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Preface

The merging of the concept of introduction of asymmetry of the wave vector space
of the charge carriers in semiconductors with the modern techniques of fabricating
nanostructured materials such as MBE, MOCVD, and FLL in one, two, and three
dimensions (such as UFs, nipi structures, inversion, and accumulation layers,
quantum wire superlattices, carbon nanotubes, nanowires, quantum dots, magneto
inversion and accumulation layers, quantum dot superlattices, etc.) spawns not
only useful quantum effect devices but also unearths new concepts in the realm of
low-dimensional materials science and related disciplines. It is worth remarking
that these semiconductor nanostructures occupy a paramount position in the entire
arena of nanoscience and technology by their own right and find extensive
applications in quantum registers, resonant tunneling diodes and transistors,
quantum switches, quantum sensors, quantum logic gates, hetero-junction field-
effect transistors, quantum well and nanowire transistors, high-speed digital
networks, high-frequency microwave circuits, quantum cascade lasers, high-res-
olution terahertz spectroscopy, superlattice photo-oscillator, advanced integrated
circuits, superlattice photocathodes, thermoelectric devices, superlattice coolers,
intermediate-band solar cells, micro-optical systems, high performance infrared
imaging systems, band-pass filters, thermal sensors, optical modulators, optical
switching systems, single electron/molecule electronics, nanotube-based diodes,
and other nano-electronic devices. Knowledge regarding these quantized structures
may be gained from original research contributions in scientific journals, pro-
ceedings of various international conferences, and different review articles
respectively. Mathematician Simmons rightfully tells us [1] that the mathematical
knowledge is said to be doubling in every 10 years and in this context we can also
envision the extrapolation of the Moore’s law by projecting it in the perspective of
the advancement of new research and analyses, in turn, generating novel concepts
particularly in the area of nanoscience and technology [2]. In this context, it may
be noted that the available books on solid-state and allied sciences cannot afford to
cover even an entire chapter excluding few pages on the Effective Electron Mass
(EEM) in Low-Dimensional Semiconductors.
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viii Preface

The effective mass of the carriers in semiconductors, being connected with the
mobility, is known to be one of the most important physical quantities, used for the
analysis of electron devices under different operating conditions [3]. The carrier
degeneracy in semiconductors influences the effective mass when it is energy
dependent. Under degenerate conditions, only the electrons at the Fermi surface of
n-type semiconductors participate in the conduction process and hence, the
effective mass of the electrons corresponding to the Fermi level would be of
interest in electron transport under such conditions. The Fermi energy is again
determined by the electron energy spectrum and the carrier statistics and therefore,
these two features would determine the dependence of the EEM in degenerate
n-type semiconductors under the degree of carrier degeneracy. In recent years,
various energy wave vector dispersion relations have been proposed [4—10] which
have created the interest in studying the effective mass in such materials under
external conditions. It has, therefore, different values in different materials and
varies with electron concentration, with the magnitude of the reciprocal quantising
magnetic field under magnetic quantization, with the quantizing electric field as in
inversion layers, with the nano-thickness as in UFs and nanowires and with
superlattice period as in the quantum confined superlattices of small gap semi-
conductors with graded interfaces having various carrier energy spectra [11-57].

This book, divided into three parts which contain nine chapters and three
Appendices, is partially based on our ongoing researches on the effective mass
from 1980 and an attempt has been made to present a cross section of the effective
mass for a wide range of low-dimensional semiconductors with varying carrier
energy spectra under various physical conditions. The first part deals with the
influence of quantum confinement on the EEM in non-parabolic semiconductors.
Chapter 1 investigates the EEM in UFs of nonlinear optical materials on the basis
of a generalized electron dispersion law introducing the anisotropies of the
effective electron masses and the spin orbit splitting constants respectively toge-
ther with the inclusion of the crystal field splitting within the framework of the k.p
formalism. The results of III-V (e.g. InAs, InSb, GaAs, etc.), ternary (e.g.
Hg,_Cd,Te), quaternary (e.g. In;_,Ga,As,_,P, lattice matched to InP) com-
pounds form a special case of our generalized analysis under certain limiting
conditions. The EEM in UFs of II-VI, Bi, IV-VI, stressed Kane-type semicon-
ductors, Te, GaP, PtSb, Bi,Te;, Ge and GaSb compounds have also been
investigated by using the appropriate energy band structures for these materials.
The importance of the aforementioned semiconductors has also been described in
the same chapter. It is well known that the semiconductor superlattices find
extensive applications in avalanche photodiodes, photo-detectors, electro-optic
modulators, etc. In Chap. 2 the EEM in nipi structures of nonlinear optical, III-V,
II-VI, IV-VI, and stressed Kane-type semiconductors has been studied.

In recent years, there has been considerable interest in the study of the inversion
layers which are formed at the surfaces of semiconductors in metal-oxide—semi-
conductor field-effect transistors (MOSFET) under the influence of a sufficiently
strong electric field applied perpendicular to the surface by means of a large gate
bias. In such layers, the carriers form a two-dimensional gas and are free to move
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parallel to the surface while their motion is quantized perpendicular to it leading to
the formation of electric subbands [58]. In Chap. 3, the EEM in n-channel
inversion layers of nonlinear optical, III-V, II-VI, IV-VI stressed Kane-type
semiconductors, Ge and GaSb has been investigated.

The effects of quantizing magnetic field on the band structures of compound
semiconductors are more striking than that of the parabolic one and are easily
observed in experiments. A number of interesting physical features originate from
the significant changes in the basic energy wave vector relation of the carriers
caused by the magnetic field. The valuable information could also be obtained
from experiments under magnetic quantization regarding the important physical
properties such as Fermi energy and effective masses of the carriers, which affect
almost all the transport properties of the electron devices [59-63] of various
materials having different carrier dispersion relations [64]. In Chap. 4, the EEM in
nonlinear optical, [II-V. II-VI, Bi. IV-VI, stressed Kane-type semiconductors, Te,
GaP, PtSb,, Bi,Te;, Ge, GaSb and II-V compounds have also been studied under
magnetic quantization. Since lijima’s discovery [65], carbon nanotubes (CNTs)
have been recognized as fascinating materials with nanometer dimensions
uncovering new phenomena in different areas of nanoscience and technology. The
remarkable physical properties of these quantum materials make them ideal can-
didates to reveal new phenomena in nano-electronics. Chapter 5 contains the study
of the EEM in nanowires of the nonlinear optical, III-V, II-VI, Bi, IV-VI, stressed
Kane-type semiconductors, Te, GaP, PtSb, Bi,Te;, Ge, GaSb and II-V semi-
conductors together with CNTs respectively.

With the advent of nanophotonics, there has been considerable interest in
studying the optical processes in semiconductors and their nanostructures [66-67].
It appears from the literature that investigations have been carried out on the
assumption that the carrier energy spectra are invariant quantities in the presence
of intense light waves, which is not fundamentally true. The physical properties of
semiconductors in the presence of light waves which change the basic dispersion
relation have been relatively less investigated in the literature [68, 69]. The second
part of this book studies the influence of light waves of the EEM in opto-electronic
semiconductors and Chap. 6 investigates the influence of light waves on the EEM
in quantum confined III-V, ternary, and quaternary semiconductors. Under
external photo excitation the electron dispersion relation changes profoundly and
the EEM has been studied by formulating a new electron dispersion law on the
basis of k.p formalism. In the same chapter the influence of magnetic quantization
on the EEM has been investigated. The same chapter also explores the effect of
light waves on the EEM for 2D systems (e.g. UFs, nipi structures, and inversion
layers), 1D systems (such as quantum wire effective mass superlattices, and
quantum wire superlattices with graded interfaces) and the influence of quantizing
magnetic field on the EEM for effective mass superlattices, and superlattices with
graded interfaces respectively.

With the advent of nanodevices, the inbuilt electric field becomes so large that the
electron energy spectrum changes fundamentally and the single Chap. 7 of the third
part investigates the influence of intense electric field on the EEM in II-V, ternary
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and quaternary semiconductors. The same chapter also explores the influence of
electric field on the 2D systems (e.g. UFs, nipi structures and inversion layers) and 1D
systems (such as, nano wire effective mass superlattices, and nano wire superlattices
with graded interfaces) in this context. Chapter 8 contains the applications and brief
review of experimental results. Chapter 9 contains the conclusion and the scope for
future research.

It may be noted that the influence of crossed electric and quantizing magnetic
fields on the transport properties of semiconductors having various band structures
are relatively less investigated as compared with the corresponding magnetic
quantization, although, the cross-fields are fundamental with respect to the addi-
tion of new physics and the related experimental findings. It is well known that in
the presence of electric field (E,) along x-axis and the quantizing magnetic field
(B) along z-axis, the dispersion relations of the conduction electrons in semi-
conductors become modified and for which the electron moves in both the z and y
directions. The motion along y-direction is purely due to the presence of E, along
x-axis and in the absence of electric field, the EEM along y-axis tends to infinity
which indicates the fact that the electron motion along y-axis is forbidden. The
EEM of the isotropic, bulk semiconductors having parabolic energy bands exhibits
mass anisotropy in the presence of cross fields and this anisotropy depends on the
electron energy, the magnetic quantum number, the electric and the magnetic
fields respectively, although, the EEM along z-axis is a constant quantity. In 1966,
Zawadzki and Lax [70] formulated the electron dispersion law for III-V semi-
conductors in accordance with the two-band model of Kane under cross fields
configuration which generates the interest to study this particular topic of solid
state science in general [71-77].

Appendix A investigates the EEM under cross field configuration in nonlinear
optical, III-V, II-VI, Bi, IV-VI, and stressed Kane-type semiconductors and ultra
thin films of the aforementioned materials. It is an amazing fact that though
heavily doped semiconductors have been deeply studied in the literature but the
study of the carrier transport in heavily doped materials through proper formula-
tion of the Boltzmann transport equation which needs in turn, the corresponding
heavily doped carrier energy spectra is still one of the open research problems
[78-81]. Appendix B attempts to touch the enormous field of active research with
respect to EEM of heavily doped compound semiconductors in a nutshell.
Appendix C deals with the EEM in III-V, II-VI, IV-VI, HgTe/CdTe, and strained
layer heavily doped superlattices with graded interfaces and effective mass
superlattices of the said constituent materials. In these appendices no graphs
together with results and discussions are being presented since we feel that the
readers will enjoy the complex computer algorithm to investigate the EEM in the
respective case generating new physics and thereby transforming each appendix
into a short monograph by considering various materials having different
dispersion relations. Since there is no existing book devoted totally to the EEM in
low-dimensional semiconductors to the best of our knowledge, we hope that this
book will be a useful reference source for the present and the next generation of
readers and researchers of materials and allied sciences in general. In spite of our
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joint efforts, the production of error-free first edition of any book from every point
of view enjoys permanently the domain of impossibility theorems and the same
stands very true for this monograph also. Various expressions of this book have
been appearing for the first time in printed form. The suggestions of the readers for
the development of this book will be highly appreciated for the purpose of future
edition, if any.

In this book, from Chap. 1 till the end, we have presented 250 open research
problems in this particular topic. The problems presented here are the integral part
of this book and will be useful for the readers to initiate their own contributions on
the effective mass. This aspect is also important for Ph.D. aspirants and
researchers. Each chapter ends with a table containing the main results excluding
the last two and the Appendices.

In this monograph, we have investigated various dispersion relations of
different quantized structures and the corresponding electron statistics to study
effective mass. Our theoretical formulation of the density-of-states effective mass
of tetragonal materials based on our generalized electron dispersion relation agrees
well with the available experimental data as given elsewhere [82]. Thus, in this
book, the readers will get a lot of information regarding quantum confined low-
dimensional materials having different band structures. Although the name of the
book is extremely specific, from the content, one can infer that it should be useful
in graduate courses on materials science, nanoscience and technology, solid-state
science, semiconductor physics, and nanostructured devices in many universities
and institutes. Last but not the least, we do hope that our humble effort will kindle
the desire to delve deeper into this fascinating topic by anyone engaged in
materials research and device development either in academics or in industries.
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Part I

Influence of Quantum Confinement on the
Effective Electron Mass (EEM) in
Non-Parabolic Semiconductors



Chapter 1
The EEM in Ultrathin Films (UFs)

of Nonparabolic Semiconductors

1.1 Introduction

The concept of the effective mass of the carriers in semiconductors is one of the basic
pillars in the realm of solid state and related sciences [1]. It must be noted that among
the various definitions of the effective electron mass (e.g effective acceleration mass,
density-of-state effective mass, concentration effective mass, conductivity effective
mass, Faraday rotation effective mass, etc) [2], it is the effective momentum mass that
should be regarded as the basic quantity [3]. This is due to the fact that it is this mass
which appears in the description of transport phenomena and all other properties
of the conduction electrons in a semiconductor with arbitrary band nonparabolicity
[3]. It can be shown that it is the effective momentum mass which enters in various
transport coefficients and plays the most dominantrole in explaining the experimental
results of different scattering mechanisms through Boltzmann’s transport equation
[4, 5]. The carrier degeneracy in semiconductors influences the effective mass when
it is energy dependent. Under degenerate conditions, only the electrons at the Fermi
surface of n-type semiconductors participate in the conduction process and hence,
the effective momentum mass of the electrons (EEM) corresponding to the Fermi
level would be of interest in electron transport under such conditions. The Fermi
energy is again determined by the carrier energy spectrum and the electron statistics
and therefore, these two features would determine the dependence of the EEM in
degenerate n-type semiconductors under the degree of carrier degeneracy. In recent
years, various energy wave vector dispersion relations have been proposed [6—38]
which have created the interest in studying the EEM in such materials under external
conditions. The nature of these variations has been investigated in the literature
[39-85]. Some of the significant features, which have emerged from these studies,
are:

(a) The EEM increases monotonically with electron concentration.
(b) The EEM increases with doping in heavily doped materials in the presence of
band tails.

S. Bhattacharya and K. P. Ghatak, Effective Electron Mass in Low-Dimensional 3
Semiconductors, Springer Series in Materials Science 167,
DOI: 10.1007/978-3-642-31248-9_1, © Springer-Verlag Berlin Heidelberg 2013
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(c) The nature of variations is significantly influenced by the energy band constants
of various materials having different band structures.

(d) The EEM oscillates with inverse quantizing magnetic field due to SdH effect. The
EEM in Bismuth under magnetic quantization depends both on the Fermi energy
and on the magnetic quantum number due to the presence of band nonparabolicity
only.

(e) The EEM increases with the magnitude of the quantizing electric field in n-
channel inversion layers of III-V semiconductors and depend on the subband
index for both low and high electric field limits.

(f) The EEM in ultrathin films of nonlinear optical materials depends on the Fermi
energy and size quantum numbers due to the specific dispersion relations.

(g) The EEM has significantly different values in superlattices and also in the pres-
ence of quantum confined superlattices of small gap semiconductors with graded
interfaces.

In recent years, with the advent of fine lithographical methods [86, 87] molecular
beam epitaxy [88], organometallic vapor-phase epitaxy [89], and other experimental
techniques, the restriction of the motion of the carriers of bulk materials in one (ultra-
thin films, NIPI structures, inversion, and accumulation layers), two (nanowires) and
three (quantum dots, magnetosize quantized systems, magneto accumulation lay-
ers, magneto inversion layers, quantum dot superlattices, magneto ultrathin film
superlattices, and magneto NIPI structures) dimensions have in the last few years,
attracted much attention not only for their potential in uncovering new phenomena
in nanoscience but also for their interesting quantum device applications [90-93].
In ultrathin films (UFs), the restriction of the motion of the carriers in the direction
normal to the film (say, the z direction) may be viewed as carrier confinement in
an infinitely deep 1D rectangular potential well, leading to quantization [known as
quantum size effect (QSE)] of the wave vector of the carrier along the direction of
the potential well, allowing 2D carrier transport parallel to the surface of the film
representing new physical features not exhibited in bulk semiconductors [94-98].
The low-dimensional heterostructures based on various materials are widely inves-
tigated because of the enhancement of carrier mobility [99].These properties make
such structures suitable for applications in ultrathin film lasers [100], heterojunction
FETs [101, 102], high-speed digital networks [103—106], high-frequency microwave
circuits [107], optical modulators [108], optical switching systems [109], and other
devices. The constant energy 3D wave-vector space of bulk semiconductors becomes
2D wave-vector surface in UFs due to dimensional quantization. Thus, the concept
of reduction of symmetry of the wave-vector space and its consequence can unlock
the physics of low-dimensional structures.

In this chapter, we study the EEM in UFs of nonparabolic semiconductors having
different band structures. At first we shall investigate the EEM in UFs of nonlinear
optical compounds which are being used in nonlinear optics and light emitting diodes
[110]. The quasi-cubic model can be used to investigate the symmetric properties
of both the bands at the zone center of wave vector space of the same compound.
Including the anisotropic crystal potential in the Hamiltonian, and special features
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of the nonlinear optical compounds, Kildal [111] formulated the electron dispersion
law under the assumptions of isotropic momentum matrix element and the isotropic
spin-orbit splitting constant, respectively, although the anisotropies in the two afore-
mentioned band constants are the significant physical features of the said materials
[112-114]. In Sect. 1.2.1, the EEM in UFs of nonlinear optical semiconductors has
been investigated by considering the combined influence of the anisotropies of the
said energy band constants together with the inclusion of the crystal field splitting
respectively within the framework of k.p formalism. The III-V compounds find appli-
cations in infrared detectors [115], quantum dot light emitting diodes [116], quantum
cascade lasers [117], ultrathin film wires [118], optoelectronic sensors [119], high
electron mobility transistors [120], etc. The electron energy spectrum of III-V semi-
conductors can be described by the three- and two-band models of Kane [121, 122],
together with the models of Stillman et al. [123], Newson and Kurobe [124] and, Palik
etal. [125] respectively. In this context it may be noted that the ternary and quaternary
compounds enjoy the singular position in the entire spectrum of optoelectronic mate-
rials. The ternary alloy Hg_,Cd,Te is a classic narrow gap compound. The band
gap of this ternary alloy can be varied to cover the spectral range from 0.8 to over
30 wm [126] by adjusting the alloy composition. Hg; _Cd, Te finds extensive appli-
cations in infrared detector materials and photovoltaic detector arrays in the 8—12 um
wave bands [127]. The above uses have generated the Hg|_,Cd, Te technology for
the experimental realization of high mobility single crystal with specially prepared
surfaces. The same compound has emerged to be the optimum choice for illuminat-
ing the narrow subband physics because the relevant material constants can easily
be experimentally measured [128]. Besides, the quaternary alloy In;,Ga,As,Py_,
lattice matched to InP, also finds wide use in the fabrication of avalanche photode-
tectors [129], hetero-junction lasers [130], light emitting diodes [131] and avalanche
photodiodes[132], field effect transistors, detectors, switches, modulators, solar cells,
filters, and new types of integrated optical devices are made from the quaternary sys-
tems [133]. It may be noted that all types of band models as discussed for III-V semi-
conductors are also applicable for ternary and quaternary compounds. In Sect. 1.2.2,
the EEM in UFs of III-V, ternary and quaternary semiconductors has been studied in
accordance with the said band models and the simplified results for wide gap mate-
rials having parabolic energy bands under certain limiting conditions have further
been demonstrated as a special case and thus confirming the compatibility test.

The II-VI semiconductors are being used in nanoribbons, blue green diode lasers,
photosensitive thin films, infrared detectors, ultra high-speed bipolar transistors, fiber
optic communications, microwave devices, solar cells, semiconductor gamma-ray
detector arrays, semiconductor detector gamma camera and allow for a greater den-
sity of data storage on optically addressed compact discs [134—141]. The carrier
energy spectra in II-VI compounds are defined by the Hopfield model [142] where
the splitting of the two-spin states by the spin-orbit coupling and the crystalline field
has been taken into account. The Sect. 1.2.3 contains the investigation of the EEM
in UFs of II-VI compounds.

In recent years, Bismuth (Bi) nanolines have been fabricated and Bi also finds
use in array of antennas which leads to the interaction of electromagnetic waves
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with such Bi-nanowires [143, 144]. Several dispersion relations of the carriers have
been proposed for Bi. Shoenberg [145, 146] experimentally verified that the de Haas-
Van Alphen and cyclotron resonance experiments supported the ellipsoidal parabolic
model of Bi, although, the magnetic field dependence of many physical properties
of Bi supports the two-band model [147].The experimental investigations on the
magneto-optical and the ultrasonic quantum oscillations support the Lax ellipsoidal
nonparabolic model [ 147]. Kao [148], Dinger and Lawson [149] and Koch and Jensen
[150] demonstrated that the Cohen model [151] is in conformity with the experimen-
tal results in a better way. Besides, the hybrid model of bismuth, as developed by
Takoka et al., also finds use in the literature [152]. McClure and Choi [153] derived
a new model of Bi and they showed that it can explain the data for a large number
of magneto-oscillatory and resonance experiments.

In Sect. 1.2.4, the EEM in UFs of Bi has been formulated in accordance with the
aforementioned energy band models for the purpose of relative assessment. Besides,
under certain limiting conditions all the results for all the models of 2D systems are
reduced to the well-known result of the EEM in UFs of wide gap materials. This
above statement exhibits the compatibility test of our theoretical analysis.

Lead chalcogenides (PbTe, PbSe, and PbS) are IV-VI nonparabolic semiconduc-
tors whose studies over several decades have been motivated by their importance in
infrared IR detectors, lasers, light-emitting devices, photovoltaics, and high temper-
ature thermoelectrics [154—158]. PbTe, in particular, is the end compound of several
ternary and quaternary high performance high temperature thermoelectric materials
[159-163]. It has been used not only as bulk but also as films [164-167], ultrathin
films [168] superlattices [169, 170] nanowires [171] and colloidal and embedded
nanocrystals [172-175], and PbTe films doped with various impurities have also
been investigated [176—183] These studies revealed some of the interesting features
that had been seen in bulk PbTe, such as Fermi level pinning and, in the case of
superconductivity [184]. In Sect. 1.2.5, the EEM in UFs of IV-VI semiconductors
has been studied taking PbTe, PbSe, and PbS as examples.

The stressed semiconductors are being investigated for strained silicon transistors,
quantum cascade lasers, semiconductor strain gages, thermal detectors, and strained-
layer structures [185—-188]. The EEM in UF:s of stressed compounds (taking stressed
n-InSb as an example) has been investigated in Sect. 1.2.6 The vacuum deposited
Tellurium (Te) has been used as the semiconductor layer in thin-body transistors
(TFT) [189] which is being used in CO; laser detectors [190], electronic imaging,
strain sensitive devices [191, 192], and multichannel Bragg cell [193]. Section 1.2.7
contains the investigation of EEM in UFs of Tellurium.

The n-Gallium Phosphide (n-GaP) is being used in quantum dot light emitting
diode [194], high efficiency yellow solid state lamps, light sources, high peak cur-
rent pulse for high gain tubes. The green and yellow light emitting diodes made of
nitrogen-doped n-GaP possess a longer device life at high drive currents [195-197].
In Sect.1.2.8, the EEM in UFs of n-GaP has been studied. The Platinum Anti-
monide (PtSby) finds application in device miniaturization, colloidal nanoparticle
synthesis, sensors and detector materials and thermo-photovoltaic devices
[198-200]. Section1.2.9 explores the EEM in UFs of PtSb,.Bismuth telluride
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(BipTes) was first identified as a material for thermoelectric refrigeration in 1954
[201] and its physical properties were later improved by the addition of bismuth
selenide and antimony telluride to form solid solutions [202-206]. The alloys of
Bi,Tes are useful compounds for the thermoelectric industry and have been inves-
tigated in the literature [202-206]. In Sect. 1.2.10, the EEM in UFs of Bi,Te3 has
been considered.

The usefulness of elemental semiconductor Germanium is already well known
since the inception of transistor technology and, it is also being used in memory
circuits, single photon detectors, single photon avalanche diode, ultrafast optical
switch, THz lasers and THz spectrometers [207-210]. In Sect. 1.2.11, the EEM has
been studied in UFs of Ge. Gallium Antimonide (GaSb) finds applications in the fiber
optic transmission window, heterojunctions, and ultrathin films. A complementary
heterojunction field effect transistor in which the channels for the p-FET device
and the n-FET device forming the complementary FET are formed from GaSb. The
band gap energy of GaSb makes it suitable for low power operation [211-216]. In
Sect. 1.2.12, the EEM in UFs of GaSb has been studied. Section 1.3 contains the result
and discussions pertaining to this chapter. The last Sect. 1.4 contains open research
problems.

1.2 Theoretical Background

1.2.1 The EEM in UFs of Nonlinear Optical Semiconductors

The form of k.p matrix for nonlinear optical compounds can be expressed extending

Bodnar [112] as
_ | H1 H2
H = |:H2+ H1] (1.1)

where,
Eq 0 Pk, 0

0 (-221/3) (v2a1/3) 0

H =
Pyk; (ﬁAJ_/3) - (5+ %A”) 0
0 0 0 0
0 —f,0f_
s 0T
=170 00
f, 0 00

in which E is the band gap in the absence of any field, P| and P are the momentum
matrix elements parallel and perpendicular to the direction of crystal axis respectively,
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dis the crystal-field splitting constant, A and A | are the spin-orbit splitting constants
parallel and perpendicular to the C-axis respectively, f, = (P il /ﬁ) (kx + iky)

and i = 4/—1. Thus, neglecting the contribution of the higher bands and the free
electron term, the diagonalization of the above matrix leads to the dispersion relation
of the conduction electrons in bulk specimens of nonlinear optical semiconductors
as

V(E) = fiE)K2 + fr(E)K? (1.2)

where,

y(E) = E(E + Eg)) [(E + Eg)(E + Egy + Ap) + 8 (E + Eg, + %m)

2
+§<Aﬁ - Ai)} ,

E is the total energy of the electron as measured from the edge of the conduction band
in the vertically upward direction in the absence of any quantization, ks2 = k)% + ki,

h?Egy (Egy + A1)
2
2m’ (Egy + §AII)]

1 2 1
x [5 (E + Egy + gAH) +(E + Egy) (E + Egy + gAH) + §(Aﬁ -~ Aﬁ)]

Si(E) =
[

thgo (Ego + AH)
[2’"7{ (Ego +349)

f2(E) =

] [(E + Eg) (E + Egy + %A”)} , h=h/2nm,

his Planck’s constant and m} and m? are the longitudinal and transverse effective
electron masses at the edge of the conduction band respectively.

For dimensional quantization along z-direction, the dispersion relation of the 2D
electrons in this case can be written following (1.2) as

Y1(E) = Yo (E)K} + Y3(E) (n.m/d)? (1.3)

where Y1 (E) = y(E), y2(E) = fi(E), ¥3(E) = fo(E), ny(=1,2,3,...) and d,
are the size quantum number and the nano-thickness along the z-direction respec-
tively.
The EEM is defined as the ratio of the electron momentum to the group velocity.
The EEM at the Fermi level in the xy-plane can be written as

ok
m*(Ep,n;) = Wky — (1.4)
OE |p_pg,.
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where E r; is the Fermi energy in the presence of size quantization as measured from
the edge of the conduction band in the vertically upward direction in the absence of
any quantization. From (1.3) and (1.4), the EEM in this case can be written as

2

m*(Epg,n;) = L
Fs-.tz) = ) dz

2
)wz(Em]2 |:1//2(EFS) {{%(Em}/ — (Y3(Epy)Y (@) }

nem\? ,
—1V1(EFs) = ¥3(EFy) (7) {V2(EFs)}
Z
(1.5)

where, the primes denote the differentiation of the differentiable functions with
respect to Fermi energy. Thus, we observe that the EEM is the function of size
quantum number and the Fermi energy due to the combined influence of the crystal-
field splitting constant and the anisotropic spin-orbit splitting constants respectively.
To study the dependence of the EEM as a function of electron concentration per unit
area we have to formulate the corresponding density-of-states function (DOS).
The general expression of the total 2D DOS (Nzp7 (E))in this case is given by

2gy U YA(E, n,)
Napr (E) = 55 nZ::l o H(E~En) (1.6)

where, g, is the valley degeneracy, A(E, n;) is the area of the constant energy 2D
wave vector space for UFs, H(E — Ej_ )is the Heaviside step function and (E,,)
is the corresponding subband energy. Using (1.3) and (1.6), the expression of the
Nopr (E) for UFs of nonlinear optical semiconductors can be written as

N zmax

2
Napr(E) = (35) 3 wa(E)2 |:1/f2(E) [{wl (E)Y = {¥3(E)Y ("d—”) ]
n;=I1

4

n,mw

d;

2
- {Vfl (E) — y3(E) ( ) } {lﬂz(E)}/} H(E - Ep ) (1.7)

where, the subband energies (EnZl ) in this case is given by

Y1(En,) = Y2(En. ) (n;7/d)? (1.8)

Combining (1.7) with the Fermi-Dirac occupation probability factor, integrating
between E, to infinity and applying the generalized Somerfeld’s lemma, the 2D
carrier statistics in this case assumes the form

Mxmax

8
nap = i Z [T51 (EFs, n2) + T2 (EFs, n2)| (1.9)

ny=1
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where,

Yi(EFs) — 1ﬂ3(EFs)(nzT[/dz)2:|
T: E 5. Nz) = ’
31 (Ers,me) [ ¥2(Ery)
Tsy (Epg,nz) = D L(I[Ts1 (EFs, no)),

r=1

L) = 2(kgT)¥ (1 — 2“”)5(20%,@ is the Boltzmann constant, T is the
f

temperature, r is the set of real positive integers whose upper limit is s, £(2r) is the
Zeta function of order 2r [217].

1.2.2 The EEM in UFs of III-V Semiconductors

The dispersion relation of the conduction electrons of III-V compounds are described
by the models of Kane (both three and two bands) [121, 122], Stillman et al. [123],
Newson and Kurobe [124] and Palik et al. [125] respectively. For the purpose of
complete and coherent presentation, the EEM in UFs of III-V semiconductors have
also been investigated in accordance with the aforementioned different dispersion
relations for the purpose of relative comparison as follows:

(a) The three-band model of Kane
Under the conditions, § = 0, Ay = Ay = A (isotropic spin orbit splitting
constant) and m” = mj‘_ = m, (isotropic effective electron mass at the edge of
the conduction band), (1.2) gets simplified into the form

h2k2 E(E + Eg)(E + E,, + A)(E +ZA)
=11(E), I1(E) = 80 80 g; 3
e Eg (Egy + A)(E + Egy + 3A)

(1.10)

which is known as the three-band model of Kane [121, 122] and is often used
to study the electronic properties of III-V materials.
Thus, under the conditions § = 0, Ay = A} = A and mﬁ = m’j_ = me, (1.3)
assumes the form

h2k? N h?

2 _
m, 2mc(nz”/dz) = I11(E) (1.11)

Using (1.11) and (1.4), the EEM in x—y plane for this case can be written as
m*(Eps) = me{I11(EFs)Y (1.12)
It is worth noting that the EEM in this case is a function of Fermi energy alone

and is independent of size quantum number.
The total 2D DOS function can be written as
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Nzmax

Nopr(B) = (Z2) X {tmern (E-E,)) a3

7 h?

ny=l1
where, the subband energies E;,_ can be expressed as

h2
In(En,) = o —(n:7/d:)* (1.14)

The 2D carrier concentration assumes the form

Nzmax

m
B > T53(Erg, n2) + Tsa(Ery.ny)] (1.15)
n;=I1

7 h?

na2p =

where

W (n.m 2
Ts3(Epg,nz) = | I(EFs) — m— and
2m, \ d;

N
Tsy(Epg,n) = D L(MTs3(Ery, nz).
r=1

Under the inequalities A 3> Eg, or A < Eg, (1.10) can be expressed as

h2k?
E(l +«E) = >

(1.16)

me

where, o = 1/E, and is known as band nonparabolicity.

It may be noted that (1.16) is the well-known two-band model of Kane and is used
in the literature to study the physical properties of those III-V and optoelectronic
materials whose energy band structures obey the aforementioned inequalities.
Under the said inequalities (1.11) assumes the form

E(l + «E) Wk, B (nem ’ (1.17)
(0% = .
2m,  2m¢ \ d;

The EEM in this case can be written as
m*(Efps) = me(l + 20 EFy) (1.18)
Thus, we observe that the EEM in the present case is a function of Fermi energy

only due to the presence of band nonparabolicity.
The total 2D DOS function assumes the form
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Nzmax

> (1 +20E)H (E—E%) (1.19)

ny;=1

megy

N E) =
207 (E) )

where, the subband energy (£, ) can be expressed as

2

o (n.7/d)* = En, (1 4 aE,,ZS) (1.20)

The 2D electron statistics can be written as

B 00
pap = 8 ”i / (14 20E)dE

b T[hz 1+€x (E_EFS)
nZ=1EnZ3 P\ 1T

mckB Tg Nzmax

=T - [(1+201En23)F0(17n1)+2akBTF1(nn1)] (1.21)

n;=I1

where, 1,, = (Efpy — Enz;) /kpT and F;(n) is the one-parameter Fermi-Dirac
integral of order j which can be written [218, 219] as

F-()—( ! )/ x/dx P> 1 (1.22)
PEANGED) ) Trepe = '

or for all j, analytically continued as a complex contour integral around the
negative x-axis

+0 .
o rC'(—j) x/dx
Fitm = (271\/—_1)_4 1 +exp(—x —1n) (1.23)

where 7 is the dimensionless x independent variable.

Under the condition o — 0, the expressions of total 2D DOS, for UFs whose
bulk electrons are defined by the isotropic parabolic energy bands can, be written
as

an(lX

me8y

Nor(E) =53 3 H (E - En,) (1.24)
n;=

The subband energy (E, n:p ), the EEM, and the n, p can respectively be expressed

as
g, -t (rm ’ (1.25)
" T 2me \ de ’
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m*(Efs) = me (1.26)
and
n-
mckb Tgv <max
nap === 3 Folim) (1.27)

ny;=1

where, 1, = kB;T |:Eps — % ("d”)
It may be noted that the results of this section are already well known in the
literature [220].

The model of Stillman et al.

In accordance with the model of Stillman et al. [123], the electron dispersion
law of III-V materials assumes the form

E =T11k* — T1ok? (1.28)

12 me\2 [ 1\
= ip=(1-—
i 2m, 12 ( mo) (ch)

2A?
X |:(3Eg0 +4A + 5 ) A(Egy + A)Q2A + 3Eg0)}1:|
80

where,

and my is the free electron mass.
Equation (1.28) can be expressed as

h2k?
2m,

= I12(E) (1.29)

21, 4t
where, I17(E) = ajq [1 —(1- ale)l/z], ajl = ( 1_1 ) and ajp = 12

dmct12 2

The 2D electron dispersion relation in this case assumes the form

Rk R
— 4

2 _
. ZmC(nz”/dz) = I2(E) (1.30)

Using (1.30) and (1.4), the EEM in x—y plane for this case can be written as

m*(Eps) = mc{li2(EFs)) (1.31)

It appears that the EEM in this case is a function of Fermi energy alone and is
independent of size quantum number.
The total 2D DOS function can be written as
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Nzmax

Noor(B) = (255) D e neE - B} a32)

wh?

ny;=1

where, the subband energies E,, . can be expressed as

h
I2(Ep) = o (n.7/d:)’ (1.33)

The 2D carrier concentration assumes the form

Nzmax

> [T55(Ers, n2) + Tso(Ers, n2)] (1.34)

n;=1

megy

nop = ——
7 h?

where

W (n.m 2
Tss(Eps,nz) = | Ii2(EFs) — and
2me \ d,

N
Tse(Erg, n) = ) L(1)Tss(Eps, n2)

r=1

Model of Palik et al.
The energy spectrum of the conduction electrons in III-V semiconductors up to
the fourth order in effective mass theory, taking into account the interactions of

heavy hole, light hole and the split-off holes can be expressed in accordance with
the model of Palik et al. [125] as

— By k* (1.35)

where

2
5 nt 1+ 2
B == 1 - )
11 [4Eg0(mc)2] T =y

AN
X1 = [1 + (—)} and yj; = Te
Eg() moy

The (1.35) gets simplified as

h2k?
2m,

= I13(E) (1.36)
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where

I3(E) = bi [alz — (@n)* - 4E1§11)1/2] ,

h? . 7
C_llz = ( ) and b12 = |: a_12 i|
2m, 2By

The 2D electron dispersion relation in this case assumes the form

h2k2 K2
o + —(n.7/d;)* = I13(E) (1.37)
me 2m,

Using (1.37) and (1.4), the EEM in x—y plane for this case can be written as
m*(Eps) = me{I13(EFrs)Y (1.38)

It appears that the EEM in this case is a function of Fermi energy alone and is
independent of size quantum number.
The total 2D DOS function can be written as

Nzmax

Neor(B) = (Z2) 3 {tha(BHE - E, D) (139)

wh?

ny=1

where, the subband energiesEnz4 can be expressed as

h
I3(En,) = o —(n.7/d:)’ (1.40)

The 2D carrier concentration assumes the form

Nzmax

> [T57(Ers, n2) + Tsg(Ery, n2)] (1.41)

ny=1

megy

7 h?

np =

where

W (n.w 2
Ts7(Eps,nz) = | I13(EFs) — and
2me \ d,

N
Tss(Epg, nz) = ) L(1)Ts7(Eps, n2)

r=1
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1.2.3 The EEM in UFs of II-VI Semiconductors

The carrier energy spectra in bulk specimens of II-VI compounds in accordance with
Hopfield model [142] can be written as

E = alk? + bk £ Aok (1.42)

where a), = h?/2m* , b, = h?/2m* , and X, represents the splitting of the two-spin
states by the spin-orbit coupling and the crystalline field.

The dispersion relation of the conduction electrons of UFs of II-VI materials for
dimensional quantization along z-direction can be written following (1.42) as

E—ak+0 (”;”

Z

2
) + Ak (1.43)

Using (1.43), the EEM in this case can be written as

(*o)

1 (1.44)
. /2
|:(A0)2 4alb, (”) +4a(’)EpS:|

m*(Efps,n;) =m’ | 1F

Thus, we can infer that the EEM in the UFs of II-VI compounds is a function
of both the size quantum number and the Fermi energy due to the presence of the
term A,.

The subband energy EnZS assumes the form

En., = b,(nem/d:)’ (1.45)

The area of constant energy 2D quantized surface in this case is given by

A+ (E,n;) = |:2 (”/)2 [(E)Z + 2aj (E - Enz5) i%[()\o)z +4a(, (E — Enzj)]l/zﬂ
a
0 (1.46)

The surface electron concentration under the condition of extreme carrier degen-
eracy can be expressed in this case as

Nz max

2gy
g Z[A+ Epgn.) +A_ (Epgn.)] (1.47)

22m)*

nap =
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Using (1.46) and (1.47) we get

% Tzmax

gvim |
T h?

Hap = (EFS — E + (X)zmjrﬁ) (1.48)

n =1

1.2.4 The EEM in UFs of Bismuth

(a) The McClure and Choi model
The dispersion relation of the carriers in Bi can be written, following the McClure
and Choi [153], as

2 2

2 2
px py pz py n»y
E(l E) = — Y aEll - (=
(1 +ak) 2m; +2m2+2m3+2m2a m)

4 2.2 2.2
dmom’,  4mymy  4mom3

(1.49)

where p; = hk;,i = x,y, z, m;, mp and m3 are the effective carrier masses at
the band-edge along x, y and z directions respectively and m/, is the effective-
mass tensor component at the top of the valence band (for electrons) or at the
bottom of the conduction band (for holes).

The dispersion relation of the conduction electrons in UFs of Bi for dimensional
quantization along k; direction can be written following (1.49) for this model as

2 2 2 2 2

Dx Dy he (n.m Dy my
E(1 Ey=""2 4+ — + — Y aEl1 (=
(I+ak) 2m1+2m2+2m3(dz)+ * !

p‘;a ap%pg B ap%hz n,m 2
d;

_ 1.50
dmom’y,  Amymay  4moms (1.50)

Equation (1.50) can, approximately, be expressed as
yi(E.n;) = pik; + qi(E)k; + Ri(E. n)k} (1.51)

where,

B2 (n.w 2 K2
Vi(E,n;) = E(1+aE)——( ) o=

2m3 \ d, 2my’

h2 n»y
QUE)=—|1+aE |l - — ) —aE(l +ak)
2my my
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and

RiE oy = | 2 o (L 2 rar (1-m2) 2 o ()
15 12) = 4mam), * 2my “ m), 2m3 \ d,

The area enclosed by (1.51) is defined by the following integral:

Rl (Ea nz)

1/2
] -J1 (E,ny) (1.52)
P1

A(E,nz)=4[

where,

uo(E,nz)

12
E E)k?
TW(E.n.) = / |:V1( ng)  qi(Eky k“,} dk,
0

Ri(E,n;) Ri((E,ny)

and

172

2
([ @® nEn
MO(E9nZ) = |:\/4R%(E,nz) + RI(E,nZ) CII(E)]

Thus, the area enclosed can be written as

4 [Rl(E,nZ) 172

12
AE.n) = 5 | = ] [az(E,nz)+b2(E,nz)]

[az(E, n,)F [% I(E, nz)] - [az(E, n.) — b*(E, nz)] E [% I(E, nz)]] (1.53)

where,

) 172
q1(E) 1[ g*(E) 4y1(E,nz>}

2
a*(E,n,) = ——" 4=
(. n:) 2Ri(E,n;) 2| R}E,n;) Ri(E,ny)

2 12
P(E.ny =L [ B n(E ) _( 01 (E) )
2 R{(E, nz) Ri(E, ny) 2R (E, n;)

I(E,n;) =

b(E,ny) F[

, Z,Z(E,nz)] andE[z,l(E,nz)]
Va*(E.n;) + b*(E. n) 2

2

are the complete elliptic integral of the first and second kinds respectively [217]
Using (1.53), the EEM can be written as
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2h2
37./pi

m*(EFps,nz) = ( ) [R3(E, n)llE=Ep, (1.54)

where,
R3(EFS9 nZ)
1 _
= > [RiEren)] ™ IR Eps ) 10 (B o) + p*(Epson)) 2
x [a(Eryen) F (3 0Ern)) = 10 (Ers.no)
— D (Eron)E (3 1(Ersno)
+ VRIE s, m) [ (Ersn) + B (Ery. )|
x [a(E g, n) @(Ere, n) + b(Ers, 1) (b(Ers, 1))
x [aX(Eren) F (5 1(Er 1)) = 162 (B, n2)
IF (3 , ,
DA (EpenE (3. 1Ern)) |
Ri(EFs. n)la*(Eps,n:) + b2 (Epy,no)]'?
x [2a(Ers n)@Ers n ) F (5 UE R n)

—1)2

@ Ersn) [F (51 n)) | = RatErs n)la(Er no

~2b(Ers n)b(Ergn)1E (3. 1Ers.n;)

~ [ Eren) =02 Eren0)] (B (5 1R, n)))}

Thus, the EEM in this case is a function of both the Fermi energy and the size
quantum number due to the presence of band nonparabolicity only.
The total 2D DOS function can be written following (1.53), as

2 Zmax
Napr(E) = (371;3_) Z R3(E.n)H(E — Ey) (155)

where, the subband energies E,_ assume the form

()
n6(1+aEiz 6) = 2m3 d (1.56)
z

Combining (1.55) with the Fermi-Dirac occupation probability factor, the 2D
electron statistics in UFs of Bi in accordance with the McClure and Choi model
can be expressed as
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Nzmax

28y
nyp = (m) Z [61(EFs,n;) + 62(EFg, nz) (1.57)

ny;=1
where,

01(Ersn2) = {VRIE s n)la* (Ersono) + B (Eryn o)1 2
x [ Ergn) F (5 1(Eren0)) = [0 By o)

— b (Eps nIF (3. 0Ers ) |}

N

and 02 (Epy,nz) = 2. L(r)[01(EFs, n2)].
r=1
The Hybrid Model
The dispersion relation of the carriers in bulk specimens of Bi in accordance
with the Hybrid model can be represented as [152]

2 474
ENR) a1 1

E(l+aE) =
( ) 2M»> 4M22 2m 2ms3

(1.58)

in which 6g(E) = [1 + ¢ E(1 — y9) + Sol. Yo = %—;,SO = % and the other
2

notations are defined in [152].
In the presence of size quantization along y-direction, the 2D electron dispersion
relation can be written as

T S 00 (E) > 2 h* 4
s K p pary - BN (T el (wny (1.59)
2my  2m3 2M,  \ d, am; \ d,
The 2D area is given by
27/
AE.ny) = T g (. ny) (1.60)
2
bo(E.my) = | EQ 4 iy — REN (ny Tt (!
,ny) = o — _ — —_
» ! 2M; dy aMy \ d,
The effective mass in the X—Z plane can be written as
m*(Epg, ny) = [/mim3ltsg(EFg, ny) (1.61)

Therefore, the effective mass in UFs of Bi in accordance with Hybrid model is
a function of Fermi energy and the size quantum number due to the presence of
band nonparabolicity only.
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The subband energy are given as

00(En,)h? (nny)z ayoh? (nny)4
E,1l+aE)— —— | — — ) =0 1.62
n,(1 +aE) M, 4, 4M2 , (1.62)

The total DOS function in this case can be written as

M ymax

Napr(E) = S22 3 g (Eany)} HE = E,) - (163)

ny=1

The use of (1.63) leads to the 2D electron statistics in UFs of Bi in this case as

n\m(z'c
gv/mim3
Nap =8 = 2 [0 ny) + 0B, ny)] (1.64)

ny=1

So
in which 130(E s, ny) = > L(r)[t20(EFs, ny)]

r=1
(¢) The Cohen model
In accordance with the Cohen model [151], the dispersion law of the carriers in
Bi is given by

2 2 «Ep: pi(l+4aE) ap?
Dx n Pz y Py i y

E(l E)=
(1 +aE) 2my  2m3 2m,2 2mo dmom’,

(1.65)

The 2D electron dispersion law in UFs of Bi in accordance with this model can
be written following (1.65) as

2 2 2 2 4 2

p; R (ngmw aEpy apy py
E(1 E — — 1 E) (1.66
(1+aE) = m, +2m3 ( . ) o, + pr— 2mz( +aE) (1.66)

The (1.66) can be written as

VI(E. n;) = piki + Bk + Roky (1.67)

_ aEﬁ alt
where, g2(E) = | 45:(1 + « E) = %E | and Ry = <4m2m,2 )
The EEM in this case can be written as

2

3n./p1

m*(Epg,n;) = ( ) [R4(E, n2)]lE=Ep, (1.68)

in which,
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R4(EFy, nz)
= VRola}(Epg, nz) + b (Epg, n)1” V2 ay(Epg, ny) (a1 (Epg, n2))

"l ,2 i
+ b1 (B n) (b1 (Eps.n)) ) [a} By n)F (3. 1(E Ry n2))
— 0} (Epy.nz) = b} (B n)E (511 (Epg.no) |
1/2
+ VR [a} (Epone) +03(Ers n) | a1 (B, n) (@1 (s, n2)
!
xF (31 (Epyonn)) +a} Epgn) {F (5.00(Ersn) |
x [2a1(Eps.n2) @ (Epg.n2) = 261 (E . n) (b1 (g n2 )1 E (511 (Ers.nc)

— [alz(EFS’ ng) — b%(EFs’ nz)] (E (%’ Ers, nZ)))/]] ’

12
2
2 @(Ers) 1| q5(Ers)  4y1(Efs,ny)
Epgn.) = 2220 4 ,
ai(Brps.n) = =5 =+ R2 + R,

b (E =l[
1 FSan—

5 12
GX(Ery) 41 (Efs. ng} (qz(EFs))
2 * 2R

R% R> 2R,
bl(EFsv nZ)

and i (Efs,n;) = .
Ja (Ers.n) + BAEpy.n)

which shows that the EEM in this present case is again a function of both the
size quantum number and the Fermi energy due to the presence of the band
nonparabolicity only.

The total DOS is given by
2g nzmax
v
Nopr(E) = (3”2— E) E R4y(E,n;)H(E — Eyz7) (1.69a)

ny=1

where, E,__ is the lowest positive root of the equation

m(E%,m)=0 (1.69b)

Combining (1.69a) with the Fermi-Dirac occupation probability factor, the 2D
electron statistics in UFs of Bi in accordance with the Cohen model can be
written as

N zmax

28y
nyp = (W) Z [QS(EFsv n;) + 04(EFrs, nz)] (1.70)

n;=1
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where,

172 T
03(Ers,nz) = {x/Rz @} Ersone) =0} Epsona) | @ Epgn) F (510 py.no)

—[a}(Epyn) =0} Epgn) | F (501 (Eryon) ]

and 04(Ey.n2) = 3 L) [03(Ers. n2)].

r=I1
(d) The Lax model
The electron energy spectra in bulk specimens of Bi in accordance with the Lax
model can be written as [147]

2 p? 2
E(l + «E) = 2”—* W)z 2%23 1.71)
The 2D electron dispersion law in this case can be written as
2
E(l +aE) = %"% % % (%) (1.72)
The EEM in this case assumes the form
m*(Eps) = /mimy(1 + 20 Epyg) (1.73)

Thus, we see that the EEM for the Lax model is a function of the Fermi energy
alone due to the band nonparabolicity.

The subband energy, the total DOS function and the 2D electron statistics for
this model can, respectively, be expressed as

h2
Ens(1+aE, ) = %(nzn/dzf (1.74)
mlm ~max
Nopr(E) = 2= >" (1 + 20 E)H(E — Ey ) (1.75)
n,=1
JmimakgT "2
nap = SRS N (1 + 20 By ) Folnya) + 20ks T Fi(0,)] - (176)
n;=1
EFS - Emg
h s — Z
where, n,, T

(e) The ellipsoidal parabolic model
The 2D dispersion relation, the EEM, the subband energy (E_,), the total DOS,
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and the 2D electron statistics for this model can respectively be written as

e (TR h*k; R\ (n.m\> -
_(2m1)+ 2my +(%)(dz) (77

m*(Eps) = (y/mimy) (1.78)
Nopr(E) = W ff H(E — Ep) (1.79)
ny,=1
Epy = (;Lz ) ("1”)2 (1.80)
ms ) \d.
Nap = [W} S Fotny) (1.81)
=1

where, 1,3 = (kpT)™! [EFS — E,,zg]

1.2.5 The EEM in UFs of IV-VI Semiconductors

The dispersion relation of the conduction electrons in IV-VI semiconductors can be
expressed in accordance with Dimmock [221] as

Eq 12k 1Pk Eq  W2k2 | h°k?
[5——5’0——5— e =0 I g = PYk; + P2
(1 82)
Where € is the energy as measured from the center of the band gap Ego, mt and
mE ; represent the contributions to the transverse and longitudinal effective masses

of the external L+ and Lg bands arising from the k.p p perturbations with the other

2
bands taken to the second order. Using e = E + (E 0 /2) , Pf = 03 Ego PH2 52’550
1

(m} and m;“ are the transverse and longitudinal effective electron masses atk = 0)
in (1.82), we can write

[ O R2k? Rz | Rk Rk
E — ——||l+aE+a+ +o+ = +

2 2m,  2m;

2m; 2m 2m;" 2m; 2my  2mf
(1.83)
The 2D dispersion relation of the conduction electrons in I'V-VI materials in UFs for
the dimensional quantization along z direction can be expressed as
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m2k2
E(1 +aFE)+«aE s
2x4
2,2 27,2
Y n2k2 N Rk \ [ Rk N hky W R2k?
2x1 2x2 2x4 2x5 2x1
(1 +aE) W (n.m 2 B (n.m 2 thf
_ aE)—— —a—
2x3 \ d; 2x3 \ d;

2x4

hzkf E W (n.m\? 1 E R2k2
+ 2 ) +eE— (=) -+ +

2x5 ¢ 2x¢ ( d, ) ( @E) 2x1

R\ 7 (nor)2
I NG (i

2xy ) 2x¢ ( d; )

25

s
2x)

h2k§ B (n.r\> "2 n,mw 2
+—)—a— = — =
2xs5 2x3 d, ) 2x6 \ d; )

h2k2 hzkz FLZ R 2
=% L Ty il (1.84)
2m 2my 2m3 \ d;
where
n my + Zm;r 3m;rml+ _ m; +2m,
X4 =my; , X5 = » X6 = y XL =1y, X2 = )
! 3 2m;" +mf ! 3
3m; m; m +2mj} 3mimy
X3 = ,mp =m;,,my = andmg— ¥ ol
2m; +m; 3 mf + 2mj

Substituting k, = rCos6 and ky, = rSinf (where r and 6 are 2D polar coordinates

in 2D wave vector space) in (1.84), we can write

[ 1 (h2C0s20
rg|la +
4 X1

X5

n W (n.m 2 (2 Cos?0 "
o
2x3 d, X4

R2Sin%0\ [ K2Cos?6 N K2 Sin%0
X2 X4

2] h*Cos?0 N h%Sin%0
P22
2 m mo

X5 X1

) Cos?0  Sin%0 N Cos?6
+R(1 + aE) +—— ) -raE|——+
X1 X2 X4

. Eh2 n.m\? U4 k) R (n.r\? I
ok — - aE)— -«
2x6 \ d; 2x3 \ d

Z

thinZB) N (h2C0x29
o

4x3x6

+h2Sin29 R (n.m\?
X2 2x6 \ d,

xs

()]

Sinze)]
—[E(1 +E)

(1.85)

The area A(E, n;) of the 2D wave vector space can be expressed as

AE.n))=J1— T

where

and

in which 0

(1.86)

(1.87)

(1.88)



26 1 The EEM in Ultrathin Films (UFs) of Nonparabolic Semiconductors
B\ (Cos?0  Sin0\ (Cos?0  Sin26
al— + + ,
4 X1 X2 X4 X3
R2 Cos?0  Sin%0 B2\ (nam\? [ Cos%0  Sin%0
b=+ + +oafl— +
2 m my 2x3 d, X4 X5
B2\ (nan\? (Cos?0  Sin%0 Cos?0  Sin%0
+a | — + + (1 +akE) +
2x6 d; mi my X1 X2

(Cos29 Sin20)]
—aFE +
X4 X5

o

and
E(l +aE) + «E LAYEEAY (1 +«E) LAYLEAY
c= o aE | — — o —
2x¢ d, 2x3 d,
nt n,m4
—a il
4x3x6 d;
/2 13(E,n;)d
T Nz —
(1.87)canbeexpressedas J| = 2 E)f A1(E,nZ)C03329+Bl(E,n,)SinZG where, :3(E, n;) =

2
¢, Ai(E, n;) = 411 (E, nz),
1 ah* (n.m 2 an? n,mw 2 1l4aE «FE
HEn) = | 14+m | —5— + + -—
X4 2)63 dz 2x1x6 dz X1 X4

h2
Bi(E,n;) = %IQ(E, n;) and

(E.n.) - al* (n.m 2 N al* (n.m 2 n l4+aE oF
SNy = m — -—— 1.
2 ¢ 2 2x3x5 \ d; 2x2x6 \ d; d; X5

Performing the integration, we get

T1 = nt3(E, ny)[A1(E, ny)Bi(E, n)]~ /2 (1.89)

From (1.88) we can write
- ozt32(E, n.)h*

© 2B}(E,ny) (190)

where
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o0
(a1 + a2z (a3 + asz?)dz

I = — (1.91)
[@)? + 221
0
in which a; = xll,az = xiz,z = tanf, 6 is a new variable, a3 = ﬁ,ag, =
xis and (@)? = (g:ggzg) The use of the Residue theorem leads to the evalua-

tion of the integral in (1.91) as
[a1as + 3araq] (1.92)

Therefore, the 2D area of the 2D wave vector space can be written as

7t3(E, ny) 1 (1 3\ an(E, n)k
A(E,n;) = l———+ =) == (1.93
(E. n2) JAL(E, n)B\(E, n,) { X5 (x1 * xz) 8B} (E, n;) } (159

The EEM for the UFs of IV-VI materials can thus be written as

2

I
m*(E, n;) = 7 105(E, n2)] (1.94)

EZEFS

where,

6(E.n2) = 1— 3)""3<E”’Z)h4[A(E VBY(E.n)]”!
s(Bn) = 8IBI(E.np? | 1 P

\/AI(E n2)B1(E, n){t3(E, ny)Y — t3(E, n;)

B E, 172 TANE, n)]7 /2
{ [AL(E, ny)Y M] +3BI(E.n) [M] H

—

2 A1(E, ny) B(E,n;)

1 t3(E, ny)ah? 1 /1 3 _
e T —(=+=)BiEno
8 JAI(E,n;)Bi(E, ny) X5 \x1 X2

x [(BUE, n )13 (B, no)) = 2B1(E, n) (B (B, o)) 13(E. )|
Thus, the EEM is a function of Fermi energy and the quantum number due to the

band nonparabolicity.
The total DOS function can be written as

zmax

Nar(E) = (5= )Z%(En)H(E Eno) (1.95)

where the subband energy (E,,,,) in this case can be written as
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R (n.m 2 R (n.m 2
En (l + O‘Enzlo) + aE"“O_ng J —(1+ aE"le)_2x3 R
Zz Zz

DOV A N . S R .2 ol B (1.96)
2x3 \ d, 2x6 \ d; 2m3 \ d;
The use of (1.95) leads to the expression of 2D electron statistics as

n
v

8
map == > [Tso(Ers, n2) + Teo(Ers, n2)] (1.97)

ny=1

Zmax

s
where Tso(EFy, n;) = 2EE1) and Tgo(Epy, n) = > L(r)Tso(EFs, ny).

r=1

1.2.6 The EEM in UFs of Stressed Semiconductors

The electron energy spectrum in stressed Kane-type semiconductors can be written
[222-225] as

ke \? ky \? ko \°
o)) Gy o
ao(E) bo(E) co(E)
where
- 2.2 /
_ KoE) - 2C3e3, | ((3E
[do(E))* = = = Ko(E)= | E - Cie — =22 | =2 ),
Ao(E) + 3Do(E) 3B, [\2B;
C is the conduction band deformation potential, ¢ is the trace of the strain tensor &
Exx Exy 0
which can be written as € = | &y, €y, 0 |, C2 is a constant which describes the
0 0 e

strain interaction between the conduction and valance bands, E é =E, + E—Cs,
B5 is the momentum matrix element,

— a0+ C 3b b

Ao(E) = [1 _ (ao-i-/ 1) Og/xx _ of ,
E, 2E, 2E,

a 1(3 +2m), b 1(7 m), d 21

apg = —— m), =—-(U—m), = —,

0 370 °=3 =3

I,m,n are the matrix elements of the strain perturbation operator, Do(E) =

M, ar
(doﬁ)E—g,
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_ Ko(E) _ Ko(E)

bo(E)]? = — — , E)? == ,

[bo(E)] Ao(E) — 1Do(E) [co(E)] To(E)
— _ (@ +C1)  3bos,.  boe

and Lo(E) = |:1 — Eg, Eg, — 2Eg,:|

The 2D electron energy spectrum in UFs of stressed materials assumes the form

K2 K} 1
_ e
[do(E)1>  [bo(E)?  [co(E)]

S(n.m/d;) = 1 (1.99)

The area of 2D wave vector space enclosed by (1.99) can be written as
A(E, n;) = 1 PX(E, n;)ao(E)bo(E) (1.100)

where P2(E, n;) = [1 — [n 7 /d,Co(E)]*].
The expression of the surface EEM in this case can be written as

2

1)
m*(Eps,nz) = 7[96(15,'%)] (1.101)

E=EF;
in which,

O6(E, o) = [2P(E.no) (P(E, n)Y ao(EYbo(E) + (P(E, n)) (o (E)Y bo(E)
+P(E,n) Y bo(E)Y ao(E) |

The EEM in this case is the function of Fermi energy and the size quantization
number due to the presence of stress only.
Thus, the total 2D DOS function can be expressed as

Nzmax

) > O6(E.n)H(E — Eyy,) (1.102)

n;=1

v

Nar(E) = (5=

The subband energies (Ej,,,,) are given by
co(En,,,) =n;m/d, (1.103)

The 2D surface electron concentration per unit area for UFs of stressed Kane-type
compounds can be written as

Nzmax
v

nap = 3= 3 [Tsi (Ers.n) + TexErs. ;)] (1.104)

ny=1
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where
Te1(Ery, n2) = [P*(EFs, n)ao(Ers)bo(EFs)]

N
and Tey(Epy, nz) = L) To1(EFs, n2).
r=1

In the absence of stress together with the substitution, 322 = 342 (Eg/4m.), (1.98)
assumes the same form as given by (1.16).

1.2.7 The EEM in UFs of Tellurium

The dispersion relation of the conduction electrons in Te can be expressed as [226]
E = ynk? + yok? £ [Y3K2 + 3k (1.105)
where, ] = 6.7x 1071 mev.m?, Y =4.2x 10710 mev.m?, Y3 = 6X 1078, mev.m

and Y4 = 3.6 x 1078 mev.m
The 2D electron energy spectrum in ultrathin films of Te assumes the form

2 . Tn, 2 2 _ ng 2 %
ks = ¥s(E) — Ve p Y7 | Yg(E) 7 (1.106)

FAEY Y2 +4
Where’ '(ﬁs (E) = |: lez] w() == ;7 w7 w4«/7 1& (E) = 111/4 4312://:;p4 "//2 1//3
‘//z

The EEM in this case is given by

2

* h /
m*(Epg,n;) = > [t30(E. )] (1.107)

E=Ep;

,71/27Y
where,mo(E,nz):{ws(E) %(”") iw7[w§<E>—(”d—'f)] }

It appears that the EEM in UFs of Te is a function of Fermi energy and size
quantum number which are the characteristics of such systems.
Thus, the total 2D DOS function can be expressed as

Nzmax

Napr(E) = (%) > lo(E.n) H(E — Ey ) (1.108)

ny;=1

The subband energies (E,,,) are given by
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En., = V1(n,m/dy)? £ y3(n,m/dy) (1.109)

The 2D surface electron concentration per unit area for UFs of Te can be written

as

Nzmax

nap = i—v Z [t20(EFs, n2) + t41(E g, n2)] (1.110)

ny=l1

N
where 41 (EFg, n2) = > L(r)tao(EFs. nz).

r=1

1.2.8 The EEM in UFs of Gallium Phosphide

The energy spectrum of the conduction electrons in n-GaP can be written as [227]

h2k2 2

E =
2m* 2 *

1/2
2 2 h4k(2) 2 2 !
[A'k2 4 k2] — g 2 k2 + Vel + Vgl (1.111)

where, K¢ and | V| are constants of the energy spectrum and A =1
The 2D electron dispersion relation in size quantized n-GaP can be expressed as

2 2 2 2 2 172
E = ak?® + C(n.m/d)* + |Vg| — [Dks 4 VG |? + D(n,m/d,) ] (1.112)

in which, a = 2m* + 2’”\*’ C= 2 \T and D = (hzko/m?“)2

The subband energy (Ej, ;) are given by

172

Enay = Cne/d)? + Vo = [IVol* + Dan. /do)? (1.113)
Equation (1.112) can be expressed as

k2 = t4p(E, ny) (1.114)

in which, t42(E, n.) = [{2a(E — t1) + D} — {[2a(E — 1)) + D? — 4a*[(E — 11)?
—nl}'/2], 1 = |Vg| + C(mn;/d)* and 1 = |VG|* + D(wn;/d;)*
The EEM can be expressed from (1.114) as

hZ
m*(Eps,n;) = th/tz(Ethz) (1.115)
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It appears that the EEM in UFs of GaP is a function of Fermi energy and size
quantum number due to the presence of the system constant & .
The total DOS function is given by

N zmax

Napr(E) = 45# > [thh(E.n)| HE — Ey ) (1.116)
ny=1

The electron statistics in UFs in n-GaP assumes the form

Nzmax

> [2(Ers no) + 133(Eps, )] (1.117)

n;=I1

ny 8v
D =
41 a?

)
where, 143(Eps. n;) = > L(r) [ta2(EFs. 1) ]
r=1

1.2.9 The EEM in UFs of Platinum Antimonide

The dispersion relation for the n-type PtSby can be written as [228]

=\2 =\2 =2 =0 =4
(52050~ G (- m— v G =7 ) = 1

=, =, =, _ zn -,

where w; = (Ao%—l("%),wz = Ao("T),wg = ((ﬁ)%—l—v(%),am =
:2 :2 2 —_ -

v%, L =1 (%) , Ao, 1, 80, v and n are the band constants and a is the lattice

constant.
The (1.118) can be expressed as

[E+ okl + 02| [E+ 80— 03k? — wuk?| = G2 +K)? (1.119)

The use of (1.119) leads to the expression of the 2D dispersion law in UFs of
n-PtSb; as

k2 = ty4(E, ny) (1.120)

where,

ta4(E, n;) = [2A9]7" [—Alo(E, nz) + \/A%O(E, nz) +4A9An(E, ”z):| (1.121)

Ag = [I1 + wiw3], A1o(E, ny)
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2 2 2
= [wsE + w; [E + 80 — w4 (&) ] + wrw3 (%) + 21 (nnz) }
d; d; d;
and
mn 2
A11(E,HZ)E[E[E+80—0)4( Z) }
d;
n T, 2 E+s T, 2 I T, 4
w — w. —
2 dz 0 4 dz 1 dz

The area of kg space can be expressed as

T
A(E, n;) = EDM(E,nz) (1.122)
The EEM can be written as
* h2 /
m*(Efg,n;) = —— 44(EF57 nz) (1.123)
4A9

It appears that the EEM in UFs of P¢Sb; is a function of Fermi energy and size
quantum number which is the characteristic features of such systems.
The total DOS function assumes the form

Nzmax

P D (B (E — Ey) (1.124)
ny=1

Nopr(E) = o

where the quantized levels E,_, can be expressed through the equation
E 2! Tn, 2 48 Tn, 2
= — | W — .
nz14 2 dz 0 4 dz
2
n n; 2 4 Tn; 2
w _
2 d. 0 — w4 .
4 4 27 /2
n; Tn; n;
411 — w26 1.125
+[l(dz)+w2w4(dz) w20(dz):H ( )

The electron statistics can be written as
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p = (271)2 2A9 Z /—[f44(E n)1f(E)dE

_En

Nzmax

mp = —4 1 Z [ta4(EFs,n;) + tas(EFg, nz)] (1.126)

where t45(EFps, n;) = z L(r)[tsa(EFs, ny)]

r=1

1.2.10 The EEM in UFs of Bismuth Telluride

The dispersion relation of the conduction electron Bi;Te3 can be written as
[229-231]

E(1 4+ «E) = @ik + ok, + w3k + 2wak:k, (1.127)
where
N h2 R L
w = —a1, = —9), = —033,W4 = —U
1 2m0 11, W = 2m0 22, W3 2m0 33, W4 2m() 23

in which o171, @22, @33 and op3 are system constants.
The 2D electron dispersion law in UFs of Bip Te3 assumes the form

_on,m
E(l14+aF) =w( p

X

)2+ @ak; + @3k? + 2wk ky (1.128)
The area of the ellipse is given by

An(Ev nZ) -

T |:2m0E(1 +akE)
V22033 — 45%3

The EEM can be expressed as

e —an( d”)z] (1.129)

mo(1 + 2a EFy)
A/ 0220033 — 4553

It appears that the EEM in UFs of Bi, Tes is a function of Fermi energy due to the
presence of the band nonparabolicity.
The total DOS function assumes the form

m*(Eps) = (1.130)
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gum nymax
0
! 5 2 (14+20E)H(E — E,5)  (1.131)

Nopr(E) = — —
7'[77,2«/(1220(33 — 40[23 n.=l1

where, (E,,,5) can be expressed through the equation

_ fnym 2
Enys(1+ @B, =1 (= (1.132)
X

The electron concentration can be written as

k T mo Nzmax
Nap = BﬁfV( — — 2) Z [(1 +20E,, ) Fo(nn,s) + 20k T Fi (115)]
T Vanaz —4an” ) 2
(1.133)
Eps—En.
where, 1,,; = %

1.2.11 The EEM in UFs of Germanium

It is well known that the conduction electrons n—Ge obey two different types of
dispersion laws since band nonparabolicity has been included in two different ways
as given in the literature [232, 234].

a. The energy spectrum of the conduction electrons in bulk specimens of n—Ge
can be expressed in accordance with Cardona et al. [232, 233] as

1
E0 h2k2 Eg20 5 h2 2

where in this case mi‘ and m’ are the longitudinal and transverse effective masses
along <111> direction at the edge of the conduction band respectively.
Equation (1.134) can be written as

h2k2 h2k? h2k2
S — E(1 +«E ) - +2«E z 1.135
2nr, (1+aE) +a zmﬁ (1+2akE) 2m>ﬁ ( )

In the presence of size quantization along k, direction, the 2D dispersion relation
of the conduction relations in UFs of n-Ge can be written by extending the
method as given in [235] as

Rk2 Ik

* *
2m] 2m;

=y(E,ny) (1.136)
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* %k * m”j_+2mﬁ
where, mj =m’, m; = >
2
(E.n))= | EQ +aE) — (1 +2aE) R (nm 2+ R (ner)?
Jn.) = — o _ o
Vs * 2ms \ d. 2m3 \ d.
3mim*
x _ompm
and ms = 2m|*+mj

The area of ellipse of the 2D surface as given by (1.136) can be written as

2 \/mim}

A(E, n) = ==

y(E,ng) (1.137)

The EEM can be expressed using (1.137) as

AR
o _ i 2w E e — 2oy o (T 1.138
m*(Erg. ) m[<+am (a)2m§(dz)j| (1.138)

Therefore, the EEM is a function of Fermi energy and size quantum number due
to the presence of band nonparabolicity only.
The DOS function per subband can be expressed as

Ve 2 2
Nop(E) = dymimy [1 +2aE — 2o (h— (”nz) )] (1.139)

h? 2m3 \ d.
The total DOS function is given by
Nzmax

Napr(E) = %,/mfmz Z

n;=I1

B2 (7n. 2
X |14+ 2aE —2a i\ H(E — E; 16) (1.140)
m3 \ d;

where, E,_,, is the positive root of the following equation

2
h? (7n, 2 W (nn, 2
Enzm(1+aEnZ|6)—(1~|—2aE,,Z|6) M dz 4o 2—’"?; d—z =0

(1.141)
Thus combining (1.140) with the Fermi Dirac occupation probability factor, the
electron statistics in this case can be written as
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ng, v
4 i T "2

7'[77,2 Z [(Al(nz) + 2aEn216)F0(En216) + 2OlkBTFl (Eﬂzlé)]

ny=1

np =

(1.142)

where A (n;) = [1 4 2a(R?/2m%)(n /d;)?] and s = ﬁ[Epw —Ep ]

b. The dispersion relation of the conduction electron in bulk specimens of n—Ge

can be expressed in accordance with the model of Wang and Ressier [234] and
can be written as

2
N e N A L AN
E= o T o W\ T\ S Nz )=\ o
m” mJ_ mJ_ mJ_ m” mH

(1.143)
_ — . «\2
where & = Cm? /IP2,C = 144, A = §(0*/Eqom?) (1 - 5) . d1 =
— ( 4m* m* _ _ _
d(—5L).d =084 2 =22m;/h?)? and & = 0.005A.
Therefore the 2D dispersion law can be expressed as
E = As(n,) + A(n) B —c1 8 (1.144)
R (7. 2 _ 12 T, 2
where As(n;) = — 1 —e - ,
2m3 \ d; 2m3 d;
o B\ (n.7)? RA: WPk
A =(1-d d p=—= 2.
6(12) |: 1(2m§) ( d, ) and 2mj + 2m3
Equation (1.144) can be written as
R2k2 k3
—=x Y — I1(E, n,) (1.145)

* *
2m] 2m;

where I (E, n,) = (2é1)~! [Ag,(nz) — [A2(n.) — 46, E + 451A5(nz)]1/2]
From (1.145), the area of the 2D k; -space is given by

2m\/mim}

A(E.n:) = =5

IL(E, nz) (1.146)

The EEm can be expressed using (1.146) as

m*(Epg,nz) = /mim3[11(Eps, n;)] (1.147)

where {I1(E, n.)} = 5%[11(E, n,)]

Therefore, the EEM according to this model is a function of Fermi energy and
size quantum number due to the presence of band nonparabolicity only

The DOS function per subband can be written as
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4 E3 *
Nap(E) = ;_ﬂ';;z%{ll (E,n)Y (1.148)

The total DOS function assumes the form

/ Zmax

Z {II(E,n)Y H(E — Ey_,;) (1.149)

ny=l1

Nopr(E) =

where, the subband energy E,_, are given by

2 2 2 2
Eny = 2 (ﬁ) 1-é ( n ) (ﬂ) (1.150)
7 omi \d YA

The electron statistics can be written as

4W Zmax

nap = D lta6(Ery, no) + ta7(E s, n2)] (1.151)

ny=l1

s
where t46(E g, n;) = 1(EFg, nz), ta7(EFps, n;) = > L(r)(tas(EFg, nz)).

r=1

1.2.12 The EEM in UFs of Gallium Antimonide

The dispersion relation of the conduction electrons in n-GaSb can be written as [236]

where Eyy = | Ego +

k> E) E 2H2k> 1\]?
:___g0+_g0 1+ - (-——) (1.152)
2mo 2 2 Eyy \mc  mo

510717
2112+ 1)
Equation (1.152) can be expressed as
h2k?
2m,

= l3(E) (1.153)

where

I(E) = [E + Ej — (mc/m,))(ég,o/z) — [(E9/2)* + [((Ep)*/2)(1 = (mc/mo))]

+ [(Ep/2 (1 = (me/mo))* + EEp(1 — (me/mo))]'?]
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The 2D electron dispersion relation in this case assumes the form

W2k R
— 4

2 _
. 2mc(anT/dz) = I36(E) (1.154)

Using (1.154) , the EEM in x—y plane for this case can be written as
m*(EFs) = mc{]36(EFs)}/ (1.155)

It appears that the EEM in this case is a function of Fermi energy alone and is
independent of size quantum number.
The total 2D DOS function can be written as

antU(
megy

Napr(B) = (Z5) D" {Use(EWH(E = B} (1156)

ny=1

. o}
where, the subband energies E,,,  can be expressed as u

h2
L6(En, ) = ﬁ(nzn/dz)2 (1.157)
c

The 2D carrier concentration assumes the form
nzma.\'

) 2 liss(Ers.ne) + ts6(Ers. o)) (1158)

megy

nap = (W

Z

2 2
where i5s(Ery. ;) = [laﬁ(EFs) - £ (47) }

s
and ts6(Epg, n;) = . L(r)tss(EFs, nz)

r=1

1.3 Results and Discussions

Using (1.5) and (1.9) and taking the energy band constants as given in Table 1.1, we
have plotted Fig.1.1. The EEM in UFs of Cd3As; as a function of film thickness
and have been shown in Fig 1.1. For comparison, we have also plotted the EEM in
the absence of the crystal-field splitting for the three- and the two-band models of
Kane. Figure 1.1 exhibits the effect of size quantization on the EEM in general, and
bears a good amount of discussion. It appears that the effect of van Hove singularity
makes the EEM to suffer severe discontinuities. Assuming a carrier degeneracy
of 10" m~2, Fig.1.1a shows that the EEM can reach upto about 10% of its free
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Fig. 1.1 aPlot of the EEM as function of film thickness for UFs of n-Cd3 As; considering (1.5). The
plots for three-and two-band models of Kane have also been exhibited in which, m]‘_ = 0.0139m

and m, = %(m’fl + m* )mg = 0.0105my are the corresponding bulk values. b Plot of the EEM as
function of film thickness for UFs of n-Cd3As; for all cases of Fig. 1.1a at different three subband
levels

mass at a film thickness of 5nm, which is quite high from its bulk value and may
degrade the carrier mobility to a great extent. In the same figure, we have also
demonstrated the effect of assuming only the lowest level subband. It appears that
with this approximation, the EEM approaches to the bulk value m* = 0.0139m
more quickly than that by considering the subbands. With this, it is now more obvious
to note that the assumption of a single subband occupancy throughout leads to the
practical approach to the determination of EEM. All the models of the single subband
occupied curves tend to merge with the bulk value near 50 nm thickness. The increase
in the EEM with the reduction of film thickness is due to the increased Fermi energy
of the material. It must be noted that with such a highly doped system, the Fermi
energy is determined by the carrier statistics equation. It is this Fermi energy which
should be used in the determination of the EEM. This is not the case in an intrinsic
material. In such a case, the Fermi energy coincides with the intrinsic energy level,
which is very near to the energy band gap of the material and thus the variation of
the energy band gap with the film thickness needs great concern. The variation of
the energy band gap however is significant at extremely narrow film thickness, more
in the region below sub-4 nm, a context which shall be highlighted in Chap. 8, where
Applications and brief review of experimental results have been discussed. Thus, all
the curves below such thickness are expected to suffer deviation with our existing
theoretical model, if plotted. In all the subsequent geometry dependent curves, we
have restricted ourselves above sub-4 nm regime. Since Cd3As; crystals are usually
grown as degenerate n-type specimens, the Fermi level mass will be the effective
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mass of consideration for transport in Cd3As,. Hence in the quantum limit, the
effective mass at the Fermi level corresponding to the lowest electric sub-band will
be the effective conductivity mass for electron transport in Cd3As;. It appears from
these figures that the Fermi level mass is significantly influenced by the effects of
size quantization particularly in tetragonal semiconductors like n- Cd3As; having
crystalline field effects and energy-dependent anisotropy of the effective mass. It has
been found that the effective mass at the Fermi level depends on the size quantum
number due to the combined influence of crystal-field splitting and the anisotropic
spin-orbit splitting constant, resulting in different effective masses at the Fermi level
corresponding to different electric subbands (the different effective masses being the
same in the absence of field splitting as can be seen from Fig. 1.1aand b). It has further
been observed that the different effective masses corresponding to different electric
subbands closely approach each other, for a given film thickness, with increasing
electron concentration and for a given electron concentration, with increasing film
thickness. These are in conformity with expectations since both with increasing
electron concentration at a given film thickness and with increasing film thickness
for a given electron concentration, the effects of size quantization gradually become
less and less significant. As in bulk specimens, the Fermi level mass increases with
increasing carrier concentration at a given value of the film thickness. Besides, for
particular values of the film thickness and electron concentration, the combined effect
of § # 0and A1 # A effect of crystal-field splitting is to reduce the effective mass
corresponding to any particular subband. It may further be noted that if the direction
normal to the film is taken as one of the transverse directions of the single ellipsoid
at the zone center and not as the longitudinal direction as assumed in the present
chapter, the effective mass at the Fermi level corresponding to any given subband
would be somewhat different. Nevertheless, since the mass anisotropy in Cd3zAsois
indeed small as can be seen from the values of Pjjand P, which are very close to each
other, the arbitrary choice of the direction normal to the film with respect to the major
axis of the ellipsoid would not result in a significant change in the effective mass at
the Fermi level corresponding to a particular subband. The Fermi level mass should
gradually become closer to that of bulk specimens with increasing film thickness
since, for such thicknesses, the effects of size quantization are greatly diminished.
This has also been confirmed in our present work. Furthermore, the general features
of the effects of size quantization on the effective mass as discussed here would also
be valid with the only exception that the effective mass at the Fermi level will be
independent of the size quantum number in the absence of crystal-field splitting and
anisotropic spin-orbit splitting constant for the III-V small-gap semiconductors since
these semiconductors have nonparabolic energy bands obeying Kane’s dispersion
relation and the present chapter is based on the generalized Kane’s model.

Figure 1.2 exhibits the plot EEM in UFs of n-CdGeAs; as a function of film thick-
ness in accordance with the three- and two-band models of Kane together with the
incorporation of the crystal-field parameter. It appears that the effect of the crystal-
field splitting increases the EEM sharply below sub-20nm. The EEM also increases
about 7 % at 5nm and converges to its bulk value beyond 20 nm at the same value of
electron degeneracy. The effect of film thickness on the EEM of III-V semiconduc-
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tors, most important with respect to extremely low field high mobility of which are
n-InAs, n-InSb, and n-GaAs has been exhibited in Figs. 1.3,1.4 and 1.5, respectively.

The effect of nonlinearity of the energy band structure on the respective EEMs
has been clearly indicated. It appears that in the determination of the EEM, it is
sufficient to take the two band model of Kane to explain the variation of the EEM
over a wide range of thickness. The deviation from the three-band model of Kane is
much less indicating that the complexity in the energy band model can be reduced
to a large extent by considering only the two-band model of Kane. This is extremely
important with respect to the numerical computation in device analyses performance
where sufficient longer computation time affects the efficiency in characterizing the
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compact model with respect to the said materials. In all the Figs. 1.3, 1.4, 1.5, we have
demonstrated the effect of two widely known models viz. the three and the two band
models. Figures 1.6 and 1.7 exhibits the variation of the EEM with respect to the film
thickness for the ternary and quaternary materials at same carrier degeneracy level.
It appears that at an alloy composition x = 0.3, the EEM in both the cases tends
to about 0.1 times the rest mass at film thickness of 5nm. The effect of variation of
EEM on the alloy composition for these two materials has been exhibited in Fig. 1.8.

The effect of increasing the alloy composition increases the EEM for the said
two materials. For the purpose of comparison, we have also plotted the variation of
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the bulk effective mass with the alloy composition. For the quaternary material, the
difference between the two energy band models is not much, as can also be seen from
Figs. 1.6 and 1.7. The increment in EEM is rather linear in case of InGaAsP than that
of HgCdTe. This also exhibits the variation of the electron mobility in these systems
as the alloy composition changes. It appears that with increase in X, the mobility falls
down assuming a constant relaxation rate.

The effect of carrier degeneracy on the EEM in nonlinear optical, III-V, ternary
and quaternary materials have been exhibited in Figs. 1.9, 1.10, 1.11, 1.12, 1.13,
1.14, 1.15. Tt appears that the EEM for all the aforementioned materials at 10nm
film thickness are almost invariant below sub 10> m~—2. The effect of inclusion of
both the higher order subbands and the lowest subband has been exhibited. From
all the curves, it appears that the EEM bears almost exponential relation with the
carrier degeneracy. This notion comes straightforward from the carrier concentration
relation (1.27).



1.3 Results and Discussions 45

0.10 T T

n-in,_ Ga As P
-x X Ty vy

n =1
0.00 k. A
0.2 0.3 0.4 0.5

X

Fig. 1.8 Plot of the EEM at the lowest subband as function of alloy composition in UFs of n-
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Fig. 1.9 a Plot of the EEM as function of surface electron concentration in UFs of n-Cd3As;. The
plots for three- and two-band models of Kane have also been exhibited in which, m*i = 0.0139mg
and m. = % (m¥, +m*%) mo = 0.0105mq are the corresponding bulk values. b Plot of the EEM
as function of surface electron concentration in UFs of n-Cd3As, at different subband levels for all
cases of Fig. 1.9

The variation of the EEM in II-VI materials like p-CdS has been exhibited in
Figs.1.16 and 1.17 as functions of film thickness and Fermi energy respectively.
In these two figures, instead of obtaining the Fermi energy from the corresponding
carrier statistics, we have followed the opposite route, i.e., what values of the Fermi
energy makes the EEM to be very low or very high. A corresponding concentration
of that order can then be evaluated. A decision of this kind aids a good amount of
estimation in the optimization. Using this approach, we estimate that the EEM can
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soar up to 0.77 times rest mass in the higher valley, while for the lower valley, it may
plunge upto about 0.55 times rest mass.

The effect of valley degeneracy as we see from these two curves expresses much
in understanding the electron transport direction.

It appears from the two curves that the channel oriented along the lower valley
direction will most probably result in an increased value of current due to the low
EEM. It would have been of much interest to figure out how the energy band gap at
the two valleys changes with respect to the thickness and is left as an exercise to the
reader.

Figures 1.18 and 1.19 exhibit the effect of film thickness and the carrier concentra-
tion on the EEM of UFs of Bismuth. The effect of increasing the carrier degeneracy
has also been exhibited in Fig. 1.18. It appears that the EEM increases from its cor-
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responding bulk value sharply at the 5nm film thickness implying a tremendous
decrease in the carrier mobility.

Figure 1.19 exhibits the effect of different energy band model of Bi on EEM for a
varying surface electron concentration. It appears that at the lowest subband energy
level, there is almost no difference between the Mc Clure and Cohen model extracted
EEM, however there is a significant change in the Hybrid and Lax ellipsoidal model.
Figures 1.20, 1.21, and 1.22 exhibit the variation of the EEM at the lowest subband
level for QWs of IV-VI, strained InSb and Ge. The effective mass in IV-VI materials
exhibits strong variation for PbTe, an excellent thermoelectric material, whereas
least for PbSnSe. It also appears that the EEM of PbTe is higher than that of PbSnSe
and PbSnTe. With the advent of strained quantum effect devices, the analysis of
EEM in strained quantum wells becomes very much important. It appears that the



48 1 The EEM in Ultrathin Films (UFs) of Nonparabolic Semiconductors

Fig. 1.14 Plot of the EEM 0.16 7 T -
as function of surface elec- n-Hg, CdTe 1
tron concentration in UFs of t d,=10 nm /i
n-HgCdT Three Band Model ,i
0.12 b~ — Two Band Model F /4
"% [——m_=0.0278m, ’@ ;
e x=03 X &
>=-
-~ 0.08 p .
['S
w
& _ 2
0.04 | -
10° 10' 10°
15 -2
n,, (10" m”)
Fig. 1.15 Plot of the EEM 0.18 T v i |
as function of surface elec- “""1.XGaXA5yP1.y “
tron concentration in UFs of d=10 nm £
n-nGaAsP e Three Band Model £
P— — Two Band Model £
. ——m_=0.0657m, 'p‘?
£ x =03 |
< oazf
w
£
o
......w‘-""'
0.06 it e
10° 10’ 10

15 -2
n, (107" m”)

compressive and tensile strain does not tend to modify the respective magnitude of the
EEM in strained quantum wells of InSb. It should be noted that the EEM in Fig. 1.21
has been evaluated by considering the momentum matrix element B, =0.9 eVnm.
This is a bulk value. However, an arbitrary increase in this geometry dependent
parameter sufficiently reduces the EEM and thus finds extensive use in strained film
transitors. In Chap. 8, we shall be presenting a much detailed explanation of the
effect of uniaxial and biaxial strain on Si nanowires and the effect on energy band
gap. The variation of the EEM in Ge has been exhibited in Fig. 1.22 as function of
film thickness for the model of Cardona et al. The general trend of increase in the
EEM has also been exhibited here at least 6 times the bulk value \/m7m] for three
different carrier concentration levels.
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We observe that considering the various subband levels, the EEM exhibits a step-
functional decreasing dependence with increase in film thickness for UFs of all the
single valley materials. The combined influence of the anisotropies of the energy
band constants and the crystal-field splitting is to enhance the EEM as compared
with the corresponding which is based on two band model of Kane in the whole
range of thicknesses as considered in Fig. 1.1. The periodicity with respect to the
film thickness is the same in both the cases and is invariant of the energy band
constants.

The influence of quantum confinement is immediately apparent from Figs. 1.1,
1.2, 1.3, 1.4, 15, 1.6, 1.7 and 1.16, 1.18, 1.20, 1.21, 1.22 since the EEM depends
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strongly on the thickness of the quantum-confined materials in contrast with the
corresponding bulk specimens. The EEM changes with increasing carrier concentra-
tion suffering discontinuities with different numerical magnitudes. It appears from
the aforementioned figures that the EEM exhibits spikes for particular values of
film thickness which, in turn, depends on the particular band structure of the spe-
cific semiconductor. Moreover, the EEM from QWs of different compounds can be
smaller than bulk specimens of the same materials having multi valley conduction
band like in case of p-CdS, which is also a direct signature of quantum confinement.
This effect of the discontinuity on the EEM will be less and less prominent with
increasing film thickness. For bulk specimens of the same material, the EEM will
be found to increase continuously with increasing electron degeneracy in a non-
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oscillatory manner. The appearance of the discrete jumps in the respective figures
is due to the redistribution of the electrons among the quantized energy levels when
the size quantum number corresponding to the highest occupied level changes from
one fixed value to the others.

With varying electron degeneracy, a change is reflected in the EEM through the
redistribution of the electrons among the size-quantized levels. It may be noted that at
the transition zone from one subband to another, the height of the peaks between any
two subbands decreases with the increasing in the degree of quantum confinement
and is clearly shown in the respective figures. It should be noted that although the
EEM changes in various manners with all the variables as is evident from all the
figures, the rates of variations are totally band-structure dependent.

It is imperative to state that the present investigation excludes the many-body, hot
electron, broadening and the allied effects in the simplified theoretical formalism
due to the absence of proper analytical techniques for including them for generalized
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systems as considered here. We have also approximated the variation of value of the
work function from its bulk value in the present system. Our simplified approach
will be appropriate for the purpose of comparison when the methods of tackling the
formidable problems after inclusion of the said effects for the generalized systems
emerge. The results of this simplified approach get transformed to the well-known
formulation of the EEM for wide gap materials having parabolic energy bands. This
indirect test not only exhibits the mathematical compatibility of the formulation but
also shows the fact that this simple analysis is a more generalized one, since one can
obtain the corresponding results for materials having parabolic energy bands under
certain limiting conditions from the present derivation. For the purpose of computer
simulations for obtaining the plots of EEM versus various external variables, we
have taken very low temperatures since the quantization effects are basically low
temperature phenomena together with the fact that the temperature dependence of
all the energy band constants of all the semiconductors and their nanostructures as
considered in this chapter are not available in the literature. Our results as formulated
in this chapter are valid for finite temperatures and are useful in comparing the
results for temperature variations of EEM after the availability of the temperature
dependences of such constants of various dispersion relations in this context. It is
worth noting that the nature of the curves of EEM with various physical variables
based on our simplified formulations as presented here would be useful to analyze
the experimental results when they materialize. The inclusion of the said effects
would certainly increase the accuracy of the results although the qualitative features
of EEM would not change in the presence of the aforementioned effects.

It can be noted that on the basis of the dispersion relations of the various quantized
structures as discussed above the low field carrier mobility, drive currents in field
effect transistors, Fowler Nordhiem field current, the Debye screening length, the
plasma frequency, the activity coefficient, the carrier contribution to the elastic con-
stants, the diffusion coefficient of minority carriers, the third-order nonlinear optical



56 1 The EEM in Ultrathin Films (UFs) of Nonparabolic Semiconductors

susceptibility, the heat capacity, the dia and paramagnetic susceptibilities and the
various important DC/AC transport coefficients can be probed for all types of UFs as
considered here. Thus, our theoretical formulation comprises the dispersion relation-
dependent properties of various technologically important quantum-confined semi-
conductors having different band structures. We have not considered other types of
compounds in order to keep the presentation concise and succinct. With different
sets of energy band parameters, one gets different numerical values of the EEM. The
nature of variations of the EEM as shown here would be similar for the other types of
materials and the simplified analysis of this chapter exhibits the basic qualitative fea-
tures of the EEM. The reader can also explore the EEM for the leftover 2D materials
to enjoy the intricate computer programming and the 2D physics in this context. It
may be noted that the basic aim of this chapter is not solely to demonstrate the influ-
ence of quantum confinement on the EEM for a wide class of quantized materials
but also to formulate the appropriate carrier statistics in the most generalized form,
since the transport and other phenomena in modern nano-structured devices having
different band structures and the derivation of the expressions of many important
carrier properties are based on the temperature-dependent carrier statistics in such
systems.

For the purpose of condensed presentation, the carrier statistics and the EEM in
different materials as considered in this chapter have been presented in Table 1.2.

1.4 Open Research Problems

The problems under these sections of this monograph are by far the most impor-
tant part and a few open research problems from this chapter till the end are being
presented. The numerical values of the energy band constants for various semicon-
ductors are given in Table 1.1 for the related computer simulations.

R.1.1. Investigate the effective acceleration mass (EAM), density-of-state effec-
tive mass (DEM), concentration effective mass (CEM), conductivity effec-
tive mass (CoEM), Faraday rotation effective mass (FREM), and Optical
effective mass (OEM) from all the bulk semiconductors whose respective
dispersion relations of the carriers are given in this chapter.

R.1.2. Repeat R.1.1 for the bulk semiconductors whose respective dispersion rela-
tions of the carriers in the absence of any field are given below:

(a) The electron dispersion law in n-GaP can be written as [237]

1/2

— —\ 2
13—712]‘3+hzk-g A 1(2 + Pik> + D1k2k? (RL.1)
~ 2wt 2wt T2 2 e T B8y '
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where, A = 335meV, P; =2 x 107'%Vm, D| = pja; and a; = 5.4 x
1071%m
(b) In addition to the Cohen model, the dispersion relation for the conduction
electrons for IV-VI semiconductors can also be described by the models of
Bangert et al. [238] and Foley et al. [239], respectively.
(1) In accordance with Bangert et al. [238], the dispersion relation is given
by
I'(E) = F (E)kf + FZ(E)kz2 (R1.2)

2 2
where, ['(E) = 2E, F{(E) = EflE + Eik/ + E+E L Fy(E) =

2c2 2
E+gg+<s,£;%},’ R} =2.3x107"%(eVm)?, €2 = 0.83x 1071 (eVm)?,
0% = 1.3R?, 57 = 4.6R?, A, = 3.07eV, A = 3.28¢eV and g, = 4.

It may be noted that under the substitution S = 0, Q; = 0, R% =

2 272 21,2

%, C52 L Eg , (R1.2) assumes the form E(1 + @ E) = Ik Ik
L

Zm’i W‘T
which is the s1mp11ﬁed Lax model.
(i1) The carrier energy spectrum of IV-VI semiconductors in accordance
with Foley et al. [239] can be written as

1/2
E+%—E(k)+HE (k)+E—} + P k2—|—Pk2] (R1.3)
) = L_ + ) 1 [I :

A2 TRk

where, E4 (k) = 71 + Pt E_(k) = m

contribution from the interaction of the conductlon and the valance
band edge states with the more distant bands and the free electron term,

1 _ 1 1 1 1 1 1 1 _
=1 [mw imm],—”f =1 [m—lc:I:—] For n-PbTe, P = 4.61 x

1071%eVm, Py = 1.48 x 1070 eVm, 22 = 10.36, 7 = 0.75, 710 =
11.36, 7 = 1.20 and g, = 4.

]:L22

(c) The hole energy spectrum of p-type zero-gap semiconductors (e.g. HgTe) is
given by [240]

k

ko

h2k? 3¢? 2Eg
E = k— In (R1.4)

+
2m% 1286 b4

where m is the effective mass of the hole at the top of the valence band,
€00 is the semiconductor permittivity in the high frequency limit, Ep =

2
moe __ mge
IR and kg = e

(d) The conduction electrons of n-GaSb obey the following two dispersion rela-
tions:
(i) In accordance with the model of Seiler et al. [253]
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E= [_Eg e a2 I Tofibh: | Gofatk)h?
2 2 2myg 2myy 2myg

(R1.5)
where oy = 4p?(E, + %A)[Eé(Eg + A)]~!L, Pis the isotropic momen-
tum matrix element, fi(k) = k‘z[k)%kg + kgk? + k?kf] represents the
warping of the Fermi surface, fo(k) = [{k*(k2k? + k2k? + k2k2) —
9k§k5k§}1/ k'] represents the inversion asymmetry splitting of the
conduction band, and &, Vg, and @ represent the constants of the elec-

tron spectrum in this case.
(ii) In accordance with the model of Zhang et al. [241]

E=[ES" + B Ka K +1E + EY Ko W +KOLES + BV Koy + E Ko 1]
(R1.6)

k4

k222 ket +k .
Ke,1= 632# [*‘kg L —i—ﬁ i —% —% , the coefficients are

in eV, the values of k are 10 (%) times those of k in atomic units
(@ is the lattice constant), ES” = 1.0239620, ESY = 0,E{" =
—1.1320772, E{) = 0.05658, E\" = 11072073, EZ’ = —0.1134024

and
EY = -0.0072275.

K4kt
where K41 = %«/21 |: L —% ,

(e) In addition to the well-known band models as discussed in this monograph,
the conduction electrons of III-V semiconductors obey the following three
dispersion relations:

(i) In accordance with the model of Rossler [242]

2k2 - 4 2 212 272 272
E = pye + a10k™ + Bio [kxky + kyk: + k; kx]
1/2
= 1o [KR02K2 + K22 + K23) — k222 (R1.7)

where @10 = @11 + a2k, Bio = Bi1 + P12k and Y10 = Y11 + yi2k, in
which, @y; = —2132x 1070 eVm*, @15 = 9030x 10~ eVm’, B =
—2493 x 1074 evm?*, 12 = 12594 x 107 eVm®, 7;; = 30 x
1073%eVm? and 71 = —154 x 10~*? eVm*.

(i) Inaccordance with Johnson and Dickey [243], the electron energy spec-
trum assumes the form

E 21,2 1 1 E 22_E 1/2
E:——g+h—k[ }+—g[1+4hkm}

2" 2 Lmo  myp 2m,  E,

(R1.8)



62

®

(€9)

()

1 The EEM in Ultrathin Films (UFs) of Nonparabolic Semiconductors

(Eg)+A) (E+Eg+2TA)
(Eg+2TA>(E+Eg+A) ’

/
c

Eg+% -
where, an? = p? [% i) =

0.139mg and m,;, = [L, - l]f

my, mo
(iii) In accordance with Agafonov et al. [244], the electron energy spectrum
can be written as

g 1= E Rk | DV3—3B | [ ki +ky +k:
2 2im* | 5 (zhz*) .
m
] (R1.9)
where, ij = (E§ + §P2k2) and B = —21/7 and D = —40 (%) .

The dispersion relation of the carriers in n-type Pbi_,GayTe with x=0.01
can be written [246] as

[ £~ 06062 — 0.072262| [ E + E, + 04112 + 0.037747

= 0.23k2 + 0.02k2 & [0.06E, + 0.061k? + 0.0066k2 | ks (R1.10)

where, E ¢(= 0.21eV) is the energy gap for the transition point, the zero
of the energy E is at the edge of the conduction band of the I point of the
Brillouin zone and is measured positively upwards, ky, k,, and k; are in
the units of 10 m~!,

The energy spectrum of the carriers in the two higher valence bands and the
single lower valence band of Te can, respectively, be expressed as [245]

_ 172
E = A0k + Biok? £ A% + (Bioko)?
and E = A + Ajok? + Biok? £ Biok, (R1.11)

where E is the energy of the hole as measured from the top of the valence and
within it, Ajg = 3.77 x 10712 eVm?2, Bjg = 3.57 x 107 eVm?2, Ajg =
0.628¢eV, (B10)? = 6 x 10720(eVm)? and A = 1004 x 1077 eV are the
spectrum constants.

The dispersion relation for the electrons in graphite can be written following
Brandt [252] as

1 1 1/2
E =SBy + Es] & [Z(Eg — E3)* + n%kz] (R1.12)
where, E; = A — 2y1 cos ¢o + 2ys cos? b0, po = %, E; =2y, cos? ol

and n; = (‘/75) ag(yo + 2y4cos¢p) in which the band constants are

A, Y0, 71, 72, V4, s, a6 and ce respectively.
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(i) The dispersion relation of the conduction electrons in Antimony (Sb)
in accordance with Ketterson [251] can be written as

2moE = o1 P + an P} + a33 PZ + 2003 Py P (R1.13)
and

2moE = a1 P} +ay P} +a3 P} +ay Py P, as Py P.+ag P, Py (R1.14)

where, a1 = J(a11 + 3am), a2 = J(on +3a11).a3 = o33, a4 =
o33, a5 = /3 and ag = «/g(an — 1) in which a1, a2, @33 and a3
are the system constants.
(j) The dispersion relation of the holes in p-InSb can be written in accordance
with Cunningham [247] as

_ 1
E=c(l+nafok’ £ 512v20e0/16 4+ 5y Eagak]l - (RL1S)

where 4 = o 4 64.6) = 478 ys = % by = 3bs + 204, b5 =
2.4%, fa = }x[sin2 20 + sin* 6 sin? 2¢], 6 is measured from the positive

z-axis, ¢ is measured from positive x-axis, g4 = sin@[cosze +
Lsin*0 sin2 2¢>] and E; = 5 x 1074 eV.

(k) The energy spectrum of the valence bands of CuCl in accordance with
Yekimov et al. [248] can be written as

h2k?
Ep = (v6 — 2;/7)2— (R1.16)
mo
and
P A [ A2 N
E = — 4|t A 9
Ls (V6+V7)2m0 > 1 + v 12m0+ (2m0 )
(R1.17)

where, y5 = 0.53, y7 = 0.07, A; = 70meV.

(1) Inthe presence of stress, x¢ along <001> and <111> directions, the energy
spectra of the holes in semiconductors having diamond structure valence
bands can be respectively expressed following Roman [249] et al. as

_ 12
E = Ak’ + [B72k4 + 82 + Brde(2K2 — kf)] (R1.18)

and
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(m)

R1.3.

R1.4.

R1.5.

R1.6.

R1.7.

R1.8.
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B D 1/2
E = Agk* + |:B72k4 +62 4 7%57(%3 - kf)} (R1.19)
where A6,_B7, D6_, and C_’6 are inverse mass band parameters in which
d6 = 17(S11 — S12) x6, Sij are the usual elastic compliance constants,
~ 2 d,S. .
B} = (B72 + %6) and 87 = ( 28\/?) Xe. For gray tin, d, = —4.1eV,l; =

~2.3eV,
2 2 2 2
A =19.25" B; = 2635, Dg =315 and ¢ = — 11125

The dispersion relation of the carriers of cadmium and zinc diphosphides
are given by [250]

E = |:,31 +f 25 ;:k)} K+ [[ﬂ4ﬁ3(k)x (,35 _F 25;:”) k2]

B2 (k) B\,
+882 (1 — 37) — 52(1 - 3T)k2] (R1.20)

k3 +k3—2k2
=
Investigate the EEM, EAM, DEM, CEM, CoEM, FREM, and OEM for ultra-
thin films, wires and dots of all the semiconductors as considered in R1.1
and R1.2, respectively.

Investigate the same set of masses as defined in (R1.3) for bulk specimens of
the heavily—doped semiconductors in the presences of Gaussian, exponential,
Kane, Halperian, Lax and Bonch-Burevich types of Band tails [121, 121] for
all systems whose unperturbed carrier energy spectra are defined in R1.1 and
R1.2, respectively.

Investigate the same set of masses as defined in (R1.3) for ultrathin films,
wires, and dot of all the heavily doped semiconductors as considered in R1.4.
Investigate the same set of masses as defined in (R1.3) for bulk specimens of
the negative refractive index, organic, magnetic, and other advanced optical
materials in the presence of an arbitrarily oriented alternating electric field.
Investigate the same set of masses as defined in (R1.3) for ultrathin films,
wires and dot of the negative refractive index, organic, magnetic and other
advanced optical materials in the presence of an arbitrarily oriented alternat-
ing electric field.

Investigate the same set of masses as defined in (R1.3) for the multiple
ultrathin films, wires, and dots of semiconductors whose unperturbed carrier
energy spectra are defined in R1.1, R1.2 and heavily doped semiconductors
in the presences of Gaussian, exponential, Kane, Halperian, Lax, and Bonch-
Burevich types of Band tails [121, 122] for all systems whose unperturbed
carrier energy spectra are defined in the same problems respectively.

where B1, B2, B4 and S5 are system constants, and S3(k) =
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R1.9.

R1.10.

RI1.11.

R1.12.

R1.13.

R1.14.

R1.15.

R1.16.

R1.17.

R1.18.

R1.19.

Investigate the same set of masses as defined in (R1.3) for all the appropriate
low-dimensional systems of this chapter in the presence of finite potential
wells.

Investigate the same set of masses as defined in (R1.3) for all the appropriate

low-dimensional systems of this chapter in the presence of parabolic potential

wells.

Investigate the same set of masses as defined in (R1.3) for all the appropriate

systems of this chapter forming quantum rings.

Investigate the same set of masses as defined in (R1.3) for all the above

appropriate problems in the presence of elliptical Hill and quantum square

rings.

Investigate the same set of masses as defined in (R1.3) for the appropriate

accumulation layres for all the materials whose unperturbed carrier energy

spectra are defined in R1.1 and R1.2, respectively.

Investigate the same set of masses as defined in (R1.3) for parabolic cylin-

drical quantum dots in the presence of an arbitrarily oriented alternating

electric field for all the materials whose unperturbed carrier energy spectra
are defined in R1.1 and R1.2, respectively.

Investigate the same set of masses as defined in (R1.3) for wedge shaped,

cylindrical quantum dots of the negative refractive index, and other advanced

optical materials in the presence of an arbitrarily oriented alternating electric
field and non-uniform lightwaves.

Investigate the same set of masses as defined in (R1.3) for triangular, cylin-

drical quantum dots of the negative refractive index, organic, magnetic and

other advanced optical materials in the presence of an arbitrarily oriented
alternating electric field in the presence of strain.

Investigate the same set of masses as defined in (R1.3) for conical quantum

dots of the negative refractive index, organic, magnetic, and other advanced

optical materials in the presence of an arbitrarily oriented alternating electric
field.

(a) Investigate the same set of masses as defined in (R1.3) for conical quan-
tum dots of the negative refractive index, organic, magnetic, and other
advanced optical materials in the presence of an arbitrarily oriented alter-
nating electric field considering many-body effects.

(b) Investigate all the appropriate problems of this chapter for a Dirac elec-
tron.

(c) Investigate all the appropriate problems of this chapter by including the
many-body, image force, broadening and hot carrier effects respectively.

Investigate all the appropriate problems of this chapter by removing all the

mathematical approximations and establishing the respective appropriate

uniqueness conditions.
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Chapter 2
The EEM in Nipi Structures of Nonparabolic
Semiconductors

2.1 Introduction

The concept of doping superlattices (SLs) was introduced by Esaki and Tsu [1] and
extensive work in this subject was initiated by Dohler [2—15]. In the compositional
SL the periodic potential is due to a change in the band gap of two materials. In
doping SLs, the periodicity is space-charge induced and in addition a homogeneous
material is used. With the advent of modern experimental techniques of fabricating
nanomaterials, it is possible to grow semiconductor SLs composed of alternative
layers of two different degenerate layers with controlled thickness. These structures
have found wide applications in many new devices such as photodiodes, photore-
sistors [16], transistors [17], light emitters [18], tunneling devices [19], etc [20-33].
The investigations of the physical properties of narrow gap SLs have increased exten-
sively, since they are important for optoelectronic devices and also since the quality
of heterostructures involving narrow gap materials has been greatly improved. It may
be noted that the nipi structures, also called the doping superlattices as mentioned
above, are crystals with a periodic sequence of ultrathin film layers [19, 20] of the
same semiconductor with the intrinsic layer in between together with the opposite
sign of doping. All the donors will be positively charged and all the acceptors neg-
atively. This periodic space charge causes a periodic space charge potential which
quantizes the motions of the carriers in the z-direction together with the formation
of the subband energies.

In Fig. 2.1a, the layers and the impurity types in different layers are shown. Elec-
trons from neutral donors recombine with neutral acceptors, leaving behind a net
space charge associated with ionized impurities. The concentration of the impurities
is shown in Fig. 2.1b. The periodic potential is due to three terms:

V(z) = Vimp(Z) + VH(2) + Ve (2),

where, V1 (z)is the Hartree potential of electrons and holes and V. (z)is the exchange
potential. The potential due to ionized impurities, Vimp(z)is obtained from Poisson’s
equation:

S. Bhattacharya and K. P. Ghatak, Effective Electron Mass in Low-Dimensional 73
Semiconductors, Springer Series in Materials Science 167,
DOI: 10.1007/978-3-642-31248-9_2, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 2.1 Periodic band edge modulation in an NIPI SL: a structure; b doping profile; and ¢ spa-
tial variation of conduction and valence band edges showing the development of the 1D periodic

potential

The Poisson’s equation in this case is given by, [34]

d2 Vimp 32
2 - S_sc[ND(Z) — Na(2)] (2.1a)

where, ¢ is the semiconductor permittivity, Np(z)is the donor concentration along

z-axis and Na (z)is the acceptor concentration along z-axis.
Energy levels for the z quantized motion for electrons are to be calculated self-

consistently from Schrodinger equation

Kz 92
[— — + V(z)] ¢ () =Ep(z) (2.1b)

2me 972

where m, is the effective electron mass, ¢ (z)is the electron wave function, and E is
the energy eigenvalue. The envelope function ¢ (z) is given by

¢(2) = D _exp(igmd) f (z — md) (2.1¢)
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where d is the period.
Some special features of this SL are stated below [34]:

1. When there are equal numbers of donors and acceptors in a period, i.e.,

dj2 dJ2
/ Np(z)dz = / Na(2)dz (2.1d)
—d)2 —d)2

there are no free carriers in the unexcited sample at low temperatures.

2. Assume that the thickness of the doping layers are equal: d, = d),, the doping
levels are uniform: Np = Nj, and also there is no undoped layer: d; = 0. The
periodic space charge layer is then due to impurity ions only. Vimp(z) is parabolic
in nature and has amplitude

2
Vo = & Npd?/8. (2.1e)
Es

The potential variation is sketched in Fig2.1c. The effective energy gap becomes
Eqy(eff) = Eq — 2Vo + Eco + Eno (2.11)
where, E.o and Ej are the energies of the first subbands. The envelope functions

¢ (z)in the tight binding approximation are harmonic oscillator functions and the
eigenvalues are expressed as

1\ 12
Eenzh(eND) |:n+1/2:|. 2.1g)

Eschle

One may therefore conclude from (2.1g) and calculated values that the effective
gap may be reduced from that in bulk material.

3. If the thickness of and/or the doping concentration in the n-layer is increased,
there will be a finite, two-dimensional electron concentration in the n-layers.
Therefore, it appears that the electronic structures of the nipi’s differ radically
from the corresponding bulk semiconductors as stated below:

(a) Each band is split into mini bands.

(b) The magnitude and spacing of these mini bands may be designed by the
choice of the superlattices parameters and

(c) The electron energy spectrum of the nipi crystal becomes two-dimensional
leading to the step functional dependence of the density-of-states function.

In Sect.2.2.1, of the theoretical background, the EEM in nipi structures of non-
linear optical materials has been investigated. Section 2.2.2 contains the results
for nipi structures of III-V, ternary and quaternary compounds in accordance
with the three- and two-band models of Kane together with parabolic energy
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bands and they form the special cases of Sect.2.2.1. Sections 2.2.3-2.2.5 con-
tain the study of the EEM for nipi’s of II-VI, IV-VI, and stressed Kane-type
semiconductors respectively. The Sect. 2.3 contains the results and discussion of
this chapter. The last Sect. 2.4 presents the open research problems pertaining
to this chapter.

2.2 Theoretical Background

2.2.1 Formulation of the EEM in Nipi Structures of Nonlinear
Optical Materials

The dispersion relation of the conduction electrons in nipi structures of nonlinear
optical materials can be expressed using (1.2) and following the method as given in
[34, 35] as

2 1\ 2mj
V1(E) = Y2 ()2 + 3(E) (ni + 5) ) (2.1h)
where
nole? '\ 12 (Y3(E) W1 (E)] — Y (E) [Y3(E)]
wg(E) = | —219 and91(E)E—[ 3 ! ! 3
ese [01(E)] 2 [Y3(E)?

and n; (= 0, 1, 2...) is the miniband index for nipi structures.
The EEM in this case assumes the form

2

I
m*(Efn, n;) = (7) Rg1(E, ni) 2.2

E= EFn
where,

2m’ 1
Rg1(E, ni) = [llfz(E)rZ |:W2(E) {[K”I(E)]/ - (ﬁ) [Y3(E) (Vli + 5) [wg(E)]

2mi"| . o o7
-5 [¥3(E)] (nz+5) [wg(E)]
Zm?‘| 1 ,
=1 (B)] - o [V¥3(E)] ("i + 5) [wg(E)] ¢ [¥2(E)]

and EF, is the Fermi energy in the present case as measured from the edge of the
conduction band in vertically upward direction in the absence of any quantization.


http://dx.doi.org/10.1007/978-3-642-31248-9_1

2.2 Theoretical Background 71

From (2.2), we observe that the EEM is a function of the Fermi energy, nipi
subband index, and the other material constants which is the characteristic feature
of nipi structures of nonlinear optical materials.

The subband energy (E1,i) can be written as

1 2m|*|
Y1(Eni) = ¥3(E1ni) (ni + 5) TCUS(Elni) (2.3)

The density-of-states function for nipi structures of non-linear optical materials
can be expressed as

N max
g 1
Npipi(E) = vado > Rsi(E.nj)H(E — Eip)) (24)
n,-:O

in which dj is the superlattice period.
The electron concentration, can be written as

1 max

no = Zjvdo Z_O [Ts1(Epn, i) + Tso(Ern, )] 2.5)

where, Tgi (Epn, ;) = [wépn) — Y3(Ep) (ni + %) ﬂﬁws(ﬁm} [V2(Er)]

_ s _
and T32(Efn, n;) = » L(r)T31(EFn, ni).

r=1

2.2.2 EEM in the Nipi Structures of II1-V, Ternary
and Quaternary Semiconductors

(a) The electron energy spectrum in nipi structures of III-V, ternary and quaternary
materials can be expressed from (2.1) under the conditions A = A} = A,
§ =Oandm‘*‘ =m’ =mg,as

1 21,2
I (E) = ni + = ) hwo(E) + — (2.6)
2 2m,
1/2
nolel? '\
where wy(E) = — .
escl'(E)m,

The EEM in this case can be written as

m*(Epn, n;) = mcRg2(E, n) | p— gy, 2.7
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(b)

©

2 The EEM in Nipi Structures of Nonparabolic Semiconductors

in which, Rs>(E, n;) = {[In(E) — (n; + 1) hlwo(E)T'}.

From (2.7) we observe that the EEM in this case is a function of the Fermi energy,
nipi subband index and the other material constants which is the characteristic
feature of nipi structures of III-V, ternary and quaternary compounds whose bulk
dispersion relations is defined by the three-band model of Kane.

The subband energies (Eopj)can be written as

1
I11(Eoni) = (”i + 5) hawy (Eay;). (2.8)

The density-of-states function in this case can be expressed as

; max

> Rs2(E.ni) H(E — Eni). (2.9)

n;=0

me8y
ﬂﬁzdo

Nnipi(E) =

The use of (2.9) leads to the expression of the electron concentration as

1n; max

> [Ts3(Egn, ni) + Tsa(Ekn, ni)] (2.10)

ni=0

megy
7w h2dy

nogp =

where Tg3(Egn, 1) = [I11(Epn) — (ni + 3) hoo(Egy) | and Tga(Epn, 1) =
s —
2. L(r)Ts3(Epn, n;).

r=1

For the two-band model of Kane, the expressions of the dispersion relation, the
EEM, the subband energies, the density-of-states function, and ng remain the
same where

I(E)=E(1+aE), {In(E)}) =(+2eE) and {I11(E)}" =2a.

The EEM in this case can be written as

m*(Epn, nj) = me [(1 +2aEfpn) + (ni + %) hi[wo(Ern)] M]
(2.11)
From 2.11 we observe that the EEM in this case is a function of the Fermi
energy, nipi subband index and the other material constants due to the band
nonparabolicity only.
For parabolic energy bands, the forms of the expressions of dispersion relation,
the EEM, the subband energies, the density-of-states function ,and ng remain
the same, where 11{(E) = E,

{hi(E)Y =1 and {I;1(E)}" =0.
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The EEM can be written as
m*(Epn, nj) = me. (2.12)

From (2.12) we observe that the EEM in this case is a constant quantity.

2.2.3 EEM in the Nipi Structures of II-VI Semiconductors

The carrier dispersion law in nipi structures of II-VI compounds can be
expressed as

. 1 - nolel)
E = apk; + \n; + 3 hwio £ Aoks, wio = . (2.13)

smm‘*‘
Using (2.13), the EEM in this case can be written as

_ _ 1 —-1/2
m*(Egy, n;) = mj_ [1 — X |:()»0)2 + 4“(/)EFn — 4a6 (I’li + E) fw)lo]

(2.14)
Thus, the EEM in this case is a function of the Fermi energy, the nipi subband
index number and the energy spectrum constants due to the presence of only Ag.
The subband energies (E3pi)can be written as

1
E3p = (”li + 5) hw1o (2.15)

The density-of-states function in this case can be expressed as

Naipi (E) = L8 nzm: [1 as1 :|H(E Ezni) (2.16)
nipi - ﬂﬁzd() — E + bg; (1) 3ni .

. . _ A — | L1732 1
in which, ag; = 2\/0(76 and bg; (n;) = [% [(Ao) — 4ay (ni + 7) hwlo]].

The use of the (2.16) leads to the electron concentration under the condition of
extreme degeneracy as

Nimg
gvmj max

T h?
ni=0

no = (Ern — Esni + Go)*m1n2) 2.17)
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2.2.4 EEM in the Nipi Structures of IV-VI Semiconductors

The carrier energy spectrum in nipi structures of IV-VI compounds can be
written as

k= (W*S19)7"! [—Szo(E, n) + S3(E i) + 4819501 (E, n»} (2.18)

in which,
g ( o ) Sao(E.n) 1 (aE)+1+aE+ ah? ( +1)
=(—), n)=1— (= ni + -
o m;m; 20 ' my m m; 2ml+m; "2
T(E) + ol ( + 1)T(E)
_ (a2
2m; m;" 2

_ 1/2
 2m*(0) RN L _(_rolel®
TE)=—F 6()”(E)’m(O)_<m;‘+m‘)’ w”(E)_(escm*(E)) ’

1

(E)(0(E)) + 2t1(1 + 20E)
JB3(E) +4En (1 + aE)

o 1 1 aFE 1+aFE
= (atar) o3| Gr)- () (5)
((E) =2 (L_ - (%)) and
2\m m;

a ER? 1 h? 1
Si(E.nj) = | E(1 +aE) + —— (n,- + —) T(E)+ — (n,- + —) T(E)(1 + «E)
2ml 2 m 2

1
+h4( »+1)T(E)—( i )T(E)( -+1>
amrmt \"" 7T 2 om? )

Using (2.18), the EEM in this case can be written as

1
m*(E) = i —(n(E) +

m*(EFny”i) = R84(Evni)|E=EFn (219)
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where,

Rg4(E,n;) = (2519) !

i /
|~ ny + S20(E. nj) [S20(E. np)] + 2819 [S21(E. nj)]

2 1/2
[{[Szo(E,ni)]} +4319521(E,ni)]

Thus, one can observe that the EEM in this case is a function of both the Fermi
energy and the nipi subband index number together with the spectrum constants of
the system due to the presence of band nonparabolicity.

The subband energies (E4p;) can be written as

E ” T(E )( + 1)
L MM+ =
4ni 2ml_ 4ni i 2
h? 1 h? 1
x 1+01E4ni++0lﬁT(E4ni) ni+§ = 27 i ni‘f‘z .

(2.20)

The density-of-states function in this case assumes the form as

1 max

Z Rs4(E, ni)H (E — Ean) 2:21)

Nnipi(E) hzd

The use of (2.21) leads to the expression of the electron concentration as

n; max

& > [Ts(Ern, ni) + Tso(Eruni)] (2.22)

ng=————
27 h2S19dp =

where, Tgs(Epn, n;) = [—Szo(EFn, 1) + V1820 (Egns 1) > + 4819521 (Efn, ni)]

- s —
and T36(EFn, ni) = > L(r)T35(Egn, n;).
r=1

2.2.5 EEM in the Nipi Structures of Stressed Semiconductors

The electron dispersion law in the nipi structures of stressed semiconductors can be
written as
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ks + 4 L O ( + 1) (E)y=1  (223)
= n; —Jw = .
[ao(E)2 " [ho(E)2  [Co(E)? A 2) "

172

no el 5= a _
h Ey=| ——" d m*(E) = h2¢y(E)— [¢o(E)].
where w12 (E) Sscm?(E)) and m7 (E) co( )8E [co(E)]

The use of (2.23) leads to the expression of the EEM as

2
m*(Epn, n;) = (h—) Rss(E, n;) (2.24)
2 E=Ep,
where,
Rss(E, n;) = [[(@o(E))'bo(E) + (bo(E)) ao(E)]
8 |:1 B ;Zm*(O) ( 1)w (E)}
[Go(E)P 2) "
_ [ao(E)bo(E) 2m (0) ( 1) w 2(E)]/}
[Co(E)T? 2
ao(E)bo(E) [¢o(E)] 4m?(0) 1
- i - E .
+[ [Go(E)T h (" +2)[‘°”( ”H

Thus, the EEM is a function of the Fermi energy and the nipi subband index due
to the presence of stress and band nonparabolicity only.
The subband energies (Es,;)can be written as

1 2m*0)
[Co(Eani)]> R

(”i + %) w12(E4ni) = 1. (2.25)

The density-of-states function can be expressed as

1n; max

Z Rss(E, n;)H(E — Espi). (2.26)
ni=0

Nnipi(E) hzd

Thus, using (2.26), the electron concentration in nipi structures of stressed com-
pounds can be written as

1 max

Z [C3(Egn, ni) + Ca(Ern, ni)]. (2.27)
n;=0

8v
27rd
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Fig. 2.2 Plot of the EEM as function of superlattice period for n-Cd3As; considering Eq. (2.2) The
plots for three- and two-band models of Kane have also been exhibited with their corresponding
bulk values

where

1

)

2m*(0)
h

12(EFy)
(Co(Ern))?

)

C3(Efn, ni) = ao(Epn)bo(Ern) [1 -

(ni +

and

Ca(Epn, 1) = D L(r)C3(Epn, n7).

r=1

2.3 Results and Discussion

The effect of nipi superlattice period on the EEM has been exhibited in Figs. 2.2, 2.3,
2.4,2.5,2.6,2.7,2.8,2.9, 2.10 for different materials. Using (2.2) and (2.5) together
with the energy band constants as given in Table 1.1, we have plotted the EEM in nipi
structures of nonlinear optical materials taking Cd3Asy and CdGeAs; as examples
in Figs.2.2 and 2.3

From both Figs. 2.2 and 2.3, it appears that the effect of increment of the superlat-
tice period increases the EEM in the presence of extreme carrier degeneracy of the
order of 102> m™3. For comparison with the bulk anisotropic effective masses, we
have also exhibited the same in the said figures. It appears that the EEM can be much
less than that of the corresponding bulk values below 10 nm period for Cd3As,. Thus
in such condition, one can expect an increase in the carrier mobility to a great extent,
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Fig. 2.4 Plot of the EEM as function of superlattice period for n-InAs considering the three- and
two-band model of Kane with the corresponding bulk value

in fact almost double. The effect of crystal field splitting has also been exhibited in
the same Figs.2.2 and 2.3.

It appears that the effect of § on the EEM is the largest in case of Cd3As;. The
approximation in the energy band structure also makes a significant deviation of the
EEM in case of Cd3As;. However, for CdGeAs,, the EEM exhibits a slow variation
over the superlattice period as compared with Fig. 2.2 At this point it should be noted
that with the increase in the superlattice period, the EEM in Cd3As; by considering
the energy dispersion relation with the absence of the crystal field splitting and the
three-band model of Kane actually tends to the anisotropic bulk value 0.01393my.
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Fig. 2.6 Plot of the EEM as function of superlattice period for n-GaAs considering the three- and
two-band model of Kane with the corresponding bulk value

This is not with the case when the effect of crystal field splitting and the two-band
equivalent model is considered. In these two cases, the EEM is overestimated against
the bulk value. This is not with the case of Fig.2.3 of CdGeAs;, where the EEM
converges to the bulk anisotropic value at larger superlattice period.

The effect of superlattice period on the EEM in the ground state subband in III-V
materials has been evaluated using the three- and the two-band model of Kane in
Figs.2.4, 2.5, 2.6 for InAs, InSb and GaAs respectively.
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Fig. 2.7 Plot of the EEM as function of superlattice period for n-Hg;_,Cd,Te considering the
three- and two-band model of Kane with the corresponding bulk value at x = 0.3
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Fig. 2.8 Plot of the EEM as function of superlattice period for n-In;_, Ga,As;— P considering
the three- and two-band model of Kane with the corresponding bulk value at x = 0.3

It appears from these figures that the effect of the variation of the energy dispersion
relation model on EEM is almost insignificant for GaAs nipi structures, whereas for
InSb, the EEM exhibits a significant deviation. In almost all the cases of about 1 nm
period, the EEM approximately becomes half of the respective isotropic effective
bulk masses indicating the mobility rise of up to 200 %.

In Figs. 2.7 and 2.8, the EEM as function of the periods has been further evaluated
for the ternary and quaternary materials like Hgy—Cd,Te and In;_,Ga,As;_,Py,
where the energy band gap in these materials can be modulated by changing the
alloy fraction x. We see that the EEM in case of In|_,Ga, As;_,P, almost exhibits
no significant variation and approaches quickly its bulk normalized value 0.0287 at
x = 0.3 as compared to Hg;_,Cd, Te.
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Fig. 2.9 Plot of the EEM as function of superlattice period for p-CdS

Figures 2.9 and 2.10 exhibit the EEM at the lowest subband in II-VI and IV-VI
nipi structures of CdS and PbTe respectively.

The effect of increasing the doping concentration from 4 x 102 to 6 x 10> m > on
EEM in CdS has been also exhibited in Fig. 2.9 for a period bandwidth of 50— 100 pm.
It appears that with the increase in the doping concentration, the EEM in CdS
increases and approaches the bulk longitudinal normalized value 1.5. However, in
case of PbTe, we see that the EEM saturates above superlattice period of about 20 pum.

The effect of doping concentration on the EEM in the lowest subband level in all
the aforementioned materials has been exhibited in Figs.2.11, 2.12,2.13, 2.14, 2.15,
2.16,2.17,2.18. It appears that the EEM increases with the increases in carrier degen-
eracy for all the cases and may become even larger than that of their corresponding
bulk value along the proper transport direction. From Fig.2.12 we see that the EEM
is almost constant below the degeneracy of about 102> m~3. The effect of different
models of energy band structures has been exhibited to present the dependency of
the EEM on the same. It appears from Figs.2.15 and 2.17 that the second and third
order Kane model almost exhibits no differences of the EEM from the two. The
respective saturation of the EEM with the decrease in the degeneracy is different for
the materials as this depends on the Fermi energy which is a function of the energy
band parameters.

3
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Fig. 2.10 Plot of the EEM as function of superlattice period for PbTe
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Figure 2.18 exhibits the variation of the EEM with increasing degeneracy for PbTe
nipi. Anomalous behavior in the variation of the EEM has been exhibited as one
increases the degeneracy. It appears that above 2 x 10> m~3, the EEM decreases.
This should not be in general confused with other plots since an increase in the
degeneracy increases the Fermi energy which increases the EEM. However, in this
case, the effect of the different spectrum constants defines the variation of the EEM.

The variation of the EEM with alloy composition for the ternary and quaternary
materials has been exhibited in Fig. 2.19 for the three- and two-energy band model of
Kane. Almost no difference in the two-energy band model in this case is exhibited.
The variation of the EEM for the quaternary is slower than that of the ternary which
is due to the variation of the energy band gap through the alloy composition. The
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joy of executing the intricate computer programming for the variation of EEM in
case of stressed InSb nipi structure whose energy band parameters have been given
in Table 1.1 of Chap. 1 has been left to the reader. The summary of this chapter is
presented in Table?2.1.

2.4 Open Research Problems

R.2.1 Investigate the EEM, EAM, DEM, CEM, CoEM, FREM, and OEM in the
presence of an arbitrarily oriented nonquantizing magnetic field for nipi
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Fig. 2.15 Plot of the EEM as function of doping concentration for n-GaAs considering all cases
of Fig.2.6

structures of nonlinear optical semiconductors by including the electron spin.
Study all the special cases for III-V, ternary and quaternary materials in this
context.

R.2.2 Investigate the same set of masses as defined in (R 2.1) in nipi structures
of IV=VI, II-VI and stressed Kane-type compounds in the presence of an
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Fig. 2.17 Plot of the effective electron mass as function of doping concentration for
n-In;_Ga,As;—,P,

arbitrarily oriented nonquantizing magnetic field by including the electron
spin.

R.2.3 Investigate the same set of masses as defined in (R 2.1) for nipi structures of
all the materials as stated in R.1.1 of chapter 1.
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R.2.4 Investigate the same set of masses as defined in (R 2.1) for all the problems
from R.2.1 to R.2.3 in the presence of an additional arbitrarily oriented
electric field.

R.2.5 Investigate the same set of masses as defined in (R 2.1) for all the problems
from R.2.1 to R.2.3 in the presence of arbitrarily oriented crossed electric
and magnetic fields.

R 2.6 Investigate the same set of masses as defined in (R 2.1) for nipi structures of
the heavily doped semiconductors in the presences of Gaussian, exponen-
tial, Kane, Halperian, Lax, and Bonch-Burevich types of Band tails for all
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systems whose unperturbed carrier energy spectra are defined in R1.1 and
R1.2 respectively.

R 2.7 Investigate the same set of masses as defined in (R 2.1) for nipi structures of

the negative refractive index, organic, magnetic, and other advanced optical
materials in the presence of an arbitrarily oriented alternating electric field.

R 2.8 Investigate the same set of masses as defined in (R 2.1) for all the nipi systems

of this chapter in the presence of finite potential wells.

R 2.9 Investigate the same set of masses as defined in (R 2.1) for all the nipi systems

of this chapter in the presence of parabolic potential wells.

R 2.10 Investigate all the appropriate problems of this chapter by including the many

body, image force, broadening, and hot carrier effects respectively.

R 2.11 Investigate all the appropriate problems of this chapter by removing all the

mathematical approximations and establishing the respective appropriate
uniqueness conditions.
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Chapter 3
The EEM in Inversion Layers of Non-Parabolic
Semiconductors

3.1 Introduction

It is well known that the electrons in bulk semiconductors in general, have three
dimensional freedom of motion. When, these electrons are confined in a one
dimensional potential well whose width is of the order of the carrier wavelength,
the motion in that particular direction gets quantized while that along the other two
directions remains as free. Thus, the energy spectrum appears in the shape of dis-
crete levels for the one dimensional quantization, each of which has a continuum
for the two dimensional free motion. The transport phenomena of such one dimen-
sional confined carriers have recently studied [1-22] with great interest. For the
metal-oxide-semiconductor (MOS) structures, the work functions of the metal and
the semiconductor substrate are different and the application of an external voltage
at the metal-gate causes the change in the charge density at the oxide semiconductor
interface leading to a bending of the energy bands of the semiconductor near the
surface. As a result, a one dimensional potential well is formed at the semiconductor
interface. The spatial variation of the potential profile is so sharp that for consid-
erable large values of the electric field, the width of the potential well becomes of
the order of the de Broglie wavelength of the carriers. The Fermi energy, which is
near the edge of the conduction band in the bulk, becomes nearer to the edge of the
valance band at the surface creating inversion layers. The energy levels of the carriers
bound with in the potential well get quantized and form electric subbands. Each of
the subband corresponds to a quantized level in a plane perpendicular to the surface
leading to a quasi two dimensional electron gas. Thus, the extreme band bending at
low temperature allows us to observe the quantum effects at the surface.

In Sect. 3.2.1, of the theoretical background, the EEM in n-channel inversion lay-
ers of tetragonal materials has been investigated for both weak and strong electric
field limits. The Sect.3.2.2 contains the results for n-channel inversion layers of
[II-V, ternary and quaternary compounds for both the electric field limits whose
bulk electrons obey the three and the two band models of Kane together with par-
abolic energy bands and they form the special cases of Sect.3.2.1. The Sect.3.2.3
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contains the study of the EEM for n-channel inversion layers of II-VI materials. The
Sects.3.2.4 and 3.2.5 contains the study of the EEM in n-channel inversion layers of
IV-VI and stressed semiconductors for both the limits respectively. The Sects.3.2.6
and 3.2.7 contains the study of the EEM in n-channel inversion layers of Ge and GaSb
for both the limits respectively. The Sect.3.3 contains the results and discussion of
this chapter. The last Sect. 3.4 presents the open research problems for this chapter.

3.2 Theoretical Background

3.2.1 Formulation of the EEM in n-Channel Inversion Layers
of Non-Linear Optical Semiconductors

In the presence of a surface electric field Fy along z direction and perpendicular to
the surface, (1.2) assumes the form

Y1 (E — le| Fs2) = Y2 (E — le| Fy2)k?2 + y3(E — le| Fy)k? 3.1)

where, for this chapter, E represents the electron energy as measured from the edge
of the conduction band at the surface in the vertically upward direction.
The quantization rule for inversion layers is given by [5]

2t

/kzdz = %(&)3/2 (3.2)
0

where, z; is the classical turning point and S; is the zeros of the Airy function
(Ai(—=S;) =0).
Using (3.1) and (3.2), under the weak electric field limit, one can write,

2t 2
/ VA7(E) — |e| FszD7(E)dz = 5(&)3/2 (3.3)
0
AR _ [Yi(E) — ya(E)k? _
inwhich, z; = m,A7(E) = |: 2 (E) i|,D7(E) = [B7(E)—

(W1 (E)) — (wz(E»’k?] [wg(E))’}
A7(E)C7(E)], B7(E) = dCy(E)=| ————|.
7(E)C7(E)], B7(E) |: I (E) and C7(E) s (E)

Thus, the 2D electron dispersion law in n-channel inversion layers of tetragonal
materials under the weak electric field limit can approximately be written as

Y1(E) = P(E, i)k2 + Q7(E, i) (3.4
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where,

26 (E)

P:(E,i) = E)y— | —————
7(E, i) _lﬂz() (3[t1(E)]‘/3

) Y3 (E)Si (el Fs)ﬂ :

_ [[a(B)Y Y2 (E) [W3(E)Y
Kh(E) = — .
L ¥3(E) [V3(E)]
n(E) = | YLE)] _(w1<E> [Y5(E) )]
L ¥s(E) [V3(E)]

and Q7(E, i) = S;y3(E) [le| Fti(E)1P°.
The EEM in the x — y plane can be expressed as

2

I
m* (Efiw, i) = (7) G7(E, i)

(3.5)
E=EFiw

where, G7(E, i) = [P;(E, )] [P1(E, i) {(¥1(E)) — (Q7(E. i)'} — (¥1(E)—
(Q7(E, i)} (P;(E, i) ] and EF;y is the Fermi energy under the weak electric field
limit as measured from the edge of the conduction band at the surface in the vertically
upward direction. Thus, we observe that the EEM is the function of subband index, the
Fermi energy and other band constants due to the combined influence of the crystal
filed splitting constant and the anisotropic spin-orbit splitting constants respectively.
The subband energy (E,,,,) in this case can be obtained from (3.4) as

1#1 (Eniwl) = Q7 (Eniwl > l) (36)

The general expression of the 2D total density-of-states function in this case can be

written as
imax a

2, .
Nap,(B) = =35> = [A(E.DH(E — Ey)] (3.7)
i=0

(2m)?

where, A(E, i) is the area of the constant energy 2D wave vector space for inversion
layers and E,; is the corresponding subband energy.

Using (3.4) and (3.7), the total 2D density-of-states function under the weak
electric field limit can be expressed as

Imax

Z [G7(E,i)H(E — Ep,))] (3.8)

i=0

8v
2m)

Nop, (E) =

where, E,, , is the subband energy for the weak electric field limit in this case.

Using (3.8) and the Fermi-Dirac occupation probability factor, the 2D surface
electron concentration in n-channel inversion of tetragonal materials under the weak
electric field limit (nopw) can be written as
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Imax

napw = gv(21) "' D" [Pro(Eriw. i) + Q7w (Egiw, 1)] (3.9)
i=0

where, Pry (EFiw, i) = [¥1(EFiw, i) — Q7(EFiw, )1 {P7(EFiw, 1)} ', Q7w (EFiw, 1)

> (L) [P1(Erw, )]} and Fy = (Wﬂ

r=1 Esc
sing (3.1) and (3.2), the 2D electron dispersion law in n-channel inversion layers

of tetragonal materials under the strong electric field limit can be written as

k2 = Py(E, i) (3.10)

Py(E, i) = [F(E)]™ [Fo(E) — Fy(E, i)], Fo(E)

_ [WI(E):| [1+ V1 (E)] [y3(E)] n Y1 (E) [Y3(E)]” }
~ Lvs(®) Y3(E) [Y1(E)]" 20y (E)]" [y3(E)1 ]’

Fo(E) = [(Wz(E)) 3 ( V1 (E) [I/Z/fz(E)]' )+ (Iﬂz(E))
V3 (E) 2y (BE)]" [¥3(E)] V3 (E)
|:[1/f1(E)]/ [y3(E)] Y1(E) [y3(E)]" :|

V3 (E) [y (E)]” " 2y (E))" [Y3(E)]

(1/f1(E))[[1/f2(E)]’[xlf3(E)]’+ V2 (E) [y3(E)]” H
V3(E)) L v3(BE) [Yi(E)]" 21y (E)]" [Y3(E)]

24/2
and Fy(E,i) = [Tf@)”ud F\/ [ (E)]”} :

The EEM in the x — y plane can be written in this case as

2

I}
m*(EFis, i) = (?) [P (E, D) (3.11)

E=EFis

where, EFjs is the Fermi energy under the strong electric field limit as measured from
the edge of the conduction band at the surface. Thus, we note that the EEM is the
function of subband index and the Fermi energy due to the combined influence of
the crystal filed splitting constant and the anisotropic spin-orbit splitting constants
respectively.

The subband energy (E,;,,,) in this case can be obtained from the (3.10) as
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PZ(Enisl’i) =0 (312)

The total 2D density-of-states function under the strong electric field limit can be
written as

Imax

Z [(P2(E.i)) H(E — Ep)] (3.13)

i=0

8v
(2m)

Nop, (E) =

Using (3.13) and the Fermi-Dirac occupation probability factor, the 2D surface elec-
tron concentration (nyps) in this case can be expressed as

Imax

naps = g(27) "' D [Pa(Eris, i) + Q2(Eris, )] (3.14)
i=0

§

where, Q>(EFis, i) = 2 {L(r) [P2(EFis, )1}

r=1

3.2.2 Formulation of the EEM in n-Channel Inversion Layers
of III-V, Ternary and Quaternary Semiconductors

Using the substitutions § =0, Ay = A; = A and mTl‘ = m’ = mc, (3.4) under the
condition of weak electric field limit, assumes the form

I (E) =

2,2 /2/3
h7k; v [hlel F[111(E)] ] (3.15)

2m, 2me

(3.15) represents the dispersion relation of the 2D electrons in n-channel inversion
layers of III-V, ternary and quaternary materials under the weak electric field limit
whose bulk electrons obey the three band model of Kane.

The EEM can be expressed as

m*(Efiw, i) = m¢ [P3(E, Dl gy, (3.16)

2/3 3
where,Ps(E,nE[[M(E)]’—[%&-[%] (@) P i

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the combined
influence of £, and A.

The subband energy (E,,,,) in this case can be obtained from (3.15) as
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12/3
FL|€| Fs [111 (EniWZ)] i| (317)

2m

I (Enyys) = Si |:

Using (3.15) and (3.7), the 2D total density-of-states function in weak electric field
limit can be expressed as

ilTl‘élX
ﬂchzv D [Ps(E,DH(E — Eny,)] (3.18)
i=0

Nop, (E) =

Using (3.18) and the occupation probability, the nopy in the present case can be
written as

Imax

D [Paw(Ekiw, i) + Qaw(Eriw, )] (3.19)
i=0

gvMme

N2Dw = ~——
T h?

. ol T .
where, Py (Efiv, 1) = [Iu(EFiw>—S,~ [ Fellp il | ] and Q4 (Eriw, )

2me

_ il{m) [P4(Eri. D)1}.

r=
Using the substitutions § = 0, A = A} = Aand mﬁ =m’ = mc, (3.10) under
the condition of strong electric field limit, assumes the form

Foh [ 24/2(8;)3/2 h2k2
[111<E>—['e' (f( ) )\/[111<E)1”H=—S (3.20)

2m, 3 2m,

(3.20) represents the dispersion relation of the 2D electrons in n-channel inversion
layers of III-V, ternary and quaternary materials under the strong electric field limit
whose bulk conduction electrons are defined by the three band model of Kane.

The EEM can be expressed as

m*(EFis, i) = me [P5(E, D]l gy, (3.21)

el Fyh [(V2(5)/?
V2me 3
Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the combined
influence of E, and A.
The subband energy (E,,,) in this case can be obtained from (3.20) as

Fh [ 24/2(8;)3/? ”
In(Enisz)—['e' ‘ (f( ) ) [11(Eno)] }=0 (3.22)

where, Ps(E, i)={ {11 (E) — (I (BN~ V2 [ (EY”

V2me 3
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Using (3.20) and (3.7), the total 2D density-of-states function under the strong electric
field limit can be expressed as

Nop, (E) =

imax
m
,,C;V D [Ps(E,DH(E — Eyy)] (3.23)
i=0

Using (3.23) and the Fermi-Dirac occupation probability factor, the nopg in the
present case under the strong electric field can be written as

Imax

naps = 270 [Py (Eis. i) + Qs (Eris )] (3.24)
T h Py

where,  Pes(EFis, 1) = 1 [11(EFis) — | ——
3 2m

N

Qes (EFis, i) = 2 {L(r) [Ps(EFis, )]}

r=1
Using the constraints A > Eg, or A K Eg, (3.15) under the low electric field
limit assumes the form

22 o aphlel By [III(EF@]”“ and

h2k? hlel Fy(1+2aE)]*?
E(l+aE) = 25 4, [ el F5(1 + 20 )] (3.25)
2m, 2m,
For large values of i, S; — [37” (i + %)]2/3 [5], and (3.25) gets simplified as
R2k2 [3rmhlel| Fy 3\ (1 +2«E)7*?
E(1 E)= 2 [+ - ) — 3.26
(H+ah) 2mc+[ 2 (‘ 4) ZmC} (320
(3.26) was derived for the first time by Antcliffe et al. [3].
The EEM in this case is given by
m*(Efiw, 1) = m¢ [Pe(E, D)l p=gp, (3.27)

hle| Fs

2m
Thus, one can observe that the EEM is a function of the subband index, surface

electric field and the Fermi energy due to the presence of band nonparabolicity only.
The subband energies (E,, ;) are given by

2/3
where, P(E, i) = [1 +20E — %5, [ ] (14 2aE}" 131,

(3.28)

hile| Fy(1 +2aE,,iw3)]2/3
2me

Ens (1 +aEp;) = S |:
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The total 2D density-of-states function can be written as

Imax 2/3

4 [hlel F,

Nap(E) = 8V 1 20k - [ < S] (1 +20E) "3 | H(E — Enyy)
wh = 3 2me

(3.29)
Under the condition ¢ E < 1, the use of (3.29) and the Fermi-Dirac integral leads
to the expression of nypy as

me knT imax
NoDw = (gv_B) Z{ [14 Di +2aE,;| Fonw) + 20kpT Fi(niw) }

7 h?
i=0
(3.30)
das; ( HlelF 3 Efiw—Enjy
where, D; = -+ (ﬁ;) and njy = [kB—T‘W]
For all values of o Ejyw, the nopyw can be written as
g m imax
now = (255 ) D [Psw(Briws 1) + Osu (B )] (3.31)
wh Py
/3
where, Psy(Egiw,i) = [EFiw(l + aEfiw) — S; [melF 1+ 205EF1W)] i| and

QOsw(EFiw, i) = Z L(r) Psw(EFiw, ).
=1
For « — 0, as for inversion layers, whose bulk electrons are defined by the

parabolic energy bands, we can write,

E =

h2k2 hle| F, 13
+ S (3.32)

2m, 2m,

The (3.32) is valid for all values of the surface electric field [1].
The electric subband energy (E,,,) assumes the form, from (3.32) as

JREE
m] (3.33)

2m

En,‘4 = Si |:
The total density-of-states function can be written using (3.33) as

Nap(E) = ‘gv Z H(E — Ey,,) (3.34)

The use of (3.34) leads to the expression of nop; as [1]
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gvmckpT o
nopi = = ; Fo(n:) (3.35)

hle| Fy
2m

sured from the edge of the conduction band at the surface.
Using the constraints A > E, or A < Eg, the (3.20) under the strong electric
field limit assumes the form

21,2
E(1+aFE) = ks + &E(Sl-)”2 [M} (3.36)

2/3
where, n; = (kp T)_1 Eg — S; |: i| , EFi is the Fermi energy as mea-

2m, 3

3 3\ 1%°
For large values of i, S; — |:77T (i + Z):| [5] and (3.36) gets simplified as

21,2
Etam < 8 |:7Tﬁ|e| F/2 (l. . g)} 337

2m, mcEg 4

The (3.37) was derived for the first time by Antcliffe et al. [3].

From (3.36), we observe that under the condition £, — 0, one cannot obtain the
corresponding parabolic case, since under high electric field limit, the band becomes
permanently nonparabolic.

The EEM is given by

m*(EFis, i) = mc (1 + 20 EFis) |0 (3.38)

Thus, in the high electric field limit, the EEM is a function of Fermi energy due to
the presence of band nonparabolicity only and is independent of the subband index.
The electric subband energy (Ey, ;) in the high electric field limit is given by

Tile| Fon/2 3
En (1 +aE, )= | e sVs el Fiv/2 (i+—) (3.39)
mcE, 4

The 2D total density-of-states function in this case can be written as

Imax

P8 S {1 +20E1 H (E — En,,)) (3.40)
=0

Nop. (E) =
op; (E) s

The surface electron concentration for all values of « E'Fjs in this case assumes the
form
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m k T imax
napw = (gn—hf) > {11+ 2akpT] Fo(nis) + 20kpT Enys Fi(ni) ) (3.41)
i=0

Efis—E,.
where, ;s = [%]

3.2.3 Formulation of the EEM in n-Channel Inversion Layers
of II-VI Semiconductors

The use of (1.42) and (3.2) leads to the quantization integral as
vl 2mj 12 3 172 2 a3
/ — lel Fsz — apks F ()»o)ks] dz = g(si) (3.42)

where, z; = (le| Fy) ™' [E — ajk? F (ho)ks].
Therefore, the 2D electron dispersion law for n-channel inversion layers of II-VI
semiconductors can be expressed for all values of Fy as

2/3
E=alk?+Go) ke + s | HelEs (3.43)
= UpK, K i .
' /ZmTT
The area of the 2D surface as enclosed by (3.43) can be expressed as
2 2 23 2
7 (m* 2h hle| F. 2R E
AE =T g - g (M) 2
h 1 2m] my
23 1/2
2 2
- hle| F 2h
—2(Xo) ; : - (3.44)
1 2m}) my
The EEM is given by
. P71
m*(Epi, i) = m} |:1 — —i| (3.45)
1 + VEF + p72

where, EF; is the Fermi energy in this case,

2/3
hle|Fy
P71 = and p7y = | (p71)* — | 252
24/ /2mH
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Thus, the EEM depends on both the Fermi energy and the subband index due to
the presence of the term X.
The subband energy (E,,,) can be written as

2/3
hle| F.
Epg = Si hlel (3.46)
/2m|*|
The total 2D density-of-states function can be written as
m g, W P71
Nop, (E) = —=+ Hl — ———— | H(E — Ep;) (3.47)
h? g{; VE A+ pn i

The surface electron concentration under the condition of extreme degeneracy as-
sumes the form

gvmj_ i max e
map = 225 (Epi — Ep + 0)2m* I ) (3.48)
ni=1

3.2.4 Formulation of the EEM in n-Channel Inversion
Layers of IV-VI Semiconductors

In the low electric field limit (1.83) assumes the form

E(1 +aE) — le| Fsz(1 + 2¢E)
2 2 ap) I M
R L)+ s+ sl a(E el Foo) (1- >
2M;  2Ms 4Mo My 2M,  2M, M,
(3.49)

where, M| = m ., m . is the transverse effective electron mass at the edge of the

2
conduction band at k = 0, M, = (M

), m|c is the longitudinal effective
3m | .m|e
electron mass at the edge of the conduction band at k = 0, M3 = (M),
2mllc +m.
my, + 2m||v
3

hole masses at the edge of the valance band at k = 0.
The use of (3.49) and (3.2) leads to the simplified expression of the 2D electron
dispersion law in n-channel inversion layers of IV-VI materials under the weak

electric field limit as

Mﬁ = ), m 1, and m), are the effective transverse and longitudinal
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yi(E. i) = prik; + qn(E. Dk} + roik; (3.50)
where,
(E,iy=|E(1+aE)—S5 (me'F‘)m (1+4 E)
1) = oak) =5 | —/—— - ,
Y71 i 2M3 3
h2
p11 = 2_Ml’

: h? Ma\  2aS; (filel Fs\*° M,
gnE,)==—)|1+eE(l-—)-— = |- =2
2M> M, 3 2M; M

ah?
and ry; = it )
2

The area enclosed by (3.50) is given by

4 1/2 12
AE.D) =3 (%) [tarw(E, D + by (E, D]

[tanw(E. D) F [ 2 6710(E. D] = Aanw(E. )} = bnw(EW)E [T 1w (E. )]
(3.51)

in which, {a71w(E, )}* =

. o 12
gr(E, i) 11 {gn(E, D)}  4yn(E, i)
2rm 2 (r71)? 71 '

{briw(E, D)) =

! [{w(&i)}z L Arm(E, i)}”z ) (ql(E,i))

2 (r711)? ol 2r7

nw(E,i) =

bniw(E, i) F[
Vanw(E, D)) + (briw(E, D)}

Lriw(E, i ):| are the complete elliptic integral of the first and second kinds respec-

T . o
- tiw(E.i) | and E| 3,

tively.
Using (3.51), the EEM in this case can be expressed as

N :
m* (EFiW7 l) = 5 R71 (Ev l)|E:EFiW (352)
2

where,
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4 r71 172 f ,
Ry (E. i) = 3 (pn) [{a71w(E, D{an1w(E, D)} + byiw(E, i){br1w(E, DY}

x fan (B, P+l (B, ] [{an (B0 F [% 1w (E. D)
12 ) T . 4 (rn 172

—({anw(E, )} — {bnw(E,D})E [5, Lriw(E, l)]] + 3 (]771)

x ({a71w(E, D)} + (br1w(E, i) 2a714(E, i) {an1w (E, i)Y

P[5 e B, )]+ anu B, 0P [F[ 2 B D] |

—{E[5 D]} ana(E. 0P = (B0
E[’; enw(E, i)}[Zaﬂw(E, i) tanw(E, i)Y
—2b71w(E, i) {aniw(E, DY]] .
Thus, the EEM is a function of the subband index number and the Fermi energy due

to the presence of band nonparabolicity only.
The subband energies (Ep,,,) are given by

hlel Fy\*? 4
Ey., (1 + aEnM) - S; I 1+ §O‘Eniw7 =0 (3.53)

The total 2D density-of-states function can be written as

Imax

Nop, (E) = 2’;’:2 > Ry (E.D) H (E — Ep,)) (3.54)
i=0

The surface electron concentration assumes the form

2 v 1/2 imi\x
noDw = g (V71 ) {Z [P7w(EFwi, i) + Q7w (EFwi, i)]} (3.55)
i=0

372 \ p7i

. . 21172
where, Py (Efyi, i) = [{a71w(Epwi. )} + (671w (Erwi, 1)}] /

[tanw (.0 F [ Z b1 (Eri 1]

—({a71w(Erwi, )} — {b71w(Erwi, )} E [% £71w(EFwi, i)]]

and Q7w (Eriw, i) = 2. L(r) Prw(EFiw, i).

r=1
Under the strong electric field limit, the dispersion relation assumes the form
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yn(E. i) = prap; + qn(E)k; + rik; (3.56)

where,

yn(E, i) = |:E(1 +aE) —

h2
P72—(2—Ml),
E) = R 1 rae (1222
w0 =(5i5) [+ o ()

aht
and rpp = W .
2

Comparing (3.56) with (3.50), we observe that the forms of the (3.52) and (3.55)
remain unchanged provided, y71(E, i), p71, q71(E, i) and r71 are being replaced by
the corresponding quantities y72(E, i), p72, g72(E) and r7; respectively.

23/2a hile| F; (52
3 2M5 '

3.2.5 Formulation of the EEM in n-Channel Inversion Layers of
Stressed Semiconductors

The use of (1.98) and (3.2) leads to the expression of the dispersion relation of the
2D electrons in n-channel inversion layers of stressed III-V materials under the low
electric field limit as

[T57(E. )] k2 + [Ter(E, D1K2 = Ty (E. i) (3.57)

where,

2/3
. 2 le?
Ts7(E, i) = E—a1+§si(—) (n2pw)?*L17(E) |,

Esc

_ I (E —ap) 1317 —1/3
Ly1(E) = = —(E —a3)'P [Ty7(E)] :| ,
| (E —3)?/3 [T47(E)]1/3

_ B E
[F(E)] = {ps(E)}/—(pS( ))]
L — Qa3

E

/3
N 2 |e|2 2/3
Te7(E, i) = E_T2+§Si o (nopw)™7La7(E) |,
SC
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(E — ) (E —a3)'/3 )}
Ly (E) = - (= :
[(E — a3)?3 [Tip(E)]'" ([T47<E)]” :
lef®

2/3
T7(E, i) = ps<E)—Si(8—) (n2pw)**L37(E)

SC

and Ly7(E) = (E — a3)' T3 (E)] ",

The area of the 2D surface under the weak electric field limit can be written as

o T (E, i)
AED = e E D Ta (B D 3:38)

The subband energies (Ej,,s) in this case are defined by

2
le]

Ty7(Enyg) = Si ( -

SC

2/3
) (n2pw)?? L37(Enys) (3.59)

The expression of the EEM in this case can be written as

m* (Efiw. i) = h; La7(E, i) p—pp, (3.60)
where,
Ly (E. i)
= [T57 . l.)le . l.)] [{TW(E, DY [Ts7(E, ) Ter (E, )]'/? — (%)

[ Ter(E,i)]'? [ Ts2(E,iy]"?
X [{TS7(EJ)} [m} + {Te7(E, i)} [m} .

The total 2D density-of-states function can be expressed as

Imax

Nap(E) = ‘zg—; S {Lar(E ) H (E — Enyy)) (3.61a)
i=0

The surface electron concentration under the weak electric field limit assumes the
form

& o o .
n2Dw = (27) [g(; [Pyw(EFwi, i) + Qgw(EFwi, l)]} (3.61b)
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. T77(EFwi, ) ) s
where, Pgw (Epwi, i) = : and Qsw(Efpiw, 1) = >, L(r)Ps
T VTs1Erwi, D Te1 Bri, ) R i N
(EFiw, 1).

The use of (1.98) and (3.2) leads to the simplified dispersion relation of the 2D
electrons in n-channel inversion layers of stressed III-V materials under the high
electric field limit can be expressed as

[T117(E, D)1k; + [Ti7(E, D1k} = Tiz(E, i) (3.62)

where,

A R 273
T\17(E,i) = | E ¢11+3|€|Fs(Sz) a7 (E) |,

P S B
T Z S E —an o1 (BN | VTor(B)E — a2 ] ]

{os(E)Y  { (ps(E)Y ps(E)
Ton(E)] = [ 2 ( E —a ) * ((E - ag)z)] ’

N 4 23
Ti(E,i) = |E a2+3|e|Fs(Sl) ag7(E) |,

(E):l[ ! _( (E —ap)'” )}
B = JE—a)Tor(B)  \VTo(B)E — T332 ) ]
T (E. ) = [ p5(E) = (5)*/* Fyan (E)

and ag7(E) = 3+/To7(E)(E — a3).

The area of the 2D surface in this case is given by

o nT37(E, i)
A = e E DT D (3:63)

The subband energies (E,) in this case can be written as
T137(Enisg s l) =0 (364)

The EEM in this case assumes the form

LR .
m*(EFis, i) = 7 N41(E. Dlp=pp, (3.65)

where,
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1
Thi7(E, )Ti27(E, i)

. 172
~ (Tm(E, z)) | [{TW(E’ by [Tm(E, z)]

Tiag(E. i) = [ } [T (E, DY [T (E, D17 (B, )]

2 Th7(E, Q)

T E.i 1/2
+ {Tim(E, DY [%} H

The expression of the total 2D density-of-states function is given by
g imax
v .
Nap(E) = - Z;, {Tin(E.H(E = Eyy)) (3.66)
=

The surface electron concentration in the strong electric field limit can be expressed as

imiIX
naps = % [Z [ Pos(EFis, i) + Qos(EFis, i)]} (3.67)
i=0
. T137(EFis, ) . il
where, Pog(EFis, i)= = and Qo,(EFis, i) = Y L(r)Poy

. ~/T117(EFis, 1) T127(EFis, 1) r=1
(EFis, 1).

3.2.6 Formulation of the EEM in n-Channel Inversion
Layers of Germanium

Using (3.2) and (1.134), the 2D electron dispersion law in n-channel inversion layers
of Ge can be expressed as

L

* *
2m] 2m;

2/3
h he F
where, Eip = §; m

The area of 2D space is

2w /mimk
A= [E(l +aE) +aE% — En(l + ZozE)] (3.69)

=[EQ +aE) +aBh - En(1 +20E)] (3.68)

The EEM assumes the form
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m*(E¥iw, i) = /m{m5 [1 + 2 Epiw — Ej220] (3.70)

Thus the EEM is the function of both Fermi energy and quantum number due to
band nonparabolicity.
The density-of-states function is given by

2gy Zn‘/mlmﬁ oy

Qrn? R §[1+2“E 20Ep|H(E — Ep)  (3.71)

Nop(E) =

The surface electron concentration is given by

i
ngBT Jmim;y

nps = o > (171 Fo(na) + 20k T Fy (1)) (3.72)
i=0

where, n4 = (kgT) "' [Epw — Eiz] and, t71 = [1 — 20 E;2]

3.2.7 Formulation of the EEM in n-Channel Inversion
Layers of GaSb

Using (3.2) and (1.153), the 2D electron dispersion law in n-channel inversion layers
of GaSb under weak electric field limit can be expressed as

I36(E) =

2,2 172/3
Bk LS [h|€| Fy [136(E)] ] (3.73)

2m, 2m,
(3.73) represents the dispersion relation of the 2D electrons in n-channel inversion
layers of III-V, ternary and quaternary materials under the weak electric field limit
whose bulk electrons obey the three band model of Kane.

The EEM can be expressed as

m*(Efiw, 1) = me [P36(E, D]l gy, (3.74)

whete, Pag (E. ) = { [1s6(E)] — | 25, [h dan ]2/3 {36 (BN} s (BN
> 1736 y = 36 3 i W 36
Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the combined
influence of E, and A.
The subband energy (E,,,,) in this case can be obtained from (3.73) as
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(3.75)

2/3
hlel Fy [I36(Eny,)]
2m

136(Eniwz) = Si |:

The 2D total density-of-states function in weak electric field limit can be expressed as

Imax

B N [Pag(E, iV H (Esg — Enyy)] (3.76)
i=0

Nop, (E) =
2, (E) )

Using (3.76) and the occupation probability, the nypy, in the present case can be
written as

Imax

m
nDw = gv—; z [ Ps6w (EFriw, i) + Q46w (EFiw, )] (3.77)
h =
heF, [ (Eriw)] 17°
where, Pyow(Efiw, 1) = {136(EFiw) =5 [%’;FM)]} and
C

Qu6(Egiw. i) = O {L() [ Pas(Eriw. i)1}.

r=1

Under the condition of strong electric field limit, assumes the form

Foh [ 232(8))%? - h2k?
[136(E>—['e' (f( ) )\/[136(E)]/]:|=— (3.78)

2m 3 2m

(3.78) represents the dispersion relation of the 2D electrons in n-channel inversion
layers of III-V, ternary and quaternary materials under the strong electric field limit
whose bulk conduction electrons are defined by the three band model of Kane.

The EEM can be expressed as

m*(EFis, 1) = me [Ps¢(E, D] p= (3.79)
where,
th 2(S; 3/2 1\ — "
Pso(E, i) = [{136(15)}/ - H 'e'm (*/_(3) )([136(E>] )2 e (E)) ”

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the combined
influence of E, and A.

The subband energy (E,,,) in this case can be obtained from (3.78) as

Fh [ 24/2(8;)3/? "
136(Eni,) — [ ljm ( \/_(3 ) ) [736(Enir)] ] =0 (3.80)
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The total 2D density-of-states function under the strong electric field limit can be
expressed as
imax

> [Pss(E.i)H(E — Ep,,)] (3.81)
i=0

megy
Nop. (E) = —
op; (E) s

The nyps in the present case under the strong electric field can be written as

Imax

m
nops = 8200 [ Posy (Eris. ) + Qass (Eris. )] (3.82)
wh =

where, Poss(EFis, i) = { Iz6(EFis) — [¥( Sip/zw]}

2me

and Qses(EFis, i) = Z {L(r) [ Ps6s(EFis, 1)1}

r=1

3.3 Results and Discussion

The effect of surface electric field on the EEM at the quantum limit in n-channel
inversion layers of Cd3As; and CdGeAs; has been exhibited in Figs.3.1, 3.2, 3.3
and 3.4. In Figs. 3.1 and 3.2, we have demonstrated the variation of the EEM with
electric field in the weak inversion regime which was extended upto 10° Vm~!. It
appears that with the increase in the electric field, the EEM in Fig.3.1 increases
considering the generalized energy band model (3.5) and the three and the two band
models of Kane which are the special cases of our generalized analysis. It appears
that in the weak field regime, the deviation between the three and two band models
of Kane is less however significant difference is with the consideration of the crystal
field. It should be noted that it is these two models which tends to the isotropic bulk
effective mass value 0.0105m, rather than the generalized model. In the high field
regime, Fig.3.2, the difference in the three and two band models of Kane appears
which marks a significant variation in the value of the EEM. The effect of crystal
field splitting tends to decrease the EEM considering the generalized energy band
model.

A closer look at the two figures reveal more interesting features of the continuity
of the weak inversion energy band model in the strong field and strong inversion
energy band model in the weak field. It is due to this non-convergence there is a
slight mismatch of the EEM at the boundary of 10° Vm™! in both the Figs.3.1 and
3.2 and needs more attention towards the development of the generalized theory valid
for all values of electric field is still a formidable problem in this case.

Figure 3.3 and 3.4 exhibits the EEM in n-CdGeAs; for all the cases of Figs. 3.1
and 3.2 respectively. It appears that in the weak inversion regime the EEM is almost
invariant of the electric field; however with the increase in the field, the EMM sharply
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decreases and tends to take negative values which challenge the applicability of the
quantization condition (3.2) at strong electric field for n-channel CdGeAs;.

The effect of electric field on the EEM of n-channel InAs has been exhibited in
Figs.3.5 and 3.6. Almost no variation of the EEM in weak field appears for n-InAs
channel while for higher fields, the EEM tends to decrease. The effect of surface
electric field on n-channel GaAs and InSb at weak and strong electric field has been
exhibited in Fig. 3.7. Same trend as InAs in weak field again follows for GaAs, where
the difference in the energy band model in determining the EEM is vanishing small.
With the increase in the electric field at high value, the EEM in n-channel InSb tends
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Fig. 3.3 Plot of the EEM at
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Fig. 3.4 Plot of the EEM at
strong inversion as function
of surface electric field for
n-channel inversion layers
of CdGeAs, for all cases
of Fig.3.3
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to fall down. This is not with the case of CdS in Fig. 3.8 where the effect of increasing
the electric field increases the EEM monotonically presenting a significant change.

Finally, in Fig.3.9, we present the variation of the EEM in n-channel inversion
layers of Ge following Cardona model under weak inversion regime and n-channel
inversion layers of GaSb under strong inversion regime. It appears that the EEM
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in case of GaSb increases within the regime of 108 Vm~!, while the EEM in Ge
stays almost constant. The study of the effect of surface electric field on the EEM in
n-channel inversion layers of IV-VI and stressed InSb materials has been left as an
exercise to the reader. For the purpose of condensed presentation, the carrier statistics
and the EEM in different materials as considered in this chapter have been presented
in Table 3.1.

3.4 Open Research Problems

R.3.1 Investigate the EEM, EAM, DEM, CEM, CoEM, FREM and OEM in the
presence of an arbitrarily oriented electric quantization for n-channel inver-
sion layers of non-linear optical materials. Study all the special cases for
III-V, ternary and quaternary compounds in this context.

R.3.2 Investigate the same set of masses as defined in (R.3.1) in n-channel inversion
layers of IV=VI, II-VI and stressed Kane type compounds in the presence
of an arbitrarily oriented quantizing electric field.

R.3.3 Investigate the same set of masses as defined in (R.3.1) in n-channel inversion
layers of all the materials as stated in R.1.1 of Chap. 1 in the presence of an
arbitrarily oriented quantizing electric field.

R.3.4 Investigate the same set of masses as defined in (R.3.1) in the presence of
an arbitrarily oriented non-quantizing magnetic field in n-channel inversion
layers of non-linear optical semiconductors by including the electron spin.
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Study all the special cases for III-V, ternary and quaternary materials in this
context.

R.3.5 Investigate the same set of masses as defined in (R.3.1) in n-channel inversion
layers of IV=VI, II-VI and stressed Kane type compounds in the presence
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Fig. 3.8 Plot of the EEM as
function of surface electric
field for p-channel inversion
layers of CdS

Fig. 3.9 Plot of the EEM at
weak and strong electric field
limits as function of surface
electric field for n-channel
inversion layers of Ge and
GaSb respectively
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of an arbitrarily oriented non-quantizing magnetic field by including the

electron spin.

R.3.6 Investigate the same set of masses as defined in (R.3.1) in n-channel inversion
layers of all the materials as stated in R.1.1 of Chap. 1 in the presence of
an arbitrarily oriented non-quantizing magnetic field by including electron

spin.
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R.3.7 Investigate the same set of masses as defined in (R.3.1) in n-channel inversion

layers for all the problems from R.3.1 to R.3.6 in the presence of an additional
arbitrarily oriented electric field.

R.3.8 Investigate the same set of masses as defined in (R.3.1) in n-channel inversion

layers for all the problems from R.3.1 to R.3.3 in the presence of arbitrarily
oriented crossed electric and magnetic fields.

R.3.9 Investigate the same set of masses as defined in (R.3.1) in n-channel inversion

layers for all the problems from R.3.1 to R.3.8 in the presence of surface
states.

R.3.10 Investigate the same set of masses as defined in (R.3.1) in n-channel inversion

layers for all the problems from R.3.1 to R.3.8 in the presence of hot electron
effects.

R.3.11 Investigate the problems from R.3.1 to R.3.10 for the appropriate p-channel

inversion layers.

R.3.12 Investigate all the appropriate problems of this chapter by including the many

body, image force, broadening and hot carrier effects respectively.

R.3.13 Investigate all the appropriate problems of this chapter by removing all the

mathematical approximations and establishing the respective appropriate
uniqueness conditions.
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Chapter 4
The EEM in Nonparabolic Semiconductors
Under Magnetic Quantization

4.1 Introduction

It is well known that the band structure of semiconductors can be dramatically
changed by applying the external fields [1-68]. The effects of the quantizing
magnetic field on the band structure of compound semiconductors are more striking
and can be observed easily in experiments. Under magnetic quantization, the motion
of the electron parallel to the magnetic field remains unaltered while the area of the
wave vector space perpendicular to the direction of the magnetic field gets quantized
in accordance with the Landau’s rule of area quantization in the wave vector space
[40-68].The energy levels of the carriers in a magnetic field(with the component of
the wave-vector parallel to the direction of magnetic field be equated with zero) are
termed as the Landau levels and the quantized energies are known as the Landau
subbands. It is important to note that the same conclusion may be arrived either by
solving the single-particle time-independent Schrodinger differential equation in the
presence of a quantizing magnetic field or by using the operator method. The quan-
tizing magnetic field tends to remove the degeneracy and increases the band gap.
A semiconductor, placed in a magnetic field B, can absorb radiative energy with the
frequency (wo = (le| B / m.)). This phenomenon is known as cyclotron or diamag-
netic resonance. The effect of energy quantization is experimentally noticeable when
the separation between any two consecutive Landau levels is greater than kpT .
A number of interesting transport phenomena originate from the change in the basic
band structure of the semiconductor in the presence of quantizing magnetic field.
These have been widely been investigated and also served as diagnostic tools for char-
acterizing the different materials having various band structures. The discreteness in
the Landau levels leads to a whole crop of magneto-oscillatory phenomena, important
among which are (i) Shubnikov-de Haas oscillations in magneto-resistance; (ii) de
Haas-Van Alphen oscillations in magnetic susceptibility; (iii) magneto-phonon oscil-
lations in thermoelectric power, etc.

In this chapter in Sect. 4.2.1, of the theoretical background, the EEM has been
investigated in nonlinear optical semiconductors in the presence of an arbitrarily
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oriented quantizing magnetic field. The Sect. 4.2.2 contains the results of III-V,
ternary and quaternary compounds in accordance with the three- and the two-band
models of Kane and forms the special case of Sect. 4.2.1. In the same section the well-
known result of EEM from semiconductors having parabolic energy bands has been
presented. In the same section the EEM in accordance with the models of Stillman
et al. and Palik et al. have also been investigated for the purpose of relative compar-
ison. The Sect. 4.2.3 contains the study of the EEM for the II-VI semiconductors
under magnetic quantization. In Sect. 4.2.4, the magneto-EEM for Bismuth has been
investigated in accordance with the models of the McClure and Choi, the Cohen
and the Lax nonparabolic ellipsoidal respectively. In Sect. 4.2.5, the EEM in [V-VI
materials has been discussed in accordance with the model of Dimmock, Bangert and
Kastner and Foley and Landenberg respectively. In Sect. 4.2.6, the magneto-EEM
for the stressed Kane type semiconductors has been investigated. In Sect. 4.2.7,
the EEM in Te has been studied under magnetic quantization. In Sect. 4.2.8, the
magneto-EEM in n-GaP has been studied. In Sect. 4.2.9, the EEM in PtSb, has
been investigated under magnetic quantization. In Sect. 4.2.10, the magneto-EEM
in BirTes has been studied. In Sect. 4.2.11, the EEM in Ge has been studied under
magnetic quantization in accordance with the models of Cardona et al. and Wang
and Ressler respectively. In Sects. 4.2.12 and 4.2.13, the magneto-EEM in n-GaSb
and II-V compounds has respectively been studied. In Sect. 4.3 contains the result
and discussions in this context. The last Sect.3.4 contains open research problems
for this chapter.

4.2 Theoritical Background

4.2.1 The EEM in Non-Linear Optical Semiconductors Under
Magnetic Quantization

In the presence of an arbitrarily oriented quantizing magnetic field B along k_
direction which makes an angle 6 with k, axis and lies in the k, — k; plane, the
magneto-dispersion law of the conduction electrons in nonlinear optical semicon-
ductors can be expressed extending the method as given by Wallace [69] as

Y1(E) = Ax(n, E, 0) + ao(E, 0) (k:1)*, (4.1a)

where

2

Ai(n, E.0) =

2lel B 1
';' (n + 5) [1//2(E) {1//2(E) c0s2 6 + Y3 (E) sin? 9}]

1
le| BRE, (Eq+AD) |°
6 m} (Eg +3A1)
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AY = ATV [ AN (Es + AL cos?
x | E4+E;+68+ - -
34 m; (Eg + §Al)
1
. [ (E + Eg)*(Eg + A)A?Y sin? 6 H 2
2 b
mj (Eg + 54

n(=0,1,2,3,...) Is the Landau quantum number and
_ (Y2 (E)Y3(E))
ao(E. 6) = ——.
(¥2(E) cos? 6 + Y3 (E) sin” 6)
The EEM at the Fermi level along the direction of the quantizing magnetic field,
can be expressed as

akzl
oL

, (4.1b)
E=E¥rB

myi  (Erg.no) = W’k

where Epp is the Fermi energy in the presence of magnetic quantization as measured
from the edge of the conduction band in the vertically upward direction in the absence
of any field. Using (4.1a) and (4.1b) we can write

\ (12 [[ v (Eem)Y — [As(n, Ers. 0)]
i (5781, 0) = (7) l [ a0(Ers, 0)

l[ao(Ers, 0)1' :

- | —— Erg) — Ax(n, ErB,0)|¢ . 4.2

|: a2 (Erp. 0) i|[1ﬁ1( FB) — A+ (n, Erg, )]} 4.2)
From (4.2), it appears that EEM is a function of the Fermi energy, the angle of
orientation of the quantizing magnetic field, the magnetic quantum number, and the
electron spin for tetragonal materials due to the combined influence of the crystal
field splitting and the anisotropic spin orbit splitting constant. The dependence of
the oscillatory mobility on the spin-dependent EEM in addition to Fermi energy is
an important physical feature of tetragonal compounds.

To investigate the dependence of EEM on the electron concentration we have to
determine the density of state function in the present case (Dp(E)) which can be
written, including spin and extending the method as given in Nag [70] as

gvlel B (&5 ok,
Dp(E) = S— (Z - H(E—En>), (4.3)
2mh = JoFE

where E,, is the Landau energy. Using (4.1a) and (4.3), one obtains,
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(&lel B " Ty (E) — Aan, E,0)]7 R
DB(E>—(4R2H)§)[ B0 } lao(E. 6)]
x [ao(E.0) {y(B)Y — [A=, E.0)] |
— (Vi(E) = Ac(n. E.O)} {ao(E.0)Y | H(E — E,).  (44)

Thus, combining (4.4) with the Fermi—Dirac occupation probability factor and using
the generalized Sommerfeld’s lemma [71], the electron concentration assumes the
form

Nmax

gvlel B
Z [T53(n. Epg) + T34(n. Ers)]. (4.5)

ny =
2n2h

where

_ 1
E — A . Erg,0) 1%
Tss(n. Epg) = [’ﬁl( FBZO(E:;(Z) FB )} ’

Ts4(n, Epp) = iLBm [T33(n, Epp)] and Lp(r) = 2(kgT)* (1 — 2172

r=1
§Q2r) S

aZr
aE2r

4.2.2 The EEM in Kane type III-V Semiconductors Under
Magnetic Quantization

(a) Three band model of Kane:

Under the conditions § =0, Ajj = A} = A and mﬁ = m’ = m, (4.1a) assumes
the form

1 k2 2 \1"
Ii(E) = (n+ 5 ) hoo + = & le| BAA |6me ( E+ Eg+3A) | (46)

c

Equation (4.6) is the dispersion relation of the conduction electrons of III-V, ternary
and quaternary materials in the presence of a quantizing magnetic field B along
z-direction [70].

From (4.6), the EEM along the direction of magnetic quantization can be written as

« ,  lel BRA 2 -2
my (Epg) = m. | {I11(Epp)} £ Epg + E; + A . @)
2 6m 3

c
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Thus, the EEM is a function of the Fermi energy and the electron spin under magnetic
quantization. The dependence of the EEM on the electron spin is due to the presence
of the spin orbit splitting constant, excluding the dependence on {I1;(Erg)}, is a
special property of the three-band model of Kane.

Using (4.6) and (4.3), the density-of-states function in this case can be expressed
as

' /
gv lel B/ 2me 5 ( ) le| BEA
Dp(E) ="———+— I (E)—{n+=) hwo
5(E) A2 12 Z:: n(e) 2 T ome (E+Eg124)
, le| BRA
x [{hi(Ep)} £ > | HE = Enp). (4.8)
ome (E+ E; + 5A)
Thus, the electron concentration assumes the form
gy lel BN2me o
no =S 2 [ Tss(n, Erw) + Ts(n, Er)l, (4.9)
n=0
where
1
Tis(n, Ern) 1(E)(+1)h¢ e Bha 2
35(n, £pg) = | {11(£FB) — \n + = ) hwo
2 6m. (Epg + Eq + %A)

5
and T36(n, Epg) = ) Lp(r)T35(n, Erp).

r=1
In the absence of spin, the electron concentration assumes the form

B 2 Mmax
o — % Y S [T3a(n, Ers) + Tis(n, Ern)], (4.10)
n2 B2

n=0

where
1
1 2
T37(n, Erp) = |:111(EFB) - (n + 5) hwo} and

Tig(n, Epp) = Y Lp(r)T37(n, Egs).

r=1

(b) Two band model of Kane:
Under the condition A > E,, (4.6) can be expressed as
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1 20 -
E(l14+aE) = n+§ hawo + (R kZ/ZmC)izuog B, 4.11)

where o = (le| h/2mg) is known as the Bohr magnetron, g* is the magnitude of the
band edge g-factor and is equal to (m/m,.) in accordance with the two-band model
of Kane.
From (4.11), the EEM along the direction of magnetic quantization can be
expressed as
mi; (Erp) = me [1 + 20 Erp] . (4.12)

Thus, the EEM is a function of Fermi energy only due to the presence of band
nonparabolicity factor o and is independent of the electron spin under magnetic
quantization.

In accordance with the two-band model of Kane, the density-of-states function
assumes the form

B2 'max 1
Dy(E) = DI N (14 2g) [E(l +aE) - (n + 5) e
n=0

1

1 2
ﬂFzg*uoB} H(E — Ep,). (4.13)

Thus, the electron concentration can be written as

gy lel By/2me X
- W Z [T39(n, ErB) + T310(n, EFB)], (4.14)

n=0

no

where
1
2

1 1
Tz9(n, Epp) = |:EFB(1 + aEFg) — (n + 5) hao &= Eg*MOB}

N
and T310(n, Erg) = > Lp(r)T39(n, Efp).

r=1
In the absence of spin, the electron concentration assumes the form

|€| B /—2m Mmax
ng = gvj.[2—hZC Z [T311(n, Erg) + T312(n, Erp)], (4.15)

n=0

where 1

1
T311(n, Epp) = [EFB(l + aFEpp) — (n + 5) hwo]
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N
and T312(n, Erg) = > Lp(r)T311(n, Erp).

r=1

From (4.13), under the condition ¢ E < 1, the density-of-states function can be
written as

gvlel By2me 5 3

1
+l h 1% B 2
x [E—i(" Z)ITJEZg o H H(E — E,). (4.16)

Therefore, the electron concentration is given by

1% 2
B "max n + 5 ) hwo F 58" 0B 3
_ svlel BV2 < / E— ) 1+ 2aE) fodE.
Co4n2R2 h2 1 +aE 2

nOE2

(4.17)

Let us substitute,

y=FE — [|:(n+%) hwo:F%g*uoB} (1+(¥E)_1], (4.18)

where y is a new variable.

Since, E 7 is the root of (4.18), we can write y (14« E,,,) =0, since, +ao E,,) #0,
therefore, y = 0. Again when, E — 00,y — oo. Therefore, from (4.18), after
binomial expansion and neglecting the terms in the order of («E)?, we can write

E=- b, (4.19)
aol
where . .
agl = |:1 + o (n + 5) howo £ Eg*uoB:|
and

1
bo1 = (ag1) ™" [(n + )ﬁwo + 78 HOB]

Therefore, combining (4.17) and (4.19) we get,
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gy lel By/2me G / 12
= 1 —+b
n=" E o M~ + ot + 01

apy 01— ErB -
x|1+e k8T dy. (4.20)

Let us substitute, Bp; =

Thus, using (4.20) and the Fermi—Dirac integrals, the electron concentration in
this case assumes the form

ng0931 o 3 3
[ E Ve [(1 + Eabm F—TI(UB) + ZakBTF%(nB) ,
“.21)
where ,
hu 2 kpT\?2
031 &0 and N o 2 M
kBT h?

In the absence of spin (4.21) assume the form [71],

Nmax

1 3 _ 3 -
no = gvNcbpi Z s L+ Sabgy ) Fo(np) + JaksTFyGis) ||
01

(4.22)
where | .
ay, =1+« (n + 5) hwo, by, = |:<n + 5) hwoi| ()
and
- Erp — b()l
1B T
(c) Parabolic energy bands:
Under the condition « — 0 (4.11) becomes
1 2,2 .
E=(n+ 3 hwo + (h°k; /2m.) £ 58 WnoB. (4.23)

From (4.12), the EEM along the direction of quantizing magnetic field can be
expressed as
my_(E¥B) = me. (4.24a)
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The electron concentration in this case assumes the form

Nmax

no = gvNcOp1 Z F%l (mB1), (4.24Db)
n=0

where

1
np1 = (kpT)™! [EFB - (n + 5) ﬁwo] :

Thus, the quantizing magnetic field cannot influence the EEM in relatively wide gap
semiconductors having parabolic energy bands.

(d) The model of Stillman, et al.

In accordance with the model, the electron energy spectrum in III-V semiconductors
in the presence of the quantizing magnetic field B along z-direction can be written
following (1.29) as

2m 1
k2= h_z" [Ilz(E) — (n + 5) hwo} ) (4.25)
Therefore, )
m,
k2 = =5 A(E, n), (4.26)
where

1
A33(E,n) = I2(E) — (n + z)ﬁwo-
The EEM for this model can be expressed as

mzz(EFB) = m¢[1{,(ErB)]. (4.27)

The electron concentration is given by

V2m.eBg, &%
no = Y5 Vs (Erp.m) + Zs (Er. ), (4.28)
n=0
where
Y33(EpB, n) = [/ A33(EFB, n)]
and

Z33(Exg, n) = D Ly(r)[Y33(Egg, n)].

r=1


http://dx.doi.org/10.1007/978-3-642-31248-9_1

134 4 The EEM in Nonparabolic Semiconductors Under Magnetic Quantization

(e) The model of Palik et al.

To the fourth order in effective mass theory and taking into account the interactions of
the conduction, light hole, heavy-hole, and split-off hole bands, the electron energy
spectrum in III-V semiconductors in the presence of a quantizing magnetic field B
can be written in accordance with the present model extending (1.35) as

1 Rk 1 1
E=J+|n+=)hog+ —> £~ Me hwogy + ksoa (n + = ) (hwp)?
2 2m,. 4 \mo 2
h2k2 N el
+ k31ahwg LVt ko | hog(n+ =) + = (4.29)
2m, 2 2m,

where :
J31 = —zaﬁwo [(1 —y11)/(2 +x11)2] J3,

1 1
hzz[[3a—xnf—w2+xﬁﬁ(2+xuxmr+za—xﬁx1+xnx1+yu4,
. (1—x11)]|:(1—y11)“

=211- ,
8o [ |:(2+x11) i1

3 1— 2
k3o = (1 — y1)(1 —x11) [[(Z—i- —X11 +x121) . ﬂ] — gyn],

2 Q2+ x11)?
vy [ ] 3 2y A=y} 2
k3 = (1 yll)[(2+xll):|[[(2+2x11+x11) (2+x11)} 3(1 X11)y11]
and

1, 1 2
k3 = — (1+§x11) (1+§x11 (I =y”

The (4.29) assumes the form
Jask? + J3s L (K2 + T3, £(n) — E =0, (4.30)

where

B = akea (7 /2me ). 52 = | 2k ks 2 + aksshon. 2 -+ 1
34 = aks me) 35,+(n) = 2m, K31 a)().2mc K32 wo.zmc n ) s

1 ¢ 1 1
[131 * (m*) hangl + koa ()’ (n + 7) + kszal(he) (n + 7)12]
4 \mg 2 2

J36,+(n)
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from (4.30) we get
k; = Ass +(E, n), 431)

where

— 2
Ass s (En) = 2J3) " [—J3s,i(n) 3 Urs.zw)” — 43 [s0.00) - E]}
The EEM for this model can be expressed as

mi; (Ers) = (1% | DI Als o (Ers. )] (4.32)

Thus, EEM in accordance with this model is a function of Fermi energy, Landau
quantum number, and the electron spin due to the presence of band nonparabolicity
only.

The electron concentration is given by

eB Nmax
no = 5" [¥s4(Erp, n) + Zs4(Erp, n)l, (4.33)
n=0

T 27w2h

where

Y34(Erg, n) = [\/Ass +(Epp, n) + /Ass _(Ers, n)]
and

SO
Z34(Exg, n) = D Ly(r)[Y3a(Egp, n)]

r=1

4.2.3 The EEM in II-VI Semiconductors Under Magnetic
Quantization

The Hamiltonian of the conduction electron of II-VI semiconductors in the presence
of a quantizing magnetic field B along z-direction assumes the form

< (P (Py—lel B | ho[ .2 . 12 (p)?

g = i—[ —le| B ] N2

5= 2 5 [(P)” A+ Dy — lel BY) + 2t
(4.34)

where the “hats” denote the respective operators. The application of the operator
method leads to the magneto-dispersion relation of the carriers of II-VI semicon-
ductors, including spin, as
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file| B 1 Rk2 - [2le|B \17* 1
E = )+ =24 — + —g*woB. (4.35
P~ (n+2)+2m|*| ol ——\"t3 78 Ko (4.35)

From (4.35), the EEM along the direction of the magnetic quantization can be
expressed as

m}_(Erg) = mf|. (4.36)

Thus, the EEM in this case is a constants quantity and is not affected by magnetic
field.

4.2.4 The EEM in Bismuth Under Magnetic Quantization

(a) The McClure and Choi Model

The Hamiltonian in the presence of a quantizing magnetic field B along the
z-direction in accordance with this model can be written as

N2 A 2 .
iy = P (B~ 1l BY) [1+aE(1—m—/2)}+ﬂ

2m 2my my 2m,
A A\ 4 A \2
a(y—lel B o[ (5
+ 4mom!, « (Py e Bx) 4mmy

. 4 . .
o (py — le| Bx) . a2 [ (Po)? (P2)?
—_ —le| B . (4.37
+ 4mom3 @ (Py — lel BY) dmimy * 4dmams3 @37

Thus, the modified carrier energy spectrum in accordance with McClure and Choi
model up to the first order by including spin effects can be expressed as [72, 73]

1 h?w*(E
E(l +E) = (n+ 5) ho(E) + (0 + 1 +n)%()
h2k2 1) hor (E 1
4oz [1—“(’”2) ( )}i—lg*luoB, (4.38)
2m3 2 2

where

12

By =48 | iap(1-m

w = o —_ .
Jmima m

From (4.38), the EEM along the direction of magnetic quantization assumes the
form as
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. @ 1 ! 1\, ,
my (n, Ep) =m3 | [1— o) (n + 5) he(ErB) 1+ 2aErp — (n + 5) he'(ErB)

D he!' (E
_%(nZ +n+ l)ahzw(EFB)w/(EFB)] + o (l’l + 2)2 w ( FB)

2

1) hoo(Eeg) |
3 [1 . “(+z>w<m>} [ 1 ) = (14 3 ) o)
al’w?(Ers) 5 1,
(P L) gt woB | | (4.39)
In the absence of band nonparabolicity, from (4.39) we get

mz (n, Erg) = m3. (4.40)

Itis interesting to note that for the two-band model of Kane, the band nonparabolicity
alone explains the dependence of the EEM on Fermi energy, and the EEM is inde-
pendent of magnetic quantum number and the electron spin. In the case of McClure
and Choi model of Bi under magnetic quantization, the same band nonparabolicity
again alone explains the dependence of the EEM on the magnetic quantum number,
electron spin, and the Fermi energy respectively. The density-of-states function for
this model under magnetic quantization is given by

" -3/2
gy lel BY/2m3 & o (n+ %) ho(E) 1 1 ,
DB(E)_W’; |:|:12 <§)a(n+5)ﬁ[w(E)]

1
x[E(1+aE)—(n+§)hw(E>—(n2+1+n) 7 :Fig*uoB

ah2a)2(E) :l: ll *l B *1/2
4 518 1Ko

ahfw(E) {a)(E)}’:|
2

al2X(E) 1 ]'/2

+ [E(H—aE) - (n + %) hw(E) — (> + 14 n)
x [1 +2aE — (n + %) R{w(E)) — (> +1+n)

—1/2
§ [1_ a(n+ )hw(E)} }H(E—Ens)- (4.41)

NS

Combining (4.41) with the Fermi—Dirac occupation probability and using the gen-
eralized Sommerfeld’s lemma [71], the electron concentration in this case assumes

the form
Mmax
gv le|l By/2m3

no==o z [T313(n, EpB) + T314(n, EFB)], (4.42)
n=0
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where
—1/2
o (n+ L hw (EgB)
T313(n, Epp) = [1 - ( 2)2
1
X [EFB(I + aEFB) — (n + 5) hw (ErB)
RRw(E 1 1/2
—*+n+ 1)L(FB) F -g"WoB
4 2
and

T314(n, Epg) = D Lp(r) [T313(n, Erp)].

r=1

Under the condition o« — 0, (4.42) get simplified as

g N 9 3 Mmax
_ SvIVGR,UB
no === Foi(nmy), (4.43)
n=0
where
2um*kpT \ /2
Nc, =2 (%) . miyy = (mymam3)'3,
hwos
03 = ——, wo3 = (le| B)//mim2
kT
and

_ 1 1
g, = (kpT) ™! |:EFB - (n + 5) hwos F Eg*MoB} .
In the absence of the spin, the electron concentration for McClure and Choi model
can be written as

B2 Mmax
no =SBV NN U S, ) + Toien, Byl (444)
2 h2
n=0

where

_ a(n+ pho(Erp)

—12
1
2 :| [EFB(I + aEpg) — (n + 5) hw(EFg)

T315(n, Epg) = |:1

—(n2—|—n+1)

al?w?(Epg) ] 172
4
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and

T316(n, EFp) = ZLB(V) [T315(n, EFB)].

r=1

It should be noted that in the presence of a quantizing magnetic field B along y
direction, the dispersion relation of the conduction electrons of Bi in accordance with
the McClure and Choi model can be expressed, neglecting spin and using operator
method as,

o apy 1
Py - — 2Py (n + —) hows, (4.45)
dmoamy  2my 2
where
le| B
w4 = .
Jmims

The electron concentration in this case can be written as

Nmax

Z [T317(n, Erg) + T318(n, EEB)], (4.46)
n=0

np = gvle| B
V212 K2

where

1/2
T317(n, Epp) = [—m (n, Erp) + \/[611(n, Erp)]* + 4q2(n, EFB):| ;

2m. 1
Cll(n,EFB)E( 2) [1+06EFB (1—m—,2)—ot(n+—)ﬁw4]
o my 2

4mom), 1
q2(n, Epp) = Erg (1 + aEpp) — (n + E)hw
and )
Tyig(n, Erg) = » Lp(r) [T317(n, Exs)].
r=1
(b) The Cohen Model

The application of the above method in Cohen model leads to the electron energy
spectrum in Bi in the presence of quantizing magnetic field B along z-direction as
[72, 73]
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1 1, 3 (., 1\ ., » n2k?
E(l+aE)=({n+ <) ho(E) £ =g"woB+ -a({n"+n+ = ) o (E) + —.
2 2 8 2 2ms3

(4.47)

From (4.47), the EEM along the direction of the quantizing magnetic field can be
expressed as

1
m:z(n’ EFB) =m3 I:ZOlEFB —+ 1 — (l’l + E) hw/(EFB)

—%ahzw(EpB)w’(EFB) (n2 +n+ %)} . (4.48)
In the absence of band nonparabolicity, the (4.48) gets transformed into the well-
known (4.40) and the mass becomes independent of Fermi energy and magnetic
quantum number.

By comparing (4.48) and (4.39), it is important to note that the band nonpar-
abolicity has been introduced between the McClure and Choi model and the Cohen
model in two different ways so that in the first case, the band nonparabolicity alone
explains the dependence of the EEM on the Fermi energy, magnetic quantum number
and the electron spin, whereas for the Cohen model, the same band nonparabolicity
alone explains the independence of the EEM on the electron spin excluding the other
two dependences. In the absence of band nonparabolicity for both the models of Bi,
the mass along the direction of the magnetic field is not perturbed by the magnetic
quantization.

The density-of-states function under magnetic quantization in accordance with
the Cohen model is given by

Nmax
Dy(E) = gvle|l By/2ms3 Z

1
e [[E(HaE)— <n+§) ho (E)

1 3ahtw?(E 1 -1/2
() SO L

n=0

2 8 2

x [1 +2aF — (n + %) h{w(E)Y

2 1
- (n2 N %+n) 3ahtw(E) {w(E)} HH(E—EM)-

4
(4.49)

Thus, the electron concentration assumes the form

le| Bo/2m3 &%
no =SS D (Mo, Evn) + Too(n, Epp)l. (450)
n=0
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where
1 1,
T319(n, Erg) = | Erg(1 +aEpg) — (n + 3 hw(EgB) F 28 woB
3 1 172
— (n2 +n+ —) hzwz(EFB)] ,
8 2
s e (- 2)]
w(EpB) = l+aEp (1l ——
mimo m)
and

Too(n, Epg) = D Lp(r) [T319(n, Exp)].

r=1

In the presence of a quantizing magnetic field B along y direction, the magneto-
Cohen model can be expressed by neglecting spin as

1 aEp? 2, ap?
EQ+4aE)=(n+ =) hos — 1?—‘+ Py (1+«E) + py, (4.51)
2 2my 2my 4mom’,
The electron concentration in this case can be expressed as
mo = 2B S . Eew) + Tt Erp)l (4.52)
V2m2i2 =

where

12
T321(n, Epp) = |:—Q3(n, ErB) + \/[613(71, Eep)]* + 4qa(n, EFB):|

and
S
T3p1(n, Epp) = ZLB(V) [T520(n, EFB)]
r=1
in which,
dmom, —aErp 1
q3(n, Epp) = ( 2) |: — + —( +akEF)
o 2m; 2mo

and

4mom’, 1
q4(n, Erg) = " Epg(1 +aEpp) — |n + 5 hws | .
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(¢) The Lax Model

In accordance with this model, the magneto dispersion relation assumes the form
[72, 73]

1 2k 1
E(l4+aE)=|n+ =) hwps + £ 4+ —wog*B, (4.53)
2 2mz 2
where
eB
w3 =
J/mipmy
5 2mg3
Therefore, k7 = F[Am,i(E» n)l, (4.54)
where

1 1
Ag +(E,n)=E(1 +aE) — (I’L + E) hwos F Euog*B
The EEM assumes the form
m*(Egg) = m3(1 + 2a Egp). (4.55)

The electron concentration is given by

eBg,/2m3 &2

=7 Z_:O [Ya0(Ers. n) + Zso(Egg, n)], (4.56)
where

Ya0(Erg, n) = [/As0,+(Erp, n) + /Aso,_(Ers, n)]
and

Zyo(Egs.n) = D Lp(r)[Yao(Ers, n)].

r=1

(d) Ellipsoidal parabolic energy bands

For this model, the magneto-dispersion relation can be written as
1 2,2 [
E=|n+ 3 hwos + (W°kZ /2m3) £ 58 WLoB. (4.57)

The expressions of the electron concentration for this model are the special cases of
the models of the McClure and Choi, the Cohen and the Lax respectively.
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4.2.5 The EEM in IV-VI Semiconductors Under Magnetic
Quantization

(a) The Dimmock Model

In accordance with Dimmock model, the electron energy spectrum in [V-VI semi-
conductors in the presence of a quantizing magnetic field B along z-direction can be
written following (1.83) as

h?  2eB 1\ K2 h*  2eB 1\ = ah?k?
E-—r—er—n+5)——=||1+aE+a—7 —|n+5 )+ -
2m; h 2 2m,; 2m; h 2 2m,

e B 1 h2k2
_ he (n 1 7) 42 (4.58)

my 2 2mf

Thus, (4.58) assumes the form
k; = An(E,n), (4.59)

where

An(E, n) = [2C3 ]! [—C.%z(E,n) + [C322(E,n) —4C31 {C33(E,n) — E(1 +01E)}]7]

aht
Cr=—F—, Cn(E.n=

—aER? ah3eB( 1) (1 + aE)h?
nt o)t

2ml+ 2ml+m,_
. ah’eB ( . 1) . n?

n - )
2m; m; 2 2my
Cas(E.n) heB n 1 oaFEheB n 1 n (1 4+ aE)heB n 1

,n) = n+-)———(n+ = —n+=
? my 2 m; 2 m; 2
a(heB)? 1\?
+ I — n+ < .
m; m; 2

The EEM for this model can be expressed as

dm;"m, 2m,

h2
m*(Erg, n) = ?AQQ(EFB, n), (4.60)

Therefore, the EEM is a function of Fermi energy and Landau quantum number due
to the presence of band nonparabolicity only.
The electron concentration can be written as
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eB Mmax
ny = (nTé;;) Z [Ys1(ErB, n) + Z41(Erg, n)l, (4.61)
n=0
where
Y41(EFB, n) = [/ As2(EFrg, n)]
and

50
Zy(Egg.n) = > Lp(r)[Ya1(Egs, n)].

r=1

(b) The Model of Bangert and Kastner

The electron energy spectrum of IV-VI materials in accordance with the model of
Bangert and Kastner can be written as [74]

T(E) = FI(E)k + F2(E)kZ, (4.62)

where

B [ w2 & 0’
['(E) =2E, F|(E)= [E+Eg0+ Et A +E+A5,]

24 | ($+0)
E+Eyn E+A]

Fy(E) = [

and R, S, 0, A, A/, A are the electron energy spectrum constants.

In the presence of a quantizing magnetic field B along z-direction, (4.62) assumes
the form

- 2eB 1 _ 2
I'(E) = F1(E)7 (n + 5) + F2(E)k; (4.63)

Therefore, kz2 = Ay (E, n), (4.64)

where _
I'(E)— FI(E) (38)(n+ 1)

Ag(E, n) = HE)
>

The EEM for this model can be expressed as

2

h
m*(Epg, n) = ?AZM(EFB, n). (4.65)

Therefore, the EEM is a function of Fermi energy and Landau quantum number
which is the characteristic feature of this model.
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The electron concentration can be expressed as

eB Nmax
ny = ( o ) > Yar(Ers. n) + Zuo(Ers. )], (4.66)
n=0
where
Y4 (Erg, n) = [/ Ass(EFB, n)]
and

S0
Z4(ErB, n) = Z Lp(r)[Ys2(Ers, n)].
r=1
(c) The Model of Foley and Landenberg

In accordance with the model of Foley and Landenberg, the electron energy spectrum
in IV-VI semiconductors assumes the form [75]

1

2

2
} + PkZ+ PIES |

272 272
E+@_hzk§+hk2+ [hzkf Rk Ego

5 — — + + Ty
2 2m,  2m I 2m| ZmH 2
4.67)
where 4 = 1| L 4+ L L — 1 L 4 L1y, and my are the transverse
E T 2| me T mp |’ ﬁ T 2| mie —omg | C le

and longitudinal effective electron masses of the conduction electrons at the edge of
the conduction band and m;; and m;, are the transverse and longitudinal effective
hole masses at the edge of the valence band. In the presence of magnetic quantization
B along z-direction (4.67) assumes the form

o k2 = Ag(E, n), (4.68)
where

As(E,m) = @D3) ™" [=Dsa(E,m) + D3 (E,m) +4LE(E + Eqo) = Dsa(E,m)1Dai]? |

h* h*
o= st |

D3 (E, n) ’ E +2heB( +l) + P}
N n) —= —_— —_— n —_
3 2mﬁr 80 m} 2 I

heB 1 h?
— == (n+ )+ Eo+2B)— |,
mym 2 2m,
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2 2
heB 1 heB 1 heB 1
D(E,n)=|—1—W0+3)1 +(Egopp)——|n+5)+1—F\n+53
my 2 my 2 m7 2

VE heB +1 +P22eB +1
gomi n B 1 A n ) .

The EEM for this model can be expressed as

h2
m*(Egp, n) = ?Aﬁm(EFB, n, (4.69)

Therefore, the EEM is a function of Fermi energy and Landau quantum number
which is the characteristic feature of this model.
The electron concentration can be expressed as

eB Nmax
ny = ( nzgg) > [Yas(Egs, n) + Za3(Ers, )], (4.70)
n=0
where
Y43(EEB, n) = [/ As6(EFB, n)]
and

50
Zy3(Erg,n) = Y Ly(r)[Y43(Erg, n)]

r=I1

4.2.6 The EEM in Stressed Semiconductors Under
Magnetic Quantization

The simplified expression of the electron energy spectrum in stressed Kane -type
semiconductors in the presence of an arbitrarily oriented quantizing magnetic field
B, which makes angles o1, 81 and y; with ky, k, and k, axes respectively can be
written following (1.99) as

1= [K] (LB = L, E), @.71)
where

L(E) = [ag(E))* cos> a1 + [bo(E)] cos® Bi + [éo(E)I? cos® yi
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and

2le| B
h

1 - _
L, E)= ( ) (n + 5) [1ao(E)1 [Bo(E)] [é0(E)I] ™" 12(E)'2.

The use of (3.71) leads to the expression of the EEM as

h2
mzé(n, Epp) = X [—{I3(n, Ep)} Ix(n, Epg) + (1 — I3(n, Eg)) {l2(n, Ers)}'].
4.72)

3h°E
In the absence of stress, together with the substitution B22 = 4—g, the (4.72) gets
me

simplified into (4.12).

By comparing (4.72) and (4.12), one can observe that the stress makes the EEM
quantum number dependent in stressed Kane-type compounds under magnetic quan-
tization, in addition to Fermi energy.

The density-of-states function in this case is given by

Dp(E) = [1— I3(n, )2 = [1 = Iy(n, E)]7'/?

gvlel B Z [{Iz(E)}’
2n2h VI (E)

n=0
x {I3(n, E)Y \/IZ(E)} H(E — Epy). (4.73)

The use of (4.73) leads to the expression of electron concentration as

|€| B Mmax
no = & — D [Ts27(n, Exp) + Tsos(n, Exp)], (4.74)
n*h =
where
T (1, Ers) = v/(Erp) [V1 = 1501, Erp)]]
and

N
Tisg (n, Epg) = ) L(r)T327 (n, Ers) .

r=I1
4.2.7 The EEM in Tellurium Under Magnetic Quantization

The dispersion under magnetic quantization can be written following (1.105) as

, 2B 1 s, ,2eB 1\1?

Therefore, k2 = Aso +(E,n), (4.76)
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where

1
Aso(E.n) = Qu3) ™ [\IJ5(E, n) + [wg(E, n) — 42 W (E, n)]2:| ,

2eB 1 )
\115(E,n): 2\1’1 E_\IJZT n+§ +\I]3 ,

v b — |5 g 2¢B T _ 228 1
6(E,n) = |: - ZT(U‘FE)] - 47(71-{-5) .

The expression for EEM can be written as
h2
m*(Epg, n) = 7Al50i(EFBa n). 4.77)

The presence of the term W3 in (4.75) makes the mass both quantum number and the
Fermi energy dependent in this case.
The electron concentration can be expressed as

Nmax

eBg,
= (2 2 h) ZO [Yas(Epg, 1) + Zas(Ers, n)], (4.78)
n=
where
Yy4s(Epp, n) = [\/A50,+(EFB, n) + \/AS(),—(EFB, )]
and

SO
Zss(Exg, n) = »_ Lg(r)[Yas(Egg, n)]
r=1

4.2.8 The EEM in n-Gallium Phosphide Under Magnetic
Quantization

The magneto electron energy spectrum can be written following (1.111) as
1
2¢eB 1 2eB 1 2

h
(4.79)

2 2 2 B2
where ag = 221 + gn}% by = h_u C= (m’ﬁ)OZ
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Therefore, kz2 = A5y +(E, n), (4.80)

where

Asp(E.m) = @b3)" [\Im(E, m) £ [Wh(E.m) — 463w (E, n)H ,
Wi (E,m) = [2bo[E = Wo(m)] + C1,

Wia(E,m) = [[E = Wo()? = Wion)]

2eB 1
\1’9(}1) = |VG| +GOT n—+ z

and

2eB 1 5
WYion) = CT n—+ 5 + Vg

The expression for EEM can be written as

h2
m*(Erg, n) = TA/SZ,:I:(EFB’ n. 4.81)

The presence of the term |V | in (4.79) makes the mass both quantum number and
the Fermi energy dependent in this case.
The electron concentration can be expressed as

eBg, max
no = (2 2 h) r;) [Y46(EFB, n) + Zss(ErB, 1)1, (4.82)
where
Ya6(Erg, n) = [/Asz,+ (Ers, n) + v/Asy,— (Epg, n)]
and

S0
Zss(EFB, n) = ZLB(V)[Y%(EFBs n].

r=1

4.2.9 The EEM in Platinum Antimonide Under
Magnetic Quantization

The magneto-dispersion relation can be written following (1.118) as
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150
Lo(a@)’eB 1\  xo@?* , [@)?eB 1
E+ =2 - k> — —
[ LTS (”+2)+ s <o T3
- 0(a)’eB 1 v(@?* , i(a’eB 1
E+38)— —— ) - o -
X[ Toom Ty (”+2) P TR K
1@*],, 2eB N\7?
= K24+ —— — 4.83
T [ = \nt3 (4.83)
Therefore, k> = Ass 1 (E,n), (4.84)
where

1
Ass(E,m) = ¥17)”! [—wlsw, m + [Wh(E.m) — 40170 (E, n)]] :

W — I@* rov@)*
=116 16 |

a)t 1 0(a)? T2
Wig(E, n) = [1(614)—7:3 (n + E) + ‘IJIS(E,H)U(Z) — W6 (E, n)koi") } ,

0(a)?
W0 = 1 W1 (E,n) = [Vi6(E, n) + Vi5(E, n)]

Wio(E, n) = Wis(E, n)Vi6(E, n) — 2

[NV 7732
s =4 DD (1) T@PeD (1]

( I@)*e*B? (n + %)2)

and
(B — E+5_o(a)2e3 +1 _ ii(@)*eB +1
(B = | = SR (14 3) - G (0 )

The EEM for this case can be written as

52
m* (Erp. n) = = A%s 4 (Ern. n). (4.85)

The electron concentration can be expressed as
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eBgv Nmax
no = (2 2 ﬁ) ; [Y47(EFB, n) + Z47(EFB, n)], (4.86)
where
Y47(Ers, n) = [/ Ass 1 (Epg, n) + /Ass.—(Egp, n)]
and

50
Zy7(Egg,n) = > Lg(r)[Ya7(Eps, n)]

r=1

4.2.10 The EEM in Bismuth Telluride Under
Magnetic Quantization

In the presence of a quantizing magnetic field B along k, direction, the magneto-
dispersion relation of the carriers in Bi> T e3 can be written following (1.128) as

1
E(1 4+ aE) = &1k + hos (n + 5) , (4.87)
where
eB mo
W3] = Map M3 = :
o)
31 [&22&23 _ (a%f,) ]2

E(1 +aE) — hosi (n + %)

Therefore, k2 =
1

The EEM can be expressed as

h? [1+2aE
m*(Egp) = — [—Jr -~ FB] (4.88)
2 w1
The electron concentration can be expressed as
eBgV Nmax
no === ) D [Yag(Ers, n) + Zag(Egs, n)], (4.89)
2 h g
n=

where

| | 12
Y48(ErB, n) = [5)—1 |:EFB(1 + aEpp) — (n + 5) ﬁw31“
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and

50
Z43(EFB, n) = Z Zp(r)[Yag(Erg, n)].

r=1

4.2.11 The EEM in Germanium Under Magnetic Quantization

(a) The model of Cardona et al.

The dispersion relation of the conduction electrons in n — Ge in accordance with
the model of Cardona et al. in the presence of quantizing magnetic field B along
z-direction can be written following (1.135) as

N\ 122 12k2 22\
EQ +aE) = - t 4 oge( 252 ) - =) . 490
(1 +eE) wl(n+2)+2mﬁ+ * 2m|*|) “\2m (490)

where w| = ;—f, ml*| and mj_ are the longitudinal and transverse effective masses
1
along <111> direction at the edge of the conduction band respectively.

> 2mp
Therefore, k7 = ?A@(E,n), 4.91)

where
N1
Ago(E, n) = (20{)_1 |:1 +2aFE — |:1 + 4o (n + E) hwj_] :| .

The EEM can be written as
m*(EFB, n) = mﬁAlﬁg(EFB, n) (4.92)

The electron concentration can be expressed as

¢B Nmax
no = ( f”) > [Yag(Ers, n) + Zao(Exs, n)], (4.93)
T h =
where
/ZmT“
Y49(EFB, n) = T[\/ Agy(EEB, n)]
and

50
Zag(Epp.n) = »_ Lp(r)[Yag(Ers, n)].

r=1
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(b) The model of Wang and Ressler

The magneto-dispersion law in n — Ge in accordance with the model of Wang and
Ressler can be written following (1.143) as

2, _ M
k7 = ?[AH(E, ], (4.94)
where
1 _ o1
A71(E,n) = [\Im(n) ~ 5z [Was() - 4e1E1%] :
- 1
Woa(n) = (2¢1)" [1 —d, (n + E) rm]
and
R A R [ P S e
Uos(n) = |11 —di{n+ =) hw, +e; n+—)hw, —cii\n+ =) ho .
2 2 2
The EEM is given by

m*(Epp, n) = mWA,ﬂ (EFB, n). (4.95)

The electron concentration can be expressed as

eB . Nmax
no = ( thgh) Zo [Ys50(EFB, n) + Zso(ErB, n)], (4.96)
where
/2m|*“
Ys50(EFB, n) = T[\/ A71(EFB, n)]
and

50
Zso(Erg,n) = Y Ly(r)[Yso(Erg, )].

r=1

4.2.12 The EEM in Gallium Antimonide Under
Magnetic Quantization

The magneto-dispersion relation is given by
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2m,

K2 = = [116(5) - (n + %) hwc} , (4.97a)

where I,6(E) has been defined in (1.153),
(4.97a) can be expressed as

Z

K2 2m,
=77 [A73(EEB, n)], (4.97b)

where [A73(Erp, m)] = [L16(E) — (1 + 3)hooc]
The EEM can be expressed as

m*(Erp) = mcI{s(EFp). (4.98)

The electron concentration can be expressed as

eB Nmax
ny = ( nzé;;) Z [Y501(EFB, n) + Zs01(EFB, 1)1, (4.99)
n=0
where
2m
Yso1(Erg, n) = W “[VA73(Egg, n)]
and

50
Zs01(Egg, n) = »_ Lp(r)[Ys01(Ers, n)]

r=1

4.2.13 The EEM in II-V Semiconductors Under
Magnetic Quantization

The dispersion relation of the holes are given by [76-78]

1
E = 01k} +02k; + 03k +8ak F {05k + 06k +07k2 + 85k} + G3ky + AF]2 £ As,
(4.100a)
where ki, k, and k, are expressed in the units of 10! m~1,

1 1 1 1
01 = z(dl +by), 6= E(az +by), 03= §(a3 +b3), 8= E(A + B),

1 1 1 1
05 2(al b1), 06 2(a2 by), 07 2(613 b3), 85 2( ),

ai(i=1,2,3,4),b;, A, B, G3 and A3 are system cons tan ts
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The magneto-dispersion law in [I-V semiconductors in the presence of a magnetic
field B along k, direction can be written as

ky = Azs.+(E.n), (4.100b)

where
2 &
A7s,£(E,n) = | s E + 36 +£(n) \/E + Elg£(n) + 9 +(n) |, I35 = @)
7~ Y
N I33,+(n) _ 28 —1 2 2
I +(n) = 262 0D’ Ig,+(n) = (405) " [402133, 2 (n) + 805 31, +(n) — 05 I31,+(n)]
2~ 05

To. () = (463) ™" [ Iy 1.(n) + 403 134 1. () — 463 T34, 1) |

I3, (1) = [ G} + 2605 2(n) = 20131, |

1 2
I34,+(n) = [1322(") + A% - L)), Iz = |:(n + 5) hws1 — 741 + A31| ,

eB

1 52 eB
I32(n) = (n-l-*) hop — > |, @31 = ———, 0p=-—Fo—,
2 405 ~ M31 M3, ~ M33 M3y

hZ h2 2 hZ
M3 = 2% M3 = 2% M3z = 265 and M3q = 2%
The EEM is given by
h2
m*(Egp, n) = 7A’75¢(15FB, n). (4.101)

The electron concentration can be expressed as

eBgv Nmax
0= (2 2 h) ; [Ys51(ErB, n) + Zs1(Egg, n)], (4.102)
where
YS] (EFB, l’l) = [\/A75‘+(EFB, n) + \/A75‘7(EFB7 n)]
and

50
Zs1(Erg,n) = »_ Lg(r)[Ysi(Erg,n)]

r=1
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Fig. 4.1 Plot of the magnetic
quantum number-dependent
EEM as function of inverse
magnetic field for n-Cd3As,
considering (4.2) both in
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crystal field-splitting constant.
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4.3 Results and Discussion

Using (4.2) and (4.5) together with the energy band constants as given in Table 1.1 we
have plotted the EEM in n-Cd3zAs; and CdGeAs; as functions of inverse magnetic
field for the first two magnetic subbands in Figs. 4.1 and 4.2 respectively. For the
purpose of self-assessment, in the same figures, we have also plotted the effect of
absence of the crystal field splitting together with the simplified three- and two-band
models of Kane. From these figures, it appears that the EEM is an oscillatory function
of the inverse quantizing magnetic field. The magnetic field has been tilted to an angle
of 45° to the k, direction in both the figures. The oscillatory dependence is due to
the crossing over of the Fermi level by the Landau subbands in steps resulting in
successive reduction the number of occupied Landau levels as the magnetic field is
increased. For each coincidence of a Landau level, with the Fermi level, there would
be a discontinuity in the density-of-states function resulting in a peak of oscillation.

Thus the peaks should occur whenever the Fermi energy is a multiple of energy
separation between the two consecutive Landau levels and it may be noted that
the origin of oscillations in the EEM is the same as that of the Subhnikov-de Hass
oscillations. With increase in magnetic field, the amplitude of the oscillation increases
and, ultimately, at very large values of the magnetic field, the conditions for the
quantum limit is reached when the EEM is found to decrease monotonically with
increase in magnetic field. Further, in this case we see that the EEM is a strong
function of the subband quantum number 7.

For this reason, we has also plotted the EEM for the next higher subband n = 1.
It thus appears that the increasing the index decreases the EEM for lower values of
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Fig. 4.2 Plot of the magnetic 0.08

quantum number-dependent Two Band Model
EEM as function of inverse Three Band Model
magnetic field for n-CdGeAs;
considering (4.2). The mag- 9
netic field has been oriented
at 45° to the k; axis. The plots e ’
for the three- and two-band = l
models of Kane have also been < o0.06 n=1 .
exhibited < 8=-0.21eV
B n=0
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Fig. 4.3 Plot of the magnetic 0.4 7
quantum number-dependent n-Cd As,
EEM as function of carrier [ B=2 tesla
degeneracy for n-Cd3zAs;. - Three Band Model
The magnetic field has been 0.3 - - - Two Band Model

oriented at 45° to the k, axis.
The plots for the three- and
two-band models of Kane
have also been exhibited

0.
, 45°)m,

*

m(E_, n

n, (10° m?)

the field. However at higher field, the difference between them diminishes and all
the respective band models tend to coincide with each other which stand out to be
a remarkable mathematical simplicity in deriving the analytical expressions of the
EEM. The presence of the isotropic spin orbit splitting constant in the three-band
model of Kane changes the value of the EEM as compared with the corresponding
two-band model.

Figures 4.3 and 4.4 exhibit the variation of the EEM on the carrier degeneracy
in both the aforementioned materials. Oscillatory dependences are exhibited in the
case of the equivalent three- and the two-band model of Kane, the deviation among
which for both the materials are almost zero. Further, we also see that there is almost
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Fig. 4.4 Plot of the magnetic 0.4 —— ey ————ry
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EEM as function of carrier b B=2 tesla
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The magnetic field has been 0.3 - - - Two Band Model
oriented at 45° to the k; axis.
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no significant change in the variation of the subband index fromn = 1 ton = 2 in
both the cases. An exponential rise in the EEM can be observed beyond 10?3 m~ for
both the materials. In case of Cd3Asy, we see that decreasing the carrier degeneracy
converges the EEM from all the band models to a unique value. Incidentally, this is not
the case of CdGeAs;. There is a crossing over of the EEM near to the concentration
zone of 1023 m~3 which overestimates the numerical result. In addition, the EEM
exhibits different numerical values for both the materials, the rate of variations of
which are different due to the influence of the energy band constants in accordance
with all the types of band models and follow the same trend as shown in Figs. 4.3
and 4.4.

The dependency of the EEM on the angular orientation of the quantizing magnetic
field has been exhibited in Figs. 4.5 and 4.6 in both n-Cd3zAs; and n-CdGeAs;
respectively. It appears that the EEM exhibits a periodic variation increasing 6 from
0° up to 120°.

The effect of the crystal field splitting constant in both the cases has been exhibited
for relative assessment. It appears that the influence of the crystal field splitting
constant on the EEM for Cd3As, is relatively insignificant, while there appears a
cross-over regime in the EEM in CdGeAs; around 50°. In the later case, the crystal
field constant tends to reduce the EEM beyond 50° which exhibits the influence
of 4.

For the three- and the two-band models of Kane, the EEM becomes independent of
0, since the dispersion relation of the bulk materials in accordance with the said band
models is spherical in constant energy wave vector space, whereas the generalized
band model represents the ellipsoid of revolution in the same space.

Figures 4.7, 4.8, 4.9, 4.10, and 4.11 exhibit the variation of the EEM on
the quantizing magnetic field for n-InAs, n-GaAs, n-InSb, n-Hg;_,Cd,Te and
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Fig. 4.5 Plot of the lowest 0.22 Y
magnetic quantum number- n-CdAs,
dependent EEM as function B=2 tesla o
of orientation of the magnetic _ 23 3
field in n-Cd3As, both in the 0.20 pMo=3 X10"m
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crystal field-splitting constant .
E
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Fig. 4.6 Plot of the lowest 0.17 T
magnetic quantum number- n-CdGeAs2
dependent EEM as function B=2 tesla
of angular dependency of the [ =5 X10%m* 1
magnetic field in n-CdGeAs, °
both in the presence and 0.16
absence of the of crystal field- -
splitting constant E
>
=3
2
o015
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In;_,GayAsyP;_, lattice matched to InP in accordance with the three- and two-band
models of Kane respectively. The variations of the EEM are periodic and independent
of the subband index number with the quantizing magnetic field and the influence
of the energy band constants on the EEM in accordance with all the band models is
apparent from the said figures.

Figures 4.12, 4.13, 4.14, 4.15 and 4.16 exhibit the concentration dependence of
the periodic EEM for all the respective aforementioned materials.

It appears from Figs. 4.12,4.13, 4.14, 4.15, and 4.16 that the periodic oscillatory
numerical values of the EEM is greatest for the quaternary materials while the least
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Fig. 4.7 Plot of the EEM as 0.50 v T T
function of inverse magnetic L Three Band Model
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Fig. 4.8 Plot of the EEM as 0.09 T T 5 T
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Fig. 4.9 Plot of the EEM as 0.07 v v v -
function of inverse magnetic Two Band odel
field for n-InSb considering 0.06 i ]
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for InSb for all types of variables in accordance with all types of band models of
II-V, ternary and quaternary materials. In Fig. 4.17, we have plotted the variation of
the EEM as function of alloy composition in HgCdTe and InGaAsP lattice matched
to InP. It appears that the EEM increases with the alloy fraction in an almost linear
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Fig. 4.10 Plot of the EEM 0.09 v v v v
as function of inverse mag- Two Band Model
netic field for n-Hgp3Cdo 7
Te considering the three- and
two-band models of Kane e
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n-Hg, ,Cd Te
n =5 X10"m™
0.07 a . . a
o 2 4 6 8 10
B (tesla™)
Fig. 4.11 Plot of the EEM as 0.10 T v T
function of inverse magnetic Two Band Model
field for n-In_,Ga, As,P;_,
lattice matched to InP consid-
ering the three- and two-band 0.09 Three Band Model J
models of Kane £
uf
g
0.08 -
n-InGaAsP
n =5 X10*m™
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way. The result of the EEM arising due to the difference in the band structure also
appears to be extremely less.

The numerical computations for the models according to Stillman (Eq. (4.27)) and
Palik (Eq. (4.32)) have been left as an exercise for the reader. Also, from Eq. (4.36),
we see that the EEM in [I-VI material like CdS remains invariant with the magnetic
field, hence we have not exhibited this.

Using Eqs. (4.39) and (4.42) for McClure—Choi model, (4.48) and (4.50) for the
model of Cohen and (4.55) and (4.56) for the model of Lax, we have plotted the
EEM for Bi as functions of inverse quantizing magnetic field and carrier degeneracy
as shown in Figs. 4.18 and 4.19 respectively considering the first two magnetic
subbands for models of McClure—Choi.

From Fig. 4.18, it appears that the effect of the energy band structure namely
due to the model of Cohen and the Lax on the EEM almost coincides with each
other. However, the quadratic nonlinear energy dispersion relation of McClure and
Choi tends to increase the EEM. It appears that the increase in the magnetic subband
index increases the EEM in this case as compared with that of Figs. 4.1 and 4.2 for
nonlinear tetragonal materials. This increase of the EEM for the present case results
due to the presence of the respective dominant energy spectrum parameters. As the
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Fig. 4.12 Plot of the EEM as 0.045 T T v T
function of carrier degeneracy _'II_'hreg Ban:nModlel
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Fig. 4.13 Plot of the EEM as 0.072 o Bana toaar "
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magnetic field increases, we see that with increase in the subband index the EEM
exhibits a sharp discontinuity and can become a negative quantity, thus questioning
the validity of the McClure and Choi model in the beyond-10 tesla zone.

The variation of the EEM on the carrier degeneracy for Bi in Fig. 4.19 is rather
slow over 0.1-0.5 x 10?> m~3 zone.

Figure 4.20 exhibits the variation of the EEM against the quantizing magnetic field
for IV-VI materials considering PbTe as an example using the dispersion relation
provided by the Dimmock model at the lowest quantizing subband. In the same figure
we have demonstrated the variation of the EEM for stressed InSb for the first two
lowest subbands. Large oscillations are exhibited for PbTe case as compared with
that of the stressed case, where we have considered the stress to be composed of all
the diagonal and off-diagonal strain components as given in Table 1.1. It appears the
deviation of the EEM from its ground state value is almost zero when the angular
dependency is 45°. To exhibit this difference, we have further plotted the EEM at the
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Fig. 4.14 Plot of the EEM as
function of carrier degeneracy
for n-InSb considering the
three- and two-band models
of Kane

Fig. 4.15 Plot of the EEM as
function of carrier degeneracy
for n-Hgp 3Cdg 7 Te consider-
ing the three- and two-band
models of Kane

Fig. 4.16 Plot of the EEM as
function of carrier degener-
acy for n-In;_,Ga,AsyP;_,,
lattice matched to InP consid-
ering the three- and two-band
models of Kane
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lowest two subbands as function of the angle of orientation of the field in Fig. 4.21.
It appears that the EEM exhibits periodical variation over the entire angular range as
shown in the same figure with the deviation between the subband values at the two
minima and the mid angular zone (Fig. 4.21).

Figure 4.22 exhibits the EEM in Te, GaP, PtSb,, Bi» Tes, GaSb and as function of
quantizing magnetic field at the lowest subband level. The usual periodical oscillatory
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Fig. 4.17 Plot of the EEM 0.12 L " Il
as function of alloy composi-
tion for n-Hg,Cd;_,Te and 1
n-Inj_,Ga,yAs,P;_ lattice
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nature is exhibited for all the said materials with Bi,Tes to exhibit the highest EEM
numerical values. In case of Ge, we see from (4.92) that the Cardona et al. model and
Wang et al. register a subband index-dependent EEM. We leave the reader to carry
out investigation of the EEM using both the models for Ge, other allied models for
IV-VI, together with that for [I-VI materials.

We wish to note that the effect of electron spin has not been considered in obtain-
ing the oscillatory plots. The peaks in all the figures would increase in number with
decrease in amplitude if spin splitting term is included in the respective numerical
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Fig. 4.19 Plot of the EEM as 0.016 T
function of carrier degeneracy ]
for Bi considering the energy n=o0
band models of McClure 0.014 )
and Choi, Cohen and Lax
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as function of quantizing
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computations. Though the effects of collisions are usually small at low temperatures,
the sharpness of the amplitude of the oscillatory plots would somewhat be reduced
by collision broadening. Nevertheless, the present analysis would remain valid since
the effects of collision broadening can usually be taken into account by an effec-
tive increase in temperature. Although in a more rigorous statement the many-body
effects should be considered along with the self-consistent procedure, the simplified
analysis as presented exhibits the basic qualitative features of the EEM in this under
the magnetic quantization with reasonable accuracy. For the purpose of condensed
presentation, the carrier statistics and the EEM in different materials as considered
in this chapter have been presented in Table4.1.
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4.4 Open Research Problems

R.4.1

(a) Investigate the EEM, EAM, DEM, CEM, CoEM, FREM and OEM in all the
bulk semiconductors as considered in this chapter in the absence of any field.

(b) Investigate the same set of masses as defined in (R 4.1) in the presence of
an arbitrarily oriented quantizing magnetic field including broadening and the
electron spin (applicable under magnetic quantization) for all the bulk semi-
conductors whose unperturbed carrier energy spectra are defined in Chap. 1.

R.4.2 Investigate the same set of masses as defined in (R 1.1) in the presence
of quantizing magnetic field under an arbitrarily oriented (a) non-uniform electric
field and (b) alternating electric field respectively for all the semiconductors whose
unperturbed carrier energy spectra are defined in Chap. 1 by including spin and
broadening respectively.

R.4.3 Investigate the same set of masses as defined in (R 1.1) under an arbitrarily
oriented alternating quantizing magnetic field by including broadening and the
electron spin for all the semiconductors whose unperturbed carrier energy spectra
as defined in Chap. 1.
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R.4.4 Investigate the same set of masses as defined in (R 1.1) under an arbitrarily
oriented alternating quantizing magnetic field and crossed alternating electric field
by including broadening and the electron spin for all the semiconductors whose
unperturbed carrier energy spectra as defined in Chap. 1.

R.4.5 Investigate the same set of masses as defined in (R 1.1) under an arbitrarily
oriented alternating quantizing magnetic field and crossed alternating non-uniform
electric field by including broadening and the electron spin whose for all the
semiconductors unperturbed carrier energy spectra as defined in Chap. 1.

R.4.6 Investigate the same set of masses as defined in (R 1.1) in the presence and
absence of an arbitrarily oriented quantizing magnetic field under exponential,
Kane, Halperin, Lax and Bonch-Bruevich band tails [70] for all the semiconductors
whose unperturbed carrier energy spectra as defined in Chap. 1 by including spin
and broadening (applicable under magnetic quantization).

R.4.7 Investigate the same set of masses as defined in (R 1.1) in the presence
of an arbitrarily oriented quantizing magnetic field for all the semiconductors as
defined in (R 4.6) under an arbitrarily oriented (a) non-uniform electric field and
(b) alternating electric field respectively whose unperturbed carrier energy spectra
as defined in Chap. 1.

R.4.8 Investigate the same set of masses as defined in (R 1.1) under an arbitrarily
oriented alternating quantizing magnetic field by including broadening and the
electron spin for all semiconductors whose unperturbed carrier energy spectra as
defined in Chap. 1.

R.4.9 Investigate the same set of masses as defined in (R 1.1) under an arbitrarily
oriented alternating quantizing magnetic field and crossed alternating electric field
by including broadening and the electron spin for all the semiconductors whose
unperturbed carrier energy spectra as defined in Chap. 1.

R.4.10 Investigate all the appropriate problems of this chapter after proper modifi-
cations introducing new theoretical formalisms for functional, negative refractive
index, macro molecular, organic, and magnetic materials.

R.4.11 Investigate all the appropriate problems of this chapter for p-InSb, p-CuCl
and stressed semiconductors having diamond structure valence bands whose dis-
persion relations of the carriers in bulk semiconductors are given by Cunning-
ham[79], Yekimov et al. [80] and Roman et al. [81] respectively.

R.4.12 Investigate all the problems of this chapter by removing all the mathematical
approximations and establishing the respective appropriate uniqueness conditions.
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Chapter 5
The EEM in Nanowires of Non-Parabolic

Semiconductors

5.1 Introduction

It is well known that in nanowires (NWs), the restriction of the motion of the carriers
along two directions may be viewed as carrier confinement by two infinitely deep one
dimensional (1D) rectangular potential wells, along any two orthogonal directions
leading to quantization of the wave vectors along the said directions, allowing 1D
carrier transport [1-3]. With the help of modern fabrication techniques, such one
dimensional quantized structures have been experimentally realized and enjoy an
enormous range of important applications in the realm of nanoscience. They have
generated much interest in the analysis of nanostructured devices for investigating
their electronic, optical, and allied properties [4—11]. Examples of such new applica-
tions are based on the different transport properties of ballistic charge carriers which
include nanoresistors [12—14], resonant tunneling diodes and band filters [15, 16],
nanoswitches [17], nanosensors [18, 19], nanologic gates [20, 21], nanotransistors
and subtuners [22, 23], heterojunction [24], high-speed digital networks [25-27],
high-frequency microwave circuits [28], optical modulators [29], optical switching
systems [30], and other nanoscale devices. In this chapter, we shall study the EEM
in NWs of non-parabolic semiconductors having different band structures.

In Sect.5.2.1, the EEM in NWs of nonlinear optical semiconductors has been
investigated. In Sect.5.2.2, the EEM in NWs of III-V, ternary and quaternary semi-
conductors has been studied in accordance with the said band models and the sim-
plified results for wide-gap materials having parabolic energy bands under certain
limiting conditions have further been demonstrated as a special case and thus con-
firming the compatibility test. The Sect.5.2.3 contains the investigation of the EEM
in NWs of II-VI compounds. In Sect.5.2.4, the EEM in NWs of Bi has been for-
mulated in accordance with the aforementioned energy band models for the purpose
of relative assessment. Besides, under certain limiting conditions all the results for
all the models of 1D systems are reduced to the well-known result of the EEM in
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NWs of wide-gap materials. This above statement exhibits the compatibility test of
our theoretical analysis. In Sect.5.2.5, the EEM in NWs of IV-VI semiconductors
has been studied taking PbTe, PbSe, and PbS as examples. The EEM in NWs of
stressed compounds (taking stressed n-InSb as an example) has been investigated in
Sect.5.2.6. The Sect.5.2.7 contains the investigation of EEM in NWs of Tellurium.
In Sect.5.2.8, the EEM in NWs of n-GaP has been studied. The Sect.5.2.9 explores
the EEM in NWs of PtSby. In Sect.5.2.10, the EEM in NWs of BiyTes has been
considered. In Sect.5.2.11, the EEM has been studied in NWs of Ge. In Sect.5.2.12,
the EEM in NWs of GaSb has been studied. In Sect.5.2.13, we shall study the EEM
in NWs of [I-V semiconductors. The Sect.5.2.14 explores the EEM in carbon nan-
otubes, a very important quantum material in nanotechnology. The Sect. 5.3 contains
the result and discussions pertaining to this chapter. The last Sect. 5.4 contains open
research problems.

5.2 Theoretical Background

5.2.1 The EEM in Nanowires of Nonlinear
Optical Semiconductors

For two-dimensional (2D) quantizations along x and y directions, (1.2) assumes the
form
k2 = An(E, ny, ny) (5.1)

where

AN(E, nx,ny) = [2(E)] 7y (E) = ¢1(nc.ny) fi(E)],
2 2
Ny nym
o= (22Y 4 (7).
R dy dy
ny =(1,2,3,...),ny, = (1,2,3,...) are the size quantum numbers along x and y
directions, respectively and d and dy are the nanothickness along x and y directions,

respectively.
The quantized sub-band energy (E£11) is given by

v (E1) = fi(E11)$1(ny, ny). (5.2)

The EEM can be expressed as

2
m*(EFip, Ny, ny) = TA/ll(EFlD7nx7ny) (5.3)
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where E r1p is the Fermi energy in the presence of 2D quantization as measured from
the edge of the conduction band in the vertically upward direction in the absence of
any quantization.

—An(EFrip, ny, ny) f3(Erip)
f2(EF1p)

AV (EFip,ny,ny) = [
+LAERD] Y (EFip) — fl(EFip)bi (ny, ny)]j|»
) —1
fr(EFip) = [[thgO(EgO + APl [ZmT (EgO + §A||)}
2
X [ZEF1D + 2Eg() + §A||:| ],
/ 2 * 2 !
fi(EFip) = [h Ego(Eq0 + AJ_)] [QmL (Eg() + §A¢)]
2
X |:2EF1D +2E40 + §A|| + SH

and

Y(Er1p)2EFip + Eg0)
Erip(EFip + Eg0)

Y (EFip) = [
+[Erip(EFip + Ego)2EFip +2Eg0 + A + 5]]

Thus, we observe that the EMM is the function of both the size quantum numbers
(ny and ny) and the Fermi energy due to the combined influence of the crystal
filed splitting constant and the anisotropic spin—orbit splitting constants, respectively.
The density-of-states function per sub-band (N1p(E)) is given by,

(01(E) — ya(EYp(ng.n)} |
NID(E)Zi_V[ 1 2 a4 ]

Y3(E)
[W3(E) 23 (E){Y1 (E)Y — (Y2(E)Y d(ny, ny))
—{Y1(E) — v2(E)p (ny, ny) {3 (E)Y']. (5.4)

The electron concentration per unit length can be expressed as

2g Mxmax "ymax
= > 2 [Bu(Erip, nemy) + Bia(Erip, ne,ny)l - (55)

ny=I1 ny=1

ny =
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where
B11(EF1p, nyx,ny) = [A11(EF1D,nx,ny)]l/2,
ro
Bio(Epip.ny.ny) = D Zip(r) [Bi(EFip. ny. ny)].
r=I1
and
2 1-2 >
Zip(r) =2kpT)" (1 —=2""NEQr .
1p(r) =2(kpT)” ( )&( )8E%r10

5.2.2 The EEM in Nanowires of III-V Semiconductors

The dispersion relation of the conduction electrons of III-V compounds are described
by the models of Kane (both three and two bands) [31, 32], Stillman et al. [33],
Newson and Kurobe [34] and Palik et al. [35] respectively. For the purpose of com-
plete and coherent presentation, the EEM in NWs of III-V semiconductors have
also been investigated in accordance with the aforementioned different dispersion
relations for the purpose of relative comparison as follows:

(a) Under the substitutions § = 0, A = A} = A and mT‘l =m} = m. (5.1)
assumes the form

h2k2 2
2 =I(E)— , 5.6
2m. 1(E) ch‘z’(nmn)) (5.6)

Using (5.6), the EMM along k direction for this case can be written as
m*(Epip) = me {I11(EF1p))’ (5.7)

where

1 1 1
+ +
Erip  Erip+Ego Erip+Eg+ A

Ii1(EF1p) = [III(EFID)[

1
~ Erip + Eq0+ (2/3)AH'

It is worth noting that the EMM in this case is a function of Fermi energy alone and
is independent of size quantum number.
The sub-band energy (E,,, ) can be written as

hZ
11 (Ep,,,) = %‘p(nm ny). (5.8)
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The 1D carrier concentration can thus be written as

2gv 2m, 1/2 Mxmax ymax
nip = =

ny=I1 ny=1

where

2

12
Te3(EFiD, nx, ny) = |:111(EF1D) - ¢(”x»”y)i|

2m,
and
)
Tea(Ep1D, iy, ny) = Z Zip(NTe3(EF1D, Ny, ny).
r=1

(b) Under the inequalities A > Eq or A < Eg, (5.6) assumes the form

212
¢ haks

h
E(l+aE) = , Ty .
(I+akF) 2m6¢(nx ny) + .

The EMM along k, direction can be written as

m*(Erip) = mc(1 +2aEFip).

179

> D Tes(Erip. ne.ny) + Tea(EFip. ny,ny)]

(5.9)

(5.10)

5.11)

Thus, we observe that the EMM in the present case is a function of Fermi energy

only due to the presence of band non-parabolicity.

For NWs, whose energy band structures for the corresponding bulk semiconduc-
tors obey the two-band model of Kane, the density-of-states function per sub-band

assumes the form

1/2
gv [ 2mc (14 2aE)
NlD(E):;( %) > 2

[E(1+aE)— 2m,¢(n)n”y)j|

In this case the sub-band energy (E, ) can be expressed as

Txy3

2

2mc¢(nx7 ny) = E"X,v3 I+ OlEans).

The use of (5.12) leads to the expression of the 1D electron statistics as

(5.12)

(5.13)



180 5 The EEM in Nanowires of Non-Parabolic Semiconductors

Ny Mymax
zgv 2mc 1/2 max "y
mp = ( 7 z z [Tes(Erip, ny,ny) + Tes(Epip, nx, ny)]

ny=I1 ny=1
(5.14)
where

B2 1/2
Tes(EFi1p, ny, ny) = |:EF1D(1 +aEfrip) — ny)}
2m,

and

N
Teo(Er1p, e, ny) = O Zip(r) Tes(Ep1p, nx, ny).
r=1

Under the condition, « EF1p < 1, the expressions of the 1D electron statistics can
be written as

nip = \/Wn‘z‘“ijnvzm?

ny=1 n)*l

3 3
X |:(1 + Eaiz) F_1,2(n6) + Z(YkBTFl/Z(n6):| (5.15)

where

h? ? 1
"= [ 2. ny)} 2= (2m) Pl )0

ne = (Er, —i2)/kpT.

and

(c) Under the condition « — 0, the expression of 1 p for NWs of isotropic parabolic
energy bands can be written from (5.15) as

T, max Vmax

2g,2mmckgT
nip = —CB > [Fapmm).

ny=1 ny=1

1
nm = (k T) [Erip — {(B/2me)g (ny, ny))] (5.16)

(d) The model of Stillman et al.
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In accordance with the model of Stillman et al. [33], the electron dispersion law
of NWs of 1D III-V materials assumes the form

k2 = Aa(E, ny, ny) (5.17)
where

2m,
A(E, ny,ny) = [?{112(15)} — ¢1(ny, ny):| .

The EEM in this case assume the from
m*(Erip) = mel{,(EFip) (5.18)

where
apag

I,(EF1p) = ( 5

) (1 —anErp)~ "2

The quantized sub-band energy (E14) is given by

2

1)
I12(E4) = |:

2me

]¢1(nx,ny)- (5.19)
The electron concentration per unit length can be expressed as
2 M xmax ™ ymax

jv > > [Bir(Erip, ne,ny) + Big(Epip, ne, ny)] (5.20)

ny=1ny=1

nog =

where

1/2
Bi17(Epip,ny,ny) = [A1a(EFip. ne, ny)| /

and
ro

Bis(EFiD, ny, ny) = Zle(r)[Bw(EFlD, My, Ny)].

r=1

(e) The model of Newson and Kurobe
(f) In accordance with the model of Newson and Kurobe [34], the electron dispersion
law in this case assumes the form

2

A [P
E =apk; +

Iz
k2| k2
. +au s] T

ks a1sk3K +ans (ki +k) 21
where a3 is the non-parabolicity constant, aj4(= 2a13 + ais) and a;5 is known as
the warping constant.
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The 1D E-k; relation can be expressed as
k; = Ais(E, nc,ny) (5.22)

where

A1s(E, ny,ny) = (2a13) [ Li(ny, ny) + [{L1(ny, 1))
—da3[La(ny, ny) — E1V2,

_ h? NI 2 nym 2
Li(ny,ny) = E+a14 a4 + v and
c y

2 Ny  NyT 2
dy dy

e (22)"+ (22) )

The EEM can be written from (5.22) as

@1 (ny, ny) + ai (

2m,

_ h
La(ny, ”y) = |:

h2
m*(Efip, ny, ny) = 7A/15(EF1D7 Ny, ny) (5.23)

where
Als(EF1p, iy, ny) = [{L1(ny, ny)}* — 4ai3[La(ny, ny) — Epipl~"/?1.

The mass is a function of quantum numbers in addition to Fermi energy due to
band non-parabolicity.
The quantized sub-band energy (E¢) is given by

Ei6 = L_Z(n)u ny). (5.24)

The electron concentration per unit length can be written as

Mxmax "ymax

28
np = 7V Z Z [B19(EFip. nx.ny) + Bo(EFip, ny,ny)| (5.25)

ny=I1 ny=1
where
B19(EFip, ny, ny) = [A1s(Ep1p, ny, ny)]"?

and "o

By(Epip. ne,ny) = D Zip(r)[Bio(EFip, ny, ny)l.

r=1
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(g) Model of Palik et al.

The energy spectrum of the conduction electrons in NWs of III-V semiconductors
up to the fourth order in effective mass theory, taking into account the interactions
of heavy hole, light hole, and the split-off holes can be expressed in accordance with
the model of Palik et al. [35] and following (1.36) as

The 1D E-k; relation can be written as

k2 = Ai6(E, ny, ny) (5.26)
where

2m,

AlG(E,n_x,ny) = [ hz

{113(E)} — ¢1(ny, ny)} .

The EEM can be written from (5.26) as
m*(Ep1p) = mcl{3(EFip) (5.27)

where 1
I{3(EFip) = 2b12 B [(5112)2 - 4EF1DBII] .

The electron concentration per unit length can be expressed as

Mxmax "ymax

Z Z [B21(EFip, nx,ny) + Bo(EFip, ny, ny)| (5.28)

ny=I1 ny=1

_2%
T

no
where
Bo1(EF1p, ny,ny) = [A16(EF1D, nx, ny)]1/2

and

o
By (EFip, ny,ny) = Z Zip(r) [Bai(EFip, ny, ny)].

r=1

5.2.3 The EEM in Nanowires of II-VI Semiconductors

The 1D dispersion relation for NWs of I[I-VI semiconductors can be expressed fol-
lowing (1.42) as
E = bjk? + G3 1 (ny, ny) (5.29)

where
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an 2 mn 2 - an 2 mn 2 1/2
Guatmmy = | (70) + () =21 () + ()
3£V Ry 0{ d. dy M\ 4, d,

The EEM can be written from (5.29) as

m*(EplD) = m‘T (530)

From (5.30), it appears that the EEM is constant in this case.
The 1D electron statistics can be written as

Nxmax ™ymax

Sy Z Z [7(EF1D. nx, ny) + 8(Epip, nyx, ny)] (5.31)

nip =
ﬂ\/b(/) ny=1ny=1

where

t7(Erip, ny,ny) = [Ep1p — [G3 4+ (ny, ny)11'?
+[EFip — [G3—(ny, ny)11'? and

o
3(EFi1p, Ny, ny) = Z Zip(M)[t7(Epip, ny, ny)]

r=1

5.2.4 The EEM in Nanowires of Bismuth

(a) The McClure and Choi model
The dispersion relation of the carriers in NWs of Bi can be written in accordance
with the McClure and Choi and following (1.49) as

E(l + wE) = R ol (mny)?
“B) = 2m 2my \ dy

12 my TN,y 2
+Gp+—aE ]l —|— : (5.32)
2m2 m2 dy

R (mny 2w (wng)? ah*  (7ny 4
Go=y5—\—-7) t7 + T\
2my \ dy 2m3 \ d; dmom’, \ dy

o hznynzrr2 :
4mom3 dyd; '

where
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Following (5.32), the EEM in this case assumes the from

ah? (7n 27!
(Epip.y) = el (mny
m*(Efip,ny) =m [ 2mz(dy)}

2 my Ty 2
14+ 20Epip — —a{l—{— —
[resamm gi- G )

Thus, EEM in this case is a function of Fermi energy and the size quantum number
ny due to the presence of band non-parabolicity only.
Using (5.32), the 1D electron statistics can be expressed as

(5.33)

2 x/2_n}'max Nzmax
mi
nip = 8v . Z Z [27(EF1p. ny, n2) + tg(Epip, ny, nz2)|  (5.34)
T ny=I1 n;=1
where
—-1/2
ah? Ty 7Y
t7(Efpip,ny,n;) = |1 ——\—— Erip(1+aEpip)
2my \ dy
1/2
n? my whny 7V
—Gp——aEpipyl —|— -
2my my dy
and

So
t8(Epip,ny, nz) = > Zip(r) [ (Epip, ny, n2)]-

r=1

(b) The Hybrid Model
Following (1.58), the 1D dispersion relation in this case assumes the form

h2K2 B2 2
EQ+0E) =22+ G+ — (u) «E(l—yy) (535
mi

R (mn,\> R [(7ny\? - ayoht (mny\*
Gu=|—(=2) +—(22) a+d0+ 22 (=2) |.
a [2m3(dz)+2Mz(dy)(+°)+4M§<dy)
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Using this (5.35), the EEM can be expressed as

h? 7y \?
* y
m (EFlDan}')=m1{|:1+20{EF1D_2_]‘420[{1_(70)}( p ) :“ (5.36)

Thus, EEM in this case is a function of Fermi energy and the size quantum number
ny due to the presence of band non-parabolicity only.

The use of (5.35) leads to the expression for the electron concentration per unit
length as

n ax Nz,
2g \/m Ymax *zZmax
nip=-—- 5 Z Z [31(EF1D. ny, n2) + 132(EF1p, ny, nz)]  (5.37)
ny=1 n;=1
where

131(EF1p, ny, nz)
12

n? 2
=|E (I1+aErip)— G4 — —— Ty aEpip(l —y)
FID o \ .

and

So
t32(Epip.ny, n) = > Zip(r) [31(Epip, ny. n2)].

r=1

(¢) The Cohen model
The 1D carrier dispersion law in this case can be written following (1.65) as

h2k?
o«E* + El; — G5 = —= (5.38)
2m
where
oo () e (Y
2my \ dy 2m; \ dy
and

R: (wn\* B (mny\* aht [(wny\*
Gs=|5—\—-7) t7— =) +——\-) |-
2m3 dz 2m2 dy 4m2m2 dy
Using this (5.38), the EEM can be expressed as

m*(Epip,ny) =mi{[14+2aEpip +17]}. (5.39)
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Thus, EEM in this case is a function of Fermi energy and the size quantum number
ny due to the presence of band non-parabolicity only.
The 1D electron concentration per unit length assumes the form

2 \/2_”Ymax Nzmax
8 nmji
nip=-— N Z Z [135(EFiD, ny, n2) + t36(Epip, ny, nz)|  (5.40)
T n)-:l n;=1
where
t35(Epip, ny, n;) = [@E%p + Epiply — G512
and

So
t36(Epip.ny. nz) = > Zip(r) [as(Epip, ny, n2)]-

r=1

(d) The Lax model
The 1D dispersion relation in this case can be expressed following (1.71) as

h2 2
E(l4+aE)=—>+Gys. (5.41)
2m|
Using (5.41), the EEM can be expressed as
m*(Er1p) = mi {[1 +2¢EFripl}. (5.42)

Thus, EEM in this case is a function of Fermi energy and is independent of the
size quantum number n, due to the presence of band non-parabolicity only.
The 1D electron statistics is given by

2 mn)’max Nzmax
nip = jvT > > [31Erip.ny. no) + tig(Epip. ny. n)] - (5.43)

n)-:l ny=l1

t37(EF1p, ny,n;) = [EFip(1 + @EF1p) — Giel'?

and

So
138(EF1p, ny, ny) = Z Zip(Mt37(EF1D, ny, ny)l.

r=1

It may be noted that under the conditions o« — 0, M}, — oo and isotropic effective
electron mass at the edge of the conduction band, m all models of Bismuth convert
into isotropic parabolic energy bands leading to the confirmatory test.
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5.2.5 The EEM in Nanowires of IV-VI Semiconductors

The 1D dispersion relation in this case in accordance with Dimmock model can be
expressed from (1.83) as

k; = As3(E, ny,ny) (5.44)

where

A3 (E, ny,ny) = (2ha) " [he(E, ny, ny) — [hE(E, ny, ny)

ah?
+4hyh7(E, ny, ny)1"2, h4=[ ]
4x3x6

3m; m; 3m?Lml+
X3=_——"—, X6= 1 1>
2m; +m, me +m;

he(E _ aER?  aR? | (7n\? B2 (T 2 p2
S e ) = e 2w |\ de ) 20 4, ) 20

a2 | (7, \ B2 L (T 2 p2 B (1 +aE)R?
2)63 dx 2)64 dy 2)65 ZM3 2)63 ’

_ m; +2m; " m;F+2ml+
X =g, M= e, M=m, X5 =
3m;imy
m3 = ————
mf +2m}’

o (Eomeony) = | EQt+ab) +o | (F2) 224 (22) 2
T Bxs fly) = GETEENNa ) 2 \ay ) 2
2 32 2 32
Tny h Ty h
— (1 E - ) 2
(e )[( dy ) 2x1+(dy ) 2x2}
g \* 2 (T 2 p2
“MI\a ) 2x dy ] 2x
Y 2 ()
dy 2x4 dy 2xs
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g \? (T 22
dx 2m1 dy 2m2 ’
my +2mj

3

mp =m; and my =

The EEM can be written from (5.44) as

h2
m*(Efpip,nyg,ny) = ?A/23(EF1Dan)mny) (5.45)

where

AS(EF1D, iy, ny)

— (2]14)71 |:h/6 _ he(EF1D, Ny, ny)h/6+2h4h/7(EFlD,nx,ny) :|

/2
[h2(EFip, ny,ny) + 4hsh7(Epip, ny, ny)] /

, a1 1
"=\ T
X6 X3

and

R (mne\>  (7ny\? K2
ho(Epip,ng,ny) = |1+ 2aE — (== —) —
7(EF1D, s 1y) |: t2eEFip to |:2x4 ( dy ) +( dy 2x5
12 22
o[ (Y oy () )
2x1 \ dy dy 2x2
The mass is a function of quantum numbers in addition to Fermi energy due to band

non-parabolicity.
The electron concentration is given by

2 Mxmax "ymax

> > [Ba(Eripininy) + Bsy(Epip.nny)]  (546)

ny=1ny=1

ny =

where

1/2
B3y (Epip, ny,ny) = [A23(EFip. ny, ny)] /

and

0
B33 (Epip, ny,ny) = > Zip(r) [B(Erip, ny, ny)].

r=1
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5.2.6 The EEM in Nanowires of Stressed Semiconductors

The 1D dispersion relation of the carriers in stressed materials in this case can be
written following (1.98) as

k2 = Aoa(E, ny, ny) (5.47)

where

2 2
Ana(E, nony) = [c*(E)] [1 - (”d"*) [a*(E)] % - (%) [b*(E)]_2i| .

y

The EEM can be written from (5.47) as
h2
m*(EFip, Ny, ny) = 7A§4(EF1D, My, My) (5.48)

where

A/24(EF1Danvny)
_ | Ko(EFip)  Ko(EF1p)Lo(EF1D)
Lo(EF1D) L3(EF1p)
3 (fuﬂ)z [M{(EFip) + AN{(EFiD)]
dy Lo(EF1D)

. 2 L/ E 1
N (n ”)  LolErin) [Mo(EFlD)+ ENo(EFlD)]

L3(EFip)

2 /
AN Ly(EFip) 1
) —L(z)(EFlD) Mo(EF1p) 2N0(EF1L))

_(M)z.;[M’(E )—lN’(E )]
dy L()(EFID) o\EF1D ) o\EF1D s

20262 3E, (EF1p)
EgO(EFlD)} 2
+

2022 3
Erip—Cie — # — |
3E, (EFip) |\ 2B;
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M\ (E = -
o) [(Ego(Enmﬂ 2(E} (Er1p)? | 2(E} (EF1p))?

/ (s I R
Ny(EFrip) = (doﬁ) (Eg (EF1D))*

(ap + Cr)e 3boe .y boe }
and

The mass is a function of quantum numbers in addition to Fermi energy due to
stress. The sub-band energy E»3 assumes the form

2 2
() e () | =1 o
X y

Using (5.47), the 1D electron statistics can be expressed as

Mymax Mzmax

28
nip = 7v Z Z [B34(EF1p, ny, n;) + Bys(EFip, ny, n)] (5.50)

ny=I1 n;=1

where

B34(EFip,ny,ny) = \/A24(EF10, Ty, My)

and

So
B3s(Ep1p, ny,ny) = > Zip(r) [Bss(Erip, ny, ny)].

r=1

5.2.7 The EEM in Nanowires of Tellurium

From (1.105), the 1D dispersion relation can be written in accordance with the model
of Bouat et al. as
k2 = Aos +(E. ny, ny) (5.51)

where

Ass +(E, ny, ny) = [(Ys(E) — yek? £+ yrlys(E) — k21Y2)],

v 293 12
Y7 = QYD T 4YE Y — 4yiyil /2

E E
k; = 1(ne,ny), ¥5(E) = |:— + —i| . Ve = ﬁ
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and
vy +AEYIY
41/f3 Y1 — 41/f1 I/f4
The EEM can be written from (5.47) as
k hz /
m (EFID’ Ny, ”y) = 7A25,:|:(EF1D7 Ny, ny) (552)
where
Abs (E L e Y B - “2yl(E
25 +(EF1D, Ny, ny) = 2 [Y8(EFip) — ¢1(nyx, ny)]™ " “Yg(EF1p)
and
Vi(EFip) = Wi
’ 42y — 4}

Thus, the EEM is the function of the Fermi energy and the size quantum numbers
which is the characteristic feature of such model.
The sub-band energies are given by

1/2
Exo. = Y21 (e, ny) % Y (91 (e, )2 (5.53)
The electron concentration per unit length can be expressed as
Nxmax ™ymax
no = i—v > > [Bsss(Erip.ny,ny) + 65+ (5.54)

ny=1ny=1

where

B3, +(EF1D, Ny, ny) = \/A25,+(EF10, Ny, ny) + \/AZS,—(EFlDa Ny, Ny)

and

So
05+ = D Zip(r) B3+ (EFip. nx.ny) + Bas —(Epip. ny.ny)].

r=1
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5.2.8 The EEM in Nanowires of Gallium Phosphide

The 1D dispersion relation in this case following (1.111) can be written in accordance
with the model of Rees et al. as

k2 = Ax6(E, ny, ny) (5.55)
where
Ax(E, ny, ny)

= |:(2a2)_1{2a(E —t1)+D

2
—VI[2a(E — 1) + DI — 4a’[(E — 11)* — 1]} — (”C)Z_”) :| ,
y

t1, D and t; have already been defined in connection with (1.112).
The EEM can be written from (5.55) as

h2
m*(EFlDanyanZ) - ?A/zﬁ(EFlDanyanZ) (5'56)

where

a

, I 2a(Epip —t1) + D —4a>(EFip — 11)
A26(EF1Dsny7”z) =5 \|4- 3 .
JR2a(Epip — 1) + DP —4a2 [(Epip —1)? - 1]

Thus, the mass is a function of Fermi energy and the size quantum numbers which
are the characteristic features of such model.
The sub-band energy E»7 can be written as

Az (Er7, 0y, n7) =0. (5.57)
The electron concentration per unit length can be expressed as

2 Mxmax "'ymax

jv > > [Bss(Erip, ny. n2) + Byg(Epip, ny, n)] (5.58)

noy =

ny=1 ny=1

where

Bss(Epip. ny. n2) =/ Ase(Er1p. ny. n:)
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and

So
Bso(Epip.ny,n;) = »_ Zip(r) [Bs(EFip,ny, n)].
r=1

5.2.9 The EEM in Nanowires of Platinum Antimonide

The 1D dispersion relation in this case can be written following (1.118) as

1 2
= 23] [~ A0 (E. no) + [A107 (B, n) + 4G A (E,n0) || - (M)

dy
(5.59)
where
I I 1(6’)4
= +ww), 1 = =
— _ n,m 2
Ap(E, n;) = |:CU3E+601 |:E+8()—a)4( 7 ) :|
n,m 2 51 n,m 2
+‘”2“’3(dz) " 1(@) ’
2 2 2 )2
w] = ((1) [()\0) —l] w) = (}\.0%) w3 = %(n-’-l)) w4 = %l)

and

—_— —_ n;mw 2
An(E,ny) = |E|E+38) —an
d;
n n;mw 2 E—|—8_ n,mw 2 I n;mw 4
— . — .
) . 0o os| \z

The (1.92) can be expressed as

k2 = Ayy(E, ny, ny) (5.60)

where
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Ay (E,ny,n0) = [24] ™ [=A10(E, 1) + [A10" (B, no) + 4(A9) An (B, np) ||

nymw 2
dy '
The EEM in this case can be written following (5.60) as

2
m*(EFip, Ny, ny) = 7A§7(EF1D, My, My) (5.61)

where
-1 N -
As(Epip,ny,n;) = [ZQ [— (A10) +[A10 (EFip, ny)

+ 4(A9) A1 1(EF1p, n)1 ™ [A10(EF1p, n2) (A10)

+2(A9)(A11(EF1D, nz))/]}, Aly = (01 + @3)

and

2 2
J— n,mw n,m
1A11(EF10,nz))/= |:2EF1D+80_604( ;Z ) +w2( ;Z ) j| (5.62)
Z

4

Thus, the mass is a function of Fermi energy and the size quantum numbers which
are the characteristic features of such model.
The electron concentration per unit length can be written as

T My,
2g max Ymax
no = TV Z Z [Ba0(EFip, nx,ny) + Bai(EFip, ny,ny)| (5.63)

ny=I1 ny=1

where

By (EF1D, nx, ny) = \/A27(EF10, My, My)

and

So
By (Erip, ne,ny) = D Zip(r) [BaO(EF1p, ny, ny)].

r=I1
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5.2.10 The EEM in Nanowires of Bismuth Telluride

The 1D electron energy spectrum following (1.127) assumes the form
ky = Ag(E, ny, n) (5.64)

where

2 2
Ass(E.ny.nz) = | EQ +aE) —ay (25) — a5 (=5
d d,

y

(T (nzn @
() () e

The subband energy (E39) can be expressed as

Ezo = (2a)” [—1 + 1+ 4t (ny, nz)] (5.65)

where

O3a ) _ (nym 2 i n;mw 2 i nymw\ (n.m
ny,n,) = |wy | — w wg | — .
320y M >4, \ 4, “\q, d,

The EEM in this case can be written following (5.64) as

h2
m*(Epip,ny,ny) = 2—5)1(1 +20EFip) (5.66)

The electron concentration per unit length is given by

) Mzmax ymax

> D [BoEripaneny) + BiyEripnany)] - (5.67)

nog =

n;=1 ny=1

where

By (Efip,ng, ny) = \/Azs(EFlD, ny,nz)

and

So

By3(Efip,ng, ny) = Z Z\p(r) [Ba2(EFip, nz, ny)].

r=1
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5.2.11 The EEM in Nanowires of Germanium

(a) The 1D electron energy spectrum for NWs of Ge in this case can be expressed
following (1.134) as
ky = Ax(E, ny,n) (5.68)

where

2 7\
Ao (E, ny,ny) = |:|:y15(E,nZ) - (2m) ("d”) } (2m;/hz)],
1 X

vis(E,n;) = | E(l+aE) — (1+2aE)

W) ]

3m’im?“
m’i—&-ZmT‘< .
The quantized energy levels (E31) can be expressed through the equation

m% +2m’
ko ok ¥ L Il * __
mj =m’,m; = 3 and m3 =

E3 = Qo)™ [—091(%) + \/,091(111)2 - 400092(1%)] (5.69)

where

B2 (n.m 2
po1(nz) =1 -2« 2 a2

and

2
() W (n.m 2 W (n.m 2
n;) = —o
poalitz 2mj; \ d; 2m3 \ d;
The EEM in this case can be written following (5.68) as

2

h
m*(Epip, ny, ny) = ?A/zg(EFlD,nx,ny) (5.70)
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where

K2 n.\ 2
ASg(EFip, iy, nz) = |:|:1 +2aEFip — (am_ﬁ) ( ;'Z ) :| (2’"3/712):| .

For (5.70), we observe that the EEM is a function of the Fermi energy and the size
quantum number due to the presence of band non-parabolicity only. The electron
concentration per unit length is given by

Mxmax Mz

Z Z [Bsa(EFip, nx,n;) + Bis(Epip, nx, n2)] (5.71)

ny=1 n;=1

Zmax

ng

no =

where

Bus(EF1p, ny,n;) = /A29(EFpip, ny, n;) and

So
Bas(EFip, nx,nz) = Z Zip(r) [B44(EFip. nyx. n2)].
r=1

(b) The 1D electron energy spectrum for NWs of Ge in this case can be expressed
following (1.143) as
ks = A30(E. ny.nz) (5.72)

where

2 T\
Azo(E,ny,ny) = [129(E n;) — (ﬁ) (nd—n) }(Zmﬁ/#)]
1 X

1
Io(E.n;) = [2€ ]1[A_6(nz>+[A_ﬁz(nz)—4élE+4<c_1>A_s(nz>]2 ]
D) n,mw 2 1—3 1? n,mw 2 d
() () |12 G () =
Ao = |1-a () ()
<[4 (2) ()

The quantized energy levels (E32) can be expressed through the equation

1 61h2 Nyt 2 ? C1h2 2
Eyp=A — (= —2A
. 5<nz>+(4cl) [mT (dx )] o0 (dx)

A_S(”z) =

(5.73)
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The EEM in this case can be written following (5.72) as
52
m*(Efpip,ny,ny) = TAgQ(EFlD’ Ty, My) (5.74)
where
A3g(EF1p. nx,nz) = 2m3 /W) Ly(Epip, nz) and
—_ - _ —1/2
Iy Erin(no) = [[Aﬁ (1) = 4C1 Ep1p + 4(CD A5 () ] :
Thus, the mass is a function of Fermi energy and the size quantum numbers due to

the presence of band non-parabolicity only.
The electron concentration per unit length is given by

Mxmax 1

28
no=" 2 > [Bis(Erip,ne,n2) + Bar(Epip, ny, n2)] (5.75)

ny=1 n;=1

Zmax

where

Bus(EF1p, ny,n;) = v/ A30(EF1p, ny, n;) and

So
By(Epip.nx.nz) = ) Zip(r) [Bas(Er1p, ny. n2)).

r=1

5.2.12 The EEM in Nanowires of Gallium Antimonide

The 1D electron energy spectrum for NWs of GaSb can be expressed following
(1.153) as
k% = A31(E. ny, ny) (5.76)

where A31(E, ny, ny) = [[136(E) — ¢1(ny, ny)| (2me/1)].
The quantized energy levels (E33) can be expressed through the equation

2

h
I3 (E33) = (

2mc) 1 (e my). (5.77)

The EEM in this case can be written following (5.76) as

h2
m*(Ep1p) = ?Aél(EFlD) (5.78)
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where

A5 (Ep1p) = [1 = (me/mo)(E g /D[(E/2)” + [((Egg)*/2)(1 = (me/mo))]
+[(Eyo/2)(1 = (me/mo))?
+IEripEp(1 = (me/mo))]™"212m /B7)].
The electron concentration per unit length is given by
2 nxmax n}'max

53 [BusEripneny) + Bis(Epiponeny)] - (579)

ny=I1ny=1

nyg =

where

Bis(Ep1p.nx. ny) = \/ A3t (Epip. ne.ny)

and

So
Bag(EFpip.ny.ny) = > Zip(r) [Bag(Ep1p. ny.ny))-

r=1

5.2.13 The EEM in Nanowires of II-V Materials

The 1D electron energy spectrum for NWs of II-V materials can be expressed
following (4.100a) as
k2 = An 4 (E, ng,ny) (5.80)

where

A (B, my)=s w1, m) B E £ [Bs 2+ Efs s (n my)+Br.s(nmy)|

~1
(o my) = (203 =61 | 267201, ny) = 201,500 m,)65]

( ) =0 (nxn)2+9 (”yn)2+5 (WT)$A
oy x(ny, ny) =61 h 4 3,
s F X y dx dy dx
2 2
wr(g. ) = | s % 'y nyT 8 %4
2\t x, My dx dy dx s

B4 = 20 [2(932 — 972)]_1 Bs = [2(932 - 972)]_2 [4972] ,

1
Bt iy, 1y) = [89397a2(nx, ny) — 86201 + (. ny)] [2 (932 - 972)] ,
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-2
fratneny) = [2(63 - 62)| " [403ed s my) — 801030, my )y, )

40203 (ny) + 40301+ (ny. ny) — 4a3(ny)972]

and N
w3(ny) = G3(——)" + A3,
y
The quantized energy levels (E34,+) can be expressed through the equation

1

Exie = a0 my) & [@3 000y + 03))] (5.81)
The EEM in this case can be written following (5.80) as
h2
m*(Epip, ny, ny) = EAQH(EMD, Ny, Ny) (5.82)

where
, 1
Ay L (EFip,ny,ny) = | Ba £ 3 [2B5EF1D + Bo.+(nx. ny)] .
_1
X [ﬁSE%lD +,36,:t(nx, ny)EFlD + ,37,:t(nx, ny)] 2 :|

Thus, the mass is a function of Fermi energy and the size quantum numbers which
are the characteristic features of such model.
The electron concentration per unit length is given by

nxmax ",Vmax

8
no = ;V Z Z [Bao(EF1D. 1y, ny) + Bso(EFiD, iy, ny) | (5.83)

ny=I ny=1

where

Byo(EF1D, ny, ny) = [\/A32, +(EF1D, nx,ny) + \/A32, (EF1D, nx,ny)]

and

So
Bso(EF1p, nx, ny) = z Z1p(r) [Bao(EFip, nx, ny)].

r=1
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5.2.14 Carbon Nanotubes

With the discovery of carbon nanotubes (CNs) in 1991 by lijima [36], the CNs have
been recognized as fascinating materials with nanometer dimensions uncovering new
phenomena in the sphere of low dimensional science and technology. The significant
physical properties of these nanomaterials make them ideal candidates to reveal new
phenomena in nanoelectronics. The CNs find wide applications in conductive [37,
38] and high strength composites [39], chemical sensors [40], field emission displays
[41, 42], hydrogen storage media [43, 44], nanotweezeres [45], nanogears [46],
nanocantilever devices [47], nanomotors [48, 49], and nanoelectronic devices [50,
51]. Single walled carbon nanotubes (SWCNs) emerge to be excellent materials for
single molecule electronics [52-56] such as nanotube based diodes [57, 58], single
electron transistors [51, 59], random access memory cells [60], logic circuits [61],
gigahertz oscillators [62—67], data storage nanodevices [68—73], nanorelay [47, 74—
78], and in other low-dimensional devices. The CNs can be bespoke into a metal or
a semiconductor based on the diameter and the chiral index numbers (m, n), where
the integers m and n denote the number of unit vectors along two directions in the
honeycomb crystal lattice of graphene [79, 80]. For armchair and zigzag nanotubes,
the chiral indices are given as m = n and m = 0, respectively [79, 80]. Another
class of CN called as chiral CN has distinct integers m and n. Besides, a CN can be
a metallic if m — n = 3q; where ¢ = 1,2, 3, ... otherwise it is a semiconductor.
Metallic SWCNs have received substantial attention as potential substitutions for
traditional interconnect materials like Cu due to their excellent inherent electrical and
thermal properties. Since the carriers are confined, in a metallic SWCN, the inclusion
of the sub-band energy owing to Born—Von Karman (BVK) boundary conditions [81]
for their unique band structure becomes prominent. The quantization of the motion
of the carriers in such structures leads to the discontinuity in the DOS function due
to van Hove singularity (VHS) [82] of the wave vectors. In this section, we shall
explore the EEM in carbon nanotubes.
For (n, n) and (n, 0) tubes, the energy dispersion relations are given by [79, 80]

mi kya. kyac
Ep(ky) = +te4/1 4+ 4 cos — cos —— + 4 cos? ——,
n 2 2
T T
- —<ky<— and m(=1,2,...,2n) (5.84a)
ac ac
3k
Em(kx)=:|:tc\/l+4cosucosm—n+4coszﬂ,
n n n
Tk il d m(=1,2,...,2n) (5.84b)
——— <ky<—— and m(=1,2,...,2n )
V3a.  ae

where 7, [60] is the C—C bonding energy and m and n are the chiral indices [79,
80]. The Egs. (5.84a) and (5.84b) are the analytic expressions throughout the entire
Brillouin zone [79, 80].
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Near Fermi energy the 1D E—k, relation can approximately written as [83]
E* — E} = Ak;, (5.84c)
where E; = B0l 1 de i — 102030 iax,
a. 1s the nearest neighbor C—C bonding distance, r is the nano tube radius and

A= (9t§d2 /4712). From (5.84c), it appears that when ky, — 0, E — E;.
Using this idea from (5.84a), we can write

4cos (”;—”) _E (5.84d)

By Eliminating cos(%) between (5.84a) and (5.84d), we can write

5 E2 E?
i [
4z° + t_2_5 Z+1_t_2_0 (5.84e)

c c

ky/3
where z = cos # .

From (5.84e), we can write that the £—k, relation for arm chair nanotube is given by

2
ky = 1(E,m,n) (5.84f)
’ \/gacf
where
fI(E.m,n) = cos™ ' [01(E, m,n)]
and
2 1/2
o mm = s) e [(E s e (B -
e =g 12 12 2
The EEM in this case is given by
41? 0/(EF,,m,n)
m*(Ep,m,n) = s fi(Er, m, n)———— (5.842)
@ J1— 0 (Ep. m.n)

where Ef, is the Fermi energy in this case and
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2 2
4E E? E
0 (EF,, m,n) = tzFl (t_zl— ) +16( t? —1)
C C C

The electron concentration in this case can be expressed as

It appears from (5.86) and (5.87) that the effective mass in CNTs is a function
of m and n in addition to Fermi energy which is the characteristic feature of such
nanomaterials.

Using (5.84f), the electron statistics in this case, can be written as,

—1/2

Imax

> [AER.m. n)+ Bey(Ep,.m,n)] (5.85)
i=0

nip =
acrr«/g

where

N
Boo(Ep.m,n) = Y Zy fi(Ep,, m,n).

r=1

Similarly, the E—k, relation of zigzag nanotube is given by
2
ky = = f2(E,m,n) (5.86)
3a,

where
FAE, m,n) = cos ' [02(E, m, n)]

s[5

The EEM and electron concentration for this case can respectively be expressed as

and

4h2 0,(EF,, m,n)
m*(Ep,,m,n) = o2 [2(Eram, m) 22 (5.87)
a; J1—=63(Er.m.n)
and
8 imax
nip = [f2(EF,.m,n) + Bey(Epy,m, n)] (5.88)
3a.m Py

2F 2E; -1
wenmn=|(G2)| 5]
12 te
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EF, is the Fermi energy in this case, where

s
Bey(Epy.m.n) = > Z, fr(Epy. m.n).

r=1

5.3 Results and Discussion

The variation of the EEM in NWs of different materials along the transport direction
has been exhibited in the figures below at various conditions. Throughout our formal-
ism, we have assumed the NWs to be of rectangular cross-sectional dimensions so
that the usual “particle-in-a-box” concept can be applied along the quantized direc-
tions. The NWs are assumed to be degenerately doped with a carrier density starting
from 108 m~!. While deriving the closed form analytical solutions of EEM in all
the materials, we have also assumed that the constants of the energy band structures
of the materials are independent of thickness in the range beyond 5nm. Generally
speaking, as also will be shown in Chap. 8, that the “band-gap” is a strong function of
cross-sectional dimension and its geometry, i.e., whether the cross-section is circular
or triangular. For example in Si NW, we will observe in Chap. 8, that the band gap
is very high and even becomes direct rather than its usual indirect nature in the zone
1-4 nm cross-sectional dimensions and beyond this, the band gap is nearly equal to
its bulk value. Keeping this trend in view, we have assumed the invariant property of
the material energy spectrum constants and evaluated the EEM in NWs of Cd3As;
and CdGeAs; as function of wire thickness along their respective transport directions
in Figs.5.1 and 5.2.

It appears from Figs. 5.1 and 5.2 that the EEM at the lowest subband in both the
cases are strong cross-sectional functions of the dimensions which converge to their
corresponding bulk values at larger dimensions. The effect of crystal field splitting in
case of dispersion relation of Cd3Asy lets the asymptotic fall to be closer to the bulk
value. It should be noted that all the curves have been evaluated at T =4 K where the
average thermal energy i.e., Ef + kpT is very less than that of the difference of the
adjacent sub-band energies. This leads the carrier to reside in the lowest sub-bands
only.

Figures 5.3, 5.4 and 5.5 exhibit the variation of the EEM with the wire thickness
for III-V materials namely InAs, InSb, and GaAs in accordance with the well-known
standard non-parabolic dispersion relation of Kane. The reader is expected to evaluate
the EEM for other models as derived in this chapter for III-V materials.

It appears from these figures that the difference in the energy band models in
predicting the EEM is almost insignificant. Hence for all practical purposes for
determination of EEM, the second-order model of Kane can fit well. It should be
noted that the EEM for these materials as presented here can be compared with that
of the EEM in 2D systems as given in Chap. 1.
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Fig. 5.1 Plot of the EEM as
function of wire thickness for
QWs of Cd3As; considering
(5.3). The plots for three- and
two-band models of Kane have
also been exhibited with their
corresponding anisotropic
bulk values as presented in
Fig. 1.1

Fig. 5.2 Plot of the EEM as a
function of wire thickness for
QWs of CdGeAs, for all the
cases of Fig.5.1
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A quick view can lead to interpret that the EEM for both the case are same.
However, it should also be kept in mind about the difference in the wire thickness
and carrier concentration. All the curves in this chapter have been evaluated at those
concentrations for which the EEM stand close to that of their corresponding 2D
systems. Further in deriving the results, we have assumed that the conduction band
valley does not splits along the channel transport direction, which is a usual case
with Silicon NW along [110] and [111] valleys (Chap. 8).

Figures5.6 and 5.7 exhibit the variation of the EEM for Hg;_,Cd,Te and
In;_Ga,As;_yPy considering all the aforementioned cases at x = 0.3. In Figs. 5.8,
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Fig. 5.3 Plot of the EEM as
function of wire thickness for
NWs of InAs considering the
three- and two-band models of
Kane with the corresponding
isotropic bulk value

Fig. 5.4 Plot of the EEM as

function of wire thickness for
NWs of InSb considering the

three- and two-band models of
Kane with the corresponding

isotropic bulk value
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5.9,5.10,5.11, 5.12, 5.13, 5.14, we have exhibited the variation of the EEM as func-
tion of carrier degeneracy. It appears from the said figures that the EEM increases
with the increase in the degeneracy. The EEM rises sharply above 10’ m~! for all the
materials in an exponential way due to the presence of the Fermi—Dirac probability
factor in the respective carrier concentration equation.
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Fig. 5.5 Plot of the EEM as
function of wire thickness for
NWs of GaAs considering the
three- and two-band models of
Kane with the corresponding
isotropic bulk value

Fig. 5.6 Plot of the EEM

as function of wire thickness
for NWs of Hg_,Cd, Te
considering the three- and
two-band models of Kane with
the corresponding isotropic
bulk value at x = 0.3
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Fig. 5.7 Plot of the EEM as
function of wire thickness for
NWs of Inj_,Ga,As;_,P,
considering the three- and two-
band models of Kane with the
corresponding isotropic bulk
value at x = 0.3

Fig. 5.8 Plot of the EEM as
function of carrier degeneracy
for n-Cd3 As nanowire for all
cases of Fig.5.1
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Figure 5.15 exhibits the variation of the EEM as function of the alloy composition
in ternary and quaternary systems. It appears that as in the previous cases of quantum
confinements, the EEM in this case also exhibits an increasing variation with x.

We have also plotted the variation of the bulk effective mass as x varies to present
a comparative view. The influence of band non-parabolicity on the EEM in these
two materials can easily be seen. In both the cases, we see that the EEM is a slow
variation function of x due to the change in band gap.
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Fig. 5.9 Plot of the EEM as
function of carrier degeneracy
for NWs of CdGeAs; for all
cases of Fig.5.2

Fig. 5.10 Plot of the EEM as
function of carrier degeneracy
for n-InAs nanowire for all
cases of Fig.5.3
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The effect of dimensionality on NW of Bismuth has been exhibited in Figs.5.16
and 5.17 for the energy band models of McClure and Choi, Hybrid, Cohen, and
Lax. It appears that as the dimension reduces in Fig.5.16, the EEM increases which
is generally accepted. However, using McClure and Choi model the EEM tends to
decrease in the sub-5nm regime there by unfolding the validity of the model in this
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Fig. 5.11 Plot of the EEM as
function of carrier degeneracy
for n-InSb nanowire for all
cases of Fig.5.4

Fig. 5.12 Plot of the EEM as
function of carrier degeneracy
for n-GaAs nanowire for all
cases of Fig.5.5
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Fig. 5.13 Plot of the EEM as
function of carrier degeneracy
for n-Hg; —,Cd, Te nanowire
for all cases of Fig.5.6

Fig. 5.14 Plot of the EEM as
function of carrier degener-
acy for n-In;_,Ga,As; P,
nanowire for all cases of
Fig.5.8
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Fig. 5.15 Plot of the EEM 0.16 = T = 7 =
as function of alloy compo-
sition for n-Hg| _,Cd, Te and n-in, GaAs P
n-In;_,Ga,As;_,P,
nanowires 0.12
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Fig. 5.16 Plot of the EEM as 0.05 ———7—
function of wire thickness for Bismuth:
Bismuth nanowire : McClure Model
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zone. However at large thicknesses, the entire model tends to their corresponding
bulk value 0.00194 mg.

The variation of the EEM as function of carrier degeneracy has further been plotted
using the aforementioned band structure models. It appears from the two figures that
the effect of different band structure models has significantly less deviation from one
another except for model of McClure and Choi.

The EEM is found to increase almost linear with degeneracy 2 x 108 m~! and
beyond using the all the models. In case of PbTe, the EEM rises sharply with
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Fig. 5.17 Plot of the EEM as 0.10 ——T T

function of carrier degeneracy
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decreasing wire thickness below sub-15nm from the bulk value 0.098 my at carrier

degeneracy of 10° m~"!, which can affect the carrier mobility strongly (Fig.5.18).
The effect of strain on stressed InSb NWs has been exhibited in Fig.5.19 for two

different momentum matrix elements to signify its importance as dimension reduces.
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Fig. 5.19 Plot of the EEM as T T T T
function of wire thickness for 0.06 n-inSb Compressive .
stressed InSb nanowire Bulk Relaxed Value: 4
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Fig. 5.20 Plot of the EEM 1.4 T T T
as function of wire thickness 0.0224
for Ge, GaSb, and Bi;Te3
nanowires 1.2 1
0.0223
- 1.0F i
£ n-Ge (Cardona Model)
= 0.0222
=
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. = .
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Wire thickness (nm)

A compressive strain of 3 % has been applied along x and z directions to predict the
variation of the EEM along the transport direction. At this point, we could not provide
the influence of strain on the energy band structure of InSb NW due to the lack in
both experimental and simulation investigations. It is also not very clear about the
exact value of how the momentum matrix element B, will change in the definition of
the strain. All the parameters together with the factor a+Cy, as given in the Chap. 1 is
expected to modulate with the applied strain orientation. However, to correlate with
our strain model on InSb, we have discussed with the existing investigation of strain
effects on silicon NWs in Chap. 8.

Figure 5.20 exhibits the effect of cross-sectional dimension on the EEM in n-Ge,
n-GaSb, and topological insulators like n-Bip Te3. We have used the Cardona model
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to evaluate the EEM in Ge NWs. The reader is left with the corresponding evaluation
of the EEM for Wang et al. model of the same. It appears that the EEM in n-Ge and
BiyTes evolve from its corresponding bulk value significantly from below 15nm.
However in case of GaSb, the EEM is almost invariant. The summary of this chapter
has been presented in Table 5.1.

5.4 Open Research Problems

(R5.1)

(R5.2)

(R5.3)
(R5.4)

(R5.5)

(R5.6)

(R5.7)

(R5.8)

(R5.9)

Investigate the EEM, EAM, DEM, CEM, CoEM, FREM, and OEM for
NWs of all the semiconductors whose unperturbed carrier energy spectra are
defined in Chap. 1 by considering the presence of finite, symmetric infinite,
asymmetric infinite, parabolic, finite circular, infinite circular, and annular
infinite potential wells applied separately in the two different orthogonal
directions.

Investigate the same set of masses as defined in (R5.1) when all the po-
tentials of (R5.1) are being applied in the two different non-orthogonal
directions.

Investigate the same set of masses as defined in (R5.1) in the presence of
arbitrarily oriented non-uniform electric field.

Investigate the same set of masses as defined in (R5.1) to (R5.3) under an
arbitrarily oriented alternating electric field.

Investigate the same set of masses as defined in (R5.4) all the appropriate
problems of this chapter under an arbitrarily oriented alternating magnetic
field by including broadening and the electron spin.

Investigate the same set of masses as defined in (R5.1) for the appropriate
problems of this chapter under an arbitrarily oriented alternating magnetic
field and crossed alternating electric field by including broadening and the
electron spin for all the materials whose unperturbed carrier energy spectra
are defined Chap. 1.

Investigate the same set of masses as defined in (R5.1) for the appropriate
problems of this chapter under an arbitrarily oriented alternating magnetic
field and crossed alternating non-uniform electric field by including broad-
ening and the electron spin whose for all the materials unperturbed carrier
energy spectra are defined Chap. 1.

Investigate the same set of masses as defined in (R5.1) in the absence of
magnetic field for all the appropriate problems of this chapter under expo-
nential, Kane, Halperin, Lax, and Bonch-Bruevich band tails [84] for all
the materials whose unperturbed carrier energy spectra are defined Chap. 1.
Investigate the same set of masses as defined in (R5.1) in the absence
of magnetic field for all the appropriate problems of this chapter for all
the materials whose unperturbed carrier energy spectra are defined in
Chap. 1 under an arbitrarily oriented non-uniform alternating electric field,
respectively.


http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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(R5.10) Investigate the same set of masses as defined in (R5.1) under an arbitrarily

oriented alternating magnetic field by including broadening and the electron
spin whose unperturbed carrier energy spectra are defined in Chap. 1.

(R5.11) Investigate the same set of masses as defined in (R5.1) for all the appro-

priate problems of this chapter for all the materials whose unperturbed
carrier energy spectra are defined in Chap. 1 under an arbitrarily oriented
alternating magnetic field and crossed alternating electric field by including
broadening and the electron spin.

(R5.12) Investigate the same set of masses as defined in (R5.1) all the appropriate

problems for all types of systems as discussed in this chapter for p-InSb,
p-CuCl, and stressed semiconductors having diamond structure valence
bands whose dispersion relations of the carriers in bulk materials are given
by Cunningham [84], Yekimov et al. [85] and Roman et al. [86], respec-
tively.

(R5.12) Investigate the same set of masses as defined in (R5.1) the influence of deep

traps and surface states separately for all the appropriate problems of this
chapter after proper modifications.

(R5.13) Investigate the same set of masses as defined in (R5.1) for all the appropriate

problems of this chapter for multiple NWs of all the heavily doped materials
as described in (R5.8).

(R5.14) Investigate the same set of masses as defined in (R5.1) all the problems of

this chapter by removing all the mathematical approximations and estab-
lishing the respective appropriate uniqueness conditions.
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Part 11

Influence of Light Waves on the EEM in
Optoelectronic Semiconductors



Chapter 6
The EEM in Quantum Confined

Optoelectronic Semiconductors in
the Presence of Light Waves

6.1 Introduction

With the advent of nanophotonics, there has been a considerable interest in studying
the optical processes in semiconductors and their nanostructures [1]. It appears from
the literature that the investigations have been carried out on the assumption that the
carrier energy spectra are invariant quantities in the presence of intense light waves,
which is not fundamentally true. The physical properties of semiconductors in the
presence of light waves which change the basic dispersion relation are relatively less
investigated in the literature [2—4]. In this chapter, we shall study the EEM in III-V,
ternary, and quaternary semiconductors and their nanostructure on the basis of newly
formulated electron dispersion law under external photo excitation under different
physical conditions.

In Sect.6.2.1 of the theoretical background (Sect.6.2), we have formulated the
dispersion relation of the conduction electrons of III-V, ternary, and quaternary
materials in the presence of light waves whose unperturbed electron energy spectrum
isdescribed by the three-band model of Kane. In the same section, we have studied the
dispersion relations for the said materials in the presence of external photo-excitation
when the unperturbed energy spectra are defined by the two band model of Kane and
that of parabolic energy bands, respectively, for the purpose of relative comparison.
In Sect.6.2.2, we have derived the expressions of the electron statistics and the
EEM for all the aforementioned cases. We have also investigated the EEM for the
aforementioned band models in the absence of light waves consequently. In Sect. 6.3,
the EEM has been numerically investigated by taking n-InAs and n-InSb as examples
of III-V semiconductors, n-Hgj_,Cd, Te as an example of ternary compounds and
n-Iny_,Ga, AsyPq_y lattice matched to InP as an example of quaternary materials
in accordance with the three- and two-band models of Kane together with model of
parabolic energy bands, respectively, for the purpose of relative assessment.

S. Bhattacharya and K. P. Ghatak, Effective Electron Mass in Low-Dimensional 227
Semiconductors, Springer Series in Materials Science 167,
DOI: 10.1007/978-3-642-31248-9_6, © Springer-Verlag Berlin Heidelberg 2013
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6.2 Theoretical Background

6.2.1 The Formulation of the Electron Dispersion Relation in
the Presence of Light Waves in I1I-V, Ternary
and Quaternary Semiconductors

The Hamiltonian (I:I) of an electron in the presence of light wave characterized by
the vector potential A can be written following [5] as

A= U(ﬁ+|e|ﬁ)‘2/2m]+\/(?) ©6.1)

in which, p is the momentum operator, V (¥)is the crystal potential and m is the free
electron mass. Equation (6.1) can be expressed as

H=Hy+ H 6.2)
where, Hy = % + V(r) and
iy p (6.3)
2m

The perturbed Hamiltonian H’ can be written as

0 = (‘;me') (A-V) (6.4)

m

where i = /=1 and p = —ihV.
The vector potential (A) of the monochromatic light of plane wave can be
expressed as
A = Agés cosGo - F — wt) (6.5)

where A is the amplitude of the light wave, £ is the polarization vector, 5o is
the momentum vector of the incident photon, 7 is the position vector, w is the
angular frequency of light wave, and ¢ is the time scale. The matrix element of
ﬁr/L ; between initial state, 1;(q, ') and final state ¥, (k, 7) in different bands can be
written as

A-p

1, = % (nk 1) 6.6)
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Using (6.4) and (6.5), we can rewrite (6.6) as

I:I;;l = (——ih|e| AO) g - [[<nl€ ‘e("g"';)v
4m

lc}>e_iwt} + [<nE ‘e(_i‘;‘);)v

lé’) eiwt }]
(6.7)
The first matrix element of (6.7) can be written as

<nl€ ‘e”fﬁ)v

l(}) - /e("[q'i_go_;]';)i(}uﬂz, Py (g, H)dr
n / e("[‘?’”()":]f)u;(/?, HVu G, Hdr (6.8)

The functions ] u; and u}Vu; are periodic. The integral over all space can be
separated into a sum over unit cells times an integral over a single unit cell. It is
assumed that the wavelength of the electromagnetic wave is sufficiently large so that
if k and g are within the Brillouin zone, (§ + so — k) is not a reciprocal lattice vector.

Therefore, we can write (6.8) as

IR R 277)3 L. -
<nk|e(“°'r)V|lq>: [( g) } igs(q + 5o — k)8

+8(G + 50— k) / w (K, F)Vuy (g, F)dr

cell

3
- [(257;) } 5(§+§0—%)/Mﬁ(/?, Vu(G,7)drt (6.9)

cell

where € is the volume of the unit cell and [ u* (K, F)u;(§, F)d>r = 8 — k)8, = 0,
since n # .

The delta function expresses the conservation of wave vector in the absorption of
light wave and 5o is small compared to the dimension of a typical Brillouin zone and
we set ¢ = k.

From (6.8) and (6.9), we can write,

y/ |e| AO-» A 7 - 7
= o Es - pni(k)d(g — k) cos(wt) (6.10)

nl —

where, pu(k) = —ih [uiVuddr = fu;t(lz ) puy (k, 7)d3r
Therefore, we can write

Y/ _ |e|A0—>

Hy == 2F Pt (k) 6.11)

where, &€ = &; cos wt.
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When a photon interacts with a semiconductor, the carriers (i.e., electrons) are
generated in the bands which are followed by the interband transitions. For example,
when the carriers are generated in the valence band, the carriers then make interband
transition to the conduction band. The transition of the electrons within the same band,
ie., FAI,/m = <nlz )I-}" nl?> is neglected. Because, in such a case, i.e., when the carriers

are generated within the same bands by photons, they are lost by recombination
within the aforementioned band resulting in zero carriers.
Therefore,

<nl€‘I:I’

nié> —0 6.12)

With n = ¢ stands for conduction band and [ = v stand for valance band, the energy
equation for the conduction electron can approximately be written as

iy () f-hoE),

2me E.(k) — E,(k)

I (E) = ( (6.13)

where, I11(E) = E@E+1D(E+1)/(cE+1),a = 1/Eg,, Eg4, is the un-perturbed

band-gap, b = 1/(Eg + A).c = 1/(Eg + 2A/3),and<(§ er(®) 2 > represents
ay

the average of the square of the optical matrix element (OME).
For the three-band model of Kane, we can write,

Ei = Ec(k) — Ey(k) = (B2 + Egl2k* /m))'/? (6.14)

where, m, is the reduced mass and is given by mr’1 = (mc)*] + m;], and m, is the
effective mass of the heavy hole at the top of the valance band in the absence of any
field.

The doubly degenerate wave functions u1 (l_é, 7) and ug(lz, 7) can be expressed as
[6, 7]

i (k, 7) = agy [(i)d] + b [u¢] +as[Z V] (6.15)
1K, = A+ k+ ﬁ k+ .
and R
ur(k, 7) = ag— [(5)1] — bk [% y} + cx— [Z2'1] (6.16)

s is the s-type atomic orbital in both unprimed and primed coordinates, | indicates
the spin down function in the primed coordinates,

ks = BlEgy — (yors)*(Egy — 802 (Egy +8) 7'/,
B =[(6(Eq0 +2A/3)(Ego + A))/x1V2,
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ik F Eg)]"?
= (6E; +9Eg A +4A%), il I
R =1
- - A\ I (E)7]Y?
£ = Eci) — E,(B) = Ey [1 +2 (1 + ﬁ) M} ,
my Ego

= (E;O A, X', Y, and Z' are the p-type atomic orbitals in the primed
coordinates, 1’ indicates the spin-up function in the primed coordinates, b+ =

12
PYok, p = (4023012, cre =ty and 1 = [6(Eg, +2A/3)%/x] /
We can, therefore, write the expression for the OME as

OME = p (k) = (uy (k, F)| pluz(k, 7)) (6.17)

Since the photon vector has no interaction in the same band for the study of interband
optical transition, we can therefore write

(SIpIS) = (X|pIX) = (Y|plY) = (Z|p|Z) =0
and (X|p|Y) = (Y|p|Z) = (Z|p|X) = 0.

There are finite interactions between the conduction band (CB) and the valance
band (VB) and we can obtain

>

||
~>
Il
~.>
=

(S|P
(||
(Sl

?\N) ~.>

"'U) '“U)
o

T~

> >
<

"U>
N = X
I

29

where, 7, f , and k are the unit vectors along x, y, and z axes, respectively.
It is well known that

[T/} _ [ 7192 cos(0/2) €92 sin(9/2)i| [T]

V e"19%5in(0/2) €'%/% cos(6/2) || |
and
X’ cosfcos¢ cosfsing —sind X
Y | =] -—sing cosg 0 Y
z' sinfcos¢ sinfsing cosd Z

Besides, the spin vector can be written as

S = o, where, oxz[?(l)]dy=[?_ol] and 0z=|:(1)_01:|'

(SJ I
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From above, we can write

Pey ) = 1n .7 |P

_ <[ak+ [$)4] + br, [(X/_T’Y) T’] ¥, [z’y]] ‘13(
osrion [ o e

Using above relations, we get

ur (K, ?)>

pey ®) = (i (£.7)

ﬁ’ ur (%, 7)>

- b"*%{«X’—iY’>|ﬁ|iS><¢’|¢’>}+ck+ak_{<Z’|ﬁ|iS><¢’|¢’>} (6.18)
- %wsuﬁw+iY’>><¢’|¢’>}+ak+ck_{<iS|ﬁ|Z’><¢/|¢/>}
From (6.18), we can write
<(X’—iY/) p iS>:<(X/) ﬁ’iS>—<(iY’) ﬁ‘iS)

P P

:i/u}},ﬁS—/—iu;,ﬁiuX =i(x

From the above relations, for X', Y" and Z’, we get

-

5

|X’) = cosfcosg | X) + cosfOsing |Y) — sinf |Z)
Thus,

(¥

13} S> = cos@cos¢><X )13} S> + cos@sin¢><Y ‘13‘ S> — sinf <Z ‘ﬁ‘ S> = Ph
where 7| = fcos@cosd) + fcosGsinqb — ksin®
|Y') = —sing | X) + cos¢ |Y) + 0|Z)
Thus,
(v

where 7 = —ising + jcos®,
50 that((x/ —iY) 13‘ S> — B(ify — ).

1o = -sna 5 ol 5[ 7] -
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Thus,
ak—bk+ / / AN _ak—bk+ prin A AN
= (x=ivy || )1 [1) = PG - 619
Now since,

<i5}ﬁ‘(x/+iy’)>=i<s p

X/> _ <S ‘P( Y/> = P(if) — )

We can write,

| e (g B x4 iy W = = | 22 B — i (V V)
[ sl el =- [ pon -],

Similarly, we get

|Z') = sinfcose | X) + sinfsing |Y) + cosd | Z)

so that, <Z/

13‘ iS> = i<Z’ IS‘ S> =iP {sin@cosdﬁ' + sinfsing j + cos@lg} =i PPy
where 73 = fsin@cosq& + fsin@sinq& + kcosb.
Thus,

e (7| Plis) (1 [1) = e i Prs (V1) 6.21)
Similarly, we can write,
ciar, (iS|P|Z)(V [') = ci_an i Pis (V1) (6.22)

Therefore, we obtain

""f_"* [ —ivy|Bls)ir 1)} - % [{is ||+ 1)
= ﬁ<—ak+bk_ (V) + ar_bi, (1 [2' DGR = F) (6.23)

Also, we can write,

Plis) V') + exan, (iS| B Z/) (1 ]1')
=iPle,a +ca )i [(V V)] (6.24)

Ck, Ak_ <
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Combining (6.23) and (6.24), we find

p (,;)_ﬁ(-; — ) {r ) (1 |1) = Ge_ar ) (VL))
Pcv = \/z r 2 ky Ak k_ Ok

+ i PRy(er ar — i a) (U ]1) (6.25)
From the above relations, we obtain,

1 = e 1/2¢c0s(0/2) 1 +e'?/%sin(0/2) | eor
V= —e7/2%5in(0/2) 1 +e'?%cos(6/2) | (6.26)

Therefore,

(i/H')X = —sin(@/2)cos(0/2) (1 |1), + e “iPcos2(0/2) (1 1),
— esin?(0/2) (1 1)) +sin(0/2)cos(0/2) (} [1),  (6.27)

But we know from above that

1 1
(T =0. I =5 (IMh=5 and ()=

Thus, from Eq. (6.27), we get

(v ]1), %[ ~i%c0s2(6/2) —e"¢sin2(9/2)]
% [(cos¢ — ising)cos2(6/2) — (cosp + ising)sin2( /2)]
% [cospcosh — ising] (6.28)

Similarly, we obtain
L. . |
(J/ |T/)y =3 [icos¢ + singcosf] and (|’ |T/)Z =3 [—sind]
Therefore,
W) = E )+ T I, R ),
{(cos@cos¢ - zsmqb)z + (icos¢ + smd)cos@)] — 51n9k}

[{(cosecosqb)l + (s1n¢cos€)] — sm@k} +i { fsinqb + fcosqﬁ}]

l\)l'—‘l\)|>—‘l\J|'—‘

1
[r1 + lr2] _Ei [if] — fz]
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Similarly, we can write

(T |T ) [1sm9005¢ + jsinfsing +kcos€] = %% and (¢ |¢ ) —§r3

Using the above results and following (6.25) we can write

ey (k) = P i P {(a_be) (1 1) = bea,) (V]V))
— (@ =7 a - a
Dcv NG 1— " k_br, k_ Qi
+ P (e ar — ee_ae) (V1))
E . B ax_br,  br_ap,
2r(zr1 rg)[( ﬁ +—\/§ )]
P,
+ 5”3(”’1 — ) {(eryar_ + cr_ar,)}
Thus,
5 (z)—fnif_;)[a (bL+c )+a (’ﬁﬂ )} (6.29)
Pcy ) 3Ur 2 ky \/E k_ k— ﬁ k+ .

We can write that,

|f1| = |f2| = |f3| =1, also, P = Pysinfcosgi + ﬁysinesinqbf + ﬁzcosé’lg
where, P = <S ‘IS‘ X> = <S ‘13‘ Y> = <S ‘ﬁ‘ Z>,
<S’13‘X> =/u’g(0, ) Puyx (0, F)d3r = Peyx(0) and <S‘f" z>= Peyz(0)

Thus, . . . . .
P = Pcyx(0) = Pcyy(0) = Pcyz(0) = Pcy(0)

where, Pcy (0) = [ u?(0,7)Puy (0, F)d*r = P

For a plane polarized light wave, we have the polarization vector &5 = k, when
the light wave vector is traveling along the z-axis. Therefore, for a plane polarized
light wave, we have considered &; = k.

Then, from (6.29) we get

0|~

G- pev k) =k - =F3(if — Fa) [A(l?) + B(ié)] coswt (6.30)
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and b
g k
Ak) = ax_ (—+ + ch)
i z{? (6.31)
B(k) = aj+ (7; + Ck—)
Thus,
N 2
N ~ P N ~A 12 7 =72 2
E - po®| = k- S| it~ [A(k)+B(k)] cos? wt
14 2 R -12
=3 zcose‘ [A(k)—i—B(k)] cosZwt (6.32)

-2
So, the average value of ‘E * Dev (k)‘ for a plane polarized light wave is given by

2 T
N2 20 42 - -2 1
- pev (K > =Z|P.| |A(k)+ B(k) /d¢/cos29sined9 (-)
<”()w47[ ]00 2
2 ~ |2 N S92
= p, [A(k)+B(k)] (6.33)
3
~ 2 N 2
where | 2| = (1) ‘k.pw(())‘ and

m_2 Eg (Ego + A)

6.34
i, (B +30) o

. 2
& )] =

We shall express A(l_é) and B(lz) in terms of constants of the energy spectra in the
following way: . .
Substituting ax, , bk, ck, and yor+ in A(k) and B(k) in (6.31) we get

1/2
7 P Eg 2 2 2 (Eq =Y

Alk) = t+ — _— - —_ 6.35
(k) ,3( + \/5) [(Ego +8/) Yok, — Yok, Yok_ (Ego Y (6.35)

1/2
X p Eg, ) 2 2 2 (Ego_‘s/)]

Bk) = t+ — —_— - —_ 6.36
®)=p ( \/5) [(Ego + o) ok T Yok Yo Eqy +8 (030

in which,

SO | Sk R PO Eg +9
Ok =2 +6) 2 i+

and
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E+E 1 E, — &
)/02](7 = g(: - 1 + 80 -
2 +98) 2 ik +6

Substituting x = & + &’ in Vozki’ we can write,

- E 1 E, +¢
A(k):ﬂ(t.lr_i) (E—go’)f [ %7
V2 g0t X
12
_! (Ego_‘s/) (1 _ Eg0+6/) <1+ Ego_5/)] /
4 \Egy + 6 by by
) ) 1/2
A(k)=ﬁ(t+i)[1—ﬂ+a—§}

2 V2 X X

where ag = (EJ, 4 8%)(Eg, 4+ 8) ™" and a) = (Eg, — 8')%.
After tedious algebra, one can show that

A(]_(') _ E / i) (E 8/ 1 1 1/2
B 2( +ﬁ 0 )[§1k+8/_Ego+a/]

Thus,

L Byt 7" 637)
Eik+8 (Eg —98)2 ‘
Similarly, from (6.36), we can write,
7 p Eg 1 Eg =8
B(k) = t+ — {1+ —=—-—
O=e(+ ) (5 55) 2 1+
1/2
R LAY R AV A A
4 \Eg + 6 X X
so that, finally we get,
- B p Eg — &
Bk)y==(t+— 1 6.38
(k) > + N; + Y (6.38)

Using (6.33), (6.34), (6.37), and (6.38), we can write

2 (g pAcv(l_é) 2 2 N 2 2
(|6’|A0) <‘ ﬂ | _}av :(|e|A0) z—n‘k-ﬁcv(O)‘z ’3_(;4_&)
2m Ec(k) — Ey(k) 2m 3 4 V2
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1 E, — & 1 1 172
s R E———
£k 1+ 6 Eik+68  Eg+3

2

1 Eg +8 72

5 _ B9 (6.39)
%_lk + & (Ego - 8/)2

Following Nag [8], it can be shown that

2
Al = _ (6.40)
212e3 . Jesc€0
where [ is the light intensity of wavelength A, g is the permittivity of free space,
and c is the velocity of light. Thus, the simplified electron energy spectrum in I1I-V,
ternary, and quaternary materials in the presence of light waves can approximately
be written as

h2k?
oy = Bo(E, A (6.41)

where fo(E, A) = [I11(E) — 0p(E, 1)],

le>  1n? Eg0<EgO+A>ﬂ2< p)2 1

Oo(E, A) = —\tt—=) (=
96m,mwe3 Je5ce0 (Eg0+%A) 4 V2] $o(E)

(1+Eg°—_8/)+(E —3/)[ oo }1/2
Go(E) + &' £ Go(E) +8'  Egy+ 08
[ 1 _ Eg+¢ ]‘/2 ?
Go(E) +68  (Egy —8')?

1/2
and ¢o(E) = Eg, (1 +2 (1 4 x_;) ",;JE)) .

80

Thus, under the limiting condition k — 0, from (6.41), we observe that E # 0
and is positive. Therefore, in the presence of external light waves, the energy of
the electron does not tend to zero when k — 0, whereas for the unpgrturbed three-
band model of Kane, 11 (E) = [h*k*/(2m,)] in which E — 0 for k — 0. As the
conduction band is taken as the reference level of energy, therefore, the lowest positive
value of E fork — 0 provides the increased bandgap (A E,) of the semiconductor
due to photon excitation. The values of the increased bandgap can be obtained by
computer iteration processes for various values of I and A, respectively.

Special Cases:

(1) For the two-band model of Kane, we have A — 0. Under this condition,
I(E) — E(1 +aE) = Z£ Since, p — 1,1 — 1, p — 0,8 — 0 for
A — 0, from Eq.(6.41), we can write the energy spectrum of III-V, ternary
and quaternary materials in the presence of external photo-excitation whose
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unperturbed conduction electrons obey the two-band model of Kane as

h?k>
2m,

=10(E, \) (6.42)

where 7o(E, L) = E(1 +aE) — Byo(E, )),

Bo(E. 2y = B [(1+—g° )
0= A= 384w c3m, /e5ce0 ¢1(E) $1(E)

. 1 1 1?2
- go[‘Pl(E)_E_go“ ’

2m,

1/2
¢1(E)5Eg0[1+ aE(l—l-aE)] :

my

(2) For relatively wide bandgap semiconductors, one can write, a — 0, b — 0,
c— Oand I11(E) — E.
Thus, from (6.42), we get,

h2k?
> = Po(E, 1) (6:43)
me
le|? 122 2m, —3/2
EN=E———— " |1 E 6.44
Po(E, 1) 961 c3m, \/€5c€0 + m, a 644

6.2.2 The Formulation of the EEM in the Presence of Light
Waves in I11-V, Ternary, and Quaternary Semiconductors

The EEM can, in general [6, 7], be written as

10E ok
Es) = | (Bk _ = = B2k — 6.45
meen = | / (35 P TP
where Er is the Fermi energy in the present case.
Using (6.41) and (6.45) we get,
me(Ep) = me [1{{(Ep) — 64(Ep. 1] (6.46)

where the primes indicate the differentiation of the differentiable functions with
respect to Er. It appears then that the formulation of the EEM requires an expres-
sion of electron statistics, which, in turn, is determined by the density-of-states func-
tion. Using (6.41), the density-of-states function for III-V, ternary, and quaternary



240 6 The EEM in Quantum Confined Optoelectronic Semiconductors

materials in the presence of light waves whose unperturbed conduction electrons
obey the three-band model of Kane can be expressed as

2m.\ 2
Do(E) = 4n (h—"l) g/ Bo(E. )By(E. 2) (6.47)

where B)(E, 1) = 52 [Bo(E, M)].

Combining (6.47) with the Fermi-Dirac occupation probability factor and using
the generalized Sommerfeld’s lemma [9], the electron concentration can be
written as

i (2me 3/2
no = (37°) 5 g [Mi(EF,2) + Ni(EF, A)] (6.48)

where M{(Er, %) = [Bo(Er, M)I1¥?, Ni{(Ep, %) = >_, L(r)M(EF, ) and

r=1
a2r
L(r) = [2(kgT)* (1 = 2'72)E(2r)] (3%) ‘E:EF .
The expressions of EEM and ng, for III-V, ternary, and quaternary materials in the
presence of light waves whose unperturbed conduction electrons obey the two-band

model of Kane can be expressed as

m*(Ep) = m¢ [(1 + 2aEF) — By(Ep, 3] (6.49)
0= Q0Gr") = & [Ma(Ep, L)+ No(Efp, M)] (6.50a)

where My (Ep, &) = [wo(EF, 2)1¥? and Ny(Ep, 1) = 35_ | L(r)Ma(EF, A).

The expression of EEM for III-V, ternary, and quaternary materials in the presence
of light waves whose unperturbed conduction electrons obey the parabolic energy
bands can be expressed as

m*(Ep) = m¢ [po(EF, 3)] (6.50b)
. 2mc 3/2
no = (37°)" (F) gv[M3(EF, 1) + N3(EF, 1)] (6.50c)

where M3(Ef., %) = [po(Ep, M)1*/% and N3(Ep, 1) = >3 L(r)M3(EF, 3.
In the absence of external photo-excitations, the expressions of the EEM and n¢

in accordance with the three band model of Kane assume the forms
m*(Ey) = me [17,(Ep,)] (6.51)

2m,

3/2
2 ) [Ma(ERy) + Na(Ery)] (6.52)

no = gv(3r%) ! (
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where Ef, is the Fermi energy in the absence of photo-excitation, M4(Ef)) =
3/2 ‘
(11 (Er) ] and Na(Epy) = 33y L0)Ma(ERy).
In accordance with the two-band model of Kane, the corresponding expressions
of the EEM and n( are given by

m*(Egy) = me[(1+2aER)] (6.53)
B - % 32
ng = (37°) 2 gv [M5(ER,) + N5(ERy)] (6.54)

3/2 i
where Ms(Ep,) = [Ep, (1 + aER,)] 2 and Ns(Ep,) = 3°_, L(r)Ms(Ep,).
Under the constraints A > E, or A < Eg together with the condition
aEf, <1, the (6.54) assumes the form

15akgT

no = Ncgy |:F1/2(77) + (TB) F3/2(17)] (6.55)

where n = Ery for relatively wide gap materials E,, — o0 and the (6.53) and (6.55)
ksl y gap g0

get simplified as to the well-known results [8] as
m*(Ep) = m, (6.56)

and
no = Ncngl/2(77) (6.57)

6.3 Results and Discussion

Using the appropriate equations and the values of the energy band constants from
Table 1.1, we have plotted in Figs.6.1, 6.2, 6.3 and 6.4, the EEM as functions of
electron concentration at 7 = 4.2 K by taking n-InAs, n-InSb, n-Hg;_,Cd,Te
and n-In;_,Ga,As,P;_, lattice matched to InP as examples of III-V, ternary, and
quaternary materials which are used for the purpose of numerical computations
in accordance with the perturbed three- and two-band models of Kane and that of
perturbed parabolic energy bands, respectively. In Figs. 6.5, 6.6, 6.7, and 6.8 we have
plotted the EEM as a function of intensity. In Figs. 6.9, 6.10, 6.11, and 6.12 we have
plotted the EEM as a function of wavelength. In Figs. 6.13 and 6.14, we have plotted
the EEM as function of the alloy composition for ternary and quaternary materials,
respectively.

From Fig. 6.1 it appears that the EEM increases with the increasing electron con-
centration for n-InAs and the numerical values of the EEM in the presence of light
waves in accordance with all the band models are relatively larger than that of the
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Fig. 6.1 Plot of the normalized EEM as a function of electron concentration for n-InAs in the
presence of light waves in which the curves (a) and (c) represent the three and two band models
of Kane, respectively. The curves (b) and (d) exhibit the same variation in the absence of external
photo-excitation. The curve (e) represents the parabolic energy band model both in the presence
and in the absence of the external photo-excitation

same in the absence of the external photo-excitation excluding curve (e), where
for parabolic energy band the EEM is numerically concentration invariant due to
large bandgap. The reason behind such behavior is the fact that the Fermi energy is
the monotonic increasing function of electron concentration and the EEM increases
monotonically with increasing Fermi energy both in the presence and absence of
light waves. By comparing the plot (a) with plot (c) in Fig. 6.1 we observe that the
presence of spin—orbit splitting in curve (a) decreases the value of the EEM as com-
pared with curve (c) in the whole range of carrier degeneracy as considered here.
For relatively low values of ng, the curves (a), (b), (c), and (d) exhibit converging
tendency whereas they differ with each other for relatively higher values of carrier
degeneracy. The curve (e) of Fig.6.1 represents the EEM both in the presence and
absence of external light waves for the relatively wide bandgap model which is inde-
pendent of doping. Plots (a) and (c) of Fig.6.2 diverge for relatively low values of
no, intersect each other for a particular zone of concentration, and then exhibit small
difference although both of them increase with increasing degeneracy. The numerical
values of the EEM for the curves (a), (b), (c), and (d) of n-InSb as given in Fig. 1.1b
are greater as compared with the same for n-InAs as given in Fig. 6.1, although the
nature of the curve(e) is same for both Figs. 6.1 and 6.2, respectively.
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Fig. 6.2 Plot of the normalized EEM as a function of electron concentration for n-InSb in the
presence of light waves in which the curves (a) and (c) represent the three- and two-band models
of Kane, respectively. The curves (b) and (d) exhibit the same variation in the absence of external
photo-excitation. The curve (e) represents the parabolic energy band model both in the presence
and in the absence of the external photo-excitation

The curves (a) and (c) explore the fact that the influence of the spin—orbit splitting
on the EEM for n-Hg;_,Cd, Te in the presence of light waves decreases significantly
the same mass as compared with the perturbed two-band model of Kane and the two
curves exhibit wide difference with each other for relatively low values of doping.
In the absence of light wave, the effect of A on the EEM is much less. It appears by
comparing the Figs. 6.1, 6.2 and 6.3 that the EEM for n-Hg;_,Cd, Te in the presence
of external photo-excitation is much more as that of n-InSb and n-InAs, respectively.
From plots (a) and (c) of Fig. 6.4, it appears for In;_,Ga,As,P;_, lattice matched
to InP that both the curves maintain constant wide difference under photo-excitation
with respect to electron concentration in the whole range of electron degeneracy as
considered here. The influence of A on the EEM in the absence of external light
waves for three- and two-band models of Kane is very small as evident from the
curves (b) and (d), although the EEM increases with ng as usual. The influence of
the energy band constants on the EEM is apparent from all the plots of Figs.6.1,
6.2, 6.3 and 6.4 and the numerical values of the EEM is greatest for ternary alloys
and the least for quaternary systems under light waves. The curves (a) and (c) of
Fig.6.5 explore that the EEM increases with increasing light intensity for n-InAs
in the presence of light waves for both perturbed three- and two-band models of
Kane, whereas for perturbed parabolic energy bands the EEM is intensity invariant.
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excitation. The curve (e) represents the parabolic energy band model both in the presence and in
the absence of the external photo-excitation

The reason behind such behavior is that the Fermi energy increases with increasing
light intensity and the EEM is the function of Fermi energy. For perturbed parabolic
energy bands, due to very large bandgap the EEM is numerically independent of light
intensity. In the absence of light waves, the EEM is naturally independent of I which
is apparent from the curves (b) and (d) of Fig.6.5. The curves (a) and (c) of Fig.6.6
for n-InSb reflects the fact that the influence of spin—orbit splitting increases rapidly
with increasing intensity and for low values of light intensity the EEM decreases for
both perturbed three- and two-band models of Kane, whereas for higher values of I
the EEM increases significantly.

From the plot (a) of Fig. 6.7 one can infer that the EEM for n-Hgj_,Cd, Te in the
presence of light waves increases with increasing I, in a more or less linear fashion
in accordance with the perturbed three-band model of Kane whereas from plot (c),
one observes that the EEM on the basis of the perturbed two-band model of Kane
is greater as compared with plot (a) in the whole range of 1. For low values of I,
the curves (a) and (c) exhibit converging tendency. It is important to note that with
respect to light intensity, the numerical values of the EEM in the absence of light
waves, in the case of n-Hgj_, Cd, Te are greater for both types of band models (curves
(b) and (d)) as compared with that of (a) and (c) when I # 0. It appears from the
plots (a) and (c) of Fig. 6.8 that the EEM increases with I for both types of perturbed
band models with different small curvatures and the difference in numerical values
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of light waves in which the curves (a) and (c) represent the three- and two-band models of Kane,
respectively. The curves (b) and (d) exhibit the same variation in the absence of external photo-
excitation. The curve (e) represents the parabolic energy band model both in the presence and in
the absence of the external photo-excitation

of EEM increases with increasing in I, although they converge to a particular value
for I = 107 nWm2.

The curves (a) and (c) of Fig. 6.9 exhibit the fact that the EEM for n-InAs increases
with increasing wavelength in the presence of light waves for both perturbed three-
and two-band models of Kane since the Fermi energy increases with increasing wave
length and the EEM is the function of Fermi energy. For perturbed parabolic energy
bands, the EEM is numerically independent of wave length due to large bandgap.
The curves (a) and (c) maintain wide difference with increasing wave length and the
spin—orbit splitting decreases the EEM in the whole range of A. The curves (b) and
(d) exhibit the same variation in the absence of photo excitation and is independent
of wave length of the incident light.

From the plots (a) and (c) of Fig.6.10 for n-InAs, one can infer that the EEM
increases with increasing wavelength in the presence of light waves for both the
cases and they exhibit the diverging tendency for relatively low values of A whereas
for higher values of the wavelength exhibit the converging nature. From plots (b) and
(d), we observe that the numerical values of the EEM for both three and two band
model of Kane are much larger as compared with the same under photo-excitation for
relatively low values of A. The influence of A on the EEM for perturbed three-band
model as observed in Fig. 6.10 is less as compared with the same as given in plot (a)
of Fig.6.9.
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photo-excitation. The curve (e) represents the parabolic energy band model both in the presence
and in the absence of the external photo-excitation

The curves (b) and (c) for n-Hg_,Cd, Te of Fig. 1.3c increase with increasing A
and after intersection they exhibit the wide difference with each other. The spin—orbit
splitting decreases the EEM remarkably for relatively higher values of A.

From Fig. 6.12 we can write that the EEM in this case is much less when compared
with the same as given I, the Figs. 6.9, 6.10 and 6.11 in the presence of external photo-
excitation. From plots (a) and (c) of Fig. 6.12, it appears for Inj_,Ga, As,P;_, lattice
matched to InP that both the curves maintain wide difference under photo-excitation
with respect to A in the whole range of wave length as considered here. As the wave
length increases, from plots (a) and (c) of Fig.6.12 we infer that the difference also
increases. The influence of A on the EEM in the absence of external light waves
for three and two band models of Kane is very small as evident from the curves
(b) and (d).

It appears that the EEM increases as the wavelength shifts from violet to red.
The influence of light is immediately apparent from the plots in the Figs.6.5, 6.6,
6.7, 6.8, 6.9, 6.10, 6.11 and 6.12 since the EEM depends strongly on / and A
for the three- and the two-band model of Kane which is in direct contrast with
that for the bulk specimens of the said compounds in the absence of external
photo-excitation. The variations of the EEM in the Figs. 6.5, 6.6, 6.7, 6.8, 6.9, 6.10,
6.11, and 6.12 reflect the direct signature of the light wave on the band structure-
dependent physical properties of semiconductors in general in the presence of
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external photo-excitation and the photon-assisted transport for the corresponding
photonic devices. The numerical values of the EEM in the presence of the light
waves are larger than that of the same in the absence of light wave for both the
three- and the two-band model of Kane. Although, the EEM tends to increase with
the intensity and the wavelength but the rate of increase is totally band structure
dependent. It appears that the numerical values of the EEM are greatest for ternary
materials and least for quaternary compounds.

InFigs.6.13 and 6.14, the EEM has been plotted as a function of alloy composition
for n-Hg;_,Cd,Te and n-In;_,Ga, As,Py_, lattice matched to InP respectively in
which all the cases of Figs.6.1, 6.2, 6.3 and 6.4 have further been plotted for the
purpose of relative comparison. The Fermi energy decreases with increasing alloy
composition and the EEM is a function of Fermi energy. From Fig. 6.13, we can write
that the EEM in ternary compounds decreases with increasing alloy composition.
The numerical values of EEM in the presence of light waves are greater for both
the models as appears from the plots (a), (b), (c) and (d). As alloy composition
increases, the EEM for all the cases exhibit the converging tendency. The plots of the
Fig.6.13 are valid for x > 0.17, since for x < 0.17, the bandgap becomes negative in
n-Hg|_,Cd, Te leading to semi-metallic state. The plots of the Fig. 6.14 exhibit the
variation of the EEM with y for n-In;_,Ga,As,P;_, lattice matched to InP. As the
Fermi energy increases with the y, from the curves (a), (b), (c) and (d) of Fig.6.14
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photo-excitation. The curve (e) represents the parabolic energy band model both in the presence
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we observe that the EEM increases with increasing y. These four plots also exhibit
the fact that the influence of the spin—orbit splitting constant in the presence of light
waves is much greater as compared with the same in the absence of photo excitation.

The theoretical results as presented here will be useful in determining the mobil-
ity even for relatively wide gap compounds whose energy band structures can be
approximated by the parabolic energy bands both in the presence and absence of
light waves. It is worth remarking that our basic Eq. (6.41) covers various materials
having different energy band structures. In this section, the concentration, alloy com-
position, light intensity, and the wavelength dependencies of EEM in bulk specimens
of n-InAs, n-InSb, n-Hgy_,Cd, Te and n-In;_,Ga,As,P;_, lattice matched to InP
have been studied. Thus, we have covered a wide class of optoelectronic and allied
compounds whose energy band structures are defined by the three- and two-band
models of Kane in the absence of photon field. Under certain limiting conditions, all
the results of the EEM for different materials having various band structures lead to
the well-known expression of the EEM for degenerate compounds having parabolic
energy band. This indirect test not only exhibits the mathematical compatibility of
our formulation but also shows the fact that our simple analysis is a more general-
ized one, since one can obtain the corresponding results for the relatively wide gap
materials having parabolic energy bands under certain limiting conditions from our
present derivation.
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Fig. 6.12 Plot of the normalized EEM as a function of wavelength for In; _,Ga, As,P;_, lattice
matched to InP in the presence of light waves in which the curves (a) and (c) represent the three
and two band models of Kane, respectively. The curves (b) and (d) exhibit the same variation in
the absence of external photo-excitation. The curve (e) represents the parabolic energy band model
both in the presence and in the absence of the external photo-excitation

Itis worth remarking that the influence of an external photo-excitation is to change
radically the original band structure of the material. Because of this change, the
photon field causes to increase the bandgap of semiconductor. Our method is not at
all related to the DOS technique as used in the literature [10]. From the E-k dispersion
relation, we can obtain the DOS, but the DOS technique as used in the literature [10]
cannot provide the E-k dispersion relation. Therefore, our study is more fundamental
than those of the existing literature because the Boltzman transport equation, which
controls the study of the charge transport properties of semiconductor devices, can
be solved if and only if the E-k dispersion relation is known. We wish to note that we
have not considered the many body effects in this simplified theoretical formalism
due to the lack of availability in the literature of proper analytical techniques for
including them for the generalized systems as considered in this book. Our simplified
approach will be useful for the purpose of comparison when methods of tackling
the formidable problem after inclusion of the many body effects for the present
generalized systems appear. The inclusion of the said effects would certainly increase
the accuracy of the results, although the qualitative features of the EEM discussed
in this book would not change in the presence of the aforementioned effects. Since
the experimental results in the present case are not available in the literature to the
best of our knowledge, we cannot compare our generalized theoretical analysis with
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the corresponding experimental data. Our formalism will be useful in probing the
band structure when the experimental results for our generalized systems would
appear. It is worth remarking in this context that from our simplified theory, under
certain limiting conditions, gets transformed to the well-known result of the EEM
for wide gap materials having parabolic energy bands. We have not considered other
types of optoelectronic materials and other external variables in order to keep the
presentation brief. Besides, the influence of energy band models and the various
band constants on the EEM for different materials can also be studied from all the
figures of this book. The numerical results presented in this book would be different
for other materials but the nature of variation would be unaltered. The theoretical
results as given here would be useful in analyzing various other experimental data
related to this phenomenon. Finally, we can write that this theory can be used to
investigate the gate capacitance of nanoscale transistors, the carrier contribution to
the elastic constants, the Debye screening length, the magnetic susceptibilities, the
Burstien Moss shift, plasma frequency, the Hall coefficient, the specific heat, and
other different transport coefficients of modern semiconductor devices operated in
the presence of light waves.
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6.4 The Formulation of the EEM in the Presence of Quantizing
Magnetic Field Under External Photo Excitation in III-V,
Ternary, and Quaternary Materials

6.4.1 Introduction

It is well known that the band structure of electronic materials can be dramatically
changed by applying the external fields [11]. The effects of the quantizing magnetic
field on the band structure of compound semiconductors have already been discussed
in Chap.4. In Sect.6.4.2 of theoretical background, we study the effective electron
mass in III-V, ternary, and quaternary semiconductors under magnetic quantization
both in the presence and absence of external light waves. The Sect.6.5 explores
results and discussions in this context.
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6.4.2 Theoretical Background

The magneto-dispersion law, in the absence of spin, for III-V, ternary, and quaternary
semiconductors, in the presence of photo-excitation, whose unperturbed conduction
electrons obey the three-band model of Kane, is given by

2k2

Bo(E, A) = (n + l) hwo + — (6.58)
2 2m,

where 7 is the Landau quantum number and wy = e B /m..
Using (6.58), the density-of-states function in the present case can be
expressed as
0 Nmax
Dp(E.}) = gvlelv/2me z

27212 [{ﬂo(E, WY {Bo(E, 1)

n=0

1 —1/2
_ (n + 5) ha)o] H(E — E,,“)i| (6.59)

in which Ej,,, is the positive lowest root of the equation.

1
ﬂO(En” s )‘-) = (I’l + 5) ha)() (660)

The EEM in this case assumes the form

ok
m*(EFBL’)‘-) = hzkl _Z

JoE =Me {'BO(EFBL7)")}/ (6.61)

E=EFpg;

where Ef,, is the Fermi energy under quantizing magnetic field in the presence
of light waves as measured from the edge of the conduction band in the vertically
upward direction in the absence of any quantization. Combining Eq. (6.59) with the
Fermi-Dirac occupation probability factor and using the generalized Sommerfeld’s
lemma, the electron concentration can be written as

gv lel BN/ 2me 5
no = 2 [Mis(Ery,, B2 + Ni3(Ery,, B, 1) (6.62)
n=0

where

| 12
Mi3(E, B, A) = |:/30(E, A) — (n + E) ﬁwo:|
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and

S
Ni3(Epy,, B,A) = D LIMi3(Epy, . B, L),

r=1

The magneto-dispersion law in the absence of spin, for III-V, ternary, and quater-
nary semiconductors, in the presence of photo-excitation, whose unperturbed con-
duction electrons obey the two-band model of Kane, is given by

h2k?

2m,

(E, L) = (n + é) hawo + (6.63)

Using (6.63), the density-of-states function in this case can be written as

; T | ~1,2
Dy(E, ) = S12me 5o |:{ro(E, WY ’ro(E, 2) — (n + E) ha)()]

252
2wl =

x H(E — En,z):| (6.64)
where E,,, is the Landau subband energies and can be expressed as

1
10(Epp, A) = (11 + 5) hawo (6.65)
The EEM assumes the form
sk /
m*(Epg,, &) = me {to(Epy, M)} (6.66)

Thus, the electron concentration can be written as

g lel Bv/2me 5
no =52 [Ma(Ery,, B3 + Nis(Epy,, B, 3] (6.67)

n=0

where

1 1/2
M14(EFBL3 Ba )") = |:rO(EFBLv )\') - (n + 5) hw0i|
and

N
Nia(Epg,. B2 =D LOOMis(Epy,. B, ).
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The magneto-dispersion law in the absence of spin, for I[I-V, ternary, and quater-
nary semiconductors, in the presence of photo-excitation, whose unperturbed con-
duction electrons obey the parabolic energy bands, is given by

h2k?

2m,

1
po(E, A) = (n + z) hwo + (6.68)

Using (6.68), the density-of-states function in this case can be written as

. P C"max 1 —1/2
Dp(E, )) = Solelome > |:{,00(E, Y [po(E, A) — (n + 5) ﬁwo}

242
2m-h =
x H(E — E,”3):|

where £, is the Landau subband energies and is given by

1
Po(Eny, 1) = (n + 5) hieg (6.69)
The EEM assumes the form
* /
m (EFBLs )") =N {)OO(EFBLs )")} (670)

Thus, the electron concentration in this case can be written as

gvlel By2me 5
no= 55— 2 [Mis(Ery, B2+ Nis(Ery,, B,W] (67D

n=0

where

1/2
MlS(EFBLv B, )") = [pO(EFBLa )") - (l’l + E) hwo]
and

N
Nis(Epy,. B.4) =D L)Mis(Erg,. B, ).

6.5 Results and Discussion

Using the values of the energy band constants from Table 1.1, we have plotted the
EEM along the direction of z as functions of 1/B, electron concentration, intensity
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and wave length (as shown in Figs.6.15, 6.16, 6.17 and 6.18) at T = 4.2K by
taking n-InSb and n-InAs which are used for the purpose of numerical computations
in accordance with the perturbed three [using (6.61) and (6.62)] and two [using
(6.66) and (6.67)]-band models of Kane and that of perturbed parabolic [using (6.70)
and (6.71)] energy bands respectively. It appears from Fig.6.15 that the EEM is an
oscillatory function of inverse quantizing magnetic field. The oscillatory dependence
is due to the crossing over of the Fermi level by the Landau subbands in steps resulting
in successive reduction the number of occupied Landau levels as the magnetic field is
increased. For each coincidence of a Landau level, with the Fermi level, there would
be a discontinuity in the density-of-states function resulting in a peak of oscillation.
Thus the peaks should occur whenever the Fermi energy is a multiple of energy
separation between the two consecutive Landau levels and it may be noted that the
origin of oscillations in the EEM is the same as that of the Shubnikov—de Haas (SdH)
oscillations. With increase in magnetic field, the amplitude of the oscillation will
increase and, ultimately, at very large values of the magnetic field, the conditions
for the quantum limit will be reached (neglecting magnetic freeze out) when the
EEM will be found to decrease monotonically with increase in magnetic field. In
Fig.6.16, the concentration dependence of the magneto-EEM has been plotted for all
the cases of Fig. 6.15 for both n-InSb and n-InAs. The EEM again shows oscillatory
dependence with different numerical values exhibiting the signature of the SdH
effect. Although the rate of variations are different, the influence of the energy band
constants in accordance with all the type of the band models is apparent from the Figs.
One can observe from Fig. 6.17 that the EEM has a steady increase with the increase
of the light intensity although the same EEM increases sharply with the increase
in wavelength in different ways, as appears from Figs.6.17 and 6.18, respectively.
The nature of variations in all the cases depends strongly on the energy spectrum
constants of the respective materials and the external physical conditions. It should be
noted that the numerical value of the EEM in the presence of light waves is relatively
much higher even at smaller value of the magnetic field, than that in the absence
of the magnetic field. Such a high value in the EEM can cause a drastic effect by
reducing the electron mobility under the application of a quantized magnetic field
and the contribution of the oscillatory mass or the oscillatory mobility would be is
more important.

6.6 The Formulation of the EEM for the Ultrathin Films
of ITI-1V, Ternary and Quaternary Semiconductors
Under External Photo-Excitation

6.6.1 Introduction

It is well known that the concept of reduction of symmetry of the wave-vector
space and its consequence can unlock the physics of low dimensional structures.
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Fig. 6.15 Plot of the nor-
malized EEM as a function
of inverse magnetic field for
n-InSb and n-InAs in the
presence of light waves in
accordance with the three,
the two band models of Kane
and the parabolic energy band
model in the presence of exter-
nal photo-excitation

Fig. 6.16 Plot of the nor-
malized EEM as a function
of carrier concentration for
n-InSb and n-InAs in the
presence of light waves in
accordance with the three,
the two band models of Kane
and the parabolic energy band
model in the presence of exter-
nal photo-excitation
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In Sect. 6.6.2 of theoretical background, we shall study the EEM in ultrathin films
of III-V, ternary and quaternary semiconductors both in the presence and absence of
external light waves. The Sect. 6.7 contains result and discussions in this context.

6.6.2 Theoretical Background

The 2D electron energy spectrum in ultra-thin films of III-V, ternary and quaternary
materials, whose unperturbed band structure is defined by the three-band model of
Kane, in the presence of light waves can be expressed following (1.41)
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The subband energies (E,,;;) can be written as
’ 2
Bo(En;;, 1) = (nzm/d;) (6.73)

2m,
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The expression of the EEM in this case is given by

ok,
m*(EFapr, nz, &) = hky —

Yo =me{Bo(Er2pL, M)}’ (6.74)

E=EripL

where Ero>py is the Fermi energy in the present case as measured from the edge of
the conduction band in the vertically upward direction in absence of any quantization.
The density-of-states function can be written as

M zmax

Nap(E, %) = (”; 7{‘;) > 1Bo(E. W H(E — Eyy,) (6.75)

ny=1

Combining (6.75), with the Fermi-Dirac occupation probability factor, the two-
dimensional electron concentration can be expressed as

Mzmax

> [Mis(n:, Erapr. ) + Nig(nz, Erapr, 3] (6.76)

ny=1

megy

T h?

nap =

where

B (n.m 2
Mig(ng, Epapr, A) = | Bo(EF2pL, A) — ,
2m, \ d;

and

S
Nig(nz, Epapr. 2) = D L(r)Mig(n;, Erapr. A).

r=1

Using (1.42), the expressions for the 2D dispersion relation, the subband energies,
the EEM, the density of states function and the electron concentration for ultra-
thin films of III-V, ternary and quaternary semiconductors whose unperturbed band
structure is defined by the two band model of Kane, can respectively be written in
the presence of photo-excitation as

S LAY (E. 3 6.77)
— = 19(E, .
2me | 2me \ d; 0
2 5
T0(Eng, A) = 2_(”zn/dz) (6.78)
me

m*(Epapr,nz, A) = me{t0(Er2pr, M)} (6.79)
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M zmax

Nap(E, 3) :( Cgv) > [w0(E. WV H(E — Eyy) (6.80)
n;=1
mcgv
2D = Z [Mio(n-. EFapr. M) + Nio(nz. Epapr. M| (6.81)
ny=l1
where

W (n.m 2
Myg(n;, Epapr, A) = | to(EF2pL, A) — ,
2m* \ d;

and

s
Nio(nz, Epapr.2) = D L(r)Mig(n;, Erapr. A).

r=I1

Using (1.43), the expressions for the 2D dispersion relation, the subband energies,
the EEM, the density of states function and the electron concentration for ultra-thin
films of III-V, ternary, and quaternary semiconductors, whose unperturbed band
structure is defined by the parabolic energy bands, can respectively be written in the
presence of photo-excitation as

UL ("Z”)z = po(E, ) (6.82)
2m.  2m. \ d;
P0(Eny, 1) = 5 2 7 /d;)? (6.83)
m*(EpapL, iz, )») =me{po(Erapr, 1)} (6.84)
Nan(E. 1) = (1) ngl [00(E MV H(E = Enp) (6.85)
map = T8 nzl [Mao(n., Erapr, ) + Nao(nz, Epapr, 2] (6.86)

where

W (n.m 2
My (n;, EFapr, A) = | po(Er2pL, A) — o ,
C

s
Nao(nz, Epapr, %) = D L(r)Mao(nz, EFapr, 1),

r=1
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6.7 Results and Discussion

Using the values of the energy band constants from Table 1.1, we have plotted the
EEM in the kg plane as functions of film thickness, surface electron concentration,
intensity and wavelength at T = 4.2 K by taking ultra-thin films of ternary materials
which are used for the purpose of numerical computations in accordance with the
perturbed three [using (6.74) and (6.76)], two [using (6.79) and (6.81)], band mod-
els of Kane and that of perturbed parabolic energy bands [using (6.84) and (6.86)],
as shown in Figs.6.19, 6.20, 6.21 and 6.22, respectively. The influence of carrier
confinement in 2D under the presence of an external photo-excitation on the behav-
ior of EEM can be understood from the Figs.6.19, 6.20, 6.21 and 6.22. The effect
of quantum confinement is immediately apparent from all the curves of Fig.6.19,
since, the 2D EEM depend strongly on the nano-thickness, which is in direct con-
trast with the corresponding bulk specimens which is also the direct signature of
quantum confinement. It appears from the said figures that the EEM in this case
decreases with the increasing film thickness in a step-like manner as considered
here although the numerical values vary widely and determined by the constants of
the energy spectra. The oscillatory dependence is due to the crossing over of the
Fermi level by the size quantized levels. For each coincidence of a size quantized
level with the Fermi level, there would be a discontinuity in the density-of-states
function resulting in a peak of oscillations. With large values of film thickness, the
height of the steps decreases and the EEM decreases with increasing film thick-
ness in non-oscillatory manner and exhibit monotonic decreasing dependence. The
height of step size and the rate of decrement are totally dependent on the band
structure. The influence of energy band nonparabolicity is immediately apparent by
the comparing the curves of the said figures. The energy band non-parabolicity and
the spin orbit splitting constant significantly enhances the numerical values of the
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EEM both the cases of the materials. The numerical values of the EEM in accor-
dance with the three band model of Kane are different as compared with the cor-
responding two-band model, which reflects that fact that the presence of the spin
orbit splitting constant changes the magnitude of the EEM. It may be noted that
the presence of the band nonparabolicity in accordance with the two-band model
of Kane further changes the peaks of the oscillatory EEM for all cases of quantum
confinements.

In Fig.6.20, we have plotted the EEM as a function of surface electron concen-
tration per unit area for all cases of Fig. 6.19. It appears that the EEM increases with
increasing carrier degeneracy and also reflects the signature of the 1D confinement
through the non-linear dependence with the 2D electron statistics. Since, most of
the electrons at low temperatures occupies the lowest subband level, we have plotted
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the EEM by considering the lowest subband energy in Figs. 6.20, 6.21 and 6.22. If
more subbands were considered, the oscillatory dependence will be less and less
prominent with increasing carrier concentration and ultimately, for bulk specimens
of the same material, the EEM will be found to increase continuously with increasing
electron concentration in a non-oscillatory manner. The effects of the light intensity
and wavelength on the EEM has been exhibited in Figs.6.21 and 6.22, respectively
in the regime of very low temperatures. The EEM increases with both the variables
with different slopes. It appears that the EEM in the case of parabolic energy band
varies extremely slowly both with the light intensity and wavelength, although the
sharp and significant variations are exhibited for both three- and the two-band energy
models.

6.8 Investigation of the EEM in n-Channel Inversion Layers
of III-V, Ternary and Quaternary Semiconductors
Under External Photo-Excitation

6.8.1 Introduction

In Sect.6.8.2 of theoretical background, we shall study the EEM for both weak
and strong electric field limits in n-channel inversion layers of III-V, ternary and
quaternary semiconductors both in the presence and absence of external light waves.
The Sect. 6.9 contains result and discussions in this context.



6.8 Investigation of the EEM in n-Channel Inversion Layers 265

6.8.2 Theoretical Background

In the presence of a surface electric field Fy along z direction and perpendicular to
the surface, the (1.41) assumes the form

h2k?

= Bo(E — le| Fsz, ) (6.87)
2m,

where, for this chapter, E represents the electron energy as measured from the edge
of the conduction band at the surface in the vertically upward direction.

Using (6.87) and (3.2), the 2D electron dispersion relation in n-channel inversion
layers of III-V, ternary and quaternary semiconductors (whose unperturbed electrons
obey the three band model of Kane) in the presence of light waves under the condition
of weak electric field limit, assumes the form

R2k2 hle| Fy [Bo(E, M T°

Bo(E, %) = — +S,~[ le| s [Po(E, V] ] (6.88)
2m 2m
The EEM can be expressed as

. . 5, Ok )

m*(EfriwL, 1) = h%ks — =me [P3L(EFiwr, D] (6.89)
OF |p—g,,
FiwL

where E Fjy 1s the Fermi energy under the weak electric field limit as measured from
the edge of the conduction band at the surface in the vertically upward direction in
the presence of light waves and

) , 2 [hlel F %3 N—1/3 ”
Py (E, i) = [Bo(E, V)] — gsi[m} {[Bo(E. M)]'} [Bo(E, M) ¢t -

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the combined
influence of E,, A and A.

The subband energy (Ej,,,, ) in this case can be obtained from (6.88) as

(6.90)

2m,

2/3
hle| Fy [Bo(Enpyr M)
ﬁO(EVliWZL’ )") = Si |: [ 2 ]

The 2D total density-of-states function in weak electric field limit can be
expressed as

Imax

meg&y
wh?

Nop, (E) = [P3L(E,i)H(E — En,,, )] (6.91)

i=0


http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_3

266 6 The EEM in Quantum Confined Optoelectronic Semiconductors

Using (6.91) and the occupation probability, the nap, in the present case can be
written as

imax
m .
ivh; E [Pawr(EFiwL, 1) + Qawr(EFiwL,1)] (6.92)
i=0

nap, =

where

he Fy [Bo(EFiwr, V] 1>
P4wL(EFiwL’i)E[ﬂO(EFiva)\)_Si[ eFs [Po(E L )]:| ]

2m

and

Qur(Eriwe, i) = D {LG) [Par(Eriwe, D)1}

r=1
Using (6.87) and (3.2), the 2D electron dispersion relation in n-channel inversion

layers of III-V, ternary, and quaternary semiconductors in the presence of light waves
under the condition of strong electric field limit, assumes the form

le| Fyh [ 23/2(5;)3/2 o N
[ﬂo(E,x)—[ W( 3 VIBo(E, )] =5 69

The EEM can be expressed as

ok
m*(Episp, i) = hky —

BE = mc [PSL(Ev i)]lE:EF,'SL (694)

E=EFisL

where Erjsy, is the Fermi energy under the strong electric field limit as measured
from the edge of the conduction band at the surface in the presence of light waves
and

F.h 2(S; 3/2 s — "
Psi(E,i)= i{ﬂo(E,M}/—{'j'W(‘f(B)) )([ﬂow,x)]) V2[Boy(E, )] ”

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the combined
influence of E,, A and A.

The subband energy (Ej,,,, ) in this case can be obtained from (6.93) as

Foh [ 24/2(8;)3/? ”
el ( “/_(3) ) [Bo(Enypy - )] }:o (6.95)

IBO(En,'SQLv )") - I

2m,
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The total 2D density-of-states function under the strong electric field limit can be
expressed as
imax

n;%gzv D [Psu(EDH(E — Eny,)] (6.96)
i=0

Nop,(E) =

Using (6.96) and the Fermi-Dirac occupation probability factor, the nyp, in the
present case under the strong electric field can be written as

x Imax

m
map, = o 3 (Post(Erists 1) + Qost. (Epis. )] (697)
i=0
where
) 22 hle| F. Episr, M)
PG.YL<EF,-XL,z>z{ﬂowmbm—{ s lel £y [ﬂ;fn Fisl, 1] “
C

Q6s1.(Erise, i) = D {L(r) [PesL(Eris. )]}
r=1

Again for this section the (1.42) assumes the form
2k2

2me

= 10(E — le| Fsz, A) (6.98)

Using (6.97) and (3.2), the 2D electron dispersion relation in n-channel inversion
layers of III-V, ternary, and quaternary semiconductors (whose unperturbed electrons
obey the two-band model of Kane) in the presence of light waves under the condition
of weak electric field limit, assumes the form

2/3
h2k? s, [h|e| Fy [w(E, A)]/} /

0(E, 1) = 6.99
o(E, ) m, T (6.99)

The EEM can be expressed as
m*(Efpiwr2,1) = me [P3p2(EFiwra, )] (6.100)

EFiwr2 is the Fermi energy under the weak electric field limit as measured from the
edge of the conduction band at the surface in the vertically upward direction in the
presence of light waves in this case and

. / 2 h|e|FS 2/3 / —1/3 Vi
P3a(E, i) = {[w(E, V)] — §Si N {lzo(E. M)’} [to(E, M1 -
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Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy, and the other spectrum constants due to the combined
influence of E, and A.

The subband energy (E,, ,,,) in this case can be obtained from (6.99) as

,=2/3
he| Fy [TO(En,'szv )‘)] i| (6.101)

‘CO(EniWZLZ’ )\’) = Si [ m
¢

The 2D total density-of-states function in weak electric field limit can be
expressed as

Imax

z [P312(E,iYH(E — En0,)] (6.102)
i=0

megy

Nop,(E) = )

Using (6.102) and the occupation probability, the nyp,, in the present case can be
written as

Imax

> [Pawi2(Eriwi2. i) + Qawia(Erpiwi2. i)] (6.103)
i=0

gvime
Th?

n2p,, =

where

. he Fy [to(Epiwia, W17
Payr2(EFiwr2, i) = {TO(EFiwLZ» A) =S [ O il

2m.

and

Qar2(Eriwi2, i) = D {L() [Para(Eriwra, )1},

r=1

Using the appropriate equations, the 2D electron dispersion relation in n-channel
inversion layers of III-V, ternary, and quaternary semiconductors (whose unperturbed
electrons obey the two-band model of Kane) in the presence of light waves under
the condition of strong electric field limit, assumes the form

3/2 272
|:‘L'0(E,)») - { el Fsh(zﬁ(s’) )\/[to(E,A)]/’]:| _ K 6100

2m. 3 2m,

The EEM can be expressed as

m*(EFpisr2,1) = me [Psp2(E, Dl p=Epis (6.105)
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where Ef;sr> is the Fermi energy under the strong electric field limit as measured
from the edge of the conduction band at the surface in the presence of light waves in
the present case and

le| Fsh

2m
2 S 3/2 "= "
x(ﬂ%)([m(ax)]) V2 [r0(E, )] ”

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the combined
influence of E, and A.

The subband energy (E,, ,,,) in this case can be obtained from (6.104) as

Foh [ 24/2(8;)3/2 //
|«e/|2m‘( f(3 ) ) [TO(EniSZLZ’)\‘)] }=0 (6.106)

Pspa(E, i) = [ {to(E, M)} — [

T0(En;j105 M) — [

The total 2D density-of-states function under the strong electric field limit can be
expressed as

Imax

> [Ps1a(E ) H(E = Ep,yyy,)] (6.107)
i=0

megy
mh?

Nop,(E) =

Using (6.107) and the Fermi-Dirac occupation probability factor, the nyp, in the
present case under the strong electric field can be written as

Imax

> [Pos12(Erisia. i) + Qesta(Erisra. i)] (6.108)
i=0

v
h?

nap, =

where

) 24/2 hile| Fs/[t0(EFist2, M1’
Pes12(EFis2,1) = {TO(EFisLL A) — |:T(Si)3/2 - 2mF”L
C

and

Qes12(EFisia, 1) = D L) [Pesr2(EFissa, D)1}

r=1

Besides for this section the (1.43) assumes the form
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R2k2
2m,

= po(E — le| Fsz, 1) (6.109)

Using (6.109) and (3.2), the 2D electron dispersion relation in n-channel inversion
layers of III-V, ternary and quaternary semiconductors (whose unperturbed electrons
obey the parabolic energy bands) in the presence of light waves under the condition
of weak electric field limit, assumes the form

h2k2 h F E. A 112/3
oo(E.2) = 5 +Si[ el Fs Lpo(E. 2)] ] (6.110)
2m, 2m*
The EEM can be expressed as
m*(Epiwr1, 1) = me [P3p1(EFiwet, 0)] (6.111)

EFjwr1 is the Fermi energy under the weak electric field limit as measured from the
edge of the conduction band at the surface in the vertically upward direction in the
presence of light waves in this case and

2 Thlel F,1%° ~
Py (E.i) = [[m(E, Y - [gsi[ \2'7] {Loo(E, M1} [oo(E, x)]”” .

Thus, one can observe that the EEM is a function of the subband index, surface
electric field, the Fermi energy and the other spectrum constants due to the combined
influence of E, and A.

The subband energy (Ej, ;) in this case can be obtained from (1.135) as

(6.112)

2/3
hle| Fs [:OO(Eniszl ’ )‘)]/
2m,

pO(El’L,'WZLp )‘-) = Si |:

The 2D total density-of-states function in weak electric field limit can be
expressed as

Imax

m .
ﬂchgzv D [Psei(E. Y H(E = Enyypy))] (6.113)
i=0

Nop,(E) =

Using (6.113) and the occupation probability, the nyp,, in the present case can be
written as

Imax

Z[Pztle(EFile,i) + OawrL1(EFiweL1, 1)] (6.114)
i=0

_ &vne
2D, = 7 h?
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where

. heFy [po(Epiwe1, M1 7
Payr1(EFiwe1,1) = [po(EFile, A) =S [ - -

2m,

and

Quwr1 (Epiwe, 1) = D AL() [Pawr1 (Epiwrt, D1,

r=1

6.9 Results and Discussion

Using the values of the energy band constants from Table 1.1, we have plotted the
EEM in the kg plane for the first two subbands as functions of surface electric field,
surface concentration and wavelength at 7 = 4.2K by taking n-channel inversion
layers of n-InSb and n-InAs semiconductors which are used for the purpose of numer-
ical computations in accordance with the perturbed three [using (6.89) and (6.92)] and
two [using (6.100) and (6.103)] band models of Kane and that of perturbed parabolic
energy bands [using (6.111) and (6.114)] for weak electric field limit respectively.
In Fig.6.23, we have presented the variation of the EEM in the n-channel inversion
layers of n-InSb and n-InAs as function of surface electric field in accordance with
the three-band model of Kane, the two-band model of Kane and the parabolic energy
bands respectively under weak electric field by considering the effect of electric
subbands.
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It appears from Fig. 6.23 that the EEM in the n-channel inversion layers increases
with increase in surface electric field for weak electric field in a step-like manner
with different numerical values and the influence of the energy band constants can
also be assessed from the said figures. The EEM depends on the electric subband
index, surface electric field, the Fermi energy and the other spectrum constants due
to the combined influence of E,, A and A which is the characteristic feature of such
2D systems under radiation. In Figs. 6.24 and 6.25, the effect of surface concentra-
tion and wavelength on the EEM for all the cases of Fig.6.23 has been considered
under the quantum limit approximation. It appears from the Figs. 6.24 and 6.25 that
the EEM increases with both the variables in the straight lines segmentation fashion
with different increasing slopes at particular values of surface electron concentration
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and light wave length. The values of EEM for InSb are greater than that of InAs. The
slopes are entirely determined by the spectra constants of n channel InSb and InAs
respectively. It may be noted that if the direction of application of the surface electric
field applied perpendicular to the surface be taken in an arbitrary direction and not as
k; as assumed in the present work, the EEM would be different analytically for both
the limits. Nevertheless, the arbitrary choice of the direction normal to the surface
would not result in a change of the basic qualitative feature of the EEM in n-channel
inversion layers of semiconductors in the presence of photo excitation. The approxi-
mation of the potential well at the surface by a triangular well introduces some errors,
as for instance the omission of the free charge contribution to the potential. This kind
of approach is reasonable if there are only few charge carriers in the inversion layer,
but is responsible for an overestimation of the splitting when the inversion carrier
density exceeds that of the depletion layer. It has been observed that the maximum
error due to the triangular potential well is tolerable in the practical sense because
for actual calculations, one need a self consistent solution which is a formidable
problem, for the present generalized systems due to the non availability of the proper
analytical techniques, without exhibiting a widely different qualitative behavior. The
second assumption of using only two subbands in the numerical calculations is valid
in the range of low temperatures, where the quantum effects become prominent. The
errors which are being introduced for these assumptions are found not to be serious
enough at low temperatures. We wish to note that the many body effects, the hot
electron effects, the formation of band tails, arbitrary orientation of the direction of
the electric quantization and the effects of surface of states have been neglected in
our simplified theoretical formalism due to the lack of availability in the literature of
the proper analytical techniques for including them for the generalized systems as
considered in this section. The numerical computation for the corresponding cases
of EEM under the strong electric field has been leftover for the readers so that they
can enjoy the intricate internal computer analysis behind plots in this context. Our
simplified approach will be useful for the purpose of comparison, when, the methods
of tackling of the aforementioned formidable problems for the present generalized
system appear and we admit the fact that the inclusion of the said effects would
certainly increase the accuracy of our results.

6.10 Investigation of the EEM in nipi Structures of I1I-V,
Ternary and Quaternary Semiconductors Under External
Photo-Excitation

6.10.1 Introduction

In Sect.6.10.2 of theoretical background, we shall study the EEM in nipi structures
of III-V, ternary, and quaternary semiconductors both in the presence and absence of
external light waves. The Sect.6.11 contains result and discussions in this context.
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6.10.2 Theoretical Background

The 2D electron dispersion relation in nipi structures of III-V, ternary, and quaternary
semiconductors (whose unperturbed electrons obey the three band model of Kane)
in the presence of light waves can be written as

Zk%

Bo(E, L) = (ni + %) haor (E, 1) + (6.115)

2m,

where n; (= 0, 1,2, ...) is the mini-band index for nipi structures, &5, is the semi-
conductor permittivity and

5 12
wor(E, ) = [ —ole”
T Esc/g(/)(bl Ayme '

The EEM in this case can be written as
m*(Epnp,ni) = meRop (E,nj)|p=g,,, (6.116)

in which, Ep,; is the Fermi energy in the present case as measured from the
edge of the conduction band in vertically upward direction in the absence of any
quantization and

1
Rgy (E, n;) = H['BO(E M= (ni + 5) hlwor (E, K)]/] .

From (6.116), we observe that the EEM in this case is a function of the Fermi
energy, wavelength, nipi subband index and the other material constants which is the
characteristic feature of nipi structures of III-V, ternary, and quaternary compounds
in the presence of light waves whose bulk dispersion relation in the absence of any
field is defined by the three band model of Kane.

The subband energies (E2,;7) can be written as

1
Bo(EzniL, A) = (”li + 5) hwor (Ezpir, 1). (6.117)

The density-of-states function in this case can be expressed as

Mimax

> R (E,ni)H(E — Ennir) (6.118)

ni=0

megy

NuipiL (E) = Ti2do

in which dj is the superlattice period.
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The use of (6.118) leads to the expression of the electron concentration as

"= :hc—zgt;o :[i:‘; (T30 (E Fur, ni) + Tsar (E par, i) ] (6.119)
where
T30 (EpnL, ni) = |:,30(EFnL» A) — (ni + %) hwor (E Far, A)i|
and

J— S J—
Tgar (EFpL, i) = LT3 (EFaL, ni).
r=1

Again, the 2D electron dispersion relation in nipi structures of III-V, ternary, and
quaternary semiconductors (whose unperturbed electrons obey the two band model
of Kane) in the presence of light waves can be written as

1 h?k?
o(E, M) = |ni + 2 ) hwgra(E, L) + — (6.120)
2 2m,
nolel>\'/?
where (1)9L2(E, )\.) = (m) .
The EEM in this case can be written as
m*(EFanvni) = mCR82L2(E’ni)|E=EFnL2 (6121)

in which, Rs272(E, n;) = {[w(E, )] — (n; + %) hlwer2(E, 1)1'}. The subband
energies (Eo,i12) can be written as

1
10(E2nir2, M) = (ni + 5) hwor(Ezpir2, A) (6.122)

The density-of-states function in this case can be expressed as

Mimax

m
- Z Rex12(E, ni) H(E — E2nir2) (6.123)
l’ll':O

wh2dy

Nuipir2(E) =

The use of (6.123) leads to the expression of the electron concentration as

Mimax

Z [T8322(E Fur2. i) + Toara(E pnr2, i) (6.124)

ni=0

meg8y
7Th2d0

ny =

where Ts322(E pur2. i) = [00(E par2, ») — (ni + ) howoro (E pura, V)]
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E pnr2 is the Fermi energy in the present case as measured from the edge of the
conduction band in vertically upward direction in the absence of any quantization and

N
Tsar2(Epar2.ni) = . L) T3r2(E para, ni).

r=1

Besides, the 2D electron dispersion relation in nipi structures of III-V, ternary and
quaternary semiconductors (whose unperturbed electrons obey the parabolic energy
bands) in the presence of light waves can be written as

1 h2k?
po(E,A) = \ni + =z ) hwop1(E, 1) + — (6.125)
2 2m,
nolel> _\'/?
where wor 1 (E, L) = (e.mp(’,(E,k)mc) .
The EEM in this case can be written as
m*(EFﬂLl’ ni) = mCRsle(Ev ni)'E:EFnL] (6126)

in which E g,z is the Fermi energy in the present case as measured from the
edge of the conduction band in vertically upward direction in the absence of any
quantization and

1
Rgr102(E, ni) = [[PO(E, M= (ni + 5) hlwora(E, /\)]/] .

The subband energies (E3,;11) can be written as

1
po(E2pip1, M) = (ni + 5) hawor1(Eamirt, A) (6.127)

The density-of-states function in this case can be expressed as

Mimax

m
8" " Rear1(E.ni)H(E — Eznir) (6.128)
n,-:O

7 h2dy

NnipiLl(E) =

The use of (6.128) leads to the expression of the electron concentration as

nimax
meg _ .
"= nhczdvo Z [Ts321(EFur1, ni) + Tsari (Epurs ni) (6.129)

ni=0
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where
_ _ 1 _
T8301(EFnL1, ni) = | po(EFnL1, A) — \ni + 3 hwor1(EFuL1, A)

and

— S —
Tgar 1 (EFnL1, ni) = Zr:1 L(r)Tg301(EFnL1, ni).

6.11 Results and Discussion

Using the values of the energy band constants from Table 1.1, we have plotted the
EEM for the first two subbands as functions of wave length, intensity, thickness, and
electron concentration at 7 = 4.2K by taking nipi structures of ternary materials
which are used for the purpose of numerical computations in accordance with the
perturbed three [using (6.116) and (6.119)], two [using (6.121) and (6.124)] band
models of Kane and that of perturbed parabolic energy bands [using (6.126) and
(6.129)] respectively.

Using the multiple subbands, one can numerically evaluate the EEM as a function
of electron concentration and wavelength in nipi structures of III-V compounds by
using the nipi structures of InSb and InAs as shown in Figs.6.26 and 6.27, respec-
tively, in accordance with three- and two-band models of Kane. The occurrence of
the humps in Fig.6.26 has been explained earlier in the context of ultrathin films.
The effect of nipi structure tailoring increases the EEM to an extremely high value
which severely affects the electron mobility in such structures.
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The effect of increasing wavelength aids to increase the EEM in a linearly way,
however, in case of increasing the light intensity, the tendency of increase in EEM
is extremely slow. We have not considered the effect of the light intensity and wave-
length on the EEM governed by the parabolic energy band due to its slow variation
from the value 1.

6.12 Investigation of the EEM in Nano Wires of III-V, Ternary,
and Quaternary Semiconductors Under External
Photo-Excitation

6.12.1 Introduction

In Sect.6.12.2 of theoretical background, we shall study the EEM in nano wires
of III-V, ternary and quaternary semiconductors both in the presence and absence
of external light waves. The Sect.6.13 contains result and discussions in this
context.

6.12.2 Theoretical Background

The 1D electron energy spectrum in nano wires of III-V, ternary and quaternary semi-
conductors, whose unperturbed band structure is defined by the three-band model of
Kane, in the presence of light waves can be expressed from (1.41) as
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hk? R (nym 2w (nm)?
= Bo(E, \) — 2 6.130
2m, PO D |:2mc ( dy ) * om, ( d. ) (0150

The subband energies (Ey,,,) can be expressed as

hZ
Bo(Enpygs ») = [g(nyn/dyf n/dz)z} (6.131)

The EEM in the free direction k, in this case can be written from (6.130) as

m*(Epipr,ny,nz, A) = me{Bo(Eripr, 1)} (6.132)

where Er|py is the Fermi energy in the present case as measured from the edge of
the conduction band in the vertically upward direction in absence of any quantization.
The one-dimensional density-of-states function (N1p(E, A)) is given by

Nip(E. %) = ( ) Z Z {Bo(E, )Y

ny=1 n;=1

X[Bo(E, ») — ¢p(ny, n )" V2PH(E — Eynpy)  (6.133)

22 e\ 2 . 2
where ¢ (ny, n;) = 2rZC [(f) + (Z—) )
Combining (6.133), with the Fermi-Dirac occupation probability factor, the one-
dimensional electron concentration (71 p) can thus be written as

Mymax Mzmax
28y v/2m
T

nip = 5 > > [Mar(ny.nz. EFipr.2) + Nai(ny. nz. Epipr. )|
ny=1 n;=1
(6.134)
where
1/2
My (ny. nz, EFipr. ) = [Bo(EFipL, ») — ¢ (ny, ny)|
and

N
Nai(ny,nz, EFipr, M) = Zr:l L(r)Mz(ny,nz, EF1pL, A).

Using (1.42), the expressions for the 1D dispersion relation, the subband energies,
the EEM, the density-of-states function and the electron concentration for nano wires
of III-V, ternary, and quaternary materials, whose unperturbed band structure is
defined by the two-band model of Kane, can, respectively, be written in the presence
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of photo-excitation as

h?k?
Zm: ={w(E, ) — ¢(ny,n.)} (6.135)
T0(En;y > A) = ¢(ny, ny) (6.136)
m*(Epipr.ny,nz, 1) = me{to(Eripr, 1)} (6.137)

Nip(E, %) = ( ) Z Z {ro(E, )Y

ny=I n;=1

1/2

x [t0(E, %) = ¢(ny,n)| "2 H(E = Enyy)  (6.138)

Mymax Mzmax
28y /2m
nip = nv 5 - 2 Z Moy (ny,nz, EFipL, &) + Noa(ny, n;, Epipr, M|

ny=1l n;=1

(6.139)
where

1/2
Ma(ny, ng, Epipr, ) = [t0(EFipr, 2) — ¢ (ny, n)]"
and
5
Nop(ny,nz, EFipr, A) = Zr:l L(r)Mx(ny, nz, EFipL, A).

Using (1.43), the expressions for the 1D dispersion relation, the subband energies,
the EEM, the density of states function and the electron concentration for nano
wires of III-V, ternary and quaternary materials, whose unperturbed band structure
is defined by the parabolic energy bands, can, respectively, be written in the presence
of photo-excitation as

2k§

2m,

= [po(E, 1) = ¢ (ny, n2)] (6.140)

pO(En“]s)") :d)(ny’nz) (6141)

m*(Epipr, ny,nz, A) =me{po(Eripr, M)} (6.142)
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) o) A Mymax Mzmax )
Nip(E, %) = (g—”") > {oo(E. b))

wh ny=1 n.=1
x [po(E, ) = ¢(ny,n)| P H(E = Eny)  (6.143)
Mymax Mzmax
nip = ;/h_ nvz_ll nz_:l Ma3(ny,nz, Epipr, A) + Noz(ny,nz, Epipr, M|
(6.144)
where

12
Ms(ny. nz, EFipr. M) = [po(EFipL. ») — ¢ (ny, ny)| /

N
No3(ny, nz, EpipL, M) = D L(r)Ma3(ny, nz, EFipL, M)
r=1

6.13 Results and Discussion

Using the values of the energy band constants from Table 1.1, we have plotted the
EEM as functions of thickness and electron concentration per unitlengthat 7 = 4.2K
by taking nano wires of ternary materials which are used for the purpose of numerical
computations in accordance with the perturbed three- [using (6.132) and (6.134)] and
two- [using (6.137) and (6.139)] band models of Kane, respectively. In Figs.6.28
and 6.29, we have plotted the EEM in nano wires of III-V materials as function
of lateral dimension and electron concentration respectively. The effect of external
photo-excitation increases the EEM significantly.

The influence of quantum confinement is immediately apparent from all the curves
of Fig. 6.28 since, the 1D EEM depends strongly on the nano-thickness, which is in
direct contrast with the corresponding bulk specimens. It appears from the said figures
that the 1D EEM decreases with the increasing film thickness in a step-like manner
as considered here although the numerical values vary widely and determined by the
constants of the energy spectra. The oscillatory dependence is due to the crossing
over of the Fermi level by the quantized levels. For each coincidence of a quantized
level with the Fermi level, there would be a discontinuity in the density-of-states
function resulting in a peak of oscillations. With large values of film thickness, the
height of the steps decreases and the EEM decreases with increasing film thickness
in non-oscillatory manner and exhibit monotonic decreasing dependence. The height
of step size and the rate of decrement are totally dependent on the band structure. In
Fig.6.29, we have exhibited the effect of the lowest subband on the EEM when the
electron concentration is varied. A direct assessment of the effect of light intensity
and electron wavelength can be procured form the said figures.
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6.14 The EEM in Effective Mass Superlattices of Optoelectronic
Semiconductors Under Magnetic Quantization Under
External Photo-Excitation

6.14.1 Introduction

In recent years, modern fabrication techniques have generated altogether a new
dimension in the arena of quantum effect devices through the experimental real-
ization of an important artificial structure known as semiconductor superlattice (SL)
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by growing two similar but different semiconducting materials in alternate layers with
finite thicknesses. The materials forming the alternate layers have the same kind of
band structure but different energy gaps. The concept of SL was developed for the
first time by Keldysh [24] and was successfully fabricated by Esaki and Tsu [25-28].
The SLs are being extensively used in thermal sensors [29, 30], quantum cascade
lasers [31-33], photo-detectors [34, 35], light emitting diodes [36—39], multiplica-
tion [40], frequency multiplication [41], photo-cathodes [42, 43], thin film transistor
[44], solar cells [45, 46], infrared imaging [47], thermal imaging [48, 49], infrared
sensing [50], and also in other microelectronic devices.

The most extensively studied III-V SL is the one consisting of alternate layers of
GaAs and Gaj_, Al As owing to the relative easiness of fabrication. The GaAs and
Gaj_, Al As layers form the quantum wells and the potential barriers, respectively.
The III-V SL’s are attractive for the realization of high speed electronic and opto-
electronic devices [51]. In addition to SLs with usual structure, other types of SLs
such as II-VI [52], IV-VI [53] and HgTe/CdTe [54] SL’s have also been investigated
in the literature. The IV-VI SLs exhibit quite different properties as compared to
the III-V SL due to the specific band structure of the constituent materials [55].
The epitaxial growth of II-VI SL is a relatively recent development and the primary
motivation for studying the mentioned SLs made of materials with the large bandgap
is in their potential for optoelectronic operation in the blue [56]. HgTe/CdTe SL’s
have raised a great deal of attention since 1979, when as a promising new materials
for long wavelength infrared detectors and other electro-optical applications [57].
Interest in Hg-based SL’s has been further increased as new properties with potential
device applications were revealed. These features arise from the unique zero bandgap
material HgTe and the direct bandgap semiconductor CdTe which can be described
by the three band mode of Kane. The combination of the aforementioned materials
with specified dispersion relation makes HgTe/CdTe SL very attractive, especially
because of the tailoring of the material properties for various applications by varying
the energy band constants of the SLs. In addition to it, for effective mass SLs, the
electronic subbands appear continually in real space [58, 59].

In Sect. 6.14 of theoretical background, we shall study the EEM in effective mass
superlattices of optoelectronic semiconductors under magnetic quantization in the
presence of light waves. The Sect. 6.15 explores result and discussion for this section.

6.14.2 Theoretical Background

The dispersion relation of the conduction electrons in effective mass superlattices
of III-V semiconductors (whose constituent materials obey the three band mod-

els of Kane) in the presence of external light waves can be expressed following
Sasaki [58, 59] as
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ay - cos[ci5(E, A, Eg1, Ap)ag + cas(E, &, Egz, A2)bo]
—ay - cosleis(E, A, Eg1, A1)ag
—c25(E, A, Eg2, A2)bo] = cos(Lok) (6.145)

where Lo (= ag + bg) is the period length, ag and by are the widths of the barrier and
the well respectively,
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m,; is the reduced mass and is given by m;l.l = (mc,')’l + m;il, m,; is the effective

mass of the heavy hole at the top of the valance band in the absence of any field,
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E..—8&
Jiso(E) = [(1 T +,§?50) - (Egoi —8lsy)
13

[ 1 1 ] 1/2
X —
$is0(E) +8js9  Egoi +8i50

X [ ! _ Egoi + 850 }1/2
Giso(E) 4+ 8isy  (Egoi — 8}50)?
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In the presence of a quantizing magnetic field B, along x-direction the magneto-
energy spectrum assumes the form

k2 =@ s(E, . n) (6.146)

where
— 1 - , 2B 1 ,
o15(E, A, n) = 73 [cos™ {f5(E, A, n)}] - n+§ L2,

o
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2eB 1

B . 1/2
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The EEM along x-direction in this case can be expressed as
m*(Vo, k. n) = (0 /2) [@15(Vo, 1, m)]' (6.147)

where V) is the Fermi energy in this case and
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The electron concentration in this case assumes the form

¢B Mmax
no= 3 D [554(Vo, ko) + Tsa(Vo, 2w (6.148)
n=0

where
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The electron concentration in this particular case when the dispersion relations of
the constituent materials are defined by the perturbed two-band model of Kane can
be expressed as

Nmax
gveB
no = onL ;[Sss(vo, aon) + Tss(Vo, A, n)] (6.149)
where
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The EEM in this case can be expressed as
m*(Vo, &, n) = (1 /2) [@16(Vo, 1. n)]' (6.150)

where
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The electron concentration when the dispersion relations of the constituent materials
are defined by the perturbed parabolic energy bands can be expressed as
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The EEM in this case can be written as

m*(Vo, A, n) = (h2/2) [w17(Vo, &, m)T (6.152)
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6.15 Results and Discussion

Using the values of the energy band constants from Table 1.1, we have plotted the
EEM as functions of 1/B and electron concentration at 7 = 4.2 K by taking effective
mass super lattices of optoelectronic materials under magnetic quantization in accor-
dance with the perturbed three [using (6.147) and (6.148)], two [using (6.149) and
(6.150)] band models of Kane and that of perturbed parabolic energy bands [using
(6.151) and (6.152)], respectively. In Figs.6.30 and 6.31, we have plotted the effect
of magnetic field and carrier concentration on the EEM of effective mass superlat-
tices in GaAs/AlGaAs structures. The effect of SdH oscillations has been exhibited
in this case for multi sub-band generation. In this case, the EEM is a subband index
dependent and we have plotted the EEM by considering the lowest subband index.
In both the figures we see that the effect of the external photo-excitation on the EEM
dominated by the parabolic energy law does not tend to modulate with either of the
variable compared to the bulk value of the EEM for InAs and InSb, we find that
the EEM in GaAs/AlGaAs structures are extremely low and therefore the mobility
in superlattices are very large as compared with the value of the mobility of the
constituent materials which is very important from the application point of view for
modern devices made of superlattices.
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Fig. 6.30 Plot of the nor-
malized EEM for the lowest
subband index as a function
of inverse magnetic field of
effective mass superlattices of
GaAs/AlGaAs in the presence
of light waves in accordance
with the three, the two-band
models of Kane and parabolic
energy band model in the
presence of external photo-
excitation

Fig. 6.31 Plot of the nor-
malized EEM for the lowest
subband index as a function
of carrier concentration of
effective mass superlattices of
GaAs/AlGaAs in the presence
of light waves in accordance
with the three, the two-band
models of Kane and parabolic
energy band model in the
presence of external photo-
excitation
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6.16 The EEM in Nanowire Effective Mass Superlattices
of Optoelectronic Semiconductors in the Presence
of External Photo-Excitation

6.16.1 Introduction

We shall study the EEM in nano wire effective mass superlattices of optoelec-
tronic semiconductors in the presence of photo excitation in Sect.6.16.2 of theo-
retical background and the Sect.6.17 explores the result and discussions pertaining

to Sect.6.16.2.
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6.16.2 Theoretical Background

The dispersion relation of the conduction electrons for nano wire effective mass
superlattices in accordance with the perturbed three-band model of Kane in the
presence of light waves is given by

k2 = @19(E, »,ny, ny) (6.153)

where

1 — 2
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i 2my;
ejz(Ey )"1 Eg0i9 Ai’ ny, nZ) = |:( hZL ) [,3150(E’ )‘" Eg()i’ Al)] - H(ny’ nz)]
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The expression of the electron concentration in this case can be written as

and

o) M ymax Mzmax
v

> D M053(Vi,hny,n) 4+ Qos(Vi, &y, )] (6.154)

ny=I1 n;=1
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where V] is the Fermi energy in this case,

(Vi hony,n) = \Joro(Vi, i ny. no),
R=Ry

Oou(Vi,hny,n) = D" L(R)Qp3(Vi, h,ny,n;) and
R=1
2R

L(R) =2(kgT)*R(1 — 21_2R)$(2R)38_”'
1

The EEM along the x-direction in this case can be expressed as

m* (Vi hony,ng) = (172/2) [@ro(Vi, Ao ny, n2)] (6.155)
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where

— —1/2 —
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In accordance with the perturbed two-band model of Kane the electron concen-
tration per unit length is given by,

2 Mymax Mzmax
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ny=1n;=1

ny =

where
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The EEM in this case can be expressed as

m*(Vi, A, ny,nz) = (1/2) [@20(V1, &, ny, n) | (6.157)
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where
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In accordance with the perturbed parabolic energy bands, the electron concentra-
tion per unit length is given by,
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and 83, (V1. &, Egoi y, 1) = | 25 piso (Vi Egoi ) = Hiny, ) |
The EEM in this case can be expressed as

m*(Vi, A, ny, n;) = (h/2) [@201 (Vi &, ny, )| (6.159)
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where
2[f a1 (Viu &, ny, n2)] [cos™ fay (Vi, A, ny,n2)]

—2
J1=FA0h ko n)

[@201(V1, A, ny,n)] =

k]

[fa1(Vi, &y, n))

= —ay sin [aog (V1. A, Eg1.ny, nz2) + boga (Vi. &, Ega,ny, n2)|
laolg 1 (Vi, A, Eg1,ny,n)l" + bolga; (Vi, A, Eg2, ny, n)]']
—apsin[aog(V1, A, Eg1, ny, nz) —boga (Vi, A, Ega,ny, n2)|
[aolg11(Vi, A, Eg1,ny, n2)]" — bolga (Vi, A, Ega,ny, n)1'],

mei[piso(Vi, Egoiv MY
hzgil (Vls )"7 Eg()i’ nyv nZ) '

and [gll(V17 )"a Egoia ny, nz)]/ -

6.17 Results and Discussion

Using the values of the energy band constants from Table 1.1, we have plotted the
EEM for the ny = 1 and n, = 1 as a function of the film thickness at T = 4.2K by
taking nano wire effective mass super lattices of optoelectronic materials in accor-
dance with the perturbed three [using (6.154) and (6.155)], two [using (6.156) and
(6.157)] band models of Kane and that of perturbed parabolic energy bands [using
(6.158) and (6.159)] respectively in Fig.6.32. Figure 6.32 exhibits the variation of
EEM in the nano wire effective mass superlattices of GaAs/AlGaAs by considering
the quantum limit approximation. The EEM is greatest for the lowest sub-bands and
for higher sub-bands the numerical values of the EEMs will be less. It appears that
the EEM in such structure decreases with the increase in the film thickness in a
non-linear way for the three- and the two-band energy models. Although, it appears
that the EEM in case of parabolic energy band is linear; however, it depends on the
photo-excitation factor, which makes the slow variation of EEM with both intensity
and wavelength.

6.18 The EEM in Superlattices of Optoelectronic
Semiconductors with Graded Interfaces Under Magnetic
Quantization in the Presence of External Photo-Excitation

6.18.1 Introduction

We note that all the aforementioned SLs have been proposed with the assumption that
the interfaces between the layers are sharply defined, of zero thickness, i.e., devoid
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of any interface effects. The SL potential distribution may be then considered as a
one dimensional array of rectangular potential wells. The aforementioned advanced
experimental techniques may produce SLs with physical interfaces between the two
materials crystallo-graphically abrupt; adjoining their interface will change at least
on an atomic scale. As the potential form changes from a well (barrier) to a barrier
(well), an intermediate potential region exists for the electrons. The influence of finite
thickness of the interfaces on the electron dispersion law is very important, since;
the electron energy spectrum governs the electron transport in SLs [60, 61].

We shall study the EEM in superlattices of optoelectronic semiconductors with
graded interfaces under magnetic quantization in the presence of photo excitation
in Sect.6.18.2 of theoretical background and the Sect.6.19 explores the result and
discussions pertaining to Sect.6.18.2.

6.18.2 Theoretical Background

The energy spectrum in superlattices of III-V compounds with graded interfaces in
the presence of light waves whose constituent materials are defined by perturbed
three-band model of Kane can be written following [60, 61] as

1
cos(Lyk) = §¢115(E, ks) (6.160)
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where

®115(E, ky) = [2cosh {X215(E, ks)} cos {Ya15(E, kg)}

K3,5(E k)

E, ks) sinh {X215(E, ko)} sin {Ya15(E, ko)} + Aoy || =2 ———
+ e215(E, k) sinh {X215(E, k¢)} sin {Y215(E, ks)} + Aag |:(K225(E,ks)

—3K2s5(E, ks)) cosh {X215(E, ky)} sin {Y215(E, ks)} + (3K215(E, ks)

Kas(E, k)1 .

+ A1 |2 ((K2i5(E. k)P = {Kaas(E, ko)) cosh (Xais(E, ko)) cos (Yaus (E. ko))

1| 5{Kns(E k)Y | 5{Kas(E, k)P
12| Kys(E, k) Kys(E, ky)

—34K205(E, ks)K215(E, ks)] sinh {X215(E, ky)} sin {Y215(E, ks)}:|:|
X215(E, ks) = Ka15(E, ky) [ao — Az1],

Koi5(E, ky) = _?ﬁISO(E — Vo, A, Egon, A2) +k; ,

K E.k K E.k

S(E,ks)z|: 215(E. k) Kops(E, s)il’ kf:kf+k§
Kxs(E, ky)  Koi5(E, ky) ‘

Y215(E, kg) = K»ns(E, kg) [bo — A21] and

2me1Biso(E, A, Egol, A1) 45 2
h? 1

Koos(E, k) = |:

In the presence of a quantizing magnetic field B along z-direction, the simplified
magneto-dispersion relation can be written as

k2 = wy15(E, A, n) (6.161)

where

1 Tt 2 2le|B 1
w215(E, A, n) = ?[COS [Eles(E,)»,n)H - (n+§) ,
0

f215(E, A, n) = [2cosh {M315(n, E)} cos {Na15(n, E)} + Z215(n, E)
sinh {M315(n, E)}sin {Nz15(n, E)}
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2
+ Ay Uns@, E) 31x5(n, E) | cosh {M35(n, E)}
Is(n, E)

2
x sin {N5(n, E)} + (31215(;1, E) — {]225(”’E)})

Dis(n, E)
x sinh {M>15(n, E)}cos {N215(n, E)}] + Anp
x ({215 (n, EY* — {Ins(n, E)?) cosh {Ma15(n, E)} cos {Nays(n, E)}

1 (5 s (n, B |5 {15 (n, E)P

o\ huw B s E) — Balns(n, E)Is(n, E)})

sinh {M>5(n, E)}sin {Nz15(n, E)}]] .

Is(n, E)  Insn, E)
Ins(n, E)  Is(n, E)

Zy15(n, E) = [ } s Myi5(n, E) = I5(n, E) [ag — Ax],

K2 2
Nyi5(n, E) = Ips(n, E) [bg — Ap1]  and

2my 2le| B 1 1/2
Ins(n, E) = 2 Biso(E, A, Ego1, A1) — ol U )

2men _ 2le| B 1\1?
his(n, E) = | — B2so(E — Vo, A, Egon, A2) + N n+ =

The electron concentration is given by

n=0

y B Nmax o .
ne = é;rjh |:Z[Q27(V2, A,n) + Qog(Va, A, n)]:| (6.162)

where Q,7(Va, A, n) = [wa15(Va, A, n)]"/2. V5 is the Fermi energy in the present
case,

R=Ry
0s(Va, o) = > L(R)[@x7(Va, A, m)] and
R=1
2R 1-2R =
= - B 2 :
LR) = 20a D)™ (1 =27 DECRI 7057

The EEM along the z-direction in this case can be expressed as

m*(Va, &, n) = (0*/2) [w215(Va, &, n)]/ (6.163)
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where

Whi5(Va, A, n) = [2M},5(n, V2)sinh {May5(n, V2)} cos {Nais(n, V2)}

+ Z215(n, Vo)M5,5(n, Va)cosh {M215(n, V2)} sin {N215(n, V2)}

— 2N, 5(n, V2) sin {Na15(n, V2)} cosh {M15(n, V2)}

+ Z15(n, Vo)sinh {My5(n, V2)} sin {Na15(n, V2)}

+ Z15(n, V2)Nj,5(n, Va) cos {Nais5(n, V2)} sinh {M>5(n, V2)}

Ao [( 2h15(n, V) I5(n, Vo)) {B15(n, V) L5 (n, V)
Ixys(n, V2) I5,5(n, V)

2
x cosh {Mz5(n, V2)} sin {N215(n, V2)} + (—31225('1, V2) + {11215(”—‘/2)})
205(n, V2)
x {M5,5(n, Va)sinh {My5(n, V2)} sin {Na15(n, V2)}
+N3y5(n, Va)cosh {My15(n, V2)} cos {Nai5(n, V2)}}
(— (20050, Vo) Iyp5(n, V) ) {I35(n, V2) I 5(n, V2) )

Dis(n, V2) I5(n, V)

+315,5(n, vz))

I ,Vo))?
x sinh {Mp15(n, V2)} cos {N215(n, V2)} + | +3115(n, V) — Uns(n, Va)I*
I5(n, V2)
x {M},5(n, Va)cosh {Mays(n, V2)} cos {Nai5(n, V2)}
—Nyy5(n, V2) sin {Na15(n, V2)} sinh {M2;5(n, Vz)}}]

+ Aot [4({ I215(n, Vo) I3 5(n, V2) }
—{I225(n, Va) I355(n, V2)}) cosh {Ma5(n, V2)} cos {Na15(n, V2)}
+2({L1s(n, V)Y — {Inas(n, V)Y ) M5 5(n, Va)
x sinh {M35(n, V2)} cos {N215(n, V2)}
— Njy5(n, V2) cosh {My5(n, V2)} sin {Nais(n, V2)}
1 15{15(n, V) Ips(n. Va) S5 {I;os(n, Vo) I3,5(n, Vo)

12 Lis(n, V) I35(n, V2)
15{15150, V2)} 15 (0. Vo) S {5, V)Y Iys(n, Va)
Is(n, V2) Is(n, V2)

— {34135 (n, V2) 15(n, V2)}
—34Ix5(n, V2)I515(n, V2)) sinh {May5(n, V2)} sin {Na15(n, V2)}

5{Ins(n, V)Y 5{lsn, V)
— {34 , Vo) I V.
( bis5(n, V3) T Ios(n, Va) {34125(n, Vo) Ir15(n 2)})

{M},5(n, V2) cosh {M215(n, V2)} sin {Nay5(n, V2)}

+N35(n, Va)sinh {Ma15(n, V2)} cos {Nais(n, Vz)}}]} .
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mczﬁé50(v2, )"7 EgOZa AZ)
—h?I15(Va, n)

M}y s(n, Vo) = I15(n, Vo) [ag — Aail, I515(Va, n) =

mclﬁiso(VZv A, Ego1, A1)
h2 s (Va, n)

2¢B 1\ 2me 172
byis(Va, n) = [ (n + ) - T;ﬁzso(Vsz, E¢on, Az)] ;

’

Iézs(VZ, n) =

)

h 2
N215(Va, n) = Ip5(Va, n) [bg — Azp],
2me1B1s0(Va, A, Ego1, A1) 2eB ( 1)}1/2
[ n+ s

I5(Va,n) = [

h? h 2
2 (Voo m) = =Zos(Va. m)I3;5(Va.n) — Zois(Va, ) 1p5(Va, )
A5 I15(V2, n) I225(V2, n)

+(I15(Va, m) Ins(Va, m)) ™! [210,5(Va, n) [215(Va, n) — 213,5(Va, n) s (Va, n)]] .

For perturbed two-band model of Kane the forms of the electron concentration
and the EEM remain same where

2¢B 1\ 2me 12
hLis(Vo,n) = | —(n+ 2 ) — —5w2s0(V2, A, Ego2) ,

h 2 K2
2me1w150(Va, A, Ego1)  2eB 1\1"?
Ins5(Va,n) = [ ‘ 2 8072 — 7 + 3 ,

meawhsy(Va, &, Egp2)
h?hi5(Va, n)
me1@yso(Va, A, Egol)]
W2 Is5(Va, n) ’

Lys(Va,n) = , and

]ézs(vz, n) = |:

For perturbed parabolic energy bands, the forms of the electron concentration,
and the EEM remain same where

[2eB 1\ 2me 12
hLis(Va,n)=|—|n+ ) — 0250(V2, A, Eg02) ,

T 2 2
[ 2mc1p150(Va, Ay Ego1)  2eB 1\1"2
Is5(Va, n) = - 2 & - — |7 + 3 ;

mc2:0§50(v2, A Ego)
h?hi5(Va, n)
I (Vom) — [ mc10150(V2, &y Egot)
25(V2, 1) = | R%Ias(Va,n) ’

12/15(‘/2’ l’l) =
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6.19 Results and Discussion

Using the values of the energy band constants from Table 1.1, we have plotted the
EEM for the first subband as functions of light intensity as shown in Fig.6.33 at
T = 4.2K by taking superlattices of optoelectronic materials with graded interfaces
under magnetic quantization in accordance with the perturbed three [using (6.162)
and (6.163)] band model of Kane. It appears that with the increase in the light
intensity, the EEM increases sharply as the wavelength varies for the present case.

With the incorporation of different subbands, discontinuous behavior in the EEM
would be expected due to the generation of the Landau subbands. Incidentally, in this
case, we have limited ourselves with the lowest energy subband at low temperatures
where the electrons will be mostly occupied for prominent quantum effects.

6.20 The EEM in Quantum Wire Superlattices of Optoelectronic
Semiconductors with Graded Interfaces in the Presence
of External Photo-Excitation

6.20.1 Introduction

We shall study the EEM in quantum wire superlattices of optoelectronic semicon-
ductors with graded interfaces in the presence of photo excitation in Sect. 6.20.2 of
theoretical background and the Sect. 6.21 explores the result and discussions pertain-
ing to Sect.6.20.2.
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6.20.2 Theoretical Background

The dispersion relation in accordance with the perturbed three-band model of Kane,
in this case, is given by

k2 = wxns(E, A, ny, ny) (6.164)
where
1 1 2
wns(E, A, ny,n;) = L_% cos §f135(E,)»,ny,nz) —H(ny,n;) |,
Si3s(E, A, ny,n;) = [200Sh {M315(ny, n2, E)} cos {N315(ny, n-, E)}

+ Z315(ny, nz, E) sinh {M315(ny, nz, E)} sin {N315(ny, n-, E)}

+A {fais(ny. e, E))° 3 35( E) ) cosh {M35( E))
21 - 325Ny, Ny, cos 315Ny, Ny,
I35(ny, ng, E) e e

2
. {I32s(ny, nz, E)}
X s {N315(ny9 nZs E)} + (31315(”1))7 nZ» E) - 1315(ny’ nz’ E)

x sinh {M315(ny. n. E)} cos {N315(ny. n. E)}} + Ay [2({1315<ny, n., E)y

— {I325(ny, nz, E)}?) cosh{Ma15(ny, nz, E)} cos{N3i5(ny, nz, E)}
1 (5{13zs(ny, ng, E)Y | 5{his(ny, ne, E))
12\ Bys(ny,ng, E) I35(ny, ng, E)

— {34135(ny, ny, E)

x I315(ny, ng, E)}) sinh{M315(ny, n;, E)}sin{N3i5(ny, ng, E)}H,

[ lis(ny,n;, E)  Iss(ny,ng, E)
Z315(ny, ng, E) = 2 < - 2 < ,

| I3o5(ny, n;, E)  I315(ny, ng, E)

M3i5(ny, ny, E) = I315(ny, ng, E) [ap — An1],

2me
sz

N3i5(ny, ng, E) = Isp5(ny, ng, E) [bg — Az1] and

Bys(ny,ng, E) = | —

. 12
B2so(E — Vo, A, Egon, A2) + H(ny, nz)] ,

1325(ny9n21E) = FIBISO(E7A‘9E5'017 Al)_H(nysnz)

[2m1 }1/2

The electron concentration per unit length is given by

o) Mymax Mzmax

j” > D [020(Va, hony, n) + Q3o (Va, A my,n)] - (6.165)

ny=1n;=1

nop =
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where

Qa9(V3, hyny, n;) = [\/wzzs(V3,)»,ny,nz)] ,

R=Ry
Q30(Va, A, my,n) = D L(R)[Qa(V, &, my,m2)],

R=1

2R 1-2R 92K
L(R) =2(kpT)""(1 =2~ )§(2R)3V2R
3
and V3 is the Fermi energy in the present case.
The EEM along x-direction in this case can be expressed as
m*(Va, A, ny, n) = (1/2) [025(V3, h, ny, n2) | (6.166)

where

2f1/35(V3’ A, ny, nz) [Cosil{%fISS(V& A, ny, nz)}]

a)/zzs(VS» A, ny, nz) =
J4— fhs (Vs diny n)

flas(Va, d,ny,nz) = |:2M§15(ny, nz, V3)sinh {M315(ny, n., V3)}

x cos {N315(ny, nz, V3)} + Z315(ny, nz, V3) Mjy5(ny, nz, V3)
x cosh {M315(ny, nz, V3)} - sin {N315(ny, nz, V3)} — 2N3 5(ny, nz, V3)
x sin {N315(ny, nz, V3)} cosh {M315(ny, nz, V3)} + Z5,5(ny, nz, V3)
x sinh{M315(ny, nz, V3)} sin{N315(ny, n, V3)} + Zai15(ny, nz, V3) N3 5(ny, nz, V3)
x cos{N315(ny, n;, V3)} sinh {M315(ny, n., V3)}
{21315(ny» ng, VS)Iéls(ny» ng, VB)} {13215(”))7 nz, V3)I§25(l’ly, nz, VS)}
+ Ay - 3
I325(ny, nz, V3) 5 (ny, nz, V3)

— 3135(ny, ng, Vo)) -cosh {M315(ny, nz, V3)} sin {N315(ny, n., V3)}

{13215(nya nz, V30)}
I325(ny, ng, V3)

+ (_31325(’1}’7 nz, V3) + ) {MéIS(n}'ﬂ ng, V3)

x sinh {M315(ny, nz, V3)} sin {N315(ny, nz, V3)}

+ N3y5(ny, nz, V3) cosh {M315(ny, nz, Va)} cos {N3i5(ny, nz, V3)} }

N (— {21305(ny, ;. Va) s (ny, nz, V) {I5(ny. ng, V3) I 5(ny nz, Va))
L315(ny, nz, V3) I3,5(ny, nz, V3)
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+ 3155(ny, ne, V3)) sinh {M315(ny, nz, V3)} - cos {N315(ny, nz, V3)}

2
I3s(ny, ng, V3)

Usas(ny. nz. V) {M}5(ny, nz, V3)
I3is5(ny, nz, V3)

X cosh {M315(ny, ng, V3)}COS {N315(ny, ng, V3)}

+ (+31315(ny, ng, V3) —

—Njis(ny. nz, V3) sin {N315(ny, nz, V3)} sinh {M315(ny, n_, V3)}}:|

+ Agy [4({1315(71;7, n., V3)I3,5(ny, nz, V3)}

—{I3s(ny, nz, V3) L5 (ny, nz, V3)}) cosh {M315(ny, nz, V3)}

x cos{Na1s(ny. nz, V3)} + 2({I315(ny. nz. V3)}? — (I3s(ny. nz, V3)}?)
x {Mj5(ny, nz, V3) sinh{M35(ny, nz, V3)} cos{N3i5(ny, n;, V3)}

— Njy5(ny, nz, V3) cosh{Mz15(ny, nz, V3)} sin{N315(ny, nz, V3)}}
L(15{13225(ny, nz, V) o5 (ny, nz, V3)

12 I315(n, V3)
 S{Ias(ny,nz, Va)P Iy s(ny nz, Va)  15{15,5(ny, nz, V33 5(ny, nz, Va)
13215(ny, nz, V3) I35(ny, nz, V3)

5{I315(ny, n;, V3)Y Lys(ny, nz, V3)
- > ; 325 20 — {3413,5(ny, nz, V3)I315(ny, nz, V3)}
1325(”)’7 nz, V3)

— 34I35(ny, nz, V3)I3,5(ny, ne, V3)) sinh{M315(ny, nz, V3)}

X SiIl{N315(l’ly7 nz, V3)}

(5{1325(ny, n, V)Y 5{is(ny, nz, V3)}?
I315(ny, nz, V3) I35(ny, nz, V3)

— {341325(ny, ng, V3)I315(ny, nz, V3)})
X {M35(ny, nz, V3) cosh{M315(ny, n-, V3)} sin{N315(ny, n-, V3)}
+ N3 5(ny, nz, V3) sinh{M315(ny, nz, V3)} cos{N35(ny, n-, V3)}}H,

M3y5(ny, ny, V3) = Iy5(ny, ne, V3) [ag — Aail,
Me, Brso(Va, Ay Egon, A2)
h21315(V3, Ny, nz)

Néls(”y» nz, Vi) = I§25(”y» nz, V3) [bp — Axi],
mclﬂ{SO(V3, A, Egon, Ao, ny, ny)
W2 135(V3, ny, n;)

13/15(‘/3’ ny’ nz) =

)

3

Lps(V3,ny,ng) =
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172
Lis(ny, ng, V3) = |: A, Egon, A2) + H(ny, nz)j| )
N3i5(ny, ng, V3) = Isns(ny, ng, V3) [bg — Azl
chl 172
I35(ny, gy, V3) = 7/3150(%, A, Ego1, A1) — H(ny, ny) and

—Z315(V3, ny, n)15,5(V3, ny, ny)
I15(V3,ny, ny)

Z§15(V3, ny, n;) = |:

Z315(V3, ny, nZ)I?/,25(V3a nyanz) 1
- + (I315(V3, ny, ny)I325(Va, ny, ny))
I325(V3, ny, ny) e »E

[213/15(‘/31 nys nZ)I315(V37 nyv nZ) - 21:;25(‘/37 nyv nZ)I325(V37 nyv nZ)]]

For perturbed two-band model of Kane, the form of electron concentration per
unit length and the field emitted current remain same where

m 12
2 22 50 (Vs, A, Eg02)i| ,
mc2w/250(v3’ A, EgoZ)

ﬁ21315(V3,ny,nz)

I3ps(ny,n;, V3) = | —H(ny, ny) +

I3is5(ny, ng, V3) = | H(ny, ny) —

Ié]j(vfﬁa nya nz) =

fl
mcla)/lso(v3a A, Ego1)
h?I305(V3, ny, nz)

12
a)lso(V3 A, Egol)i| ,

13/25(‘/3, Ny, n;) =

For perturbed parabolic energy bands, the form of electron concentration per unit
length and the field emitted current remain same where

Y 12
Iys(ny,ng, V3) = | H(ny,ny) — 7,0250(%, A, Egp2) ,

mc2;0£50(v3, A, Ego2)
W2 1315(V3, ny, nz)

13/15(‘/37 ny7 nZ) =

172
1325(ny,nz,V3)=[ H(n),nz)-i- 2 e piso(Vs, A, Egul)j| ,

ﬁ
mclPiSO(VSa A, Egot)
W2 I35(V3, ny, n;)

Iézs(V& ny, n;) =
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Fig. 6.34 Plot of the normal- 10 p~—rt—vr—v1—r—1—v—"1—v—T—v—T—r—r
ized EEM as a functionof | ..... A=04m

linear electron concentration —Ai=1m 1
of quantum wire superlattices =15 X 10° Wm*

Ld =10 nm, d =8 nm

of GaAs/AlGaAs with graded 8
interfaces in the presence of

light waves in accordance with

the two-band model of Kane s
in the presence of external ﬁ
photo-excitation

2 'l i Il 'l L A Il
10 15 20 25 30 35 40 45 50

n,, (10°m™)

6.21 Results and Discussion

Using the values of the energy band constants from Table 1.1, we have plotted the
EEM forny = 1 and n; = 1 as a function of electron concentration at 7 = 4.2K by
taking quantum wire super lattices of optoelectronic materials with graded interfaces
in accordance with the perturbed two-band model of Kane. In Fig.6.34, we have
plotted the EEM as function of electron concentration per unit length in quantum
wires of GaAs/AlGaAs superlattices with graded interfaces. It appears from Fig. 6.34
that the effect of a single subband linearly increases the EEM for low value of
wavelength.

It may be noted that with the increase in the wavelength, the EEM tends to coincide
with that of the lower wavelength values at higher carrier concentration. For the
purpose of condensation, the electron statistics and the EEM for this chapter has
been presented in Table 6.1.

6.22 Open Research Problems

(R6.1) Investigate the EEM, EAM, DEM, CEM, CoEM, FREM, and OEM for
the bulk materials whose respective dispersion relations of the carriers in
the absence of any field is given in Chap. 1 in the presence of strong light
waves which change the original band structure and consider its effect in
the subsequent: study in each case.

(R6.2) Investigate the same set of masses as defined in (R6.1) in the presence
of an arbitrarily oriented non-uniform light waves for all the materials as
considered (R6.1).


http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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(R6.3) Investigate the same set of masses as defined in (R6.1) in the presence of
an arbitrarily oriented non-quantizing alternating non-uniform light waves
for all the cases of (R6.1).

(R6.4) Investigate the same set of masses as defined in (R6.1) for the heavily
doped materials in the presence of Gaussian, exponential, Kane, Halperin,
Lax, and Bonch-Bruevich types of band tails for all materials whose unper-
turbed carrier energy spectra are defined in (R6.1).

(R6.5) Investigate the same set of masses as defined in (R6.1) for all the materials
in the presence of arbitrarily oriented non-quantizing non-uniform light
waves for all the appropriate cases of problem (R6.4).

(R6.6) Investigate the same set of masses as defined in (R6.1) for all the materials
in the presence of arbitrarily oriented non-quantizing alternating light
waves for all the appropriate cases of problem (R6.4).

(R6.7) Investigate the same set of masses as defined in (R6.1) for the negative
refractive index, organic, magnetic, and other advanced optical materials
in the presence of arbitrarily oriented light waves.

(R6.8) Investigate the same set of masses as defined in (R6.1) in the presence of
alternating non-quantizing light waves for all the problems of (R6.7).

(R6.9) Investigate the same set of masses as defined in (R6.1) for all the quan-
tum confined materials (i.e., multiple quantum wells and wires) whose
unperturbed carrier energy spectra are defined in (R6.1) in the presence
of arbitrary oriented quantizing magnetic field by including the effects of
spin and broadening respectively.

(R6.10) Investigate the same set of masses as defined in (R6.1) in the presence
of an additional arbitrarily oriented alternating quantizing magnetic field,
respectively, for all the problems of (R6.9).

(R6.11) Investigate the same set of masses as defined in (R6.1) in the presence
of arbitrarily oriented alternating quantizing magnetic field and arbitrary
oriented non-quantizing non-uniform light waves, respectively, for all the
problems of (R6.9).

(R6.12) Investigate the same set of masses as defined in (R6.1) in the presence
of arbitrary oriented alternating non- uniform quantizing magnetic field
and additional arbitrary oriented non-quantizing alternating light waves
respectively for all the problems of (R6.9).

(R6.13) Investigate the same set of masses as defined in (R6.1) in the presence
of arbitrary oriented and crossed quantizing magnetic and electric fields
respectively for all the problems of (R6.9).

(R6.14) Investigate the same set of masses as defined in (R6.1) for all the appro-
priate low-dimensional systems of this chapter in the presence of finite
potential wells.

(R6.15) Investigate the same set of masses as defined in (R6.1) for all the appropri-
ate low-dimensional systems of this chapter in the presence of parabolic
potential wells.

(R6.16) Investigate the same set of masses as defined in (R6.1) for all the appro-
priate systems of this chapter forming quantum rings.
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(R6.17) Investigate the same set of masses as defined in (R6.1) for all the above
appropriate problems in the presence of elliptical Hill and quantum square
rings respectively.

(R6.18) Investigate the same set of masses as defined in (R6.1) for multiple wall
carbon nano-tubes.

(R6.19) Investigate the same set of masses as defined in (R6.1) for multiple wall
carbon nano-tubes in the presence of non-quantizing non-uniform alter-
nating light waves.

(R6.20) Investigate the same set of masses as defined in (R6.1) for multiple wall
carbon nano-tubes in the presence of non-quantizing non-uniform alter-
nating magnetic field.

(R6.21) Investigate the same set of masses as defined in (R6.1) for multiple wall
carbon nano-tubes in the presence of crossed electric and quantizing mag-
netic fields.

(R6.22) Investigate the same set of masses as defined in (R6.1) for heavily doped
semiconductor nano-tubes for all the materials whose unperturbed carrier
dispersion laws are defined in Chap. 1.

(R6.23) Investigate the same set of masses as defined in (R6.1) for heavily doped
semiconductor nanotubes in the presence of non-quantizing alternating
light waves for all the materials whose unperturbed carrier dispersion
laws are defined in Chap. 1.

(R6.24) Investigate the same set of masses as defined in (R6.1) for heavily doped
semiconductor nanotubes in the presence of non-quantizing alternating
magnetic field for all the materials whose unperturbed carrier dispersion
laws are defined in Chap. 1.

(R6.25) Investigate the same set of masses as defined in (R6.1) for heavily doped
semiconductor nano-tubes in the presence of non-uniform light waves for
all the materials whose unperturbed carrier dispersion laws are defined in
Chap. 1.

(R6.26) Investigate the same set of masses as defined in (R6.1) for heavily doped
semiconductor nanotubes in the presence of alternating quantizing mag-
netic fields for all the materials whose unperturbed carrier dispersion laws
are defined in Chap. 1.

(R6.27) Investigate the same set of masses as defined in (R6.1) for heavily doped
semiconductor nanotubes in the presence of crossed electric and quantiz-
ing magnetic fields for all the materials whose unperturbed carrier disper-
sion laws are defined in Chap. 1.

(R6.28) Investigate the same set of masses as defined in (R6.1) for all the appro-
priate nipi structures of the materials whose unperturbed carrier energy
spectra are defined in Chap. 1.

(R6.29) Investigate the same set of masses as defined in (R6.1) for all the appro-
priate nipi structures of the materials whose unperturbed carrier energy
spectra are defined in Chap. 1, in the presence of an arbitrarily oriented
non-quantizing non-uniform additional electric field.


http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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(R6.30) Investigate the same set of masses as defined in (R6.1) for all the appro-
priate nipi structures of the materials whose unperturbed carrier energy
spectra are defined in Chap. 1 in the presence of non-quantizing alternating
additional magnetic field.

(R6.31) Investigate the same set of masses as defined in (R6.1) for all the appro-
priate nipi structures of the materials whose unperturbed carrier energy
spectra are defined in Chap. | in the presence of quantizing alternating
additional magnetic field.

(R6.32) Investigate the same set of masses as defined in (R6.1) for all the appro-
priate nipi structures of the materials whose unperturbed carrier energy
spectra are defined in Chap. 1 in the presence of crossed electric and quan-
tizing magnetic fields.

(R6.33) Investigate the same set of masses as defined in (R6.1) for heavily doped
nipi structures for all the appropriate cases of all the above problems.

(R6.34) Investigate the same set of masses as defined in (R6.1) for the appro-
priate accumulation layers of all the materials whose unperturbed carrier
energy spectra are defined in Chap. 1 in the presence of crossed electric and
quantizing magnetic fields by considering electron spin and broadening
of Landau levels.

(R6.35) Investigate the same set of masses as defined in (R6.1) for quantum
confined II-V, II-VI, IV-VI, HgTe/CdTe effective mass superlattices
together with short period, strained layer, random, Fibonacci, poly-type
and sawtooth superlattices.

(R6.36) Investigate the same set of masses as defined in (R6.1) in the presence of
quantizing magnetic field, respectively, for all the cases of (R6.35).

(R6.37) Investigate the same set of masses as defined in (R6.1) in the presence of
non-quantizing non-uniform additional electric field, respectively, for all
the cases of (R6.35).

(R6.38) Investigate the same set of masses as defined in (R6.1) in the presence of
non-quantizing alternating light waves, respectively, for all the cases of
(R6.35).

(R6.39) Investigate the same set of masses as defined in (R6.1) in the presence of
crossed electric and quantizing magnetic fields, respectively, for all the
cases of (R6.35).

(R6.40) Investigate the same set of masses as defined in (R6.1) for heavily doped
quantum confined superlattices for all the problems of (R6.35).

(R6.41) Investigate the same set of masses as defined in (R6.1) in the presence of
quantizing non-uniform magnetic field, respectively, for all the cases of
(R6.40).

(R6.42) Investigate the same set of masses as defined in (R6.1) in the presence of
crossed electric and quantizing magnetic fields, respectively, for all the
cases of (R6.40).

(R6.43) Investigate the same set of masses as defined in (R6.1) for all the systems
in the presence of strain.


http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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(R6.44) Investigate all the problems of this chapter by removing all the mathemati-
cal approximations and establishing the respective appropriate uniqueness
conditions.
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Part 111
Influence of Intense Electric Field on the
EEM in Optoelectronic Semiconductors



Chapter 7
The EEM in the Presence of Intense
Electric Field

7.1 Introduction

With the advent of modern nanodevices, there has been considerable interest in
studying the electric field-induced processes in semiconductors having different
band structures. It appears from the literature that the studies have been made on the
assumption that the carrier dispersion laws are invariant quantities in the presence of
intense electric field, which is not fundamentally true. In this chapter, we shall study
the EEM in quantum confined optoelectronic semiconductors under strong electric
field. In Sect.7.2.1, the EEM in the bulk specimens said compounds under strong
electric field has been investigated. In Sect. 7.2.2, the EEM in the presence of an arbi-
trarily oriented quantizing magnetic field whose unperturbed electron energy spectra
are, respectively, defined by the three- and two-band models of Kane together with
parabolic energy bands has been studied. In Sects.7.2.3, 7.2.4 and 7.2.5, the EEM
in quantum wells, inversion layers, and nipi structures of optoelectronic materials
under strong electric field has been explored. Section7.2.6 contains the investiga-
tion of the EEM in quantum wires of optoelectronic semiconductors. In Sect.7.2.7,
the EEM in field effective mass superlattices of optoelectronic semiconductors in
the presence of strong electric field under magnetic quantization has been studied.
In Sect.7.2.7 we have investigated the EEM in quantum wire effective mass super-
lattices of Kane-type semiconductors. In Sect.7.2.8 the EEM in superlattices of
Kane- type compounds with graded interfaces under magnetic quantization has been
investigated. In Sect.7.2.9 the EEM in quantum wire superlattices of optoelectronic
semiconductors with graded interfaces has been studied. Section7.3 contains the
results and discussion pertinent to this chapter. Section7.4 presents open research
problems.
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7.2 Theoretical Background

7.2.1 The EEM in Bulk Optoelectronic Semiconductors Under
Strong Electric Field

The E — k dispersion relation in the presence of an external electric field Fy along
x-axis for III-V, ternary and quaternary materials whose unperturbed energy band
structures are defined by the well-known three band model of Kane can be expressed
as [1]

K2 k3 k2
n n —1 (7.1)
2mc 111 (E) 2mc i E 2mc I E
72 [1+<D(E,F):| 72 1(E) 72 11(E)

where,

1 1
m(E) (m(E) +8)*

12 2
1/2
p ME) +E; (m(E)—Eg)
T8 ) ot ,
m(E) — E, n(E) + Eg

®(E, F) = (2’”0 ) [FPRE2(E, - 8)?]

2
m

2

EZA 2m.E I (E)]Y/?
F=eF,§ = 5, X:6E§+9Eg~A+4A27 n1(E):[E§+ng7“()] ,
X

my

1/2

p_ 18 (Ec= [ B+ ) B+ )Y

= \559) ro = 1 6. ,
¢ X

| Eg(Ey—38)

oAy ) 1/2
Eg"’T)
E;+¢&

, 0=1%/2. and z=[6(
X

In (7.1), the coefficients of ky, ky and k, are not same and for this reason, this
basic equation is “anisotropic” in nature together with the fact that the anisotropic
dispersion relation is the ellipsoid of revolution in the k-space.

From (7.1) the expressions of the effective electron masses along x, y, and z
directions can, respectively, be written as

m*(E, F) = h*k, Bkx
IE [1,=0.k,=0
=me[1+ QE, )] [[1 + ®(E, P [11(E)] — [I11(E)] ¥ (E, F)]
1.2)
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* 2 8ky 1
my(E, F) = h"ky 3E =mc[111(E)] (7.3)
kx=0,k;=0
* 2 8kZ /
mZ(E, F) = Ik, 3E =mc [111(E)] (7.4)
ky=0,ky=0

where,

3 4
d’ E,F)=—®(E, F E))
S (. B)mED (m(E) * m(E)+8’)

-1
m(E) + E, )1/2 (ﬁl(E)—Eg)l/2
Pl|———— et a—
+|: (nl(E)_(Eg)/ e n(E) + E,

P 1 __mE) + Ey'?
Vm(E) + Egm(E) = (Eg)  (m(E) = (E))*?

1 _(n(E) - Ep)'?

\/m (1 (E) + E)3/2 ,

+0

mcEg

(i (E)) = (m(E))‘l(

in Chap. 1.

It may be noted from (7.2) that the effective mass along x- direction is a function
of both electron energy and electric field, respectively, whereas from (7.3) and (7.4)
we can infer the expressions of the effective masses along y and z directions are same
and they depend on the electron energy only. Thus, in the presence of an electric field,
the mass anisotropy for Kane-type semiconductors depends both on electron energy
and electric field, respectively.

Therefore, it appears that the study of the EEM at the Fermi level requires an
expression of the electron concentration which inturn needs the expression for the
DOS function. The DOS function in this case can be written as

2mc)3/2 VIi(B) In(E)]  ®'(E, F) [ 11(E) ]3/2
h? VI+®(EF) 3 1+ ®(E, F)

(7.5)
Combining (7.5) with the Fermi Dirac occupation probability factor and applying
the generalized Sommerfeld’s lemma, the electron statistics in this case assumes the
form

) [111(E)and [I11(E)] has already been defined

r

N(E) =4ng, (

ng = C7 (M1 (EpF, F) + N1 (EFF, F)] (7.6a)
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where

3/2 3/2
gv (2mc [111(EFF)]
Cip = =% . Mip(Epp,F) = ————
F 37t2 ( h2 ) lF( FE ) 1+CI)(EFF,F)

Err is the Fermi energy in the presence of electric field as measured from the edge
of the conduction band in the vertically upward direction in the absence of any field,

N
Nir(EFL, F) = ZXrF (M1r(EFF, F)]
r=1
82r
and X,p = 2(kpT)* (1 = 21720 Q@) —-,
IEgF

Under the condition A — 0, the (7.1) assumes the form

ki ks K2
2m, 10 (E) + 2me E 2me E =1 (76b)
= [1+¢1(E,F)] 2 V(E)  FEv(E)
252 e yo(E) ]2
where yo(E) = E(1 +aE) and ®((E, F) = Mr%% [1 i mirVOE(g )]

Equation (7.8) represents the electron energy spectrum of III-V, ternary and qua-
ternary materials in the presence of an external electric field whose unperturbed band
structures are defined by the two-band model of Kane.

From (7.5) the expressions of the effective electron masses along x, y, and z
directions can, respectively, be written as

mi(Epp, F) = m¢[1 + @1 (Epp, F)7* [[1 + ®1(Epr, F)I[1 + 20 EpF]

—[Err(1 + ¢ Epp)] @ (EFF, F)] (7.6¢)
my(Epp, F) = mc[1 + 20 Epr] (7.7)
m:(EFF7 F)=m.[1+2aEFrF] (7.8)

where

@\ (Epp, F) = — [(1 + 20 Epp)®1(EpF, F)]

1+5|:1+%EFF(1+(¥EFF)1|_1&L ’
my E, my Eg

The DOS function assumes the form
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NE) — dme (21e) | VOB +20E]  ®Y(E,F) [ E(+aE) |2
()_”gv(hz) JI+O(EF) 3 [1+<1>1<E,F>]

(7.9)
Combining (7.9) with the Fermi Dirac occupation probability factor and applying the
generalized Sommerfeld’s lemma, the electron statistics in this case can be written as

no = C7p [Map (EFp, F) + Ny (EfF, F)] (7.10)
where
3/2 3/2
g [2mc [Err(1 + ¢ EFp)]
Cip=—= , Mop(Epp, F) =
=32 ( h? ) 2 (Err. F) N1+ @ (Epp, F)
and

Nop(Err, F) = 2 X,r [Mar(EFF, F)]

r=1

7.2.2 The Magneto EEM in Optoelectronic Semiconductors
Under Strong Electric Field

The electron dispersion law in the presence of an arbitrarily oriented quantizing
magnetic field B which makes an angle ® with k, axis and lies in the k,, k, plane
can be formulated in the following simplified way in this case:
2
The area of cross-section of the ellipsoid ;‘—j + Z—2 + i—z = 1 by the plane Ix +
my + nz = p is given by [2]

2
rabe [1 P ] (7.11)

A= —
(@22 5 b2m? + c2n2)1/2 @22 + b2m? + ¢2n?)

In our case, the ellipsoid of the revolution can be written from equation (7.1) as
k2 k2 K2
X > 4+ < — 1 and the equation of the plane is k. sin6 + ky

a3(E,F) b3(E) b3(E)
cosf = k;
2m 111 (E) 2m,
2 _ ¢ 2 —
where (17(E, F) = h2 (1+<D—(E,F)) and b7(E) = h2 Ill(E),

Therefore, the use of (7.11) leads to the expression for the area of cross-section
in this case as

A(E, kz1) = [wa7(E)b2(E)| [(3(E) sin®0) + (a2(E, F) cos? )]~/

(k.)? (7.12)
[(b3(E) sin? ) + (a3 (E, F) cos?6)]
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The Landau area quantization rule is given by [6]

AE. k) = 2211 B (n + 1) (7.13)

h 2

Therefore, combining (7.12) and (7.13), the dispersion relation of the conduction
electrons in optoelectronic materials under electric field can be written in presence
of an arbitrarily oriented quantizing magnetic field B whose unperturbed electron
energy spectrum is defined by the three band model of Kane as

N 2eB 1
(k) =A7(E,F,9)—T n+§ B7(E, F,0) (7.14)

where A7(E, F,0) = [a2(E, F) cos* 6 + b3(E) sin” 0]
[a%(E, F)cos?6 + b%(E) sin? 9]3/2

ar(E. F)b3(E)
Using (7.14) the EEM can be expressed as

and B;(E, F,0) =

2 ’ /
m*(Eppg,n, F,0) = - [A7(EFFB, F.0) — 2B (n+ 1) By(EFrs. F, 9)]
(7.15)
where A/7(EFFBa F.0) = [207(EFFB, F)a;(EFFBv F)cos® 6 + 2b7(EFFp)

b/7(EFFB) sin’ 9] ,
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me
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3 ) -1
+ 5 I:a%(EFFB, F) 00529 + b%(EFFB) Sll’l2 @]

X [2617(EFFB» F)a;(EFFB» F)cos? 6

+ sin? 92b7(EFFB)b;(EFFB)] :| ,

and Er rp is the Fermi energy under magnetic quantization in this case. The DOS is
given by

Mmax —1/2

e 2eB 1

NB(E)=m E |:|:A7(E, F79)—?(n+§) B7(E, F79)1| (7.16)
n=0

2eB

[A;(E, F.0) ==~ (n + %) By(E.F, 9)} H(E — E7):|

where E7 is the lowest positive root of the equation
2¢B 1
A7(E, F,G)—? n+§ B7(E,F,0)=0 (7.17)

The electron concentration can be written as

Nmax

> IM3(Eppp. F.0.n) + N3(Eppp. F.0.m)]  (7.18)
n=0

eB
ny = ——
0= 22n

where

1

2eB 1 2
MS(EFFB’ F,@,I’l) = |:A7(E9 Fv 9) - T (n+ 5) B7(E, Fv 9)}

and

s
N3(Eprg, F,0,n) = > Z, IMy(Erpp, F,0,n)]

r=1

The electron dispersion relation in the presence of an arbitrarily oriented quan-
tizing magnetic field, the EEM , the density-of-states function, and the electron
concentration in the presence of strong electric field for the materials where unper-
turbed condition electron obey the two-band model of Kane can, respectively, be
expressed as

. 2B 1
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. h? 2¢B 1\
m*(Erfpp,n, F,0) = 5 A71(EFFB,F 9)—7 n-f-z B, (EFFB, F,0)
(7.20)
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where
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Eg is the lowest positive root of the equation
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2¢eB 1
A7 (E, F,G)—T(n+§) B71(E,F,0)=0 (7.23)

2¢B | 2
M4(EFFp, F,0,n) = A71(E,F,9)—T n+§ By (E, F,0)

and

N
N4(EFfrp, F,0,n) = zzr [M4y(EFFg, F,0,n)]

r=1

7.2.3 The EEM in UFs of Optoelectronic Semiconductors
Under Strong Electric Field

In the presence of quantization along x direction we can write

K2 = b2(E)|1— (M)Z o (7.24)
s — Y7 dy a%(E, F) .

where ks2 = kf, + kg, n,=1,2,3...... is the size quantum number and d is the
thickness along x direction.
The density-of-states function is given by

2 . M xmax , . 2 B
N(E) = =8 Z[zb7<E>b7(E) [1—(”d”) (a7(E, F)) ™2
ny=1 x

- (2n)?
+M (E, F) (”xn)z H(E — Eg) (7.25)
T A R o

where Ej is the root of the equation

2
1= (”;”) (a7(Eo., F))~> (7.262)

X

The EEM is given by
2

h
m*(Eprps, F,ny) = - ®100 (7.26b)

where Errg is the Fermi Energy in this case and
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b100 = | 262E (8 11 — (nxn)z;
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— % 4 (E F
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The electron concentration per unit area is given by
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where
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and

s
Ns(Eprs, F,no) = D Z,[Ms(Erprs, F,n)].

r=1

The electron dispersion relation to the effective electron mass, the density-of-states
function and the surface electron concentration in ultrathin films in the presence
of strong electron field where unperturbed conduction electrons obey the two-band
model of Kane can, respectively, be expressed as

2
2 2 5y |1 - H) o 2
ks b71(E)|: (dx 2 (E.F) (7.28)

m*(Eps, F,n) = h2¢101 (7.29)

where,
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where,
Ejg is the lowest positive root of the equation
nem '\ 1
1= (x—) S B (7.31)
dy a71(E10, F)
M xmax
8
no === > [Ms(Errs. F.ny) + Ne(Errs. F.ny)] (7.32)
2 e’
where
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Ny 1
Me(EFFs. F,nx) = b3, (Eprs) | 1 = (—) >
) b dv ) a2 (Errs, F)
and

N
Ne(Errs, F.ny) = Y Zr [Ms(Erps, F,ny)]

r=1

7.2.4 The EEM in NIPI Structures of Optoelectronic
Semiconductors Under Strong Electric Field

The dispersion relation of the conduction electrons in NIPI structures of
optoelectronic semiconductors under strong electric field whose unperturbed con-
duction electrons obey the three-band model of Kane can be written as

22 2 B 2hal(E) 1
K2+ K2 = b3(E) [1 olm (n, n 2)} (7.33)

where, n; = 1, 2, 3. .. is the mini-band index in this structure
The density of states function is given by

i max

_ & [ 2 (1
N(E) =~ > |:2b7(E)b7(E) [1 o E) (n,+2):|

n;=0
N / 2
1)%{ a7(E) _ (@;(E))

2 L4 -
ThiE) (” “2)"" w® T a2

” H(E —Ey) (134

where, E1; is the lowest positive root of the equation

2hal(Eq1) 1
l="—""T" " n+= 7.35
ar(En) (” +2) (7.39)
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The EEM is given by B
m*(Epn, F,n;) = F*$100 (7.36)

where, Ef, is the Fermi energy in this case and

B _ . B 2hd’y(EFn) 1
d102 = |:b7(EFn)b7(EFn) |:1 a7(EFn) (nl + 2):|

_ 1\, [=a)Er) | @(Ern)
b2(Epy) (ni + = ) h{ ——= (Rl
otk )<” +2) I arErn) | a2Era) H

The electron concentration can be expressed as

no=>- i:‘,l [M3(Epn. F.ni) + Ny(Epa, F.np)] (7.37)
where o
Mo(Epn. F.ni) = b3(Ern) [1 - % (nl. N %)}
and

N
N1(Epn, Foni) =) Zy [M1(Epn, F.nj)]

r=1

The electron dispersion relation, the effective electron mass, the density-of-states
function, and the surface electron concentration in NIPI structures in the presence
of strong electron field where unperturbed conduction electrons obey the two-band
model of Kane can, respectively, be expressed as

2 2 12 _ ZMGI(E) ( . l)
ky +k; = b3,(E) [1 a7 +3 (7.38)
m*(Epn, F,n;) = h*¢103 (7.39)
where,
_ - 2hal (Epn 1
b103 = [bn(EFn)meFn) [1 —~ % (ni + 5)]

B 1 —al (Epn)  (dh(Epp))?
+b2En(,~+—)h T =
7 (Ern) \n 2 { a71(EFn) a3, (Epn)
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B &nimax , B 25091(E) . l
N(E) = = Zzlo |:2b71(E)b71(E) [1 By (n + 2)}

_ / 2
+ b3, (E) (n,- + l) Zh[ 471(E) + (a3, (E)) H H(E — Epp)

2 an(E) a3, (E)
(7.40)
E1; is the lowest positive root of the equation
2hal (E 1
_ 2hay (En2) <n,- + —) (7.41)
ar1(E) 2
Mimax
no = 3= 2_1 [Ms(Ern, F.ni) + Ns(Epn, F, )] (7.42)
where _
_ — 2ha’ (EF ) 1
Mg(Epn. F.ni) = b3 (Epy) |1 - —1—22 (n,- - —)
a71(EFn) 2
and

N
Ny(Epn, Foni) = D Zy [Mg(Epn, F,ni)]

r=1

7.2.5 The EEM in n-Channel Inversion Layers of Optoelectronic
Semiconductors

(a) The 2D dispersion relation of the conduction electrons in n-channel inversion
layers of optoelectronic semiconductors under weak electric field limit whose unper-
turbed conduction electrons obey the three-band model of Kane can be written as

k2 = J7(E, F, i) (7.43)
where
. t17(E, F)—=Si[eFyt{;(E, F)]*/3
J(E, F.i) = iy T | t17(E, F) = a3(E, F),
17(E, F)=3Si(eFy)?3 21—~
27( ) 3 l(e S) [ti7(E,F)]1/3
t7(E, F
(B, Fy = ED) g gy = 2ay(E, FYab(E, P,

b3(E)



332 7 The EEM in the Presence of Intense Electric Field

' (E,F) 2tH7(E, F)b,(E)
£ (E,F) = 17 _ 7 :|
> [ b2(E) b3(E)
dy(E, F) = < [14+¢(E, F)] > [(14+¢(E, F)I{,(E)—111(E)$/(E, F)]

h?a7(E, F)
The EEM at the Fermi level (Eg) in the present case is given by
2

L _h .
m*(Eps, F.i) = = J7(E, F.D|p_p, (7.44)

where
J7(E, F,i) = [a7(E, F,i)By(E, F,i) — a4 (E, F,i)p7(E, F, i) {a7(E, F,i)) 72,
a7(E, F.i) = [t17(E, F) — Si[eFst}5(E, F)1*/3],

t),(E, F) }

BIE.F.i) = | txy(E, F) — 28 (eFy)?3 —21 D)
o 3T B PP

2, _
oy(E, F,i) = [t],(E, F) = S <er)2/3§[r17<E, 1 Y30k, P,

117(E, F) = [2[a5(E, F)1> + 2a7(E, F)aj(E, F)],

Gy (E, F) = e[ (E, P2 [+ (E, F)I}| (E)= 111 (E))/(E, F)]
e 12ar(E, F) ’ o " ik
1 _a%(E’ F) —1 7 /

07(E,F)=m—2[1+¢(E,F)] ¢ (E, Fla;(E, F)

e[+ (B, P2 [1],(B) = I (E)$(E, F)]
h2a7(E, F) ’ 1 R

g [anE»? 1 1 1
I“(E)_[ @ MO B E R T ErE a2

1
_(E+Eg+§A)2H’

a
By(E, F,i) = thy(E, F) — {isi(er)z/S & D ]

[1{,(E, F)]1/3

2o ity (E. F)if(E, F))
+3Sz(9FS) 3[[17(E, F)]4/3
gy = | ER i E DbE) | 07, F)[b}(E)I?
e b3 (E) b3(E) b3 (E)
2017(E, F)bj(E)
b3 (E)
/ —ﬂlil(E) ” _; me B 5
b7(E) = 12 by (E) b7(E) = B |12 I{{(E) — (b7(E))
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(®'(E, F)>  n{(E)®'(E.F)
®(E, F) N (E)

_ _ 1/2
1Gr  mm ) |7 Gl
m(EN?  (nm(E)+8)? m(E) — (Eg)

-2
m(E)—Eg)‘/2 N} (E)
+Q(m(E)+Eg T

1 (M(E) + Eg)!/?
x| P _
JME) + Egy/ni(E) — (Eg)  (n(E) — (Eg))3/2

1 E) — E,)\/?
+Q[ _ (B — Ey) H+[—d>(E,F)(m(E>>’

/n%(E)_Eg (ﬂl(E)+Eg)3/2

1/2
o ( 3 n 4 )+ P( 771(E)+Eg)
n(E)  m(E)+¢ n(E) — (Eg)

— ®(E, F)(n(E))

@ (E, F) = {

+Q(m(E>—Eg)‘/2 - n’l(E)[P 1
n(E) + Eg 2 (M (E) + Eg)3/2(n1(E) — Eg)'/?
1
(n(E) — EgP32(m(E) + Ep)1/2
() + E)~!/?
(M (E) — Eg)3/2
B 2n1(E) (1 (E) — Eg)~1/
[ (E)?+ EZP/2 - (m(E) + Eg)3/?

(B —Ep' H
(1 (E) + Eg)>/
mcEg

1} (E) = (m (E)~! [
m

+31(E) — Ep)(n1(E) + Egﬂ/z}

r

I{,(E) — (n’1<E)>2] :

The electron concentration is given by

Imax

no = 3= > [(Ers, F.i) + Hy(Eps. F. ) (7.45)
d i=0

N
where H7(EFs, F, i) = > Z,[J7(EFs, F, )]
r=1
(b) The 2D dispersion relation of the conduction electrons in n-channel inver-
sion layers of optoelectronic semiconductors under weak electric field limit whose
unperturbed conduction electrons obey the two-band model of Kane can be written as

k2 = J71(E, F, i) (7.46)
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where

t71(E, F) — SileFst{;,(E, F)]*/?

57, (E,F) ’
t71(E, F) = 38i(eF)?P

ti7i(E, F)
b3, (E)

Jn(E, F,i) =

nn(E, F)=a3,(E,F), ty(E,F)=

’

2m,
ay(E, F)=[1+ ¢ (E, ]! [—a71(E, F)p(E, F) + ( ;; )(1 +2aE)]

(B, F)  2n7(E, F)b/ﬂ(E)}

t27l(EvF):|: b%l(E) b%l(E)

0y (E) = (55 ) (142 E)lbri ()]

The EEM at the Fermi level (EFs) in the present case is given by

o .
m*(Eps, Fui) = = I (B FoD)| (7.47)

where

J\(E, F,i) = [a71(E, F, i)} (E, F,i)

— oy (E, F, )71 (E, F,i)l{an (E, F, )} 2,
an(E, F,i) = [h71(E, F) — SileFyt};, (E, F)1*?),
téﬂ(E, F)

B1(E, F,i) = [t (E F)—%S-(eF)2/37
71 ’ ’ 271 k) 3 1 S [l{71(E, F)]1/3

1.

/ N 14 . 2/32 / —1/3 .7

an(E, F,i) =[tj;1(E, F) — S;(eF) 3[1171(E7 F)] (1171 (E, )11,
o7, (E, F) l

1], (E. I

\(E. F)ify (. F)

[t]7,(E, F)]*/3

(B F) iy (B, F)byy (B) | o (B, )by, (E)P

2
By (E, F,i) =thy (E, F) — [gsxemm

2 t
+ §sl~(e1a,)2/3{27

o (E, F) = [

b, (E) b3 (E) b (E)
_20m1(E, F)bY\(E)
b, (E)

113 (E, F) = [2[a5,(E, F))* + 2a71(E, F)aj,(E, F)]
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2 c
b3 (E) = b (E)™! [(bgl(E))2 - %]
dm.o
h2

ap(E, F) =1+ ¢1(E, F)]_l[—aél(E, F)$y(E, F) +

—an(E, F)¢s3(E, F)],

- 2
&3(E, F) = |: $2(E, F)(1 +20E)  ¢1(E, F)( +20E)”  2a¢(E, F):|

i v1(E) v7(E) y1(E)

—1+5[1+ L E)]_1 (22 )|
X_ 2 (mrEg * mrEg)y7

[—¢1(E, F)(1 +2aE) 5 2m, -2
) y2(E) ][_2’1+(m,gg)E(l+“E)]

() (G ) a2em)
X (1 +2aE)y;(E) + (1+42aFE)
myEgq myEg

[+ () o] ]
x 11+ E(l1+«aFE)
m,Eg

The electron concentration per unit area in this case is given by

imax
8 . .
ny =~ E [J71(EFs, F, i) + H71(EFs, F,0)] (7.48)
2 =

where

N
Hyi(Egs, F, i) = )" Z:[J71(Ers, F, )]

r=1

7.2.6 The EEM in Nano Wires of Optoelectronic
Semiconductors

The one-dimensional motion of the electron for quantum wires of optoelectronic
materials can be expressed as

h2k2
G(nynz) + Zm" = Bu(E, F) (7.49)

c
27,2
X

2m,

= Ba(E, F) (7.50)

G(nyn;) +
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G(ny, ny) Pt (e 2+ e\’
Ny, Ng) =
e 2m, dy d;

[ — [ 1 (E T2(E
B11(E, F) = I11(E)—C1_|: 11 ( )i||: 7(E) j|i|’

where

¢*(E) ] | (9(E) +8)*

— [ me(neFE)*(E, — 5’)2}
C = 3 ,
6m:

20 _ | 2 me
¢~ (E) = Eg+Eg hi(E) |,

172 B 127
T(E) = | P ¢>(E)+E§ +Q(¢(E) Eg)
¢(E) - E, $(E) + E,

[l

_ E.1™
(E,F) = +aE) —8s faE) + 2rZs
Bia(E, F) = | EQl +aE) — 85| E(1 + «E)
2m,
[ W2 F2m} £y
§s = | —— " 8
> 12.2m,)5/?

The EEMs in this case can be expressed as

m*(Ef1p. F) = m:B1,(Erip, F) (7.51)
m*(Epip, F) = mcBio(EFip, F) (7.52)
C1y'(EFip) TZ(EFrip)
¢3(Erip)  [$(Erip) + 81+
2C1y(Er1p)Ti(EF1p)T{(EF1D)
®3(Er1p)[¢(EFip) + 8'1*
B 4C1y(EF1p)TH(EF1p)9 (EF1D)
#3(Erip)¢(EFip) + 8’1
461V(EFID)le(EFlD)‘P/(EFlD)]

®3(Erip)¢(EFip) + 81
1 1

+ -
Erip  Erip+Eg Erip+Eg+A

B (EFip, F) = |:V/(EF1D) -

Y (Erip) = y(EF1D) [

1
Erip + Eg + %A}’

’ _ [ Egmcy'(EFip) ) _ (¢ (EFiD)
¢ (EF1p) = |:—2mr¢(EF]D) ] , ¢(EFip) = ( > )
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20E,[¢(Epip) — Eg1™'/?
X
[¢(Erip) + Eg13/?
B (Eq + Eg)P¢(EFip) + E,71/2
[¢(EFip) — Eé]3/2

and [B12(EFip, F)I

5 m, Eq 7
= +2a(EFip) X |1+ =65 | EFip(1 +aEFip) +
2 2me

The electron concentration per unit length assumes the forms

Nzmax ™ ymax

28
o= > 1Qis(Erip, Fony,no) + Qi6(Erip, Fonyno)l - (1.53)
n;=1 ny=1
o) Nzmax " ymax
8
ny = nv Z Z [Q17(EFip, F.ny,n;) + Q18(EFip, F,ny,ny)]  (7.54)
n;=1 ny=1
where

Oi5(EFip, F,ny,n;) = \/wls(EFm, F,ny,n;), wis5(Efip, F,ny, n;)
2m
Ro

O16(EF1p, F,nyn;) = Z Z(Rip)Q15(EF1p, F,nyn)l, Z(Rip)
R=1

“[Bi1(EFip, F) — G(ny, ny)l,

2R

=2(kpT)*R(1 -2 2R)e2R)

3

2R
IETL p
Er1p isthe Fermi energy for one-dimensional system in the present case as measured
from the edge of the conduction band in vertically upward direction in absence of
any quantization,

Q17(EF1D’ F, nys nZ) = \/w16(EF1D1 Fv nyv nz)’

2me -
wi6(EFip, F,ny,n;) = h_zc[ﬁIZ(EFlDa F) —G(ny, ny)l,
Ro

Qi8(Erip, Fonyny) = > Z(Rip)[Q17(Erip, F.ny ny)].
R=1
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7.2.7 The EEM in Effective Mass Superlattices of Optoelectronic
Semiconductors Under Magnetic Quantization

The dispersion relation of the conduction electrons in effective mass superlattices of
optoelectronic semiconductors can be expressed following Sasaki [3] as

ay x cos[ci(E, F, Eg1, A1)ag + c2(E, F, Ega, Az)bo]
—ap x cos[c1(E, F, Eg1, A)ag — c2(E, F, Eg, Ap)bg] = cos(Lok) (7.55)
where
[ 2 ——\ 172 -1
a) = |:1 =+ 2 X |:4 ( - :| s
mei v mcl]
i 2 1277
a) = |:—1+ /ﬁ] x|:4(lcz) i| ,
mel mel

2 2me; 2 .
G (E, F, Egi, Aj) = ?[ﬁli(E» F, Egi, A;) — k1], i=1,2,

K =k} +k2, Bi(E,F, Egi, Aj) = [m(E, Egi, Ai)

- {L(Eg,», Aiym) 11 (E, Egi, ADTA(E, Egi, A»H
G3(E, Egi, AD¢i(E, Egi, Aj) + 8/ 14
E(E+ Eg)(E+ Egi + A))(Egi + %Ai)

I (E, Egi, Aj) =
Egi(Egi + A)(E + Egi + 3A))
heF)2(E,; — 8/ 2my; E.)2A,;
L(Egi, Ai,myi) = (heF) s e, 5 = Lel B0
6m”. Xi

1 1 1
Xi = [6(Egi)® +9Egi. A +4A7], = (7 + ) .

myi mei my;

172
{$i(E, Egi, Aj) + Egi}]

Ti(E,Egi, A;) = | P;
i 8l i l |:{¢i(E,Egi’Ai)_Eéi}

{¢i(E. Egi, Ai) — Eg,-}}”2
{9i(E, Egi, A;) + Eg;}
2 /
rs. (E i—5~ 2
p="2 ( X ’) Lt = [6 (Egi + *Ai) (Eqi + A)] [xi1™"
2 \Egi+3) o 3 ’
¢ (E, Egi, A)) = [Eg; + Egi(mei /myi) N (E, Egi, AD],

_ [Egi(Eg,- —38)) ? ~ [6(15&. + gm}

+Qi[

E/

1:
; , ;=1 andf?
¢ (Egi +8)) } Q=7 : Xi
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In the presence of a quantizing magnetic field B, along z-direction the magneto-
energy spectrum assumes the form
k2 = w7(E F, n) (7.56)

where

1 ~1 2 2¢B 1
a)17(E,F,n)=ﬁ[cos {fi(E, F,n)}] - n+§ ,

fl(E’ Fs n) = [al COS[C](E, F’ Eglv Alv n)a() + bOCZ(E’ Fs Egz, AZ, n)]
—azcos[ci(E, F, Eq, A1, n)ap — boca(E, F, Eg,, Ao, n)]]

and
) 2my, 2eB 1
Ci(E3F7Egi7Aivn)= 2 [ﬁll‘(E’F3Egl‘vAi)]__ n+ = .
h h 2
The EEM in this case can be written as
m*(Erpg. F,n) = (W*/2)w|;(Erg. F,n) (7.57)

Erp is the Fermi energy in this case,

w|7(Epp, F,n)=[2f{(Epp. F,n)cos™ '[fi(Epp. F.mll— f{(Epp, F.m)]'/?]
fi(EFp, F,n) = [—ay sin[ci(EFp, F, Eq,, A1,n)a, + boc2(Epp, F, Egy, A, n)]
X [\ (EFB, F, Eq, A1,n)ao + boch(Epp, F, Egy, A2, n)]

+azsin[c1(EFp, F, Eg, A1, n)a, — boca(EFp, F, Eg,, A2, n,)].

X [¢|(EFp, F, Eg;, A1, n)ay — bocs(Erp, F, Eg,, Ay, 1,)]]

Me. _ /
c/(Epp, F, Eg, Aj) = ( hgl ) [ci(EFB, F, Eg;, Aj)] "8,;(EFp, F, Eg, A)]

Bii(Erp, F, Eg,, A;) = [I{;(EFp, Eg;, A})

_ L(Eg, A, m )1\ (Epp, Eg. A)T?(EFp, Eg., A})
¢} (Erp, Eg. M) (Epp. Eg, A + 8;1*

_ 2L(Eg;, Aiymy) 111 (EFp, Egi, AD)Ti(EFp, Eg;, ANT/(EFp, Eg;, A})
@} (Erp. Eg. A)[§i(Epp, Eg, Ap) + 8;1*

| 3Ly, Ay I (Erg, Eg, ANTH(Erg, Eg. AG;(Erp. Eg, A)
¢H(EFp, Eg, A)$i(EFp, Eg, A)) + 8;1*

n 4L(Eg, Ai,my) 111 (EFg, Eq,, A)T?(EFp, Eq, Ai)¢;(EFB, Eg., Aj)
G} (EFp. Eg. A)[GiEpp. Eg, Ai + 8.1
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1 1 1
I{,(Epp, Eg;, A}) = 111 (Epp, E -,A')[ + +
i sir §0 U\ Erp  Erp+Eg  Erp+ Eg + A

1
Epp+ Eg + 3A;

Egme1{(EFp, Eg;, A})
2mr,‘¢i(EFBv Egi’ A’)

¢/(Erp, Eq,. A,-)] [2Eg,. Qil¢i(Erp, Eg;, A;) — Eg, 1712
2 (¢i(EFp, Eg;. Aj) — Eg,13/?

}(p[{(EFBa Eg,'s Al) =

T/(Erp, Eq, Ai) = [

—(Eg, + Eg)Pil¢i (Erp. Eg;. i) — Eg 172165 (Erp. Eg. M) — Eig,-lyz}

The electron concentration assumes the form

Mmax
gveB
= E F E F .
Mo = i [;[Qm( FB. F.n)+020(Ers, ,n)]} (7.58)
where
Q19(Erp, F,n) = [w17(Erg, F,n)]"/?
and
R=R,
Qx(Ers, F.n) = D Z(R)[Qi9(EFp, F,n)]
R=1

The electron concentration and the EEM in this case when the dispersion relations
of the constituent materials are defined by the perturbed two-band model of Kane
can, respectively, be expressed as

g eB Nmax
v
Mo = [Z:é [Q21(Erp, F.n)+Qx(Ers. F, n)]} (7.59)
and

m*(Epp, F,n) = (h*/2)wg(EFg, F,n) (7.60)
where

021(Erg, F,n) = [w1s(Erp, F,n)]"/?,
R=R,

Q2 (Erp, F,n) = D Z(R)[Q21(Epg, F,n)]

R=1

1 1 2 2eB 1
w18(EFrp, F,n) = ﬁ[cos {f>(Epp, F,n)}] — - n+§ :|
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fZ(EFB, F7 n) = [a] COS[DI(EFB7 F’ Eg17 n)a() + b()DZ(EFB7 Fa Eg27 n)]
—az COS[DI(EF37 Fs Eglv n)aO - bUDZ(EF37 Fs Egzv n)]]
2 [ 2m.i 2eB 1
Dl' (EFB9 F7 Egivn)= _zpli(EFBsFa Egi)__ n+ - )
T n 2
r )
mriEgi 2
p1i(EFp, F, Egi) = | EFp(1+0o; Epp)—3s; EFB(1+05iEFB)+T ;

ci

8si =
> 122me)32

_(heF)szi/z(Eg,-)l/z:|

wig(Erg. F,n) = [2f}(EFg, F,n)cos™'[ f2(Epp, F.n)]
x [1— f5(Epp, F.n)]""/?]

f2'(Epg, F,n) = [—ay sin[Dy(Epp, F, Eg,, n)a, + boD2(Epp, F, Egy, 1))
x [D\'(Erp, F, Eg;,n)ao + boD5(Epp, F, Eg,,n)]
+aysin[Dy(Egg, F, Eg,n)a, — b,D2(Epp, F, Eg,, n,)].
X [ D} (Erg, F, Eg,, n)ao — boD5(Egg, F, Eg,, n,)]1l,

meip'1i(Erp, F, Egi)i|
h2D;(Epp, F, Egi,n)

D;(Epp, F, Egi,n) = |:

and

p 2ErB 5 myi Egj -2
P (Erg, F, Egi) = | 1 + I+ =0s; | Epp(1 + o; Epp) +
Egi 2 chi

7.2.8 The EEM in Nano Wire Effective Mass Superlattices
of Optoelectronic Semiconductors

The dispersion relation of the conduction electrons for nanowire effective mass super-
lattices in accordance with the perturbed three-band model of Kane is given by

k2 = w19(E, F, ny, ny) (7.61)

where

1 ~ 2
wi9(E, F, ny, ny) = |:? [COS 1{f3(E, F,ny, nz)}] - H(nya nz):|
0

f3(E7 Fs ny, nZ) = [al COS[el(E, F? Eg11 Als ny, nz)aa
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+boer(E, F, Eg,, Ay, ny, nz)]

—axcosle|(E, F, Eg, A, ny, n;)a,

—boer(E, F, Eg,, Ay, ny n;)]l

2my,
B2

2 2
o[+ (2)]

The expression of the electron concentration in this case can be written as

¢(E, F,Eg, Ai,ny,n;) = [( )[,Bll.(E, F,Eg, A))] — H(ny,nz)i|

2
no = %m (7.62)

where

Mymax Mzmax

G104 = D > [023(Eripemse. Fony. nz) + Qau(Eppemse. F.ny. n2)l.

ny=1 n;=1

023(EFmEMsL, F,ny, ny) = \/w19(EFIDEMSL7 F,ny, ny),
R=Ry

Q2u(Ermemse, Frny,n:) = > Z(Ripewst) Qs (Epmemst. F,ny, n2),
R=1

EripEmst is the Fermi energy in the present case and

2R
Z(Ripemse) = 2(kpT)*R (1 = 2'2FsQR) ——.
dEFIDEMSL
The EEM in this case can be expressed as
m*(Epmemst, Fny, ny) = (B /2)o)o(Ermpemse, F, ny, nz) (7.63)

where

~12
o'o(ErmpEMsL, F.ny, nz) = [1 — f3(Ermemst, F, ny, ”z)]
x [2f3(EFmEmse. F.ny.n;)|
X [00871 {3(Eppemst. F.ny, nz)}],

f3(EfmpEmse, F,ny,nz) = —ay sinlage1 (Epmpemst, F. Egy, A1, ny, n;)
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+ boea(EFpEmsL, P, Egy, Ao, ny, n7)].
x [aoe} (EFipemse. F. Eg,, A1, ny, n2)
+ boes (EpmemsLs F, Egy. Az, ny, n2)]
+ az sin [age1 (Eppemse, F. Eg,, A1, ny, n;)
—boez(Erpemst. F, Egy, A2, nyn2)].
x [aoel (EFipemse. F. Eg,, A1, ny, nz)

—bo5(EpmEmsL, F, Egy, A2, iy, 1) |
and

mei Bri (EFmEMSL, F, Egiy A;)
We;i(Ermpemse, F, Egis Aj,ny,nz)’

/
e; (EripEmsL, F, Egi, Aj,ny, n;) =

In accordance with the perturbed two-band model of Kane the electron concentration
per unit length is given by,

2
no = %m (7.64)

where,

Mymax Mzmax

$105 = Z z [Qa25(ErmpEMsL, F,ny, n2) + Qa6(Ermemst, F,ny, nz)],

ny=1 ny=1

O25(EFrpEMSL, Fony, ny) = [\/wzo(EFIDEMSL, F.ny, ”z)] ,

R=Ry

Q26(Epmemst, F,ny,n:) = > Z(Ripeust) [ Q2s(Eppemse, Fony,n2)]
R=1

1 . 2
w20(ErmpEMsL, F,ny, n;) = [F [COS Y f4(EFmpemst, F. ny, nz)]
0

—H(ny,nz):|,

Sfa(ErmEmsL, Fony, ny) = [al cos[aog1 (Erpemse, F, Eg1, ny, ny)

— bog2(EripEMSL, F, Ega,ny, nz)]

— ay cos [aog1 (Epmpemst. F. Eg1, ny, nz)

—bog2(EFmEmsL: F. Eg2.ny. n2)| }
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and

2me;
g7 (Epmpgumse, F, Egi,ny, n;) = [7”911'(EFIDEMSL, F,Eg) — H(ny, nz)}

The EEM in this case can be expressed as

m*(Epmpemst, F,ny, nz) = (% /2)oby(Epmemse, F,ny, nz) (7.65)

where
wyo(Efmpemse, Fony, n;)
_ 2f4,(Epmems, F,ny, n;) [cos™ fa(EpmemsL. F.ny, nz)]
\/1 — f{(EFmemst, F.ny, n;)

f4(EFmpEMsL, F,ny, ny)

= —a; sin [aog1(EFmpemst. F, Eg1, ny, n;)

’

+ bog2(ErmpemsL, F. Ega, ny, nz)]
x [aog\ (EFmpemsL. F., Eg1, ny, n2) + bogh(Epmemse, F. Eg2,ny,n2)]
— az sin [aog1 (Ermpemst, F. Eg1, ny, n)—bog2(Erpemst, F, Ega, ny, n)|
x [aog1(Epmpemse. F. Egi.ny, nz2) — bog2(Ermemse, F. Eg, ny, n2)],
and
mi0);(EFpEmsL, F, Egi)
W2 gi(EpmpemsL: F. Egisny, n;)’

8i (ErmpemsL, F,ny,nz) =

7.2.9 The EEM in Superlattices of Optoelectronic Semiconductors
with Graded Interfaces Under Magnetic Quantization

The energy spectrum in superlattices of optoelectronic compounds with graded
interfaces in the presence of electric field whose constituent materials are defined by
perturbed three-band model of Kane can be written following [4] as

1
cos(Lyk) = §d>11(E, ky) (7.66)
where

D (E, ky) = |:2 cosh {X21(E, ky)} cos {Y21(E, k)}
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+&21(E, k) sinh { X5 (E, ky)} sin {Y21 (E, kg)}

A M 3K»(E, k h{X>(E, kg)}
+ Ay K (E. k) 2(E, kg) Jcosh {X7(E, ky)

2
x sin {¥21(E, ky)} + (31{21(15, ks) — M)

K7 (E, ky)

x sinh { X1 (E, ks)} cos {Y21(E, ks)}:|

+ A [2({1@1(& ke)¥? — {K2(E, ks)}?)

x cosh {X1(E, ky)} cos{Y2 1 (E, kg)}

1 S{Kn(E k)Y | 5{Kau(E, k)P
12 K21 (E, ks) K (E, ks)

—34K»n(E, k) Ko (E, ks)i| sinh { X1 (E, ky)} sin (Y21 (E, ks)}i| ] ,

X21(E, ky) = Ky (E, kg) [ap — Axi],

mep
h2

) o 12
Ko (E, ky) = [— Bor2(E — Vo, F, Eg2, A2) +kf:|

ﬂOIZ(E - VO! F9 Eng A2) = [V(E - VO? Eg2a AZ)
_ L(Eg, Aa,mp)y (E = Vo, Ega, A)TF(E = Vo, Ega, A2)
3(E — Vo, Ego, A)[$2(E — Vi, Ego, M) + 841

_[Ki(E k) Ka(E. k)
o(E. k) = [K2<E, ko) Ki(E, ks)] :

I,

K=k + ki, Y21(E, ks) = K2 (E, k) [bo — Az1]and

2meBri(E, F, Eg1, Ay) 2 12
h2 R :

K2 (E, ky) = [

In the presence of a quantizing magnetic field B along z-direction, the simplified
magneto-dispersion relation can be written as

kZ = wy1 (E, F, n) (7.67)



346

where, w21 (E, F,n) = [Li%[cos_l[%fu(E, F.n)]?
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(n+%)}

_ 2lelB

h

S11(E, F,n) = [2cosh {M31(n, E)}cos {Na1(n, E)} + Zy1(n, E) sinh {M3(n, E)}

x sin {N>1(n, E)} + A |:(

x sin {No;(n, E)} +(3121(fl, E) —

+ Aot 211 (n, E)Y* — {Ia(n, E)}Y?

1 (5{la(n, E)Y  5{l(n, E)

{Li(n, E))?
In(n, E)

{la(n, )Y

— 31 (n, E)) cosh {M>(n, E)}

Li(n, E)
)cosh {M>(n, E)}cos {N»i(n, E)}
}3

)sinh {M3(n, E)}cos {N> (n, E)}:|

12( bhi(n, E) In(n, E)
x sinh {M3 (n, E)} sin {N2 (n, E)}]]

— {34I2(n, E)I21(n, E)})

hi(n, E)  Inn, E)
Z E) = — M E)y=1I E —A
21(n, E) |:122(n’ B i, E)i| , Mai(n, E) = I (n, E) [ao 211,

2men _ 2le| B 1\12

Ii(n, E) = | ——5=Po12(E — Vo, F, Eg2, A2) + n+ >
h h 2
Noi(n, E) = Inp(n, E) [bo — Az1] and Iz (n, E)
~ [2me 2le| B 1\ 1"
= ?ﬁ“(E,F,Egl,Al)— 5 I’l+§ .
The electron concentration is given by
eB
0= izh ®106 (7.68)

where,

Nmax

$106 = [Y_[02

n=0
0271(EFpGisL, F,n) = [w21 (EF

EFrpgist is the Fermi energy in the

R=

7(EFBGisL, F,n)+Q028(EFpGisL, F, n)]l,

BGisL. F.m]"?,

present case,

Ro

028(EFBGisL, F.n) = Z Z(RpG1sL) [Q271(EFpGisL, F.n)]

R=

and

Z(RpGrst) = 2(kpT)*(1 — 2172 %)e2R)

1

2R

OEFBGISL
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The EEM in this case can be expressed as

m*(Ergcist, F.n) = (W /2)5 (EppGise, F.on) (7.69)
where

i (Epggisc. Fon)cos™ [5 fi(Erpcrse. F.n))

\/1 — 2 fA(EppGise, F.n)

w21 (EFpGise, Fon) =

)

FI(EFBGISL: Fon) = [2M5 (n, Eppgrsy) sinh{Ma (n, Eppgsp)} cos {N21(n, EFpgrsi)}
+ Zy1(n, EFpGrsL)Mb; (n, EpgGrst) cosh {Ma (n, EFpGrsL))
x sin {N21(n, EFpGrsL)} — 2Ny (0, EFgGrse)
x sin{Ny1(n, EFpGrsr)}cosh {Ma(n, EFpGrsr)}
+ Z5 (n, Vo) sinh {(Ma1(n, Eppgrsr)}sin{Na1(n, EppGrse))
+ Z21(n, EFpGisL)Ny (0, EFpGisL)
x cos {N21(n, EppGrse)}sinh{Ma1(n, EppGrsL)}

Ay {21 (n, Eppgrsi) ) (0. Eppeise)}
I, EFpGrsL)

{122] (n, EFpG1sL) 1y (s EFBGISL)}

1222(n, ErpGisL)

=31, (n, EFBGISL))i|

x cosh{Mp1(n, EppGisp)}sin{Na1(n, EppGrsi)}

{I>1(n, EFBGISL)}Q)

+\ =312, EFpGisL) +
( I (n, EFBGISL)
x{My, (n, Eppgrsp)sinh {Mp(n, EFgGrsp)}} sin{Naj (n, EFpGrse)}

+{Nj,(n, EFpGrsr)cosh {Mp(n, EppgrsL)) cos {Na1 (n, EFpGrsL)}

N (— {21y (n, EppGrsi) (. Eppgisy))

Dy(n, EFpGrsL)

{Izzz(n, ErpGrsi)y (n, EFBGISL)}

13,(n. EFgGrst)

+315, (n, EFBGISL))
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x sinh {M31(n, EFpGisL)}cos {N21(nEppGisL)}

{1 (n, EFBGISL)}Q)

* (+3121(n’ Erporst) = L (n, ErpaisL)

x M5 (n, Eppgrsc) cosh {My(n, EppGise)}}cos (Nai(n, EppGrsL)}

— N3, (n, Eppgrst) sin {Nai(n, EFpgrs)}sinh {Ma(n, Epgcrsi)}}]

+ Ao [4({121(?1, Erpcist) b (n, Erpcrse)}

—{In(n, Erpcist) by (n, Ergcrst)P ]

x cosh {Ma1(n, EppGisL)}cos {N21(n, EppGisL)}

+2({h1(n, Erggrsi)} — {la(n, Erpcrsi)}?)

x {Mj,(n, Eppgise) sinh {Ma1(n, EppGisr)} cos {Nai(n, EFpGrsc)}

— N3 (n, Erpgrst) cosh {Mai(n, Eppgrse)} sin{Nai(n, ErpGrsi)})
1 ( 15{13(n, Ergcisc)} Iy (n, EFpGist)
12

bLy(n, EFpGrsL)

S, Erpcisi) Ih (n, EFpGist)

1}, (n, EFpGist)

15{13,(n, Erpisc)} Iy, (n, EFpGrst)
Io(n, EFpGrstL)

_ S, Erpcist)Y Iy (n, Eppirst)

13 (n, EFpGist)
— {3415 (n. Erpcisi) a1 (n, ErpGrse)}
— 34D (n, Erpcrsi) 1y (n, EFpGise))
x sinh {M21 (n, EFpGisc)}sin {N21(n, EFpcisL)}

(5 {ln(, Erprst))y  5{hi(n, Ergcrsy)y

bLy(n, EFpGrsL) I (n, EFBGIsL)

— {341 (n, Erpcrsi) 21 (n, EFBGISL)})

{M},(n, Epggrse) cosh {Mai(n, EFpgrse)} sin{N21(n, EFpcisc)}
+ N3, (n, Eppgise) sinh {Ma(n, Erpcise)}cos {Nai(n, Epggrsi)}I,

Mj,(n, EFpcist) = I3, (n, Erpcist) [ao — Aail,
MeyBo12(EFBGist — Vo, Fy Ega, A7)
—W2Li(EFBGisL, n)

)

Ly (EFBGIsL, n) =
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Bor(Erscrst — Vo, F. Ega, Ag) = [(1{ \(Ergcise — Vo, Eg2, A2))

_ L(Egy. Da,me) 1 (EFpGisL — Vo, Ega, ADT(Erpcist — Vo, Ega. Ag)
> (Ergcis. — Vo, Egy. A2)[d2(Erpais — Vo, Egy, A2) + 8,14

_2L(Eg, Doy mi) 11 (ErpGist — Vo, Egy, A)Ta(ErpGist — Vo, Egy, A T3 (Erpcist — Vo, Egys B2)
#3(Erpcist — Vo, Eg, . D)2 (Erpcist — Vo, Eg,, A2) + 8,14

+3L(Egz: Ax,mp) 11 (Erpcist — Vo, Egyy A)T2(Eppcist — Vo, Eg,, A2)¢/2(EFEGISL — V0. Egy. A2)
0} (Erpgise — Vo. Egy. A)$2(Ersrse — Vo, Egy. A2) + 8,1*

+4L(Egza Ao, mp) 11 (EppGist — Vo, Egys A)THEFgGIsL — Vos Egys A2)¢/2(EFBGISL — Vo, Egy. A2)
#3(Erpcise — Vo. Egy. M)[$2(Erpcist — Vo Egy, A2) + 8,1

Y (ErgGist — Vo, Eg,, A2) = I (Erggist — Vo, Egys A2)

1 1
X — + _
ErpcisL —Vo  ErpcgisL — Vo + Eg,
1
+ _
ErpcisL — Vo + Eg, + A2
1

Ergcise — Vo + Eg, + %Az

I (Ergcise — Vo, Egy, A2)
_ (ErpgisL — Vo)(ErgGist — Vo + Eg)(Erpcis — Vo + Eg, + A2) (Eg, + %Az)
Eg (Eg, + A2) (Eppgis. — Vo + Eg, + %Az)

5

(he F)2(Eg, — 8})%m,,
6m%2
(Eg))? Ay
X2 '
X2 = [6(Eg,)? + 9E,,. Ay +4A3],

1 (1 1)
= + 9
My, Me, Ny,

- 1/2
{92(Ercise — Vo, Eg,, A2) + Eg,}
{#i(EFpGisL — Vo, Egy, A2) — Ef.}

. 1/2
+ 0 {¢2(ErpaisL — Vo, Eg,, A2) — Eg,}
{$2(EFpGrsL — Vo, Egy, A2) + Egy}

b

L(Egzs AZs mrz) =

8 =

T2(Ergcist — Vo, Egy, A2) = | P |:
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2 /
T E, —§ 2
P = 02 82 2 , 2 6l E = _1’
2 =7 (—Eg2 5, oy = o+ 3A2 (Eg, + A2) | [x2]

D3 (ErpcisL—Vo, Eg, A2) = [E§2+Eg2(mcz/mrz)lu(EFBGISL—‘_/o, Eq,, Ad)],

/
Egz -

— |:Eg2(Egz - 355)} 0, = ﬁ 2 6 (Egz + %AZ)
' 272 X2

(Eg, +8))

Ege, 1} (EppGist — Vo, Eg,, A2)
2my, $2(EFpGisL — Vo, Egy» A2)

®5(Erpcrse — Vo. Eq,. Az):|
2

#2' (Erpcist — Vo, Eg,, A2) =

s

T (Erggist — Vo, Egy, A7) = |:

[$2(EFpGist — Vo, Egyy A2) — Eg,13/2
—(Ep, + Egy) Palgo(ErpGist — Vo. Egy. A2) — Eg,]17'/?

y |:2Eg2 02[¢2(Erpcise — Vo, Egys A2) — Eg]™1/?

x[¢2(ErpGist — Vo, Egy. Ag) — E;z]m} ,

me1 Bl (EFBGise. F., Eg1, A1)
I In(ErpGrse, )

I(EFBGISL, ) =

[2eB 1 2men _ 2
5 \" + 7))~ 7/3012(EF3015L - Vo, F,Eg A2) |

No1(EFpGisL,n) = Ia(EppGise, n) [bo — Az,
[2me1B11(EFBGisL. F. Eq1, A1) 2eB (n 1)]7

D1 (EFBGisL,n) =

In(ErpGisL,n) = = 5

[ —Z21(ErpGisc. m) 1y (EppGisL, )
L1 (Vo, n)
_ Zo1(ErBGisL. )y (EppGise. n)
I (Vo, n)
+(I1(ErgGrses M2 (EpgGrse. )"

Z5\(EFpGisL,n) =

x [213,(ErpGise, W) (EFpGisL, n)

2055 (ErpGise, ) ha(ErpGise, )| ]

For perturbed two-band model of Kane the forms of the electron concentration
and field emitted current density remain same where

1

2¢B 1 2men _ 2
Li(E.n) = | —=\n+ 5 )= 7 po(E=Vo. F. E) |
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p012(E — Vo, F, Eg2) = | (E — Vo) [1 + e (E — Vp)]
i 52
> mpEgn
—352 [(E - W) [1 +or(E — Vo)] + 275} ]
me2
12Q2me)>/? ’
_ 1
[2me1p11(E, F, Eq1)  2eB 1\12
I»n(E,n) = ﬁ_? ”+§ ’
B H
mrlEgl 2
P(E, F,Eg)) = | E(Q+a1E) =651 | E(l+aiE) + py ,
cl
1
o = ,
r 32
by = | P (Eg) V2
12(2m1)3/2 ’

mepyo(Erpcist — Vo, F, Eg)
R L (EFpGisL, n)

s

Ly (EFBGisL,n) =

Po12(Erpcist — Vo. F. Eg) = | [1 4 2e2(Erscrse — Vo))

5 _
X [1 - 5852(EFBGISL - Vo)

32
- my2Ego
x [1+a2(Erpcise — Vo) + %] }
mep

2m " (E ,F,E
1011 (EFBGISL gl)] and

/ —
15 (EFBGIsL, n) = [ A —

P1(ErBGise, F. Eg1) = |:[1 +2a2(Erpcise)]

5 my1Eg1 17°
x |1 - 5551(EFBGISL) [1+a1(Erpcisc)] + oy .

me|

7.2.10 The EEM in Quantum Wire Superlattices of Optoelectronic
Semiconductors with Graded Interfaces

The dispersion relation in accordance with the perturbed three-band model of Kane,
in this case is given by
ki = wn(E, F,ny,n,) (7.70)

where

1 1 :
CL)22(E, F’ ny’ nZ) = [p [COS ! §f13(E3 F’ ny’ nz)i| - H(ny, nZ):| ’
0
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f13(E, F,ny,n;) = [2cosh {M3;(ny, n-, E)} cos {N31(ny,n0, E)}
+ Z31(ny, nz, E) sinh {M3(ny, n., E)}

2
I n,, E
sin { N3 (ny. n2. E)} + Ay [(W —3Iy(ny, e, E)) cosh { M, (ny. -, E)}

in { N3 ( E)} + (3551( E) — Inenn D)
S V31(ny, ng, 31y, ny, L1y 2 E)

X sinh {M31(}’ly, ng, E)} cos {N31(ny, n, E)}]
tAx |2 ({Igl(ny, ne, EYY = {In(ny, n., E)}z) cosh { M3 (ny, n., E)}
x cos {N31(ny, nz, E)}

1[50y B)Y | 5{Bioy.n. )}
+ﬁ {Iif(Z;,Zz,E)} + {I:;(Zi,Z;,E)} _{34132(’7)1»”27E)13l(ny7nZvE)})

sinh {M31(ny, n-, E)} sin {N31(ny, n-, E)}]]

Li(ny.ng E I (ny.nz E
Zai(ny, e, B) = | el - 2o B ] My Gy, n, E) = a1 1y e, B) lao = Ao,

— 1/2
By e, B) = [~ 252 oo (E = Vo, F. Ega, &)+ Hinymo) |

N31(ny, ng, E) = Is2(ny, nz, E)[bo — Az1] and

2me1

172
132(ny»nz, E) = [ hz ﬁ]l(Ev Fa Egl’ Al) - H(ny7nz):|

The electron concentration per unit length is given by

2g
no = ——¢i07 (7.71)
where T

M ymax Mzmax

d107 = z Z [Q20(Erowaise. Fony,nz) + 030(Erowaist, F.ny. n2)].

ny=1 n;=1

029 (ErowaisL, Fony,n;) = [\/wzz(EFQWGISL, F,ny, nz)] )
R=Rg

Q30(Ergwaist, F.ony,nz) = Z Z(Rrowaist) [Q29(Erowaist, Fyny,n2)],
R=1

2R
Z(Rrowagst) = 2(kpT)*R(1 = 2'72%)e(2R)

0EFowGsL
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and Erowgsi is the Fermi energy in the present case.
The EEM in this case can be expressed as

m*(Erowest, F.ny,n;) = (hz/z)w/zz(EFQWGSL F,ny,n;) (7.72)
where

2f{3(Erowase, Fony,n) [cos™ { fis(Ergwese, Fony, n2)}]
\/4 — fA(Ergowast. F.ny,ny)

/
wy(Ergwaest, Fyny,n;) =

B

fl3(Erowast, F,ny,nz) = [2M3(ny, n;, Epowast)

x sinh { M3y (ny, n;, Ergwgse)} cos {N31(ny, n;, Erowase)}

+Z31(ny, nz, Epowas) My (ny, n;, Epgwast) cosh {M31(ny, n-, Erowasi)}

X sin {N31 (ny, ng, Vo)} — 2N3’1(ny, nz, Vo) sin {N3| (ny,nz, V())} cosh {M31 (ny,nz, Vo)}
+2Z5,(ny, nz Vo) sinh { M3 (ny, nz, Vo)} sin {N31 (ny, n., Vo)}

+2Z31(ny, nz, Epowasr)Nij (ny, nz, Erowast) cos {N31(ny, nz, Erowasi)}

x sinh {M31(ny, n; Erowasi)}

+Az; [({2]31(’1)" nz, Ergwesc) I3 (ny, nz, Ergwese) } Us(ny, n:, EFQWGSL))_1

- {1321 (ny,nz, Epowasi) Iy (ny, nz, EFQWGSL)}

x (I3y(ny, nz, EFowase)) " — 3L, (ny, ng, EFQWGSL))] .

cosh {M31(ny, n;, Epgwese)} sin{N31(ny.n, Erowasc)}
+ (=3I3(ny, n;, EFgwast) + {1321 (ny, nz, EFQWGSL)} (In(ny, nz, EFowase) ™)

(M3 (ny, nz, Erowast) sinh {M31(ny, nz, Erowagsc)} sin {N3i(ny, nz, Erowest)}
+ {N3,(ny, nz, Erowast) cosh {M31(ny, n., Ergwese)} cos {N3i(ny, n, Erowest)}

+= {2132(ny. n, Ergwesc) 1, (ny, nz, EFgwese)}
Ly (ny,n;, EFowast)

N {I5,(ny, n;, Erowasi) 13, (ny, nz, EFowase)}

+ 314 (ny, n;, Erowast) )
I (ny, nz, EFowaGst) o

sinh {M3(ny, n., Erowasc)} cos {N3i(ny, nz, Epgwese)}

{2 (ny, ne, EFQWGSL)}z)

+(+3131(ny,nz, ErgwaesL) — Ity n. Erowost)
x (M} (ny, nz, Epowast) cosh {M3 (ny, nz, Erowast)}-

cos {N31(ny, n;, Ergwegst)} — Ni (ny, nz, Ergwase) sin {N31(ny, nz, Erowasi)}
x sinh {M31(ny, n-, Epowesc) )]

+ Agi [4 ({I31(ny, nz, Erowesc) I3, (ny. nz, Erowase)}

—{I(ny, n;, EFgwest) By (ny, nz, EFQWGSL)}) :
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cosh {M31(ny, nz, Epgwese)} cos {N3i(ny, n;, Erowest)}
2 2
+2 ({131(ny, nz, Ergwese))” — {In2(ny, nz, Ergwest)} )

x (M3 (ny, nz, Epgwast) sinh {M31(ny, nz, Erowase)}

cos {N31(ny, n;, Ergwasi)} — N3 (ny. nz. EFgwaest)

x cosh { M3 (ny, n;, Ergwase)}sin {N3i(ny, n;, Erowase)}}

+L 15{1322(n_v»”ZsEFQWGSL)}Iéz(”y-”ZqEFQWGSL) _ 5{132(ny’”mEFQWGSL)}}Iél("yynz,EFQWGSL)
12 Ly (n,EFowasL) 13 (ny.nz,EFgwast)

+ 15{13 (ny,nz, EFowasi) 15, (nynz, EFowast) 5{I1(ny.nz. Erowast) la(ny.nz EFowast)
In(ny,n;, EpowasL) 1%, (ny.nz. EFowast)

— {345, (ny, 2, Erowast) 31 (ny, nz, Erowase)}

—34L3(ny, n;, Erowesc) 15 (ny, nz, EFowast))-

sinh {M3(ny, n;, Ergwese)} sin {N31(ny, nz, Erowasi)}

3 3
5{Inny,n;, Ergwaese)} 5{I1(ny,n;, Ergwase)}
+
Li(ny,n;, EFowaesL) Ip(ny,ng, EFowaesL)

—{34I52(ny, 2, Erowasi) 131 (ny, n, EFQWGSL)})

(M}, (ny, nz, Epowast) cosh {M3 (ny, n., Ergwase) ) sin {N31(ny, n;, Erowase)}

+ Nji(ny. nz, Epowast) sinh {M3 (ny, nz, Erowasi)} cos {N31(ny, nz, Epowasi) 1,

M3 (ny, n;, Erowast) = I3 (ny, nz, Erowast) lao — Axil,

Me, By (Erowast — Vo, Fl Ega, A7)
—2 31 (EFQWGSL» Ny, 1z)

Ly(EFQwGSL, Ny, N7) =

)

N3 (ny,nz, Epowast) = Ip(ny, ng, Epowest) [bo — Aail,
me, By (Epoweste. F. Ega, Ag, ny, ny)
W I3 (EpQwaGsL, y, nz)

)

Ly (EpQwGsL, Ny, ny) =

s o 12
Bi(ny,nz, Erowast) = [_T;ﬂOIZ(EFQWGSL — Vo, F, Egp, Ao) + H(ny, nz)] .

N3y (ny, nz, Epgowast) = Is2(ny, nz, Epgowaese) [bo — Az1],

12
I3 (ny,n;, EFgwaesL) = [2’;‘51 Bor2(ErowaestL, F, Eg1, A1) — H(ny, ”z)] and

—Z31(ErowastL, ny, n) I, (EFQwGsL, Ny, nz)

Z5 (EFQwGsSLs Ny, nz) = [ T Erowost, o)
sy, Nz

_ Z31(EFQwGsL, ny 1) I3 (EFgwasL. ny. nz)
I3 (Vo, ny, nz)

+ (I31(EFowGsL, Ny, n)I32(EFQwGsL, Ny, n)~!
x [214 (Erowase, ny, n)I31(EFQwasL, ny, nz)

=215 (EFowGsLs Ny, 1) 132 (EpowasL, ny, nz) | }
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For perturbed two band model of Kane, the form of electron concentration per unit
length and the EEM remain same where

e ) 12
Li(ny,ng, E) = | H(ny,n;) — 7,0012(5 — Vo, F, Eg) ,

me2pgi, (Erowas—Vo.F.Eg)
P21 (EFQwGsL y.nz)

L (EFQowGsL, ny, n;) =

)

172
I3(ny,n;, EpgwesL) = [—H(nw ng) + 2’,51’—2"1,011(EFQWGSL, F, Eg])] ,

me1p) (EFowast,F,Eg1)
WLy (EpQwGsLiny.nz)

and I3, (EFQwGsL, ny, ;) =

7.3 Results and Discussion

The effect of an intense electric field on the EEM of the III-V materials has been
exhibited in Figs. 7.1 and 7.2 by taking n-InSb as an example. Using (7.2) and (7.6¢),
the variation of the EEM along k, direction has been demonstrated in Fig.7.1 at
different field strengths. It appears that the EEM at higher field strength becomes a
linear function of carrier concentration, thus exhibiting an exponential dependency
of the Fermi energy on the degeneracy. However, at lower field strengths, the EEM
approaches the corresponding bulk variation. It also appears from the same figure
that the EEM at different field strengths converges at higher carrier degeneracy zone
rather than at non-degeneracy zone. This variation is opposite to that exhibited in
Fig.7.2 for the EEM along the rest other two directions using Eqs. (7.3) and (7.4).
It appears that the EEM departs from their bulk isotropic value to almost 4 times, a
significant increment due to the carrier degeneracy, where the electric field changes
the EEM at the higher degeneracy level to almost 33%.

The effect of film thickness under the presence of a strong electric field in quantum
wells of n-InSb has been exhibited in Fig. 7.3 for the two lowest subbands due to the
size quantization. Quantized variations in EEM are exhibited at both the subband
levels which marks a quantum number-dependent EEM. It appears that as the field
strength increases, the response of the EEM increases however at slow rate. A close
inspection reveals that for a particular subband the EEM has a tendency to decrease as
also exhibited in Fig. 1.4 of Chap. 1. However, the presence of the electric field raises
the subbands when the former crosses with the Fermi energy. The negative values
of the EEM at the second subband in Fig.7.3 is of interest and specify the validity
region of the band structure formalism at such high field. It appears that the EEM
becomes negative in the sub-15 nm film thickness and thus questioning the validity
of the quantum number- dependent EEM in this regime.

We have already written a lot and still we have to move an infinitely long path
in the direction to reach the creative knowledge temple. We leave all the computer
programming and related graphs together with the inside physics for all the remaining
materials of this chapter to the able shoulders of our readers whom we believe are
creatively fur superior than that of us. As usual, for the last time the summary of this
chapter has been presented in Table7.1.
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7.4 Open Research Problems

(R.7.1) Investigate the EEM, EAM, DEM, CEM, CoEM, FREM, and OEM for the
bulk materials whose respective dispersion relations of the carriers in the
absence of any field is given in Chap. 1 in the presence of intense electric
field which change the original band structure and consider its effect in the
subsequent: study in each case.

(R7.2) Investigate the same set of masses as defined in (R7.1) in the presence
of an arbitrarily oriented non-uniform light waves for all the materials as
considered R7.1.

(R7.3) Investigate the same set of masses as defined in (R7.1) in the presence of
an arbitrarily oriented non-quantizing alternating non-uniform electric field
for all the cases of R7.1.

(R7.4) Investigate the same set of masses as defined in (R7.1) for the heavily doped
materials in the presence of Gaussian, exponential, Kane, Halperin, Lax,
and Bonch-Bruevich types of band tails for all materials whose unperturbed
carrier energy spectra are defined in R7.1

(R7.5) Investigate the same set of masses as defined in (R7.1) for all the materials
in the presence of arbitrarily oriented non-quantizing non-uniform electric
field for all the appropriate cases of problem R7.4.

(R7.6) Investigate the same set of masses as defined in (R7.1) for all the materials in
the presence of arbitrarily oriented non-quantizing alternating electric field
for all the appropriate cases of problem R7.4.
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Fig. 7.2 Plot of the EEM
along the k, and k; directions
as function of carrier con-
centration in bulk n-InSb at
different field strengths

Fig. 7.3 Plot of the EEM at
the lowest two subbands as
function of film thickness in
quantum wells of n-InSb at
different field strengths and at
an extreme carrier degeneracy
of 108 m—2
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(R7.7) Investigate the same set of masses as defined in (R7.1) for the negative
refractive index, organic, magnetic, and other advanced optical materials in
the presence of arbitrarily oriented electric field.

(R7.8) Investigate the same set of masses as defined in (R7.1) in the presence of
alternating non-quantizing electric field for all the problems of R7.7.

(R7.9) Investigate the same set of masses as defined in (R7.1) for all the quantum
confined materials (i.e, multiple quantum wells and wires) whose unper-
turbed carrier energy spectra are defined in R7.1 in the presence of arbi-
trary oriented quantizing magnetic field by including the effects of spin and
broadening respectively.

(R7.10) Investigate the same set of masses as defined in (R7.1) in the presence
of an additional arbitrarily oriented alternating quantizing magnetic field,
respectively, for all the problems of R7.9.

(R7.11) Investigate the same set of masses as defined in (R7.1) in the presence
of arbitrarily oriented alternating quantizing magnetic field and arbitrary
oriented non-quantizing non-uniform electric field, respectively, for all the
problems of R7.9.

(R7.12) Investigate the same set of masses as defined in (R7.1) in the presence
of arbitrary oriented alternating non- uniform quantizing magnetic field
and additional arbitrary oriented non-quantizing alternating electric field
respectively for all the problems of R7.9.

(R7.13) Investigate the same set of masses as defined in (R7.1) in the presence
of arbitrary oriented and crossed quantizing magnetic and electric fields
respectively for all the problems of R7.9.

(R7.14) Investigate the same set of masses as defined in (R7.1) for all the appropriate
low-dimensional systems of this chapter in the presence of finite potential
wells.

(R7.15) Investigate the same set of masses as defined in (R7.1) for all the appro-
priate low-dimensional systems of this chapter in the presence of parabolic
potential wells.

(R7.16) Investigate the same set of masses as defined in (R7.1) for all the appropriate
systems of this chapter forming quantum rings.

(R7.17) Investigate the same set of masses as defined in (R7.1) for all the above
appropriate problems in the presence of elliptical Hill and quantum square
rings respectively.

(R7.18) Investigate the same set of masses as defined in (R7.1) for multiple wall
carbon nano-tubes. .

(R7.19) Investigate the same set of masses as defined in (R7.1) for multiple wall car-
bon nano-tubes in the presence of non-quantizing non-uniform alternating
light waves.

(R7.20) Investigate the same set of masses as defined in (R7.1) for multiple wall
carbon nanotubes in the presence of non-quantizing non-uniform alternating
magnetic field.

(R7.21) Investigate the same set of masses as defined in (R7.1) for multiple wall
carbon nanotubes in the presence of crossed electric and quantizing magnetic
fields.

(R7.22) Investigate the same set of masses as defined in (R7.1) for heavily doped
semiconductor nano-tubes for all the materials whose unperturbed carrier
dispersion laws are defined in Chap. 1.
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(R7.23) Investigate the same set of masses as defined in (R7.1) for heavily doped
semiconductor nanotubes in the presence of non-quantizing alternating light
waves for all the materials whose unperturbed carrier dispersion laws are
defined in Chap. 1.

(R7.24) Investigate the same set of masses as defined in (R7.1) for heavily doped
semiconductor nanotubes in the presence of non-quantizing alternating mag-
netic field for all the materials whose unperturbed carrier dispersion laws
are defined in Chap. 1.

(R7.25) Investigate the same set of masses as defined in (R7.1) for heavily doped
semiconductor nanotubes in the presence of non-uniform light waves for
all the materials whose unperturbed carrier dispersion laws are defined in
Chap. 1.

(R7.26) Investigate the same set of masses as defined in (R7.1) for heavily doped
semiconductor nano-tubes in the presence of alternating quantizing mag-
netic fields for all the materials whose unperturbed carrier dispersion laws
are defined in Chap. 1.

(R7.27) Investigate the same set of masses as defined in (R7.1) for heavily doped
semiconductor nano-tubes in the presence of crossed electric and quantizing
magnetic fields for all the materials whose unperturbed carrier dispersion
laws are defined in Chap. 1.

(R7.28) Investigate the same set of masses as defined in (R7.1) for all the appropriate
nipi structures of the materials whose unperturbed carrier energy spectra are
defined in Chap. 1.

(R7.29) Investigate the same set of masses as defined in (R7.1) for all the appropriate
nipi structures of the materials whose unperturbed carrier energy spectra are
defined in Chap. 1, in the presence of an arbitrarily oriented non-quantizing
non-uniform additional electric field.

(R7.30) Investigate the same set of masses as defined in (R7.1) for all the appropriate
nipi structures of the materials whose unperturbed carrier energy spectra are
defined in Chap. 1 in the presence of non-quantizing alternating additional
magnetic field.

(R7.31) Investigate the same set of masses as defined in (R7.1) for all the appropriate
nipi structures of the materials whose unperturbed carrier energy spectra
are defined in Chap. 1. in the presence of quantizing alternating additional
magnetic field.

(R7.32) Investigate the same set of masses as defined in (R7.1) for all the appropriate
nipi structures of the materials whose unperturbed carrier energy spectra
are defined in Chap. 1 in the presence of crossed electric and quantizing
magnetic fields.

(R7.33) Investigate the same set of masses as defined in (R7.1) for heavily doped
nipi structures for all the appropriate cases of all the above problems.

(R7.34) Investigate the same set of masses as defined in (R7.1) for the appropriate
accumulation layers of all the materials whose unperturbed carrier energy
spectra are defined in Chap. 1 in the presence of crossed electric and quantiz-
ing magnetic fields by considering electron spin and broadening of Landau
levels.

(R7.35) Investigate the same set of masses as defined in (R7.1) for quantum confined
II-V, 1I-VI, IV-VI, HgTe/CdTe effective mass super-lattices together with
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short period, strained layer, random, Fibonacci, poly-type and sawtooth
super-lattices

(R7.36) Investigate the same set of masses as defined in (R7.1) in the presence of
quantizing magnetic field, respectively, for all the cases of R7.35.

(R7.37) Investigate the same set of masses as defined in (R7.1) in the presence of
non-quantizing non-uniform additional electric field, respectively, for all
the cases of R7.35.

(R7.38) Investigate the same set of masses as defined in (R7.1) in the presence of
non-quantizing alternating electric field, respectively, for all the cases of
R7.35

(R7.39) Investigate the same set of masses as defined in (R7.1) in the presence of
crossed electric and quantizing magnetic fields, respectively, for all the cases
of R7.35.

(R7.40) Investigate the same set of masses as defined in (R7.1) for heavily doped
quantum confined superlattices for all the problems of R7.35.

(R7.41) Investigate the same set of masses as defined in (R7.1) in the presence of
quantizing non-uniform magnetic field, respectively, for all the cases of
R7.40.

(R7.42) Investigate the same set of masses as defined in (R7.1) in the presence of
crossed electric and quantizing magnetic fields respectively for all the cases
of R7.40.

(R7.43) Investigate the same set of masses as defined in (R7.1) for all the systems
in the presence of strain.

(R7.44) Investigate all the problems of this chapter by removing all the mathemat-
ical approximations and establishing the respective appropriate uniqueness
conditions.
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Chapter 8
Applications and Brief Review
of Experimental Results

8.1 Introduction

In this monograph, we have investigated many aspects of the effective masses of
the carriers based on the dispersion relations of the semiconductor nanostructures
of different technologically important quantum confined materials having different
band structures. In this chapter, we shall discuss few applications in this context in
Sect. 8.2 and also present a very brief review of the experimental investigations in
Sect.8.3. The Sect. 8.4 contains the single experimental open research problem.

8.2 Applications

The investigations as presented in this monograph find nine different applications in
the realm of modern quantum effect devices.

8.2.1 Thermoelectric Power:

In recent years, with the advent of Quantum Hall Effect (QHE) [1, 2], there has been
considerable interest in studying the thermoelectric power under strong magnetic
field (TPSM) in various types of nanostructured materials having quantum confine-
ment of their charge carriers in one, two, and three dimensions of the respective
wave vector space leading to different carrier energy spectra [3—44]. The classical
TPSM equation is valid only under the condition of carrier non-degeneracy, being
independent of carrier concentration and reflects the fact that the signature of the
band structure of any material is totally absent in the same.

S. Bhattacharya and K. P. Ghatak, Effective Electron Mass in Low-Dimensional 365
Semiconductors, Springer Series in Materials Science 167,
DOI: 10.1007/978-3-642-31248-9_8, © Springer-Verlag Berlin Heidelberg 2013
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Zawadzki [9] demonstrated that the TPSM for electronic materials having degen-
erate electron concentration is essentially determined by their respective energy band
structures. It has, therefore, different values in different materials and changes with
the doping, magnitude of the reciprocal quantizing magnetic field under magnetic
quantization, quantizing electric field as in inversion layers, nanothickness as in
quantum wells, wires and dots, with superlattice period as in quantum confined semi-
conductor superlattices with graded interfaces having various carrier energy spectra
and also in other types of field assisted nanostructured materials.

The magnitude of the thermoelectric power G can be written as [10]

/ (E — Ep)R(E) [—ﬁ}dE (8.1)

|€| Tno

where R(E) is the total number of states. The (8.1) can be written under the condition

of carrier degeneracy [4] as
21,2
ks, T dang
G = 8 — ). 8.2
(3|e|no)(aEF) ©2

For inversion layers, heavily doped semiconductors and their nanostructures and
the nipi superlattices, under the condition of electric quantum limit, (8.1) assumes

the form
k2T dn
G =(TLtB [ _no_ } (8.3)
3lelno ) Ld(EFro — Eo)

Thus, we can use the carrier statistics for different low dimensional materials to
investigate the TPSM in such compounds and for the purpose of completeness we
present few results of TPSM for bulk specimens as written below:

(1) Nonlinear optical materials and Cd3As;
The electron concentration of bulk specimens in this case can be expressed
following [1, 2] as

no = g3~ [M1a(ER,) + Nia(Ep)]. (8.4)

[y(EF,,>]%
f1(Eg) o/ F2(Er,)
from the edge of the conduction band in the vertically upward direction in the
absence of any quantization, Ny, (EF,) = Zizl Z14(r)M14(EF,)

where M1,(EE,) = , EF, is the Fermi energy as measured

and Z4(r) = [2(kgT)*" (1 — 2!~ 2’)5(2;»)][ Ez,}.

Using (8.4) and (8.2), the TPSM in this case is given by
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272
wkyT

e [M,(Eg,) + Ni,(Er,)] [M14(EF,) + Nla(EFb)]71 - 85

0=

(i1) III-V materials

(a) Three band model of Kane
In accordance with this model the electron concentration can be expressed as

g (2m* 32 _

"= 302 ( 2 ) [Ma(Er,) + Na(Er,)] 86)

where
5 132
Wiu(Eny = | EroErs + Eo) (i, + By + &) (Eg + 34)
A F,) =

b Eg (Eg + A) (Ep, + Eg + 2A)

and

aZr

Na(Eg,) = D> 2(kgT)* (1 = 2" (2r) —;
r=1 8EF1’

[MA (EFb)]

Using (8.6) and (8.2), the TPSM in this case can be written as

Go (nzk%T) [(MMEF,,))/ + <A7A(EF,,)>/} 57

3e M4 (ER,) + Na(EF,)

(b) The model of Stillman et al.
The expression of electron concentration in this case can be written as

8v 2m* 3/2
nyp = 37_[2 ( hz ) [MAlo(EF},) + NAlo(EFb)] s (88)
where
Ma,o(EF,) = [I(ER)IP?
and
. 2 1-2, 82r
Ny (Eg,) = > 2(kgT)> (1 = 2!~ ’)c(%w [May,(Eg,)]
r=1 b

Using (8.8) and (8.2), the TPSM can be expressed as
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212 /
k3T (EF,) + Ny, (EF,)
Go = B Mo Er)) + Ny (Er, (8.9)
3e MA]()(EFb) + NA]O(EFb)
(¢c) The model of Palik et al.
In accordance with this model the electron concentration can be expressed as

3/2
8y 2m _ B
no = 372 ( 72 ) [MIZA,,(EFb) + NlZA;,(EF;,)] , (8.10)
where i o
M12Ab(EFb) = [Ilz(EFb)] /
and
) 1-2 32r
Nizap (Er,) = Zz(kBT) "1 =272 OEY [Mi24,(Er,)]

r=1 b

Using (8.2) and (8.10), the TPSM in this case can be written as

GO _ ﬂzk%T [(Mleb(EFb))/—i_(N12Ab(EFb))/} (8 11)
3¢ Mi2a,(EF,) + Ni2a, (EF,) .

(d) Model of Johnson and Dicley
The expressions of the electron concentration and the TPSM for this model

are given by
o = 3g 2 [MI%A,,(EFb) + Ni3,, (EFh)] (8.12)
and ) /
G (nszzT) Mis,, (BRy) + Vi3, (FFy) (8.13)
0= , .
3e M3, (Eg,) + N1z, (EE,)
where

My, (Er,) = [es (Er,) ],

s aZr
Niz,, (Eg,) = > 2(kgT)* (1 = 2!~ 2’)C(Zr) e [MISAh(EFb)]

r=1 b
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E2
ES(EF[,) = |:(Eg0 + ZEFb)€7 + 4 eS(EFb)

E2 1/2
—[ [e7+eé(EFb)+EF,,e7es(EFb)+ 5 eg(EFb)H ](2«%)‘

h? 1 2h*@a, (EF,)
€71 = — ———, eS(EFb)=—¢1 e,
2 [m* mo Egom*

(Egy + A) (EFb + Egy + %A)
(Egy + 3A) (Ep, + Egy + A)

oA, (EF,) =

(iii) n-type Gallium Phosphide
In this case, the electron concentration and the TPSM can, respectively, be
written as

2
no = 4sz [Ma, (Eg,) + Na, (Er,)] (8.14)
Go = k3T \ | My, (Er,) + Ny, (ER,) 815
3e My, (Eg,) + Na, (Eg,) | '
where

0_(Eg,))3
My, (Ep,) = [(rm) - (Epy)0_(Ery) + tay0_(Eg,) — 2O ER)

3
1
_w [(9,(pr))2 + tAs(EFb)] 2
+tA4fA5 (EE,) 0_(Eg,) + \/(9_(EF1,))2 + 145 (ER,)
: Vi)

1 ]:LZ ]:LZ h2 hzké 5
A) =—, a= s tA—= ) b=5—=. c=—73.D=|V6l",
2m* 2m” 2m” mﬁ

T & (P (V&
th, = [ﬁ] , fAy = ; y Ay = W )
= 2aD —c¢), g = [4a2b2 +c2— 4acD] , &= [4abc + 4azc]

g2 — (4ac).(Eg,)
e A s Ag — (6244 + 2tA2tA3)v IA7 = (2tA1IA3)’

tA5 (EFb) = [ 23
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tag = [th, + 43 tnta + G313, 0/89) |
fho = [4tAltA3tf\4 + 8ta, tasts, — (16t§3rf\4ac/g3)]
and 0_(Eg,) = (ta;.v/2) 7! [tag + (EF,).(ta;) — (tag + (tag)-(Ep,)/?]
@iv) II-VI materials

The expressions of electron concentration and the TPSM for II-VI materials
assume the forms

3/2 7
no = 1 ]ﬂ / % Fi(n) + )L—(Z)Ffl (n) (8.16)
2 \ by a; 2 2apkpT 7

; (nzkg) Foi () + (5/2agkpT) F (1) .,
0= = :
3¢ ) | Fy(n + (§/2apkpT) F1 (1)
(v) Stressed Materials
In this case electron concentration and TPSM assume the forms
no = gv(37%) ! [Ma,(Er,) + Na,(Er,)] (8.18)
k2T \ | My, (Er,) + N, (ER,)
Go= (228 A T T A (8.19)
3e MAQ(EFb) + NAz (EFb)
where
MAz (EFb) = [Cl*(EFb)b*(EFb)C*(EFb)]
and
s ) aZr
Ny (Ery) = 2 20T (1= 21726 2r) o [ Mo (B, -
r=1 1)

(vi) IV=VI Semiconductors

(a) Bangert and Kdstner model
In this case electron concentration and the TPSM can, respectively, be
expressed as

"= (;T_VZ) [Ma;(Er,) + Nas (Er,)] (8.20)

and

Go = (ZKaT )| MasEr) + Ny (Br) | (8.21)
3e MA3(EFb) + NAS(EFb)
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where

—1
M, (Eg,) = [ta(Er,)]"” [FI(EF,,) Fz(EF,,)] . ta(Eg,) = 2Ep,

and
K aZr
Nag(Ery) = D 20T (1= 217206 (2r) o [May (B, -
r=1 Fp

(b) Cohen Model
In this case electron concentration and the TPSM can, respectively, be written

as
Jmim
no = (%) [Ma;(Er,) + Nay (Er,)] (8.22)
Go — (72T )| Mas(Er) £ Nay () | (8.23)
3e Ma;(ER,) + Na; (Eg,
where

rg'l (Eg,) OtEF,,Til (ER,)

20mom’, 6m,

MA3 (EF[,) = ‘CAl(EFb) |:EF1,(1 + OlEFb) -

T4, (Er)( + eER,)
6m2

-1/2
o 14+ aFEfg o ER
A, (ER,) = ; - b —*
2maomy 2mo 2mj

172
| +aEr, «FEp, > «Ep,(14aEg,)
+ -1+

2mo 2m;,

1/2

mom,

and

s 2r
_ 0
Nay(Eg,) = > 2(kgT) (1 -2 2’);(2r)@ [Ma,(Eg,)].
r=1 b
(¢) Dimmock Model
In this case electron concentration and the TPSM assume the forms

no = (525 ) [Mai(Er,) + Nay(Er,)] (8.24)
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g — (T [ M Er) + N (B 525)
3e MA4(EF},)+NA4(EF1,) ' )

where
My (Er,) = [asJa, (Er,) = a3(Er)E, (Br,) — 5 [2a, (B

2mm;
s = | ——5—w4, |,

ah?
2
o? 1 n 1 o?
wp, = | — — ,
A 16 | mymt  m;m/ dmjtm; m; m;t
Aa(EF,)
Ini(Er,) = =05 [ (A (Br,) + BA(ER,)EG.. )

‘EAl (EFb)

2B} (Ep,)F G )| + 5

1/2
[ Gay (Er)) + A% (Er,) + 283 (Ery) | [ A3 (Er) + 73, (B |

5 - —1/2
x [ B (Er,) + 23, (Er,) |

LR [ VARER) - BAER)

A=tanT ——, ¢ ,
Ba(EFR,) AA(EFR,)

1/2
A(EF,) = [rAZ(EF,) + /73, (Er,) 4rA3(pr)} / V2,

1/2
Bs(Er,) = [rAz(EFb) — /3, (Er,) — dua, (EF,,)} / V2,

wa;(ER,)
s TA3(EF;,) = %7

wa, (EF,)
2
(,()A1 Cl)AI

TA, (EFb) =
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o 1 o.Eg, 1+ a.Ef, ] 1 1
wa, (Ep) = | = - + : +
42 (EF,) |:2 |:2m;k me 2m; m,_ml"' ml_m?'

o 1 o.Eg 1+ a.Ep
——— |yt 5 7+ —
mim; | 2m;  2m, 2m,

«.Ep, (1 + a.Ef,) 1 aEp, 1+aEg]
wA3(EFh): ¥ - s

m; m; 2my  2m) 2m;
1 o.Ep 14+ «a.Ex
Ep,) = _2Eh bl
2(EF,) |:2m;k 2m;t 2m; ]

ali? 1 N 1
a3 = — —,
3 4 mt_ml+ ml_mt+

—l/2
2mm / 1 1+ a.Ep o.ER
oy (Br) = | =Lz || 5=+ .
! b Clhz 2m7 ml_ 2m?—

2
+H L, l+aks a.EFbi| +a.EFb(1+a.EFb):|

* - + - F
2m, m; 2m, my; m;

A
1/2
E(\, q) = / [1 - q2 sin? a] do is the complete Elliptic integral of second kind,
0

is the complete Elliptic integral of first kind

A
Fi . do
a) = V1 —g?sin’«
0

and N, (Eg,) = 35_, 20k T)? (1 — 212 (2r) o [Ma, (ER,)]

VEF
(d) Foley and Langenberg Model
In this case electron concentration and the TPSM can, respectively, be
expressed as

28y
ny = (m) [hAG(EFb) + hA7(EFb)] (8.26)

Go = (”2k%T) [WAG(EF”) il h/*“(EF”)} : (8.27)

3e hAG(EFh) + hA7 (EF;,)



374 8 Applications and Brief Review of Experimental Results

where

1
hA(,(EFb) = _5A5h?4 (EFb) - 5A4(EFb)hA3 (EFb) + SA]QJA(,(EFb) s
3 3

s L]
T2 \mDr T )]

hz 2 thgO
8as(ERy) = 8ag | 5= (Eg +2ER,) + PL+ ——F |
1 1

5 3 1 1 n 1
A7 4mtmH2  2mTmTmImy  4(mTm))? ’
1my imymym, 1my

1 1
5A5=3A6h4[ —— — +i|,
ZmJ_mH ZmJ_mH

RO Eg, h(Eg, + 2EF,) WOEs, WP

12, — .=+ ot — - =
2(m7) m 2mJ_mJ_mH ZmLmJ_m” mym,

845 (ER,) = [
_I%(Egy +2Er,)  h°(Eg +2ER,)  W°Ey
2(m7)*m; 2my (m7)> 2m | (m7)>
— P||2h4 hﬁ(Ego +2EF,) h6Ego h4PH2
(mh)? 2m (m7)> 2my (m7)?  (m])? |’

4 -2 2 2 p2
E K (Eq + 2E Eq 2P h*Pt(Ey, + 2ER,)
840 (EE,) |:P4 20 (Eg Fb) 20 i go_ b

4(m¥)? 4(m7)> m} my

N Egh*(Eg +2Er,)  WEgr?  WEpEs WER> WEp,Egy
2mtm; (mh)? (mh)? (m7)? (m7)?

a1 =845 (a2 84y, (ER,) = [8a4(ER,)84,] .

h? | 2Ep, + E E
my m

1/2
has (Ery) = a2 [\, (Er,) +4ha, Er, (B, + Egy) = hay (i)
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ha,(EF,)
3

+2h% () F(h1. q1) +

Jag(Ery) = (=G an [, (Br) + 13, (Ery) |

ha,(EF,)
3

x [hfx3 (Er,) + h3, (Er,) + 207, (pr)]

1/2
x [ (03, (Erp) + 13 (Erp)) | / (GRE RGN |

h2 (Eg) — h2 (E
M= tan_l [hAB(EFb)/hAs(EFb)] 41 = |: AA( Fb) AS( Fb):|

hA4(EFh)
and
S0 2r
hay(Eg,) = D 2(kpT)> (1 —2'72")¢(2r) S s (Er)]
r=1 Fp
(vii) n-Ge

(a) Model of Cardona et al.
The expressions for the electron concentration and the TPSM can be

written as
no = Neo [ Fy ) + & Fy (n) — & Fy (1) (8.28)
72\ [ Fsr () +aFi(n) —aszFs(n)
Go = ( ) : — 2 : (8.29)
3e F%(n)+a2F%(n)—a3F%(n)
where
_ 45akpgT
Neo = 28y um kg T /h2)3/2, my = (m)*m)'P, @ = —243

and

_ 189 o (kBT (m})?
a3=?a(k3T) (T .

(b) Model of Wang and Ressler
The expressions for the electron concentration and the TPSM assume the
forms

no = (";;;; ) [Mas(Eg,) + Nag(Eg,)] (8.30)



376 8 Applications and Brief Review of Experimental Results

Go — (TKBT ) | MasEr) + Nay (Bri) (831)
3e Mas(EF,) + Nas(Eg,)

where

_ a9 -
Mas(ER,) = |:‘XS,OA1 (Ef,) — ?,0,34] (Eg,) — (YIOJAZ(EF;,)i| )

&y = paam /12
—14 _ 1 h4 *\2 1 mj_ 2
Ba = 1.48s, ,35—1(01 /(mj_))- —m—o s
&s = Gy (4mmji/1*). &7 = 0.8ps,

6 = (0.00585)(2m] /h*)?,
_ 1 R \r., .. .72
a0 = (E) . (m) I:Ols — 40[40{6] s
2m7‘< 40[4 — 205
— 40!40[6
2

G1>(Er,) = (hi |:(1 — 40[4EFh):| ’
1

ap =

as — das0g

m

12
Ep) = —( =L | — /1 —4as(E )]1/2
IOA]( Fb) = A 6[6 [ 6\ LF, s

_ 17 ) . 12
A,241(EF;,) =5 |on + [Ol121 — 40!12(EF,,)] } ,
_, 1 :_ N . 172
By (Eg,) = 7 |en— [Om —40512(EFb)] ,
A (Eg,) T - -
Ina(Er,) = =205 | <G, q3) | A3, (Br,) + B, (Er,) |

+2B3, (Er,) F (33, 3)]
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Ay (Eg,) T - -
+ SR [, (Br) + A3, (Er,) +2B3, (Er,) |

- 1/2
A% (Er,) + 03, (Er) 1"
B} (Er,) + p;,(Er,) |

_1 pay(Eg,) A} (Er,) — B} (Ep,)
A3 =tan = ———, = =
BA] (EFb) AA] (EFb)
and
s 82r
Nas(Eg,) = D 2(kpT)* (1 - 2725 [Mas (B
r=1 Fb

(viii) Platinum Antimonide
The expressions for the electron concentration and the TPSM can be written as

ng = (Qf_[_vz) [MAG(EFb) + NAG(EF[))] (832)
Go— nzk%T MQG(EF,,) + NAG(EFI,) (8.33)
0=\ "3 Ma,(Eg,) + Nag(Er,) | '

where

P, (Ex,)

MA(,(EFb) = |:TA9(EFb)pA2(EFb) - TA]()(EF),) 3

- TA]] JA3(EFb):| s

Ty, =11 + wi1w3],
T, (Eg,) = [—Ep,w3 + w1 (Eg, +80)] .
Tay =211 + wrw4 + w302],
Ta, =11 + wrws],
Txs(Eg,) = w2(Eg, + 80),
Tas(ER,) = [Er,(ER, + 80) — Ep,04],
Tp, = [T/§3 - 4TA1TA4],
TA7(EFb) = [2TA3 TAz(EFb) - 4TA1 TA5 (EFb)] s
Tas(Er,) = T3, (Er) + 4T, Tag (Ery) |

Tp,(EF,)
Ty (ER,) = ;TAh Tay = [Tas /274, ],
1
TA@, _
Ty, = > TAIZ(EFb) = [TA7(EF;,) /TA(,] ,

2Ty,
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Tas(Er,) = Tag(E,) [Taq

172
pas(Ery) = [ [Tas(Bry) = T3 (Er) +4Ta Ta(Er) | /@Ta0 |

A%, (Er,) = [TAIZ(EF,,) + / T3, (Er,) — 4TA13(EF,,>] :

D= =

B3, (Er,) = [TAIZ(EFI, — /13 (Er,) 4TA]3(EFb>],

Jas(ER,) = A%, (Er,) + B}, (Eg,)]
x E(m.n) — [A%,(Eg,) — B3, (Eg,)] F(ni,11)]

E
+ w [[A%,(Er,) — P, (Er,)] [B3, (Er,) = o3, (Er)]]

P4, (EF,)
—5

n = tan71 [:OAZ(EF;,) /BA} (EFb)] , = [BA3 (EFb) /AAx(EFb)]

and
N 2
Nag(Er,) = D 2(kpT)” (1 —2'~ yr JET [Maq(ER,)].
r=1
(ix) n-GaSb
In accordance of model of Mathur and Jain, the electron concentration and the
TPSM can be expressed as
g ()
n=35\72 [84,(ER,) + 84,(ER,)] (8.34)
27,2 / /
72k5sT \ | 84, (ER,) + 64, (ER,)
Go = B A T A T (8.35)
3e SAz(EFb) + 8A3 (EFb)
where

8, (Er,) = [84, (Ex]™?
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m* E E.\?> T[E m*\1?
4. () = [E tE 2 T [(7) 5]

5 12
+ (Eer) 1 m +ER Eg (1 m’
2 mo F, Lgy mo

and

s 2r

_ d
83 (Eg,) = 2(kpT)> (1 =27z (2r) Vo
r=1 Fp

[64, (Er,)]

x) n-Te
The electron concentration and TPSM in n-Te in accordance with the model
of Bouat et al. can be written as

8v

no =55 [May(Er,) + Nay (Er,)] (8.36)
Go = 7k T\ [ Mhy (Ery) + Ny, (Er,) | (8.37)
3e MAQ(EFb) + NAQ(EFb)_
- )
Myy(Eg,) = [31ﬁ5(EFb)F3(EFb) - ¢6F§(EFb)] . Us(ER,) = % + fﬁ} ’
L 2

T3(Er,) = [2y]7! [\/wf + 4y Ep, — m} . Vo= [n),

2r

> 3
Nay(Eg,) = D 2(kpT)* (1 —2'72")z(2r) Yo
r=1 Fp

x [May(Ep)] . Y1 = As, 2 =A7, Y3 = Ag

and wf = Ag
(xi) Bismuth

(a) McClure and Choi model
The electron concentration and TPSM in Bi in accordance with this model
can be written as

no = (4%) hag [hay(ER,) + ha, (Eg,)] (8.38)
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22T (Er,) + 1’y (EE,)
Go = (222 Wiy () + 1y, By , (8.39)
3e hAlo(EFh) + hAll (EF},)
where
e — 472 Jmyms B ah? . ah?
As = h204, AT oy BT 4mom)y’
my 2 1
Oas(Ery) = @Er ' J2m) [1- 721 63 = =
A, (ER,) = (¢ EF, /M2)[ m,2:| As = o
hao(E Oac + ha,(E
hao (Ery) :[ Ay(EF,) | |0as +ha,(EF,) © (6a(Er,)
2045 Oas — hA4(EFb)
- 3
+9A393,5)hA4(EF,,) + T [hA4(EF,,)] :| ,
hay(Er,) = [ Er, (1 + aBr) — 045 (Er, )03, — 64,64,
- V 2m2m,2 —OtEthz myp
hA4(EFb) = B 1— —
Jak 2my m'
«?E2 bt 2 a2
Fp my aE(l1 4+ aEf,)R
t|l—(1-=) +————
41’112 m2 m2m2
and
2r

hA“<EFb>—Zz(k3T>”(1 2y n
r=1

E2r [hAlo(EFb)]

(b) Hybrid model
In accordance with Hybrid model, the expressions for ng and G are given by

0= (%) [ha12(EF,) + ks (Er,)] (8.40)

Go— (KT )| Han R H M ER) )
3e hAlz(EFb) + hAl3(EFb)

where
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La,(Ep,)h*I3 (Ep,)  La,h*I3 (Eg,)
hA]z(EF[;) = |:EF1,(1 +aEFb) _ 1 b Ay b _ 2 As b 7

6M, 20M3 Ey,

LAl(EFb) = [l + LA3 +O[EFb(1 - LAz)] s LA3 = M2/m27 LAz = M2/Mé

—1,2 5 12771/2
LA2 _LAl(EF[,) LAI(EFb) LAZEF;,(I +‘XEF[,)
Ip,(ER,) = 3 + 7t 2
2Eq M3 2M, 4M2 4Eq M2
and
: 2 1-2 9
hay(Er,) = D 2(kpT)* (1 —2'7 r);(MW [Py, (Eg,)]

r=1 b

8.2.2 Debye Screening Length:

The Debye screening length (DSL) of the carriers in the semiconductors is a fun-
damental quantity, characterizing the screening of the Coulomb field of the ionized
impurity centers by the free carriers. It affects many special features of the modern
semiconductor devices, the carrier mobility under different mechanisms of scattering,
and the carrier plasmas in semiconductors [45-58].

The DSL (L p) can, in general, be writ ten as [48—58]

—12

le|* dng
Lp=| —— , 8.42
D (SSC 3Er (8.42)

where no and EFf are applicable for bulk samples.
Using (8.42) and (8.2), one obtains

—12
Lp = (31ef neG [er®GT) . (8.43)

Therefore, we can experimentally determine L p by knowing the experimental curve
of G versus carrier concentration at a fixed temperature. It is evident that the DSL
for a system can be investigated if the functional dependence between the electron
concentration and the Fermi energy of that particular material is known. For the
purpose of completeness we present few results of DSL as written below:

(i) In the presence of external light waves, the DSL in optoelectronic materials
whose unperturbed conduction electrons obey the three and two band models of
Kane together with parabolic energy bands can, respectively, be expressed as
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() ()"

1/2
[G70(EF1,)» Eq, A) + Hjo(Epi, &, Ego, A)]" (8.44)

32712
Lp =
b 32 ssc) ( )

—1/2
Lp =

X

172

X [G71 (Ep, A, Eg()) + H7] (Ep, A, EgO)] (8.45)
2m, 3/27] -l
L =
b 377285c) ( h? )
1 2
x [Gh(Er1, %, Eq0) + Hip(Ern, &, Eg0)] ™" (8.46)

where the primes indicate the differentiation of the differentiable functions with
respect to the Fermi energy, G70(EF1, A, Eg0, A) = [Bo(EFI1, A)]3/2,

Hao(Er, 3. Ego. A) = 2y (1) Gr0(Er1. . Ego. A)

() = 26kpT)> (1 — 2172 2r) L Pt
as measured in the presence of light waves as measured from the edge of the
conduction band in the vertically upward direction in the absence of any field,

t =1 or F, Er is the Fermi energy

N
Hyi(Ep1. &, Ego) = D 2(r)G71(Epr, 2,
r=1

G71(EF1, A, Eg) = [wo(EF1, M2,

G72(Er1. & Ego) = Lpo(Ep1, )2
N
H1a(Er1, b, Eq0) = D 21(r)G2(Eri, &, Ego)

r=1

1 (2m\?
n=3-3 (?) [G70(Er1, &, Ego, A) + Hyo(ER1, A, Ego, A)],

1 (2m\?
n=35\7z [G71(ER. &, Eg0) + H71(EF1, A, Eg0)]

and

1 (2m\?
n=35\72 [G72(ER1, &, Eg0) + H72(E1, A, Eg0)] .

(i) In the presence of intense electric field, the DSL in optoelectronic semiconduc-
tors in accordance with the perturbed three and two band models of Kane can,
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respectively, be expressed as

—1/2

i 2 3/27
e 2m, —1/2
ko= (T) (h—) (70 (Ere. F) + Ryo(Ers. F)]
= - (8.47)
_ s 327172
e 2m, —-1/2
LD - (37'[285‘0) (h_zc) [gél(EFs’ F) + h/71(EFS’ F)]
= - (8.48a)

g10(Ers, F) = [B(Er, F)I*, h1o(Egs, F) = ) 2:(r)g0(Egs, F)

r=1

1+ ¢(Eps, F) 2 ]‘
311 (EFs) 311 (EFs)

B(EFs, 2) = [

EF; is the Fermi energy as measured in the presence of intense electric field as
measured from the edge of the conduction band in the vertically upward direction
in the absence of any field g71(Ers, F) = [B1(EFs, F)1??, h7\(Egs, F) =
=1 2(r)gn(Ers, F),

1+ ¢1(EFs, F) 2 -1
(Eps. A) = [ }
prite 3y0(EFs) 3v0(EFs)
1 2mc 3/2
10T 32 ( 2 ) [g70(EFs, F) + h7o(Eps, F)], (8.48b)
1 (2m.\?
T3 (?) [g71(EFs, F) + h71(Eps. F)] - (8.48¢)

In the absence of any field, the expressions for the DSL and the electron
concentration for optoelectronic semiconductors whose energy band structures
are defined by the unperturbed two band model of Kane, under the condition
(EFEg_Ol) < 1, assume the well-known forms as [52]

&2 15akpT -1/
Lp = S_chBT F_i1p(m) + 1 Fi2(n) (3.49)
SC

akgT
4

15
ny = N |:F1/2(fl) + F3/2(77)] , (8.50)

EF
where n= ﬁ
B
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8.2.3 Carrier Contribution to the Elastic Constants:

The knowledge of the carrier contribution to the elastic constants is important in
studying the mechanical properties of the materials and has been investigated in the
literature [59-81]. The electronic contribution to the second- and third-order elastic
constants can be written as [59-81]

(Go)?* dng
ACyy = — — 8.51
M 9 Erp 81)
and 3
(Go)” 3°ng
ACys56 = ———— ——, 8.52
456 27 9E2 (8.52)

where G| is the deformation potential constant. Thus, using (8.2), (8.51), and (8.52),
we can write

ACy =[-n0G0)* | Go / GrH3T) | (8.53)
and 9G
_ n
ACuss = (m0lel (Go)’G} [ GriTH( + =220 (854
Go ong

Thus, again the experimental graph of G versus ng allows us to determine the
electronic contribution to the elastic constants for materials having arbitrary spectra.
We present a few results in this context:

The expressions for AC44 and ACys¢ in quantum wires of nonlinear optical
materials, III-V, II-VI, Bismuth, IV-VI, stressed semiconductors, Te, n-GaP, PtSb,,
Biy Tes, n-Ge, and II-V can, respectively, be expressed as

(a) Nonlinear optical materials:

~ ax ymax
260’8} § S
ACyy = — (9— > D B (Ekip. ne.ny) + Bly(Ekip. ne.ny)l,
T ny=1 ny=1
(8.55)
2(G0)3g M xmax " ymax
ACys6 = (T‘/) Z Z [Bi/l(EFlD, Ny, ny) + Bi/z(EFlD, Ny, n})] .

ny=I1 ny=1
(8.56)
(b) III-V materials:

1. Three band model of Kane:
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Z(GO)Zg Mxmax ™ ymax
v
ACyy = — (9”) > D Tg3(ER1D, nxs ny) + Tg4(Ep1p, nx, ny)l,

ny=1ny=1

(8.57)

2(60)3g Mxmax ™ ymax
Vv
ACys6 = (m) DD T (Epip. . ny) + Tg4(Epip. n. ny)l.

ny=1ny=1
(8.58)
2. Two band model of Kane:

2((_;0)25’\; Nxmax " ymax
ACy=— =) D D IT4s(Erip, nx, ny) + Tgs(Er1p, nx, ny)l,

o ny=I ny=1
(8.59)
2(60)3g Mxmax ™ ymax
v
ACys6 = (27”) > D I (Ep1p. ny.ny) + Tgg(Epip. nx. ny)l.
ny=Iny=1
(8.60)

3. The model of Stillman et al.:

~ Ny Mymax
260’ \ 5 S
ACyy =—(9ﬂv > > [Bi7(EE1p, nx, ny) + Big(Ep1p, nx, ny)],

ny=1ny=1

(8.61)

2(60)3g\1 Mxmax ™ ymax
ACise =\ =55 ) 22 2 [BI7(ER1D, ne, my) + Big (Ep1p, v, my)-

ny=1ny=1
(8.62)
4. The model of Newson and Kurobe:

2(60)25’\; Nxmax " ymax
ACyy = (%) > > [Blo(EE1D nx, ny) + Byy(ER1D, nix, )]s

ny=1ny=1

(8.63)

2((_;0)35’\) Nxmax " ymax
ACys6 = B Z Z [B{o(EpiDp.nx,ny) + By (ERip. nx, ny)l.

ny=1ny=1
(8.64)
5. The model of Palik et al.:

Z(Go)zg Mxmax " ymax
ACyy = —(%) > D [By(Ep1p. nx.ny) + Byy(Epip, nx, ny)l,

ny=1ny=1

(8.65)
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2((_;0)38 Nxmax ymax

v

ACys56 = (27n ) 2 2 [BY(EF1D, nx. ny) + By, (ERip, nx, ny)].
ny=I1ny=1

(8.66)
(b) II-VI materials:

= Ny, Ny,
(GO)ZgV Xmax '*Ymax

ACyy = ———== t(Epip, ny, ny) + t3(Epip, ny, ny)|, (8.67)
oy 2, 2 Lo )
(G )3g Mxmax "*ymax
0
ACys6 = ——= Z > [1"9(Erip, ny, ny) + 18 (Epip, ni, ny)].

271/ B |
(8.68)
(c) Bismuth:

1. The model of McClure and Choi:

n X nz Zmax
_2(Go)?gy \ﬁ S

ACyq = O Z Z l‘27(EF1D,ny,nZ)+128(EF1D,ny,nz)]
ny=1 n;=1

(8.69)
2(G ) \/T Mymax Mzmax

=(G0)" 8y ~2m

ACys56 = T Z Z t27(EF1D,ny,nZ)—|—t28(EF1D,ny,nZ)]
ny=I1 n;=1

(8.70)

2. Hybrid model:

max "'zmax
2(Go)?gy v2my "3

ACy4 = P Z Z [131(EF1D. ny, nz) + 155 (Ep1p. ny. ny)].
ny=1 n;=1
(8.71)
n nz,
Z(G()) gv /; Ymax *Zmax
ACys6 = 7 ,,z_l nz_l [¢"31(EFip, ny, n2) + t"32(Eg1p. ny, n2)].
(8.72)
3. Cohen model.
Z(G()) g \/27 Mymax Mzmax
ACyy = O - Z Z [#45(ER1D. ny, nz) + t36(Epi p. ny. nz)],
ny=1 n;=1
(8.73)
2(60)3gv Mymax Mzmax

ACys6 = Z > [t"35(Epip. ny. n2) + t"36(Epip. ny. ).

ny=1n;=1

27
(8.74)
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4. Lax model:

Mymax Mzmax
2(Go) 2(Go)“gv ./2m S
ACyy = O - z E [37(Ep1p. ny, n2) + t33(ER1p. ny. n7)].

ny=1 n;=1

(8.75)

Mymax Mzmax
2(Go)? 2(Go) gv ﬁ
T Z Z 7 37(EF1D,f’ly7 nz) +1"33(Egip, ny, n; )]

ny=1n;=1

ACys56 =

(8.76)

(d) IV-VI materials:
Dimmock model:

Mxmax " ymax
_2(Go)’gy

ACyy = 9 Z Z [B3,(EF1D, Ny, ny) + B33 (ERip, Ny, ny),
ny=I1ny=1
(8.77)
2(60)3g Nxmax "ymax
ACys56 = Tv Z Z [B"32(Ef1p, ny, ny) + B"33(Er1p, ny, ny)l.

ny=I1 ny=1

8.78
(e) Stressed materials: ( )

Z(GO) gV Mymax Mzmax

ACy = O Z Z Bl (Ep1p. ny. n;) + Bis(Erip, ny, ny)],
ny=1 n;=1
(8.79)
2(G0) g Mymax Mzmax
ACys56 = Z—V Z Z [B"34(Er1p, ny, n2) + B"35(Ep1p, ny, n)).
ny=1 n,=1
(8.80)

(f) Tellurium:

Nxmax "ymax
(Go)?
ACy = — 97181» S [Bigs(Eriponeny) +654]. 88D

ny=I1 ny=1

Mxmax "ymax

(Go)
ACyss = —2 & > > [B"s6+(Epip.ne.ny) +605 ). (8.82)

ny=1 ny=1

(e) Gallium phosphide:

Nxmax ymax
2(Go)*gy -

ACyy = B — z z [B3g(EF1D nx,ny)+B39(EF1D,nx,ny)]

ny=1 ny=1

(8.83)
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2(6 )3 Mxmax "' ymax
ACys6 = Lngv

Z Z [B"38(EFip, ny,ny) + B"39(EFip. ny., ny)].

27 ny=1 ny=1
(8.84)
(f) Platinum Antimonide:
2 ~ 2 Nxmax ymax
ACyy = —% > > [Bi(Erip. ny.ny) + By (Epip. ny,ny)].
ny=1 ny=1
(8.85)

Mxmax "' ymax

2(Go)’gv
ACys6 = ~m ,,Zl ,,21 [B"40(EFip, nx,ny) + B"41(Er1p, nx, ny)|.
- (8.86)
(g) Bismuth Telluride:

~ nz M ymax
2Go’’gy 5 S
ACyy = —9—V Z Z [Bia(Er1p. nz, ny) + Bis(Erip, nz, ny)],
T n;=1ny=1
(8.87)
= n n .
2(GO)3g Zmax '’ Ymax
ACys56 = TV Z Z [B"42(EFip. nz.ny) + B"43(Epip. nz. ny)].

n;=1ny=1
(8.88)
(h) Germanium:

1. The model of Cardona et al.:

M zmax

| 2(Gog, "

ACyy = e Z Z [34/14(EF1D7 Ny, nz) + BQS(EFlD» Ny, nZ)]a
ny=1 n;=1
(8.89)
2((_;0)3g Mxmax Mzmax
ACyse = = — > > [B"aalErip. nx.ny) + B"45(Epip. nx. ng)].

ny=1n;=1
(8.90)
2. The model of Wang and Ressler:

~ Mxmax Mzmax
2(Go)’gy

ACy = O Z Z [Bi6(EF1D, nx,n:) 4+ Big(Eg1p, ny, nz)],
ny=1 n;=1
(8.91)
2((_;0)3g Mxmax Mzmax
ACys6 = Wv > > [B"as(Epip. nx.ng) + B"47(Epip. nx. )]

ny=1n;=1

(8.92)
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(1) Gallium Antimonide:

2(60)2(?1/ Nxmax "ymax

ACy === > > [Big(Erip, ne,ny) + Blg(Erip, e, ny)],
ny=I1 ny=1
(8.93)
Mxmax ™ ymax
2(Go)’s
ACys6 = Tv > > [B4g(Epip. nx.ny) + B"49(Egip, nx, ny)].

ny=1ny=1

8.94
() II-V materials: (8.94)

Mxmax "ymax

(Go)’g
ACyy = —v Z Z Bio(EF1p. nx, ny) + By (EF1p, nx, ny)],

ny=1 ny=1

(8.95)
(G0)3g Mxmax ymax
14
ACus6 = —-— > > [B"s9(Erip. ny.ny) + B"so(Epip. ny. ny)].
ny=I1 ny=1
(8.96)

8.2.4 Diffusivity-Mobility Ratio:

The diffusivity (D) tomobility (i) ratio (DMR) of the carriers in semiconductor
devices is known to be very useful [82] since the diffusion constant (a quantity often
used in device analysis but whose exact experimental determination is rather difficult)
can be obtained from this ratio by knowing the experimental values of the mobility.
In addition, it is more accurate than any of the individual relation for the diffusivity
or the mobility, which are the two widely used quantities of carrier transport of
modern nanostructured materials and devices. The classical DMR equation is valid
for both types of carriers. In its conventional form, it appears that, the DMR increases
linearly with the temperature 7" being independent of the carrier concentration. This
relation holds only under the condition of carrier non-degeneracy although its validity
has been suggested erroneously for degenerate materials [83]. The performance of
the electron devices at the device terminals and the speed of operation of modern
switching transistors are significantly influenced by the degree of carrier degeneracy
present in these devices [84]. The simplest way of analyzing them under degenerate
condition is to use the appropriate DMR to express the performance of the devices at
the device terminals and the switching speed in terms of the carrier concentration [84].

It is well known from the fundamental work of Landsberg [85—-87] that the DMR
for electronic materials having degenerate electron concentration is essentially deter-
mined by their respective energy band structures. This relation is useful for semicon-
ductor homostructures [88, 89], semiconductor—semiconductor heterostructures [90,
91], metals-semiconductor heterostructures [92-95], and insulator-semiconductor
heterostructures [96-99]. It has different values in different materials and varies with
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the doping, with the magnitude of the reciprocal quantizing magnetic field under
magnetic quantization, with the quantizing electric field as in inversion layers, with
the nanothickness as in quantum wells and quantum well wires, and with superlattice
period as in the quantum confined superlattices of small gap semiconductors with
graded interfaces having various carrier energy spectra [100—112]. It can, in general,
be proved that for bulk specimens the DMR is given by [101]

D _ (@)/(@) (8.97)
V) le] 0EF

The electric quantum limit as in inversion layers and nipi structures refers to the
lowest electric sub-band and (8.97) assumes the form [101]

=)/ Gars)
Z (=2 70 ), (8.98)
18 le] d(EFo — Eop)

where n, E Fo,and EO are the electron concentration, the energy of the electric sub-
band and the Fermi energy in the electric quantum limit.
Using the appropriate equations one obtains

D ( 7'[2k12g T )
—=\—= (8.99)
n 3lel*G
Thus, the DMR for degenerate materials can be determined by knowing the experi-
mental values of G.

The suggestion for the experimental determination of the DMR for degenerate
semiconductors having arbitrary dispersion laws as given by (8.99) does not contain
any energy band constants. For a fixed temperature, the DMR varies inversely as
G. Only the experimental values of G for any material as a function of electron
concentration will generate the experimental values of the DMR for that range of ng
for that system. Since G decreases with increasing ng, from (8.99) one can infer that
the DMR will increase with increase in ng. This statement is the compatibility test
so far as the suggestion for the experimental determination of DMR for degenerate
materials is concerned.

Although the DMR has extensively been investigated in the literature [100-112]
nevertheless it appears that the influence of electric field on the DMR in optoelectronic
semiconductors together with its various quantum confined counterpart has yet to be
reported. We present few results in this context.

(a) Inthe presence of intense electric field, the DMR in III-V, ternary and quaternary
materials in accordance perturbed three and two band models of Kane can,
respectively, be expressed as

D 1| Mip(E¥r, F) 4+ N1 (Efr, F
__|: 1L(EFF, F) + N1 (EFp )] (8.100)

wo e M{, (Efr, F) 4+ N, (EFr, F)
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(b)

(©)
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(8.101)

D 1 |:M2L(EFF, F) + Nop (EFF, F)}
W e | M} (Epp, F)+ N, (Epg, F) ]
In the absence of any field, the expressions for the DMR for optoelectronic
materials whose energy band structures are defined by the unperturbed two band
model of Kane, under the condition (Eg E g_ol) <« 1 assume the well-known forms
as [100]

(8.102)

D kgT | Fipp(n) + lsaffBTFyz(n)
0 e | Foip(m+ lsa!fBTFl/z(fl)

In the presence of intense electric field, the DMR in ITII-V, ternary, and quaternary
materials in accordance perturbed three and two band models of Kane can,
respectively, be expressed under arbitrarily oriented quantizing magnetic field as

Nmax

> [M3(EgrB, F., 0,n) + N3(Eggs, F, 0, n)]
n=0

—

D
= (8.103)
ll’ e & / !
Y. [M;(Errs, F.6,n) + N3(Ergs, F, 6,n))]
n=0
and
Nmax
D1 > [M4(ErrB, F.0,n) + N4(Ergg, F, 0, n)]
= n:O . (8.104)
> [M,(Errs, F,0,n) + Nj(Erpg, F,0,n)]
n=0

In the presence of intense electric field, the DMR in quantum wells of optoelec-
tronic semiconductors in accordance perturbed three and two band models of
Kane can, respectively, be expressed as

[~ 7x max

> [Ms(E¥rrs, F,ny) + N5(Ergs, F, ny)]

ny=1

Q| =

, (8.105)

Nx max

> [Mi(EFrs. F,ny) 4+ Ni(EFrs, F,ny)l

L ny=1

T

[~ 7x max

| > [Mg(E¥rrs, F,ny) + Ne(EFrs, F, ny)l
L ) (8.106)

e My max
> [M{(EFrs. F,ny) 4+ N¢(Efrs, F,ny)]

L nx=1

=IO
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(d) In the presence of intense electric field, the DMR in quantum wires of III-V,
ternary, and quaternary materials in accordance perturbed three and two band
models of Kane can, respectively, be expressed as

[ 72 max My max T
b > > [015(Erip, F.ny,n) + Qi6(Erip, F,ny, n))
n;=1 ny=1
E - Z 7z max "y max ’
>, 2 [Q)5(Erip. F.ny,n;) 4+ Q\¢(Erip, F,ny, n;)]
n;=1 ny=1 ]
B (8.107)
[ 712 max My max ]
b > 2 [Q1(Erip, F,ny,n;) + Qis(Erip, F,ny, n;)]
n;=1 ny=1
E - ; Nz max "y max , ,
Z Z [Q]7(EF1D’F7 Ny, nz)"‘ng(EFlDa F, Ny, nz)]
| nz=1 ny=1

(8.108)
(e) Inthe presence of intense electric field, the DMR in effective mass super lattices
of optoelectronic materials in accordance perturbed three and two band models

of Kane can, respectively, be expressed under magnetic quantization as

1 > [Q19(Eps. F.n) + 020(Egs, F,n)]
_ =0 (8.109)
e

Nmax

2 [Qg(ErB, F,n) + Q5 (Ers, F,n)]
n=0

TIo

and

Mmax

D1 > [021(Eps, F,n) + Q2 (Erp, F,n)]
= n=0 ) (8.110)

e Mmax

ZO [Q/Zl (EFBv Fa n) + Q/ZZ(EFB7 Fa n)]

(f) Inthe presence of intense electric field, the DMR in quantum wire effective mass
super lattices of optoelectronic materials in accordance perturbed three and two
band models of Kane can, respectively, be expressed as

Nz max My max
> > [023(ErEMSL, F,ny, nz) + Q2a(ERDEMSL, F, iy, nz)]

1| nz=1 ny=1

o

e | Mzmax 'y max

> X [Q)3(ErmEMSL. F.ny. nz) + Q5 (EFDEMSL. F. 1y, n7)]

n;=1 ny=1
(8.111)
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Nz max 'y max

>, 2 [Q2s(EFDEMSL: F. 1y, nz) + Q26(EFIDEMSL: F 11y, n7)]
D 1] nz=1 ny=1
n

e Nz max "y max

> 2 [Q5s(EFDEMSL, F, ny, nz) + Q4 (EFIDEMSL, F, ny, nz7)]

n;=1 ny=1
(8.112)
(g) In the presence of intense electric field, the DMR in super lattices of optoelec-
tronic materials with graded interfaces in accordance with perturbed three band
model of Kane can be expressed under magnetic quantization as

Mmax

> [027(ErgaisL, F, n)+Q2s(ErBcisL, F, n)]
D 1 n=0
I

— . (8.113)

e Mmax

Zo [Q5,(ErBaisL, F, n)+ Qs (ErBGISL, F, n)]
n=

(h) In the presence of intense electric field, the DMR in quantum wire super lattices
of optoelectronic materials with graded interfaces in accordance with perturbed
three band model of Kane can be expressed as

Nz max 'y max

> > [Q29(ErQwaGISL: F. ny.nz) + Q30(EFQWGISL. F. ny, nz)]
D 1| n;=1ny=1
w

e Nz max My max

Zl 21 [Q59(EFQWGISL: F 1y, nz) + Q30 (EFQWGISL: F iy, nz)]
nz;= ny=
(8.114)

With the advent of ultra-small devices, the influence of electric field is of crucial
importance in the whole spectrum of nano-science and technology. In this par-
ticular section, we have formulated the DMR in optoelectronic semiconductors
and their nanostructures in the presence of intense electric field.

8.2.5 Measurement of Band Gap in the Presence of Light Waves:

Using (6.41), (6.42), and (6.43), the normalized incremental band gap (A E¢) has been
plotted as a function of normalized Iy (for a given wavelength and considering red
light for which A = 660nm) at 7 = 4.2K in Figs.8.1 and 8.2 for n-Hg;_,Cd, Te
and n-In;_,Ga,AsyP;_, lattice matched to InP in accordance with the perturbed
three and two band models of Kane and that of perturbed parabolic energy bands
respectively. In Figs. 8.3 and 8.4, the normalized incremental band gap has been plot-
ted for the aforementioned optoelectronic compounds as a function of A. It is worth
remarking that the influence of an external photoexcitation is to change radically
the original band structure of the material. Because of this change, the photon field
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Fig. 8.1 Plots of the normalized incremental band gap (AE,) for n-Hg;_,Cd,Te as a function
of normalized light intensity in which the curves a and b represent the perturbed three and two
band models of Kane respectively. The curve ¢ represents the same variation in n-Hg;_,Cd, Te in
accordance with the perturbed parabolic energy bands

causes to increase the band gap of semiconductors. We propose the following two
experiments for the measurement of band gap of semiconductors under photoexci-
tation.

(A) A white light with color filter is allowed to fall on a semiconductor and the opti-
cal absorption coefficient (c¢g) is being measured experimentally. For different
colors of light, orp is measured and o versus fiw (the incident photon energy) is
plotted and we extrapolate the curve such that @y — 0 at a particular value fiw .
This hw; is the unperturbed band gap of the semiconductor. During this process,
we vary the wavelength with fixed Iy. From our present study, we have observed
that the band gap of the semiconductor increases for various values of A when
I is fixed (from Figs. 8.3 and 8.4). This implies that the band gap of the semi-
conductor measured (i.e., hw; = Ej) is not the unperturbed band gap E,, but
the perturbed band gap E; where E; = Eq) + AE,, AE, is the increased band
gap at hwy. Conventionally, we consider this £, as the unperturbed band gap of
the semiconductor and this particular concept needs modification. Furthermore,
if we vary Iy for a monochromatic light (when A is fixed) the band gap of the
semiconductor will also change consequently (Figs. 8.1 and 8.2). Consequently,
the absorption coefficient will change with the intensity of light [77]. For the
overall understanding, the detailed theoretical and experimental investigations
are needed in this context for various materials having different band structures.
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to InP as a function of normalized light intensity for all cases of Fig. 8.1

(B) The conventional idea for the measurement of the band gap of the semiconduc-
tors is the fact that the minimum photon energy hv(v is the frequency of the
monochromatic light) should be equal to the band gap E¢, (unperturbed) of the
semiconductor, i.€.,

hv = Eq,. (8.115)

In this case, A is fixed for a given monochromatic light and the semiconductor
is exposed to a light of wavelength A. Also the intensity of the light is fixed. From
Figs.8.3 and 8.4, we observe that the band gap of the semiconductor is not Eg(for
a minimum value of hv) but Eg, the perturbed band gap. Thus, we can rewrite the
above equality as

hv = Eq. (8.116)

Furthermore, if we vary the intensity of light (Figs. 8.1 and 8.2) for the study of
photoemission, the minimum photon energy should be

hvy = Eg,, (8.117)

where Ej, is the perturbed band gap of the semiconductor due to various intensity
of light when v and v are different.
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Thus, we arrive at the following conclusions:

(a) Under different intensity of light, keeping A fixed, the condition of band gap
measurement is given by

hvi = Eg, = Egy + AEq,. (8.118)

(b) Under different color of light, keeping the intensity fixed, the condition of band
gap measurement assumes the form

hv = Eg = Eg) + AEg (8.119)

and not the conventional result as given by (8.115).

8.2.6 Diffusion Coefficient of the Minority Carriers:

This particular coefficient in quantum confined lasers can be expressed [85] as

D; /Dy = dE¥; /dEF, (8.120)
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where D; and Dy are the diffusion coefficients of the minority carriers both in the
presence and absence of quantum confinements and E'; and E are the Fermi energies
in the respective cases. It appears then that, the formulation of the above ratio requires
arelation between Ex; and Ef, which, in turn, is determined by the appropriate carrier
statistics. Thus, our present study plays an important role in determining the diffusion
coefficients of the minority carriers of quantum confined lasers with materials having
arbitrary band structures. Therefore in the investigation of the optical excitation
of the optoelectronic materials which lead to the study of the ambipolar diffusion
coefficients the present results contribute significantly.

8.2.7 Nonlinear Optical Response:

The nonlinear response from the optical excitation of the free carriers is given by
[113]

Zo= =& % (1 K o E) N(E)E 8.121
o—ﬁ/o (a—E) F(E) N(E)E, 8.121)

where w is the optical angular frequency, N (E) is the density-of-states function. From
the various E-k relations of different materials under different physical conditions,
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we can formulate the expression of N (E) and from band structure we can derive the

term (kx %) and thus by using the density-of-states function as formulated, we can

study the Z for all types of materials as considered in this monograph.

8.2.8 Third-Order Nonlinear Optical Susceptibility:

This particular susceptibility can be written as [114]

noe4 <84)

, 8.122
24w wrw3(w) + wp + w3)h* ( )

XNP(@1, W2, @3) =

where

n0<£4>:/oo 84—EN(E)f(E) dE
o okt

’E
ok
using the dispersion relations of different materials as given in appropriate sections
of this monograph. Thus one can investigate the ynp(w1, @2, w3) for all materials as

considered in this monograph.

and the other notations are defined in [114]. The term ( ) can be formulated by

8.2.9 Generalized Raman Gain:

The generalized Raman gain in optoelectronic materials can be expressed as [115]

_ 16722 r 2 \2
RGzl(n—zc) (—p) (6—2) m*R? ), (8.123)
hwpgwsingn r mc

where I = >, [fo(n, ke 1) — fon, k; )], fo(n, k1) is the Fermi factor for
spin-up Landau levels, fo(n, k; | ) is the Fermi factor for spin down Landau levels, n
is the Landau quantum number and the other notations are defined in [115]. It appears
then the formulation of Rg is determined by the appropriate derivation requires
the magneto-dispersion relations. By using the different appropriate formulas as
formulated in various chapters of this monograph R can, in general, be investigated.

8.2.10 Einstein’s Photo-Electric Effect

It is well known that the Einstein’s photoelectric effect occupies a singular position
in the whole arena of materials science and related disciplines in general together
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with the fact that the photoemission from the electronic materials is also a vital phys-
ical phenomena from the viewpoint of modern optoelectronics and photoemission
spectroscopy [116, 117]. The classical equation of the photoemitted current den-
sity is [118] J = [4mem g, (kpT)* /h3] exp [(hv — @) /(kpT)], where hv and ¢
are incident photon energy along z-axis and work function respectively. The afore-
mentioned equation is valid for both the charge carriers and in this conventional form
it appears that, the photoemission changes with the effective mass, temperature, work
function, and the incident photon energy, respectively. This relation holds only under
the condition of carrier non-degeneracy.

The Einstein’s photoemission has different values for different materials and varies
with doping and with external fields which creates quantization of the wave vector
space of the carriers leading to various types of quantized structures. The nature of
these variations has been studied in [118—154] and some of the significant features
are as follow:

1. The photoemission from bulk materials increases with the increase in doping.

2. The photoemission exhibits oscillatory dependence with inverse quantizing mag-
netic field because of the Shubnikov de Haas (SdH) effect.

3. The photoemission changes significantly with the magnitude of the externally
applied quantizing electric field in electronic materials.

4. The photoemission from quantum confined Bismuth, nonlinear optical, III-V,
II-VI, and IV-VI materials oscillate with nano-thickness in various manners
which are totally band structure dependent.

5. The nature of variations is significantly influenced by the energy band constants
of various materials having different band structures.

6. The photoemission has significantly different values in quantum confined semi-
conductor superlattices and various other quantized structures.

It is important to note that, in the methods as given in the literature, the physics of
photoemission has been incorporated in the lower limit of the photoemission inte-
gral and assuming that the band structure of the bulk materials becomes an invariant
quantity in the presence of photo-excitation necessary for Einstein’s photoelectric
effect. The basic band structure of optoelectronic materials changes in the presence
of external light waves in a fundamental way, which has been incorporated mathe-
matically through the expressions of the DOS function and the velocity along the
direction of photoemission respectively in addition to the appropriate fixation of
the lower limit of the photoemission integral for the purpose of investigating the
Einstein’s photoemission from bulk specimens of optoelectronic compounds.

The consequence of the photoelectric effect is the creation of the concept of photo-
electric current density (J) which, can, in turn, be written through the photoemission
integral (Pr) as [118]

ape
J =P, (8.124)

where o is the probability of photoemission,
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[ee)
P; = /N(E’)VZ(E’)f(E)dE/ (8.125)
Eo

in which, Eg = W — hu, W is the electron affinity, £’ = E — Ey, N(E’) is the
density-of-states function at E = E’, v,(E’) is the velocity of the emitted electron
along z-axis when, E = E’ and f(E) is the Fermi Dirac occupation probability
factor

Using (6.41), v,(E’) and N(E’) for optoelectronic materials in the presence of
light waves whose unperturbed conduction electrons obey the three band model of
Kane can be written as
172

V2 [Bo(E'", W]

(E') = - 8.126
vz (E") NS ( )
and
om, 3/2
N(E') = [471 (?) .gv:| VBo(E" B (E" 1), (8.127)
where

, 0
Bo(E. 1) = 3E [Bo(E, M].

Using (8.124-8.127), the photoemitted current density in this case can be written
using the generalized Sommerfield’s lemma as

, _[47remc(kBT)20lOgv] (14 3ed)
L= h3 (+aA)

1
i| |:2ak3TF2(nL) + (1 +2aEy + gotA) Fi(np)

o5 )] _{A},
5L (kBT)2 2

(8.128)

Eo+aE} + taAE,
kT

ao+nL

F_1(mL) +ao [ln

nL = (Er, — Eo)(kp T)_l, EF, is the Fermi energy in the presence of light
waves as measured from the edge of the conduction band in the absence of any field,
ao = (Eo + Egy + 38)(kpT) !

(=D¥12r = 1!
(ao +np)*

_ e? I02?  Egy(Eqg, +A)ﬁ_2 (H— L)2
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and
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The expression of Jr for optoelectronic materials in the presence of light waves

whose unperturbed conduction electrons obey the two band model of Kane can be
written following (6.42) as

)+ (Egy — ) [

demq(kgT) o Bsia
J = ¢ I; 8v Fi(nL) +2akpT Fa(nL) — Fo(nr)
h k T
3C
( 251)k3TF1(nL) +2Cs2(kgT) Fz(ﬂL)]:|
(8.129)

where

_ e IAMEy —  2mea 15(Cs1)> (3~

B51 = ]92mr7[c3 to s C51 = 71111; s C52 = T - (EQ(CSI)) .

The expression of Jr for optoelectronic materials in the presence of light waves
whose unperturbed conduction electrons obey the parabolic energy bands can be
expressed as

dem(kpT)*aogy Bs3
J, = [M] [Fl L) — (7) [FO(nL) — 3akgT (1 + —) Fi (m)ﬂ

h3 kT
(8.130)
where
3 e? Io)r?
8m,(me)2c3 \Jfesco

Special Case:
Formulation of current density for unperturbed three and two band models of
Kane for optoelectronic materials:

(1) The expression of J in accordance with the unperturbed three band model of
Kane assume the forms

4nemc(kBT)2otogV
J = W3
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(i1) In accordance with the unperturbed two band model of Kane, the corresponding
expression of J is given by

dmwem.(kp T)zaogv
J = 3

} [F1(n0) + 2akpT F>(1o)] (8.132)

For @ — 0, (8.132) gets simplified as.

dragemgy(kpT)?

J Fi1(no), (8.133)
hv — ¢
kgT
Under the condition of non-degeneracy (8.133) gets transform to the well-known
form as states already.

where ng =

8.3 Brief Review of Simulation and Experimental Results

The experimental aspect of the effective mass is very wide and it is not possible
to highlight even the major developments in a single chapter. For the purpose of
condensed presentation the experimental aspect of the effective mass for different
technologically important materials are given below.

Using (1.2) of Chap. 1, the density-of-states effective mass for bulk specimens of
nonlinear optical materials and n-Cd3 As; can, respectively be expressed as

h? _ _
mh = ?(12713) 23(Eg,)~1/3

3
x [Efl (Er,)V/ f2(Er,)y (ER,).y (Er,) — (v (Eg,))*?
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Fig. 8.5 Plot of concentration dependence of the density-of-states effective mass in bulk specimens
of n-Cd3As; by using (8.134) where the circular points exhibit the experimental results as given in
[155]

, F3(Eg,) fi(Eg,)
Lf{(Ep,)/ f2(Er,) + %V(ﬁ(&ﬁfzwn»fﬂ. (8.134)

Using (8.134) and (8.4) and the energy band constants of n-Cd3z As, from Table 1.1
of Chap.1, the plot of the density-of-states effective mass as a function of electron
concentration in bulk specimens of n-CdzAs; (which is an example of tetragonal
material, the conduction electrons of which obey the generalized energy-wave vec-
tor dispersion relation for nonlinear optical compounds as formulated in ((1.2) of
Chap. 1) is shown in Fig.8.5, where the circular points exhibit the experimental
result [155]. It appears from the Fig.8.5 that the density-of-states effective mass
in bulk specimens of n-type Cadmium Arsenide increases with increasing electron
concentration in the whole range of the carrier degeneracy as considered here and
the theoretical plot is in good agreement with the experimental data as given in the
above reference. It is worth remarking to note that the generalized theoretical for-
mulation of the EEM for different materials, defined by the respective carrier energy
spectrum, as formulated in Appendices together with the open research problem as
given there and the consequent experimental verification in each case will constitute
very important experimental study in this particular arena.

The EEM in GaN, As|_,/GaAs quantum wells (QWs) has been investigated, and
detected by cyclotron resonance technique by P. N. Hai et al. [156]. The values
of EEM are 0.12mq and 0.19m( which are directly determined for the 70-A-thick
QWs with N composition of 1.2 % and 2.0 %, respectively. This sizable increase in
the EEM is consistent with the earlier theoretical predictions based on the strong
interaction of the lowest conduction band states with the upper lying band states or
impurity band induced by the incorporation of N. DiVincenzo et al. [157] formulated
the self-consistent effective mass theory for intralayer screening in graphite interca-
lation compounds. The effective mass approximation (EMA) differential equations
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appropriate for impurities in a graphite host are constructed and are used to solve
self-consistently for the screening response surrounding a single intercalant atom.
The screening cloud is found to have a very slow algebraic decay with a character-
istic length of 0.38 nm which is due to both the semimetallic and two dimensional
character of graphite. The transferred charge in alkali-metal-graphite intercalation
compounds is distributed nearly homogeneously on a carbon plane.

Perlin et al. [158] performed infrared reflectivity and Hall effect measurements on
highly conducting n-type GaN (n &~ 6 x 10'° cm?) bulk crystals grown by the high-
pressure high-temperature method for the purpose of the experimental determination
of the EEM of GaN. Values of electron-plasma frequency and free-electron concen-
tration were determined for each sample of the set of seven crystals. It enabled them to
calculate the perpendicular EEM in the wurtzite structure of GaN as m* = 0.22+0.02
mo and the effects of nonparabolicity together with the difference between parallel
and perpendicular components of the effective mass are small and do not exceed the
experimental error. The EEM has been determined by magnetophotoluminescence
in as-grown and hydrogenated GaAsj_,N, samples for a wide range of nitrogen
concentrations (from x < 0.01% to x = 1.78 %) by the group of Masia et al. [159].
A modified k - p model, which takes into account hybridization effects between N
cluster states and the conduction band reproduces quantitatively the experimental
me values up to x < 0.6 %. Experimental and theoretical evidence is provided for
the N complexes responsible for the nonmonotonic and initially puzzling composi-
tional dependence of the EEM. Sewall et al. [160] investigated the experimental tests
of EEM and atomistic approaches to quantum dot electronic structure. The overall
symmetry of the envelope functions for the four lowest energy excitonic states in col-
loidal CdSe quantum dots are assigned using excitonic state-resolved pump/probe
spectroscopy.

G.E. Smith [161] performed the experimental determination of the EEM’s in
Bismuth-Antimony alloy. It was found that the EEM’s in BigsSbs are smaller by about
a factor of two than that of pure Bi and the hole masses are essentially unchanged.
SdH investigations on n-InP are presented by the group of Schneider et al. [162] and
EEM as a function of carrier concentration has been determined. The experiments
were carried out with bulk and liquid phase epitactically grown material and carrier
concentrations between 1o = 10 m~ and 10?> m—3 within the ranges of temper-
ature between 2—77 K and magnetic field B = 22 Tesla. The experimental result
agrees very well the theoretical relations. The values of the EEM in Cd3As, were
obtained from low temperature SdH, magneto-seeback and Hall measurements by
Caron et al. [163]. The theoretical estimation of the variation of the energy gap at I'
as a function of temperature and pressure have been obtained. There is a band rever-
sal in Cd3_yZn,As> and Cd3zAs,P>_, alloys. Bhattacharya et al. [164] evaluated
the EEM in compound semiconductor films of CdS,Tej_, and CdS,Se;_, which
showed bowing phenomena similar to those for optical bandgaps for the above alloy
films.

B. Slomski et al. [165] has investigated the in-plane EEM of quantum well states in
thin Pb films on a Bi reconstructed Si (111) surface by angle-resolved photoemission
spectroscopy. It is found that this EEM is a factor of 3 lower than the unusually high
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values reported for Pb films grown on a Pb reconstructed Si (111) surface. Through a
quantitative low-energy electron diffraction analysis the change in EEM as a function
of coverage and for the different interfaces is linked to a change of about 2 % in the
in-plane lattice constant. To corroborate this correlation, density functional theory
calculations are performed on freestanding Pb slabs with different in-plane lattice
constants. These calculations show an anomalous dependence of the EEM on the
lattice constant including a change of sign for values close to the lattice constant of
Si (111). This unexpected relation is due to a combination of reduced orbital overlap
of the 6pz states and altered hybridization between the 6pz and the 6pxy derived
quantum well states. Furthermore, it is shown by core-level spectroscopy that the Pb
films are structurally and temporally stable at temperatures below 100 K.

The EEM’s for spin-up and spin-down electrons of a partially spin-polarized
Fermi liquid are theoretically different as proposed by L.M. Wei et al. [166]. They
extracted the spin-up and spin-down EEM’s from magneto transport measurements
at different temperatures for a 2D electron gas in an In ¢ 65Gag 35As/Ingso Alp.4g
As quantum well exhibiting zero-field spin splitting. Two analytical methods are
used, one involving the simultaneous fitting of fast Fourier transform (FFT) spectra
and the other involving inverse FFT (IFFT) analysis. Both methods confirm that the
EEM’s for spin-up and spin-down are different, consistent with theoretical expecta-
tions. The group of Karra et al. [167] performed Cyclotron-resonance measurements
for wide (100-300nm) modulation-doped Al,Ga;_,As graded parabolic quantum
wells for electron areal densities 10°/cm?-2.5x10''/cm?. A clear dependence of
the cyclotron frequency on Nj is observed in the extreme quantum limit which is
understood in terms of alloy effects. Self-consistent calculations that include the x
dependence of the local effective mass and exchange—correlation effects in a local
density approximation are in quantitative agreement with the measurements for high
densities. At low densities a pinning of the cyclotron frequency is observed that is
not predicted by the model.

RoBner et al. [168] reported the dependence of the effective masses on hole
density in remotely doped strained Ge layers on relaxed Sig3Geg; buffers with
sheet densities from 2.9x10!'" ecm™2 to 1.9x10'> cm~2. The masses have been deter-
mined using temperature dependent Shubnikov—de Haas oscillations. No noticeable
dependence of the mass on the magnetic field has been found. The extrapolated
G point effective mass has been found to be 0.080 times the free electron mass.
From the measured data the variation of the mass with kinetic energy and the shape
of the topmost heavy hole subband have been calculated. The results are in good
agreement with theoretical predictions. The determination of the EEM of the two-
dimensional electron gas (2DEG) and nonparabolicity effects in modulation-doped
Ing.65Gag 35As/Ing 50 Alg 48 As single quantum well were investigated by T. M. Kim
et al. [169] by performing temperature-dependent Shubnikov-de Haas (SdH) mea-
surements and FFT and the IFFT analyses. The result of the angular dependent SdH
measurements clearly demonstrated the occupation of two subbands in the quantum
wells by the 2DEGs. The EEM’s determined from temperature-dependent S£dH
measurements and the FFT and IFFT analyses were 0.05869 and 0.05385m, for the
first and zeroth subbands, respectively. The EEM’s obtained from the S-dH mea-
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surements and the FFT and IFFT analyses measurements qualitatively satisfy the
nonparabolicity behavior in the Ing 65Gag 35As single quantum well.

The nonparabolic EEM’s in InGaAs quantum wells (QWSs), sandwiched by thick
InAlAs barriers of 0.52-eV band offset, were studied by N. Kotera et al. [170] in
normal and parallel directions to the QW plane. The normal mass was experimentally
obtained by observing interband photocurrent spectra of undoped InGaAs multi-QW
structures. The mass increased by more than 50 % from the bulk band edge mass,
0.041 my. Electron eigenenergies were calculated in QWs based on Kane’s three-level
band theory. The calculated ‘apparent’ normal mass as a function of kinetic energy
up to 0.5eV agreed well with experiments. The parallel mass in n-type modulation-
doped InGaAs QWs was experimentally obtained by pulse cyclotron resonance up
to 100 T. The analysis in quantizing magnetic fields, modified for 2D QWs, fits well
with cyclotron energy. The ‘apparent’ parallel mass as a function of energy was
obtained consistently. Interband optical transitions of Ing 53Gag 47As/Ing 52 Alg.43As
multi-quantum wells have been observed Tanaka et al. [171] in photocurrent spectra.
Interband transitions were assigned from the spectral structures. Eigenenergies of
conduction band were not proportional to the square of quantum numbers. An EEM
normal to the quantum well plane was 50’ %-heavier than the bulk bandedge mass
of InGaAs.

The electronic structures of Bi; Tez and Sb,Tes were computed and related to the
thermoelectric properties of BixTes and SbyTes superlattices by Wang and Cagin
[172]. They found that the similarity of the electronic structure of the two materials
permits the Bir Te3 and SbyTes superlattices inherit high band edge degeneracy, and
thus have high electrical conductivity. From the calculated EEM along the super-
lattice growth direction, they infer that presence of more SbyTesthan Bi;Tes in the
superlattice leads to a smaller EEM and enhanced carrier mobility. Furthermore,
their results suggest that external tensile strain parallel to the interface may further
improve the thermoelectric performance of the BixTez and SbyTes superlattices.
Engineered energy-wave-vector dispersion relations of either electrons or holes hold
great promise for realizing fundamental oscillators at terahertz frequencies if they
contain sections with a negative EEM at appropriate energy levels as suggested by
Gribnikov et al. [173], although, neither bulk semiconductor materials nor quantum
wells or quantum wires exhibit such negative EEM sections in the dispersion relations
at favorable energy levels. Therefore, the novel use of a nanostructure is proposed to
create an NEM section of electrons at suitable energy levels. This structure utilizes
a heterojunction with a QW channel grown perpendicular to a superlattice. At small
values of the wave vector k; the electron wave function ¥ resides mostly in the QW
channel and, as k increases, ¥ extends further into the superlattice. This spread of
¥ induces an negative EEM section in the energy dispersion relation and several
combinations of suitable material systems are considered by them.

Chen and Bajaj [174] have shown that the nonparabolicity and spin splitting
enhance the EEM appreciably in a quantum wire. In bulk materials, these effects are
usually small since electrons are near the conduction band edges. In nanowires,
strong confinement puts the electrons far from the conduction-band edge giv-
ing rise to large nonparabolicity effects. They derive a simple expression for the
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EEM parallel to the transport direction in the nanowire, taking into account the
band nonparabolicity, anisotropy, and spin splitting. They apply their formalism to
GaAs/Aly3Gag7Asnanowires with the conclusion that the parallel mass could be
50 % more than the bulk value for a wire width of 50 A. The space dependence of
the EEM in nanowires results in the appearance of an additional momentum depen-
dent potential has been considered by Borovitskaya and Shur [175]. If the EEM is
anisotropic (as in silicon or germanium), this effect strongly depends on the trans-
verse mass for a given sub-band and they consider Si-Ge p-type nanowires, where
the impact ionization by holes should be determined by the impact ionization rates
in silicon and not in SiGe. Dacal et al. [176] investigated the conductance of 3D
semiconductor nano wires considering different EEM’s in the contacts and in the
channel. They have shown that, with respect to the case with equal masses in the
channel and in the contacts, the amplitude of the conductance oscillations increases
if the EEM in the channel is larger and decreases if it is smaller than in the contacts.
Effects on the density of probability are also considered and these effects of the
EEM discontinuity are explained in terms of kinetic confinement and transmission
coefficient modulation. Candidate materials for strained-layer EEM superlattices are
investigated by Sasaki [177], and sixteen combinations of III-V semiconductor lay-
ers are presented. Among these Ing g9Gag 31 As/InP possesses the smallest lattice
mismatch, 1.1 %. The electronic subband of Ing g0Gag 31 As/InP layers is calculated
through the Kronig-Penny approach. The energy gap obtained for the conduction
band of composite semiconductors is, for example, 52mcV for one period of alter-
nating layer thickness of 40A/27A. Maan et al. [178] investigated the far infrared
radiation transmission of a highly doped InAs-GaSb superlattice as a function of
the magnetic field, exhibiting helicon wave propagation. The EEM and the carrier
density are determined from an analysis of the results as a function of frequency to be
0.082 +0.005m0 and 3.4 x 10'® cm™3. The carrier density is equal to that obtained
from Hall measurements. The EEM is significantly higher than the value expected
from the InAs conduction band nonparabolicity (0.063m).

Synthesizing single-walled carbon nanotubes (SWCNTSs) with accurate structural
control has been widely acknowledged as an exceedingly complex task culminating
in the realization of CNT devices with uncertain electronic behavior. El Shabrawy
et al. [179] applied a statistical approach in predicting the SWCNT band gap and
EEM variation for typical uncertainties associated with the geometrical structure.
They carried out the same by proposing a simulation-efficient analytical model which
evaluates the bandgap of an isolated SWCNT with a specified diameter and chirality.
They developed an SWCNT EEM model, which is applicable to CNTs of any chiral-
ity and diameters >1nm. A Monte Carlo method has been adopted to simulate the
bandgap and effective mass variation for a selection of structural parameter distrib-
utions. They established analytical expressions that separately specify the bandgap
and EEM variability with respect to the CNT mean diameter and standard deviation
which offer insight from a theoretical perspective on the optimization of diameter-
related process parameters with the aim of suppressing bandgap and effective mass
variation.
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Effective electron mass in nanowires of Si and Ge

The study of energy band constants of Silicon nanowire (SiNW) in past few years
has emerged as a building block for the next generation nano-electronic devices as
it can accommodate multiple gate transistor architecture with excellent electrostatic
integrity. As the experimental extraction of its various energy band constants at the
nanoscale regime is an extremely challenging task, it is customary to adopt atomic
level simulations, the results of which are at par with the experimental data.

In recent years, there have been extensive investigations on the variation of band
gap and EEM along different channel orientations in both relaxed [180-183] and
strained [184—186] respectively. The physics of SiNWs, are based on numerical
methods like the first principle, pseudo-potential, semi-empirical, etc. Although there
exists a large number of empirical relations of the band gap in relaxed SINW [183,
187], there is a growing demand for the development of a physics based analytical
model to standardize different energy band constants which particularly demands its
application in TCAD software for predicting different electrical characteristics of
novel devices like SINW-based relaxed tunnel field effect transistors and its strained
counterpart [188].

The main challenge involved in the formulation of the analytical method for these
two quantities (i.e., the band gap and the EEM’s) comes from the transition of the
indirect energy band gap of bulk Si near X point of the Brillouin zone to direct
energy band gap at ['point of SINW. Due to this, the direct energy band gap starts
depending on the conduction subband EEM’s at the I"point, which in turn depends
on the conduction and valance subband energies. This conduction subband energy
is again dependent on the subband EEM’s, thus making it a coupled relation. This
results in a parallel variation of all the constants of an intrinsic Si which are entangled
to each other.

An intrinsic relaxed bulk Si crystal consists of six equivalent conduction band
minima located symmetrically along (100) at a distance of approximately kg =
0.815Q2x / ap) from the I" point along X line in a 3D Brillioun zone, in which ag is
the relaxed lattice constant of Si. The non-parabolic energy dispersion relation of the
bulk conduction band electrons can then be written following the EMA formalism
as [189]

2 R2k2 Rk
E(1 4+ E) = — (k; —ko)* + —% + —2 (8.135)
2my 2my 2m;

in which m; = 0.91mg and m; = 0.19m are the longitudinal and transverse EEM’s
respectively and o = 0.5(eV)~! [189]. At this point, it should be noted that this
relation is isotropic in (001) plane and fails to describe the conduction band wrapping
and the subband structure correctly in (110) oriented Si films [189, 190].

In particular, to correlate a complete analytical conduction band dispersion rela-
tion with the advanced empirical tight binding model like sp>d®s*, a two band degen-
erate k.p model should be used where a second conduction band close to the first
conduction band must be taken into account, the two of which becomes degenerate
just at the X point [189] as exhibited in Fig. 8.6. These are generally called as primed
(Ay) and unprimed (A1) bands respectively.
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The band structure of relaxed SINW whose electron transport is along [107]
direction is an involved task. The sp>d®s* model exhibits the fact that the symmetry
between the six equivalent conduction band minima is now displaced due to the
difference in the effective mass as a result of the quantum confinement of the carriers
along y and z directions. Because of this, the six conduction band valleys are now
grouped in four in-plane (A4) along y and z directions and two out of plane (Aj)
valleys along x direction (Fig.8.7). The former is projected at the I point of the
1D Brillioun zone, while the later is zone folded to k, = j:0.377r/a0 [180, 191].
Due to the lighter EEM in the A4 valley, the corresponding energy minimum is
at a lower position than that of the A; valley, thus making the NW to be a direct
band gap. This chronological transition of the energy-wave vector minimum from
an indirect to a direct band gap as a result of the corresponding change from the bulk
Si structure to its [107] NW depends not only on the effective masses at the band
minima but also onto the subband energies along the confinement directions. This
phenomena is, however, not exhibited in the simple non-parabolic EMA relation as
given in (8.134), but since the electron energy in a state of the art MOSFET is of few
tenths of electron-volts [192] within which the energy diagram from (8.134) and the
sp3dss* are almost same (Fig. 8.6) [189], one can use (8.134) safely for a simplified
analytical solution of the band gap and EEM without affecting the electron transport
mechanism.

As seen from Fig.8.8, (a) represents a schematic diagram of a [107] oriented
SiNW, the atomistic cross-sectional view along y and z of which is exhibited in (b).
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Fig. 8.7 E(k) plot for a 3-nm [107] rectangular wire exhibiting the conduction band valleys at
I"(direct band gap) and oft-I"points (in direct band gap), where Ef; is the source Fermi level. The
valley splitting is clearly exhibited using the sp3d®s* model [180]

This has been carried out using the Atomistix Tool Kit (ATK) simulator [193] after
a cleaved [107] fully relaxed atomic configured SiNW, the dangling bonds on the
Si surface are sp> passivated with hydrogen atoms to dissolve any surface states
in the band gap region [194]. The nearest Si—Si and Si—H bond lengths have been
considered to be 0.235nm and 0.152 nm respectively [195]. For the band structure
computation, the semi-empirical extended Huckel method has been instead of the
usual ATK-Density Functional Theory (DFT) method. This has been used due to two
main reasons: first, the DFT calculation does not provide a good estimation of the
energy band gap and second, the extended Huckel approach is more computationally
efficient with a simultaneous good convergence [196]. The Huckel basis set used for
the computations were Cerda Silicon (GW Diamond) [197] and Hoffman Hydrogen
having a vacuum energy level of —7.67eV and OeV respectively with a Wolfsberg
weighting scheme. The tolerance parameter being 10-5 with a maximum steps of 100
and a Pulay mixer algorithm [198] were used as the iteration control parameters. In
addition, the k-point sampling of 1 x 1 x 11 grid were used with a mesh cut-off energy
of 20 Hatree. Figure 8.8c exhibits the energy band structure of the [107] SiNW for
a square cross-section of width 1.5nm. It can be seen from (c) that using the Hiickel
basis set, the lifting of the valley degeneracy due to the difference in EEM is not
captured which has already been stated earlier. As the valley splitting energy even
in room temperature is relatively small in [107] and [1, 2] SINWSs, one can ignore
its contribution to the modification of the carrier transport mechanism [180, 182,
199]. Further, as the band gap for a 1.5nm width SINW exhibited as a direct one,
one can ignore this lifting of the valley degeneracy for the present relaxed case and
can concentrate on the lowest valley at the I" point which essentially determines the
band gap.

Figure 8.9 exhibits the variation of [107] relaxed SINW band gap as function
of wire width of equal thickness as exhibited by [194]. The effect of the carrier
confinement along the [1, 2] and [12] directions lead to the discrete subband energy
levels for both the electrons and holes. In case of valance bands, the heavy hole



8.3 Brief Review of Simulation and Experimental Results 411

(a)
2
X

,_I/ - d=d,=d,=

y i 1.5 nm
E o Er
@
=
u

.
' et

Fig. 8.8 a Schematic diagram of [107] oriented channel of SINW with cross-sectional thicknesses
dy and d, along y and z directions respectively. b ATK built an sp®> Hydrogen passivated (100)
SiNW plane. ¢ Energy band structure exhibiting a direct band gap in a [107] Hydrogen passivated
SiNW of square cross-sectional area using ATK builder which uses an extended Hiickel approach
[194]
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Fig. 8.9 Plot of the band gap using in relaxed [107] SiNW as function of lateral wire width
dy = d, = d. The symbols are the simulation data which has been obtained by using the ATK
by passivating the Si atoms at the surface of the wire using Hydrogen atoms as shown in Fig. 8.6b
followed by the use of semi-empirical extended Hiickel method. The line exhibits the analytical
result [194]

(HH) and light hole (LH) forms separate energy subband levels due to the difference
in their energies. Using this, the first subband of HH in a 1.5x1.5nm? SiNW is
lies about 0.1 eV below compared to that of the maxima point of the HH in case of
bulk. However, for the LH subband, this is about 2.2eV below the same. Thus, the
energy band gap difference in case of SINW should be considered from the lowest
conduction subband to the lowest HH subband. Figure 8.10 exhibits the variations
of the transport and subband effective mass as a function of wire width. It appears
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Fig. 8.10 Analytical plot of the electron a transport effective mass and b subband effective mass
as function of wire thickness for [107] oriented SINW. The symbol represents the extracted data
from the energy band structure obtained using ATK simulation [194]

that transport effective mass decreases with the increase in width and as d — oo it
decreases tends to its non-parabolic bulk value which is 0.32 my. In case of subband
effective mass, the variation is divided into two parts. Roughly below 5 nm, it appears
that both m, and m; increase with decrease in wire thickness. This is due to the
reason that the contribution of conduction band wave vector at the band minima
approaches the I" point. As the thickness increases, both the subband masses starts
increasing and reaches their corresponding non-parabolic bulk effective mass which
is precisely 0.38 mg and 1.81 mg respectively. It should be noted that these bulk values
are measured with respect to the valance band maxima at I" point. If the origin is
shifted to kg, the value of these masses converges to 0.19 mg and 0.91 mg respectively.

Using this approach, the maximum error between the analytical formulation and
simulation data are within 3 %. The main reason behind this error is due to the
complete negligence of the spin—orbit interaction between the split-off holes and
HH/LH in our model. The other part of the error comes due to the omission of the
At large wire cross-sections, the [107] and [118] located at I" approach the bulk
m; = 0.19mg. The mass of the [119] wire is larger because it combines m; and
m; = 0.89m. As the wire dimensions shrink, the mass of the [118] wire is reduced,
whereas the masses of the other two wires increase. (c¢) Off-I"valley masses for the
cases of the [118] and [107] wires. Both increase as the dimensions decrease. (The
bulk mass values for every orientation are denoted.) The percentage change denoted
is the change in the effective masses between the 1.5-nm mass value (mostly scaled
wire) and the 7.1-nm wire [180].
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Fig. 8.11 (100) Silicon nanowires with different cross-sectional shapes—Square, Circular, and
Triangular [200]

Interaction of the plane waves of Hydrogen on the Si-atoms due to which the
band structure of ultra-small thin SINW gets affected. The analytical model in [194]
can also be compared to the band gap of circular SINW under identical conditions.
For other different cross-sectional shapes like circular and triangular [107] SINW as
shown in Fig.8.11 following Sajjad et al. [200], the band gap in Fig.8.12 exhibits
almost zero deviations from each other when plotted against the cross-sectional
area, whereas, if plotted against cross-sectional dimension, both the transport effec-
tive mass and band gap exhibits slight deviations [4, 182]. An excellent simulation
observation has been studied by Lundstrom group [192] as shown in Fig. 8.13.

The EEM’s m,, mje, and m have been obtained as explained in [201] from the
longitudinal and the transverse masses of the bulk crystal energy dispersion by using
the values 0.916m( and 0.19mq for the A valleys of the bulk silicon, 1.6m( and
0.093m for the A valleys, 0.888mq and 0.194m for the A valleys, and 0.05m¢ for
the I" valley of the bulk Germanium [202] (Fig. 8.14).

The validity of the parabolic EMA, which is almost universally used to describe
the size and bias-induced quantization in n-MOSFETsS has been exhibited by Steen,
et al. [202]. In particular, the EMA results has been compared with a full-band
quantization approach based on the linear combination of bulk bands (LCBB) and
has been studied for the most relevant quantities for the modeling of the mobility
and of the on-current of the devices, namely, the minima of the 2-D subbands, the
transport masses, and the density-of-states function of carriers. The study deals with
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Fig. 8.12 Bandgap variation with a dimension, b cross-section area [200]

Table 8.1 Parameters of the EMA model for parameters of the EMA model for different materials
and quantization directions

Quantization directions Valley ny AE [eV] Mie Mie my
Si (001) Doy o6 2 0 0.190 0.190 0.916
Dy 19 4 0 0.190 0.916 0.190
(110) Do 315 4 0 0.190 0.553 0.315
Dy.19 2 0 0.190 0.916 0.190
(111) Dy 268 6 0 0.190 0.674 0.268
Ge (110) Loos 2 0 0.093 0.595 0.25
Lo.093 2 0 0.093 1.60 0.093
Dy 318 4 0.189 0.194 0.541 0.318
Dy 194 2 0.189 0.194 0.888 0.194
o268 1 0.145 0.05 0.05 0.05

For each valley, n, is the degeneracy, m_ is the quantization mass, and m|e and m are the longi-
tudinal and transverse mass of the elliptic energy dispersion around the minimum (in unit of m),
respectively and A E denotes the energy split between the valleys in the bulk semiconductor

both silicon and germanium n-MOSFETs with different crystal orientations and
shows that, in most cases, the validity of the EMA is quite satisfactory. The LCBB
approach is then used to calculate the values of the effective masses that help to
improve the EMA accuracy. Table 8.1 exhibits the summary of the EEM at different
valleys of Si and Ge.
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Fig. 8.13 a The three equivalent pairs of ellipsoids in the conduction band of Si are described
by the longitudinal and transverse masses. Combining these masses results in the quantization
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Fig.8.14 Transverse (m) and longitudinal (m.) effective masses versus the semiconductor thick-
ness for some valleys of the Si (100) and the Ge (110) inversion layers. a Si (100), D 19, m; Ge
(110), Lo.2s, mye; Si (110), Do 315, mte. b Ge(110), Lo 25.m1e; Ge (110), Do 318, m¢e, in which D
and L are the Aand L valleys respectively and the subscripts denotes the minima value of the wave
vector space at those valleys

These effective masses exhibit a nonnegligible dependence on semiconductor
thickness Tsct and deviate from the values reported in Table 8.1 for very small
semiconductor thicknesses [202]. The effect of uniaxial strain and quantum con-
finement on the effective mass of electrons and holes and band gap of Ge NWs has
been demonstrated using the DFT-based first-principles simulations by Logan et al.
[203] along the [118] direction as shown in Figs.8.15, 8.16, 8.17, 8.18, and 8.19.
The diameters of the nanowires being studied are up to 50 A. As shown in [203], the
Ge [118] nanowires possess a direct band gap, in contrast to the nature of an indirect
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Fig. 8.15 Snapshots of Ge nanowires with size of 18 A (rop) and 30 A (botrom) viewed from the
wire cross-section (left) and the side (eight contiguous simulation cells along the axial z direction).
Blue dots are Ge atoms, white are H atoms [203]

band gap in bulk. They discovered that the band gap and the effective masses of
charge carries can be modulated by applying uniaxial strain to the nanowires. These
strain modulations are size dependent. For a smaller wire ~12 A, the band gap is
almost a linear function of strain; compressive strain increases the gap while tensile
strain reduces the gap. For a larger wire (~20-50 A), the variation in the band gap
with respect to strain shows nearly parabolic behavior: compressive strain beyond
—1 % also reduces the gap. In addition, their studies showed that strain affects effec-
tive masses of the electron and hole very differently. The effective mass of the hole
increases with a tensile strain while the EEM increases with a compressive strain.
Our results suggested both strain and size can be used to tune the band structures
of nanowires, which may help in design of future nanoelectronic devices. We also
discussed our results by applying the tight-binding model.

Bulk Ge is an indirect band gap material with the conduction band minima located
at L along the [119] direction. However, if the Ge nanowires are along the [118]
direction, they exhibits a direct band gap at I'[203]. In Fig.8.16, Logan et al. pre-
sented the band structures of Ge nanowires with varied diameters. It clearly demon-
strates a direct band gap—both Conduction band minimum (CBM) and valance band
maximum (VBM) located at I".

It is also interesting to observe that the band structures are modulated by strain.
For example, in Fig.8.17a, we compared the band structures of the Ge nanowire
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Fig. 8.16 The band structures of Ge nanowires with varied diameter along [118] direction. They
show a direct band gap located at I' [203]
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Fig. 8.17 a The band structures of Ge [118] nanowires with a diameter of 18 A, with and without
strain. Black solid lines are the band structure without strain; red dashed lines are under tensile
uniaxial strain; blue dotted lines are under compressive uniaxial strain. The energy variations of the
bottom of the conduction band b and the top of the valence band ¢ in Ge nanowires of 18 A with
uniaxial strain. The uniaxial strain has a dominant effect of shifting energies on the conduction and
valence bands near I" [203]

with a diameter of 18 A, with and without strain. Black solid lines are the band struc-
ture without strain; dashed lines are under tensile uniaxial strain; dotted lines are
under compressive uniaxial strain. Generally, strain has dominant effects on the band
structure near I' (i.e., energy is shifted evidently with strain, see the dashed
pink ovals), while it has negligible effects on wave vectors far away from I’
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Fig.8.19 The change in effective masses of the electron (/eff) and hole (right) are plotted as a func-
tion of uniaxial strain for nanowires at different size. It shows that the effective mass of the electron
increases rapidly with compressive uniaxial strain, while decreasing mildly with tensile strain.
Although, the effective mass of the hole reduces under compression, while enhanced dramatically
with tensile strain [203]

(i.e., minimal energy shift under strain, see the solid green ovals). Most electronic
properties are related to the bottom of the conduction band and the top of the valence
band. Therefore, the energy variation in these two edges was particularly singled
out and presented in Figs. 8.17b, c. From those two figures we can clearly see that
strain modifies the energies of CBE and VBE dramatically near I, and has negligible
energy shifts on wave vectors far away from I".

The influence of strain on bulk Si crystal has different effects along different
directions and has been extensively studied in past few decades [204, 205]. Recently
using the density functional theory, the effect of both uniaxial and biaxial strain on
the band structure of a [107] oriented SINW has been shown, where the modification
of the positions of already lifted A4 and A, valleys due to the quantum confinement
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Fig. 8.20 Band alignment of the lowest conduction and valance subband using the EMA formula-
tion under an application of a biaxial strain on [107] SINW for a tensile and b compressive strain.
A and A4 in relaxed SiNW. The average of the HH and LH subband (as shown by the horizontal
dotted line below lowest HH subband (Ep (HH)) is assumed to coincide with the Ep (HH) for both
the tensile and compressive cases due to higher effective mass of the former [194]

effects has been considered [186]. For the present quantitative analysis, we take into
consideration of a uniaxial and hydrostatic strain along [107] and [1, 2] directions
respectively. Figure 8.20 schematically exhibits this situation on the conduction and
valance bands for both tensile (Fig. 8.20a) and compressive (Fig. 8.20b) strains on a
[107] oriented SINW. In case of a bulk Si, an application of a tensile hydrostatic strain
shifts up the average energy of the conduction band with respect to its six equivalent
valleys. In addition, a uniaxial strain along [107] splits this conduction band into
A, and Ag4. The position of these valleys about their bulk relaxed value, however,
strictly depends whether the strain is tensile or compressive. For example, in a (110)
uniaxial tensile strain, the position of A4 is higher in energy than A; [206]. As shown
in Fig. 8.20a for a relaxed SiNW, the two valleys A4 (lower in energy) and A, (higher
in energy) are the set of subbands as aresult of ky = n,7 /dy and k. = n_m /d.. The
average energy of these set of subbands under a tensile hydrostatic strain along [1,
2] shifts up by the same amount. The presence of a uniaxial compressive strain along
[107] direction makes A4 to be higher in energy than that of A, [186] as shown in
Fig.8.20b. In case of valance bands, the HH and LH split as subband energy levels
in which a tensile hydrostatic strain shifts up their respective average position, while
a uniaxial tensile strain shifts up the HH subbands over LH subbands (Fig.8.20a)
[194].

The effect of strain on the band gap in [107] SINW has been exhibited in Fig. 8.21
[194]. It appears that band gap decreases as the uniaxial tensile and compressive
strain increases, the rate of decrement are different due to the difference in subband
energies in both the regime. It should be noted that an increase in the tensile strain
decreases the energy of A4 subbands while the HH subbands shifts toward the valance
band maxima position of the bulk Si. This marks a reduction of the band gap as the
tensile strain increases. In case of uniaxial compressive strain, it is the A, which
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Fig. 8.21 Band gap as function of uniaxial strain along [107] direction and biaxial strain for [107]
oriented SINW. Symbols are the results of the ATK simulations [194]

shifts down and LH shifts up, thus decreasing the band gap. The scenario changes
when the uniaxial strain is combined with the [1, 2] hydrostatic strain. Under this
biaxial strain condition, the band gap increases along the tensile strain while decreases
with compressive strain at a rate much faster than that of the corresponding uniaxial
case. The sp’d’s* model predicts the direct to indirect transition of the band gap
in a (100) uniaxially strained SiNW occurring inside the compressive zone [186,
207]. The reason for this is the asymmetric splitting of the six equivalent valleys in
bulk Si into A4 and A, due to the quantum confinement of the carriers in SINW.
Since A4 lies lower at the Ajpoint axis than A, which lies at higher energy at the
off-I" axis, it takes certain amount of compressive strain to bring the A, subband
(at the same off-I"axis) lower than the A4. Since this confinement splitting is not
arrested in EMA formalism, Fig. 8.21 exhibits that the band gap from the beginning
of the compressive strain starts becoming indirect. An increase in the tensile strain
decreases the A4 subband at the same I" axis, whereby the band gap remains direct
always.

The variation of the transport and subband effective mass as function of strain
has been exhibited in Fig.8.22 It appears from Fig. 8.22a that with the increase in
both uniaxial tensile and compressive strain, the transport effective mass follows
the same rate of decrement as exhibited by its corresponding band gap variation. It
appears that the subband effective mass along the z direction has larger variation due
to the application of the hydrostatic strain than that of the y direction. Further above
0 strain, the effective masses are due to the direct band gap and below O strain, the
effective masses are due to the indirect band gap [194], a reason which has already
been stated earlier.

In this monograph, we have studied the EEM in quantum confined nonlinear
optical, III-V, II-VI, GaP, Ge, PtSb,, stressed materials, Bismuth, GaSb, IV-VI,
Tellurium, I1I-V, BiyTes, III-V, I[I-VI, IV=VI, and HgTe/CdTe quantum wire super-
lattices with graded interfaces, I1I-V, II-VI, IV-VI, and HgTe/CdTe effective mass
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Fig. 8.22 Plot of the electron a transport effective mass and b subband effective mass as function of
uniaxial and biaxial strain. The symbol represents the extracted data from the energy band structure
obtained using ATK simulation [194]

superlattices under magnetic quantization, quantum confined effective mass super-
lattices, and superlattices of optoelectronic materials under intense electric field and
light waves with graded interfaces on the basis of appropriate carrier energy spectra.
Finally it may be noted that although we have considered the EEM in a plethora
of quantized materials having different band structures theoretically, the detailed
experimental works are still needed for an in-depth study of the EEM from such
low-dimensional systems as functions of externally controllable quantities which,
in turn, will add new physical phenomenon in the regime of the electron motion in
nanostructured materials and related topics.

8.4 Open Research Problem

(R8.1) Investigate experimentally the EEM for all the systems as discussed in this
monograph.
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Chapter 9
Conclusion and Future Research

This monograph deals with the EEM in various types of low-dimensional materials,
effective mass superlattices, and superlattices with graded interfaces under different
physical conditions, in the presence of quantizing magnetic field and external photo
excitation and also under strong electric field altering profoundly the basic band
structures which, in turn, generate pin-pointed knowledge regarding EEM in various
semiconductors and their nanostructures having different carrier energy spectra. The
in-depth experimental investigations covering the whole spectrum of solid state and
allied science in general are extremely important to uncover the underlying physics
and the related mathematics. The EEM is basically a motion-dependent phenomena
and we have formulated the simplified expressions of EEM for few quantized struc-
tures together with the fact that our investigations are based on the simplified k.p
formalism of solid state science without incorporating the advanced field theoretic
techniques. In spite of such constraints, the role of band structure behind the curtain,
which generates, in turn, new concepts are discussed throughout the text.

Finally, we present the last set of open research problems in this particular area
of materials science.

(R9.1) Investigate the EEM in the presence of a quantizing magnetic field under
exponential, Kane, Halperin, Lax and Bonch-Bruevich band tails [1] for
all the problems of this monograph of all the materials whose unperturbed
carrier energy spectra are defined in Chap. 1 by including spin and broad-
ening effects.

(R9.2) Investigate all the appropriate problems after proper modifications intro-
ducing new theoretical formalisms for the problems as defined in (R8.1) for
negative refractive index, macro molecular, nitride, and organic materials.

(R9.3) Investigate all the appropriate problems of this monograph for all types of
quantum-confined p-InSb, p-CuCl, and semiconductors having diamond
structure valence bands whose dispersion relations of the carriers in bulk
materials are given by Cunningham [2], Yekimov et. al. [3] and Roman
et. al. [4], respectively.

S. Bhattacharya and K. P. Ghatak, Effective Electron Mass in Low-Dimensional 427
Semiconductors, Springer Series in Materials Science 167,
DOI: 10.1007/978-3-642-31248-9_9, © Springer-Verlag Berlin Heidelberg 2013


http://dx.doi.org/10.1007/978-3-642-31248-9_1

428 9 Conclusion and Future Research

(R9.4) Investigate the influence of defect traps and surface states separately on
the EEM, for all the appropriate problems of all the chapters after proper
modifications

(R9.5) Investigate the EEM under the condition of nonequilibrium of the carrier
states for all the appropriate problems of this monograph.

(R9.6) Investigate the EEM for all the appropriate problems of this monograph
for the corresponding p-type semiconductors and their nanostructures.

(R9.7) Investigate the EEM for all the appropriate problems of this monograph
for all types of semiconductors and their nanostructures under mixed con-
duction in the presence of strain.

(R9.8) Investigate the EEM for all the appropriate problems of this monograph
for all types of semiconductors and their nanostructures in the presence of
hot electron effects.

(R9.9) Investigate the EEM for all the appropriate problems of this monograph for
all types of semiconductors and their nanostructures for nonlinear charge
transport.

(R9.10) Investigate the EEM for all the appropriate problems of this monograph
for all types of semiconductors and their nanostructures in the presence of
strain in an arbitrary direction.

(R9.11) Investigate all the appropriate problems of this monograph for semicon-
ductor clathrates in the presence of strain.

(R9.12) Investigate all the appropriate problems of this monograph for quasi-
crystalline materials in the presence of strain.

(R9.13) Investigate all the appropriate problems of this monograph for strongly
correlated electron systems in the presence of strain.

(R9.14) Investigate EEM for all the appropriate problems of this monograph for
all types of transition metal silicides in the presence of strain.

(R9.15) Investigate EEM for all the appropriate problems of this monograph for
all types of electrically conducting organic materials in the presence of
strain.

(R9.16) Investigate EEM for all the appropriate problems of this monograph for
all types of functionally graded materials in the presence of strain.

(R9.17) Investigate the EEM in all types of available super conductors in the pres-
ence of strain.

(R9.18) Investigate all the appropriate problems of this chapter in the presence of
arbitrarily oriented photon field and strain.

(R9.19) Investigate all the appropriate problems of this monograph for paramag-
netic semiconductors in the presence of strain.

(R9.20) Investigate all the appropriate problems of this monograph for Boron
Carbides in the presence of strain.

(R9.21) Investigate all the appropriate problems of this monograph for all types of
Argyrodites in the presence of strain.

(R9.22) Investigate all the appropriate problems of this monograph for layered
cobalt oxides and complex chalcogenide compounds in the presence of
strain.
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(R9.23) Investigate all the appropriate problems of this monograph for all types of
nanotubes in the presence of strain.

(R9.24) Investigate all the appropriate problems of this monograph for various
types of half-Heusler compounds in the presence of strain.

(R9.25) Investigate all the appropriate problems of this monograph for various
types of pentatellurides in the presence of strain.

(R9.26) Investigate all the appropriate problems of this monograph for Bi,Tes-
Sb,Tes superlattices in the presence of strain.

(R9.27) Investigate the influence of temperature-dependent energy band constants
for all the appropriate problems of this monograph.

(R9.28) Investigate EEM for Ag;_,,Cu(y)TITe for different appropriate physical
conditions as discussed in this monograph in the presence of strain.

(R9.29) Investigate EEM for p-type SiGe under different appropriate physical con-
ditions as discussed in this monograph in the presence of strain.

(R9.30) Investigate EEM for different metallic alloys under different appropriate
physical conditions as discussed in this monograph in the presence of
strain.

(R9.31) Investigate EEM for different intermetallic compounds under different
appropriate physical conditions as discussed in this monograph in the pres-
ence of strain.

(R9.32) Investigate EEM for GaN under different appropriate physical conditions
as discussed in this monograph in the presence of strain.

(R9.33) Investigate EEM for different disordered conductors under different appro-
priate physical conditions as discussed in this monograph in the presence
of strain.

(R9.34) Investigate EEM for various semimetals under different appropriate phys-
ical conditions as discussed in this monograph in the presence of strain.

(R9.35) Investigate all the appropriate problems of this monograph for Bi; Tes_, Se,
and Biy_,Sb, Tes respectively in the presence of strain.

(R9.36) Investigate all the appropriate problems of this monograph for all types of
skutterudites in the presence of strain.

(R9.37) Investigate all the appropriate problems of this monograph in the presence
of crossed electric and quantizing magnetic fields.

(R9.38) Investigate all the appropriate problems of this monograph in the presence
of crossed alternating electric and quantizing magnetic fields.

(R9.39) Investigate all the appropriate problems of this monograph in the presence
of crossed electric and alternating quantizing magnetic fields.

(R9.40) Investigate all the appropriate problems of this monograph in the presence
of alternating crossed electric and alternating quantizing magnetic fields.

(R9.41) Investigate all the appropriate problems of this monograph in the presence
of arbitrarily oriented pulsed electric and quantizing magnetic fields.

(R9.42) Investigate all the appropriate problems of this monograph in the presence
of arbitrarily oriented alternating electric and quantizing magnetic fields.
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(R9.43) Investigate all the appropriate problems of this monograph in the presence
of crossed inhomogeneous electric and alternating quantizing magnetic
fields.

(R9.44) Investigate all the appropriate problems of this monograph in the presence
of arbitrarily oriented electric and alternating quantizing magnetic fields
under strain.

(R9.45) Investigate all the appropriate problems of this monograph in the presence
of arbitrarily oriented electric and alternating quantizing magnetic fields
under light waves.

(R9.46) Investigate all the appropriate problems of this monograph in the presence
of arbitrarily oriented pulsed electric and alternating quantizing magnetic
fields under light waves.

(R9.47) Investigate all the appropriate problems of this monograph in the pres-
ence of arbitrarily oriented inhomogeneous electric and pulsed quantizing
magnetic fields in the presence of strain and light waves.

(R9.48) (a) Investigate the EEM for all the problems of this monograph in the
presence of many body effects, strain, and arbitrarily oriented light
waves, respectively.

(b) Investigate the influence of the localization of carriers for all the appro-
priate problems of this monograph.

(c) Investigate all the appropriate problems of this chapter for the Dirac
electron.

(d) Investigate all the problems of this monograph by removing all the phys-
ical and mathematical approximations and establishing the respective
appropriate uniqueness conditions.

The EEM is the consequence of motion-induced phenomena of solid state science
and all the assumptions behind the said phenomena are also applicable to EEM. The
formulation of EEM for all types of semiconductors and their quantum-confined
counterparts after removing all the assumptions is, in general, a challenging problem.
Totally 250 open research problems have been presented in this monograph and we
hope that the readers will not only solve them but also will generate new concepts,
both theoretically and experimentally. Incidentally, we can easily infer how little is
presented and how much more is yet to be investigated in this exciting topic which
is the signature of coexistence of new physics, advanced mathematics combined
with the inner fire for performing creative researches in this context from the young
scientists since like Kikoin [5] we firmly believe that “A young scientist is no good
if his teacher learns nothing from him and gives his teacher nothing to be proud of™.
In the mean time our research interest has been shifted and we are leaving this
particular topic with the hope that (R9.48) alone is sufficient to draw the attention
of the researchers from diverse fields and our readers are in tune with the fact that
“Exposition, criticism, appreciation is the work for second-rate minds” [6].
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Appendix A

The EEM in Compound Semiconductors
and Their Nano-Structures Under
Cross-Fields Configuration

Al.1 Introduction

The influence of crossed electric and quantizing magnetic fields on the transport
properties of semiconductors having various band structures are relatively less
investigated as compared with the corresponding magnetic quantization, although
the cross-fields are fundamental with respect to the addition of new physics and the
related experimental findings. It is well known that in the presence of electric field
(E,) along x-axis and the quantizing magnetic field (B) along z-axis, the dispersion
relations of the conduction electrons in semiconductors become modified and for
which the electron moves in both the z and y directions. The motion along
y-direction is purely due to the presence of E, along x-axis and in the absence of
electric field, the effective electron mass along y-axis tends to infinity which
indicates the fact that the electron motion along y-axis is forbidden. The effective
electron mass of the isotropic, bulk semiconductors having parabolic energy bands
exhibits mass anisotropy in the presence of cross-fields and this anisotropy
depends on the electron energy, the magnetic quantum number, the electric, and
the magnetic fields respectively, although, the effective electron mass along z-axis
is a constant quantity. In 1966, Zawadzki and Lax [1] formulated the electron
dispersion law for ITI-V semiconductors in accordance with the two band model of
Kane under cross-field configuration which generates the interest to study this
particular topic of semiconductor science in general [2-29].

In Sect. A1.2.1 of theoretical background, the EEM in nonlinear optical
materials in the presence of crossed electric and quantizing magnetic fields has
been investigated by formulating the electron dispersion relation. The Sect. A1.2.2
reflects the study of the EEM in III-V, ternary, and quaternary compounds as a
special case of Sect. A1.2.1. In the same section, the well-known result for the
EEM in relatively wide gap materials in the absence of electric field as a limiting
case has been discussed for the purpose of compatibility. The Sect. Al1.2.3
contains the study of the EEM for the II—VI semiconductors in the present case.
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In Sect. A1.2.4, the EEM under cross-field configuration in Bismuth has been
investigated in accordance with the models of the McClure and Choi, the Cohen,
the Lax nonparabolic ellipsoidal, and the parabolic ellipsoidal, respectively. In
Sect. A1.2.5, the study of the EEM in IV-VI materials has been presented. In the
Sect. A1.2.6, the EEM for the stressed Kane type semiconductors has been
investigated. The Sects. A1.2.7, A1.2.8, A1.2.9, A1.2.10, A1.2.11, and A1.2.12
discuss the EEMs’ in ultrathin films of the above semiconductors in the presence
of cross-field configuration, respectively. The last Sect. A1.3 contains the open
research problems.

Al.2 Theoretical Background

Al.2.1 Nonlinear Optical Materials

The (1.2) of Chap. 1 can be expressed as

2 2
UE) =L B

=on T V(E) (AL.1)

where

V= [E(l b {(“Eg)(E*Eg +4)) +5<E+Eg +§Au) ot~ Ai>”
o on e ]

mj(Eg +34) _m(Eg+3A))

s = hkg, M) = ’ - ’
P R ) LT (E A

p; = hk;
and

V(E) = [(E+Eg) <E+Eg +§A|>} {(E+Eg) <E+Eg +§A|>

—1
We know that from electromagnetic theory that,

— —

B=VxA (A1.2)

where, A is the vector potential. In the presence of quantizing magnetic field
B along z direction, the Eq. A1.2 assumes the form
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i ]k
0i-+0j+Bk = © 0 0
R Jy 0z
A, A, A
where z:] and k are orthogonal triads. Thus, we can write
0A;, 0A,
dy 0z
0Ar 04 _ (A1.3)
0z Ox
0A, O0A;
Y _ — B
ox Oy

This particular set of equations is being satisfied for A, =0, A, = Bx and
A, =0.

Therefore, in the presence of the electric field E, along x-axis and the
quantizing magnetic field B along z-axis for the present case following of (Al.1)
one can approximately write,

p2 by — |e|Bx) p?
U(E) + |e|Esip(E) = 2;2 o 2]"413 ) 25(35) (AL.4)
where
p(E) = g l0(E)] = [P
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Let us define the operator 0 as
M, E,p(E)

= (A1.5)

0=—p, + |e|BT —

Eliminating the operator X, between Egs. (A1.4) and (Al.5) the dispersion
relation of the conduction electron in tetragonal semiconductors in the presence of
cross-field configuration is given by

(s Sren) + (B55) - (25) - ()

(AL6)

U(E) =
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le|B
M,
Therefore, the EMMs along z and y directions can, respectively, be expressed as

N
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Epp is the Fermi energy in the presence of cross-field configuration as measured
from the edge of the conduction band in the vertically upward direction in the
absence of any quantization,
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and



Appendix A: The EEM in Compound Semiconductors and Their Nano-Structures 437
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When Ey — 0, m;(Egg, n, Eg, B) — 0o, which is a physically justified result. The
dependence of the EMM along y direction on the Fermi energy, electric field,
magnetic field, and the magnetic quantum number is an intrinsic property of cross-
fields. Another characteristic feature of cross-fields is that various transport
coefficients will be sampled dimension dependent. These conclusions are valid for
even isotropic parabolic energy bands and cross-fields introduce the index
dependent anisotropy in the effective mass.

The formulation of EEM requires the expression of the electron concentration
which can, in general, be written excluding the electron spin as

nm / af” (A1.9)

xTCz

where L, is the sample length along x direction, E; is determined by the equation

I(Ep) =0
where
xi(E)
k.(E)dky (A1.10)
x(E)
in which,
()= D

and
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_ |e|BLy
Tk

Using Eqgs. (A1.6) and (A1.10), we get

xh(E) +xl(E)

_ 2 |By2a(E) 1\ hle|B M E2[p(E))? :
I(E) B g WP(E) U(E) - (I’l +§> M—L—’_ |€|E0pr(E) — #
2 272
— |U(E) - <n+%> h]lZB ,MLESI[;(E)]
(AL.11)

Combining (A1.9) and (A1.11), the electron concentration is given by

2 VB\/E Nmax _ -
ny = (3;’7{%) > [Tai(n, Erg) + Taa(n, Erp)] (A1.12)
* 0/ n=0
where
Tar(n, Ern) = (Ero) U(Erg) — nis MJr\e\EL (E )7%@3)]23/2
41(n, EpB) = p(Exg) FB 2) M, 0LxP\LFB B
M) — (na ) Hels M. E3lp(Ers)’] "
" " 2 ML 2B2 )

s

Ty (n, Eyp) = Z [L(r)Ta1(n, Ers)],

r=1
2r

r o e 0 -
L(r) = 2(ksiT)> (1 — 2!727)¢(2r) B and Epg
2

is the Fermi energy in the present case.

Al.2.2 Special cases for III-V, Ternary, and Quaternary
Materials

(a) Under the conditions 6 =0, Aj=A; =A and mﬁ =m| =m. (ALO)
assumes the form

[k-(E)]”

2 12
1a(8) = (n-+3 Jon + 0 B[]’

Ey
=g kAl (E)} B

C

(A1.13)
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The use of (A1.13) leads to the expressions of the EMMs along z and y directions as

m’ (Exg,n, Eo, B) = m. {{III(EFB)}//‘F m"E%{I”(EF‘;?z} {In (Erm)} ] (A1.14)

* (I = E 2;
my(EFBynvEO’B) - (EO) [{Ill(EFB)},]

‘ 1..<EFB)—(n+;)hwo+wE%[{lzlg(zEm>}’}
: |:[{I11(EFB)},]2_1“(EFB) ( +2)h 0 + B
e (A1.15)

B2

The electron concentration in this case assume the forms

2 vB 2mc Tmax _ B
= SOV AN 1 (0, Eyp) + Tua(n, Evp)] (A1.16)

ny =
T 3L PE, —

where
1 E2 3/2
= me = 12 - ’
[lll(EFB) - (” +§)hwo - 2320 ({111 (Ers) Y] +lel EoLy [{111 (Exs)} |

Tu3(n, Epg) =

_ {1].(&3) - (n+%>hwo _WleTi% [{In(EFB)}/]Z} 3/2} m

s

and T44(I’l7 EFB) = Z [L(r) T43 (n, EFB)]

r=1
(b) Under the condition A > E,, (A1.13) assumes the well-known form [1]

1 Ey “lCE(Z) 2 [ﬁkz(E)]z
E(l+aE)=(n+=|hwy — —hk,(1 +20F) — 14+ 20E) +———
( °E) < 2) “o B )( 2E) 2B ( <) 2m,

(A1.17)

The use of (A1.17) leads to the expressions of the EMMs along z and y directions
as

. _ 2m E3(1 + 20Epg)o
ﬂlZ (EFB,H,E()7B) = Mme |:(1 + ZOCEFB) + 0( B FB) (Allg)
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* (Beport Eo, B) B\> 1 Een(1 + oFrp) N +mL.E§[(1 + 20Epg))
m’, n =(=) ——— S
v (EFB, 1T, £0, Eo) T1 + 20Es] FB FB 3 0 B

y —20
[(l + 2OCEFB)]2

m E3[(1 + 20Egs)]’ Ly 2B
2B2 B2

_ _ 1
Epg(l + aEpg) — (n-l—z)hwo +

(A1.19)

The expressions for ng in this case assume the forms

2 VB / Timax
& Z T45 I’L EFB) + T46(l’l EFB)] (Ale)

3L, nzth
where
B B B 1 B Ez 3/2
T45(n>EFB) = |:EFB(1 + O(EFB) — (n +§>hw0 + ‘€|E0Lx(l +23(EFB) — 2R ( + ZOCEFB) :|
32
_ _ 1 E2 _ o
_ {EFB(I + aFpp) — (n + E) fiwg — n;BZO (1+ 20(EFB)2} [1+ 20Epg] 1
and T46 n, EFB ZL [T45 n, EFB)}
(c) For parabolic energy bands, « — 0 and we can write,
1 k. (E))* 1 (E)\* Eo
E= — |k ———m| = ——hk Al.21
<n+2) o + . M| 3 ( )

Using Eq. (A1.21), the expressions of the EMMSs along y and z directions can be
written as

mi:(EFB7n7E07B) = m (A122)
and
B 2 m EZ
* (T _ - c
my (EFB,YZ,E(),B) = (E_()) l:E]:B — ( 2) ha)o + 232 :| (A123)

The electron concentration in this case can, respectively, be expressed as

kgT
|€|EOLx

o = Mot || 57 [riom) = i) (A124)
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where
Epg— 0, — 1 1 Eo\’
S B B N+ =me (20} —le|EoLy |,
m P n+ o oo +5me| 5 le|Eo
(es-T)
=" =90 EyL,
2 o | + |e|Eo

In the absence of electricfield Ey — O and the application of L’ Hospital’s rule
transforms the (A.24) into the well-known form of electron concentration under
magnetic quantization as given by (4.24b) of Chap. 4.

Al.2.3 II-VI Semiconductors

In the presence of electric field along x-axis and the quantizing magnetic field
B along z-axis, from (1.42) of Chap. 1 we can write

12
. D> by, — |e|B3? p? D> py — |e|Bx)
2m? 2m? 2mH 2m’ 2m’
(A1.25)
where,
Jor/2m’,
D=+
h
Let us define the operator 0 as
—~ Eom*
0 = —py + |e|Bi — “2L (A1.26)
Eliminating X between (A1.25) and (A1.26), one obtains
~ EQ ~ EO “ E() 2 f)z 92 E%m’i éE()
E+—0+—p, — T=== —
B +Bp»‘+<3> Lo o T2 T
a2 02 2k 82
p 0 EOmL p;
- Al1.27
+ 2m’, + 2m’ + 2B * 2m; ( )
L i I
Thus, the electron energy spectrum in this case can be expressed as
ik (E)) _ (Eo
E= E —— | = | = hk Al1.28

where


http://dx.doi.org/10.1007/978-3-642-31248-9_4
http://dx.doi.org/10.1007/978-3-642-31248-9_4
http://dx.doi.org/10.1007/978-3-642-31248-9_4
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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12
1 Elm Elm
Bi(n, Eo) = (n+§>hw02_(2B2 >+D{< )hwoz-i-(sz >} ]
and
_le|B
0 =—;
my

The use of (A1.28) leads to the expressions of the EMMs along z and
y directions as

m} (Egg,n, Eo, B) = mj| (A1.29)
_ B\? _
i B o, B) = (£ ) (B = o, )] (A130)

In this case

Xi = —F—

“Ey . +2D m\} _lelBL
Bh A\2 ) Ty T

(A1.31)
I

Zmﬁ

and k,(E) = —

E
. [E — By(n, Eo) + thky

The (A1.10) for II-VI semiconductors the cross-field configuration assumes the form
Xp \/ﬁ 1
I Ey 2
= / N [E — By(n,Ep) + Fhky} dk,
X1

Therefore,

E):E%EHE Bu(n, Eo) + —hxh}S/Z—{E—B,(n,EO)+%hxl}j

h
(A1.32)

The electron concentration, from (A1.9) can be expressed as

 2g,B\/2my | afo i Zafo
0, 0,

where

E
01 = ﬁl (n,Eo) — thxh
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and
Bl (na EO) o hxl
Substituting
E—Ql E—Hz EFB_BI
X X
T 0 Tkt BT T
and
_ Erg — 0>
Ny kBT )

from (A1.33), we can write

2¢,B, /2m’ Mo | O 3/2 X 31
v ll 3 — _
no = (ksT)?> /[xl exp(xi —13) _/[xz eXp(2 — 1)

3EoL, W’ =) [1+exp(x —n3) 1+exp(x, — )]
(A1.34)
Differentiating both sides of (1.22) with respect to 7, one can write,
x/ exp(x — 1)
rjg+1 —————dx (A1.35)
/ 1 + exp(x — n)]

Using (A1.34) and (A1.35), the electron concentration in this case can be
written as

aB 2mﬁn Tina
(ksT)

olu

™ = e 82 [Fim) = R (AL36)

A.1.2.4 Formulation of EEM in Bi

(a) The McClure and Choi Model

In the presence of an electric field Ey along trigonal-axis (z direction) and the
quantizing magnetic field B along bisectrix axis (y direction) from (1.49), we can
write


http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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444
E(1 4 oE) + |e|Eoz(1 + 2¢E)
_ (B lelB)’ By PPy 3t P
=+t —+——+ 1—-——) -« o
2my 2my,  2my 2m2 m 4moms 4mym,
A2 e B/Z\ ZA%
_ a(px lelB2) By (A1.37)
4m1m2

Let us define the operator 6 as

~ E
0= |e|B§—f)x—m%0(1+2aE) (A1.38)
Eliminating z between (A1.37) and (A1.38), one obtains
£\ 2
E(l+ocE)—|— O(1+20E)0 +=2 (1+2aE)px+m1<Bo> (1 +24E)
~ . 2 v o4 2 p
= 0_+p§ +p_y+p} 1__ + Opr _Opr 0_ pf
2my  2my 2my 2m2 m) dmomly  2my |2my - 2m3
(A1.39)

Y] 2 2
apymi Ej Ey~ 1 ) 2
——— (1 +2aE 0(1 +20E 1+ 2aE
4m232(+a)B(+a)+2mlB(+fx)
Therefore, the required dispersion relation is given by
2
1 [1ky (E)]”  Eo L (Eo
E(1 E) = — |k —_— 1 + 2aE)hk, — —
(1+0E) <n+2) o3 + 2 — (1 +20E) > g
2 4 2
[k, ()] aEO_@) | 2k ()] _a[hkywﬂ

h
1+ 20E)? + 220
X (1+20E)" + 2my m) dmym, 2my

n; 2
( 1) Fiogs — %( 1+ 24E)? (A1.40)

where

When o — 0, from (A1.40), we can write

2 2

1 [k, (E)]”  Eo 1 Eoy

E = —\5 Ok ——my | — Al.41
(n + 2> o3 + T B ky Sm| g ( )

The use of (A1.40) leads to the equations of the EMMs along x and y direction as
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_ B\? o
m;(EFB,n,EO,B) = (E) (] + ZOCEFB) 3
0

_ _ 1 1
X [EFB(I + oFEpg) — (VH— )hwoa +2m1

_ _ B E 2
(1+ ZOCEFB){I + 20Epg + 20my (1 + 20Egg) (ﬁ) }

(’Z) (1 + 2aErp)’

_ _ 1 1 (Ep\* _
— ZOC{EFB(l + OCEFB) — <n+§)hw03 +§m1 (§O> (1 +2O€EFB)2}
(A1.42)
and
- 1| [ha(n,Eps)] Y
m* (Egg,n, Eo,B) =~ | D2 1y (0 E Al.43
(B, n, o, B) 4[2 e~ (. Fr)] (AL43)
where

h4(}’l7 E]:B) = [/’12(1’1 EFB) + 4/’12(ﬂ, EFB)] y

4m2m2 — 1 ocmlE 1 O(EFB my
h 1+ 20E — -—
[ (”+2) e T U )"+ 2my | 2m ( mgﬂ

h (l’l EFB) o 2m2
_ 4 _ _ 1 1 (Epn\’ _
and hz(l’l,EFB) = m2m2 E]:B(l + DCEFB) — <n + 5) hwm + zml <§) (1 + ZO(EFB)Z:|
In this case,
E BL
x(E) = — m};ho (1420E) and x,(E) = Iesz + x/(E) (A1.44)

where, L, is the sample length along z-direction.
The electron concentration in this case can be written as

/ ( @fo>dE (A1.45)

2
znn

in which Ey; is the root of the equation J(Ep;) = 0 where J(E) is given by
X]l(E)

ky(E) dk (A1.46)

x(E)

The term k,(E) in (A1.46) satisfies the following equation
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ky (E) = [—hl(n,E) + VI E) + hs(E)kx] V2 [(h)\/i} (A1.47)

where,

16mym),)\ [E
hs(E) = ( ; 2) B’(l + ZaE)h]
Using (A1.46) and (A1.47), we get,

(E):23_\;§Hh1(n,E)

} [{—hl (n,E) + hy(n, E) Y —{~hi(n, E) + hﬁ(n,E)}W}

hs(n,E)
+ [m] [{—hl(n,E) + h7(n’E)}5/2—{—h1(n,E) n hﬁ(n,E)}S/ZH
(A1.48)
where,
he(n, E) = [ha(n, E) + hs(E)x(E)]'?
and

]’l7(l’l,E) = [l’l4(l’l,E) +X}1(E)]’l5(n,E)]

Combining (A1.45) and (A1.48), the electron concentration in this case can be
written as

o = 7 > [T47(n,Erp) + Tus (n, Ers )] (A1.49)

Ty (n,Eps) = <h1(i’l,§m)> [[fhl (n,Ers) + hy (n,EFB)}%_{—hI (n,Evs) +h6(n7EFB)}%]

(S5
oI

" (#) [ (=1 (n, Brw) + s (1, Ew) ' [ (1, Erw) + o (n, Er) ]

5h5 (}’Z,EFB)

and T43 (I’l7 EFB) = Z L(r) [T47 (}’l, EFB)}

r=1

(b) The Cohen Model

In the presence of an electric field E, along trigonal axis and the quantizing
magnetic field B along bisectrix axis for this case, the (1.65) assumes the form


http://dx.doi.org/10.1007/978-3-642-31248-9_1
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b — le|lB2)* p* oEp: Dp?
E(1+aE)+|e|Eoz(1+2aE):MJF&_i Py

2m 2mz  2my  2mp
X (1 +aE) + %) (A1.50)
4mymb,

Using the same operator 0 as defined by (A1.38) and eliminating Z between the
(A1.50) and (A1.38), one can write

0: P2 E E2m, , 0Ep?
E(l4+oE)=[— 2 ) —Z225 (14 20E) — =2 (1 4+ 20E)"— —2
(1+oE) <2m1+2m3 g Pall20E) = = (14 20E) 2

~2 ~4

P, oapy

2 (1 +aE Al51

+2m2( to )+4m2m’2 ( )

Thus, the electron energy spectrum can be expressed as

1 E, 1 [(E)\? 5

B (ocE[hky(E)]2> 4 [hky(E)]z (14 aE) +

2m, 2my

ocmkyw)r‘H

4mym
(A1.52)

The use of (A1.52) leads to the same expression of EMM along the x direction
as given by (A1.42) for the McClure and Choi model and the EMM along
y direction is given by

_ 1 WS(H,EFB)T
m*,(EFB7n7E0aB) - S|
Y [2\/H5(H,EFB)

1 — [H, (n,EFB)]/] (A1.53)

where

_ 5 _ _ o 4mym,)\ [1 + oF; oF,
Hs(n,Epg) = [H?(EFB) +4H3(n7EFB)}7 H\(E) = ( 2 2){ B FB}

/!
o 2my 2m,

/
4mym,

and Hi3(n,Ep) =

_ _ 1 1 [Ex)* _
|:EFB(1 + aFrg) — (n +E)hw03 +§m1 (%) (1+ 2O€EFB)2 .

The term ky(E) of (A1.52) in this case can be determined from the following
equation

[k (E)]*+ [y () (4’"2’"5) {—“E 1+ ocE}

2 2my

1 EO E%ml 2 4m2m/2
- {E(l +oE) — (n +§)h(uo3 +§hk"(1 +20E) + B (14 20E) — )= 0

(A1.54)
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Therefore, " )
ky(E) = {—HI(E) +\/Hs(n,E) —&-ﬁﬁ(E)kx} (nv2) 1 (A1.55)
where
Ho(E) = 4H4(E)
and

H4(E) = [%h(l + 20¢E)] (@)

The expression of J(E) in this case can be written as

J@F%?Zgg%mm&—ﬁwﬂiﬁﬁﬂ—EWWﬁ
+i%£H@W£%ﬁﬂMWLHEmD—E®HWH
(A1.56)
where

Hy(n,E) = [Hs(n,E) + Ho(E)xi(E)] ",
Hs(n,E) = [ml (n,E)]2+4H3(n,E)],

e|BL

xh(E) = %4’)@([’7),
—E,

x(E) = — %(Hzm)

and Hs(n,E) = [Hs(n, E) + Ho(E)x(E)] .

The expression of the electron concentration for the Cohen model in the present
case is given by

B 281;\/5 Mmax

" =3 oh ; (T4 (n,Epp) + Tar0(n, Ers) ]| (A1.57)
where,
Tl fin) = %Egg {(Fs(n,Evw) — 71 (Ew)) "~ (Fr (0, Ers) — 1 (Er) " |
’ Eul@m% {(F (0, Evw) = v (Erw)) " ~{ (F 0, Erw) — H (Ers)) }°

and T41()(I’l7 EFB) = Z L(}’)T49(I’l, EFB)

r=

—_
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(c) The Lax Model

Under cross-field configuration from the (1.71) of Chap. 1, one can write

. — le|B2)*  P? p?
P ||Z)+_y+L

E(1 4 oF) + |e|E,z(1 + 20F) = o s 2

(A1.58)
Using the same operator 0 as used for McClure and Choi model, we get

E ~ E Eo\?
E(l+ocE)+§0(1+2aE)9+§0(1+2(xE)ﬁx+m1 <B°> (14 20E)°

S ) . o
p; my (Ey » OE Py

= — — = 1+ 20F — (1 4+ 2aE — A1.59

2m1+2m3+2(B>(+a)+B(+a)+2m2 (A1.59)

Therefore, the electron dispersion relation assumes the form

2 2
1 Eo [hk\] ng E() 2
— |k — — (1 4 2aE)hk, — —— | — ] (14 2aF
2)“"’3 p T 2Bkt =5 ) (1 H22E)

E(1+aE) = <n +
(A1.60)
The EMM along x direction in this case is given by (A1.42) and the EMM along

y direction is given by

_ _ Eo\? _
m’ (Erp,n, Eo, B) = my | 1 + 20Epp + 2mloc<§0) (1+ 20¢EFB)1 (A1.61)

From (A1.60), we can write

2my = _
k(E) = Y22 [Gi(n,E) + Ga(E)k)"
where
_ 1 m (Eo\’
G (n,E) = |E(1 +aE) — (n +§>hw03 +71 (§0> (1+ 2ch)2]
_ Eo
and G,(E) = E(l +2aE)h .

Therefore, the integral J(E) in this case assumes the form

J(E) = \/2;"3% ([Go(B)] ' [Gr(n, E) + G (B)un(E)?
— [G2(E)) ' [G1 (1, E) + Ga(E)x(E)) 2 (A1.62)

where,

E
x(E) = —Fo%(l + 20E)


http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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and
e|BL
x(E) = HTZ +x,(E).

The use of (A1.45) and (A1.62), the expression of the electron concentration for
the Lax model in the present case can be written as

2 v /2m Mmax B -
W > [Tari(n, Erg) + Tara(n, Ep)) (A1.63)

n=0

ng =

where

Tara(n,Ern) = (Ga(Brn)]”'(G1 (1 Evn) + GalEra) (B
—[G1(n, Eg) + GZ(EFB)XZ(EFB)]B/ZL

xn(Erp) = (%) +x1(Ers),

—E, B
B %(I—FZOCEFB) and

X](EFB) =

S
Tuiz(n, Erp) = ZL(V)T411(H7EFB) .
r=1

(d) The Parabolic Ellipsoidal model

For this model, the electron dispersion relation for the present case assumes the
form
1 EO hzkz mi EQ 2
E:( —)h B e R e Al.64
nEp s T g o T2 (B (A1.64)
The EMMSs along y and x directions can respectively be expressed as
m;(EpB,n,EO,B) =mp (A165)

(B s) - (£ |5 Do+ 2V (ares)
m n == “An+\ho my (E£o .
x \ZFB, 7t 20, E, FB 5 03 5 2
For this case, the electron concentration assumes the form
gVB‘ /27'cm2 (kBT)3Q Mimax - B
= > [Fip(e) = Fi(e)] (A1.67)

2E\ LR =

my (E 2
(n+1/2)hwos + 71 (;) —|e|EoL11 ,

e = (kBT)il(EFB - 54) and e4 =e3+ |€|E()LZ.

El = (kBT)il(EFB — 53), é3 =
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Al.2.5 IV=-VI Materials

The conduction electrons of IV-VI semiconductors obey the Cohen model of
bismuth and the Egs. (A1.53) and (A1.57) should be used for the electron
concentration and the EEM in this case along with the appropriate change of
energy band constants.

Al.2.6 Stressed Kane Type Semiconductors

The use of (1.98) can be written as
(E—a)ki + (E—m)k; + (E—oa)k; =1hE> —nE* +1E+1,  (AL68)

where

[ 3 b _
o = Eg —Cie— (C_l() +C1)8+§boﬁxx —7084— (\/g/Z)SXde:|,

[ 3 b _
oy = |E, — Cie— (ao+ C1)e —|—§bosxx — ?08 — (ﬁ/z)sxydo} ,

a3

I 3 b
Eg—CIS—(a0+cl)8+§b08zz_?08:|7 h= (3/23%)’

h= (1/233) [6(E, — Cie) +3Ce],
o = (Vo) e - 9 it - 1)~ 235)
and 14 = (1/235) [—3C18(Eg —Ce)” + zcgg}g},

In the presence of quantizing magnetic field B along z direction and the electric
field along x-axis, from (A1.68) one obtains

~ ~ \2
P, by —le|B%)

where
1 1 1 1
M|(E) = 2P(E)’ P(E) = ?(E— ar), M.(E) = 20(E)’ Q(E) = h_z(E_ %),
R(E) E%(E —o3) and ps(E) = [hE® — HhE* + BE +14] .

(A1.70)
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Combining Egs. (A1.69) and (A1.70), we can write

+ R(E)p?

P2 0 MUEE{ps BN} | . Eolps(E)]
2M,(E) ML (E) 5T 0=
Ealps ()0 Eo B z

S s BNy + o ML (E) {5 (BN}

= (A1.71)

= ps(E) +

Therefore, the electron dispersion relation in stressed Kane type semiconductors in
the presence of cross-field configuration can be expressed as

ps(E) = (n+ 12 )haE) + RUE)Ik(E)~ 2 [ps (E)] ik ()
. {MA@E%ZE;S(E»'}Z} (AL72)
where
e B
VM (E)M_(E)

The use of (A1.72) leads to the expressions of EMMs along z and y directions as

o (Era, . Fo.B) = 5 [R(EFBW{R(EFB) [[p5<EFB>}' - (n-+3 ) o By

+ML(EFB)E%[P5§£FB)]/[P5 (Ees))" n {ML(EFB)}Igig [ps(Ern)]'} } (A1.73)
* 2 * N2
— {R(Exs)Y [Ps(EFB) _ (n +%)ha)(EFB) +ML(EFB)E%ng(EFB)} } } }

and

2
m; (Erp,n, Eo, B) = [E%] {[pS(EFB)]/}73

x lps(EFB) — (n+%)ha)(EFB) +ML(EFB)Ei{B[fS(EFB>]/}2]

« [ipsEra? [l By = (-4 Yoy e Ern Sl Een ol
nua <EFB>1’€5B{2@5 E)F]
x| ps(Erp) — (n+%>h0)(EFB) +ML(EFB)E%2§£5(EFB)]/}2H (A174)
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For this case,

—M (E)Eo|ps(Ers))
B b

le|BL,

xl(E) = xh(E) = T +)C[(E) (A175)

The integral I(E)for stressed Kane type semiconductors in the presence of
crossed electric and quantizing magnetic fields assumes the form

x4 (E) E B )T 1/2
[Tﬂn,E)—i—thy] dk,

I(E B
(E) = h,/ Eohi[ps(Ers)]

X](E)
(A1.76)

where

T5(I’l, E) =

2 7 2
ps(E) ~ (n+ 1) oo (E) +ML(E)EOEZJ;(EFB)] ) ] |

From (A1.76), we get,

1 B
1(E) = -
h\/R(E) Eolilps(Exp)]
2 EO E ! 3/2 EO 7 ’ 3/2
X3 Ts(n,E) + B [05(Erg)] hxi(E)]”'"— | Ts5(n, E) + 3 lps(Ees)] ix;(E))
(A1.77)
Therefore, the electron concentration can be written as
2B Mmax _ ~
o = > [Tui3(n, Ers) + Tara(n, Ers)] (A1.78)

3L HEy =]

where

1 3/2

(VREr)) (ps(Erw))

Ty3(n, Epg) = HTS (n, Ers) + % [ps(Ers)] hxy(Ers)

32
7300 Bew) + 52 (B o )| ]

N
and Tyi4(n, Epg) = ZL(r)T413(n,EFB).

r=1



454 Appendix A: The EEM in Compound Semiconductors and Their Nano-Structures

Al.2.7 Ultrathin Films of Nonlinear Optical Materials

The dispersion relation of the conduction electrons in ultrathin films of nonlinear
optical material in the presence of cross-field configuration can be written as

(1 ) () () - (25) - (“525)

(A1.79)

U(E) =

From (A1.79), the EEM along k, direction can be expressed as

2
B 1 R (nm\® M2 p*(em)ER
m (e, Eosm ) = {Eop em)} [(* )”‘“*m(d) ST

efAl EfAl)E2 - 1) . flz (M)z
U'(em) l: efAl {U 232 n+2 oo 2a(ep1) \ d-
2o(em)p (ea1 V2 2 nm\ 2
—U'(e1) — Mio( /Ale em )5 2a2(( )) (d_>
(A1.80)

where ey is the Fermi energy in the present case. It appears then that the EEM is a
function of the Fermi energy, Landau quantum number, size quantum number and the
electric field due to the presence of electric field only. The investigation of the EEM in
this case requires an expression of electron statistics which, in turn, can be written as

g eB Nmax Mzmax
v
nh

F_i1(n
n=0 n,=1 ( Al) (Algl)

el — eal
kgT
positive root of the equation.

() ) )25

where 17,, = , epa1 is the Fermi energy in this case and epy; is the lowest

U(EAI) =

(A1.82)

Al.2.8 Special Cases for Ultrathin Films of III-V, Ternary,
and Quaternary Materials

(a) Under the conditions 6 =0, A=A, =A and ml’“ =m| =m., (A1.79)

assumes the form
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A m.Ej i
1(E) = (n+;)hwo+f (d) =B gy - e L BT

c

(A1.83)
From (A1.83), the EEM assumes the form

. B 2 / meE} " 1), (efar)
my(e/AhEOan:nz) = {m} [{{In(e‘fm) +?0111(61A1)[111(9fm)] } - {ﬁ}

1 B (nn\* mE
X {[11(6fA1) - (n-i—z)hwo _W(é7) +W20[I“(eﬂ“)]2}}

(A1.84)

where

, 1 1 1 1
I, (e =1 (e —+ + -
”( fAl) 11( fAl) Lfm el JrEg 7 +Eg + A e + Eg +%A

,, oy (en)]” ! ! 1
d 1 = | + *
an 11 (e_fAl) |: In (efA1> 11 (efAl) (efAl)Z (EfA] + Eg)z (6fA1 + Eg + A)z

1
(efAl +E, —I-%A)2

The electron concentration is given by

n

B gveB Nmax "lzmax
no === ;;F—I(WAZ) (A1.85)
where 174, = %7 and es; is the lowest positive root of the equation
1 2 (nn\> mE2 [{111(@12)}/]2
1 —(n+-)n e ) Mefo
11(ea2) (” + 2) wo + 2 (dz ) 2B

(b) Two band model of Kane
Under the condition A >> E,, (A1.83) assumes the form

B

W (7n, 2 m. (Ey 2 5
=) —— = (1 +20E Al.
o () 5 (5) et s

1 E
E(1+aE) = <n +2>hwo - —0(1 + 20E)hiky
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EO(IJZ“%)]Z H{(l +2ae_,m).<1 +m;f‘2’>}} - (1+220;ef,“)]

X (1+rxe )e — nJrl ho, fh—z 1T 2+mCE(2)[(1+2ae )}2
A1 ) €fAl 3 0 am, \d. B /Al

m; (e_fAhE07n7nz) =

(A1.87)
The electron concentration is given by
gveB Mmax zmax
no Z—ZZFA(”IM) (A1.88)
mh
n=0 n,=1
where 1,43 = efAlk;Tm and e43 is the lowest positive root of the equation
B

(1 + oiess) + NV g + W (mne\*_me (Eo 2(1+2oc )2
e (5 = n - —— | —= e
A3 = 2)7 " ome \ d. 2 \B 3 (A1.89)

(c) Parabolic Energy Bands

The dispersion relation, the EEM, and the electron statistics for this model
under this condition « — O can be written as

1 Eo 1w (mn\® me (Eo\’
E=(n+=)hoo— Lpk, 4 - (M) e (Z0 A1.90
<"+2) "B y+2mc(dz 2 \B (A1.90)
. Eo\ ’ 1 B (an\* me (E)\*
m., (efA17E07”7”z) = <§> el — <n +§)ﬁwo - om, <d_z +7 B
(A1.91)
gveB Mmax "zmax
mo =58 S () (A1.92)
n=0 n,=1
where 17, = %7 and e,y is given by

eas = n+1h(u—|—h2 e 2_@ @2
A 2)7 " 2m, \ d. 2 \B (A1.93)
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A.1.2.9 Ultrathin Films of II-VI Materials

The dispersion relation in this case in ultrathin films of II-VI semiconductors can

be written as
242
E = (p,(n,Ep)) + <M> - (ﬂhky) (A1.94)

The EEM can be expressed as

W) (A1.95)

-2
my (egar, Eo,n,nz) = <%> [EfAl — (Bi(n, Eo)) — <[ 2mi

The electron concentration per unit area in this case assumes the form

Mmax zmax

eB
o =228 "NFE L () (A1.96)
mh n=0 n,=1
where 1,5 = %;T% and e4s is determined from the equation
nn, /d.)* i
eas = (By(n, Eo)) + <%> (A1.97)
il

A.1.2.10 The Formulation of EEM in Ultrathin Films
of Bismuth

(a) The McClure and Choi model

The electron dispersion law in this case assumes the form

2 2
E(1 4 0E) = (n + %)hwog +W - %(1 + 20E)hk, — %ml <%> (14 20E)*
[}‘1(7'611},/611),)}2 m oc[h(nny/dy)]4 oc[h(nny/dy)}z 1
+ 2m2 ok (1 B I’YTZ) * 4m2m’2 B 2m2 (n * i) FlUJ03
_afn(mn,/d) ' (1 + 20E)? (A1.98)

4m232
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The EEM can be expressed from (A1.98) as

1

Eo\ ° _ fi(mn, /d,)]?
mj(efAl,Eo,n,ny) = (—O> (1 + 20(6/A|) ! |:efA](1 + ocefAl) — <n + E)hwog — M

B 2m3
ﬁ [emar (1 + oepar) — (n +%>hw03 - W*%ml (%)2

s e ()

2m2 2

alh(any/d,))* | ali(mn, /)] (1 2)pm + ol /) 5

(] + 20(€f;41)2:|

4mym), 2my 4m,B?
E)\® ,[h(mny/d)*  (E\*  [Hi(nn,/d,))? _
+ 1+ 20m, Lo +oc2[ (mny/dy)] m Lo ﬂx[ (mny/dy)] 17’"7,2 (1 + 20ep01) 1
B my B 2my ), k

(A1.99)

The electron concentration per unit area in this case assumes the form

Mmax "zmax

eB
o :%ZZF_I(%) (A1.100)
n=0 n,=1

where 17,4 = 24— and e, is the lowest positive root of the equation

[fi(mny /d,)] > (@

1 2
exs(1 + enc) = (”*5)“"”sz B> (1 +21e46)°

N [h(nny/dY)]Z dess (1 B @) N 06[75(7my/dy)]4 B oc[h(nny/dy)]z

2my m 4mymy 2my

2
1 a[h(mny/dy)] " m E} 2
X <n + 5) hawos — 4y B2 (1 + 20(6A6) (Al.lOZ)

(b) The Cohen Model

The electron dispersion law in this case assumes the form

E(1 +oE) = an Bo ) 4 2umyik, — 1 E°21 20E)?
( +a)— n+§ Cl)()?,*f( —+ O() Xfiml § ( —+ O{)
n [h(n”y/d.V)]zaE A “[h(””y/dy)]4 4 [h(nny/dy)]2
2my ml dmym 2my

(A1.102)
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The EEM can be expressed from (A1.102) as

Eo\~? _ 1 fi(nny/d,)]?
my (e, Eo,n,ny) = <—0> (1 + 20ep) 2 [efAl(l + oepn) — <ﬂ + 5)%(003 = M

B 2
[ ] B = (4
(A1.103)

The electron concentration per unit area in this case assumes the form

n

g eB Mmax "lzmax
ng = vh ZZFA(”IM) (A1.104)
T n=0 n,=1
where 174, = efA,'(;Te” and e47 is the lowest positive root of the equation

1 1 [E)\*
ea7(1+ aeqr) = (n + —) hwoez — =my (—) (1 + 20eq7)?

2 2 B
[7i(mny/dy)] : _m\ | [h(nny/dy)]4 [7i(mny/dy) | ?
+ 2my wear <1 m’2> * 4mym, + 2my (A1.04)

(c) The Lax Model

The electron dispersion law in this case assumes the form

1 E
E(l + OCE) = <n +§)hwo3 —;O(l + 20(E)hkx

2 ny/dy)]’
—%m1 (?) (1+20¢E)2+W

(A1.106)

The EEM can be expressed from (A1.106) as

[h(n”y/dy)]z

2m2

-2
E _ 1
m;(efAl,Eo,n,ny) = <§0> (1 + 20(6fA1) 2 |:efAl(1 + cxefA.) — <n +§> hw03 —

1 (E\’
+—m1 (—0> (1-‘1‘20{6];41)2

E 2
2 B 1+ 2oep; + 20my (f) (1 + Zue_fAl)

Eo\’ 20 1
X 1+20€€fA| + 20im <EO> (1 +20€€fA1) — UTOW |:EfA1(l + :xefAl) — <n+§>h0)03
[A(mnyJd)) 1 (Eo\? )
7#+5m1 ; (1+20€€_/A1)

(A1.107)
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The electron concentration per unit area in this case assumes the form where

Nag = % and e4g is the lowest positive root of the equation
B
1 1 (Eo\? ii(nn, /d,)]?
S
(A1.109)

(d) The Parabolic Ellipsoidal Model

The dispersion relation, the EEM and the electron statistics for this model under
this condition @ — O can be written as

1 E() hz nn; 2 my Eo 2
E = = hwyg — —hky + — | — | ——= (= Al1.110
<”+2) g y+2m2<dz) 2 \B ( )
-2 2 2 2
* Eo 1 /3 nn; my (Ey
wtenton = (5) o oo o £ (2) 2 3)]
(AL.111)
gveB Nmax "zmax
o =" Y Foaliiag) (AL.112)
n n=0 n,=1
where 1,49 = GALT A9 and ea9 1S given by
kgT
1 2 (an\® m (Eo\?
= — A — =) (=
o <n+2> w0+2m2<dz> 2 <B) (A1.113)

Al.2.11 Ultrathin Films of IV-VI Materials

The carriers of IV-VI materials obey the Cohen model. Thus, all the results of the
Cohen model as derived earlier are perfectly valid for IV-VI materials with the
change in energy band constants.

A1.2.12 Ultrathin Films of Stressed Semiconductors

The electron dispersion relation in stressed Kane type semiconductors in the
presence of cross-field configuration can be expressed as
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ps(E) = (n+ 1) no(E) + R(E) [hnnz/dz]z—% [os (E)]'Tik, (E)
— (ML(E)E{[ps(E))'}’ /2B%) (Al.114)

The EEM can be written as

2
my (ear, Eo, n,n) = #&em])} {{{Pgl(%l) —(”+%)h[w(€fm)]/

R (en1) (i /)" [

"

Ps (efAl)‘| (ps; (efm)

ps(em)

—(n+ E)h[w(efm)] - R(efAl)(hnnz/dZ)2)}]

X (1)51 (ea1) — (” + %)h[w(effﬂ)] - R(efA1)<h””z/dz)2>

(A1.115)
The surface electron concentration is given by
no :%nmﬂ;ﬁnl(m) (AL.116)
where 14,9 = % and e4o is the lowest positive root of the equation
ps(eain) = (” + l/z)h@(eAIO) + R(earo)[Amn. /d.]?
— (Mo (ea10)EX{[ps(earo))'} /2B?) (AL.117)

A1.3 Open Research Problems

R.A1.1 Investigate the EEM in the presence of an arbitrarily oriented quantizing
magnetic and crossed electric fields in tetragonal semiconductors by
including broadening and the electron spin. Study all the special cases
for III-V, ternary, and quaternary materials in this context.

R.A1.2 Investigate the EEMs for all models of Bi, IV-VI, II-VI, and stressed
Kane type compounds in the presence of an arbitrarily oriented
quantizing magnetic and crossed electric fields by including broadening
and electron spin.

R.A1.3 Investigate the EEM for all the materials as stated in R.2.1 of Chap. 2 in
the presence of an arbitrarily oriented quantizing magnetic and crossed
electric fields by including broadening and electron spin.


http://dx.doi.org/10.1007/978-3-642-31248-9_2
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Appendix B
The EEM in Heavily Doped Compound
Semiconductors

B1.1 Introduction

It is well known that the band tails are being formed in the forbidden zone of
heavily doped semiconductors and can be explained by the overlapping of the
impurity band with the conduction and valence bands [30]. Kane [31, 32] and
Bonch Bruevich [33] have independently derived the theory of band tailing for
semiconductors having unperturbed parabolic energy bands. Kane’s model [31,
32] was used to explain the experimental results on tunneling [34] and the optical
absorption edges [35, 36] in this context. Halperin and Lax [37] developed a model
for band tailing applicable only to the deep tailing states. Although Kane’s concept
is often used in the literature for the investigation of band tailing [38, 39], it may
be noted that this model [31, 32, 40] suffers from serious assumptions in the sense
that the local impurity potential is assumed to be small and slowly varying in space
coordinates [39]. In this respect, the local impurity potential may be assumed to be
a constant. In order to avoid these approximations, we have developed in this
chapter the electron energy spectra for heavily doped semiconductors for studying
the EEM based on the concept of the variation of the kinetic energy [30, 39] of the
electron with the local point in space coordinates. This kinetic energy is then
averaged over the entire region of variation using a Gaussian type potential energy.
On the basis of the E—k dispersion relation, we have obtained the electron statistics
for different heavily doped materials for the purpose of numerical computation of
the respective EEMs. It may be noted that, a more general treatment of many-body
theory for the density-of-states of heavily doped semiconductors merges with one-
electron theory under macroscopic conditions [30]. Also, the experimental results
for the Fermi energy and others are the average effect of this macroscopic case. So,
the present treatment of the one-electron system is more applicable to the

S. Bhattacharya and K. P. Ghatak, Effective Electron Mass in Low-Dimensional 463
Semiconductors, Springer Series in Materials Science 167,
DOI: 10.1007/978-3-642-31248-9, © Springer-Verlag Berlin Heidelberg 2013
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experimental point-of-view and it is also easy to understand the overall effect in
such a case [41]. In a heavily doped semiconductor, each impurity atom is
surrounded by the electrons, assuming a regular distribution of atoms, and it is
screened independently [38, 40, 42].

The interaction energy between electrons and impurities is known as the
impurity screening potential. This energy is determined by the inter-impurity
distance and the screening radius, which is known as the screening length. The
screening radius grows with the electron concentration and the effective mass.
Furthermore, these entities are important for heavily doped materials in
characterizing the semiconductor properties [43, 44] and the devices [38, 45].
The works on Fermi energy and the screening length in an n-type GaAs have
already been initiated in the literature [46-48], based on Kane’s model.
Incidentally, the limitations of Kane’s model [39], as mentioned above, are also
present in their studies.

At this point, it may be noted that many band tail models are proposed using the
Gaussian distribution of the impurity potential variation [31, 32, 39]. In this
chapter, we have used the Gaussian band tails to obtain the exact E-k dispersion
relations for heavily doped tetragonal, III-V, II-VI, IV-VI, and stressed Kane type
compounds. Our method is not at al related with the density-of-states (DOS)
technique as used in the aforementioned works. From the electron energy
spectrum, one can obtain the DOS but the DOS technique, as used in the literature
cannot provide the E—k dispersion relation. Therefore, our study is more
fundamental than those in the existing literature, because the Boltzmann
transport equation, which controls the study of the charge transport properties of
the semiconductor devices, can be solved if and only if the E—k dispersion relation
is known. We wish to note that the Gaussian function for the impurity potential
distribution has been used by many authors. It has been widely used since 1963
when Kane first proposed it. We will also use the Gaussian distribution for the
present study.

In Sect. B1.2.1, of the theoretical background, the EEM in heavily doped
tetragonal materials has been investigated. The Sect. B1.2.2 contains the results
for heavily doped III-V, ternary, and quaternary compounds whose undoped
conduction electrons obeys the three and the two band models of Kane together
with parabolic energy bands and they form the special cases of Sect. B1.2.1. The
Sects. B1.2.3, B1.2.4 and B1.2.5 contain the study of the EEM for heavily doped
II-VI, IV-VI and stressed Kane type semiconductors, respectively. The last Sect.
B1.3 contains the open research problems.
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B1.2 Theoretical Background

B1.2.1 Study of the EEM in Heavily Doped Tetragonal
Materials Forming Gaussian Band Tails

The generalized unperturbed electron energy spectrum for the bulk specimens of
the tetragonal materials in the absence of any doping can be expressed following
(1.2) of Chap. 1 as

k2 (bye )\ P2 [E@E+1)(bE+1) ab 2
L (=)= —OE+ = (AT = A]
T (bL c|>2mj (cyE+1) * < [ +9( I i)}

I
_(? ﬂ@ (RN [ (e [(o, AT-ALY o
(9) C” (CHE-i-l) (2m’i> <bLC) 2+ 6AH OCHE+1
(o [Ai-A ] Bl

where

2
b= 1/(E + A, = 1/(Eg +§AL), b= 1/(E,+A.),

2
e 1/(Eg+§A|> and o= 1/E,.

The Gaussian distribution F(V) of the impurity potential is given by [31, 32]

F(V) = (nng) _l/zexp(—vz/ng) (B1.2)

where, 7, is the impurity scattering potential. It appears from (B1.2) that the
variance parameter Mg is not equal to zero, but the mean value is zero. Further, the
impurities are assumed to be uncorrelated and the band mixing effect has been
neglected in this simplified theoretical formalism.

We have to average the Kinetic energy in the order to obtain the E-k dispersion

relation in tetragonal materials including the band tailing effect. Using the (B1.1)
and (B1.2), we get
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[’in: / F(V)dV] ¥ [(Qﬂ%é F(V)dV]

B (E = V)[(E = V) + 1] [by(E = V) + 1]
-1/ e E V)41 Fva

+ﬂ[5/(E—V) (v )dV+9(Aﬁ A%) /F(V)dv}
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(B1.3) can be rewritten as [49-53]

h2k2 b 27,2
L1+ (L) S5 )

2mH bicy)2m}
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where
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B r F(V)dv
(o) = /[oc(E—V)H] (B1.8)

—00
Let us substitute £ — V = x and x/ng = 1y, we get from (B1.5)

oo

I(1) = (eXp(—E2/H§)/\/— /exp + (2Et0/n,) | dro

0

Thus,

(1) = (B1.9)

2

1 +Erf(E/11g)]

From (B1.7), one can write

16)= (1n/7) [ (&= Vyexp(-V [ipyav

E
2

E
1
(1 + Erf(E/n,)] — - / Vexp(—Ez/nz) dav
\/ ng —00
After computing this simple integration, one obtains thus,

104) = neexp(~E /) (2vm) "+ (14 Bif (B /n,)) = o(En) - (B1.10)

From (B1.8), we can write

a) 1 /E exp(—vz/,ﬁ)dv (B111)
o) = .
op ) PE-V)H
1
hen, V — 400, ———— . 0and (—Vz/z) 0: therefore, usi
when, V — +o00 WE V)7 1] — 0 and exp n) — erefore, using

(B1.11) one can write
/ exp Vz/ng)dV
/m’lg [0E+1—aV]

The (B1.12) can be expressed as

(B1.12)

(o) = (1/om,/) / exp(—)(u—1)"'dr (B1.13)
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where, Y =t and u = (”“E).
VI o

It is well known that [54, 55]
W(Z) = (i/n) / (Z — 1) exp(—1*)dr (B1.14)

in which i = v/—1 and Z is, in general, a complex number. We also know [54, 55],

W(Z) = exp(—Z*)Erfe(—iZ) (B1.15)
where
Erfe(Z) =1 - Erf(Z)
Thus
Erfe(—iu) = 1 — Erf(—iu)
Since,
Erf(—iu) = —Erf (i)
Therefore,
Erfe(—iu) = 1 + Erf (iu).
Thus,

I(o) = [—iv/m/am,]| exp(—u®)[1 + Erf (iu)] (B1.16)
We also know that [54]

42
eX

Erf(x +iy) = Erf(x) + (an) {(1 — cos(2xy)) + isin(2xy) +=¢ ZGXP r*/4)

(PZ + 4)C2

X [fyp(x,3) + igp(x,y) + &(x,y)]
(B1.17)

where

fr(x,¥) = [2x — 2x cosh(py) cos(2xy) + p sinh(py) sin(2xy)],
gp(x,y) = [2x cosh(py) sin(2xy) + p sinh(py) cos(2xy)],
le(x, y)| & 107"\ Exf (x + iy)|

Substituting x = 0 and y = u in (B1.17), one obtains,

Erf(iu) = (%) 3 {eXp( Ll )smh(pu } (B1.18)

p=1
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Therefore, one can write

() = Coi (%, E, ny) — iDo1 (2, E, 1) (B1.19)
where
2 >, [exp(—p?/4) }
C 7l’j7 = |—————| € S h
21 (o E, 1) ng\/ﬁ] xp(— LZL{ inh(pu)
and

Dy (o, E, i) = [gexp(—uz)] .

8

The (B1.19) has both real and imaginary parts, and therefore I(«) is complex,
which can also be prove by using the method of analytic continuation. The integral
I; (cH) in (B1.6) can be written as

L) = (%)I(S)Jr (ac'wc’—c_ab> 4 )+cl”(1 —Cill) <1 —i—)m)
_ {Ci (1 _Cﬁ> (1 _ZZ_”|>](C)} (B.1.20)

1(5) = / (E — V)2 E(V)dV (B1.21)

where

From (B1.21), one can write

E E E
-V -V -V?
exp dV —2F Vexp dv + VZexp| —— |dV
2
”g ”g Mg

—00 —00 700

I(5) = ! |:E2

2
TH’]g

The evaluations of the component integrals lead us to write
nE —E? 1 ( ) 2)
I(5) === — — 2E =00(E B1.22

Thus, combining the aforementioned equations, /3 (cH)can be expressed as

L(c)) = Axi (E,n,) + iBai (E, ) (B1.23)

E
1+ Erf| =
n

8

where
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e[ [en () i) () )]

Mg exp(—Ez/ré)

ocy + bHC” — ocb|] E
+ | ———— | =1+ Ef(E/n)] +
: 2 1 2V
LA VAN Y Y,
+CH <1 C) (1 C> 2 [+ Ef (E/n)

e (1202w S ]

1 +CHE ﬁ o bH )
——| and le(Eﬂ? = I——|(1-— exp(—uy).
|| ) = dn ¢ |

Therefore, the combination of all the appropriate equations together with the
algebraic manipulations lead to the dispersion relation of the conduction electrons
of heavily doped tetragonal materials forming Gaussian band tails as

n*k? h’k?

Zm‘*‘ T21 (E7 ng) 2ij22 (E’ ng) ( )

where T (E,n,) and Tx(E,n,) have both real and complex parts and they are
given by

T3 (Ea ’1g)
Ts (E ) ng)

M@@EW@@+M@@LB@%E[

Gai (E, ng) = C“ngﬁexp(—u%) Z; {exp( pp / ) smh(pul)},
T5(E.n,) = 5 [+ Erf (E/n,)],
Tou (E, 1,
T28<E, ng) = TS((E’ :g)) ,
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Hyi (), E,n,) = [%exp( 2)]7

T22(E7 ng) = [T29 (E’ ”g) + iT30(E’ ng)]?
Too (E, 0 ) In (E’ ng)T25 (E’ ng) — Ty (E’ ”g)T% (E7 ”g)
g [(Pas(En)) + (Tas(Eon))]

b 1 E b s [A2—A2
| €L [|CL I 1
AN v B[ =)+ (L) [ 24 ==
Klu C) 2 ’f<’7g> (lu C|) (2 64|
byc 5 A — A7
x o Cor (o, E, 1) + ( bj) (2 Gor (o, E, ) |

Coi (o, E,n,) = [ xp(—u?) lz exp(—p*/4 )smh(pu)H
(0 E ) = \/-ng )

_(bpcs H
T (E = Dy (o, E
26( 7”Ig) (b c><2 6AH x 21 ”g

Lhues (o Hay (e, E,
b, \2 6AH 21 (), E. ).

b

Tos(E,n,)

and

T4 (E’ ”g)T25 (E’ ng) + T3 (E’ ng) T26 (E7 77g) '
[(Tas(E.n,))+ (T (E.m,) )]

From (B1.24), it appears that the energy spectrum in heavily doped tetragonal
semiconductors is complex. The complex nature of the electron dispersion law in
heavily doped semiconductors occurs from the existence of the essential poles in
the corresponding undoped electron energy spectrum. It may be noted that the
complex band structures have already been studied for bulk semiconductors and
superlattices without heavy doping [56, 57] and bears no relationship with the
complex electron dispersion law as indicated by (B1.24). The physical picture
behind the formulation of the complex energy spectrum in heavily doped
tetragonal semiconductors is the interaction of the impurity atoms in the tails with
the splitting constants of the valance bands. More is the interaction causes more
prominence of the complex part than the other case. When there is no heavy
doping, 1, — 0, and there is no interaction of the impurity atoms in the tails with
the spin—orbit constants. As a result, there exist no complex energy spectrum and
(B1.24) gets converted into (B1.2) when 5, — 0. Besides, the complex spectra are
not related to same evanescent modes in the band tails and the conduction bands.

T30 (E7 ng)
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The transverse and the longitudinal EEMs at the Fermi energy (Er,) of heavily
doped tetragonal materials can be expressed respectively as

m*L (EF/mng) = mi{T29 (E7 ”g) }, E—Ey (B125)
and
mj, (Er,,ng) = mj{Ta7 (E, ny) }"E:EI__ (B1.26)
In the absence of band tailing effects 7, — 0 and we get
i (5r,0) = 2 [ENAEY O (B) (8127
{(E)}
and
oy = 2 [ E EY (0 (E)HYs (B)Y
m”(EF, 0) = 5 {1113(E)}2 | (B1.28)

Comparing the aforementioned equations, one can infer that the effective
masses exist in the forbidden zone, which is impossible without the effect of band
tailing. For undoped semiconductors, the effective mass in the band gap is infinity.
The density-of-states function is given by

2gym’ \ [2mj|

NHD (E’ ’/Ig) = 37'52h3

Ri1(E,n,) cos [y, (E,n,)] (B1.29)

where

T29(E7 ng){x(E7 ﬂg)}/
2, /x(E,n,) )

T30(Ev ng){y(Er ng)}/
2y/¥(E; )

T29 (E7 ng){y(E7 ng)}/

2\/¥(E,n,)

Ri(E,ny) = | [{T20(E, n,)} \/x(E.n,) +

—{T30(E, )} \/y(E ) —

+ [{T(E m) Y /Y(En) +

) 1/2
T30(Ea ng){x(Ev 17g>}/

2, /x(E,n,) 7

+{T30(Ev ng)}/ X(E, ng) -
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HBn) =5 [TrEong) +\/ 1T (B P+ (B P

2
1
2

y(E.n,) [wmw%W+mw%W—mam]

T29 Tao(E,n,)

E, g
2\/y (E,ng)
T30{X(E Tso{x(E,n,)}'
2./x(E, ng

Tao(E, ng){x(E, Wg)}l

2\/x(E,n,)

mww%nf

2,/¥(E;ny)

The oscillatory nature of the DOS for heavily doped tetragonal materials is
apparent from (B1.29). For, /,, (E, 5,) > 7, the cosine function becomes negative
leading to the negative values of the DOS. The electrons cannot exist for the
negative values of the DOS, and therefore this reason is forbidden for electrons,
which indicates that in the band tail, there appears a new forbidden zone in
addition to the normal band gap of the semiconductor. The use of (B1.29) the
electron concentration at low temperatures can be expressed as

and 1y, (E,n,) =tan"" | |{Too(E,n,)}'

+{T30(E,n,)}

x |{T2(E, n,)} \/x(E,n,) +

—{T30(E,n,)}

2g,m’| /Zm‘*‘

s I (Ensng)] (B1.30)

ny =
where,
III(EF/,ang) = |:T29(EFh7ng> X(Eph,l’]g) - T30(EF;,>17g) y(EFh77’g):| .

For heavily doped tetragonal semiconductors, Epq is the smallest negative root
of the equation

[T27(Ena, ng) Tao (Ena; 1g) — Tas (Enas 1) T30 (Ena, 11) ] = O (B1.31)
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B1.2.2 Study of the EEM in Heavily Doped III-V, Ternary
and Quaternary Materials Forming Gaussian Band Tails

(a) Under the conditions, 6 = 0, m‘*‘ =m} =m" and Ay = A} = A, the electron
dispersion law in this case assumes the form
R k?

5 = Ta(Eng) +iTs(E, ) (B1.32)

T3 (E, ) = (W) {“—590(‘57 M) + {W} 70 (E: 1)

b ( 1 > 1 1+ cE and
=(——), ¢c=|—-—], wm=
E, +A E,+2A 2T,

To(E.n,) = (m)g(l (1-8) Lo

Thus, the complex energy spectrum occurs due to the term T3, (E, ng) and this
imaginary band is quite different from the forbidden energy band.

The EEM at the Fermi level is given by
m* (Er,, 1) = m {T31 (E,n, )Y ‘ (B1.33)

Thus, the EEM in heavily doped III-V, ternary and quaternary materials exists in
the band gap, which is the new attribute of the theory of band tailing. In the
absence of band tailing, Ny — 0 and the EEM assumes the form

m*(Er) = m {I(E)}'|,_p, (B1.34)

The density-of-states function in this case assumes the form

g (2m\*?
NHD(E, ng) =30 <7> R21(E, ng)cos [1921(E, ng)] (B1.35)



Appendix B: The EEM in Heavily Doped Compound Semiconductors 475

where

1/2

[ En)Y] [(Bu(En)}]

Ry (E,n,) = + ’
21( ”g) 40(11(E,1’]g) 4ﬁ11(E’ ’18)

}
T (E.ng) = [{To1 (Eng) 3T (En ) { T (Eony) Y]
)

T34( 777g) = [3T32(E"7g){T31(E7”g)}z_{T32(E"7g) 3}7

Bu(Eng) = 5 |V (T (En) Y+ {Tsu (Eun) - T(Eon) ana

{Bui(Eing)} o (
{1 (Eong) 'V Bu

U1 (E, ng) = tan~! l

Thus, the oscillatory density-of-states function becomes negative for 1, (E7 ng)
> 7 and a new forbidden zone will appear in addition to the normal band gap. The
electron concentration in the zone of low temperatures can be written as

i\ 32
np = % (Zh—2> % [T33 (Er,.ng) + \/{Tss (Er,>n,) }2+{T34 (Er,, ﬂg)}z]
(B1.36)

In this case, Epq is given by _
T31 (Ena,n,) =0 (B1.37)

(b) The dispersion relation in heavily doped III-V, ternary, and quaternary
materials whose undoped energy spectrum obeys the two band model of Kane

is given by
Rk
o Vs (E7 ng) (B1.33)
where
2
n(En,) = 1+ EF (En,) [70(E,ng) + oo (E, )]

Since, the original two band Kane model is an all zero and no pole function,
therefore, the heavily doped counterpart will be totally real and the complex band
vanishes. The EEM in this case can be written as
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m* (Ep,,n,) = m" {1, (E, ng)}" (B1.39)

E=Er,

Thus, one again observes that the EEM in this case exists in the band gap. In the
absence of band tailing, 17, — 0 and the EEM assumes the form

m(Ep) = m* {1 +20E}|,_,. (B1.40)

The density-of-states function in this case can be written as
gv 2111* 3/2 /
NHD(Ea ng) :2771?2 ? \/ VZ(Ea ng){’VZ(E’ rlg)} (B141)

Since, the original two band Kane model is an all zero and no pole function,
therefore, the heavily doped counterpart will be totally real and the complex band
vanishes.

The electron concentration at low temperatures is given by

o 3/2
_ & (2m 3/2
o = 372 ( 2 ) {Vz (EFh’ng)} (B1.42)

In this case, Epq is given by
72(Enas 1) = 0 (A1.43)

(c) The dispersion relation in heavily doped semiconductors whose unperturbed
conduction electrons obeys parabolic energy bands is given by

12k
2m*

=73 (E. ) (B1.44)
where

2

73 (E,n,) =

Since, the original parabolic energy band is no pole function, therefore, the heavily
doped counterpart will be totally real, which is also apparent form the expression
(B1.44).

The EEM in this case can be written as
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* * /
m (Erong) = m* ((En,) | (B1.45)
E=Ey,
In the absence of band tailing, , — 0 and the EEM assumes the form

m*(Ep) =m" (B1.46)

It is well known that the EEM in undoped parabolic energy bands is a constant
quantitity in general excluding cross-field configuration. But, the same mass in the
corresponding heavily doped bulk counterpart is complicated functions of Fermi
energy and the impurity potential together with the fact that the EEM also exists in
the band gap.

The density-of-states function in this case can be written as

e\ 32 /
(B = 5 (%) \is(Eane) (s E) (B1.47)

Since, the original parabolic energy band model is a no pole function, therefore,
the heavily doped counterpart will be totally real and the complex band
vanishes.The electron concentration at low temperatures is given by

%\ 3/2
_ & (2m 3/2
o = 372 ( 2 ) {V3 (EFh’ ﬂg)} (B1.48)
In this case, Eyq is given by
73 (Ena, 1) =0 (B1.49)

B1.2.3 Study of the EEM in Heavily Doped I1I-VI
Materials Forming Gaussian Band Tails

Using (1.42) and (A1.2), the dispersion relation of the carriers in heavily doped
II-VI materials in the presence of Gaussian band tails can be expressed as

73(E,n,) = agky + bpkZ + Jok, (B1.50)

Thus, the energy spectrum in this case is real since the corresponding undoped
case as given by (1.42) is a no pole function.
The transverse and the longitudinal EEMs masses are respectively given by

Ao

\/ (o) +4diys (E.m,)

m’ (Eryng) = m' {y3(E;ng) ' |1 - (B1.51)

E=Ep,
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and

i (Erng) = mi {3 (Eong) Y| (B1.52)

E=Ey,
In the absence of band tailing effects 7, — 0, we get

m (Ep) =m’ |1 — )270 (B1.53)
(ﬂvo) +4ayE .
and
mj|(Ep) = m|| (B1.54)

Thus, the in heavily doped II-VI materials, both the transverse and the
longitudinal EEM exist in the band gap.
The volume in k-space can be enclosed by the (B1.50) can be expressed as

- \2
32 3 ()VO) y3(E7 ’78)

(o)}

3ay/ by

3 2o (20)2 - 73 (Es )
_ (Zﬁ) <V3 (E, Wg) +4—a()> sin (1—0)2

7 (Esg) + 757
(B1.55)

V(E’ ng) = al

Using (B1.55), the density-of-states function in this case can be written as

1 ()" {3 (E:n,)

8v
N1 =577 | (2B} () g e
0\/ 73 s g

1 7 o \/ V3 (E
- (5 : ){v3<E,ng>}’sln ! d

3 (E. 1)
vl 73(E.g) + 9222

3 (E, / J ? ! (E7 ng)
7% <y3 (E7 qg) + (42, > : 1 _ 3 (;10)2
0 V3 (E, "g) (VS(E’ 778) +W)

(B1.56)

Therefore, the electron concentration in the zone of low temperatures can be
expressed as
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479
7o)\ (Er,ng)
& 3/2 é( 0 3\ F g
no = 37'52616\/?6 {V? (Eang) +8 a6
3 7o ()7 . 13 (Eryo 1)
— (4\/;6> <’)’3 (EFha ng) + 4a2) Sin (10)2
73 (EFw”g) + 4a],
(B1.57)
In this case, Eyq is given by
{73 (Ena;ng)} =0 (B1.58)

B1.2.4 Study of the EEM in Heavily Doped IV-VI Materials
Forming Gaussian Band Tails

From (1.83), we can write

kit IPEPEY R S U WY (0 S U ahk?
dmfm- SL\2mf 2m; 2m; 2m ) 4mym]t

SR AN 11 oahi*k?
' ) 4+ =R — — i _E(1+0aE)| =0
|G me) e ) 0+

1 m; 4mj my;
(B1.59)
Using (B1.59) and (B1.2), the dispersion relation of the conduction electrons in
heavily doped IV-VI materials can be expressed as
ahik

S

G 20 (Esng) + B2KS [271 (E, g ) K2 + 492 (E, )]

+ [273(E 0 )2 + 274(E,n, )kt — Jas(E.n,)] =0 (B1.60)

. <_)
Mg

, [ ar? oah?
Ja1(E,ng) = WZO(E77Ig) +WZO(E7'7g) )

where

ZO(E,ng) =

L do(En,) = ——2o(E,m),

1
2 - dmim;

) /1 1 1 1
/L72(E>’7g): Z—m,*_Zm; ZO(Evng)_FO( zm;_zm;r VO(E77Ig) )
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7 R

afi? (1 1
173 (E7 ng) = |:<2m7 +%)Z0(E7 ng) +7 (E - %)VO(E7 ng):|7

_ ah*Z (E.,nK )
)”74 (E’ 7’8) = dm) m; :

1

and
Jas(E ng) = [vo(E,ng) + 200 (E,m,)].

Thus, the energy spectrum in this case is real since the corresponding undoped
material as given by (B1.59) is a pole-less function.
The respective transverse and the longitudinal EEM in this case can be written as

' (Er,ong) = {220 (Eun,)} | 20 (Eom,) {/bz(E,%H#ij}%

%%@MF}M@%HMM@%M

E=EF,
(BL1.61)
where, 273 (E, ng) = [4/70(E, Vlg);v75 (E, "g)]
and
x n r A 4sa(Esn )}/)~84(E7’7 ) +2{Jss (E,n )}/
i) = |l e
84 717g + /ng( 7ng) E=EF,
(B1.62)
in which
73(E,n,)
P (Bote) = 5
) Mg
and
}75 (Ea n )
;L85 (E7 ng) = }74(E ng)
) g

Thus, we can see that the both the EEMs in this case exist in the band gap.In the
absence of band tailing effects n, — 0, we get
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2 T (E)Y
m’, (EF) =3 7{0511(E)}’+w (B1.63)
2y/Ts311(E) EE
where,
2mim; 1 oFf 14 oFE
E)=—"5" E E=|——
11 (E) s, w11 (E), o11(E) {2@ o ]’
2m;"m;
ds11 = h2 11,
1/2
o2 1 1 12 o2 o (E)
= 116 - T:(E) = ———~ 2L
o) 16 [mrmf +m1mz+} dm-mimymt | s (E) (on)?
aE(1 + aFE) 1 oE (1 + aE)]?
Ey=|———~2 _ .
w311 (E) e + [ij (2"1?) + 2
and
1 l+oE oF o o (1 + 20E)
m]|(EF) <m,+m]_> < o o > 1 [271111*Jr 2m; 7%} (%7%> my; my
F)=\— — —
I o« 2mf 2m 2 I 14oE B aE(1+oE) 12
TR TR
(B1.64)

The volume in k-space can be enclosed by the (B1.60) can be written through
the integral as

)vgﬁ(E.ﬂg)
Vg =2n [ [l (En)k + dn(En)]
0
+ \/)‘81 (Ea ng)k? + /182 (E7 ng)kzz =+ ;“83 (E7 ng)]dkz (B165)
where
5 1/2
\/[/184(1*7, )| +42s(E, n,) — Asa(E, 1)
j'86 <E7 ng) = ) )
;“71 (Ea n )
J79(E =~ "8
79( 717g) 2FZZZ()(E, ﬂg) )
A (E, A6 (E,
180 (E7 ”g) = 72( ng) ) j~81 (E7 ng) = 76( ng)

2°7(E,n,)
)~76 (E7 ng) = [171 (E’ 178)]2’

43 2 (E.n,) |
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A7 (E ) ng)
90t 20 (E.n,)]’

211(E,ng) = (2291 (E, ng) 272 (E,ng) — 43a0(E ng) 223 (E, ng) — 4470 (E,n,) 224 (E, ) ],

)LSZ (Ev ng)

)“78 (E7 ng)

da(En) =——— "% and  Jys(E,n,) = [4420(E,n,) 5 (E,n,)].
83( ”g) 9h4[ZO(E,7]g)]2 78( "g) [ 70( ”g) 75( ”g”
Thus,
756 (E1e)
V(E7 '75') = [)‘87<E’ ”g)} / {\/k? + s (E’ ”g)kzz + ’139(E’ "g) - ’190(E7 "g) dk;
0
(B1.66)
where
Ago (E,
i1 (Eong) = 2m\ s (Eony), s (Einy) = ‘2 (Eony)
/“Sl(Ea ”g)
53 (E,ng)
g9 (E, =8
wo (B 1) 281(E, 1)
and
Jao(En,) (g6 (Esn,) Y
290 (E, 1) EZN[ l ’1g){386( )} + 280 (E,n) 2g0 (E. 1) | -
Using (B1.20), (B1.66) can be written as
V(Ea ng) = [187 (E7 ng);h95 (E7 ng) - /190(Ea ng)] (B167)
in which,
E,
i95(5,% = Jou ﬂg)[ i[i93(E777g)J94(E7’7g)]

)
< [{o1 (E.ng) YL (E.ng) Y22 (B, ) Y s (E. 1) don (B, ) |

+C%E%>{M@%Wﬂmw%WHmwmm1
H{/{gl (E,11) +{)“36(E”7g)}2} 1/2[{’192(157 ﬂg)}z-i-{iss(Ea ng)}z}_l/z}]



Appendix B: The EEM in Heavily Doped Compound Semiconductors 483

Gon(Bn) =3 [ Ui En) =i (En) + s )
E; [’193 (E7 ”g)’ J94 (E’ ng)]
is the incomplete elliptic integral of the 2nd kind and is given by [55],
Jo3 (E.n,)

Blm(En) (e} = [ {1 (e P} o

,136(5,%)} ’

. . . . . . — 71
¢ is the variable of integration in this case Aoz (E, ng) = tan {,192(5,%)

)= 5 s (E) v Vs 1) Pt (B0,

Ui () YU (E,n) Y

194(Ea ng) = )91 (E n )
! Mg

F; [193 (E, ng), Aog (E7 ng)] is the incomplete elliptic integral of the 2nd kind and is
given by [55],

)

703 (E)

Flin(En) imsEnd) = [ [{1= Gslng Puinie} "o

0

Using (2.3a) and (7.66), the density-of-states function is given by

Nup (E, 1) = 4% [{7~87 (E.ng) Y 205 (E.ng) + {205 (E,ny) } 287 (Eng) — { 2o (E, Wg)}']
(B1.68)

Therefore, the electron concentration at low temperature can be expressed as
ny = % [{487(EF,,n,) } 405 (EF,,ny) — {400(EF,,n,) }] (B1.69)

In this case, Eyq is given by
{%75(Ena,n,)} =0 (B1.70a)

B1.2.5 Study of the EEM in Heavily Doped Stressed
Materials Forming Gaussian Band Tails

The use of (1.98) leads us to write

(E—a)ki + (E—m)k; + (E— o)kl = 1E> —nE* + 5E+1,  (B1.70b)


http://dx.doi.org/10.1007/978-3-642-31248-9_2
http://dx.doi.org/10.1007/978-3-642-31248-9_7
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where

[ _ 3. bo _
a = |Eg — Cre — (ao + Cr)e +§b08xx -5t (ﬂ/Z)Sxydo} ;

[ 3. b _
= |E, — Cie — (ap + C1)e +§b08xx — 70.9 — (‘/g/z)sxydo} ,

o3

[ 3. b
Eg —Cie— (El() + C1)8+5b08Z1 _?08:|7 nh= (3/233)1

n=(Yam) [6(E, - Cie) + 3C1e],
3 = (1/2]3%) [3(Eg — C18)> +6C¢(E, — Ce) — 2C§£§y}
and 13 = (Yapz) [-3CieE, — Cre)’ +2€32 |
Using (B1.70b) and (B1.2), we can write,

1(4)k* — Tyl (1)k; — Togd (1)k; — T57kZ1(1)
= [g671(6) — Re71(5) + Vs71(4) + pe1(1)] (B1.70c)

where T17; = oy, Ty; = o0, T37 = 03, 11 = ge7,12 = Re7, 13 = V7, 14 = p¢; and

1(6) = / (E—V)’F(v)av (B1.71)
(B1.71) can be written as
1(6) = E*I(1) — 3E°I(7) + 3EI(8) — I(9) (B1.72)
In which,
1(7) = / VF(V)dV (B1.73)
1(8) = / V2F(V)dV (B1.74)
109) = / V3F(V)dV (B1.75)

Using (B1.2) and successively (B1.73), (B1.74), and (B1.75) together with
simple algebraic manipulations, one obtains
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1(7) = 2_\/'75 <E2> (B1.76)

2

18) % | 4 Erf G) (B1.77)
2
and
_n3 2 E2
109) = W%exp <—§> 1 +’1—§ (B1.78)

Thus, (B1.72) can be written as

E E 3 E?
= 1+Erf<n—g> [E2+ ng} 2\/_exp< ){4E2+ng}

16) = |3
(B1.79)

Thus, combining the appropriate equations, the dispersion relations of the
conduction electrons in heavily doped stressed materials can be expressed as

Py (E,n )k + Qui (E,n )k + Suy (E,m )k2 = 1 (B1.80)
where
_ V()(E7 ’lg) —(T7/2) [1 +E’f(E/77g)]
P (E,n,) = l A (E,n,) ’
~Re100(E, 1) + Vro(Esn) + p;w +Erf<E/ng>J}
_ [70(Eyng) — (T /2)[1 + Exf (E/1,)]
Qll(Evng) - A14(E, ylg)
and
_ |n(Emg) — (T/2)[1 + Exf (E/1,)]

Thus, the energy spectrum in this case is real since the corresponding undoped
material as given by (1.98) is a pole-less function.
The EEMs along x, y, and z directions in this case can be written as


http://dx.doi.org/10.1007/978-3-642-31248-9_1
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2

-2
m;x(EFh’ ng) = % Yo (EFh7 17g> - (Tl7/2) 1+ E'f(EF;,/rlg)‘|‘| .

{AM(EFh’ng)}/

“/O(EF,,, 7’]g) — (T]7/2) 1+ E’f(EF;,/']g)‘|‘|‘|

Ty, *E%,,
T nvETP\ e

(B1.81)

1
*A14 (EFha ng) 2

"2 -

m;y(EF/17 Ug) = 9

[VO(EFhv ng) — (Ta7/2)[1 + Erf(EFh/ﬂg)]

X {A14(EF/7’ ng)},

P0(Er, ) — (T /2)[1 + Erf(EFh/Vlg)] ] ]

Ep,\| ) T ex —E%h
I GIRE TN

(B1.82)

1
_A14(EFh7 ng) 2

and

V()(EFM '/Ig) - (T37/2>[1 + E#(EFh/ng)]]

h2
m:z(EFm ng) = 7

[{A14(EFh’ ng)}, [VO(EFM ng) - (T37/2)[1 + E’f(EFh/ng)]”

) Ty ex _E%,,
NeV/T P n

(B1.83)

2

—A4(EF,, 1,)

Thus, we can see that the EEMs in this case exist within the band gap.
In the absence of band tailing effects n, — 0, we get

m (Er) = W*ao(Er){ao(Er)} (B1.84)

s (Ep) = 1*bo(Er){bo(Er)}' (B1.85)
and

my (Er) = I*co(Ep){co(Er)} (B1.86)

The density-of-states function in this case can be written as
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8v -2
NHD(E’ ”g) 32 {A15 (E7 ”g)}

B {85 (Bm) by Ma (B ) {8ia (B ) Y —{Ara (Eom) ) {Ais (E.mg) Y

where

(B1.87)

Ais(Eong) = | [o(Eony) = (T /2)[1 + Erf (E/n,) || [o(E.my)

/2 [+ B Em)]] [Eng) ~ T+ Epem)]]] "

Using Eq. B1.87, the electron concentration at low temperatures can be written as

32
g [{Au(Er, )}
= B1.88
no 37'[2 [ AIS(EF;,;’/’g) ( )
In this case, Eyq is given by
{A14(Ena,ng) } =0 (B1.89)

B1.3 Open Research Problems

R.B1.1

R.BI1.2

R.B1.3

R.B1.4

R.B1.5

Investigate the EEM for all the materials as given in problems in R. 1.1
of Chap. 1 in the presence of the Gaussian type band tails.
Investigate the EEM in the presence of an arbitrarily oriented
quantizing magnetic field in heavily doped tetragonal semiconductors
by including broadening and the electron spin. Study all the special
cases for heavily doped III-V, ternary, and quaternary materials in this
context.

Investigate the EEMs for heavily doped IV-VI, 1I-VI, and stressed
Kane type compounds in the presence of an arbitrarily oriented
quantizing magnetic field by including broadening and electron spin.
Investigate the EEM for all the materials as stated in R.1.1 of Chap. 1
in the presence of an arbitrarily oriented quantizing magnetic field by
including broadening and electron spin under the condition of heavily
doping.

Investigate the EEM in the presence of an arbitrarily oriented
quantizing magnetic field and crossed electric fields in heavily doped
tetragonal semiconductors by including broadening and the electron


http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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R.BI1.6

R.AL1.7

R.B1.8

R.B1.9

R.B1.10

R.B1.11

R.B1.12

R.BI1.13

R.Al.14

R.B1.15

R.B1.16

R.B1.17

R.B1.18

R.B1.19

R.B1.20
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spin. Study all the special cases for heavily doped III-V, ternary, and

quaternary materials in this context.
Investigate the EEMs for heavily doped IV-VI, 1I-VI, and stressed

Kane type compounds in the presence of an arbitrarily oriented
quantizing magnetic field and crossed electric fields by including
broadening and electron spin.

Investigate the EEM for all the materials as stated in R.1.1 of Chap. 1
in the presence of an arbitrarily oriented quantizing magnetic field and
crossed electric fields by including broadening and electron spin under
the condition of heavy doping.

Investigate the 2D EEM in ultrathin films of heavily doped tetragonal,
-V, II-VI, IV-VI, and stressed Kane type semiconductors.
Investigate the 2D EEM for heavily doped ultrathin films of all the
materials as considered in problems R.1.1.

Investigate the 2D EEM in the presence of an arbitrarily oriented non-
quantizing magnetic field for the ultrathin films of heavily doped
tetragonal semiconductors by including the electron spin. Study all the
special cases for III-V, ternary and quaternary materials in this context.
Investigate the EEMs in ultrathin films of heavily doped IV-VI, II-VI
and stressed Kane type compounds in the presence of an arbitrarily
oriented non-quantizing magnetic field by including the electron spin.
Investigate the 2D EEM for heavily doped ultrathin films of all the
materials as stated in R.1.1 of Chap. 1 in the presence of an arbitrarily
oriented magnetic field by including electron spin and broadening.
Investigate the EEM for all the problems of R1.1 under an additional
arbitrarily oriented electric field in the presence of heavy doping.
Investigate the EEM for all the problems of R1.1 under the arbitrarily
oriented crossed electric and magnetic fields in the presence of heavy
doping.

Investigate the 2D EEM for all the problems in R1.1 the presence of
finite potential well under the condition of heavy doping.

Investigate the 2D EEM for all the problems in R1.1 the presence of
parabolic potential well under the condition heavy doping.
Investigate the 2D EEM for all the problems in R1.1 the presence of
circular potential well under the condition of heavy doping.
Investigate the 2D EEM for accumulation layers of heavily doped
tetragonal, III-V, IV-VI, II-VI, and stressed Kane type semiconduc-
tors in the presence of an arbitrary electric quantization.

Investigate the 2D EEM in accumulation layers of all the materials as
stated in R. 1.1 of Chap. 1 under the condition of heavy doping and in
the presence of electric quantization along arbitrary direction.
Investigate the 2D EEM in the presence of an arbitrarily oriented
electric quantization for accumulation layers of heavily doped tetrag-
onal semiconductors. Study all the special cases for [II-V, ternary, and
quaternary materials in this context.


http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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R.B1.21

R.B1.22

R.B1.23

R.A1.24

R.B1.25

R.B1.26

R.B1.27

R.B1.28

R.B1.29

R.B1.30

R.B1.31

R.B1.32

R.B1.33

R.B1.34

Investigate the 2D EEMS in accumulation layers of heavily doped IV-
VI, II-VI, and stressed Kane type compounds in the presence of an
arbitrarily oriented electric quantization.

Investigate the 2D EEM in accumulation layers of all the materials as
stated in R.1.1 of Chap. 1 in the presence of an arbitrarily oriented
quantizing electric field under the condition of heavy doping.
Investigate the 2D EEM in the presence of an arbitrarily oriented
magnetic field in accumulation layers of heavily doped tetragonal
semiconductors by including the electron spin. Study all the special
cases for heavily doped III-V, ternary, and quaternary materials in this
context.

Investigate the 2D EEMS in accumulation layers of heavily doped IV-
VI, II-VI, and stressed Kane type compounds in the presence of an
arbitrarily oriented non-quantizing magnetic field by including the
electron spin.

Investigate the 2D EEM in accumulation layers of all the materials as
stated in R1.1 of Chap. 1 in the presence of an arbitrarily oriented non-
quantizing magnetic field by including electron spin and heavy doping.
Investigate the 2D EEM in accumulation layers for all the problems
from R B1.22 to R B1.26 in the presence of an additional arbitrarily
oriented electric field.

Investigate the 2D EEM in accumulation layers for all the problems
from R B1.22 to R B1.26 in the presence of arbitrarily oriented crossed
electric and magnetic fields.

Investigate the 2D EEM in accumulation layers for all the problems
from R B1.22 to R B1.26 in the presence of surface states.
Investigate the 2D EEM in accumulation layers for all the problems
from R B1.22 to R B1.26 in the presence of hot electron effects.
Investigate the 2D EEM in accumulation layers for all the problems
from R B1.22 to R B1.26 by including the occupancy of the electrons
in various electric subbands.

Investigate the 2D EEM in nipi structures of heavily doped tetragonal,
-V, II-VI, IV-VI, and stressed Kane type materials.

Investigate the 2D EEM in nipi structures of all types of materials as
discussed in problem R.1.1 as given in Chap. 1 under the condition of
heavy doping.

Investigate the 2D EEM in the presence of an arbitrarily oriented non-
quantizing magnetic field for nipi structures of heavily doped
tetragonal semiconductors by including the electron spin. Study all
the special cases for heavily doped III-V, ternary, and quaternary
materials in this context.

Investigate the 2D EEMs in nipi structures of heavily doped IV-VI, II-
VI, and stressed Kane type compounds in the presence of an arbitrarily
oriented non-quantizing magnetic field by including the electron spin.


http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1
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R.B1.35

R.B1.36

R.B1.37

R.B1.38

R.B1.39

R.B1.40
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Investigate the 2D EEM for nipi structures of all the materials as stated
in R.1.1 of Chap. | in the presence of an arbitrarily oriented non-
quantizing magnetic field by including electron spin under the condi-
tion of heavy doping.

Investigate the 2D EEM for all the problems from R B1.32 to R B1.35
in the presence of an additional arbitrarily oriented non-quantizing
electric field.

Investigate the 2D EEM for all the problems from R B1.32 to R B1.35
in the presence of arbitrarily oriented crossed electric and magnetic
fields.

Investigate all the problems from R. B1.1 to R. B1.37, in the presence
of light waves.

Investigate all the problems from R. B1.1 up to R. B1.37 in the
presence of exponential, Kane, Halperin and Lax and Bonch-Bruevich
band tails [42].

Investigate all the problems of this chapter by removing all the
mathematical approximations and establishing the uniqueness condi-
tions in each case.


http://dx.doi.org/10.1007/978-3-642-31248-9_1
http://dx.doi.org/10.1007/978-3-642-31248-9_1

Appendix C
The EEM in Superlattices of Heavily
Doped Non-Parabolic Semiconductors

C1.1 Introduction

In recent years, modern fabrication techniques have generated altogether a new
dimension in the arena of quantum effect devices through the experimental
realization of an important artificial structure known as semiconductor superlattice
(SL) by growing two similar but different semiconducting compounds in alternate
layers with finite thicknesses. The materials forming the alternate layers have the
same kind of band structure but different energy gaps. The concept of SL was
developed for the first time by Keldysh [58] and was successfully fabricated by
Esaki and Tsu [59-62]. The SLs are being extensively used in thermal sensors [63,
64], quantum cascade lasers [65-67], photodetectors [68, 69], light emitting
diodes [70-73], multiplication [74], frequency multiplication [75], photocathodes
[76, 77], thin film transistor [78], solar cells [79, 80], infrared imaging [81],
thermal imaging [82, 83], infrared sensing [84], and also in other microelectronic
devices.

The most extensively studied III—-V SL is the one consisting of alternate layers
of GaAs and Ga;_ Al As owing to the relative easiness of fabrication. The GaAs
and Ga; Al;As layers form the quantum wells and the potential barriers,
respectively. The III-V SLs are attractive for the realization of high speed
electronic and optoelectronic devices [85]. In addition to SLs with usual structure,
other types of SLs such as II-VI [86], IV-VI [87], and HgTe/CdTe [88] SLs have
also been investigated in the literature. The IV-VI SLs exhibit quite different
properties as compared to the III-V SL due to the specific band structure of the
constituent materials [89]. The epitaxial growth of II-VI SL is a relatively recent
development and the primary motivation for studying the mentioned SLs made of
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materials with the large band gap is in their potential for optoelectronic operation in
the blue [89]. HgTe/CdTe SLs have raised a great deal of attention since 1979,
when as a promising new materials for long wavelength infrared detectors and other
electro-optical applications [60]. Interest in Hg-based SLs has been further
increased as new properties with potential device applications were revealed [90,
91]. These features arise from the unique zero band gap material HgTe [92] and the
direct band gap semiconductor CdTe which can be described by the three band
mode of Kane [93]. The combination of the aforementioned materials with
specified dispersion relation makes HgTe/CdTe SL very attractive, especially
because of the tailoring of the material properties for various applications by
varying the energy band constants of the SLs.

We note that all the aforementioned SLs have been proposed with the
assumption that the interfaces between the layers are sharply defined, of zero
thickness, i.e., devoid of any interface effects. The SL potential distribution may be
then considered as a one-dimensional array of rectangular potential wells. The
aforementioned advanced experimental techniques may produce SLs with physical
interfaces between the two materials crystallographically abrupt; adjoining their
interface will change at least on an atomic scale. As the potential form changes
from a well (barrier) to a barrier (well), an intermediate potential region exists for
the electrons. The influence of finite thickness of the interfaces on the electron
dispersion law is very important; since, the electron energy spectrum governs the
electron transport in SLs. In addition to it, for effective mass SLs [94]. The
electronic subbands appear continually in real space [95].

In this chapter, we shall study the EEM under magnetic quantization in III-V,
II-VI, IV-VI, HgTe/CdTe, and strained layer, heavily doped SLs with graded
interfaces in Sects. C1.2.1-C1.2.5, respectively. From Sects. C1.2.6-C1.2.10, we
shall investigate the same in III-V, II-VI, IV-VI, HgTe/CdTe, and strained layer,
heavily doped effective mass SLs The last Sect. C1.3 contains open research
problems.

C1.2 Theoretical Background

C1.2.1 Study of EEM in Heavily Doped III-V Superlattices
with Graded Interfaces

The electron dispersion law in bulk specimens of the heavily doped constituent
materials of III-V SLs whose undoped energy band structures are defined by three
band model of Kane can be expressed as
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R k? ,
72}’}1* = T]j (E, Aj, Eg/‘, ﬂg]) —+ szj(E, Aj, Egja ﬂgl) (Cll)
<

where
i=12,
Tyi(E, Aj, Egjs 1)

= (2/(1 4+ Erf (E/ng))(ob; /c;)-00 (E, ny;) + {(%’CJ + bjcj — “jbj)/c_jz]

—

%70 (E. 1) + [(1/9»)(1 — (/)1 = (By/e) 5 [1 + Erf(E/ny)
= (1/e)(1 = (/) (1 = (b/e)) 2/ (eyngv/m) exp( ]

X

i(exp(—PZ/ 4) /p)sinh(Puj)] ] :

p=1

_ 2 14+ c¢E
b= (Eg+A)", ¢=Eg+30)", wy=—72—
3 il

EAE o= 2 NI (VR (e
Tz’(E’A”Eg””g")‘<1+E#(E/ngj)>c.f<l é)(l chijp( )

Therefore, the dispersion law of the electrons of heavily doped III-V SLs with
graded interfaces can be expressed as

and

k? = Gg + iHs (C1.2)

where

C2_D2
{ 7L(2) 7k3}, C7:cos’1(a)_7)7

ol

7= (1= G - 1) - 1 - G - 463
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G7 = [G1 + (psG2/2) — (pst2/2) + (Ao/2){psH> — psH3 + poHs — p1oHa
+ piHs — pioHs + (1/12)(p1,Ge — p14Hs) .
Gy = [(cos(hy))(cosh(h2))(cosh(g1))(cos(g2)) + (sin(hy))(sinh(h2))(sinh(g1))(sin(g2))],
hi=eilbo—Ao), e =22(\/5 + 3+ 0
11 = [(2m}y /0*). T (E,Eq1, A1 ng) — K2,
ty = [(2m}, /W*)T21 (E,Eg1, A1),

_ 2

h2:€2(b0*A0), 622271(\/1‘%4»13711) s
1

g =di(ao — Ao), :2%(\/x%+y%+xl) ;

x1 = [—(@2mly/W*). T (E = Vo, Eg, Ao, np) + k],
Y1 = [(szZ/hz)TZZ(E - VOaEg27 A27 71g2)]7

B 3
g2:d2(ao—A0), d2:271(\/x%+y%—x1) s

ps = (93 +p3) "' [p1p3 — P2pal;
=@+ —di—el, py=[dier +daer], p, =2[dids + erea],
ps = [diez — e1dy],
Gy = [(sin(h;))(cosh(h2))(sinh(g1))(cos(g2)) + (cos(h1))(sinh(h2))(cosh(g1))(sin(g2))],
pe = (93 + P3) " [P1pa + P2p3,
Hy = [(sin(hy))(cosh(hz))(sin(g2))(cosh(g1)) — (cos(h))(sinh(h2))(sinh(g1))(cos(g2))],
pr = (e} + &) '[er(d} — d3) — 2didaer] — 3ey],
Gs = [(sin(h1))(cosh(hz))(cosh(g1))(cos(g2)) + (cos(h1))(sinh(h2))(sinh(g1))(sin(g2))],
= [( + &3) [ea(d? — B3) + 2dydaey] + 3ea),
= [(sin(h1))(cosh(h))(sin(g2)) (sinh(g1)) — (cos(h1))(sinh(h2))(cosh(g1))(cos(g2))],
= [(d? + d3) 7" [di(e2 — &) + 2erdrer] + 3d)],
= [(cos(h1))(cosh(h2))(cos(g2))(sinh(g1)) — (sin(h1))(sinh(h2))(cosh(g1))(sin(g2))],
pro = [—(&* + &) V[da(—€2 + &2) + 2erdrer] + 3da],

Hy = [(cos(hy))(cosh(hz))(cosh(g1))(sin(g2)) + (sin(h1))(sinh(h2)) (sinh(g1))(cos(g2))],
pu =2ld{ + &3 — d5 — e,

Gs = [(cos(h1))(cosh(hz))(cos(g2))(cosh(g1)) — (sin(h1))(sinh(hy))(sinh(g1))(sin(g2))],
P1p = 4ld1dy + e1e2],
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Hs = [(cos(h1))(cosh(h))(sinh(g1))(sin(g2)) + (sin(h1))(sinh(h2))(cosh(g1))(cos(g2))],
P13 = [{5(die] —3ere3dy) + 5da(e] — 3eter)}(d} +d3) ' + (e + &3) ' {S(erd] — 3daetdy)
+ 5(d3e; — 3didrer)} — 34(dyey + drer)],
Ge = [(sin(h1))(cosh(hy))(sinh(g1))(cos(g2)) + (cos(h1)) (sinh(h2))(cosh(g1)) (sin(g2))];
p1s = [{5(di€3 — 3ereldy) + S5da(—e} + 3eden) H(dd +d3) ™" + (e + €3) T {5(—erds + 3didae)
+5(—djes + 3dydiex) } + 34(diez — daey)],
He = [(sin(h1))(cosh(hy))(cosh(g1))(sin(g2)) — (cos(/))(sinh(h2))(sinh(g1))(cos(g2))],
Hy = [Hy + (psH2/2) + (p6G2/2) + (80/2){psGs + p7H3 + p10Gs + poHa
+ p12Gs + p1 Hs + (1/12)(p14Go + p13He) },

H, = [(sin(h))(sinh(h2))(cosh(g1))(cos(g2)) + (cos(h1))(cosh(/2))(sinh(g1)) (sin(g2))],
D, =sinh~'(@7), Hs = (2C:D,/L3)

The simplified dispersion relation of heavily doped III-V superllatices with
graded interfaces under magnetic quantization can be expressed as

k2 = Gsg,, + iHse (C1.3)

C%E,n_D%E,n_ 26_B I’l+l
L3 h 2

—1
WIEn = (2) : |:(1 - G%E,n - H%E,n) - \/(1 - G%E,n - I-I%E,n)2 + 4G%E,n

where

e
Gse,n = y Cog, =cos™ (O7E.),

2

Gren =[Gien + (PspnG2En/2) — (PopaH2En/2) + (A0/2)
X {Pegn2En — PsEH3ER + Por nHakn — PropHakn
+ p11gaH5En — Pr2EaH5En + (1/12)(P1281GoEn — P14 aHeEn)}]s
Gign =[(cos(hig,))(cosh(hag ) (cosh(gig,)) (cOs(g22,))
+ (sin(hig,)) (sinh(hag ) (sinh(g1E.,)) (sin(g26.0))],

l—

-1
hlE,n = elE,n(bO - AO); €1En = 27 ( t%E,n + t% + tlE,n)

Y

* 2eB 1
llE,n = (zmc‘l/hz) ’ Tll(E7 Egla A17 ”gl) - {7 (n + E) }:|’

ty = [(2m}y /W*)T21 (E, Eq1, A, )],
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1

_ 2

hog, = expn(bo — Ao),  €2pn = 27](\/ 1En T B - tlEﬁn) ;
1
gy = diea(ao — Ao), dipn = 2771(\/)%5" +1+ xlE,n)na

2eB 1
Xign = {—(2"1:2/’%2) T (E = Vo, Eg, Mgy ) + {h (n +2> H 7
1 = [(2mia /)T (E = Vo, Ee D2,12): 0 = oo = Bo),

1
= 2
dZE‘n =27 (\/X%E,n +y% - xlE,n) y

_ (2 2 -1
PsEn = (P3E,n + P4E,n) [plE,nPSEﬁ - p2E,np4E,n]7 P1En
2 2 2 2
[dlE,n + €En — dZE,n - elE,n]’
P3en = [diEn€1En + d2En€2E ],

Pagn = 20d1EndrEn + €1En€2E ] Papn = [di1En€2ER — €1EAD2E ],

Gog,y = [(sin(lig,))(cosh(hag ) (sinh(g1£,)) (cos(8g2£,))
(cos(hig,))(sinh(hog ) (cosh(gig,)) (sin(g26.))],
P6En = (p3 3En T pzztE,n)il [01EnPAEN T P2ERPIE )
Hagn = [(sin(hign)) (cosh(hog ) (sin(g26.4)) (cosh(giz.))

— (cos(hig,))(sinh(hag,)) (sinh(g1£,)) (cos(826.0))],
prea = (€le, + ) leren(die, — B,) — 2diEndag e ] — 3e1ea),
Gsen = [(sin(hig,))(cosh(hog ) (cosh(g1g,q)) (cos(g2£,4)) + (cos(hign))
(Slnh(hZEn))(Sinh(glEn))(Sin(gZEn))]7

lEn + eZE 11)71 [ezE”(dlE n d%En —+ 2d1E-ﬂdZE,nelE,"] + 36257”]’

+

P8En = )
Hig, = [ sin(f1g,)) (cosh(hag ) (sin(gae,)) (sinh(g1£,.))
— (cos(hig,))(sinh(hag,)) (cosh(g1E,)) (cos(g2e.))],
popn = [(dig, + dap,) " [di£n(€35, — €1pn) T 2€280d2Ene1E] + 3diE4],
Gugn = [(cos(hign))(cosh(hap,))(cos(g2e,1)) (sinh(g1£x))

= (sin(1g,0)) (sinh(/2g,)) (cosh(giE,)) (sin(g2e,n))],
P1oEn = [ (dle nt d%E,n)il[dZEqn(_e%E,n + e%E,n) + 2e2p ndog pe1gn| + 3dog ],
[(cos(hign))(cosh(hag ) (cosh(gikx)) (sin(g2en))

+ (sin(hig,)) (sinh(hae,)) (sinh(g1£,)) (cos(g2e,n))],

ALR2 2 2 2
PlLER = Z[dlE,n + ey, — dZE,n - elE,n]v

H4En =
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Gsgn = [(cos(hign))(cosh(hag ) (cos(gae.q))(cosh(gien))
— (sin(hig)) (sinh(hag ) (sinh(g1£,)) (sin(g2e.4))],

P1roen = HdiEadogn + €1EneEn),

Hsg = [(cos(higq))(cosh(hag,)) (sinh(g1z,)) (sin(g2e.))
+ (sin(/11£,4)) (sinh(hag ) ) (cosh(g1)) (cos(g2))],
P13En = [{S(dlEJle?E,n - 3elE-,”e%E,ndlEﬂ) + 5d2E-,n(e?E,n - 39%E,n62E,n)}
X (d%E,n + d%E,n)_l + (6%5,n + e%E,n)_] {S(elEJlde,n - 3d2E¢ne%E,nd]E;")

+5 (dSE‘,,ezE,n - 3d%E7nd2E,neZEAn)} — 34(digpe1en + dagneren)),
Goen = [(sin(hig,))(cosh(hag ) ) (sinh(g1£,1)) (c0s(82£,1)) + (cos(hig,n))
(sinh(hag,))(cosh(g1))(sin(g2))];
Plagn = [{5(d1E,n€%E,n - 362E7ne%E,ndIE,n)
+ SdZE,ﬂ(_e?E,n + 36%E,n6157’l)}(d%E,n + d%E,n)_l
+ (E%E,n + e%E,n)71 {5(_61E,nd§E,n + 3d12E,nd2E7”elE-,n)
+5(=dip eren + 3d3p ,diEn€2en) }
+ 34(dign€ren — drgn€iEn))s
Hsgn = [(sin(hig,))(cosh(hag ) (cosh(giE)) (sin(g2e.x))
— (cos(hign))(sinh(hog,n)) (sinh(g1£.)) (cO8(82£.))],
Hipp = [Hipn + (0sgnH2E0/2) + (P6EnG2En/2) + (B0/2){p3£nG3En
+ Pread3En + P10EnCaEN + Pop nHagn
+ 01260 GsEn + Pr1EH5ER + (1/12)(9145,,1G6E,n + plSE,nH6EJl)}]’
Hig, = [(sin(hig,))(sinh(hop.q)) (cosh(g1£,)) (cos(g2£.x))
+ (cos(higq))(cosh(hap,n)) (sinh(giea)) (sin(gae.))],
Dig, = sinh™ ' (@75,),  Hsen = (2C7£,Ds,/L5)

Therefore, the EEM in this case assumes the form

2

. i
m*(Epy,n) = ?GgE,n

E=Ep, (Cl.4)

where Ep is the Fermi energy in this case and the prime denotes the differentiation
with respect to E. The electron concentration is given by

Nmax

2h ; [®1c(EF1,n) + doc(ErFr,n)] (C15)

geB
ng =
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12
where ¢1C(EF17 }’l) = |:<GSEFI nt \/ G%E}-‘[ no HSEF]J')/Z] )

N

brc(Epr,n) =3 Oa1[$1c(Err,n)], Oari = 2(kgT)* (1 — zl_zr)é(z”)%

r=1 i

and i=1,23,..... (C1.5)

C.1.2.2 Study of EEM in Heavily Doped II-VI Superlattices
with Graded Interfaces

The electron energy spectra of the heavily doped constituent materials of II—VI
SLs are given by

i
D (Eony) = s L4 Coky C1.6
))3( ) ngl) ' + 2t 0 ( )
L1 B}
272
and m* = TIZ(Ev A27 Eg27 ngZ) + iTZZ (Ea A27 Eg27 '/IgZ) (C17)
c2

where m’ | and mj , are the transverse and longitudinal effective electron masses

respectively at the edge of the conduction band for the first material. The energy-
wave vector dispersion relation of the conduction electrons in heavily doped 1I-VI
SLs with graded interfaces can be expressed as

k2 = Gio + iHyo (C1.8)

where

G — |8 DPis_ o2
L(% s |

1

=1
Cis = cos ' (wyg), w13= (2)? {(1 — G — HY) — \/(1 — G — H%)” + 4G |

1
Gis = 3 [Gi1 + G2 + Ao(Gi3 + Gia) + Ao(Gis + Gig)l,

Gi1 = 2(cos(g1))(cos(g2))(cos 111 (E, k)



Appendix C: Heavily Doped Non-Parabolic Semiconductors 499

. 12
2mH |
h 7

1(E ks)(sinh g1)(cos g2) — Qs (E, ky)(sin g2)(cosh g1)] (sin yy; (, k)))

= ([
di  ka(Ek s)d1 d> ka1 (E, ky)dy
d O(E k) =
{km (Ek) & +d } and €% (E, k) {kzl(E,ks) &+ &

H2k2
(E ks) = ka1 (E, k) (bo — Do), ka1 (E, ky) = { [Vs(E, Mer) =5+ Coks
1,1

[
el
™

o eoss) £ i) 6.5)
B d 2d,dy

_ { 3o (E, ks )] Qu(E k) = {—kﬂ(E k)}

= ([Qs(E k )(Slﬂhgl)(cosgz) — Q6(E, ks)(sin g1) (cosh g2)] (cos yy; (E, ks))).

= [3(11 12, (E, k )} Q6(E, ky) = {3d2+ yran % z 12, (E, k )}
(

d2 +d2 21

[9 (E, ks)(cosh g1)(cos g2) — Qio(E, k) (sinh g1 ) (sin g2)](cos 7y, (E, k)))
Zdz 12\(E k)], Qio(E, k) = [2dida),

ky)(sinh g1)(cos g2) — Qg(E, k;)(sin g1 ) (cosh g2)](sinyy, (E, k5) /12)),

5d, S(d]3 —3d3d,)
[d% v (k) + kyy (E, kf)
5d2 5(d§ —3d%dy)
&2 +d2 ko (E, ky)

ﬁ

():
Gis

I
—
O S
~
=

— 34k, (E, ks)dl},

——— I3, (E, ks + 34ky; (E, ks )d,
21

| \
I_l

1

Hg == [Hi + Hiz + Ao(Hiz + His) + Ao(His + Hig),

Hy =
Hpy =

2
2(sinh gy sin g, cos y,; (E, ks)),
(
Hiz = (
(
(
= (

Qs (E, k,)(sinh g1)(c0s ) + O (E, k) (sin g2) (cosh g1)]sin 1, (E. k),
Q4 (E, ks)(cosh g1)(cos g2) + Q3 (E, k) (sinh g1 ) (sin g2)](sinp,, (E, ks))),
)

I
J(
Hiy = ([Q6(E, ks)(sinh g1 )(cos g2) + Qs (E, ks)(sin g1 ) (cosh g2)](cos 7, (E, ks))),
)]
I(

[
[
[
His = ([Quo(E, k) (cosh g1)(cos g2) + Qo(E, k) (sinh g1 ) (sin g2)](cos 7y, (E, ky))),

His = ([Qs(E, k) (sinh g1)(cos g2) + Q7 (E, ks)(sin g1 ) (cosh g2)](siny,, (E, ky)/12)),

2CsD
Hyo = [ L 18:|
Ly

and D,g = sinh™'(wg)
The simplified dispersion relation in heavily doped II-VI superllatices with

graded interfaces under magnetic quantization can be expressed as

k2 = Giop + iHiop, (C1.9)
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where

Clsen — Dise 2eB 1
Giogn = ok T lekn [ = - ,
O e = )

—1
CISE,n =cos™ (W18En)s DI8ER

1

2
=t 2
=(2)> {(1 - G%8E,n - H%SE.n) - \/(1 - G%SE,n - H128E‘n) + 4G%8()D:| )

1
Gigp = 3 [Giign + Giapn + Ao(Gisgp + Gragn) + Ao(Gise s + Greea)],
GllE,n = 2(Cos(glE,n))(COS(gZE,ﬂ))(COSvll(E7 ”))7 yll(Ev fl) = k21 (E7 ﬂ)(bo - A0)7

P (2B 1 2B ( 1\ 2mi "
kai (E,n) = 73(E7'1g1)*m o\ T3 + G < \nt3 7 ,
1.1

Guaen = ([Q(E, n)(sinh g1£,)(cos g2£.n) — Qo (E, n)(sin g »)(cosh g1£,,)](sin 7y, (E, n)))
dign ki (E;n)diga Oa(E,n) = [ o p +k21(E, n)dZE.n:|7

QI(E, n) =

k21 (E7 n) d%E,n + d%En k21 (E7 n) d%E,n + d%E.n
Gisen = ([Q3(E,n)(cosh g1£.)(cos gaz.n) — Qu(E, n)(sinh g1£.0) (sin g2£.,)](sin 7y, (E, n)))

2dg ndrEn
Qu(E,n) = |ZHE2DED
o(Eum) |:k21(E7n):|

Giagn = ([Qs(E, n)(sinh g1£,)(cos g26.,) — Q6(E,n)(sin g1x,,) (cosh gag »)](cos yy; (E, n))).

Q3(E n)= M*?’kﬂ(l’j n) s
) I k21(E,n) ) )

dign

Qs(E,n) = |3digp ——5——75—
d%En +d%En

k%l (E7 ”) ’

dog )
Q(E,n) = |3dap, + 2" 12, (E,
6( n) |: * d%EAn + d%EJ‘l 21( n)

GlSEn = ([Qg(E l’l)(COShglE,,)(COSgZEn) Q]()(E7 n)(sinhglE,,,)(singZE,n)}(cos Vll(Ean)))
Qg E }’l = [2 1En 2d§En — k21(Ea }’l):|7 QIO(E7 I’l) = [Zdlg‘ndzg‘”},
=

Gieen [Q7(E,n)(sinh g1£,)(cos g2e,n) — Qs(E,n)(singigq)(cosh g2p )] (siny, (E, n)/12)),
5dlE n 3 S(d%E n 3d%E ndlE-ﬂ)
Q7 (E‘7 I’l) = k (E7 n) . - — 34k (E, }’l)d]Eﬁ,,
d%En +d25n 2 ky (E,n) 2
SdZE n 3 S(d%E n_ 3d§E ndlE-ﬁ)
Qg(E,n) k5, (E, n) : : + 34ky, (E,n)dag
d%E,n + d%En & k2l(E7 n) 2 £

1
Higen = 3 [Hign + Huipn + Ao(Hisgn + Hisgn) + Do(Hisgn + Hisen))s

Hiig, = 2(sinh g1£,)(sin g2£,) (cos yy, (E, n)))

Hizpn = ([Q(E,n)(sinh g1£,,)(c08 82£,) + Qi (E, n)(singag.,) (cosh g1g,q)] (sinyy, (E, n))),

Hizgpn = ([Qa(E, n)(cosh g1£,)(cos g2r.n) + Q3(E, n)(sinh g1£,) (sin g2p,4)](sinyy (E, n)))
([Q6(E, n)(sinh g1£,,) (cos g2£,1) + Qs (E, n)(sin g1,) (cosh g2g )] (cos 711 (E, 1)),

Hisen = ([Q10(E, n)(cosh g1£,)(cos g2£,) + Qo(E, n)(sinh g1,) (sin g2£,1)] (cos 71, (E, n))),
([Qs(E, n)(sinh g1£,1) (cos g2x.n) + Q7 (E, n)(sin g1£,)(cosh gop )| (sinyy (E, n)/2)),

2C D
71%[2 18E’n} and  Digg, = sinh™ (w13g,)
0

)

Hyp, =

H16E>n =

Hiop,, =
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Therefore, the EEM in this case assumes the form

72
m*(EFz,n) :?G/I9E7n (CIIO)
E=Ep>
where Ep; is the Fermi energy in this case.
The electron concentration is given by
gVeB Nmax
no = 2h Z [$3c(Ep2,n) + $ac(Er2,n)] (CL11)
n=0

where ¢3C(EF27H) = |:(G19EF2J1 + \/G%9Ep2,n - H19EF2J£) /2}

and ¢y (Erz,n) 202r2 $3c(Er2,n)]

C1.2.3 Study of EEM in Heavily Doped IV-VI Superlattices
with Graded Interfaces

The E-k dispersion relation of the conduction electrons of the heavily doped
constituent materials of the IV—VI SLs can be expressed as

I = [2po.] [~ q0.(E, ks g;) + (130 (E. ks ng;)]” + 4Po.iRo(E, kx,ngi)]%} (CL.12)
where
Poi = (h®)/(4mpmy), i=12, qoi(E,ksng) = [(12/2)((1/m};) + (1/my))
+ o (B /A (L mifmg ) + (1/mmy;) = aiys (B, ng) (1/myg) = (1/my;)]
and

Roi(E, ksngi) = [72(E,ngi) + 73 (E,ngi) [(R /2)06k3 (1 /my)
= (U/mg )] = [(# /2)k3 ((1/mg;) + (1/mg;))] = oa(R® /4K (1 /mifmy;) )]

The electron dispersion law in heavily doped IV-VI SLs with graded interfaces
can be expressed as

cos(L,k) = %CDZ(E,kX) (C1.13)
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Where
D, (E, ks) = [2cosh{,(E, ks)} cos{p,(E, ks)} + & (E, k) sinh{ B, (E, k) } sin{7,, (E, k) }

2
(M — 3K (E, k5)> cosh{,(E, k) } sin{yy(E, k)}

+ A
0 Kan(E, k)

2
. <3Km(E., k)~ %) SO (£, ) cos{7nE, kx)}}
o 80 [2({K1E. k)Y~ {Kona(E.k))?) cosh{ B (E. k) cos (125 (E. k)

1
12

3 3
" S{an(E’kx)} +5{K2]2(E’kx>} 734K212(E,kS)K112(EAk3-):| sinh{[}2(E7kJ)}sin{yzz(E,kS)}”,

Kai2(E ks) Ki2(E, ks)

B2 (E ks) = Kii2(E, ks)[ao — Aol
k1 (E. ky) = [2po2] ' [~Goo(E — Vo, ks1i0)
- [[519.,2(15 — Vo, ks g2)]” + 4Po2Ro 2 (E — Vo, ks,'?gz)]ﬂ,
122(E, ks) = Koo (E, ks)[bo — Aol
121 (E. ky) = [2po] ' [~go,1 (E, ks ng1)
[0 (B gy +4po. i Ro. (E, s 1)

and

_ [Kin2(E k) Kaia(E, ky)
e2(E k) = |:K2]2(E7ks) Ki2(E ky) |

The simplified dispersion relation in heavily doped IV-VI superllatices with
graded interfaces under magnetic quantization can be expressed as

I > 2eB 1
where
O, (E, ky) = |2cosh{f,(E,n)} cos{y,(E,n)} + &(E,n) sinh{f,(E,n)} sin{yp,, (E,n)}

+ Ao [({Km(s, )Y Ko (E, n) — 3Kapa (E, n>) cosh{By(E, n)} sin{yy(E, n)}

2
+ (3K112(E, n) — %) sinh{ B, (E, n)} cos {7 (E, )}

+4 {2(%12(57 MY = {Kona(E,m)}?) - cosh{B (E,n)} cos{yss(E.m)}

1

12

S{Kua(E,m)) + S (E, n;}s — 34K>15(E, n)K112(E, n)

Kona(E,n) Kia(E,n sinh{f, (E, ")}Si“{hz(Ea")}H-,
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Br(E,n) = Ki12(E, n)[ao — Ao,
k%lZ(E’ I’l) = [2ﬁ9,2n}_1[_69,2n(E - VO: ’7g2)

_ 1
- {[‘7]9211(15 — Vo, N2))” + 4Po2uRo 24 (E — V0711g2)]2:|7

2l = Vo) = [ /2)((1 i)+ (1mg)) + a0 52 (43 ) (1 i)

+ (1/mpmp)) — a2y3(E = Vo, 1) (1/my) — (1/myy)],

Roon(E; 1) =

1aE = Vo) +35( = Voung) [0 203 %52 (3 ) (1)

= (1/m))] = [(1? /2)k (1 /i) + (1/myp))] — o (H®/4)

2
|28 (4 3) ] (pmiman)
VZ(Ea I’l) = K212(E, }’l)[bo - A0]7 k%lZ(E7 l’l) = [21_79«,171]_] [_Q9Jn(E7 ngl)

- 1
+ [[QQ,ln (E7 ngl)]z + 4]39,1nR9,1n (Ev ngl )]2:|

doan(E.1) = G2/ 2)((1 /) + (1)) -+ 04052 () ()

+ (1/mfymy;)) = o0y (E,ngn ) (1/mfy) = (1/myy)],

Ro1(E,tg1) =[12(E,ng1) + 13,0y )[(B /2)o 2B/ ) (n + %)((1/"1?1)
= (1/mg))] = [(# /2)k (1 /mgy) + (1/mg;))] = o (K /4)

< (emm(n )Y @ mimi)

_ [Kia(E,n)  Kya(E,n)
82(E7 n) - |:K212(E; I’L) B K112(E, n)]

and

Therefore, the EEM in this case assumes the form

m*(EF3,n)(h;) [(I)’Z(Em,n)cos {@2 Eps,n ” <\/1 (1/4)02(Eps, )

(C1.15)

where Ep; is the Fermi energy in this case.
The electron concentration is given by
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veBnmax
np = gnzh Z [¢sc(Er3,n) + doc(Ers, n)]
n=0
1
here  ue(Eps.n) l{cos '{ICD(E )HZ 2eB( +1> 2
w F3,1) = 5 ©2(Lp3,n ——|\n+z
> L2 2 h 2
and  ¢gc(Ers;n) 202r3 bec(EF3, 1)) (C1.16)

C1.2.4 Study of EEM in Heavily Doped HgTe/CdTe
Superlattices with Graded Interfaces

The electron energy spectra of the constituent materials of HgTe/CdTe SLs are
given by

B2 4A\E — By /B2 4AE
g2 — |Zu A e B a4 (C1.17)
2Al
R k?
and Ar T12(E7 A2>Eg27 ngZ) +iT (E7 A27 Eg2) ”g2) (C118>
2m,

o = (3|e|2/1283m), Ay = (12 )2m). ey

is the semiconductor permittivity of the first material. The energy-wave vector
dispersion relation of the conduction electrons in heavily doped HgTe/CdTe SLs
with graded interfaces can be expressed as

k? = Gl9o + iHy9p (Cllg)

where  Giop = [((Cfsz - D%Sz)/L?)) - kf]»

Cigp = cos™ ' (w1s2),
1

i 2
wi1g2=(2)? [(1 ~ Gig, — Hiy) — \/(1 ~ Gy, — Hiyy)* + 4G182:| ,

1
Gig = 7 (G112 + G122 + Ao(G132 + Gia2) + Ao(Gis2 + Gie2))s

Giiz = 2(cos(g12))(cos(g22))(cos ys(E, ks))
18(E, k) = ks(E, ks)(bo — Ao),

1
B}, +4A\E — Boi\/B} + 4AE kz} 7

kS(E; kv) -

247
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G122 = ([le(E7ks)(Sinhglz)(COngz) — ng(E7ks)(singzg)(coshglz)](sinyg(E7 k;)))

dy kg(E, ks)dzz}
ks(E.ks)  di, +d3, |

[ dn ks(E, ky)dy»
Qu(E k) = -  Qu(Ek
T R

G132 = ([Q32 (E, kS)(COSh glz)(COS g22) — Q42 (E7 kx)(sinh glz)(sil’l gzz)](sil’l V8 (E7 ké)))

&2, — d? 2d1>d
Qs (E, ky b e S § Ek} Qu(E, k, ={ 12 ‘2]7
2(Ek) = | )~ ks(Bk) alEk) = 376 &)

Gia2 = ([Qs52(E, ks)(sinh g12)(cos g22) — Qo2 (E, k) (sin g12) (cosh g22)](cos yg(E, ks))),

dis

G (E k)|,
dy+d3, "t

Q52(E, k;) = |3dyp — kz(E k, )j| Qﬁz(E, kv) = |:3d22 4+ =

di, + d%z
Gis2 = ([Q02(E, k) (cosh g12)(cos g22) — Qi02(E, k) (sinh g12) (sin g22)](cos 75 (E, ky))),
ng(E, k:) = [2d122 - 2"'%2 - ké(E,kS)], Qloz(Ev k:) = [2d12d22],

G162 = ([972 (E7 kS)(SiIlh glz)(COS gzz) — QS2(E7 ks)(sin glg)(COSh gzz)](sin Vs (E7 ks)/12)),

5d 5(d3, — 3d%,dy,)
Q72(E k, ) l:dlzz 120%2 kg (E, kv) n ( Ilig (E. kgi — 34k8(E7 ky)dlzjl s
5dy, 5(d3, — 3d%,d1,) }
Qg (E, ks — = K(E k) + 22222 34k (E, k,)d
wltb) = [ R + M (Ek )

1
Hy, = *[an + Hin + Ag(Hiz + Hig) + Ao(Hisz + Hien)),

Hyj, = 2(sinh gy sin gy cos g (E, k),

Hip = ([Qa2(E, k;)(sinh g12)(cos g22) + Qua(E, ky) (sin g22) (cosh g12)] (sin ys(E, &5))),
Hyzp = ([Qu2(E, k) (cosh g12)(cos g22) 4 Qar (E, k) (sinh g12) (sin g2)] (sin yg(E, k5))),
Hisp = ([Qe2(E, ky)(sinh g12)(cos g22) + Qsa(E, ks ) (sin g12) (cosh g2)](cos y5(E., k),
Hisy = ([Quo2(E, ks)(cosh g12) (c0s g22) + Qop (E, k) (sinh g12) (sin g22)] (cos 5 (E, ks))),
Higy = ([Qg2(E, k) (sinh g12) (cos g22) + Qa2 (E, ky) (sin g12) (cosh g)](sin 4 (E, ky) /12)),
Hig, = [((2C182 182)/L2)]

and D,g, = sinh~ Ywig)

The simplified dispersion relation in heavily doped HgTe/CdTe superlattices
with graded interfaces under magnetic quantization can be expressed as

(k.)* = Groagn + iHi92E (C1.20)

where
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Gioog, =

Cloorn — D}
—EEn BB (6B ) (n + (1/2))}
0

-1
Cig20p = c0s ™ (W1826,0),
1

1

=1 2
WI82En= (2) : [(] - G%BZE,n - H1282E,n) - \/(1 - G%gzbyn - H1282E,n) + 4G%82E,n:| )
1
Gigop, = 2
Giioen = 2(cos(g12))(cos(g22))(cos y5(E,n)),  ys(E,n) = ks(E,n)(bo — Ao),

12
B%, +4AE — By /B, +4AE
o TEa ~ (2eB/m)(n+(1/2))|

[Gi12En + G228 + Ao(Gr3260 + Gia2en) + Ao(Gis2en + Gie2en)]

kg(E, n) =

Gioop = ([Qu2(E, n)(sinh g12£,)(cos g20£.1)
— Qy(E, n)(sin gog ) (cosh giog )] (sin yg(E, n))),

Q (E n) = dIZE*r” _ kS(E7 n)d12E,n
12 ) kS (E7 n) d]2zEﬁn I dng‘n )

Q (E n) = d22E,n k8 (E7 n)dZZE,n
22\ Ly kS (E7 I’l) d]zzEﬁ,, I dng‘,, )

Gi3200 = ([Q32(E, n)(cosh g12£,)(cos g22.1)
— Qu(E, n)(sinh g12,,) (sin g22r )| (sin y5(E, n))),

d%ZE - d%E 2dlZE dQZE
— 3k (E Qu(E, n) = | 12En722En
8( 7”) 9 42( ,}’l) |: kg(E,I’l) :|7

LaEsn) = | = Em)

Gia20p = ([Qs2(E, n)(sinh g12£,,)(cOs g22£.1)
— Qe2(E, n)(sin g12£,) (cosh g22g,)] (cos 75 (E, 1)),

)

dlZEn 2
Qs (E,n) = |3digy ——5———5—kg(E, n)
d122E,n + d%ZEJl s
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dxng
Q2 (E,n) = [3612215” #%(En) ;
12En 22E.;n

Gi520p = ([Qo2(E, n)(cosh g12£.,)(coS g22£.1)
— Qy02(E, n)(sinh g12£,,) (sin g22£, )] (cos y5(E, n))),
Qor(E,n) = [2d122En - 2d§2En - kz(E n)], Qe(E,n) = [2d12End22En]
Gisoen = ([Q2(E, n)(sinh g 12, ) (c0s g22£.n) — Q2 (E, n)(sin g12£,,) (cosh g )]
X (sin ygop(E,n)/12)),

Sden 3 5(dirg, — 3d5g ,d12E0)
Q E }’l k (E, }’l) —+ s ’ — 34k (E, n)dle_n s
2l [ g, + g, ks(E,n) ’
SdxnEen 3 5(d3yp, — 3d3op wdi2En)
ng(E n -k (E, I’l) + - - + 34k (E, n)dZZEﬁn ,
12En d%ZEn kg(E,n) $

Hygop, = > [Hqun + Hingn + Ao(Hizoen + Hisoen) + Ao(Hisoen + Hicoe )],

Hi1og,, = 2(sinh g12g,,) (Sin g2k, ) (cos P5(E, 1)),

Hinop = ([Q2(E, n)(sinh g12£,,) (€08 g226,1) + Qi2(E, n)(sin g2£,,) (cosh g12£,)]
x (sinyg(E,n))),

Hizp, = ([Qu2(E, n)(cosh g12g,)(cos g22e.n) 4+ Qa2 (E, n)(sinh g1oz ) (8in 8222, )]
x (sinyg(E, n))),

Hien = ([Qe2(E, n)(sinh g12g,) (cos g2.4) + Qs2(E, n)(sin g12e,,) (cosh 225 )]
x (cosyg(E, n))),

Hisoop = ([Q102(E, n)(cosh g12g,,)(coS g22£.0) 4 Qoa (E, n)(sinh g1og.,) (sin g22£.4)]
X (cosyg(E, n))),

Higren = ([Qs2(E, n)(sinh g2, ) (coS g228.4) + Q72(E, n)(sin g12e,,) (cosh 225 )]
x (sinyg(E,n)/2)),

Hignea, = [((ZCISZE.nDISZE,n)/L(Z))] and Dgp, = Sinhil(WISZE,n)

Therefore, the EEM in this case assumes the form

72
m*(Epa,n) = 7G/192E,n (CL.21)
E=Ep,
where Epy4 is the Fermi energy in this case.
The electron concentration is given by
gVeB Nmax
no ="y Z [§7¢(EFa, n) + dsc(Ers, n)] (C1.22)

n=0
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where ¢ (Eps,n) = [(Gszm,n + \/ Glorgy,n — H 192EF4,n) / 2}

and  Pgc(Eps,n) Z 02r4[¢7¢(Era, n)]

C1.2.5 Study of EEM in Heavily Doped Strained Layer
Superlattices with Graded Interfaces

The dispersion relation of the conduction electrons of the constituent materials of
the strained layer superlattices can be expressed as

[E — Tyilk; + [E — Toilk; + [E — T3]k; = qE> — RE* + VE+{;  (C1.23)

where
o - - 3 big; |V 3dieyy,i
Ti=0;, 0i=|Euq— Cei— (ai+ Cf)ei + 5 bitei — 2y EL/C ;
2 2 2
: : 3 bie; 3ditxyi
i =w;, = |:Egi — Cliei — (@i + C)ei +§bi8xxi - 78 - \/_28 . } ;

T3i=0;, 0;= [Eg,' — C;iS,‘ + ((1,‘ + Cfi)ﬁi + Eb,x‘)w‘ — %:l

R =qi[2A; + Cj&], q; = A; = Eg — Cizi,

25,

2
2C21&X), 2C2i8xy[

Vi=qi |:A12 3 + 2A; C1181:|, i Qi|: 3 CTzClAzz:|

Therefore, the electron energy spectrum in heavily doped stressed materials can
be written as

Pi(E, 1)k + Oi(Engi ) Ky + Si(E, g ) 2 = 1 (C1.24)
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I:’y() (Ea ngi) - IOTli]

where  P;(E,n,;) =

KI(E7 ngi) ’
3 2 2
A . _Qingi E E P )
Al (E7 ’7gi) - 2ﬁ eXp( ngl > I+ ngl R’QO (E’ 1781)

+ ViVO (Ea ’7gi)+ Ci

N

. E.n,) — IhTy;
W+ B (E )], Oi(Eon,) — Lol Ns) = bl

I —
0 Ai (Ea ngi)

N\*—‘

I:VO (E7 ngi) - IOTSI}
Ai (E7 ng)

The energy-wave vector dispersion relation of the conduction electrons in
heavily doped strained layer SLs with graded interfaces can be expressed as

and ?,(E, ngi) =

cos(Lok) = %qs_é(E, ky) (C1.25)
where
¢6(E, ky) = [2cosh[T4(E, Ng2)] €08 [T5(E, 1) ]] + [T6(E, k)] sinh [T4(E, )] sin[T5(E, 1) ]

K3 (E,
( 0 ”g2 —3W(E ng.)> cosh [T (E, n,2)] sin[Ts (E, n,1)]
k' (E 11g1 ‘

(ot = ) sl o)

(E '732)
+ 80 [2(k5 (Esn2) = K2 (E, 1)) cosh[Ta(E, o) ] cos[T5 (E. g )]

1 (5k)(E, SkB3(E, . .
+12< O< Wg2)+ ( ngl)34k0(E,11g2)k/(E,11g1))smh[T4(E,11g2)]sm[T5<E,ngl>]}

K(Eng,)  ko(E ng)

[Ta(E,ng)] = ko(Es ng2)lao — Aol
- . » 12
ko(E.ng) = [(E~Voune)] ™ [Pa(E—Vouna)k: + Qa(E—Vono)d 1]
Ts(E,ng1) = K (E, 1y1) [bo — Ao,
. 1
C(En) = B (En)] 1= PrEn )&~ T (e )]
and
_ kO(E’ ngZ) . k/(E’ '/Igl)
T6(E7 kY) B |:k,(E7 ngl) kO(E7 ngZ)

Therefore, the dispersion relation of the conduction electrons in heavily doped
strained layer QDSLs with graded interfaces can be expressed as



510 Appendix C: Heavily Doped Non-Parabolic Semiconductors

cos(Loko) = %dTﬁ(E, n) (C1.26)

where

(ZTG(Ea n) = [2 COSh[T4(Ea n, ngZ)] COS[TS (Ea n, ng)]]
+ [T6(E, n)] sinh[Ty(E, n, 1,,)]
x sin[Ts(E, n r]gl)]

+ Ay

(E n, ngZ) .
— 3k, (E h|T,(E Ts(E
(k/ (E n ngl) 3 0( 7”7’73:]) cos [ 4( 1, ng2)} Sln[ 5( leflgl)}
K2

0 (Ea n, ’1g1)
kO(E7 n, ng2)

+ A0 |:2(k(2)(E7 n, ng2) - ké)zD(Ev n, ngl)) COSh[T4(E7 n, ngZ)] COS[TS(E7 n, r]gl)ﬂ

i Skg)(E7n7ng2) Skg(Evn: r]gl)
k(,)(Eanangl) ko(E,l’l,i’]gz)
x sinh[Ty(E, n, ﬂgz)] sin[Ts(E, n, ngl)]

+ <3k0(E7 n, ngZ) - ) Sinh[T4(E> n, ’/IgZ)] COS[T5(E3 n, ngl )]:|

_34k0(E7 n, ngZ)k(/)(Ea n, r]gl))

[T4(E.n,ng) | = ko(E.n,ng)lao — Ao,
B o) = [55(E Vo))~ [0+ 1/20meB/ (Vi Brs@)] ~ 1]
pi(E) = /(2P2 (E V0>’7g2)) p2(E) = hz/(zQZ (E — Vo, Vlgz))
Ts(E,n,ng) = ko(E,n,ng ) [bo — Ao],
—_ 1
G nng) = [5(E )] T2 [1 = [0+ 12068/ (Vs Bt ]|
p3(E) =12/ 2P\ (E,ng)),  pa(E) =1/ (201 (E 1))
_ k"(E n ”gZ) _kO(E n ’7g1)
TG(E, n) - ké)(E nﬂ’]g]) k()(E,n,V]gz):|

Therefore, the EEM in this case assumes the form

m»«(EFﬁ,n)=<%2> {(I)g(Em,n)cos_] {2% Epg,n ” (\/1 (1/4)®% (Ers, ))

(C1.27)

where Epg is the Fermi energy in this case.
The electron concentration is given by
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gveB Mmax
no =5 Z [boc(EFe,n) + $10c(Ere,n)]
n=0
1
1] (1= > 2eB NES
where  ¢oc(Ere,n) = L2 cos ECI)6(EF6,n) — n—f—i (C1.28)

and  ¢gc(Ers,n) Z%m $7c(Ere;n)

C.1.2.6 Study of EEM in Heavily Doped Effective
Mass III-V Superlattices

Following Sasaki [94], the electron dispersion law in III-V heavily doped effective
mass superlattices (EMSLs) can be written as

© = | feos™ (i Bk k) V82 (C1.29)
0

in which
Fo1(E ky, k;) = ay cos[aoCay (E, k1) + boDa1 (E, ki,ny)]

— ay cos[agCy (E, ki, ngl) — boDy; (E, ky, ngZ)]a
K=k 4k,

—27 1727 1
a; = Mz( ) 4 M2 (0’ ’7g2)
M1(0 ngl) Ml(o’ngl) ’
2r 1/27 1
ay = MZ (Oa ngZ) _ M2 (O ngZ)
5 M, (0 ngl) | Mll (O ”gl) b ’b
oib; R o;ci + cibi=— oD;
(O ngz) me; [\/ET(O ngz) + 2{ \/g— + E lz )

IP—‘
N
|
DR
N~

c
1 ol b,‘ bi 2
1—— 1——) — 1 ——
+ Lo < Ci> < Ci) Ci ( Ci) Cillgi/T
-2 —1 z —pz) 1 p
X exp eXp\ —— —
{C ngt ( ?n;) <p21 < < 4 p (cingi
. P\ 1 P
+exp exp( )—cosh( ))}H,
< an gl) (; 4 Ngi Cillgi
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oubi My ((ouci + bici — oby\ N 1 % bi
0.n.) =2 Mgi Lt —(1-—)(1-=
T(0,1,) = [ G 4 ( c? > 2\/_+20z < ci) < c">

l i

1 : b\ 2 1) < —p*/4
() e ) (2]
Ci Ci ¢i) CillgV/T CiMlei ) 5= p Cillg;

Co1 (E ki ny ) =ei +ies, Do(E ki, ng) = es+ ies,

()] [

h= { FILITH(E Ai, 115 Eqr) _kﬂ’ 2= EZLITZ'(E’A"%I’E“"')’

1
Vi + 185 —t31 ?

2

2

12
VB4 +1
2

3= {2’;*2 (E,A2,np,Ep) —ki} ty = 2mC2 Ty (E, Ay 1. Eg2),
Therefore, (C1.29) can be expressed as
k2 = 87 + idg (C1.30)
where

1
&:kﬂ%—@—ﬁ} ds = cos ! ps,
0
12

1= =52 =\ (1 - 83— 8 +40]
pS = 2 )

= (ay cos Ay cosh Ay — a; cos Az cosh Ay),

= (a1 sinA; sinh A; — a; sin Az sinh Ay),

Ar = (apey + boes), Ay = (aper + boes), Az = (ape; — boes),

A4 = (Cl()eg bo€4>, 56 = Sil’lh_l Ps and 58 = [25556/1%]

Therefore, the electron dispersion relation in heavily doped III-V QDSL

assumes the form

(k:)*= 16 + ids (C1.31)

where
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(1 2eB 1 _
O7En = z (5§En 5257,,) - {7('1 +§)H7 s = €08 psg,
_ 12
2 2 2 2
1- 53E,n - 54E,n - \/(1 - 53En 54E n) +454E ]
pSE,n - 2 )
535,1 ((1] COS A]EnCOSh A2En — dy COS A3EnCOSh A4En)
Ospp = (a1 sin Ajg , sinh Ayg,, — ap sin Az, sinh Agg, ,,)
Aigy = (aoeipn + boesen),  Aopn = (aoeren + boesr,),
Aspn = (aoelEn —boesgn), Mgy = (averpn — boesp),
O = sinh ™! Psg, and dgp, = [25551,15651,1/%},
i i
eien = [(\/ g, + 6 +112a)[2)F, e2pa = [({/8ip, + 5 — 1iEa) [2)F,
_ 12 12
\/ Bea + 1+ BER \/ Ben + 13— BEn
€3En = ) sy  €4En = ) )
:ch1 2eB 1
NEn = W Tii (E, A g, Eqr) — e <n+§)],
[2m, 2eB 1
BE, = 2 le(E, AZvng27Eg2) — (n +§)]
Therefore, the EEM in this case assumes the form
. R
m (EF7, }’l) = ?(37&" (C132)
E=Ep;
where Ep7 is the Fermi energy in this case.
The electron concentration is given by
B Mmax
gve (C1.33)

m =" > [011(EF7,n) + ¢15(EF7,n)]

where

¢11(EF7,n) = |:(57Ep7n + /%5 m 58Ep7,n) /2

and ¢12 EF7,

292r7[¢11 Ep7,n)]
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C.1.2.7 Study of EEM in Heavily Doped Effective
Mass II-VI Superlattices

Following Sasaki [95], the electron dispersion law in heavily doped II-VI EMSLs
can be written as

k2 = Agz + iA, (C1.34)

1
where A3 = 7 (A%l — A%z) - kf}
0

12
L= 85— A — /(1 - A5 - &) +4a,

2 i

—1
Ayl = cos™ pe, pg =

Ag = (ay cos Ag cosh A7 — a; cos Ag cosh A7),
Ao = (a7 sin Ag sinh A7 + @ sin Ag sinh A7),
A = [a0Co (E, kg, 1) + boes],  Ag = boey,
Ag = [a0Cn (E, kg, 1) — boes),

C22(E7ks7ngl) = 7 VS(Ev ngl) - mj_l F Coks )
2 127!
a_l _ %(Oa ngZ) + 1 4 %(07 ngZ)
M, (0’ ngl) 1(0’ ”gl) ’

-1

@:[%mmtﬁzﬁwwwvm

E(O’ ngl) E(O’ ngl)
2A11A
Lj

2
My (0,11) = my, <1 - i)

-1
Ay =cos" ps, A=

The electron dispersion law in heavily doped II-VI QDSL can be written as

(k:)*= Apzgn + iArapn, (C1.35)



Appendix C: Heavily Doped Non-Parabolic Semiconductors 515

[ 2eB 1
where A13E,n = (A%lEn A%ZE,n) — {7 (I’l + E) }:|

Aigq = cos™ ! pegn,

) 12
2 2 2 2
A9E n AlOE n \/< A9E n AlOE n) +4A10En
p6E7n = 2 )

Aog, = (m 08 Ao, cosh Agg, — @3 cos Agg, cosh Az,
AlOE,n =
Asgpn = [aOCZZEJL (EE,m ’1g1) + boe3E,n}, A7gn = boese p,

a0Coon (Egn Ng1) — boesean),

[.1 i {ZeB < 1)}
Coen(Egn, 1 V3B g) =5 =17 (nt+5
22E, ( E, gl) [ hz { 3( E gl) 2miﬁl i 2

12 712
wal {32 (3)}] ]
2A11EnA12E

i
Agn =cos™ peen,  Alapn = — Yz
0

aj sin Agg, sinh Aqg , + @ sin Agg , sinh Agg ) ,

ASEJL =

Therefore, the EEM in this case assumes the form

* hz
m" (Erg,n) = ?A/ISE.n (C1.36)
E=EFsg
where Epg is the Fermi energy in this case.
The electron concentration is given by
gveB Mmax
no =7 Z [§13(EFs, n) + ¢14(EFs, n)] (C1.37)
n=0

where

12
(Z)l?)(EFSa ) |:(A13EF37" + \/A13E[‘s n A14EF8,'1) /2:|

and ¢ 4(EFs,n) Zezﬂ ¢13(Ers, n)]
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C1.2.8 Study of EEM in Heavily Doped Effective
Mass IV-VI Superlattices

Following Sasaki [95], the electron dispersion law in IV-VI, EMSLs can be
written as

K= [Li% feos ™ (£ (E, kx,ky))}z—kf} (C138)

where
f3 (E, ki, ky) = a3z cos [a0C23 (E, ky, ky, ngl) + boDy3 (E, ky, ky, ng)]
— a4 COS [(IOCQ?, (Ea kxa kya ’1g2) - b0D23 (E7 kX7 ky7 17g2)] 5

2 1727 !
4 = M3 (0,1’]82) 4 M3 (0717572)
M3(0,1,) M3(0,1,) 7
2 1/27 !
4 = M3 (0, ﬂgz) _1 4 M3 (07 ng2)
M3 (Oa ngl) M3 (0’ ngl)
M3(0,1) = (4p) " H“’(l B %) (ml,+ B ml,> } + [[qT’i(O’ nall
+ (4P Ro(0, )] [(1 —7%) <% ‘%)‘M(O’ ")+ 2P (1 ‘%+T7>H

m
alit w1 1 o 1 1
poi=———, @.i(0,ny) = - - )
Po, dmimy; :(0,141) {2 (m,*, + m,‘_[) Vr\mi; omy;

2
_ Mg il
Roi(0, 1) = {ﬁJF 2

__ > 1/2111/2
+ (@B oy ) Y+ (4550 Ro (B, ks k)] 2]

+1

s Co3(E ks ky, ’7g1) = [[21?]71 (o1 (E, ke, Ky, ngl)

Das(E.kesky ) = [2oa] ' =02 (E. ks ks n) + [{@93(E. ks s 2) Y

N\ 17217172
+(4p92)Ro 2 (E, kv, ky, 110 H 3
” L1 +x-h—4k2 N
2 \mj;  my; g mlt.mr’_,- m;rlm,j
1 1
—oy3(Eng) | ———1 |-
%73 m,)(mn_ mﬁ)}

_ > 11
RQ,i(E7 kx:kyvngi) = [VZ(Ev ”gi)+73(E7 ngi)fxi?k? <_+ - _>

me; My

qT,i(Ev k.\‘vk)‘:« ngi) =
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Therefore, the electron dispersion law in heavily doped IV-VI, EMSLs under
magnetic quantization can be written as
_ 2eB 1
(k) = [[1/23}{cos™ (B (E,m)Y = (5 (0 + ) (€1:39)

where

f3(E,n) = azcos[agCaspn(E,n 1) + boDazgn (E.n, 1))
— a4 COS [a0C23E,,1 (E, n, ﬂgz) - b0D23E,n (E7 n, ng)] 5

C23(E7 n, ”gl) = [[Zm]il [_qT,l(Ean7 ;/’g]) + [{QT,I(Ev n, 17'571)}2

_ 12
+(4ps)Ron (E,nng)] ]|

Das(E,n. ) = |2p3a) " [~@o3(Eon. ) + [{@a(Em, )Y

I 1/2111/2
+(4p9,2)R9,2(E7n717g2)} / :|:| ’

h21+1+h42e3 +1 1+1

° — 4 — (= (n+= _ -

2 \mj;  my; 4\ & 2 m;fimtfi mflml‘l
1 1

— Ui E7 i - 9

OCV3( ng><m;; m17,>‘|

- i* (2eB 1 1 1
Roi(E,n, 1) = | 12(E, tgi) +73(Es i) { == n+5 A

E(Ea n, ngi) =

) () e "f;))z

2 \n 2 my;  m

Therefore, the EEM in this case assumes the form

o B = (') [ty 057 3t | (/1= (/40 )
(C1.40)

where Epg is the Fermi energy in this case.
The electron concentration is given by
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gveB Mmax
2
°h —

2 12
T )
o

and ¢ 4(Epy,n) 202r6

ng =

$15(Ero,n) + ¢16(Ero, n) (C1.41)

¢15(Ero,n)

C1.2.9 Study of EEM in Heavily Doped Effective
Mass HgTe/CdTe Superlattices

Following Sasaki [95], the electron dispersion law in heavily doped HgTe/CdTe
EMSLs can be written as

k2 = Ay + iAan (C1.42)
where
Aus = |5 (A2 — A2yy) — 2
13 — L2 ( 11H 1211) s
Aty = cos™ pen,
[ 2 2 2 2 2 2 12
1= Aoy — Aoy — \/(1 — A5y — Alo) +4A0
Pon = ) )
Aoy = (aig cos Asy cosh Agy — g cos Az cosh Agy ),
AlOH (alH sin ASH sinh A6H + axy sin A7H sinh AGH)
Asy = [a0Coon (E, ks, 1g1) + boes|,  Aen = boes,
Asr = [a0Coon (E, ks, 1g1) — boes],
_ 12
B2, + 2A\E — By (B3, + 4AE
Cooti (E ks ngy) = |2 1 021( o 1 )_kf ,
L 2A1
v0n) ][, (00 ) 7]
@ = 2 ;ngZ +1 4 2 ;ngZ ’
me me
o) ][, (00 ) 7]
m — 27’*,732 —1 4 27;1732
mg., m.
2A11HA R

1
Ag = cos™ per, Auan = 7
0
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The electron dispersion law in heavily doped HgTe/CdTe EMSLs under
magnetic quantization can be written as

(k:)* = Atspzs + iArsE (C1.43)
where

2eB 1
Aisrign = {(1/1%) (A%IHE,n - A%zyE,n) T Th (n + E)}

-1
AllHE«,n = COS ~ P6HE n,
1

3 2
PeHER = [((1 - AgHE,n - A%OHE,n - \/(1 - AgHE,n - A%OHE.n) +4A%0HEJ: ) / 2>}

A9HE n aiy cos ASHE,n cosh AﬁHE,n — dyf COS A7HE,n cosh AsHE,n) )

aoCooHE (EE,m 77g1) + b0€3]7 Ae¢rEn = boes,

Asnen = [a0Cougn (Egn,Ng1) — boes],

Avongn = (alH $in Aspig  sinh Agug n + 2 8in Aqpg  sinh Agyg ),
Aspen = |,

12
B2, +2A\Eg, — By (B2, + 4AEg , 2eB 1
Cortn(Epmriyy) = |00 E. 2A2( o1 En) 2B ,
1
2A1iaEnA12HE

L3

-1
Avren = €OS™ PerEn, AlsbEn =

Therefore, the EEM in this case assumes the form

* hz

m (Em(),l”l) = EA,BHE,n (C144)
E=Ep
where Erjg is the Fermi energy in this case.

The electron concentration is given by
_ 8BNS & E C1.45
o =" ap [#17(EF10,n) + ¢15(EF10,1)] (C1.45)

n=0

where

12
¢17(Epi0,n) = KABHEHM + \/ABHEF,M A14HEF10J1> /2]

and ¢ 3(Eri0,1n) Zgzﬂ ®17(Er10,1)]
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C.1.2.10 Study of EEM in Heavily Doped Strained Layer
Effective Mass Superlattices

The dispersion relation of the constituent materials of heavily doped III-V super
lattices can be written as

Pi(Ea ngt)k)zc + Qi(E7 ngz)kyzv + Si(Ea ngz)kzz =1 (C146)
where
Pi(E ) = (30(Esng) = oTu) (AE,ng) ™' o = (1/2)[1 + Erf (E/ng)),
T]i = [Egi — Cfis,- — (a,' + C?i)Si + (3/2)bi£xxi — (b,‘E,‘/Z) + (\/gdisx),i/Z)},
A(E, ny) =[(—qimy;/2v/m) exp(—(E* /) [1 + (E*/nz)] = Ribo(E, ny:) + Vivo(E )
+(G/2)N+Ef(E/ng))). 4= (3/2B3), Ri=qil2A4;i + Cizl],
Ai = Egi - Cfisi, Vi = q,[Al2 — (2C%i3xyi/3) + 2AiC;‘i£i],
b = qil(2C3i80i/3) — Cj6A7), Q(E, ng) = (70(E, mgr) — ToT) (Ai(E, )~
Ty = [Eqi — Ciiei — (ai + Ci)ei + (3/2)bitwi — (biti/2) — (V3digi/2),

S‘i(E7 ”Igi) = ('V()(E, ngi) - IOT3i)(Ai(Ea ngi)717
Tsi = [Egi — Ciei + (@i + CY)ei + (3/2)bie — (biei/2)],

The electron energy spectrum in heavily doped strained layer effective mass
superlattices can be written as

= [ (eos™ (fn(Ekok) -] c1a7)

where

fao (E, ke, ky) = ax cos [aoCao (E, kv, ky, 1g1) + boDao (E, ke, ky, 11,1) |
— ap1 COS [a0C40 (Ea kxa kya '/’g2) - b0D40 <E7 kx7 ky7 ngZ)} )

2 1/2 —1
o = l Ms2(0,71g2> n 1] 4<M32(0,11g2)) 7

Msl(oyngl) Msl(o’"gl)

M;i (0, 1) = (1/2)pi(n:)
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pilng) =[(ng/2v/7) - <T3l/z>]*2
[{ (Ug:/z\/_) 31/2 } V /2 (R ﬂg;/f) (é’/ngtﬁ)}
~((1/2) = (Tu/ngv/ {(c /2) + (Ving/2V/m) Ry /4) = (aimsy/2v7) }]

2(0 0 v
ax = ngZ + 1 52 71g2 7
0 '7g1 sl 0 ’7g1
1/27 1
Ms2(0 77g2 52 0 7’g2
ar = —1 4
M1 (0,14:) M1 (0,1,1)
271/2 1/2
Cao(E, keskyy 1) = [1 = Pi(E, ng1)k; = Q1(E, ng )k ]2 [S1(E,mgp)]
D40(Evkkayv'7g2) = [l - Py(E, ”gz)kx - QZ(Ev Wgz)k)%]l/z[SZ(E’ ﬂgz)] 'z

Therefore, the electron dispersion law in heavily doped strained layer effective
mass superlattices can be expressed as [96—-108]

(k) = Li% {cos™ (fuo(E,m)) Y~ (Z%B (n + %))] (C1.48)

where  fio(E,n) = azo cos[agCao (E, n,1g1) + boDao (E,n, 1)
— ap1 COS [a0C40 (E> n, ngZ) - b0D40 (Ea n, ngZ):I )

1/2

Cao(E )= [1 heB < +1) /
w(Enny) = |1 ————(n+>
¢! $so(E, ’7g1) 2

[31(E7 ngl)]_1/27
bso(E ’7g1 \/lﬁso (E y Mgt Wsi (E, ’Igl)
n? n?
- E, -
2P1(E ’181), l//Sl( ngl) 2Q1(E ngl)

1/2
heB 1
it - 1= (142)
& $s01(E ﬂgz) 2

[32(E7 ']gZ)]_]/Z
$so1 (E ’7g2 \/Wsol (E, ’lgz)Wsn(E ’lgz)
n? n?
2P2(E ”]gz)’ lpi]l(E ’1g2) 2Q2(E ngz)

Therefore, the EEM in this case assumes the form

o Eroon) = () [t cos” [t / (/1= /B

(C1.49)

Yso(E, ’7g1)

Wso1(Esngn) =

where Er;; is the Fermi energy in this case.
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The electron concentration is given by

veB &%
ng = g 3 [19(EF11,1) + ¢ (EF11,1)]
m*h ‘=
1
where  ¢9(EF11,n) l[cosl{lf (E n)}]z 2¢B (n+1> .
19(EF,n) = |73 SSa0(EF11, - >
L3 2 h 2
and  ¢og(Ep11,n) Zezra ®19(EF11,n) (C1.50)

C1.3 Open Research Problem

Investigate the concentration dependence of the effective acceleration mass (EAM),
density-of-state effective mass (DEM), concentration effective mass (CEM),
conductivity effective mass (CoEM), Faraday rotation effective mass (FREM), and
Optical effective mass (OEM) for bulk specimens for all the materials whose carrier
energy spectra are described in this book.
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