
HETEROGENEITY,
HIGH PERFORMANCE

COMPUTING,
SELF-ORGANIZATION

AND THE CLOUD

Edited by
Theo Lynn, John P. Morrison

and David Kenny

PALGRAVE STUDIES IN DIGITAL
BUSINESS & ENABLING

TECHNOLOGIES
Series Editor: Theo Lynn

Palgrave Studies in Digital Business & Enabling
Technologies

Series Editor
Theo Lynn

Irish Centre for Cloud Computing (IC4)
Dublin City University

Dublin, Ireland

This multi-disciplinary series will provide a comprehensive and coherent
account of cloud computing, social media, mobile, big data, and other
enabling technologies that are transforming how society operates and how
people interact with each other. Each publication in the series will focus on
a discrete but critical topic within business and computer science, covering
existing research alongside cutting edge ideas. Volumes will be written by
field experts on topics such as cloud migration, measuring the business
value of the cloud, trust and data protection, fintech, and the Internet of
Things. Each book has global reach and is relevant to faculty, researchers
and students in digital business and computer science with an interest in
the decisions and enabling technologies shaping society.

More information about this series at
http://www.palgrave.com/gp/series/16004

http://www.palgrave.com/gp/series/16004

Theo Lynn • John P. Morrison
David Kenny

Editors

Heterogeneity, High
Performance

Computing, Self-
Organization and the

Cloud

Palgrave Studies in Digital Business & Enabling Technologies
ISBN 978-3-319-76037-7 ISBN 978-3-319-76038-4 (eBook)
DOI 10.1007/978-3-319-76038-4

Library of Congress Control Number: 2018941797

© The Editor(s) (if applicable) and The Author(s) 2018 This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution-
NonCommercial- NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and repro-
duction in any medium or format, as long as you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license and indicate if you modified the
licensed material. You do not have permission under this license to share adapted material derived
from this book or parts of it.
The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the
book’s Creative Commons license and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
This work is subject to copyright. All commercial rights are reserved by the author(s), whether the
whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed. Regarding these commercial
rights a non-exclusive license has been granted to the publisher.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with
regard to jurisdictional claims in published maps and institutional affiliations.

Cover pattern © Melisa Hasan

Printed on acid-free paper

This Palgrave Macmillan imprint is published by the registered company Springer International
Publishing AG part of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editors
Theo Lynn
Irish Centre for Cloud Computing
(IC4)
Dublin City University
Dublin, Ireland

David Kenny
Dublin City University
Dublin, Dublin, Ireland

John P. Morrison
Department of Computer Science
University College Cork
Cork, Ireland

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

v

This is the first book in the series, “Advances in Digital Business and
Enabling Technologies”, which aims to contribute to multi-disciplinary
research on digital business and enabling technologies, such as cloud com-
puting, social media, big data analytics, mobile technologies, and the
Internet of Things, in Europe. This first volume focuses on research that
extends conventional thinking on cloud computing architecture design to
greater support High Performance Computing (HPC). Meeting the needs
of HPC users provides significant challenges to cloud service providers,
both technically and culturally, and this book provides a novel approach
and indicates a future direction for cloud computing architecture research
that may address a significant portion of these challenges. Given the sig-
nificant role that HPC plays in scientific advancement and the increasing
dominance of cloud computing as a global enterprise computing para-
digm, this book has value to university educators and researchers, indus-
try, and policy makers.

The content of the book is based on contributions from researchers on
the CloudLightning project, a European Union project funded under
Horizon 2020 (www.cloudlightning.eu). CloudLightning commenced in
2015 and brought together eight project partners from five countries
across Europe to create a new way to provision heterogeneous cloud
resources to deliver services, specified by the user, using a bespoke service
description language. The goal of CloudLightning is to address energy
inefficiencies, particularly in the use of resources, and consequently to
deliver savings to the cloud service provider and the cloud consumer in

Preface

http://www.cloudlightning.eu/

vi PREFACE

terms of reduced power consumption and improved service delivery, with
hyperscale systems particularly in mind. This book is an output of this
joint research.

The chapters in the book are organised around key research contribu-
tions from CloudLightning. Chapter 1 provides a context for HPC and the
cloud, and discusses how heterogeneous cloud computing might provide
a solution for certain classes of HPC users. While heterogeneous resources
can help address performance concerns of HPC users, it also introduces
complexity into an already complex feature space. As such, Chapter 1 also
introduces four key design principles used by CloudLightning to address
complexity—emergent behaviour, self-organisation, self- management, and
the separation of concerns. Chapter 2 presents CloudLightning, a novel
heterogeneous cloud computing architecture. Chapters 3 and 4 outline
how approaches to resource management, based on self-organisation, self-
management, and separation of concerns, help to manage the complexity
of the heterogeneous cloud. HPC users are not the only stakeholders
whose needs must be met. While HPC users require performance at orders
of magnitude greater than the norm, modern cloud service providers
require scalability at so-called hyperscale. Chapter 5 discusses the chal-
lenges of evaluating the performance of heterogeneous cloud computing
architectures at hyperscale and presents a simulation of the proposed solu-
tion. The book concludes with a brief discussion of the disruptive potential
of the CloudLightning approach both for high performance computing
and for hyperscale cloud computing in general.

Dublin, Ireland Theo Lynn
Cork, Ireland John P. Morrison
Dublin, Ireland David Kenny

vii

This book was partially funded by the European Union’s Horizon 2020
Research and Innovation Programme through the CloudLightning proj-
ect (http://www.cloudlightning.eu) under Grant Agreement Number
643946, and by the Irish Centre for Cloud Computing and Commerce,
an Enterprise Ireland and IDA funded technology centre.

acknowledgements

http://www.cloudlightning.eu

ix

contents

 1 Addressing the Complexity of HPC in the Cloud:
Emergence, Self-Organisation, Self-Management,
and the Separation of Concerns 1
Theo Lynn

 2 Cloud Architectures and Management Approaches 31
Dapeng Dong, Huanhuan Xiong, Gabriel G. Castañe, and
John P. Morrison

 3 Self-Organising, Self-Managing Frameworks and Strategies 63
Huanhuan Xiong, Christos Filelis-Papadopoulos, Gabriel G.
Castañe, Dapeng Dong, and John P. Morrison

 4 Application Blueprints and Service Description 89
Ioan Dragan, Teodor-Florin Fortiș, Marian Neagul, Dana
Petcu, Teodora Selea, and Adrian Spataru

x CONTENTS

 5 Simulating Heterogeneous Clouds at Scale 119
Christos K. Filelis-Papadopoulos, Konstantinos M.
Giannoutakis, George A. Gravvanis, Charalampos S.
Kouzinopoulos, Antonios T. Makaratzis, and Dimitrios
Tzovaras

 6 Concluding Remarks 151
Theo Lynn and John P. Morrison

 Index 157

xi

notes on contributors

Gabriel González Castañé is a postdoctoral researcher in University
College of Cork. He holds a PhD in Computer Science in Energy
Modelling and Cloud Computing Simulations from University Carlos III
of Madrid in 2015. He has participated in several Spanish National Projects
and EU projects, where he has undertaken coordination tasks. His inter-
ests are cloud computing, distributed systems, modelling and simulation,
and self-management and self-organising cloud computing systems.

Dapeng Dong is a senior postdoctoral researcher with Department of
Computer Science at University College Cork, Ireland, where he received
his PhD degree in Computer Science and the master degree in Software and
Systems for Mobile Networks. He is also a Cisco Certified Network Engineer
in Routing and Switching, a Microsoft Certified System Engineer, a Sun
Microsystems Certified Java Programmer, Web Component Developer, and
Business Component Developer. His research focuses on cloud computing,
data compression, and efficient big data analytics and systems.

Ioan Dragan is a teaching assistant at Victor Babes University of Medicine
and Pharmacy, Timisoara, Romania. Also, he is a postdoctoral researcher at
the e-Austria Research Institute in Timișoara. He received his PhD in
Computer Science from Vienna University of Technology, Vienna, Austria,
in 2015. His research interests include first-order logic, formal verification,
digital image processing and cloud computing, with recent focus on cloud
monitoring techniques, orchestration and configuration management.

xii NOTES ON CONTRIBUTORS

Christos Filelis-Papadopoulos received his PhD in High-Performance
Scientific Computations from the Department of Electrical and Computer
Engineering of Democritus University of Thrace in 2014 and is working
as a researcher. His research interests include preconditioned iterative
methods, multigrid and multilevel methods as well as parallel computing.

Teodor-Florin Fortiș is an associate professor in the Department of
Computer Science at West University of Timișoara, Romania. Also, he is a
senior researcher at the e-Austria Research Institute in Timișoara, Romania.
He received his PhD in Computer Science from West University of
Timișoara, Romania, in 2001. His research interests include Formal
Languages, Web and Workflow Technologies, Service-Oriented Computing,
and Cloud Computing.

Konstantinos M. Giannoutakis is a postdoctoral research fellow at the
Information Technologies Institute of Centre for Research and Technology
Hellas. His research interests include high performance and scientific
computing, parallel systems, grid/cloud computing, service-oriented
architectures and software engineering techniques. His articles have
appeared in over 60 publications in the above research areas.

George A. Gravvanis is a professor in the Department of Electrical and
Computer Engineering of Democritus University of Thrace. His research
interests include computational methods, mathematical modelling and
applications, and parallel computations. He has published over 200 papers
and is a member of the editorial board of international journals.

David Kenny is the project manager of the CloudLightning project, with
University College Cork. A certified Professional Scrum Master, Kenny
holds a Bachelor of Arts (Hons) degree in International Business and
Japanese and a MSc in E-Commerce (Business) from Dublin City
University.

Charalampos S. Kouzinopoulos is a postdoctoral research fellow at the
Information Technologies Institute of Centre for Research and Technology
Hellas. Prior to that he was a senior research fellow at CERN and a
researcher at the University of Macedonia. His research interests include
parallel and distributed applications across various parallel platforms
including clusters and multicore processors using MPI, OpenMP, pthreads,
ZeroMQ and NanoMSG, GPGPU computing using the CUDA and
OpenCL APIs, high-performance computing, pattern-matching algo-
rithms, Bioinformatics, High Energy Physics and Big Data.

 xiii NOTES ON CONTRIBUTORS

Theo Lynn is Professor of Digital Business at Dublin City University and
is the Principal Investigator (PI) of the Irish Centre for Cloud Computing
and Commerce, an Enterprise Ireland/IDA-funded Cloud Computing
Technology Centre. Professor Lynn specialises in the role of digital tech-
nologies in transforming business processes. He is the PI on the Horizon
2020 CloudLightning and RECAP projects.

Antonios T. Makaratzis is a research assistant at the Information
Technologies Institute of Centre for Research and Technology Hellas. His
research is focused on scientific computing, sparse matrix algorithms,
cloud computing and parallel computing.

John P. Morrison is the coordinator of the H2020 CloudLightning
project. He is the founder and director of the Centre for Unified
Computing. He is a co-founder and director of the Boole Centre for
Research in Informatics, a co-founder and co-director of Grid-Ireland and
Principal Investigator in the Irish Centre for Cloud Computing and
Commerce. Prof. Morrison has held a Science Foundation of Ireland
Principal Investigator award and has published widely in the field of
Parallel Distributed and Grid Computing. He has been the guest editor
on many journals including the Journal of SuperComputing, Future
Generation Computing Systems and the Journal of Scientific Computing.
He has served on dozens of international conference programme commit-
tees and is a co-founder of the International Symposium on Parallel and
Distributed Computing.

Marian Neagul is a lecturer in the Department of Computer Science at
West University of Timișoara, Romania. Also, he is a postdoctoral
researcher at the e-Austria Research Institute in Timișoara, Romania. He
received his PhD in Computer Science from West University of Timișoara,
Romania, in 2015. His research interests include distributed systems,
computer networks and operating systems, with recent focus on Cloud
Computing, particularly orchestration, deployment and configuration
management.

Dana Petcu is Professor of Distributed and Parallel Computing in the
Department of Computer Science at West University of Timisoara and a
senior researcher at the e-Austria Research Institute in Timisoara. Her lat-
est scientific contributions are referring to Cloud, Grid or Cluster com-
puting. She has also undertaken several management tasks and acts as the
editor-in-chief of Scalable Computing: Practice and Experience.

xiv NOTES ON CONTRIBUTORS

Teodora Selea is a PhD student at West University of Timisoara,
Romania. She is a junior researcher at the e-Austria Research Institute in
Timisoara, Romania. Her research interests include distributed computing
and artificial intelligence.

Adrian Spătaru is a PhD student at West University of Timisoara and a
junior researcher at the e-Austria Research Institute in Timisoara. Adrian’s
research topics include distributed systems, artificial intelligence and their
integration. During the past four years he gained experience in Cloud
Computing, related to orchestration, deployment and provisioning.
Recent research directions focus on timeseries prediction and Cloud-
Blockchain integration. Adrian participated in research projects starting
with FP7 SCAPE (related to scalable digital preservation environments),
FP7 SPECS (Security as a Service in cloud computing) and H2020
CloudLightning. Adrian was awarded an IBM BSRE Certificate in 2014,
also being present four years in a row (2012–2015) at ACM ICPC SEERC
(South-Eastern-European leg at the collegiate programming contest) in
Bucharest.

Dimitrios Tzovaras is a senior researcher and director at the Information
Technologies Institute of Centre for Research and Technology Hellas. His
main research interests include visual analytics, data fusion, biometric
security, virtual reality, machine learning and artificial intelligence. He has
authored over 110 articles in refereed journals and over 290 papers in
international conferences.

Huanhuan Xiong is a senior postdoctoral researcher in University
College Cork. She received a BSc in Economics from Wuhan University of
Technology (Wuhan, China) in 2004, an MSc in Software Engineering
and a PhD in Geographic Information System (GIS) from Wuhan
University (Wuhan, China) in 2006 and 2012. She worked in IC4 (Irish
Centre for Cloud Computing & Commerce) for three years, and she has
expertise in cloud migration, cloud architecture, cloud interoperability
and scalability. Her research interests include cloud architecture, game
theory, self-organised and self-optimised systems.

xv

3D Three dimensional
AMD Advanced Micro Devices
API Application Programming Interface
ARM Advanced Reduced Instruction Set Computing Machine
AWS Amazon Web Services
BDaaS Big Data as as Service
BIOS Basic Input/Output System
CAMP Cloud Application Management for Platforms
CL CloudLightning
CL-SDL CloudLightning Service Description Language
CM Cell Manager
CPU Central Processing Unit
CRM Customer Relationship Management
CSAR Cloud Service Archive
CSP Cloud Service Provider
DDR Double Data Rate
DES Discrete Event Simulators
DFE Data Flow Engine
DNA Deoxyribonucleic Acid
DSP Digital Signal Processor
DUNE Distributed and Unified Numeric Environment
EAD Enterprise Application Developer
EAO Enterprise Application Operator
ERP Enterprise Resource Planning
FLOPs Floating Point Operations per Second
FPGA Field-Programmable Gate Array
GDP Gross Domestic Product

list of abbreviations

xvi LIST OF ABBREVIATIONS

GPGPU General Purpose GPU
GPU Graphical Processing Unit
GUI Graphical User Interface
HA High Availability
HAL Hardware Abstraction Layer
HOT Heat Orchestration Template
HPC High Performance Computing
HPCaaS High Performance Computing as a Service
HTC High Throughput Computing
I/O Input/Output
IaaS Infrastructure as a Service
IBM International Business Machines
ICT Information and Communications Technologies
IDC International Data Corporation
IP Internet Protocol
IT Information Technology
MAPE-K Monitor-Analyse-Plan-Execute-Knowledge
MIC Many Integrated Core
MIPS Million instructions per second
MP Message Passing
MPI Message Passing Interface
MQ Message Queue
NAS Network Attached Storages
NIC Network Interface Cards
NIST National Institute of Standards and Technology
NUMA Non-uniform Memory Access
OASIS Organization for the Advancement of Structured Information

Standards
OPM Open Porous Media
PaaS Platform as a Service
PLS Packet-Level Simulators
PnP Plug and Play/Plug & Play
pRouter Prescription Router
pSwitch Prescription Switch
QoS Quality of Service
R&D Research and Development
RAL Resource Abstraction Layer
RAM Random Access Memory
RTM Real-Time Migration
SaaS Software as a Service
SDE Service Decomposition Engine
SDL Service Description Language

 xvii LIST OF ABBREVIATIONS

SI Suitability Index
SLA Service-Level Agreement
SOSM Self-Organisation Self-Management
SPEC Standard Performance Evaluation Corporation
SSL Secure Sockets Layer
ToR Top-of-Rack
TOSCA Topology and Orchestration Specification for Cloud Applications
UI User Interface
VM Virtual Machine
VPN Virtual Private Networks
vRM Virtual Rack Manager
WSC Warehouse Scale Computer
YAML Yet Another Markup Language

xix

Fig. 1.1 IC4 cloud computing strategic alignment model 5
Fig. 2.1 Classical cloud architecture is considered to be composed of

three layers. The Service Delivery Layer is one seen by users;
this layer is realised by the Cloud Management Layer, which
is also responsible for realising the objectives of the Cloud
Service; the Infrastructure Layer comprises of the underlying
collection of storage, computing, and network resources and
their required hardware and software 33

Fig. 2.2 The traditional three-tier networking infrastructure 34
Fig. 2.3 Cloud management architect—a component view 37
Fig. 2.4 An overview of the CloudLightning architecture showing

how its various components are organised into the classical
conceptual cloud layers 44

Fig. 2.5 Support for heterogeneous resources using Plug & Play
interface at the Hardware Abstraction Layer 46

Fig. 2.6 Illustration of resource coalition 49
Fig. 2.7 vRack Manager Type-A 50
Fig. 2.8 vRack Manager Type-B 51
Fig. 2.9 vRack Manager Type-C 51
Fig. 2.10 vRack Manager Group Type-A 52
Fig. 2.11 vRack Manager Group Type-B 53
Fig. 2.12 vRack Manager Group Type-C 54
Fig. 2.13 CloudLightning Blueprint 56
Fig. 2.14 Auto-scaling using CL Envelope Mechanism 57
Fig. 2.15 Blueprint- driven VPN creation 59
Fig. 3.1 Directed Evolution 66
Fig. 3.2 Augmented CloudLightning architecture to include pRouters 67

list of figures

xx LIST OF FIGURES

Fig. 3.3 Final augmented CloudLightning architecture illustrating its
hierarchical nature with pRouter and pSwitch components 68

Fig. 3.4 An example propagation of weights and metrics through the
CL hierarchy, with respect to a resource prescription 75

Fig. 3.5 Different types of management cost functions 82
Fig. 3.6 The system utilisation (a) and requests reject rate (b) of

two-stage self- organisation algorithm merging with the
minimum free resources (ρ = 3) 86

Fig. 3.7 The system utilisation (a) and requests reject rate (b) of
two-stage self- organisation algorithm merging with the
maximum free resources (ρ = 3) 87

Fig. 4.1 Lifecycle management for OpenStack Solum, Apace
Brooklyn, and OpenStack Heat 92

Fig. 4.2 CloudLightning service delivery model 94
Fig. 4.3 Architecture for CloudLightning service delivery 95
Fig. 4.4 CloudLightning implementation of the “separation of

concerns” 98
Fig. 4.5 API Message relationships 101
Fig. 4.6 Gateway Service overall architecture 102
Listing 4.1 Resource template 104
Fig. 4.7 Resource discovery sequence diagram 105
Listing 4.2 Resourced template 106
Fig. 4.8 Resource release sequence diagram 106
Fig. 4.9 CloudLightning Blueprint decomposition process 108
Listing 4.3 An Abstract Blueprint 109
Listing 4.4 The CloudLightning Blueprint 111
Fig. 4.10 Application topology: CloudLightning Core 1 node 113
Fig. 4.11 Start of the optimisation process 114
Fig. 5.1 Warehouse Scale Computer abstract architecture 124
Fig. 5.2 Abstract cloud architecture with multiple cells 125
Fig. 5.3 Software architecture of the parallel CloudLightning

simulation framework 127
Fig. 5.4 Hierarchical structure of the SOSM engine 128
Fig. 5.5 Generic CPU power models compared to the power-

utilisation diagram of an HP Proliant DL560 Gen 9 server 131
Fig. 5.6 Energy consumption, processor, accelerator, and network

utilisation of the cloud over time for the traditional cloud
delivery simulation 141

Fig. 5.7 Energy consumption, processor, accelerator, and network
utilisation of the cloud over time for the SOSM simulation 146

xxi

Table 1.1 Cloud computing essential characteristics, service models, and
deployment models (adapted from Mell and Grance 2011) 3

Table 1.2 Self-management aspects of autonomic computing (adapted
from Kephart and Chess 2003) 17

Table 5.1 Selected simulation framework characteristics (adapted from
Byrne et al. 2017) 136

Table 5.2 Hardware characteristics 137
Table 5.3 Application characteristics 137
Table 5.4 Execution of the CloudLightning simulator for different

number of resources, different number of Cells, and different
number of tasks for the traditional centralised cloud service
delivery system 139

Table 5.5 Execution of the CloudLightning simulator for different
number of resources, different number of Cells, and different
number of tasks by using SOSM engine 142

Table 5.6 Ratio of the total energy consumption of the cloud over the
number of accepted tasks for all configurations 144

list of tables

1© The Author(s) 2018
T. Lynn et al. (eds.), Heterogeneity, High Performance Computing,
Self-Organization and the Cloud, Palgrave Studies in Digital
Business & Enabling Technologies,
https://doi.org/10.1007/978-3-319-76038-4_1

CHAPTER 1

Addressing the Complexity of HPC
in the Cloud: Emergence, Self-Organisation,

Self-Management, and the Separation
of Concerns

Theo Lynn

Abstract New use scenarios, workloads, and increased heterogeneity
combined with rapid growth in adoption are increasing the management
complexity of cloud computing at all levels. High performance computing
(HPC) is a particular segment of the IT market that provides significant
technical challenges for cloud service providers and exemplifies many of
the challenges facing cloud service providers as they conceptualise the next
generation of cloud architectures. This chapter introduces cloud comput-
ing, HPC, and the challenges of supporting HPC in the cloud. It discusses
how heterogeneous computing and the concepts of self-organisation, self-
management, and separation of concerns can be used to inform novel
cloud architecture designs and support HPC in the cloud at hyperscale.

T. Lynn (*)
Irish Centre for Cloud Computing (IC4), Dublin City University,
Dublin, Ireland
e-mail: theo.lynn@dcu.ie

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76038-4_1&domain=pdf
mailto:theo.lynn@dcu.ie

2

Three illustrative application scenarios for HPC in the cloud—(i) oil and
gas exploration, (ii) ray tracing, and (iii) genomics—are discussed.

Keywords Cloud computing • High performance computing •
Emergent systems • Self-organising systems • Self-managing systems •
Heterogeneous computing

1.1 IntroductIon

The objective of this book is to introduce readers to CloudLightning, an
architectural innovation in cloud computing based on the concepts of self-
organisation, self-management, and separation of concerns, showing how
it can be used to support high performance computing (HPC) in the
cloud at hyperscale. The remainder of this chapter provides a brief over-
view of cloud computing and HPC, and the challenges of using the cloud
for HPC workloads. This book introduces some of the major design con-
cepts informing the CloudLightning architectural design and discusses
three challenging HPC applications—(i) oil and gas exploration, (ii) ray
tracing, and (iii) genomics.

1.2 cloud computIng

Since the 1960s, computer scientists have envisioned global networks
delivering computing services as a utility (Garfinkel 1999; Licklider 1963).
The translation of these overarching concepts materialised in the form of
the Internet, its precursor ARPANET, and more recently cloud comput-
ing. The National Institute of Standards and Technology (NIST) defines
cloud computing as:

…a model for enabling ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.

(Mell and Grance 2011, p. 2)

NIST defines cloud computing as having five essential characteristics,
three service models, and four deployment models as per Table 1.1.

Since the turn of the decade, the number and complexity of cloud
providers offering one or more of the primary cloud service models—

 T. LYNN

 3

Table 1.1 Cloud computing essential characteristics, service models, and deploy-
ment models (adapted from Mell and Grance 2011)

Essential characteristics
On-demand
self-service

Consumers can unilaterally provision computing capabilities as needed
automatically without requiring human interaction with the cloud
provider.

Broad network
access

Capabilities are available over the network and accessed through
standard mechanisms that promote use by heterogeneous thin or thick
client platforms and interfaces (e.g. devices).

Resource
pooling

The provider’s computing resources are pooled to serve multiple
consumers using a multi-tenant model, with different physical and
virtual resources dynamically assigned and reassigned according to
consumer demand.

Rapid elasticity Capabilities can be elastically provisioned and released, in some cases
automatically, to scale rapidly outwards and inwards to meet demand.
To the consumer, the capabilities available for provisioning often appear
to be unlimited and can be appropriated in any quantity at any time.

Measured
service

Cloud systems automatically control and optimise resource use by
leveraging a metering capability at some level of abstraction appropriate
to the type of service. Resource usage can be monitored, controlled,
and reported, providing transparency to the service provider and the
consumer.

Service models
Software as a
Service

The capability provided to a consumer to use a provider’s applications
running on a cloud infrastructure and accessible by client interface.

Platform as a
Service

The capability provided to a consumer to deploy onto the cloud
infrastructure consumer-created or acquired applications created using
development technologies provided by the provider.

Infrastructure
as a Service

The capability provided to a consumer to provision computing
resources to deploy and run arbitrary software such as operating systems
and applications.

Deployment models
Private Cloud The cloud infrastructure is provisioned for exclusive use by a single

organisation comprising multiple consumers. Ownership, management,
and operation of the infrastructure may be done by one or more of the
organisations in the community, by a third party, or a combination of
both, and it may exist on or off premise.

Community
Cloud

The cloud infrastructure is provisioned for exclusive use by a specific
community of consumers from organisations that have shared concerns.
Ownership, management, and operation of the infrastructure may be
done by one or more of the organisations in the community, by a third
party, or a combination of both, and it may exist on or off premise.

(continued)

 ADDRESSING THE COMPLEXITY OF HPC IN THE CLOUD: EMERGENCE…

4

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and
Software-as-a-Service—as private, public, community, and hybrid clouds
has increased. Cloud computing is now considered to be the dominant
computing paradigm in enterprise Information Technology (IT) and the
backbone of many software services used by the general public, including
search, email, social media, messaging, and storage. Enterprises are
attracted by the convergence of two major trends in IT—IT efficiencies
and business agility, enabled by scalability, rapid deployment, and paral-
lelisation (Kim 2009). Figure 1.1 summarises the strategic motivations
for cloud adoption.

Despite its ubiquity, cloud computing is dominated by a small number
of so-called hyperscale cloud providers, companies whose underlying
cloud infrastructure and revenues from cloud services are at a different
order of magnitude to all the others. These include companies who offer
a wide range of cloud services such as Microsoft, Google, Amazon Web
Services (AWS), IBM, Huawei and Salesforce.com, as well as companies
whose core businesses leverage the power of cloud to manage the scale of
their, typically online, operations such as Facebook, Baidu, Alibaba and
eBay. Estimates suggest that such companies operate one to three million
or more servers worldwide (Data Center Knowledge 2017; Clark 2014).
Research by Cisco (2016) suggests that these hyperscale operators num-
ber as little as 24 companies operating approximately 259 data centres in
2016. By 2020, these companies will account for 47% of all installed data
centre servers and 83% of the public cloud server installed base (86% of
public cloud workloads) serving billions of users worldwide (Cisco 2016).

The data centres operated by hyperscale cloud service providers are
sometimes referred to as Warehouse Scale Computers (WSCs) to differentiate
them from other data centres. The data centre(s) hosting WSCs aretypically
not shared. They are operated by one organisation to run a small number

Table 1.1 (continued)

Public Cloud The cloud infrastructure is provisioned for open use by the general
public. It may be owned, managed, and operated by a business,
academic, or government organisation, or some combination of them.
It exists on the premises of the cloud provider.

Hybrid Cloud The cloud infrastructure is a composition of two or more distinct cloud
infrastructures (private, community, or public) that remain unique
entities, but are bound together by standardised or proprietary
technology that enables data and application portability.

 T. LYNN

 5

Fi
g.

 1
.1

IC

4
cl

ou
d

co
m

pu
tin

g
st

ra
te

gi
c

al
ig

nm
en

t
m

od
el

 ADDRESSING THE COMPLEXITY OF HPC IN THE CLOUD: EMERGENCE…

6

of high-use applications or services, and are optimised for those applica-
tions and services. They are characterised by hardware and system software
platform homogeneity, a common systems management layer, a greater
degree of proprietary software use, single organisation control, and a focus
on cost efficiency (Barroso and Hölzle 2007). It is important also to note
that for these hyperscale clouds, the clouds, per se, sit on top of the physi-
cal data centre infrastructure and are abstracted from end-user applica-
tions, end users, and software developers exploiting the cloud. Indeed,
hyperscale clouds operate across multiple data centres typically organised
by geographic region. This abstraction, combined with homogeneity, pro-
vides cloud service providers with cost efficiencies and deployment flexi-
bility allowing cloud service providers to maintain, enhance, and expand
the underlying cloud infrastructure without requiring changes to software
(Crago and Walters 2015). Conventionally, cloud computing infrastruc-
ture performance is improved through a combination of scale- out and
natural improvements in microprocessor capability, while service availabil-
ity is assured through over-provisioning. As a result, hyperscale data cen-
tres are high-density facilities utilising tens of thousands of servers and
often measure hundreds of thousands of square feet in size. For example,
the Microsoft data centre in Des Moines, Iowa, is planned to occupy over
1.2 million square feet in size when it opens in 2019. While this high-
density homogeneous scale-out strategy is effective, it results in significant
energy costs. Servers may be underutilised relative to their peak load capa-
bility, with frequent idle times resulting in disproportionate energy con-
sumption (Barroso and Hölzle 2007; Awada et al. 2014). Furthermore,
the scale of data centre operations results in substantial cooling-related
costs, with significant cost and energy impacts (Awada et al. 2014).
Unsurprisingly, given their focus on cost effectiveness, power optimisation
is a priority for WSC operators.

From a research perspective, WSCs introduce an additional layer of
complexity over and above smaller-scale computing platforms due to the
larger scale of the application domain (including an associated deeper and
less homogeneous storage hierarchy), higher fault rates, and possibly
higher performance variability (Barroso and Hölzle 2007). This complex-
ity is further exacerbated by the dilution of homogeneity through techno-
logical evolution and an associated evolving set of use cases and workloads.
More specifically, the emergence of new specialised hardware devices that
can accelerate the completion of specific tasks and networking infrastruc-
ture that can support higher throughput and lower latency is enabling

 T. LYNN

 7

support for workloads that traditionally would be considered HPC (Yeo
and Lee 2011). The introduction of heterogeneity combined with new
workloads, such as those classified as HPC, will further introduce greater
system performance variability, including response times and, as a result,
will impact the quality of service. As such, new approaches to provision-
ing are required. Despite these challenges, cloud service providers have
sought to enter the HPC market catering largely for batch processing
workloads that are perfectly or pleasingly parallelisable. Examples include
AWS Batch, Microsoft Azure Batch, and Google Zync Render.
Notwithstanding the entry of these major cloud players, cloud is one of
the smallest segments in the HPC market and vice versa (Intersect360
Research 2014)

1.3 HIgH performance computIng

HPC typically refers to computer systems that through a combination of
processing capability and storage capacity rapidly solve difficult computa-
tional problems (Ezell and Atkinson 2016). Here, performance is gov-
erned by the (effective) processing speed of the individual processors and
the time spent in inter-processor communications (Ray et al. 2004). As
technology has evolved, processors have become faster, can be accelerated,
and can be exploited by new techniques. Today, HPC systems use parallel
processing achieved by deploying grids or clusters of servers and proces-
sors in a scale-out manner or by designing specialised systems with high
numbers of cores, large amounts of total memory, and high-throughput
network connectivity (Amazon Web Services 2015). The top tier of these
specialised HPC systems are supercomputers whose cost can reach up to
US$100 million. Such supercomputers are measured in floating-point
operations per second (FLOPS) rather than millions of instructions per
second, the measurement of processing capacity in general-purpose com-
puting. At the time of writing, the world’s fastest supercomputer, the
Chinese Sunway TaihuLight, has over 10 million cores and a LINPACK
benchmark rating of 93 petaflops (Feldman 2016; Trader 2017) and a
peak performance of 125 petaflops (National Supercomputing Centre,
WuXi n.d.). It is estimated to have cost US$273 million (Dongarra 2016).

Traditionally, HPC systems are typically of two types—Message passing
(MP)-based systems and Non-uniform Memory Access (NUMA)-based
systems. MP-based systems are connected using scalable, high-bandwidth,
low-latency inter-node communications (interconnect) (Severance and

 ADDRESSING THE COMPLEXITY OF HPC IN THE CLOUD: EMERGENCE…

8

Dowd 2010). Instead of using the interconnect to pass messages, NUMA
systems are large parallel processing systems that use the interconnect to
implement a distributed shared memory that can be accessed from any
processor using a load/store paradigm (Severance and Dowd 2010). In
addition to HPC systems, HPC applications can be organised into three
categories—tightly coupled, loosely coupled, and data intensive. The ste-
reotypical HPC applications run on supercomputers are typically tightly
coupled and written using the messaging passing interface (MPI) or shared
memory programming models to support high levels of inter-node com-
munication and high performance storage (Amazon Web Services 2015).
Weather and climate simulations or modelling for oil and gas exploration
are good examples of tightly coupled applications. Loosely coupled appli-
cations are designed to be fault tolerant and parallelisable across multiple
nodes without significant dependencies on inter-node communication or
high performance storage (Amazon Web Services 2015). Three-
dimensional (3D) image rendering and Monte Carlo simulations for
financial risk analysis are examples of loosely coupled applications. A third
category of HPC application is data-intensive applications. These applica-
tions may seem similar to the loosely coupled category but are dependent
on fast reliable access to large volumes of well-structured data (Amazon
Web Services 2015). More complex 3D-animation rendering, genomics,
and seismic processing are exemplar applications.

HPC plays an important role in society as it is a cornerstone of scientific
and technical computing including biological sciences, weather and cli-
mate modelling, computer-aided engineering, and geosciences. By reduc-
ing the time to complete the calculations to solve a complex problem and
by enabling the simulation of complex phenomenon, rather than relying
on physical models or testbeds, HPC both reduces costs and accelerates
innovation. Demand and interest in HPC remain high because problems
of increasing complexity continue to be identified. Society values solving
these problems, and the economics of simulation and modelling is believed
to surpass other methods (Intersect360 Research 2014). As such, it is
recognised as playing a pivotal role in both science discovery and national
competitiveness (Ezell and Atkinson 2016). International Data
Corporation (IDC), in a report commissioned for the European
Commission, highlights the importance of HPC:

The use of high performance computing (HPC) has contributed significantly
and increasingly to scientific progress, industrial competitiveness, national and

 T. LYNN

 9

regional security, and the quality of human life. HPC-enabled simulation is
widely recognized as the third branch of the scientific method, complementing
traditional theory and experimentation. HPC is important for national and
regional economies—and for global ICT collaborations in which Europe par-
ticipates—because HPC, also called supercomputing, has been linked to accel-
erating innovation.

(IDC 2015, p. 20)

Despite the benefits of HPC, widespread use of HPC has been ham-
pered by the significant upfront investment and indirect operational
expenditure associated with running and maintaining HPC infrastruc-
tures. The larger supercomputer installations require an investment of up
to US$1 billion to operate and maintain. As discussed, performance is the
overriding concern for HPC users. HPC machines consume a substantial
amount of energy directly and indirectly to cool the processors.
Unsurprisingly, heat density and energy efficiency remain a major issue
and has a direct dependence on processor type. Increasingly, the HPC
community is focusing beyond mere performance to performance per
watt. This is particularly evident in the Green500 ranking of supercom-
puters.1 Cursory analysis of the most energy efficient supercomputers sug-
gests that the use of new technologies such as Graphical Processing Units
(GPUs) results in significant energy efficiencies (Feldman 2016). Other
barriers to greater HPC use include recruitment and retention of suitably
qualified HPC staff. HPC applications often require configuration and
optimisation to run on specialised infrastructure; thus, staff are required
not only to maintain the infrastructure but to optimise software for a spe-
cific domain area or use case.

1.4 Hpc and tHe cloud

At first glance, one might be forgiven for thinking that HPC and cloud
infrastructures are of a similar hue. Their infrastructure, particularly at
Warehouse Scale, is distinct from the general enterprise, and both paral-
lelisation and scalability are important architectural considerations. There
are high degrees of homogeneity and tight control. However, the primary
emphasis is very different in each case. The overriding focus in HPC is
performance and typically optimising systems for a small number of large
workloads. Tightly coupled applications, such as those in scientific com-
puting, require parallelism and fast connections between processors to

 ADDRESSING THE COMPLEXITY OF HPC IN THE CLOUD: EMERGENCE…

10

meet performance requirements (Eijkhout et al. 2016). Performance is
improved through vertical scaling. Where workloads are data intensive,
data locality also becomes an issue, and therefore, HPC systems often
require any given server in its system to be not only available and operative
but connected via high-speed, high-throughput, and low-latency network
interconnects. The advantages of virtualisation, and particularly space and
time multiplexing, are of no particular interest to the HPC user (Mergen
et al. 2006). Similarly, cost effectiveness is a much lower consideration.

In contrast, the primary focus in cloud computing is scalability and not
performance. In general, systems are optimised to cater for multiple ten-
ants and a large number of small workloads. In cloud computing, servers
also must be available and operational, but due to virtualisation, the pre-
cise physical server that executes a request is not important, nor is the
speed of the connections between processors provided the resource data-
base remains coherent (Eijkhout et al. 2016). As mentioned earlier, unlike
HPC, the cloud is designed to scale quickly for perfectly or pleasingly
parallel problems. Cloud service providers, such as AWS, are increasingly
referring to these types of workloads as High Throughput Computing
(HTC) to distinguish them from traditional HPC on supercomputers.
Tasks within these workloads can be parallelised easily, and as such, mul-
tiple machines and applications (or copies of applications) can be used to
support a single task. Scalability is achieved through horizontal scaling—
the ability to increase the number of machines or virtual machine instances.
Cost effectiveness is a key consideration in cloud computing.

So, while there are technical similarities between the hyperscale cloud
service providers operating their own Warehouse Scale Computing sys-
tems and HPC end users operating their own supercomputer systems, the
commercial reality is the needs of HPC end users are not aligned with the
traditional operating model of cloud service providers, particularly for
tightly coupled use cases. Why? HPC end users, driven by performance,
want access to heterogeneous resources including different accelerators,
machine architectures, and network interconnects that may be unavailable
from cloud service providers, obscured through virtualisation technolo-
gies, and/or impeded by multi-locality (Crago et al. 2011). The general
cloud business model assumes minimal capacity for the end user to
 interfere in the physical infrastructure underlying its cloud and to exploit
space and time multiplexing through virtualisation to achieve utilisation
and efficiency gains. The challenge for service providers and HPC end
users is one of balancing the need for (i) performance and scalability and

 T. LYNN

 11

(ii) maximum performance and minimal interference. CloudLightning
argues that this can be achieved through architectural innovation and the
exploitation of heterogeneity, self-organisation, self-management, and
separation of concerns.

1.5 Heterogeneous computIng

As discussed earlier, cloud computing data centres traditionally leverage
homogeneous hardware and software platforms to support cost-effective
high-density scale-out strategies. The advantages of this approach include
uniformity in system development, programming practices, and overall
system capability, resulting in cost benefits to the cloud service provider.
In the case of cloud computing, homogeneity typically refers to a single
type of commodity processor. However, there is a significant cost to this
strategy in terms of energy efficiency. While transistors continued to
shrink, it has not been possible to lower the processor core voltage levels
to similar degrees. As a result, cloud service providers have significant
energy costs associated not only with over-provisioning but with cooling
systems. As such, limitations on power density, heat removal, and related
considerations require a different architecture strategy for improved pro-
cessor performance than adding identical, general-purpose cores
(Esmaeilzadeh et al. 2011; Crago and Walters 2015).

Heterogeneous computing refers to architectures that allow the use of
processors or cores, of different types, to work efficiently and coopera-
tively together using shared memory (Shan 2006; Rogers and Fellow
2013). Unlike traditional cloud infrastructure built on the same processor
architecture, heterogeneity assumes use of different or dissimilar proces-
sors or cores that incorporate specialised processing capabilities to handle
specific tasks (Scogland et al. 2014; Shan 2006). Such processors, due to
their specialised capabilities, may be more energy efficient for specific tasks
than general-purpose processors and/or can be put in a state where less
power is used (or indeed deactivated if possible) when not required, thus,
maximising both performance and energy efficiency (Scogland et al.
2014). GPUs, many integrated cores (MICs), and data flow engines
(DFEs) are examples of co-processor architectures with relatively positive
computation/power consumption ratios.2 These architectures support
heterogeneous computing because they are typically not standalone
devices but are rather considered as co-processors to a host processor. As
mentioned previously, the host processor can complete one instruction

 ADDRESSING THE COMPLEXITY OF HPC IN THE CLOUD: EMERGENCE…

12

stream, while the co-processor can complete a different instruction stream
or type of stream (Eijkhout et al. 2016).

Modern GPUs are highly parallel programmable processors with high
computation power. As can be derived from their name, GPUs were origi-
nally designed to help render images faster; however, wider adoption was
hindered by the need for specialised programming knowledge. GPUs have
a stream processing architecture fundamentally different than the widely
known Intel general-purpose Central Processing Unit (CPU) program-
ming models, tools, and techniques. As general-purpose GPU program-
ming environments matured, GPUs were used for a wider set of specialist
processing tasks including HPC workloads (Owens et al. 2007; Shi et al.
2012). Intel’s Many-Integrated Core (MIC) architecture seeks to com-
bine the compute density and energy efficiency of GPUs for parallel work-
loads without the need for a specialised programming architecture; MICs
make use of the same programming models, tools, and techniques as those
for Intel’s general-purpose CPUs (Elgar 2010). DFEs are fundamentally
different to GPUs and MICs in that they are designed to efficiently pro-
cess large volumes of data (Pell and Mencer 2011). A DFE system typically
contains, but is not restricted to, a field-programmable gate array (FPGA)
as the computation fabric and provides the logic to connect an FPGA to
the host, Random Access Memory for bulk storage, interfaces to other
buses and interconnects, and circuitry to service the device (Pell et al.
2013). FPGAs are optimised processors for non-floating-point operations
and provide better performance and energy efficiency for processing large
volumes of integer, character, binary, and fixed point data (Proaño et al.
2014). Indeed, DFEs may be very inefficient for processing single values
(Pell and Mencer 2011). A commonly cited use case for DFEs is high-
performance data analytics for financial services. In addition to their per-
formance, GPUs, MICs, and DFEs/FPGAs are attractive to HPC end
users as they are programmable and therefore can be reconfigured for
different use cases and applications. For example, as mentioned earlier,
GPUs are now prevalent in many of the world’s most powerful
supercomputers.

It should be noted that while heterogeneity may provide higher com-
putation/power consumption ratios, there are some significant imple-
mentation and optimisation challenges given the variance in operation and
performance characteristics between co-processors (Teodoro et al. 2014).
Similarly, application operation will depend on data access and the pro-

 T. LYNN

 13

cessing patterns of the co-processors, which may also vary by application
and co-processor type (Teodoro et al. 2014). For multi-tenant cloud com-
puting, these challenges add to an already complex feature space where
processors may not easily support virtualisation or where customers may
require bare-metal provisioning thereby restricting resource pooling
(Crago et al. 2011). For data-intensive application, data transmission to
the cloud remains a significant barrier to adoption. Notwithstanding these
challenges, cloud service providers have entered the HPC space with spe-
cialised processor offerings. For example, AWS now offers CPUs, GPUs,
and DFEs/FPGAs, and has announced support for Intel Xeon Phi proces-
sors (Chow 2017).

1.6 addressIng complexIty In tHe cloud
tHrougH self-* desIgn prIncIples

This chapter previously discussed two computing paradigms—cloud com-
puting and HPC—being driven by end-user demand for greater scale and
performance. To achieve these requirements, heterogeneous resources,
typically in the form of novel processor architectures, are being integrated
into both cloud platforms and HPC systems. A side effect, however, is
greater complexity—particularly in the case of hyperscale cloud services
where the scale of infrastructure, applications, and number of end users is
several orders of magnitude higher than general-purpose computing and
HPC. This complexity in such large-scale systems results in significant
management, reliability, maintenance, and security challenges (Marinescu
2017). Emergence and the related concept of self-organisation, self-
management, and the separation of concerns are design principles that
have been proposed as potential solutions for managing complexity in
large-scale distributed information systems (Heylighen and Gershenson
2003; Schmeck 2005; Herrmann et al. 2005; Branke et al. 2006;
Serugendo et al. 2011; Papazoglou 2012; Marinescu 2017).

The complexity of hyperscale cloud systems is such that it is effectively
infeasible for cloud service providers to foresee and manage manually (let
alone cost effectively) all possible configurations, component interactions,
and end-user operations on a detailed level due to high levels of dynamism
in the system. Self-organisation has its roots in the natural sciences and the
study of natural systems where it has been long recognised that higher-
level outputs in dynamic systems can be an emergent effect of lower-level

 ADDRESSING THE COMPLEXITY OF HPC IN THE CLOUD: EMERGENCE…

14

inputs (Lewes 1875). This is echoed in the field of Computer Science and
through Alan Turing’s observation that “global order arises from local
interactions” (Turing 1952). De Wolf and Holvoet (2004) define emer-
gence as follows:

A system exhibits emergence when there are coherent emergent at the macro-
level that dynamically arise from the interactions between the parts at the
micro-level. Such emergent are novel with regards to the individual parts of the
system.

(De Wolf and Holvoet 2004, p. 3)

Based on their review of the literature, De Wolf and Holvoet (2004) iden-
tify eight characteristics of emergent systems:

 1. Micro-macro effect—the properties, behaviour, structure, and pat-
terns situated at a higher macro-level that arise from the (inter)actions
at the lower micro-level of the systems (so-called emergents).

 2. Radical novelty—the global (macro-level) behaviour is novel with
regard to the individual behaviours at the micro-level.

 3. Coherence—there must be a logical and consistent correlation of
parts to enable emergence to maintain some sense of identity over
time.

 4. Interacting parts—parts within an emergent system must interact as
novel behaviour arises from interaction.

 5. Dynamical—emergents arise as the system evolves over time; new
attractors within the system appear over time and as a result new
behaviours manifest.

 6. Decentralised control—no central control directs the macro-level
behaviour; local mechanism influences global behaviour.

 7. Two-way link—there is a bidirectional link between the upper
(macro-) and lower (micro-) levels. The micro-level parts interact
and give rise to the emergent structure. Similarly, macro-level prop-
erties have causal effects on the micro-level.

 8. Robustness and flexibility—no single entity can have a representation
of the global emergent combined with decentralised control implies
that no single entity can be a single point of failure. This introduces
greater robustness, flexibility, and resilience. Failure is likely to be
gradual rather than sudden in emergent systems.

 T. LYNN

 15

Self-organising systems are similar in nature to emergent systems.
Ashby (1947) defined a system as being self-organising where it is “at the
same time (a) strictly determinate in its actions, and (b) yet demonstrates
a self-induced change of organisation.” Heylighen and Gershenson (2003)
define organisations as “structure with function” and self-organisation as
a functional structure that appears and maintains spontaneously. Again,
based on an extensive review of the literature, De Wolf and Holvoet
(2004) offer a more precise definition of self-organisation as “a dynamical
and adaptive process where systems acquire and maintain structure them-
selves, without external control.” This definition is consistent with
Heylighen and Gershenson (2003) while at the same time giving greater
insight. De Wolf and Holvoet (2004) synthesise the essential characteris-
tics of self-organising systems as:

 1. Increase in order—an increase in order (or statistical complexity),
through organisation, is required from some form of semi-organised
or random initial conditions to promote a specific function.

 2. Autonomy—this implies the absence of external control or interfer-
ence from outside the boundaries of the system.

 3. Adaptability or robustness with respect to changes—a self-organising
system must be capable of maintaining its organisation autono-
mously in the presence of changes in its environment. It may gener-
ate different tasks but maintain the behavioural characteristics of its
constituent parts.

 4. Dynamical—self-organisation is a process from dynamism towards
order.

The concept of self-organisation is often conflated with emergence, par-
ticularly in Computer Science due to the dynamism and robustness
 inherent in the systems and, frankly, historical similarity of language. While
both emergent systems and self-organising systems are dynamic over time,
they differ in how robustness is achieved. They can exist in isolation or in
combination with each other. For example, Heylighen (1989) and Mamei
and Zambonelli (2003) see emergent systems arising as a result of a self-
organising process thus implying self-organisation occurs at the micro-
level. In contrast, Parunak and Brueckner (2004) consider self-organisation
as an effect at the macro-level of emergence as a result of increased order.
Sudeikat et al. (2009) note that the systematic design of self-organising

 ADDRESSING THE COMPLEXITY OF HPC IN THE CLOUD: EMERGENCE…

16

systems is scarcely supported and therefore presents a number of chal-
lenges to developers including:

• Architectural design including providing self-organising dynamics as
software components and application integration

• Methodological challenges including conceptual but practical means
for designing self-organising dynamics by refining coordination
strategies and supporting validation of explicit models for self-
organised applications

Despite these challenges, De Wolf and Holvoet (2004) conclude for
hugely complex systems “…we need to keep the individuals rather simple
and let the complex behaviour self-organise as an emergent behaviour
from the interactions between these simple entities.”

The concept of self-management is much more well defined in the
Computer Science literature and has its roots in autonomic computing
(Zhang et al. 2010). The concept of autonomic computing was popular-
ised by IBM in a series of articles starting in 2001 with Horn’s “Autonomic
Computing: IBM’s Perspective on the State of Information Technology.”
These ideas were further elaborated by Kephart and Chess (2003) and
Ganek and Corbi (2003) amongst others. For IBM, autonomic comput-
ing was conceptualised as “computing systems that can manage them-
selves given high-level objectives from administrators” (Kephart and Chess
2003). Kephart and Chess (2003) further elaborated the essence of auto-
nomic computing systems through four aspects of self-management—self-
configuration, self-optimisation, self-healing, and self-protection. In line
with autonomic computing, the function of any self-management is the
use of control or feedback loops, such as Monitor-Analyse-Plan-Execute-
Knowledge (MAPE-K), that collect details from the system and act
 accordingly, anticipating system requirements and resolving problems
with minimal human intervention (Table 1.2) (IBM 2005).

The so-called self-* aspects of IBM’s vision of autonomic computing
are used in a wide range of related advanced technology initiatives and
have been extended to include self-awareness, self-monitoring, and self-
adjustment (Dobson et al. 2010). Despite the significant volume of
research on self-management, like self- organisation, implementation of
self-management presents significant challenges. These include issues
related to the application of the agent-oriented paradigm, designing a
component-based approach (including composition formalisms) for sup-
porting self-management, managing relationships between autonomic

 T. LYNN

 17

elements, distribution and decentralisation at the change management
layer, design and implementation of robust learning and optimisation
techniques, and robustness in a changing environment (Kramer and
Magee 2007; Nami et al. 2006).

Research on the application of the principles of emergence, self-
organisation, and self-management is widely referenced in Computer
Science literature, typically discretely. There are few significant studies on
architectures combining such principles. One such example is that of the
Organic Computing project funded by the German Research Foundation
(DFG). This research programme focused on understanding emergent
global behaviour in “controlled” self-organising systems with an emphasis
on distributed embedded systems (Müller-Schloer et al. 2011). However,
for cloud computing architectures, there are relatively few examples. This
is not to say that there is a dearth of applications of these concepts for
specific cloud computing functions. There are numerous examples of bio-
inspired algorithms for task scheduling (e.g. Li et al. 2011; Pandey et al.
2010), load balancing (Nishant et al. 2012), and other cloud-related func-
tions. Similarly, Guttierez and Sim (2010) describe a self-organising agent
system for service composition in the cloud. However, these are all at the
sub-system level. The relatively few cloud architectural studies, other than
those relating to CloudLightning, are all the more surprising given that
some commentators, notably, Zhang et al. (2010), posit that cloud com-
puting systems are inherently self-organising. Such a proposition is not to

Table 1.2 Self-management aspects of autonomic computing (adapted from
Kephart and Chess 2003)

Concept Description Benefit

Self- configuration Automated configuration of components and
systems follows high-level policies. Rest of
system adjusts automatically and seamlessly.

Increased
responsiveness

Self- optimization Components and systems continually seek
opportunities to improve their own
performance and efficiency.

Increased operational
efficiencies

Self-healing System automatically detects, diagnoses, and
repairs localised software and hardware
problems.

Increased resilience

Self- protection System automatically defends against malicious
attacks or cascading failures. It uses early
warning to anticipate and prevent system-wide
failures.

Increased security

 ADDRESSING THE COMPLEXITY OF HPC IN THE CLOUD: EMERGENCE…

18

dismiss self-management in cloud computing outright. Indeed, Zhang
et al. (2010) admit that cloud computing systems exhibit autonomic fea-
tures. However, a more purist interpretation suggests that these are not
self-managing and do not explicitly aim to reduce complexity. Marinescu
et al. (2013) emphasises the suitability of self-organisation as a design
principle for cloud computing systems proposing an auction-driven self-
organising cloud delivery model based on the tenets of autonomy of indi-
vidual components, self-awareness, and intelligent behaviour of individual
components including heterogeneous resources. Similarly, while self-
management has been applied at a sub-system or node level (e.g. Brandic
2009), there are few studies on large-scale self-managing cloud architec-
tures. One such system-level study is Puviani and Frei (2013) who, build-
ing on Brandic (2009), propose a catalogue of adaptation patterns based
on requirements, context, and expected behaviour. These patterns are
classified according to the service components and autonomic managers.
Control loops following the MAPE-K approach enact adaptation. In their
approach, each service component is autonomous and autonomic and has
its own autonomic manager that monitors itself and the environment. The
service is aware of changes in the environment including new and disap-
pearing components and adapts on a negotiated basis with other compo-
nents to meet system objectives. While Puviani and Frei (2013) and
Marinescu et al. (2013) propose promising approaches, they are largely
theoretical and their conclusions lack the data from real
implementations.

While emergence, self-organisation, and self-management may prove to
be principles for reducing overall system complexity, for a HPC use case,
the issue of minimal interference remains. At the same time, surveys of the
HPC end-user community emphasise the need for “ease of everything” in
the management of HPC (IDC 2014). To create a service-oriented archi-
tecture that can cater for heterogeneous resources while at the same time
shielding deployment and optimisation effort from the end user is not
insignificant. As discussed, it is counter-intuitive to the conventional
general- purpose model, which, in effect, is one-size-fits-all for end users.
Separation of concerns is a concept that implements a “what-how”
approach cloud architectures separating application lifecycle management
and resource management. The end user, HPC, or otherwise, focuses its
effort on what needs to be done, while the cloud service provider concen-
trates on how it should be done. In this way, the technical details for
interacting with cloud infrastructure are abstracted away and instead the

 T. LYNN

 19

end user or enterprise application developer provides (or selects) a detailed
deployment plan including constraints and quality of service parameters
using a service description language and service delivery model provided
by the cloud service provider, a process known as blueprinting. Blueprinting
empowers an “end-user-centric view” by enabling end users to use highly
configurable service specification templates as building blocks to (re)
assemble cloud applications quickly while at the same time maintain mini-
mal interference with the underlying infrastructure (Papazoglou 2012).
While there are a number of existing application lifecycle frameworks for
PaaS (e.g. Apache Brooklyn and OpenStack Solum) and resource frame-
works for IaaS (OpenStack Heat) that support blueprints, neither the
blueprints nor the service delivery models have been designed to accom-
modate emergence, self-organisation, or self-management.

1.7 applIcatIon scenarIos

It is useful when reading further, to have one or more use cases in mind
that might benefit from HPC in the cloud and more specifically a novel
cloud computing architecture to exploit heterogeneity and self-* princi-
ples. Three motivating use cases are presented: (i) oil and case exploration,
(ii) ray tracing, and (iii) genomics. These fall into the three HPC applica-
tion categories discussed earlier, that is, tightly coupled applications,
loosely coupled applications, and data-intensive applications. In each case,
an architecture exploiting heterogeneous resources and built on the prin-
ciples of self-organisation, self-management, and separation of concerns is
anticipated to offer greater energy efficiency. By exploiting heterogeneous
computing technologies, the performance/cost and performance/watt
are anticipated to improve significantly. In addition, heterogeneous
resources will enable computation to be hosted at hyperscale in the cloud,
making large-scale compute-intensive applications and by-products acces-
sible and practical from a cost and time perspective for a wider group of
stakeholders. In each use case, even relatively small efficiency and accuracy
gains can result in competitive advantage for industry.

1.7.1 Oil and Gas Exploration

The oil and gas industry makes extensive use of HPC to generate images
of earth’s subsurface from data collected from seismic surveys as well as
compute-intensive reservoir modelling and simulations. Seismic surveys

 ADDRESSING THE COMPLEXITY OF HPC IN THE CLOUD: EMERGENCE…

20

are performed by sending sound pulses into the earth or ocean, and
recording the reflection. This process is referred to as a “shot”. To gener-
ate images in the presence of complex geologies, a computationally inten-
sive process called Real-Time Migration (RTM) can be used. RTM
operates on shots, and for each shot, it runs a computationally and data-
expensive wave propagation calculation and a cross-correlation of the
resulting data to generate an image. The images from each shot are
summed to create an overall image. Similarly, the Open Porous Media
(OPM) framework is used for simulating the flow and transport of fluids
in porous media and makes use of numerical methods such as Finite
Elements, Finite Volumes, Finite Differences, amongst others. These pro-
cesses and simulations typically have not been operated in the cloud
because of (a) data security, (b) data movement, and (c) poor perfor-
mance. At the same time, on-site in-house HPC resources are often inad-
equate due to the “bursty” nature of processes where peak demand often
exceeds compute resources. RTM and OPM are exemplars of tightly cou-
pled applications.

One solution to address challenges and objections related to poor per-
formance is to use a self-organising, self-managing cloud infrastructure to
harness larger compute resources efficiently to deliver more energy and
cost-efficient simulations of complex physics using OPM/Distributed and
Unified Numeric Environment (DUNE). As well as supporting greater
cloud adoption for HPC in the oil and gas sector, the development of a
convenient scalable cloud solution in this space can reduce the risk and
costs of dry exploratory wells. Relatively small efficiency and accuracy
gains in simulations in the oil and gas industry can result in disproportion-
ately large benefits in terms of European employment and Gross Domestic
Product (GDP).

1.7.2 Ray Tracing

Ray tracing is widely used in image processing applications, such as those
used in digital animation productions where the development of an image
from a 3D scene is achieved by tracing the trajectories of light rays through
pixels in a view plane. In recent years, the advancement of HPC and new
algorithms has enabled the processing of large numbers of computational
tasks in a much smaller time. Consequently, ray tracing has become a
potential application for interactive visualisations. Ray tracing is commonly
referred to as an “embarrassingly parallelisable algorithm” and is naturally

 T. LYNN

 21

implemented in multicore shared memory systems and distributed sys-
tems. It is an example of a loosely coupled application.

Ray tracing has applications in a wide variety of industries including:

• Image rendering for high resolution and 3D images for the anima-
tion and gaming industry

• Human blockage modelling in radio wave propagation studies and
for general indoor radio signal prediction

• Atmospheric radio wave propagation
• Modelling solar concentrator designs to investigate performance and

efficiency
• Modelling laser ablation profiles in the treatment of high myopic

astigmatism to assess the efficacy, safety, and predictability
• Development of improved ultrasonic array imaging techniques in

anisotropic materials
• Ultrasonic imaging commonly used in inspection regimes, for exam-

ple, weld inspections
• Modelling Light-emitting diode (LED) illumination systems

These industries have significant scale, and they increasingly rely on com-
putationally intensive image processing, accelerated by innovations in con-
sumer electronics, for example, HDTV and 3D TV. A variety of ray tracing
libraries exist that are optimised for MIC and GPU platforms, for example,
Intel Embree and NVIDIA Optix.

1.7.3 Genomics

Genomics is the study of all of a person’s genes (the genome), including
interactions of those genes with each other and with the person’s
 environment. Since the late 1990s, academic and industry analysts have
identified the potential of genomics to realise significant gains in develop-
ment time and reduced investment, largely attached to realising efficiency
gains. Genomics provides pharmaceutical companies with long-term
upside and competitive advantage through savings right along the Research
and Development (R&D) value chain (including more efficient target dis-
covery, lead discovery, and development) but also in better decision-mak-
ing accuracy resulting from more, better, and earlier information which
ultimately results in higher drug success rates (Boston Consulting Group
2001). The net impact is that genomics can result in more successful drug

 ADDRESSING THE COMPLEXITY OF HPC IN THE CLOUD: EMERGENCE…

22

discovery. Relatively small efficiency and accuracy gains in the pharmaceu-
tical industry can result in disproportionately large benefits in terms of
employment and GDP. However, genome processing requires substantial
computational power and storage requiring significant infrastructure and
specialist IT expertise. While larger organisations can afford such infra-
structure, it is a significant cost burden for smaller pharmaceutical compa-
nies, hospitals and health centres, and researchers. Even when such an
infrastructure is in place, researchers may be stymied by inadequate offsite
access.

Genomics has two core activities:

• Sequencing: a laboratory-based process involving “reading” deoxyri-
bonucleic acid (DNA) from the cells of an organism and digitising
the results

• Computation: the processing, sequence alignment, compression, and
analysis of the digitised sequence

Historically, the cost of sequencing has represented the most significant
percentage of the total. However, this cost has decreased dramatically over
the past decade due to breakthroughs in research and innovation in that
area. As the cost of sequencing has dropped, the cost of computation
(alignment, compression, and analysis) has formed a greater proportion of
the total. The biggest consumer of compute runtime is sequence align-
ment—assembling the large number of individual short “reads” which
come out of the sequencer (typically, a few hundred bases long) into a
single complete genome. This can be split into many processing jobs, each
processing batches of reads and aligning against a reference genome, and
run in parallel. Significant input data is required, but there is little or no
inter-node communication needed. The most computationally intensive
kernel in the overall process is local sequence alignment, using algorithms
such as Smith Waterman, which is very well suited to being optimised
through the use of heterogeneous compute technologies such as DFEs.

Genome processing is an exemplar of a data-intensive application.
Greater energy efficiency is anticipated from using heterogeneous com-
puting resulting in lower costs. As the cost of the raw sequencing technol-
ogy drops, the computing challenge becomes the final significant
technology bottleneck preventing the routine use of genomics data in
clinical settings. Not only can the use of heterogeneous computing tech-
nologies offer significantly improved performance/cost and performance/

 T. LYNN

 23

watt, but enabling this computation to be hosted at large-scale in the
cloud makes it practical for wide-scale use. In addition to realigning the
computation cost factors in genome processing with sequencing costs, a
HPC solution can significantly improve the genome processing through-
put and speed of genome sequence computation thereby reducing the
wider cycle time thus increasing the volume and quality of related research.
The benefits of such a cloud solution for genome processing are obvious.
Researchers, whether in large pharmaceutical companies, genomics
research centres, or health centres, can invest their energy and time in
R&D and not managing and deploying complex on-site infrastructure.

1.8 conclusIon

This chapter introduces two computing paradigms—cloud computing and
HPC, both of which are being impacted by technological advances in het-
erogeneous computing but also hampered by energy inefficiencies and
increasing complexity. A combination of self-organisation, self- management,
and the separation of concerns is proposed as design principles for a new
hyperscale cloud architecture that can exploit the opportunities presented
by heterogeneity to deliver more energy-efficient cloud computing and, in
particular, support HPC in the cloud.

This book presents CloudLightning, a new way to provision heteroge-
neous cloud resources to deliver services, specified by the user, using a
bespoke service description language. As noted, self-organising and self-
managing systems present significant architecture design, methodological,
and development challenges. These challenges are exacerbated when com-
bined and considered at hyperscale. The remainder of this book presents
CloudLightning’s response to these challenges illustrating the utilisation
of concepts in emergence, self-organisation, self-management, and the
separation of concerns in a reference architecture for hyperscale cloud
computing (Chap. 2).

Chapter 3 describes the self-organising and self-management formal-
isms designed to support coordination mechanisms within the
CloudLightning architecture. As discussed earlier, stakeholders in cloud
computing, and specifically HPC end users, have different concerns, for
example, enterprise application developers and end users may want greater
control over application lifecycle management, and cloud service provid-
ers want greater control over resource management. To support the sepa-
ration of concerns and ease of use, a minimal-intrusive service delivery

 ADDRESSING THE COMPLEXITY OF HPC IN THE CLOUD: EMERGENCE…

24

model is presented in Chap. 4. This model uses a CloudLightning-specific
service description language, blueprinting, and gateway service to enable
enterprise application developers to specify comprehensive constraints and
quality of service parameters for services and/or resources and, based on
the specified constraints and parameters, provide an optimal deployment
of the resources.

Finally, Chap. 5 addresses the issue of validation of such a novel archi-
tecture. As per Sudeikat et al. (2009), the validation of self-organising
models summatively and formatively presents significant challenges that
are further complicated at hyperscale. Chapter 5 presents CloudLightning’s
work on the design and implementation of a Warehouse-Scale cloud simu-
lator for validating the performance of CloudLightning.

1.9 cHapter 1 related cloudlIgHtnIng readIngs

 1. Lynn, T., Xiong, H., Dong, D., Momani, B., Gravvanis, G. A.,
Filelis- Papadopoulos, et al. (2016, April). CLOUDLIGHTNING:
A framework for a self-organising and self-managing heterogeneous
Cloud. In Proceedings of the 6th International Conference on Cloud
Computing and Services Science (CLOSER 2016), 1 and 2
(pp. 333–338). SCITEPRESS-Science and Technology Publications,
Lda.

 2. Lynn, T., Kenny, D., & Gourinovitch, A. (2015). Global HPC mar-
ket. Retrieved November 6, 2017, from https://cloudlightning.
eu/?ddownload=2446

 3. Lynn, T., Kenny, D., Gourinovitch, A., Persehais, A., Tierney, G.,
Duignam, M., et al. (2015). 3D image rendering. Retrieved November
6, 2017, from https://cloudlightning.eu/?ddownload=2435

 4. Lynn, T., & Gourinovitch, A. (2016). Overview of the HPC market
for genome sequence. Retrieved November 6, 2017, from https://
cloudlightning.eu/?ddownload=2443

 5. Lynn, T., Gourinovitch, A., Kenny, D., & Liang, X. (2016). Drivers
and barriers to using high performance computing in the cloud.
Retrieved November 6, 2017, from https://cloudlightning.
eu/?ddownload=2904

 6. Callan, M., Gourinovitch, A., & Lynn, T. (2016). The Global Data
Center market. Retrieved November 6, 2017, from https://
cloudlightning.eu/?ddownload=3588

 T. LYNN

https://cloudlightning.eu/?ddownload=2446
https://cloudlightning.eu/?ddownload=2446
https://cloudlightning.eu/?ddownload=2435
https://cloudlightning.eu/?ddownload=2443
https://cloudlightning.eu/?ddownload=2443
https://cloudlightning.eu/?ddownload=2904
https://cloudlightning.eu/?ddownload=2904
https://cloudlightning.eu/?ddownload=3588
https://cloudlightning.eu/?ddownload=3588

 25

notes

1. https://www.top500.org/green500/
2. There are other niche processor solutions worth exploring including

Automata Processors for graph analysis, pattern matching, and data analyt-
ics; Digital Signal Processor for processing real-world analogue signals;
Application-Specific Integrated Circuits (ASICs) for use cases such as bit-
coin mining; and neuromorphic chips for cognitive computing. For more
discussion, see Zahran (2017).

references

Amazon Web Services. (2015). An introduction to high performance computing
on AWS [White Paper]. Seattle, WA: Amazon Web Services. Retrieved October
23, 2017, from https://d0.awsstatic.com/whitepapers/ Intro_to_HPC_on_
AWS.pdf

Ashby, W. R. (1947). Principles of the self-organizing dynamic system. The Journal
of General Psychology, 37(2), 125–128.

Awada, U., Li, K., & Shen, Y. (2014). Energy consumption in cloud computing
data centres. International Journal of Cloud Computing and Services Science,
3(3), 145.

Barroso, L. A., & Hölzle, U. (2007). The case for energy-proportional comput-
ing. Computer, 40(12), 33–37.

Boston Consulting Group (2001). A revolution in R&D—How genomics and
genetics are transforming the bio-pharmaceutical industry. Boston, MA: Boston
Consulting Group. Retrieved October 23, 2017, from https://www.bcg.
com/documents/file13745.pdf

Brandic, I. (2009, July). Towards self-manageable cloud services. In Computer
Software and Applications Conference, 2009. COMPSAC’09. 33rd Annual
IEEE International, Vol. 2 (pp. 128–133). IEEE.

Branke, J., Mnif, M., Muller-Schloer, C., & Prothmann, H. (2006, November).
Organic computing—Addressing complexity by controlled self-organization.
In Second International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation, 2006 (ISoLA 2006) (pp. 185–191). IEEE.

Chow, O. (2017). AWS & Intel: A partnership dedicated to cloud innovations
[PowerPoint slides]. SlideShare. Retrieved October 23, 2017, from https://
www.slideshare.net/AmazonWebServices/aws-intel-a-partnership-dedicated-
to-cloud-innovations-77355517

Cisco. (2016). Cisco Global Cloud index: Forecast and methodology, 2015–2020
[White Paper]. Cisco. Retrieved October 23, 2017, from https://www.cisco.
com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-
index-gci/white-paper-c11-738085.pdf

 ADDRESSING THE COMPLEXITY OF HPC IN THE CLOUD: EMERGENCE…

https://www.top500.org/green500/
https://d0.awsstatic.com/whitepapers/Intro_to_HPC_on_AWS.pdf
https://d0.awsstatic.com/whitepapers/Intro_to_HPC_on_AWS.pdf
https://www.bcg.com/documents/file13745.pdf
https://www.bcg.com/documents/file13745.pdf
https://www.slideshare.net/AmazonWebServices/aws-intel-a-partnership-dedicated-to-cloud-innovations-77355517
https://www.slideshare.net/AmazonWebServices/aws-intel-a-partnership-dedicated-to-cloud-innovations-77355517
https://www.slideshare.net/AmazonWebServices/aws-intel-a-partnership-dedicated-to-cloud-innovations-77355517
https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf

26

Clark, J. (2014, November 11). 5 numbers that illustrate the mind-bending size
of Amazon’s cloud. Bloomberg. Retrieved October 23, 2017, from https://
www.bloomberg.com/news/2014-11-14/5-numbers-that-illustrate-the-
mind-bending-size-of-amazon-s-cloud.html

Crago, S., Dunn, K., Eads, P., Hochstein, L., Kang, D. I., Kang, M., Modium, D.,
Singh, K., Suh, J., & Walters, J. P. (2011, September). Heterogeneous cloud
computing. In 2011 IEEE International Conference on Cluster Computing
(CLUSTER) (pp. 378–385). IEEE.

Crago, S. P., & Walters, J. P. (2015). Heterogeneous cloud computing: The way
forward. Computer, 48(1), 59–61.

Data Center Knowledge. (2017, March 16). Google Data Center FAQ. Data Center
Knowledge. Retrieved October 23, 2017, from http://www. datacenterknowledge.
com/archives/2017/03/16/google-data-center-faq

De Wolf, T., & Holvoet, T. (2004, July). Emergence versus self-organisation:
Different concepts but promising when combined. In International Workshop
on Engineering Self-organising Applications (pp. 1–15). Berlin: Springer.

Dobson, S., Sterritt, R., Nixon, P., & Hinchey, M. (2010). Fulfilling the vision of
autonomic computing. Computer, 43(1), 35–41.

Dongarra, J. (2016, June 24). Report on the Sunway TaihuLight System. Retrieved
November 7, 2017, from http://www.netlib.org/utk/people/JackDongarra/
PAPERS/sunway-report-2016.pdf

Eijkhout, V., van de Geijn, R., & Chow, E. (2016). Introduction to high perfor-
mance scientific computing. Zenodo. https://doi.org/10.5281/zenodo.49897

Elgar, T. (2010, December). Intel Many Integrated Core (MIC) architecture
[PowerPoint Slides]. In 2nd UK GPU Computing Conference, December 2010.
Retrieved October 23, 2017, from http://www.many-core.group.cam.ac.uk/
ukgpucc2/talks/Elgar.pdf

Esmaeilzadeh, H., Blem, E., St Amant, R., Sankaralingam, K., & Burger, D.
(2011, June). Dark silicon and the end of multicore scaling. ACM SIGARCH
Computer Architecture News, 39(3), 365–376. ACM.

Ezell, S. J., & Atkinson, R. D. (2016, April). The vital importance of high-
performance computing to US competitiveness. Washington, DC: Information
Technology and Innovation Foundation. Retrieved October 23, 2017, from
http://www2.itif.org/2016-high-performance-computing.pdf

Feldman, M. (2016, June 20). China tops supercomputer rankings with new
93-Petaflop Machine. TOP500.org. Retrieved October 23, 2017, from https://
www.top500.org/news/china-tops-supercomputer-rankings-with-new-
93-petaflop-machine/

Ganek, A. G., & Corbi, T. A. (2003). The dawning of the autonomic computing
era. IBM Systems Journal, 42(1), 5–18.

Garfinkel, S. (1999). Architects of the information society: 35 years of the Laboratory
for Computer Science at MIT. MIT Press.

 T. LYNN

https://www.bloomberg.com/news/2014-11-14/5-numbers-that-illustrate-the-mind-bending-size-of-amazon-s-cloud.html
https://www.bloomberg.com/news/2014-11-14/5-numbers-that-illustrate-the-mind-bending-size-of-amazon-s-cloud.html
https://www.bloomberg.com/news/2014-11-14/5-numbers-that-illustrate-the-mind-bending-size-of-amazon-s-cloud.html
http://www.datacenterknowledge.com/archives/2017/03/16/google-data-center-faq
http://www.datacenterknowledge.com/archives/2017/03/16/google-data-center-faq
http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf
https://doi.org/10.5281/zenodo.49897
http://www.many-core.group.cam.ac.uk/ukgpucc2/talks/Elgar.pdf
http://www.many-core.group.cam.ac.uk/ukgpucc2/talks/Elgar.pdf
http://www2.itif.org/2016-high-performance-computing.pdf
https://www.top500.org/
https://www.top500.org/news/china-tops-supercomputer-rankings-with-new-93-petaflop-machine/
https://www.top500.org/news/china-tops-supercomputer-rankings-with-new-93-petaflop-machine/
https://www.top500.org/news/china-tops-supercomputer-rankings-with-new-93-petaflop-machine/

 27

Gutierrez-Garcia, J. O., & Sim, K. M. (2010, November). Self-organizing agents
for service composition in cloud computing. In 2010 IEEE Second International
Conference on Cloud Computing Technology and Science (CloudCom)
(pp. 59–66). IEEE.

Herrmann, K., Muhl, G., & Geihs, K. (2005). Self management: The solution to
complexity or just another problem? IEEE Distributed Systems Online, 6(1), 1.

Heylighen, F. (1989). Self-organization, emergence and the architecture of com-
plexity. In Proceedings of the 1st European Conference on System Science (pp. 18,
23–32). Paris: AFCET.

Heylighen, F., & Gershenson, C. (2003). The meaning of self-organization in
computing. IEEE Intelligent Systems, 18(4), 72–75.

Horn, P. (2001). Autonomic computing: IBM’s perspective on the state of infor-
mation technology. IBM. Retrieved October 23, 2017, from http://people.
scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf

IBM. (2005). An architectural blueprint for autonomic computing [White Paper].
IBM. Retrieved October 23, 2017, from https://www-03.ibm.com/ autonomic/
pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf

IDC. (2014). Market analysis perspective: Worldwide HPC, 2014—Directions,
trends, and customer requirements. Framingham, MA.

IDC. (2015). High performance computing in the EU: Progress on the implementa-
tion of the European HPC strategy. Brussels, Belgium: European Commission.

Intersect360 Research. (2014). Worldwide high performance computing 2013:
Total market model and 2014–18 forecast. Sunnyvale, CA.

Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing.
Computer, 36(1), 41–50.

Kim, W. (2009). Cloud computing: Today and tomorrow. Journal of Object
Technology, 8(1), 65–72.

Kramer, J., & Magee, J. (2007, May). Self-managed systems: An architectural
challenge. In 2007 Future of Software Engineering (pp. 259–268). IEEE
Computer Society.

Lewes, G. (1875). Problems of life and mind (Vol. 2). London, UK: Kegan, Paul,
Trench, Turbner.

Li, J. F., Peng, J., Cao, X., & Li, H. Y. (2011). A task scheduling algorithm based
on improved ant colony optimization in cloud computing environment. Energy
Procedia, 13, 6833–6840.

Licklider, J. C. (1963). Memorandum for members and affiliates of the intergalac-
tic computer network. Advanced Research Projects Agency. Washington,
DC. Retrieved October 23, 2017, from http://www.kurzweilai.net/
memorandum-for-members-and-affiliates-of-the-intergalactic-computer-
network

 ADDRESSING THE COMPLEXITY OF HPC IN THE CLOUD: EMERGENCE…

http://people.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf
http://people.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf
https://www-03.ibm.com/autonomic/pdfs/AC Blueprint White Paper V7.pdf
https://www-03.ibm.com/autonomic/pdfs/AC Blueprint White Paper V7.pdf
http://www.kurzweilai.net/memorandum-for-members-and-affiliates-of-the-intergalactic-computer-network
http://www.kurzweilai.net/memorandum-for-members-and-affiliates-of-the-intergalactic-computer-network
http://www.kurzweilai.net/memorandum-for-members-and-affiliates-of-the-intergalactic-computer-network

28

Mamei, M., & Zambonelli, F. (2003, July). Self-organization in multi agent sys-
tems: A middleware approach. In International Workshop on Engineering Self-
organising Applications (pp. 233–248). Berlin: Springer.

Marinescu, D. (2017). Complex systems and clouds—A self-organization and self-
management perspective. Cambridge, MA: Elsevier.

Marinescu, D. C., Paya, A., Morrison, J. P., & Healy, P. (2013, December 12). An
auction-driven self-organizing cloud delivery model. Retrieved October 23,
2017, from arXiv preprint https://arxiv.org/abs/1312.2998 [cs.DC].

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. Special
Publication 800–145. Gaithersburg, MD: National Institute of Standards and
Technology.

Mergen, M. F., Uhlig, V., Krieger, O., & Xenidis, J. (2006). Virtualization for
high-performance computing. ACM SIGOPS Operating Systems Review, 40(2),
8–11.

Müller-Schloer, C., Schmeck, H., & Ungerer, T. (Eds.). (2011). Organic comput-
ing—A paradigm shift for complex systems. Springer Science & Business Media.

Nami, M. R., Bertels, K., & Vassiliadis, S. (2006, November). Autonomic com-
puting systems: Issues and challenges. In 17th Annual Workshop on Circuits,
Systems and Signal Processing.

National Supercomputing Centre, WuXi. (n.d.). Hardware. Retrieved October
23, 2017, from http://www.nsccwx.cn/wxcyw/soft1.php?word=soft&i=46

Nishant, K., Sharma, P., Krishna, V., Gupta, C., Singh, K. P., & Rastogi, R. (2012,
March). Load balancing of nodes in cloud using ant colony optimization. In
2012 UKSim 14th International Conference on Computer Modelling and
Simulation (UKSim) (pp. 3–8). IEEE.

Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A. E.,
et al. (2007, March). A survey of general-purpose computation on graphics
hardware. Computer Graphics Forum, 26(1), 80–113. Blackwell Publishing.

Pandey, S., Wu, L., Guru, S. M., & Buyya, R. (2010, April). A particle swarm
optimization-based heuristic for scheduling workflow applications in cloud
computing environments. In 2010 24th IEEE International Conference on
Advanced Information Networking and Applications (AINA) (pp. 400–407).
IEEE.

Papazoglou, M. P. (2012). Cloud blueprints for integrating and managing cloud
federations. In Software service and application engineering (pp. 102–119).
Berlin: Springer.

Parunak, H. V. D., & Brueckner, S. A. (2004). Engineering swarming systems. In
Methodologies and Software Engineering for Agent Systems (pp. 341–376).
Springer US.

Pell, O., & Mencer, O. (2011). Surviving the end of frequency scaling with recon-
figurable dataflow computing. ACM SIGARCH Computer Architecture News,
39(4), 60–65.

 T. LYNN

https://arxiv.org/abs/1312.2998
http://www.nsccwx.cn/wxcyw/soft1.php?word=soft&i=46

 29

Pell, O., Mencer, O., Tsoi, K. H., & Luk, W. (2013). Maximum performance
computing with dataflow engines. In High-performance computing using
FPGAs (pp. 747–774). New York: Springer.

Proaño, J., Carrión, C., & Caminero, M. B. (2014, April). An open-source frame-
work for integrating heterogeneous resources in Private Clouds. In 4th
International Conference on Cloud Computing and Services Science (CLOSER
2014) (pp. 129–134). INSTICC.

Puviani, M., & Frei, R. (2013, October). Self-management for cloud computing.
In Science and Information Conference (SAI) (pp. 940–946). IEEE.

Ray, J., Trebon, N., Armstrong, R. C., Shende, S., & Malony, A. (2004, April).
Performance measurement and modeling of component applications in a high
performance computing environment: A case study. In Proceedings of 18th
International Conference on Parallel and Distributed Processing Symposium,
2004 (p. 95), IEEE.

Rogers, P., & Fellow, A. C. (2013, August). Heterogeneous system architecture
overview. Hot Chips, 25.

Schmeck, H. (2005, May). Organic computing—A new vision for distributed
embedded systems. In Eighth IEEE International Symposium on Object-oriented
Real-time Distributed Computing, 2005 (ISORC 2005) (pp. 201–203). IEEE.

Scogland, T. R., Steffen, C. P., Wilde, T., Parent, F., Coghlan, S., Bates, N., et al.
(2014, March). A power-measurement methodology for large-scale, high-
performance computing. In Proceedings of the 5th ACM/SPEC International
Conference on Performance Engineering (pp. 149–159). ACM.

Serugendo, G. D. M., Gleizes, M. P., & Karageorgos, A. (2011). Self-organising
systems. In Self-organising software (pp. 7–32). Berlin: Springer.

Severance, C., & Dowd, K. (2010). High performance computing. Houston, TX:
Connexions.

Shan, A. (2006). Heterogeneous processing: A strategy for augmenting Moore’s
law. Linux Journal, 142, 7.

Shi, L., Chen, H., Sun, J., & Li, K. (2012). vCUDA: GPU-accelerated high-
performance computing in virtual machines. IEEE Transactions on Computers,
61(6), 804–816.

Sudeikat, J., Braubach, L., Pokahr, A., Renz, W., & Lamersdorf, W. (2009).
Systematically engineering self-organizing systems: The SodekoVS approach.
Electronic Communications of the EASST, 17.

Teodoro, G., Kurc, T., Kong, J., Cooper, L., & Saltz, J. (2014, May). Comparative
performance analysis of Intel (R) Xeon Phi (TM), GPU, and CPU: A case study
from microscopy image analysis. In Proceedings of 28th International Conference
on Parallel and Distributed Processing Symposium, 2014 IEEE (pp. 1063–1072).
IEEE.

 ADDRESSING THE COMPLEXITY OF HPC IN THE CLOUD: EMERGENCE…

30

Trader, T. (2017, June 19). Top500 results: Latest list trends and what’s in store.
Retrieved November 7, 2017, from https://www.hpcwire.com/2017/06/
19/49th-top500-list-announced-isc/

Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical
Transactions of the Royal Society of London B: Biological Sciences, 237(641),
37–72.

Yeo, S., & Lee, H. H. (2011). Using mathematical modeling in provisioning a
heterogeneous cloud computing environment. Computer, 44(8), 55–62.

Zahran, M. (2017). Heterogeneous computing: Here to stay. Communications of
the ACM, 60(3), 42–45.

Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: State-of- the-art
and research challenges. Journal of Internet Services and Applications, 1(1),
7–18.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits any noncommer-
cial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material
derived from this book or parts of it.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to
the material. If material is not included in the chapter’s Creative Commons license
and your intended use is not permitted by statutory regulation or exceeds the per-
mitted use, you will need to obtain permission directly from the copyright holder.

 T. LYNN

https://www.hpcwire.com/2017/06/19/49th-top500-list-announced-isc/
https://www.hpcwire.com/2017/06/19/49th-top500-list-announced-isc/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

31© The Author(s) 2018
T. Lynn et al. (eds.), Heterogeneity, High Performance Computing,
Self-Organization and the Cloud, Palgrave Studies in Digital
Business & Enabling Technologies,
https://doi.org/10.1007/978-3-319-76038-4_2

CHAPTER 2

Cloud Architectures and Management
Approaches

Dapeng Dong, Huanhuan Xiong, Gabriel G. Castañe,
and John P. Morrison

Abstract An overview of the traditional three-layer cloud architecture is
presented as background for motivating the transition to clouds contain-
ing heterogeneous resources. Whereas this transition adds many impor-
tant features to the cloud, including improved service delivery and reduced
energy consumption, it also results in a number of challenges associated
with the efficient management of these new and diverse resources. The
CloudLightning architecture is proposed as a candidate for addressing this
emerging complexity, and a description of its components and their rela-
tionships is given.

Keywords Cloud architecture • Infrastructure • Management • Service
delivery model • Heterogeneous cloud

D. Dong (*) • H. Xiong • G. G. Castañe • J. P. Morrison
Department of Computer Science, University College Cork, Cork, Ireland
e-mail: d.dong@cs.ucc.ie; h.xiong@cs.ucc.ie; gabriel.gonzalezcastane@ucc.ie;
j.morrison@cs.ucc.ie

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76038-4_2&domain=pdf
mailto:d.dong@cs.ucc.ie
mailto:h.xiong@cs.ucc.ie
mailto:gabriel.gonzalezcastane@ucc.ie
mailto:j.morrison@cs.ucc.ie
mailto:j.morrison@cs.ucc.ie

32

2.1 IntroductIon

Cloud end-users are demanding greater performance and diversity of
cloud services than ever before. As discussed in Chap. 1, the high-
performance computing (HPC) and other end-user communities are
seeking to exploit new and diverse hardware designed for specialist tasks.
As well as supporting these new demands, cloud service providers (CSPs)
face the challenges of achieving cost-effective scalability while increasing
energy efficiency. Accommodating heterogeneity and maximising server
utilisation (and by inference minimising over-provisioning) is a significant
shift from conventional homogeneous cloud computing service design.
This is particularly the case with HPC where end-users require a greater
level of access and control over elements of the cloud infrastructure. To
access heterogeneous resources, exploit these resources to reduce applica-
tion development effort, make optimisation easier, and simplify service
deployment, a re-evaluation of our approach to both resource manage-
ment and service delivery is required.

The remainder of this chapter discusses conventional cloud architecture
designs and provides an overview of the CloudLightning architecture, a
novel architecture designed to meet the challenges of the heterogeneous
cloud. The next section presents the three layers of conventional cloud
architectures—the Infrastructure Layer, the Cloud Management Layer,
and the Service Delivery Layer. This is followed by a discussion of the
main challenges associated with transitioning to a truly heterogeneous
cloud with an emphasis on resource management and abstraction. In Sect.
2.4 CloudLightning is presented, a cloud architecture inspired by the
design principles of emergence, self-organisation, self-management, and
the separation of concerns discussed in Chap. 1. Each functional compo-
nent and their relationships are detailed to provide insights into how it
differs from the conventional cloud and realises important properties from
the end- user and CSP perspectives including support for heterogeneity,
ease of use, auto-scaling, data locality, high availability (HA), and net-
working organisation.

2.2 cloud ArchItecture

Over the last decade, large-scale consumer-facing cloud services have been
created by service providers such as Amazon, Microsoft, Google, and
Rackspace. These data centres are large industrial facilities containing the

 D. DONG ET AL.

 33

computing infrastructure that runs their services: servers, storage arrays,
and networking equipment. This core equipment requires supporting
infrastructure in the form of power, cooling, and external networking
links. Reliable service delivery depends on the holistic management of all
of this infrastructure as a single integrated entity. Architecturally, this
holistic management can be logically separated into three layers from bot-
tom to top including an Infrastructure Layer, a Cloud Management Layer,
and a Service Delivery Layer, as shown in Fig. 2.1.

2.2.1 Infrastructure Organisation

Cloud infrastructure design is the art of balancing requirements to ensure
data centre scalability, maintaining server fault tolerance, minimising costs,
and maximising bisection end-to-end bandwidth (Kim 2011; Wang et al.
2014). Traditional data centre infrastructure is based on a hierarchical
structure typically with a three-tier design including the Access Layer, the

Fig. 2.1 Classical cloud architecture is considered to be composed of three layers.
The Service Delivery Layer is one seen by users; this layer is realised by the Cloud
Management Layer, which is also responsible for realising the objectives of the Cloud
Service; the Infrastructure Layer comprises of the underlying collection of storage,
computing, and network resources and their required hardware and software

 CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES

34

Aggregation Layer, and the Core Layer (Martin Pueblas 2010), as shown
in Fig. 2.2.

• The Access Layer (also called the Edge Layer): The primary function
of the Access Layer is to connect servers that typically reside in the
same rack. An Access-Layer switch is thus often referred to as a Top-
of- Rack (ToR) switch.

• The Aggregation Layer (also called, the Distribution Layer): The
Aggregation Layer is a multi-purpose system that interfaces the
Access and Core Layers. The main function of the Aggregation Layer
is to keep the various communication domains separately, thus pro-
viding intelligent switching and HA between regional ToRs.

• The Core Layer: The Core Layer is responsible for providing high-
speed, scalable, and reliable connectivity across the entire data
centre.

This traditional three-tier data centre design is created with simplicity
in mind. The design relies on the use of high-end enterprise-class switches
in the upper layers, whereas the lower layers can function effectively with
less sophisticated equipment. Previous research has indicated that adding
additional servers to a data centre, using the traditional three-tier design,
will reduce the end-to-end bisection bandwidth in proportion to the size

Fig. 2.2 The traditional three-tier networking infrastructure

 D. DONG ET AL.

 35

of the data centre (Al-Fares et al. 2008). In support of cloud computing
and in response to the rise in popularity of Big Data and High-Performance
Computing as a Service (BDaaS and HPCaaS, respectively), the organisa-
tion of the infrastructure in modern data centres is biased towards scal-
ability and high throughput.

In general, design strategies are centred on two basic models—the
Switch-Centric model and Server-Centric model. The next section dis-
cusses these models and the main network designs associated with these
models.

2.2.1.1 The Switch-Centric Model
In the Switch-Centric model, servers are interconnected using switches
and routers. The Fat-tree network is a representative of the Switch-Centric
model that is widely acknowledged and used for data centre networking
infrastructure. A Fat-tree network is also known as Clos topology
(Leiserson 1985). In a Fat-tree network, servers are grouped into Points
of Delivery (PoDs). A PoD consists of n number of servers and n number
of switches. n/2 switches are connected to n servers and act as Access-
Layer switches. The remaining switches are connected to the Access-Layer
switches and, to each other, acting as Aggregation-Layer switches.
Moreover, PoDs are connected using additional (n/2)2 switches acting as
Core-Level interconnections. Thus, the Fat-tree design guarantees a one-
to- one over-subscription ratio between any pair of nodes in the network.
However, the scalability of the infrastructure is limited by the number of
ports available on each switch. BCube (Guo et al. 2009) is another Switch-
Centric design based on a recursive-defined topology. In a BCube design,
n servers are connected to an n-port switch forming a cell. n cells are con-
nected through n switches to form a cube. BCube is designed for modular
data centres and accommodates high performance in a multicast and
broadcast network; however, the complexity of network cabling is rela-
tively high. Portland (Niranjan Mysore et al. 2009), RBridges (Ghanwani
2011), SmartBridge (Rodeheffer 2000), SEATTLE (Kim 2011), and VL2
(Greenberg et al. 2011) are commonly used routing and forwarding pro-
tocols and network address schemes for the Fat-tree-based infrastructure.

2.2.1.2 The Server-Centric Model
In the Server-Centric model, both servers and switches participate in
packet routing, and in the Server-Centric model, both servers and switches
participate in packet routing and forwarding. DCell (Guo et al. 2008) is a

 CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES

36

representative implementation of the Server-Centric model. In DCell, n
servers are connected to an n-port switch forming the smallest entity
known as a Cell. n+1 number of Cells are interconnected via the network
interfaces of each server, thus forming a larger network. The hierarchical
topological design makes DCell networks scalable and robust. However,
the network diameter increases exponentially with the size of the network.
This implies that Cells in the inner layer will carry more network traffic,
and end-to-end communications may experience greater latency. FlatNet
(Lin et al. 2012) is another Server-Centric recursive-defined network. The
FlatNet design uses more switches to achieve higher scalability, n3, com-
pared to n2 of DCell. Based on similar rules used in DCell, FlatNet orga-
nises n servers in an n-port switch as a Cell. A higher layer is formed from
n2 number of lower layers. In FiConn configurations, the main network
interfaces of a server are connected to their corresponding ToR switch(es),
and the redundant network interfaces of a server is used to establish direct
server-to-server connections (Li et al. 2009). In contrast to DCell, FiConn,
and FlatNet, the SprintNet design focuses on high performance. SprintNet
uses multiple, c number of switches connecting n servers in each Cell, in
which n/(c+1) ports connect to other Cells in the network. Infrastructure
expansions are achieved by adding c*n/(c+1) Cells each time. The
SprintNet is specially designed for high-throughput infrastructure.

The current trend is towards using a Server-Centric design based on a
recursively defined topology. From a cloud management perspective, the
number of servers determines scalability, the number of switches affects
the infrastructure cost and the energy efficiency, the number of links indi-
cates the complexity of constructing the network, and the diameter of the
network directly influences the network throughput (high-throughput
networks will improve the service delivery experience, especially for Big
Data and HPC and high-throughput computing (HTC) applications).
HPC and HTC based on heterogeneous computational resources may
have specific requirements on the types of switches, port numbers, and
link capacity. Unfortunately, none of the existing design schemes can guar-
antee scalability, fault tolerance, high performance, and energy efficiency
at the same time. To this end, a hybrid infrastructure organisation scheme
using the combination of several interconnected topological designs may
be required. For example, a combination of Fat-tree, BCube, and
SprintNet may be capable of providing the required infrastructure. As a
side effect, a hybrid design introduces further complexity that must be
managed.

 D. DONG ET AL.

 37

2.2.2 The Cloud Management Layer

Depending on the business goals, the technologies chosen to implement a
cloud architecture varies from vendor to vendor. In principle, all cloud
architecture implementations aim to realise quality attributes that most
appropriately reflect the business goals of the CSP. In Chap. 1, cloud com-
puting was defined, as per National Institute of Standards and Technology,
as having five properties including on-demand self-service, broad network
access, resource pooling, rapid elasticity, and measured service (Mell and
Grance 2011). Technically, any data centre having those properties can be
considered as a cloud. These properties can be realised by composing a set
of commonly acknowledged functional components, as shown in Fig. 2.3.
In principle, all cloud management platforms follow the same architectural
design, but their implementations vary greatly. The following sections give
a high-level overview of how two representative cloud management plat-
forms, namely OpenStack and Google Kubernetes, implement the classical
cloud architecture, based on virtualisation and containerisation technolo-
gies, respectively.

2.2.2.1 OpenStack
OpenStack (OpenStack, LLC 2017) is an open-source cloud platform
designed to manage virtualised environments. Hypervisors are used to vir-
tualise servers; various technologies including Virtual Local Area Networks,

Fig. 2.3 Cloud management architect—a component view

 CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES

38

Linux kernel namespaces, and various tunnelling techniques are used to
virtualise networks; and storage resources are abstracted through the use
of Network File Systems, Remote Volume, Object Storage, and other
network- based clustering file systems such as GlusterFS (Red Hat &
GlusterFS 2012), Ceph (Weil 2006), and Google File System (Ghemawat
et al. 2003).

In particular, for managing computational resources, OpenStack uses a
front-end Application Programming Interface (API) server for receiving
and answering requests. Typically, allocating a computational resource will
require other components, for example, a virtual network, a security
group, and operating system images. This can be a complex task when
dealing with multiple simultaneous requests with different configurations.
In order to reduce this complexity, the front-end API server forwards the
requests to a nova-conductor service. The nova-conductor coordinates vari-
ous associated components to satisfy for a particular request. The nova-
conductor uses a scheduler service (nova-scheduler) to locate potential
physical server(s) that meet the specified requirements, including the
number of Central Processing Unit (CPU) cores, the size of memory, and
storage space. The requested resources (Virtual Machines [VMs]) will be
deployed by a nova-compute service (by calling hypervisor-specific APIs)
on the most appropriate physical servers. Architecturally, the computa-
tional resource management consists of a front-end API server, request
coordinators (can be a group of resource coordinators to deal with high-
volume requests), and an agent per computational node (executing the
actual resource provisioning and deployment commands).

Managing networking in the cloud is a complex task. This is because
conventional network functional components, for example, firewalls, rout-
ers, switches, networking connections, and Network Interface Cards
(NICs), must be provided to end-users on top of shared physical network-
ing resources and networking equipment. These cannot be virtualised or
containerised like computational resources using hypervisors or container
engines; rather, networking virtualisation is mainly built on top of several
packet tagging/encapsulation techniques and the use of software imple-
mentations of respective networking devices such as virtual routers and
virtual switches.

OpenStack storage systems are decoupled from computational
resources. OpenStack offers several basic types of storage systems includ-
ing traditional database systems, network-attached storage, and object
storage. The back-end technologies supporting these storage systems vary

 D. DONG ET AL.

 39

greatly. In general, database systems and object storage are used by cloud
applications, whereas remote volumes are used when creating VMs.

2.2.2.2 Google Kubernetes
Kubernetes is the most recent evolution of Google data centre manage-
ment technology (Rensin 2015; Burns et al. 2016). Architecturally,
Kubernetes uses a master/worker model. It consists of a master server and
multiple minions (workers). The command line tools connect to the API
endpoint in the master, which manages and orchestrates all minions. The
minions receive instructions from the master and initialise local containers,
appropriately.

A Kubernetes Master is composed of a number of components: the API
server, the Replication Controller, the etcd Daemon, and the Scheduler.
The API server is responsible for processing requests and for manipulating
the underlying state objects. The Replication Controller determines how
many pods or containers need to be run. The etcd Daemon stores configu-
ration data. Lastly, the Scheduler is used to place work on an appropriate
minion (or minions) based on an analysis of the state of the current infra-
structure and the requirements of the service being provisioned.

A Kubernetes Minion is also composed of a number of components:
the Kubelet, the Proxy, the cAdvisor, and a Pod. The Kubelet manages the
lifecycle of containers in response to instructions from the master. The
Proxy forwards network traffic to the appropriate containers. It performs
primitive load balancing and is responsible for making sure that each net-
working environment is internally accessible while remaining isolated
from other environments. The cAdvisor is a daemon that provides con-
tainer users with an understanding of the resource usage and the perfor-
mance characteristics of their containers. Finally, a Pod defines a collection
of containers, deployed on the same minion, and provides them with a
shared context.

2.2.3 The Service Delivery Layer

As outlined in Chap. 1, there are three basic cloud service delivery
models: Software as a Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS). These service delivery models are also
referred to as cloud business models or resource abstraction models. Each
of these delivery models is realised in specific layers of the cloud architec-
ture. IaaS, for example, provides end-users access to tangible physical infra-

 CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES

40

structures, such as physical servers, networking equipment, and storage
systems. IaaS also provides access to virtualised physical servers, known as
Virtual Machines. IaaS offers maximum flexibility to end-users for config-
uring and operating the acquired resources, thus IaaS targets end-user
groups interested in building Information Technology (IT) infrastructure.

In order to reduce the configuration complexity and operational costs,
CSPs can provide pre-configured platforms and offer those ready-to-use
platforms to the end-user. This service model is often referred to as
PaaS. Examples of PaaS are pre-configured operating systems (e.g., Linux,
Windows), Web application servers (e.g., Apache Tomcat, Oracle Glassfish
Red Hat JBoss), Workflow Engines (e.g., Apache Orchestration Director
Engine), and Messaging frameworks (e.g., RabbitMQ, ZeroMQ). PaaS
provides services to system administrators and developers in need of pre-
configured platforms for their systems or applications to function as
expected. Although PaaS can greatly reduce configuration complexity and
operational costs, it still requires the end-users to have domain-specific
knowledge to engage with the platforms being provided. There are also
cloud end-users who are interested only in consuming services, such as
email, business processes, customised applications, for example, Customer
Relationship Management and Enterprise Resource Planning. When a
CSP has installed, configured, and provided those customer-facing soft-
ware solutions as a service, they are referred to as SaaS.

As the cloud ecosystem rapidly evolves, heterogeneous resources are
being incorporated into the cloud environment, which has traditionally
been homogeneous. This evolution requires multiple service abstraction
modes to coexist and to be combined to provide more versatile services.

2.3 trAnsItIonIng to heterogeneous clouds

Cloud infrastructure has traditionally been built on homogeneous
resources. This approach afforded simplicity of design and uniformity of
resource management. In recent years, different types of resources have
been made available to the cloud user community and have proven to be
extremely popular due to their speed and modest power consumption.
This evolution on the tradition design is thus leading to the emergence of
the heterogeneous cloud. Heterogeneity is a broad concept. It can refer to
different models of physical servers, produced by various manufacturers,
and/or it can refer to different servers having different computational
power, storage size, and networking capacities. Functionally, various types
of coprocessors and accelerators, such as the Intel Xeon Phi Coprocessor

 D. DONG ET AL.

 41

(Many Integrated Core [MIC]), the Field-Programmable Gate Array
(FPGA), and the Graphical Processing Unit (GPU), have already been
used in many production clouds. At a lower level, each type of CPU
(Advanced Micro Devices, Intel, or even Advanced Reduced Instruction
Set Computing Machine [ARM]), system memory (e.g., Double Data
Rate {1, 2, 3}, 3D transistors), and storage types (e.g., mechanical disks
and Solid State Disks) has different speeds and power consumption pat-
terns. From a networking perspective, several types of networking connec-
tions (e.g., 1 Gb/s standard Ethernet, 10/40Gb/s high-speed Ethernet,
Fibre Optical network, and InfiniBand) coexist in many major cloud
deployments. The heterogeneity in hardware, resource organisation
schemes, and software creates rich features and services that can support a
wide range of applications from general web applications and networking
infrastructure services to Big Data processing, high-performance/
throughput computation applications, and recently the Network Virtual
Function to support traditional telecommunication applications.

Heterogeneity also has its challenges from a cloud management per-
spective due to the complexity associated with managing diversity. Each
type of hardware, resource organisation scheme, and software has its own
unique static features, such as architecture, computation power, speed,
and bandwidth, and each also exhibits different runtime patterns, such as
power consumption, computation performance, access methods, and sup-
porting software libraries. In order to efficiently and effectively manage
such complex environments, the Cloud Management Layer must adapt to
this evolving diversity. In this regard, the two most challenging aspects
that must be addressed are the efficient management of resources and the
support for flexible resource abstraction methods.

2.3.1 Resource Management

Heterogeneous resources introduce a large feature space into the cloud.
The careful refinement of resource features and their combinations pro-
vide two clear advantages: (i) support for a wide range of applications and
(ii) an appropriate mapping between application requirements/specifica-
tions and the resource features/characteristics. These can maximise the
desires of both the end-user and the CSP, for example, respectively maxi-
mising application performance and reducing power consumption. This
process requires resource management capable of efficiently and effec-
tively manipulating such a large feature space at scale.

 CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES

42

In the current cloud environment, resource scheduling can be catego-
rised into three schemes including Monolithic, Two-Level Scheduling,
and Shared-State (Schwarzkopf et al. 2013).

A Monolithic Scheduler has a single instance, is sequential, and must
implement all policy choices in a single code base. The Google Borg
scheduler is effectively monolithic, although the more recent releases of
this scheduler have been optimised to provide internal parallelism and
multi-threading to address HA and scalability. A Two-Level Scheduling
approach separates application schedulers from resource schedulers. Mesos
acts in this manner. It is an infrastructure management framework and
makes use of a central master scheduler to decide how many resources
from the available pool can be assigned to a framework. An application
scheduler, within each framework, then allocates resources to applications
within its own domain. Finally, a Shared-State scheme uses a Shared-State
Scheduling approach, supporting multiple parallel schedulers. Each sched-
uler is given a private, local, frequently updated copy of the global state for
use in making local scheduling decisions. Once a scheduler makes a place-
ment decision, it updates the shared copy of the global state in an atomic
commit, and the time from state synchronisation to the commit attempt is
called a transaction. Google Omega (Schwarzkopf et al. 2013; Burns et al.
2016) uses the Shared-State scheme. Omega schedulers operate in parallel
using lock-free optimistic concurrency control. Omega is also designed to
support multiple distinct workloads having their own application-specific
interfaces, state machines, and scheduling policies.

Common cloud resource scheduling algorithms map applications to
resources using resource availability metrics such as the number of avail-
able CPU cores, the free memory, the available storage space, and other
system-state information. These schedulers use as little information as pos-
sible to make reasonable decisions in a timely manner. This approach is
sufficient for a cloud composed of homogeneous resources. In contrast,
heterogeneous clouds introduce a much higher degree of complexity for
which conventional approaches to resource management are inadequate.
Thus, new and innovative solutions are required to efficiently support the
transition from the homogeneous to heterogeneous cloud.

2.3.2 Resource Abstraction

Current cloud management platforms are typically designed to manage
either virtualised or containerised environments. Considering that the

 D. DONG ET AL.

 43

traditional cloud consists of homogeneous resources based on general-
purpose processing units (CPU architectures) and standard hardware
components, virtualisation and containerisation technologies have dem-
onstrated their ability, in many production environments, to abstract
standard hardware resources.

However, heterogeneity creates new challenges to existing resource
abstraction methods. Specifically, many computation accelerators, such as
MICs and GPUs, cannot be simply virtualised nor containerised without
specific configurations being done at both the hardware and software lev-
els. In particular, different models and manufacturers of the same type of
computation accelerators may require different configurations on the host
server (e.g., setting CPU features in the Basic Input/Output System and
motherboard configurations) and in the software (e.g., changing kernel
versions, updating operating system drivers, and choosing the appropriate
hypervisor). This poses the challenge of how to flexibly use various
resource abstraction methods to access different types of resources
seamlessly.

2.4 the cloudlIghtnIng ApproAch

The CloudLightning architecture has been constructed in an effort to
address the challenges resulting from the transition to the emerging het-
erogeneous cloud. It recognises that the complexities associated with
resource management due to this transition are nontrivial, and it proposes
the use of self-organisation and self-management as a potential way for-
ward. Thus, the architecture is composed of components and services with
the necessary support for self-organisation and self-management. The
CloudLightning architecture demonstrates how specialised hardware can
be seamlessly integrated and the problems of centralised resource manage-
ment at scale can be addressed, whilst recognising the inevitable added
complexity resulting from supporting heterogeneity. Figure 2.4 shows the
overview of the CloudLightning architecture, including the Service
Delivery Layer, the Cloud Management Layer, and the Infrastructure
Layer.

2.4.1 Infrastructure Organisation

The infrastructure organisation of CloudLightning is reminiscent of the
Warehouse Scale Computer concept in which the infrastructure is composed

 CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES

44

of Cells. A Cell is composed of Racks, which in turn contain servers of
homogeneous hardware. In contrast, CloudLightning also incorporates het-
erogeneity by allowing different Racks to contain different computational
resources.

2.4.2 Hardware Organisation

In a CloudLightning managed domain, physical servers are partitioned
into groups based on geographical locations or regions; each of these
 partitions is called a Cell. A Cell is composed of a pool of heterogeneous
computational resource, known as the Compute Resource Fabric. In the
CloudLightning system, five elementary computational hardware types
are considered explicitly. These include commodity servers (CPUs), serv-

Fig. 2.4 An overview of the CloudLightning architecture showing how its vari-
ous components are organised into the classical conceptual cloud layers

 D. DONG ET AL.

 45

ers with GPU accelerators, servers with MIC accelerators, servers with
FPGA accelerators, and Non-uniform Memory Access Scale high-
performance computer.

In a conventional data centre, physical racks are used to hold servers
and switches. However, in a cloud deployment, the rack has no explicit
identity that can be used to determine, from within the cloud software
stack, where a particular compute/storage resource is physically located.
To maintain information about groups of servers and to manage their
resources, CloudLightning introduces virtual components called vRacks.
A vRack contains a group of physical servers that share common proper-
ties including hardware type, hardware compatibility, and network con-
nection type.

2.4.2.1 Resource Abstraction
The Hardware Abstraction Layer (HAL) provides a logical view of the
underlying cloud infrastructure directly to the Cloud Management Layer.
The HAL places resources into vRacks. Each vRack contains a certain
number of homogeneous resources. The size of each vRack is initially
determined by the management complexity for the type of resources to be
managed. During the evolution of the system, a vRack may negotiate with
other vRacks to exchange information and to transfer resources to achieve
system goals such as maximising resource utilisation, reducing power con-
sumption, and improving the service delivery experience.

When new hardware joins the CloudLightning managed domain, a
dedicated Plug & Play interface is used to facilitate the connection of new
hardware to the CloudLightning system. The newly connected hardware
is required to expose available capacities and capabilities to the interface.
In response, the interface will create CloudLightning-specific resources
(CL-Resources) to represent the capabilities exposed. Depending on their
type, these CL-Resources will be attached to an existing vRack, or if an
appropriate vRack of this type is not available, a new vRack of an appropri-
ate type is created. Where appropriate, the newly created vRack will be
managed by a designated vRack Manager. This process is shown in Fig. 2.5.

2.4.3 The Cloud Management Layer

The CloudLightning management layer is shown in Fig. 2.4. The func-
tional components and their relationships are explained in detail in the
following sections.

 CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES

46

A Cell Manager is the software component associated with each Cell.
The Cell Manager receives an Application Requirements Document from
the Gateway Service, and it acquires CL-Resources in response to the
requirements articulated in that “document”. This can be done in at least
one of two ways: either by allowing the user to select from a set of resources
returned from a Resource Discovery phase or by allowing the system to
assign appropriate resources immediately that meet the service require-
ments. In the former case, resource reservation is required while users
make their choice, and in the latter case no reservation is needed.

2.4.3.1 CL-Resource Discovery
The CL-Resource Discovery process is initiated when the Cell Manager
receives an Application Requirements Document from the Gateway. This
“document” contains a set of Blueprint Requirements and a set of Service
Requirements for each service in that Blueprint.

The function of the discovery process is to locate all of the possible
CL-Resources that can be used to implement each of these services, con-
sistent with particular constraints articulated in the list of Service
Requirements.

The discovery process can determine information about dynamically
changing capabilities and capacities by communicating with a group of
vRack managers. From this information, the discovery process determines
the CloudLightning system’s ability to provide CL-Resources for each of
the possible Implementation Options mentioned in the Service Requirements.

Fig. 2.5 Support for heterogeneous resources using Plug & Play interface at the
Hardware Abstraction Layer

 D. DONG ET AL.

 47

To guarantee these options remain available until the selection process is
complete, all of the associated CL-Resources must be reserved by the asso-
ciated vRack Managers. Thus, resources are potentially reserved across
multiple vRack Managers until the selection process determines that they
should be acquired or released. All of these Implementation Options are
then passed directly to the CL-Resource selection process.

2.4.3.2 The CL-Resource Selection
This process applies the remaining constraints articulated in the list of
Service Requirements and constraints associated with the Blueprint
Requirements to determine a solution set consistent with all of the
Application Requirements. If at this stage the solution set is not unique,
the selection process will choose a unique solution by considering the
options that minimise the overhead for the CSP. The associated
CL-Resources in the solution set are then acquired automatically and
those CL-Resources not in the solution set are released. Once the
CL-Resources are acquired, their handlers are passed back to the Gateway
for subsequent use by the Deployment Manager.

A vRack Manager is associated with each vRack. The function of a
vRack Manager is to manage all of the CL-Resources that can be exposed
from its associated vRack. In addition, it can create/aggregate
CL-Resources in/on its vRack, as necessary. When the vRack Manager
aggregates CL-Resources in its vRack, it creates a new type of CL-Resource
called a Coalition. This is one of the defining characteristics of the
CloudLightning system in that it allows CL-Resources to be formed into
groups of homogeneous CL-Resource types to implement specific services
with those requirements. A vRack Manager is responsible for managing
the physical servers in its vRack. The set of servers associated with vRacks
may be re-allocated over time. Similarly, new servers may be added to a
Cell and others may be removed. This may trigger the creation/destruc-
tion/reorganisation of vRacks and their associated vRack Managers.

There are three functional components within each vRack Manager: a
Resource Acquisition component, a Coalition Lifecycle Management
component, and a Self-Organisation Agent.

2.4.3.3 Resource Acquisition
This component is activated by the selection process of the Cell Manager.
It attempts to acquire CL-Resources; this can be guaranteed if they have
been previously reserved. The CL-Resources being acquired may already

 CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES

48

exist within the vRack or they may have to be dynamically created by the
vRack Manager. Once these CL-Resources have been acquired, their
CL-Resource handlers are returned to the selection process of the Cell
Manager.

2.4.3.4 Coalition Lifecycle Management
A Coalition is a special type of CL-Resource. In general, it represents a
group of homogeneous CL-Resources, each of which exists within a single
vRack. The vRack Manager may form a number of Coalitions, which may
be persistent and used as a means of rapidly providing an implementation
option for specific services. These persistent Coalitions are called Static
Coalitions. The vRack Manager may also aggregate its CL-Resources,
none of which may be a Coalition in itself, to form Coalitions dynamically
in response to a specific CL-Resource acquisition request from Cell
Manager. In managing dynamic CL-Resources, such as Coalitions, bin-
packing strategies can be used to balance resource utilisation and power
management. By appropriately managing the mix of static versus dynamic
CL-Resources, faster service deployment can be balanced against potential
savings on power consumption.

A Coalition is an entity that can be seen as an execution environment,
formed by grouping together a number of CL-Resources. Coalitions may
exist inside a single vRack and so each is under the control of single vRack
Manager. The constituency of a Coalition may span multiple servers within
that vRack. Coalitions are formed by a vRack Manager in response to spe-
cific service requirements. The vRack Manager may decide to persist
Coalitions for improved service delivery, and these Coalitions are called
Static Coalitions. Coalitions may also be formed dynamically by a vRack
Manager again in response to specific service requirements. This dynamic
formation may involve the dynamic creation of some or all of the constitu-
ent CL-Resources. When a dynamically formed Coalition is subsequently
disbanded, its dynamically created constituents are destroyed, but any
static CL-Resources used in its formation are left unchanged and persist to
be reused in subsequent Coalition formations. Figure 2.6 illustrates a
number of Coalitions in a vRack. From the illustration, it can be seen that
a Coalition can exist entirely within a single server or can span multiple
servers within the same vRack. In the situation that a single vRack Manager
does not contain sufficient resources to satisfy a specific requirement, it
may negotiate with an adjacent vRack Manager to acquire the appropriate
resources.

 D. DONG ET AL.

 49

2.4.3.5 Self-Organisation Agent
The vRack Manager is a basic component of self-organisation in the
CloudLightning system. vRack Managers organise themselves into groups
and collectively determine local optimum strategies for CL-Resource
management. The Self-Organisation Agent maintains information about
other vRack Managers in the same group, it exchanges local state informa-
tion with the Self-Organisation Agent in those vRack Managers, and it
triggers power management decisions in the servers contained in its vRack.
Negotiations between the various Self-Organising Agents within a vRack
Manager group may result in the migration of servers from one vRack to
another. Since CL-Resources may span multiple servers in the same vRack,
any proposed migration must not violate the invariants associated with
maintaining coalitions.

Fig. 2.6 Illustration of resource coalition

 CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES

50

A vRack Manager Group is composed of a group of vRack Managers
whose vRacks contain the same type of hardware. The Self-Organisation
Agents of the vRack Managers within the group exchange information to
optimally respond to resource discovery request from the Cell Manager.
Together, they decide on if, and on where, the required CL-Resources are
located or could be created. In making these decisions, the individual
interests of each vRack Manager and the interests of the group as a whole
are taken into account. This distributed decision process embodies the
self-organisation strategy, which evolves to meet global objectives deter-
mined from the requirements driving the architecture design. vRack
Managers are distinguished by the vRack hardware type. This distinction
gives rise to a classification of the vRack Managers.

2.4.3.6 Classification of vRack Managers
Type-A vRack Managers are the most generic. They manage a collection
of hardware resources of the same type (see Fig. 2.7). In one instance,
these can be commodity hardware; in another, they could be CPU-GPU
pairs, CPU-Data Flow Engine (DFE) pairs, or CPU-MIC pairs.

Type-B vRack Managers are more specialised. They manage a collec-
tion of HPC machines of the same type, each of which is exposed to the
CloudLightning system as a single CL-Resource (see Fig. 2.8). If two or
more HPC machines are managed by the same vRack Manager, then it is
assumed that they are identical in all respects. This ensures that the
CL-Resources exposed to the vRack Manager are the same.

Type-C vRack Managers manage a collection of hardware resources of
the same type co-located on a high-speed interconnect (see Fig. 2.9).
These can be commodity servers, or in other instances, they could be serv-
ers with GPU accelerators, servers with MIC accelerators, or servers with
DFE accelerators.

Fig. 2.7 vRack
Manager Type-A

 D. DONG ET AL.

 51

2.4.3.7 vRack Manager Activities
Type-A vRack Managers can only group with other Type-A managers (see
Fig. 2.10). These groups can self-organise (e.g., in an attempt to improve
power consumption). Self-organising involves servers migrating between
vRack Managers in the same group. These groups also self-manage to
improve service delivery but deciding locally which member of the group
is the best to respond to particular service requests.

Neither Type-B nor Type-C vRack Managers engage in self- organisation.
In general, the CL-Resources being managed are created from hardware
of different types, thus cannot migrate to other vRack Managers. However,
in principle, Type-B (see Fig. 2.11) vRack Managers can group together
and Type-C (see Fig. 2.12) vRack Managers can group together in an
effort to reduce the overall number of vRack Manager Groups. This in
turn will simplify the administration required in the Cell Manager.

2.4.4 Service Delivery Model

The ready availability of large numbers of powerful, and increasingly het-
erogeneous, resources being made available by CSPs is making possible the
deployment of large, data, and compute-intensive, applications. In many
cases, these, quite often legacy, applications are monolithic in construction

Fig. 2.8 vRack
Manager Type-B

Fig. 2.9 vRack
Manager Type-C

 CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES

52

Fi
g.

 2
.1

0
vR

ac
k

M
an

ag
er

 G
ro

up
 T

yp
e-

A

 D. DONG ET AL.

 53

Fi
g.

 2
.1

1
vR

ac
k

M
an

ag
er

 G
ro

up
 T

yp
e-

B

 CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES

54

Fi
g.

 2
.1

2
vR

ac
k

M
an

ag
er

 G
ro

up
 T

yp
e-

C

 D. DONG ET AL.

 55

and require bespoke execution environments. Consequently, it can be chal-
lenging to deploy them in the cloud without acquiring IaaS and employing
specialised engineering knowledge.

In this cloud usage model, the provider has no control over the effec-
tive utilisation of resources nor have cloud application developers an
incentive to engage in costly customisation to increase resource efficiency
when, regardless of the efficiency achieved, they are paying for the entire
resource. Composing cloud services from workflows of large, possibly
legacy, applications will most likely be the trend as support for emerging
Big Data applications requires sophisticated, multi-phase data processing.
Being essentially independent, the required resources for the applications
that run in each of these phases may differ greatly in number and type, and
hence the problems of cost and efficiency could be significantly exacer-
bated. Clearly, an approach is needed to allow the sophistication of the
cloud to evolve in an efficient and cost-effective manner. It can be seen
that there is no clear distinction between the concerns of cloud application
developer and those of the Cloud Provider. The concerns of the CSP cen-
tre around efficient management and utilisation of cloud resources, and
the concerns of cloud application developers centre on the specification,
deployment, and service-level agreements (SLAs) associated with their
applications.

To address this usability question, CloudLightning uses a Blueprint-
oriented cloud application design and deployment approach. In this con-
text, Blueprints are workflows in which nodes (Service Element) represent
extant applications and edges distinguish the phases of the Blueprint exe-
cution where particular applications are active. All Service Elements are
stored in a Service Catalogue, which is managed by the Gateway Service
(Fig. 2.4). Cloud application developers may choose Service Elements
from the Service Catalogue and link Service Elements to realise desired
business logics. Attributes and parameters can be specified on a per Service
Element basis. Altogether, the Service Elements, their linkages, and associ-
ated attributes and parameters comprise the application Blueprint, as
shown in Fig. 2.13. The use of the Blueprint would drastically alter the
current cloud usage model in that it would shift the burden of resource
discovery, provisioning, and deployment from the cloud application devel-
opers to CSPs. This shift would greatly reduce the cost to, and the level of
expertise needed by, cloud application developer while simultaneously giv-
ing CSPs full control over, and affording opportunities for the efficient use
of, the cloud resources.

 CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES

56

2.4.5 Advanced Architecture Support

The design philosophy of the CloudLightning architecture is fundamen-
tally different from the current cloud in operation. This results in the
CloudLightning having different strategies for realising various important
properties including auto-scaling, data locality, HA, and networking
organisation.

2.4.5.1 Auto-Scaling
Scalability is one of the most important features in cloud computing. The
CloudLightning system supports scalability provided that Blueprint devel-
opers explicitly indicate in the Blueprint which services are expected to
require scaling. This explicit indication can be given by enclosing the ser-
vices to be scaled within a Scaling Envelope. This envelope embeds services
into Blueprint in order to monitor its load. When a pre-defined load
threshold is crossed, this system service will dynamically acquire the appro-
priate resources from the CloudLightning system to scale the user service
appropriately. By using the envelope in the Blueprint, consumers can see
that execution of that Blueprint may result in charges relating to extra
resources that cannot be determined statically. Additionally, the
CloudLightning auto-scaling scheme allows application developers to
explicitly specify how to service elasticity and partition data in a fine-
grained manner. The scaling envelope and its associated impact on the
CloudLightning system are illustrated in Fig. 2.14.

Fig. 2.13 CloudLightning Blueprint

 D. DONG ET AL.

 57

2.4.5.2 High Availability
HA refers to the mechanisms used to ensure continuity of service delivery.
If an infrastructure component (e.g., network equipment or server) fails,
redundancy and flexible load balancing mechanisms may be employed to
ensure that the overall service remains available. HA will be addressed
within the CloudLightning system by using a Hot-Standby server for each
of its software components. To provide HA of the services running on the
CloudLightning system, service replication may be used. Since replication
has an associated cost, the decision to use it should be made by the
Blueprint developers by expressing that preference in the Blueprint. An
envelope mechanism similar to the one used for auto-scaling may be used.

2.4.5.3 Data Locality
Data locality, defined as keeping data close to the computation, is one
of the most important factors considered for HPC/HTC and Big Data

Fig. 2.14 Auto-scaling using CL Envelope Mechanism

 CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES

58

applications. In the cloud environment, the concept of data locality is
not well defined. The CloudLightning system does not propose to
introduce mechanisms to give Blueprint developers control over the
data locality, unless that control is provided explicitly by specialised
CL-Resources dedicated to high-speed data processing. Thus, this func-
tionality would have to be exposed to the Blueprint developers at the
Blueprint level.

In the CloudLightning system, data locality constraints may have to be
considered at various levels in the self-managed and self-organised compo-
nents; thus, it may be necessary to develop strategies for data locality at the
Coalition, vRack, and Cell level. For instance, if a given Blueprint consists
of two services: Service_A and Service_B, knowing that if Service_A will
generate significant amount of data that will be further processed by
Service_B (this information will be specified between Service_A/B in the
Blueprint specification), then this information is a potential data locality
requirement for the Blueprint which will be thereafter used by Cloud
Management Layer to deploy the Blueprint on appropriate resources. On
the other hand, in different application domains, such as HPC/HTC and
Big Data, many applications require local storage for computation. In
cases where data locality is a predominant concern, CloudLightning sys-
tem is designed to use Network Attached Storages (NAS) through high
bandwidth links in order to minimise the data transmission cost over the
network. However, in cases where the NAS is not present, local persistent
storage can also be used.

2.4.5.4 Dynamic VPN Creation for Blueprint Service Execution
To create an isolated execution environment for each Blueprint, the
CloudLightning Management Layer creates dedicated Virtual Private
Networks (VPNs) for each Blueprint, as shown in Fig. 2.15. The services
within a Blueprint need to communicate with each other, services are
mapped onto dedicated Coalitions, which may be running on different
physical servers. In addition, the Coalitions running various services of a
Blueprint may extend over multiple vRacks. Regardless of their physical
location in the CloudLightning system, dedicated VPNs created for each
Blueprint will ensure that CL-Resources and the data exchange between
them remain secure and private to the Blueprint from which they are
constructed.

 D. DONG ET AL.

 59

2.5 conclusIon

The trend for hardware vendors to create more specialised offerings, capable
of providing faster, more accurate, and power-efficient solutions, looks set to
continue. The increasing demand for this hardware and for access to HPC is
driving an evolution of cloud computing that offers versatile services. A het-
erogeneous cloud at scale embodies many hardware types, each with differ-
ent cost/performance/power profiles. This, together with the attempt to
satisfy the disparate needs of a large and varied customer community, makes
the heterogeneous cloud a complex system. In evolving to heterogeneous
clouds, CSPs may no longer offer Software/Platform/Infrastructure as a
service, separately. Instead, CSPs may undertake to offer a combination of
these to the customer on demand. This approach would require a service
orchestration designer tool that could be used to compose a set of services
together with an appropriate expression of service-level requirements into a
cloud application Blueprint. From this perspective, customers no longer
need to be concerned about how solutions are provided; rather customers
can concentrate on describing the problem to be solved. This also gives more
control to the CSP over how to provision and optimise resources, to meet
both consumer needs and system requirements. However, the complexity of

Fig. 2.15 Blueprint-
driven VPN creation

 CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES

60

managing resources in a heterogeneous cloud environment should not be
underestimated. Self- organisation is one of the tools that can be employed to
effectively address this complexity. More specifically, in a properly designed
self-organising approach, global system objectives may be met as the by-
product of emergent behaviour resulting from the application of low-level
self-organising rules and strategies; this approach has been adopted by the
CloudLightning project. In the next chapter, the self-organising and self-
managing approach for cloud management in the CloudLightning architec-
ture level and details for developing effective cloud organisation strategies
and efficient resource management algorithms are addressed.

2.6 chApter 2 relAted cloudlIghtnIng reAdIngs

 1. Xiong, H., Dong, D., Filelis-Papadopoulos, C., Castané, G. G.,
Lynn, T., Marinescu, D. C., et al. (2017). CloudLightning: A self-
organized self-managed heterogeneous cloud. Annals of Computer
Science and Information Systems, 11, 749–758.

references

Al-Fares, M., Loukissas, A., & Vahdat, A. (2008). A scalable, commodity data
center network architecture. SIGCOMM Computer Communication Review,
38(4), 63–74.

Burns, B., Grant, B., Oppenheimer, D., Brewer, E., & Wilkes, J. (2016). Borg,
omega, and kubernetes. Communications of the ACM, 59(5), 50–57.

Ghanwani, R. P. (2011). Routing Bridges (RBridges): Base protocol specification.
Internet Requests for Comments. RFC Editor.

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google File system.
SIGOPS Operating System Review, 37(5), 29–43.

Greenberg, A., et al. (2011). VL2: A scalable and flexible data center network.
Communications of the ACM, 54(3), 95–104.

Guo, C., et al. (2008). Dcell: A scalable and fault-tolerant network structure for
data centers. SIGCOMM Computer Communication Review, 38(4), 75–86.

Guo, C., et al. (2009). BCube: A high performance, server-centric network archi-
tecture for modular data centers. SIGCOMM Computer Communication
Review, 39(4), 63–74.

Kim, C., et al. (2011). SEATTLE: A scalable ethernet architecture for large enter-
prises. ACM Transactions on Computer Systems, 29(1), 1.

Leiserson, C. (1985). Fat-trees: Universal networks for hardware-efficient super-
computing. IEEE Transactions on Computers, C-34, 892–901.

Li, D., Guo, C., Wu, H., Tan, K., & Zhang, Y. (2009). FiConn: Using
backup port for server interconnection in data centers. In INFOCOM 2009
(pp. 2276–2285). IEEE.

 D. DONG ET AL.

 61

Lin, D., Liu, Y., Hamdi, M., & Muppala, J. (2012). FlatNet: Towards a flatter data
center network. In Proceedings of Global Communications Conference
(GLOBECOM) (pp. 2499–2504). IEEE.

Martin Pueblas, B. C. (2010). Cisco service ready architecture for schools design
guide. Cisco Systems, Inc.

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. Computer
Security Division, Information Technology Laboratory, National Institute of
Standards and Technology.

Niranjan Mysore, R., et al. (2009). PortLand: A scalable fault-tolerant layer 2 data
center network fabric. SIGCOMM Computer Communication Review, 39(4),
39–50.

OpenStack, LLC. (2017). The openstack project. Retrieved from https://www.
openstack.org

Red Hat & GlusterFS. (2012). GlusterFS. Retrieved from http://www.gluster.org
Rensin, D. K. (2015). Kubernetes—Scheduling the future at Cloud Scale.

Sebastopol, CA: OSCON.
Rodeheffer, T. L. (2000). SmartBridge: A scalable bridge architecture. SIGCOMM

Computer Communication Review, 30(4), 205–216.
Schwarzkopf, M. et al. (2013). Omega: Flexible, scalable schedulers for large com-

pute clusters. In Proceedings of the 8th ACM European Conference on Computer
Systems (pp. 351–364). ACM.

Wang, T., Zhiyang, S., Yu, X., & Hamdi, M. (2014). Rethinking the data center
networking: Architecture, network protocols, and resource sharing. Access,
IEEE, 2, 1481–1496.

Weil, S. A. (2006). Ceph: A scalable, high-performance distributed file system. In
Proceedings of the 7th symposium on Operating Systems Design and Implementation
(pp. 307–320). USENIX Association.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits any noncommer-
cial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material
derived from this book or parts of it.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to
the material. If material is not included in the chapter’s Creative Commons license
and your intended use is not permitted by statutory regulation or exceeds the per-
mitted use, you will need to obtain permission directly from the copyright holder.

 CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES

https://www.openstack.org
https://www.openstack.org
http://www.gluster.org
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

63© The Author(s) 2018
T. Lynn et al. (eds.), Heterogeneity, High Performance Computing,
Self-Organization and the Cloud, Palgrave Studies in Digital
Business & Enabling Technologies,
https://doi.org/10.1007/978-3-319-76038-4_3

CHAPTER 3

Self-Organising, Self-Managing Frameworks
and Strategies

Huanhuan Xiong, Christos Filelis-Papadopoulos,
Gabriel G. Castañe, Dapeng Dong, and John P. Morrison

Abstract A novel, general framework that can be used for constructing a
self-organising and self-managing system is introduced. This framework is
independent of the application domain. It embodies directed evolution,
can be parameterised with different strategies, and supports both local and
global goals. This framework is then used to apply the principles of self-
organisation and self-management to resource management within the
CloudLightning architecture.

Keywords Directed evolution • Self-organisation • Self-management
• Strategies • Goal state

H. Xiong (*) • G. G. Castañe • D. Dong • J. P. Morrison
Department of Computer Science, University College Cork, Cork, Ireland
e-mail: h.xiong@cs.ucc.ie; gabriel.gonzalezcastane@ucc.ie; d.dong@cs.ucc.ie; j.
morrison@cs.ucc.ie

C. Filelis-Papadopoulos
Democritus University of Thrace, Komotini, Greece
e-mail: cpapad@ee.duth.gr

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76038-4_3&domain=pdf
mailto:h.xiong@cs.ucc.ie
mailto:gabriel.gonzalezcastane@ucc.ie
mailto:d.dong@cs.ucc.ie
mailto:j.morrison@cs.ucc.ie
mailto:j.morrison@cs.ucc.ie
mailto:cpapad@ee.duth.gr

64

3.1 IntroductIon

A general framework for self-organisation and self-management (SOSM)
is needed to support hierarchical architectures composed of autonomous
components such as those described in the CloudLightning (CL) archi-
tecture discussed in Chap. 2. This chapter introduces a novel framework
for SOSM developed to support CloudLightning. The next section pres-
ents key concepts in SOSM and how they are used to augment the
CloudLightning architecture. The various SOSM mechanisms that enable
components within CloudLightning to communicate, modify behaviour,
make decisions, and cooperate with each other are then presented.
Components may use different strategies for SOSM. As such, exemplar
strategies are presented and illustrated in the context of CloudLightning
through example scenarios.

3.2 Key concepts

As discussed in Chap. 2 and mentioned above, the CloudLightning archi-
tecture is composed of autonomous components. Each component is
equipped with various Strategies. These can be self-managing and/or self-
organising strategies, and define how components at various levels in the
hierarchy should evolve towards some ideal state known as the compo-
nent’s local goal.

In general, decisions being made by components at a particular level in
the hierarchy can directly influence evolution in the adjacent levels. These
influences may come from the top down, or from the bottom up. When
coming from an upper level in the hierarchy, the process is called Directed
Evolution. Directed Evolution signals the desire of the upper level to have
the components, in the level underneath, change in operation or in con-
figuration, to align with the goal of the upper level. Since components at a
particular level also have local goals, the overall evolution that is brought
about at that level should respect progress towards those local goals, while
simultaneously accommodating the Impetus associated with the Directed
Evolution process. An Impetus is communicated in the form of a tuple of
values (i.e., a vector), known as a Weight. In a similar manner, a lower level
in the hierarchy may directly influence the level above. This can be seen as
Feedback from the lower level. This Feedback, in the form of tuples of
values (i.e., vectors), known as Metrics, is derived from the operations of
the components at the lower level and gives the upper level a Perception of

 H. XIONG ET AL.

 65

how the lower layer is changing and evolving. Perceptions can be used to
determine subsequent Directed Evolution decisions.

As part of the self-organisation process, the interaction of two or more
components, in any level of the hierarchy, may result in component cre-
ation, component destruction, component splitting, and/or component
merging.

A measure of how close a component is to stasis, and hence how suitable
its operating characteristics are for contributing to the global goal, is referred
to as its Suitability Index (SI). In principle, any component subject to Impetus
and possessing a Perception has an associated SI. Thus, in the CloudLightning
framework, the goal state of those components, and the global goal of the
systems, can be cast in terms of maximising the respective SIs.

In summary, the CloudLightning framework defines a number of
mechanisms as follows:

• A mechanism to communicate Impetus, through the transmission of
weights, from a level in the hierarchy to the level below. This mecha-
nism allows a component, higher in the hierarchy, to steer the evolu-
tion of components immediately below them in the hierarchy.

• A mechanism to allow components to communicate Feedback,
through the transmission of metrics, to components in the next level
up in the hierarchy.

• A mechanism to modify the behaviour of components in response to
Impetus and Feedback.

• Mechanisms to allow components to make decisions in accordance
with various strategies to maximise their individual SIs.

• Mechanisms to allow components at the same level in the hierarchy
to cooperate with each other in accordance with various strategies to
maximise collective and/or individual SIs.

All of these concepts, and their interactions, are visualised in Fig. 3.1.
The CloudLightning framework provides these mechanisms to enable

the SOSM strategies being deployed and performed by individual compo-
nents to move nearer to their goal state. Within this framework, each com-
ponent can make local decisions in accordance with various SOSM
strategies based on its current state (from the feedback loops) and imposed
Impetus (from the directed evolution processes), maximising its SI.
Overall, self-management is implemented at a system level, allowing the
whole system to evolving towards its business/system objectives.

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

66

3.3 AugmentIng the cloudlIghtnIng
ArchItecture

The CloudLightning architecture is initially augmented to include explicit
entry points to the vRack Manager Groups. It can be seen from previous
Chapter that these groups partition the resource space into different types
of CL-Resources. This partitioning speeds up resource selection, since at
most one CL-Resource type can be returned by the CloudLightning sys-
tem for each service. The entry points into the differently typed vRack
Manager Groups add an additional component to the CloudLightning
architecture. Because of its routing characteristics described above, this
component is called a pRouter. Figure 3.2 depicts this component in the
augmented architecture.

From Fig. 3.2, it can be seen that there is an entry point into each
vRack Manager Group, of the same CL-Resource type, hanging from
each pRouter. These partition the space into smaller sets of CL-Resources
of the same type. These entry points add yet another component to the

Fig. 3.1 Directed Evolution

 H. XIONG ET AL.

 67

CloudLightning architecture. Because this component connects all
vRack Managers in the same group, it acts as a switch and is called a
pSwitch. Figure 3.3 depicts this component in the augmented
architecture.

It can be seen that the final augmented architecture forms a tree struc-
ture in which the root node corresponds to the Cell. The children of the
Cell are pRouters, and there is at least one pRouter for each distinct
CL-Resource type. The children of a pRouter are pSwitches. pSwitches
partition the Virtual Rack Managers (vRMs), managing the same
CL-Resource type, into groups. The number of pSwitches per pRouter is
not fixed over time, neither is the size of the vRM groups managed by
each pSwitch. In the following sections and chapters of this deliverable, it
will be seen that pSwitches and vRMs can self-organise within groups,
which are called Cooperatives, to emphasise their self-organising nature.
To prohibit the creation of Cooperatives with different CL-Resource
types, pSwitch Cooperatives cannot span pRouters. Similarly, to minimise
administrative overhead and to simplify coalition formation, vRM
Cooperatives (formerly called vRack Manager Groups) cannot span
pSwitches.

Fig. 3.2 Augmented CloudLightning architecture to include pRouters

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

68

Fi
g.

 3
.3

Fi

na
l

au
gm

en
te

d
C

lo
ud

L
ig

ht
ni

ng
 a

rc
hi

te
ct

ur
e

ill
us

tr
at

in
g

its
 h

ie
ra

rc
hi

ca
l

na
tu

re
 w

ith
 p

R
ou

te
r

an
d

pS
w

itc
h

co
m

po
ne

nt
s

 H. XIONG ET AL.

 69

As the CloudLightning system evolves, it is anticipated that the number
of pSwitches connected to a pRouter will change and will converge to
some optimal number with respect to the global goal. This goal is derived
from the Directed Evolution coming from the pRouter and from the
pSwitch’s efforts to achieve its local goal state. As part of the self-
organisation process, pSwitches can be created, destroyed, merged, and
split. In addition, pSwitches, within the same Cooperative, may exchange
vRMs to optimise management. Together, the pRouters and the pSwitches
form a reconfigurable and self-optimising switching fabric.

Similarly, it is anticipated that the number of vRMs connected to a
pSwitch will change and will converge to some optimal number derived
from the Directed Evolution coming from the pSwitch and from the
vRM’s efforts to achieve its local goal state. As part of the self-organisation
process, vRMs can be created, destroyed, merged, and split. In addition,
vRMs, within the same Cooperative, may exchange CL-Resources in an
effort to maximise CL-Resource utilisation, minimise energy consump-
tion, and facilitate coalition formation and management optimisation.

An important driving force behind the evolution of the CloudLightning
system is the sequence of services/tasks that the system is required to
execute. From the previous chapter, it can be seen that the process of
maintaining a separation between resource and service life-cycles involves
using the CloudLightning system to autonomously locate appropriate
resources to execute each specific service/task. As part of this process, a
description of these resources is passed to the CloudLightning system in
an attempt to match appropriate resources with the service/task request.
The term resource prescription (subsequently referred to simply as pre-
scription) is introduced to refer to this description, and hence the pRouter
is a prescription Router and the pSwitch is a prescription Switch.

vRMs form the lowest software level in the hierarchical organisation of
the CloudLightning system. The next level up in this hierarchy is formed
by grouping vRMs of the same type into Cooperatives. The elements of
the Cooperatives, that is, its vRMs, self-organise by exchanging
CL-Resources appropriately, to enable optimal management. Similarly,
the elements of the pSwitch level self-organise by exchanging vRMs appro-
priately to enable optimal management. Finally, the elements of the
pRouter level, that is, groups of pSwitches, self-organise by exchanging
pSwitches appropriately to enable optimal management. All of these self-
organising actions take place simultaneously resulting in the emergence of
pathways through the hierarchy designed to optimise the ongoing propa-
gation of resource prescriptions through the system.

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

70

3.4 self-orgAnIsAtIon And self-mAnAgement
In cloudlIghtnIng ArchItecture

The general SOSM framework is mapped to the augmented hierarchical
CloudLightning architecture outlined in the previous chapter. In the
CloudLightning architecture, the autonomous components are the Cell,
the pRouters, the pSwitches, and the vRMs. This framework provides
Directed Evolution, self-management, and self-organisation mechanisms.

3.4.1 Directed Evolution

Directed Evolution is a mechanism to communicate a changing force
throughout the system in a manner which effectively allows a component,
higher in the hierarchy, to steer the evolution of the components immedi-
ately below them.

3.4.1.1 The Goal State
The goal of each component at all levels in the hierarchy is to maximise its
SI.

The SI, η, is defined to be a combination of the Impetus and Perception
expressed through a function η

 

P I, () , such that
   

I R P R I P RN N∈ ∈ → ()∈, ,η , where N is the number of parameters used
to express Impetus and Perception.

Note that, in the Cell the SI is calculated per resource type.
The goal state for the pRouter and the pSwitch is:

arg max , ,η







  

I w P m w m RN() ()() ∈,

(3.1)

where w is an N-dimensional vector of weights corresponding to the
Impetus and m is an N-dimensional vector of metrics obtained from the
lower levels. Equivalently the goal state for the vRM is:

arg max , ,η












I w P d w d RN() ()() ∈,

(3.2)

where w is an N-dimensional vector of weights corresponding to the
Impetus and



d is an M-dimensional vector of metrics obtained from the
Telemetry service.

 H. XIONG ET AL.

 71

3.4.1.2 Cell State
The Cell state is a set of vector tuples and function tuples of the form:

           

w m w m w mn n, , , , , , , , , , , ,1 1 1 2 2 2() (){ } () (){ } … ()µ ϕ µ ϕ µ ϕϕn(){ }{ }

(3.3)

where n is the number of different pRouter types and w is the weight
calculated by the Cell to effect steering. The tuple  w m, 1() represents met-
rics and weights of the i-th pRouter, respectively, where  

w R m RN
i

N∈ ∈, .
The function tuple

 µ ϕi i, () is used to calculate the Impetus and Perception
vectors, respectively, for each CL-Resource type maintained by each
pRouter.

Since the Cell is at the highest level in the hierarchy, weights may be
determined by the flow of tasks into the system and/or by local decisions
made in an effort to move towards an objective goal state.

3.4.1.3 pRouter State and pSwitch State
The pRouter and pSwitch states can be described as a vector tuple  w m, (),
representing weights and metrics where  

w R m RN N∈ ∈, , and a function
tuple

 µ ϕ, () is used to calculate Impetus and Perception, respectively.

3.4.1.4 vRM State
vRM state can be described as a vector tuple 



w d, (), representing weights
and metrics where 



w R d RN N∈ ∈, , and a function tuple
 µ ϕ, () is used to

calculate Impetus and Perception, respectively.

3.4.1.5 Steering by the Cell
There are at least two mechanisms for specifying a global goal state, G. The
first is an objective goal specified to meet a specific business case. This can
be set in a Cell, and in conjunction with the current local state of that Cell,
adjustments can be made to the weights and applied to the underlying
pRouters to steer them in that direction. By responding to this Impetus
appropriately, the system will tend towards the goal state:

  

I I G TCell Cell Cell i= ()′µ , ,

(3.4)

where


ICell
′ is the current Impetus of the Cell,



ICell is the new Impetus of
the Cell,



GCell is the goal state of the Cell, and Ti are resource
prescriptions.

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

72

Alternatively, the global goal state of the system can be expressed as a
maximisation of the local goal state of the Cell. That is:

arg max , , , , ,ηi

NI P i n I P R
   

, () = … ∈1

(3.5)

where ηi is the suitability of i-th pRouter attached to the Cell.

3.4.1.6 Steering by the pRouter
Steering by a pRouter is a mechanism for calculating and transmitting an
Impetus to its attached pSwitches:

Impetus is a function such that:

    

I I I I R I RpRouter pRouter Cell pRouter
N

Cell
N= () ∈ ∈′ ′µ , , ,

(3.6)

where


I pRouter
′ is the previous Impetus of the pRouter. Here



ICell represents
the weight coming from the Cell.

3.4.1.7 Steering by the pSwitch
Steering by a pSwitch is a mechanism for calculating and transmitting an
Impetus to its attached vRMs:

    

I I I I R IpSwitch pSwitch pRouter pSwitch
N

pRoute= () ∈′ ′µ , , , rr
NR∈

(3.7)

where


I pSwitch
′ is the previous Impetus of the pSwitch. Here



I pRouter repre-
sents the weight coming from the pRouter.

3.4.2 Self-Management Mechanisms

The self-managing components in the system include (a) pRouters and
pSwitches, managing prescription routing, metrics, and weights; and (b)
vRMs, managing task execution, metrics, weights, and CL-Resources.

3.4.2.1 Mechanism to Send Metrics from a vRM to pSwitch
A separate assessment function corresponding to one of N metrics is exe-
cuted in each vRM, and the result is passed as an N-dimensional vector to
the respective pSwitch associated with that vRM.

 H. XIONG ET AL.

 73

3.4.2.2 Mechanism to Send Metrics from a pSwitch to pRouter
A number of N-dimensional vectors will arrive at a pSwitch (one from
each vRM in the cooperative defined by that pSwitch), and each of these
is combined to derive a new N-dimensional vector. This represents the
pSwitch’s Perception of the suitability of the underlying vRM cooperative
to accept new tasks. This Perception can be customised by choosing the
specific manner in which the input N-dimensional vectors are combined.
The resulting N-dimensional vector is passed to the pSwitch’s pRouter.

3.4.2.3 Mechanism to Send Metrics from pRouter to Cell
A number of N-dimensional vectors will arrive at a pRouter (one from
each pSwitch in the cooperative defined by that pRouter), and each of
these is once again combined to derive an N-dimensional vector repre-
senting the local state of that pRouter. This state can be viewed as being
the pRouters Perception of the suitability of the underlying pSwitch coop-
erative to accept new tasks. This perception can also be customised by
choosing the specific manner in which the input N-dimensional vectors
are combined. This N-dimensional vector is passed to the Cell.

3.4.2.4 Mechanism to Send Weights from Cell to pRouters
Weights sent from a level in the hierarchy to a lower level represent the
desire of the transmitting level to evolve in a particular direction. Since the
Cell is at the highest level in the hierarchy, the sending of weights to the
pRouters is the first step in the process of Directed Evolution. There are
many strategies that the Cell can employ to determine how these weights
change from time to time in the CloudLightning system. In all cases, these
weights are sent to each pRouter as an N-dimensional vector representing
the desired/calculated change to the progression of the Directed
Evolution.

3.4.2.5 Mechanism to Send Weights from pRouters to pSwitches
After receiving an updated N-dimensional vector from the Cell, a pRouter
will transform it using a customizable function, which will dictate the rate
at which the next level down in the hierarchy is expected to change. This
transformed N-dimensional vector is passed to the underlying pSwitches.

3.4.2.6 Mechanism to Send Weights from pSwitch to vRMs
After receiving an updated N-dimensional vector from the pRouter, a
pSwitch will transform it using a customizable function, which will dictate

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

74

the rate at which the next level down in the hierarchy is expected to
change. This transformed N-dimensional vector is passed to the underly-
ing vRMs.

The same weights are propagated to every component in the same level
(in the same pRouter). This ensures that the underlying level does not
return metrics that cannot be meaningfully compared at that level. For
example, if the weights associated with the calculations of power efficiency
in two different servers of the same type are grossly different, one will
appear to be more power efficient than the other even if both are equally
power efficient.

Figure 3.4 depicts an example propagation of weights and metrics
through the CL hierarchy in eight distinct time-steps. These vectors are
propagated asynchronously from level to level. The metrics originate at
the bottom level of the hierarchy, where they are derived from the appli-
cation of CL-specific assessment functions applied to data gathered from
the resource monitor. As they travel up through the hierarchy, they are
aggregated to give successive perceptions of the underlying system at
each successive component. The propagation of weights begins at the
Cell and is modified as they are passed down through the hierarchy to
reflect successive inflections of the Impetus coming from the Directed
Evolution.

3.4.2.7 A Mechanism in the Cell to Modify Local Behaviour
in an Effort to Respond to Impetus Provided by the Directed
Evolution and Metrics Coming from Attached pRouters

Perception is a function such that:



     

P m m m m R m R m RCell r
N N

r
N= …() ∈ ∈ … ∈ϕ 1 2 1 2, , , , , , ,

(3.8)

Here, each mi is a metric (an N-dimensional vector) coming from each
of the r pRouters attached to the Cell.

Impetus


I TCell i= ()µ , where Ti is the task prescription under
consideration.

 H. XIONG ET AL.

 75

Fig. 3.4 An example propagation of weights and metrics through the CL hierar-
chy, with respect to a resource prescription

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

76

3.4.2.8 A Mechanism in a pRouter to Modify Local Behaviour
in an Effort to Respond to Impetus Transmitted by the Cell
and Metrics Coming from Attached pSwitches

Perception is a function such that:



     

P m m m m R m R m RpRouter s
N N

s
N= …() ∈ ∈ … ∈ϕ 1 2 1 2, , , , , , ,

(3.9)

Here, each mi is a metric (an N-dimensional vector) coming from each
of the s pSwitches attached to the pRouter.

Impetus is a function such that:

    

I I I I R I RpRouter pRouter Cell pRouter
N

Cell
N= () ∈ ∈′ ′µ , , ,

(3.10)

where


I pRouter
′ is the previous Impetus of the pRouter. Here



ICell repre-
sents the weight coming from the Cell.

3.4.2.9 A Mechanism in a pSwitch to Modify Local Behaviour
in an Effort to Respond to Impetus Transmitted by its pRouter
and Metrics Coming from Attached vRMs

Perception is a function such that:



     

P m m m m R m R m RpSwitch v
N N

v
N= …() ∈ ∈ … ∈ϕ 1 2 1 2, , , , , , ,

(3.11)

Here, each mi is a metric (an N-dimensional vector) coming from each
of the v vRMs attached to the pSwitch.

Impetus is a function such that:

    

I I I I R IpSwitch pSwitch pRouter pSwitch
N

pRoute= () ∈′ ′µ , , , rr
NR∈

(3.12)

where


I pSwitch
′ is the previous Impetus of the pSwitch. Here



I pRouter repre-
sents the weight coming from the pRouter.

 H. XIONG ET AL.

 77

3.4.2.10 A Mechanism in a vRM to Modify Local Behaviour
in an Effort to Respond to Impetus Transmitted by its pSwitch
and Metrics Coming from its vRack

Perception is a function such that:





 

P m d d RvRM
M= = () ∈ψ ,

(3.13)

where


d represents an M-dimensional Telemetry data obtained from the
Telemetry service running on the physical resources belonging to the
associated vRack.

Impetus is a function such that:

    

I I I I R I RvRM vRM pSwitch vRM
N

pSwitch
N= () ∈ ∈′ ′µ , , ,

(3.14)

where


IvRM
′ is the previous Impetus of the vRM. Here



I pSwitch represents
the weight coming from the pSwitch.

3.4.2.11 Sample Events that Trigger the Transmission of Metrics at each
Level in the Hierarchy

Options:

• Periodically, at a rate suitable for that level in the hierarchy
• From the vRM to the pSwitch:

 – After the receipt of a task prescription
 – When resources are freed
 – As a result of a self-organisation activity
 – Periodically to reflect utilisation, power consumption, and other

low-level metrics of interest

3.4.2.12 Sample Events that Trigger the Transmission of Weights at Each
Level in the Hierarchy

Options:

• As a result of steering
• Periodically, at a rate appropriate for each level in the hierarchy

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

78

3.4.3 Self-Organisation Mechanisms

vRMs self-organise within the same pSwitch to optimally manage
CL-Resources and to satisfy resource prescriptions, thus, maximising their
SI and evolving towards the local goal state. Similarly, pSwitches can self-
organise within the same pRouter to maximise their SI to identify those
parts of the system that are evolving towards their local goals. In principle,
pRouters of the same CL-Resource type can also self-organise; however,
that level of re-organisation is not considered further here since the added
advantages are thought to be minimal. One example of Self-organisation
scenarios can be described as follows.

Within the vRMs

 1. A task comes into the pSwitch.
 2. The pSwitch sends the task to an attached vRM with the highest

SI.
 3. The vRM checks to see if it has sufficient resources to execute the

task.

 (a) If yes, no problem.
 (b) If no, the vRM initialises a self-organisation event within its

cooperative.

 4. The vRMs send updated metrics with their pSwitch.

Within the pSwitches

 1. A task comes into the pRouter.
 2. The pRouter sends the task to an attached pSwitch with the high-

est SI.
 3. The pSwitch checks to see if there are sufficient resources to exe-

cute the task.

 (a) If yes, it passes the task to the vRM with the highest SI.
 (b) If no, the pSwitch initialises a self-organisation event within

its co- operative.

 4. The pSwitch sends updated metrics to its pRouter.

 H. XIONG ET AL.

 79

Within the pRouter

 1. A task comes into the Cell.
 2. The Cell sends the task to an attached pRouter with the highest SI

of the desired type.
 3. The pRouter checks to see if there are sufficient resources to exe-

cute the task.

 (a) If yes, passes the task to the pSwitch with the highest SI.
 (b) If no, the pRouter initialises a self-organisation event within

its co- operative.

 4. The pRouter sends updated metrics to the Cell.

Sample events that trigger re-organisation at each level in the hierarchy

• When weights are updated.
• As a result of an autonomous, periodic, housekeeping action designed

to maximise the SI of the initiating component.
• After the arrival of a resource prescription that cannot be satisfied

without re-organisation.

When all else fails: sample resource prescription rejection strategies

• Outright reject.
• Return prescription to the previous level and possibly trigger a re-

organisation there.
• Recycle the task prescription into the system at the Cell level and

record its recycle iterations until an upper limit is reached. If this
limit is reached, reject.

3.5 cloudlIghtnIng sosm strAtegIes

3.5.1 Self-Management Strategies

In the CloudLightning SOSM framework, each component is autono-
mous, which allows the component using different self-management strat-
egies accordingly to achieve its local goal state.

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

80

Some self-management strategies may include:

• Static weights and dynamic weights (only for Cell Manager)
• Average aggregation (suitable for pRouters, pSwitches, and vRMs)
• Modifying weights for smoothing changes towards local goal state

(suitable for pRouters, pSwitches, and vRMs)
• Bin-packing for energy efficiency (only for vRMs)
• Functions for management efficiency (only for vRMs)
• Isotropy preservation for task process parallelism (only for vRMs)

3.5.1.1 An Example Self-Management Scenario
Here, an example of examining the effect of different choices of manage-
ment cost functions is presented. Four different functions are selected for
inspection, characterising different types of evolution, which are described
by the equations that follow.

 (a) Small vRacks

1

0

2

2
2

−
−

−∫

N

N
t dt

total

total

e

(3.15)

Equation 3.15 favours small capacity vRacks enabling them to evolve;
while when a vRack has large capacity, the output of the management cost
function approaches zero resulting in a reduced SI. Thus, large vRacks are
not capable of undertaking more requests, and they have to transfer their
servers to other smaller vRacks in order to slowly achieve the ideal size.

 (b) Large vRacks

1

0

2 2

2
2

−

−()
−

−∫

ˆ

ˆ

N N

N
t dt

total total

total

e

(3.16)

Equation 3.16 favours large capacity vRacks; when a vRack has small
capacity, the output of the management cost function approaches zero

 H. XIONG ET AL.

 81

resulting in a reduced SI. Thus, small vRacks are not capable of undertak-
ing more requests, and they have to transfer their servers to other larger
vRacks merging with them.

 (c) Medium vRacks

 e

N

N
total

total

− − +








4 4

2

2

ˆ

 (3.17)

Equation 3.17 favours medium capacity vRacks; when a vRack has very
small or very large capacity, the output of the management cost function
approaches zero resulting in a reduced SI. Thus, very small and very large
vRacks are not capable of undertaking more requests, and they have to
transfer their servers or merge with other vRacks.

 (d) Extreme vRacks

 1

4 4

2

2

−

− − +










e

N

N
total

total
ˆ

 (3.18)

Equation 3.18 favours very small capacity or very large capacity
vRacks; when a vRack has medium capacity, the output of the manage-
ment cost function approaches zero resulting in a reduced SI. Thus,
medium capacity vRacks are not capable of undertaking more requests,
and they have to transfer their servers or merge with other smaller or
larger vRacks.

Overall, the optimal number of servers per vRack is given by

N̂
N

Ntotal
v i

N

total i

v

= ()
=
∑1

1

. This number is dynamic and is changing with the

creation/destruction of vRacks or with the merging/splitting of vRacks.
The management cost functions can be depicted schematically by (a), (b),
(c), and (d) in Fig. 3.5.

However, the choice of management cost function significantly affects
the evolution as well as other parameters and metrics of the systems such
as utilisation and number of rejected resource prescriptions.

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

82

3.5.2 Self-Organisation Strategies

The self-organising components in the system include vRMs and
pSwitches. vRMs self-organise within the same pSwitch to optimally
manage CL-Resources and to satisfy resource prescriptions, thus maxi-
mising their SI and evolving towards the local goal state. Similarly,
pSwitches can self-organise within the same pRouter to maximise their
SI to identify those parts of the system that are evolving towards their
local goals. In principle, pRouters of the same CL-Resource type can
also self-organise; however, that level of re-organisation is not consid-
ered further in this book since the added advantages are thought to be
minimal.

0
0 20 40 60

Number of Occupied Servers

80 100

0.5

1.5

1

2
(a)

w

0
0 20 40 60

Number of Occupied Servers

80 100

0.5

1.5

1

2
(b)

w

0
0 20 40 60

Number of Occupied Servers

80 100

0.5

1.5

1

2
(c)

w

0
0 20 40 60

Number of Occupied Servers

80 100

0.5

1.5

1

2
(d)

w

Fig. 3.5 Different types of management cost functions

 H. XIONG ET AL.

 83

Some self-organisation strategies may include:

• Dominate: the component with the greater SI has precedence and
can demand another component of the same type, but with a lower
SI, to transfer some resources.

• Win-Win: components may cooperate to exchange resources to
maximise the SI of each.

• Least Disruptive: minimise disruption with respect to management
and administration.

• Balanced: maximise load-balancing among each cooperating
component.

• Best Fit: minimise server fragmentation and/or minimise network
latency (this strategy may come from some vRM-specific
objectives).

• Any meaningful combination of the above.

3.5.2.1 An Example Self-Organisation Scenario
An example of a Least Disruptive algorithm that can be used by vRMs for
self-organisation is presented. This algorithm can be used by vRMs to
exchange resources to minimise their management cost. This algorithm
has two steps: the first function endeavours each vRM to minimise the
number of administrative actions, and the second function is taking virtu-
alisation and fragmentation into account, which can be used to avoid the
creation of very large vRMs for management efficiency purpose. This two-
stage self-organising scheme can be described by the algorithmic proce-
dure given by the following algorithm.

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

84

Algorithm 1

Let be the minimum number of vRacks allowed per pSwitch

Let be the index of the vRack with maximum Suitability Index

Let be a resource prescription arriving to

Let be the set of free resources belonging to

function MINADMINCOSTS()

if then

for to with do

if then

break

if then

return

else

return

function TWOSTAGESO()

if MINADMINCOSTS() does not return then

if and then

for to with do

Probe -th

if then

Merge with

return

else

return

 H. XIONG ET AL.

 85

Figure 3.6 presents the increased system utilisation and requests reject
rate of this two-stage self-organisation algorithm merging with the mini-
mum free resources. However, because the system accommodates larger
tasks through merging, the smaller tasks arriving at the system are con-
tinuously rejected due to lack of resources.

In the case of merging with the vRack with maximum free resources,
the utilisation of the system, depicted in Fig. 3.7a, is slightly increased but
oscillates around 80%. As a consequence, the percentage of rejected
requests increases, since the system is accommodating an increased num-
ber of larger requests, as schematically represented in Fig. 3.7b.

Overall, this two-stage self-organisation strategy has been employed for
enhancing utilisation and reducing fragmentation with virtualisation in
mind.

3.6 conclusIon

The SOSM framework described in this chapter provides a general and
scalable mechanism for hosting and executing SOSM strategies that, in
principle, could be associated with any hierarchical architecture.

The key elements of the self-management and self-organisation frame-
work include the process of Directed Evolution; an Impetus that drives the
evolutionary process at all levels in the hierarchy; a Perception, associated
with each component, indicating the effectiveness of the system underlying
that component; and an SI, associated with each component, that deter-
mines how close that component is to achieving its goal state. Specifying
an objective global goal state may be based on business decisions and/or
technology constraints, however, to optimise the CloudLightning system
in its entirety; it is suggested that the goal states for components of the
system should be chosen to maximise their respective SIs.

This approach introduces a great deal of flexibility into the evolution of
a system by allowing it to achieve stasis while attempting to balance local
constraints with the external Impetus derived from the directed evolution-
ary process. Over time, the system as a whole evolves to optimise typical
service usage, to achieve the dynamic equilibrium. The local constraints
are most evident at the vRM level where they are embodied in assessment
functions capturing the essential characteristics of the underlying resources.

The framework endows the system being specified with the flexibility to
extend the resource fabric in a seamless fashion. This elegantly addresses
the CloudLightning objective of readily supporting heterogeneous hard-
ware now and into the future.

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

86

90
a

b

80

70

60

50

40

30

20

10

0

U
til

iz
at

io
n

(%
)

0 1 2 3 4 5 6 7

× 10
Time (s)

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7
5

5

× 10
Time (s)

R
ej

ec
te

d
R

eq
ue

st
s

(%
)

Fig. 3.6 The system utilisation (a) and requests reject rate (b) of two-stage self-
organisation algorithm merging with the minimum free resources (ρ = 3)

 H. XIONG ET AL.

 87

90
a

b

80

70

60

50

40

30

20

10

0

U
til

iz
at

io
n

(%
)

0 1 2 3 4 5 6 7

5

5

Time (s) ×10

0
0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7

Time (s) ×10

R
ej

ec
te

d
R

eq
ue

st
s

(%
)

Fig. 3.7 The system utilisation (a) and requests reject rate (b) of two-stage self-
organisation algorithm merging with the maximum free resources (ρ = 3)

 SELF-ORGANISING, SELF-MANAGING FRAMEWORKS AND STRATEGIES

88

3.7 chApter 3 relAted cloudlIghtnIng reAdIngs

 1. Drăgan, I., Fortiş, T. F., Iuhasz, G., Neagul, M., & Petcu, D. (2017).
Applying self-* principles in heterogeneous cloud environments.
Cloud Computing, 255–274. Springer International Publishing.

 2. Filelis-Papadopoulos, C., Xiong, H., Spataru, A., Castane, G.,
Dong, D., Gravvanis, G., et al. (2017, July). A generic framework
supporting self-organisation and self-management in hierarchical
systems. In The 16th International Symposium on Parallel and
Distributed Computing (ISPDC 2017). Innsbruck, Austria.

 3. Petcu, D. (2015). On autonomic HPC Clouds. In Proceedings of the
Second International Workshop on Sustainable Ultrascale Computing
Systems (NESUS 2015) (pp. 29–40).

 4. Stack, P., Xiong, H., Mersel, D., Makhloufi, M., Terpend, G., &
Dong, D. (2017). Self-healing in a decentralised Cloud manage-
ment system. In Proceedings of the 1st International Workshop on
Next generation of Cloud Architectures, Vol. 3. ACM.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits any noncommer-
cial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material
derived from this book or parts of it.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to
the material. If material is not included in the chapter’s Creative Commons license
and your intended use is not permitted by statutory regulation or exceeds the per-
mitted use, you will need to obtain permission directly from the copyright holder.

 H. XIONG ET AL.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

89© The Author(s) 2018
T. Lynn et al. (eds.), Heterogeneity, High Performance Computing,
Self-Organization and the Cloud, Palgrave Studies in Digital
Business & Enabling Technologies,
https://doi.org/10.1007/978-3-319-76038-4_4

CHAPTER 4

Application Blueprints and Service
Description

Ioan Dragan, Teodor-Florin Fortis ̦, Marian Neagul,
Dana Petcu, Teodora Selea, and Adrian Spataru

Abstract In the context of creating a self-organising and self-managing
cloud infrastructure we propose a set of extensions to the existing Service
Description Languages (SDLs) and Application Blueprints in order to
establish a common ground for the various CloudLightning components.
By implementing this SDL and all the missing links one can assure that the
CloudLightning system works in such a way that users can easily interact
with it. In this chapter we present in detail the design decisions that were
made during the development of various components alongside with their
formal description.

I. Dragan (*)
Victor Babes ̦ University of Medicine and Pharmacy, Timișoara, Romania

Institute e-Austria Timisoara, Timis ̦oara, Romania
e-mail: idragan@ieat.ro

T.-F. Fortis ̦ • M. Neagul • D. Petcu • T. Selea • A. Spataru
Institute e-Austria Timisoara, Timis ̦oara, Romania

West University of Timis ̦oara, Timișoara, Romania
e-mail: florin.fortis@e-uvt.ro; marian.neagul@e-uvt.ro; Dana.Petcu@e-uvt.ro;
adrian.spataru@e-uvt.ro

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76038-4_4&domain=pdf
mailto:idragan@ieat.ro
mailto:florin.fortis@e-uvt.ro
mailto:marian.neagul@e-uvt.ro
mailto:Dana.Petcu@e-uvt.ro
mailto:adrian.spataru@e-uvt.ro
mailto:adrian.spataru@e-uvt.ro

90

Keywords Service Description Language • CL Blueprints • CL Gateway
Service • Lifecycle and resource management

4.1 IntroductIon

To deliver the quality of service (QoS) expected by end users on a distrib-
uted multi-tenant infrastructure requires careful management of comput-
ing resources. This is particularly the case where there is a rapid growth in
usage such as cloud computing. Cloud service providers (CSPs) are faced
with a myriad of challenges in meeting the needs of a large and diverse
range of end users including, but not limited to, service transparency,
automated service provisioning, efficiently managing workload segmenta-
tion and portability, and managing virtual services instances at one level,
while optimising the utilisation of all resources at a different level (Sun
et al. 2012). The issues can be resolved through specialised and precise
cloud service specification models, Service Description Languages (SDLs),
describing cloud services, their deployment specifications, and the required
resources to run these cloud services. The majority of the existing SDLs
and associated frameworks implement tools, Application Programming
Interfaces (APIs), and strategies for managing the lifecycle of cloud appli-
cations and/or resources, and they are usually provided as a self-service
interface to Enterprise Application Operators (EAOs). This self-service
approach allows an EAO to have full control over the management of
applications as well as the underlying resources such as virtual machines
(VMs) and containers. It subsequently narrows down the opportunities
for CSPs to improve resource utilisation and potentially the quality of
services.

The CloudLightning architecture endeavours to create a service-
oriented architecture for the evolving heterogeneous cloud. In this respect,
it is imperative to maintain a separation between application lifecycle man-
agement and resource management. This separation of concerns imple-
ments a “what-how” approach where the user concentrates on “what”
needs to be done, while the CSP concentrates on “how” it should be
done. With such an approach, it will be possible to implement continuous
improvements, in terms of resource utilisation and service delivery, at the
resource level. From this perspective, SDLs facilitate both (a) application
lifecycle management by the user and (b) resource management by the
CSP. As such, they ensure a proper separation of concerns between stake-

 I. DRAGAN ET AL.

 91

holders, a core design principle of CloudLightning introduced in Chap. 1.
Particular service offerings are captured in blueprints to assist end users to
discover and select from an increasing catalogue of services and determine
an optimal, and potentially heterogeneous, set of resources to implement
them. The remainder of this chapter is organised as follows. The next sec-
tion provides an overview of two representative application lifecycle frame-
works and one representative resource management framework. This is
followed by an overview of the specific stakeholders whose concerns are of
interest to CloudLightning. The CloudLightning approach to separation
of concerns is then described followed by the Gateway Service and its
functionalities. Formal definition of the CloudLightning Service
Description Language (CL-SDL) is provided in Sect. 4.4 followed by an
exemplar implementation. This chapter concludes with a summary and
future work on the components and concepts presented in the chapter.

4.2 representatIve applIcatIon lIfecycle
and resource ManageMent fraMeworks

In order to identify concerns about the classical, vertical management
approach to cloud computing application lifecycle and resource manage-
ment, three representative frameworks are used for illustrative purposes:
OpenStack Solum, Apache Brooklyn, and OpenStack Heat.

The cloud application lifecycle management architecture is represented
in Fig. 4.1, using OpenStack Solum and Apache Brooklyn frameworks for
Platform as a Service (PaaS) cloud, and resource lifecycle management
using OpenStack Heat mainly for Infrastructure as a Service (IaaS) cloud.

Project Solum and Apache Brooklyn allow the user to deploy a cloud
application or a group of cloud applications previously described in a blue-
print, using an SDL. The main purpose of such an SDL is to provide a way
of expressing the management processes for cloud applications. Depending
on the actual implementations, this may include providing the ability for
describing the characteristics of the application components, deployments
scripting, dependencies, locations, logging, policies, and so on.

In the case of OpenStack Solum, the engine takes a blueprint as an
input and converts it to a Heat Orchestration Template (HOT) that can
be understood by the application and resource management engine
(OpenStack Heat). The Heat engine, thereafter, calls the corresponding
service APIs that are offered by the cloud infrastructure framework such
as OpenStack.

 APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION

92

In contrast, Apache Brooklyn converts a blueprint into a series of API
calls (specifically, jCloud APIs) that can be used to directly contact the
underlying cloud infrastructure. For example, these calls may reach the
cloud infrastructure with a request for creating a VM in OpenStack; the
OpenStack Nova API service will capture the request and send it to nova-
scheduler, which, in turn, decides on the physical server on which the VM

Fig. 4.1 Lifecycle management for OpenStack Solum, Apace Brooklyn, and
OpenStack Heat

 I. DRAGAN ET AL.

 93

should be started on. This approach is based on a request-response pat-
tern, providing a simple, robust, and efficient implementation. However,
as each request is processed independently, when blueprints are specifying,
for example, placement constraints based on vicinity of resources, such a
constraint is hard to be captured and fully implemented by APIs with a
vertical approach.

4.3 cloudlIghtnIng stakeholders and assocIated
concerns

Separation of concerns requires the identification of stakeholders and their
associated concerns. For illustrative purposes, three distinct entities are
identified—end users, Enterprise Application Operators and Developers
(EAO/EAD), and IaaS resource providers (CSPs) each with differing
concerns. The end user is the consumer of an application and/or service.
As such, their concerns are primarily related to cloud application continu-
ity, availability, performance, security, and business logic correctness. The
EAO/EAD has traditional enterprise concerns, for example, cloud appli-
cation configuration management, performance, load balancing, security,
availability, and the deployment environment. As discussed in Chap. 1, the
CSP’s business model is driven by cost effectiveness and scalability while at
the same time delivering the contracted service level. As such, their con-
cerns are primarily related to optimisation including resource availability,
operating costs (including power consumption), resource provisioning,
resource organisation, and partitioning (if applicable).

Under separation of concerns, each entity manages their own concerns,
to the extent that they can. Notwithstanding this, some concerns exist
across the entities. For example, in order to realise high availability, an
EAO may need to configure a load-balancer, while at the same time a CSP
must implement a host-affinity policy.

4.4 the cloudlIghtnIng approach Based
on separatIon of concerns

4.4.1 CloudLightning Requirements

As discussed, the CloudLightning service delivery model depicted in
Fig. 4.2 is a blueprint-based one. In contrast to existing frameworks, this
service delivery model provides facilities for blueprint developers to specify

 APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION

94

comprehensive constraints and quality of service parameters for services
and/or resources in the scope of a blueprint, by means of a specific SDL
(the CL-SDL). Based on the specified constraints and parameters, it is
then possible to provide an initial optimal deployment of the resources, a
capability which has not been accomplished by previous solutions: for
example, by placing resources (such as VMs) on the adjacent physical serv-
ers to minimise communication delay or allocating containers that have
Graphical Processing Units (GPUs) or Xeon Phis attached to them to bal-
ance between performance and cost.

More importantly, in order to separate the concerns of cloud applica-
tion lifecycle management and the resource lifecycle management, a
CloudLightning-specific blueprint (CL-Blueprint) must be decomposed
into two separate and interrelated blueprints, the first one for resource
management (offering the Resource Template) and the other one for
application/workflow management (defining framework-specific
 templates). This process is shown in Fig. 4.3. It also implies that the

Fig. 4.2 CloudLightning service delivery model

 I. DRAGAN ET AL.

 95

Fi
g.

 4
.3

A

rc
hi

te
ct

ur
e

fo
r

C
lo

ud
L

ig
ht

ni
ng

 s
er

vi
ce

 d
el

iv
er

y

 APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION

96

CL-SDL shall be developed in such a way that a CL-Blueprint described
in the CL-SDL can be transformed to framework-specific blueprints
without losing generality.

A CL-Blueprint deployment starts from sending the raw Resource
Template to a Resource Discovery component and a Resource Selection
component, which are the two main components of a complementary
system (in this situation, the CloudLightning Self-Organising and Self-
Management [SOSM] framework), for optimal resource identification in
the scope of a blueprint, as indicated in Fig. 4.3. Once the optimal resource
identification process has finished, the initially received Resource Template
must be reconstructed in order to embed the received resource optimisa-
tion information and consequently send it to the resource lifecycle man-
agement engine, which will carry out the actual resource deployment on
the infrastructure it manages.

In addition, some of the optimisation information (e.g., on which
physical server should this VM be allocated) must be embedded into
resource requests (API calls), and this special information must be cap-
tured by the lower infrastructure management components.

The returns from the deployment process are the resource handlers
(e.g., a resource handler can be a login account with username, access key,
and Internet Protocol address to a VM, a container, a bare metal machine
with pre-installed operating system, or an existing High Performance
Computing [HPC] cluster). These resource handlers will then be returned
to the Gateway Service, which will reformulate the original workflow/
application blueprint along with the resource handlers.

The newly formulated workflow/application blueprint will then be
submitted to the corresponding workflow/application lifecycle manage-
ment framework to carry out the deployment of the cloud applications on
these pre-provisioned resources. This process is shown in Fig. 4.3. To this
end, a CL-Blueprint deployment process is complete.

Notice that this service delivery model is much more sophisticated
when compared to the current self-service model using a vertical
 management approach, as the cloud application management and the
resource management operate independently. Moreover, the cloud appli-
cation management layer constantly needs to exchange information with
resource management layers in certain circumstances (e.g., when ending
the lifetime of a CL-Blueprint, a notification needs to be sent to the
resource management layer so that the underlying resources can be reused
or decommissioned).

 I. DRAGAN ET AL.

 97

In order to align with the design of the bespoke service delivery model,
and implement the separation of concerns, the specific SDL shall be devel-
oped with following capabilities:

 1. To describe characteristics of a cloud application
 2. To describe cloud application execution environment and

dependencies
 3. To specify cloud application deployment processes
 4. To specify resource type and resource requirements
 5. To express constraints between blueprint service elements
 6. To express quality of service parameters for each individual blueprint

service element
 7. To accommodate extensions for supporting specific/non-traditional

cloud applications such as HPC applications
 8. To fulfil above requirements without losing generality

4.4.2 Separation of Concerns

During the lifetime of the CL-Blueprint, the EADs/EAOs are responsible
for managing the cloud applications through specific frameworks, such as
Apache Brooklyn and OpenStack Solum, while the CloudLightning
SOSM system manages the underlying resources. A series of advantages of
this approach may be then highlighted:

 1. continuous improvement on quality of CL-Blueprint services
 2. improving service delivery and user experience by reusing resources

that have already been provisioned
 3. resource optimisations and energy efficiency optimisation
 4. flexible and extensible when integrating other management system

such as the OpenStack Mistral (Openstack.org 2017) workflow
management system

In CloudLightning, the functional components that realise the concept
of the “separation of concerns” are shown in Fig. 4.4 with the following
description.

4.4.2.1 Application Lifecycle Management

• Abstract Blueprint: used to represent specific application
 requirements, constraints, and metrics defined by users, and describe

 APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION

98

the concrete and abstract services (referenced only by identification)
alongside with the collocation of the services.

• Blueprint: represents a fully qualified Cloud Application Management
for Platforms (CAMP) (Organization for the Advancement of
Structured Information Standards [OASIS] CAMP TC, 2014)
Document containing references to real resource types, resource
locations, and deployment mechanisms, which are fully understood
and handled by a CAMP-compliant implementation.

• Service Catalogue: it is a persistent collection of versioned services,
each of which includes service information, deployment informa-
tion, and CL-Resource specification.

Fig. 4.4 CloudLightning implementation of the “separation of concerns”

 I. DRAGAN ET AL.

 99

• Service Decomposition Engine (SDE): handles the transformation of
Abstract Blueprints to concrete Blueprints according to provided
requirements.

• Brooklyn: used for deploying and managing the applications via
Blueprints.

4.4.2.2 Resource Lifecycle Management

• CL-SOSM Layer: CloudLightning SOSM Layer aims to identify and
create/allocate the optimal CL-Resource for applications using prin-
ciples of SOSM.

• CL-RA Layer: CloudLightning Resource Abstraction Layer is used
for abstracting the CL-Resources in different ways (such as Bare
Metal, Virtualisation, Containerisation, and Direct Access) from
various hardware types (such as Central Processing Unit [CPU],
GPU, Data Flow Engine, and Many Integrated Core [MIC]).

• Heat Orchestration Template (HOT): describes the infrastructure
resource (such as servers, networks, routers, floating IPs, and volume)
for a cloud application, as well as the relationships between resources.

• Heat Interface: automatically generates HOTs in terms of the results
from SOSM Layer or dynamically modifies HOTs based on the
results from the Continued Improvement component.

• Heat Engine: manages the whole lifecycle of the provisioning
process.

• Continued Improvement: this management component together
with Heat and telemetry does the continued improvement for the
deployed blueprint during the lifetime.

4.5 the cloudlIghtnIng gateway archItecture

Integration of the use cases provided in CloudLightning with the Gateway
Service will be done by following the CL-SDL (Xiong et al. 2016). The
proposed CL-SDL specification is built on top of the OASIS CAMP speci-
fication and introduces new concepts suitable for expressing the require-
ments of HPC applications.

The syntax of the CL-SDL is based on the Brooklyn blueprint YAML
(Yet Another Markup Language) and is used to describe the Resource
Template and the Resourced Blueprint. Both of these offer support for
CloudLightning Blueprint lifecycle management.

 APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION

100

The Blueprint is used to represent specific application requirements,
constraints, and metrics defined by either the EAD or the EAO, and
describe services by name and their relationships. As depicted in Fig. 4.5,
service definitions are predefined by EADs in special catalogues that fol-
low the Cloud Service Archive (CSAR) specifications (Breiter et al. 2012),
a subset of rules defined by the Topology and Orchestration Specification
for Cloud Applications (TOSCA) standard (OASIS Open 2013).

The Resourced Blueprint is obtained from the SDE. This operation
effectively invokes the underlying CL-SOSM subsystem that is responsible
for resource management, for available resources and resource definitions.
The resulting Resourced Blueprint is completely supported by a CAMP-
compliant CAMP Provider (Carlson et al. 2012).1

In the CL-Blueprint all references to CloudLightning-defined artefacts
are removed, except for specific CloudLightning handles (opaque to the
CAMP Provider). These handles are used for the creation of a session
between the resource scheduling (self-organisation) layer and the deployed
resources. This CL-Blueprint represents a fully qualified CAMP Document
containing reference to real resource types, resource locations, and deploy-
ment mechanisms, which are fully understood and handled by a CAMP-
compliant implementation.

4.5.1 Gateway Service Architecture

The CloudLightning Gateway Service builds upon the capabilities of the
Apache Brooklyn solution, providing “service decomposition” capabilities.
The Gateway Service completely reuses the rest of the features provided
by Apache Brooklyn, facilitating the reuse of existing Blueprints and inte-
gration. Of particular interest is the integration with various Configuration
Management Systems like Puppet, Chef, or Ansible (Fig. 4.6).

The Gateway Service has several roles, as follows:

 1. Receive/create abstract2 Blueprint definitions from EAO.
 2. Decompose the received Abstract Blueprint into individual services.

For each of the services check if it is a fully qualified service or has to
be further processed. This operation is further discussed in Sect.
4.5.2 (Service Decomposition).

 3. Once the Blueprint is fully qualified (it does not contain any abstract
service definitions), the Gateway Service triggers the services deploy-
ment and further execution.

 I. DRAGAN ET AL.

 101

Fi
g.

 4
.5

A

PI
 M

es
sa

ge
 r

el
at

io
ns

hi
ps

 APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION

102

The Gateway Service exposes a series of APIs usable by consumers
(EAOs and EADs) for controlling the application lifecycle.

4.5.2 Service Decomposition

The operation of Service Decomposition is implemented by the SDE and
represents one of the core CloudLightning contributions in the Gateway
Service. The SDE is responsible for the interaction with the SOSM subsys-
tem. The overall operation of the SDE can be summarised as follows:

 1. For each service, check if it can be instantiated directly (there exists
a single implementation of the service, and that implementation is
well known to the Gateway Service) or that it is an abstract service
(a service interface that could be implemented by several
implementations).

 2. If the service is an abstract service the SDE contacts the backend
SOSM system for selecting the proper implementations for the
service.

Fig. 4.6 Gateway Service overall architecture

 I. DRAGAN ET AL.

 103

 3. In order to facilitate the selection of the proper implementation, the
SDE transmits the user-provided requirements (in the form of
ClassAd [Solomon 2003] definitions). These requirements are used
by the SOSM subsystem for properly selecting the right
implementations.

 4. The selection of concrete implementations results in modifying the
original Blueprint, by replacing the abstract definition with the
resourced one (eventually after a user interaction for validating the
right solution) and submitting the Blueprint to the next stage.

4.5.3 Interaction with the SOSM System

After the successful query of available implementations for each abstract
service definition, the SDE component constructs a Resource Template
containing information about the specific requirements of each implemen-
tation. An example of such Resource Template is given in Listing 4.1

Consider a Blueprint containing a single service in order to maintain
better readability of the listing. Such a document contains a blueprint ID
that is unique for each request, a timestamp representing the request time,
a cost limit for the entire Blueprint, and the callback endpoint used by the
SOSM system to communicate back results of the optimisation steps.

The sample service has two implementation options between which the
SOSM will choose depending on their constraints and the overall cost of
the blueprint. The first one refers to the need for a single VM with a single
core (expressed by a computation range between 1 and 1), 1000 MB of
memory, 50 GB of storage, bandwidth between 100 Mbps and 1 Gbps,
and no accelerators.

The second implementation is of type MIC-CONTAINER, requiring
the CellManager to find or create a container, which has access to an MIC
accelerator. This service requires one container with one CPU core, mem-
ory between 100 and 1000 MB, storage between 10 and 50 GB, the same
bandwidth as the other implementation, and one MIC accelerator.

4.5.3.1 Resource Discovery
The Gateway Service and the SOSM system exchange information for two
operations: resource discovery and resource release.

• Resource discovery is the operation by which the SOSM system
chooses the most suitable service implementation and the resources
on which to deploy it, according to user constraints and system state.

 APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION

104

• Resource release is the operation by which the SOSM system is
informed that the services have been terminated, so the underlying
resources may be reallocated.

The aforementioned operations are modelled by Hypertext Transfer
Protocol (HTTP) Representational State Transfer (REST) methods, both
the Cell Manager and the SDE acting as REST servers.

Figure 4.7 describes the protocol for resource discovery and a POST
request with the body containing a ResourceTemplate of the structure, as
illustrated in Listing 4.1. If the Cell Manager encounters any problems
during the parsing of the body, the status code of the response will be 409
Conflict. Otherwise, the status code will be 201 Created and the resource

Listing 4.1 Resource template

 I. DRAGAN ET AL.

 105

discovery process will start. The Cell Manager is in charge of informing
the SDE when the result is ready.

When resources have been identified for all services, the Cell Manager
will use a POST request with the body containing the information about
the placement and implementation of each service, referred as a Resourced
Template. This will trigger the SDE to instantiate each abstract service and
update the Blueprint with concrete services and resource access informa-
tion. An example result is shown in Listing 4.2. The chosen implementa-
tion is CPU-VM, and the resource type is OPENSTACK ACCOUNT,
meaning that the SOSM is managing an OpenStack cluster as a resource.
In this case, access information consists of credentials for accessing the
OpenStack Nova API in order to create the VM.

4.5.3.2 Resource Release
The protocol for releasing the resources associated to a Blueprint is
depicted in Fig. 4.8. A DELETE request is made to the Cell Manager at
a path referencing the Blueprint ID. In case of successful resource release,
the response will have the status 204 No Content. Otherwise, the
response will have status 400 Bad Request and the body should provide
useful information that will be propagated to the user interface (UI).

Fig. 4.7 Resource discovery sequence diagram

 APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION

106

4.6 the cloudlIghtnIng BlueprInt extensIons

Below is a summary of the technologies upon which the CloudLightning
Blueprints were developed.

4.6.1 CloudLightning Brooklyn Extensions

As part of CloudLightning project, Apache Brooklyn was adopted and
extended as the underlying platform for achieving the project’s ultimate

Listing 4.2 Resourced template

Fig. 4.8 Resource release sequence diagram

 I. DRAGAN ET AL.

 107

goal of both supporting HPC applications and adoption of modern cloud
technologies, thus creating a bridge between the HPC and Cloud end
user communities.

The decision to use the Apache Brooklyn framework is motivated by
the design decisions established in the conceptualisation of the
CloudLightning architecture (Morrison et al. 2016), the CloudLightning
protocol specification and APIs (Neagul et al. 2016), and the Gateway
Service (Dragan et al. 2017).

The main advantages of using Apache Brooklyn include:

 1. It provides the building blocks needed for developing the necessary
functionality expected from the Gateway Service.

 2. It offers support for “automatic blueprints” based on OASIS CAMP,
an extensible specification that can serve as the core specification for
the CloudLightning Blueprints.

 3. The Apache Project plans to support TOSCA in the near future.3
This could potentially allow further developments in the
CloudLightning SDL, supporting the TOSCA standard (OASIS
Open 2013).

 4. The harnessing of existing Apache Blueprints, providing HPC ven-
dors more choices without requiring more development effort.

The purpose of this section is to discuss how the adoption of the
Brooklyn Blueprints, particularly the expected additions to the Blueprint
YAML, is envisioned in CloudLightning. As previously noted, two differ-
ent kinds of blueprints are identified for use in CloudLightning: Abstract
Blueprints and Concrete Blueprints (referred further as “blueprints”).
Both types of Blueprints are built on top of Apache Brooklyn blueprints.

The translation between the Abstract Blueprint and Runnable Blueprints
is performed by means of a specialised component residing inside the
Gateway Service, component named “Service Decomposition Engine.”
The decomposition engine is responsible for interacting with the SOSM
infrastructure (Fig. 4.9).

Each of the two types of Blueprints is discussed in the following sec-
tions, outlining the changes to the vanilla (plain) Brooklyn Blueprints.
Note that the proposed extensions are subject to change as other parts of
the CloudLightning Project evolve and might also be influenced by out-
side changes in the Apache Brooklyn project, as, for example, the addition
of new functionality or deprecation of a current one.

 APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION

108

4.6.2 CloudLightning Abstract Blueprint

The Abstract Blueprint is represented by an extended version of the
Apache Brooklyn Blueprint, containing attributes holding CloudLightning-
specific entries, as described in Listing 4.3.

In this example, the Abstract Blueprint requires the deployment of a
Java web application and a computing resource providing raytracing
capabilities. Of interest in this case is the abstract computing service
 identified by the name “RaytracingApplicationId”: the service cannot be
directly handled by the Apache Brooklyn framework as it does not

Fig. 4.9 CloudLightning Blueprint decomposition process

 I. DRAGAN ET AL.

 109

provide the required information (the cloudlightning.entity.meta.
RaytracingApp type is not known to Brooklyn).

This service is handled by the CloudLightning SDE by interpreting the
provided application information (in this case, the type) and the corre-
sponding matching information. The information needed for the normal
SDE operation is defined at the service level, under the cloudlightning.
config attribute.

The relevant attributes handled by the SDE at the “service-
requirements” level are:

• Type: this field defines the syntax used for expressing this require-
ment. Currently the only defined syntax is based on the ClassAds
system4.

Listing 4.3 An Abstract Blueprint

 APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION

110

• Requirements: this field defines the expression interpreted by the SOSM
system to identify the appropriate resource required for this service.

• Rank: this field defines the way of ranking the possible solutions
obtained from the underlying SOSM infrastructure; this expression
might be used to prefer resources by various attributes, eventually
based on power consumption or computing power.

The “requirements” attribute is aimed at restricting the resources that
the SOSM subsystem can consider for choosing the proper implementa-
tion for the user-requested service. This attribute is expected to be used by
HPC application to express their performance requirements, and it is
complemented by the “rank” attribute, used for expressing preference
regarding the available and matching resources.

4.6.3 CloudLightning Blueprint

The CloudLightning Blueprint represents the outcome of the Service
Decomposition Operation and basically represents a fully qualified
Blueprint document that can be handled by the CAMP framework (in our
case, Brooklyn).

As seen in Listing 4.4, all “abstract” specifications have been replaced
with concrete ones. For example, the cloudlightning.entity.meta.
RaytracingApp type has been replaced with another type understood by
Brooklyn (cloudlightning.entity.impl.HPCCluster). This new type is
complemented by a new set of attributes that provide deployment-specific
information.

It is important to note that the “location” attribute has been custom-
ised to provide CloudLightning-specific information; particularly in this
case, it contains a handle provided by the underlying SOSM subsystem
that can be used at deployment time for synchronising information
between the various subsystems. Notice that the cloudlightning.entity.
impl.HPCCluster is known to Brooklyn due to the fact that it is regis-
tered by the EAO in the corresponding catalogue.

4.7 exaMple of applIcatIon creatIon
and deployMent

The architecture of the CloudLightning Gateway Service was presented
previously in Sect. 4.5. This section demonstrates, using an example of a
raytracing application, the ease with which the application topology can be
created and deployed using the CloudLightning Gateway Service. This

 I. DRAGAN ET AL.

 111

use case is used to illustrate a user’s interactions with the Gateway Service,
enhancing the resource optimisation feature. The remainder of this sec-
tion provides a brief overview of the steps to be taken to safely create,
optimise, and deploy the raytracing application on the CloudLightning
environment. Some of the essential steps are also depicted in screenshots
taken from the actual system.

The process is as follows:

Step 1: To initialise the system, start Alien4Cloud service.
Step 2: Add the plugin to the desired orchestrator (CloudLightning

uses Brooklyn-TOSCA as the underlying orchestrator). After
the plugin is loaded, Alien4Cloud will present the orchestrator
in the list of available plugins.

Step 3: Create a new orchestrator from the UI and link it to the newly
added plugin.

Step 5: Before one can connect the orchestrator instance from
Alien4Cloud to the underlying orchestrator (basically, the
SOSM subsystem), one has to ensure that the Gateway Service
Orchestrator is running. This step is not a mandatory step to
be taken but it is advised.

Listing 4.4 The CloudLightning Blueprint

 APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION

112

Step 6: From the web console one can connect to the bespoke orches-
trator. Before any further steps can be taken, wait until the
orchestrator state is CONNECTED.

Step 7: After the orchestrator is connected, download the CSAR
archive from a remote git repository.5

The orchestrator comes with git integration functionalities,
and the only requirement is to have stored all custom CSAR
files in such a repository. In case of the raytracing example, one
has to enter the predefined git credentials and URL. The
download process of the CSAR archive starts only after one
clicks the Import button.

Step 8: Add the CloudLightning plugin to have access to the
CloudLightning functionalities.

Step 9: For the creation of new applications one has to use the func-
tionalities exposed by Alien4Cloud, more precisely the New
Application panel. The CSAR archive may contain already
defined application templates, and one can select some of those
for the intended application design.

Step 10: As soon as the application creation step is finished, one can
view the design and application in its home panel.

Step 11: The previously defined topology contains four types of nodes,
which can be viewed in the Topology tab (see Fig. 4.10). It is
also possible to view the newly created topology in YAML for-
mat by pressing the YAML tab in the designer.

Step 12: Next, enter the CloudLightning Optimisation Panel and start
the optimisation process from the SOSM Optimiser button
(see Fig. 4.11). On the left-hand side, one can view the end-
point for the SDE.

Step 13: Check that the SDE is up and running, and when the optimisa-
tion process is finished, one can notice that the abstract nodes
have been replaced with concrete ones also in the application
designer.

Step 14: As a final step prepare for the deployment of application by
entering into the Deployment Panel. The orchestrator has
already sent information about locations to Alien4Cloud and
one has only to select the desired location.

Step 15: By moving to Deploy tab one can trigger the actual deploy-
ment of the application. This step is performed by pressing the
Deploy button and wait until it finishes. Once pressed one can
follow the explicit progress of the deployment also in the
orchestrator console.

 I. DRAGAN ET AL.

 113

Fi
g.

 4
.1

0
A

pp
lic

at
io

n
to

po
lo

gy
: C

lo
ud

L
ig

ht
ni

ng
 C

or
e

1
no

de

 APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION

114

Fi
g.

 4
.1

1
St

ar
t

of
 t

he
 o

pt
im

is
at

io
n

pr
oc

es
s

 I. DRAGAN ET AL.

 115

4.8 conclusIon

This chapter presented the CloudLightning Gateway Service, a user-
friendly interface that enables users to create and deploy applications with
minimum knowledge regarding the resource selection process. The
Gateway Service is a key component of the CloudLightning system that
facilitates application lifecycle management in the context of a cloud envi-
ronment. Users can design the application topology using the Drag &
Drop mechanism of the Gateway Service UI and link together the compo-
nents of their application. From here, the topology is sent to the SDE,
which is responsible for interacting with the SOSM system. The SDE
translates the information from the application topology, into a specific
CloudLightning Blueprint, using the CloudLightning Service Description
Language. Next, SOSM handles the resource discovery process, assigning
the most suitable set of resources for a user application, based on the
received CloudLightning blueprint. In the following step, the SOSM sends
back to the SDE a CloudLightning blueprint, with a proposed resource
for each component of the application topology. In the end, the user may
review the final version of its application topology, with the assigned
resources, and start the process of application deployment.

4.9 chapter 4 related cloudlIghtnIng readIngs

 1. Dragan, I., Fortis, T. F., & Neagul, M. (2016). Exposing HPC ser-
vices in the cloud: The CloudLightning approach. Scalable
Computing: Practice and Experience, 17(4), 323–330.

 2. Selea, T., Dragan, I., & Fortiş, T. F. (2017, April). The
CloudLightning approach to cloud-user interaction. In Proceedings
of the 1st International Workshop on Next generation of Cloud
Architectures, Vol. 4, ACM.

notes

1. The term CAMP provider is used in the sense as defined by the CAMP
specification, basically “an implementation of the service aspects of this
specification.”

2. Abstract Blueprints are those blueprints that will be later on filled with con-
crete resources by the CL-System.

3. https://brooklyn.apache.org/learnmore/theory.html
4. https://research.cs.wisc.edu/htcondor/classad/classad.html
5. One keeps definitions of services in CSAR format in a remote repository.

 APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION

https://brooklyn.apache.org/learnmore/theory.html
https://research.cs.wisc.edu/htcondor/classad/classad.html

116

references

Apache Software Foundation. (n.d.). Apache Brooklyn. Retrieved October 15,
2017, from https://brooklyn.apache.org/

Apache Software Foundation. (n.d.). Apache jClouds®. Retrieved October 15,
2017, from https://jclouds.apache.org/start

Breiter, G., Leymann, F., & Spatzier, T. (2012, May). Topology and orchestration
specification for cloud applications (TOSCA): Cloud service archive (CSAR).
International Business Machines Corporation.

Carlson, M., Chapman, M., Heneveld, A., Hinkelman, S., Johnston-Watt, D.,
Karmarkar, A., et al. (2012). OASIS, Tech. Rep. Cloud Application Management
for Platforms. Retrieved October 10, 2017, from http://cloudspecs.org/
CAMP/CAMP_v1-0.pdf

Dragan, I., Selea, T., & Fortis, T.-F. (2017). D5.2.1 Gateway Service.
CloudLightning consortium. Retrieved October 15, 2017, from.

Morrison, J., Xiong, H., Dong, D., & Momani, B. (2016). D3.1.2 Architecture.
CloudLightning Consortium. Retrieved October 15, 2017, from.

Neagul, M., Dragan, I., & Craciun, C. (2016). D4.1.1 protocol specification and
API. CloudLightning Consortium. Retrieved October 15, 2017, from.

OASIS Open. (2013). Topology and orchestration specification for cloud applications
version 1.0. Retrieved October 10, 2017, from http://docs.oasis-open.org/
tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

Openstack.org. (2017). OpenStack Mistral. Retrieved October 18, 2017, from
https://docs.openstack.org/mistral/latest/

Openstack.org. OpenStack Solum. Retrieved October 18, 2017, from https://
docs.openstack.org/solum/latest/

Openstack.org. Heat—OpenStack. Retrieved October 15, 2017, from https://
docs.openstack.org/heat/pike/

Solomon, M. (2003). The ClassAd Language Reference Manual, Version 2.1.
Computer Sciences Department, University of Wisconsin, Madison, WI, USA.

Sun, L., Dong, H., & Ashraf, J. (2012, October). Survey of service description
languages and their issues in cloud computing. In Eighth International
Conference on Semantics, Knowledge and Grids (SKG) (pp. 128–135). IEEE.

Xiong, H., Dong, D., Morrison, J., Antoniadis, I., Neagul, M., Giannoutakis, K.,
et al. (2016). D5.1.1 service description format. CloudLightning Consortium.
Retrieved 15 October, 2017, from https://cloudlightning.eu/blog/service-
description-format/d5-1-1-service-description-format-3/

 I. DRAGAN ET AL.

https://brooklyn.apache.org/
https://jclouds.apache.org/start
http://cloudspecs.org/CAMP/CAMP_v1-0.pdf
http://cloudspecs.org/CAMP/CAMP_v1-0.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://docs.openstack.org/mistral/latest/
https://docs.openstack.org/solum/latest/
https://docs.openstack.org/solum/latest/
https://docs.openstack.org/heat/pike/
https://docs.openstack.org/heat/pike/
https://cloudlightning.eu/blog/service-description-format/d5-1-1-service-description-format-3/
https://cloudlightning.eu/blog/service-description-format/d5-1-1-service-description-format-3/

 117

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits any noncommer-
cial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material
derived from this book or parts of it.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to
the material. If material is not included in the chapter’s Creative Commons license
and your intended use is not permitted by statutory regulation or exceeds the per-
mitted use, you will need to obtain permission directly from the copyright holder.

 APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

119© The Author(s) 2018
T. Lynn et al. (eds.), Heterogeneity, High Performance Computing,
Self-Organization and the Cloud, Palgrave Studies in Digital
Business & Enabling Technologies,
https://doi.org/10.1007/978-3-319-76038-4_5

CHAPTER 5

Simulating Heterogeneous Clouds at Scale

Christos K. Filelis-Papadopoulos,
Konstantinos M. Giannoutakis, George A. Gravvanis,

Charalampos S. Kouzinopoulos, Antonios T. Makaratzis,
and Dimitrios Tzovaras

Abstract In this chapter, a review of existing cloud simulation frame-
works is given along with an overview of the recently proposed
CloudLightning simulation framework. Moreover, the parallel architec-
ture and parallel implementation details of the CloudLightning simulator
are presented along with the characteristics of the supported cloud archi-
tectures. These architectures include the traditional centralised approach
as well as the Self-Organised and Self-Managed CloudLightning approach.
The supported memory, network, and application execution models are

C. K. Filelis-Papadopoulos (*) • G. A. Gravvanis
Democritus University of Thrace, Komotini, Greece
e-mail: cpapad@ee.duth.gr; ggravvan@ee.duth.gr

K. M. Giannoutakis • C. S. Kouzinopoulos • A. T. Makaratzis • D. Tzovaras
Centre for Research and Technology Hellas, Thessaloniki, Greece
e-mail: kgiannou@iti.gr; kouzinopoulos@iti.gr; antomaka@iti.gr; Dimitrios.
Tzovaras@iti.gr

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76038-4_5&domain=pdf
mailto:cpapad@ee.duth.gr
mailto:ggravvan@ee.duth.gr
mailto:kgiannou@iti.gr
mailto:kouzinopoulos@iti.gr
mailto:antomaka@iti.gr
mailto:Dimitrios.Tzovaras@iti.gr
mailto:Dimitrios.Tzovaras@iti.gr

120

reviewed. Furthermore, a recently proposed class of power models for
heterogeneous CPU-Accelerator-based hardware is discussed. Finally,
large-scale simulations for traditional and Self-Organised and Self-
Managed cloud environments are presented and compared.

Keywords CloudLightning simulator • Self-organisation • Self-
management • Scalability • Large-scale simulations

5.1 IntroductIon

Cloud simulation tools have been extensively used for the analysis of cloud
data centres, since the cost of experimentation using various scenarios is
low. A number of different aspects, related to cloud environments, can be
studied through simulation including resource allocation strategies, live
migration of running applications to more efficient data centre resources,
energy consumption, and hardware resource utilisation. Several cloud
simulation tools have been developed during the past few years focusing
on different aspects of cloud environments. These tools can be categorised
into:

• Discrete Event Simulators (DES): These examine macro-scale phe-
nomena, such as application events that take place in certain moments
in time while completely disregarding micro-scale phenomena,
including network packet communication. DES are used to examine
large-scale simulations, while focus is given among others in the
study of cloud environments behaviour in terms of service delivery,
Virtual Machine (VM) allocation policies, utilisation of resources,
and the energy consumption of data centres.

• Packet-Level Simulators (PLS): These examine micro-scale phenom-
ena related to cloud environments, including packet loss and net-
work communication protocols. PLS offer high levels of accuracy at
the cost of performance though, since large-scale data centres cannot
be studied due to the restricting resolution of the simulations.

Cloud infrastructures continue to grow in both size and diversity to
cater for demand in terms of both user and data volumes and the variety

 C. K. FILELIS-PAPADOPOULOS ET AL.

 121

of hardware resources. As a result, existing cloud simulation tools cannot
be used to efficiently simulate these heterogeneous environments at scales
several orders of magnitude greater than traditional data centres. By 2020,
hyperscale data centres will account for a substantial portion of all cloud
workloads and data (Cisco 2016). Furthermore, as hyperscale data centres
consist of servers in distinct geographical locations, the efficient manage-
ment of such infrastructures is made more difficult resulting in network
congestion and underutilisation of resources. Resource heterogeneity fur-
ther exacerbates these challenges. While hyperscale data centre operators
increasingly offer specialised hardware, such as Graphical Processing Units
(GPUs), Many Integrated Cores (MICs), and Field-Programmable Gate
Arrays (FPGAs), existing cloud simulation tools do not support them. The
efficient exploitation of the hardware infrastructure of heterogeneous
hyperscale cloud environments is a topic of great importance during the
last few years; thus, cloud simulation tools for studying heterogeneous
cloud environments that can cater for hyperscale need to be developed.

The remainder of this chapter is organised as follows. Section 5.2 pro-
vides a summary review of common cloud simulation frameworks used by
the scientific community and their limitations. A new simulation frame-
work, the CloudLightning Simulator, designed to simulate hyperscale
cloud environments composed of heterogeneous resources is presented in
Sect. 5.3. This is followed by a discussion of initial experimentation using
the CloudLightning Simulator to compare service delivery of three appli-
cation scenarios: oil and gas exploration, ray tracing, and genomics, using
(i) conventional cloud service delivery and (ii) cloud service delivery using
a self-organising self-managing (SOSM) approach.

5.2 cloud SImulatIon FrameworkS

During the last decade, various cloud simulation frameworks have been
proposed, such as CloudSim (Calheiros et al. 2011), DCSim (Tighe et al.
2012), GDCSim (Gupta et al. 2011), GreenCloud (Kliazovich et al.
2012), iCanCloud (Nunez et al. 2012), and CloudSched (Tian et al.
2015). However, no existing cloud simulation framework is designed for
hyperscale simulations.

One of the main limitations of existing cloud simulation tools is the
lack of scalability. Most existing cloud simulation tools do not support
parallelism; thus, the simulation of very large data centres is not possible
(Byrne et al. 2017). Parallelism is of great importance for the simulation

 SIMULATING HETEROGENEOUS CLOUDS AT SCALE

122

of hyperscale cloud environments since both computational work and
memory requirements can be distributed among multiple nodes, reducing
the execution time significantly and enabling the simulation of large-scale
data centres.

An important factor influencing scalability of the extant simulation
tools is memory requirements. In DES a large number of events should be
created and retained. The number of these events is closely related to the
number of resources simulated as well as the input tasks. Discrete Event
based simulators initialise the task list that will be executed for the whole
simulation and augment it gradually with new events according to time.
This process requires retaining a very large list in memory, its augmenta-
tion with new events, and its sorting in order to perform events in the
correct order. Thus, memory requirements increase significantly with the
number of resources or the simulation time. Memory restrictions also
occur due to the high level of detail of the simulated components, such as
in the case of the iCanCloud and GreenCloud frameworks, which becomes
prohibiting in very large-scale executions.

The effective management of resources is a significant challenge as their
number increases. More specifically, strategies which require the detection
of specific hardware cannot be applied or require significant computa-
tional cost when hyperscale systems are considered. Also, status informa-
tion corresponding to the underlying hardware resources is becoming
outdated, and thus efficient management of the system becomes more
challenging. Specialised strategies are required in hyperscale cloud envi-
ronments for the efficient and up-to-date management of the system.
Such strategies are not supported in existing simulation frameworks, and
thus the simulation of hyperscale systems is difficult to perform.

Finally, the inclusion of heterogeneous resources is not supported by
existing cloud simulation tools. Simple generic models are required for the
simulation of heterogeneous resources in order to be integrated in cloud
simulation environments (Makaratzis et al. 2017; Giannoutakis et al.
2017).

5.3 cloudlIghtnIng SImulator

Unlike existing frameworks, the CloudLightning Simulator has been
designed from the ground up as a massively scalable solution, able to sim-
ulate hyperscale data centres consisting of millions of cloud nodes/servers.

 C. K. FILELIS-PAPADOPOULOS ET AL.

 123

The framework is written in C++ and is parallelised using Message Passing
Interface (MPI) (Gropp et al. 1996) and OpenMP (Dagum and Menon
1998) to enable the efficient handling of hyperscale simulations.
CloudLightning supports the simulation of heterogeneous infrastructures
(including GPUs, MICs, and FPGAs/DFEs) that are commonly used for
the acceleration of High Performance Computing applications. One
important characteristic of the developed framework is the use of a time-
advancing loop, a technique that removes the need for pre-computation
and storage of future events, resulting in a significant reduction of its
memory requirements. This allows the integration of dynamic resource
allocation policies, such as SOSM, enabling the efficient management of
computer resources for simulating hyperscale environments. Moreover,
the CloudLightning Simulator places an emphasis on the simplicity of the
models it uses, focusing on models that require reduced number of com-
putations for producing the results of the simulations without loss of accu-
racy. Finally, all inputs and outputs of the simulator are represented
graphically.

The remainder of this section presents the generalised and extensible
CloudLightning simulation framework for simulating heterogeneous
resources using an SOSM approach.

5.3.1 Architecture and Basic Characteristics of the Parallel
CloudLightning Simulation Framework

The CloudLightning Simulator was designed to simulate clouds relying
on the Warehouse Scale Computer (WSC) architecture (Barroso et al.
2013). WSC has been adopted by a multitude of companies including
Google, Amazon, Yahoo, Microsoft, and Apple, and has been widely used
in the design of cloud environments (Mars 2012). In the WSC architec-
ture, interconnected cloud computing nodes are grouped into cells that
are centrally managed (Fig. 5.1).

In this architecture, the Gateway service is responsible for redirecting
end user requests to the appropriate Cells. The Gateway service is the
entry point of the system and is a cloud entity that receives resource
requests from the end users and redirects them to the Cells. A conceptual
cloud architecture with multiple Cells is presented in Fig. 5.2. The
resources are organised and monitored by the Cell manager’s broker that
is responsible for the provision of appropriate resources to end user

 SIMULATING HETEROGENEOUS CLOUDS AT SCALE

124

requests and for the deployment of incoming tasks to the available
resources. The broker component is composed of multiple services,
including orchestration, telemetry, and identity service. Hyperscale cloud
environments consist of a considerably large number of Cells.

In the CloudLightning simulation framework, each Cell is hosted on a
different computing node of a distributed system, while the Gateway ser-
vice is hosted on the master computing node. The communication
between the Gateway service and the Cells is performed using the MPI
framework. The following operations are performed by each Cell (Filelis-
Papadopoulos et al. 2017, b):

• Receiving simulation parameters
• Initialisation of different components, including hardware resources,

the broker, network, telemetry, and the SOSM engine
• Receiving the task queue in each time-step
• Searching for available resources for the execution of the tasks, using

the SOSM engine
• Updating the state of the resources and controlling the execution of

the tasks
• Communicating status information to the Gateway Service

Fig. 5.1 Warehouse Scale Computer abstract architecture

 C. K. FILELIS-PAPADOPOULOS ET AL.

 125

Fi
g.

 5
.2

A

bs
tr

ac
t

cl
ou

d
ar

ch
ite

ct
ur

e
w

ith
 m

ul
tip

le
 c

el
ls

 SIMULATING HETEROGENEOUS CLOUDS AT SCALE

126

The operations performed by the Gateway service are the following
(Filelis-Papadopoulos et al. 2017, b):

• Retaining simulation inputs and communicating data to the Cells for
the initialisation of the simulation components

• Creation of the task queue in each time moment, fragmentation of
the task queue into subqueues, and communication of the subqueues
to the Cells, by maintaining load balance through all Cells

• Receiving status information from the Cells
• Processing and storing historical statistics and metrics

The parallelisation of the CloudLightning Simulator in distributed sys-
tems is of great importance, since simulating hyperscale infrastructures is
a computationally and memory-intensive process. For this reason, various
components of the CloudLightning Simulator use the OpenMP frame-
work in different ways to accelerate their computations on shared memory
multiprocessors. The Gateway Service processes statistics in parallel—the
Cells perform resource discovery and task deployment as well as the update
of the resources’ state on different multiprocessor cores. The SOSM tech-
niques are also performed in parallel.

Figure 5.3 presents the software architecture of the CloudLightning
Simulator (Filelis-Papadopoulos et al. 2017):

5.3.2 SOSM Engine

One of the most important characteristics of the CloudLightning Simulator
is the use of SOSM techniques to control the underlying resources of the
Cells in a more efficient manner (Filelis-Papadopoulos et al. 2017).

In traditional cloud architectures, the resources are managed by the
broker, a central entity that is responsible for the search and deployment
of the available resources with respect to incoming task requests, the col-
lection of data for the state of all underlying resources, and the manage-
ment of all underlying resources of the data centre. This centralised
approach has limitations due to the computational complexity involved
in locating specific hardware, especially when the number of resources
increases. Locating the most appropriate server for the execution of a task
is a computationally expensive operation in large data centres, and it is
generally avoided in favour of strategies such as the “first-fit approach,”
where a task is deployed on the first available server or coalition of servers.

 C. K. FILELIS-PAPADOPOULOS ET AL.

 127

This type of strategy is not effective though in terms of both computa-
tional and energy efficiency, resulting largely in the underutilisation of the
available resources (Filelis-Papadopoulos et al. 2017). More effective
strategies, such as SOSM, need to be applied to achieve high levels of
resource utilisation and thus computational and energy efficiency.

In the CloudLightning architecture, each Cell is organised in a hierar-
chical tree structure. As discussed earlier, the tree contains different enti-
ties, including prescription Routers (pRouters), prescription Switches
(pSwitches), and virtual Rack Managers (vRMs). Figure 5.4 presents an
example of the CloudLightning tree structure. In this structure, the

Fig. 5.3 Software architecture of the parallel CloudLightning simulation
framework

 SIMULATING HETEROGENEOUS CLOUDS AT SCALE

128

resources are locally managed by the vRMs which in turn are locally man-
aged by the pSwitches, while the pSwitches are locally managed by the
pRouters. The local management of the architectural components allows
the efficient collection and analysis of data that can lead to an improved
decision-making process. Each component can describe the state of its
underlying resources since metrics describing the state of the resources are
collected with respect to an interval and averaged by each component to
form its own state. Also, weights describing the desired state of the system
are communicated from the Gateway Service to the underlying compo-
nents. By using these metrics and weights, each component’s Suitability
Index is computed. The Suitability Index expresses how appropriate is a
component to receive an incoming task. By using the Suitability Index,
each incoming task can be subsequently directed to the most efficient
resources.

The exchange of metrics and weights between the components is part
of the Self-Management actions and is performed by all the components
of the SOSM engine. The Self-Organisation techniques, on the other
hand, are solely performed by the vRMs and the pSwitches. In the case of

Fig. 5.4 Hierarchical structure of the SOSM engine

 C. K. FILELIS-PAPADOPOULOS ET AL.

 129

vRMs, there can be an exchange of resources between vRMs that are
hosted by the same pSwitch, in order to maximise the efficiency of the
system and to host tasks that require more resources than available on a
vRM. New vRMs can also be created, while vRMs that do not contain any
resources to manage can be destroyed. Similarly, pSwitches that are hosted
by the same pRouter can exchange vRMs; new pSwitches can be created,
while existing pSwitches can be dismissed when they have no vRMs to
manage.

Each pRouter of a Cell is homogeneous, as it contains resources of the
same type. In order to maintain the homogeneity, Self-Organising actions
are not performed at the pRouter level; thus, pSwitches cannot be
exchanged between pRouters. For this reason, pRouters are the entry
point for the selection of a specific type of resource inside a Cell (Filelis-
Papadopoulos et al. 2017).

The SOSM system improves significantly the scalability of cloud envi-
ronments since the most appropriate hardware for the execution of a task
can be located fast and with low computational cost, even in data centres
with a very large number of resources. In the CloudLightning Simulator,
the SOSM engine is implemented in parallel using the OpenMP
framework.

5.3.2.1 Power Consumption Modelling
To estimate the power consumption of large-scale heterogeneous data
centres, a number of different power models for both Central Processing
Unit (CPU) servers and combined CPU-accelerator pairs were developed.
The power models are generic with low computational cost (Filelis-
Papadopoulos et al. 2017; Giannoutakis et al. 2017). For this reason, the
CloudLightning Simulator is capable of computing the power consump-
tion of very large heterogeneous data centres without a significant impact
on its scalability. The following subsection gives a detailed presentation of
the integrated power consumption models.

CPU Power Models
Piecewise interpolation methods between recorded CPU power consump-
tion levels, and generic models that estimate the trend of the power-
utilisation diagram of CPUs by using the idle and maximum power
consumption of the CPU servers, have been integrated.

The interpolation methods are performed between recorded CPU
power consumption levels that are available mainly as part of the

 SIMULATING HETEROGENEOUS CLOUDS AT SCALE

130

Standard Performance Evaluation Corporation (SPEC) benchmark
(SPEC 2008). Existing simulators, such as CloudSim, use linear inter-
polation between power measurements on rounded utilisation intervals
(i.e. 0%, 10%, 20%, etc.) (Beloglazov and Buyya 2012). In order to
achieve improved accuracy, the interpolation methods in the
CloudLightning Simulator are applied on the exact utilisation intervals
of the power measurements (i.e. 0%, 10.2%, 19.7%, etc.) as the error of
the rounded interpolation intervals increases when simulating very
large data centres (Giannoutakis et al. 2017). Two different interpola-
tion methods were used, the linear and the “not-a-knot” cubic spline
interpolation.

Generic models were also integrated, since they require less computa-
tional cost and power measurements compared to the interpolation meth-
ods. The models estimate the power consumption of CPU servers by
using the utilisation of the CPU server and its power consumption in idle
and max states. The linear, square, cubic, and square root models that
have been used in existing cloud simulators (i.e. CloudSim) were inte-
grated (Beloglazov and Buyya 2012). For the CloudLightning Simulator,
a generic CPU power model was used based on a third-degree polyno-
mial, which estimates more accurately the trend of the power-utilisation
diagram of CPU servers (Filelis-Papadopoulos et al. 2017). The trend of
the generic models compared with the actual CPU measurements pro-
vided by SPEC (SPEC 2008) for an HP Proliant DL560 Gen 91 is pre-
sented in Fig. 5.5.

Existing cloud simulators (i.e. GreenCloud and CloudSim) support the
use of real application traces in order to compute the power consumption
of the simulated applications in each time-step. This approach would neg-
atively affect the scalability of the simulator in large-scale simulations, and
for this reason, mean values of real application traces were computed and
integrated. More specifically, the mean value of the CPU utilisation for
each application is used to compute the mean power consumption of the
application. Then, the energy consumption of the application is computed
by multiplying the mean power consumption of the application with its
execution time. This approach provides a lower computational cost, while
the result of the energy consumption of the application is computed with
approximately the same accuracy that would have been obtained if all the
power traces were used. This methodology has been tested, achieving high
levels of accuracy in the estimation of the energy consumption of applica-
tions (Makaratzis et al. 2017).

 C. K. FILELIS-PAPADOPOULOS ET AL.

 131

Combined CPU-Accelerator Power Models
A generic power consumption model was used for the estimation of the
power consumption of accelerators such as GPUs, MICs, and DFE
(Giannoutakis et al. 2017). This model was built around the idea that the
maximum power consumption of an accelerator is consumed when an
application is executed on the accelerator, while the idle power consump-
tion is consumed when the application is executed only on the CPU. This
binary model provides simplicity and increased accuracy (Makaratzis et al.
2017). The model for the power consumption of hardware accelerators is
described as follows:

P P Pacc acc accρ ρ ρ() = −() +− −1 min max

where Pacc ‐ min and Pacc − max are the minimum and maximum power con-
sumption values, respectively, that the application can consume on the
accelerator, while ρ is the percentage of the application that is parallelised
on the accelerator, thus in each time moment. Similarly, with the utilisa-
tion parameters of the CPU power model, the mean value of parameter is
computed based on real application traces, thus the mean value of the
power that is consumed on the accelerator is computed for the total

Fig. 5.5 Generic CPU power models compared to the power-utilisation diagram
of an HP Proliant DL560 Gen 9 server

 SIMULATING HETEROGENEOUS CLOUDS AT SCALE

132

 execution time of the application. The combined CPU-accelerator mean
power consumption of the application is computed as the sum of the mean
power consumption of the CPU server and the mean power consumption
of the accelerator. The energy consumption of an application that is exe-
cuted on a heterogeneous node is computed by multiplying the combined
CPU- accelerator mean power consumption with the execution time of the
application.

To conclude, in order to keep the computational cost low, generic CPU
and accelerator power models were integrated in the CloudLightning
Simulator. The simplicity of the models is of great importance since mod-
els that are based on architectural details of the hardware resources require
a substantial number of computations, considering the heterogeneity and
the very large number of resources in the simulations. These models were
validated on heterogeneous testbeds and a good accuracy level was
achieved (Makaratzis et al. 2017).

5.3.2.2 Memory, Storage, and Network Modelling
Detailed modelling of memory would negatively affect the scalability of
the simulator, especially in large-scale simulations, since it would require
an increased amount of computations. Memory was implemented as a
resource, measured in GBytes, that is used in the allocation of VMs to
physical servers. Memory overcommitment was also implemented; thus,
the total available memory was computed as the product of the total physi-
cal memory and the overcommitment ratio. The power consumption of
memory was included in the power consumption of the CPU servers, elim-
inating the need for a separate memory power consumption calculation.

The modelling of storage was also implemented with simplicity in order
to keep the computational cost in low levels. The storage was implemented
as a resource measured in TBytes. Global storage was not implemented,
though its impact can be added directly to the time span of tasks. Detailed
modelling of the power consumption of storage was not implemented
since it would require substantially large number of computations, which
would negatively affect the scalability of the simulator. The energy con-
sumption of storage is considered to be included in the energy consump-
tion of the CPU servers, similar to memory modelling.

The network was implemented as a global component, visible from all
the underlying resources, with the network bandwidth being shared
among the arriving tasks of the system. When the requested network
bandwidth exceeds the available capacity, the execution of applications is

 C. K. FILELIS-PAPADOPOULOS ET AL.

 133

affected negatively (in terms of the execution time). It should be noted
that the network model of the CloudLightning Simulator was imple-
mented through a catalogue of tasks, retaining all tasks executing at a
given time-step. A linear model for computing the time required to trans-
fer initial data and output data was implemented with a function of the
following form:

NT t fileSize bandwidth() = /

where fileSize is the size of the file to be transferred and bandwidth is the
available physical bandwidth.

5.3.2.3 Application Models
In the design of the CloudLightning Simulator, the execution of VMs is
part of a given task and their life cycle is directly connected to it. Each task
is defined based on the following characteristics (Filelis-Papadopoulos
et al. 2017):

• Type of application (Genomics, Oil and Gas, Ray Tracing)
• Available implementations (CPU-only, CPU+GPU, CPU+DFE,

CPU+MIC)
• Number of instructions (in Millions of Instructions [MIs])
• Required number of VMs
• Required number of processing units per VM
• Required memory per VM (in GBytes)
• Required storage per VM (in TBytes)
• Required accelerators per VM
• Required network bandwidth

The minimum and maximum values are defined for the actual utilisa-
tion of the CPU, the memory, and the network. The actual resources used
by an application (utilisation) are computed based on application traces as
a percentage of the requested resources over a number of predefined
intervals. These utilisation parameters are considered as mean values with
respect to the total execution time of the application. This approach main-
tains the computational cost low, while the desired metrics are obtained
with the same accuracy that would have been obtained if all the application
traces were used.

 SIMULATING HETEROGENEOUS CLOUDS AT SCALE

134

All task parameters, including the number of instructions, the required
number of VMs, and memory size, are randomly generated using a uni-
form random number generator with respect to predefined intervals. The
intervals are computed based on real application characteristics.

This approach of application modelling reduces computational cost,
allowing for large-scale simulations, while also providing realistic results
during the simulations.

5.3.2.4 Execution Models
Existing cloud simulators generally create a priori task lists for the whole
duration of the simulation, augment, and sort that list with respect to
events triggered by inputs and so on. However, this has the disadvantage
of simulation data storage, not only for the current event but also for
future ones, restricting the execution of large-scale simulations over long
time periods. In contrast, the CloudLightning Simulator is based on a
time-advancing loop, where incoming tasks are created dynamically in
each time-step and where each time-step is independent from any previ-
ous or future ones (Filelis-Papadopoulos et al. 2017). A task list is then
created at the beginning of each time-step, removing the need for data
storage of future tasks of the simulation. Creating task lists per time-step
reduces significantly the memory requirements of the simulation and
offers the ability to simulate dynamical components that change their
state according to dynamic strategies, including pRouters, pSwitches,
and vRMs while allowing for the simulation over extended time
periods.

In the execution of tasks, the time-step is used as the control mecha-
nism of the execution. The performance of applications is measured in
MIs while the computational capability of the physical servers is mea-
sured in Millions of Instructions per Second (MIPS). In each time-step,
the number of instructions that can be executed by the available
resources is subtracted from the total number of instructions of the
application. This time-step-controlled execution model offers signifi-
cant capabilities since the impact of various phenomena can be modelled
by applying penalties on the execution of tasks. For example, phenom-
ena such as performance degradation due to cache sharing or “noisy-
neighbours” can be modelled by reducing the computational capability,
meaning that fewer of the application’s instructions will be executed on
the current time-step. Similarly, the usage of hardware with a higher
computational capability, that is, accelerators, can be modelled by

 C. K. FILELIS-PAPADOPOULOS ET AL.

 135

increasing the computational capability of the current time-step.
Service-level Agreement violations concerning memory, storage, or net-
work limitations can be modelled by applying similar penalties in the
execution of tasks.

This approach of execution modelling allows the integration of possible
extensions on the simulator, since any phenomenon can be modelled dur-
ing a simulation by applying penalties or gains in the execution of the
applications. Also, this execution model allows the simulation of very large
time periods and millions of cloud servers, since the memory requirements
of the execution model are very low.

5.4 experImental reSultS

This section presents the experimentation framework and the numerical
results occurred after simulating the traditional cloud delivery system and
the SOSM framework.

The experiments were performed on a cluster consisting of four Dell
PowerEdge C4130 nodes, each containing two 10-core Intel Xeon
E5-2630 v4 CPUs running at 2.20 GHz (3.10 GHz Max Turbo fre-
quency) with 128GB of Random Access Memory (RAM), and a Dell
PowerEdge R730 node containing two 8-core Intel Xeon E5-2609 v4
CPUs running at 1.70 GHz. During the simulation, the Dell PowerEdge
R730 node was used to host the Gateway service, while the 4 Dell
PowerEdge C4130 nodes were used to host the Cells.

The time period of the simulation was set to one week (604,800 sec-
onds), with a time-step of 1 second. The update interval of the Gateway
Service was chosen to be 200 seconds, while the update interval of the
pRouters, pSwitches, and vRMs was 20 seconds. The cloud nodes of the
simulated data centre were selected to use an Intel Xeon E5-2699 v4
2.20 GHz-based node with 44 cores and 385,063.42 MIPS, 128 GBytes
of RAM, and 40 TBytes of storage.

Each Cell consisted of four different types of hardware, that is,
CPUs+GPUs, CPUs+MICs, CPUs+DFEs, or CPU servers with no accel-
erators. Each heterogeneous node consisted of a CPU and four accelera-
tors. The characteristics of the CPUs and the accelerators are presented in
Table 5.1. It is noted that the linear interpolation method on uneven utili-
sation intervals was used for the estimation of the power consumption of
the CPU servers, where the power values for the various utilisation inter-
vals were obtained2 from SPEC (SPEC 2008).

 SIMULATING HETEROGENEOUS CLOUDS AT SCALE

136

T
ab

le
 5

.1

Se
le

ct
ed

 s
im

ul
at

io
n

fr
am

ew
or

k
ch

ar
ac

te
ri

st
ic

s
(a

da
pt

ed
 fr

om
 B

yr
ne

 e
t

al
. 2

01
7)

Si
m

ul
at

io
n

pl
at

fo
rm

Li
ce

nc
e

La
ng

ua
ge

(s
)

Pl
at

fo
rm

po

rt
ab

ili
ty

D
ist

ri
bu

te
d

ar
ch

it
ec

tu
re

M
od

el

pe
rs

ist
en

ce

ty
pe

W
eb

 A
PI

av

ai
la

bi
lit

y
G

U
I

av
ai

la
bi

lit
y

H
ea

dl
es

s
ex

ec
ut

io
n

R
es

ul
t

ou
tp

ut

fo
rm

at

C
lo

ud
Sc

he
d

–
Ja

va
Ye

s
N

o
T

ex
t

N
o

Ye
s

N
o

X
L

S,
 T

ex
t

C
lo

ud
Si

m
A

pa
ch

e
2

Ja
va

Ye
s

N
o

YA
M

L
N

o
N

o
Ye

s
T

ex
t

D
C

Si
m

G
PL

 3
Ja

va
Ye

s
N

o
Ja

va
 c

la
ss

es
N

o
N

o
Ye

s
T

ex
t

G
D

C
Si

m
G

PL
 2

C
/

C
++

, S
he

ll
N

o
N

o
C

 c
od

e
N

o
N

o
Ye

s
T

ex
t

G
re

en
C

lo
ud

G
PL

C
++

, T
C

L
,

JS
, C

SS
, S

he
ll

N
o

N
o

T
C

L
Ye

s
Ye

s
Ye

s
D

as
hb

oa
rd

pl

ot
s

iC
an

C
lo

ud
G

PL
 3

,
G

N
U

,
A

ca
de

m
ic

C
/

C
++

, S
he

ll
Ye

s
N

o
N

E
D

N
o

Ye
s

Ye
s

T
ex

t

 C. K. FILELIS-PAPADOPOULOS ET AL.

 137

During the simulations, three different types of applications were con-
sidered. The characteristics of the applications are presented in Tables 5.2
and 5.3.

The CloudLightning Simulator was executed for different number of
resources, Cells, and submitted tasks. Each Cell was hosted on a Dell
PowerEdge C4130 node, while in the experiments with eight Cells, each
computing node was hosting two Cells. Three different configurations
were tested. In the first configuration, 11,000 resources per Cell were
utilised, while the experiment was performed for different number of
Cells. Similarly, in the second configuration, 110,000 resources per Cell
were used, and in the third configuration, 1,100,000 resources per Cell
were considered. The maximum number of submitted tasks was set equal
to four per second when one Cell was used, while this number was multi-
plied with the number of Cells when additional Cells were used. The VM
allocation policy used was the “first-fit approach,” according to which
tasks are placed on the first available server found.

Table 5.2 Hardware characteristics

Hardware MIPS Idle power consumption
(Watts)

Max power consumption
(Watts)

CPU 385,063.4268 44.9 269.0
MIC 1,347,721.9938 30.0 350.0
DFE 2,310,380.5608 70.0 100.0
GPU 1,155,190.2804 50.0 400.0

Table 5.3 Application characteristics

Application type: 1 2 3

Millions of instructions 1386.23–5544.91 462.08–2772.46 693.11–4158.69
Number of VMs 1–16 1–8 1–4
Number of vCPUs 4–8 8–16 4–8
Memory (GBytes) 4–8 4–8 4–8
Storage (TBytes) 0.02–0.04 0.01–0.02 0.04–0.08
Network bandwidth (MBps) 2.5–5 0.5–1 2.5–5
Network storage (GB) 0–0 0–0 0–0
Implementations 1, 2, 3 1, 2, 3 1, 4
ρ 0, 0.7, 0.5 0, 0.8, 0.9 0, 0.9

 SIMULATING HETEROGENEOUS CLOUDS AT SCALE

138

Table 5.4 presents the outputs, in terms of the number of accepted
tasks, the average processor and accelerator utilisation, the average net-
work utilisation, the energy consumption of the data centre, and the exe-
cution time of the CloudLightning Simulator, simulating a traditional
centralised cloud service delivery system.

For all different configurations, it can be observed that the total num-
ber of rejected tasks was high, with an ~86% task rejection on average. The
task rejection was caused mainly by the network congestion appearing
early in the simulated cloud (Fig. 5.6). Despite the fact that the selection
of applications and their corresponding implementations (Table 5.3) were
performed randomly using a uniform random generator, accelerator
implementations were starting to be rejected after a period of simulated
time, since the network resources are shared between the resources hosted
across a Cell. This yields the acceptance of additional CPU tasks that in
general require more computational time for execution and consequently
overload the network.

The energy consumption estimation of the cloud infrastructure
increased with the number of resources per Cell and the number of Cells.
It is expected that, except from the idle servers that consume the mini-
mum power, when the utilisation of the cloud increases, the energy con-
sumption will proportionally increase.

The CloudLightning Simulator was also tested using the SOSM
resource allocation framework, for 100 resources per vRM, 10 vRMs per
pSwitch, and 5 pSwitches per pRouter. The VM allocation policy was
“Task Compaction,” where the system is provisioning as many VMs as
possible on each physical server. Table 5.5 presents the outputs of the
CloudLightning Simulator, in terms of the number of accepted tasks, the
average processor and accelerator utilisation, the average network utilisa-
tion, the energy consumption of the data centre, and the execution time
of the simulator, when using the SOSM engine.

During the SOSM resource allocation simulation, it can be observed
that there was a more balanced utilisation between CPUs and accelera-
tors. More specifically, accelerators tended to be utilised at the same levels
as CPUs, while in many cases, their utilisation percentages overcame the
corresponding CPU ones. This was due to the fact that the system (SOSM
framework) decides the resources (and types of implementations) to be
allocated for a task, according to the predefined assessment functions,
that targets on (a) improved service delivery, (b) computational efficiency,
(c) improved energy consumption, and (d) efficient management of

 C. K. FILELIS-PAPADOPOULOS ET AL.

 139

T
ab

le
 5

.4

E
xe

cu
tio

n
of

 th
e

C
lo

ud
L

ig
ht

ni
ng

 s
im

ul
at

or
 fo

r
di

ff
er

en
t n

um
be

r
of

 r
es

ou
rc

es
, d

iff
er

en
t n

um
be

r
of

 C
el

ls
, a

nd

di
ff

er
en

t
nu

m
be

r
of

 t
as

ks
 fo

r
th

e
tr

ad
iti

on
al

 c
en

tr
al

is
ed

 c
lo

ud
 s

er
vi

ce
 d

el
iv

er
y

sy
st

em

C
on

fig
ur

at
io

n
C

el
ls

Su
bm

it
te

d
ta

sk
s

A
cc

ep
te

d
ta

sk
s

A
ve

ra
ge

 p
ro

ce
sso

r
ut

ili
sa

ti
on

 (
ov

er

ac
ti

ve
 se

rv
er

s)

A
ve

ra
ge

 a
cc

el
er

at
or

ut

ili
sa

ti
on

 (
ov

er

ac
ti

ve
 se

rv
er

s)

A
ve

ra
ge

ne

tw
or

k
ut

ili
sa

ti
on

 (
%

)

E
ne

rg
y

co
ns

um
pt

io
n

(G
W

h)

E
xe

cu
ti

on

ti
m

e
(s

ec
)

C
on

fig
ur

at
io

n
1:

11
,0

00

re
so

ur
ce

s
pe

r
C

el
l

1
2,

41
9,

20
0

13
6,

73
4

34
.1

5%
(8

9.
94

%
)

1.
51

%
(7

2.
83

%
)

99
.4

6
0.

41
43

4
20

37
.5

7

2
4,

83
8,

40
0

77
0,

21
9

46
.2

5%
(9

4.
23

%
)

4.
78

%
(6

4.
93

%
)

96
.9

5
1.

25
82

8
25

65
.4

9

3
7,

25
7,

60
0

1,
36

3,
38

2
43

.1
9%

(9
0.

71
%

)
4.

48
%

(5
6.

68
%

)
98

.7
8

1.
72

95
5

26
91

.6
7

4
9,

67
6,

80
0

2,
44

6,
41

0
45

.8
2%

(9
1.

59
%

)
7.

19
%

77
.8

6%
96

.7
2.

55
62

3
30

04
.9

4

8
19

,3
53

,6
00

3,
30

1,
12

2
44

.0
5%

(9
1.

2%
)

4.
48

%
(7

0.
72

%
)

98
.1

8
4.

40
21

6
28

33
.7

0

C
on

fig
ur

at
io

n
2:

11
0,

00
0

re
so

ur
ce

s
pe

r
C

el
l

1
2,

41
9,

20
0

13
6,

57
8

3.
42

%
(9

0.
03

%
)

0.
15

%
(7

1.
53

%
)

99
.4

7
2.

15
03

3
51

02
.7

9

2
4,

83
8,

40
0

42
0,

45
1

5.
29

%
(8

6.
86

%
)

0.
16

%
(6

2.
15

%
)

99
.3

9
4.

51
39

61
97

.0
7

3
7,

25
7,

60
0

1,
09

6,
13

4
4.

36
%

(8
9.

58
%

)
0.

35
%

(5
5.

5%
)

99
.2

6
6.

83
92

1
75

60
.6

4

4
9,

67
6,

80
0

1,
99

0,
11

1
7.

03
%

(9
0.

06
%

)
0.

45
%

(7
4.

8%
)

98
.8

5
9.

63
63

9
75

99
.3

8

8
19

,3
53

,6
00

2,
58

3,
26

0
4.

67
%

(8
7.

11
%

)
0.

31
%

(6
9.

21
%

)
99

.0
7

18
.0

37
86

74
65

.9
7

(c
on

ti
nu

ed
)

 SIMULATING HETEROGENEOUS CLOUDS AT SCALE

140

T
ab

le
 5

.4

(c
on

tin
ue

d)

C
on

fig
ur

at
io

n
C

el
ls

Su
bm

it
te

d
ta

sk
s

A
cc

ep
te

d
ta

sk
s

A
ve

ra
ge

 p
ro

ce
sso

r
ut

ili
sa

ti
on

 (
ov

er

ac
ti

ve
 se

rv
er

s)

A
ve

ra
ge

 a
cc

el
er

at
or

ut

ili
sa

ti
on

 (
ov

er

ac
ti

ve
 se

rv
er

s)

A
ve

ra
ge

ne

tw
or

k
ut

ili
sa

ti
on

 (
%

)

E
ne

rg
y

co
ns

um
pt

io
n

(G
W

h)

E
xe

cu
ti

on

ti
m

e
(s

ec
)

C
on

fig
ur

at
io

n
3:

1,
10

0,
00

0
re

so
ur

ce
s

pe
r

C
el

l

1
2,

41
9,

20
0

13
6,

46
2

0.
34

%
(8

9.
96

%
)

0.
02

%
(7

0.
99

%
)

99
.4

6
19

.5
08

04
41

,3
19

.3
1

2
4,

83
8,

40
0

41
9,

31
3

0.
53

%
(8

6.
61

%
)

0.
02

%
(6

1.
93

%
)

99
.3

9
39

.2
29

57
40

,7
54

.9
4

3
7,

25
7,

60
0

1,
09

5,
99

9
0.

44
%

(8
9.

09
%

)
0.

03
%

(5
5.

4%
)

99
.2

6
58

.9
15

02
40

,7
47

.4
6

4
9,

67
6,

80
0

1,
98

9,
89

3
0.

71
%

(9
0.

05
%

)
0.

05
%

(7
5.

46
%

)
98

.8
5

79
.0

71
97

44
,7

77
.3

3

8
19

,3
53

,6
00

2,
58

5,
70

1
0.

47
%

(8
7.

06
%

)
0.

03
%

(6
9.

36
%

)
99

.0
7

15
6.

90
56

9
43

,9
71

.9
0

 C. K. FILELIS-PAPADOPOULOS ET AL.

 141

Fi
g.

 5
.6

E

ne
rg

y
co

ns
um

pt
io

n,
 p

ro
ce

ss
or

, a
cc

el
er

at
or

, a
nd

 n
et

w
or

k
ut

ili
sa

tio
n

of
 t

he
 c

lo
ud

 o
ve

r
tim

e
fo

r
th

e
tr

ad
iti

on
al

cl

ou
d

de
liv

er
y

si
m

ul
at

io
n

 SIMULATING HETEROGENEOUS CLOUDS AT SCALE

142

T
ab

le
 5

.5

E
xe

cu
tio

n
of

 th
e

C
lo

ud
L

ig
ht

ni
ng

 s
im

ul
at

or
 fo

r
di

ff
er

en
t n

um
be

r
of

 r
es

ou
rc

es
, d

iff
er

en
t n

um
be

r
of

 C
el

ls
, a

nd

di
ff

er
en

t
nu

m
be

r
of

 t
as

ks
 b

y
us

in
g

SO
SM

 e
ng

in
e

C
on

fig
ur

at
io

n
C

el
ls

Su
bm

it
te

d
ta

sk
s

A
cc

ep
te

d
ta

sk
s

A
ve

ra
ge

 p
ro

ce
sso

r
ut

ili
sa

ti
on

 (
ov

er

ac
ti

ve
 se

rv
er

s)

A
ve

ra
ge

 a
cc

el
er

at
or

ut

ili
sa

ti
on

 (
ov

er

ac
ti

ve
 se

rv
er

s)

A
ve

ra
ge

ne

tw
or

k
ut

ili
sa

ti
on

 (
%

)

E
ne

rg
y

co
ns

um
pt

io
n

(G
W

h)

E
xe

cu
ti

on

ti
m

e
(s

ec
)

C
on

fig
ur

at
io

n
1:

 1
1,

00
0

re
so

ur
ce

s
pe

r
C

el
l

1
2,

41
9,

20
0

2,
40

7,
07

9
33

.8
6%

(7
8.

38
%

)
34

.1
9%

(8
9.

86
%

)
90

.5
2

1.
25

50
2

18
70

.0
3

2
4,

83
8,

40
0

4,
83

8,
40

0
33

.2
3%

(7
9.

61
%

)
30

.6
8%

(7
9.

19
%

)
50

.5
1

2.
60

83
6

17
04

.7
4

3
7,

25
7,

60
0

7,
25

7,
60

0
23

.6
4%

(7
2.

77
%

)
26

.3
%

(7
8.

33
%

)
37

.4
3.

26
58

5
17

76
.2

4

4
9,

67
6,

80
0

9,
67

6,
80

0
35

.1
9%

(7
7.

15
%

)
34

.2
4%

(8
6.

47
)

31
.5

4
5.

48
66

2
18

66
.6

3

8
19

,3
53

,6
00

19
,3

14
,3

39
50

.6
2%

(7
9.

25
%

)
32

.3
6%

(8
4.

5%
)

58
.1

1
10

.6
88

41
27

72
.4

5

C
on

fig
ur

at
io

n
2:

11
0,

00
0

re
so

ur
ce

s
pe

r
C

el
l

1
2,

41
9,

20
0

2,
41

9,
20

0
1.

35
%

(5
9.

01
%

)
3.

52
%

(8
3.

91
%

)
19

.6
5

2.
82

53
4

41
10

.5
4

2
4,

83
8,

40
0

4,
83

8,
40

0
1.

48
%

(6
3.

73
%

)
3.

08
%

(7
2.

52
%

)
14

.2
2

5.
78

65
8

41
98

.3
8

3
7,

25
7,

60
0

7,
25

7,
60

0
1.

12
%

(5
7.

6%
)

2.
63

%
(7

3.
35

%
)

16
.2

2
8.

11
74

7
43

22
.6

7

4
9,

67
6,

80
0

9,
67

6,
80

0
1.

39
%

(5
7.

92
%

)
3.

49
%

(7
9.

06
%

)
17

.4
4

11
.9

36
87

49
06

.2
0

8
19

,3
53

,6
00

19
,3

53
,6

00
1.

3%
(5

6.
16

%
)

3.
34

%
(7

8.
81

%
)

17
.6

3
23

.1
38

96
50

43
.6

6

(c
on

ti
nu

ed
)

 C. K. FILELIS-PAPADOPOULOS ET AL.

 143

C
on

fig
ur

at
io

n
C

el
ls

Su
bm

it
te

d
ta

sk
s

A
cc

ep
te

d
ta

sk
s

A
ve

ra
ge

 p
ro

ce
sso

r
ut

ili
sa

ti
on

 (
ov

er

ac
ti

ve
 se

rv
er

s)

A
ve

ra
ge

 a
cc

el
er

at
or

ut

ili
sa

ti
on

 (
ov

er

ac
ti

ve
 se

rv
er

s)

A
ve

ra
ge

ne

tw
or

k
ut

ili
sa

ti
on

 (
%

)

E
ne

rg
y

co
ns

um
pt

io
n

(G
W

h)

E
xe

cu
ti

on

ti
m

e
(s

ec
)

C
on

fig
ur

at
io

n
3:

1,
10

0,
00

0
re

so
ur

ce
s

pe
r

C
el

l

1
2,

41
9,

20
0

2,
41

9,
20

0
0.

13
%

(5
2.

58
%

)
0.

35
%

(7
5.

92
%

)
19

.8
2

20
.1

43
22

42
,7

16
.9

8

2
4,

83
8,

40
0

4,
83

8,
40

0
0.

14
%

(5
8.

84
%

)
0.

3%
(6

8.
39

%
)

14
.1

8
40

.3
77

29
49

,8
64

.8
4

3
7,

25
7,

60
0

7,
25

7,
60

0
0.

11
%

(4
7.

56
%

)
0.

26
%

(6
1.

58
%

)
16

.2
2

60
.0

68
21

46
,1

16
.7

8

4
9,

67
6,

80
0

9,
67

6,
80

0
0.

14
%

(5
0.

34
%

)
0.

35
%

(6
9.

99
%

)
17

.6
8

81
.0

11
69

45
,4

14
.0

1

8
19

,3
53

,6
00

19
,3

53
,6

00
0.

13
%

(4
8.

79
%

)
0.

34
%

(7
0.

09
%

)
17

.8
9

16
1.

36
39

8
47

,1
84

.4
1

T
ab

le
 5

.5

(c
on

tin
ue

d)

 SIMULATING HETEROGENEOUS CLOUDS AT SCALE

144

underlying resources. Since accelerators are more efficient in terms of
 computational efficiency and energy consumption, the system’s choice is
apparent.

It can also be seen that the total number of rejected tasks was very low
(~0.05%), but the total estimated energy consumption of the cloud was
close to the estimations of the traditional delivery system, due to the utili-
sation of the energy-efficient accelerators. Thus, the SOSM- based cloud
environment was able to execute more tasks consuming almost equal
energy. This was expected, since the SOSM selects the most efficient
resources, executing the task faster, thus freeing those resources faster, and
consequently leading to more tasks being accepted.

In order to examine the energy efficiency of the two resource allocation
techniques in more detail, the ratio of the total energy consumption of the
data centre over the number of accepted tasks was computed for all experi-
ments. In Table 5.6, the number of Wh that is consumed per task for all
configurations is presented. It can be observed that the number of Wh per
task is substantially smaller when the SOSM engine is used. This is due to
the fact that when the SOSM engine is not used, the resources that are
utilised are selected randomly, while with the SOSM engine the resources

Table 5.6 Ratio of the total energy consumption of the cloud over the number
of accepted tasks for all configurations

Configuration Cells Wh per task
without SOSM

Wh per task
with SOSM

Configuration 1: 11,000 resources per Cell 1 3030.26314 521.38713
2 1633.66523 539.09557
3 1268.57330 449.99035
4 1044.89027 566.98702
8 1333.53448 553.39248

Configuration 2: 110,000 resources per Cell 1 15,744.33657 1167.88194
2 10,735.85269 1195.96974
3 6239.39226 1118.47856
4 4842.13695 1233.55551
8 6982.59563 1195.58945

Configuration 3: 1,100,000 resources per Cell 1 142,955.84119 8326.39716
2 93,556.77024 8345.17402
3 53,754.62934 8276.59419
4 39,736.79489 8371.74376
8 60,682.07036 8337.67258

 C. K. FILELIS-PAPADOPOULOS ET AL.

 145

are selected by the system, according to the predefined strategies; thus, the
most energy efficient solution is always chosen.

In Figs. 5.6 and 5.7, time-dependent charts are presented for the last
experiment of the third configuration (eight Cells, 1,100,000 servers per
Cell). In Fig. 5.6, the energy consumption, the processor utilisation, the
accelerator utilisation, and the network utilisation of the cloud are pre-
sented with respect to the simulated time for the traditional centralised
cloud service delivery. In Fig. 5.7, the energy consumption, the processor
utilisation, the accelerator utilisation, and the network utilisation of the
cloud are presented through the simulation time when using the SOSM
engine.

5.5 concluSIon

This chapter presented the work towards demonstrating the scalability of
the CloudLightning simulation framework. Cloud simulation tools are
examined, since demonstrating scalability in hyperscale clouds is unfeasi-
ble. The design and implementation of the CloudLightning simulation
framework were presented, a framework that overcomes the limitations of
the existing simulation platforms. The main innovations of the framework
lie in the fact that it is implemented for parallel computing systems (using
MPI and OpenMP), it is based on a time-advancing loop instead of a dis-
crete sequence of events, it allows the integration of dynamic resource
allocation systems such as SOSM, and it supports hybrid CPU-accelerator
resources. Finally, the CloudLightning Simulator was developed to be eas-
ily extensible, since the time-advancing execution model allows the inte-
gration of any strategies or phenomena observed in cloud environments.

From the experiments that were performed, the CloudLightning simu-
lator was found to be capable of simulating clouds with large number of
resources. Different executions were performed with the traditional cloud
delivery system and with the use of the SOSM framework, for a various
number of resources and Cells. Both the simulation platform and the
SOSM framework were found to be scalable; simulations up to 8,800,000
hardware resources grouped into eight Cells were performed, only limited
by the available hardware used for experimentation. SOSM was found to
provide a more balanced distribution of tasks on the available hardware
resources, with a much lower number of total rejected tasks. The energy
consumption was found to be equivalent to the energy consumed when
simulating a traditional cloud delivery system; however, the SOSM system

 SIMULATING HETEROGENEOUS CLOUDS AT SCALE

146

Fi
g.

 5
.7

E

ne
rg

y
co

ns
um

pt
io

n,
 p

ro
ce

ss
or

,
ac

ce
le

ra
to

r,
an

d
ne

tw
or

k
ut

ili
sa

tio
n

of
 t

he
 c

lo
ud

 o
ve

r
tim

e
fo

r
th

e
SO

SM

si
m

ul
at

io
n

 C. K. FILELIS-PAPADOPOULOS ET AL.

 147

was able to service a significantly larger number of tasks. Thus, the energy
consumed per task in the SOSM system was substantially reduced com-
pared to the traditional approach.

The CloudLightning Simulator and Simulator Visualization Tool are
available for download under the Apache 2 open source licence at https://
bitbucket.org/cloudlightning/cloudlightning-simulator and https://bit-
bucket.org/cloudlightning/cl-simulatorvisualization, respectively.

5.6 chapter 5 related cloudlIghtnIng readIngS

 1. Byrne, J., Svorobej, S., Giannoutakis, K., Tzovaras, D., Byrne, P. J.,
Östberg, P. O., et al. (2017). A review of cloud computing simula-
tion platforms and related environments. In Proceedings of the 7th
International Conference on Cloud Computing and Services Science
(CLOSER 2017) (pp. 679–691). SCITEPRESS-Science and
Technology Publications, Lda.

 2. Filelis-Papadopoulos, C. K., Gravvanis, G. A., & Kyziropoulos, P. E.
(2017). A framework for simulating large scale cloud infrastructures.
Future Generation Computer Systems. https://doi.org/10.1016/j.
future.2017.06.017

 3. Filelis-Papadopoulos, C. K., Gravvanis, G. A., & Morrison, J. P.
(2017). CloudLightning simulation and evaluation roadmap. In
Proceedings of the 1st International Workshop on Next Generation of
Cloud Architectures, Vol. 2. ACM.

 4. Filelis-Papadopoulos, C. K., Grylonakis, E. N. G., Kyziropoulos,
P. E., Gravvanis, G. A., & Morrison, J. P. (2016). Characterization
of hardware in self-managing self-organizing Cloud environment.
In Proceedings of the 20th Pan-Hellenic Conference on Informatics,
Vol. 56. ACM.

 5. Filelis-Papadopoulos, C. K., Giannoutakis, K. M., & Gravvanis,
G. A. (2017). Large-scale simulation of a self-organizing self-
management cloud computing framework. The Journal of
Supercomputing. https://doi.org/10.1007/s11227-017-2143-2

 6. Giannoutakis, K. M., Makaratzis, A. T., Tzovaras, D., Filelis-
Papadopoulos, C. K., & Gravvanis, G. A. (2017, April). On the
power consumption modeling for the simulation of Heterogeneous
HPC Clouds. In Proceedings of the 1st International Workshop on
Next Generation of Cloud Architectures, Vol. 1. ACM.

 SIMULATING HETEROGENEOUS CLOUDS AT SCALE

https://bitbucket.org/cloudlightning/cloudlightning-simulator
https://bitbucket.org/cloudlightning/cloudlightning-simulator
https://bitbucket.org/cloudlightning/cl-simulatorvisualization
https://bitbucket.org/cloudlightning/cl-simulatorvisualization
https://doi.org/10.1016/j.future.2017.06.017
https://doi.org/10.1016/j.future.2017.06.017
https://doi.org/10.1007/s11227-017-2143-2

148

 7. Lynn, T., Gourinovitch, A., Byrne, J., Byrne, P. J., Svorobej, S.,
Giannoutakis, K., et al. (2017). A preliminary systematic review of
computer science literature on cloud computing research using
Open Source simulation platforms. In Proceedings of the 7th
International Conference on Cloud Computing and Services Science
(CLOSER 2017) (pp. 537–545). SCITEPRESS-Science and
Technology Publications, Lda.

 8. Makaratzis, A. T., Giannoutakis, K. M., & Tzovaras, D. (2017).
Energy modeling in cloud simulation frameworks. Future Generation
Computer Systems. https://doi.org/10.1016/j.future.2017.06.016

noteS

1. https://www.spec.org/power_ssj2008/results/res2016q2/power_
ssj2008-20160607-00734.html

2. http://spec.org/power_ssj2008/results/res2016q2/power_ssj2008-
20160328-00719.html

reFerenceS

Barroso, L. A., Clidaras, J., & Hoelzle, U. (2013). The datacenter as a computer:
An introduction to the design of warehouse-scale machines. Morgan & Claypool.
https://doi.org/10.2200/S00516ED2V01Y201306CAC024

Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and
adaptive heuristics for energy and performance efficient dynamic consolidation of
virtual machines in cloud data centers. Concurrency and Computation: Practice &
Experience, 24(13), 1397–1420. https://doi.org/10.1002/cpe.1867

Byrne, J., Svorobej, S., Giannoutakis, K. M., Tzovaras, D., Byrne, P., Ostberg,
P. O., et al. (2017). A review of cloud computing simulation platforms and
related environments. In The 7th International Conference on Cloud Computing
and Services Science (pp. 651–663).

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F., & Buyya, R.
(2011). CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Software:
Practice and Experience, 41(1), 23–50. https://doi.org/10.1002/spe.995

Cisco Global Cloud Index: Forecast and Methodology, 2015–2020. (2016).
Retrieved from https://www.cisco.com/c/dam/en/us/solutions/collateral/
service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf

Dagum, L., & Menon, R. (1998). OpenMP: An industry standard API for shared
memory programming. IEEE Computational Science and Engineering, 5(1),
46–55. https://doi.org/10.1109/99.660313

 C. K. FILELIS-PAPADOPOULOS ET AL.

https://doi.org/10.1016/j.future.2017.06.016
https://www.spec.org/power_ssj2008/results/res2016q2/power_ssj2008-20160607-00734.html
https://www.spec.org/power_ssj2008/results/res2016q2/power_ssj2008-20160607-00734.html
http://spec.org/power_ssj2008/results/res2016q2/power_ssj2008-20160328-00719.html
http://spec.org/power_ssj2008/results/res2016q2/power_ssj2008-20160328-00719.html
https://doi.org/10.2200/S00516ED2V01Y201306CAC024
https://doi.org/10.1002/cpe.1867
https://doi.org/10.1002/spe.995
https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
https://doi.org/10.1109/99.660313

 149

Filelis-Papadopoulos, C., Xiong, H., Spataru, A., Castañe, G., Dapeng, D.,
Gravvanis, G., et al. (2017). A generic framework supporting self-organisation
and self-management in hierarchical systems. In Proceedings of the International
Symposium on Parallel and Distributed Computing.

Filelis-Papadopoulos, C. K., Giannoutakis, K. M., Gravvanis, G. A., & Tzovaras,
D. (2017). Large-scale simulation of a self-organizing self-management cloud
computing framework. The Journal of Supercomputing. https://doi.
org/10.1007/s11227-017-2143-2

Filelis-Papadopoulos, C. K., Gravvanis, G. A., & Kyziropoulos, P. E. (2017). A
framework for simulating large scale cloud infrastructures. Future Generation
Computer Systems. https://doi.org/10.1016/j.future.2017.06.017

Filelis-Papadopoulos, C. K., Gravvanis, G. A., & Morrison, J. P. (2017).
CloudLightning simulation and evaluation roadmap. In Proceedings of the 1st
International Workshop on Next Generation of Cloud Architectures (pp. 2:1–2:6).
New York, NY: ACM. https://doi.org/10.1145/3068126.3068128

Giannoutakis, K. M., Makaratzis, A. T., Tzovaras, D., Filelis-Papadopoulos, C. K.,
& Gravvanis, G. A. (2017). On the power consumption modeling for the simu-
lation of heterogeneous HPC clouds. In Proceedings of the 1st International
Workshop on Next Generation of Cloud Architectures (pp. 1:1–1:6). New York,
NY: ACM. https://doi.org/10.1145/3068126.3068127

Gropp, W., Lusk, E., Doss, N., & Skjellum, A. (1996). A high-performance,
portable implementation of the MPI message passing interface standard.
Parallel Computing, 22(6), 789–828. https://doi.org/10.1016/0167-
8191(96)00024-5

Gupta, S. K. S., Gilbert, R. R., Banerjee, A., Abbasi, Z., Mukherjee, T., &
Varsamopoulos, G. (2011). GDCSim: A tool for analyzing green data center
design and resource management techniques. In 2011 International Green
Computing Conference and Workshops (pp. 1–8). https://doi.org/10.1109/
IGCC.2011.6008612

Kliazovich, D., Bouvry, P., & Khan, S. U. (2012). GreenCloud: A packet-level
simulator of energy-aware cloud computing data centers. The Journal of
Supercomputing, 62(3), 1263–1283. https://doi.org/10.1007/s11227-010-
0504-1

Makaratzis, A., Khan, M., Giannoutakis, K., Elster, A., & Tzovaras, D. (2017).
GPU power modeling of HPC applications for the simulation of heteroge-
neous clouds. In International Conference on Parallel Processing and Applied
Mathematics.

Mars, J. (2012). Rethinking the architecture of warehouse-scale computers (Doctoral
dissertation, University of Virginia). https://doi.org/10.18130/V30N5R

Nunez, A., Vazquez-Poletti, J. L., Caminero, A. C., Castañe, G. G., Carretero, J.,
& Llorente, I. M. (2012). iCanCloud: A flexible and scalable cloud infrastructure
simulator. Journal of Grid Computing, 10(1), 185–209. https://doi.
org/10.1007/s10723-012-9208-5

 SIMULATING HETEROGENEOUS CLOUDS AT SCALE

https://doi.org/10.1007/s11227-017-2143-2
https://doi.org/10.1007/s11227-017-2143-2
https://doi.org/10.1016/j.future.2017.06.017
https://doi.org/10.1145/3068126.3068128
https://doi.org/10.1145/3068126.3068127
https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/10.1109/IGCC.2011.6008612
https://doi.org/10.1109/IGCC.2011.6008612
https://doi.org/10.1007/s11227-010-0504-1
https://doi.org/10.1007/s11227-010-0504-1
https://doi.org/10.18130/V30N5R
https://doi.org/10.1007/s10723-012-9208-5
https://doi.org/10.1007/s10723-012-9208-5

150

SPEC. (2008). Standard performance evaluation corporation, server power and per-
formance characteristics. Retrieved from http://www.spec.org/powerssj2008/

Tian, W., Zhao, Y., Xu, M., Zhong, Y., & Sun, X. (2015). A toolkit for modeling
and simulation of real-time virtual machine allocation in a cloud data center.
IEEE Transactions on Automation Science and Engineering, 12(1), 153–161.
https://doi.org/10.1109/TASE.2013.2266338

Tighe, M., Keller, G., Bauer, M., & Lutfiyya, H. (2012). DCSim: A data centre
simulation tool for evaluating dynamic virtualized resource management. In
2012 8th International Conference on Network and Service Management
(CNSM) and 2012 Workshop on Systems Virtualization Management (SVM)
(pp. 385–392).

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits any noncommer-
cial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material
derived from this book or parts of it.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to
the material. If material is not included in the chapter’s Creative Commons license
and your intended use is not permitted by statutory regulation or exceeds the per-
mitted use, you will need to obtain permission directly from the copyright holder.

 C. K. FILELIS-PAPADOPOULOS ET AL.

http://www.spec.org/powerssj2008/
https://doi.org/10.1109/TASE.2013.2266338
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

151© The Author(s) 2018
T. Lynn et al. (eds.), Heterogeneity, High Performance Computing,
Self-Organization and the Cloud, Palgrave Studies in Digital
Business & Enabling Technologies,
https://doi.org/10.1007/978-3-319-76038-4_6

CHAPTER 6

Concluding Remarks

Theo Lynn and John P. Morrison

Abstract Traditionally, access to high performance computing was
restricted by architectural complexity, availability of trained personnel, and
budgetary issues. At the same time, research suggests that existing mea-
sures for greater data centre energy efficiencies will reach theoretical and
practical limits in the near future. This concluding chapter briefly discusses
the potential of (i) cloud computing to disrupt the high performance
computing sector, and (ii) new heterogeneous cloud architectures, based
on the concepts of self-organisation, self-management, and the separation
of concerns, to disrupt extant cloud resource management approaches.

Keywords Disruptive innovation • Cloud computing • High performance
computing • HPC in the cloud

T. Lynn (*)
Irish Centre for Cloud Computing (IC4), Dublin City University,
Dublin, Ireland
e-mail: theo.lynn@dcu.ie

J. P. Morrison
Department of Computer Science, University College Cork, Cork, Ireland
e-mail: j.morrison@cs.ucc.ie

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76038-4_6&domain=pdf
mailto:theo.lynn@dcu.ie
mailto:j.morrison@cs.ucc.ie

152

Clayton Christensen, in his seminal study on the disk drive industry, iden-
tified two types of technological change. Sustaining technologies sustained
the industry’s rate of improvement in product performance and ranged in
difficulty from incremental to radical, whereas so-called disruptive innova-
tions redefined performance trajectories and consistently resulted in the
failure of the industry’s leading firms (Christensen 1997). Cloud comput-
ing continues to transform, and democratise access to, the use of informa-
tion and communications technology infrastructure. Organisations of all
sizes and sectors, as well as the general public, are able to exploit the
advantages of the agility and scalability (up and down) inherent in cloud
computing to work more efficiently, reduce Information Technology (IT)
costs (including IT capital expenditure, maintenance and support costs,
and related environmental costs), support resilience and business continu-
ity, and growth (Hogan et al. 2011; Low et al. 2011; Buyya et al. 2009;
Leimbach et al. 2014). This book is about disruptive potential—the (i) the
potential of cloud computing to disrupt the high performance computing
(HPC) sector and (ii) the potential of a new heterogeneous cloud archi-
tecture based on the concepts of self-organisation, self-management, and
the separation of concerns to disrupt extant cloud resource management
approaches.

For a significant portion of the last half-century, HPC exploited rela-
tively established trajectories of performance; single-thread processor
clock frequency was viewed as the main driving factor behind increasing
computational performance. Manufacturers of such processors, and Intel
in particular, delivered consistent improvements in performance until hit-
ting a scientific “power wall” for single-core processors at the turn of the
century. With the levelling off of single-thread processor performance, the
industry sought to sustain performance trajectories by combining multiple
Central Processing Unit (CPU) cores on one chip to achieve performance
gains. While multi-core architectures achieve performance gains, efficient
parallel computation on multiple cores provided discrete challenges for
the HPC end user community. More recently, the use of different types of
processor has been exploited to address this issue. As different compute
resources can have different properties, applications with diverse charac-
teristics can be executed quicker and more efficiently using these
processors.

Heterogeneous architectures support these specialist processors as co-
processors to a host processor; the host processor can complete one
instruction stream, while the co-processor can complete a different

 T. LYNN AND J. P. MORRISON

 153

instruction stream or different type of stream (Eijkhout et al. 2016). While
such heterogeneous resources can provide new measures of performance,
for example, energy efficiency, both technically and culturally the HPC
community remains focused on maximising the (effective) processing
speed of a given architecture to orders of magnitude greater than general-
purpose computing. Whereas each evolution of the processor architecture
was relatively novel in the context of difficult HPC applications, it was not
disruptive. To paraphrase Christensen (1997), the customers of the lead-
ing HPC supplier led them towards these achievements. These sustaining
technologies did not precipitate failure by incumbents or significant
changes in the HPC industry structure. Size still matters. The HPC com-
munity remains dominated by a relatively small number of suppliers cater-
ing for a relatively small number of large organisations requiring significant
investments in infrastructure. For the most part, access to HPC remains
restricted by architectural complexity, availability of trained personnel, and
budgetary issues (Intersect360 Research 2014).

In the last few years, cloud service providers (CSPs) have sought to
enter the HPC market; however, HPC has remained one of the smallest
segments in the market. This can be explained by both technical and cul-
tural perceptions on the nature of HPC and the efficacy of cloud comput-
ing architectures to deliver high performance. From a technical perspective,
many HPC workloads are not ready to run on today’s cloud architectures,
and provisioning of HPC clusters in the cloud still typically requires deep
IT knowledge. Similarly, many in the HPC community do not believe a
general-purpose distributed architecture designed for multi-tenancy, hori-
zontal scaling, and minimal interference with physical infrastructure can
deliver the performance expectations for HPC. And this may be correct.

However, there are classes of HPC users who do not need maximum
performance, and this goes to the core of the disruptive potential of cloud
computing for HPC. Cloud computing creates new markets and value
networks for organisations (and individuals) who cannot afford or cannot
gain convenient access to traditional HPC infrastructure such as super-
computers, who have loosely coupled workloads that can be scaled hori-
zontally, and/or have pent-up HPC demand and find it difficult to burst
capacity for overflow or surge workloads with their existing HPC infra-
structure. Given the impact HPC has on scientific discovery and innova-
tion, dramatically increasing access and use of HPC through the cloud to
this wider community of low-end consumers or non-consumers has the
potential to drive significant societal and economic impact.

 CONCLUDING REMARKS

154

At the same time, it is questionable whether the economic model of
conventional hyperscale cloud computing is sustainable in the long term.
Not from a business or technology perspective but from an environmental
perspective. The IT sector accounts for a significant portion of global elec-
tricity with some estimates at approximately 7% (Corcoran and Andrae
2013). Data centres have an extremely energy-intensive profile. For exam-
ple, a study conducted for the US Department of Energy estimates that
data centres consume 10–50 times the energy per floor space of a typical
commercial office building and collectively (Darrow and Hedman 2009).
In 2014, data centres accounted for 1.8% of total US electricity consump-
tion driven by increased Internet usage and the rise of cloud computing
(Shehabi et al. 2016). Research suggests that the data centre sector, and
hyperscale data operators specifically, has taken significant measures to
improve energy efficiency including increasing server productivity and
utilisation and efficiency improvements in storage, network, and data cen-
tre infrastructure operations such as cooling (Shehabi et al. 2016). Despite
these initiatives, the environmental impact of Information and
Communications Technologies (ICT) operations, data centres, and cloud
energy usage remains a significant concern and increased focus of policy
makers and civic society.

Research suggests that existing measures for greater data centre energy
efficiencies will reach theoretical and practical limits in the near future, and
therefore cloud computing especially needs to look beyond its current
model of using one-size-fits-all hardware towards optimising hardware for
specific workloads (Shehabi et al. 2016). Such optimisation is central to
the heterogeneous cloud; however, such a vision for cloud computing
increases the complexity of managing cloud infrastructure dramatically. As
such, a new paradigm for cloud computing architectural design is required.

This book presents one possible architectural design, CloudLightning,
for managing heterogeneous clouds based on self-organisation, self-
management, and the separation of concerns. CloudLightning is a funda-
mentally different architecture to the homogeneous cloud platforms
prevalent today. Specifically, it both accommodates workload variation
through optimised heterogeneous hardware and hides this complexity
from enterprise application developers and end users, thus providing a dif-
ferent package of attributes including not only hardware performance but
energy efficiency, ease of management, and ease of use as well.
CloudLightning’s disruptive potential is the new performance trajectory
that such attributes create.

 T. LYNN AND J. P. MORRISON

 155

RefeRences

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud
computing and emerging IT platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation Computer Systems, 25(6),
599–616.

Christensen, C. M. (1997). The innovator’s dilemma: When new technologies cause
great firms to fail. Cambridge, MA: Harvard Business School Press.

Corcoran, P., & Andrae, A. (2013). Emerging trends in electricity consumption for
consumer ICT. Tech. Rep., National University of Ireland, Galway, Connacht,
Ireland. Retrieved October 24, 2016, from https://aran.library.nuigalway.ie/
xmlui/handle/10379/3563

Darrow, K., & Hedman, B. (2009). Opportunities for combined heat and power in
data centres. Arlington, VA: ICF International.

Eijkhout, V., van de Geijn, R., & Chow, E. (2016). Introduction to high perfor-
mance scientific computing. Zenodo. https://doi.org/10.5281/zenodo.49897

Hogan, M., Liu, F., Sokol, A., & Tong, J. (2011). NIST cloud computing stan-
dards roadmap. NIST Special Publication, 35.

Intersect360 Research. (2014). Worldwide high performance computing 2013:
Total Market Model and 2014–18 forecast. Sunnyvale, CA.

Leimbach, T., Hallinan, D., Bachlechner, D., Weber, A., Jaglo, M., Hennen, L.,
et al. (2014). Potential and impacts of cloud computing services and social
network websites (STOA Cloud Computing—Study). Retrieved October 26,
2017, from http://www.europarl.europa.eu/RegData/etudes/etudes/join/
2014/513546/IPOL-JOIN_ET(2014)513546_EN.pdf

Low, C., Chen, Y., & Wu, M. (2011). Understanding the determinants of cloud
computing adoption. Industrial Management & Data Systems, 111(7),
1006–1023.

Shehabi, A., Smith, S. J., Horner, N., Azevedo, I., Brown, R., Koomey, J., et al.
(2016). United States data centre energy usage report LBNL-1005775. Berkeley,
CA: Lawrence Berkeley National Laboratory.

 CONCLUDING REMARKS

https://aran.library.nuigalway.ie/xmlui/handle/10379/3563
https://aran.library.nuigalway.ie/xmlui/handle/10379/3563
https://doi.org/10.5281/zenodo.49897
http://www.europarl.europa.eu/RegData/etudes/etudes/join/2014/513546/IPOL-JOIN_ET(2014)513546_EN.pdf
http://www.europarl.europa.eu/RegData/etudes/etudes/join/2014/513546/IPOL-JOIN_ET(2014)513546_EN.pdf

156

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits any noncommer-
cial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material
derived from this book or parts of it.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to
the material. If material is not included in the chapter’s Creative Commons license
and your intended use is not permitted by statutory regulation or exceeds the per-
mitted use, you will need to obtain permission directly from the copyright holder.

 T. LYNN AND J. P. MORRISON

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

157© The Author(s) 2018
T. Lynn et al. (eds.), Heterogeneity, High Performance Computing,
Self-Organization and the Cloud, Palgrave Studies in Digital
Business & Enabling Technologies,
https://doi.org/10.1007/978-3-319-76038-4

1

1 Note: Page numbers followed by ‘n’ refer to notes.

Index

A
Access Layer, 33, 34

description of, 34
Adaptability or robustness with respect

to changes, 15
definition of (see Self-organising

systems, essential
characteristics of)

Aggregation Layer, 34
description of, 34

Amazon, xix, 4, 7, 8, 10, 13, 32, 123
as a hyperscale cloud provider, 4

Amazon Web Services (AWS), see
Amazon

Ansible, as an example of a
Configuration Management
System, 100

Apache Brooklyn, 91, 92, 97, 100,
106–108

advantages of using, 107

as an example of an application
lifecycle framework, 19

Application lifecycle management, 18,
23, 91, 94, 96–99

components, features, functionality
of, 97–99

ARPANET, 2
Ashby, W. R.

definition of system, 15
Atmospheric radio wave

propagation, as an example of
ray tracing, 21

Autonomic computing, 16
definition of, 16
IBM, 16
self-management aspects of, 17

Autonomy, 15
definition of (see Self-organising

systems, essential
characteristics of)

https://doi.org/10.1007/978-3-319-76038-4

158 INDEX

AWS Batch, 7
commercial example of HPC

workload, 7

B
Baidu, 4
Bare-metal, provisioning, 13
Barriers to adoption, data

transmission, 13
BCube, 35, 36
Biological sciences, 8

as an example of scientific and
technical computing, 8

Blueprinting, description of, 19, 24
Blueprint, role of, 100
Business agility, 4

C
Cell Manager, xv, 46–48, 50, 51, 80,

104, 105
Ceph, 38
Chef, as an example of a Configuration

Management System, 100
Cisco, 4, 121

research into hyperscale cloud
providers, 4

CL, see CloudLightning
Cloud adoption, strategic motivations,

4
Cloud computing, v, vi, 2, 4, 6, 10, 11,

13, 17, 19, 23, 32, 35, 37, 56, 59,
90, 91, 123, 147, 152–154

five properties of, 37
CloudLighting, self-organisation

strategies, examples of, 83
CloudLightning (CL), v–vii, xv, 2, 11,

17, 23, 24, 32, 43–60, 64–85,
88, 90, 93–113, 115, 121–135,
137–140, 142–143, 145,
147–148, 154

cell, description of, 44
Cell Manager, 46
CL-Resource Discovery, 46
CL-Resources, 45
Compute Resource Fabric, 44
Cooperatives, definition of, 67
data locality, constraints of, 58
description of, 23
design philosophy of, 56
directed evolution, definition of, 64
framework mechanisms of, 65
gateway service, 46
infrastructure organisation, 43
Plug & Play interface, 45
scaling envelope, description of, 56
self-management strategies,

examples of, 80
vRacks, description of, 45

CloudLightning Gateway Architecture,
99–106

CloudLightning SDL (CL-SDL), xv,
94, 96, 99

Brooklyn blueprint YAML syntax
base, 99

CloudLightning simulation
framework, 145

cell operations during
communications, 124

gateway service operations during
communications, 126

See also CloudLightning simulator
CloudLightning simulator, 121, 123,

126, 129, 130, 132–134, 138, 145
application models, 133
architecture and basic characteristics

of, 123
combined CPU-accelerator power

models, 132
CPU power models, 130
description of, 122–135
execution models, 134
experimental results of, 137

 159 INDEX

memory, storage and network
modelling, 133

parallelization of in distributed
systems, 126

power consumption modelling, 129
SOSM Engine, 126

CloudSched, 121
Cloud Service Archive (CSAR), xv,

100, 112, 115n5
Cloud service providers (CSPs), xv, 40,

41, 47, 55, 90, 93
CloudSim, 121, 130
Cloud simulation tools

incapable of simlating
heterogeneous resources, 122

limitations of, 121
CL-SDL, see CloudLightning SDL
Coalitions

definition of, 47
description of, 48
formation and persistence of, 48

Coherence, 14
definition of (see Emergent systems)

Computer aided engineering, 8
as an example of scientific and

technical computing, 8
Control loops, 18

in MAPE-K, 18
Cooperatives, 67, 69
Core Layer, 34

description of, 34
Cost effectiveness, as a key

consideration of cloud
computing, 10

CSAR, see Cloud Service Archive
CSPs, see Cloud service providers

D
Data flow engines (DFEs), 11–13, 22,

123, 135
description of, 12

example of co-processor
architectures, 11

example of heterogeneous
computing, 11

example use case, 12
Data-intensive, 8, 10

as a category of HPC applications, 8
Data intensive applications, examples

of, 8
DCell, 35

as an implementation of the
Server-Centric model, 35

DCSim, 121
De Wolf, T.

definition of ‘self-organisation’, 15
DE, see Directed evolution
Decentralised control, 14

definition of (see Emergent systems)
DES, see Discrete Event Simulators
Design of self-organising systems,

challenges to, 15–16
Design principles, examples of, 13
Design strategies, of data centres, 35
DFEs, see Data flow engines
DFG, see German Research

Foundation
Directed evolution (DE), 64, 66,

69–74, 85
Discrete Event Simulators (DES), xv,

120, 122
Disruptive innovation, 152
Dynamical, 14, 15

definition of (see Emergent systems;
Self-organising systems,
essential characteristics of)

E
EAD, see Enterprise application

developer
EAO, see Enterprise Application

Operator

160 INDEX

Ease of everything, 18
management of HPC, 18

eBay, 4
Edge Layer, see Access Layer
Embarrassingly parallelisable

algorithm, 20
Emergence, definition of, 14
Emergent systems, 14

arising as a result of
self- organisation, 15

characteristics of (see Emergence)
Energy consumption, 6, 69, 120, 130,

132, 138, 144, 145
in simulations, 120
by under-utilised servers, 6

Energy efficiency, 9, 11, 12, 19, 22, 32,
36, 80, 97, 127, 144, 153, 154

Enterprise application developer
(EAD), 19

Enterprise Application Operator
(EAO), xix, 90, 100

European Commission, 8
IDC report, 2015, 8

F
Facebook, 4
Fat-tree, 35, 36
Fault tolerant, 8
Feedback loops, such as MAPE-K

(Monitor), see Monitor-
Analyse-Plan-Execute-Knowledge

FiConn, 36
Field-programmable gate array

(FPGA), xix, 12, 41, 45
FlatNet, 36

description of, 36
Floating-point operations per second

(FLOPS), 7
FLOPS, see Floating-point operations

per second
FPGA, see Field-programmable gate

array

G
Gateway service, 55, 91, 96, 100–103,

107, 110, 111, 115, 123, 124,
126, 128, 135

roles of, 100
in Warehouse Scale Computing

architecture, 123
GDCSim, 121
General Purpose GPU (GPGPU), xx,

12
Genome processing, 22, 23

computational requirements of, 22
Genome sequence processing, see

Genome processing
Genome sequencing

advantages, benefits of
heterogeneous computing, 22

benefits of a high performance cloud
solution, 23

cost of, 22
use of heterogeneous computing

for, 22
Genomics, 2, 8, 19, 21, 22, 121

as an example of a data-intensive
application, 8

core activities of, 22
definition of, 21

Geosciences, 8
as an example of scientific and

technical computing, 8
German Research Foundation, 17
Gershenson, C.

definition of ‘organisation’, 15
GFS, see Google File System
GlusterFS, 38
Google, 7, 32, 37–39, 42, 123

as a hyperscale cloud service
provider, 4

Google File System (GFS), 38
Google Kubernetes, see Kubernetes
Google Omega, 42
GPGPU, see General Purpose GPU
GPUs, see Graphics processing units

 161 INDEX

Graphics processing units (GPUs), 9,
11–13, 43, 94, 121, 123, 131,
135

description of, 12
example of co-processor

architectures, 11
example of heterogeneous

computing, 11
Green500, 9

global ranking of supercomputers, 9
GreenCloud, 121, 122, 130

H
HA, see High-availability
HAL, see Hardware Abstraction Layer
Hardware Abstraction Layer (HAL),

xvi, 45, 46
Heat density, 9
Heat Orchestration Template (HOT),

xx, 91, 99
Heterogeneity, 7, 11, 12, 19, 23, 32,

41, 43, 44, 121, 132
associated challenges of resource

management, 41
as a broad concept, 40
challenges to existing resource

abstraction methods, 43
exploitation of, 11
potential advantages of, 41

Heterogeneous computing, 11, 19,
22, 23

definition of, 11
Heylighen, F.

definition of ‘organisation’, 15
High availability (HA), xx, 57

definition, 57
High performance computing (HPC), v,

vi, xx, 2, 7–13, 18–20, 23, 24, 32,
50, 57, 58, 88, 96, 97, 99, 107,
110, 115, 123, 147, 152, 153

applications, three categories of, 8

barriers to wider adoption, 9
as cornerstone of scientific and

technical computing, 8
High throughput computing (HTC),

xvi, 10
definition, 10

Holvoet, T.
definition of ‘self-organisation’, 15

Homogeneity, 6, 9, 11, 129
Horizontal scaling, 10, 153

definition, 10
HOT, see Heat Orchestration

Template
HPC, see High performance

computing
HTC, see High throughput computing
Human blockage modelling, as an

example of ray tracing, 21
Hyperscale cloud providers, 4

list of, 4

I
IaaS, see Infrastructure as a Service
IBM, see International Business

Machines
iCanCloud, 121, 122
IDC, see International Data

Corporation
Image rendering, as an example of ray

tracing, 21
Increase in order, 15

definition of (see Self-organising
systems, essential characteristics
of)

Information Technology (IT),
efficiencies, 4

Infrastructure as a Service (IaaS), xvi,
4, 19, 39, 40, 55, 59, 91, 93

Intel, 12, 13, 21, 40, 135, 152
Interacting parts, 14

definition of (see Emergent systems)

162 INDEX

International Business Machines
(IBM), 4, 16

as a hyperscale cloud provider, 4
International Data Corporation

(IDC), xvi, 8, 9, 18
European Commissioned-report,

2015, 8
Intersect360, 7, 8

research on HPC market, 7
IT, see Information Technology

K
Kubernetes, 39

description of, 39
Kubernetes Master, 39

L
Laser ablation profile modelling, as an

example of ray tracing, 21
Least Disruptive algorithm, example

of, 83
LED illumination systems modelling,

as an example of ray tracing, 21
LINPACK, 7

benchmarking the Sunway
TaihuLight, 7

Loosely coupled, 8
as a category of HPC applications, 8

Loosely-coupled applications,
examples of, 8

M
Many integrated cores (MICs), xvi,

11, 12, 21, 41, 45, 50, 99, 103,
133

example of co-processor
architectures, 11

examples of heterogeneous
computing, 11

MAPE-K, see
Monitor-Analyse-Plan-Execute-
Knowledge

Message Passing Interface, use in the
CloudLightning simulator, 123

Message passing (MP) system, 7
Micro-macro effect, 14

definition of (see Emergent systems)
Microsoft, 4, 6, 7, 32, 123

as a hyperscale cloud provider, 4
MICs, see Many integrated cores
Monitor-Analyse-Plan-Execute-

Knowledge (MAPE-K), xvi, 16,
18

Monolithic, resource scheduling
scheme, 42

Monolithic scheduler, 42
description of (see Monolothic)

Monte Carlo simulations, 8
as an example of a loosely-coupled

application, 8
MP system, see Message passing system
Multi-tenancy, 153
Multi-tenant, see Multi-tenancy

N
National Institute of Standards and

Technology (NIST), xvi, 2, 37
National Supercomputing Centre,

WuXi, 7
NIST, see National Institute of

Standards and Technology
Non-uniform Memory Access

(NUMA), xvi, 7, 45
NUMA, see Non-uniform Memory

Access

O
OASIS CAMP, 99, 107

construction of the CL-SDL, 99

 163 INDEX

OpenMP, 123, 126, 129, 145
Open Porous Media (OPM), xvi, 20
OpenStack, 19, 37–39, 91, 92, 97, 105

definition of, 37
OpenStack Heat, 91, 92

as an example of an IaaS resource
management framework, 19

OpenStack Solum, 91
as an example of an application

lifecycle framework, 19
OPM, see Open Porous Media
Organic Computing project, 17
Organisations, definition of, 15
Over-provisioning, 6, 11, 32

as assurance of service availability, 6

P
PaaS, see Platform as a Service
Packet-Level Simulators (PLS), xvi,

120
Parallelisation, convergence of IT

efficiency and business agility, 4
Parallel processing, 7, 8

achieved by grid computing or ‘scale
out, 7

Perfectly parallel problems, 10
Performance per watt, 9
Platform as a Service (PaaS), xvi, 4, 39
Platform homogeneity, 6

as a characteristic of WSC hardware
and system software (see
Homogeneity)

Pleasingly parallel problems, 10
PLS, see Packet-Level Simulators
Prescription Router (pRouter), xvi,

66–74, 76, 78–80, 82, 127, 129,
134, 135, 138

definition of, 67
Prescription Switch (pSwitch), 67, 69,

70, 72, 73, 76, 78, 80, 82,
127–129, 134, 135, 138

definition of, 67

Project Solum, see OpenStack Solum
pRouter, see Prescription Router
pSwitch, see Prescription Switch
Puppet, as an example of a

Configuration Management
System, 100

Q
Quality of service (QoS), xvi, 7, 24,

90, 94, 97
impact of heterogeneity, 7

R
Rackspace, 32

as an example of a cloud service
provider, 32

Radical novelty, 14
definition of (see Emergent systems)

Rapid deployment, convergence of IT
efficiency and business agility, 4

Ray tracing, 20, 21
as an embarrassingly parallelisable

algorithm, 20
variety of industry applications, 21

Real Time Migration (RTM), xvi, 20
description of, 20

Resource discovery, process of,
103–105

Resource lifecycle management, 99
components, features, functionality

of, 99
Resource management, vi, 18, 23, 32,

38, 40–43, 60, 90, 91, 94, 96,
100, 152

as a feature of traditional cloud
infrastructure, 40

Resource release, process of,
105–106

Resource scheduling, three schemes
of, 42

164 INDEX

Robustness and flexibility, 14
definition of (see Emergent systems)

RTM, see Real Time Migration

S
SaaS, see Software as a Service
Salesforce, 4
Salesforce.com, see Salesforce
Scalability, vi, 9, 10, 32, 33, 35, 36,

42, 56, 93, 121, 122, 129, 130,
132, 145, 152

convergence of IT efficiency and
business agility, 4

primary focus of cloud computing,
10

Scale-out, 6, 7, 11
in Warehouse Scale Computing, 6

Scale-out strategies
advantages of, 11
See also Scale-out

SDE, see Service Decomposition
Engine

SDLs, see Service description languages
Seismic processing, 8

as an example of a data-intensive
application, 8

Self-*, 16, 19
Self-configuration, 16
Self-healing, 16
Self-management, vi, 2, 11, 13,

16–19, 23, 32, 43, 64, 65, 70,
79, 80, 85, 88, 99, 147, 152, 154

four aspects of, 16
Self-optimisation, 16
Self-organisation, vi, 2, 11, 13, 15–19,

23, 32, 43, 47, 49–51, 60, 64,
65, 69–79, 82–88, 99, 100, 152,
154

definition of, 15
occurrence at micro-level, 15
roots of, 13

Self-Organisation Agent, 49
Self-organisation and self-management

(SOSM), xvii, 64, 79–85, 96, 97,
99, 100, 102–106, 110–112,
115, 124, 126–135, 138,
142–146

Self-Organising Agent, see Self-
Organisation Agent

Self-organising systems, 15
design of, 16
essential characteristics of, 15
similar to emergent systems, 15

Self-protection, 16
Separation of concerns, vi, 2, 11, 13,

18, 19, 23, 32, 90, 93–99, 152,
154

between applicaton lifecycle and
resource management, 90

capabilities of the SDL, 97
definition of, 18
functional components of, 97

Sequencing, see Genome sequence
processing; Genome sequencing

Server-Centric model, description, as
a data centre design strategy,
35–36

Service decomposition, see Service
Decomposition Engine

Service Decomposition Engine (SDE),
xvi, 99, 100, 102–105, 107, 109,
112, 115

operation of, 102
relevant attributes of, 109
role and summary of operation, 102

Service description languages (SDLs),
v, xv, xvi, 19, 23, 24, 91, 94, 99,
115

Service Elements, 55
Service-oriented architecture, 18, 90
Shared-State, resource scheduling

scheme, 42
SI, see Suitability Index

 165 INDEX

Software as a Service (Saas), xvi, 4, 39,
40

Solar concentrator modelling, as an
example of ray tracing, 21

SOSM, see Self-organisation and
self-management

SprintNet, 36
Static Coalitions, see Coalitions
Suitability Index (SI), xx, 65, 70,

78–83, 85, 128
Sunway TaihuLight, 7
Supercomputers, 7–10, 12, 153
Switch-Centric model, description, as

a data centre design strategy, 35
System, definition of, 15

T
3D-animation rendering, as an

example of a data-intensive
application, 8

3D image rendering, 8
as an example of a loosely-coupled

application, 8
3-tier data centre design, description

of, 34
Tightly coupled, 8

as a category of HPC applications, 8
Tightly-coupled applications, examples

of, 8
Turing, A., 14

global order arises from local
interactions, 14

Two-Level Scheduling, resource
scheduling scheme, 42

Two-way link, 14
definition of (see Emergent systems)

U
Ultrasonic imaging, as an example of

ray tracing, 21

V
Vertical scaling, 10

for performance improvement, 10
Virtualisation, 10, 13, 37, 38, 43, 83,

85
vRack Managers, 45, 47–54, 66, 67

functional components of, 47
function of, 47
Type-A vRack Managers, 51
Type-B vRack Managers, 51
Type-C vRack Managers, 50

W
Warehouse Scale Computers (WSCs), 4

definition, 4
hardware and software

characteristics of, 4
Weather and climate modelling, 8

as an example of scientific and
technical computing

See also Weather and climate
simulations

Weather and climate simulations,
example of a tightly-coupled
application, 8

WSCs, see Warehouse Scale Computers

X
Xeon Phi, 13, 40
Xeon Phi processors, see Xeon Phi

Y
Yahoo, 123

Warehouse Scale Computer
architecture, 123

Z
Zync Render, 7

	Preface
	Acknowledgements
	Contents
	Notes on Contributors
	List of Abbreviations

	List of Figures
	List of Tables
	Chapter 1: Addressing the Complexity of HPC in the Cloud: Emergence, Self-Organisation, Self-Management, and the Separation of Concerns
	1.1 Introduction
	1.2 Cloud Computing
	1.3 High Performance Computing
	1.4 HPC and the Cloud
	1.5 Heterogeneous Computing
	1.6 Addressing Complexity in the Cloud through Self-* Design Principles
	1.7 Application Scenarios
	1.7.1 Oil and Gas Exploration
	1.7.2 Ray Tracing
	1.7.3 Genomics

	1.8 Conclusion
	1.9 Chapter 1 Related CloudLightning Readings
	References

	Chapter 2: Cloud Architectures and Management Approaches
	2.1 Introduction
	2.2 Cloud Architecture
	2.2.1 Infrastructure Organisation
	2.2.1.1	 The Switch-Centric Model
	2.2.1.2	 The Server-Centric Model

	2.2.2 The Cloud Management Layer
	2.2.2.1	 OpenStack
	2.2.2.2	 Google Kubernetes

	2.2.3 The Service Delivery Layer

	2.3 Transitioning to Heterogeneous Clouds
	2.3.1 Resource Management
	2.3.2 Resource Abstraction

	2.4 The CloudLightning Approach
	2.4.1 Infrastructure Organisation
	2.4.2 Hardware Organisation
	2.4.2.1	 Resource Abstraction

	2.4.3 The Cloud Management Layer
	2.4.3.1	 CL-Resource Discovery
	2.4.3.2	 The CL-Resource Selection
	2.4.3.3	 Resource Acquisition
	2.4.3.4	 Coalition Lifecycle Management
	2.4.3.5	 Self-Organisation Agent
	2.4.3.6	 Classification of vRack Managers
	2.4.3.7	 vRack Manager Activities

	2.4.4 Service Delivery Model
	2.4.5 Advanced Architecture Support
	2.4.5.1	 Auto-Scaling
	2.4.5.2	 High Availability
	2.4.5.3	 Data Locality
	2.4.5.4	 Dynamic VPN Creation for Blueprint Service Execution

	2.5 Conclusion
	2.6 Chapter 2 Related CloudLightning Readings
	References

	Chapter 3: Self-Organising, Self-Managing Frameworks and Strategies
	3.1 Introduction
	3.2 Key Concepts
	3.3 Augmenting the CloudLightning Architecture
	3.4 Self-Organisation and Self-Management in CloudLightning Architecture
	3.4.1 Directed Evolution
	3.4.1.1	 The Goal State
	3.4.1.2	 Cell State
	3.4.1.3	 pRouter State and pSwitch State
	3.4.1.4	 vRM State
	3.4.1.5	 Steering by the Cell
	3.4.1.6	 Steering by the pRouter
	3.4.1.7	 Steering by the pSwitch

	3.4.2 Self-Management Mechanisms
	3.4.2.1	 Mechanism to Send Metrics from a vRM to pSwitch
	3.4.2.2	 Mechanism to Send Metrics from a pSwitch to pRouter
	3.4.2.3	 Mechanism to Send Metrics from pRouter to Cell
	3.4.2.4	 Mechanism to Send Weights from Cell to pRouters
	3.4.2.5	 Mechanism to Send Weights from pRouters to pSwitches
	3.4.2.6	 Mechanism to Send Weights from pSwitch to vRMs
	3.4.2.7	 A Mechanism in the Cell to Modify Local Behaviour in an Effort to Respond to Impetus Provided by the Directed Evolution and Metrics Coming from Attached pRouters
	3.4.2.8	 A Mechanism in a pRouter to Modify Local Behaviour in an Effort to Respond to Impetus Transmitted by the Cell and Metrics Coming from Attached pSwitches
	3.4.2.9	 A Mechanism in a pSwitch to Modify Local Behaviour in an Effort to Respond to Impetus Transmitted by its pRouter and Metrics Coming from Attached vRMs
	3.4.2.10	 A Mechanism in a vRM to Modify Local Behaviour in an Effort to Respond to Impetus Transmitted by its pSwitch and Metrics Coming from its vRack
	3.4.2.11	 Sample Events that Trigger the Transmission of Metrics at each Level in the Hierarchy
	3.4.2.12	 Sample Events that Trigger the Transmission of Weights at Each Level in the Hierarchy

	3.4.3 Self-Organisation Mechanisms

	3.5 CloudLightning SOSM Strategies
	3.5.1 Self-Management Strategies
	3.5.1.1	 An Example Self-Management Scenario

	3.5.2 Self-Organisation Strategies
	3.5.2.1	 An Example Self-Organisation Scenario

	3.6 Conclusion
	3.7 Chapter 3 Related CloudLightning Readings

	Chapter 4: Application Blueprints and Service Description
	4.1 Introduction
	4.2 Representative Application Lifecycle and Resource Management Frameworks
	4.3 CloudLightning Stakeholders and Associated Concerns
	4.4 The CloudLightning Approach Based on Separation of Concerns
	4.4.1 CloudLightning Requirements
	4.4.2 Separation of Concerns
	4.4.2.1	 Application Lifecycle Management
	4.4.2.2	 Resource Lifecycle Management

	4.5 The CloudLightning Gateway Architecture
	4.5.1 Gateway Service Architecture
	4.5.2 Service Decomposition
	4.5.3 Interaction with the SOSM System
	4.5.3.1	 Resource Discovery
	4.5.3.2	 Resource Release

	4.6 The CloudLightning Blueprint Extensions
	4.6.1 CloudLightning Brooklyn Extensions
	4.6.2 CloudLightning Abstract Blueprint
	4.6.3 CloudLightning Blueprint

	4.7 Example of Application Creation and Deployment
	4.8 Conclusion
	4.9 Chapter 4 Related CloudLightning Readings
	References

	Chapter 5: Simulating Heterogeneous Clouds at Scale
	5.1 Introduction
	5.2 Cloud Simulation Frameworks
	5.3 CloudLightning Simulator
	5.3.1 Architecture and Basic Characteristics of the Parallel CloudLightning Simulation Framework
	5.3.2 SOSM Engine
	5.3.2.1	 Power Consumption Modelling
	CPU Power Models
	Combined CPU-Accelerator Power Models

	5.3.2.2	 Memory, Storage, and Network Modelling
	5.3.2.3	 Application Models
	5.3.2.4	 Execution Models

	5.4 Experimental Results
	5.5 Conclusion
	5.6 Chapter 5 Related CloudLightning Readings
	References

	Chapter 6: Concluding Remarks
	References

	Index

