal strain
.. Typical distributions of stress and strain in a rod element are shown in Fig.2.3.
It can be seen that both distributions are constant over the cross section.

To be able to realize a closed-form presentation with discontinuities (e.g. load,
material, or geometry), the so-called MACAULAY bracket! can be used for closed-
form representations. This mathematical notation has the following meaning:

0 for x < a

(x —a)" forx > a. 2.4)

<x—a>"=[

'In the German literature, this approach is named after August Otto FOPPL (1854—1942).
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(@ (b) (c)

(2 — a)° (z — a)! (z—a)?

(z —a) (z — a)?

= - = >

a T a €T a x

Fig. 2.4 Graphical representation of the first three discontinuous functions according to Eq. (2.4):
ajump (n = 0); b kink (n = 1); ¢ smooth transition (n = 2). Adapted from [2]

In particular with the case n = 0

Oforx <a
_ 0 _
x—a)’ = [1 forx > a (23)

the closed-form presentation of jumps can be realized. The first three discontinuous
functions are shown in Fig.2.4. Furthermore, derivations and integrals are defined
by regarding the triangular bracket symbol as classical round brackets:

) = nlx —a)y (2.6)
dx
/(x —a)'dx = ! (x—a)" ¢ (2.7)
T n+1 ’ ’

Table2.3 shows a few examples of discontinuous loads and their corresponding
representations due to the discontinuous function given in Eq. (2.4).

In regards to the first case in Table 2.3, it should be noted that a positive singe
force (Fy > 0) results in a negative jump in the normal force distribution (N,).

If no single closed-form representation is required, all the previous equations
(see Table2.2 and Egs. (2.1)—(2.3)) can be applied to each continuous section. As a
result, transmission conditions between the continuous sections must be formulated
to determine the additional constants of integration, see Problem2.3.

2.1 Cantilever Rod with Point Loads

Givenis arod of length L and constant axial tensile stiffness £ A as shown in Fig.2.5.
Atthe left-hand side there is a fixed support and the right-hand side is either elongated
by a displacement u (case a) or loaded by a single force Fy (case b). Determine the
analytical solution for the elongation u,(x), the strain €,(x), and the stress o, (x)
along the rod axis. Sketch for both cases the corresponding distributions.

2.1 Solution
Case (a): Let us start the solution procedure by sketching the free-body diagram as
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Table2.3 Discontinuous loads expressed due to discontinuous functions (deformation occurs along
the x-axis). Adapted from [2]

Case Load (Discontinuity Function)
Fy
o——=——o~» Na(z) = —Fo(z —a) +c
Po
o o> pz(x) :po((x—al)o —(m—ag)o)

Po
O_A_OE pa(2) = 2 (m—al)(<m—a1>0—(x_a2)0)

az —aiy

Fig. 2.5 Rod under different
loading conditions: [l

5
o

a displacement and b force // E. A
l—p i
AI I .
(b)
>
> E. A
% — Fo
AI L
Fig. 2.6 Free-body diagram >z FR( L)
of the rod with displacement E.A
boundary condition FR‘(O) —] — uo
L

shown in Fig.2.6. It should be noted here that the imposed displacement u at the
right-hand boundary results in a reaction force FR(L).

The next step is to identify the boundary conditions of the problem. They can be
immediately stated as:
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Fig. 2.7 Free-body diagram >

of the rod with force E. A

boundary condition FR(O) — }— F}
L

Fig. 2.8 Equilibrium z =1L

between internal normal

?rce N, and external load N,(L) I:l £
0

~ ~
internal reaction external force
u:(0)=0, (2.8)
uy(L) =ugp. (2.9)

Consideration of the first boundary condition in Eq. (2.1) results with py = 0 directly
in ¢; = 0. Considering the second boundary condition in Eq.(2.1) gives then ¢; =
%. Thus, the distributions of elongation, strain, and stress are obtained as:

0, (¥) = ug % , (2.10)
£ (x) = d“gix) =2, @.11)
uE

0x(x) = Ec,(x) = (2.12)

L

Case (b): Let us start the solution procedure by sketching the free-body diagram as
shown in Fig.2.7.

The first boundary condition is again u,(0) = 0 which results with Eq.(2.1)
directly in ¢, = 0. The second boundary condition might be not so obvious and
requires to consider of the force equilibrium for a small element at x = L, see
Fig.2.8.

The horizontal force equilibrium yields the second boundary conditionas N, (L) =
Fp. Introducing this second condition into Eq. (2.2), the second constant of integra-
tion is obtained for po = 0 as ¢; = Fp. Thus, the distributions of elongation, strain,
and stress are obtained as:

0y (x) = ﬁx, (2.13)
_ du(x) _ Fo
ex(x) = T =4 (2.14)
Fy
ox(x) = Ee (x) = —. (2.15)

A
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Fig. 2.9 Graphical representation of the field variables: a—c displacement boundary conditions
(up), and d—f force boundary condition ()

Equation (2.15) is the classical definition of engineering stress in the case of a uni-
axial tensile test. The graphical representation of the field variables (displacement,
strain, and stress) is shown in Fig.2.9.
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Fig. 2.10 Rod with b Po
distributed load

NN\

E,A
L
Fig. 2.11 Free-body >z Po
diagram of the rod with S A
distributed load R (0) —>
E,A

2.2 Cantilever Rod with Distributed Load

Givenis arod of length L and constant axial tensile stiffness £ A as shown in Fig. 2.10.
At the left-hand side there is a fixed support and a constant distributed load py is
acting along the entire rod axis. Determine the analytical solution for the elongation
u,(x), the strain €, (x), and the stress o, (x) along the rod axis.

2.2 Solution
Let us start the solution procedure by sketching the free-body diagram as shown in
Fig.2.11.

As outlined in the previous example, the boundary conditions can be stated as
uy(0) = 0 and N,(L) = 0. However, we must consider now that a constant dis-
tributed load py is acting and the evaluation of Eq. (2.1) based on the first boundary
condition gives ¢; = 0. Application of the second boundary condition in Eq.(2.2)
gives now ¢; = poL. Thus, the distributions of elongation, strain, and stress are
obtained as:

wo-BE(AETE). e
(%) dug(x) % (- [%] +1)., 2.17)
0. (x) = Ee,(x) = %L (— [%] n 1) . (2.18)

2.3 Cantilever Rod with Different Sections
Given is a rod of length 3L and constant axial tensile stiffness £A as shown in
Fig.2.12. At the left-hand side there is a fixed support and a constant distributed load
2po is acting in the range 0 < x < 2L whereas a load of py is acting in the range
2L < x < 3L. Determine the analytical solution for the elongation u, (x), the strain
€x(x), and the stress o, (x) along the rod axis.



2.2 Partial Differential Equation-Based Approaches 17

Fig. 2.12 Rod with different 2P0
sections o
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Fig. 2.13 Free-body 2P0
diagram of the rod with Do
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0 2L 3L
Fig. 2.14 Free-body 210
diagram of the rod - ) Po
decomposed into two . mme o N (2L N (0)
sections F™(0) —» — 1
= L7 == 1

2.3 Solution
Let us start the solution procedure by sketching the free-body diagram as shown in
Fig.2.13.

The discontinuity in the distributed load can be handled by splitting the rod at
X = 2L into two parts, see Fig.2.14. The left-hand part is now described by the
local coordinate x; with 0 < x; < 2L while the right-hand part is described by the
local coordinate x;y with O < x;p < L.

Consideration of two parts means that Eqs. (2.1) and (2.2) must be applied to both
sections and in total four integration constants, i.e. two for each section (here ¢; and
c; for the left-hand section while c¢3 and c4 is assigned to the right-hand section),
must be determined. The following two boundary and two transmission conditions
can be stated:

u,(xy=0)=0, N.(xy=L)=0, (2.19)
uy(xy =2L) = ux(xy =0), Ny(xr=2L) = Ny(xu =0). (2.20)

Consideration of boundary condition (2.19); in Eq.(2.1) gives immediately ¢, = 0.
Consideration of the second boundary condition (2.19), in Eq.(2.2) provides ¢z =
poL. The next step requires the application of the transmission conditions. Let us
start with the transmission condition for the normal force (2.20),:

2 BC
—Q2p)Q2L) + ¢y =c3 =C pol, (2.21)
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from which a further constant can be determined as ¢; = 5poL. The final constant
can be obtained from the displacement transmission condition (2.20);:

- %(ZPO)(ZL)z +¢12L) = ¢4, (2.22)

which can be solved for the remaining constant: ¢4 = 6 poL2. Thus, the distributions
of elongation, strain, and stress are obtained as for each section as:

1y (xp) = pgzz (— [%]2 +5 [%D , (2.23)

el = d“gixl) - % (—2 [%] + 5) : (2.24)

oc(x1) = Ee,(x1) = p;fL (—2 [%] + 5) , (2.25)
and

1y (xip) = pgf (—% [%]2 + [%] +6) : (2.26)

e (an) = % = % (— [%] + 1) , (2.27)

ox(xn) = Eex(x) = % (— [%] + 1) . (2.28)

An alternative solution approach can be based on the MACAULAY brackets as outlined
in Eq. (2.4). Based on this particular approach to express discontinuities, we can state
the distribution of the distributed load in the global coordinate X as:

px(X) =2po ((X)° — (X —2L)°) + po ((X —2L)°) . (2.29)

This expression can be introduced in the second-order differential equation (see
Table 2.2) as load function:

d*ux(X)
EA d))((Z = —2po ((X)° — (X —2L)°) — po ((X —2L)°) . (2.30)
Integration twice gives:
dllti | : |
EA—5r = =200 ((X)' = (X =20)") = po ((X = 2L)') + e, 2.31)

EAuy = —2pg (%(X)2 — %(X — 2L>2) - po (%(X - 2L)2) +aX+o.
(2.32)
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Fig. 2.15 General configuration for EULER-BERNOULLI beam problems: a example of boundary
conditions and external loads; b cross-sectional area (bending occurs in the x-z plane)

The constants can be obtained based on the boundary conditions (2.19) as ¢; = 0
and ¢; = SpoL. Thus, the distributions of elongation, strain, and stress are obtained
in closed-form representation as:

_ Po ] 2 . 2 _l . 2
ux(X) = — [ (X)? + (X =2L)" = 2(X = 2L) —|—5LX] , (2.33)
ex(X) = % {—2(X)' +2(x —2L)' — (X —2L)' + 5L}, (2.34)
ox(X) = % (=2(X)" +2(X —2L)' — (X —2L)" + 5L} . (2.35)

2.2.2 Euler—Bernoulli Beams

A thin or EULER—-BERNOULLI beam is defined as a long prismatic body whose axial
dimension is much larger than its transverse dimensions [2, 10, 16, 34, 36]. This
structural member is only loaded perpendicular to its longitudinal body axis by
forces (single forces F; or distributed loads g,) or moments (single moments M, or
distributed moments ). Perpendicular means that the line of application of a force
or the direction of a moment vector forms a right angle with the x-axis, see Fig. 2.15.
As a result of this loading, the deformation occurs only perpendicular to its main
axis.
Derivations are restricted many times to the following simplifications:

only applying to straight beams,

no elongation along the x-axis,

no torsion around the x-axis,

deformations in a single plane, i.e. symmetrical bending,
infinitesimally small deformations and strains,

simple cross sections, and

the material is linear-elastic.
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Table 2.4 Different formulations of the basic equations for a BERNOULLI beam (bending occurs in

. _d )
the x-z plane), with £o(...) = 3
Specific formulation ‘ General formulation
Kinematics
2
exlx, 2) = —z Ll ex(¥,2) = —2L (u: (x))
2
ko= — i) K= —La (- (x))
Constitution
ox(x,2) = Eex(x,2) ox(x,2) = Cex(x, 2)
My (x) = Elyk(x) My (x) = Dr(x)
Equilibrium
force
10 = —g.(x)
moment
dM,
= = 0.0
combined
a2 M
20 4 ga(x) =0 £ (My(0)) + ¢.(x) =0
PDE
L (B E2) — g0 =0 £1(DLs () — g:(x) =0

& (ELSEY) = —0.00

ELLS® — ()

dx?

The three basic equations of continuum mechanics, i.e. the kinematics relation-
ship, the constitutive law and the equilibrium equation, as well as their combination
to the describing partial differential equation are summarized in Table 2.4.

Under the assumption of constant material (E = const.) and geometric (I, =
const.) properties, the differential equation in Table2.4 can be integrated four times
for constant distributed load (¢, = go = const.) to obtain the general analytical
solution of the problem:

) = (X e (2.36)
T EL N\ 24 6 2 S A ‘

where the four constants of integration ¢; (i = 1, ..., 4) must be determined based on
the boundary conditions (see Table 2.5). The following equations for the shear force
Q., the bending moment M, and the rotation ¢, were obtained based on one-, two-
and three-times integration and might be useful to determine some of the constants
of integration:
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Fig. 2.16 Internal reactions for a continuum EULER-BERNOULLI beam

0.(x) = —qox — c1, (2.37)
2
M,(x) = —% —c1x — ¢z, (2.38)
du,(x) 1 gox®  c1x?
=- =——(—+— : 2.39
©y(x) o Ely( 3 + 5 +ox 4¢3 (2.39)

The internal reactions in a beam become visible if one cuts — at an arbitrary location
x — the member in two parts. As a result, two opposite oriented shear forces Q.
and bending moments M, can be indicated. Summing up the internal reactions from
both parts must result in zero. Their positive direction is connected with the positive
coordinate directions at the positive face (outward surface normal vector parallel to
the positive x-axis). This means that at a positive face the positive reactions have the
same direction as the positive coordinate axes, see Fig.2.16.

Once the internal bending moment M, is known, the normal stress o, can be
calculated:

M y (x)

y

z(x), (2.40)

0x(x,2) =

whereas the shear force Q, allows us to calculate the shear stress distribution. For a
rectangular cross section (width b, height &, see Fig.2.15) under the assumption that
the shear stress is constant along the width, the following distribution is obtained

[16]:
0. (Y,
Taz(X,2) = 21, [(5) —z:|. (2.41)

Application of HOOKE’s law (i.e., o0, = Ee¢, and 7., = Gy,,) allows us to calculate
the normal and shear strains. Typical distributions of the two stress components in a
beam element are shown in Fig.2.17. It can be seen that normal stress distribution is
linear while the shear stress distribution is parabolic over the cross section.

Finally, it should be noted here that the one-dimensional EULER—-BERNOULLI beam
theory has its two-dimensional analogon in the form of KIRCHHOFF plates? [3, 4, 6,
11, 20, 38].

2 Also called thin or shear-rigid plates.
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Table 2.5 Different boundary conditions and corresponding reactions for a continuum EULER—
BERNOULLI beam (bending occurs in the x-z plane)

Case Boundary Condition Reaction
z
Ao z
~ MyRT—>x
— u=(0) = 0,0, (0) = 0 ( e
Z -
f u-(0) =0, My (0) =0 .
> FR
N w2 (0) = 0, M, (0) = 0 —
7777 PR
Z (0)=0,Q:(0)=0 MJ{
U FR
- == r uz (L) = uo, My(L) =0 ET
_L _L
Fy ju
== r Q=(L) = Fo, My(L) =0 :r
_L _L |
= (L) = $0,Q=(L) =0 =)
—L — M,
- = My (L) = Mo,Q=(L) =0 R————
L" M() Lﬂ Py
- E= My(L)=0,Q:(L)=0 - =
_L _L
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Fig. 2.17 Different stress distributions of an EULER-BERNOULLI beam with rectangular cross
section and linear-elastic material behavior: a normal stress and b shear stress (bending occurs
in the x-z plane)
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Fig. 2.18 Cantilever beam with different end loads and deformations: a single force; b single
moment; ¢ displacement; d rotation

2.4 Cantilever Beam with Different End Loads and Deformations

Calculate the analytical solutions for the deflection u(x) and rotation ¢, (x) of
the cantilever beam shown in Fig.2.18. Calculate in addition for all four cases the
reactions at the fixed support and the distributions of the bending moment and shear
force. It can be assumed for this exercise that the bending stiffness E1, is constant.

2.4 Solution
Case (a): Let us start the solution procedure by sketching the free-body diagram as
shown in Fig.2.19a.

The consideration of the global force and moment equilibrium would allow to
calculate the reactions at the fixed support, i.e., at x = 0:

ZFZ,_ =0 & FRO)—F=0 = FR0)=F, (2.42)

l

DM, =0 & MY0)+FRL=0 = M0)=—FL. (2.43)

l

The boundary conditions can be stated at the left-hand end as
u(0) =0 and ¢,(0) =0, (2.44)

while the consideration of the force and moment equilibrium at the right-hand bound-
ary (see Fig.2.20) requires that
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Q.(L)y=—Fy and My,(L)=0. (2.45)

Consideration of the boundary condition (2.44), in the general expression for the
displacement distribution (2.36) gives the fourth constant of integration as: ¢4 = 0.
In a similar way, the third constant of integration can be obtained by considering
the boundary condition (2.44), in the general expression for the rotation distrib-
ution (2.39): ¢3 = 0. Introducing the boundary conditions at the right-hand end,
i.e. Eq.(2.45) in the expressions for the bending moment and shear force accord-
ing to Egs.(2.37) and (2.38), the remaining constants are obtained as: ¢; = Fj and
¢y = —FyL. Thus, the distributions of deflection, rotational angle, bending moment,
and shear force can be stated as:

=" (e () (]
pw=" 50 (D)
My = Rl |- (%) +1} (2.48)
0.(x) = —Fy. (2.49)

The other three cases can be solved in a similar way and the final results for the
distributions are summarized in the following:

Case (b): Single moment My at x = L

_ ML? 1 (xy2
u(x) = El [z (Z) } , (2.50)
ML
Py(x) = — EOI (%) (2.51)
M,(x) =—My, (2.52)
0.(x) = (2.53)

Case (c): Displacement ug at x = L

L

b= 360G

M, (x) = 21 -(5)+1}.

L2
3E1u0
L3

L
Q:(x) = —

(2.54)

(2.55)

(2.56)

(2.57)
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Fig. 2.19 Free-body diagrams of the cantilever beams with different end loads and deformations:
a single force; b single moment; ¢ displacement; d rotation

Fig. 2.20 Equilibrium z=1L
between internal reactions
and external load at x = L Q.(L) I Fy
M,(L) Q ]
s

~
internal reaction external force

Case (d): Rotation ¢ at x = L

oL rx\?
us(x) = 5 (Z) , (2.58)
©y(x) = —po (%) , (2.59)
My (x) = —%TEI , (2.60)
0.(x)=0. (2.61)

2.5 Cantilever Beam with Distributed Load

Given is a beam with different support conditions which is loaded by a constant
distributed load g, see Fig.2.21. It can be assumed for this exercise that the bending
stiffness E1, is constant. Calculate the analytical solution for the deflection u, (x),
rotation ¢, (x), the reactions at the supports as well as the distributions of the bending
moment and shear force.

2.5 Solution
Case (a): Let us start the solution procedure by sketching the free-body diagram as
shown in Fig.2.22a.

The consideration of the global force and moment equilibrium would allow to
calculate the reactions at the fixed support, i.e., at x = O:
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Fig. 2.21 Beam loaded under constant distributed load and different boundary conditions: a can-
tilever and b simply supported
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Fig. 2.22 Free-body diagrams of the beams loaded under constant distributed load and different
boundary conditions: a cantilever and b simply supported

Z F,=0 & FRO)—qL=0 = FX0) =qlL, (2.62)
L? L?
Su, =0 & MO+ —0 = MR =-L (2.63)
The boundary conditions can be stated at the left-hand end as
u(0) =0 and ¢,(0) =0, (2.64)

while the consideration of the force and moment equilibrium at the right-hand bound-
ary (see Fig.2.20) requires that

Q.(L) =0 and M,(L) =0. (2.65)

Consideration of these conditions in the corresponding distributions results in the
following constants of integration: ¢; = qoL, ¢y = —% qoLz, c3 = ¢4 = 0. Thus, the
distributions of deflection, rotational angle, bending moment, and shear force can be
stated as:
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o= (G131 +o[3T). e
e T
M,y (x) = q"TLZ ([%]2 2 [%] + 1) , (2.68)
0.0 =qL ([T]-1) - (2.69)

Case (b): The set of boundary conditions is in this case given as

u,(0)=0, M,0) =0, (2.70)
u,(L)y=0, M,(L)=0, 2.71)
which results in the following constants of integration: ¢; = %,cz =0,c3 = —%,

and ¢4 = 0. Thus, the distributions of deflection, rotational angle, bending moment,
and shear force can be stated as:

=20 (5] -2 [2] + [3]) @)
B R P
=22 (2] -[2])
0.(x) = % (2 [%] - 1) . 2.75)

2.6 Cantilever Beam with Different Sections

Given is a cantilever beam of length L and constant bending stiffness E 1 as shown in
Fig.2.23. At the left-hand side there is a fixed support and a constant distributed load
poisactingintherangea < x < b.Calculate the analytical solution for the deflection
u,(x), rotation ¢, (x), the reactions at the support as well as the distributions of the
bending moment and shear force.

2.6 Solution
Let us start the solution procedure by sketching the free-body diagram of the entire
structure as shown in Fig.2.24.

The two discontinuities in regards to the load at X = a and X = b requires to
split the structure in three parts as indicated in Fig.2.25. The left-hand part is now
described by the local coordinate x; with 0 < x; < a, the middle part is described by
the local coordinate xy; with O < x;; < b — a while the right-hand part is described
by the local coordinate xy; with 0 < xyp < L — b.
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Fig. 2.23 Beam with different sections

Fig. 2.24 Free-body diagram of the beam with different sections
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Fig. 2.25 Free-body diagrams of the different sections

Consideration of three parts means that Egs. (2.36)—(2.39) must be applied to all
sections and in total 12 integration constants, i.e. four for each section (here c; . . . c4
for the left-hand, cs . . . cg for the middle section while ¢y and ¢y, for the right-hand
section), must be determined. The following four boundary and eight transmission
conditions can be stated:

w(n=0)=0, My =L —b) =0, (2.76)
oy(x=0)=0, O.(xm=L—-b)=0, (2.77)

and



2.2 Partial Differential Equation-Based Approaches 29

u (x;y =a) = u(xy = 0), u(xn=>b—a)=u(xm=0), (2.78)
oy(xr=a)=p,n=0), ey(xn =b—a) = p,(xm =0), (2.79)
Q:(xy=a)=Q;(xn=0), Q:cn=b—-a)=Q,(xm=0), (2.80)
My(xy=a) =M,(xy =0), M,y =b—a)=M,(xq =0). (2.81)

The general solutions for the displacements, rotations, shear forces and bending
moments, i.e., Eqs. (2.36)—(2.39), can be stated for the three sections as:

() = (S e (2.82)
u(xy) = — caxi+ca), .
(1 1, o > 3x1 + ¢4
0.(xp) = —cy, (2.83)
M, (x1) = —c1x1 — 2, (2.84)
du, (xp) 1 clxl2

) = — o (T , 285

©y(x1) & El, ( > + X1+ 3 (2.85)

and for the second section

1 —q())cf‘I C5)c13I c6)c12I
= — , 2.86
u (x1) El, ( 24 + 6 + > + c7xm + cg (2.86)
0. (xi1) = +qoxu — cs, (2.87)
2
X
M, (xn) = +% — C5X11 — C (2.88)
du, (xyp) 1 —6]0)5131 C5x121
, = ——= =— — , 2.89
oy (xm) o £l 6 + 5 + cexm + €7 (2.89)
and for the third section
1 Cox3 clox?
uz(xm) = I, ( 6HI + TIH +enxm+cez ), (2.90)
0Q.(xm) = —cy, (2.91)
M, (xm) = —coxmr — C1o (2.92)
du, (xp) 1 cox?
oy (xm) = _:T = _E_Iy % + croxm +cn ) - (2.93)

Consideration of the 12 boundary and transmissions conditions in this set of equations
gives 12 conditions for the unknown constants of integration c; . . . ¢c;, which can be
expressed in matrix form as follows:
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0 001 0 0 0 0 0 00 07. -
0 010 0 0 0 0 0 0 0 0 ¢
0 000 O 0 0 0 1 0 0 0 EZ
3 2 3
@ 200 0 0 0 -1 0 0 0 0 o
< 400 0 0O -1 0 0 00 0 |[]es
1000 1 0 0 0 0 0 0 0 Co
—a—100 0 1 0 0 0 0 0 0 ¢
0 000 &0 ¢ G_g 1 0 0 0 —1|]|c
0000 &2 p-—a) 1 0 0 0 -1 0 ‘o
0 000 -1 0 0O 0 1 000 g:?
0 000—(b—a) -1 0 0 0 10 o ||,
L 0 000 O 0 0 0 —(L-b-10 0 |-
- o A
0
0
0
0
0
- 0 . (2.94)
qob—a)*
24
qo(b—a)’
6
—qo(b — a)
—qo(b—a)?
2
— 0 -

Multiplication of the inversed coefficient matrix with the right-hand side allows us
to determine the constants as:

cr=qob—a), = —%O(b2 —a%), (2.95)
=0, =0, (2.96)
¢s = qo(b —a). ¢ =—Tb-a’. (2.97)
7 = —q°2“b b—a), s = ‘1‘1’—‘2’2@12 +2ab — 3b%) (2.98)
¢ =0, 10 =0, (2.99)
1y = —%(lﬁ —dY, cip = —;]—Z(a4 + 3% — 4a3b) . (2.100)

Based on these constants of integration, the general expressions (2.82)—(2.93) for the
distributions can be concretized as:
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u, (x1) = % (b;axf — bz;az xf) , (2.101)
u(xn) = % (_Zzﬁ + b ; - X131 - ¢ —4a)2 xﬁ - ab(bz— @) xn+
N a*(a® +2ab — 3b2)) ’ 2.102)
12
uz (xmp) = % (— i ;a3 Xm — W) , (2.103)

and for the rotations

pyn) = =5 (0 — ) — (B —aP)x) | (2.104)
3

oy (xn) = _2% (—% + (b — a)xi — (b — a)*xy — ab(b — a)) . (2.105)

oy () = 62—01 v —a’), (2.106)

and for the bending moments

b* — a®
M, (x1) = qo (—(b —a)x + 2 ) , (2.107)
M, (xy) = ‘12—0 (x% —2(b — a)xu + (b — a)?) (2.108)
M, (xm) =0, (2.109)

and for the shear forces

Q:(x1) = —qo(b —a), (2.110)
Q) = go (xu — (b —a)) , (2.111)
Q.(xm) =0. (2.112)

An alternative solution approach can be based on the MACAULAY brackets as outlined
in Eq. (2.4). Based on this particular approach to express discontinuities, we can state
the distribution of the distributed load in the global coordinate X as:

qz(X) = —qo (X —a)’ — (X — b)) . (2.113)

This expression can be introduced in the fourth-order differential equation (see
Table 2.4) as load function:

d*u (X)

El
dx+

=qz(X) = —qo (X —a)’ — (X — b)°) . (2.114)
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Four times integration of the last equation gives:

(X
EI j{xi ) —0:X) =—q((X—a)' — (X =b)") +ci, (2.115)
. z X 1 1
g)((z - My (X) == (§(X —a)’ - F X - b)z) +aX +e,
(2.116)
dluz(X) 1 1
+C_21X2+62X+63, (2.117)
_ 1 _ 4 i AL C_l 3 C_Z )
Elu,(X) = qo(24( a)’ = 5 {X = b) )+ S X+ X0
t X+ (2.118)

The constants can be obtained based on the boundary conditions (2.76)— (2.77) as
ci =qob—a),c; = —‘1—2“(172 —a?), ¢3 = 0, and ¢4 = 0. Thus, the distribution of
the deflection is obtained in closed-form representation as:

uz(X) =

—qo ((X—a)* (X-=-D* (b-a)_; @ 2)
EI( W a6 Yt )(2119)

It should be noted that the end deflection of the beam can be obtained for X = L as:

qo( La®* a* Lb b4)

uz(l) = — T 52

2.120
6 24 + 6 24 ( )

The special case that the distributed load extends over the entire beam, i.e., a = 0
and b = L, gives the classical result for the end deflection: u (L) = %01:{‘1
The distributions of the load g, shear force O, and bending moment My are

shown in Fig.2.26 and allows us to understand the dependency of these quantities.

2.2.3 Timoshenko Beams

A thick or TIMOSHENKO beam is defined as a long prismatic body whose axial
dimension is much larger than its transverse dimensions [33, 40]. This structural
member is only loaded perpendicular to its longitudinal body axis by forces (single
forces F or distributed loads ¢.) or moments (single moments M, or distributed
moments m,). Perpendicular means that the line of application of a force or the
direction of a moment vector forms a right angle with the x-axis, see Fig.2.15. As a
result of this loading, the deformation occurs only perpendicular to its main axis. The
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(a) F, q:(z) my(x) (b) i
Mo Bed
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Fig. 2.27 General configuration for TIMOSHENKO beam problems: a example of boundary condi-
tions and external loads; b cross-sectional area (bending occurs in the x-z plane)

formulation is a shear-flexible theory which means that the shear forces contribute
to the bending deformation (Fig.2.27).
Derivations are restricted many times to the following simplifications:

only applying to straight beams,

no elongation along the x-axis,

no torsion around the x-axis,

deformations in a single plane, i.e. symmetrical bending,
infinitesimally small deformations and strains,

simple cross sections, and

the material is linear-elastic.

The three basic equations of continuum mechanics, i.e. the kinematics relationship,
the constitutive law and the equilibrium equation, as well as their combination to the
describing partial differential equations are summarized in Table2.6. It should be
noted here that the deflection u, and the rotation ¢, are now independent variables
and both represented in the coupled differential equations.

Under the assumption of constant material (£, G) and geometric (1, A, k) prop-
erties, the system of differential equations in Table2.6 can be solved for constant
distributed loads (g; = go = const. and m, = 0) to obtain the general analytical
solution of the problem [39, 40]:

1 [qox* x3 x?
MZ(.X') = H 7+C1€+C27+C3X+C4 s (2121)
:
1 (qox’ x? qox 1
) = — X . L R 1.7
90 =5 ( o T TeXta) UG ka1
x2 EI,
M,y (x) = — (qu +oepx +c2) - %, (2.123)
S

Q:(x) = —(qox + 1) , (2.124)
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Table 2.6 Different formulations of the basic equations for a TIMOSHENKO beam (bending in the
x-z plane). e: generalized strains; s: generalized stresses

Specific formulation General formulation
Kinematics
[ du; d
Efd;— o =& i e e=Lu
L & 0 a9
Constitution
B du
-0 —ksAG 0 <
Q: = y dxd;: Py s = De
i M, 0 EI =
Equilibrium
[d
— 0 |[—-0:; — 0
de Ll I L Lls+b=0
i & M, +m; 0
PDE
du;
~i [kGA (45 + )] —a: =0
& (ELE) —kGA (45 +0y) +my=0.| £IDLiu+b =0

where the four constants of integration ¢; (i = 1, ..., 4) must be determined based
on the boundary conditions, see Table2.7.

The internal reactions in a beam become visible if one cuts — at an arbitrary
location x — the member in two parts. As a result, two opposite oriented shear
forces Q. and bending moments M, can be indicated. Summing up the internal
reactions from both parts must result in zero. Their positive directions are connected
with the positive coordinate directions at the positive face (outward surface normal
vector parallel to the positive x-axis). This means that at a positive face the positive
reactions have the same direction as the positive coordinate axes, see Fig.2.28.

Once the internal bending moment M, is known, the normal stress o, can be

calculated:
My (x) doy(x) p
X

2(x)=E d (x), (2.125)

ox(x,2) =
y

whereas the shear stress 7, is assumed constant over the cross section:

0.(x)  0:(x)
A, kA

Txz =

= Gy (%) . (2.126)

In the above equation, the relation between the shear area A and the actual cross-
sectional area A is referred to as the shear correction factor kg [9, 13]:

ks = =2, (2.127)
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Table 2.7 Different boundary conditions and their corresponding reactions for a continuum TIM-
OSHENKO beam (bending occurs in the x-z plane)

Case Boundary Condition Reaction

... uz(0) =0,¢4(0) =0 (fE

f uz(O):OvMy(O):O :
; F*

NN
e
=

u.(0) = 0, M, (0) =0

77 FR
Z ———— ¢4 (0) =0,Q:(0) =0 M5
— T (E
uQ FR
. = r u-(L) = uo, My(L) =0 fr
_L _L
F, u
. E==H r Q. (L) = Fo, My (L) =0 ﬁr
_L _L
= ) D) =d0,Q:(r)=0 === )
_L b —= M,
=== My(L) = Mo, Q-(1) =0 -+ ==
—NL M() —HL ¢y
s My(D)=0,Q:(1)=0 - ===
L L
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Fig. 2.28 Internal reactions for a continuum TIMOSHENKO beam (bending occurs in the x-z plane)

(a) (b)
( +0y i’ \ B T K
x =
— Oy A\A < EE (\AS

Fig. 2.29 Different stress distributions of a TIMOSHENKO beam with rectangular cross section and
linear-elastic material behavior: a normal stress and b shear stress (bending occurs in the x-z plane)

The value of the shear correction factor is, for example, for a circular cross section
equal to % and for a square cross section equal to %, see [41]. The relationship
between the YOUNG’s and shear modulus (see Egs.(2.125) and (2.126)) is given
by [7]:

E

G = m , (2.128)

where v is POISSON’s ratio. The graphical representations of the different stress
components are shown in Fig. 2.29. The normal stress is, as in the case of the EULER—
BERNOULLI beam, linearly distributed whereas the shear stress is now assumed to be
constant.

If more realistic shear stress distributions are considered, one reaches so-called
theories of higher-order [18, 28, 29]. Finally, it should be noted here that the one-
dimensional TIMOSHENKO beam theory has its two-dimensional analogon in the form
of REISSNER- MINDLIN plates® 3, 11, 21, 31, 35].

2.7 Beam Under Pure Bending Load

The cantilever TIMOSHENKO beam shown in Fig.2.30 is loaded by a moment M,
at the free right-hand end. The bending stiffness EI and the shear stiffness k,AG
are constant and the total length of the beam is equal to L. Determine, based on
the TIMOSHENKO beam theory, the bending line and compare the result with the
EULER-BERNOULLI theory.

2.7 Solution
The set of equations for deflection, rotational angle, bending moment and shear force
as given in Eqgs. (2.121)—(2.124) reduces for gy = 0 to the following formulation:

3 Also called thick plates.
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Fig. 2.30 Beam loaded s

under pure bending moment M,

B0 0 |> I
b
| L |
1 x3 x2
u(x) = E_I) (Clg + C27 + c3x + C4) , (2.129)
1 x2 Cl

Py(x) = “EL (+c1 - tox+ c3) ~%AG (2.130)
My(x) =—(c1x+c2) , (2.131)
Q:(x) =—(c1) . (2.132)

The boundary conditions for the case shown in Fig.3.34 can be stated as

u,(0) =0, My (L) = —M,, (2.133)
©,(0) =0, 0.(L) =0, (2.134)

which allow to determine the constants of integration in Egs.(2.129)—(2.132) as
c1 =0,c = My, c3 =0, and ¢4 = 0. Thus, the bending line can be expressed as

M())C2
2EI °

u.(x) = (2.135)

This result is identical with the solution according to the EULER—-BERNOULLI beam
theory.

2.8 Cantilever Beam Under the Influence of a Point or Distributed Load

The cantilever TIMOSHENKO beam shown in Fig.2.31 is either loaded by a single
force Fy at its right-hand end or by a distributed load go. The bending stiffness E1
and the shear stiffness ks AG are constant, the total length of the beam is equal to L,
and the circular cross section has a diameter of d. Determine the expressions of the
bending lines (u,(x)) and sketch the deflections of the right-hand end (x = L) as a
function of the slenderness ratio % for v = 0.0, 0.3, and 0.5.

2.8 Solution

Case (a): The set of equations for deflection, rotational angle, bending moment and
shear force as given in Egs.(2.121)—~(2.124) reduces for go = 0 to the following
formulation:


http://dx.doi.org/10.1007/978-3-319-69817-5_3
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Fig. 2.31 Cantilever (a)
TIMOSHENKO beam: a single s Fy
force case and b distributed
load case B, 1,, ks,G,A O
d
| L |
(b)
/ q0
E, I, ks,G, A O
d
| L |
x3 x?
u,(x) = £l (clg + 627 + c3x + C4) , (2.136)
By (x) Y S ° (2.137)
(x)=—+tcar—+cx+c3) — ——, .
’ EL\ "2 T TR) T AG
My(x) = —(c1x +c2) , (2.138)
Q:(x) =—(c1) . (2.139)
The boundary conditions for the case shown in Fig.2.31a can be stated as
u,(0) =0, M,(L) =0, (2.140)
©y(0) =0, Q.(L)=F, (2.141)
which allow to determine the constants of integration in Egs.(2.136)—(2.139) as
cp = —Fy, ¢ = FyL, ¢35 = kEQFG" and ¢4 = 0. Thus, the bending line can be
expressed as ‘
) = = Fx3+FLx2+EIFO (2.142)
I\ T T Tac ) '

or in normalized representation as:

X

LG ) () e

2

In the case of the considered circular cross section, one can use ks = %, A= %,
d* : : .
and I = 7 to simplify Eq. (2.143):
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RS TORETII01 ) B

or only at the right-hand end, i.e., x = L:

wG=) 1 s cay:
?—54‘%(14-1/) ) - (2.145)

The graphical representation of the deflection at the right-hand end for different
values of POISSON’s ratio is given in Fig.2.32.

Case (b): The set of equations for deflection, rotational angle, bending moment
and shear force must be considered as given in Eqs. (2.121)—(2.124):

) = — VUL SO S (2.146)
u,x)=—\\—+c1—+ca—+czx+cq ), .
: EL,\ 24 " 'e TP T
¢y (x) L(0 X ey or 4 (2.147)
xX)=——— 4=+ cx+c) - —m - ——, .
! EL,\ 6 P TR TS )T RAG T kKAG
2
qox CIOEIy
M =—\—F - , 2.148
y(x) ( S Tax +62) K AG ( )
0:(x) = —(qox +c1) - (2.149)
The boundary conditions for the case shown in Fig.2.31b can be stated as
u,(0)=0, M,(L)=0, (2.150)
»y(0) =0, 0.(L)=0, (2.151)
which allow to determine the constants of integration in Egs.(2.146)—(2.149) as
c1=—qoL,c; = q"ZLZ — EL ¢y = LLEL ‘and ¢4 = 0. Thus, the bending line can

be expressed as

@) 1 q0x4 qoLx3 qOL2 qoE1 x2 qoLEI
u,(x) = — — — —
¢ EI \ 24 6 2 kAG | 2 kAG

or in normalized representation as:

LG G e 0 e ()

(2.153)

x) . (2.152)

In the case of the considered circular cross section, one can use ks = %, A= ”ffz s
4 . . .
and I = 7 to simplify Eq. (2.153):
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Fig. 2.32 Deflection of the (@ 20
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e G TR e TR () (6]

ET
5 d\° (x
= (1 = =), 2.154
T 36 ¢ +V)(L) (L) (2.154)
or only at the right-hand end, i.e., x = L:
w(f) 1.5 ay’
q0L14 —§+ﬁ(l+u) 7) (2.155)

The graphical representation of the deflection at the right-hand end for different
values of POISSON’s ratio is given in Fig.2.33.
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Fig. 2.33 Deflection of the (@ 24
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2.9 Cantilever Beam with Two Different Sections

The cantilever TIMOSHENKO beam shown in Fig.2.34 is composed of two sections,
i.e., section one (I) with 0 < X < L; and section two (II) with L; < X < Ly. The
beam is loaded by a single force F at X = Ly and at its right-hand end by a single
force Fyr. The bending and the shear stiffnesses are E I and kA1 G in section I while
E Iy and ks Ay G holds for section II. This means that the beam is made of the same
material and that the cross sections have similar shapes. Determine the expressions
of the bending line.

2.9 Solution

The discontinuity in the cross section can be handled by splitting the beam at X = L
into two parts. The left-hand part is now described by the local coordinate x; with
0 < x1 < L; while the right-hand part is described by the local coordinate xy; with
0 < xy < Ly. Consideration of two parts means that Eqs. (2.121) and (2.124) must
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Fig. 2.34 Cantilever A
TIMOSHENKO beam with two L
different sections X Fi Fp
7
I 11
Ly Ln
Fig. 2.35 Cantilever (a) B (b) Fir

TIMOSHENKO beam with two
different sections: a detail

for transmission condition; b |
detail for boundary condition Qa l I EI TQZ” Qauy 1 E

X =1L X =1L+ Ln

be applied to both sections and in total eight integration constants, i.e. four for each
section (here cy, ..., ¢4 for the left-hand section while cs, . .., cg is assigned to the
right-hand section), must be determined:

X af
ug(xp) = EL (Clg + Q + c3x1 + 64) , (2.156)
by =~ (01%12 ¥ coxg + q) - kschG , (2.157)
My(xp) = — (c1x1 +¢2) , (2.158)
Q:(xp) = —(c1) , (2.159)
and
Xy X
u;(xn) = EL (ng + 6 + c7xn + Cg) , (2.160)
’1 xq Cs
Gy (xm) = _E_Iy (657 + cexm1 + 67) T LAG’ (2.161)
M,y (xm) = — (csxm + ¢s) (2.162)
Q () = — (cs) . (2.163)

The following four boundary and four transmission conditions can be stated (see
Fig.2.35):
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u(xy=0)=0, My(xg=Ly) =0, (2.164)
©y(x1=0)=0, Q:(xnp = Ly) = Fi1, (2.165)

and
u(xy =Ly = u(xy =0), py(xr=L) =p,(xp=0), (2.166)

Q.(xi=L)=F+Q,un=0), Myxi=L)=M(xy=0). (2.167)

Consideration of the eight boundary and transmissions conditions in this set of equa-
tions gives eight conditions for the unknown constants of integration c; . .. cg which
can be expressed in matrix form as follows:

r 0 0 .01 0 00 07r. 9 g7
1 1
oG 0 70 0 00 0 || 0
0 0 00—Ly~10 0 || 0
g 2 00 I 00 0[ | _|-F o168
2?‘ Ll 0 0 0—£]]cs 0 |- :
Li EL ElL Iy
_<7 m) ~Li—10 555 0 gt 0 | e 2
—1 0 00 1 00 O 7 01
L —L; 100 0 10 o JL® LV

Multiplication of the inverse coefficient matrix with the right-hand side allows us to
determine the constants as:

¢ =—(F1+ Fo), ¢y =FRLi+ Fu(Li+ Lip), (2.169)
EL(F1+ F
o = B F ) =0, (2.170)
ksA1G
s =—1I, ¢6 = FulLy, (2.171)

_ 1 In (kAuG [RL} + FuL{ + 2FuLiLu] + 2E I Fn)

, 2.172

73 Ik AnG @172
1 Lily (ksAiG [2F L + 2Fy L} + 3FLiLy] + 6 EL(Fy + Fin))

g = — . (2.173)
6 Lk,A\G

Thus, based on these constants of integration, the bending lines given in Eqgs. (2.156)
and (2.160) are determined.

An interesting special case is obtained at the right-hand end for A} = Ay = A,
IIZIIIZI,LIZL[[: %,andFlzoandFH:F:

X = L) FL3 N FL
u = = — .
‘ 3EI  kAG

(2.174)
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Fig. 2.36 Recorded data (@ r (b) o
from a uniaxial tensile test: a
force-displacement diagram; F o0
b stress-strain diagram . %
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2.3 Energy-Based Approaches

As an alternative approach to the analytical solution procedures based on partial dif-
ferential equations (see Sects. 2.2.1-2.2.3), the following section is related to energy
approaches, in particular CASTIGLIANO’s theorems, see [1, 12, 14, 16].

Let us first illustrate the energy which is stored in a material due to deformation,
i.e. the so-called strain energy. For an ideal uniaxial tensile test with linear-elastic
material behavior, Fig. 2.36 illustrates schematic force-displacement and stress-strain
diagrams.

The area under the force-displacement diagram (see Fig.2.36a) represents the
total strain energy (I7) and can be calculated as*:

1
I = 3 Fouy , (2.175)
or in an integral approach:
uo ug L
n /F( )d / EA qu— EA o _ FoL N@)? (2.176)
— uw)du = —Uudyy = — Uy = = . .
L 2L T 2EA 2EA
0 0 0

The transformations in the last equation used HOOKE’s law and the equilibrium
between the external load (Fp) and the internal reaction (N, (x)). On the other hand,
the area under the stress-strain diagram (see Fig.2.36b) represents the volumetric
strain energy (7w = %):

€0 €0

E , 1
m= [ o(e)de = [ Eede = 5 gy = 3 O0E - 2.177)

0 0
The last equation can extended to the total strain energy in the following way:

1 1
dIT = 3 oedV = 2 e d(Ady) . (2.178)

4Confer the unit of energy: 1 J = 1 Nm = 1 Ws.
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Similar derivations can be written for other simple modes of deformation and the
following cases can be distinguished for linear-elastic material behavior:

e Tension or compression:

L
i/MuPd (2.179)
0
e Bending:
L
M. 2
:n/‘ O e (2.180)
2EI,
0
e Shear:
L 2 L 2
/ (X) 0. (x) dr 2.181)
2.GA
0 0
e Torsion’: .
M 2
_ / SO (2.182)
2G1,
0

Thus, the total strain energy in a rod/beam-like structural member can be expressed
as

L L L L

2 2 2 g
/Nu) My o [ Q07 g [ MO ey
0

dx +
2EI, 2GA, 2G I,
0 0 0

where the N, M,, Q., M, represent the distributions of the internal reactions.
Depending on the mode of deformation, the corresponding terms in Eq. (2.183) must
be considered. Based on the following theorems which make use of the strain energy,
different quantities can be determined:

CASTIGLIANO’s first theorem:

The partial derivative of the total strain energy with respect to the generalized dis-
placement (displacement or rotation) gives the generalized force (force or moment).
In equations, this can be expressed as:

Omx, uiy ) _ p (2.184)
814,‘

ofx, pi, ) _ M;. (2.185)
8@,‘

50nly shown for completeness and not further covered here.
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CASTIGLIANO’s second theorem:

The partial derivative of the total strain energy with respect to the generalized force
(force or moment) gives the generalized displacement (displacement or rotation) in
the direction of that generalized force. In equations, this can be expressed as:

orf(x, F;, ...) _

(9H(X,M,’, )

Y — . 2.1
oM, P (2.187)

The procedure also allows us to determine deformations where no external general-
ized forces are acting. This can be handled by introducing an auxiliary generalized
force (F, or M,) and setting the auxiliary quantity to zero in the final equation for
the generalized displacement:

O, Fy, ...
(u) —u, (2.188)
aFa; F,=0
Ix, M, , ...
(M) — (2.189)
8Mai M, =0

Based on this procedure, it is even possible to calculate entire distributions if the
auxiliary quantity is introduced at a variable position. For practical calculations
with constant material and geometrical properties (EA, El,, ksGA, GI,), it might
be useful to perform the partial derivative first and only after the integration. For
example, the case of tension/compression can be written as:

L L
om 9 N2(x) N, (x) ON((x, Fi, ...)
Uy | = —— = — dx | =

OF,  OF, 2EA o EA OF,
0 0

dx. (2.190)

2.10 Cantilever Rod with Point Loads (Alternative Solution Procedure of
Problem 2.1)

Givenis arodoflength L and constant axial tensile stiffness £ A as shown in Fig.2.37.
At the left-hand side there is a fixed support and the right-hand side is either elon-
gated by a displacement u (case a) or loaded by a single force F (case b). Determine
based on CASTIGLIANO’s theorems the solution for the elongation u, (x), the strain
€x(x), and the stress o, (x) along the rod axis.

2.10 Solution

In case that only the reaction force FR(L) at x = L (case a) or the displacement
uy(L) at x = L (case b) would be wanted, we could simply determine the normal
force distributions as, see Fig.2.38:
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Fig. 2.37 Rod under (a)
different loading conditions: mat
a displacement and b force -~ E.A
/ — up
< L
b
™,
// E,A
A — Fq
L
Fig. 2.38 Determination of
the normal force distribution @) Ny(z) F R(L)
for the rod under different
loading conditions: a
displacement and b force —T
(b) N, (z) Fy
— T
N,(x) = FR(L) (case a), (2.191)
N:(x) = Fp (case b). (2.192)
For case (a), we can state based on CASTIGLIANO’s second theorem that
L L
oIl 0 Nf(x) d N, (x) ON(x, F®)
uyg = = X =
T 9FR(L) ~ OFR(L) | 2EA EA  OFR(L)
0 0
L R R
L F L F*(L)L
/ MO (L) e = DL (2.193)
EA EA
0
or solved for the unknown reaction force at x = L:
EA
FR(L) = L”° . (2.194)

For case (b), we can state based on CASTIGLIANO’s second theorem that
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Fig. 2.39 Rod with >z
displacement boundary 7 F,
condition and auxiliary force — —» uo
e |
FRY(L)
a —
F(0) — N
Fig. 2.40 Rod with R
displacement boundary F(0) _’:_’ Ne(z)
condition and auxiliary T
force: different sections for
normal force determination
P, |
FR(0) —1 > !I—> Ny (z)
x
>
o1l N x) ON, (x, F{ FyL
(L) = () ( 2 /— = ;—A. (2.195)

8F0 EA
0

However, if we need to find the distributions of displacement (1, = u,(x)), stress
(ox = 0,(x)), and strain (¢, = &,(x)), we need to follow a slightly different
approach. For this purpose, an auxiliary force F, is introduced at an arbitrary position
X. This is shown for case (a) in Fig.2.39 together with the corresponding free-body
diagram.

From the horizontal force equilibrium, we can conclude that

+ FRO+F,+FRL)=0 or FR0)=-F,— F}WL). (2.196)
Since we have now at x = X a discontinuity, we must determine the normal force
distribution for two sections, see Fig. 2.40.
For the section x < X, the internal normal force can be expressed as
Ne(x) = —FR(0) = F, + FR(L), (2.197)
while the section x > X gives:

N,(x) = —FR0)— F, = FR(L). (2.198)

Let us first apply CASTIGLIANO’s second theorem to determine the unknown reaction
force at the right-hand end:
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L X L
N.(x) ON,(x, FR F,+ FR(L FR(L
o = (x) (x, FR?) =/“+—()x1dx+/ ()dex
EA  OFR(L) EA E
0 0 X
F,+ FR(L)_ FXWL) . Fx FRULL
= L—%) = ) 2.199
EA T Ea L9 = 54T T (2.199)
With F, — 0 (and x — x), one obtains the reactions force as:
EA
FR(L) = L”° . (2.200)

The next application of CASTIGLIANO’s second theorem allows us to determine the
distribution of the displacement field:

L x L
Ny (x) ONy(x, Fy) / Fy+ FR(L) / FR(L)
L(x) = dx= | ———= x 1d 0d
U, (x) A oF, X EA x 1dx + z x 0dx
0 0 x
F,+ FR(L
_ R o (2.201)
EA
With F, — 0 and X — x, one obtains the displacement field as:
FR(L
w, (x) = % = uo%. (2.202)

The application of the kinematics and constitutive relationship (see Table 2.2) gives
immediately the strain and stress distributions:

Ouy(x)  ug

ex(x) = x T (2.203)
uoE
0, (x) = Eex(x) = —— . (2.204)

The configuration for case (b) and the corresponding free-body diagram is shown in
Fig.2.41.

From the horizontal force equilibrium, we can calculate the reaction force at the
left-hand end:

+FRO)+F,+Fpb=0 or FR0)=—-Fy—F,. (2.205)
Due to the discontinuity, the normal force distribution is required for two sections,
see Fig.2.42.

For the section x < X, the internal normal force can be expressed as

Ni(x) = =FR(0) = Fy + F,, (2.206)
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Fig. 2.41 Rod with force e
boundary condition and 7 F,
auxiliary force — — F,
T
I
Fa
FR(0) — — F— Ky
Fig. 2.42 Rod with force R
boundary condition and £7(0) _’Ij_’ Na(z)
auxiliary force: different —Z
sections for normal force
determination

while the section x > X gives:
N.(x)=F,. (2.207)

Application of CASTIGLIANO’s second theorem allows us to determine the distribution
of the displacement field:

x

L L
0 () = N (x) ON,(x, F,) dx :/M x 1dx+/£_z % 0dx

EA  OF, EA
0 0

Fo+ F, _

=—X. 2.2
TA " (2.208)

With F, — 0 and X — x, one obtains the displacement field as:

F())C

il 2.2
A (2.209)

uy(x) =

The application of the kinematics and constitutive relationships (see Table2.2) gives
immediately the strain and stress distributions:

O, F
£e(x) = ua—x(x) - ﬁ, (2.210)
Fo

0, (x) = Ec,(x) = x- (2.211)
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Fig. 2.43 Rod with - Po
distributed load ~
7

2.11 Cantilever Rod with Distributed Load (Alternative Solution Procedure of
Problem 2.2)

Givenis arod oflength L and constant axial tensile stiffness £ A as shown in Fig.2.43.
At the left-hand side there is a fixed support and a constant distributed load py is
acting along the entire rod axis. Determine based on CASTIGLIANO’s theorems the
analytical solution for the elongation u, (x), the strain £, (x), and the stress o, (x)
along the rod axis.

2.11 Solution
The determination of the distributions of displacement (u, = u,(x)), stress (o, =
oy (x)), and strain (¢, = £,(x)) requires that an auxiliary force F, is introduced at
an arbitrary position x. This is shown in Fig.2.44 together with the corresponding
free-body diagram.

From the horizontal force equilibrium, we can conclude that

+FRO)+ F,+poL =0 or FR0)=—F,— poL. (2.212)
Since we have now at x = X a discontinuity, we must determine the normal force
distribution for two sections, see Fig.2.45.
For the section x < X, the internal normal force can be expressed as
Ni(x) = Fa+ po(L — x), (2.213)
while the section x > X gives:

N (x) = po(L — x). 2.214)

Application of CASTIGLIANO’s second theorem allows us to determine the distribution
of the displacement field:

L
Ny (x) ONx(x, Fy)
dx

ux(x) =

EA  0OF,
0
YF L ‘ L
:/—a+p0( _x)xldx+/—p0( _x)dex
EA EA
0 ¥

1 _ _ x2
=— (Fax ¥ poLT — p°2 ) . (2.215)
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Fig. 2.44 Rod with [ Po
distributed load: introduction Y
of auxiliary force
F,
T
—
>z Ppo
FR(0) —» =
F
T
——]
Fig. 2.45 Rod with Do
distributed load: different -
sections for normal force R > N.(z
determination F (0) 1 'T( )
—L
bo
FR’(O) . _ —> —> NT(”[’)
T F, !
) T

With F, — 0 and X — x, one obtains the displacement field as:

y (x) = 5_2\ (Lx - %2) _ pEof: (—% [%]2 + [%]) . (2.216)

The application of the kinematics and constitutive relationships (see Table2.2) gives
immediately the strain and stress distributions:

£ (x) = 8u(;;x) = % (- [%] +1)., 2.217)
o (x) = Ee,(x) = % (— [%] + 1) . (2.218)

2.12 Cantilever Beam with Different End Loads and Deformations (Alternative
Solution Procedure of Problem 2.4)

Calculate based on CASTIGLIANO’s theorems the analytical solutions for the deflec-
tion u,(x) and rotation ¢, (x) of the cantilever beam shown in Fig.2.46. Calculate
in addition for all four cases the reactions at the fixed support and the distributions
of the bending moment and shear force. It can be assumed for this exercise that the
bending stiffness E£1, is constant.
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(a) , (c)

o E,I Fo s 1 e
L s L

k 1 e T I
(b) (d)
~ E,I My - E. 1 0
5) '

L , ! L

Fig. 2.46 Cantilever beam with different end loads and deformations: a single force; b single
moment; ¢ displacement; d rotation

2.12 Solution
Case (a): The determination of the distributions of deflection (u, = u,(x)) and
rotation (¢, = ¢, (x)) requires that an auxiliary force F} is introduced at an arbitrary
position x. This is shown in Fig.2.47 together with the corresponding free-body
diagram.

From the vertical force and moment equilibrium, we can conclude that

+F}0)— F,— Fp=0 or FX0)=F,+ F, (2.219)
+MJO0)+ FX+ FRL=0 or My(0)=—FX— FL. (2.220)

Since we have now at x = X a discontinuity, we must determine the bending moment
(the shear force distribution is only required if the shear contribution on the defor-

mation should be considered) distribution for two sections, see Fig. 2.48.
For the section x < X, the internal bending moment can be expressed as

My(x) = —FX0)x — MJ(0) = Fu(Xx —x) + Fo(L —x) (2.221)
while the section x > X gives:
My (x) = —FX0)x — M (0) + Fu(x —X) = Fo(L — x). (2.222)

Application of CASTIGLIANO’s second theorem allows us to determine the distribution
of the displacement field:

f My (x) OM,(x, F,)

dx
El OF,

u(x) =

0

¥ L
_ M, (x) OM,(x, F,) dx + M, (x) OM,(x, F,) dx

El  oF, El _ OF,
0 X
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Fig. 2.47 Cantilever beam z
with force boundary L "
condition: introduction of - L Fy
auxiliary force
1
VR,
T
———
M;;{ (0) Fy
( II ?
L () ',
—_—
Fig. 2.48 Cantilever beam R o
with force boundary My (0) My ()
condition: different sections E
for internal reactions
F(0) T Q:(z)
—
R
M,(0) My (z)
F(0) : z I Fa :Qz(m)
>
N A—
F,(x — Fo(L — F,(L —
=/ = x) + Foll =) ><(x—x)c1x+/M x 0dx.
El El
0 0
The evaluation of these integrals gives finally under consideration of F, — 0 and
X — Xx:
=" (AT ET o)
u(x) = I Al 5 [} .
: EI 6LL 2LL

which is the deflection in direction of F,.
The other subproblems (b—d) can be solved in a similar manner.

2.4 Extensometer Analysis

The extensometer shown and illustrated in Figs. 1.1 and 1.2 can be modeled in a first
attempt as a LI-shaped frame with different properties for the horizontal and vertical
members (see Fig.2.49a). Looking at this mechanical model, it is obvious that the
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(a) (b) J
Ey, An, In AT
11, 43015 411
L symmetry
—_—
ElvAleI ElvAleI
VA
Y () L’ Y Uuo ()
7777 777 7777 .
Ly 5
! y f——— >

Fig. 2.49 Mechanical model of the extensometer: a entire sensor and b consideration of symmetry

(a) (b) M,H0)  (e) M, (0)
/ — ) PR
- - =, - (I_?F o
‘ @ Q- (0)
L M,(0)
U uo
AN

Fig. 2.50 Simplified approach for vertical members: a approximation as cantilever beam; b free-
body diagram; ¢ infinitesimal element at x = 0

structure is symmetric with respect to a vertical axis and can be reduced as indicated
in Fig.2.49b.

A rough mechanical model can be obtained by splitting the frame into a vertical
and horizontal member. The vertical member (I) is assumed to be a cantilever beam
(see Fig.2.50) which perfectly transmits the reaction moment and force to the vertical
member (I), see Fig.2.51. It is obvious that the small rotation in the frame corner is
not perfectly represented in this simple model. However, it allows us to derive a simple
design equation based on the straight beam equations provided in Sects. 2.2.1-2.2.2.
The horizontal member can be assumed to be a simply supported beam of length Ly
as shown in Fig.2.51a or as a cantilever of length % as shown in Fig.2.51b.

Let us have a closer look at the vertical member as shown in Fig.2.50. From
Egs. (2.55) and (2.57) we can conclude with uy — —ug the bending moment and
shear force distributions to be:
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Fig. 2.51 Simplified (a) 2
approach for horizontal AL» N
member: a approximation as ‘MyR )= ‘Mf (0)
simply supported beam and
b consideration of symmetry ( ‘_A | —)
RO 77% FH(0)
L
(b) B
MR ()| sed
NN
F(0)] Lu
H%ZH
3E[ ][M() X
M, (5-1). 2.224
y(¥) 2 \L ( )
3E[ I[Lt()
0:(x) = —5—, (2.225)
Ll
oratx = 0:
3E111u0
M,(0) =— 7> (2.226)
LI
3E1 Illxt()
0:(0) = = (2.227)
1

These internal reactions must be balanced at x = L by the reactions of the fixed
support. The force and moment equilibrium at x = L reads:

R R 3Erhug
+0:0)+F 0 =0 = F 0=~ T (2.228)
I
3E ],
+M,0) + MRO) =0 = MR©O) = z;“o (2.229)
1

These reactions are now applied at the horizontal member, see Fig.2.51. To avoid
any confusion with the sign of these quantities, it is advised to simply take the
absolute values and consider the correct directions as indicated in the figure. This
configuration relates to the case that the base sample is under tensile load.

Let us first consider the case that only the bending moment is acting, i.e. the case
of pure bending. The internal bending moment distribution for both cases shown is
Fig.2.51 is obtained as:
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@ & b & © &
A A A
>
i x < r x
— 4 > — = é —
é; =+ ‘
‘ > ‘
bending tension total

Fig. 2.52 Strain distributions in the horizontal member of the extensometer: a pure bending; b
pure tension; ¢ superposition of both cases

3E]
M, (x) = —%”0 — const. (2.230)
I

Equation (2.40) together with HOOKE’s law allows us to express the normal strain in
the horizontal members (II) as:

Mv(x) 3E[[[Ll()
X)) =——=

— Z(x) . (2.231)
Enly EnlyLi

exm(2) =

In the next step, we can express the displacement u( by the strain in the specimen
Ep» L€,
2M0 uo
Ep=—" =7, (2.232)
Ly L
2
which allows us to express the strain in the horizontal member of the extensometer

as:
3  EihlLy

. =— X — X . 2.233

ex,11(2) B EIIIIIL12 Espz(X) ( )

The strain distribution under pure bending is sketched in Fig.2.52a where a lin-
ear distribution can be observed. Furthermore, the distribution is symmetric with a
compressive regime for z > 0 and a tensile regime for z < 0.

Reviewing again Fig.2.50b, we can identify a shear force F¥(0) which acts on
the horizontal member as a tensile force, see Fig.2.51. This ‘tensile’ force results in
the following tensile strain:

[FR| 3E1hug 3 o ErLLy

= =X ———— Xeg.
EnAn  L}EgAy 2 EnAnli = 7

Exl = (2.234)

The strain components given in Egs. (2.233) and (2.234) can be superposed to obtain
the total axial strain (see Fig.2.52c¢) in the horizontal member of the extensometer
as:
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Fig. 2.53 Schematic Eg,11
representation of the
calibration curve for the Z = |Zmax]|
extensometer =
g
9
> €Sp
Strain
3 EihLy Eih Ly
Ern =35 ( EninL? X z(x) + EHAHLf) sp - (2.235)

Let us assume in the following a square cross section (with width by and height Ayy)
for the horizontal member. Based on the relationship Ay = 2lu the total strain can

nE
be expressed as:
3  EiLLp z(x) 1 (hn)’
Exll = = X —— 4+ — | — Egp - 2.236
=0 7 EnlnLy ( o Tn\L P (2.236)
The extreme values at the free surfaces, i.e. z = +’% and z = —%, are obtained as
follows:
3  EiLhLn  hn 1 1 (hn
€ iy = — X X —Xl—-—=4+—=(— Esp » 2.237
X’H‘Z:Jr% 2 EuluLly L; ( 2 * 12 (LI)) * ( )
3  EiLhLn  hq 1 1 (hn
€y ==X X — X —4+—{—))es- 2.238
’H‘Z:_h% 2 Eululy L (+2 - 12 (LI)) * ( )

Based on Egs. (2.237) and/or (2.238), it is now possible to calculate and draw the
calibration curve for the extensometer, i.e. the relation between the measured strain
in the extensometer (¢, 1) and the strain in the specimen (g,p), see Fig.2.53. From
a practical point of view, one could measure the strain on the top, or the bottom
(larger signal since two positive strain components are summed up) of the beam
or even average both signals (under consideration that the distribution is no longer
symmetric).
Both Eqgs. (2.237) and (2.238) can be generally written as

exaq1 = €sp(Er, En, Iy, In, Ly, L) , (2.239)

which allows us to design the extensometer in the boundaries of minimum strain
(sensitivity) and maximum strain (failure of the strain gage).

Let us look in the following at a solution procedure which is based on the strain
energy as outlined in Sect.2.3. This allows us to consider the entire frame (see



60 2 Review of Analytical Mechanics

Fig. 2.54 Vertical beam 1
section for the determination

- 21
‘1 M, ()
of the internal reactions
Q Q- (:C I)
X1

Ly
Ey, A, I
R
Fig. 2.55 Section of the 211
frame structure for the t 11
determination of the internal
reactions in the horizontal Er, AII-, In Qz (513 H)
member N\
I _‘/]}—’ Ng(wm)
My (J,‘H)
Ly
Ey, A L

Fig.2.49) without the strong simplification in regards to the connection of the vertical
and horizontal members.

The horizontal force and moment equilibrium (see Fig.2.54) gives the internal
reactions of the vertical member as follows:

Q.(x) = Fy, (2.240)
M, (x) = —F§ (L1 — x1) . (2.241)
For the internal reactions of the horizontal members, it is advantageous to consider

the left-hand half as shown in Fig. 2.55. Horizontal and vertical force as well as the
moment equilibrium give the following internal reactions in the horizontal member:

N, (xn) = Fy (2.242)
Q:(x) =0, (2.243)
M. (xy) = —F3Ly. (2.244)

It should be noted here that the reaction force F§ is still unknown. Based on CAS-
TIGLIANO’s second theorem, it is possible to express the horizontal displacement
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as®:

L, 2
My (x1) OMy (x1, FY) dx / My, (xir) OM, (xyr, FR)

uy = dxp+
° Erh OF§ Enly OFy !
0
o
N (xn) ON, (xr, F) dx
EynAn OFy !
_ R (l Li [ 1L{ln 1 Lu ) (2.245)

3Ey 2 Eynln 2 EnAn

If we assume a square cross section for the horizontal member (width by and height
hy), we can relate the cross sectional area to the second moment of area, i.e. A =
Llu and Eq.(2.245) can be expressed as:

hZ )
1 L3 1Ly 1 Lyh}
o = FR (——‘+— -, o “), (2.246)

3Ei 2 Eply 24 Enly

or rearranged for the unknown reaction force:

Ug

R

Fy = . 2.247

L Ly 1LLy 1 Libg (2:247)
3 Epl 2 Enly 24 Enly

Based on this reaction force, the internal reactions are known in both members, see
Eqgs. (2.240)—(2.244). Let us now calculate the total strain in the horizontal member
of the extensometer. The axial strain due to the bending deformation can be expressed
as:

1 M ()CH) ( ) 1 u()LI ( ) (2 248)
ExI = X)) = - z(x1) , .
! En In Enly 1L l_L Lu 4 1 Luhj
3 Eily 2 Eply 24 Eyly
which can be rearranged under consideration of uy = % Egp tO:
Es Zn
Eval = — P = (2.249)
’ 2 Enlnly + 14+ lJ L[
3 EfhLy 12 L2

On the other hand, the axial strain due to the tensile deformation can be expressed
as:

%It is assumed that the beams are thin and that the shear force is not contributing to the bending
deformation modes.
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LR} o
EqyAn  EyAp \ 1L Lilu Ly |’

1 1
3 Eih 2 Euln 2 EnAn

(2.250)

Ex,II

which can be rearranged under consideration of Ay = % and ug = % Egp tO:
11
1 K 5
il sp
Exl = 7555 =1 - (2.251)
12 L 2 Enlnly 414 1 hy
3 EiliLy 12 LI2

Thus, the total strain resulting from bending and tension is obtained as:

. 1 ( 1 n 1 (hn)z)6 (2.252)
x,JI = >\ 7 A\l T sp - .
2 EnlilL 1 h L 12\ L
3 ElllllnLnI + 1+ EL_I%] ! !
The extreme values at the free surfaces, i.e. z = +’% and 7z = —’%, are obtained as
follows:
| ! L L, L (f (2.253)
Sl = o L\ 2T\ )) '
C SEn Tltmi !
1 hi ( 1 1 (hn))
ExIl|,__m = > X — X+ +—=\|— Esp - (2.254)
7= 2 EynlyL 1 h L 2 12 \L
’ 3 EIIIIIHLHI +1+ EL_II% ! !
Let us do a simple calculation at z = —% for the special case E1 = Ey, I} = I,

Ly =Ly, and hy = %. From Eq. (2.254), we get

61
5x,II| Iy

o = g S = 003056 (2.255)

while the simplified model according to Eq. (2.238) gives:

61
5x,II|Z=7‘i

1 = g S = 00762564, (2.256)

Obviously there is quite a significant difference between both approaches but the
results have at least the same order of magnitude.

The derivation of the equation for the displacement u( as given in Eqgs. (2.245)
and (2.246) was based on the assumption that the shear force is not contributing
to the deformation of the frame. The results for the shear force in Egs. (2.240) and
(2.243) indicate that only the vertical frame part is loaded by a shear force. In the
case that this member is designed as a short beam, i.e. the application of the thick
beam might be more appropriate, CASTIGLIANO’s statement can be modified to the
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following expression:

L L

My(xl) aZuy()cl’ Fg{) dy + 0 (x1) an(xIa F(F) d
Eily  OFR "7 ) kaGiAL OFR

0 0

Uy = X1+

shear contribution

Ly Ly

H 2
M, (xy) OM, (xy, F($) dxry N, (x11) ON, (g, F§) &
i -
0 Eufu OFy / EnAn OFR
1L} 1Ly 1 L L
=F§(__I+‘ R ) (2257)
3EL 2Enln 2EnAn  kaGiA;
The last equation can be rearranged for the unknown reaction force:
R _ Uuop
Fo = lL_ 1L{Lu | 1 _Ly L (2.258)
3 Eid 2 Enlu 2 EnAn ks1G1A]
Under the consideration of a square cross section, i.e. kg1 = g, G = 2(1+V), A =
1;21 = %, and that the width is the same, i.e. by = by, one can easily derive the

followmg normalized expression:

FR 2
U 3 . (2.259)

3Euluuo 3 3 3 3
— 3 2 Euf hn Ly Ly 1 ( b En( hn Ly
k() () +(8) wh () 0 e wi(i) ()

It should be noted that the last expression in the denominator (which contains POIS-
SON’s ratio) stems from the consideration of the shear contribution. Let us now do
some simple estimates to predict the significance of the different contributions The
different fractions in the denominator are evaluated as a function of in Table 2.8

for the special case Eyy = Ey, Ly = Ly, hyp = 10, and 11 = 0.3.

We can conclude from Table 2.8 that the dominant mode of deformation is bending
in member II. Increasing the height (A1) of member I with respect to its length (Ly)
increases the shear contribution in this members compared to the bending fraction.
However, both contributions reduce their share in the total deformation. Thus, we
can justify from this investigation that we do not need to consider the contribution
of the shear force on the deformation in this particular case.

Let us mention at the end of this section that the presented approach allows also
to estimate the influence of the deadweight, see Fig.2.56. The distributed bending
loads in the horizontal frame elements are given by g, = dF = QIAIg whereas the

distributed axial load in the vertical frame element is given by Dg = = onAng.
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Table 2.8 Sensitivity of different deformation modes on the normalized reaction force as a function
of the slenderness ratio ﬁ—ll

Member 1 Member II
Bending Shear Bending Tension
s () () e B() () () a()
%11
% 0.6666666667 0.0052000000 1.0 0.0008333333
% 0.4860000000 0.0046800000 1.0 0.0008333333
% 0.3413333333 0.0041600000 1.0 0.0008333333
% 0.2286666667 0.0036400000 1.0 0.0008333333
% 0.1440000000 0.0031200000 1.0 0.0008333333
% 0.0833333333 0.0026000000 1.0 0.0008333333
% 0.0426666667 0.0020800000 1.0 0.0008333333
% 0.0180000000 0.0015600000 1.0 0.0008333333
% 0.0053333333 0.0010400000 1.0 0.0008333333
1 0.0006666667 0.0005200000 1.0 0.0008333333
Fig. 2.56 Extensometer Uo

under consideration of the

deadweight %D l l l l l 1 1 1 1

-— — — — — — -—
-—
o]

™

uo

2.5 Supplementary Problems

2.13 Rod Loaded By a Single Force in Its Middle

Given is arod of length 2L and axial tensile stiffness E A which is fixed at both ends,
see Fig.2.57. A single force Fy is acting in the middle (X = L) in positive direction.
Determine the expression for the displacement ux (X) and the normal fore Nx (X)
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Fig. 2.57 Rod loaded by a X _
single force in its middle -~ E. A Fy J
—
L L
Fig. 2.58 Cantilever (a)
TIMOSHENKO beam: a single / Fy
force case and b distributed
load case E, 1, k,G,A h D
b

(b)
e q0
E7]y7 k;s7G7A h []

based on the consideration of two sections or alternatively based on the application
of a discontinuous function. Sketch both distributions.

2.14 Cantilever Beam Under the Influence of a Point or Distributed Load -
Rectangular Cross Section

The cantilever TIMOSHENKO beam shown in Fig.2.58 is either loaded by a single
force Fj at its right-hand end or by a distributed load gy. The bending stiffness E1
and the shear stiffness k;AG are constant, the total length of the beam is equal to
L, and the rectangular cross section has the dimensions of b x h. Determine the
expressions of the bending lines (u,(x)) and sketch the deflections of the right-hand
end (x = L) as a function of the slenderness ratio % for v = 0.0, 0.3, and 0.5.

2.15 Cantilever Rod with Different Sections (Alternative Solution Procedure of
Problem 2.3)

Given is a rod of length 3L and constant axial tensile stiffness £A as shown in
Fig.2.59. At the left-hand side there is a fixed support and a constant distributed load
2py is acting in the range 0 < x < 2L whereas a load of py is acting in the range
2L < x < 3L. Determine based on CASTIGLIANO’s theorems the analytical solution
for the elongation u, (x), the strain €, (x), and the stress o, (x) along the rod axis.
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2.16 Beam-Like Structure: Energy Approach

Given is a beam-like structure of length 3a and bending stiffness E I which is sim-
ply supported, see Fig.2.60. A single force Fj is acting at a vertical extension in
positive x-direction. Determine based on CASTIGLIANO’s theorems the horizontal
displacement of the load application point (D) and the vertical displacement of point
C.



Chapter 3
Finite Element Method

Abstract This chapter treats one-dimensional finite elements with two nodes. Rods
for tensile deformation and thin and thick beams for bending deformation are intro-
duced based on their elemental finite element equation and the corresponding rela-
tionships for post-processing. Both element types are superposed to the generalized
beam element which can elongate and bend. In a further step, the elements are
arranged in a single plane to form truss or frame structures. The provided elements
are finally applied to the extensometer design problem.

3.1 General Idea of the Method

The general idea of the finite element method is illustrated in Fig. 3.1. The solution of
the differential equation (see Table 2.2) of the continuum rod gives the displacement
field u, (x), i.e., the displacement at any location x of the considered domain 0 <
x < L, see Fig.3.1a.

It is easy to accept that such a detailed description of the problem is quite dif-
ficult or even impossible for complex structures. Thus, the major idea of the finite
element method is to limit the description to a finite number of points, the so-called
nodes, and to reduce the complexity of the problem, see Fig.3.1b. Following this
idea, the displacement is only calculated at these nodes. These nodes also define the
boundary' of so-called elements, which subdivide the considered domain in smaller
parts (so-called discretization). Furthermore, the nodal displacements are interpo-
lated between these nodal values within an element. To distinguish the node and
element numbering, we use Arabic numerals (1, 2, ...) for the nodes and Roman
numerals (I, I, . . .) for the elements.

The same idea is adopted for beams. The solution of the differential equation (see
Table 2.4) for a thin continuum beam provides the deflection u,(x) at any location
of the beam, see Fig.3.2a. In the case of a thick beam (see Table2.6), the rotation

IThere are also more advanced elements with inner nodes. However, this is not treated here. For
further details, see [26].
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Fig. 3.1 a Continuum rod
and b discretization with two
finite elements -z
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(b) FEM: discretization
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Fig. 3.2 a Continuum beam (a) continuum beam
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finite elements ( —————————— >
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would be a second independent field variable. For the finite element approach, each
node of a beam element® has two independent degrees of freedom, i.e. the deflection
u; and the rotation ¢,

3.2 Rods and Trusses

3.2.1 Rod Elements

Let us consider in the following a rod element which is composed of two nodes as
schematically shown in Fig.3.3. Each node has only one degree of freedom, i.e. a

2If we consider bending in a single plane (here: xz).
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Fig. 3.3 Definition of the (a) —>x
one-dimensional linear rod
element: a deformations; Ulz E, A U2z
b external loads. The nodes G)—> (3—»
are symbolized by the two |
circles at the ends (O) CD | L | @
(b) Pz
F 1z F‘Zz

displacement u, in the direction of the x-axis (i.e., the direction of the principal axis,
see Fig.3.3a) and each node can be only loaded by single forces acting in x-direction
(cf. Fig.3.3b). In the case of distributed loads p,(x), a transformation to equivalent
nodal loads is required.

Different methods can be found in the literature to derive the principal finite
element equation (see [8, 23]). All these methods result in the same formulation,
which is given in the following for constant material and geometrical properties:

L

EA 1-1 Uix | _ le Nl

T[—l l:||:u2x:|_|:F2Xi|+/|:N2i|px(x)dX, 3.1)
0

or in abbreviated form
Keu; = f°, (3.2)

where K€ is the elemental stiffness matrix, u; is the elemental column matrix of
unknowns and f° is the elemental column matrix of loads. The interpolation func-
tions in Eq. (3.1) are given by Ni(x) = 1 — 7 and N»(x) = 7 and Table3.1
summarizes for some simple shapes of distributed loads the equivalent nodal loads.

Several single finite elements can be combined to form a finite element mesh and

the assembly of the elemental equations result in the global system of equations, i.e.
Ku,=f, (3.3)

where K is the global stiffness matrix, u;, is the global column matrix of unknowns
and f is the global column matrix of loads. The global system of equations in the
form of Eq. (3.3) cannot be solved without the consideration of the support conditions
(this results in the reduced system of equations). A few methods to consider different
types of boundary conditions are summarized in the following:

e Homogenous DIRICHLET boundary condition u, = 0
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Table 3.1 Equivalent nodal loads for a linear rod element (x-axis: right facing)

Loading Equivalent Axial Force
p pL
A=y
1 2 L
_—HL F2m = IL
2
p pa?
— —> —> Fip = 7%"‘ pa
1 a 2 2
_#H oy = &
2L
pL
r(f) s Fio ==
6
o 5 L

L 3

212 pL
z o= 22
p(ﬁ) 1z 12
pL
L Ty
F(L —
F FL— (L a)
1 a 2
L Fa
Foe =7

A homogenous DIRICHLET? boundary condition at node n (u,x = 0) can be
considered in the non-reduced system of equations by eliminating the n'" row and
n'™ column of the system, see Eq. (3.4).

3.4)

3 Alternatively known as 1st kind, essential, geometric or kinematic boundary condition.
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e Non-homogeneous DIRICHLET boundary condition u, # 0

First possibility: A non-homogeneous DIRICHLET boundary condition (u,xy =
ug # 0) at node n can be introduced in the system of equations by modifying the
n'" row in such a way that at the position of the n' column a ‘1 is obtained while
all other entries of the n'" row are set to zero. On the right-hand side, the given
value uy is introduced at the n™ position of the column matrix of the external loads
as follows.

(3.5)

Second possibility: If the boundary condition is specified at node 7, the n" column
of the stiffness matrix is multiplied by the given value uo. Now we bring the n™
column of the stiffness matrix to the right-hand side of the system and delete the
n'" row of the system of equations. These steps can be identified in the following
equations:

(. . )u()
(.. Jug Un—1x
(.. )ug Unx = (3.6)
(.. ug Unt1x
L ( .. )Lt()
n—1n+1 n
B ( . )u()
Up—1Xx (.. Jug
= Unx | = =1 G Dug
Unt1X (.. Jug
L ( N )l/t()
(3.7
— ( .. )u()
Up—1x | _ — (. )ug
= Unpix | —(.ug |- (3-8)
— ( .. )u()
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Table 3.2 P ost—prgcessing of Axial displacement (Elongation) u,
nodal values for a linear rod < < -

element (defined by element i () = [1= FJure + [ ] ua
length L, cross-sectional area us () = [%(1 — 5)] uie + [%(1 + g)] Uy
A, and YOUNG’s modulus E). o A€ du

The distributions are given as Axial strain ey = T = 3¢ ¢

being dependent on the nodal
values as a function of the

. . e 1
physical coordinate ex(§) = 7 (uax —uiy)
0 < x < L and the natural
coordinate —1 < ¢ <1

5§(x) = %(MZX —Uix)

i — _ rpduy _ pd€ du,
Axial stress oy = Eey = EF = E&Tg

o) = £ (uzy —ury)
o8& = £ (upx —ury)

_ _ duy d¢ duy
Normal force N, = EAe, = EA o = EAE &

NE(x) = EA (uay — uiy)

NE(©) = EA (upx — ury)

Third possibility: Replace in the column matrix of unknowns the variable of the
nodal value u,y with the given value u( and introduce in the column matrix of
the external loads at the n'™ position the corresponding reaction force FX,. Split
the column matrix of the external loads into a component with the given external
loads and a component which contains the unknown reaction force F fx- Now we
bring the n'™ column of the stiffness matrix to the right-hand side of the system
and the component of the load matrix with FX, to the left-hand side:

n

(3.9)

R
o | = Fn,X

e NEUMANN boundary condition F, = Fj

A NEUMANN* boundary condition at node n (F,x = Fjy) can be considered on the
right-hand side, i.e. in the column matrix of the external loads.

Once the nodal displacements (i1, up,) are known, further quantities and their
distributions can be calculated within an element (so-called post-processing), see
Table 3.2. As we can see from this table, the distributions and other field variables
depend only on the nodal displacement values.

4 Alternatively known as 2nd kind, natural or static boundary condition.



3.2 Rods and Trusses 73

Let us summarize here the recommended steps for a linear finite element solution
(‘hand calculation’):

@ Sketch the free-body diagram of the problem, including a global coordinate
system.

@ Subdivide the geometry into finite elements. Indicate the node and element
numbers (the user may choose any numbering order), local coordinate systems,
and equivalent nodal loads.

@ Write separately all elemental stiffness matrices expressed in the global coordi-
nate system. Indicate for each element the nodal unknowns (degrees of freedom)
on the right-hand side and over the matrix. In this step, the DOFs must be cho-
sen according to the global coordinate system—conventionally, in the positive
direction.

@ Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.
The dimensions of the matrix are equal to the total number of degrees of freedom
which can be determined by multiplying the number of nodes by the number
of degrees of freedom per node. After assembling, the validity of the assembled
stiffness matrix can be tested by the following check list:

K is symmetrical,
K has only positive components on the main diagonal, and
the coupled DOFs have non-zero values as their corresponding components.

® Insert step-by-step the values of the elemental stiffness matrices into the global
stiffness matrix. This process is called assembling the global stiffness matrix.

® Add the column matrix of unknowns and external loads to complete the global
system of equations.

@ Introduce the boundary conditions to obtain the reduced system of equations.
Solve the reduced system of equations to obtain the unknown nodal deforma-
tions.

@ Post-computation or post-processing: determination of reaction forces, stresses
and strains.

Check the global equilibrium between the external loads and the support reac-
tions (optional step for checking the results).

It should be noted that some steps may be combined or omitted depending on the
problem and the experience of the finite element user. The above steps can be seen
as an initial structured guide to master the solution of finite element problems.

3.1 Example: Rod Structure with a Point Load
Given is a rod structure as shown in Fig.3.4. The structure has a uniform cross-
sectional area A and YOUNG’s modulus E. The structure is fixed at its left-hand end
and loaded by a single force Fj.

Model the rod structure with two linear finite elements of equal length L and
determine:



74 3 Finite Element Method

Fig. 3.4 Rod structure with -
a point load — Fy

the displacements at the nodes,

the reaction force at the left-hand support,

the strain, stress, and normal force in the elements and
check the global force equilibrium.

3.1 Solution
The solution will follow the recommended 10 steps outlined on page 73.

(O Sketch the free-body diagram of the problem, including a global coordinate system.

Remove the support at the left-hand end and introduce the corresponding reaction
force, see Fig.3.5. Note that the direction of the reaction force can be arbitrarily
chosen. The sign of the result will confirm (F’ ]R > 0) or not (F ]R < 0) the assumed
direction.

The rod structure with a total length of 2L is divided in the middle into two
elements, see Fig. 3.6. This corresponds to step @.

® Write separately all elemental stiffness matrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

Uix Uzx

Ki = ETA [ o _i]Z;i (3.10)
Uzx Usx

K?l:%[_} _”Zii (3.11)

@ Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 3 nodes, each having one degree of
freedom (i.e., the axial displacement). Thus, the dimensions of the global stiffness
matrix are (3 x 1) x 3 x 1) = (3 x 3):

Flte] F—Fo
= X

Fig. 3.5 Free-body diagram of the rod structure with a point load
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Fig. 3.6 a Free-bod
'8 3 ree b0y (a) element I  element II
diagram of the discretized R N I
structure with point loads. Fy © o— [y
b Nodal unknowns 1 2 3
> L] » L1
=X
b)) o O O
> > —>
Uy x Ugx Uz x

Uix Uzx Usx

Uix
K = . 3.12)

Uusx

® Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.

Ux Uzx Uszx

EA 1 -1 0 Uuix
K=— -1 2 =1 |uay. (3.13)
0 —1 1 Uusyx

® Add the column matrix of unknowns and external loads to complete the global
system of equations.

EA 1 -1 0 Uix —FlR
22012 21| wx | =] 0 | (3.14)
Llo -1 1 || usy Fo

@ Introduce the boundary conditions to obtain the reduced system of equations.

There is no displacement possible at the left-hand end of the structure (i.e., u;x = 0
at node 1). Thus, cancel the first row and first column from the linear system to

obtain:
EA 2 —1 Urx | 0
S Em @19

Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach u, = K “fe
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Ury L 1 +1 +1 0 L1
— _ = . 3.16
|:M3X] EAXZ—I[-H 2“% EA |2 (3-16)
© Post-computation: determination of reaction forces, stresses and strains.

Take into account the non-reduced system of equations as given in step ® under the
consideration of the known nodal displacements. The first equation of this system
reads:

EA .
T (—uzx) = —F}, (3.17)

or finally for the reaction force:
FR=F. (3.18)

The obtained positive value confirms the assumption of the selected initial direction
for the reaction force.

The equations for the elemental strains, stresses, and normal forces can be
extracted from Table 3.2:

1 F
e = — (uax —uix) = —O, (3.19)
L EA
1 F
en = — (usx —usx) = == (3.20)
I L EA
F
of = 7 (uax —uix) = XO, 3.21)
F
ofi = 7 sy —uy) = XO : (3.22)
EA
Ny = T (u2x —u1x) = ko, (3.23)
EA
Ny = A (usx —uzx) = Fo. (3.24)

Check the global equilibrium between the external loads and the support reactions.

> Fx=0 & -Ff + FR =0V (3.25)
; —— ~—~—

reaction force  external load
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Fig. 3.7 Rod structure with 2Po
changing distributed load Po
-
—> —> —
E,A
} > X
0 2L 3L

3.2 Example: Rod Structure with Changing Distributed Load

Given is a rod structure as shown in Fig.3.7. The structure has a uniform cross-
sectional area A and YOUNG’s modulus E. The structure is fixed at its left-hand end
and loaded by a single force Fj at X = 3L as well as

(a) auniform distributed load 2 py in the range 0 < X < 2L, and
(b) auniform distributed load py in the range 2L < X < 3L.

Model the rod structure with two linear finite elements and determine

the displacements at the nodes,

the reaction force at the left-hand support,

the strain, stress, and normal force in each element, and
check the global force equilibrium.

3.2 Solution
The solution will follow the recommended 10 steps outlined on page 73.

(O Sketch the free-body diagram of the problem, including a global coordinate system.

Remove the support at the left-hand end and introduce the corresponding reaction
force, see Fig.3.8. Note that the direction of the reaction force can be arbitrarily
chosen. The sign of the result will confirm (F; lR > 0) or not (F ]R < 0) the assumed
direction. Looking from a different angle at the problem, we can say that nodes are
introduced at the locations of the single forces (F 1R and Fp) and the discontinuity
of the distributed load.

@ Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads.

The rod structure with a total length of 3L is divided at the discontinuity of the
distributed load (i.e., at X = 2L) into two elements and the corresponding equivalent
nodal loads are calculated from Table 3.1, see Fig. 3.9. The two force contributions of

Fig. 3.8 Free-body diagram 2Po
of the rod structure with Po
changing distributed load haagngdndngng warare

Pt — Fo

= X
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78
Fig. 3.9 a Free-body () 2poL 2poL
diagram of the discretized _— ——
structure with equivalent poL poL
nodal loads. b Nodal 2 2
unknowns R —> —>
Fy O o— I}
1 2 3 nodes
element I eclement II
gl gl
=X
(b) o O ‘o)
—> —> —-»>
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magnitude 2 pg L result from the distributed load 2 py and the two force contributions
of magnitude % result from the distributed load py.

® Write separately all elemental stiffness matrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

Urx Uzx

EA 1 —1]u;xy EA %_% uix
Ki=— 1 == 1 1 , (3.26)
2L Uzx L 5 5 |Hex
Urx U3x
EA 1-1 Urx
€ __
K”__L [_1 1}143;(' (3.27)

@ Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 3 nodes, each having one degree of
freedom (i.e., the axial displacement). Thus, the dimensions of the global stiffness

matrix are (3 x 1) x 3 x 1) = (3 x 3):

Urx Uzx Usx
“ix (3.28)

® Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.
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Urx Upx U3x
1

EA % 2 0 Uix
K=— —1 11 -1 |uax. (3.29)
0 —1 41 |"3x

® Add the column matrix of unknowns and external loads to complete the global
system of equations.

EA % —% 0 Uix —F1R+2P0L
— Il | ux | = 2poL ) (3.30)
0 —1 +1 || usx Fy+ Bt

@ Introduce the boundary conditions to obtain the reduced system of equations.

There is no displacement possible at the left-hand end of the structure (i.e., u;x = 0
at node 1). Thus, cancel the first row and first column from the linear system to

obtain:
EA % —1 || uox _ %POL (331)
L | =141 || usx Fo+ 288 |7 ’

Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach u, = K “1fe

U2y L 1 [ +1+1 3poL 2L | 3poL + Fy
= — X T/ = — .
usy | EAT 3—1|+1 3 || FR+BE | EA| LpL+3FR
(3.32)

@ Post-computation: determination of reaction forces, stresses and strains.

Take into account the non-reduced system of equations as given in step ® under the
consideration of the known nodal displacements. The first equation of this system
reads:

EA (1 1 "
T Eulx—zuzx-{—o =—Fl +2p0L, (333)

or finally for the reaction force:
FR=5p)L + Fy. (3.34)

The equations for the elemental strains, stresses, and normal forces can be extracted
from Table 3.2:
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L1 1
& = L (uox —u1x) = A BpoL + Fy) , (3.35)
.- L y= (Lt F (3.36)
€5 = — (u3x —Usx) = — | = , .
I Lu 3X 2X EA\2 Po 0
. E 1
oy = — (uax —u1x) = — BpoL + Fo) , (3.37)
L A
- _ E y= (Lot F (3.38)
on = Lu Usx — Uzx) = a\2 Po o) » .
. EA
Ny = I (u2x —u1x) =3poL + Fo, (3.39)
I
. EA 1
Ny = L_H (usx —uryx) = E poLl + Fy . (3.40)

Check the global equilibrium between the external loads and the support reactions.

D> Fx=0 & —(poL+ Fo)+ Fo+4poL + poL =0 v (3.41)

! reaction force external loads

3.3 Example: Rod Structure with Displacement and Force Boundary Condi-

tions

Given is a rod structure as shown in Fig.3.10. The structure has a uniform cross-

sectional area A and YOUNG’s modulus E. The structure is fixed at both ends and

loaded by a single force F at X = %L as well as a displacement ug at X = %L.
Model the rod structure with five linear finite elements of equal length and deter-

mine

the displacements at the nodes,

the reaction forces at the supports,

the strain, stress, and normal force in each element, and

check the global force equilibrium.

Assume now that only u is given. Adjust the value of F in such a way that element
IIT is in a stress-free state.

Fig. 3.10 Rod structure with > X
displacement and force
boundary conditions

—
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Fig. 3.11 Free-body = X
diagram of the rod structure R u F R
with displacement and force Fix 2 2 Fox
boundary condition
E. A

Fig. 3.12 Free-body =X FSTE\,
diagram of the discretized R U F R

0 0 R
structure Mix .o o o—>—o—>—o—oFb—’\>
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3.3 Solution
The solution will follow the recommended 10 steps outlined on page 73.

(O Sketch the free-body diagram of the problem, including a global coordinate system.

Remove the supports at both ends and introduce the corresponding reaction forces,
see Fig.3.11.

@ Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig.3.12.

(@ Write separately all elemental stiffness matrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

Uix Urx Urx U3x
A 1 —l_bth A 1-1 Uurx
e __ 77 e _
K\ = % |:_1 | _sz’ Ky = % 1 1|usye (3.42)
Usx Usx Ugx Usx
e EA[ 1 —1usx . AT 1 =17 uay
K“‘_?[—l 1 ugx”’ KW‘? —1 1|usy’ (3.43)
Usx Uex
EA 1 -1 Usx
[ — —_—
Ky, = % |:_1 1:|M6x' (3.44)

@ Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 6 nodes, each having one degree of
freedom (i.e., the axial displacement). Thus, the dimensions of the global stiffness
matrix are (6 x 1) x (6 x 1) = (6 x 6):
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Uix  Uzx Usx Usx  Usx Uex

Uix

Usrx

K = usy . (3.45)
Usx

Usx

Uex

® Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.

Uix Uzx U3x U4x Usx Uex
1 -1 0 0 0 0 urx
-11+1 -1 0 0 0 |uxx
k_EA| 0 -1 1+1 -1 0 0 |usy
T L 0 0 —1 141 —1 0 |usx"
0 0 0 -1 1+1—1 Uusy
0 o0 0 0 =1 1 |uex

(3.46)

® Add the column matrix of unknowns and external loads to complete the global
system of equations.

R -
1 -1 0 0 0 0 Urx Fix
1141 =1 0 0 0 || ux 0
EA| 0 —1 141 =1 0 0 ||wx | _|Fx 347
L]0 0 —114+1 -1 0 wx || R | (347)
0 0 0 —1 1+41-11] usy 0
0 0 0 0 11 Uex | x|

@ and ® Introduce the boundary conditions to obtain the reduced system of equations.
Solve the reduced system of equations to obtain the unknown nodal deformations.

There is no displacement possible at either ends of the structure (i.e., u1x = 0 at
node 1 and ugy = 0 at node 6). Thus, cancel the first and last rows and the first and
last columns from the linear system to obtain:

2 -1 0 0 7 [ux ‘;

SEA| -1 2 —1 0 usx | | Fax

L] 0 —-12 -1 wix || Fy | (3.48)
0 0 —-12 Uusy 0

The first possibility to consider the non-homogeneous DIRICHLET boundary condition
Usx = Uy is:
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2—-10 0 Urx 0
SEA|0L 0 0 usx uo
= SEA : —
L 0-1 2 -1 Uygx Fy ’ (3.49)
00 —12 Usx 0
The solution can be obtained based on the matrix approach u, = K “fe
u_(]
Uzx 2
Usx Uug
= . 3.50
Usx IOEz?ng-ZzF()L ( )
Usx SEAug+FoL
I5EA

The second possibility to consider the non-homogeneous DIRICHLET boundary con-

dition usx = u is to multiply the 2" column of the stiffness matrix with the given
value ug:

2 —1xuy 0 O

Urx 0
SEA | -1 2xuy —1 0 Usy Ff (3.50)
L 0 —1xuy 2 —1 || uay Fo |- '
0 Oxuy —1 2 Usx 0

Bring the second column to the right-hand side of the system of equations:

2.0 07" 0 —up
SEA| —-1-1 0 usx | _ FX% _SEA 2u . (3.52)

L 0 2 -1 Ugx F() L —Uo

0 -1 2 sy 0 0

Now, let us cancel the second row of the system:

u —u

sea |20 0 X SEA| °
— 102 -1 wyx | =1\ Fy -1 —up | . (3.53)

0-12

Usx 0 0
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The solution can be obtained based on the matrix approach u, = K “1fe

4o

Urx 2
10E Aug+2Fy L
Usx | = | = 1564 | - (3.54)
SEAup+FyL
Usx 15EA

The third possibility to consider the non-homogeneous DIRICHLET boundary condi-
tion u3x = uy is to introduce the prescribed u( in the column matrix of unknowns:

2 -10 07 |"x 0
SEA|—-12 —10 ||u | _ | Rox 355
L | 012 -1|luy| | R | (353)
0 0 —-12 sy 0

The column matrix of the nodal displacements u, contains now unknown quantities
(unx, usx, usy) and the given nodal boundary condition (u#¢). On the other hand,
the right-hand side contains the unknown reaction force Fyy. Thus, the structure
of the linear system of equations is unfavorable for the solution. To rearrange the
system to the classical structure where all unknowns are collected on the left and
given quantities on the right-hand side, the following steps can be applied:

Let us first split the right-hand side in known and unknowns quantities:

2 10 07 Hx 0 0
SEA| -1 2 —1 0 || uo 0 F%
=2 - . 3.56
L | 012 —1|]uy Rl o (3-56)
00 -12 ]|, 0 0

Let us now multiply the second column of the stiffness matrix with the given value
Up:

2 —1xuy 0 O Urx 0 0

SEA| —1 2xuy —1 0 0 FX
“o oo _ +| . (3.57)

L 0 —IXMO 2 —1 Usx Fo 0

0 OXMO -1 2 Usy 0 0

The final step is to bring the second column of the stiffness matrix to the right-hand
side of the system (known values) and the known column matrix with F3RX into the
stiffness matrix:
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2 0 0 0 Usx Ldu
L R 10E Au
SEA | —1—ck -1 0 F | _| -2 (3:58)
L 0 0 2 —1|/| uax Fy + £ |- ’
0 0 -1 2 Usy 0

Now we can obtain the solution via the classical matrix approach u, = K -l

Uo

Uzx B
FR 25EAug—4FL
" 10EAug+2FRL | - :
4X 15EA
SEAug+FyL
Usx 15EA

@ Post-computation: determination of reaction forces, stresses and strains.

Take into account the non-reduced system of equations as given in step ® under the
consideration of the known nodal displacements. The first equation of this system
reads:

SEA SEAu
T x —wx) = Fy = Fy = _TO' (3.60)
In a similar way, we obtain from the other equations:
R 25EAM() — 4F()L R SEAM() + F()L
. VA G361

The equations for the elemental strains, stresses, and normal forces can be extracted
from Table 3.2:

=1 )= o (3.62)
= —(upx —u1x) = —, .
1= 7 (uax 1X 3L
1 uo
e _ _ = 3.63
=7 (uo — uzx) 3L (3.63)
1 SEAMO - 2F()L
= — — = 3.64
€m i3 (usgx — uop) 15EAL ( )
1 SEAug + FoL
(<
- _ _ =" "~ .65
€1v I (usx — usax) 1SEAL (3.65)
1 SEAM() + F()L
e _ _ = 3.66
V=T (uex — usx) SEAL (3.66)
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Euo
¢ = — — = —, 3.67
o0 =7 (uax —uix) 7L (3.67)
Eu
ofi = 7 (w0 —uax) = —= LO , (3.68)
e E SEAMO - 2F()L
om =7 (usx —ug) = AL (3.69)
SEAuy + FoL
oy = 7 sy — ) = — 2o (3.70)
. SEAuy+ FyL
o =7 (uex — usx) = —#, (3.71)
e EAM()
Ny = - (urx —u1x) = T (3.72)
. EA E Aug
Ny = - (o — usy) = T (3.73)
SEAuy — 2FyL
Nip = =~ (ax = o) = ——fSL o, (3.74)
SEAuy + FoL
Ny = I (usx —usx) = _—IZL o= (3.75)
. EA SEAug + FoL
NG =~ sy — usx) = —#. (3.76)

Check the global equilibrium between the external loads and the support reactions.

D Fx=0 & (Fx+Fx+Fy+ F =0.7 (3.77)
i reaction forces external load

Additional question: Assume now that only u is given. Adjust the value of Fj in
such a way that element III is in a stress-free state. From @ we can get the stress in
element 3:

e

SAEMO — 2F()L !
o =———— =0

T (3.78)

From the last equation we can conclude: Fy = %.

3.2.2 Truss Structures

Let us consider a rod element which can deform in the global X-Z plane. The local
x-coordinate is rotated by an angle « against the global coordinate system (X, Z),
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Fig. 3.13 Rotational 7
transformation of a rod A U2g

element in the X-Z plane U2z
U2 x

Tablf: 3.3 Transformation of Stiffness matrix
matrices between the < T . Toe
elemental (x, z) and global Ky =TK%, T, Ky, =T K., T
coordinate (X, Z) system Column matrix of nodal unknowns

T
uy, =Tuxz, uxz="T uy,

Column matrix of external loads
fo=Tfxz. [Fxz=T fr

see Fig.3.13. If the rotation of the global coordinate system to the local coordinate
system is clockwise, a positive rotational angle is obtained.

Each node has now in the global coordinate system two degrees of freedom,
i.e. a displacement in the X- and a displacement in the Z-direction. These two
global displacements at each node can be used to calculate the displacement in the
direction of the rod axis, i.e. in the direction of the local x-axis. The transformation
of components of the principal finite element equation between the elemental and
global coordinate system in summarized in Table3.3 whereas the transformation
matrix T is given by

cosa —sina 0 0
T = ] . (3.79)
0 0 cosa —sina

The triple matrix product for the stiffness matrix results in the following formulation
for a rotated rod element:

cos’2a  —cosasina  —cosfa  cosa sina urx Fix

EA | —cosa sina sin? o cos av sin «v —sin? o Uiz | Fiz

L —cos? o Cos o Sin & cos? o —cos & sin & uyx - Py
cos « sin o —sina  —cosa sina sin? o

uyz Fz
(3.80)
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Table 3.4 Elemental stiffness matrices for truss elements given for different rotation angles «, cf.
Eq. (3.80)

0° 180°
1 0-10 1 0-10
EA 0000 EA 0000
L1-1010 El-to10
0000 0000
—30° 30°
3 1 3 1 3 1 3 1
i V3 -3 —1v3 RS RVEIES S RV
1 1 1 1 1 1 1 1
el 1V3 1 i3 g wal| "3V3 1 a3
L 3 1 3 1 A 3 1 3 1
-3 —1v3 1 V3 -3 V3 1 —iVv3
1 1 1 1 1 1 1 1
—3v3 -1 V3 g iV3ioo-3 —iv3 g
—45° 45°
L 1 _1_17 T L 1 _1 17
2 2 2 2 2 2 2 2
o1 _1_1 111 1
EA 2 2 2 2 EA 2 2 2 2
Ll _1_1 1 1 Ll_1 1 1 _1
2 2 2 2 2 2 2 2
_l_1 1 1 1 o_1_1 1
L 2 2 2 2 L 2 2 2 2
—9Q° 90°
00O00O0 0000O0
ga |01 01 ga |01 01
L1ooo0o Lloooo
0-10 1 0-10 1

To simplify the solution of simple truss structures, Table 3.4 collects expressions for
the global stiffness matrix for some common angles «.

The results for the transformation of matrices given in Table 3.3 can be combined
with the relationships for post-processing of nodal values in Table 3.2 to express the
distributions in global coordinates, see Table 3.5.

3.4 Example: Simple Truss Structure with Two Members
Given is a plane truss structure as shown in Fig. 3.14. Both members have a uniform
cross-sectional area A and YOUNG’s modulus E. The length of the members can be
calculated from the given values (horizontal and vertical length a) in the figure. The
structure is supported at its lower end and loaded by the single force Fj at the top of
the structure.

Model the truss structure with two linear finite elements and determine

the displacement of the free node,

the reaction forces at the supports,

the strain, stress, and normal force in each element, and
check the global force equilibrium.
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Table 3.5 Post-processing of nodal values in global coordinates for a linear rod element (defined
by element length L, cross-sectional area A, and YOUNG’s modulus E)

Axial displacement (Elongation) u,
us(x) = [l — %] (cos(a)urx — sin(a)uyz) + [%] (cos(a)uprx — sin(a)usz)
uS(€) = [5(1 — O] (cos(@u1x — sin(@u1z) + [5(1 + ] (cos(@uax — sin(a)uaz)
Axial strain e,

£8(x) = 1 ((cos()uzx — sin(@)uaz) — (cos(a)u1x — sin(a)u1z))
£2(&) = 1 ((cos(a)uax — sin(a)uzz) — (cos(a)urx — sin(@)u1z))
Axial stress oy

o8 (x) = £ ((cos(@)uax — sin(a)uaz) — (cos(@)urx — sin(a)uiz))

0¢(€) = £ ((cos(@uzx — sin(@)uaz) — (cos(@urx — sin(@)uiz))
Normal force N,

Ne(x) = E2 ((cos(@)urx — sin(@)uaz) — (cos(@)urx — sin(@)u;z))

NE(©) = £2 ((cos(a)uazx — sin(a)uzz) — (cos(@)ux — sin(a)u;z))

Fig. 3.14 Simple truss J— Fy
structure composed of two
straight inclined members

3.4 Solution

® and @ Sketch the free-body diagram of the problem, including a global coordinate
system. Subdivide the geometry into finite elements. Indicate the node and element
numbers, local coordinate systems, and equivalent nodal loads, see Fig.3.15.

@ Write separately all elemental stiffness matrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

Element I is rotated by an angle of o = —45°:

Uz

<
<

<
N

<
[3S]
>

Uix
z. (3.81)

Urx
Uz

I
N
IS
D= N!'—‘ N—= N|—
D= = D= N —
l= I 1= 1ol—
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Fig. 3.15 Free-body A
diagram of the truss structure L ¥
composed of two straight ~
inclined members

Fy

Element II is rotated by an angle of o = +45°:

Uyx Uz U3x U3z

o1 1 1
2 2 2 2 |urx

1 1 1 1

L e e (3.82)

_1 1 1 _1 fusx

ﬁa 2 2 2 2
o1 _1 1 |Usz

2 2 2 2

@ Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 3 nodes, each having two degrees of
freedom (i.e., the horizontal and vertical displacements). Thus, the dimensions of the
global stiffness matrix are (3 x 2) x (3 x 2) = (6 x 6):

Uix Uiz Uzx Uzz usx usz

Urx

Uiz

K = Uz . (3.83)
Uzz

Usx

usz

® Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.
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Uix U1z Uzx Uz U3X U3Z
11 1 _1 g o]
2 2 2 2
I 1 _1 _1 ¢ o |"=x
2 2 2 2 Uiz
EA | -l _11,11_ 1 _ 11
— » 23t 73 77 3 |Hax (3.84)
L1 _11_ 11,1 1 _ 1 luy
V2a 273372273 2 T2
0o o L 1 1 _1|®x
2 2 2 T2 |usy
0 0 1 L _1 1
L 2 2 2 2

® Add the column matrix of unknowns and external loads to complete the global
system of equations.

-1l 1 _ 1 _1 ar T - R
7 03 2200 Uix Fiy
1 _1_1 R
7 03 272 00 Uiz Fyy
1 1 2 1 1
EAl=3-3 35 0 =5 5 ||ux]|_| ko 3.85
\/j _1_1 9 2 1 _1 u - 0 ’ (3.85)
a 272 2 2 T2 2z
1 1 1 1 R
00 =33 7 —3||ux F3x
1 1 1 1 R
L0 0 3 —3-3 3 dLusz]l LFz

@ Introduce the boundary conditions to obtain the reduced system of equations.

There is no displacement possible at the lower left-hand and lower right-hand of the
structure (i.e., u1x = 1z = 0 atnode 1 and usx = uzz = 0 at node 3). Thus, cancel
the first two and last two columns and rows from the linear system to obtain:

EA 10 Urx FO
— = . 3.86

Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach u, = K “fe
usx V2a 1 [10]]| Fo V2aFy[1
= — = — . (3.87)
Urz EA1-0]01 0 EA 0

@ Post-computation: determination of reaction forces, stresses and strains.

Take into account the non-reduced system of equations as given in step ® under the
consideration of the known nodal displacements. The first equation of this system

reads:
EA 1 R R I ( )
\/_ - ugx — l 1X :> 1 11X — 2 M 3‘88
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In a similar way, we obtain from the other equations:

EA( 1 . . F

= (_zuzx) =Py = =2 (3.89)
EA( 1 . . F

7 (—Euzx) =Fyx = Fy=-7. (3.90)
EA (1 i, . F

ﬁa (zuzx) = F3Z = F3Z = E (391)

The elemental stresses can be obtained from the displacements of the start (‘s’) and
end (‘e’) node as:

0 = — (—cos(@)usx + sin(a)usz + cos()uex — sin()uez) . (3.92)
ﬁa
In the case of element I (o = —45°), we should consider u;x = 1z = uz = 0to
obtain:
(o) fo (3.93)
op = —cos(a)ury = —. .
1 Joa DU2x A
Similarly, u1x = u1z = uyz = 0 for element II (o = +45°):
Fy

g = —ECOS(O([[)LQX = —E. (394)

Application of HOOKE’s law, i.e., 0 = Ee, allows the calculation of the elemental
strains:

a_, fo (3.95)
fg=—=+—, .
' E V2E
on Fy
fp=—=—-——. (3.96)
"W ET 2EA
The normal forces can be obtained from the normal stresses in each element:
Fy
Ny =01A = ﬁ (3.97)
Fo
NH = O'HA = ——=. (398)

V2
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(a) | F (E’_) a Tuo Tuo

]

Fig. 3.16 Approximation of a solid using a truss: a solid, and b truss structure

Check the global equilibrium between the external loads and the support reactions.

D Fx=0 & FN+F)+ F =0, (3.99)
. —

! reaction force external loads

S F;=0 & (F,+F)+ 0 =0.v (3.100)
; ———_——— ~—

reaction force external load

3.5 Example: Approximation of a Solid Using a Truss Structure

Given is an isotropic and homogeneous solid as shown in Fig. 3.16a. This solid should
be modeled with the plane truss structure shown Fig.3.16b. The six truss members
have a uniform cross-sectional area A and YOUNG’s modulus E. The length of each
member can be taken from the figure. The structure is supported at its left-hand side
and the bottom. A uniform displacement u is applied at the top nodes in the vertical
direction.

Determine:

the displacements of the nodes,

the reaction forces at the supports and nodes where displacements are prescribed,
the ‘macroscopic’ POISSON’s ratio of the truss structure, and

check the global force equilibrium.

3.5 Solution
The solution will follow the recommended 10 steps outlined on page 73.
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Fig. 3. - R R
ig 3.17 Free-body FE, F,
diagram of the truss structure 3
T R
Fix

r»
=
IS
ISE o
ISR o

Pl
v Dix)
1 —> 1 2
Fl, Py
a

© and @ Sketch the free-body diagram of the problem, including a global coordinate
system. Subdivide the geometry into finite elements. Indicate the node and element
numbers, local coordinate systems, and equivalent nodal loads, see Fig.3.17.

@ Write separately all elemental stiffness matrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

Elements [T and I'V do notrequire any rotation (o« = 0°) and thus, the simple elemental
stiffness matrix given in Eq. (3.1) can be used:

Uix Uzx

Kj = ETA [ | _”Z;i (3.101)
Ugx U3X

K§, = % [ _} _”Z;‘i (3.102)

Elements I and III are rotated by an angle of & = +90° and Eq. (3.80) allows us to
express the elemental stiffness matrices as:

Ugx Uqz U1X U1Z
0 0 0 O Ugx

ke EA| 0 1 01 |ug
1= a 0 0 0 0 M]X7
0-1 0 1

Uiz

(3.103)
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Uzx U3z Uzx Uzz
0 0 0 0 Uusyx

K& — 0 1 0 -1 uszz
m a 0 0 0 0 Urx ’
0 —1 0 1 Urz
Element V is rotated by an angle of av = +45°:
Usx Uaz U2x U2z
r_1 _1 1
2 2 2 2 |Usx
EA | _1 1 1
e = 2 2 2 2 |H4z
_1 1 L 1 jury
V2a 3 3 3 3
F I A
2 2 2 2
Element VI is rotated by an angle of a = —45°:
Uix Uiz U3x U3z
L _1_1
2 2 72 72 |uix
EA L1 _1_1
K =— 2 2 72 72 Mz
L _1 1 1 fuzy
V2a 272 2 2
1111z
272 2 2

95

(3.104)

(3.105)

(3.106)

@ Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with the global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 4 nodes, each having two degrees of
freedom (i.e., the horizontal and vertical displacements). Thus, the dimensions of

the global stiffness matrix are (4 x 2) x (4 x 2) = (8 x 8):

Uix Uiz Ux Uzz U3x U3z U4x U4z

Urx
Uiz
Usrx

Uuzz .

Usx
usz
Ugx
Usz

(3.107)

® Insert the values of the elemental stiffness matrices step-by-step into the global

stiffness matrix.
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ulrx uirz uxx uzz uzx uzz ugx Uqz
ST A _ 1 1 1
1+55 5/ 1 0 3 3 0 0 .
1 1 1 1 _
272 T+ 272 0 0 272 272 0 ! uiz
_ 1 1 1
S S v SN i [
__1 1 _ [ S
£= 0 0 W 1+ 23 0 1 23 Wi %2z
EA 1 S _ uzx
a 272 2V2 0 O I+35 a5 ! 0 :
1 _1 _ 1 1 u3z
N N 0 1 55 lt35 O 0 )
1 1 _ 1 |Mex
0 0 AN 1 0 1+35 55 vy
0 -1 [ 0 0 S S DI
L 23/2 232 232 2v/2
(3.108)

® Add the column matrix of unknowns and external loads to complete the global
system of equations.

The global system of equations can be expressed in matrix from as
Ku,=f, (3.109)
where the column matrix of the external loads reads:
f=[FR FR0FR 0FR FR FR]". (3.110)

@ Introduce the boundary conditions to obtain the reduced system of equations.

The consideration of the support conditions, i.e. u1x = ujz = Uzz = usx = 0,
results in the following 4 x 4 system:

I+ ﬁ 0 0 ﬁ Urx 0
pAl 0 455 55 O wax || O 3.111)
a 0 2 1+ 0 sz F{Z ' '
ﬁi 0 0 1+ #2 U4z Fy;

The consideration of the displacement boundary condition u3; = uq allows a further
reduction of the dimensions of the system of equations. Multiplication of the third
column of the coefficient matrix by the given displacement u, and bringing this
column to the right-hand side of the system gives after the deletion of the third row
the following equation:
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14+ L 0 1 0
EA OM | zf Hax 8 Eduy| |
« +a uax | = | A
0 14| | uaz F, 0
272 2f

(3.112)
A further reduction can be achieved under the consideration of the displacement
boundary conditions u4z = ug. Multiplication of the third column of the coefficient
matrix by the given displacement u( and bringing this column to the right-hand side
of the system gives after the deletion of the third row:

a 0 1+2[ a 2[

Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach u, = K “fe

|._

1
Usx a 1 1+ﬁ§ 0 EAug 22
usx :ﬁx 2 0 1+ —— B a L
_ 2[ 272

(1 + f) 0
uo 1
- . (3.114)
1+2ﬁ[1]

@ Post-computation: determination of reaction forces, stresses and strains.

Take into account the non-reduced system of equations as given in step ® under the
consideration of the known nodal displacements. The first equation of this system
reads:

— U —_ =0. .
a W 2f x =

The second equation of this system reads:

EA Usx Uz : R4+ 2[ EAuO
—N\O———F=—F=—wz)=F; = F;=
a 22 22 412 a
(3.116)
In a similar way,’ the other reactions are obtained as:
E, =F FY, =F, =—F},  F} =0. (3.117)

44242 _ 204V2)
4+2 1422

5The relation might be useful to show the identities.
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‘Macroscopic’ POISSON’s ratio of the truss structure:

_ uo/(142V?2)
Ex

V= —— = — m a = ~ (0.261. (3.118)
£z 70 1 +2«/§

Check the global equilibrium between the external loads and the support reactions.

D Fx=0 & (Fx+Fo+ 0 =0, 7 (3.119)
i — —

reaction force external loads

D Fz=0 & (F,+FRy+Fy+F)+ 0 =0.v (3120

reaction force external load

3.6 Example: Truss Structure with Six Members (Computational Problem)
Given is a plane truss structure as shown in Fig.3.18. The members have a uniform
cross-sectional area A and YOUNG’s modulus E. The length of each member can be
taken from the figure. The structure is fixed at its left-hand side and loaded by

e two prescribed displacements uo and 2u at the very right-hand corner, and
e a vertical point load Fy.

Model the truss structure with six linear finite elements and determine

e the displacements of the nodes,
e the reaction forces at the supports and nodes where displacements are prescribed,

%

/
ﬁ;:; D—> U()
1 Fy l
2 ug

Fig. 3.18 Truss structure composed of six straight members
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o1 I 2

R
F3X

3 ‘
Fy

Fig. 3.19 Free-body diagram of the truss structure composed of six axial members

e the strain, stress, and normal force in each element, and
e check the global force equilibrium.

Simplify all your results for the following special cases:

(@) uo=0,
(b) Fy=0.

3.6 Solution
The solution will follow the recommended 10 steps outlined on page 73.

® and @ Sketch the free-body diagram of the problem, including a global coordinate
system. Subdivide the geometry into finite elements. Indicate the node and element
numbers, local coordinate systems, and equivalent nodal loads, see Fig.3.19.

@ Write separately all elemental stiffness matrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

Elements I, IT and V do not require any rotation (o« = 0°) and the simple elemental
stiffness matrix given in Eq. (3.1) can be used:

Urx Uzx
EA 1 -1 Uiy
e—_
K = T [_1 1L2X, (3.121)
Usx Usqx

e EA I —1 usx
Ki=— [ = 1}”4)(’ (3.122)
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Usx Usx
EA 1 -1 Ugx

Element IV is rotated by an angle of & = +90° and Eq. (3.80) allows us to express
the elemental stiffness matrix as:

Upx Upz U4x U4z

0 0 0 O |ux
EA 0 1 0 —1|uyy
e _—
K3, = 7 0 0 0 0 lunx: (3.124)
0 -1 0 1 |uyz
Elements IIT and VI are both rotated by an angle of o = +45°:
Uix Uiz U4x U4z
o1 11
2 2 2 2 |U1x
EA | _1L 1 1 _1],
Kyy=——| 2 2 2 72| (3.125)
1 1 1 1
T e
11 11|z
2 2 2 2
Uix Uiz U4x U4z
V2_E i 2]
4 4 4 4y
EA| 2 &2 2 a2 |,"
_ -~ 4 4 4 4 (3.126)
L|_v2 2 2 _J2 |uax
4 4 4 + gy
V2 V2 2 2
4 4 4 4
Upx U2z Usx U5z
L1 _1 1
2 2 2 2 |Uzxx
EA | _1 1 1 _1],
Ky=——| 2 2 2 72\ (3.127)
1 1 1 1
VaL | -5 b b fusx
1 1 1 1 |Usz
2 T2 T2 2
Uy Uz Usx UsZ
V2 V2 _J2 V2
4 4 4 4wy
EA| -2 2 2 24,
=— 4 4 4 4 . (3.128)
L | _v2 v2 v2 _v2 |Usx
i i 4 T sy,
V2 V2 V2 2
4 4 4 4
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@ Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 5 nodes, each having two degree of
freedom (i.e., the horizontal and vertical displacements). Thus, the dimensions of the
global stiffness matrix are (5 x 2) x (5 x 2) = (10 x 10):

Uix Uiz Uzx Uz U3x U3z Usx U4z Usx U5z

Uix
Uiz
Uzx
Uz

K — uzx . (3.129)
Uusz
Ugx
Usqz
Usx

Usz

® Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.

uix uiz uzx Uz uzx u3zz usx usz Usx usz
(142 -2 1 0 0 0o -¥2 2 o ofux
2 2 0 0 0 0 22 0 o0 |uiz
-1 01+ 22 0 o 0 0 -2 2 |ux
0 0 Y21+ 0 o 0 -1 Y2 Y2 |uz
K 0 0 0 0 1 0 -1 0 0 0 |usx
%_ 0 0 0 0 0 o0 0 0 0 0 |uzz’
—¥2 0 0 -1 01+1+% ¥ 1 0 |uy
Y2 2 0 -1 0 0o Y2144 0 0 |uaz
0 0 —¥2 2 g o -1 01492 —¥2 Jusy
L0 0 2 %2 0 o0 0 0 —¥2 2 usz
(3.130)

® and @ Add the column matrix of unknowns and external loads to complete the
global system of equations. Introduce the boundary conditions to obtain the reduced
system of equations.

The global system of equations can be expressed in matrix from as

Kuy,=f, (3.131)
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where the column matrix of the external loads reads:
f=[FR FR 00 FR FR 0 —F, FR, —FR " . (3.132)

The boundary conditions u;x = u;z = usx = usz = 0 allow to delete four rows
and columns from the system of equations:

r V22 2 N2 7]
L+ =7 0 O =% 7T |Tuw] T 0 7
V2 V2 V2 V2
-5 I+5 0 L sl ol I 7297 0
EA| 0 0 1+1+% -2 —1 0 || wux 0
L V2 V2 —F,
L 0 —1 -2 1+¥% 0 0 Uaz 20
_2 3 1 0 142 a2 || usx Fsx
4 4 4 4 o _FR
2 0 0o 2 vz |[LPFd LTz
L 4 4 4 4 A
(3.133)
Let us first consider the displacement boundary condition us; = —2u,. Multiplica-

tion of the column corresponding to us; with the prescribed value —2u gives:

2

S}

1+4 - _% %(_2”0) fuax | [ }
2 42 0 1 2 2 oug) | |y,
Al o 0 24+¥2 -2 1 0(=2up) u4x
L 0 o o s 0 ocmg || mz| | —Ho
2T 0 1+ 2 L || "X FSR)E
(3.134)

Let us bring the last column of the stiffness matrix to the right-hand side and cancel

the last row of the system of equations:

V2 V2
I+ =% i ury 0 —4’40
N B I T2 w2z 0 Loy
EA EA
_— 2 2 = 0 - — 0
7 0 0 24¥2 V2 usx 7
0 -1 =2 1442 o usz —Fo 0
R V2
—‘/TE 4 -1 0 1+ */Ti | usx Fgx 2 4o

(3.135)
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Now, let us consider the second prescribed displacement boundary condition usy =
uo. Multiplication of the column corresponding to usx with the prescribed value i
gives:

—4 I+ % 0 -1 4140 uyz 0 Quo
EA EA
- o 0 24¥2 Iy sy |= e
0 -1 =2 14 ¥Z oy wiz | | —Fo 0
R Ve
22 0 a4 Pty ] Lk o
(3.136)

Let us bring the last column of the stiffness matrix to the right-hand side and cancel
the last row of the system of equations:

N
1+T - 0 0 usy 0 _ﬁu —%MO
V2o Y2 g 20
EA - 1t wz | | 0| _EA %Mo 4 “/T§u0
L 0 0 2+4 —4 usx 0 L 0 —ug
0 _1 _4 1+~/T§ usz —F 0 0
(3.137)
N
L+ —F 0 0 Uox 0 +¥
EAl =% 142 0 -1 |luy |0 EAug | _3v2
Ll 0o 0 2+% %2 Jlux | | O L 1
V2 V2 || ua4 -y 0
0 -1 = 1+ z
(3.138)

Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach u, = K “Lfe

FL
urx = 0.429 uy — 0.408 A’ (3.139)
FL
urz = —1.35Tup — 1.562 A’ (3.140)
FL
usx = 0.285up — 0.296 A’ (3.141)

FL
Uygz = —0.928 uy — 1.970 a (3142)
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@ Post-computation: determination of reaction forces, stresses and strains.

Take into account the non-reduced system of equations as given in step ® under
the consideration of the known nodal displacements. The evaluation of the first,
second, fifth, sixth, ninth and tenth equation of this system gives the following results,
respectively:

EAM()

FR = —0.184 Fy — 0.858 T (3.143)
R EAUQ

Fiy = 0.592 Fo +0.429 ——, (3.144)
R EAMO

F3x =0.296 Fy — 0.285 7 (3.145)

FR =0, (3.146)
R EAI/I()

Fsx = —0.112 Fy + 1.144 A (3.147)
R EAM()

F5; = —0.408 Fy + 0.429 AR (3.148)

The elemental stresses can be obtained from the displacements of the start (‘s’) and
end (‘e’) node as:

E
o= I (—cos(@)ugsy + sin(@)ugsz + cos(a)uex — sin(@)ueyz) . (3.149)

Application of this general equation (pay attention to the length of element III and
VI which is equal to +/2L) to the six elements under the consideration of the given
nodal displacements gives:

0.408 20 4 0,429 E1 3.150
g] = . X . T, ( . )
0296 12 + 0,285 210 3.151
g = . X . T ( . )
0.837 20 4 0.607 £ 3.152
om = Y. X . T ( . )
F() Euo
o = 0.408 =2 — 0.429 =20 (3.153)
A L
F() Ebt()
ov =0.296 - +0.715 —. (3.154)

Fo Euo
oy1 = —0.577 T + 0.607 < (3.155)
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Application of HOOKE’s law, i.e., 0 = Ee, allows the calculation of the elemental
strains:

1220]
= 0408 10 4 04200 3.156
A+ 7 ( )
0.206 20 1 0.285 ™ 3.157
en = — _A+ 7 3. )
e = 0. 837—+0607 LO (3.158)
ugp
_0408——0429 3.159
Ev A .’ ( )
ugp
0296 1 4 07150 3.160
ey A+ I’ ( )
0.577 L0 +0607 3.161
evi = =077 20 +0. G-16D)

Check the global equilibrium between the external loads and the support reactions.

ZE‘X:O & (FRNAFSN+FRH)+ 00 =0, v (3.162)

i

reaction force external loads

ZF,Z_O & (FR4+F8 —Fy+ —-FR =0.v (3.163)
——
reaction force external load

3.3 Beams and Frames

3.3.1 Euler-Bernoulli Beam Elements

Let us consider an EULER-BERNOULLI beam element which is composed of two
nodes as schematically shown in Fig.3.20. Each node has two degrees of freedom,
i.e. adisplacement u, in the direction of the z-axis (i.e., perpendicular to the principal
beam axis) and a rotation ¢, around the y-axis, see Fig.3.20a. Each node can be
loaded by single forces acting in the z-direction or single moments around the y-axis,
see Fig.3.20b. In the case of distributed loads g, (x), a transformation must be made
to calculate the equivalent nodal loads.

Different methods can be found in the literature to derive the principal finite
element equation (see [8, 23]). All these methods result in the same elemental for-
mulation, which is given in the following for constant material (E) and geometrical
property (1):
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Fig. 3.20 Definition of the (a) #
EULER-BERNOULLI beam
element for deformation in

the x-z plane: a U1z U2z .
deformations; b external Py P2y
loads. The nodes are Ay { ( A—» T

symbolized by two circles at ‘ L @ ‘
the ends (O) \ \

s,
Mly % MZy
(¢ z
<
L |
\ \
12 —6L —12 —6L7 | "= Fie L N
El, | —6L 41> 6L 2L* || %1y M, Ni,
— = + qZ(-x) d-xv
L3 | =12 6L 12 6L Uy, F>. Ny,
_ 2 2 0
6L 2L~ 6L 4L 02y M, Na,
(3.164)
or in the abbreviated form
K"u; = f°, (3.165)

where K€ is the elemental stiffness matrix, ug is the elemental column matrix
of unknowns and f° is the elemental column matrix of loads. The interpolation
functions in Eq. (3.164) are given by Ny, (x) = 1 — 3 (f)2 +2 (%)3 Niy(x) =
—x 25— Ny, (1) =3 (2) = 2(%) and Nap () = & — .

Table 3.6 summarizes for some simple shapes of distributed loads the equivalent
nodal loads.

Once the nodal displacements (u1;, @1y, U2;, ¢2,) are known, further quanti-
ties and their distributions can be calculated within an element (so-called post-
processing), see Tables3.7 and 3.8.

3.7 Cantilever Beam with Point Loads

The cantilever beam shown in Fig.3.21 is loaded by a force Fj and a moment M, at
the free right-hand end. The bending stiffness E1 is constant and the total length of
the beam is equal to L. Model the beam with one single finite element to determine:

the unknowns at the nodes,
the equation of the bending line,
the reactions at the support,

[ ]
[ ]
[ ]
e theinternal reactions (shear force and bending moment distribution) in the element,
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Table 3.6 Equivalent nodal loads for an EULER-BERNOULLI beam element (x-axis: right facing;
z-axis: upward facing), partially adapted from [5]

Loading Shear Force Bending Moment
q qL qlL?
FL= - My, =4+
gy 2 W=t
1 2 qL qL?
L Fo, = —— Mo, — —
e 2 2 2y 12
! Fio = —9% (05 _ 2021+ 90%) My = +-09 (30 —8aL+6L2
T A S R AER LR A e
1 2 qa® ga®
—a b Fa. = Y (2L — a) Moy = — T (4L — 3a)
T Rl My, = +2
il AT AR
it 5 Fa— gL My =~
L T T T 0

q 1 5qL?
1 3 Fo.——iqL M, — - 29E
L 2=yt 2T T g6
L F oL F FL
_——I)—;—(—Hz 2 Flz:—g ]le:'i‘?
1 2 F , FL
L F2z:*5 ]\/IZy:*?
F Fb2(3a + b) Fb%a
a b Fiz :*T Miy =+ I2
1 2 Fa?(a+ 3b) Fa?b
H% F2Z = LS MZ"/ = LZ
L L b __3M M= M
I; Y ey
° 3 g M Mo = 2 M
Y ey
a b ab b(2a — b)
M FlzzfﬁMﬁ ]\41y:<l,»MT
1 I 2 ab a(2b—a)
— = s, = +6Mﬁ sz +M 2
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Table 3.7 Post-processing quantities (part 1) for a BERNOULLI beam element given as being depen-
dent on the nodal values as a function of the physical coordinate 0 < x < L and natural coordinate

—1 < ¢ < 1. Bending in the x-z plane
Vertical displacement (Deflection) u,

2 3 2 3
oo = [ 132} 42 2} Lu 4| —x+ 2220,
¢ L L L L2
X 2 X } X2 x3
+ 13 Z -2 Z uz; + +f_ﬁ ©2y

L

R e
+ %[2+3§_§3]”21 - 31[—1 —§+§2+€3] %s&zy
du, 2 du,

Rotation (Slope) ¢y = — -1 A
x

R 6x 6x2 4x  3x2
oy (x) = +ﬁ_? uz + l_f—'—ﬁ Ply

6x  6x2 2x  3x2
L R Rl R R

SO =52 [+#3 -3¢+ 1 [1-26 43¢ o1y

1 1
+57 [—3 + 352] U+ 7 [—1 +26+ 352] ©2y
d%u, 4 d%u,

Curvature ky = o _ﬁ¥

. 6 12x 4 6x
Ry(x) = +E_F upz + —z'f‘ﬁ 1y
6 12x 2 6x
R EREEE L Al R
e 6 I
’iy(ﬁ):ﬁ[_g]ulz'f'z[_l+3£]§01y

6 1
+ 1w + L1+ 3¢ oy
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Table 3.8 Post-processing quantities (part 2) for an EULER-BERNOULLI beam element given as
being dependent on the nodal values as function of the physical coordinate 0 < x < L and natural
coordinate —1 < ¢ < 1. Bending in the x-z plane

] d%u, 4 d%u,
Bending moment My = —E|, =——E y@

7 dx? L?
R 6 12x 4  6x
My(x) :EIy +ﬁ_ ? Mlz+ _Z+F @1};

6 12x 2 6x
+ _F+F uz; + _Z+ﬁ ©2y

6 1 6 1
M) = Ely(Lz[_f]ulz + Z[_l + 3¢l 1y + ﬁ[f]uh + Z[l + 3¢] @2)’)

du, 8  du,
Shear force Q, = _Elyﬁ = —FEI},F

12 6 12 6
Q‘;‘_(X)ZEIy —E Uiz + +ﬁ 801y+ +E uy; + +ﬁ P2y

. 12 2 12 2
Q:) = Ely\ ;5[=11uiz + 74311y + 51 Huz + 54312y

dzug(x) B 4 dzuZ
FT IR 5 4’

R 6 12x 4 6x
ex(x,2) = +ﬁ_? Uiz + —Z"‘ﬁ Py
6 12x 2 6x
+ _ﬁ—’_ﬁ M2Z+ —z‘f‘ﬁ w2y |2

6 1 6 1
e = (Lz[—ﬁ]ulz + =138 ey + Sl8lu + 10 +3£]<p2y)z

M € —_
Normal strain €§ (x, z) = —z

M
Normal stress o2 (x, z) = Ee$(x, z) = EeS(&, 2) (: IVZ)
y

. 6 12x 4  6x
o,(x,z) =E +ﬁ*? uiz + *z+ﬁ Ply

6 12x 2 6x
+ —E-F? uzz + —z'i'ﬁ ©2y )2

6 1 6 1
05, 2) = E(Lz[—f]ulz + Z[—l + 381y + ﬁ[f]uk + z[l +3¢] SDZy)Z
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Fig. 3.21 Cantilever beam /
with two point loads at the My
free end E, I >
Fy
| L |
Fig. 3.22 Free-body 7
diagram of the cantilever i_;
beam with two point loads at X

the free end R My
My ET

Fo
R
F 1Z
Fig. 3.23 Free-body A
diagram of the discretized L’
structure X M
R 2 !
M 1Y T i I
Fo
R
F 1Z

e the strain and stress distributions in the element, and
e the global force and moment equilibrium.

Repeat the solution procedure for an approach based on two equal elements of length
L

5
3.7 Solution
The solution will follow the recommended 10 steps outlined on page 73.

(@ Sketch the free-body diagram of the problem, including a global coordinate system,
see Fig.3.22.

@ Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig.3.23.

Steps ®-® can be combined since we have only a single element problem. The
global system of equations reads:

12 —6L —12 —6L7] | 12 Fy
Ely | — 2 2 B
y | —6L 4L* 6L 2L e | My | (3.166)
L3 | —12 6L 12 6L Uzz —Fo
— 2 2
6L 2L> 6L 4L oy —M,
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@ Introduce the boundary conditions to obtain the reduced system of equations.
Ely [ 12 6L || u2z —Fy
e [6L 4L2]|:(P2y:| = |:—M0:| . (3.167)
Solve the reduced system of equations to obtain the unknown nodal deformations.
Uz L’ y 1 412 —6L\[ —-F,
oy | Ely 12 x4L?2 —6L x 6L | —6L 12 —-M,

L [—4FRL*+6LM,
" 12EIy | 6LFo— 12Mp

(3.168)

Based on these nodal unknowns, the bending line (deflection) can be obtained from
the general equation provided in Table 3.7:

x=o0ro04|3(% 2 o X 3 X _x
uz(X)=0+0+ ) 2\ 1 uzz + T 2| e
2 3
L 3 X 2 X 4FyL* + 6LM,) +
=P\ ) |4 )

x> X3
+ [T_ ﬁ} (6LF, — 12M0)} . (3.169)

@ Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step ® under the consideration of the known nodal degrees of
freedom (i.e., displacements and rotations). The evaluation of the first and second
equations gives:

Ely R
F(—12u22 - 6Lg02y) = FlZ (3170)
= F=F, (3.171)
Ely ) R
?(6141422 + 2L (pzy) = MlY (3172)

= M} =My— FlL. (3.173)
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The internal reactions (i.e., bending moment and shear force) in the element can be
obtained from the relations provided in Table 3.8:

. 6 12X 26X
My(X) = Ely _E+F urz + _Z+F Oay (3.174)
=—-My+(L—-X)F, (3.175)
. 12 6
07(X)=Ely 73| ez + 77| % (3.176)
=—F. (3.177)

The normal stress distribution can be obtained from the bending moment given in
Eq. (3.175):

My (X)

o (X.Z) = —
Y

Z = Ii(—Mo +(L-X)F) Z. (3.178)
Y

The strain distribution results from HOOKE’s law:

. o°(X.Z) 1
(X, 2)= 2= E—Iy(—Mo—k(L—X)FO)Z. (3.179)

Check the global equilibrium between the external loads and the support reactions.

zFizzo & (FY) + (-F) =0, v (3.180)
- —— N——

reaction force  external load

S My =0 & (MR)+(RL—My)=0. v (3.181)
X —_—  ——
! reaction external load

3.8 Cantilever Beam with Simple Supports and Distributed Load

The beam shown in Fig. 3.24 is loaded by a constant distributed load g¢. The bending
stiffness E [ is constant and the total length of the beam is equal to 2L. Model the
beam with two finite elements of length L to determine:

the unknowns at the nodes,

the reactions at the supports,

the internal reactions (shear force and bending moment) in each element,
the strain and stress distributions in each element, and
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Fig. 3.24 Cantilever beam q0
with simple supports and /
distributed load
E I
TT777 7777
I A

Fig. 3.25 Free-body A
diagram of the cantilevered L .
beam with simple supports X
and distributed load l

Fy Fy, Fiy
Fig. 3.26 Free-body Z
diagram of the discretized
structure with equivalent 1—’ X _qO_L _qO_L
nodal loads 2 2

YR ™ /43
v I o\
I? 1?2
40 4o
R R R
F 1Z F. 27 12 12 E‘SZ

2] 211

I—» Ty 1—» T11

e the global force and moment equilibrium.

3.8 Solution
The solution will follow the recommended 10 steps outlined on page 73.

(@ Sketch the free-body diagram of the problem, including a global coordinate system,
see Fig.3.25.

@ Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig.3.26.

@ Write separately all elemental stiffness matrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

Uiz Ly Uz Py
12 —6L —12 —6L 7| uiz
Ely | —6L 4L* 6L 2L* | ¢y
13| =12 6L 12 6L | uxz’
—6L 2L%* 6L 4L? | ¢y

KS = (3.182)
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Uzz Yoy U3z Y3y
12 —6L —12 —6L Uz
Ely | —6L 4L%? 6L 2L? oy
€ __
Ky = L3 —12 6L 12 6L usz (3.183)

—6L 2L*> 6L 4L | o3y

@ Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 3 nodes, each having two degrees of
freedom (i.e., the vertical displacement and rotation). Thus, the dimensions of the
global stiffness matrix are (3 x 2) x (3 x 2) = (6 x 6):

Uiz Liy Uzz Yoy U3z Y3y

Uiz

Py

K = Uzz . (3.184)
P2y

usz

P3y

® Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.

Uiz Py Uzz Py Uz @3y
12—-6L —12—-6L 0 0 uiz
—6L 4L> 6L 2L> 0 0 |oiy
Ely | —12 6L 24 0—12—6L |uyy
T3 | —6L 2L 0 8L? 6L 2L? |pyy’
0 0 —-12 6L 12 6L uszz
0 0—6L 21> 6L 4L* |psy

(3.185)

® Add the column matrix of unknowns and external loads to complete the global
system of equations.

- PR -
1z
12 —6L —12—6L 0 0 Uz MR
—6L 4L% 6L 2L 0 O Oy . ‘Y%L
Ely| —12 6L 24 0 —12—6L || uy | _ | F2z=7% (3.186)
I3 | —6L 2L 0 8L* 6L 2L% || puy |~ ol T
0 0 —12 6L 12 6L Usz FR il
0 0 —6L 2L* 6L 4L? 3y 3z L22
__ 49
L 12 .
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Fig. 3.27 Beam deflection 0.02 :
along the major axis
=
S 0.00 /\/
+
9]
]
S
5]
A
—0.02 !
0 1 2
Coordinate %

@ Introduce the boundary conditions to obtain the reduced system of equations.

L2
Ely[8L2 20 | [ o | _[ %3 (3.187)
L3 | 2L% 417 || @3y —wlt | .

12

Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach u, = K “1fe

2
e | _ L’ 1 417 —2L? %2
3y Ely32L% — 414 | —2L* 8L? _%
L? 3 1
T B R 1 ot P 0 B (3.188)
28EIy | =2 8 _% 28E1y _g

The obtained nodal unknowns allow to calculate, for example, the bending curve
based on the nodal approach provided in Table 3.7, see Fig.3.27. It can be seen that
all the support conditions, i.e. u1z = uzz = usz = 0 and p;y = 0, are fulfilled.

@ Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step ® under the consideration of the known nodal degrees of
freedom (i.e., displacements and rotations). The evaluation of the first, second, third
and fifth equation gives:

Ely N
F(12u12—6L4p1y - 121/!22 - 6L(p2y) = FlZ (3189)

3
S doL (3.190)

= FIRZ=_28
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Ely 2 2 R
F(—6Lu12+4L Y1y +6Luyz +2L%py) = M|y (3.191)
= MR = iq;oL2 (3.192)
1Y 28 4 N
EIY R ‘]OL
F(—12M12+6LS@]Y + 241422 — 121/132 — 6L<p3y) = FZZ — T (3193)
= F§ = 19 L (3.194)
27 = ZSQO s .
EIY R qOL
?(—12M22+6L802Y + 12u3z + 6L§03y) = F3Z — T (3195)
3
= Fy = a0l - (3.196)

The internal reactions (i.e., bending moment and shear force) in each element can
be obtained from the relations provided in Table 3.8.

. 2 6xp qoL3 2 6xp
My()cl):EIy _Z+? P2y = 56 _Z+F , (3.197)

. 4 6xy 2 6xn
My(xn) =EI, —Z-i-F P2y + _Z+? P3y
qOL3 1 4 6)(?1[ 5 2 6)CH
= -4+ |-+ 3.198
28 (2|: L + L2 6 L + L? ( )

Itis easy to check that the values at the very left- and right-hand boundary correspond
in magnitude to the external loads: M;(xl =0) = —"%—éz and M;’ (xp=1L) = —%.
The graphical representation of the bending moment is shown in Fig. 3.28. It can be
seen that the magnitude of the bending moment equals the external single moments
at the left and right-hand end. Furthermore, the jump in the middle equals the sum

of the single moments at X = L.

6 3
© =El,— ), = —qoL, 3.199
Q7 (x1) y 2Py = g0 ( )

6 6 1
Q%(xn) = EI, (ﬁ% + ﬁs03y) =~ oL (3.200)
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Fig. 3.28 Bending moment 0.10 :
distribution o
~
SE
- 0.05 - , -
g 2L ‘
12
g 0.00
2 .
%0 q()L2 _ roL2
= —0.05F "28 12 4
=}
3]
M
—0.10 !
0 1 2
Coordinate %
Fig. 3.29 Shear force 0.15 ‘
distribution
3qoL
C;E 28
5qoL
o]
o 0.00- -
— qo L
g — 11
<
©n
—0.15 |
0 1 2
Coordinate %

The graphical representation of the shear force is shown in Fig.3.29. It can be seen
that the shear force corresponds in magnitude to the external forces at the very left-
and right-hand boundary, as well as in the middle of the beam structure.

The normal stress distribution can be obtained from the bending moments given
in Egs. (3.197) and (3.198):

M?(xl) q()L3 2 6x1
os(x,2) = yly Z=561y T+t )% (3.201)

ME(xyp) q0 L3 1 4 6xq 5 2 6xp1
v z) = PO il s D DA N B PR Y
ol =—r—=o\z| 2T 2| 6| 2T 2| ) O
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The strains result from HOOKE’s law:

ot(x1,z)  qoL’ 2 6xp
Y, 7)== = ——+—)z. 3.203
e (x1, 2) z SOEL R E ( )
o’ (xm, 2) qoL® (1 4 6xy 5 2 6xq
€ = X = —_ —_—— - —_— = - .
&b, 2) = —— REL\2| T + 13 sl T2 | )?
(3.204)

Check the global equilibrium between the external loads and the support reactions.

D Fz=0 & PR+ +F)+ (-4 - %) =0, v (3205

——————
external load

1 .
reaction force

D My =0 & (MY - FYL—FR20) + (%L +%2L) =0. v
i

[ —

reaction
external load

(3.206)

3.9 Cantilever Beam with Supporting Rod
The beam shown in Fig. 3.30 is loaded by a triangular shaped distributed load (max-
imum value g) and a single force Fj at its right-hand end. The bending stiffness E 1
is constant and the total length of the beam is equal to L. The beam is supported at
its right-hand end by a rod, which is inclined by 45°. The rod is characterized by its
constant tensile stiffness £ A and length % L.

Model the beam/rod structure with two finite elements to determine:

e the free-body diagram,
e the unknowns at the nodes,
e the reactions at the supports,

Fig. 3.30 Cantilever beam
with supporting rod
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Flg 3.31 Free—bod.y @ F:BZ
diagram of the cantilever 7 FR
beam with supporting rod 3X
j—» X EAL
45°
MR, ( E, I .
Fy
R
F 1Z
Fig. 3.32 Free-body Z
diagram of the discretized L
structure with equivalent X
nodal loads
—20 qoL
A
v J I
ql?
R 750 -
F 1Z

e the internal reactions in the beam (shear force and bending moment) and in the
rod (normal force), and
e the global force and moment equilibrium.

3.9 Solution
The solution will follow the recommended 10 steps outlined on page 73.

(O Sketch the free-body diagram of the problem, including a global coordinate system,
see Fig.3.31.

@ Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig.3.32.

@ Write separately all elemental stiffness matrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

Since the beam element is horizontal, it does not require any transformation to the
global coordinate system and thus, the standard stiffness matrix as givenin Eq. (3.164)
can be used:

Uiz Py Uz Py

12 —6L —12 —6L 7| uiz
Ely | —6L 4L> 6L 2L*> | o1y
T 13| 12 6L 12 6L | uxz’

—6L 2L%> 6L 4L*> | ¢y

(3.207)
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The rod element is rotated by an angle of a = —45°:
Uxx Uz Usx usz
[ 1 1 _1 _1
2 2 2 2 |u2x
EA 1 1 1 _1
Ky=—| 2 2 2 2 |1z (3.208)
~L| -1 _1 1 L lusy
2 2 2 2 2
1 _1 1 1 |#3z
L ™2 2 2 2
_sz Uzz Uzx U3z
1 I =1 =1 |uxy
EA 1 1 —1 -1 Uuzz
=7 | -1 1 1 ey (3.209)
| -1 -1 1 1 |usz

@ Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 3 nodes. The first node has two degrees
of freedom (deflection and rotation), the second node has three degrees of freedom (a
vertical and horizontal displacement as well as a rotation) while the third node has two
degrees of freedom (a vertical and horizontal displacement). Thus, the dimensions
of the global stiffness matrix are (7 x 7):

Uiz $iy Uzz Yoy Uzx U3x U3z
uiz
@1y
oz (3.210)
K = (25’
Usrx
usx
usz

® Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.

Uiz Liy Urz @oy U2x U3x U3z
12E1 6EI 12E1 6EI
o o —o» o~ 0 0 0
u
6EI 4EI 6EI 2EI 1Z
L L L? L 0 0 0 o1y
_EI 6Bl 12El | EA 6El EA _EA _EA
L3 L2 L3 L L? L L L |U2z
K = __6EI  2EI 6EI 4E1 . 3211
T I I I 0 0 0 P2y ( )
EA EA _EA _EA [U2x
0 0 L 0 L L L |y
0 0 _EA 0 _Ea EA EA |TX
L L L L usy
EA EA EA EA
. o 0o -5 0 -F F T
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® Add the column matrix of unknowns and external loads to complete the global
system of equations.

_% _% _% _% 00 0 TruyT [Pl — 2490l
- 0 00y M, + 4
~SEL 2BL - GEL AEL g o o ||ew |=| _ai?
o0 EA 0o EA _EA_EBA |y Fx
BRI T
(3.212)

@ Introduce the boundary conditions to obtain the reduced system of equations.

The obvious support conditions are at node 1 and 3, i.e. u;z = 0, ¢;y = 0 and
usx = uzz = 0. However, it is also important to consider that the beam cannot have
any elongation in the X-direction at node 2: u;x = 0. Thus, a reduced 2 x 2 system
is obtained:

12EIy, EA 6EI 7
Y_|__ 6Ely Urz —Fy— —qoL
L L L - 2071, (3.213)
6E1y 4E1y oy _QOL
1.2 L 20

Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach u, = K “fe

Tq0L
Usy . 4E 1y _6EIY —Fy — q0
_ L L2 220

T 4Ely (12EL EA 6EIy \2 L

o || (B EA) (Y| _6ED DEN Ea |l a0

L2 L3 L 20

4EIyF() llEIyq()
L4 — —
_ L 10

L? 2L 20
1 L3(l1goL + 40F,)

T30 " TEAL? +31y)
1 L?(AqoL® —30IygoL — 1201y Fy)

—— X
80 Ely(AL? +31y)

(3.214)

© Post-computation: determination of reactions, stresses and strains.
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The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step ® under the consideration of the known nodal degrees of freedom
(i.e., displacements and rotations). The evaluation of the first equation gives:

Ely Ely 3
_12Fu22 — 6?%02Y = FIZ — %QOL (3215)
3 3AL3qy+20IyqoL + 401y Fy
FR = — ) 3.216
= 2= AL? 131y (5.216)

The other reactions can be obtained in a similar way as:

L(TAL3qy + 1201ygoL + 3601y Fy)

R
= , 3.217
Y 120(AL? + 31y) ( )
R _ _AL2(11q0L+40F0) (3.218)
2X 40(AL? 4 31y) '
AL?(11goL + 40F,
PR = A 1 V) (3.219)
40(AL? +31Iy)
AL*(11gyL + 40F,
FR = (Hgo 0 (3.220)

40(AL% +31y)

It should be noted that the evaluation of the third and fourth equation can be used to
check — to a certain extent — the system of equations since the result must be equal
to the given value on the right-hand side.

The internal reactions (i.e., bending moment and shear force) in the beam element
can be obtained from the relations provided in Table 3.8.

e 6 12)6[ 2 6)6[
My(x) = EIy{ 0+ 0+ —ﬁ-i-? Uz + Z-i-ﬁ ©ww | (3.221)

12 6
07 () = Ely (0 +0+ [F] urz + [E} 302)') (3.222)

3 ALy + 14IyqoL + 401y Fy
—— X
40 AL? 4+ 31y

(3.223)

The internal reaction (i.e., normal force) in the rod element can be obtained from the
relation provided in Table 3.5:
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AL*V2(11q0L + 4F)
80(AL2 4+ 31Iy)

EA
Ny (xn) = T(Sln(a)uzz) = (3.224)

Check the global equilibrium between the external loads and the support reactions.

D Fx=0 & (Fx+F)+ 0 =0,V (3.225)
- NS i ——

1 .
reaction force external load

S Fr=0 & FR+F)+(-R-%-M) =0, v (3220
- ——————

l

reaction force
external load

D My =0 & (M}, — Fiy(L+ L/4V2) + Fi}L/4V2)
i reaction

+ (qoL?/30 + FoL +7/20goLL — qoL*/20) = 0. v (3.227)

external load

3.3.2 Timoshenko Beam Elements

There are many different formulations for TIMOSHENKO beams available in the sci-
entific literature [30, 33]. A very early and simple derivation is based on linear
interpolation functions for the displacement and rotational fields. For this purpose,
let us consider in the following a TIMOSHENKO beam element which is composed of
two nodes as schematically shown in Fig.3.33. Each node has two degrees of free-
dom, i.e. a displacement u, in the direction of the z-axis (i.e., perpendicular to the
principal beam axis) and a rotation ¢, around the y-axis, see Fig.3.33a. Each node
can be loaded by single forces acting in the z-direction or single moments around
the y-axis, see Fig.3.33b. In the case of distributed loads ¢ (x), a transformation to
equivalent nodal loads is required.

Different methods can be found in the literature to derive the principal finite
element equation (see [8, 23]). All these methods result in the same elemental for-
mulation, which is given in the following for constant material (E, G), geometrical
(I, A, ks) properties and linear interpolation functions:

4 —2L —4 —2L Uiz F]Z L Nlu
ksAG | 2 412 472 _
s 2L 3L + a2l 6L « ¢|y _ Mly + [ ¢.0) 0 dx .
4L | -4 2L 4 2L o Fa. Na
—2L 2L —a 2L 3L + o | | éay My, | © 0

(3.228)
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Fig. 3.33 Definition of the (a) ?
TIMOSHENKO beam element
for deformation in the x-z
plane: a deformations, and ULy U9y
b external loads. The nodes ¢1y ¢2y
are symbolized by two ) ¢ T
circles at the end (O) r'4
o] L o]
(b) 2
F 1z F 2z
My Mo,
) ¢ x
I’4
< L »
where the abbreviation o = % was used. In abbreviated form, we can write
Keu; = f°, (3.229)

where K¢ is the elemental stiffness matrix, "; is the elemental column matrix of
unknowns and f° is the elemental column matrix of loads. The shape functions in
Eq. (3.228) are given by Ny, (x) = 1 — 7 and Ny, (x) = 7. Table3.9 summarizes
for some simple shapes of distributed loads the equivalent nodal loads. It is obvious
from Eq. (3.228) that this simple element formulation, based on linear interpolation
functions for the displacement and rotational field and exact integration, yields an
equivalent load vector only with force contributions whereas moment contributions
are not considered, see Table 3.9.

Once the nodal displacements (i1, @1y, U2, ¢2,) are known, further quanti-
ties and their distributions can be calculated within an element (so-called post-
processing), see Table 3.10.

3.10 Beam Under Pure Bending Load

The cantilever TIMOSHENKO beam shown in Fig. 3.34 is loaded by a moment M at
the free right-hand end. The bending stiffness £/ and the shear stiffness k;sAG are
constant and the total length of the beam is equal to L. Model the beam with one
single linear TIMOSHENKO finite element to determine:

e the unknowns at the nodes,

e the equation of the bending line and the distribution of the rotation,

e the reactions at the support,

e theinternal reactions (shear force and bending moment distribution) in the element,
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Table 3.9 Equivalent nodal loads for a linear TIMOSHENKO beam element (x-axis: right facing;
z-axis: upward facing)

Loading Shear Force Bending Moment
q qL
M 7% M

1 2 L
L J— 7% Mz, =0
q qa?
QUHIHN A= gp oo M =0
1 2 qa?
a b s, = A My, =0
q 1
[m Fio= -4l My, =0
! 1
1 . 2 Fa: =~ 24l Mz, =0

q 1
[ I Flz:_ZqL Mly:O
1 2 ., = ! L Moy, =0
I, 2z — 4(1 2y —
L F L F
2 2 Flz :—5 Mly =0
1 2 F
L Fs, —*5 sz =0

e the strain and stress distributions in the element,

e the global force and moment equilibrium, and

e sketch the deflection of the load application point as a function of the slenderness
ratio £ for v = 0.0, 0.3 and 0.5.

3.10 Solution
The solution will follow the recommended 10 steps outlined on page 73.

D Sketch the free-body diagram of the problem, including a global coordinate system
(see Fig.3.35).

@ Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads (see Fig. 3.36).

Steps can be combined since we have only a single element problem. The
global system of equations reads:
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Table 3.10 Displacement, rotation, curvature, shear strain, shear force and bending moment distri-
bution for a linear TIMOSHENKO beam element given as a function of the nodal values in Cartesian

and natural coordinates (bending occurs in the x-z plane)
Vertical displacement (Deflection) u,
ug (o) = [1= ¢ Jure + [1]u
u(© =[5 = O]urz + [+ O] ua:
Rotation ¢,
#0) =[1-z]en +[1]o2
2 ©) =[50 =] b1y +[3(1+ )] day
Curvature Ky = % = %E = E%
Y7 dx T dedx T L de
w0 =[] o1y +[1] o2
K5O =[-z]o1y +[z] o2
. du, d¢ du,
Shear strain v,, = rm + ¢y = ad—é + ¢y
5o = [~z ]z + [z ]uoe +[1= £l 0wy + [1] 02

V(O = [—F]urz + [ ]uz: + [3A = O] b1y + [0+ O] 62y

du, dM,y
Shear force Q; = ksAGvyx, = ksAG| —+ ¢y | = —
dx ’ dx

Q8(x) = ksAG ([= ] uie + [£]uoe + [1 = T] o1y +[1]62))
0% = ksAG ([~ L]urz + [L]uo: + [0 = O] b1y + [0+ O] b2y)

. dgy dgy d¢
Bending moment My = +Elyky = Elyd— =El, fd—
X ’ X

M{) = Ely ([~ ] é1y + 1] 62y)
M§©) = EL ([=7] o1y + 1] 62))

Fig. 3.34 Beam loaded /

under pure bending moment My
Eﬂ Ia kS7G7A |> h VA
b
L |
R
4 2L -4 -2L Uiz Fiz
472 472 R
kAG | 2L 5L +a 2L gL’ —a || ¢y | _ | Miy (3.230)
41 —4 2L 4 2L Uzz 0

—2L $L* —a 2L L%+« | | dor My



3.3 Beams and Frames 127

Fig. 3.35 Free-body A
diagram of the beam loaded L
under pure bending moment M%/ X u Z
0
.1, kG A |> h @»y
b
R
F 1Z
Fig. 3.36 Free-body 7
diagram of the discretized
structure MR L» X

@ Introduce the boundary conditions to obtain the reduced system of equations.

4 2L Urz 0

kAG
4 — : (3.231)
4L | 2L L ta || éw —M,

Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach u, = K “fe

U2z AL 1 Yrva-ar || 0
oy ~ kAG 4 (512 + @) —4L? ’ —2L 4 —My
. L [ 2mor
. 2MoL

= 3.232
ksAGL? + 12E1 AM ( )
—4Mo

Based on these nodal unknowns, the bending line (deflection) and the rotational
distribution can be obtained from the general equations provided in Table 3.10:
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W) = | = u __ OMelr | (3.233)
ST T RAGL2+ 12ET | L] '

. X 12MyL X 3934
N =\ Tl =126 r el X | T| (3.234)

© Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step ® under the consideration of the known nodal degrees of
freedom (i.e., displacement and rotation). The evaluation of the first equation gives:

ks AG
4L

(—4uzz — 2Lgay) = FY, (3.235)
= F}=0. (3.236)

The evaluation of the second equation gives in a similar way:
MY, = M. (3.237)

The internal reactions (i.e., bending moment and shear force) in the element can be
obtained from the relations provided in Table 3.10.

ME(x) = EI : 12E1M, 3.238
YW =ELV Pl = = e kD (3.238)
o) = kG (| 2 *

07 (x) = ks 7|1z + I Py

6k AG Mo(L — 2x)
— (3.239)

kAGL? + 12EI

The normal and shear stress distributions can be obtained from Egs. (2.125) and
(2.126):

. M) 12E M, 120
e B ¥ YT 7T A
7 (x) = Q:() _ 6GMo(L — 2x) (3.241)

kA  kAGL2+ 12EI°


http://dx.doi.org/10.1007/978-3-319-69817-5_2
http://dx.doi.org/10.1007/978-3-319-69817-5_2
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Check the global equilibrium between the external loads and the support reactions.

D Fz=0 & (F}) + (0) =0,V (3.242)
; ——— N——"

reaction force  external load

D My =0 & M)+ (-My) =0. v (3.243)
X ——— ——

! reaction external load

Deflection of the load application point as a function of the slenderness ratio % for
v =0.0,0.3 and 0.5.
The nodal displacement at node 2 is given in Eq. (3.232):

6M,L?

= (3.244)
kAGL? + 12E1

Uz

A=bh,I = b and ks = % allows us to express the

Considering that G = VR

last equation as:

_E
2(14v)°

1+v M,yL?
X

P TR (3.245)
3 (z) +(1+v)

Urz =

The graphical representation of this equation for different values of POISSON’s ratio
is given in Fig. 3.37.

3.11 Beam Loaded by a Single Force

The cantilever TIMOSHENKO beam shown in Fig. 3.38 is loaded by a single force Fj
at the free right-hand end. The bending stiffness £/ and the shear stiffness ksAG
are constant and the total length of the beam is equal to L. Model the beam with one
single linear TIMOSHENKO finite element to determine:

Fig. 3.37 Comparison of the 1.50
finite element solution for a
linear TIMOSHENKO element
based on analytical
integration with the
analytical solutions for beam
problems

analytical solution
BERNOULLI and TIMOSHENKO

1.00

u. (L)

Mg L2
2ET

FE solution
v =0.5

0.50 |- N -
0.3

Deflection

0.0

0.00 :
0 1 2

Slenderness ratio %
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Fig. 3.38 Beam loaded by a / Fy

single force
E.I, ks, G A h
b

Fig. 3.39 Free-body A
diagram of the beam loaded
by a single force M]I%/ L X F 1o
( E7[7 ksanA h
b
i
Fig. 3.40 Free-body 7
diagram of the discretized L
R
structure My X Fy
1 2
o
T I
R
Fiy
—» T
e the unknowns at the nodes,
e the equation of the bending line and the distribution of the rotation,
e the reactions at the support,
e theinternal reactions (shear force and bending moment distribution) in the element,
e the strain and stress distributions in the element,
o the global force and moment equilibrium, and
e sketch the deflection of the load application point as a function of the slenderness

ratio % forv =0.0,0.3 and 0.5.

3.11 Solution
The solution will follow the recommended 10 steps outlined on page 73.

@ Sketch the free-body diagram of the problem, including a global coordinate system
(see Fig.3.39).

@ Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads (see Fig. 3.40).

Steps @®—® can be combined since we have only a single element problem. The
global system of equations reads:
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4 2L -4 =2L Uiz FlRZ
472 472 R

kAG | 2L 3L +a 2L gL —a | | ¢y | _ | MYy | (3.246)
4L —4 2L 4 2L Uzz F()
—2L 2L —a 2L L% +a | | by 0

@ Introduce the boundary conditions to obtain the reduced system of equations.

wac| 4 2L iy, Fo
: 4 = . (3.247)
4L | oL gL2 +a || ¢ 0

Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach u, = K “fe

4
U2z AL 1 L2 ta 2L Fo

= X
oy kAG ~ 4(3L*+a) —4L>| 2L 4 0

4(kAGL? 4+ 3EI)

_ FoL ksAG , (3.248)
kAGL? 1 12E1
—6L7?

Based on these nodal unknowns, the bending line (deflection) and the rotational
distribution can be obtained from the general equations provided in Table 3.10:

ey | X _ 4R L(kAGL?>+3EI) x (3.249)
U = 2 T L AGGAGL? + 12ED) | L | '
() X 6F,L? X (3.250)
OW =T =Ty el | L] '

© Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step ® under the consideration of the known nodal degrees of
freedom (i.e., displacement and rotation). The evaluation of the first equation gives:

ksAG

10 (—4uzz — 2Loy) = FY, (3.251)

= F},=-F. (3.252)
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The evaluation of the second equation gives in a similar way:
MFY = FyL. (3.253)

The internal reactions (i.e., bending moment and shear force) in the element can be
obtained from the relations provided in Table 3.10.

M) = EI| ___ SEIRL 3.254
YO = EL o = = e T ED (3.254)
ety = kac( | :

Q5 (x) = ks Tzt T Gay

2Fy(2kl/AGL? + 6ET — 3k,AGL
_ 2Fo(ks sAGLY) (3.255)

ksAGL? + 12E]

The normal and shear stress distributions can be obtained from Egs. (2.125) and
(2.126):

. M (x) 6E FyL 3956
o,(x,2) = 7 Z7(x) = MZ(U, 3. )
°(x) 2Fy(ksAGL? +6EI — 3k,AGLx
ey = 220 2ok - ) (3.257)
kA ksA(ksAGL? + 12E1)

Check the global equilibrium between the external loads and the support reactions.

D Fz=0 & (FY) + (F) =0,V (3.258)
X —— —~—
! reaction force  external load

D My=0 & MY+ (-FRL) =0. v (3.259)
. N —— N—

! reaction external load

Deflection of the load application point as a function of the slenderness ratio % for
v =0.0,0.3 and 0.5.
The nodal displacement at node 2 is given in Eq. (3.248):

AFyL(k(AGL* +3EI)
" ksAG(ksAGL? + 12EI)’

(3.260)

Uzz

A=>bh,I = b and ks = % allows us to express the

Considering that G = T3

last equation as:

_E
20+0)°


http://dx.doi.org/10.1007/978-3-319-69817-5_2
http://dx.doi.org/10.1007/978-3-319-69817-5_2
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Fig. 3.41 Comparison (a) 24 { { { {
between the finite element analytical solution - - - .
solution for a single linear (TIMOSHENKO) v = 0~5>/ y
TIMOSHENKO beam element b 18 - FE solution TIMOSHENKO —— 7 &
with analytical integration < :D‘E (analytical integration) s Y 0;3
and the corresponding 3 27
analytical solutions a general g 12 - S s 0.0
view and b magnification for Ee 7
small slenderness ratios o] 7 7
= 6 7 —
() =z = =
A ==
e == BERNOULLI
0 — [ |
0 1 2 3 4 5
Slenderness ratio %
®  2F w w w =
v = 0.5\/ .-
Sc& - analytical solution _ - - ~ ]
‘g EE (TIMOSHENKO) _ _=22Z2-""
£ lp----m7r SR
S BERNOULLI
)
13}
o}
T
=) FE TIMOSHENKO
(analytical integration)
0 1 1 1
0 0.25 0.5 0.75 1

Slenderness ratio %

36(1+1) (4)*+60  FyL?
X .
25 (LY L 460  3EI

1+v

(3.261)

Urz =

The graphical representation of this equation for different values of POISSON’s ratio
is given in Fig.3.41.

3.12 Beam Loaded by a Distributed Load

The cantilever TIMOSHENKO beam shown in Fig.3.42 is loaded by a constant dis-
tributed load go. The bending stiffness E 7 and the shear stiffness k;AG are constant
and the total length of the beam is equal to L. Model the beam with one single linear
TIMOSHENKO finite element to determine:

the unknowns at the nodes,

the equation of the bending line and the distribution of the rotation,

the reactions at the support,

the internal reactions (shear force and bending moment distribution) in the element,
the strain and stress distributions in the element,
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Fig. 3.42 Beam loaded by a : 7 O O O ) q0
distributed load 7/
[7
E7 I7 ks? G7 A h ,A
b
| L |
Fig. 3.43 Free-body Z
diagram of the beam loaded L
by a distributed load X
R O O I O O O O I Ll
Myy
/
E bl I bl ksv G7 A h ,A
b
R
Fry
Fig. 3.44 Free-body Z
diagram of the discretized
£ L» X

structure
wl wl

e the global force and moment equilibrium, and
e sketch the deflection of the right-hand end (x = L) as a function of the slenderness
ratio % for v = 0.0,0.3 and 0.5.

3.12 Solution
The solution will follow the recommended 10 steps outlined on page 73.

(© Sketch the free-body diagram of the problem, including a global coordinate system
(see Fig.3.43).

@ Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads (see Fig.3.44).

Steps @®-® can be combined since we have only a single element problem. The
global system of equations reads:
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4 2L -4 -2L s FR + %t
kAG| 2L 3L +a2L gL —a || oy | _| MY (3.262)
4L | —4 2L 4 2L Y @k ' '
—2L $L* —a 2L $L2 + o | | oy 0

@ Introduce the boundary conditions to obtain the reduced system of equations.

4 2L Uz wk

kAG
4 = . (3.263)
4L | 2L 5L2 +a || ¢y 0

Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach u, = K “1fe

4 @l
Uzz 4L 1 —L[? 4+ o 2L 02
= X
bo kAG ~ 4(3L*+a) —4L>| 2L 4 0
2(ky(AGL* +3EI)
oL’ L AG
=" s . (3.264)
ksAGL? + 12E1 AL

Based on these nodal unknowns, the bending line (deflection) and the rotational
distribution can be obtained from the general equations provided in Table 3.10:

X 2goL* (ks AGL? +3EI) X
us(x) = | =|uz = x|=1, (3.265)
z L ksAG(k,AGL? + 12E1) L
. X 3qoL3 X 3.266
¢y(x) =7 boy = —m X AR (3.266)

© Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step ® under the consideration of the known nodal degrees of
freedom (i.e., displacement and rotation). The evaluation of the first equation gives:

ksAG
4L

(—4urz —2Lpay) = FfY (3.267)
= FS,=—ql. (3.268)
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The evaluation of the second equation gives in a similar way:

L2
MR, = qu. (3.269)
The internal reactions (i.e., bending moment and shear force) in the element can be
obtained from the relations provided in Table 3.10.

Me(x) = E] |:l:| ¢2Y = —?’El—qOLz (3.270)
y L kAGL? + 12E1’
05(x) = ksAG(H oy + H m)
: L L
goL(2ksAGL?* +6E1 — 3k,AGLx)
= ) (3.271)

ksAGL? + 12E1

The normal and shear stress distributions can be obtained from Egs. (2.125) and
(2.126):

‘( M (x) ) 3EqoL? o) 3.27)
oo === e 1 e Y G-
°(x L(2k,AGL? + 6EI — 3k;AGLx
T; (x) = QZ( ) _ q0 (2ks s ) (3.273)
: kA ksA(ksAGL? + 12E1)

Check the global equilibrium between the external loads and the support reactions.

ze‘Z =0 & (FR) + (@L) =0, v (3.274)
. ——— ~——
! reaction force  external load

ZM,-Y =0 & Wi+ (-2F)=0. v (3.275)

reaction
external load

Deflection of the right-hand end (x = L) as a function of the slenderness ratio % for
v =0.0,0.3and 0.5.
The nodal displacement at node 2 is given in Eq. (3.264):

2qoL*(kyAGL? +3EI)
" kyAG(ksAGL? + 12E1)"

Uzrz (3276)

A=bh I =" andk, = % allows us to express the

Considering that G = VR

last equation as:

_E
2(14v)°
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Fig. 3.45 Comparison
between the finite element
solution for a single linear
TIMOSHENKO beam element
with analytical integration
and the corresponding
analytical solutions:

a general view and

b magnification for small
slenderness ratios
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u. (L)

Deflection
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(TIMOSHENKO) _ _ =

=}

BERNOULLI

FE TIMOSHENKO
(analytical integration)

0.25 0.5 0.75 1

Slenderness ratio %

48(1+v) (£)* +80  goL*
X .
1 460 8EI

14+v

(3.277)

The graphical representation of this equation for different values of POISSON’s ratio

is given in Fig. 3.45.

3.3.3 Generalized Beam and Frame Elements

3.3.3.1 Generalized Beam Elements

Let us consider a generalized beam element, i.e., a superposition of a rod and a simple
beam element, which is composed of two nodes as schematically shown in Fig. 3.46.
Each node has three degrees of freedom, i.e., a displacement u, in the direction of
the x-axis, a displacement u, in the direction of the z-axis (i.e., perpendicular to the
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Fig. 3.46 Superposition of
the rod element a and the
EULER-BERNOULLI beam
element b to the generalized
beam element ¢ in the x-z
plane
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principal beam axis), and a rotation ¢, around the y-axis, see Fig.3.46¢. Each node
can be loaded by single forces acting in the x- or z-directions or single moments
around the y-axis. In the case of distributed loads p, (x) or g,(x), a transformation
to equivalent nodal loads is required.

The principal finite element equation for the generalized beam can be obtained
by combining the expressions for the rod element and the simple beam as given in

Egs. (3.1) and (3.164):

T EA
-~ 0 0
L
12EI  6EI
0 L3 L2
6EI 4EI
0 -—
2 L
EA
S 0
L
12EI 6EI
Ly 2
6EI 2EI
L L2 L

EA

0 0
12EI  6EI
L3 L2
6EI 2EI
L2 L
0 0
12EI  6EI
L3 L2
6EI  4EI
L2 L

Ulx

Ui,

@ly

Uy

Uz

302y
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Fig. 3.47 Generalized
cantilever beam with two
point loads

o

ANN\N

~

_Nl_ — 0 -
0 Nlu
L 0 L Nl'sﬂ
+ / pe(x)dx + / g, (x) dx . (3.278)
N, 0
0 0
0 N2u
0 Na,

The explanation of Eq. (3.278) can be readily taken from the corresponding sections
of the rod and simple beam, see Sects.3.2.1 and 3.3.1.

3.13 Cantilever Generalized Beam with Two Point Loads

The generalized beam shown in Fig.3.47 is loaded by two point loads, i.e., a single
horizontal force Fy and a single moment M, at its right-hand end. The material
constant (E) and the geometrical properties (I, A) are constant and the total length
of the beam is equal to L. Model the member with one generalized beam finite
element of length L to determine:

e the unknowns at the nodes,

e the displacement distributions #; = uz(X) (bending) and uy = uyx(X) (ten-
sion/compression),

e the reactions at the supports,

e the internal reactions (normal force, shear force and bending moment) in the ele-
ment,

e the strain and stress distributions in the element, and

e the global force and moment equilibrium.

3.13 Solution
The solution will follow the recommended 10 steps outlined on page 73.

(® Sketch the free-body diagram of the problem, including a global coordinate system,
see Fig.3.48.
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Fig. 3.48 Free-body ME'
diagram of the cantilevered Mo
generalized beam with two FB\' B, I, A 9—' Fo
point loads
Fiy 12
Fig. 3.49 Free-body A
diagram of the discretized
structure M 1RY L X
et 2 N
iy T T I T ) Fo
Ry Fy

@ Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig. 3.49.

@ Write separately all elemental stiffness matrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

There is only a single element and its stiffness matrix reads:

Uix Uiz Py  Uzx Uz P2y

EA EA
— 0 0O —— 0 0 Urx
L L
12EI  6EI 12EI 6EI |,
L3 L2 R
6EI 4EI 6ET  2EI | .,
e L2 L 12 L
K = oA EA o’ (3.279)
——— 0 0 — 0 0
12EI 6EI 12E1  6EI | u,,
o S
6EI 2EI 6EI  4EI | oy
0O - — —— 0 —
L L2 L L2 L

Steps @—® can be combined since we have only a single element (Determine the
dimensions of the global stiffness matrix and sketch the structure of this matrix with
global unknowns on the right-hand side and over the matrix. Insert the values of the
elemental stiffness matrices step-by-step into the global stiffness matrix. Add the
column matrix of unknowns and external loads to complete the global system of
equations).
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[ EA EA

— 0 0 -— 0 0 uix F
12E1  6E1 0 _12EI6EI || FR
L3 L2 L3 L2
_6E21 4E1 0 6E21 2E1 o1 MR
EA L L EA L L = . (3.280)
-— 0 0 — 0 0 Uzx Fy
L L
12EI 6EI 12EI  6EI R
— — 0 P uzz by
JE L3 L?
_6EI 2EI 0 6EI 4EI Ory — M,
L L2 L L? L 1L 1 L i

@ Introduce the boundary conditions to obtain the reduced system of equations.

There are only two degrees of freedom, i.e. the rotation and horizontal displacement
at node 2:

EA 0 uzx Fo
L = . (3.281)
4E 1y oy —M,
L

Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach u, = K “fe

4E1y LFO
. : r ! " EA (3.282)
oo | EEE-OL o EAL M _ LMo '
L 4E1y

© Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step ® under the consideration of the known nodal degrees of freedom
(i.e., displacements and rotations). The evaluation of the first equation gives:

EA EA LFy .
__MZXZ__X_:FIX = FIX:_FO' (3283)

FY, = —, (3.284)

MR, = ——, (3.285)
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X 3M,

= ——. 3.286
2z 3L ( )

The internal reactions (i.e., normal force, bending moment, and shear force) in each
element can be obtained from the relations provided in Tables 3.2 and 3.8:

. EA
Ny(X) = I dax = Fo, (3.287)

ety =i (S 3Mo 3.288)
07(X)=Ely 2 )| =—5 .

26X 1f2(L —3X)
M;(X) =Ely (|:—Z+ F:| (pzy) = Z(T)LMO . (3.289)

The total normal stress distribution is a superposition of the contributions from the
tensile (Ny) and bending (My) part, see Tables 3.2 and 3.8:

0% (X) = + Z=—+- B - Z.  (3.290)

Ny(X)  My(X)  Fy 1(2(L—3X)\LM,
A Iy T A 4

The strain result from HOOKE’s law:

e5(X,2) =

KK _ 1(2<L—3X>)LMOZ. 6.291)

E  EA ' 4 L2 Ely

Check the global equilibrium between the external loads and the support reactions.

S Fx=0 & (F) + (F) =0,V (3.292)
- —_—— ——
! reaction force  external load
D Fz=0 & (F,+F)+ (0 =0,V (3.293)
, —_— —
! reaction force external load
D My=0 & (M} —FyL)+ (—My) =0. v (3.294)
; — ——
! reaction external load

3.14 Generalized Cantilever Beam with Distributed Load and End Displace-
ment

The generalized beam shown in Fig.3.50 is loaded by distributed loads py and a
vertical displacement u at its right-hand end. The material constant (E) and the
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Fig. 3.50 Generalized bo
cantilever beam with /
distributed load and end

displacement E.IA

- > = = = —> =

Fig. 3.51 Free-body 7
diagram of the generalized L
cantilever beam with X

distributed load and end M%/ > >

displacement
FR E,1,A

R
FlZ

Po

Uo

geometrical properties (I, A) are constant and the total length of the beam is equal
to L. Model the member with one generalized beam finite element of length L to
determine:

e the unknowns at the nodes,

e the displacement distributions #; = uz(X) (bending) and uy = uyx(X) (ten-
sion/compression),

e the reactions at the supports,

e the internal reactions (normal force, shear force and bending moment) in the ele-
ment,

e the strain and stress distributions in the element, and

e the global force and moment equilibrium.

3.14 Solution
The solution will follow the recommended 10 steps outlined on page 73.

( Sketch the free-body diagram of the problem, including a global coordinate system,
see Fig.3.51.

@ Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig. 3.52.

® Write separately all elemental stiffness matrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.
There is only a single element and its stiffness matrix reads:
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Fig. 3.52 Free-body
diagram of the discretized
structure with equivalent
nodal loads

Urx
EA

Ky

Uiz

0
12E1

Fi
L1y Uzx
EA
0 S
L
6E1
LZ
4E1
L
EA
0 -
L
6E1
L2
2E1
L

3 Finite Element Method

Z
te x
5 nl Pl
— 2 — 2
" I
N T1 2 I o
Uuo
Ff
Uzz $oy
0 0 Uiy
12EI  6EI
T | M
6E1  2EI |
L? L . (3.295)
0 0 Uzx
12EI  6EI | U2z
L3 12
6EI 4EI | P¥
L2 L

Steps can be combined since we have only a single element (Determine the
dimensions of the global stiffness matrix and sketch the structure of this matrix with
global unknowns on the right-hand side and over the matrix. Insert the values of the
elemental stiffness matrices step-by-step into the global stiffness matrix. Add the
column matrix of unknowns and external loads to complete the global system of

equations):
r EA EA 7
— 0 0O — 0 0
L
12E1 6E1 12EI  6EI
L L L L
6EI 4EI 6EI 2EI
=0 R ——
L2 L L2 L
EA EA
-— 0 0 — 0 0
L L
12EI 6EI 12EI  6EI
JE 12 0 I3 12
6EI 2EI 6EI 4EI
L L2 L L2 L -

T poL
Uiy FlRX + T
Uiz Ff,
Y1y My
Urx &

2
Uz _Fsz
P2y 0

(3.296)
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@ Introduce the boundary conditions to obtain the reduced system of equations.

Let us first eliminate the degrees of freedom at the left-hand support:

E_A 0 0 Uzx ﬁ
L 2
12E1 6E1
— R
L_3 _L2 uzz = _FZZ . (3297)
6E1 4E1
L L 0

Let us now multiply the second column of the stiffness matrix with the given dis-
placement —u:

EA poL
— 0O(— 0 Uzx -
I (—uo) >
12E1 6E1
0 B (—uy R Uy | = _FzRZ . (3.298)
0 6E1 iy 0
) e L

Rearranging the second column of the stiffness matrix to the right-hand site of the
system and canceling the second row gives finally the reduced system of equations:

E_A 0 Urx &
L _ 2
AE] = + | epy | Mo (3.299)
— P2y 0 —
L L2

Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach u, = K “1fe

; :4EL—A%—0 o EA || 6EIu - 3u, - (3:300)
2Y —_— —_—
L L2 2L

© Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step ® under the consideration of the known nodal degrees of freedom
(i.e., displacements and rotations). The evaluation of the first equation gives:
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EA EA L plL poL

The other reactions can be obtained in a similar way as:

3E1u0
Iz = X (3.302)
3E1M0
R = - (3.303)
3E1u0
%= (3.304)

The internal reactions (i.e., normal force, bending moment, and shear force) in each
element can be obtained from the relations provided in Tables 3.2 and 3.8:

NE(x) = A pol (3.305)
(X)) = I Max = )
. 12 6 3ETu
Q7(X) = Ely| 5(-uo) + 50 | = ——5— (3.306)
. 6 12X 26X
My(X) =Ely —E-i‘F (—ug) + —Z—FF oy (3.307)
3ETug
=5 (X-1). (3.308)

The total normal stress distribution is obtained by superposing the contributions from
the tensile (Ny) and bending (My) part, see Tables 3.2 and 3.8:

Ny(X)  My(X)_ poL 3Eug

C(X) = /Z/=————(X-L1L) Z. 3.309
o) = ==+ = - XD (3.309)
The strains result from HOOKE’s law:
ox(X,Z)  poL  3ug
C(X,Z) =X = - (X-L)Z. 3.310
(X, 2) . AT XD (3.310)

Check the global equilibrium between the external loads and the support reactions.

D Fx=0 & (FR) +(%+8)=0 v (3.311)
: —— —_—

reaction force
external load
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Fig. 3.53 Generalized =X
cantilever beam with two do Po
types of distributed loads s N
B i e e i e
% E 1A
77777
| A
D Fz=0 & (F,-Fy)+ (0 =0,V (3312)
i reaction force external load
SMy=0 & M}y+FyL+ (0 =0.v (3313)
X [ ————— ~—~—
! reaction external load

3.15 Generalized Cantilever Beam with Two Types of Distributed Loads

The generalized beam shown in Fig.3.53 is loaded by a constant vertical distributed
load ¢gg in the range 0 < X < L and a constant horizontal load pg in the range
L < X < 2L. The material constant (E) and the geometrical properties (I, A) are
constant and the total length of the beam is equal to 2L. Model the member with two
generalized beam finite elements of length L to determine:

e the unknowns at the nodes,

e the displacement distributions #; = uz(X) (bending) and uy = uyx(X) (ten-
sion/compression),

e the reactions at the supports,

e the internal reactions (normal force, shear force and bending moment) in each
element (compare the distributions of the internal reactions with the analytical
results),

e the strain and stress distributions in each element, and

e the global force and moment equilibrium.

3.15 Solution
The solution will follow the recommended 10 steps outlined on page 73.

( Sketch the free-body diagram of the problem, including a global coordinate system,
see Fig.3.54.

@ Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig.3.55.

@ Write separately all elemental stiffness matrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices:
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A
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Fig.3.54 Free-body diagram of the generalized cantilever beam with two types of distributed loads
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Fig. 3.55 Free-body diagram of the discretized structure with the equivalent nodal loads

uix Uiz L1y Urx Uzz P2y

EA EA
T O 0 —T O O Uuix
12EI  6EI 12EI  6EI
0 — —— 0 —— | Wz
L3 12 L3 12
6EI 4EI 6EI 2EI
O - o = 1 |
K¢ = L , (3.314)
_EA 0 0 % 0 0 Uax
_12EI 6EI 0 12EI  6EI | u,,
L3 2 L3 2
6EI 2EI 6EI  4EI | ooy
0O —— — 0o — —
L 2 L L2 L
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(3.315)

@ Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 3 nodes, each having three degrees of
freedom (i.e., the vertical and horizontal displacements and the rotation). Thus, the
dimensions of the global stiffness matrix are (3 x 3) x (3 x 3) = (9 x 9):

Uix Uiz Py Uzx Uz Py U3x U3z P3y

Uix

Uiz

Py

Urx

Uzz

Y2y

Uusx

usz

Y3y

(3.316)

® Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.

ulrx
[ EA
L
0

uiz

0
12E1

(204

0
6E1
Tz
4E1
L

0
6EI

L2
2EI

S O O

uzx uzz
o
12E1
0 -1
6EI
0 7
BB 040
12E1 12E1
0+0 S5+
0 6EI _6EI
L2 L2
- 0
12E1
0 Al
6E1
0 -

P2y

0
6EI
~of
2E1
L

uzx

0+0
6EI _ 6EI
L2 L3
4EI | 4E1
T tr
0
6E1
12
2E1
L

uzz  P3y
0 0
0 0
0 0
0 0
_12EI _6EI
L3 L?
6EI  2EI
12 L
0 0
12EI  6EI
L3 L2
6EI  4EI
72 L

urx
uiz
Py

uxz .
P2y
uzx
uzz
P3y

(3.317)
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® Add the column matrix of unknowns and external loads to complete the global
system of equations.

The global system of equations can be written as Ku, = f, where the column matrix

of nodal unknowns reads

T
up = [uix w1z o1y uax uaz oy uzx usz @3y |, (3.318)

and the column matrix of external loads is given by:

T
— | FR pR _ @l asR | @L®> poL pR _ gL _qL> pR | pL pR agR
f_[le Fiz =% My +%5 5 P =% =5 Fx + 5% F32M3Y]
(3.319)
@ Introduce the boundary conditions to obtain the reduced system of equations.

There are only two degrees of freedom, i.e. the rotation and horizontal displacement
at node 2:

EA EA polL
Tzt O 2
0 4E] N 4E1 ; | qlL? |- (3.320)
[ [ Y —
L L 12

Solve the reduced system of equations to obtain the unknown nodal deformations.

2
Uyx poL
o | 4q1f£3 : (3.321)
2y _
96E Iy

The obtained nodal unknowns allow to calculate, for example, the elongation and
the bending curve based on the nodal approaches provided in Tables3.2 and 3.7.
In detail, the elongations in each element can be stated as (see also the graphical
representation provided in Fig. 3.56):

2

. X1 poL”™  x
M, = i 3322
u (x1) |:L:| Uax = T X 2 ( )

2

. X1 poL xn

=|1—-— = — 1-—). 3.323
u’; (xm) |: L:|M2x 4EAX( L) ( )

The bending curve for each element reads as follows (see also the graphical repre-
sentation provided in Fig.3.57):
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Fig. 3.56 Beam elongation 2.00
along the major axis
g
] 1.00
3
)
c
2
<)
0.00
0 1 2
Coordinate %
Fig. 3.57 Beam deflection 0.20
along the major axis
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XX qoL* X1 ’ X1 ’
ey — | ML _ == (2 —(2) ). 3.324
() [L L2:| = 6k (L) (L) (3329
23 xf) qL* [ xu w\ )
sl = [—WT‘ L_j| = T96ET _f+2(f) _(f)

(3.325)
It can be seen from Figs.3.56 and 3.57 that all the support conditions in regards to
the displacements and rotations are fulfilled.
@ Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step ® under the consideration of the known nodal degrees of freedom
(i.e., displacements and rotations). The evaluation of the first equation gives:
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EA oL

The evaluation of the second equation gives:

6EIY R C]OL

2 ¢2Y=Flz—7

9
F}, = 6L (3.327)

In a similar way, the evaluation of the third, fifth, seventh, eighth and ninth equation
gives:

5 qoL 3 qoL qolL?
MR, = —&qoL, FY, = - FY, = —ZpoL,F3RZ =T ME, = — T
(3.328)

The internal reactions (i.e., normal force, bending moment, and shear force) in each
element can be obtained from the relations provided in Tables 3.2 and 3.8:

L

NE(p) = p%, (3.329)
L

NsGan) = (3.330)
e oL

_ B 3331

Q> (x1) = ( )
qoL

0% (xn) = TR (3.332)

Me qoLz X
s =-To-(-2+6( 7)) (3333)
L2
M) = — T (—4 + 6(%)) . (3334)

The graphical representations of the internal reactions are shown in Fig.3.58. It
can be seen that the finite element approach gives the correct reactions (as well
as displacements and rotations) at the nodes but the distributions of the internal
reactions are not correctly represented, especially in the sections with distributed
loads. Pay attention to the fact that the internal reactions (analytical solution) are
exactly balancing the reactions at the supports.

The analytical solutions for the internal reactions are shown in Fig. 3.59.

The total normal stress distribution is a superposition of the contributions from
the tensile (Ny) and bending (My) part, see Tables 3.2 and 3.8:
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Fig. 3.58 Finite element
solution: a Normal force
distribution, b shear force
distribution and ¢ bending
moment distribution
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Fig. 3.59 Analytical
solution: a Normal force
distribution

(Nx = — [ pxdX + o),

b shear force distribution
(Qz = —qudX + ¢), and
¢ bending moment
distribution

(My = [ QzdX +¢)
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e Me L L2
oi(x1) = MJr y(xl)z _ oz 9 (—2 + 6( )) (3.335)

| =

A Iy 4A 961y

N¢ MES(x L L2
o () = Do) yomw) - pok 4o (—4+6(%))z. (3.336)

A Iy 4A 961y

The strains result from HOOKE’s law:

os(x,2)  poL  qolL? Xy
*(x1,2) = = — —2+61 — , 3.337
£ (1. 2) E_4£A %6EL\ - °\Z))? (G337
oy (xm, 2) poLl  qoL? X
© (X 2) = - — 446 . 3.338
e 2) E AEA~ 96EIy ))* (3:338)
Check the global equilibrium between the external loads and the support reactions.
ZFX_O o (Fh+FR+ (B +8E) =0, v (3.339)
reaction force ——
external load
ZF,Z_O & (F} + P+ (-5t - 1) =0, v (3.340)
——————

reaction force
external load

2 2
SMy=0 & MY +ME, - F§ZL—F§22L)+(‘IQL w0l L wly ):0. v

i

reaction external load

(3.341)

3.3.3.2 Generalized Frame Elements

Rotation of Beam Elements

Let us consider in the following a thin (EULER-BERNOULLI) beam element which
can deform in the global X-Z plane. The local x-coordinate is rotated by an angle o
against the global coordinate system (X, Z), see Fig. 3.60. If the rotation of the global
coordinate system to the local coordinate system is clockwise, a positive rotational
angle is obtained.

Each node has now in the global coordinate system two displacement degrees of
freedom, i.e. a displacement in the X- and a displacement in the Z-direction. These
two global displacements at each node can be used to calculate the displacement per-
pendicular to the beam axis, i.e. in the direction of the local z-axis. The components
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Fig. 3.60 Rotational U2 X
transformation of an R
EULER-BERNOULLI beam Uz
element in the X-Z plane Z U2z

A

z‘\/v .

Table 3'.11 Transformation Stiffness matrix
of matrices between the . . T . Toe
elemental (x, z) and global Ky =TK%,T", Ky, =T K., T
coordinate (X, Z) system Column matrix of nodal unknowns

T
uy, =Tuxz, uxz="T uy,

Column matrix of external loads
fo=Tfxz. [Fxz=T"fv

of the principal finite element equation can be transformed between the elemental and
global coordinate system as summarized in Table3.11 in which the transformation
matrix T is given by

sinacosa 0 0 0 0
0O 010 00
=10 0 0sinacosa0|" (3.342)

0O 0 0 0 0 1

The triple matrix product for the stiffness matrix results in the following formulation
for a rotated EULER-BERNOULLI beam element:

12820 12saca —6Lsa —12s2a —12saca —6Lsa | [ uix Fix

12saca 12¢2a  —6Lcar —12saca —12¢2a —6Lca uyz Fiz

Ely | —6Lsa —6Lca 4L%  6Lsa  6Lcar  2L2 ey | | Miy

L3 | —12s2a —12saca 6Lsa  12s2a  12saca 6Lsa urx || Fax

—12saca —12c2a 6Lca 12saca 12c?a 6Lca uyz Frz

—6Lsa —6Lca  2L%  6Lsa  6Lca  4L2 oy My
(3.343)

The sines (‘sa’) and cosines (‘ca’) values of the rotation angle « can be calculated
through the global node coordinates via
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Z,— 7 X, —X
saésinaz—; or caécosaz%, (3.344)

where the element length L results from the global node coordinates as:

L=vV(X2—X\)?+(Z,— Z)). (3.345)

To simplify the solution of simple beam structures, Table 3.12 collects expressions
of the global stiffness matrix for some common angles «.

The results for the transformation of the matrices given in Table3.11 can be
combined with the relationships for the post-processing of nodal values in Tables 3.7
and 3.8 to express the distributions in global coordinates, see Tables3.13 and 3.14.

Rotation of Generalized Beam Elements

Let us consider in the following a generalized beam element which can deform in
the global X-Z plane. Such an element is also called a plane frame element. The
local x-coordinate is rotated by an angle o with respect to the global coordinate
system (X, Z), see Fig.3.61. If the rotation of the global coordinate system to the
local coordinate system is clockwise, a positive rotational angle is obtained.

Each node has in the global coordinate system two displacement degrees of free-
dom, i.e. a displacement in the X- and a displacement in the Z-direction. These two
global displacements at each node can be used to calculate the displacements in the
directions of the local x- and z-axes. The components of the principal finite element
equation can be transformed between the elemental and global coordinate system as
summarized in Table 3.15 in which the transformation matrix T is given by

cosa —sina 0

sinav cosa O

0 0 1

T= cosa —sina 0 | ° (3.346)
sina cosa O

0 0 1

S OO
S OO
S OO

S OO
S OO
S OO

The triple matrix product for the stiffness matrix results in the following formulation
for a rotated generalized beam element, see Eq. (3.347).
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Table3.13 Post-processing quantities (part 1) for a rotated EULER-BERNOULLI beam element given
as being dependent on the global nodal values as a function of the physical coordinate 0 < x < L
and natural coordinate —1 < ¢ < 1. Bending occurs in the X-Z plane

Vertical displacement (Deflection) u,

X > X } 2x2 X3
us(x)=[1-3 7 +2 7 (u1x sinov + uyz cos o) + _X+T_ﬁ o1y

2 3
+13(=) —2( %) | @woxsina+ o P
2 I uzx SIin & uzz CoOS & I LZ w2y

1 1 L
u© =7[2- 3¢+ €] txsina+uzcosa) - 7 [1 - =& + €] Sewr

1 1 L
+ 7[2—&-35 —{3] (uax sin v + uzz cos o) — 7[—1 —e+ & +§3] 5 %av

4 4
du, 2 du,
Rotation (SI =——=———
otation (Slope) ¢y i L de
R 6x  6x2 . 4y 3x2
tpy(x)z +p—? (MlXSlna-‘erZCOSOL)‘l- l—f-‘r? L1y

n 6)64_6)(2 ( na+ " 2)(4_3)62
2t upx sin v + upz cos av 7 2 P2y

1 1
#5© =57 [+3 -3¢ ] wixsina+umzeosa) + o [-1 - 26+ 3¢ iy

1 1
+57 [—3 n 352] (uax sin @ + uzz cos @) + Z[—l 126 352] ooy

2
Curvat d u, 4 d?u,
urvature Ky = ———5 = ——5——5"
dx? L? g¢?

. 6 12x . 4  6x
ny(x): +ﬁ_? (u1x sina + uyz cos ) + _Z+ﬁ 3%

+ 6+]2x( ino + )+ 2+6x
L2 L3 Uurx S« uzz CoOS « I L2 Y2y
. 6 . 1
K5 (© =ﬁ[—£](u1xsma+ulzcosa)+Z[—1+35]so1y

6 1
+ﬁ[f](ugxsina—i-uzzcosoe)—kz[l + 3&] oy
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Table3.14 Post-processing quantities (part 2) for a rotated EULER—-BERNOULLI beam element given
as being dependent on the global nodal values as a function of the physical coordinate 0 < x < L
and natural coordinate —1 < ¢ < 1. Bending occurs in the X-Z plane

) d%u, 4 d%u,
Bending moment M, = —Elyd—2 = _ﬁE yd—fz
’ X

6 12x
2 L3

6 12x . 2 6x
+ + — | (wax sina+uszcosa) + | ——+ —= | vor

4  6x
M;(x) =EI, |:+ i| (uleina+ulzcosa)+|:—L+ in| ©1y
VR L' L2

6 1
M3 (&) =E1y(L2[—£] (u1x sina + uyz cos o) + Z[_l + 3¢ o1y

6 1
+ﬁ[§] (u2x sina + uzz cos ) + z[l +3¢] 802)')

d3uZ 8 d3uZ
Shear force Q, = —Elyd—? =73 y@
P

12 6
Q;(x) =EI, |:—L3i| (u1x sina+ujz cos ) + |:+in| ©1y
12 . 6
+ +F (upx sina + uoz cos @) + +ﬁ 2%
R 12 . 2
05(&) =EI, F[—l](mxsma-i-ulzcosa)—i-ﬁ[+3]<p|y

12 , 2
<+L3[ 1] (upx sina + upz cos ) + ﬁ[+3] gozy)

, du (x) 4 du;
Normal strain €5 (x, z) = —z P -2 12 dgzr
x
. 6 12 . 4,0
e (x,2) = t T (u1x sina + uyz cos ) + LTz |y

n 6 + 12x ( . 2 6x

2 e urx sina + uzz cos o) + —L+L2 vy )z
e 6 . 1

(€ 2) = ﬁ[—f](ulxsma-‘rulzcosa)-i-Z[—1+35]¢1y

6 1
+ﬁ[£] (uzx sina + uzz cos o) + Z[l + 3£] gazy)z

(continued)



162 3 Finite Element Method

Table 3.14 (continued)

i d%u, 4 d?u,
Bending moment M, = —Elyﬁ = —ﬁElv @
) X )

M,
Normal stress oS (x, z) = EcS(x, z) = Ec$(&, 2) (: I)Z)
y

6 12x

4 6x
oS(x,z) =E |:+L2L3:|(ulxsina+ulzcosa)+[L+L2:|<p1y

N 6+12x( o+ " 2+6x
2 E urx sina + uzz cos o L2 PY2ry | %

6 1
03(£.2) =E(L2[€] (u1x sina + uyz cos ) + z[*l + 3¢ o1y

6 1
+ﬁ[£] (u2x sina + uzz cos o) + Z[l + 3¢] sﬁzy)z

Fig. 3.61 Rotational
transformation of a
generalized beam element in
the X-Z plane

Table 3.15 Transformation
of matrices between the
elemental (x, z) and global
coordinate (X, Z) system

U2X

Stiffness matrix

K¢, =TK%,T", K%, =T"KS,T

Column matrix of nodal unknowns

T
uy, =Tuxz, uxz="T uy,

Column matrix of external loads

fo=Tfxz. [Fxz=T f
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ATy AT aZ ‘cmOUm ours 1l x dmaum‘ﬁl d:_mN‘\NI
v 19 19 Ic 19 19
Zty ZTn dmOUm CNEmN + szoum I 7_g1 Emoum dNEmN - ENmQQMI 0500 UIS 1 +ml
19 14 Il v oI 19 14 1Tl v o Icl
Xty XTn ours z 0500 VUIS 7 _€7 0500 T, vus 7 outs 4l 0500 VUIS 1z +m‘1~l 0909 I_ s L
19 v oI 14 Icl 19 v Icl 14 1Tl
Aly Al aZ SOQm ours 2l xZ dmoQN‘\N\ dEmN‘\N\
1T 19 19 v 19 19
1 T T 1 T T
Zly Zln o505 L= ] s T_ 0809 £7 | vsoo ours 1z FRULI | S vus 1 + 0500 £7 1 vsoo ours I_ef
19 14 1Tl v I 19 14 1Tl v oI
1 1 T 1 T T
X1y Xln outs L= —| 500 vurs T, 0500 T_ v uts £2 | ous£5 | osos vus T _ef 0500 7, v uts £2
19 v oI 14 1Tl 19 v oI 14 1T1

(3.347)
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Table 3.16 Elemental stiffness matrices for plane frame elements given for different rotation angles
a in the X-Z plane, see Eq. (3.347)

0° 180°
_ - [ A _A
4 0 0-4 0 0 r 0 0-7 0 0
121 _ 61 121 _ 61 121 61 121 _ 61
0= T 0 = T 0 = T 0 T
-4 0 0 4 o0 o0 A A
L b . L b . -1 0 0 7 0 0
I )i I )i
0-7% o 0 & Iz 012 6, o lar 6L
L3 LZ L3 L2
0o -8 2L o o 4 61 31 61 41
L iz T 2 T- 0 -2 = 0- =+
L L L2 L L2 L |
—-90° 90°
roo127 ol _ 121 6l 7 ro121 61 _ 121 61 7
v O - 0D w V-p - 01
04 0 0-4 0 04 o o0-4 o
o g A _6L g 2L 61 a6l 21
E| Lo L el 2z 7 = 07T
_ 121 _61 121 _ oL 121 61 121 61
o Ot O = R
A A
0-4 o 0 4 o 0-z 0 0 ¢ 0
6 g 2 _6l o 4 _6 g 2L 6 g 4
L 72 T 1z T - L L2 L L? L
—45°
[ 6L 1A 6l L 1A 312 6 1A (6l 1A 30y27]
L3 2L L3 2L 12 L3 2L L3 2L L2
_6L 1A 6, 14 _3V2 4oL 1A 6l 14 _3V2
L3 2L L3 2L 12 L3 2L L 2L 12
31V2 _31V2 41 _ 312 +31ﬁ 21
L? L2 L L2 L? L
E
_6L 1A 6L 1A _31v2 6l L 1A _6l L 1A 312
L3 2L L3 2L L? L3 2L L3 2L L2
61 1A _ 6l 1A 312 _ 6l 1A 61 1A 312
tTrTar T Tan i Tptar ptar T
312 _ 312 21 _ 312 312 41
L L2 L2 L L2 L2 L
45°
[ 6Ly 1A 6 1A _31y2 6l _ LA _6 4 1A 30427
L3 2L 13 2L L? L3 2L L3 2L L2
6 1A 6l 4 1A 312 6l L 1A _6l 1A _3142
L3 2L L3 2L L? L3 2L L3 2L L2
_ 312 _ 312 41 312 312 21
E L2 L? L L2 L2 L
_6 _ 1A _6 L 14 312 6 14 6 _ 14 312
3 2L 13 T2L L2 L3 T2L 3 2L L?
_6L 4 LA 6l 1A 3y2 6 _ 1A 6L 4 1A 312
L3 2L L3 2L 12 L3 2L L3 2L L2
312 312 21 3142 312 41
L L2 L2 L L2 L2 L

To simplify the solution of simple beam structures, Tables3.16 and 3.17 collect
expressions for the global stiffness matrix of some common angles «.
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Table 3.17 Elemental stiffness matrices for plane frame elements given for different rotation angles
a in the X-Z plane, see Eq. (3.347)

£+ééﬁ,ﬂ+ﬁ 3L 3 _3A J3(121 _ A 31 7]
L3 4L 4 L3 L L2 L3 4L 4 L3 L L2
M3(_nrg A 9L y 1A 313 V3 (121 _ A _9 _ 1A _31Y3
4 L3 L L3 4L L2 4 L3 L L3 4L L2
31 313 41 _ 3L 313 21
—30°| E L L2 L 12 12 L
_3 _3A N3(121 _ A _3r Ay 3A (124 A _ 3L
L3 4L 4\’ L L? 3T 34L 4 3 L 2
V3 (121 _ A _9 1A 313 _J3 _lar A o 414 313
4 \L3 L L3 4L L? 4 L3 L L3 4L L?
31 _31Y3 21 _3r 33 41
L 12 12 L 12 12 L J
B ﬂJréA,ﬁ —l2r 4 _ 3L _3 _3A _J3(120 _ A _ 31
L3 4L 4 L3 L L2 L3 4L 4 L3 L L2
_3 _lar A 94+1A_31«/§_£ 127 A _9 _ 1A _31¥3
4 L3 L L3 4L L? 4 L3 L L3 4L L?
_3r _31V3 41 3L 33 21
30°0 | E L? L2 L L2 L? L
) _3 _3A _J3(12_ A 3L LI_,_SA_«E _lar A 31
L3 4L 4 L3 L L? L3 4L 4 L3 L L2
_A3 (121 _ A O 1A 313 V3 (120 4 A O 4 1A 33
4 L3 L L3 4L L2 4 L3 L L 4 L 12
31 _ 313 21 30 313 41
L L2 L2 L L? L? L J

3.16 Triangular Shaped Plane Frame Structure Composed of Generalized

Beam Elements

The plane frame structure shown in Fig.3.62 is composed of generalized beams
which are arranged in triangular shape. The structure is loaded by a single horizontal
force Fj at the right-hand corner of the structure and a vertical displacement —u at
the same location. The material constant (E) and the geometrical properties (I, A)
are constant and the horizontal length of the beam is equal to L while the verti-

Fig. 3.62 Triangular shaped
plane frame structure
composed of generalized
beam elements

7

Fy ¥
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Fig. 3.63 Free-body R
diagram of the triangular My
shaped plane frame structure
composed of generalized
beam elements

Fig. 3.64 Free-body
diagram of the discretized
structure with nodal loads

F A > [
1X 11/ — 21u0 0

R
F2Z

cal dimension is equal to L. Model the structure with two generalized beam finite
elements to determine:

e the unknowns at the nodes,

e the displacement distributions in each member,

e the reactions at the supports,

e the internal reactions (normal force, shear force, and bending moment) in each
element, and

e the global force and moment equilibrium.

3.16 Solution
The solution will follow the recommended 10 steps outlined on page 73.

@ Sketch the free-body diagram of the problem, including a global coordinate system
(see Fig.3.63).

@ Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig.3.64.

® Write separately all elemental stiffness matrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.
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Element I: o = 0°, Ly = L
Uix Uiz Py  Uzx Uz Yoy
EA EA ]
— 0 0O —— 0 0 uix
12E1 6E1 12EI 6EI Uiz
L3 L2 L3 Lr
6EI 4EI 6EI 2EI
- - - L1y
¢ — L2 L L2 L
EA EA
u
— 0 0 — 0 0 2X
12E1 6EI 12E1  6EI | u,,
- L3 L2 L3 L2
6EI 2EI 6EI 4EI | ¢y
L L2 L L? L 4
Element II: oy = 45°, Ly = V2L
Ky = Ex
usx usz Y3y U2x U2z
61 1_A 61 1_A _31V2 61 _1_A _ _ 6l +1_4
(v2L)® T 2(v2L)  (vap)®  2(V2L) (V2L (vaL)® 2 (V2L) (V2L ' 2(V2L)
61 _1_A 61 4 1_A 731\/5‘761’4»; A 6l _1_A
v20)®  2(V2L)  (vern)® ' 2(V2L) v2r)?  (v2n)® ' 2(v2L)  (v2L)®  2(V2L)
_ 3IV2 _ 312 ar 312 312
(V2L)” (V2L)® (V2L) (V2L (vV2L)”
__6r _1_A 6 1 _A 3IV2 61 4 1_A _6r _1_A
(e’ 2(v2L)  (van)® T 2(V2L) (var)® (V2L ' 2(V2L) (v2L)’  2(V2L)
__6rI JrlA __6I _ _1_A 312 61 1_A 61 4 1_A
2L’ T 2(v2L) (Ve 2(V2L) (Ve (VB 2(V2L) (V3L ' 2(V2L)
_ 3132 _ 31V32 21 31V2 312
L (vVaL)® (V2L)® (V2L) (VZL)® (vV2L)®

167

(3.348)
P2y
31v2 17
(V2L)? | Usx
312
VaL)? usz
21 .
) P3y
(%ﬁz 2x
A | e
4l 0
D P2y
(3.349)

@ Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 3 nodes, each having three degrees of
freedom (i.e., the vertical and horizontal displacements and the rotation). Thus, the
dimensions of the global stiffness matrix are (3 x 3) x (3 x 3) = (9 x 9):
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Uix Uiz Py Uzx U2z P2y U3x U3z L3y
i Uix
Uiz
Py
“2X 0 (3.350)
K = Uuzz
Yoy
Usx
usz

3y

® Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.

K = FEx

uix Uiz L1y Uax U2z P2y usx U3z 3y

r 4 _A .
7 0 0 7 0 0 0 0 0 u1x

1271 61 1271 5 1
U 0 T Iz 0 0 O | wg
6I 4I 61 21
0 - T 0 L2 T 0 0 O e
_A 9 0 A4 3LvV2 L A3 31V2 _ AV2 31VZ  _3IVZ_ AVZ _ 31V2 | AVZ 31V2
L L 2L7 4L 2L% 4L 2L7 L3 4L 2L% 4L 2L7 Uz x
0 121 6I 3IVZ _ AV2 121 4 31V3 | AV3 61 4 31V2 _31V2 4 AvV2 _31V2 _ AVZ 31V2 . .
L3 L2 2L7 iL L3 2L7 iL L7 2L7 2L7 iL 2L7 iL 2L7 U2z
_6I 21 312 61 3IV2 4r 21V2 _3IV2 _3IV2 V2 ’
0 2 T 217 =t %= Tt 1 217 217 T P2y
3IV2 _ AVZ 31V2 | AVZ 312 3IVZ | AVZ  3IVZ _ AVZ 312
0 0 0 T 2L T 4L —%r7 T L T 217 215 T aL 2L% ~ 4L ~ 2L? usx
0 0 0 _ 312 4 AV2 _3IV2 _ AV2 _ 312 3I1V2 _ AVZ  31V2 4 AV2  _31IV2 U3z
2L7 4L 2L7 4L 2L7 2L7 aL 2L7 aL 2L7 :

0 0 0 31V2 3IV2 IV2 _ 312 _ 312 21V2 Y3y

- 2L2 2L2 L 2L2 2L2 L =

® Add the column matrix of unknowns and external loads to complete the global
system of equations.

The global system of equations can be written as Ku, = f, where the column matrix
of the nodal unknowns reads

T
up = [uix w1z o1y uax uaz 2y uzx usz @3y |, (3.352)

and the column matrix of the external loads is given by:
f=[FR F& M® Fy—F& 0 FR F&, MR " . (3.353)

@ Introduce the boundary conditions to obtain the reduced system of equations.
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There are only two degrees of freedom, i.e. the rotation and horizontal displacement
at node 2:

A+3ﬁ1+ﬁA 3v21 ot E(3ﬁ1 AV2
- — uzx otuok —5 — 7
L 213 4L 212 213 4L
= . (3.354)
321 41 221 - 61 321
212 7L w2y wWE\ 2t o2

Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach u, = K “fe

urx 41 2321 3V21
_ + — —

4
_ % L L 212
- 2 2
10AL2 4+ 6AV2L2 + 31 + 1212 3 A 33l A

w2y _ — 4 I
202 L 213 4L

3V2I 24

F(J =+ uoE —_—
2L3 AL (3.355)

x o5 321 '
u i el
0P\ 27" 213
or after the multiplication:
2V2EAL?ug +2EAL?ug — 4v2F)L? + 65/2ETug — 8FyL3 — 3EIug
uzx -
E (10AL2 T 6v2AL2 431 + 12ﬁ1)

= . (3.356)

2V2EAL%ug +5EAL?ug — 2Fy L3 + 63/2EIug
E (10AL2 +6V2AL2 +31 + 12J§1) L

L2y 3 X

If we approximate /2 by its numerical value and consider only decimals with a
precision of 2, we get the following simplified expression:

4.83EAL%*ug — 13.66FyL> + 5.49E I u
- E (1849AL% +19.971)
7.83EAL*ug — 1.41F)L3 4+ 8.49E I u,
E (18.49AL> +19.971) L

Uzx

(3.357)

P2y
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The nodal deformations at node 2 allow the calculation of the displacement distri-
butions in local z- (bending) and x-direction (axial) in each element. Based on the
relationships in Tables3.13 and 3.5, one gets:

ug, (x1) =

)z‘z(m

i 2 3 2 3
X1 X1 X1 X1
3 (z) B 2 (Z) uzZl + [Z - Ej| Sozyl ’

X1

us, (xm) = | 3 ( NeT?

X1 X1

3 2
) Udzy =+ |:ﬁL —

(3.358)
5 ]
2Lz | 7"
(3.359)

The deformations at node 2, expressed in the local coordinate systems (xi, yi, 21)
and (xp, yi, zin), can be calculated from the global values based on the relationships

(consider oy = 0°, agy = +45°, uz = —uy) given in Table 3.15:
Uy, = sin(ap)uzx + cos(an)uaz , (3.360)
Py = P2r (3.361)
Uz = sin(am)usx + cos(amn)uzz , (3.362)
P2y = Poy - (3.363)
Thus, the displacement distributions (bending) can be approximated as:
. x2 P
MZ[(XI) ~ — F—ZF M()+
7.83EAL*ug — 1.41Fy L* + 8.49E1 X
x 0 0f DL (3364)
EL (18.49AL2 + 19.971) L?

M?H (xnn) ~ |:1 )

(—0.71

+3.0

2

XTI

L

X

3
X

4.83EAL%*ug — 13.66FyL> + 5.49E T uy

E (18.49AL> +19.971)

— 071140)

7.83EAL%*ug — 1.41Fy)L> + 8.49E T u,

EL (18.49AL2 +19.971)

X 2 X 3
x 07125 _p52L |
L L2

(3.365)
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The axial displacement distributions can be obtained in a similar manner:

X1 X1 .
us, (xy) = |:Zi| Uy = |:zi| (cos(apuarx — sin(apuzz) , (3.366)

X1 X11 .
us, (xn) = [E} Uy = [E} (cos(amuzx — sin(am)uzz) , (3.367)
or based on the given values:

(3.368)

us, (x1) ~ —

4.83EAL?uy — 13.66FyL3 +5.49ETuo | x;
E (18.49AL? +19.971) L\’

I . ug — 153.66FoL° +5. 7N

x 4.83EAL? 13.66FyL? + 5.49E]

Mj, (xm) =~ 0.50 | — — uop .
n L E (18.49AL* +19.971)

(3.369)

©@ Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step ® under the consideration of the known nodal degrees of freedom
(i.e., displacements and rotations). The evaluation of the first equation gives:

EA i,
0— ——unx +0=Ffy. (3.370)
or
A (zﬁEALzuo +2EAL%ug — 4/2FL3 + 672ETug — 8FyL3 — 3E1u0)
F =
1X

L (10AL2 +6V2ZAL2 431 + 12ﬁ1)

A (4.83EAL2u0 —13.66FL> + 5.49E1u0)
L (18.49AL? +19.97I)

~
~

(3.371)

In a similar way, the evaluation of the remaining equations gives:

I (6ﬁEAL2u0 +SEAL2ug + 3v2FL3 + 652E Lug + 6E1u0)

FIRZ =6x
L3 (10AL2 +63V2AL2 +31 + 12ﬁ1)

1 (13.49EAL%ug + 4.24Fy L3 + 14.49E L u)
L3 (18.49AL% +19.971)

~ 0 X

, (3.372)
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1 (4ﬁEAL2u0 +5SEALYug + N2F)L3 4+ 652ETug + 3E1u0)

(10AL2 +67V2AL2 431 + 12ﬁ1) L2

1 (10.66EAL*ug + 1.41FoL? + 11.49E Tuy)
(18.49AL% 4+ 19.971) L?

MFY=—6><

~ —0 X

) (3.373)

R 4.83EAZL%ug + 4.83AFyL> + 85.6TEAILug + 5.49FyI L + 86.91E1%u
22 L3 (18.49AL2 +19.971)

’

(3.374)

6.83EA%L%uy + 6.83AF,L> + 7716 EAlug + 2824 FyI L

F ~ —0.71 x
X L (18.49AL2 +19.971)

)

(3.375)

6.83EA%L%uy + 6.83AF,L> + 6.13EAluy — 28.24FyI L

F}, ~0.71 x
7 L (18.49AL2 +19.971)

9

(3.376)

1 (3.83EAL*ug — 5.41FyL* + 4.24ETug)
(18.49AL2 4+ 19.971) L?

MY, ~ —4.24 x (3.377)

The internal reactions (i.e., bending moment, shear force, and normal force) in each
element can be obtained from the relations provided in Tables 3.14 and 3.5.
Bending moment distribution:

e 6 12x1 2 6XI
My1 (x)) =EI —E-i- F Uz + _Z+ F oy s (3.378)
Me ( ) El 6 I 12)([1 4 2 I 6)(11
o XL = - Udzy - NS 1o B
e TS TAT] Rl VG TR T3 o) A
(3.379)

or based on the given values:

ME () ~ ET 6 12x i3 7.83EAL%*ug — 1.41FyL3 + 8.49E I u,
(X)) = —— —= | U X
nit JER N EL (1849AL% +19.971)

2, on 3.380
X _Z+F s ( )
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e N 3 X1
Myn(xl) ~ EI _E+425§ X
4.83EAL?ug — 13.66 FyL> + 5.49E I'u |
E (18:49AL% + 19.971) 0

783EAL%ug — 1.41F, L3 +8.49ETuy| 141 3xy
- +—1). (338D
EL (18.49AL% +19.971) L L?

Shear force distribution:

. 12 6
Q; (x) =EI ¥ U, + 73| ) (3.382)

12 6
Q:, () = EI ([m} Uz + [ﬁ] §02yu) ) (3.383)

or based on the given values:

_ + X
L3 EL3 (18.49AL2 + 19.971)

. 12ug 7.83EAL*ug — 1.41FyL? + 8.49E 1 u,
Q) = EIl — ;
(3.384)
4.24 4.83EAL%*ug — 13.66FyL> + 5.49E I u 2
—\ - —0.71u
L E (18.49AL% 4 19.971) ’

7.83EAL%uy — 1.41FyL? + 8.49E I u,
% (3.385)
EL? (18.49AL> +19.971)

Q:, (xn) ~ El(

Normal force distribution:

. EA
Ny (xp) = U (3.386)
. A
Ny, () = Euzxn , (3.387)

or based on the given values:

A (4.83EAL%ug — 13.66 FyL* + 5.49E T uy)
L (18.49AL? 4+ 19.971I)
AE 4.83EAL*ug — 13.66FyL* + 5.49E T u
N¢ (xm) ~ 0.71 — —0.7 0.71ug }.
L E (18.49AL* +19.971)

NE (xp) & — , (3.388)

X11

(3.389)
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Check the global equilibrium between the external loads and the support reactions.

D Fx=0 & (Fy+Fy+ (F) =0, v (3.390)
X ————
! reaction force external load
D Fz=0 & (F,-Fy+Fy)+ (0 =0, v (3.391)
; ——
! reaction force external load

D My =0 & (MY +M5+FyL+FYL+ (0) =0.v (3392)
X ~—

reaction external load

3.17 Plane Frame Structure Composed of Generalized Beam Elements

The plane frame structure shown in Fig.3.65 is composed of generalized beams
which are arranged in a T-shape formation. The structure is loaded by a single force
Fy in the middle of the structure. The material constant (E) and the geometrical
properties (I, A) are constant and the horizontal length of the beam is equal to L
while the vertical dimension is equal to % Model the structure with three generalized
beam finite elements of length % to determine:

e the unknowns at the nodes,

e the displacement distributions in each member,

e the reactions at the supports,

e the internal reactions (normal force, shear force and bending moment) in each
element,

7/ ‘-

Sl

E. I A

Ve

L

Fig. 3.65 Plane frame structure composed of generalized beam elements
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MY E, I A Mgy

7 7

Fik | (— &%

R R
F 17 F: 3Z
Fig. 3.66 Free-body diagram of the plane frame structure composed of generalized beam elements
R
Z My 4 Fiz
4
1—» X ( — Ff

111
11T
My, zim <t M3
N 1 2 o '3
Fix Ny 1 Ny T F3x
Fy
FY, F3

21

21
iVxl LJJH

Fig. 3.67 Free-body diagram of the discretized structure with nodal loads

e the strain and stress distributions in the elements, and
e the global force and moment equilibrium.

3.17 Solution
The solution will follow the recommended 10 steps outlined on page 73.

(@ Sketch the free-body diagram of the problem, including a global coordinate system,
see Fig.3.66.

@ Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig.3.67.
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@ Write separately all elemental stiffness matrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

L

ElementI: oy = 0°, L; = 5

Uix Uiz Py Ux Uz Poy

[ R S
L _LI urx
, 12 e o126l
Ly L} Ly L} | "7
o O AL 62
T2 7. T2 7. Py
Ki=E| Ly L B Ly L . (3.393)
-~ 0 0 — 0 0
L L Uzx
121 61 121 61
~—73 2 Y 3 2 | wz
Ly L Ly Ly
o 612 6l 4
i L L oLl

= 0 0 A 0 0 ]
Ly Ly tax
121 61 121 61
Ly L Ly Ly | "7
61 41 0 61 21
B Yo L | e
K =E A i A 1 1 . (3.394)
-— 0 o — 0 0
Ly Ly Hax
121 61 0 121 61
~753 72 3 72 usz
Ly Ly Ly Ly
0 61 21 0 61 41
-5 T - T P3y
= LI2I Lu L121 Ly
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Element III: oy = 90°, Ly = %

Urx Upz Pay U4x U4z P4y

M 121 0 61 121 61 ]
L2k —o 1L -S| u
Ly® Ly? Ly® Ly? 2X
A A
0 L 0 0 T Lu 0 Uz
61 41 61 21
-5 0 - 7= 0 T P2y
K¢ —E Ly 1 L 1 (3 395)
ur = _1r 61 121 0 61 Usx )
Ly® Lu® Ly® Lu®
A A
-4 A u
0 Lm 0 0 Lm 0 4z
61 21 6/ 41
L L’ 0 Lm Ly’ 0 L | Pay

@ Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of four nodes, each having three degrees of
freedom (i.e., the vertical and horizontal displacements and the rotation). Thus, the
dimensions of the global stiffness matrix are (4 x 3) x (4 x 3) = (12 x 12):

uix uiz Py uzx Uz Py U3x U3z P33y U4X U4z P4y

urx
uiz
Py
uzx
uzz
pay -
uzx
u3zz
P3y
u4qx
uqz
| pay
(3.396)

® Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix:
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K = Ex (3.397)
- uix Uiz Ly uzx uzz P2y Uzx U3z P33y U4x U47 P4y
o0 o0 —24 0 0 0 0 0 0 0 o0 [ux
0o % 2y 0 =% -2 0o 0o 0 0 0 o0 |Hz
0 -2 0 zl 40 0o o o o o |ev
S0 0 ($+%) 0 S0 0 M 0 M e
o -F H 0 (Ba) o o - 0 P 0w
T L T U L
0 0 0 -3 0 o F o 0o P o0 F "X
0 0 o0 0 - H o HFOH o Fo0 |M
0 0 o0 0 - F oo HOE H o F
0 0 0 —%] 0 Zoo 0 0 0 0 o0 [|"
0 0 0 0 -2 0 0 0 0 0 0 o0 [“
L 0 0 0 - 0 2 0 0o 0 0 o0 o0 |

® Add the column matrix of unknowns and external loads to complete the global
system of equations.

The global system of equations can be written as Ku, = f, where the column matrix
of the nodal unknowns reads
T
up = [uix w1z Pry uax uaz oy Usx Usz 3y Uax Usz Pay | (3.398)

and the column matrix of the external loads is given by:

f=[FR FR MR 0—F,0 F& F& MR FR FR MR ] . (3.399)

@ Introduce the boundary conditions to obtain the reduced system of equations.

There are only three degrees of freedom, i.e. the rotation and displacements at node
2:
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[ (44 961
AR

L L?

1921
E 0 ( St

L

0)

241

L

Uzx

Uz

P2y

179

(3.400)

Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach u, = K “lfe

Usx 0
! L*Fo (3.401)
u = _— - .
2 2 “ E(AL? +961)
P2y 0

The nodal deformation at node 2 allows the calculation of the displacement distri-
butions in local z- (bending) and x-direction (axial) in each element. Based on the
relationships in Tables3.13 and 3.5, one gets:

2 3
us (xp) =13 o -2 a urz cos(ayg)
2 = i3 7 2z I
1
L L’F, 12x12 16x} (3.402)
=27 E (AL +961) L |’ '
3
ug, (xn) = ( ) ( ) sz cos(am)
1
L3F() 12)6[12 16)61[3
- 1- + , 3.403
E(AL* + 961) [ L? L3 (3.909)
3
. Xm
uy, (e = [ 1=3 +2 7] %2 cos(oun)
0

=0. (3.404)
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The axial displacement distributions can be obtained in a similar manner:

_X
us (xp) = — —‘} Uyz sin(ay) = 0, (3.405)
L ——
—- 0
. T .
MXH()CH) =—1|1- f Uzz SIH(OéH) = O, (3406)
—- 0
R X1 .
Uy, () = — T:| uzz sin(am) =0,
—- 1
1 L3F, 2x
S L N i (3.407)
2 E(AL*>+496I) L

@ Post-computation: determination of reactions, stresses and strains.

The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step ® under the consideration of the known nodal degrees of freedom
(i.e., displacements and rotations). The evaluation of the first equation gives:

24 24 . .
Tuix = ux = Fy = Ffy=0. (3.408)

In a similar way, the evaluation of the remaining equations gives:

< 481 F,
127 AL2 1 961" (3.409)
. 121LF,
My =~ oer (3.410)
FR =0, (3.411)
Fy = A;g;fgm, (3.412)
< 121LF,
M3y = ALZ 1961 (3.413)
FR =0, (3.414)
2
R = MAZL—JFZ‘%I, (3.415)
My, =0. (3.416)

The internal reactions (i.e., bending moment, shear force, and normal force) in each
element can be obtained from the relations provided in Tables 3.14 and 3.5.



3.3 Beams and Frames

Bending moment distribution:

e 6 12)61
M3 (x) = EI —L—Iz + L—? uzz cos(ay)
1 1 X1
=X — | —| =24y 1 —4— LFy ),
2 AL%Z+961 L
Me ( ) El 6 12)CH ( )
- X1) = T 3 Uurz cos(ag
! Ly Ly
1 1 X1
=-x—n | —|24[1-42)| LR ).
2 ALZ+961 L

e 6 12xm
M (xm) = EI| | — — —5— | u2z cos(am)
L L

=0.

Shear force distribution:

12
Q% (x)=EI (|:—3:| Uz cos(al))
Ly

481F,
T AL +961°
. [ 12
Q0 () = EI| | —— | uaz cos(an)
| Ln
481 Fy
AL+ 961
. [ 12
0., (xu) = EI\ | == | u2z cos(oum)
| L

=0.
Normal force distribution:
EA )
N (x1) = ———uz sin(ay)
1 Ly

=0,

. EA
Ny, ) = ' sin(our)

181

(3.417)

(3.418)

(3.419)

(3.420)

(3.421)

(3.422)

(3.423)
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=0, (3.424)

. EA
Ny, (o) = muz sin(aum)

AL*F,
="\ (3.425)
AL? +961
The graphical representation of the internal reactions is shown in Fig. 3.68.

Check the global equilibrium between the external loads and the support reactions.

D Fx=0 & (F\+Fx+Fo+ © =0, v (3.426)
: ~~—
! reaction force external load
S Fz=0 & (FR+F+F)+ (-F) =0, v (3.427)
. S——
! reaction force external load
> My=0 & (3.428)

(MR, + MY, + MR L 4+ FoLy — FR,(Li + L) — F, Ly + FR L+

reaction
4+ ©O =0.V (3.429)
~—~—

external load

3.18 Plane Frame Structure Representing a Crane (Computational Problem)
The plane frame structure shown in Fig. 3.69 is composed of generalized beams which
are arranged to represent a simple crane. The structure is loaded by a single force
Fy at the right-hand end. The material constant (E) and the geometrical properties
(I, A) are constant and the horizontal length of the frame structure is equal to %
while the vertical dimension of the left-hand part is equal to L. Model the structure
with three generalized beam finite elements to determine:

e the unknowns at the nodes,

e the reactions at the supports,

e the internal reactions (normal force, shear force and bending moment) in each
element,

e the strain and stress distributions in the elements,

e the global force and moment equilibrium, and

e the multi-axial stress state near to the foundation.

3.18 Solution
The solution will follow the recommended 10 steps outlined on page 73.
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Fig. 3.68 Graphical representation of the internal reactions: a—c horizontal beams I and II, and d—f
vertical beam III
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Fig. 3.69 Plane frame

structure representing a crane

Sl

3 Finite Element Method

E. I A

/

Nl

(© Sketch the free-body diagram of the problem, including a global coordinate system

(see Fig.3.70).

@ Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads, see Fig.3.71.

Q@ Write separately all elemental stiffness matrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

Element I: oy = —90°, L = L

Uix
121

61

Uiz

Py Uzx U2z
61 121 0
L L7
A
0 0o ——
Ly
4] 61
— —— 0
L[ LI
61 121 0
L L
A
0 0 —
Ly
21 61
LI LIZ

P2y

urx

Uiz

@2y

Urx

Uzz

Y2y

(3.430)



3.3 Beams and Frames

Fig. 3.70 Free-body
diagram of the plane frame
structure representing a crane

R
MlY
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Fig. 3.71 Free-body
diagram of the discretized
structure
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Element IT: oy = 0°, Ly = %

Ux Uzz P2y U3x U3z P3y

- ) _
— 0 0O — 0 0
Ly Ly Usx
121 61 0 121 61
Ly L Ly Lf | uz
0 61 41 0 6/ 21
72 7. T2 7 Yoy
Ky=E Ly L Ly Lu (3.431)
A A
—-—— 0 0 —_ 0 0 Usx
Ly Ly
VR
L} L? L L?
i L i i
61 21 6/ 4] Y3y
0 -5 = o = —
= Ly Lu Ly Lu
Element III: aqy = 90°, Ly = %
~ Usx Uusz Y3y Ugx Usz Pay _
121 61 121 6/
— 0 7= 0 -
Ly Ly~ Lm Ly usx
0 A 0 0 A 0
L Ly Usz
61 0 4] 6/ 21
) T 7 2 T L3y
Ky =E| Lo’ Lm  Lw’ L L (343D
121 6/ 121 61
-7 3 0 2 5 00— Hax
L Lym® Lm L
A A
0 — 0 0 — 0 taz
L L
6/ 21 61 4] Pay
-—— 0 — — 0 —
L Lm Ly  Lm Ly |

@ Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of four nodes, each having three degrees of
freedom (i.e., the vertical and horizontal displacements and the rotation). Thus, the
dimensions of the global stiffness matrix are (4 x 3) x (4 x 3) = (12 x 12):
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uix Uiz Y1y uzx Uz Py U3x U3z P33y U4X U4z P4y

urx
uiz
e1y
uzx
uzz
P2y -
uzx
uzz
P3y
uax
uqz
| pay
(3.433)

® Insert the values of the elemental stiffness matrices step-by-step into the global
stiffness matrix.

K =Ex (3.434)
Hlx 1z P1y urx wz ey u3x u3z P3y U4X A7 w4y
[ % 0 27' *% 0 27’ 0 0 0 0 0 0 _ulx
o 4 0 -EA 0 0 0 o 0 0o 0 |z
RS 0 y 0 0 o 0 0 0 |ey
-0 - (%+%) 0 -8 24 0 0 0 0 0 |ux
o -4 o 0 (A %’) - 0 - B0 0 0 juz
,% o Z *% *%1 1L 0 2L4—21 a9 0 0 e
o 0 0 0 2 0 (%+9L%1) o0 F o0 jug
0 0 0 0 _% 41 _%% iu 161 % 0 4T1 oy
0 0 0 0 0 0 _% 0 % % 0 2L41 sy
0o 0 0 0 0 0 0 -2 N
| 0 o o 0 0 0 % 0 4 2L471 o 8 |ear

® Add the column matrix of unknowns and external loads to complete the global
system of equations.

The global system of equations can be written as Ku, = f, where the column matrix
of nodal unknowns reads
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wp =[x Uiz 1y uax sz Pry usx sz o3y Uax uaz pay |, (3.435)
and the column matrix of external loads is given by:
f=[FR FR, MR, 0000000 F0]" . (3.436)

@ Introduce the boundary conditions to obtain the reduced system of equations.

Three degrees of freedom can be canceled at node 1:

121 | 24 61 24 b
o o -8 2 0 o o o o |
A, 961 _ 241 _9%61 241 uax 0
0 L + L3 12 0 13 12 0 0 0 ioy 0
61 241 127 241 41
- A 0 Z o 0 0 0o, 0
2A 2A 961 241 961 241
-T 0 O T+ 0~y 0 T || e 0
961 241 2A 961 241 2A uzz (= 0
o - 0z 0 THE o 0 -7 0 o
0 o4 4l 240 241 16l 241 o 40 || 7
12 L L2 12 L 12 L ugx 0
961 241 961 241
0 o0 =I5 R S > > | 7 Fo
0 0 0 0 -2 0 0 B o0 |leaw] O]
241 41 241 87
0 0 o -2 0 aug Y

B B (3.437)

Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach u, = K “fe

B L3Fy
— - 4E1
Urx LR
" EA
2Z
L’F,
Vay 2EI
L3Fy
Usx 4ET
— | _LOAL’+24DF 3.438
Usz 24TEA : (3.438)
SL2F
3y 0
v 8EI
Usx _ LR
16ET
Uaz _ LUAL*436D)Fy
24]EA
| P4y ]
5L%F,
L 8IEA -

@ Post-computation: determination of reactions, stresses and strains.
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The reactions at the supports can be obtained from the non-reduced system of equa-
tions as given in step ® under the consideration of the known nodal degrees of freedom
(i.e., displacements and rotations). The evaluation of the first equation gives:

21 6l
_u —
L

oy = Ff, = Ff=0. (3.439)

In a similar way, the evaluation of the remaining equations gives:

Fy = Fy =Fy=Fy=Fy=Fyx=0, (3.440)

FR = Fy, (3.441)
LF,

MYy = —=> ¢, (3.442)

M?Y — M?Y — M}fy —0. (3.443)

The internal reactions (i.e., bending moment, shear force, and normal force) in each
element can be obtained from the relations provided in Tables 3.14 and 3.5.
Bending moment distribution:

. [ 6 12y 2 6]
M, (x)) =ET 2t (u2x (=1) + T | e
L

_th 3.444
5 ( )
. 6 12xq 4 6x11
My, ) =EI\ |+ 73— 5 |waz(D) + | =7+ 77 | oy
6 12)611 2 6)61[
tl—ppt 3 |z + | =7+ 77 vy
L
=hf5- 2xn) , (3.445)
e 6 12le 4 6XIII
M;, (xm) =E1 toT (usx (1) + .t | e

6 12xy 2 6xm
R ERE (uax (1)) + —Tt | e
0

(3.446)
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Shear force distribution

. [ 12] 6
QZI(xl) :Ely +F (MZX(_l))+ +ﬁ Yoy

=0, (3.447)
. [ 12] 6
0, (xn) =EI, E (urz(1)) + +E ©ay
12 6
+ +E (u3z(1)) + +ﬁ 3y
=-F. (3.448)

e 12 6
0%, () =ELy | | =75 | @ax(D) + | +75 | oar
12 6
Tt (uax (1)) + + 77| e

=0. (3.449)

Normal force distribution:

N¢ () = = 4 ((=(=Duaz))

=-F (3.450)
N; () = = £2 (Dusx) — (Duax))
=0 (3.451)
N, Gom) = = EL—A ((=(Dusz) — (=(Duzz))
=F. (3.452)

Check the global equilibrium between the external loads and the support reactions.

D Fx=0 & (F) + (0 =0, v (3.453)
- —— ——

reaction force  external load

S Fz=0 & (F}) + (-F) =0, v (3.454)
; —— ——

reaction force  external load
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Fig.3.72 a Mechanical model of the sensor under consideration of symmetry; b free-body diagram

D> My=0 & (MYy)+ (FoLy) =0. v (3.455)
- —_—— ——
t reaction  external load
Multi-axial stress state near to the foundation, i.e. x; = O:
The total normal stress distribution is a superposition of the contributions from
the tensile (N,,) and bending (M,,) parts, see Tables 3.2 and 3.8:

NE (x M°® (x F L F
Lo MSeo R LRy (3.456)

€ —
7 () = —4 I A 20

3.4 Extensometer Analysis

The solution will follow the recommended 10 steps outlined on page 73.
(® Sketch the free-body diagram of the problem, including a global coordinate system.

It is advantageous to work only with half of the sensor, i.e. to consider the symmetry
of the problem, see Fig.3.72a. The free-body diagrams as outlines in Fig.3.72b
contains also unknown reactions where the displacement boundary condition u is
imposed. The reactions at the symmetry line, i.e. the normal force Fy, the vertical
force® F},, and the bending moment M, will serve to calculate the total normal
strain in element II.

OThis vertical force could be omitted right from the beginning since the introduced support has
a vertical degree of freedom. Thus, there will be no vertical reaction force. From this, one could
conclude immediately that FI]} must be zero. Nevertheless, the finite element approach will show
this.
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Fig. 3.73 Finite element 211
model of the sensor based on L T F. 37
two elements (I and II) II

I1
Uo
21 -—O0 ]
R R
FlX FlZ

@ Subdivide the geometry into finite elements. Indicate the node and element num-
bers, local coordinate systems, and equivalent nodal loads.

The finite element approach will be based on two frame elements (see Fig.3.73),
i.e. the superposition of rod and beam elements. Since the horizontal beam is not
loaded by a shear force (see Sect.2.4), we can rely on the EULER-BERNOULLI beam
theory. The vertical beam is subjected to a shear force. However, the contribution
of this shear force to the deformation can only be estimated if real real numbers are
assigned to the design variables, i.e. Ly, Ej, I;. Thus, we assume at this point of the
derivation that the vertical beam is thin.

@ Write separately all elemental stiffness matrices expressed in the global coordinate
system. Indicate the nodal unknowns on the right-hand sides and over the matrices.

Element I is rotated by an angle of & = —90° and application of Eq. (3.347) gives:

Uix Uiz Py Uxx Uz Py

[ 121 6 121 6l |uix
-5 0 573 0
L3 L2 L L2
A A
o = 0o o 2o |"
LI LI
6]1 () 41[ 61[ () 211 D1y
Ki=pg| L L L L , (3.457)
12 61 121 61y |uax
~—3 0 7 73 0 -5
L3 L2 L L2
AI A[ Uzz
0 - — 0 0 — 0
1 Ly
61 25 61 0 45 [Py
| L7 Ly L} L |

Element II does not require any rotation and its elemental stiffness matrix reads:


http://dx.doi.org/10.1007/978-3-319-69817-5_2
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B Uzx Uzz P2y Usx usz Y3y B
AH AII
@ O O —@ O O Urx
12[][ 61[] 12]][ 611] u
& w0 @ @
. 0 — (ﬂ)z @ 0 (ﬂ)z (ﬂ) "2¥4
K5 = En 2 2 2 . (3.458)
Aq Aq
_@ 0 (%) 0 0 usx
12111 6111 12[11 6111
0o - 7 L2 0 RE PRE: Usy
()" (3 ()" (3
0 _ 61[1 2111 0 6IH 4III P37
B N T O

@ Determine the dimensions of the global stiffness matrix and sketch the structure
of this matrix with global unknowns on the right-hand side and over the matrix.

The finite element structure is composed of 3 nodes, each having 3 degrees of free-
dom (i.e., the horizontal and vertical displacements, and the rotation). Thus, the
dimensions of the global stiffness matrix are (3 x 3) x (3 x 3) = (9 x 9):

Uix Uiz Py Uzx Uz Yoy U3x U3z P3y

Uix
Uiz
L1y

Uzx
K — lag (3.459)

P2y
usx
usz
| P3y

The cells highlighted in gray color relate to the overlap zone, i.e. node 2 which
connects elements I and II. These cells combine stiffness contributions from both
elements.
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® Insert the values of the elemental
stiffness matrix.

urx Uiz P11y U x Uy
1211 0 6B 11 _12B1 0
7 7 7
ErA; _EA
0 Ly 0 0 Ly
6B Iy 0 4B I 6B 0
L7 Lt 2
_12B 0 _ 6By 12B0; 4 EypAy
LY 0 LY Ly Ly 0+@
2
_ErAr EiAr | 12EnIy
0 T 0 0+0 . T %
K = 2
GE 11 2EI; __6BE(I _ 6BEnly
Li 0 L1 Li @ g Lu
2
0 0 0 ey 0
iy
(%)
0 0 0 0 —L2ByAy
Ly
(%)
0 0 0 0 _ (J'Eufu2
Ly
(%)

3 Finite Element Method

stiffness matrices step-by-step into the global

P2y

6E1I;
Rzl

0

2E1L;
L1

6E;
—SBlt 1
T

6By 1

NG

L
2

4B Iy 4Byl
Ly +

L

uzx Usz P3y
0 0 0 u1x
0 0 0 Uy
0 0 0 Py
_ EuAy
Ly 0 0 Uz2x
2
0 _12EnIyp GEuI”
Ly’ Ly u2z
2 2
0 6Bnln  2Euln
Ly Ly~ | ¥2vy
2 2
Byl 0 0
L Uzx
2
0 2Byl GEuly
L) Ly uzz
2 2
0 6Byl 4By I
Li)* Ly
<T> (B) | wsv

® Add the column matrix of unknowns and external loads to complete the global

system of equations.

The global system of equations can be expressed in matrix from as

Ku,=f,

where the column matrix of the external loads reads:

T
f=[F} F},0000 F F, MY, ] .

(3.461)

(3.462)

@ Introduce the boundary conditions to obtain the reduced system of equations.

The consideration of the support conditions u; = uszx = 0 and 3y = 0 results in

the following 6 x 6 system:



3.4 Extensometer Analysis

uirx P1y U2x U2z Y2y usz
12B1; 6Bl _12E0; 0 6EL I 0
17 v Ir
6Bl 4B _ 6By 0 2E1L 0
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_12BiL; 6Bl 12E111 EnAn GEIII
L L a4 i 0+0 +0 0
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0 0 040 EIAI 4 12Buly o _ 6Buly _12Enly
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Under consideration of u1x = —ug, one gets:
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R
_F1X

(3.463)

—Up

0

E3.464)

Solve the reduced system of equations to obtain the unknown nodal deformations.

The solution can be obtained based on the matrix approach u, = K “1fe

En In Ly
Py = 1+ Er I Ly
1+Zﬂﬂ L + 1 hi
3 E L LiLy 77?
1
Urx =
En In _Li L12
+ 84 L L —I— 12
uz =0,

uo

(3.465)

(3.466)

(3.467)
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poy = X —. (3.468)

—
_|_
Wi

(&
\l._.
sy
=
+
Sl=
ES
o~
_

© Post-computation: determination of reaction forces, stresses and strains.

Take into account the non-reduced system of equations as given in step ® under the
consideration of the known nodal displacements and rotations. The first equation of
this system gives:

FR = 20 3.469
1x = 1 L? 1 L}Ly 1 Luh * ( ’ )
SEn 3 En + Ry
The evaluation of the corresponding other equations gives:

F}, =0, (3.470)

R _ “o
Fy = D N [ Tix th (3.471)

3EL 2 Enly
F}, =0, (3.472)

u
MR, = — 0 x Li. (3.473)

1 1 1 Luhj
3 ErL 2 Eyly 24 Eyly

Based on the reaction force and moment at node 3, the axial strain can be evaluated as
outlined in Sect. 2.4. Finally, the same equations are obtained as given in Eqs. (2.253)
and (2.254). It should be noted here that this result, i.e., the finite element solution
is equal to the analytical solution, cannot be generalized to more complex problems.
At least, any further mesh refinement does not increase the accuracy in this specific
case.

Check the global equilibrium between the external loads and the support reactions.

ZFX_O & (—FR+F)+ 0 =0, v (3.474)

reaction force external loads

D Fz=0 & (F,+Fy)+ 0 =0.7 (3.475)
—— —~

i .
reaction force external load

ZMY_O & (FRLi+FRE+M3)+ 0 =0.v (3476

external moment

reaction moment


http://dx.doi.org/10.1007/978-3-319-69817-5_2
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Let us investigate in the following the influence of different ratios on the sensor
sensitivity, see Eq. (2.254):

Ex, I 1 hH 1 1 hII
= =X —x\+5+= 7)) (3.477)
Esp /=7h” %% +14+ 11_2L_IIZI LI 2 12 LI

=7

The influence of the different fractions in Eq. (3.477) is illustrated in Figs.3.74
and 3.75. The ratios of stiffness, second moment of area and length have the same
influence on the strain ratio (pay attention to the fact that Eq. (3.477) contains the
ratio f—l‘l while Fig. 3.74c is plotted as a function of the inverse value). The geometrical

ratio %‘; has a stronger influence on the strain ratio. However, it must be checked for
larger ratios if the thin beam assumption is still valid. In case that more than one
ratio is changed in the corresponding direction, one can expect a stronger influence
on the strain ratio, see Fig.3.76.

The design process, i.e. the choice of the geometrical and material properties of
the extensometer, should consider a few limits:

e The ratio €, 11/&s, should be not too small to avoid that the strain ¢, j; is below the
sensitivity of the selected strain gage.

e The strain ¢, i should not exceed the upper limit of the selected strain gage to
avoid elongation failure (e.g. grid cracking or loss of bond). The limit of high-
performance strain gages is typically 1-2% whereas regular self-temperature com-
pensated strain gages are capable to record up to 5-10% strains [32].

e The material of the extensometer should only deform in the elastic range.

In a final step, it is also possible to use a commercial finite element package such
as MSC Marc/Mentat [17, 27]. In such packages, it is quite simple to investigate
the influence of the mesh density, i.e., the number of nodes per unit length, on the
results. In general, only a sufficient number of nodes or elements guarantees a result
which is — from a practical point of view — independent from the mesh size.
To investigate the mesh dependency, a so-called mesh convergence study must be
conducted. Starting from a coarse mesh (see Fig.3.77a), the mesh is subsequently
refined (see Figs.3.77b-c) and a critical quantity evaluated. This could be in our case
the internal bending moment or the normal force. If the difference of this quantity
from one mesh to the next refined configuration is below a certain threshold,” one
can state that the result is no more mesh dependent.

Letus check this behavior for the internal bending moment at node 3, see Fig. 3.77.
The summary in Table 3.18 indicates that the internal bending moment and normal

7Other important factors are the computing time or the size of the result file.
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force is not dependent on the mesh density. This result is a special case® for the
applied thin beam elements and the corresponding support and load conditions.
The original and deformed shapes of the mesh with 13 nodes (see Fig.3.77c) are
shown in Fig.3.78. It can be seen that all the imposed boundary conditions and the
expected mode of deformation are fulfilled.
For a general problem of complex nature, the result of a mesh convergence study
may look as schematically shown in Fig.3.79.

8The result of the finite element hand calculation as given in Eq. (3.469) indicated already that the
analytical result has been obtained. Thus, the computational approach is for this special case exact
and a mesh refinement does not increase the accuracy.
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(a) (b) (©

]
in]

wio
wio
w

u} u} |
Fig. 3.77 Frame structure with different mesh densities: a 3 nodes, b 7 nodes, and ¢ 13 nodes
Table 3.18 Result of the mesh sensitivity analysis with: E; = Ey = 70000, I} = Iy = 6.75,

Ly = Ly = 30, square cross section with a side length of 3 (all numerical values in consistent
units)

Number of nodes Bending moment Normal force

3 1259.37 41.979

7 1259.37 41.979

13 1259.37 41.979

Analytical solution 1259.84 41.995
Fig. 3.78 Frame structure P—a——

with fine mesh: original and
deformed shape




3.5 Supplementary Problems 201

Fig. 3.79 Schematic A
representation of the result of
a mesh convergence study

Critical value

converged

Number of nodes

3.5 Supplementary Problems

3.19 Rod Structure Under Dead Weight
Given is a rod structure which is deforming under the influence of its dead weight,
see Fig.3.80. The rod is of the original length L, cross-sectional area A, YOUNG’s
modulus E, and mass density p. The standard gravity is given by g.

Apply two linear rod elements of length % to calculate the elongation of the rod
due to its dead weight.

3.20 Truss Structure with Three Members
Given is a plane truss structure as shown in Fig. 3.81. The members have a uniform
cross-sectional area A and YOUNG’s modulus E. The length of each member can be
taken from the figure. The structure is fixed at its left-hand sides and loaded by two
points loads F; and F5.

Model the truss structure with three linear finite elements and determine:

e the displacements of the nodes,
e the reaction forces at the supports,

Fig. 3.80 Rod loaded under N\
its dead weight -
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Fig. 3.81 Truss structure
composed of three straight
members

Fy

e the strain, stress, and normal force in each element, and
e check the global force equilibrium.

3.21 Simply Supported Beam Partially Loaded with Distributed Load

The beam shown in Fig. 3.82 is loaded by a constant distributed load g¢. The bending
stiffness E 1 is constant and the total length of the beam is equal to 2L. Model the
beam with two finite elements to determine:

the unknowns at the nodes,

the equation of the bending line,

the reactions at the supports,

the internal reactions (shear force and bending moment) in each element,

the graphical representations of the deflection, bending moment, and shear force
distributions, and

e the global force and moment equilibrium.

3.22 Fixed-end Generalized Beam with Distributed Load and Displacement
Boundary Condition

The generalized beam shown in Fig. 3.83 is loaded by a distributed load p(X) in the
range 0 < X < 2L and a vertical displacement u( at X = L. The material constant
(E) and the geometrical properties (I, A) are constant and the total length of the
beam is equal to 2L. Model the member with two generalized beam finite elements
of length L to determine:
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Fig. 3.82 Simply supported do
beam partially loaded with
distributed load
| E, T
7é;>/ 777 777
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e the unknowns at the nodes,

e the displacement distributions #; = uz(X) (bending) and uy = uyx(X) (ten-
sion/compression), including a graphical representation,

e the reactions at the supports,

e the internal reactions (normal force, shear force and bending moment) in each
element, and

e the global force and moment equilibrium.

3.23 Generalized Beam Supported by a Rod Element

The horizontal generalized beam shown in Fig.3.84 is supported by a vertical rod
element. The structure is loaded by a single force Fj in the middle of the structure.
The material property (E) and the geometrical properties (I, A) are constant and the
same for beam and rod. The horizontal length of the structure is equal to L while
the vertical dimension is equal to % Model the structure with two generalized beam
finite elements and one rod element of length % to determine:

the unknowns at the nodes,

the displacement distributions in each member,

the reactions at the supports,

the internal reactions (normal force, shear force and bending moment for the beams
and normal force for the rod) in each element,

the strain and stress distributions in the elements, and

e the global force and moment equilibrium.
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Fig. 3.84 Generalized beam supported by a rod element

3.24 Generalized Beam Supported by a Rod Element: Revised

Consider again the structure from Problem 3.23 (see Fig. 3.84). Replace the general-
ized beams by a more appropriate element type under consideration of the deforma-
tion of the structure. Furthermore, consider the symmetry of the problem to reduce
the size of your computational model.



Chapter 4
Outlook: Two- and Three-Dimensional
Elements

Abstract This chapter gives a brief outlook on some two- and three-dimensional
elements. The similarities between the previously treated one-dimensional elements,
i.e., rod and beams, and their multidimensional analogs are presented without going
into the mathematical details. The considered elements are restricted to configura-
tions with even node numbers at which nodes are exclusively located at the element
corners.

In Chap. 3 introduced one-dimensional elements, i.e., rod and beams, are shown
in Fig. 4.1 with their two- and three-dimensional generalizations. The understanding
of the rod element can easily be transferred to a four-node plane elasticity element
(with plane stress or plane strain behavior) or to the eight-node solid element. The
rod element has in its elemental coordinate system just a single degree of freedom
per node, i.e. the displacement along the rod axis. This concept is extended in the
case of plane elasticity elements to two displacement components (u;y, u;,) per node
i whereas the solid element possesses three displacement components (4, Uy, U;;)
per node i. It should be noted here that there are also other element types with, for
example, inner nodes or elements with an uneven number for plane cases such as
triangular elements.'

Let us recall again the principal finite element equation for rod elements as intro-
duced in Eq. (3.1). A 2 x 2 stiffness matrix is multiplied with the column matrix of
two nodal unknowns, see Eq. (4.1).

L)) =[R]) a

Knowing that a plane elasticity element with four nodes has in total eight degrees of
freedom (number of nodes times nodal degrees of freedom), the elemental stiffness

IThe theoretical treatment of triangular elements requires the consideration of natural or triangular
coordinates which are aligned to the sides of the triangle and these axes do not intersect at right
angle. Thus, the approach must be slightly adjusted compared to the elements shown in Fig.4.1.
For example, the linkage between Cartesian and triangular coordinates must be first reviewed.
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(a)1D (b) 2D (¢)3D
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Fig. 4.1 Classification of considered finite elements: a one-dimensional, b two-dimensional, and
¢ three-dimensional elements

matrix must have the dimensions 8 x 8 and the principal finite element equation has
the structure as shown in Eq. (4.2). Of course that it must be considered that the
mathematical derivations require more work than just considering the structure of
the finite element equation.

Ulx Fix
Uy Fly
= |, 4.2)
Ugx Fay
Uygy F4y

8x8

The same reasoning can be applied to solid elements. Assuming that eight nodes
are forming a hexahedral element, the corresponding stiffness matrix must have the
dimensions 24 x 24 since each node has three translatorial degrees of freedom, see

Eq. (4.3).
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, (4.3)

Finally it should be mentioned that the here introduced beam elements with one
rotational and one translatorial degree of freedom for bending in a single plane have
their two-dimensional counterparts as thin or thick plates, see Fig.4.1.
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Answers to Supplementary Problems

Problems from Chap. 2

2.13 Rod Loaded by a Single Force in its Middle
Case (a): Approach based on two sections

FoL { x; FoL X1
Uy = T Uyy = I——],
2EA\ L 2EA L

Fy Fy
77 NXH =5

Ny =

Case (b): Approach based on discontinuous function

dux (X)

EA = Nx(X) = —Fy(X = L)’ + ¢y,

EAux(X) = —Fy(X — L)' +c1X + ¢,

or finally after the determination of the constants of integration:

Fo LX
ux () = | (X=1)'+ 7).

The displacement and normal force distributions are shown in Fig. A.1.
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Fig. A.1 Rod loaded by a

: ¢ oace @ 2
single force in its middle:
a displacement distribution, 3l
I
b normal force SR
Clla
|
3
g 1
[}
g
)
Q
=
2,
8
a
0 i
0 1 2
Normalized coordinate %
(b) 10
E 0.5
o
|
z,
g 0.0 Fo
—
L
£ -o05
—
o
Z
—1.0 :
0 1 2

Normalized coordinate %

2.14 Cantilever Beam Under the Influence of a Point or Distributed Load —
Rectangular Cross Section

Case (a):
2
uz(izl) 1 1 h
—@ = §+§(1+U)(Z) . (A.6)
EI
Case (b):
2
() 1 1t
% = 8+ 10(1+V)(L) . (A7)

2.16 Beam-like Structure: Energy Approach
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F0a3

UxD = oo (A.8)
F0a3

MZ,C = ﬁ (A9)

Problems from Chap. 3

3.19 Rod Structure Under Dead Weight

The following force acts on a volume element: dFy, = dmg = oAgdx. Thus, the
distributed load is given by: p, = F = 0Ag.

e Solution of the reduced system of equations:
2
ux| gL [3
= — . A.10
[uax} SE [4] (A0
3.20 Truss Structure with Three Members

e Unknown displacements:

[m] _ a [ G+VIF+G-VIF } A1)
w2 3EA(+3) -G —V3IFI—(9+3V3)F] " '
e Reaction forces:
1
R (B+V3F+3B-V3E), A.12
S= 50575 G+ VIR +G-VIR) (A12)
FY, =0, (A.13)
FR = Fi+3+4+2V3)F) , A.14
5 6(1+I((f>1+<+f> 2) (A14)
FR = Fi 4+ NFE) , A.15
FR = Fi—(3)F), A.16
5 2<1+f>((f) |~ ) (A.16)
FR, = F) . A17
® 2(1+f)(1+(f) 2) (A17)

e Global force equilibrium:
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ZFX_O & (FN+FPRY+FEY+ (F) =0, v
——

reaction force external load

ZF,Z_O & (FR4+FS+FR)Y+ (-F) =0. v
N —

reaction force external load

e Elemental stress, strain and normal force:

1
=— (@3 3) F; 3—V3F),
3A(1+ﬁ)(( +V3Fi + G- VIE)
on = :Mﬂ—+f((f)Fl+(3+2f)Fz)’

V3

m ((\/g)Fl + (_3)F2) .

om =

G+VIF+G-VIR),

& =

i
3EA(1 +J§)(
(V3R +6+2V3R)

g = ————
"T3EA( + V3)

V3

m ((\/g)ﬂ + (—3)F2) .

& =

1
L GRACUEICEROLS)

1
Njy=——F+ 3)F 3+2V3)F,)
1= 50 7m (VIR + G+ 2E)
f

N = «/_) ((\/—)Fl (—3)F2) .

3.21 Simply Supported Beam Partially Loaded with Distributed Load

e Unknowns at the nodes:

(A.18)

(A.19)

(A.20)

(A21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)
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e Equation of the bending line:
’%
Liqo [ x xr)
e _ (= , A.30
Y2 =96, \ L\ L (A30)

L4q X X ’ b ’

0 11 11 11

C s LR Sl B ) I B B A3l
12 = “9sr1, | °L (L) (L) (A3D)

e Reactions at the supports:

qu SLQ() 7L6]()
R R R
_=h = . A32

e Internal reactions in each element:

L3 6x
My = q‘)( I), (A.33)

96 \ L?
L3qo ( 2(L + 3xq)
Mpy = — . A.34
Ty 96 ( 2 ( )
Lqo Lqo

O1z = (A.35)

16 Onz = BT

e Global force and moment equilibrium:

D Fz=0 & P+ P+ P+ (-5 -4 =0, v  (A36)

—_—
external load

reaction force

S My(X=0=0 & (~F&L—FR2L)+ (%) —0. v (A37)

L ~——
external load

reaction

e Graphical representations of the deflection, bending moment, and shear force dis-
tributions

The graphical representation is shown in Fig. A.2.
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Fig. A.2 a Beam deflection
along the major axis,

b bending moment
distribution and ¢ shear force
distribution

0.02
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Fig. A.3 Beam elongation 2.0
along the major axis
=
8
2 1.0
<
o0
g
2
=
0.0
0 1 2

Coordinate %

3.22 Cantilever Generalized Beam with Distributed Load and Displacement
Boundary Condition

e Nodal unknowns at the nodes:

ux | poL?
|:(,02y:| = |:31(5)A:| . (A.38)

e Displacement distributions (see Figs. A.3 and A.4):

2 3 2 3
o () = | 358 — 220 | (g, u ) = | 1-320 4220 gy, (A39)
U7 (X1) = L2 L3 uo), Upz\Xn) = L2 L3 up) , .
xt_ polL? X poL?
M?X(Xl) = z X ?)E_A’ M?IX(X[[) = [1 — Ti| X 3EA . (A40)
e Reactions at the supports:
poL 12Elu0 6E1M0 24Elu0
Fiy==-". Fy=—15— My=-—F5— Fy="—"5—. (Ad])
poL 12Elu0 6E]Lt0
F3RX=—T, 3RZ=T’ §Y=To (A.42)

e Internal reactions (normal force, shear force and bending moment) in each element:
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Fig. A.4 Beam deflection 0.5
along the major axis
«. 00
BE
=
3
= =05
3
[em}
¥
A —1.0
—-1.5
0 1 2
Coordinate %
. 6 12x . 6 12xy
My (x)) = ET 27 3 | " Myy (xu) = EI ot | (A.43)
. 12 R 12
Q17 (x)) = —EI 73|40 Oz (en) = EI 73| Yo (A44)
. poL poL
N]x(xl) = T, N]]x(xll) = _T. (A.45)

3.23 Generalized Beam Supported by a Rod Element

The reduced system of equations reads:

_A+A 0 0 1 T _0-
L_IL_H Urx

121 121 A 61 6] F
E 0 — -+ — - Moz | = o
LI LH LIII LI LH
61 61 4] 41 0
0 - 4 P2y
i L{ L; Ly Lu) | L 1 L
(A.46)
The solution can be obtained as:
Usrx 0
1 L3F,
Uz | = | ——= _— . (A47)

X
2 E(AL?496I)
P2y 0
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3.24 Generalized Beam Supported by a Rod Element: Revised

The generalized beams (E, I, A) can be replaced by pure thin beams (E, I) since
there is no elongation of the horizontal structure.
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Index

A

Analytical solution
Euler-Bernoulli beam, 20
rod, 10
Timoshenko beam, 34

B

Bar, see rod

Basic equations
Euler-Bernoulli beam, 20
rod, 10
Timoshenko beam, 35

Boundary conditions
consideration, 69
Euler-Bernoulli beam, 22
rod, 11
Timoshenko beam, 36

C
Castigliano’s first theorem, 46
Castigliano’s second theorem, 47

D
Design project
flowchart, 5
marking criteria, 7
outline, 2
Dirichlet boundary condition, 69, 71

E

Equivalent nodal loads
Euler—Bernoulli beam, 107
rod, 70
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Timoshenko beam, 125
Euler-Bernoulli beam, 105

FE sample problems, 106
Euler-Bernoulli beam, 19

analytical sample problems, 23
Extensometer, 2

analytical calculation, 55

calibration curve, 59

configuration, 3-5

finite element calculation, 191

principle of operation, 3

F

Finite Element
Euler—Bernoulli beam, 106
Generalized beam, 138
rod, 69
three-dimensional, 205
Timoshenko beam, 124
truss, 87
two-dimensional, 205

G
Generalized beam, 137
FE sample problems, 139

M
Macaulay bracket, 11

N
Neumann boundary condition, 72
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P
Post-processing
Euler—Bernoulli beam, 108, 109
rod, 72
Timoshenko beam, 126
Principal finite element equation
Euler—Bernoulli beam, 105
generalized beam, 138
Rod, 69
Timoshenko beam, 123
Project-based learning, 1

R
Rod, 9, 68
analytical sample problems, 12
FE sample problems, 73
Rotation
Euler—Bernoulli beam, 155
generalized beam, 157
rod, 86

Index

S
Shear-flexible beam, see Timoshenko beam
Shear-rigid beam, see Euler-Bernoulli beam
Simple beam, see Euler—Bernoulli beam
Steps for FE hand calculation, 73
Strain energy, 45
Strain gage, 2
Stress distribution

Euler-Bernoulli beam, 23

rod, 11

Timoshenko beam, 37

T

Thick beam, see Timoshenko beam

Thin beam, see Euler-Bernoulli beam

Timoshenko beam, 32, 123
analytical sample problems, 37
FE sample problems, 124
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