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   Foreword  

  International concern in scientifi c, industrial, and governmental communities over 
traces of xenobiotics in foods and in both abiotic and biotic environments has justi-
fi ed the present triumvirate of specialized publications in this fi eld: comprehensive 
reviews, rapidly published research papers and progress reports, and archival docu-
mentations. These three international publications are integrated and scheduled to 
provide the coherency essential for nonduplicative and current progress in a fi eld as 
dynamic and complex as environmental contamination and toxicology. This series 
is reserved exclusively for the diversifi ed literature on “toxic” chemicals in our 
food, our feeds, our homes, recreational and working surroundings, our domestic 
animals, our wildlife, and ourselves. Tremendous efforts worldwide have been 
mobilized to evaluate the nature, presence, magnitude, fate, and toxicology of the 
chemicals loosed upon the Earth. Among the sequelae of this broad new emphasis 
is an undeniable need for an articulated set of authoritative publications, where one 
can fi nd the latest important world literature produced by these emerging areas of 
science together with documentation of pertinent ancillary legislation. 

 Research directors and legislative or administrative advisers do not have the time 
to scan the escalating number of technical publications that may contain articles 
important to current responsibility. Rather, these individuals need the background 
provided by detailed reviews and the assurance that the latest information is made 
available to them, all with minimal literature searching. Similarly, the scientist 
assigned or attracted to a new problem is required to glean all literature pertinent to 
the task, to publish new developments or important new experimental details 
quickly, to inform others of fi ndings that might alter their own efforts, and eventu-
ally to publish all his/her supporting data and conclusions for archival purposes. 

 In the fi elds of environmental contamination and toxicology, the sum of these 
concerns and responsibilities is decisively addressed by the uniform, encompassing, 
and timely publication format of the Springer triumvirate: 

 Reviews of Environmental Contamination and Toxicology [Vol. 1 through 97 
(1962–1986) as Residue Reviews] for detailed review articles concerned with any 
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aspects of chemical contaminants, including pesticides, in the total environment 
with toxicological considerations and consequences.

Bulletin of Environmental Contamination and Toxicology (Vol. 1 in 1966) for 
rapid publication of short reports of signifi cant advances and discoveries in the 
fi elds of air, soil, water, and food contamination and pollution as well as method-
ology and other disciplines concerned with the introduction, presence, and 
effects of toxicants in the total environment.

Archives of Environmental Contamination and Toxicology (Vol. 1 in 1973) for 
important complete articles emphasizing and describing original experimental or 
theoretical research work pertaining to the scientifi c aspects of chemical con-
taminants in the environment. 

 Manuscripts for Reviews and the Archives are in identical formats and are peer 
reviewed by scientists in the fi eld for adequacy and value; manuscripts for the 
Bulletin are also reviewed, but are published by photo-offset from camera-ready 
copy to provide the latest results with minimum delay. The individual editors of 
these three publications comprise the joint Coordinating Board of Editors with 
referral within the board of manuscripts submitted to one publication but deemed by 
major emphasis or length more suitable for one of the others.

Coordinating Board of Editors  

Foreword
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          Preface

The role of Reviews is to publish detailed scientifi c review articles on all aspects of 
environmental contamination and associated toxicological consequences. Such arti-
cles facilitate the often complex task of accessing and interpreting cogent scientifi c 
data within the confi nes of one or more closely related research fi elds.

In the nearly 50 years since Reviews of Environmental Contamination and 
Toxicology ( formerly Residue Reviews) was fi rst published, the number, scope, and 
complexity of environmental pollution incidents have grown unabated. During this 
entire period, the emphasis has been on publishing articles that address the presence 
and toxicity of environmental contaminants. New research is published each year on 
a myriad of environmental pollution issues facing people worldwide. This fact, and 
the routine discovery and reporting of new environmental contamination cases, cre-
ates an increasingly important function for Reviews.

The staggering volume of scientifi c literature demands remedy by which data 
can be synthesized and made available to readers in an abridged form. Reviews 
addresses this need and provides detailed reviews worldwide to key scientists and 
science or policy administrators, whether employed by government, universities, or 
the private sector.

There is a panoply of environmental issues and concerns on which many scien-
tists have focused their research in past years. The scope of this list is quite broad, 
encompassing environmental events globally that affect marine and terrestrial eco-
systems; biotic and abiotic environments; impacts on plants, humans, and wildlife; 
and pollutants, both chemical and radioactive; as well as the ravages of environmen-
tal disease in virtually all environmental media (soil, water, air). New or enhanced 
safety and environmental concerns have emerged in the last decade to be added to 
incidents covered by the media, studied by scientists, and addressed by governmen-
tal and private institutions. Among these are events so striking that they are creating 
a paradigm shift. Two in particular are at the center of everincreasing media as well 
as scientifi c attention: bioterrorism and global warming. Unfortunately, these very 
worrisome issues are now superimposed on the already extensive list of ongoing 
environmental challenges.
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The ultimate role of publishing scientifi c research is to enhance understanding of 
the environment in ways that allow the public to be better informed. The term 
“informed public” as used by Thomas Jefferson in the age of enlightenment con-
veyed the thought of soundness and good judgment. In the modern sense, being 
“well informed” has the narrower meaning of having access to suffi cient informa-
tion. Because the public still gets most of its information on science and technology 
from TV news and reports, the role for scientists as interpreters and brokers of sci-
entifi c information to the public will grow rather than diminish. Environmentalism 
is the newest global political force, resulting in the emergence of multinational con-
sortia to control pollution and the evolution of the environmental ethic.Will the new 
politics of the twenty-fi rst century involve a consortium of technologists and envi-
ronmentalists, or a progressive confrontation? These matters are of genuine concern 
to governmental agencies and legislative bodies around the world.

For those who make the decisions about how our planet is managed, there is an 
ongoing need for continual surveillance and intelligent controls to avoid endanger-
ing the environment, public health, and wildlife. Ensuring safety-in-use of the many 
chemicals involved in our highly industrialized culture is a dynamic challenge, for 
the old, established materials are continually being displaced by newly developed 
molecules more acceptable to federal and state regulatory agencies, public health 
offi cials, and environmentalists.

Reviews publishes synoptic articles designed to treat the presence, fate, and, if 
possible, the safety of xenobiotics in any segment of the environment. These reviews 
can be either general or specifi c, but properly lie in the domains of analytical chem-
istry and its methodology, biochemistry, human and animal medicine, legislation, 
pharmacology, physiology, toxicology, and regulation. Certain affairs in food tech-
nology concerned specifi cally with pesticide and other food-additive problems may 
also be appropriate.

Because manuscripts are published in the order in which they are received in 
fi nal form, it may seem that some important aspects have been neglected at times. 
However, these apparent omissions are recognized, and pertinent manuscripts are 
likely in preparation or planned. The fi eld is so very large and the interests in it are 
so varied that the editor and the editorial board earnestly solicit authors and sugges-
tions of underrepresented topics to make this international book series yet more 
useful and worthwhile.

Justifi cation for the preparation of any review for this book series is that it deals 
with some aspect of the many real problems arising from the presence of foreign 
chemicals in our surroundings. Thus, manuscripts may encompass case studies 
from any country. Food additives, including pesticides, or their metabolites that may 
persist into human food and animal feeds are within this scope. Additionally, chemi-
cal contamination in any manner of air, water, soil, or plant or animal life is within 
these objectives and their purview.

Preface
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Manuscripts are often contributed by invitation. However, nominations for new 
topics or topics in areas that are rapidly advancing are welcome. Preliminary com-
munication with the editor is recommended before volunteered review manuscripts 
are submitted.

Summerfi eld, NC, USA David M. Whitacre                            

Preface
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1  Introduction

Environmental contamination by hazardous environmental pollutants is a wide-
spread and increasingly serious problem confronting society, scientists, and regula-
tors worldwide (Debenest et al. 2010; Hajeb et al. 2011; Nanthi and Bolan 2012; 
Shahid et al. 2013a). Among these pollutants, the heavy metals, are a loosely- 
defined group of elements that are similar in that they all exhibit metallic properties, 
and have atomic masses >20 (excluding the alkali metals) and specific gravities >5 
(Rascio and Navari-Izzo 2011). This group mainly includes transition metals, some 
metalloids, and the lanthanides and actinides. Heavy metals can be toxic to plants, 
animals and humans, even at very low concentrations. Heavy metals are natural 
components of the earth’s crust and are present in different concentrations at differ-
ent sites (Shahid et al. 2012a).

Heavy metal environmental pollution has occurred since ancient times, although 
their impact became worse during the industrial revolution from increased metal 
production and from development of new technologies that utilized these metals 
(Arshad et al. 2008; Nasim and Dhir 2010; Uzu et al. 2010; Vuai and Tokuyama 
2011; Pourrut et al. 2011a, 2013; Bai et al. 2011; Tak et al. 2013; Shahid et al. 
2013b) (Fig. 1). Unlike organic chemicals, the majority of heavy metals cannot be 
easily metabolized into less toxic compounds. These metals have long residence 
times in soils (Radwan et al. 2010; Ahmad and Ashraf 2011; Shahid et al. 2012b), 
and may continue to exert harmful effects on the environment over long periods 
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(Giaccio et al. 2012), thereby representing a potential continuing threat to humans 
(Kerin and Lin 2010; Uzu et al. 2011a, b; Luo et al. 2012; Zhao et al. 2012; Foucault 
et al. 2013) and the environment (Schreck et al. 2011; Hunt et al. 2012).

The chemical, biological and physiological effects of heavy metal exposure to 
plants are of growing concern, because of their potential to accumulate therein and 
ultimately enter the food chain (Whiteside et al. 2010; Sarma et al. 2011; An et al. 
2012; Schreck et al. 2012). The toxic impact of heavy metals on plants have been 
widely studied (Krzesłowska et al. 2010; Martínez-Fernández et al. 2011; Ahmad 
et al. 2011a; Evangelou et al. 2012; Hu et al. 2012; Shahid et al. 2013c), and differ-
ent aspects thereon have been addressed in literature reviews (Pourrut et al. 2011b; 
Anjum et al. 2012).

Results of previous studies have shown that excessive accumulation of heavy 
metals in plant tissue can decrease root length, plant biomass, seed germination and 
chlorophyll biosynthesis (Singh et al. 2010). Inside the cell, heavy metals affect 
photosynthesis, respiration, mineral nutrition, enzymatic reactions and many other 
physiological factors (Pourrut et al. 2011b). A rather frequent and common effect of 
heavy metal toxicity in plants is increased production of reactive oxygen species 
(ROS). The production of ROS results from the interaction of heavy metals with 
electron transport activities, particularly in the chloroplast and mitochondrial mem-
branes. The increased production of ROS can disrupt the redox status of cells, 
resulting in oxidative stress to exposed cells, leading to membrane dismantling, 
biological macromolecule deterioration, ion leakage, lipid peroxidation and DNA- 
strand cleavage (He et al. 2011; Carrasco-Gil et al. 2012; Chen et al. 2012). However, 
the toxic effects of heavy-metal-induced ROS on plant macromolecules vary and 
depend on the duration of exposure, stage of plant development, concentration of 
heavy metals tested, intensity of plant stress and the particular organs studied.

To prevent heavy-metal-induced ROS injuries, plants have developed various 
defense mechanisms by which they can transform ROS into less-toxic products 
(Tang et al. 2010; Álvarez et al. 2012). These mechanisms include: prohibiting 
metal entrance into plants, increased root excretion of metals, limiting toxic metal 
accumulation in sensitive tissue, chelation by organic molecules, metal binding to 
the cell wall and sequestration in vacuoles. These mechanisms help plants to sustain 
their cellular redox state and mitigate the damage caused by oxidative stress (Tang 
et al. 2010). The majority of these defense mechanisms depend on metabolic media-
tion of natural compounds such as phytochelatins (PCs), reduced glutathione 
(GSH), carotenoids and tocopherols, and enzymatic antioxidant systems including 
catalase (CAT and EC 1.11.1.6), superoxide dismutases (SOD and EC 1.15.1.1), 
ascorbate peroxidase (APX, EC 1.11.1.11), peroxidase (POD, EC 1.11.1.7), guaia-
col peroxidase (GPX, EC 1.11.1.7), glutathione reductase (GR, EC 1.6.4.2), 
monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) and dehydroascorbate 
reductase (DHAR, EC 1.8.5.1). The increased levels of these metabolic intermedi-
ary compounds and of antioxidant enzymes lead to increased stress tolerance against 
heavy-metal- induced ROS (He et al. 2011).

Considerable progress has been made in recent years in understanding how dif-
ferent plants respond physiologically to heavy-metal- and metalloid-induced stress. 
Despite this progress, information is limited on how these plant traits are regulated 
or are induced. How plants respond physiologically to heavy-metal-induced stress 

Heavy-Metal-Induced Reactive Oxygen Species…



4

varies with plant species, metal type and species, and exposure conditions. 
Additionally, the mechanisms by which heavy metals induce oxidative stress and 
the different ways in which plants may respond to ROS are not completely eluci-
dated. Therefore, predicting when, or how much heavy-metal-induced ROS produc-
tion will occur, and how plants will detoxify these ROS are very important steps for 
improving our ability to assess risks or improve phytoremediation performance. 
With this in mind, it is our objective in this literature review to summarize key 
aspects of how plants are affected by heavy-metal-induced ROS production. In par-
ticular, we address (1) how plant exposure to heavy metals generates ROS, (2) what 
the toxic effects of ROS are to plant macromolecules such as DNA, proteins, carbo-
hydrates and lipids, and (3) how plants defend themselves against, and eliminate 
ROS by enzymatic and non-enzymatic mechanisms.

2  What Are ROS?

“Reactive oxygen species” are generally regarded to exist when the following are 
present: (1) oxygen-derived free radicals such as hydroxyl (HO•), superoxide anion 
(O2

•−), peroxyl (RO2
•), and alkoxyl (RO•) radicals, or (2) oxygen-derived nonradical 

species such as hydrogen peroxide (H2O2), organic hydroperoxide (ROOH) and sin-
glet oxygen (½O2) (Corpas et al. 2011; Circu and Aw 2010). Although all of these 
oxygen-based toxic species are ROS, all ROS are not oxygen radicals. ROS are 
basically short lived, unstable and chemically very reactive molecules, possessing 
unpaired valence shell electrons (Wang et al. 2010).

3  ROS Production in Plant Metabolism

3.1  Natural Production of ROS in Plants

Under aerobic conditions, the generation of ROS is an inevitable aspect of life 
(Jaspers and Kangasjärvi 2010; Kovacic and Somanathan 2010; Swanson and 
Gilroy 2010; Wei et al. 2011; Foyer and Noctor 2012). Plant organelles such as 
mitochondria, chloroplasts and peroxisomes are considered to be major sources of 
ROS production in plant cells (Karuppanapandian et al. 2011a; del Río 2011; 
Borisova et al. 2012; Minibayeva et al. 2012; Pucciariello et al. 2012). In sun- or 
artificial-lighting conditions, peroxisomes and chloroplasts are the main sources 
of ROS (Foyer and Noctor 2003). However, in darkness, plant mitochondria are con-
sidered to be the main site of ROS production (Foyer and Noctor 2003). The main 
sites of ROS production are the complex I and the complex III of the mitochondrial 
electron transport chain (Barranco-Medina et al. 2007). It is believed that almost 2% 
of the O2 consumed by mitochondria is used to generate H2O2 (Becana et al. 2000). 
In the apoplast, ROS are produced as a consequence of NADPH oxidase activity 
(Achard et al. 2008; Weyemi and Dupuy 2012; Potocký et al. 2012).

M. Shahid et al.
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During non-stressed cellular metabolism, O2 is reduced to H2O. During this 
process, ROS such as O2

•−, H2O2 and OH• are produced as by-products, either by 
electron transfer or energy transfer reactions (Pucciariello et al. 2012; Borisova 
et al. 2012). The single electron reduction of O2 generates the anion superoxide 
(O2

•−). Superoxide is believed to be the precursor of most ROS and acts as a media-
tor in oxidative chain reactions. This anion is short-lived, which is easily dismutated 
to H2O2. In contrast to O2

•−, H2O2 is highly stable and diffusible and is capable of 
inactivating cell molecules, even at a very low concentration. The main threat 
imposed by O2

•− and H2O2 lies in their ability to generate highly reactive OH• radi-
cals (Møller et al. 2007; Bhatt and Tripathi 2011). In the presence of Fe, H2O2 and 
O2

•− interact in a Haber–Weiss reaction, which produces OH• (Minibayeva et al. 
2012). The OH• is considered to be the most reactive ROS, owing to its ability to 
start radical chain reactions, which are considered to be responsible for producing 
toxic effects in plants (Mittler et al. 2004; Jones et al. 2011). Under normal condi-
tions, an optimal ROS level is maintained by antioxidant enzymes.

3.2  Heavy-Metal-Induced Production of ROS in Plants

When exposed to heavy metals, plants are known to produce increased quantities of 
ROS (Table 1). This phenomenon is regarded to be among the earliest of biochemi-
cal changes, when plants are subjected to heavy metals stress (Jasinski et al. 2008; 
Yadav 2010; Grover et al. 2010; Lushchak 2011; Opdenakker et al. 2012). A serious 
imbalance occurs from the production and elimination of ROS, and this imbalance 
leads to dramatic physiological challenges to the plant that we call “oxidative stress” 
(Morina et al. 2010; Kováčik et al. 2010). Metals, such as Cu, Fe, Pb, Cd, Cr, As, 
Hg, Cr and Zn, all have the ability to induce the formation of ROS (Duquesnoy et al. 
2010; Vanhoudt et al. 2010a, b; Márquez-García et al. 2011; Körpe and Aras 2011).

However, the phenomenon of ROS production is different for redox-active and 
redox-inactive metals (Pourrut et al. 2008; Opdenakker et al. 2012). Redox-active 
metals such as Fe and Cu catalyze Haber–Weiss/Fenton reactions:

 
Cu Cu e and Fe Fe e+ + - + + -+ +( ) 

2 2 3 ,
 

in which H2O2 is broken down into OH• at neutral pH (Valko et al. 2006; Sahi and 
Sharma 2005) (Fig. 2). In contrast, redox-inactive metals, such as Pb, Cd, As, Hg, Ni 
and Zn inhibit enzymatic activities as a result of their affinity for –SH groups on the 
enzyme (Mishra et al. 2006; Cuypers et al. 2011; Pourrut et al. 2011b). Redox- 
inactive metals form covalent bonds with protein sulfhydryl groups because of their 
electron-sharing affinities. Inactivation of enzymes results from the interaction of 
heavy metals with proteins, either at the catalytic site or elsewhere. Heavy metals, 
especially Pb, can also inactivate enzymes by binding to functional groups (COOH) 
present in proteins (Gupta et al. 2009, 2010). Moreover, displacement of essential 
cations by heavy metals from specific enzyme binding sites disrupts the ROS bal-
ance in cells, and results in ROS overproduction. For example, Zn, which acts as 
co-factor for many enzymes, can be replaced by heavy metals, causing enzyme 

Heavy-Metal-Induced Reactive Oxygen Species…



Table 1 Heavy-metal-induced reactive oxygen species (ROS) production in different plant species

Heavy metals ROS Plant species References

Al OH•, H2O2, O2
− Hordeum vulgare Achary et al. (2012)

NO• Secale cereale He et al. 2012)
Triticum aestivum

As NOO•, H2O2, O2
− Oryza sativa Singh et al. (2009)

Cd H2O2 Arabidopsis thaliana Martínez-Peñalver et al. (2012)
H2O2 Chlorella vulgaris Piotrowska-Niczyporuk et al. (2012)
H2O2, O2

− Gracilaria dura Kumar et al. (2012)
H2O2 Brassica juncea Ahmad et al. (2011b)
H2O2 Medicago sativa Antolín et al. (2010)
H2O2 Ipomoea batatas Kim et al. (2010)
OH•, H2O2, O2

− Alocasia macrorrhiza Liu et al. (2010a)
H2O2, O2

− Solanum nigrum Deng et al. (2010)
H2O2 Brassica juncea Guan et al. (2009)
NO•, H2O2, O2

− Pisum sativum Rodrıguez-Serrano et al. (2009)
OH•, H2O2, O2

− Ceratophyllum demersum Aravind et al. (2009)
H2O2 Triticum aestivum Singh et al. (2008)
H2O2, O2

− Arabis paniculata Qiu et al. (2008)
NO• Triticum aestivum Groppa et al. (2008)
H2O2 Vicia faba Lin et al. (2007)
O2

− Mytilus galloprovincialis Koutsogiannaki et al. (2006)
H2O2 Nicotiana tabacum Olmos et al. (2003)
O2

− Lupinus luteus Kopyra and Gwóźdź (2003)
H2O2 Pisum sativum Romero-Puertas et al. (2002)
O2

−− Oryza sativa Shah et al. (2001)
Cu H2O2 Pisum sativum Turchi et al. (2012)

H2O2 Arabidopsis thaliana Martínez-Peñalver et al. (2012)
H2O2, O2

- Matricaria chamomilla Kováčik et al. (2010)
H2O2 Ipomoea batatas Kim et al. (2010)
H2O2 Medicago sativa Antolín et al. (2010)
NO•, H2O2 Lycopersicon lycopersicum Wang et al. (2010)
H2O2, O2

− Withania somnifera Khatun et al. (2008)
Mn H2O2, O2

− Cucumis sativus Shi and Zhu (2008)
Ni H2O2, O2

− Hypnum plumaeforme Sun et al. (2010)
Thuidium cymbifolium
Brachythecium piligerum

Pb H2O2 Vicia faba Shahid et al. (2012a, b, c, d)
H2O2 Chlorella vulgaris Piotrowska-Niczyporuk et al. (2012)
H2O2, O2

− Vallisneria natans Wang et al. (2010)
O2

− Spinacia oleracea Wang et al. (2010)
H2O2 Triticum aestivum Yang et al. (2010)
H2O2, O2

− Hypnum plumaeforme Sun et al. (2010)
Thuidium cymbifolium
Brachythecium piligerum

OH•, H2O2, O2
− Alocasia macrorrhiza Liu et al. (2010a)

H2O2 Medicago sativa Antolín et al. (2010)
H2O2 Sedum alfredii Liu et al. (2008)
O2

− Vicia faba Pourrut et al. (2008)
H2O2 Elsholtzia argyi Islam et al. (2008)
H2O2, O2

− Sedum alfredii Huang et al. (2008)
H2O2 Oryza sativa Chen et al. (2007)
O2

− Lupinus luteus Kopyra and Gwóźdź (2003)
Zn H2O2 Pisum sativum Turchi et al. (2012)

H2O2 Ipomoea batatas Kim et al. (2010)
O2

− Mytilus galloprovincialis Koutsogiannaki et al. (2006)

O2
•−, superoxide anion; HO•, hydroxyl; H2O2, hydrogen peroxide; NO•, nitric oxide; NOO•, nitrogen 

dioxide
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inhibition and oxidative stress. Heavy metals are also capable of depleting GSH 
inside plant cells (Pourrut et al. 2011b, 2013; Lee et al. 2012). When this happens, 
heavy metals deplete the major antioxidants that exist within cells, which disrupts 
the ROS balance. Heavy metals also enhance ROS production via binding and con-
suming GSH and its derivatives directly, which are required to scavenge any ROS 
generated (Lee et al. 2003). In addition, plasma-membrane-bound NADPH oxidase 
is involved in heavy-metal-induced oxidative stress (Sagi and Fluhr 2006; Pourrut 
et al. 2008, 2013; Weyemi and Dupuy 2012; Potocký et al. 2012). Plasma membrane- 
bound NADPH oxidases can utilize cytosolic NADPH to generate O2

•−, which is 
quickly dismutated to H2O2 by SOD (Pourrut et al. 2008). The ROS formed by the 
NADPH oxidase exists outside the plasma membrane, where the pH is normally 
lower than that inside the cell (Sagi and Fluhr 2006). Heavy-metal-induced ROS 
generation via NADPH oxidase was reported in Cd-treated Pisum sativum 
(Rodríguez-Serrano et al. 2006), Ni-treated Triticum durum (Hao et al. 2006) and 
Pb-treated Vicia faba (Pourrut et al. 2008). Moreover, Ca2+ and protein kinases have 
also been reported to have a role in heavy-metal-induced ROS production by activat-
ing NADPH oxidase (Yeh et al. 2007; Sahi and Sharma 2005; Pourrut et al. 2013).

4  Roles of ROS in Plant Metabolism

Traditionally ROS were considered to be toxic by-products of aerobic metabolism, 
but several recent reports clarified the essential roles of ROS in living organisms 
(Bailly et al. 2008; Rai et al. 2011; Bartoli et al. 2012; Swanson et al. 2011). These 
essential roles include:

• Plant metabolic defense under stress (Juan et al. 2010; Shin et al. 2011; Rai et al. 
2011; Gémes et al. 2011),

• Plant disease resistance (i.e., bacterial and viral) (Jaspers and Kangasjärvi 2010; 
Shin et al. 2011; Kranner et al. 2010; Rai et al. 2011),

Heavy Metals O2
•

•

O2

H2O2 OH

SO
D

Fe3+

Fe3+

Fe2+

Fe2+

Mitochondria
Oxidases (NADPH) Fenton Reaction

Haber-Weiss Reaction

Fig. 2 The Haber–Weiss and Fenton reaction pathways; SOD= Superoxide Dismutase  [modified 
from Kehrer (2000)]
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• Plant signal transduction that controls programmed cell death (Pitzschke and 
Hirt 2006; Blokhina and Fagerstedt 2010; Gill and Tuteja 2010; Rai et al. 2011; 
Corpas et al. 2011),

• Plant growth regulation (e.g., cell wall loosening) (Kranner et al. 2010; Šírová 
et al. 2011; Arasimowicz-Jelonek et al. 2011),

• Regulation of photorespiration and photosynthesis (Edreva 2005; Gill and Tuteja 
2010),

• Initiating mitogen-activated protein kinase cascades (Jaspers and Kangasjärvi 
2010),

• Regulation of root physiology (root hair development, root cell wall loosening 
and stiffening) (Foreman et al. 2003),

• Regulation of stomatal movement (Yu et al. 2009; Gill and Tuteja 2010),
• Regulation of the cell cycle (Mittler et al. 2004; Gadjev et al. 2008; Gill and 

Tuteja 2010),
• Fruit ripening and senescence (Karuppanapandian et al. 2011a, b), and
• Alleviation of seed dormancy (Oracz et al. 2009; Kranner et al. 2010; Whitaker 

et al. 2010; Roach et al. 2010).

The role of H2O2 as a signaling molecule, when it intervenes to defend against 
heavy metal stress has gained considerable attention in recent years. H2O2 can medi-
ate the activities of protein kinases, protein phosphatases and transcription factors 
(Opdenakker et al. 2012). Protein kinases can regulate gene transcription by repress-
ing or activating transcription factors (Pandey and Somssich 2009). Several authors 
have reported that ROS and protein kinases are activated, in response to heavy metal 
exposure. Yeh et al. (2007) reported the induction of kinases via ROS production 
from Cu2+ and Cd2+ stress. Moreover, cadmium exposure is reported to have induced 
protein kinase transcripts via the accumulation of ROS in Zea mays (Wang et al. 
2010) and Arabidopsis thaliana (Liu et al. 2010). However, very little is known 
about the mechanisms and the exact signaling pathways that operate behind these 
processes in plants that are under heavy metal stress.

5  Toxic Effects of Heavy-Metal-Induced ROS 
on Macromolecules in Plants

Heavy-metal-induced ROS can elicit widespread damage to plants, examples of 
which are enzyme inhibition, protein oxidation, lipid peroxidation and DNA and 
RNA damage (Martínez Domínguez et al. 2009; Cuypers et al. 2011). It has been 
reported that the indirect effect of heavy metals on plants macromolecules via ROS 
production is more toxic and rapid than the direct effect (Pourrut et al. 2011b). 
Reactive oxygen species are involved in the early steps of heavy-metal-induced 
toxicity to plants, and hence act as initiators of heavy metal toxicity (Shahid et al. 
2012c; Martínez-Peñalver et al. 2012).

M. Shahid et al.
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5.1  Lipid Peroxidation

Lipids are very important cellular components that play vital roles in various bio-
logical processes, such as providing energy for cellular metabolism, building cell 
membranes, and maintaining organelle and cell integrity and composition (Wallis 
and Browse 2002; Xiao and Chye 2011). Inside the plant, plasma cell membranes 
are the primary target of heavy metal action (Cuypers et al. 2011). Heavy metals are 
known to cause lipid peroxidation via ROS production (Fig. 3) (Cuypers et al. 2011; 
Wahsha et al. 2012; Márquez-García et al. 2012; Chen et al. 2012). Lipid peroxida-
tion causes deterioration of cell membranes, and is one of the most harmful effects 
induced in plants by heavy-metal exposure (Pourrut et al. 2013). Lipid peroxidation 
may result from increased lipoxygenase activity, which initiates the formation of 
oxylipins (Porta and Rocha-Sosa 2002). Lipoxygenase has been reported to play an 
important role in heavy-metal-induced oxidative stress in Gracilaria dura, Lessonia 
nigrescens and Arabidopsis thaliana (Smeets et al. 2008; Kumar et al. 2012; 
Vanhoudt et al. 2011).

The phenomenon of lipid peroxidation is most common in polyunsaturated 
fatty acids and involves three distinct stages: initiation, progression and termina-
tion (Pourrut et al. 2011b; Bhattacharjee 2012). Reactive oxygen species are the 
most common initiators of lipid peroxidation in living cells. These ROS remove 
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Fig. 3 Depictions of the possible mechanisms by which metals induce lipid peroxidation. The mecha-
nism of heavy-metal-induced lipid peroxidation is initiated most likely via OH•. The process involves 
three distinct stages: initiation, progression and termination [modified from Bhattacharjee (2005)]
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the hydrogen atom from a methylene group (–CH2–), thus, giving rise to peroxyl 
radicals (Grover et al. 2010; Singh et al. 2010). The ROS-induced initiation of 
lipid peroxidation varies with stress condition and cell type. Under normal condi-
tions, lipid peroxidation in green plant tissues is generally initiated by O2

•−, a non-
radical electrophilic by-product of light capture in photosystem II (PSII) 
(Triantaphylidès and Havaux 2009). Heavy metals are known to inhibit PSII, and 
thus increase O2

•− production in leaves, which leads to increased lipid peroxidation 
(Triantaphylidès et al. 2008; Triantaphylidès and Havaux 2009; Farmer and 
Mueller 2013). In chlorophyll- lacking tissues, lipid peroxidation is started by OH•, 
a radical produced by Fe- or Cu-catalysed degradation of H2O2 (Farmer and 
Mueller 2013). Although O2

•− and H2O2 are capable of initiating the reactions that 
are responsible for lipid peroxidation, only OH• is sufficiently reactive, especially 
in the presence of transition metals such as Cu or Fe (Bhattacharjee 2005; Pourrut 
et al. 2013). One electron redox cycle results in the formation of peroxyl and alk-
oxyl radicals (Karuppanapandian et al. 2011a). The fatty acid radical formed is not 
very stable. In an aerobic environment, oxygen reacts with the fatty acid, thereby 
creating another unstable peroxyl-fatty acid radical. Once initiated, ROO• groups 
are capable to continue the peroxidation chain reaction by receiving a hydrogen 
atom from neighbouring polyunsaturated fatty acids (Bhattacharjee 2005; 
Karuppanapandian et al. 2011a). The resulting lipid hydroperoxide is a highly 
unstable molecule and decays into several reactive species such as lipid epoxides, 
aldehydes (malonyldialdehyde), lipid alkoxyl radicals, alkanes and alcohols 
(Bhattacharjee 2005). The cycle continues from the presence of fatty acid side 
chains that are in close proximity to plant membranes, which facilitates autocata-
lytic propagation of lipid peroxidation.

Generally lipid peroxidation causes: (1) increased membrane leakiness to sub-
stances that do not normally cross membranes, other than via specific channels, 
(2) decreased membrane fluidity, which makes it easier for phospholipids to be 
exchanged between the two halves of the bilayer, and (3) damage to membrane 
proteins that inactivate receptors, enzymes, and ion channels. Several studies 
revealed toxic effects from lipid peroxidation in plants (Yamauchi and Sugimoto 
2010; Farmer and Mueller 2013). Some recent studies reported that heavy metal 
toxicity to different physiological processes occurs via ROS-induced lipid peroxi-
dation (Shahid et al. 2013d). The by-products of lipid peroxidation also strongly 
affect photosynthetic reactions. For example, acrolein, linolenic acid-13-ketotriene 
and 12-oxo-phytodienoic acid are well known to induce toxic effects on PSII 
(Alméras et al. 2003). Exogenous acrolein is reported to deplete chloroplast gluta-
thione pools (Mano 2012). Lipid peroxidation also causes covalent modification 
of plant proteins due to the binding of electrophilic lipid fragments with proteins 
(Farmer and Mueller 2013). This covalent binding occurs when nucleophilic 
atoms (e.g., S or N) bind to the β-carbon of α,β-unsaturated carbonyl groups. 
Nowadays, increased attention is being given to the damaging effects of lipid per-
oxidation products, which can be monitored by using of transgenic approaches 
(Mano 2012).

M. Shahid et al.
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5.2  DNA Damage

Heavy-metal-induced genotoxicity in plant cells is a complex phenomenon, and the 
mechanisms behind this process are not yet well understood (Aina et al. 2004; Tuteja 
et al. 2009; Cuypers et al. 2011; Zhu et al. 2011; Shen et al. 2012). According to 
some authors, heavy-metal-induced DNA damage is not direct but occurs indirectly 
through ROS production (Gichner et al. 2006; Gupta and Sarin 2009; Barbosa et al. 
2010; Hirata et al. 2010, 2011). Heavy-metal-induced DNA damage has been 
reported in several plants, examples of which are, Trifolium repens (Aina et al. 2004), 
Cannabis sativa (Aina et al. 2004), Allium cepa (Barbosa et al. 2010), Vicia faba 
(Marcato-Romain et al. 2009a; Pourrut et al. 2011c), Boletus edulis (Collin- Hansen 
et al. 2005), and Nicotiana tabacum and Solanum tuberosum (Gichner et al. 2006).

Among ROS, OH• is the most reactive entity in damaging all components of the 
DNA molecule (Jones et al. 2011). Reactive oxygen species interactions with DNA 
results in: damage to cross-links, base deletions, base modifications, strand breaks 
and damage to pyrimidine dimers (Tuteja et al. 2001; Gastaldo et al. 2008). Among 
these affected DNA sites, base deletion is the most frequent DNA damage induced 
by either heavy metals, ionizing radiation or ultra violet radiation (Gastaldo et al. 
2008). DNA has four different potential sites to which metals may bind, i.e., the 
ribose hydroxyls, the negatively charged phosphate oxygen atoms, the exocyclic 
base keto groups and the base ring nitrogens (Oliveira et al. 2008). Most transition 
metal ions interact in a complex way with DNA: more than two different sites are 
generally involved. Heavy metals generally bind directly to the bases, with the N7 
atom of purines or N3 of pyrimidines and indirectly to the phosphate groups 
(Anastassopoulou 2003). In vitro studies indicated that heavy metals like Cd, Cr, 
Cu, Hg, Pb and Zn interact with DNA, particularly at sulfhydryl groups and the 
phosphate backbone (Sheng et al. 2008). Moreover, heavy metals may alter gene 
expression (Rossman 2000) and they appear to interact with Zn-fingers, which bind 
tetrahedrally to cysteine (Cys) thiolates and/or histidine imidazole groups to main-
tain the DNA three-dimensional structure (Witkiewicz-Kucharczyk and Bal 2006). 
DNA damage can occur either from replication errors, induction of signal transduc-
tion pathways, induction of transcription, cell membrane destruction and/or genomic 
instability (Cooke et al. 2003). In plants and other living organisms, damage inflicted 
on DNA and repair mechanisms generally occur concomitantly, making these pro-
cesses both complex and difficult to independently assess (Gastaldo et al. 2008).

When ROS interact with DNA, oxidized bases are frequently generated (Hirano 
and Tamae 2010). Among the different forms of oxidative DNA damage, effects 
with 8-oxoguanine has been most extensively investigated (Hirano and Tamae 
2010), and is also an event that may lead to neoplastic transformation (Bal and 
Kasprzak 2002). Using a plasmid-relaxation assay, Yang et al. (1999) demon- 
strated that Pb and Cd promoted DNA strand-breakage and formed 
8- hydroxydeoxyguanosine (8-OHdG) adducts in DNA. Recently, Hirata et al. 
(2011) showed As- and Cr-induced translesion DNA synthesis due to their increased 
affinity for DNA containing 8-OHdG.

Heavy-Metal-Induced Reactive Oxygen Species…
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Heavy-metal-induced damage to DNA may also result in the production of 
micronuclei, which produce chromosome breaks or mitotic anomalies that require 
passage through mitosis to be recognisable (Marcato-Romain et al. 2009b). 
According to Johnson (1998), heavy metals are capable of interfering with the spin-
dle apparatus of dividing cells to produce DNA damage. Cenkci et al. (2009) 
described Pb-induced genotoxicity, using a random amplified polymorphic DNA 
(RAPD) profile, in Brassica rapa exposed to 0.5 to 5 mM concentrations of lead 
nitrate. Radić et al. (2011) demonstrated damage to DNA (estimated by tail extent 
moment) in Lemna minuta exposed to heavy metals from industrial wastewater. 
Recently, Shahid et al. (2011) reported the Pb-induced production of micronuclei in 
Vicia faba root tips via ROS production. More recently, Pourrut et al. (2011b) dem-
onstrated a close link between oxidative stress induced by Pb, DNA strand breaks 
and micronuclei formation in Vicia faba root tips.

5.3  Protein Damage

Heavy metals may also cause toxic effects in the structure of plant proteins (Tan 
et al. 2010; Luque-Garcia et al. 2011). Protein synthesis is the primary target of 
ROS damage in plants (Nishiyama et al. 2011). This heavy-metal-induced change 
in protein quantity or quality can occur via several mechanisms, e.g., binding of the 
metal ions to free thiols and other functional groups of proteins, replacement of Zn 
and other essential metal ions by free heavy metal ions in metal-dependent proteins, 
etc. Whatever the location of heavy metal-induced ROS, they generally interact 
with proteins that contain sulfur-containing amino acids and thiol groups. Proteins 
are more susceptible to heavy metal ions during the process of folding, than are 
proteins that have already reached their native state (Sharma et al. 2008).

Heavy-metal-induced ROS also cause a quantitative reduction in total protein 
content of cells (Mishra et al. ; Garcia et al. 2006). This quantitative decrease in total 
protein content results from various heavy metals effects: they modify gene expres-
sion (Kovalchuk et al. 2005), increase ribonuclease activity (Gopal and Rizvi 2008), 
consume amino acids to scavenge ROS (Gupta and Sinha 2009), and reduce free 
amino acid content (Gupta et al. 2009) that is linked to alteration in nitrogen metab-
olism (Chatterjee et al. 2004). Heavy metal ions form complexes with proteins by 
binding with –COOH, –NH2 and –SH groups (Tan et al. 2010). As a result, these 
modified biological molecules cannot function properly as a result of their structural 
modification, and this produces cell malfunction. When heavy metals bind to these 
active groups of proteins, they inactivate different enzyme systems, or alter protein 
structure, which is related to the catalytic properties of enzymes. Reactive oxygen 
species do oxidize the following protein amino acid side groups: Cys, Met, His, Arg, 
Lys, Pro, Tyr and Trp. Cadmium treatment raised the carbonylation level from 4 to 
5.6 nmol/mg protein in Pisum sativum plants (Romero-Puertas et al. 2002). Most of 
these reactions are irreversible, although in the specific case of thiol-group oxida-
tion, enzyme-catalyzed re-reduction is possible (Rouhier et al. 2006).
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Recent findings suggest that protein oxidation events are most likely to occur in 
proteins that are extremely close to the site of ROS production. Certain metal ion 
co-factors, such as Fe–S, are particularly susceptible to oxidation. Heavy metal 
exposure to plants not only causes a quantitative change to protein content, but also 
may alter the qualitative composition of cell proteins. The protein composition of 
root cells in V. faba seedlings was altered when exposed to Pb (Beltagi 2005), and 
this can result from the modification in transcriptome profile of numerous enzymes 
such as: cysteine proteinase, isocitrate lyase, arginine decarboxylase and serine 
hydroxymethyltransferase (Kovalchuk et al. 2005).

Heavy metals also may produce indirect effects on protein functioning that 
 curtails protein synthesis or inhibits protein functioning (Pena et al. 2008). For 
example, the plant proteolysis system helps to regulate protein processing and 
intracellular protein levels, and removes abnormal or damaged proteins from the 
cell (Buchanan et al. 2000). The proteolytic system is mainly localized inside cer-
tain organelles, e.g., cytoplasm and the nucleus (Rawlings 2004). Cadmium has 
been reported to cause oxidation of the proteasome in Zea mays (Pena et al. 2007) 
and Helianthus annuus plants (Pena et al. 2006). This enhancement of the protea-
some activity prevents accumulation of oxidatively damaged proteins in the cell 
(Pena et al. 2007).

5.4  Damage to Plant Carbohydrates

Carbohydrates are ubiquitous energy sources, and are key macromolecules for their 
role in plant metabolism and structure (Guan-fu 2011; Dong et al. 2011). 
Carbohydrates are the major products of photosynthesis and act as transport mole-
cules in plant growth, development and storage (Couée et al. 2006). They are 
involved in response mechanisms to different stressors, osmotic adjustment, and 
nutrient and metabolic signaling molecules (Hummel et al. 2009). They also help to 
maintain plasma membrane integrity (Guan-fu 2011), feed the NADPH-producing 
metabolic pathways involved in ROS scavenging, and interact with plant hormone 
signaling through molecules such as the auxins and cytokinins (Rolland et al. 2002), 
gibberellin, abscisic acid and ethylene (Price et al. 2004). Heavy metals are known 
to affect plant sugar content through ROS-induced oxidative stress. Interaction 
between soluble sugar content and ROS cause pollen abortion in Triticum aestivum 
(Lehner et al. 2008) or decreased pollen viability in Oryza sativa (Guan-fu 2011), 
which might be due to the interplay between programmed cell death and ROS. Any 
expression of sugar transporter genes that are induced by heavy metal stress may 
reduce the oxidant damage caused by overproduction of ROS (Nguyen et al. 
2010). Glucose is reported to enhance cellular defences against cytotoxicity of H2O2 
in plants, and enhances plantlet survival (Averill-Bates and Przybytkowski 1994). 
Under intense oxidative stress conditions, ROS affects the structure of carbohy-
drates (Zadák et al. 2009). When thus affected, plant defense mechanisms are 
weakened and plant  macromolecules (including glucose) become vulnerable to 
heavy metal toxicity.
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5.5  Interference with Signalling

Heavy metals interfere with cell signalling via mechanisms that are poorly under-
stood. Effects of heavy metals on cell signalling may be direct as a result of the 
interaction of metals with proteins, or indirect from the formation of metal-induced 
ROS. It has been proposed that heavy-metal-induced disregulation of signalling 
events play a key role in the response of heavy metal toxicity as well as in damage 
development. Metals affect the gene expression, transcription and activation of 
numerous signalling proteins, including growth factor receptors, G-proteins and 
tyrosine kinases (Harris and Shi 2003). In plants, several studies have shown that 
heavy metals (Cu, Zn, Pb and Cd) intervene with mitogen kinase signalling cas-
cades. Mitogen-activated protein kinase (MAPK) pathways incorporate various sig-
nalling stimuli, and specific elements are also activated by ROS (Zhang and Klessig 
2001). These MAPKs are rapidly activated in Medicago sativa by an excess of Cu 
(Jonak et al. 2004). However, Cd exposure activates MAPKs in Medicago sativa 
after a considerable delay (Jonak et al. 2004). The titer of jasmonic acid, salicylic 
acid and ethylene increases in plants after exposure to heavy metals (Pál et al. 2005), 
which then enhances H2O2 generation (Zawoznik et al. 2007) and interferes with cell 
signalling. Romero-Puertas et al. (2007) explained how the redox component scheme 
works, and explained how signalling molecules positively or negatively adjust the 
expression of antioxidant genes during long-term Cd stress in Pisum sativum.

6  Plant Heavy-Metal Tolerance Mechanisms

To survive, plants have to constantly cope with stress. Certain plants (especially 
heavy metal hyperaccumulator plants) operate well even under extreme ROS pro-
duction situations that are caused by heavy metal toxicity. In fact, plants have 
evolved an array of defense mechanisms to combat oxidative damage, for the pur-
pose of restricting cell injury and tissue dysfunction (Shulaev et al. 2008; Benekos 
et al. 2010; Ruan et al. 2011). Such defense mechanisms act separately or simultane-
ously in plants to scavenge any ROS over-production. However, what specific plant 
defense mechanism are active, and the efficiency of it, depends on the plant species, 
plant maturity, type of metal involved, and the level and duration of exposure.

Generally, stress-tolerant plants better defend themselves against ROS than do 
stress-susceptible species (Liu and Pang 2010). Hyperaccumulator plants are effi-
cient at detoxifying and sequestering heavy metals, which enable them to accumu-
late high metal levels in their shoot tissues, without suffering phytotoxic effects 
(Rascio and Navari-Izzo 2011). Such preferential heavy metal detoxification/
sequestration does occur in specific plant structures, such as the epidermis (Freeman 
et al. 2006), trichomes (Küpper et al. 2000) and even the cuticle (Robinson et al. 
2003), where they cause toxicity to the photosynthetic apparatus, if not detoxified.
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6.1  Primary Heavy-Metal Tolerance Mechanisms

Heavy metals mainly enter plants from soil through the roots (Uzu et al. 2009; Tang 
et al. 2010). Heavy metals, especially Pb, are adsorbed onto the root surface before 
uptake and become bound to carboxyl groups of mucilage uronic acid or to the 
polysaccharides of the rhizoderm cell surface (Seregin et al. 2004; Pourrut et al. 
2011b). Such binding of heavy metals to exchange sites at the root surface is a com-
monly employed plant strategy to limit heavy metal absorption into root cells; the 
entrapment occurs in the apoplast by binding the metals to exuded organic acids or 
anionic groups of cell walls (Jiang and Liu 2010). In response to heavy metal toxic-
ity, root thickness can increase, and thereby increase the amount of metal adsorbed 
onto the root surface; when this occurs, the consequence is to reduce metal penetra-
tion into roots (Krzesłowska et al. 2009, 2010). Probst et al. (2009) observed 
increased cell wall thickness of Vicia faba as an ultrastructural alteration caused by 
a high metal level. Liu et al. (2004) and Andrade et al. (2004) reported similar 
increases in cell wall thickness, respectively, in shoots of Vicia faba that were 
exposed to Cu or Cd, and in marine macroalgus exposed to Cu. Such increases are 
believed to be associated with enhanced peroxidase activity (Liu et al. 2004; Probst 
et al. 2009). This enzyme catalyzes lignin synthesis (Arduini et al. 1995) and is 
generally produced in higher plants exposed to heavy metals (Prasad 1996). Probst 
et al. (2009) observed high amounts of electron-dense particles of metals (Pb and 
Zn) on the surface, and within the cell walls of Vicia faba roots. Similar Pb deposits 
were shown to exist along plasma membranes of Sesbania root cells by Sahi and 
Sharma (2005). Krzesłowska et al. (2009) reported reduced penetration of Pb into 
the plasma membrane in Funaria hygrometrica from increased cell wall thickness, 
as a result of Pb binding with JIM5-P, within the cell wall. However, Pb bound to 
JIM5-P can be remobilized by endocytosis (Krzesłowska et al. 2010). In has been 
reported in several studies that Pb is adsorbed onto roots in many plant species: 
Vigna unguiculata (Kopittke et al. 2007), Brassica juncea (Meyers et al. 2008), 
Festuca rubra (Ginn et al. 2008), Lactuca sativa (Uzu et al. 2009) and Funaria 
hygrometrica (Krzesłowska et al. 2010). The degree of adsorption of metals onto 
plant root surface varies with the physico-chemical properties of rhizosphere soil, 
and plant and metal type (Saifullah et al. 2009; Pourrut et al. 2011b). The adsorption 
of metals onto root surfaces reduces their entrance into plants, which is considered 
to be beneficial in the case of vegetables (Pourrut et al. 2011b).

Another defense mechanism plants adopt is to reduce the translocation of heavy 
metals to aerial plant parts. Most of the heavy metals absorbed by plants are seques-
tered in plant root cells. In root cells, toxic metals are detoxified by complexation 
with organic acids, amino acids or sequestered into vacuoles (Rascio and Navari- 
Izzo 2011; Pourrut et al. 2011b). Such complexation restricts the transfer of heavy 
metals towards aerial plant parts, thus protecting leaf tissues, and particularly the 
metabolically active photosynthetic cells from heavy metal damage (Rascio and 
Navari-Izzo 2011). Increased sequestration of heavy metals in root cells is achieved 
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by several mechanisms: they precipitate as insoluble salts in intercellular spaces 
(Meyers et al. 2008), they are immobilized by negatively charged pectins within the 
cell wall (Arias et al. 2010), they accumulate in plasma membranes (Jiang and Liu 
2010), or are sequestered in the vacuoles of rhizodermal and cortical cells (Kopittke 
et al. 2007). Many researchers have reported that >90% of heavy metals present 
accumulate in plant root cells of many plant species. Examples are: Vigna unguicu-
lata (Kopittke et al. 2007), Pisum sativum, Phaseolus vulgaris and Vicia faba 
(Pourrut et al. 2011a), Arabidopsis thaliana (Vanhoudt et al. 2010a) Avicennia 
marina (Yan and Lo 2011), Sedum alfredii (Gupta et al. 2010), Allium sativum 
(Jiang and Liu 2010), Lolium perenne (Jia et al. 2011), Oryza sativa (Hu et al. 
2011), Erica andevalensis (Mingorance et al. 2012) and Chrysopogon zizanioides 
(Danh et al. 2011). The phenomenon of increased amounts of metals being restricted 
to accumulating in roots is more common to Pb than to other heavy metals.

6.2  Secondary Heavy-Metal Tolerance Mechanisms

When plants take up high levels of heavy metals, toxicity is prevented only if the 
plants have a strong sink adequate for storing the toxic metals (Wojas et al. 2010; 
Hassan and Aarts 2011). By having such sinks, plants can evade the toxic effects of 
these metals. Vacuolar sequestration is an important feature that maintains plant 
metal homeostasis, and detoxifies heavy metals (Maestri et al. 2010). The hyperac-
cumulator plants have the ability to limit negative effects of metals by sequestering 
and/or binding them to molecules or plant structures. Heavy metals are detoxified in 
aerial parts of hyperaccumulators plants as a result of ligand binding or entrapment by 
vacuoles (Rascio and Navari-Izzo 2011). Vacuolar transporters partly fulfil this role, 
by contributing to the partitioning of metals into the vacuole (Martinoia et al. 2007).

The vacuole is the final destination for practically all toxic substances. There are 
several pathways by which metals are sequestered vacuoles. Genomic sequencing 
analysis has identified various families of transporters that are involved in heavy 
metal homeostasis in plants (Klatte et al. 2009; Chaffai and Koyama 2011). These 
transporter families include ATP-binding cassettes (ABC), heavy metal ATPases 
(HMAs), Zrt/Irt-like protein (ZIP), cation exchangers (CAXs), natural resistance- 
associated macrophage (NRAMP) and cation diffusion facilitators (CDF) (Grotz 
and Guerinot 2006; Hall and Williams 2003). Among these, CDF ABC and NRAMP 
have been identified as being critical for heavy metal tolerance (Hanikenne et al. 
2005; Chaffai and Koyama 2011).

Metallothioneins (MTs) and phytochelatins are the best characterized and 
important metal-binding ligands in plant cells (Rea 2012). Phytochelatins are 
small, heavy-metal-binding polypeptides that have the general structure of (γ-Glu-
Cys)nGly (n = 2–11). Phytochelatins belong to different classes of cysteine-rich 
heavy metal-binding protein molecules. Heavy metals are capable of stimulating 
the production of PCs, and activating the enzyme phytochelatin synthase (PCS) 
(Vadas and Ahner 2009; Jiang and Liu 2010). The synthesis of PCs is catalyzed 
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non- translationally by PCS, which is activated by metal ions such as Cd, Pb, Zn, 
and Cu (Andrade et al. 2010; Ogawa et al. 2011). In plants, these natural chelators 
bind and transport heavy metals to cell vacuoles (Israr et al. 2011). The transport of 
the metal- PC complex to vacuoles is thought to be facilitated by ABC transporters 
(Prévéral et al. 2009; Park et al. 2012), which for Oryza sativa seedlings, are 
encoded by OsPDR5/ABCG43 (Oda et al. 2011). PCs bind and transport heavy 
metals by forming mercaptide bonds with them (Verbruggen et al. 2009; Semane 
et al. 2010). Generally, PCs bind metals in the cytosol, and the resulting PC–metal 
complex is sequestrated in vacuoles (Ogawa et al. 2011), thereby reducing the con-
centration of free metal ions in the cytosol. In this way, these natural ligands inhibit 
ROS production that results from heavy metal interactions with the delicate redox 
system. In in-vivo studies, Yadav (2010) reported that PCs were involved in the 
cellular detoxification and accumulation of heavy metals as a result of their ability 
to form stable metal-PC complexes. Gisbert et al. (2003) reported that the induc-
tion and  over- expression of a Triticum aestivum gene encoding phytochelatin 
 synthase (TaPCS1) significantly increased uptake and tolerance of Nicotiana 
glauca to Pb and Cd.

Glutathione (GSH; γ-glutamatecysteine-glycine), a sulfur containing tri-peptide, 
is among the most important and critical of the low molecular weight biological 
thiols. Glutathione protects plants from heavy metal toxicity by quenching metal- 
induced ROS (Vanhoudt et al. 2010a; Seth 2012; Noctor et al. 2012). Glutathione 
reacts nonenzymatically with a series of ROS by forming thiyl radicals (Halliwell 
and Gutteridge 1999). Thiyl radicals may generate O2

•−, which can be neutralized by 
SOD/CAT enzymes. It is worth noting that GSH also reacts with the lipid peroxida-
tion metabolite 4-hydroxy-2-nonenal (Wonisch et al. 1997), and plays a role in the 
initial resistance against malondialdehyde, another highly toxic lipid peroxidation 
product (Turton et al. 1997).

Moreover, it is a substrate for PC biosynthesis, and certain related proteins play 
a key role in detoxifying heavy metals (Huang and Wang 2010; Ogawa et al. 2011). 
It is noteworthy that metals do not directly activate PCS activity, but rather, a GSH- 
metal complex is formed, (i.e., in which the metal binds to a thiol group), which 
activates PCS (Na and Salt 2010). Glutathione synthesis is catalyzed by two ATP- 
dependent enzymes, γ-glutamylcysteine synthetase (GSH1) and glutathione synthe-
tase (GSH2). Heavy metal exposure can induce different GSH genes, such as 
glutathione synthetase, glutamyl cysteine synthetase, glutathione peroxidase and 
glutathione reductase. A deficiency of GSH affects defense gene expression and the 
hypersensitive response in plants (Dubreuil-Maurizi et al. 2011). Glutathione is 
reported to enhance proline accumulation in heavy-metal-stressed plants, a role that 
is correlated with reduced damage to membranes and proteins (Liu et al. 2009). 
Generally, PCs and GSH are simultaneously stimulated in plants to detoxify heavy 
metals. However, Gupta et al. (2010) reported the induction of GSH alone for detox-
ification of heavy metals in Sedum alfredii. The enhanced production of GSH does 
not always increase plant tolerance or detoxify heavy metals to reduce plant stress 
(Xiang et al. 2001). Therefore, GSH alone may not be adequate to resist heavy- 
metal stress in plants (Noctor et al. 1998; Yadav 2010).
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Glutathione also plays an important indirect role in detoxifying heavy metals via 
activating the PCS enzyme. Once sufficient GSH levels are achieved during heavy 
metal stress, PCS become active and catalyzes the formation of PC–metal com-
plexes (Yadav 2010). PCS are activated when a heavy metal and two GSH mole-
cules form a thiolate complex (Cd–GS2 or Zn–GS2). Activation of PCS also results 
in the transfer of one γ-Glu-Cys moiety to a free GSH molecule or to a previously 
synthesized PC (Singla-Pareek et al. 2006). Depletion of GSH may result from its 
consumption for PCs synthesis (Mishra et al. 2006), or from direct binding with 
heavy metal ions (Andra et al. 2009a, b).

6.3  Glutathionylation

The thiol group of the amino acid cysteine is extremely vulnerable to ROS (oxida-
tive damage), due to its high sensitivity to oxidation. To protect proteins from oxida-
tion, plant cells have developed a tolerance mechanism, glutathionylation, which 
results in a reversible posttranslational modification of protein thiols (Michelet et al. 
2006; Zaffagnini et al. 2012a). During glutathionylation, the protein thiols are oxi-
dized to various reversible products, such as S-glutathionylation, sulfenic or sulfinic 
acids, and intra- or inter-protein disulfide bonds (Li and Zachgo 2009). The reaction 
mechanism of glutathionylation involves an exchange of a thiol/disulfide between 
GSSG and a protein thiol as following:

 Protein-SH GSSG Protein-SSG GSH+ +  

Several proteomic studies have demonstrated the glutathionylation of a number 
of chloroplast proteins under oxidative stress conditions (Ito et al. 2003; Zaffagnini 
et al. 2007, 2012a, b). The glutathionylation reaction is generally supported by 
ROS such as H2O2 under stress conditions (Zaffagnini et al. 2012b). In the absence 
of a glutathionylation reaction, the thiol group of cysteine could be oxidized to 
irreversible forms, i.e., sulfinates and sulfonates (Poole et al. 2004). In this way, 
the reaction of GSH with thiol groups of cysteine (glutathionylation) protects pro-
teins from possible damage by ROS on redox signaling, although it has yet to be 
completely elucidated and is currently under extensive investigation (Zaffagnini 
et al. 2012a).

A number of redoxactive enzymes are known to intervene in the glutathionyl-
ation process. Examples, on which we elaborate below, are the peroxiredoxins 
(PRDXs) (Dietz 2003; Zaffagnini et al. 2012a), glutaredoxins (GRXs) (Xing et al. 
2006; Meyers et al. 2008), thioredoxins (TRXs) (Buchanan and Balmer 2005; 
Zaffagnini et al. 2012a), and protein disulfide isomerases (Alergand et al. 2006). 
These redoxactive enzymes, together with a various redox-active target proteins 
defend proteins from irreversible oxidation especially under oxidative stress condi-
tions (Ströher and Dietz 2006; Meyers et al. 2008; Zaffagnini et al. 2012a).
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Peroxiredoxin (PRDXs) comprises a family of thiol-based peroxidases found in 
organisms ranging from bacteria to mammals (Abbas et al. 2008; Bhatt and Tripathi 
2011; Anjum et al. 2012; Djuika et al. 2013). Though the roles of PRDXs have not 
yet been completely elucidated, their role in heavy-metal-induced ROS detoxifica-
tion is evident (Matamoros et al. 2010; Abbas et al. 2013). The proteomic analysis 
of maize roots (Requejo up-regulation of PRDXs under heavy metal stress. These 
enzymes usually catalyze the reduction of H2O2 and other hydroperoxides (ROOH) 
with help from reduced thioredoxins, to yield thioredoxin disulfide, water, and the 
corresponding alcohol (Dietz 2011; Deponte 2013; Djuika et al. 2013; Randall et al. 
2013). Bhatt and Tripathi (2011) described the reaction mechanism of PRDXs-
induced decomposition of O2

•− to H2O. They summarized the entire process in three 
steps: peroxidation, redox dehydration and reduction as reported by Aran et al. 
(2009). The reaction starts as a nucleophilic attack of the protein thiol on the perox-
ide, resulting in the release of an alcohol and concomitant oxidation to a sulfenic 
acid (RSOH), which starts the catalytic cycle (Ellis and Poole 1997). The thiol 
group of Cys attacks RSOH, resulting in the release of H2O and formation of a 
disulfide bridge. The catalytic cycle is stopped by a complementary reduction sys-
tem, which results in catalytically active PRDXs (Aran et al. 2009; Bhatt and 
Tripathi 2011). Peroxiredoxin with CAT and other peroxidases are reported to take 
part in signal transduction by controlling the intracellular H2O2 concentration 
(Randall et al. 2013; Poynton and Hampton 2013). In plants, PRDXs have four 
subgroups (1-Cys PRDX, 2-Cys PRDX, PRDX II and PRDX Q) that are based on 
the number and position of the conserved cysteine residues, genome-wide analysis 
of plants and their subunit composition (Rouhier et al. 2001; Rouhier and Jacquot 
2002; Poynton and Hampton 2013).

Thioredoxin (TRXs) is a family of antioxidant redox proteins (12.4 kDa) that facil-
itate the reduction of other proteins through the exchange of thiol/disulfide (Lemaire 
et al. 2003). For example, thioredoxins act as hydrogen donors for thioredoxin per-
oxidases or peroxiredoxin, which are involved in the removal of H2O2 (Verdoucq 
et al. 1999; Behm and Jacquot 2000). The reaction mechanism involves the reduc-
tion of the oxidized disulfide form of thioredoxin by NADPH and thioredoxin 
reductase (TRR). Depending on the primary sequence and sub-cellular localization, 
plants have six subgroups/types (TRXs f, m, x, y, h, and o). These subgroups have 
different sub-cellular compartmentalization and function. Thioredoxin-x, -y, -z, and 
NTRc are reported to act as electron donors to various antioxidant enzymes such as 
the glutathione peroxidises, methionine sulfoxide reductases and peroxiredoxins 
(Tarrago et al. 2009; Chibani et al. 2010).

However, it is not always evident that ROS detoxification by antioxidant enzymes 
requires electrons from the glutaredoxin or thioredoxin systems (Culotta et al. 2006; 
Benabdellah et al. 2009). It is reported that in GSH deficient cells, TRXs are over-
produced to compensate for GSH shortage (Pócsi et al. 2004). Examination of the 
redox state of TRXs and GRXs in mutant plants showed that TRXs are independent 
of the GSH/GRX system (Trotter and Grant 2003). Still the interaction of TRXs, 
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GRXs and GSH in redox-dependent regulation, based on disulphide/dithiol 
exchange reactions under stress conditions (overproduction of ROS), is not well 
established in plants.

Glutaredoxins (GRXs) are oxidoreductases that catalyze the reversible reduction 
of disulfide bonds and participate in antioxidant defence by reducing various 
enzymes such as peroxiredoxins, dehydroascorbate, and methionine sulfoxide 
reductase (Buchanan and Balmer 2005; Li and Zachgo 2009). Glutaredoxins are 
oxidized by substrates, and reduced non-enzymatically by GSH. In the dithiol 
mechanism, electrons are transferred from NADPH to GR, then to GSH, and from 
there to GRXs. Finally, GRXs reduce target proteins by dithiol-disulfide exchange 
reactions in a manner similar to TRXs. The plant glutaredoxin family contains more 
than 30 members that are localized in different cell compartments (Couturier et al. 
2009; Zaffagnini et al. 2012b). Almost thirty different GRXs isoforms have been 
identified in A. thaliana. They are subgrouped in six classes based on their 
 redox- active center (Xing et al. 2006). Each class contains a variant of the active site 
motif and peculiar functional properties (Rouhier et al. 2006). GPXs appears to be 
involved in detoxifying H2O2 (Foyer and Noctor 2005, 2009) as well as lipid and 
phospholipid hydroperoxides (Avery and Avery 2001). GRXs also participate to 
reduce the oxidized cysteines, providing evidence of GRXs role in oxidative stress 
signaling (Michelet et al. 2006).

6.4  Nitrogen Metabolism

Nitrogen metabolism plays an important role in plant responses to heavy metal tox-
icity (Lea and Azevedo 2007; Andrade et al. 2010). Various nitrogenous metabo-
lites, such as polyamines, amino acids and amino acid-derived molecules can bind 
to and scavenge heavy-metal-induced ROS (Kovac et al. 2009; Radić et al. 2010). 
When plants are exposed to high heavy metals levels, it is reported that some plant 
amino acids (e.g., proline or histidine), scavenge ROS (Sharma and Dietz 2006; 
Fariduddin et al. 2009).

Huang and Wang (2010) suggested that free prolines help protect certain plant 
enzymes, osmoregulation and help to stabile the sub-cellular components and struc-
tures. Proline has been reported to accumulate in plants under heavy metal stress 
conditions, an indication that its increased presence provides a protective or a regu-
latory role (Sharma and Dietz 2006). Metal-tolerant plants contain higher constitu-
tive proline levels, even in the absence of excess metal ions, than do non-tolerant 
plants (Sharma and Dietz 2006; Huang and Wang 2010). Increased levels of proline 
correlate with enhanced metal tolerance in plants, and as a result, some researchers 
believe it to act as an antioxidant in metal-stressed cells (Gupta and Sarin 2009; 
Huang and Wang 2010). One of the proposed roles of proline is to reduce free radi-
cal levels that are generated from toxicity events. In this regard, proline acts in a 
manner that is similar to GSH, ascorbic acid or tocopherol. Heavy metals interfere 
with N metabolism to cause toxicity that alters the composition of amino acid in 
plants (Callahan et al. 2007).
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6.5  Antioxidant Enzymes

One of the most efficient mechanisms that plants use to protect themselves is to 
detoxify any free radicals that are present. Such detoxification prevents cell injury 
and tissue dysfunction and is accomplished in plant cells via activation of antioxi-
dants enzymes such as SOD, CAT, POD, APX, GR, DHAR and MDHAR (Table 2, 
Fig. 4) (Lomonte et al. 2010; Mou et al. 2011; Vanhoudt et al. 2011; Lyubenova and 
Schröder 2011; Cestone et al. 2012; Opdenakker et al. 2012; Shahid et al. 2013d). 
Previous results have shown that high levels of antioxidant enzymes can increase 
stress tolerance to heavy-metal-induced stress conditions. Many researchers have 
also reported that antioxidant enzymes are activated in different plant species to 
scavenge the ROS that are produced by heavy metal toxicity (Gonnelli et al. 2001; 
Kim et al. 2010; Kafel et al. 2010; Martínez Domínguez et al. 2010; He et al. 2011).

Plant species display different levels of tolerance to heavy metal exposure (Shahid 
et al. 2012d), and the enzymes in these plants display varying behavior when under 
heavy metal stress. Most of these antioxidative enzymes are electron donors and 
react with free radicals to form innocuous end products, such as water. The process 
involves the binding of these ROS to active enzyme sites, and then conversion to 
non-toxic and inactive products. Among these enzymes, SOD is a key one for 
defending plants against ROS. The catalytic properties of SOD were first detected by 
McCord and Fridovich (1969). SOD is responsible for dismutation of the two super-
oxide radicals to H2O2 and O2. In this way, SOD maintains O2

•− at a steady state level 
(Gao et al. 2010; Deng et al. 2010; Andrade et al. 2010; Cestone et al. 2012). An 
increase in SOD activity could be either direct through the action of heavy metal ions 
on SOD, or indirect through an increase in O2

•− levels (Chongpraditnun et al. 1992; 
Shahid et al. 2013d). When SOD appears, it generally does so in response to the 
production of heavy-metal-induced H2O2, which can form lipid peroxides by direct 
or indirect action by lipoxygenase- mediated lipid peroxidation (Deng et al. 2010). 
An increase in SOD activity may result from enhanced formation of O2

•− or from de 
novo synthesis of enzyme proteins (Verma and Dubey 2003; Yılmaz and Parlak 
2011). Catalase is generally present in mitochondria and peroxisomes, where it 
decomposes H2O2 to H2O and O2 (Hermes-Lima 2005; Tang et al. 2010; Shahid et al. 
2013d). Another enzyme class responsible for degrading H2O2 are the PODs, which 
are capable of reducing H2O2 to H2O. Guaiacol peroxidase is present in vacuoles, the 
cell wall, cytosol and extracellular spaces. POD is considered to be a marker of 
heavy metal toxicity, having broad specificity for phenolic substrates and higher 
affinity for H2O2 than CAT (Radwan et al. 2010). Guaiacol peroxidase consumes 
H2O2 to generate phenoxy compounds that are polymerized to produce cell wall 
components such as lignin (Mishra et al. 2006; Pourrut et al. 2011b).

Enzymes of ascorbate–glutathione cycle, APX and GR, are located mainly in 
chloroplasts, other cellular organelles and the cytoplasm, where they are involved in 
controlling the cellular redox status, especially under heavy metals stress conditions 
(Singh et al. 2010). Ascorbic acid is a primary and secondary antioxidant. APX 
utilizes ascorbate to reduce H2O2 to H2O and O2 (Mittler 2002; Triantaphylidès and 
Havaux 2009). During this process, ascorbate is oxidized to monodehydroascorbate. 

Heavy-Metal-Induced Reactive Oxygen Species…



Table 2 The antioxidant enzyme systems different plants use to defend themselves against heavy-metal- 
induced ROS

Heavy metals Enzymes Plant species References

Ag SOD, CAT Potamogeton crispus Xu et al. (2010b)
Al SOD, CAT, APX, GPOX Hordeum vulgare Achary et al. (2012)

SOD, POD Hordeum vulgare Guo et al. (2007)
As SOD, GR, SDH Aspergillus niger Mukherjee et al. (2010)

SOD, POD, APX, CAT Zea mays, Vicia faba Duquesnoy et al. (2010)
APX, MDHAR,  

DHAR, SOD, GST
Typha latifolia Lyubenova and Schröder (2011)

Cd SOD, POD, CAT Carassius auratus Chen et al. (2012)
SOD, APX, GR Gracilaria dura Kumar et al. (2012)
APX, MDHAR, DHAR, 

GR, GST
Helianthus annuus Nehnevajova et al. (2012)

SOD, CAT, APX, GR Solanum lycopersicum Cherif et al. (2011)
APX, MDHAR, DHAR, 

SOD, GST
Typha latifolia Lyubenova and Schröder (2011)

SOD, APX, CAT, GR Brassica juncea Ahmad et al. (2011b)
SOD, POD, CAT Medicago sativa Xu et al. (2010a)
POD, CAT Amaranthus hybridus Zhang et al. (2010)
GSH, GST Brassica juncea Szőllősi et al. (2009)
SOD, POD Hordeum vulgare Guo et al. (2007)

Cr GPX, APX, CAT, GR Zea mays Mallick et al. (2010)
APX, SOD, POD Lycopersicum esculatum Nayek et al. (2010)

Cu APX, MDHAR, DHAR, 
GR, GST

Helianthus annuus Nehnevajova et al. (2012)

SOD, CAT, APX Pisum sativum Turchi et al. (2012)
SOD, APX, GR Sesbania drummondii Israr et al. (2011)
GPX, CAT Phaseolusvulgaris Bouazizi et al. (2010)
SOD, POD, CAT Vetiveria zizanioides Xu et al. (2009)
SOD, POD, APX, CAT Withania somnifera Khatun et al. (2008)
SOD, GPX, CAT Datura stramonium Boojar and Goodarzi (2007)

Malva sylvestris
Chenopodium ambrosioides

SOD, POD Hordeum vulgare Guo et al. (2007)
Ni SOD, CAT, APX,  

GPOX, GR
Brassica juncea Kanwar et al. (2012)

SOD, APX, GR Sesbania drummondii Israr et al. (2011)
Pb SOD Spinacia oleracea Wang et al. (2010)

APX, MDHAR, DHAR, 
SOD, GST

Typha latifolia Lyubenova and Schröder (2011)

SOD, APX Sedum alfredii Gupta et al. (2010)
SOD, GPX, APX,  

CAT, GR
Najas indica Sing et al. (2010)

SOD, APX, GR Sesbania drummondii Israr et al. (2011)
APX, SOD, POD Lycopersicum esculatum Nayek et al. (2010)
SOD, CAT, AsA Zea mays Gupta et al. (2009)
APX, GR, GST Lathyrus sativus Brunet et al. (2009)
CAT, APX Wolffia arrhiza Piotrowska et al. (2009)
APX, SOD, POD Lycopersicum esculatum Nayek et al. (2010)

Zn APX, MDHAR, DHAR, 
GR, GST

Helianthus annuus Nehnevajova et al. (2012)

SOD, CAT, APX Pisum sativum Turchi et al. (2012)
SOD, CAT, APX, GR Solanum lycopersicum Cherif et al. (2011)
SOD, APX, GR Sesbania drummondii Israr et al. (2011)
SOD, POD, CAT Vetiveria zizanioides Xu et al. (2009)

SOD superoxide dismutase, APX ascorbate peroxidise, GPX guaiacol peroxidise, CAT catalase, GR gluta-
thione reductase, AsA ascorbic acid, GSH glutathione, GST glutathione S-transferase, POD peroxidase, 
DHAR dehydroascorbate; reductase, MDHAR monodehydroascorbate reductase, ACOX acyl co-A oxidase, 
SDH succinatedehydrogenase
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The monodehydroascorbate formed can be directly reduced back to ascorbate by 
monodehydroascorbate reductase (MDHAR), or may first be converted to 
 dehydroascorbate, and then reduced by dehydroascorbate reductase (DHAR). In the 
process, GSH acts as reductant, which is oxidized to GSSG (oxidized glutathione). 
When GR activity is induced, the GSH/GSSG ratio remains high, and thus allows 
GSH to participate in PC synthesis and ROS detoxification (Noctor et al. 1998).

Several previous authors have reported heavy-metal-induced increases in anti-
oxidant enzymes (Table 2). Ali et al. (2011) observed activation of SOD, POD, 
APX, GR and CAT under Al or Cr stress in Hordeum vulgare. Israr et al. (2011) 
reported a significant increase in enzymatic (SOD, APX, GR) antioxidant levels in 
Sesbania drummondii seedlings, when the seedlings were exposed to Cu, Ni and Zn 
alone and in combination. Lomonte et al. (2010) reported increased CAT and SOD 
activity, in response to applying Hg to Atriplex codonocarpa for 4 weeks under 
hydroponic conditions. Radić et al. (2010) also reported increased SOD and POD 
activity, when Lemna minor plants were exposed to Al and Zn. Yadav (2010) 
observed that the antioxidants CAT, APX and glutathione S-transferase (GST) 
increased as the Cr concentration increased in Jatropha curcas. Shahid (2010) 
reported a Pb-induced increase in APX, SOD, GPX and GR levels in Vicia faba 
roots and leaves, as did (Choudhary et al. 2010) in Raphanus sativus by Cu. 
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Fig. 4 Schematic representation of heavy-metal-induced oxidative stress. Under normal condi-
tions (highlighted grey), O2

•− is produced by cellular respiration. This O2
•− is converted to H2O2 by 

SOD. The H2O2 produced is converted to H2O and O2 by the combined action of APX, GPOX, 
CAT and GR. In the presence of heavy metals, the O2

•− and H2O2 production is increased. The 
increased ROS is incompletely converted to H2O by the antioxidants. As a result, highly toxic HO• 
is produced by the Haber–Weiss or Fenton reactions. This HO• is the most toxic ROS and is 
believed to initiate lipid peroxidation, cell death, enzyme inactivation and genotoxicity
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Increased activity of POD and CAT in Amaranthus hybridus, in reponse to Cd 
 toxicity, was also observed by Zhang et al (2010). Singh et al. (2010) reported that 
the bioaccumulation of Pb by Najas indica activated several antioxidant enzymes 
(e.g., SOD, APX, GPX, CAT and GR). They also reported significantly increased 
cysteine synthase and glutathione-S-transferase activity. Similar results have been 
reported for Phaseolus aureus and Vicia sativa (Zhang et al. 2009). Recently, Shahid 
(2010) reported the results of a time course experiment (1, 4, 8; 12 and 24 h), in 
which the Pb-induced activation of antioxidant enzymes (APX, GPOX, SOD and 
GR), lipid peroxidation and ROS production occurred, after the Pb concentration 
reached significant levels in roots (after 1 h) and leaves (after 8 h). This suggests 
that Pb-induced lipid peroxidation, activation of enzymes and production of H2O2 
are very rapid phenomena. Moreover, the oxidative bursts in roots and leaves 
 coincide with periods of high Pb entrance rates to these tissues (1 and 12 h) 
(Pourrut et al. 2008).

7  Conclusions and Perspectives

In this review, we have highlighted key results from the previous and particular the 
recent published literature that addresses heavy-metal-induced physiological 
changes that occur in plants. Based on the literature cited in this review, we have 
drawn the following conclusions:

 1. The generation of ROS is an inevitable feature of higher plants and other aerobic 
organisms. These ROS are constantly generated as side-products of certain meta-
bolic pathways, and act to control various essential plant processes. Heavy metal 
exposure to plants disturbs the delicate balance between ROS production and 
elimination, leading to an enhanced steady-state ROS level that is called “oxida-
tive stress”. A common feature of oxidative stress is damage to proteins, DNA, 
and lipids. Consequently, it is suggested that metal-induced oxidative stress in 
cells may partially be responsible for the toxic effects produced by heavy metals.

 2. The plant kingdom has evolved a very efficient enzymatic and nonenzymatic 
defense system that allows ROS-scavenging to protect plant cells from oxidative 
damage. Retention of heavy metals in the cell wall is the first barrier against 
heavy metal stress. Heavy metal chelation by PCs, MTs, GSH and amino acids, 
and subsequent sequestration in vacuoles is another detoxification mechanism in 
plants. Biochemical tolerance to heavy metals is linked to activation of antioxi-
dant enzymes. These heavy metal tolerance mechanisms may be activated sepa-
rately or simultaneously, depending on the type and species of metal and plant.

 3. ROS-induced toxicity to different plant molecules and the various responses of 
plants to over production of ROS are often used as bioindicators in risk and envi-
ronmental quality assessment studies. Such biomarkers are appropriate for use in 
ecotoxicological studies. To further develop and improve these bioindicators, a 
better understanding of the processes and mechanisms involved in ROS produc-
tion, their toxicity and defense mechanisms in the presence of pollutants, such as 
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heavy metals, are needed. Moreover, all bioindicators are not equally sensitive 
to different pollutants under different environmental conditions. Therefore, the 
mechanisms behind ROS production, toxicity and detoxification should be 
 compared to optimize the most sensitive and efficient assays, with respect to 
environmental conditions like applied metal form and concentration, physico-
chemical parameters of medium and metal and plant type.

8  Summary

As a result of the industrial revolution, anthropogenic activities have enhanced the 
redistribution of many toxic heavy metals from the earth’s crust to different environ-
mental compartments. Environmental pollution by toxic heavy metals is increasing 
worldwide, and poses a rising threat to both the environment and to human health. 
Plants are exposed to heavy metals from various sources: mining and refining of 
ores, fertilizer and pesticide applications, battery chemicals, disposal of solid wastes 
(including sewage sludge), irrigation with wastewater, vehicular exhaust emissions 
and adjacent industrial activity.

Heavy metals induce various morphological, physiological, and biochemical 
dysfunctions in plants, either directly or indirectly, and cause various damaging 
effects. The most frequently documented and earliest consequence of heavy metal 
toxicity in plants cells is the overproduction of ROS. Unlike redox-active metals 
such as iron and copper, heavy metals (e.g, Pb, Cd, Ni, Al, Mn and Zn) cannot gen-
erate ROS directly by participating in biological redox reactions such as Haber–
Weiss/Fenton reactions. However, these metals induce ROS generation via different 
indirect mechanisms, such as stimulating the activity of NADPH oxidases, displac-
ing essential cations from specific binding sites of enzymes and inhibiting enzy-
matic activities from their affinity for –SH groups on the enzyme.

Under normal conditions, ROS play several essential roles in regulating the expres-
sion of different genes. Reactive oxygen species control numerous processes like the 
cell cycle, plant growth, abiotic stress responses, systemic signalling, programmed 
cell death, pathogen defence and development. Enhanced generation of these species 
from heavy metal toxicity deteriorates the intrinsic antioxidant defense system of 
cells, and causes oxidative stress. Cells with oxidative stress display various chemi-
cal, biological and physiological toxic symptoms as a result of the interaction between 
ROS and biomolecules. Heavy-metal-induced ROS cause lipid peroxidation, mem-
brane dismantling and damage to DNA, protein and carbohydrates. Plants have very 
well-organized defense systems, consisting of enzymatic and non-enzymatic antioxi-
dation processes. The primary defense mechanism for heavy metal detoxification is 
the reduced absorption of these metals into plants or their sequestration in root cells. 
Secondary heavy metal tolerance mechanisms include activation of antioxidant 
enzymes and the binding of heavy metals by phytochelatins, glutathione and amino 
acids. These defense systems work in combination to manage the cascades of oxida-
tive stress and to defend plant cells from the toxic effects of ROS.
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In this review, we summarized the biochemical processes involved in the 
overproduction of ROS as an aftermath to heavy metal exposure. We also described 
the ROS scavenging process that is associated with the antioxidant defense machin-
ery. Despite considerable progress in understanding the biochemistry of ROS over-
production and scavenging, we still lack in-depth studies on the parameters associated 
with heavy metal exclusion and tolerance capacity of plants. For example, data about 
the role of glutathione–glutaredoxin–thioredoxin system in ROS detoxification in 
plant cells are scarce. Moreover, how ROS mediate glutathionylation (redox signal-
ling) is still not completely understood. Similarly, induction of glutathione and phy-
tochelatins under oxidative stress is very well reported, but it is still unexplained that 
some studied compounds are not involved in the detoxification mechanisms. Moreover, 
although the role of metal transporters and gene expression is well established for a 
few metals and plants, much more research is needed. Eventually, when results for 
more metals and plants are available, the mechanism of the biochemical and genetic 
basis of heavy metal detoxification in plants will be better understood. Moreover, by 
using recently developed genetic and biotechnological tools it may be possible to 
produce plants that have traits desirable for imparting heavy metal tolerance.
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1            Introduction 

 Increased urbanization and industrialization worldwide has resulted in increased 
releases of solid waste, and enhanced environmental pollution around the globe. 
There are several categories of solid waste and these include sewage sludge, and 
municipal solid wastes (Singh et al.  2011 ). Fly Ash (FA), a coal combustion residue 
(CCR), is a major type of solid waste. The global dependence on coal as a major 
source of energy production, especially to produce electricity, has made FA a prime 
solid waste problem and a growing environmental pollutant. Proven global coal 
reserves have been estimated at 847 billion tons for the year 2007 (Sarkar et al.  2012 ). 
The USA has the largest share of global coal reserves (25.4%), followed by Russia 
(15.9%), China (11.6%) and India (8.6%) (Sarkar et al.  2012 ). Since India became 
independent in 1947, there has been a rapid increase in power generation, largely 
dominated by coal-based thermal generation constituting about 79% of total produc-
tion. Energy production has increased from a capacity of 1,362 MW in 1947 to 
120,000 MW in 2005. The Indian government plans to increase installed capacity to 
300,000 MW by 2017 (Kumar et al.  2005 ;    Vaidya  2009 ). India, like the United States, 
Russia and China, possesses abundant coal reserves, and coal-fueled generation of 
electricity is the common national policy ( Singh et al. 2012 ; Sarkar et al.  2012 ). 

 During the combustion of coal several residues are produced. These include FA, 
bottom ash, fl ue gas desulphurization waste, fl uidized bed boiler waste and coal 
gasifi cation ash. FA is a residue of coal combustion (CCRs) that enters the fl ue gas 
stream. The nature of the FA produced largely depends on the quality and ash con-
tent of the coal that is burned. Indian coal is generally of lower grade than imported 
coals, and thereby has higher ash content (40%; CEA  2011 ). 

 The annual production of FA has increased from about 1.0 million metric tons 
(MT) in 1947 to about 112 MT during 2005. According to estimates from the FA 
Utilization Programme (FAUP), FA production is likely to reach 225 MT annually 
by 2017 (Kumar et al.  2005 ) (Fig.  1 ). Disposal of such an enormous amount of FA 
is a massive problem, particularly if it must be deposited in areas that surround ther-
mal power stations. The major portion of FA produced in India is disposed of in ash 
ponds and in landfi lls; a minor proportion (<15%) is used to manufacture bricks, 
ceramics and cements (Pandey et al.  2009 ). The utilization of FA (3% of the 40 MT 
produced in 1994), has increased to ~38% of total production (viz., 112 MT) during 
2004–05; this proportion is far below the global utilization rate (Dhadse et al.  2008 ; 
Singh et al.  2010 ) (Fig.  1 ). In India, 49% of FA is utilized in the cement industry, 
whereas only about 1% is used in the agricultural sector (Singh et al.  2010 ).

   In agriculture, FA is primarily utilized as a soil amendment to buffer the soil pH 
(Phung et al.  1978 ). Such amendment improves soil texture (Fail and Wochok  1977 ; 
Chang et al.  1977 ) and soil nutrient status (Rautaray et al.  2003 ). However, the 
majority of the FA that is produced remains in ash storage ponds, and these deposits 
pose risks of several adverse effects to the environment. 

 In the present review, our aim is to address how FA can be utilized in global agri-
culture, and to provide the consequences of this use on soil health. Our major focus is 
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to understand what the biological responses (i.e., physico-chemical, microbial, bio-
chemical, etc.) are to FA-amended agricultural soils, and what effect FA amendment 
has on agricultural productivity. It is our intent to make this review useful for students 
and established researchers who work in the areas of soil nutritional dynamics and 
solid waste amendment. This review should also benefi t some policy makers, who 
face the task of designing better and more sustainable approaches for managing solid 
waste pollution.  

2     Physico-Chemical Properties of Fly Ash (FA) 

 The physico-chemical properties of FA primarily depend on the nature of the parent 
coal composition from which it comes, and secondly on the conditions under which 
the coal is combusted (Karapanagioti and Atalay  2001 ; Pandey and Singh  2010 ). 
Coal is a complex polymeric solid lacking any repeating monomeric units. FA is 
formed from the mineral matter in coal, and comprises a fi ne powder consisting of 
the non-combustible matter in coal, along with a small quantity of carbon that 
remains from incomplete combustion. FA is the fi nest of coal ash particles. 

 Physically, FA is comprised of very fi ne glass-like particles that are 0.01–100 mm 
in size (Davison et al.  1974 ; Jala and Goyal  2006 ). These FA particles have specifi c 
gravities of 2.1–2.6 g m −3  (Bern  1976 ), low to medium bulk density, a large surface 
area and very light texture. The specifi c chemical composition of FA depends on the 
quality of and conditions under which the parent coal was combusted (Jala and 
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Goyal  2006 ; Basu et al.  2009 ; Gupta et al.  2012 ). Some particles of FA are empty 
spheres (cenospheres), while others (plerospheres) are fi lled with small amorphous 
particles (Hodgson and Holliday  1966 ). FA constitutes a varied combination of 
amorphous and crystalline phases (usually considered as ferroaluminosilicate) (Lim 
and Choi  2014 ) and has a matrix similar to soil. It also contains about 69% of a fi ne-
earthed fraction (i.e., clay silt) that derives from coal. Hodgson and Townsend 
( 1973 ) reported that samples of fl y-ash-particle fractions contained from 45 to 70% 
silt and 1 to 4% clay. The bulk density of different fl y ashes varies from 1 to 
1.8 g cm 3  ,  whereas the pH ranges from 4.5 to 12.0, and depends on the S content of 
the parent coal (Plank and Martens  1974 ). 

 Alkalinity is an important FA characteristic, and results from the presence of Ca, 
Na, Mg and OH, along with certain other trace metals. Kunavanakrit ( 1993 ) reported 
that FA contained a high amount of Ca and Mg, both of which have high pH (11) 
and a high cation exchange capacity (CEC). The sub-bituminous and lignite coal 
ashes produce alkaline solutions when mixed with water. The degree of alkalinity 
depends on the Ca content, since this element is in the highly reactive CaO form, 
and is a major constituent of the fl y-ash- forming Ca(OH) 2  (Hodgson et al.  1982 ). 
The characteristics of FA are greatly infl uenced by the particle size of its compo-
nents. Particle size also affects the physical properties of fl y-ash-amended soil. 

 Parameters that describe the chemical characteristics of coal include molecular 
weight, carbon aromaticity, normal aromatic and aliphatic structure and functional 
groups present. Coal quality is ranked by using several criteria: anthroxylon con-
tent, oxygen content, calorifi c value, ultimate analysis, fi xed carbon content, etc. 
(Hodgson et al.  1982 ; Speight  2005 ). By and large, Indian coals have a high min-
eral matter %, low S content, high moisture, high ash content (Oliveira et al.  2014 ) 
and low calorifi c value (3,500–4,000 kcal kg −1 ) (Gupta et al.  2012 ). The ash con-
tent of Indian coal varies between 15 and 30% and the S content is usually <1% 
(Srivastava  2003 ; Bhatt  2006 ). FA consists of approximately 95–99% of Si, Al, Fe 
and Ca oxides and about 0.5–3.5% of Na, P, K and S and the residual is trace 
elements. 

 Ahmaruzzaman ( 2010 ) described FA as mainly being composed of Si, Al, and 
Fe, with a major proportion of Ca, K, Na, Ti, along with other trace elements. Coal 
FA consists of SiO 2  (49–67%), Al 2 O 3  (16–29%), Fe 2 O 3  (4–10%), CaO (1–4%), 
MgO (0.2–2%), and SO 3  (0.1–2%) (Anon  2006 ; Singh et al.  2010 ). All metals pres-
ent in soil are also found in fl y ash. In Table  1 , we compare the physico- chemical 
characteristics of FA and soil. The concentration of various elements that occur in 
FA varies with particle size (Khan and Khan  1996 ). A listing of elements present in 
FA includes the following: Si, Ca, Mg, Na, K, Cd, Pb, Cu, Co, Fe, Mn, Mo, Ni, Zn, 
B, F and Al (Tripathi et al.  2004 ;    Gupta and Sinha  2008 ), and therefore, all impor-
tant metals essential for plant growth and metabolism are present except organic C 
and N. The reason FA lacks any or much N is because it is volatilized from the 
coal (Singh and Yunus  2000 ). In contrast, FA has a high concentration of phospho-
rous (P) (400–8,000 mg P kg −1 ). Unfortunately, this P is not readily available to 
plants, which may be due to its active interaction with Al, Fe and Ca present in 
alkaline FA (Gupta et al.  2012 ).
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   Several workers have reported the presence of radionuclides in fl y ash; however, 
little information exists as to their impact (Gowiak and Pacynas  1980 ; Mittra et al. 
 2005 ; Papastefanou  2008 ). Mittra et al. ( 2005 ) analyzed the radioactivity (Bq kg −1 ) 
of FA and recorded high radioactivity levels of  226 Ra,  228 Ac and  40 K in soil treated 
with FA at 40 t ha −1 . Moreover, Tadmore ( 1986 ) reported the radionuclides of ura-
nium (U) and thorium (Th) series as components of fl y ash. 

 FA is generally rich in toxic heavy metals (e.g., manganese, nickel, lead, etc.) 
and hazardous organic pollutants (e.g., polycyclic aromatic hydrocarbons, poly-
chlorinated biphenyls, methyl sulphates, chlorinated dioxins and benzofurans 
(Wheatley and Sadhra  2004 ). Therefore, using FA in agriculture can result in higher 
accumulation of such toxic chemicals in food products, which, in turn, could pose 
human health issues.  

3     Biological Responses of Agricultural Soil 
to FA Amendment 

3.1     Physico-Chemical Responses of Soil to FA Amendment 

 The effect of amending soils with FA has been extensively investigated (Plank and 
Martens  1974 ; Elseewi and Page  1984 ; Jala and Goyal  2006 ). Kesh et al. ( 2003 ) 
reported FA as a repository of nutrients that assists in reclaiming alkaline and saline 
soils and improving soil properties. Amending soils with FA affects all soil physical 

   Table 1    A comparison of the physico-chemical properties of FA, an agricultural soil, and an 
FA-amended agricultural soil   

 Properties 

 Fly Ash 
(Tripathi 
et al.  2004 ) 

 Fly Ash 
(Gupta and 
Sinha  2008 ) 

 Soil 
(Tripathi 
et al.  2004 ) 

 FA amended soil 
(20% wt/wt) (Singh 
(2009) (PhD thesis, 
unpublished data)) 

 pH  8.80  8.12  8.05  7.86 
 E. C. (mS cm −1 )  7.61  3.54  0.23  3.477 
 Organic carbon (%)  1.17  1.7  43.40  0.537 
 Total nitrogen (%)  0.02  –  2.50  0.117 
 Total phosphorus (%)  0.14  –  1.06  – 
 Metals (mg kg −1 ) 
 K  9,005.00  28,706.00  –  472.96 
 Na  5,200.00  41,321.00  –  396.74 
 Fe  4,150.00  20,054.00  2,850.00  1518.26 
 Zn  82.00  94.70  22.60  – 
 Cd  42.30  31.23  < 0.002  – 
 Pb  40.10  26.81  < 0.005  – 
 B  29.00  –  1.36  – 
 Ni  204.00  23.44  23.80  – 
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and chemical characteristics such as texture, bulk density, pH, water-holding capac-
ity, electrical conductance (EC) (Chang et al.  1977 ; Pathan et al.  2003 ; Singh et al. 
 2012a ) and particle size distribution (Sharma  1989 ) (Table  2 ). A gradual increase in 
the rate of fl y-ash amendment (0% 10% 25%, up to 100% v/v) in normal fi eld soils 
increased water-holding capacity, EC, and pH (Gupta and Sinha  2006 ,  2009 ).

   Chemical properties of soil are also affected by adding fl y ashes, since they are 
rich in heavy metal content (Singh et al.  2010 ,  2012a ; Gupta and Sinha  2006 ,  2009 ) 
(Table  2 ). Campbell et al. ( 1983 ) reported that adding FA to soil @ 10% (wt/wt) 
increased the water holding capacity of soil by 7.2 and 413.2 times for fi ne and 
coarse sands, respectively. The water holding capacity of sandy soils is improved 
from the fi ne textured nature of fl y ash; FA amendment is also known to reduce 
compaction of clay soils (Sharma and Kalra  2006 ). 

         Table 2    The physico-chemical and biological responses of soil that has been amended with FA   

 Soil properties  Effect  References 

 Physical 
 pH  Decrease  Pathan et al. ( 2003 ), Sinha and Gupta ( 2005 ), Gupta and Sinha 

( 2006 ) 
 Increase     Wong and Wong ( 1990 ), Jala and Goyal ( 2006 ) 

 Aggregate stability  Increase  Jala and Goyal ( 2006 ), Basu et al. ( 2009 ), Singh et al. ( 2010 ) 
 Bulk density  Decrease  Page et al. ( 1979 ), Singh et al. ( 2012a ), Basu et al. ( 2009 ), 

Gupta et al. ( 2012 ) 
 Water holding 

capacity 
 Increase  Campbell et al. ( 1983 ), Page et al. ( 1979 ), Chang et al. ( 1977 ), 

Jala and Goyal ( 2006 ), Basu et al. ( 2009 ), Pandey and 
Singh ( 2010 ) 

 Porosity  Decrease  Page et al. ( 1979 ), Pandey and Singh ( 2010 ), Gupta et al. ( 2012 ) 

 Chemical 
 Toxic elements 

(Cd, Pb, Ni etc.) 
 Increase  Gupta and Sinha ( 2006 ), Singh et al. ( 2010 ), Pandey and Singh 

( 2010 ) 
 Fe, Cu, Zn, Mn  Increase  Tripathi et al. ( 2004 ), Gupta and Sinha ( 2006 ,  2008 ) 
 Electrical 

conductance 
 Increase  Adriano et al. ( 1980 ), Eary et al. ( 1990 ) 
 Decrease  Gupta and Sinha ( 2006 ), Pandey and Singh ( 2010 ), Gupta 

et al. ( 2012 ) 
 Cation exchange 

capacity (CEC) 
 Decrease  Sinha and Gupta ( 2005 ), Gupta and Sinha. ( 2006 ), Jala and 

Goyal ( 2006 ) 
 Organic carbon / 

organic matter 
 Decrease  Gupta and Sinha ( 2006 ), Singh et al. ( 2010 ), Gupta et al. ( 2012 ) 

 Biological 
 Microbial activity  Decrease  Adriano et al. ( 1978 ), Wong and Wong ( 1986 ), Saffi gna et al. 

( 1989 ) 
 Increase  Schutter and Fuhrmann ( 2001 ) 

 Leachablity 
 Pesticides  Decrease  Konstantinou and Albanis ( 2000 ); Singh et al. ( 2012b ,  2013a ,  b ) 
 Heavy meals  Increase  Natusch and Wallace ( 1974 ) 
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 FA amendment also increases the amounts of soluble major and minor inorganic 
constituents of soil, resulting in a higher EC value (Adriano et al.  1980 ; Eary et al. 
 1990 ; Jala and Goyal  2006 ; Basu et al  2009 ; Pandey and Singh  2010 ) (Table  2 ). The 
fl y ashes from India are primarily alkaline in nature; hence, applying them increases 
soil pH from the rapid release of Ca, Na, Al and OH −  (Wong and Wong  1990 ; Sinha 
and Gupta  2005 ) (Table  2 ). 

 In addition to containing heavy-metals, FA also retains trace elements that may 
contaminate soil (Basu et al.  2009 ; Singh et al.  2010 ). The majority of trace metals 
are released at a pH value of approximately 9 (Ahmaruzzaman  2010 ). Addition of a 
minute amount of FA to soils can signifi cantly boost solution pH. As pH increases, 
there is a decrease in trace metal desorption from FA (Theis and Wirth  1977 ). Fly 
ash, because of its hydroxide and carbonate salt content, has the ability to neutralize 
soil acidity (Pathan et al.  2003 ). However, using excessive amounts of FA to neutral-
ize soil acidity can result in excessive soil alkalinity, particularly with unweathered 
fl y ashes (Sharma et al.  1989 ). In fact, some acidic fl y ashes are deliberately used for 
reclaiming alkaline soils (Table  2 ). 

 Pandey et al. ( 2009 ) studied the infl uence of amending garden soils with fl y ash, 
in which  Cajanus cajan  L. was planted. The amendment altered accumulation and 
translocation of hazardous metals into edible plant parts.  Cajanus cajan  L. Plants 
were grown in containers, in which the concentrations of FA had been altered (0% 
25%, 50% and 100% wt/wt). Amendment with FA at ratios from 25 to 100% in this 
garden soil increased the pH, the particle density, porosity and water holding capac-
ity in comparison to controls from 3.47% to 26.39%, 3.98% to 26.14%, 37.50% to 
147.92% and 163.16% to 318.42%, respectively. This amendment also decreased 
bulk density from 8.94 to 48.89% in the amended soil as compared to non-amended 
soil (Pandey et al.  2009 ). 

 Singh et al. ( 2012a ) reported a decrease in NH 4  + , NO 3  − , total N, organic carbon 
(OC), organic matter (OM), available P, and CEC after rice was transplanted to a 
soil that had been amended with FA (0–20%). Reduced NH 4  +  and NO 3  –  content 
from different levels of FA amendment was also reported by Singh and Agrawal 
( 2010 ). Lee et al. ( 2006 ) reported increased soil pH and increased availability of Si, 
P, among other mineralogical components, in a Korean paddy fi eld soil that was 
amended with fl y ash; they concluded that FA can be utilized for improving the 
nutritional balance in a paddy fi eld soil (Lee et al.  2006 ). 

 Generally, the bulk density of soil declined with the addition of fl y ash, which in 
turn reduced porosity and increased water holding capacity (Page et al.  1979 ; 
Pandey and Singh  2010 ). Several workers have reported that FA amendment signifi -
cantly increases the water holding capacity of the amended soil. Although FA itself 
does not retain water effi ciently, amending sandy and loamy soils with it increased 
water holding capacity by 8% (Chang et al.  1977 ). Singh and Agrawal ( 2010 ) 
reported a signifi cant improvement in levels of soil nutrients (e.g., Na, K, Ca, Mg, 
and Fe) when increasing rates of FA were used to amend soils at Varanasi, India. 
The high boron (B) level in FA restricts its utilization in crop production (Aitken 
and Bell  1985 ). However, if the FA is properly weathered the problem with B can 
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be overcome. FA has a liming effect on soils that increases calcium and hydroxide 
ion mobility, which in turn enriches bacterial growth (Surridge et al.  2009 ). However, 
high levels of toxic heavy metals that can be transferred to soils from adding FA 
(Page et al.  1979 ) can hamper normal microbial metabolic processes (Pandey and 
Singh  2010 ).  

3.2     FA Management and the Soil Biochemical Cycle 

 Biological indicators are biological species that can be used to monitor environmen-
tal or ecosystem health. Biological indicators are often employed to represent some 
aspect of the living soil and its environment. Such indicators generally respond 
more rapidly to changes in the soil environment than do physical or chemical indi-
cators (Anderson and Gray  1990 ; Pascual et al.  2000 ; Singh et al.  2011 ). Additionally, 
biological indicators are sensitive tools for detecting changes in soil conditions that 
may occur (Singh et al.  2011 ). Microbes are vital constituents of the soil environ-
ment that contribute to the degradation of organic matter and make nutrients more 
available to other soil organisms. The responses of microbes to the addition of FA 
have been explored in several studies that we will describe below, although there is 
a paucity of data for direct effects on the microbes themselves. 

 In the soil system, soil enzymes play a key biochemical role in organic matter 
decomposition (Burns  1983 ; Chròst  1991 ; Sinsabaugh et al.  1991 ). Enzymes are 
critical for catalyzing several reactions that are essential for life processes of soil 
micro-organisms; these include stabilizing the soil structure, nutrient cycling, 
decomposition of organic wastes and organic matter formation (Dick et al.  1994 ). 
These soil enzymes are continuously being synthesized, accumulated, inactivated 
and/or decomposed, and therefore play an important function in agriculture, mainly 
via assisting nutrient cycling (Tabatabai  1994 ; Dick  1997 ). 

 Each and every soil hosts a group of enzymes that perform metabolic processes 
(McLaren  1975 ), the presence and titers of which depend on the soil’s physico- 
chemical, microbiological and biochemical properties. Because soil enzymes have 
such a critical role, they respond so quickly to changes in soil management practices 
and are easy to measure, knowing more about their function potentially helps in 
assessing the prevailing biological status and function of soils (Dick  1997 ; Bandick 
and Dick  1999 ). Soil enzymes often signifi cantly affect soil biology, environmental 
management strategies, and growth and nutrient uptake of plants that inhabit 
ecosystems. 

 Soil fungi comprise at least 75–95% of soil microbial biomass, and along with 
bacteria contribute ~90% of the total energy fl ux to the organic matter decomposi-
tion in soil (Paul and Clark  1996 ). Soil enzyme activity is especially important for 
fertility. Soil enzymes are routinely measured to provide a biological index of soil 
fertility. This index serves as an indicator for several biological processes in soil. In 
general, the enzymatic activities of soil enzymes are used to refl ect outcomes result-
ing from agricultural cultivation, and the existence of different soil properties, and 
pedological amendments (Skujins  1978 ; Ceccanti et al.  1993 ). 
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 Adding FA to soil stimulates enzyme activity (viz., dehydrogenase, urease and 
phosphatases, etc.; Pati and Sahu  2004 ). As mentioned, amending soils with FA 
adds many elements (e.g., C, K, Ca, Mg, Cu, Zn and Mn), and these elements may 
alter the chemical and physico-chemical properties of the soils to which they are 
added (Yeledhalli et al.  2007 ). 

 The amount of microbial biomass present is commonly used to characterize the 
microbiological status of soils (Nannipieri et al.  1990 ), and to evaluate the effect of 
soil management practices (Perrott et al.  1992 ). Soil microbial biomass is a sound 
indicator of soil health, because such biomass regulates nutrient cycling and acts as 
a highly labile source of nutrients that are available to plants (Jenkinson and Ladd 
 1981 ). Rippon and Wood ( 1975 ) attributed increased microbial populations in a soil 
to the addition of FA . However, higher FA amendment levels sometimes resulted in 
deposition of excessive amounts of certain toxic elements (e.g., As and B) in soil, 
and such deposition negatively affected the normal soil microbial dynamics and 
activity (Lim and Choi  2014 ). FA amendment of soil may benefi t fungi and gram- 
negative bacteria more than other components of the soil microbial community 
(Schutter and Fuhrmann  2001 ). 

 Soil microbial biomass and dehydrogenase activity were reported to be highest at 
a FA amendment rate of 10% (wt/wt), because at this rate reasonable levels of nutri-
ents were provided to microorganisms for carrying out various metabolic activities 
(Wong and Wong  1986 ; Saffi gna et al.  1989 ). Microbial activity declined when FA 
was added at levels of more than 10% (Wong and Wong  1986 ; Saffi gna et al.  1989 ). 
This decline may have resulted from reduced substrate availability that was associ-
ated with accumulation of persistent lignite-derived organic carbon compounds 
(Rumpel et al.  1998 ). Gaind and Gaur ( 2004 ) reported that  Azotobacter chroococ-
cum ,  Azospirillum brasilense  and  Bacillus circulans  showed their maximum viabil-
ity when FA alone was applied to soil, whereas  Pseudomonas striata  proliferated 
most in soil-FA (1:1) applications. Generally, the effects of FA applications on soil 
aggregation, together with the effects of growing plants on soil microbial diversity 
may favor plant growth and soil revival. Wong and Wong ( 1987 ) found that the 
application of FA increased microbial respiration in a sandy soil and decreased it in 
a sandy loam soil. Arthur et al. ( 1984 ) concluded that lower rates of FA applied to 
soil had a modest impact on microbial activity, but higher rates inhibited microor-
ganisms. Schutter and Fuhrmann ( 2001 ) reported that amending degraded subsoil 
with FA caused an increased density of the microbial community.  

3.3     FA Management and Soil Microbial Dynamics 

 As for other major solid wastes, utilization of FA in agriculture has gained popular-
ity worldwide in the past few decades (Singh and Agrawal  2008 ;  Singh et al. 2012 ). 
More recently, researchers have studied the effects of FA on soil health, especially 
the effects on soil–microbial interactions and dynamics (Sarkar et al.  2012 ). Modern 
day ‘-omics’ approaches represent state-of-the-art technologies that offer prospects 
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for a major breakthrough in soil – microbial dynamics. The ‘-omics’ have provided 
modern day researchers with better tools to identify and evaluate microbial diversity 
in soil, water and air under diverse environmental conditions (   Schneider and Riedel  
 2010 ). Integrated genomics and proteomics approaches promise to be swift and 
effective systems for analyzing and deducing gene function in living organisms at 
genome ( genomics ), transcript ( transcriptomics ), and protein ( proteomics ) levels 
(Sarkar et al.  2012 ; Agrawal et al.  2013 ). These three approaches are commonly 
referred as the multi-parallel ‘-omics’ approaches in modern biology (Sarkar et al. 
 2010 ; Zargar et al.  2011 ). Recently, researchers have started to work with ‘genome’ 
and ‘proteome’ samples that are directly isolated from environment (Sarkar and 
Agrawal  2012 ). These sample entities are termed the ‘metagenome’ and the ‘meta-
proteome’, respectively. The  in - vivo  and  in - vitro  ‘-omics’ approaches have signifi -
cantly contributed to the evaluation of soil – microbial dynamics in many ecosystems. 
By using a metagenomics approach Sanapareddy et al.  2009 ) generated 378,601 
sequences by pyrosequencing (by using 454-FLX technology) of DNA samples col-
lected from an activated sludge basin of a wastewater treatment plant in Charlotte, 
North Carolina, USA. These authors identifi ed a signifi cant number of microbial 
communities in the sludge basin that might be useful for improving soil health. 
Wang et al.  2011 ) employed a metaproteomics approach through in-depth two- 
dimensional gel electrophoresis (2DGE), coupled with matrix-assisted laser desorp-
tion/ionization time-of-fl ight mass spectrometer (MALDI-TOF/TOF-MS), and 
identifi ed nearly 122 proteins, constituting a metaproteome of a plant-microbe com-
plex that existed in a crop rhizospheric soil. Other researchers have also utilized 
‘-omics’, particularly metagenomics and metaproteomics approaches. Such tech-
niques allow improved discernment of microbial dynamism in soil samples under 
diverse environmental conditions, and the contributions of microbes to soil health 
(Schneider and Riedel 2010).  

3.4     Other Responses of Soil Health to Fly-Ash Amendment 

 FA affects aspects of soil health not described above (Ahmaruzzaman  2010 ) 
(Table  2 ). In particular, it is known that FA hinders the normal leaching pattern of 
metals in soil. The pH, and chemical composition of a soil, as well as the FA used to 
amend a soil are all important variables that can infl uence the leaching behaviour of 
heavy metals (Becker et al.  2013 ) (Table  2 ). Amending agricultural soils with FA is 
known to restrict the normal soil leaching pattern of pesticides, and to boost pesticide 
retention (Singh et al.  2012b ,     2013a ,  b ). Application of FA to soils at the 20–30% 
level has been reported to detoxify 2, 4-D, alachlor and metolachlor in soil (Albanis 
et al.  1992 ,  1998 ). Konstantinou and Albanis ( 2000 ) reported that amending soil 
with FA up to 25% can immobilize atrazine, propazine, prometryne, molinate, pro-
pachlor and propanil herbicides. Singh et al. ( 2013a ,  b ) reported that FA amendment 
in soil did not show an adverse effect on weed control effi cacy of the herbicides 
metribuzin and metsulfuron-methyl. Hence, it is conceivable that FA could be used 
to amend soils in ways to help manage herbicide runoff and leaching losses.   
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4     Conclusions 

 Our main conclusions from reviewing the cogent literature on fl y ash amendment of 
agricultural soils and from preparing this review are as follows:

    1.    Fly ash is a waste product from coal combustion process, and is a potential 
resource for amending agricultural soils to provide several essential plants nutri-
ents. However, organic C and N are not among these nutrients.   

   2.    When amending agricultural soils with FA, the appropriate methods and amounts 
used will depend on soil type, nature of the cultivated crop, prevailing climatic 
conditions and the characteristics of the FA used.   

   3.    FA has a very high affi nity for organic pesticides. Therefore, using it as a soil 
amendment can boost pesticide retention in agricultural soils.   

   4.    Although applying FA in normal agricultural practice may benefi t plant nutri-
tion, it has a downside of potentially enhancing contamination by heavy metals 
in ways that affect ground water, well (drinking) water, and food chain 
organisms.   

   5.    Harmful effects may result from applying FA to amend agricultural soils. Harm 
may come from enhanced levels of natural radioactivity (from FA) and from 
increased levels of toxic heavy metals that could contaminate food or feed. 
Therefore, care must be taken when FA is to be used as an agricultural soil 
amendment.   

   6.    FA amendment in agriculture is undoubtedly in its infancy, and requires further 
study, particularly on dose-response relationships, before it can quality for large 
scale application in global agriculture.      

5     Summary 

 The volume of solid waste produced in the world is increasing annually, and dispos-
ing of such wastes is a growing problem. Fly ash (FA) is a form of solid waste that 
is derived from the combustion of coal. Research has shown that fl y ash may be 
disposed of by using it to amend agricultural soils. This review addresses the feasi-
bility of amending agricultural fi eld soils with fl y ash for the purpose of improving 
soil health and enhancing the production of agricultural crops. The current annual 
production of major coal combustion residues (CCRs) is estimated to be ~600 mil-
lion t worldwide, of which about 500 million t (70–80%) is FA (Ahmaruzzaman 
 2010 ). More than 112 million t of FA is generated annually in India alone, and 
projections show that the production (including both FA and bottom ash) may 
exceed 170 million t per annum by 2015 (Pandey et al.  2009 ; Pandey and Singh 
 2010 ). Managing this industrial by-product is a big challenge, because more is 
 produced each year, and disposal poses a growing environmental problem. 

 Studies on FA clearly shows that its application as an amendment to agricultural 
soils can signifi cantly improve soil quality, and produce higher soil fertility. What FA 
application method is best and what level of application is appropriate for any one 
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soil depends on the following factors: type of soil treated, crop grown, the prevailing 
agro climatic condition and the character of the FA used. Although utilizing FA in 
agricultural soils may help address solid waste disposal problems and may enhance 
agricultural production, its use has potential adverse effects also. In particular, using 
it in agriculture may enhance amounts of radionuclides and heavy metals that reach 
soils, and may therefore increase organism exposures in some instances.     
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1            Introduction 

 In recent decades, increases in the world’s population, unplanned urbanization, 
industrialization, agricultural activities, and expanded use of chemicals, has contrib-
uted to environmental contamination via emission of wastes and pollutants. Wastes 
(both inorganic and organic) that are produced by human activities have resulted in 
high volumes of contaminated water, contact with or consumption of which poses 
health threats to living organisms, including humans (Ahmad et al.  2010 ,  2012 ). 

 Among inorganic pollutants, heavy metals are hazardous pollutants of wastewa-
ters that have become a serious public health concern (Demirbas et al.  2006 ). Heavy 
metals harm fl ora and fauna because they are both toxic and stable; moreover, some 
of these metals can accumulate in living organisms (Das et al.  2008 ). The most sig-
nifi cant toxic metal ions that pose risks to humans and the environment include Cr, 
Cu, Pb, Hg, Mn, Cd, Ni, Zn, and Fe (Chatterjee et al.  2010 ). Duruibe et al. ( 2007 ) 
reported that heavy metals cause adverse health effects, such as gastrointestinal 
disorders, diarrhea, stomatitis, tremors, hemoglobinuria, ataxia, paralysis, vomiting, 
and convulsions, although each of these heavy metals exhibits its specifi c toxicity 
profi le. Wastewater generated from various industrial activities such as battery man-
ufacturing (Ahmaruzzaman  2011 ), ceramics production (Khraisheh et al.  2004 ), 
metal refi neries (Chandra Sekhar et al.  2004 ), pulp and paper production 
(Sthiannopkao and Sreesai  2009 ), rubber and plastics manufacture (Srivastava and 
Majumder  2008 ), electroplating (Sekomo et al.  2012 ), smelting (Fu et al.  2012 ), 
mining (Ying and Fang  2006 ), mineral processing and extractive metallurgy 
(Ahluwalia and Goyal  2007 ) and metal surface treatment (Karvelas et al.  2003 ) are 
contaminated with one or more of these toxic ions. The quantity of these heavy met-
als that exists in effl uents released into the natural environment is often higher than 
the acceptable level. Hence, heavy metals should be removed or their quantities 
reduced from effl uents by suitable treatment methods before they are discharged 
into the environment. The industrial sources and health risks of commonly utilized 
heavy metals are listed in Table  1 .

   Different treatment methods have been applied to remove heavy metals from 
wastewaters. Among the common methods are the following: ion exchange (Xing 
et al.  2007 ), coagulation/fl occulation (Chafi  et al.  2011 ), chemical precipitation 
(Kurniawan et al.  2006 ), electrochemical reaction (García-Gabaldón et al.  2006 ), 
electro-dialysis (Mohammadi et al.  2004 ), physisorption (Chen et al.  2012 ), bio- 
sorption (Tsekova et al.  2010 ), and membrane fi ltration (Barakat and Schmidt 
 2010 ). Each of these methods has been applied to decrease the concentrations of 
detrimental metal ions in wastewaters. Moreover, each of the methods exhibit limi-
tations, such as high capital or operating costs, low effi ciency, and disposal of excess 
sludge, whereas some of these methods are inappropriate for use by small-scale 
industries (Kobya et al.  2005 ). 

 Ideriah et al. ( 2012 ), Ahmed Basha et al. ( 2008 ) and Al Aji et al. ( 2012 ) studied 
the advantages and disadvantages of some of these methods, and discovered that 
precipitation methods are cost effective, but produce high amounts of precipitate 
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sludge that requires further treatment. Ion exchange and reverse osmosis effi ciently 
remove heavy metal ions (by approximately 90–95%), but the materials and opera-
tional procedures are expensive, and operational problems are often encountered. 
Electrolysis is an expensive method and requires high energy levels. Commercial 
activated carbon (CAC) can be applied to remove heavy metals via adsorption, but 
these adsorbents are very expensive. 

   Table 1    Sources of environmental contamination by several heavy metals and their toxic effects   

 Heavy metals  Sources  Health risks 

 Lead  Lead batteries, paint, oil, metal, 
phosphate fertilizer, electronics, 
wood production, some petrol 
types, explosive manufacturing, 
mining activity, automobile 
emissions, sewage wastewater, 
sea spray, insecticides, plastic 
industries, food, beverages, 
ointments and medicinal 
concoctions (Khalid et al.  2007 ) 

 Dysfunction of kidneys, reproductive 
system, liver, brain and central 
nervous system. Reduction in 
hemoglobin formation, mental 
retardation, infertility and 
abnormalities in pregnant women. 
Anemia, headache, chills, diarrhea, 
poisoning (Karvelas et al.  2003 ) 

 Cadmium  Cadmium–nickel batteries, phosphate 
fertilizers, pigments, stabilizers, 
alloys, and electroplating 
industries (Mortaheb et al.  2009 ) 

 Renal disturbances, lung insuffi ciency, 
bone lesions, cancer, hypertension 
(Sankararamakrishnan et al.  2007 ) 

 Copper  Mining operations, tanneries, 
electronics, electroplating, 
petrochemical industries, 
and textile mill products 
(Kazemipour et al.  2008 ) 

 Abdominal pain, nausea, vomiting, 
headache, lethargy, diarrhea, 
tachycardia, respiratory diffi culties, 
hemolytic anemia, gastrointestinal 
bleeding, liver and kidney failure and 
death (Akar et al.  2009 ) 

 Mercury  Refi neries, coal-fi red power plants, 
mining, chloralkali plants utilizing 
the Hg-cell process, municipal 
wastewaters (Urgun-Demirtas 
et al.  2012 ) 

 Neurological and renal disturbances, 
mental dysfunction, impairment of 
the nervous system and pulmonary 
systems and kidney function, and 
cause chest pain and dyspnea 
(Zahir et al.  2005 ) 

 Manganese  Steel industries, dry battery cells 
and electrical coils, mining and 
smelting, pigments and paints, 
and ceramics (Li et al.  2010 ) 

 Damage to brain, liver, kidneys and 
nervous system (Silva et al.  2010 ) 

 Nickel  Stainless steel, super alloys, metal 
alloys, coins, batteries 
(Vieira et al.  2010 ) 

 Gastrointestinal distress like nausea, 
vomiting, diarrhoea, damage to lungs 
and kidney, and cause pulmonary 
fi brosis, renal edema, and skin 
dermatitis (Akhtar et al.  2004 ) 

 Zinc  Mining, tanneries, painting, car 
radiator manufacturing, agricultural 
sources, electroplating, galvanizing 
plants (Abdelwahab et al.  2013 ) 

 Cause abdominal pain, nausea, vomiting, 
and diarrhea (Pereira et al.  2010 ) 
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 More cost-effective and effi cient methods and substances are needed to remove 
heavy metals. Among treatment strategies, adsorption is regarded to be an effective 
and preferable method for removing heavy metal ions from wastewater, because this 
method is cost effective and produces high-quality effl uent (   Oluyemi et al.  2012 ; 
Rafatullah et al.  2010 ; Salleh et al.  2011 ). Adsorption is a separation process, in 
which the amount of chemical components being collected (adsorbate) are increased 
at the surface of a solid (adsorbent) (Yadla et al.  2012 ). This adsorption process 
incorporates both physical and chemical actions that involve van der Waals forces, or 
other actions between an adsorbate and an adsorbent (Wang et al.  2009 ). Adsorption 
can function in solid or liquid matrices, and certainly can be used to remove heavy 
metal ions from polluted aqueous solutions. Adsorption is preferred over other meth-
ods because it is rapid, conveniently designed and operated, impenetrable to toxic 
contaminants, and does not produce hazardous by-products (Qiu et al.  2009 ). 
Adsorption is often applied to clean effl uents by using low-cost materials. 

 In this review, we describe the different methods that are used to eliminate heavy 
metals from wastewaters by using oil palm biomass as a form of low-cost adsorbent.  

2     Commercial Adsorbents 

 The nature and type of adsorbent are important parameters that infl uence adsorption 
effi ciency. Some of the prominent substances that are commonly used as commer-
cial adsorbents are activated carbon (Mohan and Pittman  2006 ), activated alumina 
(Mahmoud et al.  2010 ), silica gel (Najafi  et al.  2011 ), and zeolite (Egashira et al. 
 2012 ). Below, we describe the characteristics of these important adsorbents. 

2.1     Activated Carbon 

 Activated carbon is effi cient, adsorbs many chemicals, and is an adsorbent that is 
particularly important for wastewater treatment (   Yin et al.  2008a ,  b ). Activated car-
bon is produced by dehydration and carbonization in the presence of heat and in the 
absence of oxygen. Activated carbon contains tiny pores with a large surface area 
(300–4,000 m 2 /g). Although activated carbon is put to many uses, it does possess 
some limiting features: utilizing it entails high cost, requires regeneration after 
adsorption, and it loses adsorption capability after regeneration (Igwe and Abia 
 2006 ; O’Connell et al.  2008 ; Rafatullah et al.  2013 ).  

2.2     Activated Alumina 

 Activated alumina is produced by thermally treating hydrous alumina granules. 
Hydroxyl groups are forced to leave, producing a porous solid structure of activated 
alumina that has a large surface area (200–300 m 2 /g). Activated alumina possesses 
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a surface area that makes it appropriate for removing heavy metals from aqueous 
solutions, and absorbing organic liquids (e.g., kerosene, gasoline, and oil) from 
water (Ku and Chiou  2002 ; Singh and Pant  2004 ).  

2.3     Zeolite 

 Zeolites are hydrated porous aluminosilicate minerals. These minerals are naturally 
created from the changes occurring in glass-rich volcanic rocks (tuff) in the sea or 
in playa lake waters. Zeolites are appropriate adsorbents for removing heavy metal 
ions from wastewaters, because such adsorbents exhibit favorable properties that 
include the following: high ion exchange capability, molecular sieving, catalysis, 
and sorption properties (Ji et al.  2012 ; Wang and Peng  2010 ).  

2.4     Silica Gel 

 Silica gel, invented in the 1920s, is a concentration of Si(OH) 4  in siloxane chains. 
It is produced in three forms: regular-, intermediate-, and low-density gels with 
surface areas of 750 m 2 /g, 300–350 m 2 /g, and 100–200 m 2 /g, respectively. Such gels 
are considered to be suitable adsorbents because they remains stable under acidic 
conditions, exhibit a rapid adsorption capacity, contain a porous structure that has 
high surface area, and are non-toxic, non-fl ammable, and not chemically reactive 
(Fan et al.  2011 ; Gübbük et al.  2009 ). 

 In general, the use of conventional adsorbents increases costs, particularly when 
high purity adsorbents are used. Therefore, the use of such adsorbents is not com-
mercially economical, and cost is an important when selecting adsorbents. Generally, 
an adsorbent is regarded to be inexpensive when it is readily available, is environ-
mentally friendly and is cost-effective. Hence, rather than using high-cost adsor-
bents, researchers are encouraged to produce and use inexpensive adsorbents that 
are based on natural by-products, such as agricultural wastes, when possible (Bailey 
et al.  1999 ; Khan et al.  2008 ). 

 In this review, we have searched and summarized the literature that addresses the 
use of palm oil biomass as a low-cost adsorbent for removing heavy metal contami-
nants from wastewaters.   

3     Agricultural-Waste Adsorbents 

 Ho ( 2003 ) investigated agro-based waste materials as resources to both produce 
new adsorbents and to modify currently used ones. Previous studies (Basso et al. 
 2002 ; Hashem  2007 ) have demonstrated that agricultural wastes absorb heavy metal 
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ions and can be used as low-cost adsorbents in wastewater treatment. Such wastes 
have been used for adsorption tasks because they offer several advantages: they are 
readily available and exist in abundance, they are cost effectiveness, renewable, 
require less processing time, offer suitable adsorption capability, are selective for 
heavy metals, and can easily be regenerated (Elizalde-González et al.  2008 ). 
Examples of agricultural or related biomass products that can be used in adsorption 
applications are: peanut skins (Asubiojo and Ajelabi  2009 ), hazelnut shells (Bulut 
and Tez  2007a ), peanut hulls (Hashem et al.  2005 ), corn cobs (Sun and Webley 
 2010 ), fl amboyant pods (Vargas et al.  2010 ), coconut husks (Tan et al.  2008 ), Gular 
fruits (Rao and Rehman  2010 ), olive stones (Aziz et al.  2009 ), sawdust (Bulut and 
Tez  2007b ), and chestnut shells (Vázquez et al.  2009 ). 

 Saeed et al. ( 2005 ) evaluated the effi ciency of papaya wood as an adsorbent to 
remove heavy metals. The percentages of heavy metals removed within 60 min 
from a solution containing 10 mg/L of Cu (II), Cd (II), and Zn (II) at pH 5 were 
97.8%, 94.9%, and 66.8%, respectively. Babarinde et al. ( 2006 ) reported the poten-
tial of maize leaves for removing Pb ions from wastewater. Agarwal et al. ( 2006 ) 
investigated the effi ciency of  Tamarindus indica  seeds, crushed coconut shells, 
almond shells, groundnut shells, and walnut shells as inexpensive adsorbents for 
removing Cr (VI). Among these materials, the Cr (VI) sorption capacity of  T. indica  
seed was higher than that of the others; crushed coconut shell exhibited the lowest 
sorption capacity. Abu Al-Rub ( 2006 ) studied the effectiveness of palm tree leaves 
for removing Zn ions from wastewater and found that sorption by Zn was rapid; 
90% of Zn was adsorbed in approximately 10 min. Amarasinghe and Williams 
( 2007 ) investigated the adsorption of Pb and Cu ions from aqueous solutions by 
using tea waste. They observed that the rate of Pb adsorption was higher than for Cu 
over a period from 15 to 20 min. Table  2  presents examples of low-cost adsorbents 
made from various agricultural wastes that are used to remove heavy metals from 
wastewater.

   In general, agricultural wastes are composed of basic components (e.g., cellu-
lose, hemicellulose, and lignin) that contain various functional groups (Amarasinghe 
and Williams  2007 ). Lignocellulosic materials are composed of β- D -glucopyranose 
units, which is one of the most important components of plant cell walls. Each β-D - 
glucopyranose units contain one primary hydroxyl group and two secondary 
hydroxyl groups that are commonly involved in chemical reactions. Functional 
groups present in lignocellulosic materials bind heavy metals by donation of an 
electron pair from these groups to form complexes with the metal ions in solution 
(Demirbas  2008 ). However, the adsorption capacity and physical stability of 
unmodifi ed lignocellulosic materials are not suited to adsorbing heavy metals. To 
improve the adsorption capacity for metals, and to enhance metal ion binding, 
researchers chemically modify these lignocellulosic materials by integrating them 
with other sources of functional groups in ways that alter their surface characteris-
tics (Mahmoud et al.  2010 ).  
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4     Oil Palm Biomass: Potential Heavy-Metal Adsorbents 

 Oil palm ( Elaeis guineensis ) biomass is an important and low-cost agricultural 
waste that exhibits adsorption potential adequate to eliminate heavy metal ions from 
wastewater (Ibrahim et al.  2010 ; Ahmad et al.  2011 ). Oil palm is a tropical tree that 
originated from Africa. This species has geographically been spread to regions of 42 
tropical countries in Africa, the Americas, and Asia. Oil Palm is worldwide covers 
approximately 27 million acres. Oil palm has been traditionally regarded as an 
important industrial crop, because it was also utilized for food, in medicine, in 
woven materials, and in wine over the past 5,000 years. At present, oil extracted 
from oil palm is used in cooking, cosmetics, pharmaceuticals, and as a bio-fuel 
(Mohammad et al.  2012 ). Furthermore, palm oil is one of the largest vegetable oil 
sources in the world and is a signifi cant economic crop in tropical areas of Africa, 
America, and Asia, particularly in Southeast Asian countries, such as Indonesia and 
Malaysia (Kalinci et al.  2011 ). 

 Malaysia and Indonesia are among the largest producers of palm oil in the world, 
and produce approximately 85% of the world’s total palm oil (Malaysia 41% and 
Indonesia 44%). The palm oil industry in Malaysia has expanded rapidly during the 
past 25 years. This expansion increased the total planted area of oil palm trees from 
3.87 million ha in 2004 to 4.17 million ha in 2006 (Sulaiman et al.  2009 ). In addi-
tion, the amount of palm oil produced has increased from 2.5 million tons in 1980 
to 17.8 million tons in 2009. Despite growth in area planted, and the oil high pro-
duction, environmental concerns are increasing about the accumulation of huge 
quantities of produced biomass wastes (Rupani et al.  2010 ). Annually, approxi-
mately 184 million tons of palm oil residue worldwide, and 53 million tons of oil 
palm tree residue in Malaysia are generated; these amounts are increasing by ~5% 
annually (Mohammed et al.  2011 ). 

 Large amounts of several components of oil palm biomass are generated and 
utilized for various purposes. These components include oil and lignocellulosic 
materials, such as palm pressed fi bers (PPF), kernel shells, empty fruit bunch (EFB), 
oil palm frond (OPF), oil palm trunks, oil palm bark (OPB), palm kernel cake, and 
palm oil mill effl uent (POME) from palm oil production (Uemura et al.  2011 ). 
Lignocellulosic oil palm biomass is rich in carbohydrates and contains organic 
compounds such as cellulose, hemicelluloses and lignin that have numerous natural 
polymeric materials containing different functional groups that absorb heavy metal 
ions (Mahmoud et al.  2010 ). In Table  3 , we depict the chemical composition of 
palm oil biomass.

   Table 3    Chemical composition of oil palm biomass   

 Component 

 Chemical composition 

 EFB  Frond  Fiber  Trunk  Shell 

 Cellulose (%)  49.6  25.08  47.6  37.14  27.7 
 Hemicellulose (%)  18  24.06  25.7  31.8  21.6 
 Lignin (%)  21.2  18.46  14.1  22.3  44 
 Ash (%)  2  11.66  1.5  4.3  2.1 

Oil Palm Biomass as an Adsorbent for Heavy Metals



70

   Oil palm biomasses can be converted to high-value by-products that can be used 
as energy sources, erosion control products, soil conditioner, animal feed, fertiliz-
ers, as well as in the furniture- and paper-making industries (Radzi bin Abas et al. 
 2004 ). Moreover, as we have explained above, palm oil biomass can serve to adsorb 
heavy metal ions from wastewater. 

4.1     Unmodifi ed Oil Palm Biomass 

 Ho and Ofomaja ( 2005 ) studied the kinetics and thermodynamics of Pb ion sorption 
from aqueous solutions of palm kernel fi ber, and discovered that the kinetics fol-
lowed a pseudo-second-order mechanism. Palm kernel fi ber adsorbs Pb ions from 
aqueous solutions via a spontaneous and endothermic process. The activation energy 
and equilibrium sorption capacity of Pb ions on palm kernel fi ber were determined 
as 13.5 kJ/mol and 49.9 mg/g at 65 °C, respectively. Salamatinia et al. ( 2007 ) assessed 
the sorption capacity of unmodifi ed OPB, OPF, and EFB for Zn and Cu removal 
from wastewater. In this study, experiments were conducted in a batch system with 
250 mL Cu and Zn solutions at 100 mg/L, using between 0.5 and 1.0 g of adsorbent. 
OPB, OPF, and EFB adsorbed Cu ions more effi ciently than did Zn ions. The sorp-
tion capacities of the Zn ions by OPF and EFB were 51.5% and 46.0%, respectively. 
The Cu sorption capacities of OPF and EFB were 54% and 56.5%, respectively. OPB 
exhibited the lowest rate of Cu ion removal. Hossain et al. ( 2012 ) investigated the 
removal of Cu from water and wastewater by using untreated palm oil fruit shells as 
the adsorbent. The raw materials were washed, dried, and ground into powder 
(<75 mm). Results were that the equilibrium sorption capacity of Cu ranged between 
28 and 60 mg/g at room temperature at pH 6.5. Palm oil fruit shells effectively acted 
as bio adsorbents and eliminated Cu ions from the tested wastewater. Chong et al. 
( 2012 ) studied the application of oil palm shell as a constructed wetland medium and 
adsorbent to remove Cu (II) and Pb (II). Results indicate that oil palm shell can be 
used as fi lter bed media and can be applied in constructed wetlands to eliminate 
heavy metals, even without agitation. The sorption capacities determined for this 
adsorbent were respectively 1.756 and 3.390 mg/g for Cu (II) and Pb (II) ions. 

 Although unmodifi ed biomass have advantages as adsorbents, they also cause 
certain problems. Such problems include low adsorption capacity, increased chemi-
cal oxygen demand (COD) and biological chemical demand (BOD), and increased 
total organic carbon (TOC) from release of soluble organics within the biomass. 
These effects of unmodifi ed biomass adsorbents decrease the oxygen content of 
water and endanger aquatic life (Peng and Sun  2010 ). To overcome these disadvan-
tages, and to improve adsorption properties, researchers have sought ways to mod-
ify these biomass wastes before using them as adsorbents. Modifi cation is generally 
designed to improve sorption capacity by creating a charged surface and by increas-
ing the heavy-metal-ion binding capacity (Tijani  2011 ). In Table  4 , we summarize 
what effects of several unmodifi ed oil palm biomass types have on heavy metal 
adsorption parameters.
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4.2        Modifi ed Oil Palm Biomass 

4.2.1     Chemical Modifi cation 

 Results have shown that chemically modifying biomass improves heavy metal 
removal and sorption capacity. Biomass can be modifi ed by treating it with different 
chemical agents (e.g., alkalis, acids, organic compounds, etc.). Such chemical mod-
ifi cation increases the level of metal uptake by releasing certain soluble organic 
compounds within the biomass (Abdullah et al.  2009 ). 

 Tan et al. ( 1993 ) removed Cr (VI) from wastewater in batch and column systems 
by treating PPF and coconut husk (CHF). The substrates, after boiling in distilled 
water, were treated stepwise with 1.5 M NaOH, distilled water, 2 M HNO 3  and dis-
tilled water. In the batch system, Cr (VI) was effi ciently removed at pH ranges of 1.5 
to 3 and 1.5 to 5 by PPF and CHF, respectively. The sorption capacities of PPF and 
CHF are 14 and 29 Cr/g substrate at pH 2.0, respectively. In the column system, PPF 
and CHF removed Cr (VI) ions from wastewater at various fl ow rates and bed 
depths. These substrates were also used as barriers in landfi lls to prevent Cr (VI) 
from leaching. Low et al. ( 1996 ) showed that the amount of Cu removed from 
wastewater by dye-treated oil PPF was higher than that by an untreated PPF. The 
results obtained from batch and column tests indicated that the use of PPF to remove 
Cu (II) ions was effi cient. The sorption capacities of natural and dye-coated PPFs 
were 2.41 and 7.71 mg/g, respectively; the sorption capacity of these adsorbents 
was dependent on pH and Cu ion concentration in the solution. Further, Abia and 
Asuquo ( 2008 ) compared the sorption capacities of modifi ed and unmodifi ed oil 
palm fruit fi bers as adsorbents to remove Pb and Cd ions from wastewater. 
Chemically modifi ed adsorbents (treated with 0.3 HNO 3 ) increased the sorption 
capacities of Pb and Cd to 5.579 and 7.980 mg/g, respectively. 

 Salamatinia et al. ( 2006 ) modifi ed OPF by applying a chemical pre-treatment 
and then using it to remove Zn and Cu ions from wastewater. Different pre- treatments 
(e.g., acid, base, steam, and reactive dye) were used to improve the sorption capac-
ity of OPF. OPF treated with a base (1.0 M NaOH) for 45 min at 25 °C showed the 
highest improvement in heavy metal removal capacity (64%). The effect of base 
concentration was greater than the effect of treatment time. Abia and Asuquo ( 2007 ) 
compared the effects of unmodifi ed and mercaptoacetic acid-modifi ed oil palm fruit 
fi ber to sorb Cd (II) and Cr (III) from wastewater. The sorption equilibrium of both 
metals was reached after 1 h. The modifi ed adsorbent exhibited better removal effi -
ciency, because the thiolation reaction infl uenced adsorbent behavior. In addition, 
the rate of Cr (III) ion removal by both adsorbents was higher than that of Cd (II) 
ion removal. The intraparticle diffusion rate constants of Cd (II) ion were 62.04, 
67.01, and 71.43 min −1 ; for Cr (III) these values were 63.41, 65.79, and 66.25 min −1 . 
Akaninwor et al. ( 2007 ) analyzed the effi cacy of thioglycolic-modifi ed oil palm 
fi ber to remove Fe, Zn, and Mg ions from wastewater. In Southern Point tests, the 
highest sorption capacities for Fe (II), Zn (II), and Mg (II) were respectively 83.6%, 
75.6%, and 50.8%; in Northern Point tests, the highest sorption capacities for Fe 
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(II), Zn (II), and Mg (II) were 79.1%, 78.3%, and 77.5%, respectively at pH 6. 
Therefore, the removal effi ciency of these ions was infl uenced by pH and ionic size. 
The volume of adsorbed Fe (II) was the highest, followed by Zn (II) and Mg (II). 

 Abdullah et al. ( 2009 ) improved heavy metal sorption by treating OPF with 0.1 
and 1.1 M NaOH for a maximum of 5 h. The maximum sorption capacities of Zn 
and Cu removal were 61.5% and 64.0%, respectively, under the following optimum 
conditions: 1.0 g of OPF treated with 1.0 M NaOH in 250 mL of 100 mg/L Zn and 
Cu solutions for 45 min. NaOH treatment improved the sorption capacity by increas-
ing the rate of metal binding. Haron et al. ( 2009 ) used hydroxamic acid- modifi ed 
EFB for Cu (II) sorption. The raw material was grafted by treatment with polymeth-
ylacrylate and then was treated with hydroxylammonium chloride, thereby decreas-
ing the intensity of the adsorption band from 1,734 cm −1  to 1,640 cm −1 . An absorption 
band was also obtained at 1,568 cm −1 , which corresponds to the N–H amide group. 
Therefore, a new maximum sorption capacity of 74.1 mg/g was obtained at 25 °C 
and at pH 4 to 6 by a spontaneous and exothermic process. As a result, hydroxamic 
acid grafted oil palm empty fruit bunch (PHA-OPEFB) can be used as an adsorbent 
to remove Cu (II) from wastewater. In Table  5 , we summarize how different heavy 
metal ions are adsorbed by chemically modifi ed forms of oil palm biomass.

4.2.2        Thermal Modifi cation (Activated Carbon) 

 Activated carbon is widely used as an adsorbent to eliminate heavy metals from 
wastewater, because this substance exhibits good adsorption properties as a result of 
having numerous tiny pores and a large surface area. When choosing adsorbents 
cost is important, and using activated carbons commercially generally increases 
adsorption costs. Therefore, utilizing other more cost-effective adsorbents that are 
environmentally friendly, such as agricultural wastes, have been investigated. As 
previously mentioned, researchers have investigated oil palm biomasses an alterna-
tive adsorbent, because these materials are great sources of high-quality and low- 
cost activated carbon. 

 Wan Nik et al. ( 2006 ) utilized shell waste from palm oil trees to produce activated 
carbon as a heavy metal adsorbent. The activated carbon produced by phosphoric 
acid-treated raw material was used to adsorb Cu, Pb, Cr, and Cd. This treatment 
decreased the concentration of inorganic elements and increased the surface area of 
the activated carbon. The optimum Brunet Elmer Teller (BET) surface area 
(1,058 m 2 /g) and pore diameter (20.64 nm) were obtained under the following con-
trolled conditions: 30% phosphoric acid concentration and an activation temperature 
of 500 °C, with a holding time of 2 h. The adsorption capacities of Cr, Pb, Cd, and 
Cu were 100%, 99.8%, 99.5%, and 25%, respectively. Issabayeva et al. ( 2006 ) ana-
lyzed the sorption capacity of Pb from wastewater by using a commercially avail-
able palm shell activated carbon. This form of activated carbon can be effi ciently 
used as an adsorbent to remove heavy metals, particularly Pb ions, from wastewater 
with a high adsorption capacity of 95.2 mg/g at pH 5. The effect of adding malonic 
acid and boric acid on the sorption capacity of Pb ions was also examined. Boric acid 
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enhanced the total amount of Pb removed, particularly at pH 5. By contrast, malonic 
acid decreased adsorption because an aqueous Pb-malonate complex was formed. 
Iyagba and Opete ( 2009 ) used palm kernel shell- and husk- activated carbon as adsor-
bents in a batch test to remove Cr and Pb from wastewater. The removal rate of Cr 
and Pb depends on pH, contact time, and adsorbent concentration; the highest 
removal rates were obtained at an optimum pH of 3 and 5 for Cr and Pb, respectively. 
Equilibrium times were 90 and 120 min for the activated palm kernel shell and acti-
vated palm kernel husk, respectively. The maximum sorption rates for Cr and Pb 
were 90% and 88%, respectively, and these rates were achieved at an adsorbent load-
ing of 4 g. 

 Considering adsorbent and method costs as well as adsorption effi ciency of 
heavy metals in industrial wastewater, Nomanbhay and Palanisamy ( 2005 ) utilized 
chitosan-coated acid-treated oil palm shell charcoal to remove Cr ions from polluted 
industrial wastewater. The adsorption capacity (154 mg Cr/g at 25 °C) of this adsor-
bent was estimated by using a Langmuir isotherm model under equilibrium condi-
tions. After adsorption was completed, the adsorbent was regenerated with 0.1 M of 
sodium hydroxide. This adsorbent was technically feasible, environmentally 
friendly, and highly effi cient. Sugawara et al. ( 2007 ) used a carbonaceous adsorbent 
from palm shell to remove Pb 2+  and Zn 2+  from wastewater. This adsorbent was pre-
pared by pyrolysis and sulfur impregnation. The pyrolyzed samples with KOH were 
sulfurized with impregnated H 2 S to produce a sulfur-impregnated char exhibiting 
heavy metal sorption capability. Sulfur impregnation increased sulfur content and 
enhanced adsorption capacity. Alam et al. ( 2008 ) used activated carbon made from 
empty fruit bunches of oil palm to remove Zn ion from polluted wastewater. The 
samples were thermally activated at 500, 750, and 1,000 °C for 15, 30, and 45 min. 
The activated carbon obtained at 1,000 °C for 30 min showed the maximum sorp-
tion capacity of 1.63 mg/g, at which 98% of Zn concentration was removed from the 
wastewater. Wahi et al. ( 2009 ) assessed the ability of activated carbon from palm oil 
EFB to remove Hg, Pb, and Cu from wastewater. The adsorption effi ciencies of 
activated carbon made from EFB for Pb (II), Hg (II), and Cu (II) were 100%, 100% 
and 25%, respectively. The sorption of these ions by activated carbon of EFB was 
dependent on the amount of adsorbent and the initial concentration of the metals. 
Therefore, EFB in the form of activated carbon can be used as an effective adsorbent 
to remove heavy metals and solve environmental problems caused by high amounts 
of agricultural wastes. 

 Granular activated carbon made from palm kernel shell can also be used as an 
adsorbent to remove Cu, Ni, and Pb ions from industrial wastewater (Onundi et al. 
 2010 ). The sorption capacities for Pb, Cu, and Ni were 1.337, 1.581, and 0.130 mg/g, 
respectively. These values were obtained under the following optimum conditions: 
pH 5 and 1 g/L of adsorbent. The following equilibrium time was obtained: for Pb, 
30 min; for Cu and Ni, 75 min. The proportions of metal ion removal achieved at 
equilibrium were 100%, 97%, and 55% for Pb, Cu, and Ni: Pb(II) > Cu(II) > Ni(II). 
Kabbashi et al. ( 2011 ) analyzed the adsorption effi ciency of an empty-fruit-bunch 
activated carbon to remove Hg (II) from wastewater. Hg binding was infl uenced by 
pH, mixing speed, sorbent concentration and contact time. The sorption capacity of 
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99.53% was obtained under the following conditions: pH 6.5; mixing speed, 
100 rpm; contact time, 70 min; and sorbent concentration, 20 mg. Isa et al. ( 2008 ) 
conducted batch tests with sulfuric acid and heat-treated oil palm fi ber to remove 
Cr(VI) from wastewater. The results showed that the removal effi ciency for Cr (VI) 
was dependent on pH, contact time, initial Cr concentration, and amount of adsor-
bent used. Oil palm fi ber can be used as an inexpensive adsorbent to remove Cr (VI) 
from wastewater. 

 Chemical modifi cations produce increased sorption capacity. Nwabanne et al. 
( 2011 ) and Nwabanne and Igbokwe ( 2012 ) used oil palm empty-fruit-bunch acti-
vated carbon and oil-palm-fi ber activated carbon in a packed bed column to remove 
Pb (II) from wastewater. Adsorption effi ciency was dependent on initial ion 
 concentration, bed height, and fl ow rate. Sorption capacity was improved as initial 
ion concentration and bed height increased, because metals can access more sorp-
tion sites under these conditions. By contrast, sorption capacity decreased as fl ow 
rate increased, because of decrease time for saturation. Gulnaziya et al. ( 2012 ) used 
commercial untreated palm shell activated carbon (PSAC) and modifi ed PSAC by 
 Aspergillus niger  and  Bacillus subtilis  to remove Pb ion from wastewater. The 
experiments were conducted in a batch system at pH 3 to 6 with 20 mg/L to 
300 mg/L of Pb. At pH 6, the highest values of Pb uptake were recorded for PSAC- B. 
subtilis , PSAC- A. niger , and the original PSAC uptake values were 74, 72, and 
65 mg Pb/g, respectively. At pH 3, the lowest uptake values were obtained: 34, 37, 
and 40 mg Pb/g, respectively. Therefore, biomodifi cation of a PSAC matrix can 
enhance sorption capacity of Pb ions (90%). 

 Rahman et al. ( 2012 ) assessed the adsorption capacity of chemically-modifi ed 
activated carbon of palm shell to eliminate Cr, Pb, Cd, and Cu ions from polluted 
aqueous solutions by using a water fi ltration column. Palm shells were converted to 
activated carbon that had a large pore surface area (1,058 m 2 /g −1 ) and a large pore 
size (20.64 nm diameter) under the following optimum conditions: treatment with 
20% H 2 SO 4  in solution at 24 h in 30% H 3 PO 4  solution, and maintained at 500 °C for 
2 h. The adsorption capacities of this adsorbent were 100%, 99.8%, 99.5%, and 
25% for Cr, Pb, Cd, and Cu, respectively. In Table  6  we summarize how different 
heavy metal ions are adsorbed by oil palm biomass carbonaceous adsorbents.

5          Conclusions 

 The signifi cant increase in production and use of heavy metals in industry has con-
tributed to environmental pollution as a result of the release of high amounts of 
contaminated water. This increasing heavy metal pollution of waters threatens 
human health and the environment. Different methods have been used to remove 
heavy metals from wastewater for the purpose of improving the quality of water that 
is ultimately discharged to the environment. Although no single method is com-
pletely successful in eliminating heavy metals from water, some adsorption solu-
tions produce high quality effl uents at relatively low cost. The nature and type of 
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adsorbent used is critical in infl uencing the ultimate adsorption effi ciency achieved. 
In general, an adsorbent is considered to be good when it is cost effective, available, 
environmentally friendly, and does not require a lot of processing. The use of palm 
oil biomasses as adsorbents to remove heavy metals from contaminated water has 
been studied by numerous researchers. These adsorbents have specifi c characteris-
tics that offer several advantages that include: low cost, high absorption capability, 
environmentally friendly, and biodegradable. If processed appropriately, palm oil 
biomasses are effi cient adsorbents that have extraordinary absorption capability for 
eliminating heavy metals from waste streams. 

 In this paper, we have reviewed and compared the adsorption effi ciency of sev-
eral different palm oil biomasses for heavy metals. Increasingly, bio adsorbents like 
palm oil biomasses are being considered as alternatives to replace conventional 
adsorbents for removing heavy metals from waste streams. In addition, scientists 
are working to chemically or structurally modify palm oil biomasses to improve 
their performance characteristics. Results indicate that such modifi cation can 
improve sorption capacity by creating a charged surface and by increasing the heavy 
metal ion binding capacity. Although palm oil biomasses (modifi ed and unmodi-
fi ed) represent good alternatives for replacing commercial adsorbents, additional 
information on their performance is needed if they are going to be useful for appli-
cations at the industrial scale. Developing a multipurpose adsorbent that can remove 
multiple pollutants from industrial effl uents is a reasonable future goal, if the proper 
research work is undertaken and is successful. From our review, we have concluded 
that more information is specifi cally needed in the following areas:

•    More complex adsorbents capable of treating industrial wastewater must be 
investigated.  

•   Detailed regeneration studies must be performed to enhance the understanding 
of the economic feasibility of using bio adsorbents such as palm oil biomass. To 
date, few regeneration studies have been reported. Regeneration studies will 
determine the reusability of adsorbents made from palm oil biomasses and will 
contribute to their effectiveness.  

•   In work performed to date, cost information on oil palm biomasses as adsorbents 
is seldom addressed or reported in publications. Such cost information is urgently 
needed. Although modifi ed biomasses can enhance the adsorption of heavy 
metal ions, the expense of chemicals used and methods of modifi cation also have 
to be taken into consideration if low-cost adsorbents are to be developed.  

•   The potential of oil palm biomasses as adsorbents for multi-component pollut-
ants must be assessed. Moreover, these materials must be tested under real indus-
trial effl uent conditions. Having such data would signifi cantly assist in moving 
toward the potential commercial use of biomasses to treat and clean industrial 
pollution.  

•   Most researchers have studied oil palm biomass adsorption only in small scale 
batch processes. Research must now be extended to the pilot-plant scale to better 
assess oil palm biomass as adsorbents feasible for use at the commercial and 
industrial scale.     
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6     Summary 

 Many industries discharge untreated wastewater into the environment. Heavy metals 
from many industrial processes end up as hazardous pollutants of wastewaters. 
Heavy metal pollution has increased in recent decades and there is a growing con-
cern for the public health risk they may pose. To remove heavy metal ions from pol-
luted waste streams, adsorption processes are among the most common and effective 
treatment methods. The adsorbents that are used to remove heavy metal ions from 
aqueous media have both advantages and disadvantages. Cost and effectiveness are 
two of the most prominent criteria for choosing adsorbents. Because cost is so 
important, great effort has been extended to study and fi nd effective lower cost adsor-
bents. One class of adsorbents that is gaining considerable attention is agricultural 
wastes. Among many alternatives, palm oil biomasses have shown promise as effec-
tive adsorbents for removing heavy metals from wastewater. The palm oil industry 
has rapidly expanded in recent years, and a large amount of palm oil biomass is 
available. This biomass is a low-cost agricultural waste that exhibits, either in its raw 
form or after being processed, the potential for eliminating heavy metal ions from 
wastewater. In this article, we provide background information on oil palm biomass 
and describe studies that indicate its potential as an alternative adsorbent for remov-
ing heavy metal ions from wastewater. From having reviewed the cogent literature 
on this topic we are encouraged that low-cost oil-palm-related adsorbents have 
already demonstrated outstanding removal capabilities for various pollutants. 

 Because cost is so important to those who choose to clean waste streams by using 
adsorbents, the use of cheap sources of unconventional adsorbents is increasingly 
being investigated. An adsorbent is considered to be inexpensive when it is readily 
available, is environmentally friendly, is cost-effective and be effectively used in 
economical processes. The advantages that oil palm biomass has includes the fol-
lowing: available and exists in abundance, appears to be effective technically, and 
can be integrated into existing processes. Despite these advantages, oil palm bio-
masses have disadvantages such as low adsorption capacity, increased COD, BOD 
and TOC. These disadvantages can be overcome by modifying the biomass either 
chemically or thermally. Such modifi cation creates a charged surface and increases 
the heavy metal ion binding capacity of the adsorbent.     
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1            Introduction 

 The fungicide chlorothalonil (2,4,5,6-tetrachloro-1,3-benzenedicarbonitrile; CAS 
1897-45-6; Fig.  1 ) was introduced in 1965 by Diamond Shamrock Corp. and was 
fi rst registered in 1966 for use on turfgrass within the United States. An additional 
registration was granted 4 years later for use on potatoes, marking it the fi rst 
approved food crop for application (US EPA  1999 ). It is formulated as concentrates, 

      Environmental Fate and Toxicology 
of Chlorothalonil 

             April     R.     Van     Scoy      and     Ronald     S.     Tjeerdema   

        A.  R.   Van   Scoy    (*) •    R.  S.   Tjeerdema    
     Department of Environmental Toxicology, College of Agricultural & Environmental 
Sciences ,  University of California ,   One Shields Ave ,  Davis ,  CA   95616-8588 ,  USA   
 e-mail: avanscoy@ucdavis.edu  

Contents

1 Introduction .......................................................................................................................... 89
2  Chemistry ............................................................................................................................. 90
3  Chemodynamics ................................................................................................................... 91

3.1  Soil  .............................................................................................................................. 91
3.2  Water  ........................................................................................................................... 92
3.3  Air  ............................................................................................................................... 93

4  Environmental Degradation ................................................................................................. 93
4.1  Abiotic Processes ........................................................................................................ 93
4.2  Biotic Processes .......................................................................................................... 96

5  Toxicology ........................................................................................................................... 97
5.1  Mode of Action ........................................................................................................... 97
5.2  Aquatic Organisms ...................................................................................................... 99
5.3  Mammals ..................................................................................................................... 100
5.4  Birds  ........................................................................................................................... 100
5.5  Plants  ........................................................................................................................... 101
5.6  Fungi  ........................................................................................................................... 101

6  Summary .............................................................................................................................. 102
References .................................................................................................................................. 103

mailto:avanscoy@ucdavis.edu


90

powders, and granules, among other registered formulations. Some of the promi-
nent products containing chlorothalonil as the active ingredient include Bravo ® , 
Daconil ®  and Sweep ®  (US EPA  1999 ). These or other chlorothalonil formulations 
have been applied to crops such as celery, beans, peanuts, and peaches, among oth-
ers. Within the USA, approximately 34% of the total chlorothalonil applied is used 
on peanuts, 12% on potatoes and 10% on golf courses (US EPA  1999 ).

   Chlorothalonil is a broad spectrum, non-systemic, organochlorine fungicide and 
mildewicide It is principally used to control fungal foliar diseases on various fruits, 
vegetables, ornamentals and turf (US EPA  1999 ). Chlorothalonil’s success as an anti-
fouling paint additive and wood protectant qualifi ed it to replace organotin biocides 
such as tributyltin; however, once applied, it is slowly released into waterways and 
potentially contaminates surface water bodies (Sakkas et al.  2002 ). Although surface 
waters near marinas in San Diego, CA were monitored for such antifouling residues, 
none were detected above a detection limit of 10 ng/L (Sapozhnikova et al.  2007 ). In 
California, surface and groundwater were monitored for chlorothalonil residues from 
1993 to 2000. Of the samples collected (705 total) from USGS water monitoring sta-
tions, only one surface water sample contained chlorothalonil at a concentration of 
0.29 μg/L (USGS NAWQA; US EPA  2007 ). 

 Chlorothalonil has a low water solubility and is moderately persistent in soils, 
having half-lives ( t  1/2  s) up to 19 days. Because of its water solubility, the potential 
for chlorothalonil to impact groundwater is low; however, it has been found to 
highly impact aquatic organisms (US EPA  1999 ). The environmental fate of chloro-
thalonil was last reviewed in the mid 1990s (Caux et al.  1996 ). The goal of this 
paper is to review the relevant literature that has appeared since 1996, focusing on 
chlorothalonil’s chemistry, environmental fate and toxicity.  

2     Chemistry 

 Chlorothalonil is a chloronitrile fungicide (Tomlin  2000 ), and specifi cally is a poly-
chlorinated aromatic (US EPA  1999 ). Technical grade chlorothalonil is an odorless 
or slightly pungent, colorless crystalline solid. Chlorothalonil is insoluble in water 
(at 25 °C), but is slightly soluble in kerosene, acetone and xylene, and this com-
pound strongly adsorbs to soil and sediment. Chlorothalonil is denser than water, 
potentially susceptible to hydrolysis under alkaline conditions, stable against 
photolysis and is degraded by both aerobic and anaerobic microbes. Additional 
physiochemical properties of chlorothalonil are presented in Table  1 .

  Fig. 1    Chlorothalonil 
structure       
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3        Chemodynamics 

3.1     Soil 

 Chlorothalonil has the potential to strongly adsorb to soil and sediment, as indicated 
by its high K oc  constant. Adsorption isotherms on fi ve clay minerals (montmoril-
lonite, Na-bentonite, Ca-bentonite, allophone and kaolinate) and three soils, having 
an organic carbon content of 1.1, 1.4 and 5.2%, respectively, were investigated by 
Fushiwaki and Urano ( 2001 ). Based on the Freundlich isotherm equation, chloro-
thalonil had a lower adsorption capacity ( k   f   values ranged from 70 to 2,000) than did 
pentachlorothioanisole ( k   f  values  ranged from 4,400 to 30,000). In addition,  n -values 
ranged from 1.3 to 1.8 for each of the soils and clays (Fushiwaki and Urano  2001 ). 
Furthermore, the adsorption rate was not linked to organic carbon content; however, 
it may be infl uenced by inorganic matter. 

 Patakioutas and Albanis ( 2002 ) investigated the trend between adsorption and 
organic matter (OM) content. Soils of varying OM content and varying concentrations 
of chlorothalonil (0.1–0.5 mg/L) produced three adsorption isotherm shapes. As soil 
OM content increased, the shape of the isotherm changed from S- to L- to C-shape 
and  k   f   values respectively ranged from 96.3 to 1,356.9 (Patakioutas and Albanis  2002 ). 
The results of this study illustrated the strength of OM in immobilizing pesticides. 

 Chlorothalonil adsorbs most strongly to soils that have high organic matter, silt 
and clay. It has a low affi nity to bind to sand, thus it is moderately to highly mobile 
in sandy soils (US EPA  1999 ). To investigate this, Gamble et al. ( 2000 ), analyzed 
the distribution of chlorothalonil among a quartz sand soil. The soil (Simcoe: 90–95% 
quartz sand) was placed in solution microcosms. After 14 days, 43.3% of the 

    Table 1    Physiochemical properties of chlorothalonil   

 Chemical Abstracts Service registry number (CAS#) a   1897-45-6 

 Molecular Formula a   C 8 Cl 4 N 2  
 Molecular weight (g/mol) a   265.9 
 Density at 20 °C (g/mL) a   2.0 
 Melting point (°C) a   252.1 
 Octanol-water partition coeffi cient (log  K  ow ) b   2.88 
 Organic carbon normalized partition coeffi cient ( K  oc ) c   5,000 
 Vapor pressure at 25 °C (torr) b   5.72 × 10 −7  
 Henry’s law constant atm m −3  mol b   1.4 × 10 −7  
 Solubility (g/kg) a  
 Water (mg/L) 
 Kerosene 
 Acetone 
 Xylene 

 0.81 
 <10 
 20 
 80 

   a Data from Tomlin ( 2000 ) 
  b CA DPR Risk Characterization Document ( 2005 ) 
  c Data from Waltz et al. ( 2002 )  
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chlorothalonil remained in solution, 26.2% resided in the labile sorbed state and 
30.5% existed as a bound residue. It is thought that the 5–10% non-quartz material 
was responsible for sorbing the measured bound residues (Gamble et al.  2000 ). 

 The half-life of chlorothalonil that had been applied to a low-humic sandy soil 
was 12 days; 45% of the parent compound had been transformed into one major 
metabolite hydroxychlorothalonil (van der Pas et al.  1999 ). Furthermore, movement 
of this metabolite through the soil was decreased from adsorption, although low 
concentrations were measured in groundwater (van der Pas et al.  1999 ). Wang et al. 
( 2009 ) determined the half-lives for chlorthalonil on both non-sterilized and steril-
ized non-amended soil (containing sandy loam, sand and clay) to be 8.8 and 19 
days, respectively. 

 To address the possibility of soil runoff, Potter et al. ( 2001 ) investigated degrada-
tion rates and soil surface residues from peanut plots (Tifton loamy sand) treated 
with seven successive chlorothalonil applications (1.25 kg/ha; 2-week intervals). 
Soil residues were highest following the second application, however  concentrations 
decreased as plant canopies obstructed disposition. Half-lives were determined for 
both chlorothalonil ( t   1 / 2   = <1–3.5 days) and its primary product 4- hydroxychlorothalonil 
( t   1 / 2   = 10–22 days); further breakdown products had half- lives 10–20 times longer 
than chlorothalonil (Potter et al.  2001 ). Waltz et al. ( 2002 ) also confi rmed that the 
known metabolite hydroxychlorothalonil (HC) is more persistent in soil compared 
to its parent. In summary, chlorothalonil is regarded to remain bound to soil, primar-
ily because it has low water solubility and a high Koc constant.  

3.2     Water 

 Pesticides that are used on turf grasses and other vegetation pose a potential risk 
of leaching into groundwater. Wu et al. ( 2002 ) evaluated chlorthalonil’s potential 
to leach and the distance it travels in soil. Because of its low water solubility, chlo-
rothalonil displayed a negligible tendency to leach in soil, as evidenced by its 
retention in the upper 0.2 cm thatch layer in soil samples collected before, and 0, 
2, 7, 15, 30, 61, 83, and 120 days following treatment (Wu et al.  2002 ). Armbrust 
( 2001 ) measured leachate for both chlorothalonil and its degradate, hydroxyl- 
chlorothalonil (HC). Of 130 samples analyzed, HC was found in 87% of the samples, 
but chlorothalonil was detected in only one. Although HC is persistent in soil, the 
evidence indicates that it is rapidly photodegraded under aqueous conditions and 
has a half- life of 35 min; hence, HC should not pose a potential risk to surface 
water (Armbrust  2001 ). 

 The potential for chlorothalonil to run off of application sites was simulated by 
Haith and Rossi ( 2003 ). Mean annual runoff concentrations for golf course greens, 
in three U.S. cities (Boston, Philadelphia and Rochester) were determined to be 
0.477, 0.699 and 0.372 mg/L, respectively, whereas for fairways, concentrations 
were 0.296, 0.450 and 0.256 mg/L, respectively (Haith and Rossi  2003 ). For both 
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greens and fairways, these measured concentrations exceeded the aquatic 96-h LC 50  
values for both the rainbow trout and water fl ea. The use of chlorothalonil on peanut 
fi elds, particularly in U.S. regions that have increased rainfall, increases the poten-
tial to contaminate local streams and ponds. However, the presence of increased 
plant foliage may decrease leaching of this chemical, although the degree of foliar 
wash-off for chlorothalonil has not been determined (Potter et al.  2001 ).  

3.3     Air 

 The rate of volatilization of chlorothalonil from water, dry and moist soil is low, as 
predicted by its having low vapor pressure and Henry’s law constant values 
(Table  1 ). Because of the low vapor pressure, initial volatilization is slow and vola-
tility loss continues over a longer time period (Leistra and Van den Berg  2007 ). In 
general, the volatilization of chlorothalonil can be regarded as negligible and does 
not represent a signifi cant dissipation route. 

 Bedos et al. ( 2010 ) measured chlorothalonil levels in air shortly after the fun-
gicide was applied to wheat (theoretical application dose of 880 g/ha; application 
volume of 150 L/ha) in May of 2006. Measurable air concentrations were recorded 
in the human breathing zone (0.68 m above the soil) following the application. A 
cumulated volatilization fl ux, after 31 h, was determined to be 5 g/ha, respec-
tively, which represents an approx. loss of 0.6% of the theoretical application 
dose. Air concentrations decreased slightly over 6 days (from 28 μg/m 3  to 64 ng/m 3 ), 
and a volatilization fl ux of 17.5 g/ha was estimated for this compound (Bedos 
et al.  2010 ).   

4     Environmental Degradation 

4.1     Abiotic Processes 

4.1.1     Hydrolysis 

 Chlorothalonil is stable to hydrolysis at pH 5 and 7 (Szalkowski and Stallard  1977 ; 
US EPA  1999 ). However, under basic conditions (pH 9), the compound degrades to 
form two products: 3-cyano-2,4,5,6-tetrachlorobenzamide and 4-hydroxyl-2,5,6- 
trichloroisophthalonitrile (Szalkowski and Stallard  1977 ). Kwon and Armbrust 
( 2006 ) proposed that the pathway for chlorothalonil degradation in aquatic systems 
would proceed by reductive dechlorination, oxidative dechlorination/hydrolysis and 
base hydrolysis (Fig.  2 ). The US EPA ( 1999 ) reported a hydrolysis half-life value 
for chlorothalonil of 30–60 days.
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4.1.2        Photolysis 

 Aqueous dissolved concentrations of chlorothalonil absorb sunlight within the 
wavelength range of 300–340 nm, and direct photolysis represents a major degrada-
tion pathway for this fungicide (Leistra and Van Den Berg  2007 ). Chlorothalonil, 
exposed directly to light (300–400 nm) photolytically degraded more rapidly in 
natural waters (DT 50  = 0.21–0.76 days) than in a buffered aqueous system (pH 7; 
DT 50  = 1.1 days; Wallace et al.  2010 ). Monadjemi et al. ( 2011 ) investigated the 
photodegradation of chlorothalonil on a simulated plant surface, specifi cally using 
paraffi n wax (irradiated at wavelengths between 300 and 800 nm). A fi eld-extrapo-
lated half-life of 5.3 days resulted, and suggested that chlorothalonil is susceptible 
to direct photolysis, in addition to surface penetration. In addition, these authors 
found the main degradation route was via reductive dechlorination (Monadjemi 
et al.  2011 ). Waltz et al. ( 2002 ) studied the photodegradation of hydroxychlorotha-
lonil (HC), chlorothalonil’s major hydrolytic metabolite. Results were that HC in 
the water samples exposed to simulated sunlight (via use of lamps) absorbed radia-
tion, and this substance was photolyzed with a  t  1/2  of 33–37 min). 

 Degradation of chlorothalonil via the Fenton reaction (Fe 3+ /H 2 O 2 ; Fig.  3 ) was 
effectively archived by Park et al. ( 2002 ). Half-lives were determined under dark 
( t  1/2  = 77 min) and UV irradiated conditions ( t  1/2  = 49.5 min), and results indicate that 
breakdown was enhanced by increased ferric ion concentrations (dark  t  1/2  = 31.7 min 
and UV  t  1/2  = 16.9 min). This reaction proceeds by dechlorination of chlorothalonil.

   Penuela and Barcelo ( 1998 ) investigated the infl uence of water quality and pho-
tosensitizers (TiO 2  and FeCl 3 ) on the degradation of chlorothalonil, by using a xenon 
arc lamp and natural sunlight. They found that the  t  1/2  of chlorothalonil in deionized 
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water (101.17 h; sunlight) was longer than deionized water irradiated under a xenon 
lamp (36.86 h); groundwater irradiated with the lamp had a half-life of 0.71 h. 
Moreover, addition of the photosensitizers decreased half-lives as well; FeCl 3  was a 
better catalyst under lamp irradiated water ( t  1/2  = 1.37 h) than water irradiated by 
sunlight ( t  1/2  = 4.24 h). The results of this study demonstrated that degradation fol-
lows fi rst-order kinetics in the presence of catalysts (Penuela and Barcelo  1998 ). 

 Studies by Sakkas et al. ( 2002 ) also showed that photolysis of chlorothalonil fol-
lows pseudo-fi rst order kinetics. The photolytic degradation in waters from a river 
and a lake was determined to be more rapid (99% loss within 60 h) than in distilled 
or seawater (67 and 72% loss, respectively), when irradiated under both natural and 
simulated conditions. Major photoproducts (viz., chloro-1,3-dichlorobenzene, 
dichloro-1,3-dicyanobenzene, trichloro-1,3-dicyanobenzene and benzamide) were 
identifi ed in this study (Sakkas et al.  2002 ). It is thought that the presence of dis-
solved organic matter (DOM) and other photosensitizers may have enhanced the 
rate of photodegradation. To investigation, studies which included photosensitizers 
indicated that increased concentrations of bicarbonate promoted degradation rates, 
whereas, degradation via carbonate radicals (⋅CO 3  − ) dominated under situations, in 
which degradation via the hydroxyl radical (⋅OH) was minimal (Wallace et al. 
 2010 ). In summary, direct photolysis of chlorothalonil proceeds rapidly and is 
enhanced by the presence of photosensitizers.   

4.2     Biotic Processes 

 Microbial digestion is thought to be the primary pathway by which chlorothalonil is 
degraded (US EPA  1999 ). Chen et al. ( 2001 ) studied the effects of microbes on 
fungicides in three soil types (Canfi eld silt-loam Luvisol; pH 6.3; unamended and 
amended with alfalfa leaves and wheat straw). They found chlorothalonil inhibits 
microbial activity in the treated soils. In unamended soil, enhanced mineralization 
and decreased nitrifi cation rates occurred. Mori et al. ( 1996 ) evaluated the microbial 
degradation of chlorothalonil in unfertilized and fertilized (farmyard manure) soil. 
Microbial activity was enhanced in soil treated with a combination of chemical and 
farmyard fertilizer and degradation increased as soil pH reached neutrality. 
Incorporating manure in the soil stimulated the microbes, although they required 
additional carbon sources (Mori et al.  1996 ). Wang et al. ( 2011 ) studied chlorthalo-
nil’s anaerobic degradation in four paddy soils. In these studies, soil pH and total 
carbon content both highly affected the rate of biodegradation. Results indicate that 
chlorothalonil was more effi ciently degraded under neutral pH (6.3–6.6) conditions 
and in soil containing 3–4% total carbon (Wang et al.  2011 ). 

 Motonaga et al. ( 1996 ) identifi ed the gram-negative rod bacterium, TB 1, from 
chlorothalonil-treated soil. This bacterium transformed more than 75% of chloro-
thalonil present in the soil into 4-hydroxy-2,5,6-trichloroisophthalonitrile and chlo-
ride anion via hydrolysis, rather than via mineralization. Out of 50 identifi ed 
chlorothalonil degrading bacteria, the TB 1 strain was the only one to produce the 
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hydroxylated metabolite (Motonaga et al.  1996 ). Zhang et al. ( 2007 ) observed the 
NS1 strain of  Bacillus cereus  to degrade chlorothalonil as a result of cometabolism, 
and carbon sources enhanced its degradation. Liang et al. ( 2010 ) isolated the bacte-
rial strain CTN-11 (identifi ed as an  Ochrobactrum  sp.) from chlorothalonil- 
contaminated soil. This strain degraded chlorothalonil to undetectable levels within 
48 h when exposed to a temperature range of 20–40 ºC and a pH from 6 to 9. Under 
anaerobic conditions, hydrolytic dechlorination occurred, producing the more sta-
ble hydroxy metabolite (Liang et al.  2010 ). 

 The infl uence of the chlorothalonil chlorine atoms on degradation was examined 
by Ukai et al. ( 2003 ). They found that chlorothalonil degradates appear to contain 
3–4 chlorine atoms, and these degradates suppress soil degradation of the parent 
compound. The two major degradate products (Fig.  4 ) were 2,5,6-trichloro-4- 
hydroxyisophthalonitrile and 2,5,6-trichloroisophthalonitrile. Other degradation 
products were identifi ed by Sato and Tanaka ( 1987 ). They also concluded that deg-
radation occurred via dechlorination and partial substitution (Fig.  5 ). The possible 
degradation products for chlorthalonil are listed in Table  2 .

5           Toxicology 

5.1     Mode of Action 

 The fungicidal activity exhibited by chlorothalonil is attributed to the inactivation of 
cell sulfhydryl enzymes (Vincent and Sisler  1968 ; Sherrard et al.  2003 ). Gallagher 
et al. ( 1992 ) recorded a depletion of glutathione, resulting in the inhibition of 
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   Table 2    Possible microbial degradation products a    

 Compound name  Soil conditions  Metabolite 

 4-hydroxychlorothalonil  Aerobic  Major 
 Metylthiotrichloroisophtalonitrile  Aerobic  Major 
 3-carbamyl-2,4,5-trichlorobenzoic acid  Aerobic acidic  Major 
 3-cyano-2,3,4,5,6-tetrachlorobenzoamide  Aerobic acidic  Major 
 Trichloroisophtalonitrile  Aerobic  Minor 
 m-phthalonitrile  NA  Breakdown product 

   a Data from Carlo-Rojas et al. ( 2004 )  
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glucose oxidation in exposed channel catfi sh. A study, in which  Saccharomyces 
pastorianus  and  Neurospora crassa  were exposed to chlorothalonil confi rmed that 
glucose oxidation was impaired and soluble thiol content was reduced from chloro-
thalonil treatment (Vincent and Sisler  1968 ). Tillman et al. ( 1973 ) concluded that 
the mechanism of chlorothalonil’s toxic action resembles that of the trichorometh-
ylsulfenyl fungicides. Although many studies have examined chlorothalonil’s mode 
of action, chlorothalonil and other chloronitriles have been categorized as having 
multiple sites of action; resistance to the fungicide does not develop (FRAC  2013 ).  

5.2     Aquatic Organisms 

 The potential for chlorothalonil to bioaccumulate in aquatic species is relatively low 
because it aggressively binds to soils. Yet, exposure from sediment-bound residues 
is possible. Although it is assumed that bioaccumulation will be minimal, chlorotha-
lonil has been found to be highly toxic to many aquatic species. For example, it is 
highly toxic to fathead minnow ( Pimephales promelas ) and somewhat less toxic to 
 Daphnia magna  and pink shrimp ( Penaeus duorarum ; Table  3 ).

   Early life-stages of the freshwater mussel,  L. siliquoidea , were exposed to 
selected technical-grade pesticides. Chlorothalonil was more toxic to glochidia 
(48-h EC 50  = 0.04 mg/L) than to juvenile mussels (96-h EC 50  = 0.28 mg/L), and 
had higher toxicity than other pesticides such as atrazine and fi pronil (Bringolf 
et al.  2007 ). 

 Larval and adult stages of the grass shrimp,  Palaemonetes pugio , were exposed 
to a range of chlorothalonil concentrations, and thereafter exhibited increased toxic-
ity with increasing temperature (25° vs. 35 °C) and salinity (20 ppt vs. 30 ppt; 
DeLorenzo et al.  2009 ). Furthermore, 96-h LC 50  values for larvae were more vari-
able among exposure conditions. Under standard and high salinity conditions 96-h 
LC 50  values were 49.1 and 39.4 μg/L, respectively. In addition, 96-h LC 50 s for adult 
shrimp were 156 and 116 μg/L, respectively, under the same conditions. Generally, 
results show that toxicity increased as exposure length increased from 24 to 96 h 
(DeLorenzo et al.  2009 ). 

   Table 3    Toxicity (expressed as 48-h or 96-h LC 50  values) of technical grade chlorothalonil to 
aquatic organisms   

 Aquatic organism  Scientifi c name  Concentration (μg/L) 

 Rainbow trout a    Lepomis macrochirus   10.5–76 
 Fathead minnow a    Pimephales promelas   23 
 Bluegill a    Lepomis macrochirus   51–84 
 Waterfl ea a    Daphnia magna   54–68 
 Pink Shrimp b    Penaeus duorarum   154 

   a Data from US EPA ( 2007 ) 
  b Data from US EPA ( 1999 )  
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 Laboratory and fi eld bioassays were conducted to determine the potential hazard 
chlorothalonil poses towards aquatic fauna. Rainbow trout (96-h LC 50  = 69 μg/L) 
was more sensitive than blue mussels (96-h LC 50  = 5.94 mg/L) and the water fl ea 
(48-h EC50 = 97 μg/L), when exposed under laboratory conditions (Ernst et al.  1991 ). 
However, caged organisms, exposed under fi eld conditions (aerially treated pond), 
were less sensitive, and exposed rainbow trout did not suffer any mortality. Ernst 
et al. ( 1991 ) concluded that environmental factors such as, microbial degradation, 
dilution and adsorption to suspended matter reduced chlorothalonil’s toxicity. 

 The toxicity and site of chlorothalonil accumulation was investigated by Davies and 
White ( 1985 ). Four fi sh species ( Salmo gairdneri ,  Galaxias maculates ,  G. truttaceus 
and G. auratus ) were exposed under fl ow-through conditions (≤0.6 mg/L, 13–16 °C, 
[O 2 ] = 8 mg/L), and exhibited increased toxicity; 96-h LC 50  values ranged from 16.3 to 
29.2 μg/L. In addition, using radiotracers (10 μg/L; 96-h) Davies and White ( 1985 ) 
found that  14 C-CN labelled chlorothalonil to be highly accumulated within the gall 
bladder and hind gut of each species.  

5.3     Mammals 

 Groups of pregnant female mice were orally administered chlorothalonil at doses 
ranging from 0 to 600 mg/kg/day. Although the treatments produced no mortality, 
signs of toxicity, such as weakness and reduced activity did occur at the 400 and 
600 mg/kg/day dose levels (Farag et al.  2006 ). Also observed at these concentra-
tions was signifi cant embryo lethality and a reduction in live fetuses (Farag et al. 
 2006 ). According to the US EPA ( 1999 ), chlorothalonil is considered to be practi-
cally non-toxic to small mammals, based on having a measured rat LD 50  of 
>10,000 mg/kg. However, a known degradate, SDS-3701 is much more acutely 
toxic than the parent compound (viz., possessing an acute female rat LD 50  of 
242 mg/kg). This degradate possesses high chronic oral toxicity towards pregnant 
rabbits and has a developmental no observable effect level (NOEL) of 33 mg/L, 
compared to chlorothalonil itself (NOEL = 330 mg/L; US EPA  1999 ). 

 Mozzachio et al. ( 2008 ) investigated the incidence of pesticide applicators that 
were both exposed to chlorothalonil and were diagnosed with cancer. They found no 
direct link to applicators with colon, lung or prostate cancers; approximately 3,600 
applicators used chlorothalonil an average of 3.5 days per year. Although animal 
studies have provided suffi cient evidence to classify chlorthalonil as a probable car-
cinogen, it is not known if it is a human carcinogen or not (Mozzachio et al.  2008 ).  

5.4     Birds 

 Chlorothalonil is acutely non-toxic to birds when administered orally; LD 50  values 
range from >2,000 mg/kg-bwt for Japanese quail to >10,000 mg/kg-bwt for both 
mallard and northern bobwhite quail (US EPA  2007 ). Reproductive effects caused 
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by dietary exposure have been investigated in bobwhite quail. At the highest dose of 
10,000 mg/kg, reproductive impairment occurred and caused effects on general 
health and hatching survival. Additional studies with Mallard ducks were conducted 
and decreased egg production was observed (WHO  1996 ). Although chlorothalonil’s 
toxicity is low to birds, similar to what occurs in mammals, its degradate SDS- 3701 
is much more toxic. Avian studies have shown that Mallard ducks are the most 
sensitive bird species to the toxicity of SDS-3701, which has an acute LD 50  of 
158 mg/kg (US EPA  2007 ).  

5.5     Plants 

 Chlorothalonil residues that appear on foliar surfaces after application to various 
crops have been investigated. Putman et al. ( 2003 ) used cranberries to evaluate 
dislodgeable foliar and fruit residues following application of chlorothalonil with 
and without an adjuvant. Two applications were made: one at 20% cranberry blos-
som bloom and another at 80% bloom (14 days later). Measured dislodgeable 
foliar residue concentrations were found to increase with the use of an adjuvant; 
the estimated half-life for chlorothalonil with and without adjuvant was determined 
to be 12 and 13 days, respectively. Furthermore, the cranberries were harvested 76 
days post- application, and showed fruit residues of chlorothalonil and its metabo-
lites 4-hydroxy-2,5,6-trichloroisophthalonitrile and 1,3-dicarbamoyl-2,4,5,6-
 tetra chlorobenzene (Putnam et al.  2003 ). 

 Not only is chlorothalonil present on foliar surfaces, but it can also cause oxi-
dative stress if taken up by plants. An experiment on upland rice ( Oryza sativa ) 
was conducted to determine the impact of chlorothalonil application on the plant 
with or without the presence of arbuscular mycorrhizal fungus (AMF;  Glomus 
mosseae ). Under both conditions, plant growth was signifi cantly inhibited and the 
presence of fungi decreased phosphorous concentrations within plant shoots 
(Zhang et al.  2006 ). Further investigation showed chlorothalonil to induce oxida-
tive stress, and affect catalase, ascorbic peroxidase, and peroxidase activity (Zhang 
et al.  2006 ).  

5.6     Fungi 

 The effectiveness of chlorothalonil as a fungicide has been studied on vesicular 
arbuscular mycorrhizal (VAM)  Glomus aggregatum  fungi. Chlorothalonil was 
mixed into Wahiawa silty clay soil (at concentrations ranging from 0 to 200 mg ai/
kg soil), and the applied levels decreased VAM colonization with increasing con-
centrations (Habte et al.  1992 ). In addition, Habte et al. ( 1992 ) noted that chlorotha-
lonil toxicity persisted for 12.5 weeks after initial soil application. Exposure of 
the VAM  G. intraradices  fungi, at 0.13 mg/L, reduced overall VAM formation 
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(Wan et al.  1998 ). They also found the concentration at which growth and development 
was inhibited by 50% to be 0.05 ± 0.01 mg/L for extraradical mycelial growth and 
0.04 ± 0.009 mg/L, respectively, following a 14 days inoculation. 

 Latteur and Jansen ( 2002 ) investigated the ability of 20 fungicides to affect the 
infectivity of conidia of the fungus  E. neoaphidis - an insect pathogen. 
Chlorothalonil (1,250 g ai/ha dose), and four other fungicides inhibited infectivity 
and prevented mortality to aphids, following their exposure to the fungus. Mueller 
et al. ( 2005 ) observed that chlorothalonil, and 12 other fungicides eliminated the 
germination of 6 rust fungi ( Puccinia hemerocallidis ,  P. iridis ,  P. menthae ,  P. 
oxalis ,  P. pelargonii - zonalis    ,  and Pucciniastrum vaccinii ) within 24 h, when they 
were exposed during and after fungicide application; chlorothalonil completely 
inhibited spore  germination within 8 h.   

6     Summary 

 Chlorothalonil is a broad spectrum, non systemic, organochlorine pesticide that was 
fi rst registered in 1966 for turfgrasses, and later for several food crops. Chlorthalonil 
has both a low Henry’s law constant and vapor pressure, and hence, volatilization 
losses are limited. Although, chlorothalonil’s water solubility is low, studies have 
shown it to be highly toxic to aquatic species. Mammalian toxicity (to rats and 
mice) is moderate, and produces adverse effects such as, tumors, eye irritation and 
weakness. Although, there is no indication that chlorothalonil is a human carcino-
gen, there is suffi cient evidence from animal studies to classify it as a probable 
carcinogen. 

 Chlorothalonil has a relatively low water solubility and is stable to hydrolysis. 
However, hydrolysis under basic conditions may occur and is considered to be a 
minor dissipation pathway. As a result of its high soil adsorption coeffi cient this 
fungicide strongly sorbs to soil and sediment. Therefore, groundwater contamina-
tion is minimal. Degradation via direct aqueous or foliar photolysis represents a 
major dissipation pathway for this molecule, and the photolysis rate is enhanced by 
natural photosensitizers such as dissolved organic matter or nitrate. In addition to 
photolysis, transformation by aerobic and anaerobic microbes is also a major degra-
dation pathway. Under anaerobic conditions, hydrolytic dechlorination produces 
the stable metabolite 4-hydroxy-2,5,6-trichloroisophthalonitrile. Chlorothalonil is 
more effi ciently degraded under neutral pH conditions and in soil containing a low 
carbon content.     
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1            Introduction 

 The family of synthetic organic substances known as “propylene glycols” consists 
of the 1,2-propanediol substance (monopropylene glycol, MPG) and its dimer 
(dipropylene glycol, DPG), trimer (tripropylene glycol, TPG) and tetramer (tetra-
propylene glycol, TePG) forms. The formal identities of these substances are sum-
marized in Table  1 . Collectively, these substances are produced on a scale of 
approximately three million metric tons per year, and are among the most important 
group of synthetic organic chemicals in commerce today (Chinn and Kumamoto 
 2011 ). Produced and used globally, the propylene glycol (PG) substances have 
functional properties that enable their application in the manufacture of polyester 
resins and their formulation into functional fl uids ( e.g ., anti-freeze, aircraft anti- 
icing and de-icing fl uids), cosmetics, pharmaceuticals, personal care products, pes-
ticides, liquid detergents, paints and coatings, and foods used for human and animal 
consumption. The PG substances also have more minor uses as a humectant for 
tobacco, plasticizers, and solvents used in fragrance, agricultural and ink formula-
tions. Considering the sheer volume consumed in these broad and dispersive appli-
cations, a variety of scenarios can be envisioned for their emission to the environment. 
Thus, there is a need to understand the potential hazards of and exposures associated 
with the manufacture, transport, use and disposal of products containing or manu-
factured from the PG substances.

   The purpose of this review is to summarize and communicate the best-available 
information to enable assessments of hazard, exposure and risk that are associated 
with the PG substances over their life cycle stages, which involve direct or diffusive 
environmental emission. Although various technical mixtures of these PG substances 
are of commercial and regulatory interest, the distribution, fate of and exposures to 
these mixtures in the environment are determined by the properties of each individual 
PG substance, rather than by the composition or properties of the collective mixture. 

   Table 1    Identity of the propylene glycol substances and associated components   

 Common name 
(abbreviated name) 

 Chemical abstracts services registry  Purity as tested for 
physico-chemical 
properties  Name  Number 

 Propylene glycol (MPG)  1,2-Propanediol  57-55-6  99.90% 
 Dipropylene glycol (DPG)  Propanol, oxybis 

 2-Propanol, 1,1,-oxybis- 
 1-Propanol, 2,2′-oxybis- 
 1-Propanol, 2-(2-hydroxypropoxy)- 

 25265-71- 8  
 110-95-8 
 108-61-2 
 106-62-7 

 99.77% 

 Tripropylene glycol (TPG)  Propanol, [(1-methyl-1,2- 
ethanediyl)bis(oxy)]bis- 

 24800-44- 0   ≥99.40% 

 Tetrapropylene glycol 
(TePG) 

    1-Propanol, 
2-[2-[2-(2-hydroxypropoxy)
propoxy]propoxy]- 

 Propanol, [oxybis[(methyl-2,1- 
ethanediyl)oxy]]bis- 

 24800-25- 7  

 25657-08- 3  

 ≥99.7% 
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A series of polymeric PG substances ( i.e ., poly(propylene glycol) or PPG) are com-
mercially prepared over a wide range of average molecular weights, and these have 
equally varied properties that are distinct from those of the MPG, DPG, TPG and 
TePG homologues. Where available, fate and ecological hazard information is pre-
sented here for the low molecular weight polymers having number- average molecu-
lar weight (M n ) ≤500 g/mol, the components of which may include the MPG–TePG 
homologues. Therefore, the foci of this review are the physical/chemical, fate and 
ecotoxicological properties that infl uence the distribution and exposure of these four 
individual substances in the environment. A separate review has been recently com-
pleted, in which the physical/chemical and toxicological hazards that are associated 
with potential human exposures to these substances are summarized (Fowles et al. 
 2013 ). In that review, the identities, structures, and compositions associated with the 
commercial PG substances are also detailed, and are therefore not revisited here.  

2     Physico-Chemical Properties 

 The following physico-chemical properties infl uence the emission, transport, and 
fate of PG substances in the environment: melting (freezing) point, density, boiling 
point, vapor pressure, water solubility, octanol-water partition coeffi cient (log P ow ), 
and organic carbon-normalized partition coeffi cient (log K oc ). Considering that the 
PG substances have been in commerce for many decades, these and other properties 
have been measured numerous times for various purposes, and are reported in vari-
ous secondary reference sources, wherein details of the measurement techniques are 
often lacking (Brown et al.  1980 ; Puck and Tamplin  1952 ; Sullivan  1993 ; 
Verschueren  2001 ; Weast and Astle  1985 ). Various processes were used to commer-
cially manufacture and isolate these substances, and different processes yield the 
potential for introduction of different impurities and co-products. Neither the effect 
of such different impurities and co-products on physical/chemical property mea-
surements, nor the reliability and relevance of these previously-reported properties 
can be fully ascertained. Therefore, in partial fulfi llment of the substance registra-
tion requirements under the European Union REACh legislation (Regulation (EC) 
No 1907/2006 of The European Parliament and of The Council of 18 December 
2006), signifi cant effort and expense were undertaken to measure selected physical/
chemical properties for highly-purifi ed and characterized samples of the MPG, 
DPG, and TPG substances. These measurements followed current and globally- 
accepted standardized test procedures as put forth by OECD (OECD  2012 ) and the 
European Community (EC  2008 ). The measurements relied on laboratory proce-
dures and test substance characterizations performed under the OECD principles of 
Good Laboratory Practice (OECD  2003 ), so that the purity of the tested substances 
and reliability of associated results can be determined. The results of these charac-
terizations are summarized in Table  2 , and are expected to represent the most accu-
rate, reliable, and traceable physico-chemical property data available for assessing 
the environmental distribution and fate of PG substances.
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   It should be noted that the TePG substance, in its purifi ed commercial form, did 
not meet the import/production tonnage trigger (>1,000 t/year) for REACh registra-
tion in 2010. Other technical mixtures containing TePG often meet the OECD defi -
nition of a polymer (OECD  1991 ), and as such, are not subject to the registration 
requirements of REACh. Therefore, there was no regulatory need to re-assess the 
physico-chemical properties of TePG. However, the available measurements of den-
sity, freezing point, boiling point, and vapor pressure for this substance have been 
critically-reviewed under the American Institute of Chemical Engineers (AIChE) 
Design Institute for Physical Properties Research (DIPPR) program (AIChE  2012 ), 
and from this source the recommended values are reported in Table  2 . Similarly, the 
critically-evaluated and accepted property values reported in DIPPR for the MPG, 
DPG, and TPG substances are in excellent agreement with the most recently- 
measured values that were determined for REACh registration (Table  2 ). 

2.1     Density (Specifi c Gravity) 

 The density of a substance is an important property that can infl uence how a released 
substance migrates within and among air, water, and soil. For example, a spillage of 
bulk liquid to surface water can result in that substance fl oating, sinking, or remain-
ing suspended in the receiving water body. Pure distilled water has a density of 
0.998 g/cm 3  at 20 °C (Landolt-Bornstein  1980 ), whereas water from the open ocean 
has typical density of approximately 1.025 g/cm 3  at the same temperature and at 
3.5% salinity (Cox et al.  1970 ). The PG substances exhibit a very narrow range of 
densities, from 1.02 to 1.03 g/cm 3  at 20 °C, and if spilled to surface waters would 
tend to fl oat or slowly sink until readily and completely dissolved. For this reason, 
there are no practical measures for recovering PG substances from surface waters 
following their bulk spillage.  

           Table 2    Summary of selected physical/chemical properties of the propylene glycol substances   

 Property  MPG  DPG  TPG  TePG a  

 Molar mass (g/mol)  76.10  134.18  192.26  250.34 
 Density (g/cm 3  @ 20 °C)  1.03  1.02  1.02  1.02 
 Freezing point (°C)  <−20 

 −60 a  
 <−20 
 −40 a  

 <−20 
 −45 a  

 −7.3 

 Boiling point (°C)  184  227  270  312 
 Vapor pressure (Pa @ 101.3 kPa and 25 °C)  20  1.3  0.26  0.0036 

 Water solubility  - - - - - - - - - - - - - - -Miscible- - - - - - - - - - - - - - -  
 Henry’s law constant (Pa m 3 /mol)  1.3 × 10 −3   1.8 × 10 −4   5.0 × 10 −5   4.7 × 10 −7  
 Log P ow   −1.07  −0.46  −0.38  −0.35 b  
 Log K oc  b   −0.49  −0.24  −0.29  −0.51 

   a Critically-reviewed and recommended values from the AIChE DIPPR Database (AIChE  2012 ) 
  b Estimated value based on KOCWIN and KOWWIN software (USEPA  2012 )  
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2.2     Melting/Freezing Point 

 The melting/freezing point indicates whether a substance occurs as a solid or liquid 
at standard atmospheric pressure (101.325 kPa), and at a given temperature associ-
ated with processing, use, or emission. Because each of the PG substances occurs as 
a viscous liquid at ambient temperature (25 °C), this change in physical state between 
liquid and solid, which may occur at lower temperatures, is expressed as the freezing 
point. Measurement of the freezing points for MPG, DPG, and TPG were attempted 
by using the differential scanning calorimetry (DSC) procedure described in the EC 
Method A.1 (EC  2008 ). In this procedure, the heat fl ow into or out of the sample of 
test substance is measured as the sample is slowly cooled to a minimum temperature 
of −20 °C. For each of the MPG, DPG, and TPG substances, an exothermic change 
of state was not observed for temperatures as low as −20 °C. Therefore, the freezing 
point for these substances is reported as <−20 °C in Table  2 . Critically-evaluated and 
accepted measurements of freezing point, as reported in the DIPPR database, indi-
cate that this transition to glassy solid ( i.e ., glass transition temperature) occurs at 
temperatures as low as −60 °C (MPG) and as high as −7.3 °C (TePG). Therefore, the 
PG substances, in their pure forms, will occur as fl owable viscous liquids at virtually 
any temperature associated with manufacture, transport, storage or use.  

2.3     Boiling Point 

 The boiling point indicates the temperature at which the pure PG substances will 
change from liquid to gas (vapor) state at standard atmospheric pressure (101.325 kPa). 
As with the freezing point, this property is used in multimedia models to determine 
the physical state of a substance at a given ambient environmental temperature. For 
the MPG, DPG, and TPG substances, the reported boiling points were determined by 
using the differential scanning calorimetry technique of the EC Method A.2 (EC 
 2008 ), which indicates the onset of the endothermic phase transition as temperature 
of a sample is increased incrementally. The PG substances, having normal boiling 
points ranging from 184 to 312 °C, will remain in the liquid state at any temperature 
associated with their use or emission to the environment. It is also important to note 
that, during boiling point measurements, the thermal decomposition of the PG sub-
stances is not observed, which is indicative of their high degree of thermal stability.  

2.4     Vapor Pressure 

 The vapor pressure of a substance indicates the fraction of a substance that exists in 
the vapor phase at a given temperature, and is typically measured and reported for 
temperatures of 20 or 25 °C. When a substance occurs in a neat liquid form, the 
vapor pressure indicates the propensity of that substance to volatilize into the 
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atmosphere. The PG substances exhibit a wide range of measured vapor pressures, 
from 0.0036 to 20 Pa at 25 °C (Table  2 ); however, this range of vapor pressure can 
be characterized as indicating low volatility of the substances in their pure forms. 
Although butyl acetate is assigned an evaporation rate of 1.0, the most volatile PG 
substance ( i.e ., MPG) has a relative evaporation rate of 0.016, and that of the least- 
volatile (TPG) is 0.0002 (The Dow Chemical Company  2003 ). These substances are 
therefore considered to have low evaporation rates, considering that water has a 
relative evaporation rate of 0.3.  

2.5     Water Solubility 

 The water solubility of a substance determines, in part, the limit to which mass 
transfer (advection) of that substance can occur when it is dissolved in surface- or 
ground-water. It also indicates the extent to which wet deposition of the substance 
vapor or aerosols can occur from the atmosphere. The water-soluble fraction of a 
substance is most susceptible to degradation reactions, such as biodegradation, 
hydrolysis, and photolysis. The PG substances are each reported to be miscible with 
water in all proportions; however, the rate with which the substances will dissolve in 
water apparently decreases as molecular weight and associated viscosity increases. 
Although many higher molecular weight glycol substances exhibit inverse solubility 
( i.e ., decreased solubility with increased temperature), aqueous solutions of the PG 
substances are expected to remain fully dissolved at temperatures up to and includ-
ing their boiling points. Thus, the distribution, transport, degradation, and toxicity of 
the PG substances in the environment will not be limited by their water solubility.  

2.6     Henry’s Law Constant 

 When a substance is dissolved in water, both the vapor pressure and water solubility 
of the substance will determine the degree to which it will volatilize to the atmo-
sphere. The quotient of vapor pressure (Pascal) and water solubility (mol/m 3 ) pro-
vides an estimate this volatility from water, as described by Henry’s Law Constant 
(Pa m 3 /mol). Thus, Henry’s Law Constant (HLC) indicates the degree to which 
partitioning of a substance occurs between dissolved and vapor phases for an aque-
ous solution at a given temperature. The HLC can be directly measured, by deter-
mining concentrations of the substance in dissolved aqueous and vapor phases of 
equilibrated solutions in closed vessels. More often, the HLC is estimated from the 
quotient of measured or estimated vapor pressure (Pa) and water solubility (mol/m 3 ). 
By this estimation method, HLC values for the PG substances range from 
1.3 × 10 −3  Pa m 3 /mol (MPG) to 4.7 × 10 −7  Pa m 3 /mol (TePG) at 25 °C. These HLC 
values indicate that the PG substances are poorly-, to essentially non-volatile, from 
water. Accordingly, any emissions to surface water or soil will not tend to be volatil-
ized to the atmosphere. Rather, any atmospheric emissions (vapor or aerosol) will 
tend to be readily deposited to water or soil by wet deposition.  
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2.7     Octanol-Water Partition Coeffi cient (Log P ow ) 

 The octanol-water partition coeffi cient, often expressed in its base-10 logarithm 
form ( i.e ., log P ow ) is among the most important properties describing the fate and 
distribution of a substance in the environment. When octanol is employed as a sur-
rogate for fatty tissues ( i.e ., lipids), the log P ow  is highly-correlated with the biocon-
centration of substances in aquatic organisms (Dimitrov et al.  2005 ). When octanol 
is employed as a surrogate for natural organic matter in soil, sediment, or wastewa-
ter treatment bio-solids, the log P ow  is highly-correlated with the organic carbon- 
normalized adsorption coeffi cient, or log K oc  (Lyman  1990 ; Sabljic et al.  2005 ). The 
log P ow  values for MPG, DPG, and TPG have been determined for highly-purifi ed 
forms of these substances, according to EC Method A.8 (EC  2008 ). In this method, 
the concentration of the substance (including all structural and stereo-isomers) is 
determined in both the water and 1-octanol phases of equilibrated and mutually- 
saturated octanol/water mixtures prepared at three different octanol:water (vol:vol) 
ratios. The log P ow  values measured as such for the MPG, DPG, and TPG substances 
range from −1.07 to −0.38. Because a measured value of log P ow  is not available for 
the TePG substance, the estimated value of −0.35 is reported, which originates from 
the widely accepted and validated structure-fragment calculation software 
KOWWIN v1.68 (USEPA  2012 ). 

 From this series of measured and calculated values of log P ow  for the PG sub-
stances, it is clear that the addition of each oxypropylene repeat unit to propylene 
glycol makes a net positive ( i.e ., hydrophobic) contribution to log P ow  of the higher 
PG homologues. Although the measured log P ow  values for MPG, DPG, and TPG do 
not indicate a uniform contribution to log P ow  from the oxypropylene repeat unit, the 
structure-fragment calculation method indicates a uniform contribution of approxi-
mately +0.14 log P ow  units. The calculated log P ow  values for MPG, DPG, TPG, and 
TePG are −0.78, −0.64, −0.50, and −0.35, respectively. Regulatory criteria are based 
on log P ow , and typically are derived from a screening assessment of bioaccumula-
tion potential, where a log P ow  value ≥3 is the lowest threshold applied (by the 
International Maritime Organization) to indicate a potential for bioaccumulation 
(Moermond et al.  2011 ). In all cases, whether log P ow  is measured or calculated, 
very low potentials for bioaccumulation and adsorption to soil, sediment, or waste-
water bio-solids are indicated for the PG substances.  

2.8     Organic Carbon-Normalized Adsorption Coeffi cient (Log K oc ) 

 As described above, the degree to which organic matter in soil, sediment, and waste-
water bio-solids adsorbs non-ionic organic substances is indicated by the organic 
carbon-normalized adsorption coeffi cient ( i.e ., log K oc ). For the PG substances, no 
reported or traceable measured values of log K oc  exist. However, several techniques 
exist that utilize correlations with log P ow  or molecular connectivity indices to esti-
mate log K oc  values for these substances. The KOCWIN software v2.00 (USEPA 
 2012 ) provides estimates that are based on both of these techniques, and is among 
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the most widely-recognized and accepted tools for estimating log K oc  of non-ionic 
organic substances. When a reliable measured value for log P ow  exists, the log K oc  
estimate is most accurately made by correlation with log P ow . When the log P ow  
value is unknown, or the substance possesses ionizable functional groups, the 
molecular connectivity index (MCI) may serve to provide a more accurate log K oc  
estimate. The estimated values of log K oc  for the MPG, DPG, TPG, and TePG sub-
stances, resulting from the log P ow  correlation method of KOCWIN, are −0.49, 
−0.24, −0.29, and −0.51, respectively (Table  2 ). Because each estimate is corrected 
for various structural or molecular features, these estimates do not show a uniform 
and incremental increase in log K oc  with each additional oxypropylene repeat unit. 
Substances having a log K oc  value <3 are considered to be poorly adsorbed to sedi-
ment and soil (SETAC  1993 ), such that assessments of their potential toxicity to 
sediment-dwelling organisms are not typically undertaken. To summarize the fore-
going, the PG substances have very low potential for adsorption to soil, sediment, 
and wastewater bio-solids, and their advection into and through groundwater will 
not be appreciably attenuated by adsorption.   

3     Environmental Distribution 

 The physico-chemical properties of a substance infl uence its distribution and fate in 
the environment, as well as the route by which the substance is emitted to the envi-
ronment. For example, tetrachloroethylene has high vapor pressure (2,415 Pa) and 
only moderate water solubility (150 mg/L) at 25 °C (ECHA  2013a ), and might be 
expected to occur primarily in the atmospheric compartment of the environment. 
However, this substance has widespread occurrence as a groundwater contaminant, 
because past use and disposal practices resulted in its direct emission to surface 
soils (Moran and Delzer  2006 ). Thus, to understand or predict where a substance 
might reside in the environment, both the physico-chemical properties and modes of 
emission must be well-understood and considered. 

3.1     Relevant Environmental Compartment(s) 

 The Level III fugacity-based multimedia fate and transport model, developed by Don 
Mackay and colleagues (Mackay  2001 ), provides a convenient and meaningful 
approach to identifying the relevant environmental compartments associated with 
environmental emissions of a substance. This model determines the steady-state con-
centrations of a substance in the modeled environmental compartments, under vari-
ous simulated modes and magnitudes of continuous emission. The inputs to this 
model include physico-chemical properties as discussed above and as summarized in 
Table  2 , known or hypothetical route(s) and magnitude(s) of emission, and estimated 
degradation half-lives for the substance in the atmospheric, water, soil, and sediment 
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compartments (Table  3 ). The estimated half-lives for the substances in the atmo-
sphere were derived from estimated second-order reaction rate constants, as described 
in Sect.  4.1 . The estimated half-lives in soil, water, and sediment are derived from the 
demonstrated ready biodegradability (MPG, DPG, TPG) and inherent ultimate bio-
degradability (TePG) of the substances, their estimated soil adsorption coeffi cients 
(log Koc, Table  2 ), and the corresponding default half-lives recommended under the 
U.S. EPA High Production Volume Chemicals program (   Larson et al.  2000 ). The 
Level III model (v2.80.1; CEMC  2004 ) was used to identify the relevant environ-
mental compartment(s) that are associated with various routes of emission for the PG 
substances. For each of these four substances, four different emission scenarios were 
evaluated, with 1,000 kg/h emissions (both individually and simultaneously) to the 
air, water, soil compartments of the standard “EQC” model environment (Mackay 
 2001 ). The resulting predicted distributions of the emitted PG substance in each 
compartment, and their associated residence times in the total environment, are sum-
marized in Table  4a–d . For each of the four emission scenarios, the predicted per-
centage of total steady-state mass of PG substance occurring in the air, water, soil, 
and sediment compartments is given. Moreover, the residence time (day) over which 
a given molecule of the PG substance occurs in the environment is predicted for 
conditions under which that molecule is removed from the environment by advection 
only, and by the combined effects of advection and degradation processes.

    The results of the Level III modeling illustrate several key and expected behav-
iors of the PG substances in the environment. As discussed above, because these 
substances have low vapor pressures and very high water solubility, they are not 
expected to reside in the atmosphere, regardless of the route by which they reach the 
environment. Even if emitted directly to the atmosphere, each PG substance is pre-
dicted to be completely deposited to surface water and soil, in the same approximate 
proportion as exists for the surface areas of water and soil compartments in the 
simulated environment. Thus, wet deposition of the PG substances would appear to 
be an important fate process affecting any atmospheric emissions. The simulated 
emission of these substances directly to surface waters is predicted to result in their 

      Table 3    Estimated environmental degradation half-lives used in Level III distribution modeling 
for the propylene glycol substances   

 Substance 

 Second-order reaction rate 
constant (cm 3 /molecule*s) 
with OH radical @ 25 °C a  

 Estimated half-life (h) 

 Atmosphere b   Soil  Water  Sediment 

 MPG  1.3 × 10 −11  
 1.2 × 10 −11c  

 10 
 10.7 c  

 720  360  720 

 DPG  (3.1–3.4) × 10 −11   3.7–4.1  720  360  720 
 TPG  (5.6–5.9) × 10 −11   2.2–2.3  720  360  720 
 TePG  (7.5–8.1) × 10 −11   1.6–1.7  1,440  720  1,440 

   a Rate constant estimated from structure fragment correlation method of AOPWIN v1.92a (USEPA 
 2012 ) 
  b Based on an assumed average hydroxyl radical concentration of 1.5 × 10 6  molecules/cm 3  
  c Experimentally-measured value of Atkinson ( 1986 )  
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retention in the surface water compartment, with virtually no evaporation to the 
atmosphere or deposition to sediments. When emitted to soil, the PG substances 
will become associated almost exclusively with soil pore water, and will have, 
approximately, a 20–30% runoff to surface waters. 

 The PG substances are rapidly degraded in air, water, soil, and sediment (as dis-
cussed below); hence, their residence times in the environment are expected to be 
governed by their degradation rate more than by advection. The degradation half- life 
times (h) input to the model for indirect photolysis of each PG substance in the atmo-
sphere are summarized in Table  3 . Degradation half-lives in surface water, soil, and 
sediment compartments for the PG, DPG, and TPG substances were 360, 720, and 

       Table 4    Summary of Level III model-predicted environmental distributions and residence times 
associated with simulated emissions of the propylene glycol substances   

 Emission scenario 

 Predicted distribution (%) in: 
 Residence 
time (days) 

 Atmosphere  Water  Soil  Sediment  Advection  Total 

 (a) Monopropylene glycol (MPG) 
 1,000 kg/h 
 Atmosphere 

 0.9  25.9  73.2  0.0  119  19.1 

 1,000 kg/h 
 Water 

 0.0  99.9  0.0  0.1  41.7  14.3 

 1,000 kg/h 
 Soil 

 0.0  22.2  77.8  0.0  187  29.6 

 1,000 kg/h atm, water, and soil  0.3  40.9  58.8  0.1  95.3  21 

 (b) Dipropylene glycol (DPG) 
 1,000 kg/h 
 Atmosphere 

 0.1  25.9  74.0  0.0  155  25.1 

 1,000 kg/h 
 Water 

 0.0  99.9  0.0  0.1  41.7  14.3 

 1,000 kg/h 
 Soil 

 0.0  22.0  78.0  0.0  190  29.9 

 1,000 kg/h atm, water, and soil  0.0  39.4  60.5  0.1  105  23.1 

 (c) Tripropylene glycol (TPG) 
 1,000 kg/h 
 Atmosphere 

 0.0  25.8  74.1  0.0  159  26.7 

 1,000 kg/h 
 Water 

 0.0  99.9  0.0  0.1  41.7  14.3 

 1,000 kg/h 
 Soil 

 0.0  21.9  78.0  0.0  190  29.9 

 1,000 kg/h atm, water, and soil  0.0  39.1  60.8  0.1  106.0  23.6 

 (d) Tetrapropylene glycol (TePG) 
 1,000 kg/h 
 Atmosphere 

 0.0  33.0  67.0  0.1  126  42.9 

 1,000 kg/h 
 Water 

 0.0  99.8  0.0  0.2  41.7  21.3 

 1,000 kg/h 
 Soil 

 0.0  29.5  70.5  0.0  141  45.4 

 1,000 kg/h atm, water, and soil  0.0  44.5  55.4  0.1  93.7  36.5 
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720 h, respectively, as recommended for derivation of biodegradation half-life times 
from results of readily biodegradability tests (Larson et al.  2000 ). Similarly, for inher-
ently biodegradable substances, the input half-life times in these media for the TePG 
substance were derived as 720, 1,440, and 1,440 h for water, soil, and sediment, 
respectively. As shown in Table  4a–d , the total residence times for all substances and 
emission scenarios range from 14 to 45 days. When the reactivity of the model is 
turned “off”, and only advection is allowed to govern the fate and transport in and 
through the environment, predicted residence times range from 41.7 to 190 days. 
Using the Level III model in this way illustrates the importance of reactivity (degra-
dation) of the PG substances in governing their environmental fate and transport. 

 From the Level III modeling, it can be concluded that the surface water environ-
ment is of primary interest when addressing the fate and effects of the PG substances, 
regardless of the mode by which the substances might be emitted. The soil environ-
ment is expected to be of interest only when these substances are emitted directly to 
soil, or are deposited there from continuous atmospheric emissions during their 
manufacture, transport, or use. Thus, the focus of environmental hazard assessments 
for these substances should be aquatic and terrestrial organisms at all trophic levels.  

3.2     Environmental Monitoring Data 

 Various voluntary and regulatory-mandated programs have been implemented 
through which the presence of chemical substances, especially those of high hazard 
and/or production volume, are monitored in samples collected from air, water, soil, 
sediment, and biota. The results of these environmental monitoring programs can 
provide a useful check on effectiveness of waste treatment processes, emission con-
trols, and disposal practices that are associated with manufacture, use, and disposal 
of these substances. 

 Searches of the published literature, government databases, and internet sources 
have revealed very little information on detection of the PG substances in the environ-
ment, or to monitoring programs that have included the PG substances as target ana-
lytes. The OECD SIDS Initial Assessment Reports (SIAR) compiled for PG (OECD 
 2001a ) and TPG (OECD  1994 ), which have sections that address environmental 
monitoring information, include no information on detection of these substances in 
air, water, soil, or sediment. The SIAR report for DPG (OECD  2001b ) included 
reports of detections in drinking water (0.2–0.4 ng/L; Lin et al.  1981 ), pulp/paper mill 
wastewater effl uent (11 μg/L; Turoski et al.  1983 ), and ground water (Dunlap and 
Shew  1976 ). Because the OECD SIDS program has now concluded without sponsor-
ship of the TePG substance, a similar SIAR report is not available for this substance. 

 Various local surface- and ground-water monitoring programs have been estab-
lished at airport facilities that use aircraft de-icing and/or anti-icing formulations, 
which can contain up to 90% MPG (The Dow Chemical Company  2013 ). For exam-
ple, Sills and Blakeslee ( 1992 ) reviewed available information on the environmental 
impact of aircraft de-icing solutions on airport storm water runoff. They found that 
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groundwater in the perched water table of sandy soil aquifer at the Ottawa 
International Airport (Canada) contained MPG at levels up to 4 mg/L in June, but 
declined to non-detectable levels by the fall. These fi ndings verify the expected 
occurrence of MPG in surface run-off and groundwater that is associated with sites 
where de-icing and anti-icing formulations are applied. They also demonstrate the 
expected rapid dissipation (degradation) of the MPG substance, when emission to 
the surface water and groundwater environment is terminated. 

 Ongoing government-mandated environmental monitoring programs, which 
include the PG substances as target analytes, appear to be limited to a single pro-
gram in Japan that is part of the Japan Ministry of Environment (MOE) environmen-
tal survey program for high-production and priority pollutant substances. In 1977 
and 1986, the MOE surveyed water, bottom sediment, fi sh, and air samples collected 
from around the country for the presence of MPG (Ministry of Environment, Japan 
 2013 ). The MPG substance was not detected in any of the six surface water and six 
sediment samples collected in 1977. During a similar sampling of surface water and 
sediments in 1986, MPG was detected in 12 of 24 surface water samples, with 
detected concentrations ranging between 0.2 and 0.8 μg/L. Similarly, MPG was 
detected in 4 of 24 sediment samples, with concentrations ranging between 0.020 
and 0.022 μg/g dry wt. Environmental monitoring data are not reported for MPG, or 
for any of the other PG substances beyond the 1986 campaign, which would indicate 
that the substances were identifi ed as, and now remain as, low priorities for further 
investigation. 

 The Substances in Preparations in Nordic Countries (SPIN) database provides a 
qualitative assessment of consumer and environmental exposure potentials for chem-
icals used in consumer products in Norway, Sweden, and Denmark (  http://www.
SPIN200.net    ). The database indicates that one or more known product uses present 
the potential for “very probable” exposures of MPG, DPG, and TPG to air, water, 
soil, and wastewater media. The TePG substance is indicated as having one or several 
uses, with which only a “low” potential for exposure to wastewater is associated. 

 An example of the most extensive and relevant environmental monitoring was 
performed for PG substances by the U.S. EPA, which was associated with applica-
tion of crude oil dispersants to remediate the 2010 Gulf of Mexico (Deepwater 
Horizon) oil spill. During the spill response (May to July 2010), an estimated total of 
1.84 million gallons of dispersants, including COREXIT ®  EC9500A, 1  were applied 
both at the surface and directly at the wellhead on the seafl oor (OSAT  2010 ). One of 
the ingredients in COREXIT ®  EC9500 is MPG, which comprises 1–5% (wt/wt) of 
the dispersant (Nalco Company  2008 ). It is estimated that approximately 0.7 million 
pounds of MPG was applied to the Gulf of Mexico oil spill response area. Between 
early May 2010 and late October 2010, over 17,000 samples were collected of water 
and sediment in the Gulf of Mexico area to locate oil and/or dispersant- related chem-
icals associated with the oil spill. Of all samples collected, only six sediment (0.73–
1.0 μg/g) and two water samples (590 and 660 μg/L) contained MPG above the 
method detection limits of 0.5 μg/g and 500 μg/L, respectively (OSAT  2010 ). 

1   COREXIT ®  is a registered trademark of Nalco Company 
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 These environmental monitoring programs and associated data, although limited 
in number and in geographic/temporal scope, indicate that despite the enormous 
tonnages of MPG used in numerous dispersive applications, the resultant concentra-
tion of MPG in environmental media is very low and usually non-detectable. 
Although very little or no environmental monitoring data are available for DPG, 
TPG or TePG, the Level III fugacity model results (as illustrated in Table  4b–d ) 
demonstrate that these PG substances would have similar environmental distribu-
tion patterns to that of MPG (Table  4a ) if they were used in similar amounts and 
modes of emission. Expected concentrations of these other PG substances in the 
environment would be even lower than observed or expected for MPG, because they 
are manufactured and used in lesser tonnages.   

4     Environmental Fate Processes 

 The key processes that affect the persistence of substances in the atmospheric, 
aquatic, and terrestrial environments include photolysis (both direct and indirect), 
hydrolysis, and biodegradation. Other fate processes such as adsorption, volatiliza-
tion, and bioaccumulation can affect the distribution and transport of substances 
within and among these environmental compartments. The relevance of these fate 
processes to the PG substances, along with summaries of the rates and extents to 
which the relevant processes occur, are discussed below. 

4.1      Atmospheric Fate/Transport 

 The vapor pressures and Henry’s Law Constants of the PG substances would not 
indicate signifi cant prospective volatilization of the substances to the atmosphere. 
However, processing or use of them at elevated temperature, or the use and emission 
of their formulations directly in the atmosphere (as with aircraft de-icing and anti-
icing formulations) could introduce them intermittently to the troposphere. As is 
illustrated by simulated atmospheric emissions using the Level III fugacity model 
(Table  4a–d ), the fate of the PG substances in the atmospheric environment is gov-
erned by a combination of reactive, advective, and depositional processes. 

 The direct photolysis rate of substances in the atmosphere is governed by the 
band of wavelengths over which a particular molecule will absorb relevant solar 
radiation, the probability of a chemical reaction occurring per unit of photons 
absorbed ( i.e ., quantum yield), and the intensity ( i.e ., solar fl ux) at the relevant 
wavelengths of absorption. For the PG substances, the UV/VIS absorbance spectra 
each indicate a minor UV absorbance band over approximately 250–300 nm 
(data not shown). However, the wavelength band of sunlight that reaches the 
earth’s surface is signifi cantly fi ltered by ozone, water vapor, etc. in the upper atmo-
sphere, such that irradiation by solar UV light is essentially cut off below 290 nm. 
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For this reason, direct photolysis of the PG substances is an unimportant fate pro-
cess in the tropospheric, aquatic, and terrestrial environments. 

 As for most organic chemicals, the dominant reactive fate process for PG sub-
stances in the troposphere is indirect photolytic reaction with photochemically- 
produced hydroxyl radicals. During daylight hours, sunlight of wavelength <230 nm 
is absorbed by ozone in the troposphere, and forms a reactive atomic oxygen species. 
This reactive oxygen radical then reacts with atmospheric water to form highly reac-
tive OH radicals. The reaction of PG substances with OH radical in the vapor phase 
occurs  via  hydrogen abstraction from the aliphatic –CH, –CH 2 , and –CH 3  groups, 
and  via  reaction with the primary and secondary –OH groups. The products of OH 
radical reaction with these functional groups are expected to be various mono- and 
poly-carboxylates (aldehyde, ketone, and carboxylic acids), and ultimately CO 2 . 

 The kinetics for reaction of MPG vapor with photochemically-generated OH 
radicals have been evaluated and reported by Atkinson ( 1986 ). A second-order reac-
tion rate constant of 1.2 × 10 −11  cm 3 /molecule*s is reported for a temperature of 
25 °C, and as shown in Table  3 , is in excellent agreement with the estimated value 
from the AOPWIN software v1.92a (USEPA  2012 ). The second-order reaction rate 
constants for the DPG, TPG, and TePG substances and their associated structural 
isomers are also summarized in Table  3 . Note that differences in atom connectivity 
among constitutional isomers of DPG, TPG, and TePG substances do not translate 
to signifi cant differences in predicted rate constants for their reaction with OH radi-
cal. These rate constants equate to estimated atmospheric half-lives ranging from 
1.6 to 10 h, at an assumed background hydroxyl radical concentration of 1.5 × 10 6  
molecules/cm 3  and temperature of 25 °C. Substances that have tropospheric half- 
lives of >2 days are considered to be persistent in the environment by some regula-
tory authorities, and have potential for long-range transport  via  atmospheric 
advection (Calamari et al.  2000 ). Based on these estimated half-lives for indirect 
photolysis, it is concluded that the PG substances are rapidly degraded when emitted 
to the atmosphere, and have virtually no potential for long-range transport therein.  

4.2     Biodegradation 

 Biodegradation is one of the most important processes infl uencing the persistence 
of organic chemicals in the environment. Several researchers, as described below, 
have evaluated the biodegradation of various PG substances using various inoculum 
sources or densities, substrate concentrations, and incubation conditions (Table  5 ). 
The biodegradation of these substances has been recently and thoroughly evaluated, 
using current OECD guidelines for testing of ready biodegradability, and biode-
gradability in seawater (West et al.  2007 ). The publication of these results included 
an in-depth review of current knowledge on metabolic pathways of their biodegra-
dation, and on the physical-chemical and structural features that infl uence biode-
gradability. As noted above for the physico-chemical properties of these substances, 
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numerous screening tests of ready and inherent biodegradability have been con-
ducted over several decades. However, in many cases the important details on iden-
tity/purity of the tested substances, as well as those on experimental methods and 
inocula employed are lacking. The most recent results reported by West et al. ( 2007 ) 
are based on current standardized test methods, were conducted in accordance with 
GLP guidelines, and utilized thoroughly documented test substances and experi-
mental procedures. Hence, they provide a defi nitive and reliable basis for assessing 
the ready biodegradability, biodegradation in seawater, and structure- biodegradability 
relationships across this family of substances. The results of these studies showed 
that six of the tested substances (MPG, DPG, TPG, PPG 425, PPG 1000, and PPG 
2000) were readily biodegradable, whereas TePG and PPG 2700 were not readily 
biodegradable, but were inherently biodegradable. Biodegradation half-lives for 
these eight substances ranged from 3.8 days (PPG 2000) to 33.2 days (PPG 2700) 
in the ready test, and from 13.6 days (MPG) to 410 days (PPG 2700) in seawater 
tests. A further compilation of historical test results relating to these parameters is 
not presented here. Rather, results of selected biodegradation studies conducted in 
specifi c aquatic and terrestrial environments, and under aerobic and anaerobic con-
ditions, are summarized below and in Table  5 .

   MPG has been shown to readily biodegrade in various screening tests employing 
non-adapted wastewater inocula under aerobic conditions (Kaplan et al.  1982 ; Price 
et al.  1974 ), and like many synthetic organic substances, is more rapidly biode-
graded in acclimated systems in which bacteria with prior exposure and adapted 
metabolic systems exist (OECD  2001a ). Kaplan et al. ( 1982 ) also demonstrated that 
MPG disappeared after 9 days under anaerobic conditions, when used as the sole 
carbon source by sludge from a sewage treatment plant. In simulation tests employ-
ing river waters, MPG was found to biodegrade rapidly as well (Gotvajn and Zagorc- 
Koncan  1999 ). Complete biodegradation of DPG and TPG was observed in the 
OECD 302B test of inherent biodegradability (OECD  1994 ,  2001b ) and in the 
OECD 301E test of ready biodegradability (Zgola-Grzeskowiak et al.  2008 ); how-
ever, <3% biodegradation was observed for both DPG and TPG in the OECD 301C 
test for ready biodegradability (MITI  1995 ). This apparent lack of biodegradability 
in the OECD 301C test is believed to be associated with culturing of the inoculum 
on glucose and peptone, as discussed by West et al. ( 2007 ). 

 The biodegradation of PPGs has not been extensively studied, and while not 
directly within the scope of this review, it is worth noting that the rapid and com-
plete biodegradation observed for the oligomeric PG substances is carried through 
to the polymeric PPG substances having molecular weight of up to ~2,000 g/mol 
(West et al.  2007 ). More recent studies showed complete biodegradation of PPG 
725 and 40% biodegradation of PPG 425 in the OECD 301E test (Zgola-Grzeskowiak 
et al.  2007 ), whereas another study showed primary biodegradation of PPG 425 to 
an extent of 99% in a 17 days simulation test employing river water (Zgola- 
Grzeskowiak et al.  2006 ). 

 Besides biodegradation in the aquatic environment, the PG substances have also 
been observed to biodegrade in soil. Fincher and Payne ( 1962 ) and Kawai ( 1987 ) 
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isolated soil bacteria that were capable of using MPG and DPG as sole carbon 
sources. Kawai ( 1987 ) also showed that such isolates could utilize PPG substances 
up to PPG 3000. The soil microbe  C. glycolicum  was demonstrated to degrade MPG 
under anaerobic conditions to acid and alcohol end products (Gaston and Stadtman 
 1963 ).  Desulfovibrio , a sulfate-reducing bacterium isolated from anoxic soil of a 
rice fi eld, was reported to degrade MPG to acetate in the presence of sulfate with the 
production of carbon dioxide (Ouattara et al.  1992 ). Sezgin and Tomuk ( 2013 ) stud-
ied the applicability of semi-continuous anaerobic (methanogenic) bioreactors to 
treat MPG wastewaters, such as are generated from surface runoff of aircraft de- 
icer/anti-icer formulations. They demonstrated essentially 100% removal of chemi-
cal oxygen demand (COD) as MPG at reactor feed rates of up to 750 mg/m 3 /day and 
sludge age of 20 days. In simulation tests employing soil, MPG was also degraded 
under both aerobic (Klecka et al.  1993 ) and anaerobic (OECD  2001a ) conditions. 
Klecka et al. ( 1993 ) concluded that the factors infl uencing the rates of biodegrada-
tion of MPG in soils were substrate concentrations, soil types, and ambient soil 
temperatures: lower glycol concentrations, higher soil organic carbon content, and 
higher ambient soil temperatures (in the range of −2 to 25 °C) resulted in faster 
degradation of MPG in soil. The biodegradation rate of MPG in soil was reported to 
be 2.3 mg/kg soil/day at −2 °C, 27.0 mg/kg soil/day at 8 °C, and 93.3 mg/kg soil/
day at 25 °C (Klecka et al.  1993 ). The ease with which MPG is biodegraded in soil 
and groundwater, combined with the effi cient production of hydrogen during its 
biodegradation by anaerobic bacteria, has resulted in its growing application to 
bioremediation of soil and groundwater contaminants (   Adrian and Arnett  2007 ; 
Jaesche et al.  2006 ; Jin et al.  2002 ; Klecka  1996 ). 

 According to the studies presented here and elsewhere, the PG substances can be 
characterized as being rapidly biodegradable by a wide variety of inocula under a 
wide variety of incubation conditions. It would appear that the biodegradation of the 
PG substances involves enzymes that possess low specifi city and/or high functional 
redundancy, and the same biodegradation pathways may be operative across this 
entire family of substances. Mechanisms, or even microorganisms, involved in bio-
degradation of PG substances might not be highly specialized, and appear to be 
widespread in the environment. Therefore, the PG substances are expected to rap-
idly degrade in a variety of environments and have low potential to be persistent in 
aquatic, terrestrial, and benthic environments.  

4.3     Hydrolysis 

 The molecular structures of the PG substances consist exclusively of aliphatic 
–C–C–, C–H, –C–O–(ether, alcohol) and OH bonds. None of these molecular bonds 
are known or expected to be susceptible to hydrolysis under the temperature and pH 
conditions that are of physiological or environmental relevance. Generally, the ali-
phatic glycols and associated glycol ethers are regarded as being highly resistant to 
hydrolysis; however, no defi nitive study was identifi ed in which this lack of 
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reactivity for the PG substances was evaluated. The SIAR report for TPG makes 
reference to a 1993 unpublished study conducted by the Japan Chemicals Inspection 
and Testing Institute (CITI) according to OECD Guideline 111, wherein the sub-
stance was shown to be stable at pH 4, 7, and 9 at 25 °C (OECD  1994 ). For the 
purpose of demonstrating this expected lack of hydrolytic reactivity for various 
product regulatory assessments of structurally-related substances, the hydrolysis of 
a representative glycol ether ( i.e ., dipropylene glycol n-propyl ether) has been eval-
uated as a function of pH, according to OECD Guideline 111: Hydrolysis as a 
Function of pH (ECHA  2013b ). The substance tested possesses all of the same 
structural features and molecular bonds that are represented across the PG sub-
stances. In this study, no degradation of the substance was observed over a 5-days 
exposure to pH 7 and 9 buffer solutions at 50 °C. Less than 4% degradation was 
observed under the same conditions at pH 4, and the substance was concluded to be 
hydrolytically stable. The half-life for hydrolysis of this tested representative sub-
stance, and for any of the PG substances by analogy, can be expected to exceed 
1 year at 25 °C exposure, within the pH range of 4–9. Thus, hydrolysis is confi rmed 
to be an unimportant fate process for the PG substances.  

4.4     Bioaccumulation 

 Considering their miscibility with water, very low log P ow  values, and ability to be 
readily metabolized in microorganisms and in higher animals, the PG substances 
are expected to exhibit very low or no potential to bioaccumulate in the aquatic 
environment, or to biomagnify in the food chain of terrestrial vertebrates. Despite 
low bioaccumulation potential, the bioconcentration of the DPG and TPG sub-
stances have been evaluated in fi sh, according to OECD Guideline 305: Flow- 
through test (MITI  1995 ). The measured fi sh bioconcentration factor (BCF) for 
DPG in  Cyprinus carpio  ranged from 0.3 to 4.6 L/kg, and that for TPG in the same 
species was not measurable (BCF <5.7 L/kg). Propylene glycol substances of higher 
molecular weight would appear to have the same low potential to bioaccumulate. 
A PPG substance having a molecular weight of 3,000 g/mol was associated with 
measured fi sh BCF values of <7 and <2.2 L/kg, using the same species and similar 
test procedures to those used for DPG and TPG (CERI  1977 ). These measured BCF 
values are consistent with estimated BCF values produced by the US EPA BCFBAF 
model (v3.01, USEPA  2012 ), which are based on correlation of BCF with log P ow . 
Using the log P ow  values shown in Table  2 , the same BCF value of 3.16 L/kg is esti-
mated for MPG, DPG, TPG and TePG. This BCF value of 3.16 L/kg is the  de mini-
mus  BCF value reported by the BCFBAF model, for substances having log P ow  
values of <1.0. Considering their physico-chemical properties and rapid degradabil-
ity, along with measured fi sh BCF values for representative substances, it is con-
cluded that the PG substances have very low potential to bioaccumulate in aquatic 
and terrestrial organisms.   
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5     Ecotoxicity 

 The PG substances consist of simple molecular structures that are not ionizable, and 
do not react directly with proteins or other cellular components of tissues. As such, 
any toxic effects resulting from either acute or chronic exposures to the substances 
at realistic concentrations would occur  via  a non-specifi c mode of action referred to 
as “non-polar narcosis”. This minimum or base-line toxicity of substances is highly- 
correlated with hydrophobicity ( i.e ., log P ow ) of substances, and can be thought of as 
the minimum degree of toxic potential likely to be exerted by any organic substance. 
Substances that exert toxic effects at lower concentrations than predicted from this 
base-line correlation with log P ow  are likely acting  via  one or more specifi c ( i.e ., 
reactive) modes of action in parallel with narcosis (Roberts and Costello  2003 ). 
In the following sections, an overview of available acute and chronic studies with 
both aquatic and terrestrial organisms is presented, which exemplify the base-line 
toxicity exhibited by the PG substances. 

5.1     Monopropylene Glycol (MPG) 

 The acute toxicity of MPG toward aquatic and terrestrial species has been well- 
studied across vertebrate, invertebrate, and plant species associated with both 
aquatic and terrestrial environments. As can be seen in Table  6a , the acute LC 50  
values for MPG exposures of all fi sh species tested are >1,000 mg/L. The LC 50  and 
EC 50  values associated with acute MPG exposures to clawed frog, all aquatic inver-
tebrates and algae species tested, and lettuce are >10,000 mg/L. Overall, MPG is 
practically non-toxic to aquatic and terrestrial organisms on an acute basis.

   Chronic exposure assays of MPG were also conducted with several species of 
aquatic and terrestrial organisms, and low potential for long-term adverse effects 
was exhibited. As shown in Table  6a , the 7-days chronic NOEC to fathead minnow 
and water fl ea, the 14-days EC 50  to algae, and the 5-days EC 25  for lettuce, are all 
>10,000 mg/L. The above data demonstrate that MPG has a very low order of 
 toxicity in the aquatic and terrestrial environments.  

5.2     Dipropylene Glycol (DPG) 

 The acute toxicity of DPG to several aquatic species including fi sh, frog, water fl ea, 
and algae has been determined. No acute toxicity data are available for DPG in ter-
restrial organisms. As can be seen in Table  6b , the LC 50  values determined for DPG 
with fi sh and frog species tested are all >1,000 mg/L. The EC 50  values for DPG 
exposures to the water fl ea and algae are all >100 mg/L. Based on the available data, 
DPG is also demonstrated to have a very low order of toxicity in the environment.
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     Table 6a    Summary of aquatic and terrestrial toxicity data for monopropylene glycol (MPG)   

 Species 
 Endpoint 
and duration  Result  Reference 

 Aquatic vertebrates 
 Goldfi sh 
  Carassius auratus  

 24-h LC 50   >5,000 mg/L  Bridie et al. ( 1979 ) 

 Sheepshead minnow 
  Cyprinodon variegatus  

 24-h LC 50   63,500 mg/L  USEPA ( 2000 ) 

 Sheepshead minnow 
  Cyprinodon variegatus  

 48-h LC 50   52,500 mg/L  USEPA ( 2000 ) 

 Sheepshead minnow 
  Cyprinodon variegatus  

 72-h LC 50   35,900 mg/L  USEPA ( 2000 ) 

 Sheepshead minnow 
  Cyprinodon variegatus  

 96-h LC 50   23,800 mg/L  USEPA ( 2000 ) 

 Sheepshead minnow 
  Cyprinodon variegatus  

 96-h LC 50   48,000 mg/L  Mayer and 
Ellersieck ( 1986 ) 

 Guppy 
  Lebistes reticulatus  

 48-h LC 50   >10,000 mg/L  Verschueren ( 2001 ) 

 Bluegill sunfi sh 
  Lepomis macrochirus  

 96-h LC 50   >10,000 mg/L  USEPA ( 2006 ) 

 Inland Silverside 
  Menidia beryllina  

 96-h LC 50   >10,000 mg/L  USEPA ( 2006 ) 

 Rainbow trout 
  Oncorhynchus mykiss  

 24-h LC 50   79,700 mg/L  USEPA ( 2000 ) 

 Rainbow trout 
  Oncorhynchus mykiss  

 24-h LC 50   50,000 mg/L  Verschueren ( 2001 ) 

 Rainbow trout 
  Oncorhynchus mykiss  

 48-h LC 50   79,700 mg/L  USEPA ( 2000 ) 

 Rainbow trout 
  Oncorhynchus mykiss  

 72-h LC 50   51,600 mg/L  USEPA ( 2000 ) 

 Rainbow trout 
  Oncorhynchus mykiss  

 96-h LC 50   51,600 mg/L  USEPA ( 2000 ) 

 Rainbow trout 
  Oncorhynchus mykiss  

 96-h LC 50   44,000 ppm  Mayer and 
Ellersieck ( 1986 ) 

 Rainbow trout 
  Oncorhynchus mykiss  

 96-h LC 50   42,380 and 
37,067 mg/L 

 USEPA ( 2000 ) 

 Rainbow trout 
  Oncorhynchus mykiss  

 96-h LC 50   45,600 mg/L  Mayer and 
Ellersieck ( 1986 ) 

 Medaka 
  Oryzias latipes  

 48-h LC 50   >1,000 mg/L (static)  Tsuji et al. ( 1986 ) 

 Fathead minnow 
  Pimephales promelas  

 24-h LC 50   77,800 mg/L  USEPA ( 2000 ) 

 Fathead minnow 
  Pimephales promelas  

 48-h LC 50   54,000 mg/L  USEPA ( 2000 ) 

 Fathead minnow 
  Pimephales promelas  

 72-h LC 50   51,400 mg/L  USEPA ( 2000 ) 

 Fathead minnow 
  Pimephales promelas  

 96-h LC 50   51,400 mg/L  USEPA ( 2000 ) 

 Fathead minnow 
  Pimephales promelas  

 96-h LC 50   59,900–77,400 mg/L  USEPA ( 2006 ) 

(continued)
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Table 6a (continued)

 Species 
 Endpoint 
and duration  Result  Reference 

 Fathead minnow 
  Pimephales promelas  

 96-h LC 50   54,900 mg/L  Verschueren ( 2001 ) 

 Fathead minnow 
  Pimephales promelas  

 96-h LC 50   34,060 mg/L  Cornell et al. ( 2000 ) 

 Fathead minnow 
  Pimephales promelas  

 96-h LC 50   55,770 mg/L 
 NOEC mortality = 52,930 

 Pillard ( 1995 ) 

 Fathead minnow 
  Pimephales promelas  

 7-days NOEC 
growth and 
mortality 

 <11,530 mg/L  Pillard ( 1995 ) 

 Fingerling trout 
  Salmo gairdneri  

 24-h LC 50   50,000 mg/L  Majewski et al. 
( 1978 ) 

 Clawed Frog 
  Xenopus laevis  

 48-h LC 50   18,700 and 24,285 mg/L  USEPA ( 2000 ) 

 Aquatic invertebrates 
 Water fl ea 
  Ceriodaphnia dubia  

 48-h LC 50   18,340 mg/L 
 NOEC = 13,020 mg/L 

 Pillard ( 1995 ) 

 Water fl ea 
  Ceriodaphnia dubia  

 7-days NOEC  13,020 mg/L 
(reproduction) 

 29,000 mg/L (mortality) 

 Pillard ( 1995 ) 

 Water fl ea 
  Daphnia magna  

 24-h LC 50   70,700 mg/L  USEPA ( 2000 ) 

 Water fl ea 
  Daphnia magna  

 24-h EC 50  
immobilization 

 >10,000 mg/L  Kuhn et al. ( 1989 ) 

 Water fl ea 
  Daphnia magna  

 48-h LC 50   43,500 mg/L  USEPA ( 2000 ) 

 Brine Shrimp 
  Artemia salina  

 24-h LC 50   >10,000 mg/L  Price et al. ( 1974 ) 

 Mysid shrimp 
  Mysidopsis bahia  

 24-h LC 50   31,000 mg/L  USEPA ( 2000 ) 

 Mysid shrimp 
  Mysidopsis bahia  

 48-h LC 50   27,300 mg/L  USEPA ( 2000 ) 

 Mysid shrimp 
  Mysidopsis bahia  

 72-h LC 50   23,400 mg/L  USEPA ( 2000 ) 

 Mysid shrimp 
  Mysidopsis bahia  

 96-h LC 50   18,800 mg/L  USEPA ( 2000 ) 

 Mysid shrimp 
  Mysidopsis bahia  

 96-h LC 50   11,000 ppm  Mayer and 
Ellersieck ( 1986 ) 

 Harpacticoid copepod 
  Nitocra spinipes  

 96-h LC 50   >10,000 mg/L  Tarkpea et al. ( 1986 ) 

 Green algae 
  Selenastrum 

capricornutum  

 48-h EC 50  
Growth rate 

 34,100 mg/L  USEPA ( 2000 ) 

 Green algae 
  Selenastrum 

capricornutum  

 72-h EC 50  
Growth rate 

 24,200 mg/L  USEPA ( 2000 ) 

 Green algae 
  Selenastrum 

capricornutum  

 96-h EC 50  
Growth rate 

 19,000 mg/L  USEPA ( 2000 ) 

(continued)
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 Species 
 Endpoint 
and duration  Result  Reference 

 Green algae 
  Selenastrum 

capricornutum  

 96-h  IC 50  = 20,690 mg/L 
 IC 25  = 1,516 mg/L 
 LOEC = 126 mg/L 
 NOEC = 37 mg/L 

 USEPA ( 2000 ) 

 Green algae 
  Selenastrum 

capricornutum  

 96-h IC 25   20,800 mg/L  USEPA ( 2000 ) 

 Green algae 
  Selenastrum 

capricornutum  

 14-days EC 50  
Growth rate 

 18,100 mg/L  USEPA ( 2000 ) 

 Marine algae 
  Skeletonema costatum  

 24-h EC 50  
Growth rate 

 31,500 mg/L  USEPA ( 2000 ) 

 Marine algae 
  Skeletonema costatum  

 48-h EC 50  
Growth rate 

 19,000 mg/L  USEPA ( 2000 ) 

 Marine algae 
  Skeletonema costatum  

 72-h EC 50  
Growth rate 

 19,300 mg/L  USEPA ( 2000 ) 

 Marine algae 
  Skeletonema costatum  

 96-h EC 50  
Growth rate 

 19,100 mg/L  USEPA ( 2000 ) 

 Marine algae 
  Skeletonema costatum  

 14-days EC 50  
Growth rate 

 <5,300 mg/L  USEPA ( 2000 ) 

 Duckweed 
  Lemna minor  

 96-h  IC 25  = 12,000 mg/L 
(frond growth) 

 LOEC = 5,000 mg/L 
(frond growth) 

 IC 25  = 21,882 mg/L 
(chlorophyll) 

 LOEC = 20,000 mg/L 
(chlorophyll) 

 IC 25  = 12,000 mg/L 
(pheophytin) 

 LOEC = 20,000 mg/L 
(pheophytin) 

 USEPA ( 2000 ) 

 Toxicity to terrestrial plants 
 Lettuce 
  Lactuca sativa  

 72-h EC 50  
Germination 

 50,540 mg/L  Reynolds ( 1977 ) 

 Lettuce 
  Lactuca sativa  

 5-days EC 25  
(hydroponic) 

 24,760 mg/L (emergence) 
 NOEC = 4,500 mg/L 
 9,880 mg/L (root length) 
 1,190 mg/L (shoot 

length) 

 Pillard and Dufresne 
( 1999 ) 

 Ryegrass 
  Lolium perenne  

 5-days EC 25  
(hydroponic) 

 24,210 mg/L (emergence) 
 NOEC = 15,000 mg/L 
 2,850 mg/L (root length) 
 3,120 mg/L (shoot 

length) 

 Pillard and Dufresne 
( 1999 ) 

 Toxicity to other non-mammalian terrestrial species (including birds) 
 Domestic Chicken 

 embryo  
  Gallus domesticus  

 14-days NOEL 
(chick embryo 
mortality) 

 0.05 ml/embryo  Gebhardt and Van 
Logten ( 1968 ) 

Table 6a (continued)
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    Table 6b    Summary of aquatic and terrestrial toxicity data for dipropylene glycol (DPG)   

 Species  Endpoint and duration  Result  Reference 

 Aquatic vertebrates 
 Goldfi sh 
  Carassius auratus  

 24-h LC 50   >5,000 mg/L  Bridie et al. ( 1979 ) 

 Clawed Frog 
  Xenopus laevis  

 48-h LC 50   3,181 mg/L  De Zwart and 
Slooff ( 1987 ) 

 Aquatic invertebrates 
 Water fl ea 
  Daphnia magna  

 48-h EC 50  immobilization  >100 mg/L  ECHA ( 2013c ) 

 Aquatic plants 
 Algae 
  Desmodesmus subspicatus  

 72-h EC 50  
 Growth inhibition 

 >100 mg/L 
 NOEC >100 mg/L 

 ECHA ( 2013c ) 

5.3        Tripropylene Glycol (TPG) 

 TPG has been tested in a limited number of aquatic species for acute and chronic 
toxicity. No toxicity data are available for TPG in terrestrial organisms. As can be 
seen in Table  6c , the available LC 50 /EC 50  values associated with acute exposures of 
TPG to fi sh, water fl ea, and algae are all >1,000 mg/L. The chronic 21-day NOEC 
(reproduction and immobility) for water fl ea is also >1,000 mg/L. Therefore, TPG 
is considered to be practically non-toxic to fi sh, daphnids, and algae, and it does not 
have any remarkable ecotoxicity.

5.4        Tetrapropylene Glycol (TePG) and Higher Oligomers 

 Due to overlap in their molecular weight, ecotoxicity information for the TePG 
substance (M n  = 250 g/mol) is discussed along with that for low molecular weight 
PPG substances. Limited acute toxicity data are available for PPG exposures to 
aquatic organisms. No acute toxicity data are available for terrestrial organisms, and 
no chronic toxicity data are available for either aquatic or terrestrial organisms. As 
can be seen in Table  6d , the LC 50 /EC 50  values associated with acute exposures of 
PPG (M n  = 260 g/mol) to fi sh, water fl ea and algae are all >100 mg/L. A 3-h EC 50  
>1,000 mg/L of PPG (M n  = 230 g/mol) was also reported for bacterial growth inhibi-
tion. These results suggest a very low toxicity of PPGs in the environment.

   It is concluded from the available data summarized here that the PG substances 
do not pose short- or long-term risks to environmental receptors at concentrations 
that could reasonably be expected to result from typical use and disposal patterns. 
In standardized tests of acute aquatic toxicity, the maximum recommended (limit) 
exposure concentration is typically 100 mg/L. According to regulatory classifi ca-
tion schemes for acute aquatic toxicity, substances exhibiting E/LC 50  values of 
>100 mg/L are regarded as “practically non-toxic” and are not classifi ed for 
acute toxic effects. It is therefore important to note that none of the acute tests 
summarized here for the PG substances resulted in E/LC 50  values of < 100 mg/L. 
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Similarly, substances exhibiting chronic NOEC or EC 10  values of >1 mg/L are 
typically not classifi ed as having potential to cause long-term effects in the environ-
ment. Although it might be of interest to examine the potential correlation of acute 
and chronic effect levels with log P ow  values of the PG substances, testing in most 
cases involved limit concentration exposures ( i.e ., 100; 1,000; 10,000 mg/L), from 
which discrete values of E/LC 50  and NOEC were not determinable (Tables  6a ,  6b , 
 6c , and  6d ). Therefore, it is not possible to determine an approximate ratio of 
acute:chronic toxicity threshold concentrations from the available ecotoxicological 
datasets for these substances. Even in the absence of these refi ned analyses of their 

    Table 6c    Summary of aquatic and terrestrial toxicity data for tripropylene glycol (TPG)   

 Species 
 Endpoint and 
duration  Result  Reference 

 Aquatic vertebrates 
 Medaka 
  Oryzias latipes  

 96-h LC 50   >1,000 mg/L 
(semi-static) 

 Environment Agency 
Japan ( 1992 ) 

 Common carp 
  Cyprinus carpio  

 Bioaccumulation 
(OECD 305) 

 BCF: <5.7 (1 mg/L) 
 BCF: <0.5 (10 mg/L) 

 MITI ( 1995 ) 

 Aquatic invertebrates 
 Water fl ea 
  Daphnia magna  

 24-h EC 50  
immobilization 

 >1,000 mg/L (static)  Environment Agency 
Japan ( 1992 ) 

 Water fl ea 
  Daphnia magna  

 21-day NOEC 
 Reproduction and 

immobility 

 >1,000 mg/L 
(semi-static) 

 Environment Agency 
Japan ( 1992 ) 

 Aquatic plants 
 Green algae 
  Pseudokirchnerella subcapitata  

(reported as  Selenastrum 
capricornutum ) 

 72-h EC 50  
 Biomass growth 

inhibition 

 >1,000 mg/L 
 NOEC >1,000 mg/L 

 Environment Agency 
Japan ( 1992 ) 

    Table 6d    Summary of aquatic and terrestrial toxicity data for tetrapropylene glycol (TePG)   

 Species 
 Endpoint and 
duration  Result 

 Ave. MW 
(g/mol)  Reference 

 Aquatic vertebrates 
 Zebrafi sh 
  Danio rerio  

 96-h LC 50   >100 mg/L (static)  260  ECHA ( 2013d ) 

 Aquatic invertebrates 
 Water fl ea 
  Daphnia magna  

 48-h EC 50   105.8 mg/L (static)  260  ECHA ( 2013d ) 

 Aquatic plants 
 Algae 
  Desmodesmus subspicatus  

 72-h EC 50  
(growth rate) 

 >100 mg/L (static) 
 NOEC = 100 mg/L 

 260  ECHA ( 2013d ) 

 Microorganisms 
 Activated sludge  3-h EC 50  

(respiration 
rate) 

 >1,000 mg/L 
 NOEC = 1,000 mg/L 

 230  ECHA ( 2013d ) 
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toxicity potentials, the empirical data on these substances clearly indicate that acute 
and chronic effects are not expected to occur for typical and recommended use and 
disposal of the products containing them. This, combined with demonstrated rapid 
and ultimate biodegradability and lack of bioaccumulation potential, leads to the 
conclusion that the PG substances have low potential for environmental harm.   

6     Potential for Endocrine Disruption 

 The potential for xenobiotic substances to interfere with endocrine modulation in 
humans and wildlife is a topic of high current interest. As a result of concern for 
these potential effects from pesticides, persistent organic pollutants, and other sub-
stances produced in large volumes, regulatory authorities are requiring evaluations 
for endocrine disrupting potential of such substances. Searches of the published 
literature, government databases, and internet did not locate information pertaining 
to direct assessment or association of endocrine modulating effects for the PG sub-
stances. However, considering the widespread and often dispersive uses of these 
substances, along with the aforementioned sporadic detections of PG and DPG in 
surface-, ground-, and drinking-water samples, this review of the environmental fate 
and effects of these substances might be considered incomplete without presenting 
the following weight of indirect evidence regarding potential for endocrine effects 
of the PG substances. 

 MPG is considered by the U.S. Food and Drug Administration to be a Generally 
Recognized as Safe (GRAS) substance, and as reviewed recently by Fowles et al. 
( 2013 ), has been extensively tested for potential effects on development and repro-
duction of mammals. These varied and numerous studies revealed no effects on 
mammalian reproductive performance, fetal development, or histopathological evi-
dence of endocrine-mediated effects in reproductive toxicity studies with the PG 
substances. The Center for the Evaluation of Risks to Human Reproduction 
(CERHR), a division of the National Institute of Environmental Health Sciences 
(NIEHS), reviewed the potential reproduction/developmental effects of MPG in 
2004, and concluded that the substance is “of negligible concern for reproduction/
developmental effects” (CERHR  2004 ). The MPG substance is employed as an 
excipient in various oral and injectable therapies (both prescription and OTC/herbal) 
used to manage estrogen, androgen, and thyroid hormone levels in humans. 

 Finally, evidence from structure-activity relationships can be used to evaluate the 
affi nity that the PG substances and their associated isomers have for binding to the 
estrogen and androgen receptors. The OASIS TIssue MEtabolism Simulator model 
( i.e ., OASIS TIMES v2.27.5, Laboratory of Mathematical Chemistry of the 
University of Professor Assen Zlatarov, Bourgas, Bulgaria) employing a heuristic 
probabilistic algorithm (Mekenyan et al.  2004 ), was used to estimate the estrogen- 
and androgen-receptor binding affi nity for the PG substances. The major represen-
tative isomer for each glycol was used for dipropylene and higher PG oligomers. 
The TIMES modeling is based on a Common Reactivity Pattern (COREPA) 
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approach which assesses the impact of three-dimensional molecular conformation 
distributions and fl exibility on stereo-electronic properties of the modeled sub-
stances (Mekenyan and Serafi mova  2009 ). The modeling predicted that each of the 
PG substances and their various associated 3-D molecular conformers would be 
“not active” with the human estrogen and androgen nuclear receptors. Thus, the 
modeling found that these substances have no potential for endocrine disruption  via  
direct receptor binding agonist or antagonist modes of action. In more general 
terms, the overall chemical structures of the PG substances are not indicative of 
endocrine disruption properties, as these compounds lack certain structural features 
that appear to be important for nuclear binding affi nity, such as hydrogen bond 
donor and acceptor groups associated with single or multiple aromatic rings. Based 
on the experimental fi ndings and modeling results of receptor binding affi nities, the 
PG substances are not considered to be potential endocrine disruptors, such that 
they could induce endocrine-modulating effects on humans, fi sh, or other wildlife.  

7     Summary 

 The propylene glycol substances comprise a homologous family of synthetic 
organic molecules that have widespread use and very high production volumes 
across the globe. The information presented and summarized here is intended to 
provide an overview of the most current and reliable information available for 
assessing the potential environmental exposures and impacts of these substances 
across the manufacture, use, and disposal phases of their product life cycles. 

 The PG substances are characterized as being miscible in water, having very low 
octanol-water partition coeffi cients (log P ow ) and exhibiting low potential to volatil-
ize from water or soil in both pure and dissolved forms. The combination of these 
properties dictates that, almost regardless of the mode of their initial emission, they 
will ultimately associate with surface water, soil, and the related groundwater com-
partments in the environment. These substances have low affi nity for soil and sedi-
ment particles, and thus will remain mobile and bio-available within these media. 

 In the atmosphere, the PG substances are demonstrated to have short lifetimes 
(1.7–11 h), due to rapid reaction with photochemically-generated hydroxyl radicals. 
This reactivity, combined with effi cient wet deposition of their vapor and aerosol 
forms, lends to their very low potential for long-range transport  via  the atmosphere. 
In the aquatic and terrestrial compartments of the environment, the PG substances 
are rapidly and ultimately biodegraded under both aerobic and anaerobic conditions 
by a wide variety of microorganisms, regardless of prior adaptation to the sub-
stances. Except for the TePG substance, the propylene glycol substances meet the 
OECD defi nition of “readily biodegradable”, and according to this defi nition are not 
expected to persist in either aquatic or terrestrial environments. The TePG exhibits 
inherent biodegradability, is not regarded to be persistent, and is expected to ulti-
mately biodegrade in the environment, albeit at a somewhat slower rate. 
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 The apparent ease with which microorganisms and higher organisms can metab-
olize the PG substances, along with their low log P ow  and very high water solubility 
values, portends them to have very low potential for bioaccumulation and/or bio-
magnifi cation in aquatic and terrestrial organisms. These same properties, along 
with their neutral structures and lack of biological reactivity, are the reasons for 
which the PG substances exhibit a base-line, non-polar narcosis mode of toxicity. 
The PG substances have been shown here to be practically non-toxic to essentially 
every aquatic and terrestrial animal and plant species tested. Collectively, the avail-
able wealth of information relating to persistence, bioaccumulation, and eco- toxicity 
of these substances allows a defi nitive conclusion of their categorization as not 
being PBT ( i.e ., persistent/bioaccumulative/toxic). The PBT screening and catego-
rization of substances on the Canadian Domestic Substances List (DSL) by 
Environment Canada has formally concluded that each member of this substance 
family is “not P”, “not B”, and “not T” according to their associated PBT criteria. 
Similarly, the preceding evaluations of these high production volume substances 
within the OECD SIDS program concluded that MPG, DPG, and TPG are low pri-
orities for further examination of potential impacts to humans and the environment. 
More extensive evaluations of potential risks to human health and the environment 
were recently completed by industry, as required for their registration under the 
European Union REACh legislation; each evaluation demonstrated that current 
uses, associated exposures, and controls thereof, will not result in exposures that 
exceed predicted no effect concentrations in the environment.     
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