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Foreword

Significant technological advances have been few and far between in the past
approximately one hundred years of soil survey activities. Perhaps one of the most
innovative techniques in the history of soil survey was the introduction of aerial
photographs as base maps for field mapping, which replaced the conventional base
map laboriously prepared by planetable and alidade. Such a relatively simple idea
by today’s standards revolutionized soil surveys by vastly increasing the accuracy
and efficiently. Yet, even this innovative approach did not gain universal acceptance
immediately and was hampered by a lack of aerial coverage of the world, funds to
cover the costs, and in some cases a reluctance by some soil mappers and cartogra-
phers to change.

Digital Soil Mapping (DSM), which is already being used and tested by groups
of dedicated and innovative pedologists, is perhaps the next great advancement in
delivering soil survey information. However, like many new technologies, it too has
yet to gain universal acceptance and is hampered by ignorance on the part of some
pedologists and other scientists.

DSM is a spatial soil information system created by numerical models that ac-
count for the spatial and temporal variations of soil properties based on soil in-
formation and related environmental variables (Lagacheric and McBratney, 2007).
Pedologists working with DSM technology are in the process of addressing ques-
tions and concerns. Some of these questions include production and processing of
covariates (soil forming factors derived from remote sensing and existing soil maps),
the collection of soil data, the development of soil predictions based on numerical
models, and the representation of digital soil maps.

Covariates include the traditional soil forming factors of parent material, to-
pography, vegetation, and climate. Some of the more sophisticated remote sensing
techniques help glean information on the mineralogy and specific properties of the
surface layers or horizons. The ever expanding application of remote sensing and as-
sociated decrease in costs open the doors for advantageous development of stronger
soil covariates and improvement to the predictive utility of DSM.

Traditional soil survey has always struggled with the collection of data. The
amount of soil data and information required to justify the mapping product, how
to interpolate data to similar areas, and how to incorporate older data are all chal-
lenges that need further discussion. Older data often were collected with antiquated
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vi Foreword

or imprecise terms and must be cross-referenced to current standards, but the biggest
obstacle in using older data is the lack of georeferencing. Traditional soil surveys
have tried to write standards for data collection, but the practicality of applying the
standards is difficult and not completely satisfactory. The amount of data is depen-
dent on the complexity of the area and the experience of the mapper among other
things. DSM also needs some guides or standards that will be difficult to cultivate
to meet everyone’s expectations and requirements. Some of the most ardent dis-
cussions in pedology center around standards, including different soil classification
systems, and seemingly fail to concentrate and evaluate the end-product, which is
the soil information provided to the user. DSM is a technological advancement that
has the potential to be misunderstood and thus viewed with skepticism.

Numerical models are the functions that predict soil properties or soil classes.
Most of these models have been calibrated with soil samplings and have been tested
over small areas. The limitation of soil sampling dense enough to capture the spatial
variability presently somewhat limit the use of numerical models to for large areas.

The world’s overpopulation of the human race and associated pressures on re-
sources, necessitate the immediate need for valuable soil information to make in-
formed decisions about the soil resource, or, at the very least, make people aware
of the problems and potential problems. We do not have the time or resources to
canvass the earth and gather all the soil data and information needed to make soil
surveys by our traditional methods. We need to look at the data that we do have
and employ new methods and new technologies to deliver information on the soil
resource. At the same time we should not be enamored solely on technology without
an appreciation and understanding of soil-landscape relationships, which provide
the predictive tools and foundations of soil survey.

DSM has the potential to deliver the needed information and in fact may provide
better and more accurate information. However, the technology of DSM must over-
come the skepticism associated with any new technology in the traditional world of
soil survey where new technologies have been few and far between.

The purpose of this book is to present the latest technologies, challenges, and
ideas related to DSM. Papers in this book were presented at the second Global
Workshop on Digital Soil Mapping for Regions and Countries with Sparse Soil
Spatial Data Infrastructures, which was held in Rio de Janeiro in July 2006. The
EMBRAPA CNPS (Brazilian National Soil Research Centre) hosted the meeting,
and the organizing committee was co-chaired by Dr. Lou Mendonça-Santos of EM-
BRAPA Solos and Prof. Alex McBratney of The University of Sydney, Australia.
Chapters range from overviews of the DSM technology in general to specific appli-
cations in areas without much soil information or areas where specific parameters
are investigated. Case studies in different parts of the world provide the opportunity
to evaluate the information and test its utility. I invite you all to engage in this new
technology, keep an open mind, continue the lively discussions that have always
made pedology exciting and enjoyable, and in the process strive to save our most
valuable resource, the soil.

USDA-NRCS Robert J. Ahrens
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Preface

This book reports on the second of a series of global workshops on digital soil
mapping held in Rio de Janeiro in July 2006 which coincided with the FIFA World
Cup – so it was an exciting time to be in Brazil. The meeting was hosted by
EMBRAPA Solos (Brazilian National Soil Research Centre) and the organizing
committee was co-chaired by Dr. M.L. Mendonça-Santos of EMBRAPA Solos and
Prof. Alex McBratney of the University of Sydney. The meeting was organised with
the financial support of EMBRAPA, FAPERJ (Carlos Chagas Filho Foundation for
Research Support of Rio de Janeiro State), CNPq (The National Council for Sci-
entific and Technological Development) and CPRM (Brazilian Geological Service).
There were some 100 participants from 20 countries.

The theme of the workshop was Digital Soil Mapping for Regions and Countries
with Sparse Soil Spatial Data Infrastructures.

There has been considerable expansion in the use of digital soil mapping tech-
nologies and development of methodologies that improve digital soil mapping at all
scales and levels of resolutions. These developments have occurred in all parts of the
world in the past few years also in countries where it was previously absent. Much in
the same way money and time are always short, there is almost always a shortage of
data in soil research and its applications. That may lead to unsupported statements,
sloppy statistics, misrepresentations and ultimately bad resource management. In
digital soil mapping, maximum use is made of sparse data and this books contains
several examples how that can be done.

From the Rio de Janeiro workshop we have selected 34 papers that focused on
digital soil mapping methodologies and applications for areas where data are lim-
ited. The papers have been loosely grouped into the following sections (i) introduc-
tory papers, (ii) dealing with limited spatial data infrastructures, (iii) methodology
development, and (iv) examples of digital soil mapping in various parts of the globe
(including USA, Brazil, UK, France, Czech Republic, Honduras, Kenya, Australia).
The last chapter summarises priorities for digital soil mapping. We feel this book is
a logical development of the ideas presented in “Digital soil mapping – an introduc-
tory perspective”, edited by Lagacherie et al., (2007) in the Developments in Soil
Science Series.

Wageningen A.E. Hartemink
Sydney A.B. McBratney
Rio de Janeiro M.L. Mendonça-Santos
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F. Carré and J.L. Boettinger

Colour Plate Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437



Contributors

Anjos, L.H.C.
Universidade Federal Rural do Rio de Janeiro, BR 465 – Km47, Seropédica, RJ,
Brazil, CEP 23890-000, lanjos@ufrrj.br

Arrouays, D.
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Equipe développement, Centre de Ressource Informatique, Université de Rennes 2,
place du recteur H. le Moal, 35 043 Rennes cedex France, pascal.gouery@uhb.fr

Gregory, L.J.
CSIRO Land and Water, G.P.O. Box 1666, Canberra, ACT 2602, Australia

Hammer, R.D.
USDA Natural Resources Conservation Service, 100 Centennial Mall North,
Federal Bldg, Rm 152, Lincoln, NE 68508, david.hammer@lin.usda.gov

Hartemink, A.E.
ISRIC – World Soil Information, P.O. Box 353, 6700 AJ, Wageningen, The
Netherlands, alfred.hartemink@wur.nl

Hasenack, H.
Universidade Federal do Rio Grande do Sul, Centro de Ecologia, CP. 15007, CEP
91501-970, Porto Alegre, RS, Brasil, hasenack@ecologia.ufrgs.br

Haydu-Houdeshell, C.A.
USDA Natural Resources Conservation Service, 14393 Park Avenue, Suite 200
Victorville, CA 92392, Carrie-Ann.Houdeshell@ca.usda.gov

Hempel, J.W.
USDA Natural Resources Conservation Service, 157 Clark Hall Annex, P.O. Box
6301, Morgantown, WV 26506, jon.hempel@wv.usda.gov



Contributors xix

Hott, M.C.
EMBRAPA National Dairy Cattle Research Center, 610 Eugênio do Nascimento
Street, Juiz de Fora, MG, Brazil 36038-330, hott@cnpgl.embrapa.br

Howell, D.
USDA Natural Resources Conservation Service, 1125 16th Street, Room 219
Arcata, CA, USA 95521, David.Howell@ca.usda.gov

Iwata, S.
Petrobras – UNBSOL – Manaus. Rua Darcy Vargas, 645, Parque 10 de Novembro,
Manaus – AM

Jacquier, D.W.
CSIRO Land and Water, G.P.O. Box 1666, Canberra, ACT 2602, Australia

Jarvis, A.
International Centre for Tropical Agricultura (CIAT), AA6713, Cali, Colombia;
Bioversity International, Regional Office for the Americas, Cali, Colombia,
a.jarvis@cgiar.org

Jordan, C.J.
British Geological Survey, Sir Kinsley Dunham Centre, Keyworth, Nottingham,
NG12 5GG, UK

Kessler, H.
British Geological Survey, Sir Kinsley Dunham Centre, Keyworth, Nottingham,
NG12 5GG, UK

Kienast-Brown, S.
USDA Natural Resources Conservation Service, Department of Plants, Soils, and
Climate, Utah State University, 4820 Old Main Hill, Logan, UT 84322-4820, USA,
Suzann.kienast@ut.usda.gov

Kim, Y.G.
Humboldt State University, Department of Mathematics, Arcata, CA, USA 95521,
ygk1@humboldt.edu

Krol, B.G.C.M.
International Institute for Geo-Information Science and Earth Observation (ITC),
Postbus 6, 7500 AA, Enschede, The Netherlands, krol@itc.nl

Kuras, O.
British Geological Survey, Sir Kinsley Dunham Centre, Keyworth, Nottingham,
NG12 5GG, UK

Lagacherie, P.
INRA Laboratoire d’étude des Interactions Sol Agrosystème Hy-
drosystème (LISAH), 2 place Viala 34060 Montpellier cedex 1, France,
lagache@supagro.inra.fr



xx Contributors

Lark, R.M.
Environmetrics Group, Biomathematics and Bioinformatics Division Rothamsted
Research, Harpenden Hertfordshire AL5 2JQ, UK, murray.lark@bbsrc.ac.uk

Lawley, R.

British Geological Survey, Nottingham, NG12 5GG UK, rslaw@bgs.ac.uk

Le Du-Blayo, L.
Equipe COSTEL, UMR CNRS 6554 (Littoral Environnement Télédétection et
Géomatique), Université de Rennes 2, place du recteur H. le Moal, 35 043 Rennes
cedex France, laurence.ledu@uhb.fr

Lemercier, B.
UMR Sol-Agro et hydrosystème-Spatialisation INRA/Agrocampus Rennes,
65 rue de Saint-Brieuc, CS 84215, F-35042 Rennes Cedex, France,
Blandine.Lemercier@agrocampus-rennes.fr

Li, B.
State Key Lab of Resources and Environmental Information System, Institute of
Geographical Sciences and Natural Resources Research, Chinese Academy of
Sciences, Beijing, China, libl@lreis.ac.cn

Lima, H.N.
Universidade Federal do Amazonas – UFAM – Manaus. Av. Gen. Rodrigo Octávio
Jordão Ramos – 3000, Manaus – AM, 69077-000

Machado, P.L.O.A
Embrapa Rice and Beans, Rodovia GO-462, Km 12, CEP: 73075-000 Goiania,
GO, Brazil pmachado@cnpaf.embrapa.br

MacMillan, R.A.

LandMapper Environmental Solutions Inc., 7415 118 A Street NW, Edmonton,
Alberta, Canada, T6G 1V4, bobmacm@telusplanet.net

Martins, G.C.
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University of Tübingen, Institute of Geography, Department of Physical Geography,
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(UFRGS). Av. Bento Gonçalves, 7712, Porto Alegre, RS, Brazil, 90.001-970,
carlostornquist@terra.com.br



xxiv Contributors

Turetta, A.P.D.
Brazilian Agricultural Research Corporation – EMBRAPA Solos, Rua Jardim
Botânico, 1024. Jardim Botânico, Rio de Janeiro, RJ. Brazil, CEP 22460-000,
anaturetta@cnps.embrapa.br

Valladares, G.S.
EMBRAPA National Satellite Monitoring Research Center, 303 Soldado Passarinho
Avenue, Campinas, SP, Brazil, 13070–115, gustavo@cnpm.embrapa.br

Vasat, R.
Department of Soil Science and Geology, Czech University of Life Sciences in
Prague, CZ-165 21, Prague 6 – Suchdol, Czech Republic, Vasat@af.czu.cz

Vieira, C.A.O.
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Chapter 1
Digital Soil Mapping: A State of the Art

P. Lagacherie

Abstract Digital Soil Mapping (DSM) can be defined as the creation and popula-
tion of spatial soil information systems by numerical models inferring the spatial
and temporal variations of soil types and soil properties from soil observation and
knowledge and from related environmental variables. DSM is now moving toward
the operational production of soil maps thanks to a set of researches that have been
carried out for the last fifteen years. These researches dealt with various topics: the
production and processing of soil covariates, the collection of soil data, the develop-
ment of numerical models of soil prediction, the evaluation of the quality of digital
soil maps and the representation of digital soil maps. The recent advances and open
questions within each of these topics are successively examined.

The emergence of DSM as a credible alternative to fulfill the increasing world-
wide demand in spatial soil data is conditioned to its ability to (i) increase spatial
resolutions and enlarge extents and (ii) deliver a relevant information. The former
challenge requires to develop a specific spatial data infrastructure for Digital Soil
Mapping, to grasp Digital Soil Mapping onto existing soil survey programs and
to develop soil spatial inference systems. The latter challenge requires to map soil
function and threats (and not only “primary” soil properties), to develop a frame-
work for the accuracy assessment of DSM products and to introduce the time
dimension.

1.1 Introduction

Digital Soil Mapping (DSM) can be defined as “the creation and population of spa-
tial soil information systems by numerical models inferring the spatial and temporal
variations of soil types and soil properties from soil observation and knowledge
and from related environmental variables” (Lagacherie and McBratney, 2007). The
formulation of this recent concept is an attempt to federate toward an operational

P. Lagacherie
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perspective the somewhat heteroclite set of researches on soil variability that have
been undertaken these last 15 years. By gathering 80 scientists from 17 different
countries, the first workshop devoted to Digital Soil Mapping, held in Montpel-
lier in September 2004, provided the opportunity to put in common a wide range
of skills and tools that have a role to play in the future of DSM: soil surveying,
soil information systems, expert systems, GIS, pedometric techniques, data mining
techniques and remote sensing procedures.

The state of the art of Digital Soil Mapping has been already the purpose of
exhaustive reviews that were written just before (McBratney et al., 2003) and af-
ter (DSM Working group of ESBN, 2006) the Montpellier workshop. The purpose
of this paper is to present a complementary view that includes the main learning
and open questions on Digital Soil Mapping that emerged from the Montpellier
workshop. They concern the various topics that compose Digital Soil Mapping i.e.
production and processing of soil covariates, collection of soil data, development of
numerical models of soil predictions, evaluation of quality of DSM outputs, repre-
sentation of digital soil maps. It will then be put forward the two key challenges that
Digital Soil Mapping will face within these next years: (i) increasing spatial extents
and resolutions, (ii) delivering a relevant soil information.

1.2 Production and Processing of Soil Covariates

The soil covariates are the spatial data available over large areas which can be used
as inputs of Digital Soil Mapping procedures. They represent the environmental
factors that are recognized as governing the soil formation (e.g. parent material,
relief vegetation, climate) and the spatial soil information that can be retrieved from
remote sensing images or small scale soil maps of the region of interest. The key
points that emerged from the papers and the discussions of the Montpellier work-
shop were the following:

– A great variety of environmental covariates are now used as input for Digital Soil
Mapping. The first source of environment covariates is still DEM but tests of
other sources were presented too. The most promising evolution is the use of new
remote sensing images that provide high resolution maps of some topsoil proper-
ties: Hyperspectral images (Ben-Dor and Patkin, 1999; Madeira et al., 2007) or
Gamma-Ray spectrometry (Wilford and Minty, 2007)

– Soil covariate are often simple and current environmental variables such as el-
evation, slope, vegetation index etc. . .However several pre-processing of soil
covariates are also performed with a view to produce more sophisticated co-
variates that would represent more accurately the soil variations. Three types
of pre-processing are considered: (i) derivation of soil covariates representing
the spatial variability of a given pedological process (e.g. Mérot et al., 2003)
(ii) identification of structuring elements of the soil cover e.g. landscape units
(Dobos and Montanarella, 2007, Robbez-Masson, 2007) or regolith-catenary
units (Thwaites, 2007), (iii) The decomposition of the initial image of a soil
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covariate into several spatial components of decreasing spatial resolution to deal
with multi-scaled soil landscape relations (Mendonça-Santos et al., 2007),

– Some authors promoted knowledge-driven approaches based on the expression of
qualitative mental models of pedogenesis in an explicit form that allows to select
and build the most appropriate soil covariates (Walter et al., 2007, McKenzie and
Gallant, 2007). These approaches are expected to better respect the principle of
parsimony and provide more robust soil predictions than the usual data-driven
approaches.

With the exponential development of the spatial data infrastructures over the world,
it is expected that useful spatial data related with soil variations will be made more
and more cost-effective in the future. Digital Soil Mapping community has to be
aware of this evolution and must develop new tools and spatial prediction techniques
to take advantage of any new soil covariate that may improve soil prediction over
large areas.

1.3 Collection of Soil Data

It was largely recognised in the discussions of the Montpellier workshop that a good
soil dataset is a key factor to build an accurate DSM function and to evaluate the
quality of its outputs. However the collection of soil data has been (and still remain)
a limiting factor that can severely brake the Digital Soil Mapping progresses. To
overcome this problem, three complementary ways can be explored, (i) develop op-
timal sampling methods (ii) use as much as possible legacy soil data and (iii) develop
new soil sensors for accurate and cost-effective estimation of soil properties.

The development of optimal sampling methods was the subject of few papers in
the Montpellier workshop (and in the literature). The methods presented in Mont-
pellier aimed to optimise the coverage of the geographical space (Brus et al., 2007),
the coverage of the soil covariate space (Minasny and McBratney, 2007) or both
(Heuvelink et al., 2007, Dobermann and Simbahan, 2007). These methods are de-
rived from well known statistical and geostatistical techniques. They do not take into
account more sophisticated sampling criteria that are often considered in classical
soil surveying e.g. the optimisation of real field costs of soil data collection (e.g.
accessibility) or the use of a priori hypothesis about the expected patterns of soil
variations (e.g. introduction of sampling density constraints to capture an expected
short-range variability, identifications of representative transects or areas). Much
work is needed to integrate these criteria too.

The use of legacy data was only evoked in one paper of the Montpellier meeting
(Bui et al., 2007). However legacy soil data represent in many countries a huge reser-
voir of soil information that can serve as input of Digital Soil Mapping procedures or
as validation sets. Two types of legacy data must be distinguished, existing soil maps
and soil profiles. The former provide a continuous representation of the soil pattern.
They could be used as soil covariates in case of a small scale soil map covering the
studied region (Mayr and Palmer, 2007) or as a source for calibrating Digital Soil
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Mapping procedures that take into account the soil surveyor knowledge if they are
sampled to be representative of a larger region (e.g. Lagacherie et al. 1995). Existing
soil profiles provide local information on many soil properties at different depths.
They are often used as inputs of many statistical and geostatistical procedures (Carré
and Girard, 2002, Hengl et al. 2004). However the use of legacy data is hampered
by a number of problems like unavailability of numeric data, lack of harmonisation
and imprecision of soil descriptions, imprecise georeferencing, non optimal location
of soil data etc. . . Beside the necessary integration of soil data in coherent spatial
data infrastructures that has been undertaken by some soil agencies (Daroussin et
al., 2007, Dusart, 2007, Feuerherdt, 2007, ESBN DSM working group, 2006), the
Digital Soil Mapping community must adapt its models so that the intrinsic impre-
cision of these data can be handled properly.

With the technological impulse given by the development of precision agricul-
ture, we can expect in the near future the wide development of more time and cost-
efficient methodologies for soil observation and analysis than the classical methods
of soil surveying. For example, reflectance spectrometry was proved as being a
good alternative to the costly soil physical and chemical laboratory soil analysis
for the estimation of a large range of soil properties (Shepherd and Walsh, 2002,
Viscarra Rossel et al. 2006). The increasing use of such methodologies will surely
boost the development of Digital Soil Mapping since it may provide a large amount
of good quality and inexpensive soil data for imputing the DSM procedures.

1.4 Development of Numerical Models of Soil Prediction

Numerical models of soil prediction are the functions that predict soil classes or
soil properties from soil covariates (class scorpan functions and property scorpan
function) or from available soil data (soil allocation functions, class-to-property
functions and pedotransfer functions) (Lagacherie and McBratney, 2007). Most of
these functions are calibrated with soil samplings over which both the inputs and
the outputs of the functions are known.

The development of numerical models of soil prediction is the most developed
topic of Digital Soil Mapping as shown by the reviews on Digital Soil Mapping.
The main points that emerged from the Montpellier workshop are listed hereafter.

– The Digital Soil Mapping functions that were presented were almost equally dis-
tributed between class scorpan functions and property scorpan functions. Two
contributions only (Boruvka and Penizek, 2007; Albrecht et al. 2007) dealt with
another type of function, namely soil allocation functions.

– A distinction appeared clearly between “quantitative soil surveyor approaches”
that capture the knowledge of soil surveyors to build the DSM functions (Walter
et al. 2007, McKenzie and Gallant, 2007, Mayr and Palmer, 2007, Cole and
Boettinger, 2007, Saunders and Boettinger, 2007) and “classical pedometrician
approaches” that apply existing data mining or geostatistical models to the set of
available data. Few “hybrid” approaches were presented (Walter et al. 2007).
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– Most of the presented “classical pedometrician approaches” were still based on
non-spatial statistical models: Multilinear regression (Behrens and Scholten, 2007,
Odeh et al. 2007, Dobos et al. 2007), Generalised linear models (Howell et al.
2007), discriminant analysis (Taylor and Odeh, 2007) decision trees (Behrens and
Scholten, 2007, Hollingsworth et al. 2007), specific data mining algorithms includ-
ing or neural networks (Behrens and Scholten, 2007). A few examples illustrated
the use of geostatistical models, i.e. ordinary kriging (Odeh et al. 2007, Baxter et
al. 2007, Bernoux et al. 2007), multiple indicator kriging (Taylor and Odeh, 2007)
and regression kriging (Odeh et al. 2007, Dobos et al. 2007). The application of
these latter models to large areas appears still limited by soil samplings that are not
dense enough to capture the patterns of the soil variations. Further examples deal-
ing with large spatial extents are needed to identify in which pedological contexts
and for which data configurations these models may outclass non-spatial ones.

– None of the proposed functions dealt with multiscale variations of the soil
cover although multiscale variations are often observed at the large spatial ext-
ents considered in Digital Soil Mapping (Lagacherie and McBratney, 2007,
Chaplot and Walter, 2007). Theoretical models dealing with these variations have
been presented (Lark, 2007). However their use for building effective DSM func-
tions are still not straightforward. More work is certainly needed on this topic.

The development of numerical models of soil prediction has reached the point where
a lot of functions are now available. However there is not enough comparisons of
their performances over the variety of situations that may be practically encountered
in Digital Soil Mapping. These comparisons would provide the necessary expertise
in selecting the most appropriate function given the objective of the study (spatial
extent, resolution) the data context (soil covariates, soil sampling, available pedo-
logical knowledge and skills), and the nature of the soil variation. Beside, more
sophisticated Digital Soil Mapping functions than the one presented are certainly
required (i) to enhance the synergy between soil knowledge and pedometric models
(ii) to tackle multiscaled variations of the soil cover and (iii) to deal with evolutions
of soil properties with time that are now monitored extensively.

1.5 Evaluation of the Quality of Digital Soil Maps

Digital soil maps are an essential part of a soil assessment framework which sup-
ports soil-related decision- and policy-making and therefore it is of crucial impor-
tance that DSM products are of known quality. Questions on quality and accuracy
assessment of DSM products arose in almost every sessions of the Montpellier
workshop which demonstrates the importance of this topic. Meanwhile, it was stated
that the validation phase is rarely funded and undertaken in applied DSM projects.
Furthermore, the small number of contributions devoted specifically to this subject
in Montpellier is a symptom of the immaturity of our collective experience. There-
fore defining and applying a common accuracy assessment framework is probably
the greatest challenge of Digital Soil Mapping on its way toward practical applica-
tions. Some points must be taken in consideration:
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– It is important to define precisely which type of quality indicator are needed
(Finke, 2007). Generic indicators from the map maker point of view are well
known (e.g. attribute accuracy, positional uncertainty, logical consistency,. . . ).
However quality must be also assessed from the user point of view i.e. by taking
into account how the Digital Soil Map is effectively used.

– The advantage of Digital Soil Mapping approaches over classical surveys is that
they can predict the quality of the outputs (e.g. error variance for kriging, coeffi-
cient of determination for regression, . . . .). However it is important to realise that
(i) these quality predictions are based on model assumptions that may not hold in
reality and (ii) that they are often calculated from the same data that were used
to build the DSM function. Validations from independent samples are thus highly
preferable whenever possible (DSM working group of ESBN, 2006).

– We must be especially careful to validate like data at like scales, e.g. point-scale
validation for point-scale prediction, area-scale validation for area-scale predic-
tion. This means that new error metrics must be proposed to compare areal soil
predictions with the “kind of truth” that represents a soil map used as validation
data (e.g. Greve and Greve, 2007).

1.6 Representation of Digital Soil Maps

Visualization techniques are expected to provide the indispensable insights into the
complexity of the soil cover that are required by both digital soil surveyors and
end-users. Before the computational era, the choropleth map was probably the best
way to summarize on a sheet of paper the complex information resulting from a soil
survey. The appearance of computerized techniques dealing with spatial data have
dramatically modified this situation by allowing visualization of more sophisticated
conceptualizations of the soil cover such as the ones handled in Digital Soil Mapping
(Burrough, 2007).

New progresses can be made thanks to the development of scientific visualization
tools and virtual reality techniques. The interactivity and the availability of multiple
visualizations available from such techniques can stimulate our understanding of
complex environment systems, and can disseminate Digital Soil Mapping outputs
to a large array of potential end-users (Grunwald et al. 2007). A more complete
review of the possibilities given by these new tools is available in the report of the
ESBN working group on Digital Soil Mapping (2006).

1.7 Challenges for the Next Years

1.7.1 Increasing Spatial Resolution and Enlarging Extent

Within the two past decades, Digital Soil Mapping has been moving from the res-
earch phase to productions of map over regions, catchments and whole countries.
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By extrapolating this past evolution, we predicted that a global digital soil properties
map at 100 m resolution could be available in 2027 (Lagacherie and McBratney,
2007). Although this perspective is by far more favorable than the classical soil sur-
veys one, it is seen as still insufficient to face the huge demand in soil information.
A realistic challenge could be to obtain the same map within the next decade. In this
perspective the following points will have to be taken in consideration:

– Develop a specific spatial data infrastructure for Digital Soil Mapping. Re-
search works clearly demonstrated that Digital Soil Mapping can be boosted
in the near future by a set of innovative data such as precise and high resolu-
tion DEM (e.g. LIDAR), remote sensors mapping soil surface properties, e.g.
hyperspectral images or gamma-radiometric (see also Section 2.2) or proxy sen-
sors measuring local soil properties (e.g. Spectrometry, see Chapter 13). These
data should be made extensively available as soon as possible to the DSM
community.

– Grasp Digital Soil Mapping onto existing soil survey programs Digital Soil
Mapping is a recent scientific field that has been sometimes presented and per-
ceived as a radical alternative to conventional soil survey techniques for build-
ing soil spatial infrastructures. However for many organizational and scientific
reasons, it is unrealistic and unproductive that DSM applications could be un-
dertaken independently of the existing soil survey programs and knowledges.
Similarly, new soil survey programs cannot be thought without any Digital Soil
Mapping input because the conventional soil survey methods are simply too slow
and expensive to fulfill the huge worldwide demand of soil information. A syn-
ergy is thus to be found, including the systematic use of legacy data (soil profiles
and soil maps) in DSM procedures (see Chapters 25 and 27), the incorporation of
local soil knowledges in DSM models (Walter et al. 2007), and the extensive use
of DSM approaches in current soil survey programs (see Chapters 4 and 6).

– Develop soil spatial inference systems. Dealing with large extents and fine res-
olutions increases the risk of facing with complex patterns of soil variation. It
therefore seems very unrealistic to gamble on the emergence of a kind of best
DSM model that would run properly whatever the study area and the data con-
figuration. There is a need of a Spatial Soil Inference System (Lagacherie and
McBratney, 2007) that would make several DSM models cooperate to produce the
best possible soil map of a given area i.e. the optimal response to a given soil-user
request considering a given set of available input data and a given pedological
context.

1.7.2 Delivering a Relevant Soil Information

In their review of soil science developments over the past 40 years, Mermut and
Eswaran, (2000) underlined that the demands from the society to the soil science
community has dramatically increased which has led to the emergence of new



10 P. Lagacherie

areas of interest such as land and soil quality, recognition of problems of land
degradation and desertification, cycling of bio-geochemicals, soil pollution assess-
ment and monitoring. These have been added to the old topics traditionally inves-
tigated by soil science such as soil fertility assessment or land management. This
phenomenon has been amplified by the paramount developments of soil databases
(Rossiter, 2004) which has attracted new users of soil information. Consequently,
the output of soil survey, and of Digital Soil Mapping, is becoming less and less
under the control of soil surveyors themselves. Therefore, the soil properties that
must be predicted are no longer the few selected by soil surveyors because of
their relative accessibility, but can be imposed by other specialists for their own
models (see Chapter 3). In this perspective the following objectives will have to be
considered:

– Map soil function and threats. The predicted soil properties provided by DSM
models must be coupled with other environmental data (e.g. relief, climate,. . .)
and process-based models to produce more comprehensive outputs for soil users
(see Chapters 21 and 26). Several examples of such outputs (mapping land
qualities, leaching soil potential, erosion risk, heavy metal contaminations,. . .).
were provided in the report of the ESBN working group on Digital Soil Map-
ping (2006). Note that a prerequisite is the development of pedotransfer functions
to estimate uneasy-to measure soil properties.

– Develop a framework for the accuracy assessment of DSM products. Delivering
DSM products without any estimation of their accuracy may lead to erroneous
decisions. It is thus important to convert the body of knowledge on accuracy
assessment that exists in the literature (Finke, 2007, ESBN DSMWG, 2006) into
a set of comprehensive procedures that can be routinely applied whatever the data
configurations and the DSM outputs (see also Chapters 7 and 11).

– Introduce the time dimension. Time has long been recognized as a major factor
of soil variations. This is all the more true that human activity may induce dra-
matic changes of the soil properties e.g. heavy metal contamination around ur-
banized areas, decrease of carbon content due to climate and/or land use changes.
Monitoring systems have been set to follow these evolutions in several parts of
the world (e.g. Saby et al. 2007) and they begin to be exploited (Chapters 22
and 23). However these systems will have to be completed by spatialised models
of soil evolution in view of extrapolating their results. Although the development
of such models is still in infancy (Minasny and McBratney, 2007), they also ap-
pears as promising tools to obtain more generic and robust Digital Soil Mapping
models.

1.8 Conclusion

Digital Soil Mapping is on its way toward maturity. A set of recent papers and
workshops contributed to clarify the concepts, to identify some potentially useful
data layers and predictive methodologies issued from a dispersed set of research,
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and to show the first applications of these. As shown by this paper, much more has
still to be done. However I am convinced, with others, that DSM give us a chance to
satisfying the worldwide demand of soil information.
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Chapter 2
Digital Soil Mapping Technologies for Countries
with Sparse Data Infrastructures

Budiman Minasny, Alex. B. McBratney and R. Murray Lark

Abstract This chapter reviews some hardware and software for digital soil map-
ping. By hardware we mean various kinds of sensor and instrument which can give
us better soil and scorpan data, and by software we mean mathematical or statis-
tical models that can improve our spatial predictions. There are two approaches
for the development of hardware for acquiring soil information: the top-down, and
the bottom-up. The top-down approach asks which technologies are available and
which variables can we measure that are related to scorpan factors. The bottom-up
approach starts from a problem that we systematically analyse so as to identify
the information that is needed to solve it. We then tackle the technical problems
of collecting this information, and only at the end move to developing the field
technology. We evaluate various software approaches to improve spatial prediction
of soil properties or soil classes. Finally, the implication of using data-mining tools
for the production of digital soil maps is discussed.

2.1 Introduction

There is a global need for quantitative soil information for environmental monitoring
and modelling. One response to this demand is digital soil mapping, where soil maps
are produced digitally based on environmental variables (McBratney et al., 2003).
The environmental or so-called scorpan factors (scorpan is a mnemonic for factors
for prediction of soil attributes: soil, climate, organisms, parent materials, age, and
spatial position proposed by McBratney et al., 2003) derived from various sources
(digital elevation models, remote sensing images, existing soil maps), and avail-
able in digital form, are used to generate soil information in the form of a database
where most of the information consists of predictions that are statistically optimal.
Fig. 2.1 summarises the process of digital soil mapping, where geo-referenced soil
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Fig. 2.1 Principles of digital soil mapping

observations coupled with environmental variables form the input data. Under a
spatial soil inference system, soil properties over the whole area can be predicted
and mapped using spatial soil prediction functions (such as regression, kriging, or
a combination of both). This prediction is based on correlations between the envi-
ronmental variables and soil attributes, as well as the spatial autocorrelation of the
attributes themselves. These spatially inferred soil properties can be used to predict
more difficult-to-measure functional soil properties, such as field capacity, available
water capacity using pedotransfer functions under soil inference system. All of the
predicted soil properties can be used to evaluate soil functions. The details on digital
soil mapping is covered in Chapter 1.

In this chapter, we review some technologies for digital soil mapping, and con-
sider in particularly the case of countries with sparse data infrastructure. Technology
can be hardware or software. By hardware we mean various kinds of sensor and
instrument which can give better soil and scorpan data, and by software we mean
mathematical or statistical models which can improve spatial predictions. Firstly,
various hardware and software that can be used to obtain soil information are re-
viewed, followed by a discussion on the implication of using data-mining tools for
the production of digital soil maps.

2.2 Hardware

Figure 2.2 shows the electromagnetic spectrum, highlighting those parts where soil
information can be obtained. Matter emits electromagnetic radiation in different
parts of the spectrum, and this radiation can be measured by different types of
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Fig. 2.2 Electromagnetic spectrum, highlighting instruments for obtaining soil information

spectroscopy depending on the wavelength. It provides a basis for remote sensing
of the properties of matter. A sensing system might measure the radiation emitted
by an object after the object has itself been irradiated. Two examples of this are
the optical remote sensing systems that measure the solar radiation reflected by an
object, and the synthetic aperture radar systems (SAR) that measure deliberately
long-wave radiation backscattered by an object. Alternatively, it may be possible to
measure radiation emitted by an object because of its temperature (emitted in ther-
mal infra-red frequencies) or because of radioactive decay (decay of uranium tho-
rium and potassium isotopes are widely measured by “passive” gamma radiometry
in geophysics). The electromagnetic radiation emitted from an object will therefore
depend on its physico-chemical properties, some of which are of direct interest in
soil studies such as temperature, mineralogy, organic content, physical structure, or
the chlorophyll content of the vegetation.
Some examples of the instruments used in soil science, grouped by their wave-
lengths are:

– Radiowaves, wavelengths about 300,000–0.3m (Fig. 2.3).
This includes sensors in the low frequency (about 10 kHz), e.g. electromagnetic
induction (EMI), and high frequency (about 100 MHz), e.g. ground penetrat-
ing radar (GPR), time domain reflectometer (TDR), frequency domain moisture
sensors (FD), which detect variations in soil dielectric constant. Radiowave or
microwave radiation can be applied in the presence of a magnetic field to excite
nuclear and electron magnetic resonances (e.g., Nuclear Magnetic Resonance
(NMR) at radiowaves, and Electron Spin Resonance (ESR) at microwaves) that
are sensitive to the surrounding molecules, from which information about local
bonding of atoms can be obtained (O’Day, 1999). Another application in the
radio frequency band is transmission of information via wireless sensor networks
(Wang et al., 2006).
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Fig. 2.3 Real ε’ and imaginary ε” permittivity as a function of frequency in the radio-microwave
spectrum

– Microwaves, wavelengths 0.3–0.0003 m (Fig. 2.3).
Information can be obtained by radar especially if there is a contrast change
in dielectric constant. Passive and active microwave imaging systems have been
built and experimented with for imaging. The application of radar to active imag-
ing systems has resulted in SAR (Synthetic Aperture RADAR). SAR has been
used in mapping soil with rough or impenetrable terrain such as the Amazon
Basin (EMBRAPA, 1981).

– Infrared (0.7–300 �m wavelength), visible light (about 400 nm to about 700 nm),
ultraviolet (3–400 nm).
Soil scientists in the field mostly used the visible light spectrum through the
Munsell soil colour chart to determine soil colour and the presence of some
pedological features. Infrared energy radiation may cause vibrational excitation
of covalently bonded atoms, and give rise to absorption spectra. Lasers, which
emit radiation at a single frequency, are commonly used as a radiation source in
the ultraviolet, visible, and infrared regions. Absorption spectra of compounds
are a unique reflection of their molecular structure. Recent work has shown
how diffuse reflectance spectroscopy in the visual-near-infrared and mid-infrared
regions can be used to predict various soil physical, and chemical properties
(Viscarra Rossel et al., 2006). Chapter 13 shows the use of diffuse reflectance
spectroscopy for rapid acquisition of soil information.
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– X-rays (wavelengths 10–0.01 nm).
Radiation in this frequency band causes atomic level excitations (absorption and
emission of radiation) that are used to probe bonding states (core or valence
level) around an atom. This is mainly used in the laboratory for characterisation
of mineral structure, such as X-ray diffraction, XAFS (x-ray absorption fine-
structure spectroscopy) for probing physical and chemical structure of minerals
at an atomic scale.

– Gamma rays (wavelengths shorter than about 0.01 nm).
All soils contain concentrations of naturally occurring radioisotopes which can
decay to produce gamma rays. Gamma-ray spectrometry measures the natu-
ral emission of gamma-ray radiation of the earth’s surface, it estimates the
abundances of potassium (40K), thorium (232Th) and uranium (238U) (Cook
et al., 1996; Wilford et al., 1997). Gamma-ray spectroscopy mapping can be
conducted using remote sensing (low flying aircraft, helicopter), or proximal
sensing (vehicle mounted).

There are two general models for the development of “technologies” for acquiring
soil information. These are:

1. Top-Down
We first seek variables that can be measured that might be related to scorpan
factors or target variables by looking to other disciplines such as geophysics,
and explore the possibilities of extracting information from these technologies
that is pertinent to practical problems. A classical example (where this has been
reasonably successful) is EMI technology and a more recent example is the use
of gamma radiometrics, which has been used in geological prospecting for over
30 years to detect anomalies associated with exploitable ore deposits.

2. Bottom-up
We start from a problem that we analyse systematically so as to identify the
information that is really needed to solve it. We then tackle the general technical
problems of collecting this information, and only at the end move to develop-
ing the field technology. An excellent example of this is the development of
the on-the-go pH and lime-requirement sensing system at Australian Centre for
Precision Agriculture. The approach is now mostly proximal sensors developed
for precision agriculture, to obtain high resolution soil information (Adamchuk
et al., 2004) such as soil moisture, mechanical resistance, organic matter content,
soil texture, and nutrients concentration.

Both approaches have been successful, although the bottom-up approach is more
intellectually satisfying. Currently, the bottom-up approach is mainly for develop-
ing proximal sensors for high resolution digital soil mapping. High resolution soil
data are often needed in areas where the land has high value or poses high risk.
The applications are precision agriculture, assessment of contamination sites, and
in urban and industrial areas where land is valuable. It falls into soil mapping
category D1 of McBratney et al. (2003) with a pixel resolution of (1 m × 1 m)
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to (10 m × 10 m). A bottom-up approach also works at coarser-resolution studies
for D3 and D4, catchment or environmental mapping. While it is not soil map-
ping, the use of remote sensor imagery to parameterize soil-vegetation-atmosphere
transfer models illustrates how process-based understanding might be used to ex-
tract soil information from remote sensor data at coarse scales (e.g. Verhoef,
2004).

2.2.1 Data Sources for Scorpan

The scorpan factors can be obtained from various sensors, either remotely or prox-
imally sensed. Remote sensing for soil properties is reviewed by Ben-Dor (2002),
while proximal sensing is given by Adamchuk et al. (2004). Here we list some
sensors, based on their platform, that are commonly used for digital soil mapping:

Satellite based (Fig. 2.4):

– Hyperion http://eo1.usgs.gov/hyperion.php
The Hyperion from EO-1 satellite provides a high resolution hyperspectral im-
ager capable of resolving 220 spectral bands from 400 to 2500 nm with a 30 m
spatial resolution, and image swath width 7.5 km. Hyperspectral images measure
reflected radiation at a series of narrow and contiguous wavelength bands. Its use
for digital soil mapping is still limited (Datt et al., 2003) and can be challenging
as noise of the spectra and the influence of vegetation.

– Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
http://asterweb.jpl.nasa.gov/

Fig. 2.4 Satellite based remote sensing instruments as a function of wavelengths. The gray curves
represents atmospheric electromagnetic opacity
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ASTER is a multispectral imaging system (Yamaguchi et al., 1998). Multispec-
tral imagers measure radiation reflected from a surface at a few wide, separated
wavelength bands. ASTER measures visible reflected radiation in three spec-
tral bands (VNIR between 0.52 and 0.86 �m, with 15-m spatial resolution),
and infrared reflected radiation in six spectral bands (SWIR between 1.6 and
2.43 �m, with 30-m spatial resolution). In addition, ASTER records the data in
band 3B (0.76–0.86 �m) with a backward looking that enables the calculation
of digital elevation model (DEM). ASTER also receives emitted radiation in five
spectral bands (TIR between 8.125 and 11.65 �m, with 90-m spatial resolution).
It has been used for mapping geological units (Gomez et al., 2004), and areas of
degraded land (Chikhaoui et al., 2006).

– Landsat TM, and Enhanced Thematic Mapper Plus (ETM+)
http://landsat7.usgs .gov/
The Enhanced Thematic Mapper Plus (ETM+) is a multispectral scanning ra-
diometer that is carried on board the Landsat 7 satellite. It provides images with
spatial resolution of 30 m for the visible and near-infrared, and 60 m for the ther-
mal infrared, and 15 m for the panchromatic. Landsat has been used most often
in digital soil mapping. Chapter 16 and Cole and Boettinger (2007) discussed its
practical use for digital soil mapping. Chapter 22 illustrates its application for
land-use mapping.

– Satellites Pour l’Observation de la Terre or Earth-observing Satellites (SPOT)
http://www.spot.com
SPOT provides high-resolution multispectral images with resolution of 10 m in
the visible and near infra-red (0.50–0.89 �m), and 20 m in the short wave infra-
red (1.58–1.75 �m). Barnes and Baker (2000) investigated its use for mapping
soil texture class.

– Advanced Very High Resolution Radiometer (AVHRR) http://noaasis.noaa.gov/
NOAASIS/ml/avhrr.html
The AVHRR provides four to six bands of multispectral images (visible red,
near infra-red, short-wave infra-red, and thermal infra-red) with 1.1 km resolu-
tion from the NOAA polar-orbiting satellite series. The AVHRR data have been
collected to monitor global change information, however the data can be used
as a cost-effective way of estimating soil properties at regional level (Odeh and
McBratney, 2000). Its use is illustrated in Chapter 21.

– Moderate Resolution Imaging Spectroradiometer (MODIS)
(http://modis.gsfc.nasa.gov/)
MODIS is an instrument aboard the Terra and Aqua satellites. Terra’s orbit
around the Earth passes from north to south across the equator in the morn-
ing, while Aqua passes south to north over the equator in the afternoon. Terra
MODIS and Aqua MODIS are viewing the entire Earth’s surface every 1–2 days,
acquiring data in 36 spectral bands at a resolution of 250 m (620–876 nm), 500 m
(459–2155 nm), and 1000 m (405–14385nm). Its use mainly for monitoring veg-
etation activity via NDVI (Huete et al., 1994). Tsvetsinskaya et al. (2002) used
MODIS data to derive surface albedo for the arid areas of Northern Africa and
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the Arabian peninsula. This enabled them to relate the surface albedo statistics
to FAO soil groups. See also Chapter 30.

Airborne based:

– HyMapTM (Hyperspectral Mapping) http://www.intspec.com/
is an airborne imaging VNIR-SWIR spectrometer, with 450–2500 nm spectral
coverage, 128 spectral bands of 10–20 nm bandwiths. Examples of its use for
mapping soil are Madeira Netto et al. (2007) and Selige et al. (2006).

– AVIRIS (Airborne Visible Infrared Imaging Spectrometer) http://aviris.jpl.nasa
.gov/ is an airborne imaging instrument producing 224 spectral bands ranging
from 400 to 2500 nm, with a spatial resolution of 20 m. Palacios-Orueta and
Ustin (1996) showed that AVIRIS spectra can be used to discriminate between
soil types.

– Airborne gamma radiometrics
Variations of gamma radiation has been found to correspond with the distribution
of soil-forming materials over the landscape (Cook et al., 1996).

– Aerial photography
This technique, providing images in the visual light, is still being used in
soil surveys and with interpretation is used to generate soil maps (Bie and
Beckett, 1973).

Proximal, ground-based:

– Electrical magnetic induction (EMI) (http://www.geonics.com/) or electrical
resistance measurement. These instruments measure the bulk soil electrical con-
ductivity, it has been successful for high resolution digital soil mapping for prop-
erties such as clay and water content (Corwin and Lesch, 2005).

– Gamma radiometrics
Gamma-ray spectrometers can measure an energy spectrum ranging from 0 to
3 MeV. The value of gamma-ray spectrometry lies due to the different rock types
contain varying amounts of radioisotopes of K, U and Th. Ground-based gamma-
ray spectrometers have been used for mapping soil properties (Viscarra Rossel
et al., 2007; Wong and Harper, 1999).

2.2.2 Better Soil Data

By better soil data we mean data obtained more efficiently, so that a larger num-
ber of samples are analysed at lower costs, in less time and with higher accuracy.
Spectroscopic techniques are being used and explored as possible alternatives to en-
hance or replace conventional laboratory methods of soil analysis. Viscarra Rossel
et al. (2006) provides a review on visible, near-infrared, and mid-infrared diffuse
reflectance spectroscopy for simultaneous assessment of various soil properties in
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laboratory, thus will not be reviewed here (see also Chapter 13). Several instruments
that can be used for field measurement of soil properties:

� FieldSpec FR� spectroradiometer (Analytical Spectral Devices Inc., Boulder,
Colorado http://www.asdi.com) provides diffuse reflectance spectrospcopy of
soil samples from 350 to 2500 nm and sampling resolution of 1 nm. Waiser
et al. (2007) found that this field instrument produces acceptable estimation of
clay content at various water contents and parent materials.

� Spectral core scanners (Spectral Imaging Ltd., Finland, http://www.specim.fi) is
an imaging spectrograph which produces the image of a soil core at the visible
and near infrared regions. It is still under experimental testing for use in soil
sensing.

� Electrochemical methods have been successfully used to directly evaluate soil
fertility (Adamchuk et al., 2005). This is done by using an ion-selective electrode
(glass or polymer membrane), or an ion-selective field effect transistor (ISFET).
The principle involved measurement of potential difference (voltage) between
sensor and reference parts of the system is related to the concentration of specific
ions (e.g. H+, NO3−).

Table 2.1 gives a summary of the hardware and its use in digital soil mapping.

2.2.3 Current Problems

While the above methods are becoming available to provide better soil data in fu-
ture surveys, we often have to start with legacy data. Legacy soil data arise from
traditional soil survey (Bui and Moran, 2001). Methods of soil survey are generally
empirical and based on a conceptual model developed by the surveyor, correlating
soil with underlying geology, landforms, vegetation and air-photo interpretation.
Under traditional free survey samples are located to confirm the surveyor’s interpre-
tation of the landscape and not in accordance with a statistical design. This will lead
to bias in the areas that are sampled. Carré et al. (2007) examined this problem in
more detail. It should be noted that, while soil observations collected in free survey
pose a problem to the statistician, as soil scientists we recognize that the conceptual
(or mental) models developed by soil surveyors in the past (and represented in map
legends, map memoirs and map boundaries) can be highly informative. The main
problem that legacy data pose us is how to ensure that this information is transferred
effectively into the digital soil mapping framework (e.g. see Chapters 25 and 27).

Another set of variables that is missed from remotely or proximally-sensed in-
struments are soil properties at depth. Remote-sensing images only tells us the
surface condition, while soil is a three-dimensional body, and in many cases the
properties in the subsoil hold lots of information we wish to know. Most satellite
images working in the visible and infrared regions are influenced by crop cover (see
Chapter 30). The use of instruments such as the spectral core scanners may be useful
to quick acquisition of soil profile information.
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Table 2.1 Example of hardware used for digital soil mapping

Instrument Platform, wavelength,
measurement

Typical spatial
resolution

Example of application

Radarsat Satellitte, Radar CB and 8–100 m Li and Chen (2005)

EM-38 Ground-based,
14.6 kHz, bulk EC

1 m2

Depth exploration:
0.75 & 1.5 m

Corwin and Lesch (2005)

EM-31 Ground-based,
9.8 kHz, bulk EC

4 m2

Depth exploration: 6 m
Corwin and Lesch (2005)

GPR Ground-based,
Microwave (100–1000
MHz), dielectric
constant

0.25–1 m2 Davis and Annan (1989)

Gamma
radiometrics

Aerial or ground based,
Gamma rays
(0–3 MeV), Radiometric
K, U, Th

Aerial: 100 m
Ground based: 10 m

Wilford and Minty (2007)
Viscarra Rossel et al. (2007)

Aerial
Photography

Visible,
R, G, B Channel

5–10 m Bie and Beckett (1973)

SPOT Satellite,
Multispectral
VNIR, SWIR

10 m Agbu et al. (1990)

Landsat Satellite,
Multispectral
VNIR, SWIR, TIR

30 m (VNIR, SWIR)
60 m (TIR)

Chapter 16

ASTER Satellite,
Multispectral,
VNIR, SWIR, TIR

15 m (VNIR),
30 m (SWIR),
90 m (TIR)

Chapter 4

MODIS Satellite,
Multispectral
405–14385 nm

250 m (620–876 nm),
500 m (459–2155 nm),
1000 m
(405–14385 nm)

Tsvetsinskaya et al. (2002)
Chapter 30

Hyperion Satellite,
Hyperspectral,
400–2500 nm

30 m

Hymap Airborne,
Hyperspectral,
450–2500 nm

5 m Madeira Netto et al. (2007)

AVIRIS Airborne,
Hyperspectral,
400–2500 nm

20 m Palacios-Orueta and
Ustin (1996)

FieldSpec Handheld,
350–2500 nm

∼ 0.001 m2 Waiser et al. (2007)
Chapter 13
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2.3 Software

2.3.1 Improved Sampling Methods

In digital soil mapping, the primary assumption is that the scorpan factors are cor-
related with soil properties. To develop an effective model, we need to sample the
soil for each different type of terrain, land cover, and others based on the available
scorpan factors. This is further complicated because the pattern of spatial depen-
dence will change from one area to another. One method is to stratify the area into
classes of similar attributes, and then random selection of samples within the class
(McKenzie and Ryan, 1999). Minasny and McBratney (2006) proposed Latin hy-
percube sampling (LHS) on the covariates. LHS follows the idea of a Latin square
where there is only one sample in each row and each column. Latin hypercube
generalises this concept to an arbitrary number of dimensions, where each of the
variables is represented in a fully stratified manner. Thus, this sampling scheme
does not require more samples for more dimensions (variables).

2.3.2 Improved Prediction Methods

Some spatial tools that are developing and in use in the past 5 years include:

� The use of REML (residual maximum likelihood) for better estimation of spatial
covariance functions (Lark et al., 2006).

� Bayesian maximum entropy (BME) (Christakos, 2000). This approach allows
the incorporation of a wide variety of hard and soft data in a spatial estimation
context. The data sources may come in various forms, such as intervals of values,
probability density functions or physical laws.

� Kalman filter (Webster and Heuvelink, 2006), for space-time interpolation.

Non-spatial statistical models, such as (Hastie et al., 2001):

� Classification and regression trees (see Chapter 34)
� Fuzzy classification (see Chapter 26)
� Bayesian Belief Networks (see Chapter 25)
� Support vector machines
� Neural networks
� Gaussian processes (see Chapters 3 and 33)

There is an increasing use of data-mining techniques for soil prediction. Further-
more, there is also the use of combined or ensemble models, such as boosting and
bagging, which generate multiple models or classifiers (for prediction or classifica-
tion), and to combine the predictions from those models into a single prediction or
predicted classification (e.g. Brown et al., 2006).

Data-mining tools are usually designed to explore large amounts of data, and
generate models with many parameters. Soil data are usually scarce, and often users
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do not realise that there are more parameters in their models than there are soil data.
This often happens with neural networks. Users rely on software without under-
standing its principles, and assume that the number of parameters is equal to the
number of predictors (input variables). The actual number of parameters may be
much larger since it is the sum of the number of inputs, hidden units and outputs.
Similarly, the number of parameters in a classification or regression tree is the num-
ber of nodes in the tree, not merely the number of inputs. The issue of overfitting is
not always adequately discussed. Table 2.2 gives a summary of the influence of data
size on the selection of model and data.

Breiman (2001) identified two cultures in statistical modelling to draw conclu-
sions from data. The first one is data modelling which assumes a model, attempts
to infer some mechanism and assumes that the data are a stochastic realisation of
the model. And the other is the black-box approach which uses algorithmic models
(data-mining tools) and treats the mechanism by which the observations arise as
unknown. Breiman (2001) argued that with increasing number of data, sometimes
it is impossible to draw a mechanism from the data, and if our goal is to use data to
solve problems, then we should adopt the black-box approach. Breiman contended
that nature’s mechanisms are generally complex and cannot be summarised by sim-
ple models (such as linear or logistic regression). Thus, inferring a mechanism can
be risky, a deceptively simple picture of the inside. The downside of the black-box
approach is that, because the procedure is not upfront about the model structure, we
can end up in a situation where we are, perhaps without realizing it, in effect using
a model with more parameters than we would have data.

Fortunately, in the scorpan framework, most digital soil mapping practitioners
adhere to the data-model approach. But there has been growing tendency to make

Table 2.2 An assessment of the how size of data sets may effect model prediction and assessments
of the accuracy of estimates (based on Maindonald, 1999)

Small data sets
(< 200 samples)

Medium size
(200–1000 samples)

Large data sets
(>1000 samples)

Need for efficient
prediction?

Strong Reduced Much reduced.

What model
structure is
desirable?

Linear model Nonlinear model, and some
data mining tools.

Data mining tools.

How can we get
internal estimates
of accuracy?
(i.e. prediction to
a similarly drawn
sample)

Estimates must be
model-based,
with strong
assumptions.
Use
leave-one-out
cross validation.

Alternatives are:
model-based estimates,
or use cross-validation,
or training/test sets

Use training/test set,
with random
splitting of the data.

How can we get
external estimates
of accuracy?
(i. e. prediction
outside of sample
population)

No good
alternative to
reliance on
model-based
assessments

Use training/test set, with
purposive choice of test
set.

Use training/test set,
with purposive
choice of test set.
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more use of black-box approaches especially to generate pedotransfer functions
(Pachepsky and Rawls, 2004). Perhaps we should be looking to hybrid methods that
combine the advantages of black-box approaches (exploiting the power of comput-
ers to identify complex relationships between variables) with the data-modelling
approach (use of scientific understanding, and controlling the modelling process to
avoid overfitting). One step towards this approach is outlined in the next section.

A good example of the hybrid approach is by Bui et al. (2006) who produced
digital soil properties maps across the agricultural zone on the Australian continent
using classification and regression trees. First all scorpan factors were taken and
decision tree algorithms revealed an emerging pattern. The rules in the trees were
evaluated and interpreted on the basis of general principles of soil genesis.

2.3.3 Selection Methods

Often in digital soil mapping all the predictor covariates are used with a nod to scor-
pan (if we are ingenious enough most available covariates can be equated with at
least one of the scorpan factors), and then either put all the predictors into our design
matrix (data modelling), or use automated selection (stepwise regression methods,
best subsets etc.), or use regression trees and neural networks (black box). Hence,
we use all the available technology, including the processing power of computers.

Is this satisfactory? Consider a not untypical situation where we have six bands
of remote-sensor imagery (from the Landsat Thematic Mapper), a variable derived
from these (NDVI), ten variables derived from a digital elevation model (e.g. eleva-
tion, slope, aspect, topographic wetness index, distance from stream, etc.) and data
from three channels of gamma radiometry (K, U, Th). We have 20 potential pre-
dictors, and use all of them in a linear regression or regression tree, not to mention
polynomial functions of these variables if there is reason to believe their effect is
non-linear. Is this richness of data a problem or a virtue? Under the black-box view
it is a virtue. Breiman (2001) states that the more predictor variables we have, the
more information that can be extracted, and also the more information is available
in various combinations of the predictors. This situation worries the data modeller.
When we add a new predictor to a classical linear model we almost invariably im-
prove its fit (as measured by the residual mean square) but we add the estimation
error of the coefficient to the error of our prediction at a new target site. Variable
selection procedures (e.g. stepwise regression) are sometimes used to identify a
subset of predictors, but these may compound the problem. The larger our data
set (in terms of the number of variables) the more likely we are to find some model
that gives a good description of the variations of the particular data set, but rather
poor predictions at new sites. As has often been stated “If you torture the data long
enough, they will confess to anything”.

We do not believe that soil scientists should abandon scientific judgement and
statistical scruples and embrace a pure black-box approach. However, where many
data are available there is no doubt that the power of the computer offers us a way
of identifying previously unknown relationships between variables. One possible
approach is to use automated model selection (e.g. stepwise regression) which is
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constrained so as to control the false discovery rate (FDR, loosely, the expected pro-
portion of rejected null hypotheses that are actually true). Lark et al. (2007) propose
an approach to model selection that uses the FDR, in combination with an indepen-
dent prior selection of variables based on expert knowledge. Expert judgement is
used both to determine the size of the pool of models that is searched (matching
it to the strength of evidence for the existence of good models) and to ensure that
the searched subset of possible models includes those that make sense given our
knowledge of the soil. In trials it was found that this method selected good pre-
dictor models, and avoided overfitting in cases where uncontrolled model selection
methods fell into this particular trap.

Another example is the incorporation of the soil taxonomic distance in the data-
mining algorithm for spatial prediction of soil classes (Minasny and McBratney,
2007). Current methods for predicting soil classes only consider the minimisation
of the misclassification error. Soil classes at any taxonomic level have taxonomic re-
lationships between each other, and no statistical procedure so far has been utilised
to account for these relationships. Incorporating taxonomic distance between soil
classes in a supervised classification routine such as decision tree, allows more
meaningful prediction and effective integration of soil science knowledge.

2.4 Discussion

Hardware offers us a growing range of covariates for use in digital soil mapping.
The current limitation is that remote or proximal sensors generally measure only
the soil surface properties. While hardware is growing in use and producing more
data, the integration with software needs to catch up. We need an approach that is
more disciplined, and with a firmer grounding in statistical theory, but also one that
genuinely uses the scorpan approach, not just treating it as a fig-leaf to justify our
use of whatever covariates are available. At the same time, however, we do want to
exploit the power of the computer to search for structure in large data sets.

In conclusion, there is a range of technology available that potentially can be
used for more efficient measurement of soil properties, and we need to make better
use of them. An approach to integrating soil science knowledge (semi-formalising
the scorpan approach) with computational power is needed for a better digital soil
mapping model.
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Chapter 3
A New Global Demand for Digital
Soil Information

S.E. Cook, A. Jarvis and J.P. Gonzalez

Abstract The question has to be asked why – given the substantial advances in
quantitative techniques over the years – ‘full’ Digital Soil Mapping has not been
mainstreamed further and harnessed to the problems soil information can help
address. This paper suggests some reasons for a slow adoption, causes for optimism
for a wider adoption than at present and – using a case study – demonstrates the
ease of further development at national scale. Finally, we propose how a major
effort of digital soil mapping could support development in Africa, outlining the
opportunities and obstacles that await contributors.

3.1 History of Quantitative Soil Information

3.1.1 From Geostatistics Through Soil-Landscape Mapping
to Gaussian Processes

Quantitative soil mapping originated in the 1970’s following a frustration with
the limitations of conventional soil maps to provide quantitative information about
soil properties that could be accommodated in ‘normal’ scientific thinking. Major
problems had been pointed out in the transmission of information from conven-
tional (choropleth) maps. These problems related to both the classification process
(Webster, 1968) and spatial representation using conventional surveyor procedures
(e.g. Valentine, 1983), since conventional soil survey methods used a wealth of tacit
understanding that proved difficult for other users to re-interpret (Hudson, 1992).
The products – soil maps, their legends and classification – though useful, could not
be progressed further. Digital soil mapping offered a way out of this bottleneck by
providing an explicit, quantitative expression of soil property variation. Thirty years
later it appears to be in a strong position to deliver.
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Many of the current approaches to quantitative soil prediction are based on
kriging. Ordinary Kriging is a form of weighted local spatial interpolation that uses
a Gaussian model to derive spatial estimates of variables supported by a data-set
for the area being analyzed. Its main drawback is that it does not explicitly use
knowledge of soil materials or soil formation processes that explain variation, hence
relies largely on the support of samples in order to produce satisfactory results.
There are extensions to this method that allow the use of ancillary data, but they
are difficult (if not impossible) to extend to more than one ancillary variable. Some
of the most promising approaches to predictive soil mapping are expert systems
and regression trees. Expert systems use expert knowledge to establish rule-based
relationships between environment and soil properties (Cook et al., 1996). They
may not depend on soil data to determine soil-landscape relationships, but some
approaches do. Regression Trees are decision trees with linear models in the leaves.
They create a piecewise linear representation of the predicted variable. Using this
method Henderson et al. (2001) obtained the best results in the literature, which are
able to explain more than 50% of the variance of several soil properties such as pH,
clay content and sand content.

While acknowledging the value of digitised ‘conventional’ soil information, such
as the Digital Soil Map of the World (FAO, 2000), the question has to be asked
why – given the substantial advances in quantitative techniques over the years –
‘full’ digital soil mapping has not been mainstreamed further and harnessed to the
problems soil information can help address. This paper suggests some reasons for a
slow adoption, causes for optimism that digital soil mapping could be much more
widely adopted than at present and – using a case study from Honduras – demon-
strates the ease of further development at national scale. Finally, we propose how a
major effort of digital soil mapping could support development in Africa, outlining
the opportunities and obstacles that await contributors.

3.1.2 Advanced Mapping Techniques: Supply-Driven
or Demand-Driven

Despite the advances in quantitative soil mapping techniques, most soil maps
continued to be produced using conventional techniques. Soil information is pre-
dominantly in the form of conventional soil maps, albeit often digitised and with
expanded legends. A major reason for this seems to be that – as with many new
techniques – research focuses on the search for new methods more than the demand
for the information they produce. Experience with development of innovative tech-
niques suggests that a period is required in which promising methods are proposed,
trialed and improved in an iterative process of continuous development. The demand
during this period also expands as the benefits are articulated more clearly.

Prior to this expression of demand, effort in digital soil mapping has tended to
respond to the ‘supply’ of capability. Without a strong external demand for spe-
cific products, method development has tended to focus on case-studies where large
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sample data sets are already available, rather than by a purposeful development to
meet a new ‘demand’.

Notable example of demand-led digital soil mapping include high-risk engineer-
ing applications demanded the accuracy that only geostatistical estimation could
provide. This expresses the second reason for the slow uptake of digital soil map-
ping – the perceived value of better soil information may be quite small compared
with other sources of uncertainty in agricultural decision-making. It is perhaps
instructive to recall that for many agricultural ministries, the imperative to undertake
soil mapping derives right back to well-publicised disasters. Many other agencies
in both the developing and developed worlds have commissioned soil survey on
the basis of a general expectation of value rather than a clearly specified demand
for accuracy. For reasons explained below, we believe that the time is right to
re-examine the demand to meet the challenges of agricultural development in the
many countries that still lack detailed soil information.

3.1.3 Programs in Many Countries are Considered ‘Complete’

In many developed countries, soil survey has been ‘completed’, meaning that infor-
mation at 1:50 000, 1:25 000 or even better is already available. It is increasingly
difficult in developed economies to argue that agricultural production requires more
systematic survey when the perception of policy-makers and key decision-makers is
that adequate soil information is already available. Initiatives to improve the provi-
sion of new information by quantitative methods will prove a ‘difficult sale’ under
such conditions. In Western Australia in the early 1990’s, the realization that the
agricultural economy was facing a widespread threat of land degradation triggered
a program of soil mapping to guarantee soil information coverage of 1:250 000 or
better, aiming for 1:100 000 or 1:50 000 in high value agricultural areas. With few
exceptions, information was provided by conventional soil survey.

3.2 A New Demand for Global Soil Information

The lessons above suggest to us that the first requirement of digital soil mapping
is to identify the clear demand for the information it provides. Without this, effort
is likely to be inappropriate to its final use, or under-resourced and restricted to
‘speculative’ research of indeterminate value.

The basic rationale for soil mapping is to provide information to reduce un-
certainty. Improved accuracy of soil measurement is only one form of uncert-
ainty – metric uncertainty – that is removed for decision-makers. Others – explained
below – are described by Rowe (1994) as temporal, structural and translational.
Structural and translational uncertainty can be particularly difficult to appreciate, but
in this case they could be taken to describe firstly, the importance of soil variation
in relation to other biophysical factors; and secondly the value that decision-makers
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place on the improvement that such information enables. To reduce structural uncer-
tainty it is necessary to show that soil variation is considered to be a prime source of
uncertainty to a solvable problem. To reduce translational uncertainty it is necessary
to show that this problem is considered to be ‘important’ by key stakeholders around
the problem.

The future of digital soil mapping therefore seems to lie more in answering ques-
tions about the potential value of information as much as answering those about
methodological capability. By comparison with some major challenges facing agri-
cultural development in Africa, we demonstrate a four-stage test of demand that
should help providers clarify what information is required, and why digital methods
are necessary to acquire it, and then compare these against the current situation.
For digital soil mapping to be recognised as a necessity, it should pass tests of
significance, novelty, actionability and delivery.

3.2.1 Is the Soil Information Significant to the Problem?

The spatial soil information provided by digital soil mapping must be perceived as
highly significant to major investors to compel its acquisition. That is, it must show
that digital soil mapping will remove a major source of uncertainty. Further, the
advantage of digital soil mapping over conventional methods must be apparent.

Decades of research, at a range of scales shows that soil variation impacts sig-
nificantly on agricultural and environmental processes. This means that statements
made about processes are imprecise to the degree that the effect of soil variation is
not explicitly accounted for. Yet, site variation remains unexplained in agronomic
experimentation, while other sources of variation are pursued to a level which is
of little practical significance. Over recent years, the volume of direct observations
of yield variation from precision agriculture technology gives a better picture of
within-field variation, in which the effect of soil variation is dominant, is often ex-
tremely large, accounting for up to 3 or 4-fold yield variations – far greater than
effect of the treatments. Experience suggests that even farmers are surprised by
the scale of this variation. Micro-scale effects of soil variation are therefore highly
significant.

Agriculture is seen as less and less important to the economy and life-style of
people in the developed world. In the latter half of the 20th century, most soil maps
in the developed world were produced for agricultural ministries, where possible,
changing in the 1970’s onwards to address problems of environmental management.
Since most soil maps had been designed with the aim of supporting the former goals,
this change was of mixed success. However, the global significance of agriculture,
and the demands placed on it for soil information are greater now than before. Agri-
culture remains the mainstay of livelihoods in the developing world. Agriculture is
the major driver of socio-economic development in most developing countries and
accounts for 30–60% of GDP. Nash (2005) reported that 63% of global population
(and 73% of poor, approximately 900 million) live and work in rural areas. Soil
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information can assist development by (a) enabling farmers to meet the threats posed
by global climate change and increasing water scarcity and pressure of land degra-
dation, and (b) identifying a pathway out of poverty through emerging opportunities
to tap into markets.

The practical significance of meso-scale soil variation can be illustrated in
relation to global climate change. Many consider that global climate change to be
the greatest threat facing sustainable agriculture. The impacts seem destined to be
distributed unequally such that impacts are likely to be most severe in sub-Saharan
Africa (IPCC, 2001; Jones and Thornton, 2003) which, with almost 40% of people
under-nourished already faces enormous problems of food insecurity (Pretty, 1999).
The reality of climate change is likely to be felt most keenly at a local scale, where
people who are considered to be amongst the most vulnerable in the world must
strive to adapt to adverse change. It is now understood that adaptive change is
the key to survival for such people, yet adaptation in ignorance of fundamental
changes of risks to cropping, relating to interactions with soil water and nutrition –
increases the risks of an already difficult existence. While endogenous information,
generated through experience of adaptation locally, is a more powerful source of
understanding, it seems clear that exogenous information is essential to accelerate
its development.

An example of the type of information required is of drought risk, which is a
major constraint to development in Sub-Saharan Africa and is cited by farmers
as the principal hazard (Dercon, 2002). While drought risk is understood well by
farmers, it is difficult to assess intuitively. Even the mere threat of drought risk
slows down development, by encouraging alternative risk avoidance strategies that
reduce productivity below the potential. Drought risk is influenced strongly by soil
variation, yet the information is lacking on which to assess covariate risk within an
area, and against which to improve predictive modelling. The uncertainty related to
soil variation is highly practical.

3.2.2 Is the Information Novel?

The information must offering sufficient new insight from that which is currently
available. At a micro-scale, a common obstacle to acquisition of information is
that while soil variation is significant, soil maps fail to offer more information than
‘farmers already know’. At meso-scale, we perceive that soil maps are taken to
answer all questions, even though such maps are often absent. At a macro-scale,
digital soil mapping must offer substantial new insight to help understand soil-
related problems such as carbon budgeting, management of scarce water resources
or constraints to agricultural productivity.

The simplest illustration of this is provided at a micro-scale by experience of
precision agriculture. Literally thousands of highly detailed maps have been pro-
duced of yield variation from North America, Europe and Australia, which in many
cases, show significant variation that was not understood and of unexpected degree
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to experienced farmers. At a meso scale, it is easier to ensure that soil maps provide
novel information where – as in the majority of areas – no such maps pre-exist.
Certainly, in the developing world, virtually all soil information that is provided at
this scale is novel where the best alternative is based on mapping at scales of 1:1
million.

At all scales, digital soil mapping provides novel information if it explains
additional variation of soil attributes that cannot be adequately explained using more
conventional information. This does not seem very hard with respect to specific soil
variables, where conventional maps rely on soil classification.

3.2.3 Is the Information Actionable?

We use the term ‘actionable’ to distinguish information that is linked to specific
decisions, such as a decision to invest in a particular area. The test of ‘actionability’
is perhaps the hardest to satisfy, because it relies on many other conditions that can
influence the readiness to decide. The tests of significance and novelty specify the
potential importance of digital soil information. While some soil maps may justify
investment to satisfy a purely educative function, the predominant expectation is
that information will ultimately promote specific actions. Sometimes these need
spelling out.

In the context of developing agriculture, information can be acted upon in three
ways: targeting of investment or aid; policy design or to direct action such as plant-
ing. In all cases, the decision to act is the result of interpreted soil information,
rather than the raw information. For example, suitability maps directed soil infor-
mation, with other information, towards a specific cultivation decision. Similarly,
the World Food Program or USAID could use soil information, with other data,
to help target activities to assist people in areas that are either drought stricken, or
lower risk (hence more suitable targets for investment). An advantage of digital soil
mapping is that information is not lost through soil classification, hence more easily
re-interpreted with specific applications in mind. It is also easier to update provided
the spatial infrastructure allows this. The problem seems to be that in making the
information specifically actionable, there is a risk in over-specialisation, thereby
restricting the range of potential users who will seek the information.

3.2.4 Can the Information be Delivered to Stakeholders?

Having demonstrated the potential demand of digital soil mapping, the final test
is to consider the practicalities of delivering information to the user. There is in-
creasing recognition of the importance of providing free access to information to a
very wide range of potential users, from policy-makers to farmer representatives.
The need to transmit actionable digital soil information to users presents major
operational challenges of design. In the developing world, operational problems
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ensue as a result of the so-called digital divide, leaving many areas without access
to information delivery. While access to Information Communication Technologies
(ICTs) is growing in some regions (e.g. Latin America and South East Asia) through
the increasing use of internet cafes and cellular phones, for many parts of the de-
veloping world, regular access to such information does not exist beyond regional
cities.

A second aspect of deliverability is the ‘self-financing’ character of informa-
tion. Experience in development with the adoption of tele-communications, micro-
finance and micro-insurance (all information-rich instruments) suggests that if the
instrument is robust and of evident value to users, delivery occurs with remarkably
little promotion – people at all levels work out how to use the instrument.

3.3 Capability Improved

We now mention some technological developments that increase the potential of
digital soil mapping to contribute substantially to agricultural improvement. These
comprise new data; new processing and delivery capability and new understanding
of decision support needs.

3.3.1 New Data: Topography, Climate and Vegetation

New opportunities for digital soil mapping originate from a data revolution which
is providing more data on environmental variables at higher resolutions (spatial and
temporal), for the entire globe. The three principle advances are for higher resolution
topography, climate and vegetation data. These include:

� SRTM: High resolution terrain model (90 m, spatial resolution – improving to
30 m). Processed and downloadable from http://srtm.csi.cgiar.org (Jarvis et al.,
2004).

� WorldClim: 1 km spatial resolution climate data. Processed and downloadable
from http://www.worldclim.org (Hijmans et al., 2005).

� MODIS: high temporal resolution thermal and spectral imagery providing global
images of vegetation every 16 days, with a spatial resolution of 250 m.

There are numerous other types of data that have become available over the past
decade and many are reviewed in Chapter 2.

3.3.2 New Processing and Delivery Capability: Web-Based Delivery
of Very Large Data-Sets

IDIS (Marchand, 2006) is a web-based system that delivers large spatial data-
sets from several major river basins around the world for use by researchers,
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policy-makers and others. The system delivers a large variety of geo-referenced data
and is envisaged as a medium for discussion and development of methods to further
interpret the mass of data that is delivered by collaborators. Similar methods could
be deployed to exploit the information coming from digital soil mapping, and to
encourage a transparent development of interpretations from a broad constituency
of users.

3.3.3 New Understanding of Decision-Support Needs

The third advance we note is the improvement in understanding of the nature of
change in agriculture, from which we could expect a fuller appreciation of the po-
tential roles for information. While some soil maps have doubtless proved extremely
valuable to specific instances, there are probably an equal or greater number of
instances when information has lain unused in filing cabinets, or that users felt they
were not provided with the information required. Difficulties of communication
between providers and users of soil information can reflect a mis-comprehension
that change in agriculture is a linear process, whereas it is now viewed as a more
complex process of adaptive management (Douthwaite, 2002). This is good news for
providers of digital soil mapping which has flexibility to provide soil information
suitable to be accommodated in a dynamic learning process. Since all observations
during such a process are influenced, to some degree, by site conditions, the oppor-
tunity exists to use soil information to help explain variation of observed change and
to accelerate further change towards ‘preferred sites’.

3.4 Case Study Using New Data

Pracilio et al., 2003 illustrate the use of digital soil information, coupled to crop
simulation modelling, to represent spatial variations in soil water balance in an an-
nual cropping system over a catchment in Western Australia. The catchment extent
was about 500 km2 and the mapping process could have been repeated over similar
areas within the region for which input data was available. In this case, input data
comprised a terrain model, pre-existing (low resolution) soil map, a geology map
and partial coverage of airborne geophysical data. Several features distinguish the
spatial information provided by the digital soil mapping from a conventional soil
map, should it have been available.

The first feature was that the data was presented as a grid of higher spatial reso-
lution than can be provided by normal soil maps. Effectively, terrain and geophys-
ical data greatly improved the spatial resolution of soil information. This proved
valuable to aid visual interpretation of patterns of variation in catchment hydrology
and helped farmer groups, for whom the information was produced, understand the
hydrologic consequences of changes in cropping patterns.

The second feature was that it was possible to accommodate the uncertainty of in-
formation about continuous variation, by using a probabilistic formulation, in ways
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that are difficult in conventional soil maps. A range of potential simulation model
outcomes was designated for each grid cell, according to the strength of support-
ing evidence. This produced spatial information of outputs that accurately captured
hydrologic variation. Should it have been required, uncertainty of input data could
have been traced through the modelling process to identify error propagation.

The third feature was that the more transparent and flexible management of
spatial soil data enabled Pracilio et al. (2003) to work ‘backwards’ from the de-
mands of simulation modelling to determine what soil information was valuable.
This contrasts to the conventional use soil maps which starts with soil map units
and interprets forwards. The question that was asked was as follows: ‘Given a set
of hydrologic behaviours that are associated with a known set of soil conditions,
determine where these conditions are likely to be distributed over the catchment,
hence the likely hydrologic behaviour’.

3.5 Conclusions

We draw the above observations together with consideration of a proposal to pro-
vide high resolution digital soil information for Africa, and show how digital soil
mapping could respond to some major challenges facing agricultural development
in Africa.

1. What significant problems would digital soil mapping help address?

Digital soil mapping could significantly reduce uncertainty to help address a range
of major problems such as drought, adaptation to global climate change and im-
provement of production systems through improved nutrient management. For most
parts of Africa, soil information is available at reconnaissance scale only, and then
based on broadly based soil classifications that are of general, rather than specific
application. digital soil mapping could provide information at more detailed spatial
scale required to support local participatory initiatives that are seen as key to change.
digital soil mapping could provide soil information in a more flexible and dynamic
interpretative format that could help address the specific questions of groups of
stakeholders.

Given the dearth of detailed soil information for most of the continent, the test of
novelty (see Section 3.2.2) is easy to satisfy. Digital soil mapping would provide a
huge lift of novel insight into sub-regional and local variation of agricultural perfor-
mance relating to soil variation.

2. What specific actions could be supported by this information?

The range of actions supportable by digital soil mapping spread from broad support
for policy design, consistent with best available information of risks and opportuni-
ties for agricultural change as they are likely to be expressed on the ground. Digital
soil mapping could be used to improve targeting investment in specific agricultural
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technologies, starting with effective fertilizer use where the lack has constrained im-
provements in crop productivity. Finally, digital soil mapping could be used to vary
the design of financial instruments to help manage production risks of drought and
erosion such as the drought protection offered by site (and soil) specific insurance,
whereby premiums could accommodate a range of risk profiles from most droughty
to most retentive soils.

3. How will information be delivered?

This is perhaps the major practical challenge facing digital soil mapping because –
despite the potential value of such information – it is difficult to envision national
institutions having the financial or intellectual capacity to provide this information,
nor the political will to invest in programs of mapping, hence development of ca-
pacity. Information would need to be coupled to specific demands for information
to generate the political support and revenue necessary to initiate and sustain a pro-
gram of digital soil mapping, while at the same time, a broadly-based program of
capacity-building would be needed to address the major problems such as adapting
to Global Climate Change.

Several options exist to encourage development:

� Development of high resolution data with global coverage, likely to be of value
for digital soil mapping. Examples include SRTM, Worldclim data and coverages
of soil maps such as the FAO Digital soil map of the World. Derivatives of this
data are likely to be more valuable than the raw data itself.

� Case studies of digital soil mapping, linked to specific applications that are likely
to be of broad significance. Examples might include the use of digital soil map-
ping to development of targeted adaptation to global climate change funded in
their own right.

� Development of specific instruments, or derivates, that convert digital soil map-
pings into directly utilizable information to support decisions. An example is the
incorporation of soil information into site-specific drought insurance premiums
(Diaz-Nieto et al., 2006).
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Chapter 4
Development and Application of Digital Soil
Mapping Within Traditional Soil Survey:
What will it Grow Into?

D. Howell, Y.G. Kim and C.A. Haydu-Houdeshell

Abstract In this Chapter we describe our use of digital soil mapping estimates as
input to traditional field soil survey in California, U.S.A. We also describe the devel-
opment of these raster soil property models as stand-alone products, and practical
implications of their use. This Chapter deals with application of existing digital soil
mapping tools in active soil surveys, rather than research of new methods.

The soil survey program in the United States is nearing completion of “once-
over” coverage of the nation. Many potential soil survey users in the remaining
unmapped areas expect to use traditional polygon-based soil maps.

Soil-landscape models based on field point data have been developed in support
of selected soil survey projects. We expand on our previous models in a test area
that has existing point data and polygon soil mapping. New soil-forming factor
covariates (IFSAR elevation data and ASTER satellite images) are used to derive
the models. Minor improvements in the model estimates were obtained. Then sig-
nificant variables from these models are used to test the feasibility of the creation of
field soil survey office tools.

We feel that raster soil-landscape models are a developmental product of soil
survey. They are just becoming useful as pre-mapping estimates of the spatial dis-
tribution of some individual soil properties. The explicit estimation of all significant
soil properties based on a suite of individual models is still to be developed. This
is required before informed land management decisions can be based on digital soil
mapping.

Since natural resource management methods and regulations are coordinated lo-
cally, regionally, and nationally, standards for the creation and implementation of
these models are required for consistent and coordinated outputs within a nation.
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4.1 Introduction

Currently we are developing and evaluating digital soil-landscape modelling (digital
soil mapping) as a pre-mapping aid in traditional soil survey activities in California,
U.S.A. The goal is to help soil scientists plan their field work and augment their
understanding of soil-landscape relationships.

Our past, initial work (Howell et al., 2006) focused on showing some of the
existing methods (McKenzie and Ryan, 1999; McBratney et al., 2003) and how they
could be useful to traditional soil survey in the western United States. The purpose
of this Chapter is to extend that work with new, higher-resolution elevation data
and satellite imagery with more shortwave and thermal infrared bands representing
the soil-forming factor covariates. The models are evaluated against point data in a
completed project area. The resulting models will be used in an adjacent, unmapped
area later to produce estimates of the distribution of key soil properties prior to field
work.

The soil survey program in California, and throughout the United States, still has
active soil survey projects with field soil scientists conducting traditional field work
in order to complete the mapping of the nation and to update previously completed
work.

In addition to the statistical model development, we evaluated several standard
geospatial tools for field soil scientists to help them put the information produced
by these calculations to use.

4.2 Material and Methods

The study site is located in the western Mojave Desert approximately 160 km north-
east of Los Angeles, California, U.S.A. The study site receives 76–127 mm of rain
per year with the majority falling between November and March. This is the same
study site as our previous work, although a portion was removed because satellite
image coverage was lacking (Howell et al., 2006).

The size of the study area is 68 075 ha and the resolution of the raster modelling
is 5 m, except for one model which was 90 m.

Point data were available from randomly located soil profile descriptions and
from purposively located points from traditional soil survey activities (Haydu-
Houdeshell, 2003). Models were derived from a combined set of the points (n = 285),
and were then evaluated against a set of points (that were not used to derive the
models) that represented 15% (n = 49) of the total number of the original dataset.
These evaluation points were selected randomly from the full combined set.

Elevation data provided variables for slope steepness, slope curvatures, topo-
graphic ruggedness index (average elevation change between any point on a grid
and its surrounding area) (Riley et al., 1999) and other derivatives. Minimum cur-
vature and maximum curvature were calculated using the methods of Schmidt and
Hewitt (2004). We used Interferometric Synthetic Aperture Radar (IFSAR) data
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(Intermap Technologies Incorporated, 2005) with a resolution of 5 m. IFSAR data
represented an improvement over 30 m DEMs and worked well in this sparsely veg-
etated, arid region.

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
data (Yamaguchi et al., 1998) were used to provide surface reflectance and thermal
emission information. The six shortwave infrared bands and the five thermal infrared
bands theoretically would provide increased discrimination (when used in band-
ratio combinations) over information available from Landsat 5 imagery used in our
previous work (as described by Boettinger et al. in Section 16.2.2). ASTER data
were resampled to 5 m (from 15 m for VNIR, 30 m for SWIR, and 90 m for TIR) to
coincide with elevation data resolution.

Elevation derivatives and ASTER bands and band ratios produced 46 covariates.
Available vegetation and precipitation data were reviewed and determined to be too
general or not vary significantly within the study area. Available geomorphic and ge-
ologic data were also general and captured at a small scale (coarse resolution) so that
precision of landform delineation was low and would negatively impact model pre-
cision. After screening and reduction of covariates because of an excessive amount
of multicollinearity (SAS, 2003) we worked with a total set of 19 variables, and in
most cases the selected models used far fewer than this total set (See Table 4.1).

The soil attributes we modelled were soil genetic features such as: presence (or
absence) of argillic horizon, secondary carbonates, calcic horizon, durinodes, duri-
pan, and separate (continuous) models estimating the depth to the occurrence of
these features. We also estimated particle-size class (Soil Survey Staff, 1999).

Point data were used to calculate generalized linear models estimating the depth
in the soil profile at which individual soil genetic features occurred. Presence or

Table 4.1 Covariates considered for modelling

Elevation IFSAR elevation (metres above sea level)

Aspect IFSAR derivative (ESRI, 2004)
Curvature IFSAR derivative (ESRI, 2004)
Slope IFSAR derivative (ESRI, 2004)
Plan Curvature IFSAR derivative (ESRI, 2004)
Maximum Curvature IFSAR derivative (Schmidt and Hewitt, 2004)
Minimum Curvature IFSAR derivative (Schmidt and Hewitt, 2004)
ASTER Band Ratio T1/S1∗ ASTER band 10 / band 4
ASTER Band Ratio T1/V3 ASTER band 10 / band 3
ASTER Band Ratio T4/V3 ASTER band 13 / band 3
ASTER Thermal IR Band 1 ASTER band 10
ASTER Thermal IR Band 2 ASTER band 11
ASTER Thermal IR Band 3 ASTER band 12
ASTER Thermal IR Band 4 ASTER band 13
ASTER Thermal IR Band 5 ASTER band 14
ASTER Band Ratio V2/V1 ASTER band 2 / band 1
ASTER Band Ratio V3/V1 ASTER band 3 / band 1
ASTER Visible Near IR Band 1 ASTER band 1
ASTER Shortwave IR Band 1 ASTER band 4

∗T = thermal infrared, S = shortwave infrared, V = visible near infrared
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absence of these features was also estimated using logistic regression. The models
developed for these estimations also provided a list of significant variables that were
combined in a raster stack and then further analyzed using principal component
analysis. Principal component analysis was evaluated using tools included in the
software currently available in the field soil survey offices (Spatial Analyst, ESRI
ArcGIS).

Models were implemented spatially using GIS raster software (ESRI, 2004) and
evaluated by extracting (ESRI, 1998) model estimate values at the geographic lo-
cations of the test data set (n = 49) and comparing to those actual field observed
properties.

4.3 Results and Discussion

4.3.1 Results

In Tables 4.2 and 4.3 comparisons are made of the models produced in this effort
(IFSAR/ASTER) to the models from the previous work (DEM 30 m/Landsat 5)
that used standard 30 m digital elevation model data produced by the United States
Geological Survey and Landsat 5 band ratios, along with several other covariates
(see additional considerations in Section 10.7.2). In general, there are some slight
improvements in the estimated properties with the new models. We continue to
assert that overall these estimates are useful as pre-mapping estimates of the dis-
tribution of soil genetic features.

However, fewer models met our significance test (p < 0.05). Direct comparisons
are not perfect because different covariates were used and a different set of test
points were used. We are still evaluating models and trying to improve the fit using
these data.

A raster stack of the significant variables determined in these models was devel-
oped. Then standardized tools (ESRI, 2004) for calculating principal components
were evaluated. Principal component analysis of 19 covariates produced poor model
estimates based on eight principal components. This still seems like a worthwhile
method to develop and we will work on this in the future.

Table 4.2 Comparison of model estimates of particle-size class to actual measured soil properties

Number of classes model estimate was away from correct
class (ten total classes)

n Correct Class 1 2 3 4 5

% % % % % %

DEM 30 m/Landsat 5 97 24 49 21 3 2 1
IFSAR/ASTER (1) 49 35 24 29 12 0 0
IFSAR/ASTER (2) 49 41 31 20 6 2 0
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Table 4.3 Comparison of model estimates of depth of soil genetic features to actual measured soil
properties

n %
Estimates
within
0–10 cm

%
Estimates
within
10–20 cm

%
Estimates
within
20–30 cm

%
Estimates
within
>30

Argillic
DEM 30 m/Landsat 5 46 24 11 39 26
IFSAR/ASTER (1) 27 19 37 11 33
IFSAR/ASTER (2) 27 33 19 19 29

Calcic
DEM 30 m/Landsat 5 39 18 39 26 18
IFSAR/ASTER 19 26 5 32 32

Carbonates
DEM 30 m/Landsat 5 97 48 23 17 12
IFSAR/ASTER (1) 46 43 30 4 21
IFSAR/ASTER (2) 46 48 26 4 22

When more than one model was estimated they are indicated by (1) or (2).

Some models are more useful than others, certainly. Models that estimated pres-
ence/absence of the genetic features using logistic regression performed poorly with
these data, as they did in the previous work. Possible reasons for this are an absence
of reliable relationships between available covariates and subsurface features, inad-
equate spatial accuracy of data points, soil property variations at a scale finer than
the covariate data, or other undiscovered causes.

The IFSAR elevation data did not produce the magnitude of improvements that
we expected in the model estimates. But these elevation data are still an improve-
ment for soil survey work because they have higher resolution, lack artifacts from
fitting to hypsography, are more sensitive to small areas of varying elevation, and are
directly measured. We also feel that further evaluations of band-ratio combinations
of the ASTER data will produce enhanced images that correlate to variations in soil
surface properties. We will continue to work with these.

Most importantly the models provided estimates within 20 cm of actual depths of
secondary carbonates for about 73% of the test points; and estimates of the particle-
size class that were correct or within one class of the actual class for about 72%
of the test points. This is useful information to know prior to field mapping. (See
Fig. 4.1.)

4.3.2 Discussion

The best test of these model estimates will come during the 2007 field mapping
season when model outputs will be produced for an unmapped area near this project
area. We will develop the models further prior to that application. Since we consider
these as pre-mapping estimates, the field soil scientists will provide us feedback
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Fig. 4.1 Estimated depth (cm) to top of zone of accumulation of secondary carbonates (See also
Plate 1 in the Colour Plate Section)

about how useful they were in guiding their fieldwork and building soil-landscape
relationship concepts. At this time our use of models developed in one geographic
area and then applied to another unmapped location is guided by proximity, judg-
ment, and work priorities. No formal analysis of reference area or applicable extent
for the models has been undertaken. We will evaluate the reference area concept
(Lagacherie et al., 1995, 2001) for future work and it should be considered for
development in the digital tools provided to field soil scientists.

In order for raster digital soil mapping to be implemented in California it needs
to be standardized within geographic areas and implemented at the field soil survey
office. Tools need to be developed within the standard software available to soil
scientists. The landscape analysis and modelling methods need to be put into the
hands of the field soil scientist, rather than being completed by a specialist who
is not involved in the day-to-day field work of the project. Training needs to be
developed and given so that field workers have the tools that they need and the
knowledge of how to use them. In short, digital soil survey needs to be applied at the
field soil survey office level. This will require development of scripts, geoprocessing
models, and toolbars for the standardized GIS software used in soil survey offices.
Soil scientists who are also GIS and remote-sensing specialists will support the
development of these methods. They will help other soil scientists understand the
geographic and predictive limitations of these tools. This is what we feel digital soil
mapping will grow into, initially. The next generation of field soil mappers will use
these tools in their daily work and innovate applications of new remote sensing and
spatial statistics methods to produce useful explicit estimations of soil information.
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The soil survey program in the United States is nearing completion of “once-
over” coverage of the nation. Many potential soil survey users in the remaining
unmapped areas expect to use traditional polygon-based soil maps. Natural-resource
planning and management methods have been developed using this type of soil in-
formation. The soil map unit polygons serve as indications for management units.
These are made available for nationwide online soil mapping at the Web Soil Sur-
vey (see also Section 24.2). While these traditional soil survey projects are being
completed to meet these expectations, raster-based soil-landscape models are being
developed and evaluated as input to the mapping and as stand-alone products for use
in other models.

We feel that raster soil-landscape models are still a developmental product of
soil survey. They are just becoming useful as pre-mapping estimates of the spatial
distribution of some individual soil properties. The explicit estimation of all signif-
icant soil properties based on a suite of individual models is yet to be developed.
For example, to use raster soil property estimates to make an interpretation of the
soil limitation for septic tank installations a separate raster estimate is needed for
each soil property used in the rating criteria, i.e., surface water ponding, depth to
bedrock, depth to cemented pan, permeability, slope, flooding, and rock fragment
content. This is necessary before informed land management decisions can be based
on soil property raster estimates.

Since natural resource management methods and regulations are coordinated lo-
cally, regionally, and nationally, standards for the creation and implementation of
these models are required for consistent and coordinated outputs within a nation. In
addition, the model outputs present interpretation challenges to the natural resource
planner and manager. How do they interpret or use a raster estimate or even a stack
of raster estimates to decide on placement of facilities or practices? How would a
regulatory agency such as a regional planning department review how the models
were used by conflicting groups to make decisions in order to meet planning regu-
lations? For example each regulatory agency would need to be able to objectively
evaluate the source of covariate data, pre-processing methods, implementation of the
model mathematically, and grouping or filtering of the model outputs. The adoption
of raster soil property estimates in the United States as stand-alone products requires
the development of these standards and practical interpretation methods. We are just
beginning to discuss these topics as the potential uses of these digital raster data are
demonstrated and accepted.

4.4 Conclusions

In the United States medium resolution satellite imagery (15–60 m), elevation data
(10–30 m), vegetation mapping, other soil-forming factor data, and soil class maps
are commonly available in the public domain. Geologic data are more limited and
are often generalized to formations rather than rock types. Radiometric, hyperspec-
tral, and high-resolution elevation data (e.g., Lidar, IFSAR) are still expensive and
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very limited. These are usually available only by contract and are proprietary. In
some project areas, such as extensive desert ecosystems, the variation of the vegeta-
tion, precipitation, and geologic data may be small. This leads to models that focus
on elevation derivatives and satellite images as the primary covariates, although all
available covariates should be evaluated.

These data, along with field soil profile descriptions and laboratory data, provide
inputs for explicit, soil-landscape model estimates. These model estimates are useful
pre-mapping products. They can help guide field sampling and provide support for
extrapolation to unvisited field locations.

We found that increasing the spatial resolution (changing the elevation data res-
olution from 30 m in our previous work to 5 m in this project) and increasing the
attribute resolution (using ASTER data with 14 bands instead of Landsat data with
7 bands, i.e., more narrowly defined bands) did not increase the performance of the
models in a dramatic way. Perhaps the significant elevation variance was portrayed
by the 30 m DEM. The surface reflectance captured by the ASTER sensors may
not have a significant correlation to subsurface features although in many areas
burrowing animals and other disturbances have brought subsurface materials to the
surface.

Tools for analyzing soil-landscape relationships need to be developed for easy
application by field soil scientists using standard soil survey office software. We
will focus on principal component analysis, unsupervised classification, and devel-
opment of rule-based models. We will work with field soil scientists to develop these
methods.

The biggest infrastructure challenge to implementation of explicit raster esti-
mates of soil properties or classes in the United States is the adoption and com-
munication of standards for model development and application. Another challenge
is the development of methods for interpretation of raster soil estimates. Until con-
servation planners know how to use these raster estimates to make decisions or make
recommendations for land use management, these maps will not replace traditional
polygon soil class maps.
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Chapter 5
Soil Map Density and a Nation’s
Wealth and Income

Alfred E. Hartemink

Abstract Little effort has been made to link soil mapping and soil data density
to a nation’s welfare. Soil map density in 31 European countries and 44 low and
middle income countries is linked to Gross Domestic Product (GDP) per capita
and the number of soil scientists per country. National coverage of exploratory soil
maps (>1:250 000) is generally higher in the poorest countries and decreases with
increasing GDP per capita, whereas the national coverage of detailed soil maps
(<1:50 000) tends to increase with increasing GDP. GDP is larger in countries with
more soil scientists per unit area, likewise, the number of soil scientists increases
with increasing GDP. More soil scientists per ha of agricultural land was found to be
related to higher crop yields. Obviously, there are many confounding and interacting
factors but this analysis illustrates how proxies for soil map density can be used; it
is suggested that appropriate indicators should also be developed for spatial data
infrastructures and digital soil maps to demonstrate their effectiveness for society
and human welfare.

5.1 Introduction

Some countries are poor, some are rich, and there a lot of countries in between.
Explaining the differences is not easy and related to a whole series of factors. Wealth
and income of countries is driven by macro-economics but also by, for example, ge-
ography and the richness of natural resources: e.g. soil, climate and mineral wealth
(Sachs, 2005). It is hard to unravel the influence of each developmental factor –
many of which are interacting and are also greatly affected by humans. If the wealth
of a nation can be viewed as its accrued assets and inherent property, the income is
the yearly money that is derived from that wealth. The soil is an obvious factor in
the wealth and income of a nation and may have a clear relation to a nation’s wealth

A.E. Hartemink
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and income. It is assumed that such relation not only holds for the wealth of soil
resources itself, but also the wealth of information about those soil resources.

Little effort has been made to link soil information to developmental indicators
or to quantify the effects of soil research on the wealth and income of nations.
That is not surprising as the benefits of soil research have been poorly quantified
(Greenland, 1991) as they are hard to measure and may be masked by other factors.
Since soil science emerged in the mid 1800s, an enormous amount of information
has been collected and insight has been gained in both the intrinsic properties of
soils and the spatial soil distribution in different parts of the world. Relating in-
trinsic soil properties to crop productivity (≈ yield, income) is relatively easy. For
example, the economics of fertilizer applications or large-scale drainage scheme
have been studied in most parts of the world and have shown to be essential for
generating income and wealth. Currently, such efforts have reached a new stage with
the rapid developments in soil sensors and precision agriculture (see Section 2.2 and
2.3 for an overview of new hardware and software). Given the quantitative nature
of these studies and their associated uncertainty it should now be possible to accu-
rately estimate the economic (and ecologic) benefits of soil management strategies.
This mostly applies to the farm level although the variation and uncertainty in the
information (McBratney, 1992) will affect the outcome of economic evaluations.
Very few economic benefit studies are available at higher levels of aggregation (e.g.
nations, continents) on which we mostly rely on old maps and old data. These
maps were produced using traditional techniques and are generic and multipur-
pose so that is difficult to assess the economic benefits of the soil maps (see also
Section 24.6).

There have been many claims, mainly by soil surveyors that soil surveys and
mapping are economically beneficial. A problem with assessing the cost-benefit
ratios of soil mapping is, however, that it is not possible to make precise gener-
alisations about the costs of producing soil maps (Bie and Beckett, 1970). What is
known is that the cost of soil survey (per unit area) rises sharply with the purity
or uniformity to be achieved (Bie et al., 1973). Klingebiel (1966) reviewed a series
of soil surveys and estimated that the benefit-costs ratios are larger than 50 for the
USA, whereas Dent and Young (1981) also mentioned that these ratios for soil sur-
veys are usually very high. Although only few studies have assessed the benefits
of soil mapping and research (Giasson et al., 2000), there are several examples of
projects that have failed because of a lack of soil information in all parts of the world
(Bie and Beckett, 1970).

Globally, about two-thirds of the countries have been mapped at a 1:1 million
scale or larger, but over two thirds of the total land area has yet to be mapped even
at a 1:1 million scale (Nachtergaele and Van Ranst, 2003). That resulted from soil
surveys conducted after World War II and up to the 1980s. At present, few traditional
soil surveys are being carried out and many soil survey centres in the world have
closed. There are great differences between countries in the status of mapped areas
(extent, scale) but also in the status of digitising old information and combining it
with other data layers to produce digital soil maps (McBratney et al., 2003) – see
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also Section 3.1.1. Fairly accurate data exist on the coverage of soil maps at different
scales for most countries. In this chapter, soil map density at different scales is linked
to GDP per capita and the number of soil scientists of 31 European countries and 44
low and middle income countries. Soil map density is used here as a proxy for soil
data density. First, I shall look at the number of soil scientists per country because:
no soil maps without soil scientists.

5.2 Soil Scientists per Country

The amount and quality of soil research is dependent on the number of soil scientists
and their resources. It is possible to estimate the research resources of individual
departments and centres, but quantifying the total money available and earmarked
for soil science in a nation is hardly possible. Data on the number of soil scientists,
however, can be obtained from national soil science societies and the International
Union of Soil Sciences (IUSS). Van Baren et al. (2000) linked the number of IUSS
members to total inhabitants and the agricultural land area for different countries.
This information has been updated with recent figures from the national soil science
societies (Table 5.1).

According to the IUSS membership data, the USA has the largest number of soil
scientists (approximately 4000), followed by Germany (2311) and India (1846).
Clearly, in all these countries there may be a few more soil scientists as not all
of them will be members of the national societies, and not all members of these
societies are active soil scientists. Some of the numbers are very small and proba-
bly wrong (e.g. underestimates for Brazil and China) Switzerland has the highest
number of soil scientists per capita; roughly one in twenty thousand Swiss is a
member of their national soil science society. The lowest number per capita is found
in Brazil, India, Mexico, South Africa, and Turkey where less than 2 in 1 million
inhabitants are member of their national soil science societies. A high number of
soil scientists per ha agricultural land is found in Germany, Japan, the Netherlands,
South Korea and Switzerland. The lowest number of soil scientists per ha agricul-
tural land is found in Australia, Brazil, China, Mexico, Russia, South Africa, and
Turkey. Clearly, there are a lot of “chicken and egg” type of relationships in this
table. There is a fairly direct relation between the share of GDP spent on research
and development and the average grain yield; countries that spent more on research
have higher yields. The relation between the share of GDP spent on research and
development and GDP per capita is strong, richer countries spend more money on
research and vice versa. Also, GDP per capita relates very well to the number of
soil scientists in a country. Richer countries have more soil scientists per capita.
The total number of members of a national soil science society is well-correlated
(R2 = 0.7∗∗∗) with the number of inhabitants in a country. Also, members and the
total area under agriculture are fairly well-correlated (R2 = 0.5∗∗); countries with
large areas under agriculture often have more soil scientists.
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5.3 Soil Maps – Europe

The first soil maps in Europe were made in the 1800s. They were mostly produced
for agricultural purposes or the taxation of rural lands and emphasised surficial
geology and the degree of weathering of the regolith (Stremme, 1997). The first
task of the International Society of Soil Science (ISSS but since 1998: International
Union of Soil Sciences, IUSS) established in Rome in 1924 was to produce a Soil
Map of Europe. This was necessary to overcome language problems and differ-
ences in mapping approaches. Countries in Eastern Europe followed the Russian
(= V.V. Dokuchaev and N.M. Sibirtsev) approach of mapping soils as natural bod-
ies, whereas those in Western Europe – where systematic mapping started later –
followed a more geological approach.

The first European soil map was published in 1928 at a scale of 1:10 million. It
has 27 map units and was based on the geological map at a scale of 1:5 million.
The map was presented at the first World Congress of Soil Science in Washington
D.C. (USA) in 1927 where it was agreed to produce a more detailed map at a scale
of 1:2.5 million. This map was published in 1937 and has 43 map units grouped in
seven sets.

The next Soil Map of Europe was produced 30 years later by the Food and Agri-
cultural Organization of the UN and the EEC (FAO, 1965). Systems of classification
used in the different countries varied in approach but for the 1965 map a uniform
legend was presented. The legend consists of soil associations composed of soil
units. Many countries only started systematic soil surveys after the Second World
War, and this map contains the best soil distribution information available at that
time. The earlier maps of the 1920s and 1930s were not used in the 1965 European
soil maps or in successive efforts.

The next European soil maps were produced in the framework of the 1:5 million
Soil Map of the World for which preparation began in 1961 as a joint project of
FAO and UNESCO following a recommendation of the ISSS. The complete set of
the Soil Map of the World was presented at the 10th World Congress of Soil Science
in Moscow in 1974, and publication of all 19 map sheets was achieved by 1981.
The European volume was the last sheet that was published. Most of the European
region was covered by systematic soil surveys but only Iceland, the northern parts
of Finland and the USSR and Turkey in Asia were mapped at the reconnaissance
level. On the 1:5 million map, units are associations of soil units (e.g. Arenosols,
Vertisols) which were assigned texture and topography (slope class) of the dominant
soil. Phases (e.g. stony, phreatic) are superimposed on the map units. At last, in
1985 a 1:1 million soil map of Europe was published (Commission of the European
Communities, 1985). The map has 20 soil orders (major soil groups) like Gleysols
or Luvisols and more than 60 great groups or soil units (e.g. Chromic Cambisols).
The legend of the map shows 312 different map units which consist of associations
of soil units occurring within the limits of a mappable physiographic entity.

The completion of the Soil Map of the World by FAO-UNESCO has been one
of the main contributions of the ISSS (Van Baren et al., 2000) and has since its
completion found wide applications, like for example: assessment of desertification,
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delineation of major agro-ecological zones, evaluation of global land degradation,
calculation of population supporting capacity, creation of a World Reference Base
for Soil Resources, and the creation of a digital global Soils and Terrain Database
(SOTER) (Oldeman and van Engelen, 1993).

5.3.1 Three Generations of Soil Maps

Table 5.2 summarises the available soil maps for Europe. The first generation maps
of the 1920s and 1930s have a strong agro-geological base and were based on lim-
ited soil survey work. These soil maps stimulated soil survey and research in most
European countries of which the fruits were harvested for the second generation of
European soil maps (1965–1985). These developed in the heydays of soil survey
and were based on hundreds of detailed national and regional maps. The second
generation is now being replaced by a third generation of maps – digital soil maps
in which full use is made of existing soil and other information with advancements
in GIS, remote sensing and quick and accurate soil observations using a range of
sensors (McBratney et al., 2003).

When comparing the 1965 soil map of Europe to the 1981 and 1985 maps there
is much more detail reflected in the number of mapping units and scale of the map.
All three soil maps summarize soil survey activities in each country and soil survey
was at its zenith. Then the mapping was more or less over as most governments
withdrew their support for multi-purpose and generic soil surveys. As a result, little
traditional soil mapping (auger, spade, stereoscope) took place since the 1980s.

The coverage of detailed (1:50 000) and exploratory (1:250 000) maps was
linked to the size of 31 countries in Europe. It seems that smaller countries have
better coverage of both exploratory and detailed soil maps (Fig. 5.1). About 45%
of the countries have complete coverage with detailed soil maps and 9 countries in
Europe have less than 20% of their total area mapped at 1:50 000 and these include
France, Spain and Sweden. More than 60% of the countries have 100% coverage
with exploratory soil maps.

Table 5.2 Soil maps of Europe, their scale, number of legend units and map sheets (Hartemink,
2006b)

Year of
publication

Map scale Number of
map units

Number of
map sheets

Reference

1928 1:10 million 27 1 Stremme (1928)
1937 1:2.5 million 43 12 Stremme (1937)
1965 1:2.5 million 34 6 FAO (1965)
1981 1:5 million > 700 2 FAO-Unesco (1981)
1985 1:1 million 312 7 Commission of the European

Communities (1985)
2005 1:1–1:6.5 million 163 17 European Soil Bureau Network

of the European
Commission (2005)
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Fig. 5.1 Relation between size of 31 EU countries and the coverage with detailed soil maps (<1:50
000) and exploratory soil maps (>1:250 000)

Table 5.3 Correlation (R2) between coverage of soil maps at a scale of 1:50 000 or 1:250 000
and country size, total population and population density of 31 European countries. Data extracted
from: European Soil Bureau Network of the European Commission (2005)

Size of the country Total population Population density

1:50 00 soil maps 0.364∗ 0.358∗ 0.743∗∗∗

1:250 000 soil maps 0.472∗∗ 0.492∗∗ 0.795∗∗∗

∗,∗∗,∗∗∗ indicates significance at P < 0.05, P < 0.01 and P < 0.001, resp.

Correlation between a country’s population density and the availability of soil
maps is fairly strong and highly significant (Table 5.3). Small, highly-populated
countries in Europe have the most detailed soil information; large, less densely
populated countries like France, UK and Germany generally have less detailed soil
maps. Correlation between number of soil scientists in 1998 or 2005 and the cov-
erage of soil maps in 2005 is poor. However, the coverage of soil maps in 2005 is
related to the number of soil scientists in 1974 (Fig. 5.2). The larger the number of
soil scientists per unit area of agricultural land in 1974, the greater the coverage of
soil maps, particularly exploratory soil maps in 2005.

5.4 Soil Maps – Low and Middle Income Countries

Coverage of soil maps in low and middle income countries is shown in Table 5.4.
The Gambia, Jamaica and Trinidad & Tobago are covered with detailed soil maps
(scale >1:25 000). About one-third of the countries have soil maps at a scale of
1:100 000–1:500 000 but these countries have hardly any maps on a larger scale,
that is 1:50 000. Some countries like Congo and Algeria have very limited soil
maps at any scale.
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Fig. 5.2 The number of soil scientists per 1000 km2 agricultural land in 1974 and the coverage
with detailed soil maps (<1:50 000) and exploratory soil maps (>1:250 000) for 16 European
countries in 2005

5.5 Soil Maps and GDP

Gross Domestic Product (GDP) per capita is often used as an indicator for a coun-
try’s welfare. GDP is defined as the market value of all goods and services produced
within a country in a given period of time; all other things being equal, standard
of living tends to increase when GDP per capita increases. Economic data from
UNDP was combined with data on the status of soil mapping in different countries
(Nachtergaele and Van Ranst, 2003; Zinck, 1995). National coverage of soil maps is
linked to GDP per capita (2001 data) for 44 countries (Fig. 5.3). Although the data
are scattered, regression suggests that national coverage of exploratory soil maps is
generally greater in the poorest countries and decreases with increasing GDP per
capita; the national coverage of detailed soil maps tends to increase with increasing
GDP. However, total coverage is very low in most of these countries (<20%).

GDP is larger in countries with increasing number of soil scientists (Fig. 5.4) –
of course, the other way around is reasonable as well: the number of soil scientists
increases with increasing GDP. More soil scientists per ha agricultural land often
lead to higher yields (Fig. 5.5). Correlation between soil map density and grain
yield equivalents was very low.

5.6 Discussion

The soil science community has not clearly demonstrated the benefits of soil science
for society (Greenland, 1991; Hartemink, 2006a). If everyone were convinced that
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Table 5.4 Coverage of soil surveys in 44 low and middle income countries. Adapated from
Nachtergaele and Van Ranst (2003) and Zinck (1995)

Small scale Medium scale Large scale
1:500 000–±100 000 1:100 000–±50 000 ≤1:25 000

(%) (%) (%)

Algeria 0 5 5
Bangladesh 95 0 0
Benin 100 10 2
Botswana 40 5 0
Brazil 35 5 5
Burkina Faso 100 25 0
Burundi 100 0 0
Cameroon 30 5 1
China 100 100 0
Colombia 85 5 5
Congo 10 5 0
Costa Rica 100 20 5
Egypt 100 10 10
Gabon 30 0 0
Gambia 100 0 100
Ghana 95 0 0
India 80 0 0
Indonesia 40 10 0
Iran 0 10 10
Jamaica 0 100 100
Kenya 100 25 0
Malaysia 100 10 0
Mali 50 0 0
Mexico 75 40 0
Morocco 0 40 20
Myanmar (Burma) 100 20 2
Nigeria 70 35 0
Pakistan 85 3 0
Panama 50 0 0
Papua-New Guinea 5 10 0
Peru 50 0 0
Philippines 100 10 0
Rwanda 100 100 0
South Africa 70 0 0
Sri Lanka 100 10 2
Swaziland 100 10 5
Tanzania 50 0 0
Thailand 0 100 20
Togo 80 20 0
Trinidad-Tobago 0 0 100
Uganda 100 0 0
Uruguay 20 20 0
Venezuela 90 5 2
Vietnam 0 40 30
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Fig. 5.4 Relationship between soil scientists per million inhabitants and GDP per capita; and be-
tween GDP per capita and the number of soil scientists per 1000 km2 agricultural land

soil science is essential for human welfare perhaps this demonstration would not be
needed (see also Chapter 3), but I fear that is not the case. Decreasing funds for soil
research, and the inability of the soil science community to effectively show the ben-
efits has resulted in fewer soil scientists and far fewer students in many universities
across the globe but in particular in the USA and Canada (Baveye et al., 2006).
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Fig. 5.5 Relation between soil scientists per 1000 km2 agricultural land and average grain yields
(FAOSTAT data)

Soil science has distinctly different foci in the developed compared to develop-
ing countries (Hartemink, 2002) whereas Chapters 22–34 show that there are many
similarities in approach and problems that are to be tackled. This chapter has shown
that there are large differences in these regions in terms of soil data density. Some
poor countries have very good data and maps (for example, Rwanda); some rich
countries are poor in data. For both groups it is imperative that the usefulness of soil
information for development is illustrated. The development of digital soil maps
takes places in both regions (Lagacherie et al., 2006) and it is important that appro-
priate indicators are sought to illustrate the effectiveness of digital soil maps. The
methodologies (Chapters 13–21) exist and are continuously being developed but the
extent of digital soil maps needs further increasing (Section 1.7.1).

This chapter has show a link between soil science information (maps) and GDP
and some other variables. Although there are many confounding factors, these rela-
tions warrant further investigation. Clearly, few people would deny the use and rele-
vance of soil information for agricultural project development or urban city planning
but quantifying the economic benefits remains a large task (Giasson et al., 2000).
Previous studies (e.g. Klingebiel, 1966; Dent and Young, 1981) have shown high
benefit-cost ratios for soil surveys but these studies were based on traditional sur-
vey methods. Bui (2007) gives some cost estimates for traditional soil surveys in
Australia and compared these ratios for producing digital soil maps. Costs for tradi-
tional surveys were AU$12–28 per km2 whereas the digital approaches were costing
AU$3–9 per km2. Most of the reduction in costs was achieved by fewer person years
to map the same area. These costs excluded infrastructure or the computer network
and the costs for training a new generation of digital soil surveyors. She concluded
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that in a country with an aged workforce the uptake of digital soil mapping will
be slow (Bui, 2007) – see also the Foreword of this book. This applies to many
countries reviewed in this chapter. The real challenge for digital soil mapping is
not the aging workforce but the training of a fresh generation of soil scientists that
will widely use and advance new techniques (Section 6.4). Given the benefits of
soils and soil information for humankind and a nation’s wealth and income that new
generation has a bright future ahead.
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Chapter 6
Digital Soil Mapping as a Component
of Data Renewal for Areas with Sparse
Soil Data Infrastructures

D.G. Rossiter

Abstract This chapter introduces the concepts of data rescue of legacy soil surveys,
here defined as a simple conversion to archival format by scanning or direct entry
into a database, and data renewal, here defined as the process of bringing these
surveys up to modern standards by taking advantage of technological and concep-
tual advances in geoinformation technology. This is especially important in areas
with sparse soil data infrastructure, as it is both more likely that the data will be
lost and less likely that a new survey can be commissioned. Digital Soil Mapping
(DSM) techniques, although designed for new surveys, can play an important role
in data rescue and renewal, in particular as geodetic control for a GIS coverage,
as a medium-resolution elevation model (DEM) and derived terrain parameters to
adjust terrain-related boundaries, and synoptic satellite imagery to adjust vegeta-
tion or landuse-related boundaries. The semantic issues raised by soil-landscape
modelling within DSM are especially important for data renewal and integration
with supplementary surveys. As with DSM in general, a data renewal exercise may
require cultural and institutional change in traditional soil survey organization.

6.1 Introduction

The World is full of unused, even forgotten, soil geographic information in the form
of soil surveys (also called “soil resource inventories”). Some are sitting forlornly
on a library shelf; some are turning to dust in a storage cabinet; some are in the
private collections of deceased or retired soil scientists; and some are even in digital
form and yet unused, perhaps on obsolete or decaying media. These are part of the
legacy of previous generations of soil surveyors. Disasters – natural, man-made,
and political – or simply inattention can destroy these forever. This is especially
unfortunate in areas with sparse soil data infrastructure (“data-poor areas”), as it is
both more likely that the data will be lost and more unlikely that a new survey can
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be commissioned. Even if new data is to be collected, it is wasteful and scientifically
irresponsible to throw away existing data. Indeed, standard practice when beginning
a new survey is to incorporate previous work as much as possible. Legacy data
can also be used to provide a baseline for longitudinal studies of soil change (e.g.
Bellamy et al., 2005).

Similarly under used are “card catalogue” data bases of point observations with
no or only descriptive geo-reference, such as laboratory reports and profile descrip-
tions. Their rescue and renewal (e.g. Batjes, 1995; Batjes et al., 2007) is not facil-
itated by DSM techniques; on the contrary, their rescue facilitates DSM. They will
not be further discussed here; examples are given in Chapters 23 and 27.

Soil surveys in data-poor areas are often of good quality, in the sense that the
surveyors understood soil-landscape relations, made field observations, often in dif-
ficult conditions, and synthesized these into map units. Many former colonies were
surveyed by the colonial power; more recently, development projects often included
soil surveys. These surveys differed in their objectives, standards, and concepts;
but still provide valuable, often irreplacable, information. However, very little soil
geographic information on these areas is available in digital form (Rossiter, 2004).
The author keeps up-to-date with on-line data by regularly searching the Web to
update the Compendium of On-Line Soil Survey Information (Rossiter, 2007), and
this situation has not appreciably changed in the past six years with the notable
exception of the data rescue efforts of ISRIC and EUSB (see below).

During recent years there has been a movement among soil geographers to-
wards so-called Digital Soil Mapping (DSM), defined as “soil resource assess-
ment using geographic information systems (GIS), i.e. the production of digital
soil property and class maps with the constraint of limited relatively expensive
fieldwork and subsequent laboratory analysis” (McBratney et al., 2003). This con-
cept has also been termed predictive soil mapping (PSM): “the development of a
numerical or statistical model of the relationship among environmental variables
and soil properties, which is then applied to a geographic data base to create
a predictive map” (Scull et al., 2003, p. 171); this narrow definition can be ex-
panded to non-statistical models (e.g. expert judgement) and to soil classes or even
behaviour.

Whether called “digital” or “predictive”, the movement has resulted in a large
number of powerful geo-processing, statistical, and conceptual methods for describ-
ing the distribution of soils on landscapes; this was after all the aim of those who
made what we now call “legacy” soil surveys. This chapter presents a conceptual
framework for using DSM techniques to support data renewal, with emphasis on ar-
eas with sparse soil data infrastructures, and soil maps following the discrete model
of spatial variation (DSMV) (Heuvelink and Webster, 2001), i.e. area-class (“poly-
gon”) maps, since these are the great majority of legacy soil maps. Although most
DSM products are based on the continuous model (CMSV), Ibañez et al. (2005)
have recently argued that the DSMV, which corresponds to natural soil bodies (or
their associations) with relatively sharp transitions in the landscape, is often an effi-
cient information carrier and as such is an efficient stratification for DSM sampling
or selection of covariates.
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6.2 Data Renewal

The effort to locate and catalog historical records has been termed data archae-
ology and the effort to preserve them data rescue. An example is the project to
find and scan paper meteorological1 and oceanographic2 records by NOAA. For
soils data, ISRIC-World Soil Information has a long-standing policy of collecting
and cataloging all soil surveys, published or not. The recent intiative of ISRIC and
the JRC of the EC to scan ISRIC’s soil map collection on to DVD (Selvaradjou
et al., 2005a, b, c) is an outstanding and most welcome example of data rescue.

The step after data rescue is data renewal: existing information is not only saved
from extinction, but is also put in modern form and made useful. This has been
termed resurrection of legacy soil surveys by Dent and Ahmed (1995) in their work
in the Gambia; we have chosen a more neutral term.

We propose that a renewed legacy soil survey be defined by the following ele-
ments:

1. The area-class delineations as a GIS coverage: geo-referenced and geodetically-
correct to some specified accuracy, commensurate with the original mapping
scale;

2. (If available) Sample points as a GIS coverage: geo-referenced and geodetically-
correct as above;

3. Linked area-class and (if applicable) point attribute databases; in a sound
relational structure;

4. A synoptic medium-resolution (10–30 m horizontal) multi-spectral image
(“TM-type”) as background; see the list in Section 2.2.1;

5. A medium-resolution (30–90 m horizontal) elevation model (DEM) and derived
terrain parameters (slope gradient and aspect, curvatures, wetness index etc.)
(Oksanen and Sarjakoski, 2005; Wilson, 2000) as background and supplemental
terrain properties;

6. Metadata explaining the semantics of all terms, either internally or by reference
to external standards such as soil classification systems and laboratory proce-
dures;

7. A users’ guide for soil specialists and any interpretations for other uses from the
original survey;

8. Licensing and usage restrictions, if any;
9. Can be downloaded via internet and/or requested on optical disk;

10. Integrated into the relevant national or international Geospatial Data Infrastruc-
ture (GSDI) (Groot and McLaughlin, 2000), if such exists.

Thus the legacy soil survey becomes a modern digital product, directly accessible
and useful for a wide variety of uses, and with improved and assured quality. The

1 http://docs.lib.noaa.gov/rescue/data rescue home.html; accessed 17-October-2007
2 http://www.nodc.noaa.gov/General/NODC-dataexch/NODC-godar.html; accessed 17-October-
2007
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closest examples to this ideal are provided Canada (Coote and MacDonald, 2000)
and the USA (Soil Survey Staff, 2007), although in these cases the terrain and im-
agery information are the responsibility of other agencies.

The renewal exercise would ideally include some new fieldwork; if extensive
enough to check DSM products, this would supersede the legacy survey. However,
in resource-poor organizations this will likely be impossible in the short term; so we
concentrate on renewal as just one step past rescue, and perhaps a step on the way
to a new or updated survey.

Many recent technological and conceptual developments which facilitate renewal
are within the financial reach of most soil survey organisations and projects; some of
these are specifically DSM-related and will be discussed in detail in the next section.

1. Increasingly-powerful geo-information technology (computer systems and pro-
grams) is available to facilitate the work in many ways; some programs are
open-source or otherwise free (e.g. GRASS, SAGA, R, ILWIS) while others are
low-cost commercial (e.g. IDRISI);

2. Major conceptual advances in data structuring, data modelling, and metadata
standards; improved tools to facilitate these;

3. Medium-resolution satellite images are easily available at either free or very low
cost and are easily imported to many programs;

4. Medium-resolution terrain models are also available at either free or very low
cost, most notably from the Shuttle Radar Topography Mission (SRTM) (Rabus
et al., 2003); import and processing is moving from the development to the rou-
tine stage, especially now that corrected products are available (Gorokhovich and
Voustianiouk, 2006);

5. Other wide-area medium-resolution digital coverages relevant to soil geography
may be available at either free or very low cost (i.e. other themes have often
been more quickly made digital than the soils theme); examples are geology,
land cover and climate;

6. GPS receivers for geodetic control, field checking, and supplementary sampling
are cheap; even consumer-grade receivers are accurate enough for medium-scale
soil maps;

7. Field computers running mobile GIS applications and integrated with GPS for
field checking.

6.3 DSM to Assist in Data Renewal

DSM methods can contribute directly to three facets of data renewal:(1) geodetic
control for a GIS coverage; (2) a medium-resolution elevation model (DEM) and
derived terrain parameters to adjust terrain-related boundaries; (3) the semantic is-
sues inherent in conceptual soil-landscape modelling.
Geodetic control Almost all legacy soil surveys have major problems with geode-
tic control. For example, in the USA it proved impossible to rectify surveys pub-
lished on semi-controlled corrected photomosaics (D’Avelo and McLeese, 1998).
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A geometrically-correct topographic base with no georeference can be georef-
erenced by a small set of field GPS points at well-defined cultural features (e.g.
road junctions); with attention to changes since the original publication date. The
same base may be available as a digital coverage, since national base mapping is
usually more advanced than thematic mapping. However, the topographic base may
be poorly-reproduced, in which case the map unit boundaries must be re-compiled
as explained below.

Single unrectified airphotos with soil map unit boundaries can be converted to or-
thophotos and then mosaicked, at the same time rectifying the boundaries (Rossiter
and Hengl, 2002); this depends on a geodetically-correct and georeferenced topo-
graphic base or else a fairly dense set of GPS points which can be located on the
photograph; and (in hilly terrain) a coarse-resolution DEM.

Maps on un- or semi-controlled photomosaic bases are impossible to correct.
Here the soil boundaries must be re-compiled by eye, by a compiler with ex-
pert knowledge of the soil-landscape relations, onto a geometrically-correct and
georeferenced topographic base; this was the situation in the USA when build-
ing the SSURGO database (D’Avelo and McLeese, 1998). Ideally, the original
surveyor is available to communicate the expert knowledge; second-best is a soil
survey report that documents these relations for the compiler. The recompiled
lines should follow the original lines within map accuracy standards (e.g. Davis
et al., 1981, pp. 556–560); however the original lines may well represent impre-
cise boundaries either of location or concept (Lagacherie et al., 1996), in which
case being moved somewhat (depending on the scale of the soil landscape and
map) is not so serious. At 1:50 000 scale, a 0.5 mm line covers 25 m; this
implicit boundary width is double the maximum location accuracy (Forbes et
al., 1982).
Using terrain models to adjust boundaries Do the lines, even if rectified, op-
timally separate contrasting soil bodies? In many surveys it was common practice
for draftsmen (not soil surveyors) to transfer soil boundaries by eye (perhaps with
assistance from a non-precision optical device) from field sheets to base map. With-
out the surveyor’s expert eye, soil boundaries that followed obvious landscape fea-
tures were not reproduced correctly. The use of low-cost medium resolution DEM
(SRTM, ASTER or SPOT) can help an expert compiler to manually adjust the lines
to ensure this. The DEM resolution matches well with the mapping scale of most
legacy data. Further, if the original map was based on soil-landscape relations, the
DEM is being used at the most obvious landscape transitions, where uncertainties
in derivatives are least. The procedure is as follows:

1. Describe the probable association of soil-landscape units from the original sur-
vey with terrain parameters (e.g. slope gradient and aspect, curvatures, wetness
indices); these should be described in the original survey report, e.g. by block
diagrams or in the map unit descriptions;

2. Compute relevant parameters from the DEM;
3. Classify the terrain according to the pre-defined cluster centres;
4. Adjust lines by hand.
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This process is knowledge-intensive and interactive; however still much cheaper
than original survey. This is related to DSM methods for identifying land elements
which may be then used to delineate soil boundaries (MacMillan et al., 2000;
Schmidt and Hewitt, 2004). However, here we assume that the original lines are
thematically correct, albeit geodetically suboptimal; the aim is not to identify them
but to adjust them. Although terrain parameters derivated from medium-resolution
DEM may not be precise enough for DSM (Thompson et al., 2001), here we are only
interested in adjusting boundaries of medium-scale polygons maps. The adjustment
is typically manual (see for example Section 29.2); however an automatic approach
may be successful, as shown in Fig. 18.4.

Heterogeneous soil-landscape units present additional difficulties. An automatic
landform classifier will usually be able to delineate more homogeneous elements
smaller than the minimum legible delineation (MLD) of the published survey (Hengl
and Rossiter, 2003); the compiler may choose to delineate these if it is clear to
which member of the association each applies; this has been termed “de-convolution
of the soil-landscape paradigm elaborated during a soil survey” (Bui and Moran,
2001).
Using imagery to adjust boundaries In some environments landcover bound-
aries, either of natural vegetation or of land uses, match soil map unit bound-
aries in the conceptual model of the original survey. Thus a geometrically-correct
landcover map can be used to adjust these boundaries, in the same way as ter-
rain parameters are used to adjust terrain-related boundaries. The procedure is as
follows:

1. Describe the probable association of soil map units from the original survey
with natural land cover (e.g. coastal mangroves, dune vegetation) or landuse (e.g.
irrigation scheme); these should be described in the original survey report;

2. Identify these landcover classes on imagery (typically synoptic medium-
resolution multi-spectral) by conventional landcover classification techniques;

3. Adjust soil map unit lines by hand.

Imagery products other than landcover classifications may also be useful, for exam-
ple a vegetation index to find high-and low-moisture areas, locally related to slope
position (Fig. 16.1) and therefore soil depth and development, in strongly-sloping
terrain. In (semi-)arid environments it may be possible to directly map contrasting
parent materials (Fig. 16.2) or salt-affected soils (Metternicht and Zinck, 2003);
these boundaries should divide soil map units, so can also be used to adjust legacy
lines.
Semantics Both the original soil survey and DSM projects can be viewed as
“knowledge systems” of soil-landscape relations (Bui, 2004). Thus semantics are
central to re-interpreting the knowledge presented (sometimes implicitly) in legacy
surveys. One component of DSM is multi-source, multi-scale data integration of
legacy soil surveys and ancillary data (Krol et al., 2006); this has led to active re-
search in semantics and ontology, i.e. the meaning of terms in each data set. Even
when dealing with just one data set (the legacy soil survey) there are often difficult
questions as to the meaning of legend categories, both the type such as “association”
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and the classes themselves. The meaning must be extracted from a close reading of
the soil survey report and supporting documents, and structuring this into a database
design.

6.4 Cultural and Institutional Challenges

The conceptual and technical aspects of data renewal discussed above are carried
out within a cultural and institutional context where such an exercise usually im-
plies a major challenge. Especial difficulties are establishing a work flow, quality
assurance procedures, and training. Once data are renewed, inter-institutional issues
arise, most notably data sharing, data and metadata standards, and responsibilities
within a geospatial data infrastructure (de Man, 2006). This is new territory for most
organisations responsible for soil information. In some countries where the tradi-
tional soil survey organization is not modernizing their approach to soil mapping,
another organization from the same government (e.g. a space agency or a planning
ministry) has stepped in; however in this case there is usually little appreciation for,
or skill in interpreting, legacy data.

6.5 A Small Example

Perhaps the region of the world with the greatest need for data renewal, and at the
same time a high potential for this approach, is sub-Saharan Africa. The recently-
issued “European Digital Archive of Soil Maps (EuDASM) – Soil Maps of Africa”
(Selvaradjou et al., 2005a) shows how much map information there is: ISRIC’s 40-
year collection, which was opportunistic rather than systematic, consists of over
2000 maps, about half of them of soil maps, the rest being of related themes such
as geology, geomorphology, land use, and agro-ecological zoning. Although many
of these maps are at reconaissance scales, important regions are covered at medium
and even detailed scales. More such maps can be rescued from the successors of for-
mer colonial soil survey organizations, development projects, and land investment
schemes.

Figure 6.1A shows a small portion of a representative soil map from the colonial
period (Kenya Department of Agriculture, 1961) included in the EuDASM project.
It was published by the Department of Agriculture, Kenya (then still a British colony
and protectorate) but financed in large part and supported technically by the Inter-
national Co-operation Administration of the USA.

This 1:50 000 map has a fairly high level of cartographic detail, matched with
medium categorical detail. The geodetic control is good: both geographic and grid
coördinates are printed in the margin, although no intersections are marked; the
map projection is not given explicitly, rather the topographic base map is named,
from which some detective work (Mugnier, 2003) reveals that this was developed
in the East African War System transverse Mercator projection, belt I on the Arc
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(a)

Fig. 6.1A Portion of East Konyango (Kenya) soil map (See also Plate 2 in the Colour Plate Section)

(b)

Fig. 6.1B Perspective view, soil map draped on SRTM elevation model (See also Plate 3 in the
Colour Plate Section)
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1950 datum. Major roads and rivers are shown, so that GPS control points could
be established if necessary; however in this case there is sufficient information on
the map projection to allow exact transformation. The map units are slope phases of
28 soil types, which are topsoil texture variants of locally-defined soil series. These
series are defined by horizonation and profile development. A 66-page appendix
gives extensive analytical data on one georeferenced (by map grid) soil profile per
soil type. The survey has some elements in its origin that suggest it may be of
high quality. The survey team was made up of senior soil surveyors with earlier
experience in Kenya, and also included the top American soil classifier of the time
(Thorp) and a well-known analytical chemist (Mehlich). The report is well-written
and includes keen observations of the landscape and probable soil genesis, as well
as current and potential land uses.

This survey was available for the compilation of the Kenya 1:1 000 000 SOTER
database (ISRIC, 1995); however a renewal of this survey would keep the original
scale and categorical detail. To renew this survey we must overcome some typical
limitations:

� All people with direct knowledge of this survey are retired or deceased;
� The soil series are classified in an American system (Thorp and Smith, 1949) that

was obsolete even at the time it was used and which, as the authors acknowledge,
was not well-suited to tropical soils;

� Only one profile per soil type was analyzed, and these with (today) outdated
methods;

� Profiles were located subjectively to be the “most representative”; we thus rely
on the surveyor’s expert reading of the landscape;

� The base map series was state-of-the-art for its time but uses an obsolete datum,
projection and grid;

� Soil boundaries were inferred from transects spaced from approximately
800–1600 m apart, and were transferred from unrectified air photos to the to-
pographic sheet by an optical transfer scope.

DSM techniques can directly address some of these limitations, and assist with
others. The most obvious link to DSM is terrain modelling. Figure 6.1B shows
a portion of the map geo-referenced and draped on a 90 m horizontal-resolution
SRTM elevation model; this is the highest resolution currently available for much
of the world. Many of the map unit boundaries appear to follow major landscape fea-
tures which can be identified on a terrain model. For example, unit Mcl-A (Marinde
clay loam, 0–3% slopes) falls nicely in the concave colluvial slopes bordering the
Olunga river (flowing towards the viewer in the figure); the units of Ss-CD (Stony
land from siliceous rocks, 8–20% slopes) are on the highest sideslopes within the
extensive (and easily-cultivated) Rangwe sandy loams, 3–13% slopes of map unit
Rsl-BC. Both Ss-CD and Rsl-BC were formed on coarse-textured residuum from the
Nyanzan rhyolite; these units thus occur in the resistant hills of the highest eleva-
tions. Clearly, the surveyors had a sound landscape interpretation and transferred it
with sufficient geodetic accuracy to the published map. The report also emphasizes
landscape relations and includes two block diagrams showing these. Because of the
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strong map unit – landform relations, DSM techniques such as drainage network
extraction and supervised landform classification should be successful in refining
map unit boundaries; the latter may even be successful in disaggregating compound
map units.

This analysis is obviously preliminary; many other DSM aspects remain to be
explored, in particular semantic matching of the soil units as described with soil
properties, and the use of the profile observations.

6.6 Conclusion

It is clear that DSM can benefit from legacy soil surveys which provide raw data
(in the form of point observations) and reality checks for validation (in the form
of interpreted polygons), as well as the surveyor’s concept of soil geography as
revealed in the soil survey report; Fig. 2.1 shows “existing soil maps” as a primary
input layer to the scorpan approach (McBratney et al., 2003) to DSM. This chap-
ter has shown that data renewal exercises can also benefit from DSM techniques.
Soil survey organizations may choose to renew legacy surveys as a step towards
a fully-digital mapping exercise, thereby gaining experience in some DSM tech-
nologies. They may also choose to renew legacy surveys as an end product (the
area-class map with linked attribute database) that is familiar to their clients. In
either case, legacy soil surveys are too information-rich to be left mouldering on
the shelf.
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Chapter 7
Challenges to Digital Soil Mapping

J.W. Hempel, R.D. Hammer, A.C. Moore, J.C. Bell,
J.A. Thompson and M.L. Golden,

Abstract Digital Soil Mapping to capture or determine categorical or property in-
formation has undergone a tremendous increase in capability and application during
the past decade. Many successful technologies have been developed through re-
search activities worldwide, including generalized linear models, classification and
regression trees, neural networks, fuzzy systems, expert systems, and geostatistical
methods and applications. These technologies have matured beyond a research ac-
tivity and have potential for use by soil scientists to more accurately, consistently,
and efficiently define soil categories and soil properties based on digital proxies to
soil-forming factors. These applications for producing soil maps are now poised to
become production tools to either update older soil survey information or to produce
soil information on previously unmapped areas.

As these technologies move into the mainstream for producing soil survey infor-
mation, there are challenges that must be overcome. The community of soil scientists
and soil classifiers engaged in producing soil information must become familiar with
the technologies and their potential uses and limitations. More importantly, the users
of soil survey information must be convinced of the relevance and applicability of
maps and data that appear different from the “traditional” products with which they
have become familiar. New challenges include developing acceptable standards and
procedures for the production and quality control and interpretation of the information
that relates to agricultural, engineering, forestry and other soil-landscape uses.

7.1 Introduction

Increases in computational power, informational technology, Geographic Informa-
tion System (GIS) techniques and the ever-increasing quantities and sophistication
of geographic data, have led to extraordinary advances in producing digital soil
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survey information. These methodologies can revolutionize the approach for pro-
ducing soil survey information as well as the ways interpretations are made and in-
formation is applied for human uses (see Chapters 1, 10). Soil information can now
be modeled to define the natural continuum of soil properties and can potentially il-
lustrate gradational boundaries of soil caterogorical maps. Soil maps produced with
digital techniques have the potential to spatially define complex landscape soil com-
ponents that are now represented by a more generalized, artificially homogeneous
polygon structure.

Digital techniques utilize quantifiable methodologies that produce more consis-
tent outputs and are potentially reproducible. (see Sections 25.2, 34.3, 34.4). There
is growing documentation indicating that digital soil mapping techniques offer the
potential to greatly accelerate the rate of map production. (see Chapter 9) The poten-
tial for these production gains as well as the potential for defining soil information at
levels of detail that many would have never dreamed possible is creating a great deal
of excitement within the soil science community. The combination of enhanced de-
tail and faster production offers increases in efficiency and precision that will offset
the inevitable reduction in numbers of field soil scientists as the National Coopera-
tive Soil Survey (NCSS) moves into the Major Land Resource Area (MLRA) based
maintenance and update phase. The ability to produce digital soil survey products
at a variety of scales also offers the potential to produce user and site-specific soil
attribute maps for individual customers and land uses. This flexibility has important
applications for Homeland Security, urban land use planning, and other recently
emerging soil survey applications.

Although digital soil mapping techniques potentially offer extraordinary im-
provements and efficiencies in producing more precise soil survey information, tra-
ditional soil survey persists as the most popular form of soil mapping and inventory,
and in many cases is the only manner in which the highly variable nature of the soil
landscape is catalogued (Scull, et al. 2005). The “traditional” methodology produces
soil maps whose classes are spatially homogenous with crisp boundaries separating
adjacent polygons (mapping units).

The traditional soil survey map simplifies the complex continuous distribution
of soil types across a landscape by depicting the individual soil map units as dis-
crete polygons with definite boundaries (Zhu et al., 2004). The simplification (ho-
mogenization) was mandated by the scale at which surveys were conducted, time
constraints of mapping, and being restricted to displaying the soil pattern as two-
dimensional lines on paper. The frustration for most field soil scientists was that
they knew, beyond all doubt, that the soil-landscape was more complex than they
were able to depict.

Hudson (1992) precisely categorized what the soil scientist knew, but could not
map, as “tacit knowledge,” and pointed out that capturing this information had
important implications. Early attempts to address the “unmappable” heterogene-
ity included: (1) creation of block diagrams to show soil patterns at finer scales;
(2) creating a “range of characteristics” for each soil series; (3) describing inclu-
sions, both limiting and non-limiting; and (4) listing “geographically associated
soils” in the soil survey manuscript. These acknowledgements that “more is out
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there” were not in sufficient detail, nor were they in formats suitable for use, by
individuals who lacked field mapping or field research experience. Zhu (1999) re-
cently has begun efforts to develop software whose purpose is to allow soil scientists
to apply tacit knowledge to new soil survey products.

When comparing the two processes for producing soil survey information, dig-
itally produced soil maps appear to have a distinct advantage over the traditionally
produced soil survey maps with respect to the potential accuracy and amount and
kinds of detail that can be portrayed.

7.1.1 History and Background of Traditionally Produced Soil Maps

Applications of Soil Survey information derived from the traditional data have a
long standing history in assisting with land use decisions related to agriculture,
forestry and engineering. The production of polygon based maps that define soils
and their spatial extents are the most common means by which this complex nat-
ural resource information has been portrayed to the traditional soil survey user
community.

These soil surveys make readily available, important chemical and physical prop-
erty information such as depths, permeabilities, available water-holding capacity,
soil reaction (pH), and shrink-swell potential in a layer by layer format. Other im-
portant soil and water properties such as flooding and high water table depths, depths
to bedrock, potential frost action and corrosivity risks to concrete and steel are eas-
ily accessed. Engineering properties important to many applications are indexed,
including: textures, sieve sizes, fragment size, liquid limits and plasticity indices.
From these properties many interpretations can be inferred. The most common in-
terpretations have included crop yields, woodland management and productivity,
suitabilities for environmental plantings, recreational development, wildlife habitat,
building site development, sanitary facilities, construction materials and water man-
agement. Producing customized interpretations to meet the evolving needs of an
ever-widening customer base is a goal of the U.S. National Cooperative Soil Survey
Program.

Soil survey information in its current format has a long history in the United
States. “The authorization for documenting, cataloguing and presenting soil survey
information began in the United States by the US Department of Agriculture Ap-
propriations Act for fiscal year 1896. This act provided funding for an investigation
of the relations of soils to climate and organic life and to measuring textures and
compositions of soils in the field and laboratory” (Soil Survey Division Staff, 1993,
p. 11). Reports on field investigations and soil mapping were developed by the US
Department of Agriculture as early as 1899. Early soil surveys investigated the po-
tentials of soils primarily for agricultural and forestry. The evolution of soil survey
included recognition of the soil as a natural body whose chemical and physical
properties were both records of the historical development of soil profiles, and the
keys to classifying and identifying soils with common properties and responses to
human impacts (Arnold, 1983). An important key to the long-term success of soil
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survey has been the incorporation into field, laboratory and reporting methods of
new techniques and technologies that enhance soil scientists’ abilities to map and
interpret soils and to deliver information to soil survey users.

7.2 Current Progress and Application

“Soil surveys published between 1920 and 1930 reveal a marked transition from ear-
lier concepts to give emphasis to soil profiles and soils as independent bodies” (Soil
Survey Division Staff, 1993, p. 11). During the mid-1930’s soil surveys began to
use aerial photographs as base maps. This greatly increased the accuracy of plotting
soil boundaries. This process of mapping over the next 70 years evolved into what
is described as the “modern soil survey.” This collection of published soil surveys
is nearly complete in the continental United States. Most soil survey information
uses county boundaries as the “Soil Survey Area”. The distribution and status of
completed soil surveys in the US and its territories is portrayed in Fig. 7.1.

The basic soil unit, which is the foundation for information products, is the “soil
map unit.” The soil map is delineated on the orthophoto basemap (Fig. 7.2) (Soil
Survey of Barbour County Map Manuscript, Alabama, 1995). The number inside
the map unit delineation on the orthophoto is the map symbol, which identifies the

Fig. 7.1 Status of soil surveys in the United States. (approximately 1:2,000,000) (See also Plate 4
in the Colour Plate Section)
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Fig. 7.2 Individual soil mapping units as portrayed in the Soil Survey of Barbour County, Alabama
(Trayvick, 1995) (See also Plate 5 in the Colour Plate Section)

mapped soil in the soil survey legend. The mapping unit may be an individual soil
series, a phase of a soil series or a combination of soils identified at the series or
other taxonomic level. The map unit is a collection of polygons that represents soils
as similar as possible at the mapping scale.

This paper “hard copy” of the modern soil survey is being replaced by a
digital product known as SSURGO (Soil Survey Geographic Overlay). This elec-
tronic soil survey data layer is being digitized from paper manuscript soil sur-
veys in the United States and is available either by downloading from the Soil
Data Mart http://soildatamart.nrcs.usda.gov/ or the Geospatial Data Gateway http://
datagateway.nrcs.usda.gov/NextPage.asp for use in geographic information sys-
tems. The SSURGO information is also in an online format from the Web Soil Sur-
vey http://websoilsurvey.nrcs.usda.gov/app/. All completed soil surveys digitized
to the SSURGO standards and specifications are available through this website.
Fig. 7.3 is an example of a digitized soil survey from the Web Soil Survey.

Although costs for generating SSURGO are not fully documented at this time,
digitizing to produce SSURGO certified databases will cost in excess of $100M

Fig. 7.3 Portion of the Dane County, Wisconsin soil survey (Glocker and Patzer, 1978) produced
from the Web Soil Survey (See also Plate 6 in the Colour Plate Section)
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Fig. 7.4 Status of SSURGO digitizing in the United States. (approximately 1:2,000,000) (See also
Plate 7 in the Colour Plate Section)

to fully complete all counties in the United States that have modern soil surveys.
Figure 7.4 is a map of the status of SSURGO digitizing projects. Counties colored
green are completed.

Information from the previously discussed examples of the modern soil survey
database has been applied, used and become institutionalized as the foundation for
many county, state, federal and private programs. The generated data and informa-
tion is being used for environmental regulations, guidelines, laws and soil interpre-
tations.

The Farm Security and Rural Investment Act of 2002 is landmark legislation for
conservation funding and for focusing on environmental issues (Farm Bill Conser-
vation Provisions, 2006). The United States Department of Agriculture Farm Bill
programs depend directly on soil survey information for eligibility and administra-
tion of a variety of programs including the specific programs listed in Table 7.1.

The newest of these farm bill programs, the Conservation Security Program
(CSP), has been in effect since fiscal year 2003. Through fiscal year 2005, CSP has
funded $181M of conservation payments. The US Congress will cap total expendi-
tures for CSP at $6.037 billion (between FY-2005 and FY-2014) (Why a Watershed
Approach Is Being Used, 2006).

Soil survey information from traditional soil survey products has been used as
background data for tax assessment and evaluation. The state of Iowa uses soil sur-
vey information for agricultural land assessment and valuation. In counties or town-
ships in which field work on a modern soil survey has been completed since January
1, 1949, the assessor places emphasis upon the results of the survey in spreading the
valuation among individual parcels of such agricultural property (Code of Iowa).

The state of Iowa also uses soil survey or derived data for other assessments.
Corn Suitability Ratings (CSR) is an index procedure developed in Iowa to rate
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Table 7.1 Federal programs that rely on or utilize soil survey information for planning and re-
source allocation

Program Costs Contracts Acres

Agricultural Management Assistance (AMA)-provides
cost-share and incentive payments to agricultural
producers to voluntarily address issues, such as water
management, water quality and erosion control by
incorporating conservation practices into their farming
operations

$23.4M 1899 392,000

The Conservation Security Program (CSP)-voluntary
conservation program that supports ongoing stewardship
of private agricultural lands by providing payments for
maintaining and enhancing natural resources.

$181M 14975 12.1M

The Environmental Quality Incentives Program
(EQIP)-voluntary program that provides assistance to
farmers and ranchers who face threats to soil, water, air
and related natural resources on their land

$1.08B 117,625 51.5M

The Farm and Ranch Lands Protection Program
(FRPP)-voluntary program that helps farmers and
ranchers keep their land in agriculture

$321M 2080 367,510

The Conservation Reserve Program (CRP)-voluntary
program that grants annual rental payments for set-aside
highly erodible land

$1.66B 34.7M 665,101M

The Grassland Reserve Program (GRP)-voluntary program
that helps landowners and operators restore and protect
grassland, including rangeland, pastureland, shrubland
and other certain lands, while maintaining areas as
grazing lands.

$111M 908,400 3.036M

The Wetlands Reserve Program (WRP)-voluntary program
that provides technical and financial assistance to eligible
landowners to address wetland, wildlife habitat, soil,
water, and related natural resource concerns on private
lands in an environmentally beneficial and cost effective
manner.

$759M 544860 3.013M

each soil for its potential row-crop productivity. An annual conservation and land
preservation tax is imposed on each acre of agricultural land that is converted to
a commercial, industrial, or residential use on or after the effective date of this
law. The tax rate is based on the CSR of each acre of the converted agricultural
land. If the CSR of the acre is less than fifty, no tax is imposed on that acre.
If the CSR of the acre is fifty or higher, the tax is fifty dollars plus one dollar
for each whole rating unit in excess of fifty. Soil survey information for this and
other interpretations, including smart growth, land evaluations, site assessments
and regional planning, is an indispensable tool for environmental planning in many
communities.
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7.3 Developments of Standards and Procedures

The US National Soil Survey Handbook (U.S. Department of Agriculture, Natural
Resources Conservation Service, 2005) identifies standards and specifications for
producing traditional soil survey information and provides specific background for
conducting all phases of a soil survey. These standards and specifications are revised
regularly, and since the early 1950’s have been the accepted protocol for producing
soil surveys by the US National Cooperative Soil Survey.

Different modeling methodologies documented for producing digital soil sur-
vey maps include geostatistical and statistical methods, decision tree analyses, and
expert systems (see Chapters 2, 13, 18, 19). No accepted procedures, standards or
protocols have been established for producing digital soil survey products in the US.
Leaders in the NCSS will be reluctant to accept digital mapping without standards
in place. A historical strength of the NCSS has been the continuous application of
standards and quality assurance.

In addition, application of digital soil mapping in some areas of the US at scales
required by USDA programs is hampered by inadequate digital elevation model
(DEM) resolution, inherent errors in DEMs, lack of complete understanding of
appropriate DEM resolution and neighborhood analysis for accurate calculation
of landscape derivatives for various landforms and landscapes. Additionally inad-
equate relationships between the distribution of soil classes or properties and digital
proxies for soil forming factors (e.g. glacial till plains), areas where terrain is not
a primary control for spatial distribution of soils, (e.g. floodplains, glaciofluvial de-
posits), terrain-based predictive models probably will have limited use. The lack of
accepted standard methods within the US NCSS for production of digital soil maps
and the lack of accepted procedures within the US NCSS for verifying the accuracy
of digitally produced soil maps along with dearth of readily available and easily
accessible methods for viewing, analyzing, and interpreting raster soil survey data
will also hinder the acceptance of digital soil mapping methodologies.

Currently, there is an aggressive research agenda to investigate the potentials of
digital soil mapping and how it best fits into the National Cooperative Soil Survey
Program in the US. Applied digital soil mapping research in the areas of quantitative
analysis of terrain, spectral analysis (see Chapter 16) and other data using GIS,
remote sensing and statistical methods is on-going at a number of universities in
the US to better understand how these processes can be used to create or update soil
survey information. In addition, NRCS soil scientists in many locations are applying
DSM techniques to produce either predictive soil maps or intermediate data layers
used to support the polygon based soil mapping process.

7.4 Conclusion

Great potential exists for digital soil mapping techniques to improve the consis-
tency, accuracy, detail and speed at which soil survey information is produced.
These techniques can be applied to updating existing soil survey information and
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creating information in unmapped areas. This raster information can be aggregated
into map units (polygons) and converted to vectors for inclusion into the national
SSURGO dataset. The underlying raster information can be used to spatially locate
inclusions in the map units, an important component lacking in the current database
model.

Currently soil survey information in the USDA NRCS program is based on cat-
egories or soil classes. Digital Soil Mapping techniques offer the potential for pro-
ducing soil property information that could be used for a wide variety of interpretive
information not currently available to the user community. Soil property information
can be very helpful in addressing climatic and environmental degradation issues.

Important issues must be resolved before these potentials can be realized. Re-
search and clarification of important technical questions relating to input data must
be resolved. Applications and standards are required before digital soil survey prod-
ucts can be used with the same confidence and acceptance enjoyed by the “histori-
cal” orthophoto based polygon maps. Currently, there is a lack of a clear direction
within the NCSS for presenting, visualizing, and interpreting digitally produced soil
data in its native format. The development of methodologies and standards for appli-
cations of digital soil survey for making and interpreting information is necessary
for acceptance for users of soil survey information. Finally, the long history, in-
vestment in, institutionalization of and broad application of the current soil survey
information will be obstacles for the acceptance of digital soil survey mapping tech-
niques and the resulting data as viable options to traditional soil survey products and
processes.
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Chapter 8
Mapping Potassium Availability from Limited
Soil Profile Data in Brazil

R.B. Prado, V.M. Benites, P.L.O.A. Machado, J.C. Polidoro, R.O. Dart
and A. Naumov

Abstract Brazilian soils are generally acidic with low base saturation and low plant
available potassium (K). Potassium fertilizers play important role in production
costs and farmers receive no governmental subsidies. Strategies are needed to im-
prove potassium fertilizer delivery to different regions in Brazil and to establish
affordable prices and balanced potassium consumption. For such strategy, it is nec-
essary to take into account the different soil classes with its varying K levels. The
purpose of this study was to map soil K in Brazil considering the different biomes
and applying techniques to reduce problems caused by limited soil profile data. A
soil profile data set was constructed from the soil archives of Embrapa Soils, Rio
de Janeiro, Brazil. Descriptive statistics was performed on K levels in different soil
classes and biomes. The different soil K levels were grouped in intervals and mapped
using ArcGIS 9.1 tools from ESRI. Brazil’s soil map and biome map at 1:5,000,000
scale were used in the geoprocessing. Our results showed that mapping soil K levels
based on soil survey reports at the regional scale is difficult because of limitations
in georeferencing and spatial distribution of soil profiles. However, this mapping
would help fertilizer distribution planning in Brazil.

8.1 Introduction

In 2005, Embrapa Soils and the International Potash Institute (IPI) started to orga-
nize soil data for mapping the plant potassium availability of several soil surveys of
the National Soil Archives of Embrapa Soils. There was a need for optimum regional
distribution of K fertilizers in Brazil, which are mostly imported. Optimized fertil-
izer distribution would help fertilizer delivery to farmers at lower costs. Presently,
up to 40% of the total production cost of grain crops is due to inorganic fertilizers
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(Bernardi et al., 2002). Brazilian farmers receive no governmental subsidies and the
prices of inorganic fertilizers inhibit them to apply adequate and balanced amounts
of fertilizer.

Mapping soil K availability is relevant because potassium is the second largest
plant nutrient taken up by the main crop plants grown in Brazil such as soybean,
coffee, common beans, cotton (Bernardi et al., 2002). Thus, balanced potassium
fertilization of soils is essential to avoid both plant and soil degradation. In Brazil,
crop plants are mostly grown in the Mata Atlantica and Cerrado biomes, whose soils
are originally K deficient.

Since 1990s, compared to other plant nutrients the consumption of potassium
fertilizer has been the largest in Brazil, and the recent growth of agribusiness have
promoted potassium fertilizer use, particularly in the Cerrado region (Mascarenhas
et al., 2004). Also, Lopes (2005) has estimated an increase of K2O consumption
in Brazil from 3.65 million t in 2003 to 5.2 million t in 2010 leading to US$ 6.08
million for importation expenditures in 7 years.

One of the main reasons for the change in agricultural production is the change
in the consumer patterns combined with environmentally friendly technologies be-
cause of social and environmental concerns (Poulisse, 2003). There is a clear need
for environmental sound techniques and food security with low environmental im-
pact (Sanchez, 1997).

The use of geotechnologies in scientific studies may help to transform agricul-
ture. Reliable data acquisition, organization in a georeferenced data base, and map-
ping are efficient tools. Plant nutrient mapping has been used at the farm level as
part of precision agriculture (Bernardi et al., 2002). However, a regional approach
is often needed for both governmental and private business purposes.

Available soil fertility data are sparse and collected at different scales. Interpo-
lation is often difficult because of unreliable georeferencing. Problems related to
sparse data infrastructures is further discussed in Chapter 2. The purpose of our
study was to map K availability of Brazilian soils using soil survey reports, con-
sidering different biomes and applying techniques to reduce problems caused by
limited soil profile data.

8.2 Material and Methods

A soil profile data set was constructed from the National Soil Archives of Embrapa
Soils, Rio de Janeiro, Brazil. Exchangeable potassium data set were collected from
2600 soil profile (8500 soil horizons) surveyed in different biomes between 1958
and 2001.

8.2.1 Selection of Soil Profiles and Horizons

The predominant soil classes in Brazil are Acrisols, Luvisols, Ferralsols and
Arenosols and soil K data were grouped for different depths (0–10, 0–20, 0–30,
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and 0–40 cm). On average accumulated soil K varies (>20%) with depth, particu-
larly at 0–10 and 0–20 cm. Soil profiles selected were with soil horizons to 30 cm.
Those soil horizons over 30 cm depth were considered up to 40 cm (i.e. 25–35 cm,
25–40 cm) and in soil profiles where the final depth was labeled 30 (i.e. 25–40 cm
was considered 25–30 cm). Soil horizons deeper than 40 cm were excluded (e.g.
25–45 cm, 25–80 cm). Soil K concentration was restricted to a depth of 30 cm
because most of plant root system are up to this depth.

8.2.2 Calculation K Level for Each Selected Soil Profile Data

For soil profiles showing two or more horizons the calculation of K level was as
follows:

Kp = ((e∗
1K1) + (e∗

nKn)/30)

where:

Kp = soil K in the profile (mg kg−1)
e = depth of soil horizon (cm)
K = soil K in the horizon (mg kg−1)
n = number of soil horizons until 30 cm depth

8.2.3 Verification and Data Exploratory Analysis

Prior to the exploratory analysis all data was verified and outliers were deleted.
Values outside the limit of X±3∗SD (standard deviation) were considered an outlier.
After the elimination of outliers a correlation analysis between K content and chem-
ical and textural attributes was performed. A forward stepwise multiple correlation
analysis was also performed to identify the attributes that showed strong influence
over K content. Statistica 7.0 software was used in all analysis.

8.2.4 Map Units of Biomes and Soils

The single-part polygon was used as map unit and the polygon was generated from
the intersection between soil class and biome type. It was assumed that soil K may
vary as a function of soil class and biome. The Brazilian soil map (IBGE, 2001a) and
Brazilian biome map (IBGE-MMA, 2005), both at the 1:5,000,000 scale, were inter-
sected using the geoprocessing tool of ESRI ArcGIS 9.1. The area of the biome-soil
unit was calculated using Albers Equal Area Conic projection and SAD69 datum
of ESRI ArcGIS 9.1. Finally, two methods were applied to construct the soil K
availability map.

The total number of map units from biomes and soil classes was 3332. Figure 8.1
shows the location of the 1764 K soil profiles. Most profiles are located in the
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Fig. 8.1 Brazil’s biome map at 1:5,000,000 and soil profiles distribution

northeastern, southeastern and southern Brazil and in the northern and central
regions there were very few soil profiles available.

8.2.5 Mapping K Availability from Calculated K Soil Profiles
with Associated Spatial Information

Most soil profiles of soil surveys were not fully georeferenced. Thus, the municipal-
ity central coordinates from the municipality grid map (IBGE, 2001b) at 1:250,000
scale were combined with the calculated K soil profile data, using the join tabular
tool of ESRI ArcGIS 9.1. See also Chapter 29 for methodology used to convert
printed into digital soil maps from the Amazon Region.

Soil profiles selected from the National Soil Archive were classified to the major
soil group level (e.g. Ferralsol) whereas soil classification used in the 1:5,000,000
soil mapping was a third-order classification (e.g. Rhodic Ferralsols – Latossolo
Vermelho distroferrico). Soil profile without representation at the 1:5,000,000 soil
mapping were eliminated. This resulted in 482 calculated K soil profiles to be ex-
trapolated to soil-biome units leading to 177 units with soil K data. Some units
contained more than one soil profile and in these cases mean values were calculated
for each soil unit.

Extrapolation of soil K from 177 soil-biome units to other units that were not
mapped was done by the summarize tool of ESRI ArcGIS 9.1. A mean value of soil
K was generated for each soil-biome unit group and this mean value was associated
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to other units not mapped using join tabular. In this step, the soil K of 1992 soil-
biome units were estimated and used to map the K availability from soil profile
data.

8.2.6 Mapping K Availability in the Third-Order of Acrisols,
Luvisols and Ferralsols

At first, the percentage of Brazilian soil classes in different biomes was calculated.
Only the K data of the Acrisols, Luvisols and Ferralsols were used because these
major soil classes are dominant in Brazil (Acrisols and Luvisols 24% and Ferral-
sols 32% of Brazil area) and its agricultural suitability is generally high. The 296
(119 Acrisols and Luvisols, and 177 Ferralsols) profiles classified in the first-order
were classified to third-order taking into account the humid colour of the first B
horizon (10R-7.5R-5R-2.5YR = red; 5YR-7.5YR = yellow-red; 10YR-2.5Y-5
Y-7.5Y-10Y = yellow) and the base saturation percentage (<50% = dystric and
>50% = eutrophic). Descriptive statistics for Acrisols, Luvisols and Ferralsols
(third-order) K level and biome classes was calculated using Statistica. The results
were associated by join tabular tool of ESRI ArcGIS 9.1 to the biome-soil units. In
addition, 5 classes of interpretation of soil K were used to both mapping K avail-
ability, as suggested by Van Raij (1985). One more class was associated to no data
related to biome-soil units with no associated soil K:

No data – biomes-soils units with no associated soil K
0–30 mg kg−1 soil – very low
30–60 mg kg−1 soil – low
60–120 mg kg−1 soil – medium
120–240 mg kg−1 soil – high
> 240 mg kg−1 soil – very high

8.3 Results and Discussion

Compared to Mata Atlantica, Caatinga, and Cerrado the soils of the Amazonia
biome showed the lowest levels of available K. Results for both Pantanal and Pampa
should be considered with care as the number of observations was low (Fig. 8.2).

All biomes and soil classes were considered in the map unit definition as cli-
mate and soil class strongly influence plant K availability. The soils from Caatinga
soils have a high fertility and low annual rainfall (approx. 250 mm). Soils of the
Amazonia biome have the lowest amount of available K because of high annual
rainfall and intense leaching. In the Cerrado biome, the levels of plant available
K ranged from low and medium but soil use of the extensive pasture systems may
promote K depletion. In the Mata Atlantica and Caatinga there many smallholder
farmers.
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Fig. 8.2 The box and whisker plots of available K in Brazilian biomes. SD – Standard deviation,
SE – Standard Error

8.3.1 Descriptive Statistics of K Data and Correlation
with Other Soil Properties

Plant available K ranged from 3.90 to 456.3 mg kg−1 (mean = 79.0 mg kg−1;
SD = 79.6 mg kg−1) showing a larger variability than the other soil properties such
as Ca, Mg, Na, Al, and P (Table 8.1). This is probably due to larger and more
frequent addition of mineral K fertilizers. Medium to low values of plant available
K were also found by Silva et al. (2000) in a study on K forms in Ferralsols from
the Cerrado biome. The authors reported that low K values are typical of highly
weathered Ferralsols.

Sand content is negatively correlated with K, whereas silt values are positively
correlated with K (Table 8.2). Sandy soils generally contain low K due to low nutri-
ent retention capacity and high leaching. The silt fraction contains K-rich minerals,
especially 2:1 minerals (Table 8.1).

As expected for acid tropical soils, plant available K is well-correlated with soil
pH (both in water and KCl solution). Also, acid soils (pH < 5.0) rarely have high
K levels (Fig. 8.3).

Calcium and magnesium levels were related to K levels (Fig. 8.4A), whereas
soil Al is negatively correlated with K (Fig. 8.4A). This is due to soil liming (e.g.
Ca.MgCO3) which combined with K-fertilization increases the association. There
was little relation between K and organic C levels (Fig. 8.4B).



8 Mapping Potassium Availability from Limited Soil Profile Data in Brazil 97

Table 8.1 Descriptive statistics for soil properties at the surface depths (n = 1976)

Soil properties Unit Valid N Mean Minimum Maximum Std. Dev. CV

sand 2496 463 0 980 264 57%

silt g kg−1 2530 195 0 650 137 70%

clay 2530 341 10 950 215 63%

silt/clay 2530 0.8 0.0 6.6 0.8 103%

water pH 2530 5.1 3.3 7.7 0.8 16%

KCl pH 2494 4.3 2.9 7.4 0.7 16%

� pH 2494 −0.8 −2.8 0.8 0.3 46%

Ca+Mg cmolc kg−1 2530 3.5 0.0 24.6 4.6 131%

available K mg kg−1 2530 79.0 3.9 456.3 79.6 101%

Na cmolc kg−1 2523 0.1 0.0 8.1 0.3 411%

Sum of bases cmolc kg−1 2530 3.8 0.0 25.3 4.8 126%

Al cmolc kg−1 2511 1.1 0.0 6.6 1.3 121%

H+Al cmolc kg−1 2485 5.7 0.1 35.0 4.0 72%

P mg kg−1 1976 4.7 0.0 329.0 15.7 330%

Org.Carbon g kg−1 2530 14.6 0.4 69.1 9.5 65%

N g kg−1 2358 1.4 0.0 6.9 0.8 60%

Table 8.2 Correlation between K and other soil properties (n = 1976)

sand silt clay Ca+Mg pH OC Na+ N Al P

available K −0.30 0.37 0.14 0.63 0.47 0.13 0.05 0.29 −0.24 −0.07

Fig. 8.3 Silt fraction (A) and soil water pH (B) in relation to available K
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Fig. 8.4 Soil Ca+Mg (A) and organic carbon (B) in relation to available K

A multiple regression model for K estimation was performed based on Ca+Mg,
water pH, organic carbon, and silt. The model explains about half of the K variation
with a standard error of the estimate of 43.7 mg kg−1 (Fig. 8.5).

Fig. 8.5 Relationship between observed K and predicted K values using the model based on
calcium, magnesium, organic carbon, water pH, and silt of Brazilian soils (n = 7072)
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8.3.2 K Availability in Brazilian Biomes and Soils

Acrisols, Luvisols and Ferralsols are predominant in most biomes except for Pampa
and Pantanal, in which the Planosols cover most of the areas (Table 8.3).

The results from mapping K availability from calculated K soil profiles with
spatial information are shown in the Fig. 8.6. The 482 calculated soil K (mg kg−1)
were used to map 1992 soil-biome units. The legend presents the relative proportion
of mapped area for each class.

The results from mapping the K availability in the third-order of Acrisols,
Luvisols and Ferrasols are shown in Fig. 8.7. The legend presents the percentage
area for each class. The most part of biome-soil units showed low amounts of K
availability and the small biome-soil units were high. There was no biome-soil units
associated with a very high K-levels. It seems that this results reflects better the

Table 8.3 Distribution of Brazilian soil classes in different biomes

Biome Soil class Percentage (%)

Amazônia Acrisols and Luvisols 30.9

Ferralsols 30.3

Gleysols 8.0

Others 30.5

Caatinga Lithosols and Arenosols 28.8

Ferralsols 21.0

Acrisols and Luvisols 15.4

Others 34.7

Cerrado Ferralsols 40.7

Lithosols and Arenosols 23.1

Acrisols and Luvisols 12.0

Others 24.1

Mata Atlântica Ferralsols 35.5

Acrisols and Luvisols 28.8

Cambisols 15.5

Others 20.0

Pampa Planosols 26.0

Lithosols and Arenosols 23.4

Acrisols and Luvisols 22.3

Others 28.2

Pantanal Planosols 31.8

Podzols 19.9

Plinthic soils 18.7

Others 29.4
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Fig. 8.6 K availability map from calculated K soil profiles with associated spatial information (See
also Plate 8 in the Colour Plate Section)

reality because it was considered the soil classification in third-order. However, it is
necessary to classify the other soil classes to third-order to map K under this method
for all Brazil. The profiles (n = 296) used in this case were Xanthic Ferralsols in
Amazonia, and Rhodic Ferralsols in the Cerrado and the Pampa and Pantanal biomes
did not have K soil profile data.

Fig. 8.7 K availability from descriptive statistics application to calculated K soil profiles in a third-
order classification to Acrisols, Luvisols e Ferralsols (See also Plate 9 in the Colour Plate Section)
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8.4 Conclusions

The biome and soil intersection used to obtain the mapping units of the soil proper-
ties may be more useful than municipality borders, because they have natural limits.
Our results showed that the mapping of soil K levels based on soil survey reports,
at a regional scale, is difficult because of limitations in georeferencing and spatial
distribution of soil profiles. Than, it is necessary to test other methods to improve
accuracy of K mapping using limited soil profile data in Brazil. For this, it is impor-
tant consider other themes in the mapping like land use and terrain elevation. This
kind of mapping would help fertilizer distribution planning but it is not suitable for
fertilizer recommendation. Soil map scaling is also discussed in Chapter 17. For
mapping soil K availability in a better scale, like 1:250,000, it is recommended to
use georeferenced and more representative soil data set.
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Chapter 9
GIS as a Support to Soil Mapping
in Southern Brazil

E. Weber, H. Hasenack, C.A. Flores, R.O. Pötter and P.J. Fasolo

Abstract Traditional soil surveys follow a specific methodology to identify, char-
acterize, and fit mapping units in a classification system and to spatialize them in
order to produce soil maps. The need for observation and characterization on field,
associated with the physical and chemical analyses, makes the surveys expensive
and therefore scarce. The low number of surveys stimulated the development of
models for digital soil mapping, whose results proved to be possible to predict and
spatialize many soil characteristics. However, conventional soil surveys remain im-
portant as a basis for the development of digital soil mapping models, setting a
reason to continue the development of methodologies to improve the conventional
surveys. Technologies like GPS and GIS contribute to make field observation and
soil sampling more objective and make the mapping process and the production of
hardmaps easier and faster. The objective of this study was to develop methodolo-
gies to integrate cartographic base elements with field work, using GIS and GPS in
an area corresponding to 20 topographic charts in scale 1:50,000 in the State of Rio
Grande do Sul, Southern Brazil, to obtain soil mapping based on the Brazilian Soil
Classification System. The result obtained was a georeferenced digitized soil map,
continuous for the whole region, free of inconsistency among neighbor map sheets
and with attributes associated with the mapping units. These characteristics allow
the use and application of the soil map for many purposes like zoning, diagnosis,
suitability analysis as well as serving as a basis to the development of models for
digital soil mapping.

9.1 Introduction

According to Hudson (1992), soil survey is a scientific strategy based on the con-
cepts of factors of soil formation coupled with soil–landscape relationships. Soil
surveys follow a specific methodology that aims to identify, characterize, and fit

E. Weber
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mapping units in a classification system. Moreover, such methodology delimits
these mapping units in order to obtain outputs such as charts or maps. Its procedure
consists in studying the area and the main features of the soil categories, including
morphological description, physical and chemical analyses and taxonomic classifi-
cation, besides the delimitation of cartographic units.

The needs for characterization of soil categories in the field (auger sampling and
observation of trenches and road embankments) and the laboratory analyses make
the surveys expensive and slow. Time and costs involved are probably one of the rea-
sons for the scarcity of more detailed and updated soil maps. With some exceptions,
in larger countries the availability of soil data is poor (See Section 5.1). Brazil, for
example, is uniformly covered by soil maps in scale not larger than 1:1,000,000, like
the Soil Map of Brazil and the Agricultural Suitability Map of Brazil, exploratory
soil maps by the RADAM/EMBRAPA Solos project and Agroecological Zoning
(McBratney et al., 2003).

In opposition to the lack in soil surveys, there has been an increasing demand for
territiorial information in the last few years. The arrival and spread of technologies
related to collection and analysis of spatial data, such as the Geographic Informa-
tion Systems (GIS), have made easier the integration of information from different
origins and stimulated the development of countless studies and projects based on
spatial data. In several cases, the soil maps are extremely important to obtain the
expected results, as for the studies of watershed management, environmental as-
sessment, land zoning and planning, among others.

The scarcity of spatial data about soil has stimulated the development of digital
modeling techniques in order to predict and to spatialize soil classes and properties.
The obtained results are different from those of the conventional survey, since they
try to estimate soil parameters for specific purposes when pedological maps are not
available or appropriate (Morris et al., 2000; Zhu et al., 2001; Brodsky et al., 2006).
Although many advances have been obtained through soil digital modeling, con-
ventional surveys are and will continue to be important because they gather very
detailed information about mapping units, systhesizing the knowledge acquired by
soil scientists throughout decades. Such analogical information has been partially
transferred to digitized maps and its attributes stored in databases. This is essentially
a conventional process which intends to make use of the benefits of GIS in structur-
ing the information, additionally supporting the digital modeling itself (Carré and
McBratney, 2006).

One of the recent challenges in soil mapping consists of improving the conven-
tional surveys in order to make them less time consuming, less expensive and more
rapidly available (See also Section 3.1 and 24.6). One of the typical characteritistics
of the traditional surveys is the existence of a considerable delay between the field
work for landscape observation and sample collection, the delimitation of mapping
units and the publication of the results. There are many reasons: the time needed
for the physical and chemical sample analyses, the availability of technicians to
interpret the results and delimit the units and the effort necessary to write and to
prepare the final reports and maps for publishing. If there is a lack of time between
the conclusion of the survey and the publishing of the results, authors will have little
opportunity to review and correct any inconsitency.
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The search for improvements in different stages of conventional soil survey must
necessarily take into account the use of new technologies, such as GPS (Global Posi-
tioning System), PDA (Personal Digital Assistants) and GIS to support the different
activities involved. The use of such resources may contribute to a faster and more
objective field data collection and to make the delimitation of mapping units more
precise, making the availability of the final product easier and potentializing the
use and the application of the results (Aronoff, 1991; Morris et al., 2000; Hempel
et al., 2006).

The objective of the study here described was to integrate elements of carto-
graphic bases with traditional soil surveys in the Serra Gauúcha region, State of
Rio Grande do Sul, Brazil, aiming at the development of methodology supported
by GIS and GPS to obtain continuous digitized soil maps. It should not be con-
fused with Digital Soil Mapping (DSM), as defined by McBratney et al. (2003),
since methodologies are based on knowledge of soil surveyors about soil-landscape
relationships and does not use predictive models to estimate soil properties or to
define soil classes. The procedure adopted can be understood as a step before, an
approach to improve traditional surveys in order to generate soil maps in less time
an to produce better and more useable results.

9.2 Material and Methods

The State of Rio Grande do Sul is located between latitudes 27◦00′S and 33◦45′S
and longitudes ranging from 57◦40′S to 49◦35′W, and has borders with Argentina
and Uruguay (See Figure 9.1). The study area is defined by a rectangle with a sur-
face of 13,490 km2, situated at the Serra Gaúcha region, NE portion of the State,
between latitudes 28◦30′S and 29◦30′S and longitudes 50◦45′W and 52◦W (See
Fig. 9.1). The area covers 86 municipalities, 44 of them totally covered and 42
partially covered (20 with more than 50% of their territory and 22 with a lower
proportion).

The material used consisted of navigation GPS receivers, Cartalnix (Clarklabs c©)
vector editing software, Idrisi (Clarklabs c©) GIS software, Corel Draw (Corel
Corporation c©) desktop publishing software, and a cartographic base of the study
area.

The cartographic database for the rectangle corresponding to the study area is
composed by a set of 20 topographical map sheets from the Brazilian Systematic
Mapping in scale 1:50,000 in UTM Projection, Zone 22. They were generated by
the Brazilian Army (Diretoria de Serviço Geográfico – DSG) and are in the largest
scale available as continuous mapping of the whole region. Despite their small scale,
they represent a material of great relevance, since there is not any other better base
available in larger scale.

The mapping process was conducted in a way to integrate the information about a
semi-detailed soil survey and elements of the cartographic base for the generation of
a GIS-structured digitized soil map. The soil survey was based on the methodology
established by EMBRAPA (2006) for semi-detailed soil survey according to the
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Fig. 9.1 Location of the State of Rio Grande do Sul and the 20 map sheets in scale 1:50,000 of the
Wine Zoning Project in Rio Grande do Sul

Brazilian Soil Classification System. Field work was carried out in order to make
a description of the soil profiles and soil samples were collected for physical and
chemical analyses with the support of GPS receivers and 1:50,000 scale topographic
map sheets, laminated with a plastic film.

The use of GPS aimed to facilitate the association of the visited places with their
correspondent sites in the topographic sheets. The use of laminated map sheets made
the delimitation of the mapping units easier, giving the spatial basis for drawing the
limits and providing support to make spatial adjustments and corrections. Moreover,
laminated map sheets are more resistant and prevent the loss of information due to
humidity, rain, tears, and other damages that may easily take place during the field
work.

During the mapping stage, the main physiographic units of the study area were
firstly delimited on the topographic charts. Then these physiographic units were
traversed in the field from the lower parts to the highest point of the terrain, in order
to visualize the sequence of soil distribution in the landscape and to establish a
preliminary legend for soil types.

After that, the necessary routes for data collection were established based on
detailed examination of the 1:50,000 topographic sheets and smaller scale maps of
geology and soil types of the region. The soil survey along these routes was done
through auger sampling and observation of trenches and road embankments.

During the field work, all the routes performed, the soil profiles described and ad-
ditional points of interest were registered with GPS. Also at this stage, the necessary
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adjustments and corrections to the preliminary legend of soil types were done in
order to obtain a correct classification of the soil types found.

The distribution of the identified soil types, the knowledge about the relation soil-
landscape acquired during the establishment of the preliminary legend and improved
during the survey, the use of GPS and the equidistance of the contour lines in the
topographic sheets made possible the identification of the points for observation
and sample collection, as well as places of soil taxonomic class changing. For each
taxonomic unit, a complete profile was described (Klamt et al., 2000) and, in some
cases, a complementary one was done, based on Lemos and Santos (1996). This
information was used to draw the limits of the mapping units on the topographic
map sheets in scale 1:50,000.

The mapping process took into account the set of features that were potentially
important in soil use. Among them, vegetation, relief, and the presence of gravels or
rock outcrops were used to subdivide the units and used as indicators of water condi-
tions, the susceptibility to erosion, and the possibility of mechanization. Some other
elements used in separating the units were clay’s activity, saturation with bases,
saturation with aluminum, the type of horizon A, texture and, for the less developed
soils, the rock substratum. In some cases it was not possible to individualize soil
types, either for the fact that some classes did not present geographic extension
enough or because their intricate occurrence did not allow individual delimitation in
the desired scale. In such cases, the mapping was done as soil associations.

Parallel to the field work for soil survey, a cartographic base was structured in
a GIS through the digitizing of map sheets in scale 1:50,000. Paper maps were
scanned using a large-sized scanner and were georeferenced based on an UTM grid.
The main information, like contour lines, hydrographic network, road system, and
urban areas were then digitized on-screen. The respective layers were topologically
structured and the objects were associated with a set of attributes in linked tables.
Lastly, a Digital Elevation Model (DEM) of the whole region was generated through
interpolation based on the digitized contour lines (See Fig. 9.2).

After finishing the field work and the GIS cartographic base, the soil mapping
units resulting of the conventional survey were digitized and edited. Following the
same steps used for the cartographic base, the laminated map sheets with the soil

Fig. 9.2 DEM Hill shading of the 20 map sheets and 3D view of the region (SW to NE)
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mapping units drawn on the field were scanned and georeferenced based on an UTM
grid. Then the limits of the mapping units were digitized manually on-screen, us-
ing the georeferenced field map sheets as a basis, producing vector line features
(See Fig. 9.3).

Fig. 9.3 The topographic map sheet resulting from the field work and the mapping units after
digitized (See also Plate 10 in the Colour Plate Section)

Vector lines extraction was performed in a continuous way, alternating the back-
drops but capturing the limits of the mapping units in a unique layer without the
map sheet’s divisions. After the topologic structuring of the limits of mapping units,
soil polygons were built and associated with a set of attributes, such as their area
(in hectares), order, suborder, group and subgroup, acronym of the mapping unit,
among other features. The objective of this procedure was to guarantee the consis-
tence of the attributes and the spatial contiguity of the polygons among contiguous
sheets, in order to generate a vector polygon file of soil types with the continuous
coverage of the 20 map sheets.

The last step involved the preparation of the material for printing. The area of
each of the 20 map sheets was clipped and used to generate a printing layout with the
desired layers, including soil layer, complementary layers (hydrographic network,
road system, and urbanized areas) and ancillary information (legend, map grid, text
layer, etc.). In order to keep a regional context, the complete legend of the whole
region was used in each sheet legend, turning grey the ones absent at the respective
map sheet. In this printing layout the soil mapping units were colored using the
colors defined by EMBRAPA (2006). Finally, in order to include relief information
with an easier perception and comprehension than with simple contour lines, the
colored soil polygons were combined with a DEM analytical hill shading.

9.3 Results and Discussion

The semi-detailed soil mapping of the Serra Gaúcha region covered an area of
13, 490 km2, and 61 soil mapping units were identified and delimited. These
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mapping units were represented by 1,626 polygons divided in 7 soil groups: 24
Cambissolos (Inceptisols); 1 Gleissolos (Entisols); 1 Latossolos (Oxisols); 7
Chernossolos (Molisols); 15 Nitossolos (Alfisols); 8 Argissolos (Ultisols), and 5
Neossolos (Entisols).

The use of topographic maps and technologies like GPS and GIS in this study
facilitated soil mapping in many aspects: support to field work activities, georefer-
encing of sampling information, drawing of mapping units, soil data check-up and
correction, maintenance of spatial consistency and storage of soil attributes, agility
and uniformity at the generation of the printing layout.

The integration of field information with the data from the cartographic base
in a GIS environment allowed the production of a continuous and georeferenced
digitized soil map for the whole region, covering a surface that corresponds to 20
map sheets in scale 1:50,000 (See Fig. 9.4). The output is a vector polygon file
that guarantees the consistence of the attributes and the spatial contiguity of the
polygons among contiguous map sheets. Moreover, this file is associated with tables
that contain the main attributes about the mapping units.

Fig. 9.4 Continuous georeferenced digitized soil map of the Serra Gaúcha region (See also Plate 11
in the Colour Plate Section)
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Concerning the product for printing, the fusion of the soil polygon information with
the hill shading derived from a DEM has a pleasant effect, showing the relief forms
through the shading effect. The perception of the position of a given soil mapping
unit on the relief is direct, making the interpretation and use of the map easier (See
Fig. 9.5). The usual way of introducing topography into the maps is through contour
lines, but in steep relief, however, contour lines may excessively congest informa-
tion.

Fig. 9.5 Soil map with conventional soil information, analytical DEM hill shading and fusion of
the hill shading with the conventional soil map (See also Plate 12 in the Colour Plate Section)

Printing of the final material was done in a fast and uniform way and presented
excellent visualization. Moreover, it was done at the same time that the mapping
process was concluded, which facilitated check-ups and corrections. The fusion of
the soil map with the hill shading derived from a DEM resulted in a graphic material
that highlights relief forms through the hill shading. The perception of the position
of the mapping units in the landscape is direct, making the interpretation and use of
the maps easier.

The final digitized soil map structured in GIS allows one to query physical
and chemical characteristics of soils in a given place or to select places where
soils have a set of desired characteristics. It also allows to quantify the surfaces
and to cross soil information with other georeferenced data of the region. There-
fore, the soil map presents a great potential of application for many purposes, like
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zoning, diagnosis, suitability evaluation, among others. For instance, the product
can be used as reference or as ancillary information for future studies on digital
soil mapping, giving support to assess soil parameters and to validate modeling
results.

Soil can be predicted through several approaches, for areas previously mapped,
or for new areas. Among others, prediction can be done from soil attributes at the
same location or at neighbouring locations from itself, from other soil attributes
and from environmental attributes. In other words, real soil observations with a
good density will ever be essential to develop, to evaluate or to fit the models
(See also Chapter 17). Although conventional soil maps are essentially static prod-
ucts, when structured in GIS they can provide useful information for analysis or
interpretation aiming to soil prediction. This is true for soil polygons as well as
for the field sample collection points, which data have higher confidence. So, we
should not stop with traditional surveys, but improve methodologies attempting to
optimize data collection procedures and to make results more consistent and easily
available.

9.4 Conclusions

Besides the introduction of techniques to support and to improve conventional
soil surveys, the methodology used in the semi-detailed soil mapping in the Serra
Gaúcha region proved to be a useful way to organize survey efforts. The adoption of
an existing systematic articulation made easier the organization and application of
the mapping activities and the association of the soil map with ancillary information
to produce the final map. Such procedure may facilitate the planning for mapping
expansion, which favors the optimization of future efforts.

The generation of a continuous digitized polygon map permitted to avoid many
problems that usually occur with adjacent map sheets. The cutting of the area for
each sheet of the continuous map is easy, safe, and guarantees a perfect continuity
among the elements of contiguous charts. The same does not happen when several
contiguous sheets are produced individually.

The simultaneous execution of the several stages in the mapping process proved
to be an adequate strategy that allowed the conclusion of the mapping almost at the
same time the field work ended. Thus, it was possible by the soil surveyors to do all
the check-ups and adjustments directly on the material under elaboration.

Regarding to the use of GIS, as referred by Burrough and McDonnell (1998),
GIS is a tool for collating all kinds of spatial information, but in itself is inca-
pable of soil mapping. Intellectual framework and accurate soil and environmental
data are needed. Looking at a stage of digital soil mapping, these can be some of
the major challenges to be faced in larger countries, specially developing coun-
tries. Constructing a database of existing soil profiles and sample points from tra-
ditional surveys could be a good strategy to facilitate access to soil data by soil
modellers.
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Chapter 10
Experiences with Applied DSM: Protocol,
Availability, Quality and Capacity Building

R.A. MacMillan

Abstract This chapter considers both opportunities and constraints to applied,
operational digital soil mapping (DSM) from the points of view of a) availability
of suitable input data layers, b) protocols available for DSM, c) quality of input data
layers and resultant output maps and d) other efforts required to build predictive
mapping capacity and apply it effectively.

Many potential DSM practitioners are discouraged by the real or perceived lack
of availability of suitable input data layers to support DSM, particularly in regions
with weakly developed spatial data infrastructures. Solutions to addressing prob-
lems of limited or sparse spatial data sets are identified for input layers derived from
digital elevation models (DEM’s), remotely sensed imagery and available secondary
source maps.

A variety of protocols for producing predictive soil maps are discussed under
the general headings of unsupervised, supervised and knowledge-based (or heuris-
tic) approaches. These key protocol activities support the ability to make maps of
the spatial distribution of soil classes or attributes by developing predictive rela-
tions between spatially distributed input variables or classes and the desired output
classes. Different strategies are reviewed to acquire and formalize tacit knowledge
embodied in soil-landform conceptual models and to capture this tacit knowledge
as quantitative rules.

A considerable amount of resistance to DSM arises from real or perceived con-
cerns about the quality of the resulting maps in comparison to existing maps pro-
duced using traditional mapping methods. Quality, defined as the ability of a map or
product to correctly predict the characteristics of the landscape at particular points or
within particular small areas, is discussed as are suitable approaches for evaluating
and reporting it.

The capacity to apply DSM routinely and operationally requires additional support
in the form of training, access to suitable tools and software and access to suitable
input data. Approaches to developing support for DSM from decision makers and
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funding agencies in the face of institutional and discipline resistance to embracing
new technologies are identified, specifically incremental projects with clearly de-
fined goals and testable measures of success. Finally, it is noted that perhaps the
biggest hurdle to building capacity is our own hesitancy to believe in ourselves and
to dream big and try big. It is hoped that this chapter will encourage individuals with
an interest in applying new predictive mapping techniques to embrace change and
to try to create useful, operational maps for large areas in their own regions of interest.

10.1 Introduction

Digital soil mapping (DSM) (McBratney et al., 2003) has been an area of active
research for more than a decade (see Zhu, 1994; Skidmore et al., 1991) but it
has yet to achieve widespread adoption for operational mapping by main-stream
mapping agencies (see similar comments in Sections 1.1, 2.1, 3.1 and 19.2). Most
reported applications have involved investigating and evaluating the capabilities of
DSM as a potential tool for replacing or enhancing soil maps prepared using con-
ventional manual methods. The SOLIM approach of Zhu et al. (2001) may well
represent the predictive mapping protocol that has advanced furthest along the path
towards routine operational use. SOLIM has been used to complete several large
scale pilot projects to evaluate its potential for use in routine, operational soil sur-
vey (see http://solim.geography.wisc.edu/projects/index.htm). Bui (2000) and Bui
and Moran (2003) used predictive techniques to remap a large area of soils in the
Murray-Darling Basin at a grid resolution of 250 m but most of the projects reported
on by this group had more of a focus on applying and evaluating new predictive
techniques than on applying them for routine operational use in soil survey (Bui
et al., 1999; Bui and Moran, 2001; Moran and Bui, 2002; Bui, 2004). Similarly,
projects reported on by Thomas et al., (1999), Lagacherie et al., (1995), Cole and
Boettinger, 2004) and Hengl and Rossiter (2003) were also more concerned with
evaluating example applications of new methods than with applying them for oper-
ational use. What then are the constraints that limit adoption of new predictive DSM
methods for routine operational use and what opportunities exist for overcoming
these constraints?

10.2 Protocols for DSM

Almost all efforts to develop and apply DSM techniques can be seen to follow ap-
proximately the same basic steps (Fig. 10.1) (see also Section 1.1). Differences in
protocols arise from differences in the kinds of outputs that are to be predicted, the
kinds of input data layers selected to support predictions and the kinds of equations
or rules developed to make predictions. These steps are inter-related such that de-
cisions on what to predict (individual soil properties or soil classes) influence both
the selection of input variables and the development of predictive equations and
vice versa.
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Fig. 10.1 Steps common to most DSM protocols
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This chapter focuses mainly on protocols that aim to predict the spatial dis-
tribution of discrete classes of soil (area-class maps), rather than continuous soil
variables. Protocols for predicting the continuous distribution of single soil proper-
ties (see Chapter 33) typically require a large number of spatially-registered point
observations at which the variable of interest has been measured or sampled in or-
der to develop locally-relevant predictive equations (also discussed in Sections 1.4
and 2.1). Such large volumes of point data are not common in regions of generally
sparse data.

10.3 What to Map?

The size, scale and conceptualization of the entities that we try to map exercises
a profound influence on the choices that must then be made about what data are
required to support the predictions and what protocols or predictive methods will
be most appropriate for making the predictions. Protocols for predicting the spatial
distribution of individual continuous soil properties typically require different data
inputs and predictive methods than ones focused on predicting spatial patterns of
soil classes. If predicting soil classes, it is necessary to clearly identify whether the
objective is to predict the exact spatial location of narrowly defined entities at the
level of soil series or of more broadly defined collections of soils at the level of soil
associations. If the target is individual soil series, then it is necessary to establish the
shortest distances over which these soils typically change so that predictor data sets
capable of capturing and characterizing variation over distances that are shorter than
this range can be selected. It is also necessary to establish whether individual soil
types exhibit a predictable variation in response to available input predictor layers.
In particular, it is desirable to establish that the target soils vary systematically in
response to topographic controls that can be approximated by one or more measures
extracted from digital elevation data (DEM). If predicting more generalized spatial
entities similar to soil associations, the most useful input data and methods are likely
to differ from those used to predict individual soil classes.

10.4 Availability of Suitable Input Data for DSM

Input data required for DSM can be differentiated into field-obtained training data
needed to establish how soils or soil properties vary across the landscape and pre-
dictor data sets required to support application of predictions of that variation across
entire areas (Fig. 10.1). Both of these may be in short supply in areas of sparse spa-
tial data but, of the two, geo-referenced point samples or detailed soil-landform field
observations are likely to be the most limiting (see also Sections 1.3, 9.1 and 20.1).
Carré et al., (2007) and Minasny and McBratney (2007) provide some guidelines for
methods of selecting geo-located point observations to support prediction of indi-
vidual soil properties. Odgers et al. (2008) have proposed a random catena method



10 Experiences with Applied DSM 117

of obtaining soil class observations along a topographic profile from the top to the
base of a hillslope in order to collect data suitable for establishing relations between
soil classes and landform controls. Field samples and observations are expensive
and difficult to collect and may be entirely lacking in many less-developed areas.
In some cases, it may be necessary to infer the nature of differences in soil classes
or soil properties based on theoretical or empirical understanding of soil forming
processes only, with no recourse to local field observations to confirm or correct
these assumptions.

Spatially extensive data sets that completely cover entire areas of interest are
necessary to support predictions of the spatial pattern of distribution of soil classes
or soil properties. Most protocols for predicting soil classes or properties have iden-
tified and used more or less similar sets of input data layers consisting of measures
extracted from DEMs, imagery of varying spatial, spectral and, more recently, tem-
poral resolution and what may be termed ancillary environmental maps depicting
regional or local variation in controls such as geology or bedrock lithology, parent
material type and texture, climate or vegetation (see also Sections 1.2, 2.2 and 3.3.1).
The scale and level of detail of these input predictor layers have varied in response
to both availability of input data and the nature and scale of the target features to
be predicted. A limited number of discrete scales for which predictive mapping has
been attempted can be recognized and associated with specific grid resolutions of
input data layers (Table 10.1).

Many potential practitioners of DSM in regions with sparse spatial data infras-
tructures have expressed frustration with the lack of availability and lack of quality
of predictor data layers, particularly DEMs, for their areas of interest. Clearly, many
developing regions lack access to fine (5–10 m) to medium (25–50 m) resolution
DEM data layers, but efforts such as those of Moran and Bui (2002) and Bui et al.
(2002) have demonstrated that useful and effective regional predictive maps can be
produced using DEM data with a grid resolution as course as 250 m. Their key re-
alization was that local 3 × 3 window variables (slope, aspect, curvatures) were not
very meaningful or useful predictors when derived from course resolution DEM grids
but that measures of regional hydrological context and of variation in elevation, slope
and morphology within larger search windows of varying size did prove to be useful.

The point here is that it is important to compute and use derived variables or
predictive measures that are matched, or suited, to the dimensions of the DEM that
is available, the size and scale of the output entities to be predicted and the intended
use of the resulting map. Most areas now have access to free 90 m SRTM DEM data
(Fig. 10.2d,e) and should also be able to order 30 m ASTER DEM data at a reason-
able cost (for examples see Sections 2.2.1, 4.2 and 16.1). Admittedly these DEM
data sets have limitations in that they often portray a mixture of the bare ground
surface and a canopy surface in areas of dense tree cover. However, they can still
provide valid and useful measures of regional context, relative drainage conditions
and local surface form and orientation. With proper care not to assume the surfaces
portrayed by these data are exact representations of the true topographic surface,
these medium to moderately coarse resolution DEM data sets can be highly useful
for making predictions at scales as fine as 1:50,000 to 1:100,000. Finally, increasing
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Fig. 10.2 Illustration of access to and use of free spatial data that is widely available for most
areas, even those considered to have sparse spatial data availability (See also Plate 13 in the Colour
Plate Section)

availability and lower costs for LIDAR DEMs of very fine spatial resolution may
rapidly turn the problem from one of insufficient amounts of data to one of more
data than can be handled effectively.

Even in areas of sparse spatial data infrastructures, the quantity and quality of
remotely sensed image data is rapidly improving and free data at resolutions of
30–90 m is becoming widely available (Fig. 10.2a,b,c). These data are adequate to
support initial regional scale (1:25,000–1:100,000) predictive mapping efforts (see
Fig. 10.2e) (for examples see also Chapters 26, 30 and 34). The author has found
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that ancillary information describing regional scale variation in environmental con-
ditions such as bedrock and surficial geology, vegetation, climate, and physiography
can usually be extracted from available secondary source thematic maps or can, if
necessary, be interpreted manually using manual visual analysis of available im-
agery and DEM derivatives. However, at finer resolutions, improved predictive abil-
ities will require more reliable and spatially precise information on parent material
texture and depth, perhaps obtained from analysis of airborne radiometric data (see
Chapters 14 and 15), on local variation in climate, perhaps obtained from analysis
of thermal or multi-temporal imagery and on other subsurface conditions, such as
soil depth, salinity or moisture content, that may be detected and mapped using
proximal field sensing tools (see Chapters 2 and 13 for examples). Ancillary data
sources can be vital inputs for predictive mapping and they can often be approxi-
mated using manual interpretation, if necessary or obtained directly using additional
sensing technologies, if available.

Of the two main types of data required to support DSM, it is therefore the author’s
opinion (supported by comments in Sections 1.2 and 20.1) that the most limiting
is that which permits description and elaboration of rules that describe the spatial
arrangement of soils in the landscape and the conditions or criteria that control
this distribution. Field observations of soil-landscape relationships or well devel-
oped tacit knowledge of these relationships are essential to support construction,
application and review of classification rules for predictive maps. In areas of sparse
spatial data, the most important requirement may well be to find ways to collect
and assimilate information on soil-landscape patterns so that this can be related to
available input data layers in digital format to create predictive rules. (examples of
approaches to building knowledge of soil-landscape relationships are presented in
Chapters 9, 20 and 25)

10.5 Protocols or Methods for Developing
Predictive Rules for DSM

Having decided upon, and conceptualized, what to map and selected and obtained
suitable input data it is then necessary to develop procedures to predict outcomes
given predictor input maps and suitable training data. Some of the main approaches
that have been reported for developing rules to classify soil objects to produce area-
class maps are reviewed below. The three main approaches used to develop and
apply classification rules (Fig. 10.3) can be categorized as unsupervised, supervised
and heuristic (or knowledge-based) (see also Sections 1.4 and 26.2).

10.5.1 Unsupervised Classification Approaches

Unsupervised classification approaches are data driven and make the least use of lo-
cal expert knowledge or judgment. Still, users influence the resulting classification
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Fig. 10.3 Schematic diagram illustrating the most widely-used approaches for developing and
applying rules for classifying soil entities using DSM methods

in several ways. The choice of what input variables and what sample locations to
make available for input into unsupervised classification procedures can greatly
influence the type and nature of classes that result. User identification of the to-
tal number of classes to predict also exerts an influence on the final classification
as does selection of the clustering or classification algorithm implemented by the
procedures. Finally, users must exercise local knowledge or judgment when as-
signing descriptions or attributes to each output class produced by a supervised
classification.

The principal advantages of an un-supervised classification approach are that it is
systematic and unbiased and it generates classes that exhibit a maximum amount of
difference with respect to the input variables used in the classification. The principal
disadvantage is that, since it is data driven, it is almost impossible to produce classes
that closely match those defined for a locally derived heuristic classification system.
Unsupervised classifications are also not generally capable of differentiating classes
that exhibit only subtle, but often significant, differences with respect to one or more
input variables or site conditions.

Unsupervised approaches are among the least commonly used protocols for de-
veloping and applying rules for producing soil class maps for operational use. How-
ever, the approach has been demonstrated to be capable of producing useful and
meaningful classified maps by Burrough et al., (2000, 2001); Irwin et al., (1997)
and others (see Chapter 26). If one does not have strong pre-existing knowledge of
the main classes (of soil) that occur in an area and of the conditions or criteria that
control the spatial distribution of these classes, then unsupervised approaches can
help define optimum classes and map their spatial extent.
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10.5.2 Supervised Classification Approaches

A number of different forms of supervised classification have been used to develop
and apply rules to produce soil class maps. All of these approaches can be consid-
ered to represent a form of data mining. All data mining approaches extract rules for
consistently recognizing class entities by analyzing training data from representative
sites or example areas to detect relationships between each desired output class and
a set of predictor variables or classes from a suite of user-selected input maps. In
this approach, the map producer is called upon to exercise local expert judgment
and opinion in selecting and classifying a sufficient number of reference sites or
example locations for each and every class that may exist in an area. The map
maker is considered able to recognize an instance of a class when it is encountered
in the field, or observed on a display, but is not considered able to completely and
systematically identify the environmental site conditions or rules that control the
spatial distribution of any given class. In order to use this approach, a map maker
must be able to obtain or generate a large number of reference sites for each class
of interest. These reference sites should ideally encompass the full range of envi-
ronmental conditions under which each class of interest is known to, or can, occur.
There must be a sufficient number of reference sites for each class and the reference
sites must be selected in as valid a manner as possible so that they do not provide a
biased representation of the conditions under which a class occurs.

The principal disadvantage of most supervised classification approaches is that
they require assembly of large data sets of spatially-located reference or training
data. This assembly can be time consuming and expensive if it requires field sam-
pling. If it involves on-screen selection of training locations, classes are not verified
by field observations. Classified training sites can lead to misleading or false rules
if the spatial size (support) of the reference locations is incompatible with the reso-
lution and spatial accuracy of the main input data layers (e.g. mainly the DEM grid
mesh). The principal advantage of all supervised approaches is that they provide a
formal, systematic framework to identify which values of which input variables or
classes are most strongly associated with (predictive of) each desired output class.
These rules can uncover local tacit knowledge about where in the landscape certain
soils are most likely to occur and why and can codify this knowledge systematically,
formally and quantitatively (for examples see Chapters 2, 19 and 32).

Decision trees have been shown to be capable of extracting classification rules
by analyzing patterns in input data values relative to classified reference areas (Bui
et al., 1999; Bui and Moran, 2001; Lagacherie and Holmes, 1997; Moran and
Bui, 2002; Scull et al., 2003, 2005; Zhou et al., 2005; Zambon et al., 2006; also
Section 2.3). Decision trees work by splitting data sets into more homogeneous
subsets. Splitting rules attempt to minimize entropy or variance within reference
sites included in any node produced by a split. Different kinds of splitting rules
can be used (Zambon et al., 2006) but the objective is always to identify splits that
produce more homogeneous groupings for each node of the tree. Advantages of
decision trees include the fact that they require no assumptions about the data, they
can analyze both classified and continuous data, they can deal with non-linearity in
input data and they are quite easy to interpret. Decision trees can be used to predict
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the spatial patterns of either classed entities or continuous variables. These predic-
tions can have attached to them an estimate of the likelihood of occurrence of the
predicted class (or individual property value) at each node based on consideration
of the proportion of each node that is occupied by instances of the class or value
being predicted. Decision trees leave behind a set of splitting rules for each node
that can be easily interpreted to understand the criteria used to define each node
and the conditions that are likely to occur within each defined class. Decision trees
may not produce desired results if the selected predictor variables do not exhibit a
strong spatial relationship with the classes or values to be predicted (as for example,
in trying to use local measures of slope gradient and curvature to predict regional
patterns typical of soil associations or complexes – see Moran and Bui, 2002 and
Bui and Moran, 2003 for a discussion of this).

Bayesian analysis of evidence (BME) has been used to extract rules for recog-
nizing soil classes by Bui et al. (1999); Cook et al. (1996); Corner et al. (1996)
and Zhou et al. (2005). Bayesian analysis provides two useful sets of information
that relate classes on input maps to predicted output classes. It provides a system-
atic method for quantifying the relative utility, or predictive strength, of each input
layer relative to all other layers available to predict output classes. It also provides
quantitative values for the probability of occurrence of any given evidence class
given each of K possible output classes. Additionally, final predictions of expected
output classes are constrained by consideration of a priori estimates of the relative
proportions of each of K possible output classes, such that the final extent of each
predicted output class matches the proportional extent provided by the estimate of
prior probabilities. A limitation of BME is that it analyzes the frequency of oc-
currence of classes of input data relative to desired output classes. Therefore input
layers of continuous variables must first be generalized into classes with decisions
on the number of classes and the class boundaries having a potentially large effect
on the subsequent results. Some advantages of BME are that it can produce esti-
mates for the relative likelihood of occurrence of every defined output class at every
location and it can identify and quantify which layers of input data are most useful
for predicting output classes and which classes on each layer are associated with
the highest likelihood of occurrence of any given output class of interest. BME is a
powerful data mining tool that can uncover and quantify relationships between input
data layers and output classes to be predicted (similar conclusion in Section 2.3.3).

Supervised approaches based on application of fuzzy logic have been described
by Odeh et al. (1992); De Gruijter and McBratney (1988) and by several imple-
mentations of the SOLIM approach of Zhu (1994) (e.g. see Shi et al. (2004) (see
Chapter 20).

10.5.3 Heuristic (Expert Knowledge) Classification Approaches

Heuristic approaches can be used where the user has identified all classes that are to
be predicted and also has a well developed set of criteria that describe the conditions
under which each potential output class may occur. The expert knowledge about
what classes exist and what criteria control their spatial distribution may arise from
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extensive local field experience and analysis of local field observations to create
locally appropriate classification rules (for examples see Qi and Zhu, (2006) and
Chapters 9, 19, 20 and 31). Alternately, classes and classification criteria may be
defined exclusively on the basis of theoretical knowledge and theoretical considera-
tions about what parts of the landscape are likely to exhibit different environmental
conditions and why.

Most implementations of the SOLIM approach of Zhu (1994) and Zhu et al.
(2001) are based on capturing and applying local expert heuristic knowledge as
fuzzy rules. SOLIM compares the values for predictor variables at each unclassi-
fied location to the values for those variables for a very limited number (1 or 2)
of user-defined “instances” that define the central concepts of each class of soil to
be mapped (Chapter 20). Each predictor variable is compared to the value of the
variable for each defined instance and a degree of similarity is computed based on a
similarity function. If the value of the predictor variable at the unclassified location
is the same as for an instance, then the similarity of the two sites with respect to
that variable is 1. Any difference in value can lead to calculation of a lower degree
of similarity between the unclassified location and the instance with respect to that
variable. In SOLIM, each unclassified site is compared to each instance with respect
to each of N user-specified predictor variables. In SOLIM, the smallest or lowest
value for fuzzy similarity from among consideration of all N predictor variables is
used to establish the overall fuzzy similarity of an unclassified site to a particular
reference site. The fuzzy similarity of a given unclassified location is computed for
each of M available instances (usually less than 3) of a particular output class K
and the highest value of fuzzy similarity is chosen via a max function to represent
the similarity of the unclassified site to a particular output class K. A final hard
classification is achieved by identifying which of the K output classes has the high-
est value for fuzzy similarity to any given instance and assigning this classification
to that unclassified location. Published descriptions of these fuzzy methods do not
make it clear whether the procedures can be made hierarchical so that every possible
output class does not have to be predicted for every possible location in the data
set. However, Zhu (personal communication, 2006) has indicated that different sets
of rules for different groupings of instances are commonly developed and applied
within different major land areas and within different types and scales of landforms.

MacMillan et al., (2007) describe another example of a fuzzy heuristic approach
that identifies and maps classes whose existence and defining criteria have been
recognized based on extensive local field experience and analysis of field obser-
vations. In this subjective classification, the criteria and conditions that control the
spatial distribution of the desired classes have been described in a classification
field guide and the principal requirement is to translate this existing set of classifi-
cation rules into a corresponding set of formal quantitative machine rules that can
be applied to digital inputs to predict the required output classes. Implementation
of this approach is not strikingly different from supervised classification approaches
described above. Fuzzy semantic rules are developed, applied, evaluated and revised
in an iterative manner until such time as the spatial distribution of predicted output
classes corresponds closely to an expert’s expected distribution of those classes.
This is conceptually similar to asking the same expert to select a large number of
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training sites that are deemed to be representative of each class of interest except
here, instead of using the training sites to develop rules, we use successive refine-
ments of heuristic rules to classify entire areas that are then treated as a single large
set of training data and are reviewed to see if the resulting patterns correspond with
expert expectations.

Shary et al. (2002) and Sharaya and Shary (2004) describe examples of a com-
prehensive system of classification of surface curvatures based entirely on objective
theoretical considerations of expected relationships between curvature classes and
anticipated environmental conditions. This approach demonstrates that it is possible
to impose a set of theoretical classification rules even without any local, empirical
knowledge to guide definition of classes of interest. The resulting maps are antici-
pated to differentiate portions of the landscape that can be expected to exhibit signif-
icant differences in soil processes and in patterns of development of soil properties
and soil classes. So, if local expert knowledge of actual patterns of soil distribution is
weak or absent, it may still be possible to produce useful maps based on application
of theoretical considerations only.

10.6 Protocols or Tools for Applying Predictive Rules for DSM

Just about every published description of DSM procedures has used a different, and
often a custom, application engine or computational tool to apply whatever predic-
tive rules were developed to predict output classes from selected predictor input
data. This is a concern for new practitioners trying to apply the methods themselves
and trying to decide which protocols might be most applicable to their particular
needs. Most described application engines are not tightly integrated into the GIS en-
vironment used to collate the input data, develop the rules and display the predictive
output results. This is an area of concern as it restricts rapid appraisal and adoption
of predictive mapping techniques. A considerable number of free or low cost soft-
ware products have emerged that offer capabilities to compute a wide variety of pre-
dictor variables from a DEM data (e.g. TAS, SAGA, ILWIS, TauDEM, TAPES, TO-
POG. TOPAZ) but most do not contain integrated classification engines for applying
predictive classification rules. Some (SAGA, ILWIS, TAS) do provide some generic
classification functionality but it has not yet been configured to easily develop and
apply classification rules for predictive mapping. This is one area where it is hoped
that some vertically integrated tools will emerge that can be used to apply the full
sequence of predictive mapping activities from data preparation to rule development
to application of rules to final map production (similar comments in Section 4.3.2).

10.7 Assessing the Quality of Input Data Layers for DSM
and of the Resulting output maps

Potential users of predictive maps have expressed concerns about the quality of these
maps in comparison to existing maps produced using traditional mapping methods.
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The quality of predictive maps can be considered to be a function of the accuracy
and relevance of the input layers used to produce the maps, the effectiveness of
the predictive procedures used to create the maps and the thematic and positional
accuracy of the final resulting maps.

10.7.1 Considerations of the Quality of Input Maps
used to Make Predictions

Consider first issues of quality of the predictor input maps. With respect to the pri-
mary inputs derived from a DEM, considerations of quality have more to do with
the ability of the DEM to faithfully portray the location, shape, size and pattern of
surface features of relevance to the predictions than to any measures of absolute
elevation accuracy, such as the commonly used root mean square (RMS) error in
DEM elevation values relative to measured elevations at specific locations. The
DEM needs to faithfully render relative point to point relations that capture and
portray surface form at a scale and resolution appropriate for describing the land-
form entities that are to be mapped. The degree to which a DEM faithfully portrays
a surface is related to its horizontal and vertical resolution and accuracy. Shary
et al. (2002) showed that local measures of surface gradient and curvature computed
within a 3 × 3 window were strongly influenced by grid resolution, with slope tend-
ing towards zero for large grid spacing and towards extremely large values for very
small grid spacing. Moran and Bui (2002) noted that local measures of surface form
(slope, aspect, curvatures) computed within a 3×3 window became less meaningful
and useful as predictors of soil classes or properties as grid dimensions increased but
that more regional measures of context or pattern (such as upslope catchment area)
were less sensitive to grid resolution and were more reliable inputs for predictions
of patterns of soil associations that used grids with larger horizontal dimensions.
Coarser resolution DEM data sets are therefore best used to compute measures of
regional context and texture or variance within a neighbourhood analysis window
and are less useful for computing local measures of surface form (slope, aspect,
curvatures).

Within the predictive mapping community, a consensus appears to have emerged
that grids with a horizontal resolution of 5–10 m and a relative vertical accuracy
of ±0.5m or better appear to capture and portray meso scale terrain features at
about the level of abstraction that they are most commonly appreciated by human
observers (note however that in Chapter 4 Howell et al. did not achieve significant
improvements using a 5 m DEM compared to a 25 m DEM). Grids of coarser
resolution do not appear to capture and describe the correct location of landform
features at the scale of hillslopes or portions of hillslopes that are of most common
interest for predictive mapping. Coarser grids (25–100 m) can be thought of as a
kind of regular sampling frame or mesh that can provide some relevant information
on the approximate vertical range in elevation within a local neighbourhood and
on relative values for slope gradient and curvatures. These values will always be
under-estimates, because not all local terrain maxima and minima will be sampled,
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but the mesh will provide some relevant information on the size, scale and com-
plexity of landform features that are at least 2 times the horizontal dimensions of
the grid. Consequently, when using grids of coarser horizontal resolution (>10m),
DSM practitioners should explicitly acknowledge that any predictions or classifica-
tions that are based on analysis of local surface form or context are not likely to be
spatially accurate at point locations. The locations of local rises or hollows portrayed
by a DEM of 25 m grid dimensions or more are likely to be displaced relative to the
actual locations of these features in the real world and smaller local rises or hollows
will be missed altogether. However the 25 m DEM data can be useful in indicating
the frequency of occurrence of features of a particular relative size and scale within
any small area.

Evaluations of the quality of input data layers should focus on establishing the
size, scale, shape and context of terrain features that can be accurately described by
an input layer of a particular resolution. The features to be predicted by analysis of
these input layers need to be conceptualized as having horizontal dimensions that
are at least 2x those of the grid postings. Any variation in the predicted classes or
attributes that occurs over distances less than 2x the grid interval cannot be spatially
located with any accuracy and can only be described in general terms. Another
quality consideration is that many existing coarser resolution DEM sources do not
provide a consistent and faithful portrayal of the bare ground surface, but rather,
portray a digital surface model (DSM) that often describes the top of a forested
canopy, in densely forested areas, or the tops of man-made features in built-up areas.
Finally, many existing secondary source environmental maps are inadequate and
need to be improved.

With respect to soil maps produced by predictive methods, quality can be de-
fined as the ability of a map or product to correctly predict the characteristics of the
landscape at particular points or within particular small areas (see also Section 1.5).

10.7.2 Considerations of Quality of Predictive Maps of Individual
Soil Properties

The quality of maps that predict individual soil properties can be assessed by ob-
taining field observations or samples at randomly selected locations and computing
RMS error between the predicted and observed values (see also Chapter 11). Uncer-
tainty associated with the predictions of individual soil properties can be conveyed
by preparing and presenting maps of the residuals arising from the predictive pro-
cess. An alternative approach is to produce multiple realizations of each predictive
map by varying the values of the input variables randomly with the range of expected
accuracy of the input layers at point locations. The variation in predicted values
observed in these multiple realizations can provide an illustration of the uncertainty
of the predictions at any given location. Multiple realizations can also be achieved
by using different predictive equations or techniques to produce each realization so
as to illustrate the range of uncertainty in predictions arising from method error, as
opposed to data error.
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10.7.3 Considerations of Quality of Predictive Maps
of Discrete Soil Classes

The quality of maps that predict discrete soil classes can be assessed in several ways.
Kuhnert et al. (2005) Wang et al. (2005) recognized a need to distinguish between
positional errors and thematic errors in raster maps. Similarly, Walker (2003) as-
sessed accuracy in terms of ability to predict the correct classes at exact locations,
termed locational ability and ability to predict proportions of classes within an area
without consideration of location, termed predictive quality. The global accuracy or
precision of a map is traditionally assessed by a preparing a contingency table that
compares predicted values at specific sample locations to observed values at those
same locations. The degree of similarity (or error) is then assessed by computing a
measure such as the Kappa statistic that corrects for agreement that may arise from
chance (see Section 19.2).

A problem that has been recognized with Kappa and its modifications is that it is
entirely based on cell by cell comparison statistics (Kuhnert et al. (2005). Maps that
have a bias or have similar patterns that are slightly distorted or misregistered may
not agree well. The textbook example of this is a comparison of two identical chess
boards displaced by exactly one cell in one direction. A point by point comparison
would conclude that the two maps had zero similarity whereas, in reality, the pat-
terns they predict are identical but the locational accuracy is off by one cell. Increas-
ingly, new methods of assessing accuracy have been proposed that can identify and
quantify positional and thematic accuracy errors separately (Pontius, 2000, 2002).
The degree of positional error can be assessed by comparing proportions of classes
estimated within search windows of ever increasing dimensions with proportions of
classes on a map taken to represent ground truth. Kuhnert et al. (2005) calculated an
index based on the difference between the total numbers of cells in each category
in each size of moving window and a reference map. If the proportions of each
class in two windows were identical the index was zero. The more mismatches
identified, the larger the index. The window was systematically increased in size
and new comparisons were made. As the window size grew, the granularity of maps
was blurred, and eventually they obtained a perfect fit assuming that the numbers of
cells in the same category was the same for the whole area for both the predicted
and ground truth maps.

The thematic accuracy of categorical soil maps is typically assessed in terms of
exact categorical match between specific predicted classes and hard classes observed
at reference locations. This approach ignores the fact that soil varies continuously
across the landscape and that soils at a particular location may be more or less
similar to the central concept used to define any mapped class. This is the under-
lying assumption of fuzzy methods of soil classification and should be familiar to
DSM practitioners by now. Liem et al. (2005) and Metzler and Sadler (2005) have
both suggested methods for computing relaxed measures of agreement between
hard classes and reference classes by adopting a fuzzy matching definition for a
crisp classification which allows for varying levels of set membership for multiple
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map categories. In this approach, fuzzy sets were used to represent the “relative
strengths”’ of various membership categories for predicted classes relative to ob-
served classes at a mapped pixel level (Metzler and Sadler, 2005).

Many applications of soil maps, especially of smaller scale soil maps, are non
site-specific. For these maps, estimates of the proportions of particular soils within
small areas equivalent to delineations of some minimum size for which management
decisions are to be taken may be all that is required. Exact thematic accuracy at exact
point locations is not necessary for these maps to be useful. Consequently, tests of
map accuracy that evaluate the degree of exact match between predicted class and
observed class at exact locations are neither appropriate nor desirable. We know that
hard classifications assigned to reference or test locations in the field by local experts
have to reflect decisions about what class best describes each reference location. We
know that different experts are highly likely to assign the same location to different
classes if the soil at the location is ambiguous and not completely representative
of a specific class. These potential differences in classification of reference or test
locations by a local expert represent sampling error in evaluation data sets which
is not taken into account by any measures of exact categorical match at exact loca-
tions. Similarly, consider that many of the coarser resolution DEM data sets used
to produce predictive maps do not portray the exact location of terrain features of
interest correctly but displace them or only partially capture them. It is clear that
this inaccurate depiction of landform features leads to spatial displacement of pre-
dicted classes relative to their true locations. Comparisons of thematic map accuracy
should therefore assess relative (fuzzy) degrees of thematic correspondence between
predicted and observed classes. They should also assess the degree of correspon-
dence of predictions of proportions of classes within areas of different size, as well
as just exact correspondence at specific point locations.

In general terms then, assessment of the accuracy of classed soil maps needs
to take into account the scale of mapping and the intended use of the maps. The
quality of fine resolution (large scale) maps intended for use for site specific opera-
tional management decisions may need to be evaluated for exact thematic match at
exact point locations. The quality of coarser resolution (small scale) maps intended
to support regional management or operational decision making for management
areas of some minimum size that is larger than a single pixel may only need to
be evaluated in terms of relative degree of predictions of proportions of classes
within some minimum sized area of interest for management decisions. Lagacherie
(Section 1.7.2) has recognized a need for improved and more formal protocols for
assessing accuracy and error in predictive maps.

In the author’s experience, while the pixilated appearance of raster predictive
soil maps has often been criticized by users more accustomed to traditional, carto-
graphically precise, polygonal soil maps, the accuracy of raster predictive maps has
uniformly proven to be equal to, or superior to, that provided by manually prepared
vector maps for the same areas. Zhu (see http://solim.geography.wisc.edu/projects/
index.htm) has cited values for exact spatial and categorical match predictive accu-
racy of 77–89% for soil maps produced using the SOLIM method. Moon (2005a,b)
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reported accuracies of estimates of proportions of classes within small areas of
66–71% for predictive maps that compared favourably to accuracies of 55–60%
for manually prepared vector maps for the same areas. Explicit evaluation of the
accuracy of predictive maps, using a method appropriate to the scale of the maps and
their intended use, is likely to document that these maps are at least as accurate as
conventionally produced manual soil maps and that they are usually more accurate
(see also Sections 1.5 and 7.1).

10.8 Building Capacity for Routine Operational
Application of DSM

Finally, let us consider here opportunities and constraints for building capacity for
routine operational application of DSM procedures.

A typical justification for not embracing and using DSM technologies is that most
existing DSM procedures require expertise, data and software capabilities that are
difficult to acquire and in short supply. It is easy for experienced DSM practitioners
to forget how much they had to learn before they felt comfortable pursuing and
applying DSM procedures. Potential new practitioners need access to documenta-
tion and training that will provide them with the necessary background skills and
the confidence to use them. Training of new users has been recognized as a key
requirement for increasing use of the SOLIM approach. Similarly, new users of the
LandMapR toolkit have found it beneficial to undertake a few days of training in
order to gain the necessary skills and confidence. It is incumbent on new practi-
tioners to seek out training opportunities and on existing practitioners and software
developers to provide it.

The author does not believe that either lack of data or lack of software capa-
bilities presents a serious impediment to implementation of DSM activities. Even
localities that lack access to fine resolution DEM data do tend to have access to
some DEM and image data at reasonable resolutions of 25–100 m. These widely
available free spatial data are perfectly adequate for applying and evaluating DSM
concepts at a regional level at scales of 1:50,000 to 1:250,000. A lot can be learned
and a lot accomplished by applying initial DSM efforts at these coarser resolutions
(See Fig. 10.2f).

A number of free, or nearly free, software platforms exist that provide very full
featured capabilities for processing input data sets, particularly DEMs, to compute a
wide range of predictor input variables. Tools to analyze training data sets to extract
classification rules are not commonly included within available GIS platforms. Such
analysis tends to need to be conducted outside a GIS platform within some kind of
specialised software (S-Plus, Expector, See 5, Netica by NorSys, Systat, SPSS) and
the resulting rules implemented using a generic GIS calculator. In general, tighter
integration of spatial data mining capabilities into available GIS platforms would be
helpful in speeding up the development and adoption of DSM procedures. Similarly,
most existing GIS platforms provide a calculator-like capability to apply Boolean



10 Experiences with Applied DSM 131

classification rules (such as those generated by decision tree analysis) but most do
not provide well developed engines for applying Bayesian or Fuzzy classification
rules (except perhaps Idrisi). This shortcoming could be addressed by adding spe-
cialized extensions to any of a number of existing free GIS platforms or by acquiring
the free SOLIM platform or the restricted availability LandMapR toolkit. Software
and data do exist to support operational application of DSM procedures but the
potential DSM practitioner has to be willing to work relatively hard to acquire and
learn to use and apply both at the present time (see also Section 1.7.1).

A second requirement for building capacity for DSM is that of training potential
users and funders of DSM products to better understand the relative costs, benefits,
uses and limitations of DSM products. It is not uncommon to encounter scepticism
and resistance to acceptance of DSM methods or products among institutions, or-
ganizations or companies that have a long history of using map products produced
by conventional manual interpretation procedures. The raster DSM maps don’t look
like the neat, cartographically-precise, vector maps they have been accustomed to
obtaining and using. There is often considerable suspicion of the “auto-magic” na-
ture of DSM procedures. There is support for known products produced by conven-
tional means and suspicion of new products produced by unconventional means.

The author has some experience with overcoming initial institutional resistance
to DSM and converting it into active approval and support. The key to converting
suspicion and opposition into active support was to demonstrate conclusively and
convincingly to the various sceptical stakeholders that the new DSM methods could
be relied upon to produce maps that were as accurate as, or more accurate than,
any maps produced by existing methods and that this could be done for a fraction
of the cost of existing manual methods or of other alternate automated methods.
The approach taken was to devise and implement a systematic, staged process to
apply different methodologies and to evaluate the relative predictive accuracy of
various methods, their relative costs and the utility of the resulting products (see
also Section 1.4).

Initially, a pilot project was undertaken for a relatively small area in which as
many different approaches to producing the desired map products as it was possible
to identify and implement were applied to map the exact same area of several map
sheets. A comprehensive record was maintained of production time requirements
and costs associated with each of the applied methods. A procedure for evaluating
the relative predictive accuracy of each of the methods was devised and the same
methods and data were used to evaluate the relative accuracies of all maps produced
by each of the evaluated mapping methods. The procedures for evaluating accuracy
were designed to enable a fair and equitable comparison of all maps produced by all
methods. Since several of the methods tested produced polygons that were described
in terms of the proportions of classed entities contained within their boundaries, it
was necessary to devise a test procedure that could evaluate estimates of the pro-
portions of predicted classes within a small test area. The evaluation procedures
were never intended to measure or compare exact thematic correspondence at exact
point locations and this was made abundantly clear to all stakeholders. This mea-
sure of accuracy was justifiable in view of the intended use of the resulting maps.
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None of the maps was expected to be able to support detailed use for site-specific
operational management but they were expected to be able to provide estimates of
the proportions of map classes within small areas, equivalent in size to a minimum
sized management area for forest management activities (e.g. a stand of 10 ha or
more). Each of the several different methods selected for evaluation was applied
to map the small (45,000 ha) pilot area and the maps resulting from application of
each method were compared in terms of their recorded costs, time requirements and
relative predictive accuracies. In this initial test, only one method produced maps
that met the requirement for 65% minimum accuracy in predicting the proportions
of map classes within minimum-sized test areas.

A second project was conducted to assess the ability of the mapping protocol
identified as having the highest predictive accuracy to be applied successfully to a
much larger area on an operational mapping basis. This was done to increase the
confidence of the stakeholders that the identified methodology was capable of being
scaled up for use for full-scale operational mapping and also to provide a second op-
portunity to evaluate the predictive accuracy of the maps produced by this method.
Demonstration of an ability to meet the required minimum level of accuracy for a
second project was believed to be beneficial for increasing the level of comfort of
the stakeholders in the procedures prior to committing significant funding to map
much larger areas at a much greater level of expense and risk. The second project
again demonstrated an ability to exceed the minimum required level of predictive
accuracy at a cost that was significantly lower than any previously implemented
alternatives, including conventional manual mapping. The stakeholders were begin-
ning to develop confidence in the new procedures. Activities were also undertaken
to encourage and facilitate use of the initial map products so that stakeholders could
feel assured that the maps would meet their needs for assessment of resources and
planning for their management.

The final phase of this multi-step process was to proceed to full scale operational
mapping of areas millions of hectares in extent (see MacMillan et al., 2007). Even
this activity has been staged with mapping completed in blocks of 1–3 million ha
per year. This reduces the risks and spreads the costs and the demands for personnel
out over a period of several years. With completion of each successive operational
project and successful production of maps that exceeded the minimum requirement
for predictive accuracy, stakeholder support for, and acceptance of, the new predic-
tive maps has increased. Most sceptics have now been convinced and have become
active supporters of the methods.

10.9 Conclusions

A similar staged process to that described above is recommended to any DSM
practitioner needing to build support for, and comfort with, adoption of new DSM
technologies. Potential DSM practitioners are encouraged to apply and evaluate
all viable mapping alternatives, to select the most appropriate method and to then
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demonstrate its capability to support full scale operational mapping in their locality
at a scale that is most relevant to their needs.

Based on the author’s experiences as described above, the single strongest im-
pediment to widespread application of new DSM methods may well be our own
hesitancy to believe in ourselves and to just “do it”. You will not know what is
possible until you try to produce maps for your own areas using data that are avail-
able to you. You may well be surprised at what can be achieved using existing data
sources and existing methodologies. If we wait until perfection is possible, data are
easy to acquire and models are easy to build and apply, we could end up waiting
a long time. For the moment, a lot is possible with just a little effort and a little
optimism.

It is hoped that this chapter will encourage individuals with an interest in ap-
plying new predictive mapping techniques to embrace change and to try to create
useful, operational maps for large areas in their own regions of interest.
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Chapter 11
Towards a Data Quality Management
Framework for Digital Soil Mapping
with Limited Data

B.G.C.M. Krol

Abstract The re-use of legacy soil data together with increasing numbers of envi-
ronmental co-variables becomes increasingly more interesting in digital soil map-
ping at intermediate scales, in areas with limited data. This poses important issues
regarding the reliability of these data as well as of the final product of mapping.
It also requires that the data and the manner in which they are (re-)used do not
have a negative influence on the quality of the mapping product. Existing quality
management approaches in soil mapping emphasise the producer perspective. In
addition, rather than being preventive in nature they mainly rely on detection of
defects in end-product testing. A shift is required from a focus on the quality of
the end-product of mapping to quality control of the mapping process itself. The
development of a framework for soil data quality management is proposed in this
chapter.

11.1 Introduction

Adequate information about soil resources plays an important role in support of
planning and decision making about the multi-functional use of land. Large-scale
soil maps (1:25 000 and larger) resulting from detailed surveys provide data up to
plot level (ranging from less than a hectare in subsistence level agriculture to hun-
dreds of hectares in commercial farming) about soil conditions that are beneficial for
decision making at local level, including farm planning and advisory. Small-scale
maps (typical 1:250 000) provide reconnaissance level information about broad soil
classes for indicative land zoning purposes over wide areas.

Planning and decision making at district to regional level requires information
at intermediate scales on soil properties and their behaviour over relatively large
area extents. Increasing numbers of new user groups including non-governmental
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organisations, environmental modellers, ecologists, and farmers are in demand of
this soil-landscape information. However, in many regions that are generally data-
poor, especially in developing countries, soil and other land resource information
at the intermediate level (corresponding to map scales ranging from 1:50 000 to
1:100 000) are often missing. The high costs and time-consuming nature of soil
sampling make the development of methods for the creation of soil maps from
sparse soil data increasingly more important (Bishop et al., 2001).

The re-use of legacy soil data together with the use of cheap and easy-to-get an-
cillary data (e.g. SRTM-DEM, Aster images) becomes increasingly more interesting
in digital soil mapping at intermediate scales, especially in data-poor environments.
Examples of ancillary data, as major types and sources of input data for digital soil
mapping at multiple scales and grid resolutions, are given in Section 10.4. Rather
than just being what remains behind as legacy of previous and out-dated survey
practice, legacy data pose new opportunities and challenges as input to digital soil
mapping. Not only do they act as provider of soil data, they also function as a source
for improved soil-geomorphic understanding. A study by Bui and Moran, (2003),
for example, suggests that much value can be extracted from existing and even dated
soil surveys. In another example Lagacherie et al. (1995) have used existing soil
survey data as reference areas as well as knowledge base in a new soil survey over
a wider area.

The practical use of legacy data and covariates in digital soil mapping, how-
ever, will involve the integration of multi-source data that have been generated with
different objectives, using different methodological approaches, different systems
for data description and classification and made available in different analogue and
digital formats and at different spatial resolutions. The integrated use of legacy soil
data together with increasing numbers of environmental co-variables for digital soil
mapping poses important issues regarding the reliability of these data as well as of
the final product of mapping.

Another risk involves the assumption of users of digital information that what
is digital is correct. Although this misconception of perfect digital information is
recognised by researchers, in digital soil mapping so far there is only limited at-
tention for uncertainty analysis or error propagation, especially where the use of
secondary information is considered (Bishop et al., 2006). This makes the quality
of soil data and information a clear and present concern.

In this chapter the development of a data-quality management framework for
digital soil mapping with limited data is proposed, as a basis for research work in
progress. Three interrelated issues are emphasised:

1. An extension of focus on intrinsic data quality to other soil data quality dimen-
sions;

2. A shift from end-product testing to mapping process control;
3. A change from a mainly producer-oriented focus to a user-oriented focus.

Thus, the proposed data-quality management framework intends to provide a
mechanism for users of soil and ancillary environmental data to make decisions
about data quality, and for producers of soil information to control the soil-mapping
process.



11 Towards a Data Quality Management Framework for Digital Soil 139

11.2 Focus on Quality in Soil Mapping

In the context of soil survey there is a long-standing tradition of focus on quality, al-
beit often qualitative and mainly producer-oriented. In the pre-digital era published
soil map sheets often came with an indication of quality, for example in the form
of a reliability diagram. Considering the many possible questions a user may have
concerning the quality of a soil survey Forbes et al. (1982) developed guidelines for
the evaluation of the adequacy of soil-resource inventories. A proposal for further
refinement of these guidelines is presented by Hengl and Husnjak (2006), as part of
their evaluation of the adequacy and usability of soil maps in Croatia.

Modern predictive, digital soil maps are expected to be of more quality than
conventional soil maps: they are made using data that are better defined and docu-
mented, in terms of their positional quality, currency and lineage (Finke 2007). Soil
property maps that are produced by using geo-statistical approaches are typically
accompanied by an ‘error map’ as by-product. It shows the prediction variance of
the estimated soil property values and thus provides a way of expressing the uncer-
tainty of the estimation (see also Davis, 2002). In other words, the error map gives
an impression of the reliability of the map of estimated soil property values (Webster
and Oliver, 2001).

At the same time, however, potential users of digital soil map products express
concerns about the quality of DSM products as compared to maps produced using
traditional mapping approaches (see Section 10.7).

11.2.1 End-Product Testing

Existing quality control approaches applied in mapping mainly rely on inspection
to detect defects, whereas the goal should be to prevent them in the first place
(Schmidley, 1997). Validation studies to assess model performance in soil mapping
are typically carried out using independent validation sample sets. However, it is ar-
gued that the earlier mentioned data scarcity issue also holds for validation studies.
Even in the overall more data-rich pedometric soil modelling environment model
validation is controlled by the non-exhaustive availability of soil observation data, as
is also recognised by Grunwald and co-workers (see Grunwald et al., 2005). Further-
more, it may be questioned whether to an end-user of soil geographical information
it makes sense, or even is acceptable, to run an independent validation study to find
out that the product of soil mapping appears to be uncertain or even erroneous. It
is even argued by Finke (2007) that the presence of precision measures (i.e. error
maps, see above) that accompany many modern soil property maps may lead users
to conclude that these maps are of lesser quality than conventional maps. Moreover,
few end-users may be able or even bother to consider the error map in evaluating
the usefulness of a soil property map for their intended purpose. A problem with
end-product testing in general is that validation samples, are often too small and
come too late, to allow for any corrective measure (see also Godfrey and Howard,
2004).
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11.2.2 Producers and Users

In soil mapping, as in mapping in general, data quality is in practice still mainly per-
ceived from the producer perspective. The fitness for use of soil mapping products,
however, is of prime interest to the user. The need for improved user orientation in
dealing with data quality is also emphasised in Section 1.5.

Producers and users of data often have a different perception about data quality.
Data producers typically identify a product of quality as conforming to specifica-
tions, whereas data users recognise quality if a product meets or even exceeds their
expectations (Devillers et al., 2002; Kahn et al., 2002). The producer perspective
in dealing with quality problems in soil data and geographical information is also
illustrated by a still dominant focus on intrinsic data quality elements, such as accu-
racy and uncertainty (see for example: Bishop et al., 2006; McBratney et al., 2003;
Zhang and Goodchild, 2002).

However, data quality problems go beyond the data values and their accuracy and
also include other elements, such as accessibility and completeness (Dalcin, 2004;
Wang and Strong, 1996). In addition, eventually it is the data user that must find the
data accurate, for example in being correct, objective and from a reputable source
(Wang and Strong, 1996). At the same time the role of users in dealing with aspects
of data quality is getting more and more attention in soil mapping. Here Finke (2007)
even considers the usage aspect of quality as a quality variable, together with other
aspects that define data quality.

It is also recognised that there is a need for mechanisms that help users of
soil information to make decisions about uncertainty (Lagacherie and McBratney,
2007), and data quality for that matter. Such mechanisms are also needed to guard
against inappropriate use by inexperienced users. The gradual shift from qualitative
to quantitative soil-landscape modelling that is taking place (see also Grunwald,
2006), combined with the increasing availability of automated tools for quantified
soil modelling, such as offered by geographic information technology, involves that
often ‘inexperienced users are able to perform complex analyses without adequately
considering issues of data quality’ (Bishop and Minasny, 2006).

11.3 Data Quality, Definitions and Dimensions

The ISO standard for geographic information (ISO, 2002) defines data quality as
the ‘totality of characteristics of a product that bear on its ability to satisfy stated
and implied needs’. Geographical data quality is also defined as the ‘ability of data
to adequately fulfil the purpose for which it will be applied’, as its ‘fitness for use’
(Hunter et al. 2003), or as the ‘fitness of data to a given purpose’ (Chrisman, 1984).

What is clear from these and other definitions is the notion that data quality
cannot be restricted to data values, it includes a data-use component as well. In
fact, data quality can only be assessed in relation to the people who use the data
(Strong et al., 1997). In a soil database, for example, data as such have no identified
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quality. Quality only exists when the data are being used by somebody (see also
Dalcin, 2004). A high-resolution DEM available in a database, for example, may
accurately represent elevation in a given geographical region. But this same DEM
has only limited quality, if it just partially covers the project area of a particular soil
mapping project. Schmidley (1997) even goes as far as to define quality as ‘customer
satisfaction’. Since it emphasises the importance of taking a consumer viewpoint on
quality, and because it is the user who ultimately judges whether or not a product is
fit for use, the ‘fitness for use’ concept is now widely accepted and adopted (Wang
and Strong, 1996).

Data quality is generally recognised as a multidimensional concept (Chapman,
2005). A data quality dimension (or characteristic) can be understood as a set of data
quality attributes that capture a particular aspect of data quality (Wang and Strong,
1996).

In the geographical work field the following data quality dimensions are usually
emphasised: positional accuracy, attribute accuracy, logical consistency,
completeness, temporal accuracy, and lineage. According to Hunter et al. (2003)
these are the elements of data quality that typically need to be reported to users
of geographical data. An alternative grouping identifies five so called ‘PARCC’ at-
tributes of (geographical) data quality as follows (Jones, 1999; EPA, 2003): namely,
Precision, Accuracy, Representativeness, Completeness and Comparability.

The above mentioned data quality dimensions and PARCC attributes conform to
the ISO standard for geographical information, ISO19113 (ISO, 2002). According
to this standard the following two components must be used to describe the quality
of a dataset: (1) data quality (sub-)elements, and (2) data quality overview elements.

Table 11.1 ISO data quality elements and data quality subelements (ISO, 2002)

Data quality element*(applicable data quality
sub-elements)**

Description

Completeness (commission, omission) Presence and absence of features, their
attributes and relationships

Logical consistency (conceptual consistency,
domain consistency, format consistency,
topological consistency)

Degree of adherence to logical rules of data
structure (conceptual, logical, physical),
attribution and relationships

Positional accuracy (absolute accuracy,
relative accuracy, gridded data position
accuracy)

Accuracy of the position of features

Temporal accuracy (accuracy of a time
measurement, temporal consistency,
temporal validity)

Accuracy of the temporal attributes and
temporal relationships of features

Thematic accuracy (classification
correctness, non-quantitative attribute
correctness, quantitative attribute
accuracy)

Accuracy of quantitative attributes and the
correctness of non-quantitative attributes of
the classifications of features and their
relationships

* additional data quality elements may be created.
** additional data quality sub-elements may be created for any of the data quality elements.
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Table 11.2 Data quality categories and dimensions (after Strong et al., 1997; Kahn et al., 2002)

Data Quality
(DQ) category

Data quality dimension Short description

Intrinsic Accuracy Data are correct and reliable
Objectivity Data are based on facts, impartial
Believability Data considered true and credible, trustworthy
Reputation Data come from a good source

Accessibility Accessibility Data easily and quickly obtainable when needed
Access security Data protected against unauthorized access

Contextual Relevance Data are useful, appropriate, applicable
Value-added Data are beneficial, provide advantages
Timeliness Data are sufficiently up-to-date
Completeness Data include all necessary values
Amount of data Data are of sufficient volume

Representational Interpretability Easy to interpret what the data mean
Ease of understanding Data is easy to comprehend
Concise representation Data are formatted in a compact and precise way
Consistent representation Data are represented in the same, consistent format

ISO data quality elements and related data quality sub-elements are used to describe,
where applicable, ‘how well a dataset meets the criteria set forth in its product speci-
fication’ and thus provide quantitative quality information, see Table 11.1. ISO data
quality overview elements, including purpose, usage and lineage, are used for a
non-quantitative, general description of a dataset.

In an enterprise context Wang and Strong (1996) and Strong et al. (1997) tried
to capture quality aspects that users of data and information consider as important.
They introduced a data quality framework to assess the quality of organisational
data. This framework identifies fifteen quality dimensions organised in four cate-
gories (Table 11.2). According to Wand and Wang (1996) the contextual and rep-
resentational data quality categories specifically concern the usefulness of the data
in an information system within an organisational setting. The intrinsic and accessi-
bility data quality categories, on the other hand, are recognised as use-independent
and related to the design and implementation of an information system.

11.4 Data Quality Dimensions in Soil Mapping Context

Where accuracy and objectivity are well known data quality dimensions for in-
formation system professionals ( Wang and Strong, 1996), this also holds for the
producers of soil geographical information, and of digital soil maps for that matter.
The aforementioned positional accuracy, attribute accuracy and temporal accuracy
emphasise that soil geographical data has quality in its own right, that it has an
intrinsic value.
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To users of soil data and soil map products, however, these are not sufficient to
consider soil data and soil map information as being of good quality. They also view
reputation and believability as important data quality dimensions. An example of the
use of the reputation dimension is provided by Rossiter (Chapter 6) in his discussion
about soil data renewal in a soil mapping example in Kenya: the composition of the
soil survey team and the reputation of its members are detailed to infer the presumed
quality of the survey data. The believability dimension is considered by users for
data quality assessment if, for example, nothing is documented concerning the lab-
oratory analysis protocol considered for the analysis and subsequent presentation
of soil physical and soil chemical data. In the example of legacy soil observation
data shown in Fig. 11.1 it is impossible for the user to find out how trustworthy the
presented soil analytical information is: which data have been analysed but are not
presented in the table? Which data have not been analysed at all? How credible are
the data that are presented?

Contextual soil data quality dimensions emphasise that the quality of (legacy)
soil data and environmental covariates has to be considered in the context of a task
at hand. This can be, for example, their use in a particular case of soil mapping (e.g.
in terms of a mapping area and/or targeted soil variables), or their application in a
particular mapping approach (e.g. by environmental correlation, geo-statistical). An
example: an environmental modeller with specific interest in modelling the spatial
variation of organic matter content in the topsoil may well consider the correspond-
ing ’OM’ value in Fig. 11.1 as relevant, given that the database values are of quality
in terms of their believability.

The data in a soil information system must be stored in a secure and accessible
way. Accessibility soil data quality dimensions refer to the ease of user-access to
digital soil and related environmental data and to digital soil mapping products, for
example while querying a soil geographical database. In addition, they also refer to
the secure storage and management of these data in a soil information system.

The representational soil-data quality dimensions refer to the soil information
system that must organise the data both in a concise and consistent manner, and in
such a way that these data are interpretable and easy to understand. For example,
two multiple-source soil maps each representing part of a user’s project area can
only be successfully integrated into a new comprehensive area-wide soil map if
they are both formatted in a similar, consistent and concise manner.

Fig. 11.1 Believability as soil data quality dimension: fragment of a soil analytical database table
without any additional information available about laboratory analysis protocol
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The data quality dimensions presented in Table 11.2 refer more to organisational
data, to handle data quality in business processes. It is not necessarily complete
where geographical data, and soil data more in particular, are concerned. Data lin-
eage, for example, is not considered. It may well be that a further specification of
data quality dimensions for digital soil mapping will result in an extension of those
listed in Table 11.2. It remains to be identified which data quality dimensions are
important in digital soil mapping, which ones have a more generic relevance, and
which ones are relevant in a particular case only.

11.5 Managing Data Quality

The terms quality management, quality assurance and quality control are often
loosely used to refer to activities where quality is considered in one way or the
other. In particular, the difference between ‘quality control’ and ‘quality assurance’
does not seem clear in all cases, and the terms are often synonymously applied to
describe the data quality management practice (Chapman, 2005). In quality research
and practice, however, these are terms with an explicit and distinguishable meaning.
And as such each of them plays a specific role in the dealing with the quality of
goods, data, and services in order to guarantee a good quality and to prevent a defec-
tive quality as much as possible. In this sense quality control and quality assurance
are crucial elements of any data quality management mechanism.

The ISO-9000 standard defines quality control as ‘operational techniques and
activities that are used to fulfil requirements for quality’ (ISO, 2000). In a more
comprehensive manner, EPA (2001) defines quality control as the ‘overall system
of technical activities that measures the attributes of performance of a process, item,
or service against defined standards to verify that they meet the stated performance
criteria established by the customer, operational techniques, and activities that are
used to fulfil performance criteria for quality’. Data quality control is set up and
carried out by the producer (or provider) of data (or services). This same data
quality control is subject to quality assurance by another, external entity. In more
practical terms, data quality control can be seen as a structured set up of preventive
and corrective actions as integral part of, for example, a soil mapping process. It
has to provide confidence that an information product or service will fulfil use re-
quirements and is produced according to defined standards. This makes data quality
control a continuous process rather than a one-time activity.

11.6 A Data Quality Management Framework for Soil Mapping

While considering its distinctive nature also soil geographical information can be
treated as a product that moves through an information production chain. Wang
(1998) recognises an analogy between quality issues in product manufacturing and
information production. This analogy can also be extended to the generation of soil
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Table 11.3 Analogy between product manufacturing and digital soil mapping (adapted from
Wang, 1998)

Product manufacturing Digital soil mapping

Input Raw materials/ingredients Soil and ancillary data
Process Assembly line Soil mapping approach
Output Physical product Soil information product

information in soil information systems. Where product manufacturing is consid-
ered as a processing system that converts raw materials or ingredients into physical
products (e.g. bread, packaged beer, bicycles), soil information production – as in
digital soil mapping – can be seen as a processing system acting on input data to
generate soil information products, as is shown in Table 11.3.

Starting from the analogy between manufactured goods and information products
Wang (1998) has extended Total Quality Management principles to a Total Data
Quality Management (TDQM) methodology. At a general level the TDQM cycle
for continuous data quality analysis and improvement recognises four elements nec-
essary for quality management of information products:

1. the definition of information requirements and of important data quality dimen-
sions associated with a targeted information product;

2. the measurement of identified quality dimensions, which involves the production
of quality metrics;

3. the analysis of root causes for data quality problems and the calculation of the
impact of poor data quality on the information product;

4. the improvement of data quality in identified key areas for improvement.

Together with the application of identified data quality standards, of Good Man-
ufacturing Practices (GMP) and of Standard Operation Procedures (SOP), elements
of TDQM are now increasingly considered for the management of data, for exam-
ple in organisational information systems (as in health services) and (spatial) data
warehouses.

Application of the TDQM methodology in a digital soil mapping context involves
that techniques for improving soil data quality are applied on identified soil data
quality dimensions according to information requirements that have been specified
by the soil information user. The definition, measurement, analysis and improve-
ment of soil data quality in an iterative way is essential to ensure that soil map
information of the highest possible quality is generated. A schematic presentation is
given in Fig. 11.2.

Application of this TDQM methodology requires that first the characteristics
(functionalities) for the targeted soil information product (‘what must the soil map
do for me’) are defined, the soil information quality requirements are assessed, and
the appropriate soil mapping approach is identified. Next, measurement, analysis,
and improvement are considered. Thus, it may for example appear that an entity-
type of soil map, as it was typically developed in the past, may not fit the needs for
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Definition Measurement

AnalysisImprovement

- map characteristics
- map quality requirements
- Digital Soil Mapping

Soil map
as information product

Fig. 11.2 The TDQM methodology applied for digital soil mapping

soil organic carbon information of environmental modellers today. In such case, this
should become clear in the definition phase where this same soil information user
group would be involved. In case they are not involved it is the soil mapper’s respon-
sibility that their needs are properly met in a later phase, otherwise this conventional
soil map will not be ’fit for use’ to the environmental modellers.

11.7 Conclusions and Perspectives

There is a structural lack of relevant soil information products at intermediate scales
over wide areas. This is especially the case in regions in the world that appear as
generally data scarce. To bridge this information gap methods for digital soil map-
ping are required that are cheap and only require limited data input.

Although legacy soil data and related environmental data, together with cheap
and easy-to-get ancillary data, provide a very useful data source for digital soil
mapping they also pose data quality problems.

As is indicated in this chapter, soil data quality problems are not restricted to
uncertainty issues, they also include aspects like completeness and accessibility
of data. It is recognised that soil and environmental data for digital soil mapping
has value in its own right, has intrinsic data quality. In addition, digital soil map-
ping data must be considered in the context of the intended uses of the soil map
product, highlighted by their contextual data quality. The organisation of soil and
other environmental data in Soil Information Systems (Lagacherie and McBratney,
2007) can facilitate the convenience and ease of use of data, its accessibility and
representational data quality (see also Kerr, 2006), for digital soil mapping.

To improve data quality in soil mapping, focus is required on quality aspects
that are important to users of data. They are both soil specialists that apply existing,
multi-source and multi-theme data in soil mapping, and end-users, consumers of
soil information.

Existing quality management approaches in soil mapping so far merely have a
producer-oriented focus and also mainly rely on inspection of end products and
detection of defects. There is a need for a more user-oriented quality focus that
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aims at the prevention of errors. This calls for a systematic approach to data quality
management of the soil mapping process itself.

It is argued that elements of TDQM can assist in the development of a soil data
quality management framework that focuses on the prevention of defective map-
ping products as well as on increased user involvement in the generation of soil
information. Issues that need further investigation in this context include:

� The definition of a soil data quality space: which data quality dimensions are
important in digital soil mapping; which ones have a more generic relevance,
which ones are relevant in a particular case only.

� The development of quality metrics for the measurement of identified soil data
quality dimensions. Some of them, like ‘accuracy’, will be more easy to measure,
whilst for others, like ‘ease of understanding’, it will be more difficult to develop
quality metrics.

� The continued development of approaches, techniques and tools for the improve-
ment of the quality of soil and related environmental data; this is specifically
relevant in cases where the re-use of legacy data is considered, and where the
spatial and semantic integration of multi-source datasets is emphasised.

It is beyond doubt that good use can be made here of the standing experience in
soil mapping, such as in the application of (geo-)statistical approaches in dealing
with spatial uncertainty. But also other multidisciplinary techniques and tools can
be instrumental as part of a soil data quality management framework, for example
elements of data mining (see for example Moran and Bui, 2002) and ontology-
based semantic matching (Krol et al., 2007) that have been introduced in digital soil
mapping.

The digital soil mapping community cannot leave problems with soil information
products for the users to be recognised and resolved. Any team involved in digital
soil mapping should pro-actively and continuously improve the quality of the soil
information product. Since users are more likely to encounter problems (particularly
concerning contextual data quality) with the soil information they use, as producers
and/or suppliers of soil information we, therefore, need to continuously expand our
knowledge about how and why our products of digital soil mapping are used.
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Chapter 12
Demand-Driven Land Evaluation

I.L.Z. Bacic

Abstract Land evaluation is the prediction of land performance over time under
specific uses. These predictions are then used to guide strategic land-use decisions.
Modern land evaluation has a 30-year history, yet the results are generally accepted
to be disappointing. Land users and planners are inclined to ignore land evaluators,
reflecting the poor quality and low relevance of many actual land evaluations, as
well as poor communication with users. The main objective of this research was
to improve use and usefulness of information for rural land use decisions based
on an operational demand-driven approach for land evaluation with case studies
in Santa Catarina State, Brazil. First, the use and usefulness of soil surveys and
land evaluation reports to land use planners were described and quantified and the
relation between latent demand and actual supply was observed. Then, the farmers’
decision environment and its implications for land evaluation were studied. These
were the basis for the subsequent steps of this research. Next, the applicability of
a data-intensive distributed environmental model (AgNPS) in a relatively data-poor
environment was evaluated. This model and other tools for visualization of sce-
narios were used with community participation, to test their effects on collective
understanding of shared environmental problems. Finally, the potential of a partici-
patory approach for integrating risk analysis into decision making for rural land use
was evaluated. This research showed that a demand-driven approach to make the
information more relevant and useful to rural decision makers for land use planning
is possible in practice and should be further explored, but its effectiveness needs
time to be confirmed. Applying the proposed approach, new demands were raised
and considering that the number of soil scientists and financial resources are scarce
in the region, digital soil mapping based on existing data emerges as a potential
alternative to help to answer to the increasing rural decision makers demands.
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12.1 Introduction

Land evaluation is the process of predicting land performance over time according
to specific types of uses (Van Diepen et al., 1991; Rossiter, 1996). These predictions
are intended to guide strategic land use decisions. So, one would expect that land use
planners and other decision-makers who influence rural land use would be eager to
use the results of land evaluation. Unfortunately this is often not happening in prac-
tice. One of the main motivations for this study was the author’s disappointment
resulting from more than 15 years working as a soil surveyor and land evaluator
with the feeling that the work was not useful to and used by the potential clients.
This apparent irrelevance of land evaluation is also observed internationally. Several
authors have stated that decision makers do not in general make use of these results,
nor are they particularly satisfied with them, if indeed they know of their existence
(Rossiter, 1996; Bouma, 1997, 1999). To date, more attention has been paid to land
evaluation methods themselves than to their relevance and the utilization of the in-
formation that they generate.

It has been suggested that to change the existing situation, adapted land use
options and planning strategies should be formulated with the participation of the
stakeholders and in accordance with their possibilities (Bouma, 1999), i.e. a partic-
ipatory and demand-driven approach. It is crucial to know what are the problems,
the needs and possibilities of the stakeholders before starting the land evaluation
process, otherwise there is a risk that questions may be answered that have no pri-
ority or relevance, and/or that questions may not be answered properly according
to the community expectation. The shift towards more participatory research is,
however, not only inspired by pragmatic reasoning. The modern farmer, especially
in developed countries, as well as the land use planner, is a well-trained profes-
sional who is less interested in receiving “definite” answers to questions than in
having a presentation of a series of realistic options with accurate predictions from
which he or she can make a selection. Modern agronomic and soil research has
a clear challenge in developing such options in close consultation and interaction
with the stakeholders, be it farmers, planners or politicians themselves. That is also
the case in Santa Catarina state, Brazil. One of the reasons that the planners do
not use current land evaluations is that these do not present a range of realistic,
relevant alternatives. Usually the land evaluation procedures show what is wrong in
the land use, what and where the conflicts are, but do not give realistic options from
which the stakeholders can choose. In particular, these options should include uncer-
tainties about each land use alternative and the risks to change the current activity,
since decision makers always must decide on the basis of uncertain and incomplete
information.

Information technology continues to improve rapidly, in particular GIS, remote
sensing, expert systems, as well as geostatistical models, digital soil mapping and
pedometric techniques (Cook et al., 2006; Lagacherie, 2006; Chapter 33). In the
context of participatory land evaluation, these should be used as much as possible
during the whole process, taking into account local conditions, e.g. the readiness
of decision makers to interact with information technology. Bouma (1999) points



12 Demand-Driven Land Evaluation 153

out that modern information technology has an important role to play in stimulating
interaction with decision makers. Visualisation of alternative land use patterns asso-
ciated with different options is a very powerful tool to involve them in the land use
planning process. Interactive computer technology allows, for instance, joint gener-
ation of alternative land use scenarios with all associated input data by researchers
and decision makers.

The general objective of this research was to improve use and usefulness of infor-
mation for rural land use decisions based on an operational demand-driven approach
for land evaluation with case studies in Santa Catarina State, Brazil. The work is a
collection of case studies in Santa Catarina, Brazil, related to demand-driven land
evaluation. For more details, see Bacic (2003), Bacic et al. (2003, 2006a,b).

12.2 Material and Methods

A diagram adapted from Rossiter, unpublished (Fig. 12.1) illustrates the emerging
demand-driven paradigm in land evaluation used in this work.

The first step of the research was to evaluate the use and usefulness of soil surveys
and land evaluation reports to land use planners. To test the success of a large land
evaluation exercise undertaken as part of micro-catchment project in Santa Catarina
State, southern Brazil, agricultural extensionists, considered as the primary land
evaluation clients, were queried. A questionnaire was used with both structured and
open questions, to determine their experiences with, and attitudes to, the current
land evaluation method. The relation between latent demand and actual supply was
observed.

Next, the farmers’ decision environment and its implications for land evaluation
were studied. To understand the environment for agricultural land use decisions and
review its implications for land evaluation, literature, including local documenta-
tion, and semi-structured interviews with farmers and extensionists, were used.

One of the types of information demanded by the decision makers was the
environmental degradation risks assessment. Therefore, the applicability of a data-
intensive distributed environmental model – AgNPS (Young et al., 1987, 1989) – in
a relatively data-poor environment was evaluated. This included data preparation,
cell size selection, sensitivity analysis, model calibration and application to differ-
ent management scenarios. The model was calibrated by making a “best guess”
for model parameters and a pragmatic sensitivity analysis was performed. The pa-
rameters were adjusted so that the model outputs (runoff volume, peak runoff rate
and sediment concentration) closely matched observed data. This model was used
along with other tools (synoptic satellite image, ortophoto mosaic, location of pig
producers) for visualization of scenarios in a participatory community workshop,
designed to test their effects on collective understanding of shared environmental
problems. Workshops were organized with extensionists and farmers directly in-
volved in the land uses that were thought to be related to the perceived environ-
mental problems. Questionnaires were administered at four different times during
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Knowledge,
Models

What interpreted information is needed
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What primary information is needed
to reach an interpretation?

Negotiation

Fig. 12.1 Demand-driven land evaluation and resource inventory (adapted from Rossiter,
unpublished)

the workshops, to test participants’ reactions to, and opinions of, the information
provided.

Finally, formal risk concepts were introduced at decision makers meetings ac-
cording to local demands and following a participatory approach, as a first step
towards integrating risk assessment into rural decision making in Santa Catarina,
Brazil. Semi-structured interviews and meetings were conducted with extension-
ists and farmers. The following information was presented and discussed: (1) the
time series frequency distribution of maize yield predictions, simulated by GAPS
computer program (Buttler et al., 1997) for 16 feasible planting dates, representing
climatic risks, both within and between years; and (2) a simple economic analysis
(gross margin) and income probabilities for seven land use options over a recent
five-year period, followed by an interactive exercise where probabilities of achieving
user-supplied target gross margins were calculated according to participants actual
information, using the @RISK computer program (Palisade Corporation, 1998).
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Decision-makers’ attitudes towards risk, and how these were influenced by objective
information, were also investigated.

12.3 Results and Discussion

12.3.1 The Use of Land Evaluation Information by Land Use
Planners and Decision-Makers

The soil resource inventory and associated land evaluation were considered to have
some utility, but were not in general used for their intended purpose, namely farm
planning. This was mainly because they did not contain crucial information neces-
sary to such planning in the actual context in which the farmer had to take decisions.
The additional required information, reflecting the primary deficiencies on the re-
ports, is shown in Table 12.1. These deficiencies could have been avoided with a
demand-driven approach, evaluating and reporting according to the true needs and
opportunities of the decision-makers.

12.3.2 The Environment for Farmers’ Land Use Decisions

Different groups of farmers expressed different needs for information and thus
should be approached in different manner. Some farmers would welcome any infor-
mation on improving their current farming systems, whilst others are also interested
in innovative crops or agricultural processes. Yet another group seemed to need
motivation more than information. The study suggests that if the land evaluation
process is begun with a careful analysis of the decision environment of rural land
users (farmers) and follows a demand-driven approach, the results will likely be
more realistic and therefore more useful to both policy/planning institutions and
direct land users. This should lead to more demand and a “virtuous cycle” where
planning, land evaluation and clients’ needs and possibilities are increasingly inter-
linked.

12.3.3 Applicability of a Distributed Watershed Pollution Model
in a Data-Poor Environment

The work showed one example of the applicability of a data-intensive water qual-
ity model (AgNPS) in a relatively data-poor environment, demonstrating that it is
possible to consistently apply such model even without expensive procedures for
data measurement and collection, at least for relative risk assessment. In this case
it was shown that expert knowledge of the area in addition to local knowledge and
literature information compensates in part for poor data. It was possible to apply a
distributed environmental model like AgNPS, for relative ranking of environmental
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management scenarios in a comparative way (Fig. 12.2). This can be useful in many
areas of the world where data and financial or human resources for detailed model
calibration are lacking. This work also demonstrated that supposedly unprepared
decision makers were able to properly understand and react to new tools, even
though it was the first attempt to introduce these in the region. This shows the
potential in the region for the use of GIS, expert systems and digital soil mapping
techniques.

12.3.4 Using Spatial Information to Improve Collective
Understanding of Shared Environmental Problems
at Watershed Level

Visualization of scenarios (e.g. Fig. 12.2) with community participation was useful
to increase participants’ understanding of the water pollution problem, improve their
perceptions (Table 12.2), stimulate the search for solutions (Table 12.3) and generate
new demands. This was the case even taking into account that rural decision makers
are not well educated and not used to visualizing scenarios. In this, Santa Catarina
is similar to many areas of the world. Participants, in general, liked the material
presented and the methods of the meetings.

12.3.5 A Participatory Approach for Integrating Risk Assessment
into Rural Decision Making

The case study particularly focused on two of the main risk-oriented informa-
tion demands in the region: (1) yield predictions for maize on different planting
dates and (2) economic information for different land use options (Table 12.4).
It evaluated the potential of a participatory approach for integrating risk analysis
into decision making for rural land use and decision makers’ view of the sup-
plied information (e.g. Table 12.5). It also investigated decision makers’ attitudes
towards risk, and the degree to which these could be changed by objective in-
formation. Different groups had markedly different levels of knowledge, analytic
capacity, economic conditions, perspectives and needs, and therefore should be
approached differently and with group-specific information. Farmers were mostly
moderately or extremely risk averse. However, at the end they declared them-
selves willing to take risks if they have adequate information. The results sug-
gest that a participatory approach, by gathering, presenting and periodically dis-
cussing demanded information with decision makers is certainly a practice to
be further explored to effectively integrate risk assessment into rural decision
making.
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Fig. 12.2 P concentration (ppm) in runoff for four scenarios and three different storm sizes (See
also Plate 14 in the Colour Plate Section)
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Table 12.2 Main causes and general perceptions of pig manure pollution

Marginal farmers Consolidated farmers Extensionist

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3
(%) (%) (%) (%) (%) (%) (%) (%) (%)

Main causesa

General high number of animals 100 64 0 80 40 20 28 44 39
Animal concentration 100 91 100 90 90 100 89 83 89
Ponds location 100 73 91 50 80 60 39 22 28
Inappropriate ponds building 91 73 100 60 80 80 17 28 28
Direct flow to the streams 91 82 100 50 80 70 78 67 83
Management 36 55 91 30 80 80 33 72 72

General perception
Severity levelb 64 45 27 20 20 20 44 56 44
Urgency for solutionsc 91 45 27 10 0 10 56 56 44
Possibility for solutionsd 91 18 55 60 40 80 89 72 83

Q1: Questionnaire 1, pre-visualization; Q2: Questionnaire 2, post-visualization; and Q3: Question-
naire 3, post-discussion.
a Proportion of respondents considering the cause to be very important (from three options: very
important, important and slightly important).
b Proportion of respondents considering pig manure pollution to be very and extremely severe in
the region (from five options: extremely severe, very severe, severe, slightly severe and not severe).
c Proportion of respondents considering the search for solutions to be very and extremely urgent
(from five options: extremely urgent, very urgent, urgent, slightly urgent and not urgent).
d Proportion of respondents considering to be very difficult and difficult to find solutions (from
four options: very difficult, difficult, easy and very easy).

12.4 Conclusions

Demand driven land evaluation has been suggested by several authors as an at-
tempt to make the information more relevant and useful to rural decision makers
for land use planning. The interactive approach presented here was clearly valued
by the decision makers. It was the first time in the author’s more than 15 years as a
land evaluator that decision makers reacted to information presented by land eval-
uators. They praised, criticised, changed their perceptions, made suggestions and
requested more information. Even the negative reactions were a positive achieve-
ment of this work, as it is better to correct the path earlier than to invest time
and resources to realise later that the work was not useful. Results presented in
this work showed that a number of new demands were raised by decision makers.
One of the types of information requested was the existing, but previously ignored,
physical land evaluation. In this case, as the number of soil scientists and finan-
cial resources are scarce in the region, digital soil mapping based on existing data
(Mayr and Palmer, 2006; Chapter 4) is a potential alternative to help to answer to
the increasing expected demands. Yet, the use of digital soil mapping techniques
could have a key role in the rural decision making process, helping to give rapid
answers to the decision makers, improving the efficiency of traditional soil sur-
veys (see also Chapters 4 and 20), improving the quality of the given information
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Table 12.3 Effectiveness and feasibility of measures to decrease pollution problems caused by pig
manure

Marginal farmers Consolidated
farmers

Extensionist

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3
(%) (%) (%) (%) (%) (%) (%) (%) (%)

Effectiveness of measures for
improvementsa

Decrease number of animals 73 73 9 30 10 0 17 17 33
Decrease concentration of animals 91 82 100 60 90 90 89 67 89
Change location of ponds 82 91 100 90 80 70 33 33 28
Vegetal streams protection 55 82 100 70 70 80 39 44 33
Manure transportation 91 100 100 70 90 90 33 72 67
Improve management of manure 91 100 100 90 90 90 89 89 94
Avoid direct flow 91 91 82 90 80 80 78 94 83

Feasibility of measures for improvementsb

Decrease number of animals 55 73 9 40 40 20 11 11 17
Decrease concentration of animals 27 73 0 70 60 60 17 44 33
Change location of ponds 64 82 9 90 80 80 39 50 39
Vegetal streams protection 82 100 91 80 90 90 72 89 83
Manure transportation 91 100 91 80 80 80 39 61 67
Improve management of manure 91 91 82 80 90 90 83 89 83
Avoid direct flow 73 91 91 100 80 80 89 94 100

Q1: Questionnaire 1, pre-visualization; Q2: Questionnaire 2, post-visualization; and Q3: Question-
naire 3, post-discussion.
a Proportion of respondents considering the measure to be very effective (from three options: very
effective, slightly effective and ineffective).
b Proportion of respondents considering the measure to be feasible (from three options: feasible,
slightly feasible and infeasible).

(Chapter 25) and improving the communication among the actors involved in the
planning process through visualization tools, simulation models, etc. Finally, this
research showed that demand-driven land evaluation approach is possible in practice
and should be further explored, but its effectiveness needs time to be definitely
confirmed.

Table 12.4 Gross margins for historical scenarios 1995–1999, for seven land-use options

Gross margin (R$)a

Bean Soybean Onion Garlic Swine Milk Maize

1995 53.69 28.57 2031.65 −1144.76 16000.00 3497.29 74.70
1996 77.19 233.33 573.80 −783.78 9510.00 2513.39 139.54
1997 88.87 325.80 1267.60 2222.11 19045.90 2421.59 101.08
1998 14.77 168.83 1781.75 −2327.86 10916.10 2302.38 122.13
1999 −28.79 −53.18 637.81 −3962.84 −6258.40 −711.96 −6.90
Mean 41.15 140.67 1258.52 −1199.42 9842.72 2004.54 86.11
CVb 85.24 91.86 191.61 −52.61 100.57 125.97 150.14

a Brazilian Reais ( 1,00 = R$1,80 in December 1999).
b Coefficient of variation.

€
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Table 12.5 Preferences for land-use options under the hypothetical condition of a newly estab-
lished farm (multiple answers allowed)

New activity Marginal farmers Consolidated farmers Extensionist
Q1a Q2b Q3c Q1a Q2b Q3c Q1a Q2b Q3c

(%) (%) (%) (%) (%) (%) (%) (%) (%)

Pig 50 38 – 43 71 71 17 33 39
Maize 50 13 50 86 57 86 67 72 67
Milk 38 38 13 43 43 71 83 89 83
Bean 13 13 – – – 14 17 6 6
Soybean – – – – – 14 33 28 22
Onion – 63 63 – – – 11 22 22
Garlic – – – – – – 11 – –
a Questionnaire 1: before presentation
b Questionnaire 2: after presentation
c Questionnaire 3: after discussion
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Chapter 13
Diffuse Reflectance Spectroscopy as a Tool
for Digital Soil Mapping

R.A. Viscarra Rossel and A.B. McBratney

Abstract This paper discusses the potential of soil diffuse reflectance spectroscopy
(DRS) for rapid and cheap soil analysis and its application to digital soil map-
ping. We consider both visible-near infrared (vis-NIR) and mid infrared (mid-IR)
spectroscopy, the use of multivariate calibrations, the development of soil spectral
libraries and the cost and benefits of soil DRS. Finally, we conclude with some
thoughts on the potential use of the techniques for digital soil mapping and soil
science generally.

13.1 Introduction

The acquisition of quantitative soil information is essential for effective soil man-
agement. Obtaining these data by systematic sampling using conventional survey
and laboratory analyses is ineffective and prohibitively expensive. Further adoption
of digital soil mapping demands the development and adoption of techniques to
replace and/or enhance conventional soil survey and laboratory analysis (see Chap-
ter 2). In this paper we propose the use of diffuse reflectance spectroscopy (DRS) in
the visible-near infrared (vis-NIR: 400–2500 nm) and mid infrared (mid-IR: 2500–
25000 nm) as a worthy candidates for this.

Both vis-NIR and mid-IR techniques are rapid, accurate and more economical
than conventional methods of soil analysis, they do not use environmentally harmful
chemicals, require fewer pretreatments, are non destructive and when combined with
multivariate calibrations a single spectrum can provide estimates of a number of soil
properties. The techniques are highly sensitive to both organic and inorganic soil
composition, making them potentially useful and powerful tools for the assessment
and monitoring of soil, its quality and function. The mid-IR contains a lot more in-
formation on soil mineral and organic composition than the vis-NIR (e.g. Janik and
Skjemstad, 1995) and their multivariate calibrations across a wide range of soil types
are more robust (Viscarra Rossel et al., 2006). The reason is that the fundamental
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Fig. 13.1 Soil diffuse reflectance spectra in (a) the mid infrared 4000–400 cm−1 (or 2500–25000
nm) showing approximately where the fingerprint, double bond (DB), triple bond (TB) and X-H
stretch regions, and (b) the visible and near infrared 400–2500 nm (or 25,000–4000 cm−1) showing
approximately where the combination, first, second and third overtone (OT) vibrations occur as
well as the visible (vis) range

molecular vibrations of soil components occur in the mid-IR, while only their over-
tones and combinations are detected in the NIR. Hence soil NIR spectra display fewer
and much broader absorption features compared to mid-IR spectra (Fig. 13.1).

Soil mid-IR spectroscopy is particularly well suited for the analysis of soil or-
ganic matter and mineral composition because absorption bands associated with both
organic functional groups and soil minerals can be readily identified in soil mid-IR
spectra (Fig. 13.1a). Visible-NIR spectroscopy can also be used to analyse soil, how-
ever, vis-NIR spectra (Fig. 13.1b) are visually much less interesting and difficult to
interpret than those of the mid-IR. Absorptions bands are broad and they tend to
overlap. Nevertheless, this region does contain useful information on organic and
inorganic materials in the soil. Absorptions in the visible region (400–700 nm) are
mostly due to electronic excitations and are primarily associated with the darkness of
soil organic matter and to chromophores of iron containing minerals (Fig. 13.1b).

Diffuse reflectance spectroscopy has been used in soil science research since
the 1950’s and 60’s (e.g. Brooks, 1952; Bowers and Hanks, 1965). However, it is
only in approximately the last 20 years, most likely coinciding with the establish-
ment of chemometrics and multivariate statistical techniques in analytical chemistry,
that their usefulness and importance in soil science have been realised. So far, the
published literature contains a vast number of investigations on the use of DRS as
an analytical technique to complement soil analyses (e.g. Dalal and Henry, 1986;
Janik and Skjemstad, 1995; Viscarra Rossel et al., 2006). The aim of this paper is
to discuss the potential of soil DRS as an effective analytical tool for surveying and
digital soil mapping.

13.2 Multivariate calibrations of soil diffuse reflectance spectra

Diffuse reflectance spectra of soil are largely non-specific due to interferences re-
sulting from the overlapping spectra of soil constituents that are themselves varied
and interrelated. This is particularly significant with vis-NIR spectra, which result
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from weaker overtones and combinations of vibrations occurring in the mid-IR. This
lack of selectivity may be compounded by instrumental noise and drift and light-
scatter and pathlength variations that occur during measurements. All of these fac-
tors result in complex absorption patterns that need to be mathematically extracted
from the spectra so that they may be correlated with soil properties. Hence, the anal-
ysis of soil diffuse reflectance spectra requires the use of chemometric techniques
and multivariate calibration (e.g. Martens and Naes, 1989). Chemometrics refers to
the use of techniques for the mathematical or statistical treatment of chemical data,
while multivariate calibration, in this instance, refers to the use empirical data and
prior knowledge to predict an unknown soil property y from many spectroscopic
measurements x1, x2,. . . ,xk, simultaneously via a mathematical transfer function.
Thus, soil spectroscopic calibrations are pedotransfer functions with large numbers
of spectroscopic predictor variables.

Early research in DRS for soil analysis used calibrations based on only specific
wavelengths that were selected using variable selection techniques such as step-wise
multiple linear regression (SMLR) (e.g. Dalal and Henry, 1986; BenDor, 1995).
The main reason for the use of SMLR was the inadequacy of more conventional
regression techniques like multiple linear regression (MLR) and the unawareness of
soil scientists of the existence of full spectrum data compression techniques such as
principal components regression (PCR) and partial least squares regression (PLSR).
Unlike MLR, PCR and PLSR can cope with data containing large numbers of pre-
dictor variables that are highly collinear. PCR and PLSR are related techniques
and in most situations prediction errors will be similar. However, PLSR is often
preferred by analysts because PLSR relates the response and predictor variables
so that the models explain more of the variance in the response with fewer compo-
nents, the models are more interpretable and the algorithm is computationally faster.
Other multivariate and data mining techniques have also been used to calibrate soil
spectra, however, mostly, with only limited advantages over PLSR. For example,
Fidêncio et al. (2002) employed radial basis function networks (RBFN) to relate
soil organic matter to soil spectra in the NIR region. Shepherd and Walsh (2002)
used multivariate adaptive regression splines (MARS) for the estimation of soil
properties from soil spectral libraries. Daniel et al. (2003) implemented artificial
neural networks to estimate soil organic matter, phosphorus and potassium from
their vis-NIR spectra. Brown et al., (2006) used boosted regression trees with vis-
NIR spectra. Viscarra Rossel (2007) combined PLSR with bootstrap aggregation
(bagging-PLSR) to improve the robustness of the PLSR models and produce pre-
dictions with uncertainty.

The literature has shown the potential of DRS and multivariate calibration for
predictions of soil properties (Table 13.1). This summary shows that DRS can be
used for the prediction of soil properties and that generally, the mid-IR produces
better predictions than the NIR and the vis-NIR, and that the latter produced better
predictions than the NIR or visible alone.

The studies in Table 13.1 use surface and subsurface soils and report results
collected from single soil types with few samples (e.g. Masserschmidt et al., 1999;
Walvoort and McBratney, 2001) to many soil types from different continents
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Table 13.1 Predictions of soil properties using visible (vis), near infrared (NIR), mid infrared
(MIR) and vis-NIR DRS. Data shown are average R2 values of validation results reported by
various authors from 1986 to 2006

Soil property Vis vis-NIR NIR mid-IR

Acid (exch.) 0.65b 0.61b 0.56c

Al (exch.) 0.05d 0.61b 0.43c

C (inorg.) 0.96a 0.87a 0.98a

C (total) 0.89a 0.90a 0.95a

C:N ratio 0.88a

CEC 0.16d 0.76b 0.68b 0.79b

Ca (exch.) 0.35d 0.80a 0.45c 0.89a

Carbonate 0.69b 0.95a

EC 0.10d 0.38d 0.31d

Fe (DTPA) 0.69b 0.49c 0.55c

K (exch.) 0.29d 0.52c 0.47c 0.36d

LR 0.25d 0.62b 0.81a

Mg (exch.) 0.76b 0.59c 0.76b

N (NO3) 0.63b 0.04d 0.06d

N (total) 0.86a 0.94a 0.86a

Na (exch.) 0.22d 0.33d

P (avail.) 0.06d 0.81a 0.10d 0.14d

pHCa 0.36d 0.63b 0.68b 0.75b

pHw 0.36d 0.61b 0.62b 0.66b

Metal content: Cd, Cr, Cu, Pb, Zn 0.45–0.93c−a 0.66–0.99b−a

Clay 0.43c 0.76b 0.64b 0.78b

Sand 0.47c 0.70b 0.59b 0.84a

Silt 0.31d 0.59c 0.41c 0.67b

SSA 0.70b

Water 0.78b 0.80b 0.81a

Biomass 0.60c 0.75b 0.69b

Enzyme activity 0.55c 0.70b

OC 0.60c 0.79b 0.76b 0.91a

Respiration rate 0.66b

Note: R2 values for predictions of soil properties are classified as: a very good (>0.81), b good
(0.61–0.8), c fair (0.41–0.6) and d poor (<0.4). Other more appropriate statistics like the root mean
squared error (RMSE) of predictions are not reported because they were missing in a lot of the
original papers. Adapted from Viscarra Rossel et al. (2006).

(including tropical soils) with thousands of samples (Brown et al., 2006). Mostly,
however, the studies include two to four different soil types and calibrations with
100–200 samples.

13.3 Development of diffuse reflectance spectral libraries

There is widespread interest for the development of soil spectral libraries. However,
only a few that are geographically diverse and specific to soil properties have been
described in the literature (e.g. Shepherd and Walsh, 2002; Dunn et al., 2002: Brown
et al., 2006). Three important requirements for the development of a soil spectral
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library are: (i) it should contain as many samples as are needed to adequately de-
scribe the soil variability in the region in which the library is to be used; (ii) the
samples should be carefully subsampled, handled, prepared, stored and scanned.
Everything that has happened to the sample up to the time of scanning will be
embodied in the sample and recorded in the spectra; and (iii) the reference soil ana-
lytical data used in the calibrations should be acquired using reliable and accredited
analytical procedures. As with any type of modelling, the dictum here is ‘garbage
in = garbage out’ and hopefully the converse ‘quality in = quality out’.

With relation to (i) above, if the library is being developed for a particular region
from scratch, then the soil sampling strategy used will be critical (e.g. de Gruijter
et al., 2006). If the library is being developed from a legacy soil sampling, then the
recommendation is to scan all of the samples, then correlate the spectra with the
relevant soil properties and use these to assess the quality of the legacy soil data.
Figure 13.2a, illustrates the procedure used for the development of a soil spectral
library from a legacy soil sampling of cotton-growing soils from northern NSW,
Australia, and Fig. 13.2b the scheme for the development of a spectral library from
a new soil sampling (Viscarra Rossel et al., 2008).

The schemes in Fig. 13.2 are divided into two sections: (1) for building the li-
brary and (2) for using it. The soil samples are prepared and scanned. The spectra
are compressed using PCA to identify structure, patterns and possible clustering.
Outlier analysis is performed on the multivariate data, and if outliers are present,
the samples are rescanned for verification. From Fig. 13.2a, if there are no outliers
the spectra are combined with the legacy soil data and their correlations assessed. If
these are within acceptable limits, then the spectral library may be used to predict
the properties of new soil samples that belong to the same spectral population as the
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Fig. 13.2 Schemes for the development of a soil diffuse reflectance spectral library from (a) a
legacy soil sampling and (b) a new soil sampling. The building of the library is shown by (1) and
its use by (2). Adapted from Viscarra Rossel et al. (2008)
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soils in the library. Conversely, if these correlations are unexpectedly poor, e.g. there
is little or no correlation between the organic carbon and clay contents of the legacy
samples and their spectra, then most likely the quality of the soil data are poor. If
this is the case, then the spectral data space of samples in the library is sampled
to select a representative subset that adequately describes the spectral diversity in
the library. These samples are then subjected to the relevant soil laboratory analysis
before the calibrations are derived. If the accuracies of the calibrations are accept-
able, then they may be used to predict values of the reference soil properties for
the entire library, thus repopulating the legacy data with good quality information.
Clearly, these calibrations may also be used to predict soil property values for new
samples that belong to the same population as the soils in the library. If samples are
not represented by the spectral library, i.e. they are spectral outliers, they may be
removed and a new targeted soil sampling mission may be required to populate the
library with samples with similar characteristics. Then a similar procedure may be
followed (Fig. 13.2b). In this case, if the new spectra classify poorly because they are
not well represented by the library, they may be added to the library after reference
laboratory analysis. Hence, the development of soil spectral libraries should be a
continual process.

13.4 Costs and benefits of soil DRS for DSM

Two major costs associated with DRS include the initial investment in a spectrome-
ter and the development of the spectral library. A bench top FT-IR spectrometer with
an extended wavelength range to also include the NIR can cost somewhere in the
vicinity of US$50,000, as can a portable vis-NIR instrument. The development of a
spectral library with well characterised reference soil samples can be expensive. For
instance, for a set of 500 well characterised soil samples analysed in an accredited
laboratory with data on soil pH, organic carbon, total carbon and nitrogen, CEC
and exchangeable cations, P, clay, sand and silt, can cost as much as a spectrometer.
However, the number of samples needed for the calibrations may be reduced by sam-
pling to select a representative subset of samples for conventional laboratory analy-
sis (see 13.3 above). The more important point to stress here is that the quality of the
library calibrations can only be as good as the quality of the data used to derive them.

Although US$100,000 may seem like a hefty investment, it is important to realise
that the potential savings are immense. DRS is one of the simplest, most efficient
and powerful spectroscopic techniques. Potentially, DRS can improve the analytical
capabilities and efficiencies of either commercial or research laboratories and at the
same time drastically reduce their costs. It can do this because: (i) measurements
require minimal sample preparation as only a few grams of air-dry ground soil are
needed; usually less than 2 mm for vis-NIR (although it can be used on unprepared
soil due to the higher energy of their source and more sensitive detectors) and less
than 200 μm for mid-IR; (ii) large numbers of samples can be scanned rapidly;
for instance in our small research laboratory, using our mid-IR spectrometer we
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can manually scan 100 samples in 7 h and twice as many using our portable vis-
NIR instrument. Obviously with automation these numbers could be substantially
increased. Furthermore, predictions of soil properties can be made either in real-time
or in batches after the spectra are collected, taking only a couple of extra minutes;
and (iii) a single spectrum can be used to predict various soil properties, some of
which are listed in Table 13.1. There can also be some value adding by combining
DRS with soil inference systems (SPEC-SINFERS) to predict other important and
functional soil properties via pedotransfer functions (McBratney et al., 2006).

13.5 Conclusions

DSM has much to gain from the adoption of soil DRS. Applications include not
only soil analysis to improve soil survey and mapping but also soil classification,
precision agriculture, and contaminated site assessment and management. There
is great potential for the use of soil spectra in different areas of soil science, not
only the analytical stream. For example, for soil organic carbon research spectra
could be used directly as input into carbon turnover models, or in precision agri-
culture where spectra could be used directly in decision support systems to derive
fertiliser recommendation, etc. However, training of young (and old) soil scientists
is needed. The collection of soil spectra is easy. Spectra can be collected by the press
of a button. However, it is much harder to manage and analyse the large volumes
of data that the instruments generate. Soil scientist need to acquire the necessary
quantitative skills to analyse and interpret these data. There is plenty in the lit-
erature on both DRS (e.g. Williams and Norris, 2001) and multivariate statistics
and chemometrics (e.g. Martens and Naes, 1989). There are various commercial
software products that can be used for the spectroscopic analyses and calibration,
which although expensive, provide you with the full range of tools that are needed
to analyse soil spectra. Alternatively, shareware and freeware packages that provide
most of the functionality provided by commercial packages are also available (e.g.
Viscarra Rossel, 2008), not to mention the free software environments such as the
R-project (www.r-project.org/) and the readily available and downloadable codes
for the mathematical and statistical processing of the data.
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Chapter 14
Digital Soil Mapping at a National Scale:
A Knowledge and GIS Based Approach
to Improving Parent Material
and Property Information

R. Lawley and B. Smith

Abstract One of the fundamental parameters in the soil formation equation is that
relating to the parent material from which the soils have been derived. Such in-
formation is typically derived from geological surveys and paper maps. However,
an increasing propensity to directly produce digital geological maps and associated
data bases means that a far greater range of information can be made available to
assist the soil scientist in mapping and predicting soil characteristics. Such geo-
information typically can include, detailed lithological parameters, geochemistry of
soils and sediments, engineering parameters and remotely sensed information.

In this paper we describe on-going work at the British Geological Survey in
which we are actively developing a national digital parent material map and prop-
erty data base at a scale of 1:50 000. The main aim in doing this is to support the
development of national soil data sets at a similar scale by those responsible for
soil survey in the UK. However, our experience to date suggests that an adoption
of similar strategies in regions and countries with sparse, soil orientated, data in-
frastructures could be of considerable value. For example many countries have, or
are receiving, aid in support of the development and licensing of mineral resources
(i.e. Madagascar, Afghanistan and Mauritania) which include not only significant
improvements in geological mapping and associated GIS infrastructure, but also
remote sensing and geochemical survey.

14.1 Introduction

In 2005 the British Geological Survey (BGS) began a five-year programme of
research entitled ‘sustainable soil management’. The aim of the programme is to
produce an integrated analysis of the UK’s near surface environment by develop-
ing (a) improved soil-parent material maps at 1:50 000 scale, (b) 3-D modelling
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capability of the near surface environment (see Chapter 16) and (c) increased knowl-
edge of processes that occur within this near surface zone.

Drivers for funding this new work programme included an increasing scientific
(Anderson et al., 2004; Zanner and Graham, 2005 and Wysocki et al., 2005) and
legislative interest (DEFRA, 2004) in the characteristics of the near surface (the
region typically less than 5 m below ground level). In undertaking this programme
of activities BGS also hoped to be in a position to assist the UK soil-science commu-
nity in meeting the needs of emerging soil policies that are based on the assessment
of soil function.

In the UK it has been recognised that whilst the 1:250 000 scale soil maps
(Mackney et al., 1983) offer full national coverage of soil information, there is also
a need for similar data at 1:50 000 scale. This is required to support increasingly in-
tegrated European framework directives, England’s soil action plan (DEFRA, 2004)
and for managing the impact of climate change of soil resources. Unfortunately soil
data at this scale is not systematically available in the UK (or indeed in many other
countries). These factors together with the completion of the UK digital geological
map at a scale of 1:50 000 and the implementation of a policy to digital archive
all legacy geo-data at BGS (Jackson and Green, 2003) provided the catalyst for
producing an improved soil-parent material map (see Fig. 14.1) as part of the BGS
sustainable soil management programme.

As a result of the digitisation of legacy data, and publication of a digital geologi-
cal map for the whole of the UK (solid and drift) it is now possible to offer a multi-
tude of datasets and models, rather than ‘just’ the traditional single-purpose geology
map. It is also possible for the first time to interactively trace the source informa-
tion back to scanned archive material. However, in making digital maps geologists
have had to discard traditional cartographic production values, and move toward
more ‘mechanistic’ map data. Like soil maps, geological maps are a synthesis of
empirical knowledge; the subtleties and detail of the rocks, traditionally shown by
cartographic elegance of shading, or spatially unconstrained comments on the map
face, are often lost once the map is digitised and made available through GIS. When
that data is subsequently used by non-geologists or reprocessed by rule-based GIS
systems to make derivative maps, the geological data often becomes problematic
with a tendency towards overly complex or poorly defined classifications.

The Parent Material Map (PMM) shown in Fig. 14.2, is an attempt by BGS to
remove the complexity of geology description as detailed in the BGS lexicon of
named rock units (BGS, 2006) from its baseline datasets and at the same time re-
introduce spatial data previously unpublished because it was regarded as ‘outside
the remit’ of the national geological survey.

Once completed, it is intended that the PMM will become a fundamental baseline
dataset for soil scientists to use in the creation of their own soil models for the UK
(potentially via the scorpan variables as described by McBratney et al., 2003) where
data relating to climate, land use, relief and parent material is available at similar, or
better scales.

For the past decade a significant amount of World Bank funding has been focused
on the upgrading of geological mapping via digital methodologies, remote sensing
and geochemical survey in response to mineral exploration and mining sector devel-
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Fig. 14.1 Shows current geological map, with shaded area of unpublished loess information
extracted from original fieldslips

opment. We propose that methodologies BGS have employed in the development of
the UK PMM, together with the existence of upgraded information from the mining
sector provide an opportunity for the production of digital parent material maps
and associated databases. These digital maps in turn could represent a first, but
significant step in closing the information gap, which hinders the development of
digital soil models in countries with poor or non-existent data infrastructure.

14.2 Methodologies, Results and Discussion

The Parent Material Map derives its core spatial framework and descriptive con-
tent from main BGS dataset: DigMapGB50 (BGS, 2005). DigmapGB50 is a typical
lithostratigraphical geology map and dataset. It has been derived from empirical
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Fig. 14.2 Parent Material Map for Britain (version 0.1) (See also Plate 15 in the Colour Plate
Section)
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methods of geological survey over many years, at scales of between 1:10 000
and 1:25 000, with cartographic generalisation for final publication at 1:50 000
scale. Like all geological maps there is reliance upon the skills and ability of the
surveyor to ‘interpret’ landscape, soils and outcrop to create the map. However,
map quality is ultimately constrained by cost, complexity and survey objectives. In
the UK (and in many international surveys) geological maps exhibit four common
flaws:

1. A tendency to concentrate on hard rock (bedrock) geology or economic geology,
at the expense of superficial (near–surface) deposits or un-economic strata.

2. A tendency for lithological descriptions to concentrate on ‘fresh’ material char-
acteristics, with only brief descriptions of weathered material. (Soil information
can rarely, if ever, be found on a published geological map).

3. A lack of freely accessible, quantified analysis and description of the rocks and
associated properties

4. Highly clustered sample and survey patterns (databases are a ‘patchwork quilt’
of information rather than a seamless entity)

As a result of these flaws, some geological maps do not necessarily define what
immediately lies beneath the soil and thus they can make poor parent-material maps.
However, mining the archive datasets and reconstructing the geological map with
an emphasis on near surface materials makes it is possible to correct these issues.
For example, in the production of our UK PMM we aim to (1) use data mining
and terrain modelling to spatially delineate unpublished surficial deposits, and (2)
reattribute and simplify geological terminology to make data contained within the
geological map more useful to potential users as a parent material map. In the longer
term we also aim to incorporate information from:

1. The statistical integration of geochemical, engineering and other quantified sur-
vey information

2. The integration of remotely sensed data. For example DTMs, Spectral Gamma,
Landsat, SRTM, ASTER, GPR etc.

3. The integration of ‘traditional’ soil survey and profile data (if available at similar
scales, for improving and testing the simplification process on a regional basis)

4. Confidence mapping of the PMM

These short and longer terms aims are discussed in more detail below.

14.2.1 Data Mining for Unpublished Surficial Deposits

In the UK, geology maps are traditionally divided into two groups: Bedrock and Su-
perficial. Bedrock mapping delineates rocks more than ∼2.6 million years old, Su-
perficial mapping delineates deposits less than ∼2.6 million years old (also termed
‘Quaternary’ deposits). For much of BGS’ 170-year history, bedrock mapping in
the UK was driven primarily by a need to find mineral and coal resources. It has
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only been in the last 40 or so years that Quaternary and non-economic deposits have
been surveyed as ‘primary targets’ for research. The Quaternary history of the UK
comprises a cyclical succession of ice advance and retreat, the most recent of which,
known as the ‘Devensian’, began ∼80 000 years BP and ended ∼10 000 years BP.
During the latest stages of the cold period, northern UK was buried under glaciers
and ice fields, whilst southern UK was subject to periglacial conditions. The Quater-
nary geology of the UK is a complex system of ice contact, outwash and soliflucted
deposits. These deposits present specific difficulties for geological survey; they are
generally heterolithic and spatially complex. Previous attempts to use geology maps
for soil modelling (Mayr et al., 2001) have indicated that the geological map for the
UK under-represents Quaternary and Holocene (recent) deposits at surface, and that
three specific deposits form the bulk of the missing deposits: Peat, Colluvium and
Loess (including coversand). These deposits exhibit blanket-like forms and where
present are generally less than 1 or 2 m thick. Typically, these deposits have been
observed during the early surveys and commonly their presence has been ‘indicated’
with map-face annotation, but not necessarily identified via a specific map boundary.
As a result, a lot of field-based evidence within these legacy records is ‘unpublished’
and missing from the modern digital output. These unpublished data can be partly
‘restored’ to the PMM by undertaking an extensive data rescue and renewal process
to seek out and digitally capture them (see Chapter 6).

Additionally, Peat, Loess and coversands have been exploited as resources in the
UK and so some sparse sample information is available from BGS national and
regional surveys for resources. Where archive searches fail, remote-sensing tech-
niques can assist. Several satellite and airborne sensors provide spectra suitable
for deriving pseudo-maps of Peat distribution, as well as Aerial photo interpreta-
tions. However, Colluvium presents a problem in that its heterolithic composition
and ubiquitous and complex habit make accurate and consistent survey difficult.
Descriptions of this soliflucted material are often deliberately ‘vague’, and in ar-
eas of Till deposits, delineation of Colluvium is extremely difficult. To resolve the
possible extent of this deposit, we are using terrain analysis to determine areas
where such deposits may have accumulated over time and analysis of ‘upslope
areas’ for these locations to determine potential lithological characteristics (see
Fig. 14.3).

14.2.2 Re-Attribution and Simplification of Geological
Terminology

The reattribution and simplification of geological terminology is crucial to the
success of the PMM. This is to allow a wider audience to easily use the dataset with-
out having to become too geologically aware or spend resources on lengthy ‘back-
ground’ research. There are two reasons why this is a critical issue for BGS. Firstly,
fewer environmental-science students are gaining the geological training needed to
understand traditional geological datasets. Secondly, the creation of near-surface
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Fig. 14.3 Shows mapped superficial deposits (in dark grey colours) with modified ‘zones’ of mod-
elled colluvium in lighter grey. Note the absence of mapped units on the left-hand side of the image,
as a result of mapping policy at time of survey. Geologists have subsequently resurveyed this area
of Devizes, UK and the new survey data indicates the modelled data offers a good representation
of the colluvium distribution

and soils data is increasingly computer-based (specifically GIS) and for best results,
computer models require simple binary rules for quantifying variables. Finally the
number of geological units described in the BGS Lexicon, and mapped in the UK’s
1:50 000 digital geological map has increased to over 9 000. This compares to the 26
parent material classifications used in the UK’s national scale 1:250 000 soil map-
ping programme (Mackney et al., 1983). It is important; therefore, that we deliver
a balanced level of attribute information that integrates with other users needs in a
form that is optimised for computer manipulation.

Simplification of attributes for the PMM begins with the standard lithological
description of the rock/deposits. All the deposits shown on the UK geology map
are re-described using a hierarchical rock classification scheme developed by BGS
(Gillespie and Styles, 1999). The user can thus ‘step back’ from the detailed descrip-
tion through the hierarchy, to a simpler root description. i.e. Troctolite can be reat-
tributed as gabbroic rock, coarse crystalline igneous basic rock, igneous basic rock,
or simply, igneous rock. At the same time, detailed information that is considered
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implicit in geology descriptions (i.e., texture or mineralogy) can be made more ex-
plicit for other users.

In its current version the PMM offers a series of relatively simple semi-qualitative
attributes for each mapped deposit. These include: texture, colouration, mineralogy
(including specific minerals of importance to soil properties), porosity, permeability,
strength, density, carbon content, hardness and weathering structure. The range of
attribution and quantified data within the PMM will increase over time as more BGS
and external datasets are trawled for contributing information.

14.2.3 Integrating Other Data into the PMM

Most geological survey projects incorporate an element of geochemical and en-
gineering sampling (as well as survey specific sampling). Geochemical surveys
can be stream sediment or soil sample based, and whilst designed to expose min-
eral/chemical properties, they will invariably describe some soil and weathered-zone
characteristics and so can be used to improve the geological map. Engineering sur-
veys typically target weathered material as part of their remit as well as unweath-
ered rock. Either dataset offers potential for soil scientists trying to find quantified
parent material characteristics. Typically the data will be site specific (i.e. a single
point in 3d space) and will require cautious application and/or extrapolation to the
extents of available spatial geological data. However, basic information of texture,
discontinuities colour, dominant mineralogy and bulk chemistry can all potentially
serve as co-variables to assist in confirming/improving the more qualitative geo-
logical map classification. Satellite and airborne sensors have played fundamental
roles in geological surveys, particularly in areas of limited vegetation cover, stan-
dard scenes of Landsat 7, ASTER are being used to improve the PMM. Airborne
Hyperspectral and radiometric surveys are becoming more widely used in mineral
surveys, these tools offer equally good opportunities for soil scientists to derive soil
characteristics (see Section 2.2.1). These sensors will be tested in the UK to assess
their integration with the PMM to determine soil mineralogy and possibly moisture
content.

14.2.4 Confidence Mapping for the PMM

The PMM will evolve in the next four years from a ‘geology map’ into a ‘weathered
zone’ model. It will comprise a combination of empirical observation, quantified
point data and statistical models. In order to manage, and promote the use of this
data, the PMM requires metadata and ‘confidence’ modelling to inform the user
about how reliable the information is, and the limitations of its derivation. All the
input layers to the PMM carry some form of quality assessment. Initial testing of
the current version of the PMM has begun with a joint-research project involving
the National Soil Research Institute in which soil scientists are testing and train-
ing the PMM by comparison with extensive soil sample datasets and soil survey
archives.
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14.2.5 Application in Data Poor Environments

The vast majority of soil surveying, on a regional scale, was performed in Africa and
the Far East during the middle of the last century. This typically used geological
information for differentiation of parent material type at a scale of 1:500 000 or
larger as this was simply the only spatial framework available. Since that time
higher resolution, systematic data has slowly become available as a result of mineral
and resource exploration culminating with an intense period of activity during the
early 21st century. These new data sources, for example in Mozambique, Morocco,
Mauritania, Madagascar, Ghana and Papua New Guinea to name but a few, typi-
cally include geological survey at a scale of 1:100 000 or smaller; multi-element,
multimedia geochemical survey and a suite of high resolution DTM and associated
remotely sensed imagery including hyper-spectral, gamma spectrometric and radar
based techniques. Whilst these mineral surveys have not explicitly deployed soil
surveying, and therefore lack the micro-scale data needed to make a traditional soil
map; they potentially contain vital data of use to the digital soil modeller. The issue
becomes one of demonstrating the need for, value of, and capability of transferring
the knowledge from mineralogical surveys into digital soil models, as discussed in
Section 3.2.

14.3 Conclusions

Parent material mapping requires an extensive reconstruction of traditional geolog-
ical linework. For the UK this involves a substantial data mining exercise, and has
highlighted the need for better archiving of soil and weathering related observations.
It is believed that the PMM will offer soil scientist in the UK a much-improved
spatial framework on which to build 1:50 000 scale soil maps. Although the UK
has abundant geological (and soil) data, it is evident from the work done so far, that
many geological surveys across the world are acquiring abundant parent material
data, of which only a small proportion is being ‘published’ within the geological
map. For example many countries in Africa are revising, and in many cases remap-
ping their geology in support of a worldwide resurgence in mineral exploration. This
newly acquired material is often supported by high-resolution remote sensing data
(airborne and satellite digital terrain maps, hyper spectral imagery and gamma spec-
trometry) which when coupled with geology offers a vast amount of information to
those wishing to undertake digital soil mapping. Our experience is that geologists
or soil scientists could relatively easily apply the simple data mining techniques and
map reconstruction being used here to any such legacy geo-data. However, to do
this, data needs to become much more widely available, with simpler and clearer
terminology of relevance to soil science. It also has to be recognised that some
geological maps may never make perfect parent material maps.

Acknowledgments The authors would like to acknowledge the assistance of the many BGS staff
that have contributed to the development of the PMM. R. Lawley and B. Smith publish with the
approval of the Director, British Geological Survey.



182 R. Lawley, B. Smith

References

Anderson, S.P., Blum, J., Brantley, S.L., White, A.F., Chadwick, O., Chorover, J., Derry, L.A.,
Drever, J.I., Hering, J.G., Kirchner, J.W., Kump, L.R., Richter, D., 2004. Proposed initiative
would study Earth’s Weathering Engine. EoS Transactions of the American Geophysical Union
86(28), 265–272.

British Geological Survey, 2005. Digital Geological Map of Great Britain 1:50 000 scale
(DiGMapGB-50). Version 2.11. Keyworth, Nottingham. UK.

British Geological Survey, 2006. The British Geological Survey Lexicon of Named Rock Units.
(www.bgs.ac.uk/lexicon/lexicon intro.html).

DEFRA, 2004. The first soil action plan for England 2004–2006. Department for the Environment,
Food and Rural Affairs, London, UK, 36pp.

Gillespie, M.R., Styles, M.T., 1999. BGS Rock Classification Scheme Volume 1. Classification of
Igneous Rocks, British Geological Survey Research Report, (2nd edition) RR 99–06.

Jackson, I., Green, C., 2003. DiGMapGB – The Digital Geological Map of Great Britain. Geosci-
entist 13(2), 4–7.

Mackney, D., Hodgson, J.M., Hollis, J.M., Staines, S.J., 1983. The 1:250 000 National Soil Map
of England and Wales. Soil Survey of England and Wales, Harpenden.

Mayr, T.R., Palmer, R., Lawley, R., Fletcher, P., 2001. New Methods of Soil Mapping. Final Report:
SR0120. National Soil Resources Institute, Silsoe, UK.

McBratney, A.B., Mendonça Santos, M.L., Minasny, B., 2003. On digital soil mapping. Geoderma
117, 3–52.

Wysocki, D.A., Schoeneberger, P.J., LaGarry, H.E., 2005. Soil surveys: a window to the subsurface.
Geoderma 126, 167–180.

Zanner, C.W., Graham, R.C., 2005. Deep regolith: exploring the lower reaches of soil. Geoderma
126, 1–3.



Chapter 15
3D Modelling of Geology and Soils – A Case
Study from the UK

B. Smith, H. Kessler, A.J. Scheib, S.E. Brown, R.C. Palmer, O. Kuras,
C. Scheib and C.J. Jordan

Abstract Developments in GIS based technology have greatly aided the routine
production of three-dimensional geological maps. Similarly the continued develop-
ment of airborne remote sensing, geophysics and infrared measurement now provide
tools that can assist in the mapping of soil structure and properties rapidly in 2D, 3D
and even 4D. Whilst the combined use of such techniques have grown popular for
performing site investigations and developing conceptual models of contaminated
sites their use in determining and mapping soil has been restricted.

In this paper, we describe ongoing work at the British Geological Survey in which
we have combined a variety of remote sensing, soil, geological and geophysical sur-
vey techniques to assist in the production of site specific, 3D digital soil models and
geological maps. We were particularly interested in investigating (a) to what extent
do methodological differences between the UK’s soil and geological communities
hinder the development of an integrated near surface model (b) whether technolo-
gies to map geology in 3D can be used to develop spatial models of the soil; and
(c) can technologies used in digital soil mapping assist in reducing uncertainties
associated with such models at a range of scales.

To date we have found clear evidence that differences in terminology do hinder
the development of linked models of the near surface environment; but that such
differences can be resolved by dialog between field surveyors from each discipline
at an early stage in the process. The GSI3D software used in this work performed
well in this, relatively simple usage and a successful 3D model of the Brakenhurst
surface environment was obtained. However our attempt to use digital soil mapping
techniques was compromised by the relatively poor contrast in soil properties across
this specific site. Further investigations across representative soil landscapes are
being carried out that should address this issue and provide more insight into the
adoption of digital soil mapping techniques at a local scale.
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15.1 Introduction

Digital soil mapping (McBratney et al., 2003, see also Chapter 1) is a rapidly ex-
panding field that has similar aims to those being developed by the wider Earth
science community. For example both soil science and geology rely on the use
of a variety of digital techniques (e.g. satellite and airborne remote sensing and
geophysical surveys) coupled to, spatial and numerical analysis and observational
data. In addition, developments in portable GIS and computing technology within
soil science and geological science communities allows interactive capture of field
notes and development of spatially attributed maps and models in the field rather
than on return to the laboratory (BGS, 2002).

Following its completion of the 1:50,000 digital geological survey of the UK
(Jackson and Green, 2003) BGS began the development and subsequent licensing of
3D geological models across a range of scales (BGS, 2005a). This undertaking was
commensurate with the commissioning of the BGS sustainable soils programme
(BGS, 2005b, Chapter 14) whose aim, in response to drivers from existing and
prospective European Union Framework directives (DEFRA, 2004), was the provi-
sion of better and more relevant geological information for soil science and survey.
The simultaneous development of these two areas led to the hypothesis that both
near surface pedological and geological information could be incorporated into fu-
ture 3D geological models. In testing this hypothesis we were particularly interested
in investigating (a) to what extent do methodological differences between the UK’s
soil and geological communities hinder this (b) whether technologies developed
to map geology in 3D can be used to routinely develop spatial models of the soil
environment at a site specific and catchment scale; and (c) can technologies used in
digital soil mapping assist in reducing uncertainties associated with such models at
a range of scales.

The first issue that we considered when testing our hypothesis was the potential
impact of differences in classification that might prevent the effective use of exist-
ing field information. The basis for these concerns were that the Soil Survey and
Geological Survey of the UK, have emerged into the 21st century with significant
differences in methodology, nomenclature and scientific rationale about the genesis
of the shallow subsurface. For example, in the UK soil maps have traditionally por-
trayed information for the agricultural community and other land based industries
where topsoil (A-horizons) and Subsoil (B-horizons) and their properties were of
most interest. Consequently, the majority of investigations were restricted to 1.5 m
depth (Hodgson, 1997). Because of this interpretation, process orientated research
and derived products have tended to focus on customers interested in nutrient and
water availability, workability and soil erodibility.

Geologists in the UK, on the other hand, have investigated the shallow geosphere
in a different manner. The aim of a geological survey is to map, describe and char-
acterise the material that makes up the Earth, through survey and process orientated
research. In the 19th century the BGS was mainly concerned with mapping the
bedrock in order to find resources. However, in the latter part of the 20th century
quaternary deposits and water resources became the dominant interest, but only in
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Table 15.1 Examples of differing terminologies used for geological and pedological purposes
in the UK

Geological terminology (Rock Classification
Scheme, BGS 2006)

Pedological terminology (NSRI classification,
Hodgson, 1997)

Mud Loam
Clayey, sandy silt Loam
Sand and Gravel Drift with siliceous stones
Diamicton Drift with siliceous stones
Marl Calcareous mudstone
Coarse-grained crystalline intrusive rock Igneous basic rock

the past few decades has the focus of interest shifted to the very shallow subsurface
(<4 m). As a result, geological maps and field descriptions (BGS, 2000) describe
the geology consistently, only below a metre, with thin intervening deposits often
being ignored. A few striking examples of the differing nomenclature for parent
material lithologies between Soil and Geological Surveys are listed in Table 15.1.
At an international level the situation is even more complex and consequently a
key challenge of any integrated soil-geological model, or to develop new data sets
from existing geological and pedological data is the development of a consistent
language.

The impact of these differences in approach to mapping and collecting property
information on the UK’s near subsurface (see also Chapters 14 and 25) may be
minimised by undertaking multidisciplinary study and interpretation, as has been
undertaken on this project. However, they have also resulted in fundamental knowl-
edge gaps at the boundary of each surveys limits of investigation (Fig. 15.1).

Fig. 15.1 Schematic diagram illustrating variation in the reliability of subsurface information with
depth for a typical spatial survey site in the UK
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Similar differences in approach have also been identified elsewhere. For example
in the USA gaps in our understanding of processes in, and the spatial nature of,
the deeper soil horizons and near surface geology have been identified (Anderson
et al., 2004; Wysocki et al., 2005 and Zanner and Graham, 2005). The filling of this
knowledge gap is critical for the development of any subsurface information system,
which attempts to deliver solutions to problems that cut across the whole near sur-
face environment, such as, groundwater vulnerability, corrosivity to infrastructure
and carbon cycling.

It is also important to acknowledge that that the numerical assessment of un-
certainty or confidence in spatial information data derived from field surveys (of
soil and/or geology) still provides a challenge for the scientific community (e.g.
Chapter 18). This is due to the interpretative nature of field survey, which is based
not only on observed factual data from auger holes, trial pits and exposures but
on a conceptual understanding of the evolution of the landscape and the processes
that act and have acted in the shallow subsurface environment. A currently favoured
approach in the Earth Sciences (Nordlund, 1996; Hwang et al., 1998) is to use fuzzy
logic to produce numerical estimates of uncertainty by combining: data density and
quality; geological and pedological complexity; the robustness of the conceptual
model and expertise of a given surveyor.

We aim to test the hypothesis that near surface pedological and geological in-
formation could usefully be incorporated into future 3D geological models, during
site-specific studies across a range of spatial scales and complexities representative
of the main UK geo/soilscapes. At each site it is our intention to survey the envi-
ronment, collecting a wide variety of shallow subsurface data and then subsequently
model all geological units and pedological horizons as polyhedrons or volume ob-
jects (Grunwald, 2006) within a virtual soil-geology modelling environment. The
3D modelling software used in our tests is “Geological Surveying and Investigation
in 3D” (GSI3D) developed by INSIGHT GmbH (Sobisch, 2000).

Recent work at BGS in conjunction with INSIGHT GmbH has demonstrated the
feasibility of producing highly detailed 3D models of geological structures across
a variety of scales and geoscapes. Similarly these developments have shown that
3D models better enable the non-specialist, who commonly represent the majority
of end users for geological, and potentially also soil data to understand the com-
plexities of, and uncertainties in the subsurface environment. 3D spatial models
also represent a rapid and more accurate methodology from which to develop ac-
curate conceptualised models for input into numerical modelling of groundwater
infiltration and transport. In recognition of the positive benefits of this approach
GSI3D has now been deployed across the BGS as the standard tool for 3D geolog-
ical surveying (Kessler and Mathers, 2004) and exists as a tool on most geologists
desks.

This paper describes our initial test undertaken in 2005 following the survey at
the Brackenhurst campus of Nottingham Trent University near Southwell in the East
Midlands region of the UK. The site was chosen for this study because of its rela-
tively simple geological and pedological environment as evidenced by preliminary
site surveys and larger scale mapping.
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15.2 Methodology and Results

The Brackenhurst site is 2.5 km2 in size and lies between 20 and 45 m above sea
level. It is situated on typical red Triassic mudstones with some interbedded green-
ish grey silt- and sandstones. The area has been glaciated but was ice free in the
latest glaciation, when the site was exposed to periglacial processes such as frost
shattering and solifluction, which has resulted in head deposits covering the slopes
and valley floors. During the Holocene the lower slopes and valley floors were filled
with colluvial deposits. The soils on the site are mainly pelosols, brown earths and
surface water gleys on the tops and slopes and some groundwater influenced soils
on the valley floors (Palmer, 2006).

During the summer and autumn of 2005 the BGS undertook a complete site sur-
vey including many investigative and remotely sensed surveys listed in Table 15.2.

Table 15.2 Listing of surveys and methodologies used on the Brackenhurst site

Type of survey Main methods used

GPS survey of boreholes and pits Differential GPS System
Remote sensing and Terrain

analysis
25 cm air photos, 5 m cell size DTM

Geological Survey Walk over survey with drilling and pitting
Soil Survey Walk over survey with 100 augerholes and 6 trial pits,
Geochemical Survey 200 m grid, three sampling depths (0.2, 0.5 and 1

metre), analysed for a range of major and trace
metals and pH.

Geophysical Survey 2D Electrical resistivity tomography,
electromagnetic mapping, Ground penetrating
radar, downhole geophysical logging

Gamma Spectrometry Survey Walk over survey with GPS; K, Th and U were interpreted
Hydrogeological Survey Piezometer installations, soil moisture measurements

In addition to each survey, listed in the table above, delivering their own results
in form of a map and a report, data was shared between surveys and collated into
one software environment (GSI3D) for soil horizon and geological modelling.

In simple terms, GSI3D utilizes a Digital Terrain Model, geologically (and in this
case soil) mapped linework and borehole or augerhole data to enable the geoscientist
to construct regularly spaced intersecting cross-sections by correlating boreholes
and the outcrops-subcrops of units to produce a fence diagram of the area. Mathe-
matical interpolation between the nodes along the sections and the limits of the units
or horizons produces a solid model comprised of a series of stacked triangulated
volume objects.

The users draw their sections based on observational information such as bore-
hole logs and surface features linking or correlating them with regard to, the mor-
phology of the terrain, auxiliary information from geophysical-geochemical maps
and measurements. Most importantly the shape of the correlated unit can be readily
constrained or modified by the geoscientist. This process harnesses the modellers’
professional understanding of geological and pedological processes, examination
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of exposures and theoretical knowledge gathered over a lifetime of fieldwork.
Figure 15.2 illustrates typical stages in the development of a GSI3D model of the
near surface.

Fig. 15.2 Schematic diagram illustrating the development stages of a typical GSI3D Model
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Fig. 15.3 GSI3D desktop screen shot showing views of data gathered in the field trial. These
include geophysical logged borehole and soil map with all sample points in the 2D map window,
geological data draped onto DTM with radiometrics survey and electrical tomography section in
the 3D window and a section through several augerholes in the section window

Fig. 15.4 Final 3D soil-geology model for the SW of the Brakenhurst site (500 × 500 m, 8x
vertical exaggeration). The model shows the topsoil A-Horizon in dark brown, partially overlying
the E-Horizon of a surface water gley in beige. The brown horizon is an amalgamation of all subsoil
B-Horizons, which are underlain be the red B/C horizon which constitutes mainly weathered and
soliflucted bedrock. Bedrock sandstone is shown in green, and mudstone in pink (See also Plate 16
in the Colour Plate Section)
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Using the GSI3D methodology all data was assembled in one workspace
(Fig. 15.3) and 4 soil horizons were correlated. For this exercise these were the
topsoil (A horizon), the alluvial E horizon of a surface water gley, all combined
subsoil horizons (B), and the transitional horizon between unaltered parent material
and the soil profile (BC-horizon). In developing a 3D model (Fig. 15.4) the geo-
scientist needs to be able to draw on all data gathered during the field campaign.
Consequently a major task was the translation of all data into a geo-referenced
framework.

Also all map and downhole data sets had to comply with one general standardised
classification system with common attributes (nomenclature, property description
and associated legends) such as the BGS rock classification scheme (BGS, 2006).

15.3 Discussion and Conclusions

Whilst study of the Brackenhurst site and its 3D model is ongoing we have been
able to demonstrate:

1. That despite differences in nomenclature and methodologies between soil survey
and geological surveys it is possible – provided cognisance is taken of the need
to use a multidisciplinary approach – to produce fully attributed 3D models (and
associated XML database) of the shallow subsurface.

2. The studies have shown, that spatial soil horizon modelling can use methods
and software developed originally for shallow geological modelling, when soil
horizons follow a unique super positional order. Ongoing studies in other more
complex soilscapes at a site specific and catchment scale will be used to test this
assumption and cases where super positional order breaks down.
The modelling of horizons that do not have one single super positional order or
are even overturned and convoluted e.g. in periglacially disturbed soils, can be
solved using techniques developed for modelling faulted and overturned geology.
Each single horizon being discretised as a unique object, therefore overcoming
the need for a ordered system, just as in a fractured or faulted geological model.
The problem is therefore not technological, but more importantly how to gather
spatial information on these structures as part of a soil-geological field investiga-
tion. It is our belief that advances in geophysical techniques may, in favourable
conditions, may assist in this regard.

3. Soil and Geology are to be seen as a continuum and must be studied and surveyed
in an integrated manner, as customer requirements move beyond the traditional
boundaries of compartmentalised science.

4. The potential for geophysical methodologies to assist in the interpolation and
scaling up of models has yet to be fully tested because the available contrast in
properties at the Brackenhurst site was limited. However, this is the consequence
of the site being specifically selected for its low geological and pedological com-
plexity. Information from recent investigations at more complex sites confirms
this hypothesis.
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Future research includes the attribution of the soil horizon volumes with properties
and assessing their confidence, and gradually increasing emphasis on real-time data
capture, temporal monitoring and modelling, site complexity and scale.
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Chapter 16
Landsat Spectral Data for Digital Soil Mapping

J.L. Boettinger, R.D. Ramsey, J.M. Bodily, N.J. Cole, S. Kienast-Brown,
S.J. Nield, A.M. Saunders and A.K. Stum

Abstract We propose that Landsat remotely sensed spectral data represent useful
environmental covariates for digitally mapping soil distribution on the landscape,
especially in arid and semiarid areas. Based on the common conceptual model that
unique soils are the products of unique sets of soil-forming factors, Landsat spectral
data can represent environmental covariates for vegetation (e.g., normalized dif-
ference vegetation index, fractional vegetation cover) and parent material and/or
soil (e.g., band ratios diagnostic for gypsic and calcareous materials). In areas with
sufficient relief, topographic data (e.g., slope, compound topographic index) de-
rived from digital elevation models (DEMs) can be combined with Landsat-derived
data to quantitatively model soil distribution on the landscape. These digital data
can by analyzed using commercially available image processing software. Various
classification and analysis methods (e.g., optimum index factor; principle compo-
nent analysis; unsupervised and supervised classification) can be used to recognize
meaningful soil-landscape patterns. . Training sites can be selected from existing
soil surveys or from areas that have actual field data collection points. Accuracy
assessment with independent field observation can be performed, and various clas-
sification methods can be used to generate estimates of prediction error. Landsat
scenes are spatially explicit, physical representations of environmental covariates
on the land surface. While the 30-m spatial resolution and fairly coarse spectral res-
olution may limit some applications, the wide availability and low expense should
facilitate the utility of Landsat spectral data in digital soil mapping.

16.1 Introduction

The reflectance or emissions of electromagnetic radiation from the Earth can be
quantified using satellite sensor platforms (Lillesand and Kiefer, 2000). Reflectance
and emission data can be analyzed to extract information about the Earth and its re-
sources, as the physical and chemical properties of different surfaces vary across the
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electromagnetic spectrum. Satellite-derived remote-sensing imagery from a partic-
ular sensor can have a variety of spectral and spatial properties. Spectral resolution
refers to the number of spectral bands and the width of the electromagnetic spectrum
sensed in each band. Spatial resolution refers to the area on the ground represented
by an individual pixel. Spectral bands with contrasting spectral characteristics for
the minimum area (pixel size) on a given surface can be compared to differentiate
features on the Earth’s surface.

The sensors belonging to the Landsat satellite program of the National
Aeronautics and Space Administration (NASA) have been used for many land sur-
face applications for more than 30 years (NASA 2006; USGS 2006). The most re-
cent sensor, Landsat 7 Enhanced Thematic Mapper Plus (ETM+), was launched in
1999. Landsat 7 ETM+ has seven spectral bands that integrate specific wavelength
segments of the electromagnetic spectrum with a minimum spatial resolution of 30
m in the visible (3 bands), near-infrared (NIR; 1 band), short-wave infrared (SWIR;
2 bands), and 60 m in the thermal infrared (TIR; 1 band) (Table 16.1). The spectral
and spatial resolution of Landsat 7 ETM+ bands 1–7 are similar to the older but still
commissioned Landsat 5 Thematic Mapper (TM), which was launched in 1984.
Landsat imagery is very affordable, with an ever-increasing amount of no-cost to
low-cost data available (e.g., see no-cost Landsat images available for an area of
Brazil in Fig. 10.2).

Jenny (1941) conceptualized soils (S) on a landscape as a function of five en-
vironmental factors: climate (cl), organisms (o), relief (r ), parent material (p), and
time (t). Conceptual models of soil formation have been used to predict patterns of
soil map units in traditional soil survey, usually based on interpretation of aerial pho-
tography with field verification of soils and associated landscape feature (e.g., Soil
Survey Division Staff, 1993). With the increasing availability of spatially explicit
digital data, such as remotely sensed spectral data and digital elevation models, and
the hardware and software for processing and analyzing vast amounts of spatial data,

Table 16.1 Landsat 7 ETM+ spatial and spectral band resolutions. Bands 1–5 and 7 are often used
in digital soil mapping

Band Spatial Resolution Spectral Range Common Name
m μm

1 30 0.450–0.515 Blue
2 30 0.525–0.605 Green
3 30 0.630–0.690 Red
4 30 0.775–0.900 NIR
5 30 1.550–1.750 SWIR (MIR)
6 60 10.40–12.50 TIR
7 30 2.090–2.350 SWIR (MIR)
Pan 15 0.520–0.900 Visible + NIR

Abbreviations: NIR = near infrared; SWIR = short-wave infrared (formerly
MIR = middle infrared, 1–3 μm; Lillesand and Kiefer, 2000); TIR = thermal
infrared.
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we can quantitatively predict soil distribution on the landscape. To represent soil and
the related environment factors in a spatial context and express these relationships
quantitatively, McBratney et al., (2003) proposed the scorpan model: At a point in
space and time, soil (as either soil classes, Sc, or soil attributes, Sa) is an empirical
quantitative function of the soil (s, as a class or as a directly or remotely sensed prop-
erty), climate (c), organisms (o), relief (r ), parent material (p), age (a), and spatial
position (n).

Landsat remotely sensed spectral data can serve as useful environmental covari-
ates for digitally mapping soil distribution on the landscape. This is particularly true
in arid and semiarid areas where there is a range in vegetation cover and mineralog-
ical properties of the soil surface and/or parent material are not completely covered
by vegetation. Landsat spectral data represent real physical properties, and useful
environmental covariates can be derived for vegetation, soil, and parent material,
and their quantitative relationships used to predict soil distribution. In areas with
sufficient relief, topographic data derived from digital elevation models (DEMs) can
also be combined with Landsat-derived environmental covariates to develop predic-
tive models of soil distribution. Various types of training and input data can be used,
along with various methods of data classification and analysis using commercially
available software. The objective of this chapter is to demonstrate the usefulness of
Landsat spectral data in digital soil mapping for both initial and update soil surveys,
using examples from our research in soil survey projects in the western USA and
from this book.

16.2 Landsat Data as Environmental Covariates

Landsat spectral bands (Table 16.1) most commonly used in digital soil mapping
are bands 1–5, and 7. Environmental covariates can be digitally represented using
raster data layers derived from various band ratios of Landsat 7 ETM+ data. These
derivations are known in remote sensing image processing literature as image en-
hancements, which are used to visually explore the imagery and/or for subsequent
analysis (Jensen, 2005).

For the following examples presented from Utah and Wyoming, USA, we ana-
lyzed Landsat with ERDAS Imagine image processing software (Leica Geosystems,
2003). All data were projected in the same geographic space using the Universal
Transverse Mercator (UTM) system, clipped to the extent of the study area, and
converted into ERDAS Imagine file format (.img).

16.2.1 Vegetation

Probably the most common use of Landsat data for digital soil mapping is the
Normalized Difference Vegetation Index (NDVI), which can represent the environ-
mental covariate of vegetation. The NDVI is a normalized difference ratio model of
the near infrared (NIR) and red bands of a multispectral image (Rouse et al., 1973).
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Fig. 16.1 Normalized Difference Vegetation Index (NDVI) of an area along the Powder River,
northeastern Wyoming. Darker areas have low vegetation cover (e.g., narrow, steep ridgetops and
sideslopes), whereas lighter areas have high vegetation cover (e.g., relatively high-moisture areas
adjacent to the Powder River). Black areas do not have vegetation, such as the Powder River and
the major highway that transects the area from east to west

Using Landsat data, the NDVI is determined by using bands 3 (Red) and 4 (NIR):
NDVI = (4 − 3)/(4 + 3). This results in values ranging from –1.0 to 1.0, where
higher values indicate higher vegetation density (e.g., Fig. 16.1). Recently, Landsat
7 ETM+ bands 7, 4, 2, and the NDVI calculated by substituting band 2 for band
3 were used as environmental covariates for vegetation (o in scorpan) in models
predicting soil class distribution in Rio de Janeiro state in Brazil (see Chapter 34 for
further discussion).

It is often useful to re-normalize the values of the NDVI to provide an estimated
value of percent of vegetation cover (Zeng et al., 2000), referred to as fractional veg-
etation cover (FVC): FVC = [(NDVI – min NDVI)/(max NDVI – min NDVI)] ∗100.
Cole and Boettinger (2007) and Saunders and Boettinger (2007) used fractional
vegetation cover as an environmental covariate to predict soil class distribution in
arid rangelands in Wyoming, USA.

Vegetation types may also be identified using Landsat spectral data. For example,
vegetation typically associated with soil classes in a region of the Central Amazon,
Brazil, was identified optically using Landsat 5 TM data (see Section 29.2 in
Chapter 29).



16 Landsat Spectral Data for Digital Soil Mapping 197

16.2.2 Parent Material and/or Soil

Landsat spectral bands, particularly in the short-wave infrared (SWIR) range (see
Table 16.1), can be used to represent the environmental covariates of parent material
and/or soil. Different mineral assemblages will have different spectral reflectances,
which may be separable by analyzing bands 1–5 and 7.

Landsat images may be visually explored using only three bands at one time
(assigned to red, green, and blue color guns). The 3-band combination that has
the maximum variance and minimum duplication within the scene can be selected
by calculating the optimum index factor (OIF) (Jensen, 2005). Nield et al. (2007)
used the OIF to select Landsat 7 ETM+ band combinations of 1, 5, 7 for visually
analyzing areas with gypsic soils, and 4, 5, 7 for areas with natric soils.

The soil enhancement ratios of Landsat spectral band ratios 3/2, 3/7, and 5/7 have
been interpreted to accentuate carbonate radicals, ferrous iron, and hydroxyl radi-
cals, respectively, in exposed soil and geologic materials (Amen and Blaszczynski,
2001). Cole and Boettinger (2007) and Saunders and Boettinger (2007) incorporated
these soil enhancement ratios with topographic data to predict soil map unit distri-
bution in the Powder River Basin and Green River Basin of Wyoming, respectively.

Normalized difference ratios of Landsat spectral bands, similar in form to the
NDVI, may be developed to target specific mineralogical signatures of soils and/or
parent materials. Nield et al. (2007) successfully mapped gypsic soil areas (50% or
more gypsum by weight within a few cm of the soil surface) by focusing on the
spectral response of gypsum, indicated by the high reflectance in band 5 relative to
low reflectance in band 7: (5–7)/(5+7). The normalized difference ratio of Landsat
bands 5 and 2 can be diagnostic for calcareous sedimentary rocks: (5–2)/(5+2). In
a Basin and Range landscape with sedimentary rocks intruded by Tertiary volcanic
rocks, the (5–2)/(5+2) normalized difference ratio clearly distinguished sedimentary
rocks from igneous rocks (Fig. 16.2).

The British Geological Survey is augmenting existing geology maps with Land-
sat spectral data to create the Parent Material Map for Britain (see Fig. 14.2). This
parent material map is intended to become a fundamental environmental covariate
for modeling soil distribution in the UK (see Chapter 14 for further discussion).

Principal components analysis (PCA) can be valuable in the enhancement of
Landsat spectral data. Raw spectral data are transformed into new PCA images that
can compress vast amounts of information contained in the data scene (e.g., bands
1–5, 7) into a few principal components. This transformation can make the image
easier to interpret visually for distinguishing parent material, as well as vegetation
density (Fig. 16.3, B).

16.2.3 Land Use and Land Cover

Landsat spectral data, particularly bands 5, 4, and 3, are commonly used to char-
acterize land use and land cover (as described in Chapter 22 for Rio de Janeiro,
Brazil). Land cover can be strongly related to specific soil properties or classes.
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Fig. 16.2 Normalized difference ratio of Landsat 7 bands (5–2)/(5+2) clearly differentiates igneous
rocks such as andesite (darker areas) from sedimentary rocks (lighter areas) such as dolomite and
sandstone/quartzite at the northern edge of the Tonoquits Volcanic Field in the Basin and Range
physiographic province, southwestern Utah

For example, land cover classified from Landsat 7 ETM+ bands 1–5 and 7 was
strongly related to soil type on the margins of the Great Salt Lake in Utah, USA
(Kienast-Brown and Boettinger, 2007). Land use and land cover are also strong
indicators of human activity, which is often related to soil properties (see Chapter
30 for further discussion in a study in Brittany, France).

16.3 Classification

16.3.1 Layer Stacking

The NDVI, fractional vegetation cover, other specifically developed normalized dif-
ference ratios, PCA, and other Landsat data layers can be stacked with additional
raster data layers for further analysis and classification. In the examples that fol-
low, ancillary data representing the environmental covariate of relief were derived
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Fig. 16.3 (A) Map illustrating a 10-class unsupervised classification of a raster data layer stack
containing the soil enhancement ratios of Landsat spectral band ratios 3/2, 3/7, and 5/7; slope;
compound topographic index; fractional vegetation cover derived from the NDVI in the Green
River Basin of Wyoming, USA. (B) Image of the first three components of the principal compo-
nents analysis (PCA) of the Landsat 7 ETM+ image of a Basin and Range landscape in south-
western Utah. The box at lower left indicates the approximate location of the area shown in
Fig. 16.2. The PCA image distinguishes areas of different parent materials (e.g., sedimentary vs.
igneous rocks as indicated in Figure 16.2), and different vegetation density (e.g., high vegetation
density at mountains tops in upper left and irrigated fields in lower right [green in Color Plate],
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from U.S. Geological Survey (USGS) 10-m DEMs. For example, Saunders and
Boettinger (2007) stacked raster data layers representing parent material (the soil
enhancement ratios of Landsat spectral band ratios 3/2, 3/7, and 5/7), relief (slope;
compound topographic index), and vegetation (fractional vegetation cover derived
from the NDVI) for further classification for digital soil mapping using ERDAS
Imagine image processing software.

16.3.2 Unsupervised Classification

Unsupervised classification, a type of cluster analysis (Leica Geosystems, 2005)
can be performed on raster data layer stacks. Unsupervised classifications are gen-
erally considered to be unbiased and data driven. Layer stacks of various types of
raster data can be classified using different numbers of classes until meaningful
patterns are produced that could represent map units on the landscape. The goal
is to seek patterns similar to the soil-vegetation-landform patterns interpreted from
aerial photography in traditional soil survey. Unsupervised classification is particu-
larly useful for developing an initial predictive map and/or stratifying the project
area into manageable physiographic units. Saunders and Boettinger (2007) used
unsupervised classification of a layer stack containing spectral and topographic
raster data to elucidate patterns useful for developing an initial soil sampling plan
in an arid shrubland of western Wyoming that lacked previous soil survey data
(Fig. 16.3, A).

16.3.3 Supervised Classification

Supervised classification of layer stacks containing Landsat images, PCA, normal-
ized difference band ratios, and/or ancillary data can also be performed. Supervised
classification requires training sites selected from existing soil maps and/or in the
field. The image is classified around cluster means derived from the training data
(Leica Geosystems, 2005). Supervised classification of Landsat bands 1–5 and 7
and selection of training sites identified in the field was useful for refining maps of
wet and saline areas in a soil survey update along the shore of the Great Salt Lake in
northern Utah, USA (Kienast-Brown and Boettinger, 2007). In a Basin and Range
landscape of southwestern Utah, we trained a supervised classification of the PCA
of a Landsat image on field sites representing typical concepts of potential soil map

�
Fig. 16.3 (continued) in contrast to arid alluvial fans with low vegetation density in center [red
to purple in Color Plate]). (C) Map illustrating a supervised classification of the PCA, focusing
on the area indicated by the upper right box in B. Training areas were selected in the field for
the supervised classification. Each shade (color in Color Plate) relates to a predicted soil map
unit relating to soil class (e.g., loamy-skeletal Typic Haplocalcids) and dominant vegetation (e.g.,
Artemisia tridentata ssp. wyomingensis community). (See also Plate 17 in the Colour Plate Section)
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units, enabling us to delineate extended areas with these distinct soil-vegetation-
landscape characteristics (Fig. 16.3, C).

16.3.4 Other Classifications and Analyses

There are many other possible classifications and analyses of Landsat data, with
or without ancillary raster data (see Chapter 1, Section 1.4; McBratney et al.,
2003). The alternate classifications can be raster (pixel) based or, as discussed in
Chapter 30, object oriented.

Where possible, a formal accuracy assessment (Congalton and Green, 1999) of
soil classes or properties predicted using Landsat data should be performed using
independent field observations (e.g., Nield et al., 2007).

16.4 Conclusions

Landsat scenes are spatially explicit spectral reflectance data that represent real
physical properties of environmental covariates on the land surface. Examples men-
tioned here illustrate the utility of Landsat data for digital soil mapping for both ini-
tial soil survey and soil survey updates. While Landsat imagery may be most useful
for representing vegetation cover or parent material, these data may also represent
land use or land cover, which can be related to soil properties or classes. Landsat
bands 1–5 and 7 have a 30-m spatial resolution, which may limit some spatially
detailed soil mapping applications. Whereas hyperspectral and ASTER imagery
(see Chapter 2, Section 2.2.1) have finer spectral resolution, Landsat data can be
as useful in digital soil mapping predictive models (e.g., see Chapter 4, particularly
Tables 4.1, 4.2 and 4.3). In general, the wide availability, low expense, and increas-
ing utility of image processing hardware and software should facilitate the utility of
Landsat spectral data in digital soil mapping.
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Chapter 17
From a Large to a Small Scale Soil Map:
Top-Down Against Bottom-Up Approaches

Application to the Aisne Soil Map (France)

F. Carré, H.I. Reuter, J. Daroussin and O. Scheurer

Abstract This paper compares two approaches for upscaling the Aisne (a 7,536 km2

French department) soil database from the initial 1:25,000 nominal scale to the
1:250,000 target scale. Soil features are represented at the nominal scale, whereas
pedolandscapes, which are a combination of soil-forming factors and soil variables,
are required at the target scale. Because the initial soil database does not contain
soil forming factor information, data on pedogenesis have to be added to the initial
database. Based on the assumption that most of lithographic layers are horizon-
tal in the area, only landform attributes are chosen to represent the soil-forming
factors.

Two different approaches are used to map the final pedolandscapes. The first
one, called the bottom-up approach consists of classifying the soil and the landform
attributes together for defining taxonomic units, which then undergo generalisation
of their contours to result in pedolandscape mapping units.

The second approach, called a top-down approach, consists of classifying and
then mapping the landform units in order to delineate the pedolandscapes. In this
paper, we focus only on the pedolandscape delineation for the target scale. The
results of the two methodologies are compared to contours manually drafted by soil
surveyors. The final discussion analyses the impact of taking the very detailed soil
database in the Digital Soil Mapping process into account, and to give advice for
digital soil mapping with limited input data.

17.1 Introduction

The French National Program “Inventaire Gestion et Conservation des Sols” (IGCS)
aims to provide Digital Soil Maps at a regional scale which is considered to be
1:250,000. These regional soil databases are composed of pedolandscape mapping
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units as geographic entities that are legible at the scale of 1:250,000. Each pedoland-
scape unit can be defined as an association of one or more Soil Typological Units
legible at the scale of 1:100,000. The concept of pedolandscape can be defined as a
combination of soil-forming factors and soil variables. It is also known in the litera-
ture as: landscape (Astle et al., 1969), polycombinational soil areal (Fridland, 1972),
pedological province (Smeck et al., 1983), mesociation (Hole, 1978), small natural
region (Favrot, 1981), soil system (Brabant, 1989), soilscape (Lagacherie et al., 2001).

The purpose of the study is to provide a pedolandscape database of the Aisne
French Department at the scale of 1:250,000 using an initial soil database at a scale
of 1:25,000 (see Section 1.3 about legacy data). As the final target scale is smaller
than the initial one, the main core of the study can be related to upscaling (Bierkens et
al., 2000), but because the final target feature (pedolandscape) is different to the initial
one (combination of soil features), additional information has to be added to the initial
database. Therefore this methodology differs from theoretical upscaling issues.

This paper only focuses on the delineation processes of the pedolandscapes (see
also Chapter 30). The objective is to quantify the information brought by soil fea-
tures for mapping pedolandscapes, versus an approach based only on auxiliary infor-
mation (see Chapter 31). This allows to compare two approaches: one with an initial
soil dataset (the bottom up approach), and another one with no prior soil information
(the top-down approach) which can be associated with “Digital Soil Mapping with
limited data”. We first present the two approaches and discuss the results in relation
to soil surveyor’s expertise.

17.2 Materials

17.2.1 The Soil Database

The initial soil database holds 5 agronomic soil properties: carbonate rate, hydro-
morphic rate, texture, parent material when reached before 120 cm, nature and rate
of gravel and stones, and depth to a textural change. The scale of representation is
1:25,000 (Soil database of the Agriculture Chamber of the Aisne Department).

The database contains many spatial allocation errors since all variables were digi-
tised independently from each other, leading to a severe amount of sliver polygons.
These sliver polygons increase the number of polygons (by an estimated 50%) and
the size of the database. There are 336,951 polygons in the soil database which rep-
resent 14,091 different taxonomic units. The qualitative variables were transformed
into Boolean variables when there was no logical coding rule, otherwise they were
transformed into quantitative variables.

17.2.2 The Auxiliary Data

Because lithological layers within the study area are horizontal, the terrain mor-
phology correlates with the lithology. We derived altitude, slope, a Wetness Index
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(Gessler et al., 1995) and curvature (plan, profile and transversal curvatures) from a
50 resolution Digital Elevation Model (DEM) (BD ALTI R©; IGN, 1998). Because,
altitude and the Wetness Index explain 80% of the variability of the landform (based
on PCA of the landform attributes – results not shown), only these two auxiliary at-
tributes are considered. Altitude ranges from 36 m to 295 m, and the dimensionless
Wetness Index from 0 to 20.

17.3 The Methodology

17.3.1 The Bottom-Up Approach (BU)

The BU approach is similar to Lagacherie et al. (2001), where some reference areas
are chosen as being representative of the whole area and the remaining area is then
classified according to the reference areas. The approach goes through two steps
(Fig. 17.1a): a taxonomic aggregation, where the reference areas are built, and a
geometric generalisation, to make the units legible at the 1:250,000 scale.

For the taxonomic aggregation, soil features were combined to landform attri-
butes thus forming the taxonomic units. From these data, we chose some reference
units for representing the whole taxonomic variability in order to form the pedoland-
scape units. The reference units were chosen as being the largest and most frequent

Fig. 17.1 Comparison of the bottom-up (a) and top-down (b) approaches
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Table 17.1 Overview of the results of the different steps

Results of the different steps Bottom-up approach Top-down approach

Combination of the data
- in number of units - 41,305 units - infinite (integer∗real values)
- in number of polygons - 336,951 polygons - not applicable (raster grid)
After the aggregation
- in number of units - 256 units - 25 units
- in number polygons - 247,577 polygons - 2,928 polygons
After generalisation
- in number of units - 31 units - 25 units
- in number of polygons - 820 polygons - 651 polygons

units (in terms of polygons) based on the distribution histogram of the taxonomic
units. They are 256 reference units (Table 17.1). The rest of the units (the smallest
and less frequent units) were taxonomically aggregated to the reference units using a
supervised classification algorithm (Carré and Girard, 2002). For the classification,
landform attributes were weighted so that landform and soil had equal impacts on
the classification.

This taxonomic aggregation process was applied to reduce the number of units
(256 units) based on their attributes and the target scale: the smaller the target scale
the higher the reduction. Despite this reduction, the number of polygons remained
high (247,577 instead of 336,951 original polygons) and there remained a strong
contrast between neighbouring polygons. This was due to the sliver polygons and to
the large scale of the initial soil database. This prevented the neighbouring polygons
from being simply merged in order to eliminate polygons that were not cartographi-
cally meaningful at the scale of 1:250,000 (smaller than 1.56 km2 – Boulaine, 1980).
Thus, a more sophisticated geometric generalisation was necessary by which small
polygons were aggregated to their most taxonomically similar neighbour (Dobos
et al., 2005) and simplified. This polygon generalisation was constrained by:

– geometry (area size): each polygon with an area less than 1.56 km2 had to be
removed;

– topology (neighbouring): polygon removal was done by merging with a neigh-
bouring one;

– taxonomy (similarity of neighbours): choice of the best neighbour for merging
was based on similarity of taxonomy (the most similar neighbour was selected
for merging).

The process was iterative until all units were meaningful at the scale of 1:250,000.

17.3.2 The Top-Down Approach (TD)

The TD approach is based on the assumption that there is a discontinuity in the
pedolandscape model when moving from large to small scale: at the 1:25,000 scale
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the pedogenesis is best modelled by agronomic variables whereas at the 1:250,000
scale it is best modelled by landform and lithology. As in the previous method,
this approach also contains two stages (Fig. 17.1b): the first one is a taxonomic
aggregation based on the combination of altitude and wetness index grids, and the
second one is a generalisation.

Based on the distribution histogram of the values, the altitude was transformed
into 12 classes and the Wetness Index into 4 classes. The combination of these
classes resulted in the taxonomic units. This was followed by the same generalisa-
tion process as in the previous BU approach (small units were merged with their
most similar neighbours) in order to get all mapping units legible at the scale of
1:250,000. There was no supervised classification as for the BU approach; this
process is thus less sophisticated.

17.4 Results and Discussion

The results of the TD and BU approaches are presented and each approach is com-
pared to a reference. The reference is a manually created 1:250,000 soil map drafted
by the authors of the 1:25,000 soil map. Finally, we discuss the value of soil exper-
tise for Digital Soil Mapping over automatic delineation.

17.4.1 Comparison of the Results Between the Two Approaches

Table 17.1 shows that the generalisation process is the main step that differenti-
ates the two procedures: it allows a reduction of 88% (256 − 31 = 225 units) of
the taxonomic information obtained after aggregating the units coming from the
BU approach, whereas there is no reduction of taxonomic information with the TD
approach.

This is mainly due to the very large scale of the original soil database which
presents high taxonomic variability. As a consequence, taxonomic distances can be
high between two neighbouring polygons obtained through the BU approach and
threshold values for aggregating these must be high. This may result in aggregating
polygons despite their strong differences from a pedological point of view. The two
approaches are completely different; therefore the authors expected the results to
also differ (Fig. 17.2).

The BU approach creates mapping units that are less segmented than the TD
approach which, by definition, gives greater emphasis to the colluvions and allu-
vions (two pedogenetic phenomena that are strongly landform-dependent). In the
depressions, the BU approach gives more detailed results because of parent ma-
terial information contained in the soil database, contrary to the plateau. In the
Northern area, the BU approach shows a big unit (in yellow in Fig. 17.2a) which
represents a change in soil texture. This is very important (for example) for soil
erosion estimation but it doesn’t appear with the TD approach (Fig. 17.2b). As
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Fig. 17.2 Maps resulting from the bottom-up (a) and the top-down (b) approaches (See also
Plate 18 in the Colour Plate Section)

a consequence, the BU approach, that contains soil information (related also to
parent material) allows for greater emphasis on pedogenetic processes due to par-
ent material (where lithologic layers are not horizontal), whereas the TD approach
emphasises (by construction) the landform-induced pedogenesis.

17.4.2 Comparison of the Results Between the Automatic
Approaches and the Manual Approach

The two manually drafted maps at the scale of 1:250,000 (in the South and East
parts) were mainly based on two soil maps at the scale of 1:100,000 derived from the
initial soil map by the same authors (Jamagne, 1967; Roque, unpublished; Guerin et
al., unpublished). The final upscaling at the 1:250,000 scale was drafted from these
soil maps by an experienced local soil surveyor (Fig. 17.3). Thus, we assume that
the results are comparable to our BU approach.

Visually, the Southern part seems more detailed in the top-down than in the
bottom-up approach. The opposite remark stands for the East part. The manually
drafted map seems to be more segmented (c. f. black contours in Fig. 17.3a,b) in the
East part than in the South one. For a comparison between the automatic approaches
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Fig. 17.3 Comparison between contours of the manually drafted 1:250,000 map (in black) to the
results of the bottom-up (a) and top-down (b) approaches for the Eastern (1) and Southern (2) parts
(See also Plate 19 in the Colour Plate Section)

and the manually drafted map, we take the last as the reference. We are aware of
the weighted Kappa coefficient (Fleiss and Cohen, 1973) but since we focus only
on delineation (not on taxonomy), we prefer to use different indices (Table 17.2)
which are:

(1) the ratio between the number of polygons for the manual and the “automatic”
maps (Segmentation Index),

(2) the average number of “automatic” polygons partially contained in each manual
reference polygon (Inclusion Index),

(3) the average number of manual reference polygons partially contained in each
“automatic” polygon (Dispersion Index),

(4) the ratio of Inclusion Index/Dispersion Index (the closer to 1 the better).

In the Eastern part, the Segmentation Index shows that for the BU approach there
is an average of about two polygons per reference polygon (Table 17.2). In contrast,
we observe that there are approximately three polygons of the TD approach per
reference polygon (Table 17.2). The Inclusion Index shows that an average of four
polygons of the BU approach is observed within one reference polygon (Table 17.2).
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Table 17.2 Indices for the comparison of the manual reference map to the “automatic” maps

Reference East Bottom-up approach Top-down approach

Segmentation Index 210/114 (1.84) 210/66 (3.18)
Inclusion Index 4.45 2.1
Dispersion Index 7.72 10.28
Inclusion/Dispersion 0.58 0.20

Reference South
Segmentation Index 127/83 (1.53) 127/80 (1.58)
Inclusion Index 4.94 3.92
Dispersion Index 5.88 6.20
Inclusion/Dispersion 0.84 0.63

In contrast an average of two polygons is observed for the TD approach. The Disper-
sion Index shows that eight reference polygons in average are observed within one
BU approach polygon (Table 17.2), whereas ten reference polygons are observed
within one TD approach polygon (Table 17.2). The Inclusion/Dispersion index gives
an estimate on the polygon matching between the automatic approaches and the
manual reference. For the Eastern part, this ratio of the BU approach is closer to 1
(Table 17.2) compared to the TD approach. For that part, the bottom-up approach
is clearly the best method to use. However, for the Southern part, both methods
are comparable (results are almost the same). This is due to the tabular relief of
the South part, where altitude is strongly correlated to lithology. In that case, the
TD approach can be recommended for digital soil mapping with limited data since
DEM is the most relevant factor of the pedogenesis.

17.5 Discussion

In this study, the results are validated against a reference map. This may be done
only if the reference map itself is considered valid. However, the map itself has not
yet been validated. Therefore, our results have to be considered with caution.

Furthermore, because the contours of the reference map were delineated on the
basis of the initial soil map (as for the BU approach), we need to explain why the
Inclusion/Dispersion index is not so close to 1 (perfect concordance between BU
and reference map contours). This can be explained by:

– auxiliary data not being used in the same manner;
– the fact that other auxiliary data (such as lithology and vegetation) must be taken

into account in the aggregation process;
– the spatial allocation errors (sliver polygons) of the soil database which do not

appear in the paper map at 1/25.000 scale (the reference map was created from
the paper map);

– the generalisation process which is very sensitive to taxonomic distances. Both
algorithms (generalisation process and calculation of taxonomic distances) should
be then evaluated.
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In that paper we showed a BU and a TP approach for soil data information stored
in polygon form. A limitation is certainly that more advanced algorithms like frac-
tals or wavelets (see McBratney, 1998) have not been evaluated. Further on we did
not rely on point information as shown by Heuvelink and Edzer (1999), which could
further elaborate about change in support, effects of aggregation, and interpolation
(Bierkens et al., 2000). However, we were able to acquire knowledge, in which situ-
ations the BU and TP algorithms allowed for estimation under the special premises
of Digital Soil Mapping.

17.6 Conclusions

This study aimed to test two different approaches for automatically delineating soil
mapping units at the 1:250,000 scale. The first delineation was derived by general-
ising an existing, very detailed, large scale soil map (1:25,000) (an ideal situation
since usually such data does not exist for such a large extent) using also auxiliary
data (Bottom-Up approach). The second (Top-Down approach) was based on aux-
iliary data segmentation (common procedure used in DSM with limited data) – in
this case, only the DEM was used. The results were compared to a reference map
drafted manually from the original large scale soil map.

Comparison of the two approaches allows us to conclude that the Top-Down
approach is recommended for digital soil mapping with limited data (i.e. in the
absence of soil data). Nevertheless this implies the availability of auxiliary data
representative of the pedogenesis and of good quality to be used as inputs. In our
study, it was difficult to conclude on the efficiency of the Bottom-Up approach as
the soil data we used had severe quality deficiencies. There again the Top-Down
approach can be seen as a good alternative to the heavy means needed to improve
an existing soil database before applying a Bottom-Up approach. The present work
would benefit from being applied in a situation where good quality, large scale soil
data is available. It would allow comparing the performance of the two methods
independently from the differences in the quality of the input data.
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Carré, F., Girard, M.C., 2002. Quantitative mapping of soil types based on regression-kriging of

taxonomic distances with landform and land-cover attributes. Geoderma 110, 241–263.
Dobos, E., Daroussin, J., Montanarella, L., 2005. A SRTM based-procedure to delineate SOTER

Terrain Units on 1:1M and 1:5M scales. European Commission Report, EUR 21571, 55p.
Favrot, J.C., 1981. Pour une approche raisonnée du drainage agricole en France: la méthode des
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Chapter 18
An Approach to Removing Uncertainties
in Nominal Environmental Covariates
and Soil Class Maps

T. Behrens, K. Schmidt and T. Scholten

Abstract In this chapter we present an automated approach to correct the delin-
eation of nominal soil and environmental datasets based on auxiliary metric at-
tributes, aiming to enhance positional accuracy. The detection of uncertainties is
based on different spatial and non-spatial approaches. The methodological frame-
work mainly consists of nearest neighbour approaches and comprises supervised
feature selection, different ensemble classification techniques, as well as spatial and
non-spatial smoothing and generalization approaches. The method is described and
applied to an artificial dataset as well as a 1:50 000 German soil map and a 1:1 000
000 geological map of the Republic of Niger.

18.1 Introduction

In many situations of applied digital soil mapping we have to handle spatial datasets
of varying provenance, age, scale, resolution, mapping scheme, and aggregation
level resulting in different sources of errors (Robinson et al., 1984; Lagacherie
and Holmes, 1997; Heuvelink, 1998; Bishop et al., 2006) (see also Chapters 6
and 25). In predictive data mining approaches (Behrens et al., 2005; Behrens and
Scholten 2006a) existing soil data is extrapolated on the basis of auxiliary environ-
mental datasets (McBratney et al., 2003). Hence, the prediction accuracy can be
weak (i) if the soil data and or (ii) the auxiliary datasets contain errors. For exam-
ple when using a small-scale geological maps (>1:100 000) as predictor datasets
for medium or large scale digital soil maps (<1:50 000) the delineation is prop-
agated through the analysis and can be found in the prediction results, assum-
ing there is a significant relation. Thus, in general, maps of smaller scales should
not be used to compile maps of larger scales (Robinson et al., 1984) (see also
Chapter 17). As “in practice even the best-drawn maps are not perfect” (Burrough
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and McDonnell, 1998) positional inaccuracies can be found in most classically sur-
veyed soil maps for many well known reasons. In this case, the soil map as the
training dataset contains noise – which again weakens prediction accuracy (Brighton
and Mellish, 2002). Hence, it is important to provide solutions to automatically
correct existing datasets. One step towards better predictions – or in some cases to
allow predictions at all, when the data is sparse and at small scale – is to provide
techniques that correct the boundaries of nominal datasets on the basis of auxiliary
datasets of higher resolutions and/or scales. Demonstrated on different artificial and
real datasets this Chapter presents automated approaches to adjust the boundaries of
nominal datasets based on terrain attributes.

18.2 Rationale

The correction of the delineation in nominal datasets as introduced in this paper
is based on two major steps: first, the detection and removal of inaccuracies and
second, the prediction of new class values for all incorrect pixels. The detection of
positional inaccuracies can be achieved in an unsupervised or a supervised fashion,
based on simple band removal approaches or on outliers in terrain attributes found
within each class-area. Concerning the outlier based approach digital terrain anal-
ysis plays a crucial role. Hence a large library of terrain attributes (Behrens, 2003;
Behrens et al., 2005) is used. The prediction of a new class value for an uncertain
pixel is based on a spatial and non-spatial nearest neighbour data mining frame-
work, comprising feature selection, ensemble classifications as well as spatial and
non spatial smoothing and generalization approaches to provide stable and reliable
results.

The whole approach is applied iteratively, as the position of the boundaries and
thus the outliers changes after each run. The system is stopped if no further signifi-
cant or plausible changes occur.

18.3 Test Sites

18.3.1 Artificial Datasets

An artificial DEM of a hemisphere (radius = 40 pixels) set on top of a plain sur-
face (100 by 100 pixels) was used as a test bed for the framework developed here.
The corresponding artificial nominal environmental dataset consists of two map-
ping units: first, an inner, irregular shaped ellipsoid which overlaps large parts of
the hemisphere and minor parts outside the hemisphere and second a surround-
ing mapping unit mainly covering the plain surface surrounding the hemisphere
(Fig. 18.1). The aim is to correct the ellipsoid mapping unit in such way that
it covers the hemisphere completely and is removed from the surrounding plain
surface.
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Fig. 18.1 Iterative correction of positional inaccuracies of an ellipsoid mapping unit to an artificial
hemisphere DEM. The left image is the original ellipsoid followed by images showing the results
after 2, 4, 6, 8, 10 and 12 iterations. The image in the right shows the location of the corrected
pixels

18.3.2 1:50 000 Soil Map of Central Hesse, Germany

The 1:50 000 soil map of central Hesse, Germany shows parts of the Vogelsberg,
Europe’s biggest shield volcano with a relief of 170–750m asl. The soilscape is
mainly characterized by Cambisols, often influenced by loess components (HLUG,
2002). The soil map was rasterized to a resolution of 20 m.

18.3.3 1:1 000 000 Geological Map of the Republic of Niger

To provide an example for countries with sparse datasets, we analyzed the
1:1 000 000 geological map of the Republic of Niger in Western Africa. The map
is based on the work of Greigert (1961) and disseminated digitally as part of the
“Atlas of Natural and Agronomic Resources of Niger and Benin” (Herrmann et al.,
1999). Shuttle Radar Topography Mission (SRTM) data with a resolution of 90 m
was used to derive terrain attributes (Section 18.4.1).

18.4 Methods

The technical key steps of the proposed methodology are briefly described in the
following:

Beyond the correction of uncertainties the major goal of the methodological
framework applied is to provide stable results. In the first step after digital terrain
analysis (Section 18.4.1) and dataset creation, the data are analyzed to remove noisy
and irrelevant features (attributes) (Section 18.4.2). After reducing dimensionality,
the core algorithms, that is, removing uncertain pixels form the dataset, are ap-
plied (Section 18.4.3). Afterwards, to speed up computation time we use a stratified
random sampling (Section 18.4.5.1) over the resulting dataset followed by Wilson
editing to remove noise (Section 18.4.5.2). To allocate each uncertain pixel we apply
a simple kNN-classifier (Section 18.4.5.3) to assign the most probable class out of
the spatially adjacent neighbours (Section 18.4.4). Finally, to keep the system stable
and to avoid blurry borders local spatial noise removing is applied (Section 18.4.6).
Additionally, the methods described above are embedded in an ensemble prediction
approach (Section 18.4.7) – again to provide accurate results.
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18.4.1 Digital Terrain Analysis

As there is a strong dependence between terrain attributes and soil properties
(McBratney et al., 2003; Behrens et al., 2005), a large pool of continuous
geomorphometric terrain attributes is used in digital soil mapping. Based on a
terrain-analysis framework (Behrens, 2003), the following 25 terrain attributes were
calculated: flow accumulation, relative hillslope position, elevation above channel,
distance to channel, average slope, steepest slope, aspect, profile curvature, plan-
form curvature, mean curvature, maximum curvature, minimum curvature, relative
profile curvature, relative planform curvature, topographic roughness, relative rich-
ness, waxing and waning slopes, solar insolation, compound topographic index,
USLE LS-factor, landform evolution, relative mass balance, stream power index,
surface area ratio, and surface volume. For details see Behrens (2003), Behrens
et al. (2005), and Behrens and Scholten (2006b).

SRTM data was used to remove uncertainties in the geological map of the
Republic of Niger. Additional terrain attributes had to be calculated based on Monte
Carlo simulations to derive more natural spatial flow patterns and geomorphometric
positions (i.e. flow accumulation, relative hillslope position, and elevation above
channel). This was essential for boundary adjustments, due to the error compo-
nent of the SRTM data which is relatively large in this area (visual interpreta-
tion), the scale of the geological map, and the width of the valleys. A comparison

Fig. 18.2 Comparison of flow-accumulation based on a Monte Carlo simulation using a
single-flow approach (a) and a multiple-flow approach (b) for a section of the geological map of
the Republic of Niger (c = original, d = corrected). (See also Plate 20 in the Colour Plate Section)
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of a standard multiple-flow algorithm to calculate contributing area (Dietrich and
Montgomery, 1998) and a Monte Carlo approach based on the D8 single-flow
algorithm (Jenson and Domingue, 1988) is shown in Fig. 18.2a,b. It can be seen
that the spatial distribution of the resulting flow accumulations based on the dif-
ferent approaches differs especially in the valley bottoms, where the Monte Carlo
based approach produces much more plausible results and models the valley bottom
according to the draped hillshade.

18.4.2 Feature Selection

K-nearest neighbour classifiers as instance-based learners are sensitive to corre-
lated as well as irrelevant and noisy features. Thus, feature selection techniques
need to be applied to achieve accurate predictions. The feature selection algorithm
used in this study is the well known Relief-F approach (Kira and Rendell, 1992;
Kononenko, 1994; Liu and Motoda, 1998).

For every class combination and every randomly selected instance (i.e. vector
containing terrain attributes) in a dataset the difference between the feature values of
the nearest hit (i.e. the shortest instance to the same class) and the nearest miss (i.e.
the shortest instance to the neighbouring class) are calculated and summed up over
all selected instances in a weight vector. Thus each feature has a weight indicating
its potential to differentiate between the classes in a dataset. In this study we used
the mean weight as the lower limit to remove features and 50 randomly selected
instances per class.

18.4.3 Removing Uncertainties

18.4.3.1 Band Removal

As the probability of noise is generally higher at the polygon boundaries than within
a polygon, a simple spatial denoising approach is to remove all pixels at the class
boundaries. This idea is based on the concept of “error bands” as introduced by
Perkal (1966). As the width of the band can not easily be predicted and is irregular
in most cases we use a buffer width of one pixel inside each class.

18.4.3.2 Outlier Detection

Based on the terrain attributes derived (Section 18.4.1) we developed a non-spatial
denoising approach which is the initial idea behind this study. Therefore, each class-
area of the nominal dataset to be corrected is analyzed separately in terms of outliers
within the frequency distribution of each terrain attribute. If a threshold is reached,
that is if the majority of all terrain attributes is outside twice the standard deviation,
the corresponding pixel is marked as uncertain. Thus, this process is data driven and
in contrast to band denoising it is not fixed to the boundary between two polygons.
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18.4.4 Spatial Neighborhood Search

To determine the most likely soil class for each uncertain pixel a local spatial neigh-
bourhood search is applied. The advantage of a local search procedure is that the
universe of potential classes to be assigned to an uncertain pixel is reduced resulting
in predictions that are generally more accurate and stable.

The search for adjacent soil classes is based on the moving window technique. If
a pixel contains no soil class information, its neighborhood is analyzed initially on
the basis of a three-by-three pixel neighbourhood. If no adjacent soil class is found
within this kernel, the neighborhood size is automatically enlarged until at least two
adjacent soil classes are found.

18.4.5 Instance Selection and Classification

18.4.5.1 Random Sub-Sampling

Instance selection, or sub-sampling (Liu and Motoda, 2001) aims to remove redun-
dant information from datasets as well as to speed up learning and/or prediction time
while preserving prediction accuracy (Schmidt et al., 2008). This becomes impor-
tant for large datasets with thousands of training samples and for computationally
expensive algorithms like k-nearest neighbour.

In this study we use stratified random sampling. Kohonen et al. (1995) recom-
mend a disproportional approach for supervised classification applications, where
an equal amount of observations or instances is selected for each class, even when
the a-priori probabilities differ strongly.

The sample size for each class in this study is 50. As this process is embedded
in the ensemble prediction approach (Section 18.4.7) random sampling is the sub-
agging (Breiman, 1996; Bühlmann and Yu, 2002) part of the procedure.

18.4.5.2 Dataset Editing

Wilson editing (Wilson, 1972) is a competitive supervised denoising technique
(Zeidat et al., 2005) with the goal of obtaining more accurate classifiers. This
is achieved by removing all vectors in a dataset that have been misclassified
by a k-nearest neighbour classifier (Section 18.4.5.3), leading to smoother class
boundaries in the feature space and better subsequent classification results using
a k-nearest neighbour classifier. In our case this is done separately for every class
combination found within the neighborhood search to get optimized and spatially
dependent classification results, which is an advantage in heterogeneous soilscapes.

18.4.5.3 Supervised Classification

The k-nearest neighbour classifier (Fix and Hodges, 1951) labels an unknown in-
stance with the class label of the majority of its k-nearest neighbours in terms of
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Euclidean distance in feature space. We use a three-nearest neighbour classifier in
this study.

18.4.6 Generalization Using Spatial Noise Removal

To avoid blurry borders and small isolated areas a spatial noise removal is applied
after each iteration. The noise removal approach replaces all areas comprising less
than five pixels followed by a three-by-three pixel majority filter. An optimized
size for areas to be removed can not be determined a-priori and has to be tested
iteratively. We suggest a default value of less than 5 pixels (which is less than the
half amount of pixels in a local 3∗3 three-by-three neighbourhood), as it produces
only a weak smoothing effect. As this process avoids fuzzy transition zones due to
smoothing it is comparable to the soil scientist’s approach of generalization when
mapping soil classes.

18.4.7 Ensemble Prediction

Ensemble approaches, i.e. combinations of multiple predictions based on changes in
the training dataset, are very popular and powerful, as they increase prediction accu-
racy (Breiman, 1996). For k-nearest neighbour classifiers, feature subset selection
approaches are recommended by a number of authors (e.g., Bay, 1999; Akkus and
Güvenir, 1996) and are competitive with boosted (Freund and Schapire, 1996) deci-
sion trees (Bay, 1999). The application of instance-based ensembles like bagging or
subagging (Breiman, 1996; Andonova et al., 2002; Bühlmann and Yu, 2002) is re-
ported to work on small random samples (Alpaydin, 1997; Hamamoto et al., 1997).
Additionally, ensemble approaches are more robust against irrelevant and correlated
features (Bay, 1999; Skurichina and Duin, 2001). In this chapter we apply a combi-
nation of both random feature subsets (Ho, 1998) as well as small sample subagging
(Section 18.4.5.1), which is comparable to decision forest approaches (Ho, 1998;
Breiman, 2001).

18.5 Results and Discussion

The aim of applying the proposed approach on an artificial dataset was to visualize
the results for an easy-to-interpret example. As shown in Fig. 18.1 the method works
as expected. Based on the band removal approach 12 iterations were needed to fit
the nominal ellipsoid to the hemisphere (circle) based on 5 terrain attributes (slope,
compound topographic index, mean, profile and horizontal curvatures). Using the
outlier detection and a low threshold for outlier removal, only one iteration is needed
to achieve the same results. Yet in this case band removal offers the opportunity to
analyze the correction process and thus the location of spatial uncertainties over the
iterations.
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Fig. 18.3 Section of the original 1:50 000 soil map (Central Hesse, Germany) draped over a DEM

Fig. 18.4 Corrected 1:50 000 soil map (Central Hesse, Germany) draped over a DEM
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The correction of the 1:50 000 soil map of Central Hesse, Germany is based on
the outlier detection approach (Section 18.4.3.2). A first field survey revealed four
iterations to be sufficient to correct the soil map. At first sight, only minor changes
can be found between the original soil map (Fig. 18.3) and the corrected soil map
(Fig. 18.4). Yet, some boundaries show differences of 80 m. Generally, using a finer
resolution more iterations would be required. Depending on the resolution and the
scale of the input datasets different resolutions need to be tested to achieve optimized
results.

The section of the 1:1 000 000 geological map of the Republic of Niger as shown
in Fig. 18.2c demonstrates the problem of small-scale nominal maps in relation
to more precise, in terms of positional accuracy, data like SRTM. For the mapped
floodplain in the centre of the section, 33% of the area is located outside the flood-
plain as shown by the SRTM DEM. Thus, automated-data-mining-based boundary
adjustments become critical due to large amounts of noise. Yet, 12 iterations based
on the outlier approach were sufficient to correct the map (Fig. 18.2c,d). Attempts
with standard terrain attributes only, were not successful, whereas a combination
with the Monte Carlo based approaches returned reasonable results. In the case of
some of the other mapping units which do not show a strong relation to relief, we
recommend not using the adjusted polygons in the final map.

Based on the three datasets tested during the development of the approach pre-
sented the technique works as expected. Yet, it is not possible to make assumptions
about the quality of the boundary adjustment a priori as it depends on the errors and
interactions of the datasets used. Generally, three approaches to test the accuracy
of the method seem reasonable: (i) direct field validations, (ii) indirect comparisons
between digital soil maps based on the original and on the corrected datasets, and
(iii) expert interpretations based on map overlays using hillshades or 3D visuali-
sations. Concerning the 1:50 000 soil map of Hesse all 3 approaches are currently
tested and compared for different landscapes.

Concerning different methodological techniques (iterations, removal techniques)
the general tendency is that more iterations are needed if the uncertainties are high
or the resolution of the terrain attributes is relatively fine compared to the scale of
the map to correct. Further research is needed on criteria when to stop the iterative
process to provide fully automated applications. Band removal needs more itera-
tions than outlier based removal. Additionally, the risk to change boundaries not
related to relief is higher. Finally, for geomorphologic settings like wide valleys as
found in the geological map of Niger, plausible results can only be achieved when
carefully selected special terrain attributes are used in the correction approach (see
also Chapters 1 and 28).

18.6 Conclusions

The approach introduced in this study helps to enhance positional accuracy of nom-
inal soil and environmental datasets. This is important:
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– in terms of error propagation if datasets of different scales and resolutions are
used together in scorpan (McBratney et al., 2003) predictions,

– to produce better prediction results due to an enhancement of the soil map to
predict and/or the environmental covariates used for prediction,

– and in terms of quality control of conventionally produced soil maps.

The second step of the procedure – the prediction of the most probable class –
can also be used as a post-processing tool after predicting single soil units which
often results in overlapping areas and gaps (Behrens et al., 2005).

Future research is needed to find optimized settings for the different model
parameters like the feature selection threshold, the removal approach, the sub-
sample size, the number of neighbours used for classification, the settings for spatial
smoothing, and the iterations. Yet, as using the default values returns promising and
stable results the major model parameters are the number of iterations and the algo-
rithm to remove noise. The principal advantage of the outlier-based removal com-
pared to the error-band removal is that pixels at class boundaries that are not related
to the environmental covariates used, are not per se regarded as uncertain, which
preserves these boundaries in their original shape. Hence, outlier-based removal is
recommended.

The method, proposed and described here for the first time, may become an
important pre- and post-processing tool in digital soil mapping. In countries with
sparse and coarse soil information it might help to refine maps of soil and its envi-
ronmental covariates.

Acknowledgments The authors would like to gratefully acknowledge the critical and helpful
comments and suggestions received from Alex McBratney on this manuscript. Partial funding for
this research was provided by the Collaborative Research Centre 299 of the German Research
Foundation. We would like to thank the Hessian State Office for Environment and Geology
(HLUG) for providing data.

References

Andonova, S., Elisseeff, A., Evgeniou, T., Pontil, M., 2002. A simple algorithm for learning stable
machines. In: F. van Harmelen (Ed.), Proceedings of the Fifteenth Eureopean Conference on
Artificial Intelligence. IOS Press, Amsterdam. pp. 513–517.
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Chapter 19
Digital Soil Mapping Using Logistic Regression
on Terrain Parameters for Several Ecological
Regions in Southern Brazil

E. Giasson, S.R. Figueiredo, C.G. Tornquist and R.T. Clarke

Abstract As the relationship between soils and landscape within the context of
soil formation is well known, predictive relationships between soils and soil for-
mation factors can be established by regression techniques, relating soil and ter-
rain attributes to occurrence of soil classes. This study proposes the production
of maps using logistic regression on soil and terrain information from a pilot
area to reproduce the original map and predict soil distribution in other similar
landscapes in three study areas (Ibibubá Municipality, Sentinela do Sul Munic-
ipality, and Arroio Portão Watershed) in map scales from 1:30,000 to 1:50,000
and located in three ecological regions in Southern Brazil (Planalto, Encosta da
Serra do Sudeste, and Depressão Central, respectively). By using logistic regres-
sions for digital soil mapping, the method predicts the occurrence of soil units
based on reference soil maps (produced by conventional methods), and on sev-
eral parameters derived from a USGS SDTS-SRTM DEM, namely slope gradient,
profile curvature, planar curvature, curvature, flow direction, flow accumulation,
flow length, Stream Power Index (SPI), and Topographic Wetness Index (TWI).
Results show that parameters such as elevation, curvature, SPI, TWI, and distance
to streams are more frequently selected as parameters for predicting the occurrence
of soil classes, with overall percent correct from 61% to 71%, and Kappa Index
from 36% to 54% when the maps produced are compared with the original soil
maps with a simplified legend (which simulate the production of soil maps with
smaller scales that the original soil map). The prediction of soil map units us-
ing logistic regressions generated reliable soil maps, and the method appears to
deserve more research effort, given the reliability and low cost of the resulting
information.
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19.1 Introduction

A cost-effective approach to traditional large-scale soil surveys would be to map soils
of representative areas within homogeneous regions and use the soil-landscape rela-
tionships to predict soil distribution on non-surveyed areas. This approach is similar to
the reference area method (Lagacherie et al., 2001), which is based on the hypothesis
that it is possible to sample a reference area including most of the soil classes of
a region. Based on this reference area, the prediction of soil distribution on other
areas may be facilitated if the landscape is modeled by digital terrain analysis (Hengl
and Rossiter, 2003) and if relationships between soils and landscape are modeled.
Recently, several approaches to make digital soil maps based on GIS have been
used (Moore et al., 2001; Bell et al., 1994; McKenzie and Ryan, 1999; Odeh et al.,
1994; Zhu and Band, 1994; Lark, 1999; Gessler et al., 2000; Campling et al., 2002).

Multiple logistic regression has been used successfully in soil science and many
other related fields (Camplig et al., 2002; Gurdak, 2006; Mueller et al., 2005;
Ohlmacher and Davis, 2003; Lai et al., 2006; Wang et al., 2007), see also Chapters 9,
17, 19, 20, and 25 in this book. As soil map units are categorical variables, multiple
logistic regressions may be suitable for predicting occurrence of soil classes from
landscape variables, with the advantage of providing estimates of probabilities of
occurrence of soil class map units. Although previous works used logistic regression
to estimate the occurrence of specific soil characteristics instead of soil taxonomic
classes or mapping units, they suggest that logistic regressions may have potential
for producing soil maps from terrain parameters based on relationships between
these parameters and soil occurrence. The purpose of the study reported here was
to test a method of extrapolating landscape parameters by testing how well multiple
logistic regressions can reproduce a soil map of a reference area.

19.2 Material and Methods

The study was conducted in three ecological regions of Rio Grande do Sul State,
Brazil. The first study area was in the municipality of Ibirubá (720 km2), where
original soil survey at scale 1:30,000 (Santos et al., 1970) identified deep and well
drained Oxisols in the nearly flat lands at higher elevation, Entisols and Molisols on
hill-slopes, and poorly drained soils in flat and low lands close to streams. The orig-
inal soil classification of this and following surveys was updated to Soil Taxonomy
(United States Department of Agriculture, 1998).

The second study area was the Arroio Portão watershed (225 km2), with
Endoaquents and Endoaqults in flat lands, Udarents on hill-slopes, and Hapludults
in gently sloping areas, as identified by Klamt and Schneider (1992) in a 1:50,000
soil survey.

The third study area was the municipality of Sentinela do Sul (253 km2). A soil
survey of the municipality at scale 1:50,000 (Klamt et al., 1996) identified map units
composed mainly of combinations (undifferentiated group, complex, or association)
of soil taxonomic class units dominated by Endoaquents in flat lands in the alluvial
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plains, by Inceptisols and Ultisols in gently sloping lands, by Inceptisols and by
Udarents in strongly sloping lands, and Udarents in very steep lands (Giasson et al.,
2006).

To improve the capacity to reproduce the original soil maps, predictions were
done both using the original soil map legend and using a simplified legend. The
legends were simplified by grouping similar mapping units based on their higher
taxonomic categorical level. This was intended to verify whether a simplified cate-
gorical legend, which would usually correspond to a cartographic scale reduction,
could be better predicted. In both situations, the same procedures were used for
estimating multiple logistic regressions and evaluating map accuracy.

Thedigitalelevationmodel (DEM)wasthe3arcsecor92m(USGSSDTS–SRTM)
(Rabus et al., 2003). As in Chapter 32, the DEM was used, directly or as a component,
to calculate nine other soil predictor variables: slope gradient, profile curvature, planar
curvature, curvature, flow direction, flow accumulation, flow length, Stream Power
Index (SPI), and Topographic Wetness Index (TWI) (Wolock and McCabe, 1995).
Each of these landform parameters was selected for test as explanatory variable be-
cause they were expected to represent changes on soil-forming factors and, therefore,
were believed to contain information on the occurrence of soil mapping units.

Logistic regressions were used to determine the relationships between these
explanatory variables and soil distribution. Data sampling for training points con-
sisted of random map observations (approximately one observation for each 3.5 ha)
consisting of the digital elevation model (DEM), DEM-derived parameters, and soil
classes as classified by traditional soil survey. Data sampled in ArcView 3.2 envi-
ronment (ESRI,1999) was exported and analyzed statistically using Minitab version
11 (Minitab Inc., 1996). A step-by-step procedure was used to obtain the best fit
set of logistic regressions, starting with a larger number of variables and excluding
the variables considered less related to variations on the response variable. Sets of
best fit regressions were selected based on criteria as goodness to fit tests (Pearson
and deviance), log-likelihood, odds ratio, and Z test (Hosmer and Lemeshow, 1989).
These equations were organized as Avenue scripts in ArcView 3.2 environment, as-
signing a probability value to each pixel and creating maps representing probability
of occurrence of soil mapping units. Estimated soil class maps were elaborated by
assigning to every single pixel the denomination of the soil mapping unit that had
the larger probability of occurrence for that pixel.

The accuracy of the estimated soil maps was determined by using error matrices
(Congalton, 1991) comparing pixel by pixel if the soil map unit as estimated agreed
with the soil map unit determined by the original soil survey. Based on this error
matrices, several map accuracy indicators and the overall accuracy and the Cohen’s
Kappa index (Cohen, 1960) were calculated.

19.3 Results and Discussion

The final maps produced can be compared with original maps (Fig. 19.1). The vari-
ables more frequently selected and therefore taken as predictors of occurrence of
soil mapping units were elevation, distance to streams, TWI, curvature, and slope
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Table 19.1 Variables selected as predictors of occurrence of soil mapping units (p<0.001) for the
three study areas in Rio Grande do Sul, Brazil

Study area

Ibirubá Arroio Portão Sentinela do Sul

Predictor elevation elevation elevation
distance to streams distance to streams distance to streams
TWI curvature TWI
curvature slope
SPI
flow length
slope

TWI = Topographic Wetness Index and SPI = Stream Power Index

(Table 19.1), which are variables related to water accumulation and water dynamics.
These sets of best predictors are related to long-term known relationships between
soil-forming factors, landform, and soil distribution, which relate soil distribution
to erosion processes in steep well-drained areas and with water dynamics, such as
water table depth (variable elevation) and water movement and accumulation in
poorly drained areas.

For evaluating the reproducibility of the original soil map, the agreement between
these maps and the newly generated maps was evaluated using error matrices, and
its accuracy quantified in Table 19.2.

Attempts to classify the entire landscape never achieved better results than 59%
overall accuracy (Kappa Index = 42%) when using the original legend. Overall
accuracy and Kappa Index were considered unsatisfactory in both cases, although
they are in the same magnitude that values found by Hengl and Rossiter (2003).
The indicators with lower precision found for Sentinela do Sul study area can be
explained by a presence of complexes as soil mapping units, and a large variation on
parent material characteristics, not included in this study because of lack of adequate
information (Klamt et al., 1996).

Given the characteristics of the SRTM DEM, its precision may not have repro-
duced small variations of elevation and its resolution may not have showed the actual
terrain variations at short distance, so that these characteristics may have contributed
to the low resolution of the maps produced. The use of finer resolution DEM (as used
in Chapter 28 and 31) could improve the resolution and precision of estimated maps.

Table 19.2 Map accuracy indicators for the three study areas in Rio Grande do Sul, Brazil

Study area

Type of legend Indicator Ibirubá Arroio Portão Sentinela do Sul

Original Overall Accuracy (%) 58 59 48
Kappa Index (%) 37 42 36

Simplified Overall Accuracy (%) 61 68 71
Kappa Index (%) 38 50 54



230 E. Giasson et al.

Maps estimated using the simplified legend (Fig. 19.1) had an overall accuracy
of 61% to 71% (Kappa Index = 38% to 54%) (Table 19.2), which is a mean in-
crease of 23% in the overall accuracy and of 25% in the Kappa Index in relation
to when using the original legend. The increases in overall accuracy and Kappa
Index were larger in Sentinela do Sul (48% and 50%, respectively), followed by
Arroio Portão watershed (15% and 21%, respectively), and by the Ibirubá region
(5% for both indicators). Larger increases in overall accuracy and Kappa Index seem
to be related to the areas where the changes in soil distribution are more closely
related to topography, since Sentinela do Sul has greater variability in relief and
since in Ibirubá the relief pattern is more uniform and changes in slope are smaller,
being variations in soil type probably more related to changes in parent material
constitution.

Although the use of a simplified legend causes the soil map to lose precision
(more soil classes are included in a map unit), it increases the accuracy of the digital
soil map, i.e., the ability to reproduce a reference soil map, either using an orig-
inal field survey or a map with simplified legend. Therefore, one must be able to
choose between precision and accuracy for selecting the appropriate procedure for
its objectives.

19.4 Conclusion

Maps generated using this procedure may be adequate for extrapolating soil distribu-
tion information to areas where no comprehensive soil map is available, but where
reference soil maps representing soil diversity and distribution in such regions do
exist.

Given the importance of soil surveys as sources of information for land use
planning and management, countries such as Brazil where soil surveys are most
of available at small scales (1:750,000) can benefit from using such digital soil
mapping procedures. In Rio Grande do Sul State, the southern state in Brazil, most
ecological regions have at least one larger scale soil survey, such as those used in
this study. The acceptance of these digital soil maps as useful sources of information
may refine the available soil distribution information.

For these study areas there were no comprehensive comparison of the precision
of digital soil maps with the precision of traditionally produced soil maps using
ground truth procedures.

Currently, more research effort is needed to evaluate costs, benefits, precision,
and accuracy of digital soil maps, which may in future come to have precision as
good as, or better than, other soil maps.

At this time, digital soil mapping is a growing and promising field of theoretical
and applied research, capable of produce applicable knowledge and technology for
soil mapping.
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Chapter 20
Purposive Sampling for Digital Soil Mapping
for Areas with Limited Data

A. Xing Zhu, Lin Yang, Baolin Li, Chengzhi Qin, Edward English,
James E. Burt and Chenghu Zhou

Abstract Digital soil mapping requires two basic pieces of information: spatial in-
formation on the environmental conditions which co-vary with the soil conditions
and the information on relationship between the set of environment covariates and
soil conditions. The former falls into the category of GIS/remote sensing analy-
sis. The latter is often obtained through extensive field sampling. Extensive field
sampling is very labor intensive and costly. It is particularly problematic for areas
with limited data. This chapter explores a purposive sampling approach to improve
the efficiency of field sampling for digital soil mapping. We believe that unique
soil conditions (soil types or soil properties) can be associated with unique com-
bination (configuration) of environmental conditions. We used the fuzzy c-means
classification to identify these unique combinations and their spatial locations. Field
sampling efforts were then allocated to investigate the soil at the typical locations
of these combinations for establishing the relationships between soil conditions and
environmental conditions. The established relationships were then used to map the
spatial distribution of soil conditions. A case study in China using this approach
showed that this approach was effective for digital soil mapping with limited data.

20.1 Introduction

Digital soil mapping often takes a predictive approach based on the classic concept
that soil is a function of its environment factors (Jenny, 1941, 1980; Hudson, 1992).
Recently, McBratney et al., (2003) developed this concept further and formulated
the scorpan model which can be expressed as following equations:

Sc = f (s, c, o, r, p, a, n)

Sa = f (s, c, o, r, p, a, n) (20.1)
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where Sc is soil classes and Sa is soil attributes (properties). The s in Equation
(20.1) refers to existing soil information, c is climate condition at the site, o means
organism (vegetation, fauna or human activities), r is local topography (such as
elevation, slope gradient, profile curvature, contour curvature, and topographic wet-
ness index), p is parent materials, a means age, n is space and can be perceived as
spatial topology or spatial relationship. These factors are referred to as environment
covariates. Information on many of these covariates can be derived using GIS and
remote sensing techniques. For example, information on topography is typically de-
rived through digital terrain analysis (Evans, 1972, 1998; Wilson and Gallant, 2000;
Shary et al., 2002, Section 28.2.2) while information on vegetation is often derived
from analyzing remotely sensed imagery (Lillesand and Kiefer, 2000; Section 16.2;
Table 2.1).

The f in Equation (20.1) refers to the relationship between soil conditions (either
soil class or soil properties) and the covariates (Section 1.2). The relationship is of
two kinds: one is in the spatial domain and the other is in the parameter domain. The
spatial domain relationship explores the spatial auto-correlation of the soil attribute
of interest and/or the cross-correlation between the soil attribute and environment
covariates. Examples of this type of relationship are “Soil Type A occurs down
slope from Soil Type B”; “Soil Type C occurs on slide-slopes below narrow ridges”.
Another example is the statement that the difference in attribute between two points
is a function of the distance between the two points in space (the semivariogram
concept). Geostatistical techniques are often used for extracting the latter form of
spatial relationship (Burgess and Webster, 1980a,b; Lark and Papritz, 2003; Li et al.,
2004; Li et al., 2005; McBratney and Webster, 1983; Odeh et al., 1995; Walvoort
and de Gruijter, 2001; Webster, 1991; Webster and Burgess, 1980). However, these
methods are typically “data hungry”, thus are of limited application for areas with
limited data.

The parameter domain relationship refers to the relationships between soil condi-
tions and the first five covariates in the scorpan model. An example of such relation-
ship is the relationship between soil properties and terrain variables. Many methods
have been developed to extract or determine these relationships (see McBratney
et al., 2000; McBratney et al., 2003 for overview). These techniques can be grouped
into four major types based on data sources: (1) methods for obtaining knowledge
on relationship from local soil scientists (Zhu, 1999; Zhu et al., 2001); (2) methods
for establishing relationships from field samples (Bell et al., 1992; Bell et al., 1994;
Gessler et al., 2000; Zhu, 2000); (3) methods from discovering relationships from
existing soil maps (Bui et al., 1999; Moran and Bui, 2002, Qi and Zhu, 2003; also
see Chapter 25); and (4) methods for extracting relationships from typical pedons
(typical cases) (Qi et al., 2006; Shi et al., 2004). For areas with limited data, most
likely the required data sets for these techniques would not be available, thus these
methods may not be applicable as well.

This paper describes a purposive sampling approach for defining the parameter
domain relationships. The objective of this approach is to direct field investigation
efforts to locations which are expected to capture the spatial pattern of soil variation
effectively, thus reduce field sampling efforts and make digital soil mapping for
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areas with limited data is not only possible but also more effective. Section 20.2
describes the approach, which is followed by a case study in China. Section 20.4
will provide summaries and conclusions.

20.2 Methods

20.2.1 The Basic Idea

The basic idea in this approach is that we only need to sample the locations where
the soils are typical of the soil categories to be mapped and soil variation from these
typical locations can be approximated by membership gradation under fuzzy logic.
Under this notion, soil-landscape relationships between the soils and the environ-
mental conditions at these locations can be used to approximate the soil-landscape
model of the area. In this way we can minimize the extent and the amount of field
investigation efforts and makes it possible to use digital soil mapping approaches to
map soils in areas with limited data.

The key problem in this pursue is to distinguish locations where the soils are
the typical instances of the classes to be mapped from other locations where soils
are somewhere between types without extensive sampling. To address this ques-
tion, we assume that the typical instances of soil classes correspond to the unique
configurations (combinations) of environment conditions. Thus, the problem now
becomes that of finding unique configurations of environment conditions. GIS/RS
techniques are used to characterize the soil environmental conditions and fuzzy clas-
sification techniques are used to identify the unique combinations (or environment
classes) that exist in the environmental data set. Fuzzy maps of the derived envi-
ronment classes are then used to determine locations where the soils are typical.
Soil-landscape model can then be developed for the area by linking these typical
instances of soils to the environmental conditions.

20.2.2 The Approach

Our purposive sampling method consists of four major steps: (1) development of
soil environment database; (2) identification of environmental configuration (com-
bination) patterns; (3) field-investigation; (4) development of soil-landscape model.

Soil-environment database development. Environment covariates related to soil
conditions are first identified. A GIS database on these environment covariates are
then generated given that the source data is available and GIS data layers can be
created for each covariate. Typical environment covariates includes elevation, slope
gradient, slope aspect, surface profile curvature, surface contour curvature, topo-
graphic wetness index, parent materials (often approximated by geology data layer)
and vegetation information. The specific list of data layers to be used for a given
area depends on the pedogenesis and data availability of the area.
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Identification of environment configuration patterns. We employed a fuzzy c-
means classifier (FCM) to identify patterns of environment configuration. FCM is
a classifier which first optimally partitions a dataset (such as the environmental
database) into a given set of classes and then computes the membership of each
object in each of the classes (Bezdek et al., 1984). It identifies the centroids of
classes by minimizing the fuzzy partition error as given in Equation 20.1 (Bezdek
et al., 1984):

Jm (U, v) =
n∑

k=1

c∑

i=1

(uik)m ‖yk − vi‖2 A (20.2)

where y is the data; c is the number of clusters in y; m is a weighting exponent
for fuzziness; U is a fuzzy c-partition of Y ; v is a vector of cluster centres; A is
a weighting matrix; n is the number of objects in set y; uik is the membership of
the kth object (yk) belonging to the i th cluster. Jm , the fuzzy partition error, can
be described as a weighted measure of the squared distance between pixels and
class centroids, and so is a measure of the total squared errors as minimized with
respect to each cluster (Ahn et al., 1999; Ross, 1995). Jm decreases as the cluster-
ing improves (meaning that pixels tend to be overall closer to their representative
centroids).

In most cases, one does not know the number of classes that best describe the
structure in the data set. To judge the effectiveness of the clustering results generated
using the above fuzzy c-means algorithm, two cluster validity measures (partition
coefficient (F) and entropy (H )) are defined as (Bezdek et al., 1984):

Fc(û) =
n∑

k=1

c∑

i=1

(ûik)2/n (20.3)

Hc(û) = −
n∑

k=1

c∑

i=1

(ûik loga(ûik))/n (20.4)

Partition coefficient F will take the values of 1/c to 1, while entropy H ranges
from zero to loga(c) (Ahn et al., 1999). F measures the amount of overlap between
clusters, and is inversely proportional to the overall average overlap between pairs
of fuzzy sets (Ahn et al., 1999). H , conversely, is a scalar measure of the amount of
fuzziness in a given fuzzy partition U (Bezdek, 1981). The best fuzzy c-partition,
e.g. the number of classes that best describe the structure in the data set, is thus
the c-partition which realizes the highest Fc(û) and the lowest Hc(û) (Ward et al.,
1992). Note that both H and F will reach maxima and minima at the same points,
and in this sense they are essentially equivalent (Bezdek, 1981).

It is often the case that F increases and H decreases as the number of classes
decreases. To determine if a fuzzy clustering can be considered optimal, i.e. the
number of clusters optimally describes the structure in the dataset, one should ex-
amine the improvement in entropy or partition coefficient over adjacent clusterings
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(English, 2001). If there is a significant improvement, one can consider the current
clustering is a better partition of the dataset.

Field-investigation. Once the optimal clustering of the environmental data set
(the environment configuration pattern) is determined, membership maps for clus-
ters can be produced. Spatial locations of environment clusters and areas of en-
vironment transition can be identified on these maps. For each membership map,
the locations of its cluster centres (typical instances) are at those locations where
membership values are very high (>0.8 on a 0∼1 scale). Thus, field investigation
efforts should be mostly allocated to these areas.

Development of soil-landscape model. By investigating the status or property
of the soils at the locations of typical instances of environmental clusters, one can
quickly establish the relationships between soils and its environmental conditions.
The so-developed soil-landscape model can then be used in predictive soil mapping
using approaches such as SoLIM (Zhu et al., 2001).

20.3 Case Study

In this paper we present the result of a case study using the purposive sampling
approach. The case study was conducted over a watershed in Heilongjiang Province,
China, where there are no local field soil surveyors, no existing soil maps, no field
soil samples. Digital data on environmental conditions are scarce.

20.3.1 Study Area

The study area is a 60 km2 watershed located in Heshan Farm, Nenjiang county,
Heilongjiang province, China (Fig 20.1). The elevation ranges from 270 to 370 m.
Most slope is under 4◦. The native vegetation is meadow, but the area has been culti-
vated as cropland for the past 40 years. Crops in the watershed and over the general
area are generally limited to soybean and wheat. The soils in the area are formed from
the deposits of loamy loess. The parent materials for the area are the same in the whole
area except in the valley bottom which mostly occupied by fluvial deposits.

The area is considered data poor. The only soil map available is the 1:1,000,000
national soil map. For the general area, there are no field soil surveyors from whom
soil-landscape knowledge might be extracted. There are no field soil samples of any
kind for the watershed and the general area. Digital data on environmental condi-
tions is scarce. However, there is a topographic map at 1:10 000 for the area.

20.3.2 Soil Classes and Environmental Data

The Chinese soil taxonomy was chosen for this study (Chinese Soil Taxonomy
Research Group, 2001). This taxonomy currently is at the soil subgroup level and
lower classification units (such as soil series) are under development. In this case
study we employed subgroup as the basic soil unit to test our idea.
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Fig. 20.1 Location of study site: Heshan Farm, Nenjiang county, Heilongjiang Province, China
(See also Plate 22 in the Colour Plate Section)

As indicated in 20.2.2.1, at watershed scale the most important environment fac-
tors which co-vary with soil are usually bedrock geology, topographical characteris-
tic and vegetation. Bedrock geology of the whole study area is almost the same. The
vegetation of the area is heavily altered by human cultivation. The human cultivation
over the area is quite similar. Thus, we did not include information data layer for our
analysis. Topographic variables are expected to be important in reflecting local soil
conditions. Thus, the follow five topographic variables (elevation, slope gradient,
contour curvature, profile curvature and topographic wetness index) were used in
this study to characterize the environment conditions. We did not use slope aspect
as the relief in the area are so gentle we do not expect the difference in soil among
different slope aspects to be significant. Information on the five terrain variables
were derived from a 10 m resolution DEM which was created for this project from
the 1:10 000 topographic map of the area. Figure 20.2 shows slope gradient, profile
curvature, contour curvature and topographic wetness index for the area.

20.3.3 Identification of Unique Environment Combinations

Environmental data layers were preprocessed before FCM classification was per-
formed. The processing was to remove outliers and to standardize the ranges of the
input data layers. The outliers were those data values which are low in frequency
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Fig. 20.2 Environmental data of study area: (a) slope gradient, (b) profile curvature, (c) contour
curvature, (d) wetness index

and at the extremes of data distribution. These outliers were mostly errors introduced
during the creation of the digital elevation model and will have a strong impact on
the classification results. Thus, they need to be removed. The new values assigned
to these outlier pixels are those next to these extremes so that integrity of the data is
preserved.

Most of the data layers will have different data ranges. For example, the data
range for the slope gradient is certainly different from that of the contour curvature.
If the ranges are not standardized, the variables (factors) will be weighted differently
in the classification process. In this case, we assume that these variables have equal
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level of co-variation with soil, thus we need to treat them equally in the classifi-
cation. Thus, we standardized data layers to the same numerical range. Elevation,
slope and wetness index were stretched to 0 ∼ 100. Profile curvature and contour
curvature were stretched to –50 ∼ 50, keeping the 0 value unchanged.

A set of FCM classification were performed across five different fuzziness ex-
ponents (m = 1.5, 1.75, 2.0, 2.25, and 2.5). For each run (per m) the number of
clusters examined ranges from 2 to 20. By examining the improvements in partition
coefficient (F) and entropy (H ) for all five sets, we chose 13 as the optimal cluster
number of our data set. We argue that there are 13 clusters (13 unique combinations
of environmental conditions) within the data.

20.3.4 Investigation of Soil Types at Locations
of Environmental Combinations

A total of 23 field observations were made in the field to investigate the soil at these
class centres (typical locations of these environmental combinations). The field ob-
servations were guided by the membership values. For each class, the observation
sites were at locations where the membership values for the class are higher than
0.85. Two field points were selected for each class and soil types at each point
were identified by a soil taxonomy expert. If the soil types of the two points were
different, a third point was then selected.

20.3.5 Establishment of Soil-Landscape Model

Field observations were first linked with each class to establish the association be-
tween the environmental classes and soil types observed in the field. Table 20.1

Table 20.1 Association between environmental clusters and soil types

FCM classes

Environmental combination Soil types (subgroup)

Class 1 Mollic Bori-Udic Cambosols
Class 2 Pachic Stagni-Udic Isohumosols
Class 3 Mollic Bori-Udic Cambosols
Class 4 Typic Hapli-Udic Isohumosols
Class 5 Pachic Stagni-Udic Isohumosols
Class 6 Fibric Histic-Stagnic Gleyosols,

Typic Haplic-Stagnic Gleyosols
Class 7 Typic Hapli-Udic Isohumosols
Class 8 Typic Bori-Udic Cambosols
Class 9 Typic Hapli-Udic Isohumosols
Class 10 Typic Hapli-Udic Isohumosols
Class 11 Typic Hapli-Udic Isohumosols
Class 12 Lithic Udi-Orthic Primosols
Class 13 Typic Bori-Udic Cambosols
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Typic Bori-Udic Cambosols

Lithic Udi-Orthic Primosols

Typic Hapli-Udic Isohumosols -2

Pachic Stagni-Udic sohumosols

Typic Hapli-Udic Isohumosols -1

Mollic Bori-Udic Cambosols

Fibric Histic-typic Haplic-Stagnic
Gleyosols

Fig. 20.3 General catenary sequences of soil types in the study area

shows such association for the study area. It is clear that there is a good association
between the environmental classes and the soil types in the area. However, the asso-
ciation is not one-to-one. A soil type can occur under different unique environmental
conditions. For example, Mollic Bori-Udic Cambosols is relating to two different
environmental combinations (class 1 and class 3). It might also be possible that two
soil types may occur under one environmental class. This typically occurs over areas
where the environmental variables used are insufficient to differentiate the environ-
mental conditions under which each of the soil types occupies. We encountered
this problem for Class 6 which covers the central floodplain of the valley where
two soil types: Fibric Histic Stagnic Gleyosols and Typic Haplic Stagnic Gleyosols
intermittently distributed. Due to their intermittent nature we put these two as an
association in the soil mapping process.

The second stage is to combine the classes to form a soil landscape model for
the area. For example, both class 1 and 3 were identified as Mollic Bori-Udic
Cambosols. By examining their spatial relationships we found them located next
to each other so we combined the two into one. While there were five environmental
combinations relating to Typic Hapli-Udic Isohumosols (Table 20.1). Class 4, 7, 9,
and 11 were adjacent in space, thus they were combined into one. Class 10 was
not contiguous with those four classes and treated as a different instance of Typic
Hapli-Udic Isohumosols. Thus, Typic Hapli-Udic Isohumosols has two instances:
(1) the combination of class 4, 7, 9, and 11 is one instance and referred to as Typic
Hapli-Udic Isohumosols-1; and (2) Class 10 represents another and referred to as
Typic Hapli-Udic Isohumosols-2. After this process of combining classes, spatial
catenary sequence of soil types over the area was generated (Fig. 20.3).

20.3.6 Evaluation of the Soil-Landscape Model

To assess the validity of the soil-landscape model constructed using the purposive
sampling approach, the soil-landscape model was used under the SoLIM frame-
work to generate soil maps for the area. The SoLIM approach is a knowledge-based
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approach to digital soil mapping. It combines the knowledge on soil-environment
relationships (soil-landscape model) with the environmental conditions to infer the
spatial distribution of soils (Zhu, 1997; Zhu, 1999; Zhu et al., 2001). Case studies
have demonstrated that the SoLIM approach to soil mapping is successful (Zhu
et al., 2001). However, the quality of the soil maps from SoLIM largely depends
on the quality of the soil-landscape model. Thus, the SoLIM approach provides us
with the opportunity to examine the quality of the soil-landscape model constructed
with the use of FCM. The details on operation of SoLIM approach are beyond the
discussion of this paper and can be found in the user manual and tutorial guide of
SoLIM available at http://solim.geography.wisc.edu/software/index.htm.

The harden soil map derived from SoLIM based on the soil-landscape model
derived is shown in Fig. 20.4. The soil map shows a catenary sequence of the
soils in the area: This pattern matches field observation of catenary sequence in
the area well.

To validate this soil map, a second set of 45 field sites were investigated. This set
is referred to as the validation data set. Regular and transecting sampling strategies
were employed to collect this validation data set. Soil type at each field site was
identified at the subgroup level by the same soil taxonomy expert.

The field observed soil type at these sites was compared with the soil type ob-
tained from the inferred soil map. Soil subgroups from the inferred soil map match
field observed soil subgroups at 34 of the 45 sites, which accounts for about 76% of
accuracy. In addition, the accuracy of transacting points was 80%, which indicated
that the hardened soil map could capture local variation of soil information as well
as the overall soil spatial variation. Unfortunately, there is no large scale soil map
in our study area for comparison. Given that the accuracy of most 1:24,000 scale

Fig. 20.4 Soil map produced from SoLIM using the soil-landscape model constructed using the
FCM-based method (See also Plate 23 in the Colour Plate Section)
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soil maps produced in U.S. is about 60%, 76% accuracy is acceptable for an initial
soil mapping with limited data. Therefore, we believe that the soil-landscape model
developed through the purposive sampling methodology is of good quality.

20.4 Conclusions

This paper presents a purposive sampling approach to assist the development of
knowledge of relationships between soil and its environmental conditions. The
method employed a fuzzy c-means classification to identify unique combinations
of environmental conditions and to discern locations of these unique combinations.
The results (the unique combinations and the spatial locations of these unique com-
binations) were then used to direct field investigation efforts and to improve the
efficiency of acquisition of knowledge on soil-environment relationships.

Through a soil mapping case study it was found that the approach was effective
in developing the knowledge of the soil-environmental relationships. The approach
was able to reduce the amount of field observations and the acquired knowledge of
the relationships was of good quality.
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Chapter 21
Assessment of Land Degradation Using NASA
GIMMS: A Case Study in Kenya

D.L. Dent and Z.G. Bai

Abstract Direct assessment of land degradation globally is constrained by limited
spatial data – soil data in particular (see also Chapter 7). As a proxy, biomass has
been adopted as an integrated measure of productivity; its deviance from the norm
may indicate land degradation or improvement. Biomass can be assessed by remote
sensing of the normalized difference vegetation index (NDVI); norms may be es-
tablished according to climate, soil, terrain and land use. As a pilot for a Global
Assessment of Land Degradation and Improvement, spatial patterns and temporal
trends of green biomass across Kenya were analysed using 23 years of fortnightly
NOAA-AVHRR NDVI data and CRU TS 2.1 station-observed monthly precipita-
tion. Trends of various biomass indicators and climate variables were determined
by regression at annual intervals and mapped to depict spatial changes. In Kenya
over the period of 1981–2003, biomass increased over about 80% of the land area
and decreased over 20%. Most of the decrease has been across the more-productive
areas – cropland in the high-rainfall zones. To assess whether this trend represents
land degradation or declining rainfall, we calculated rain-use efficiency, the ratio
between green biomass (NDVI) and rainfall. Combined trends of biomass and rain-
use efficiency may be a more robust indicator of land degradation in areas where
productivity is limited by rainfall. Thus defined, degrading areas occupy 17% of the
country: most extensively in the drylands around Lake Turkana and the marginal
cropland in Eastern Province.

21.1 Introduction

Land degradation is a global development and environmental issue (UNCED, 1992;
UNEP, 2007) but there is no authoritative, global measure. The only harmonized
assessment, the Global Assessment of Human-induced Soil Degradation (Oldeman

D.L. Dent
ISRIC – World Soil Information, Wageningen, The Netherlands
e-mail: david.dent@wur.nl

A.E. Hartemink et al. (eds.), Digital Soil Mapping with Limited Data,
C© Springer Science+Business Media B.V. 2008

247



248 D.L. Dent, Z.G. Bai

et al., 1991), is a map of perceptions of the kinds and degree of degradation – not a
measure of degradation. Its expert assessments have proven to be inconsistent, not
reproducible, and not well correlative with other policy relevant measures such as
crop yields (Sonneveld and Dent, 2007). Land degradation and perceptions have
moved on; there is pressing need for a quantitative, reproducible assessment to
support policy development for food and water security, environmental integrity,
and economic development. This is now under way within the FAO/UNEP program
Land Degradation Assessment in Drylands (LADA) to identify: 1) the state and
trends of land degradation, 2) black spots suffering extreme constraints or at severe
risk, bright spots where degradation has been arrested or reversed.

Biomass is an integrated measure of productivity; its deviation from the local
norm may be taken as a measure of land degradation or improvement. Global
measurements can be derived from satellite data, in particular the normalized dif-
ference vegetation index (NDVI – the difference between reflected near-infrared
and visible wavebands, divided by the sum of these two wavebands). NDVI has
a strong linear relationship with the fraction of photosynthetically active radiation
absorbed by the plant (Asrar et al., 1984; Sellers et al., 1997); many studies have
shown strong correlation between NDVI and vegetation cover (e.g. Purevdoj et al.,
1998) and above-ground net primary productivity (Paruelo et al., 1997). It has been
applied in studies of land degradation from the field scale (1:10 000) to regional
and global scale (1:1 million to 1:5 million) (e.g. Tucker et al., 1991; Bastin et al.,
1995; Stoms and Hargrove, 2000; Wessels et al., 2004; Singh et al., 2006). Lo-
cal norms may be established by stratifying the land area according to climate,
soils and terrain, and land use/vegetation; deviation may then be calculated locally
and combined globally to allow universal comparisons, this is further discussed in
Chapter 22.

As a pilot for the global LADA program, we analyse the trend of NDVI indicators
in Kenya over a 23-year period (1981–2003) alongside climatic and land use data
for the same period and the KENSOTER digital soil and terrain database. More than
80% of Kenya is dryland. The pressure of burgeoning population without compen-
sating investment in soil and water conservation threatens irreversible land degrada-
tion, loss of rural livelihoods, and water supplies to urban areas, hydro-power and
irrigation schemes.

21.2 Data and Analysis

The Global Inventory Modelling and Mapping Studies (GIMMS) dataset comprises
radiometer (AVHRR) data collected by National Oceanic and Atmospheric Ad-
ministration (NOAA) satellites, generalised to fortnightly images of 8-km spatial
resolution, corrected for calibration, view geometry, volcanic aerosols, and other
effects not related to actual vegetation change (Tucker et al., 2004). The accuracy of
GIMMS is proven to be suitable for a global assessment and it is compatible with
MODIS and SPOT data (Tucker et al., 2005; Brown et al., 2006).
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We used GIMMS data from July 1981 to December 2003, along with monthly
rainfall from the CRU TS 2.1 dataset (Mitchell and Jones, 2005), digital soil and
terrain data from the KENSOTER database (Batjes and Gicheru, 2004) and contem-
porary information on land cover (FAO, 2005, Fig. 21.1). ArcGIS Spatial Analyst
and ERDAS IMAGINE were used to calculate various biomass indicators: NDVI
minimum, maximum, maximum-minimum, mean, sum, standard deviation (SD)
and coefficient of variation (CV) as well as climate variables. Annual NDVI indi-
cators were derived for each pixel, their temporal trends were determined by linear

Fig. 21.1 Kenya, dominant land use types (FAO 2005) (See also Plate 24 in the Colour Plate
Section)
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regression (significance level = 0.05) and mapped to depict spatial changes. A neg-
ative slope of linear regression indicates a decline of green biomass; and positive,
an increase – except for SD and CV which indicate trends in variability.

21.3 Results

21.3.1 NDVI Indicators

The values of the NDVI indicators and their temporal trends for each pixel, deter-
mined by the slope of the linear regression equation are summarised in Table 21.1.

Minimum NDVI: The lowest value that occurs in any one year (annual) – which
is usually at the end of the dry season. Variation in minimum NDVI may serve
as a baseline for other parameters.

Maximum NDVI: Represents the maximum green biomass. The large spatial vari-
ations reflect the diverse landscape and climate.

Maximum-minimum NDVI: The difference between annual maximum and mini-
mum NDVI reflects annual biomass productivity for areas with just one growing
season but may not be meaningful for areas with bimodal rainfall, such as Kenya.

Sum or aggregated NDVI: The sum of fortnightly NDVI values for the year, most
nearly aggregates annual biomass productivity.

Standard deviation (SD): NDVI standard deviation is the root mean square
(RMS) deviation of the NDVI time series values (annual) from their arithmetic
mean. It is a measure of statistical dispersion, measuring the spread of NDVI
values.

Coefficient of variation (CV): CV images were generated by computing for each
pixel the standard deviation of the set of individual NDVI values and dividing this
by the mean (M) of these values. This represents the dispersion of NDVI values
relative to the mean value. A positive change in the value of a pixel-level CV over
time relates to increased dispersion of values, not increased NDVI; similarly, a
negative CV dispersion – which is the case over nearly the whole country – means
decreasing dispersion of NDVI around mean values, not decreasing NDVI. The
trends in CV may reflect land cover change.

21.3.2 Spatial Patterns, Biomass and Rainfall

In Kenya, the trend in biomass over 23 years increased over 80% of the coun-
try but decreased over 20%. Most of the decrease was in the better-watered areas
(Fig. 21.2a,b), and coincides mostly with cropland, especially, with the expansion
of cropland into dryer, marginal areas. For the country as a whole, the 23-year trend
was upwards (Fig. 21.3).
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Fig. 21.2 Spatial pattern (a) and temporal trend (b) of biomass 1981–2003 (See also Plate 25 in
the Colour Plate Section)

But productivity depends on rain as well as soil and land use. Mean biomass
essentially reflects the mean annual rainfall (Fig. 21.4a) which has fluctuated signif-
icantly, both spatially and cyclically over the period (Fig. 21.4b). Rainfall increased
over about 80% of the country and decreased over 20% (Fig. 21.5).

The overall trend of rainfall is up, so is the overall trend of biomass although the
correlation for Kenya as a whole is only moderate (r = 0.53).
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Fig. 21.3 Spatially aggregated annual NDVI 1981–2003
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Fig. 21.4 Spatial pattern (a) and temporal trend (b) of annual rainfall 1980–2002 (See also Plate 26
in the Colour Plate Section)
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Fig. 21.5 Spatially aggregated annual rainfall 1980–2002

21.3.3 Spatial Patterns of Rain-Use Efficiency

A reduction in biomass does not necessarily mean land degradation. Biomass fluc-
tuates according to variation in rainfall, stage of growth, and changes in land use –
which may or may not be related to the land degradation. Rain-use efficiency (RUE),
the ratio of net primary productivity to rainfall counters this problem by expressing
production per unit of rain. RUE is lower in degraded drylands than in equiva-
lent non-degraded areas (Le Houérou, 1984, 1989) – so deviation from the normal
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value of RUE and biomass may indicate land degradation or improvement better
than biomass alone.

For North China, Bai et al. (2005) demonstrated that values for rain-use effi-
ciency calculated from NDVI, which are easy to obtain, were comparable with those
calculated from measurements of net primary productivity, which values are not
easy to obtain. For Kenya, rain-use efficiency was calculated as the ratio between
annual aggregated NDVI and station-observed annual rainfall on a yearly time-step.
Figure 21.6 shows the trend of RUE.

Fig. 21.6 Trend of rain-use efficiency 1981–2002 (See also Plate 27 in the Colour Plate Section)
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21.3.4 Analysis of Degrading Land

Potential areas of land degradation were identified as those areas with both declining
net primary productivity and declining rain-use efficiency; these areas occupy 17%
of the country. Comparison of degradation with land use shows:

Black spots. These include the drylands around Lake Turkana, and a swath of
cropland in Eastern Province from Meru south to Machakos including land taken
into cultivation during the study period (Fig. 21.7). In the drylands, production
has declined from a low base. Degradation of croplands represents decline in an
areas of much higher potential.

Relationship with soil type. There is no obvious relation with land degradation
and individual soil attributes: e.g. soil organic carbon class 0–0.5%, 0.5–1%,
1–3% and >3%, occupy 20, 46, 26 and 8% of the degrading area, respectively.
In respect of terrain, more than 70% of the degrading land is flat and gently
undulating, rather than steeply sloping (Table 21.2). There is a weak relation-
ship between degradation and texture-contrast soils; much of degrading land has
coarse-textured topsoil over clayey subsoil. It appears that degradation is influ-
enced more by management (i.e. cultivation) than soils and terrain per se. A more
rigorous analysis is needed to tease out association between land degradation and
soil attributes making use of a consistent digital soil map of key soil attributes
(see also Chapter 1).

The seamless, quantitative index of land degradation enables statistical correla-
tions with other explanatory variables, such as socio-economic data, provided that
these are also geo-located.

21.4 Conclusions

Remote sensing of biomass indicators can indicate black spots of land degradation.
Interpretation is not straightforward; the various NDVI patterns must be followed up
by fieldwork to establish the actual conditions on the ground. For drylands, combi-
nation of the biomass trend with rain-use efficiency trend is a more robust indicator
of land degradation than crude biomass. For areas not dominated by drought or dry
spells, other combinations of indicators, such as length of growing season, may be
more appropriate.

Data from a defined, recent period enable us to distinguish between the legacy
of historical land degradation and degradation that is taking place now. Much of the
historical land degradation is irreversible.

The consistent, spatial data for biomass also enable a statistical examination of
other data for which we do not have continuous spatial coverage – such as spot
measurements of soil attributes, and socio-economic data that may reveal the drivers
of land degradation. Provided these other data are geo-located, they can be scaled
against the continuous biomass trends.
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Fig. 21.7 Kenya: black spots of land degradation between 1981 and 2003 (See also Plate 28 in the
Colour Plate Section)
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Table 21.2 Slope percentage in the degrading land area

Terrain class Slope (%) %

W (flat, wet) 0–0.5 3.6
F (flat) 0.5–2 48.8
G (gently undulating) 2–5 23.9
U (undulating) 5–10 8.0
R (rolling) 10–15 2.5
S (moderately steep) 15–30 7.9
T (steep) 30–45 4.9
V (very steep) 45–60 0.4
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Chapter 22
Spatial-Temporal Changes in Land Cover, Soil
Properties and Carbon Stocks in Rio de Janeiro

A.P.D. Turetta, M.L. Mendonça-Santos, L.H.C. Anjos and R.L.L. Berbara

Abstract The purpose of this study was to evaluate spatial-temporal dynamics of
land cover of the Campo Grande and Santa Cruz Administration Regions, both
in Rio de Janeiro city. LANDSAT5-TM images from 1984, 1994 and 1999 were
used to create land cover maps. A Geographical Information System was used for
integrating information into a cohesive and easy to consult cartographic base and
database. Matrices were generated by applying Markov’s Chains, which allow to
describe, model and predict transitions of the land cover. This study examined the
relationship between land use change, soil orders and carbon stock in the top 10 cm.
It was possible to observe the land cover dynamics, with the conversion of agricul-
ture, anthropogenic area and exposed soil in urban areas, especially in the period
1994–1999. Using secondary data, from soil survey reports, and combine it with the
land cover maps in the temporal series, it was possible to observe a potentiality of
this approach in soil properties-landscape modeling. The main finding of this study
was that land use change is a dynamic process, and the use of soil properties based
on secondary data – soil survey reports – can helps environmental planning, but
the accuracy depends of the quality and the spatial data distribution. So, its stress
that is important to planning the soils surveys for the good data exploitation for
future projects.

22.1 Introduction

Inappropriate use of the natural resources in urban and rural areas has been the main
cause of environmental degradation. The prediction and to evaluation of the impacts
of human activities on the environment is important for environmental management
and for the development of procedures to mitigate or prevent negative effects.

The landscape changes because it reflects the dynamic interaction between natu-
ral and cultural forces in the environment (Antrop, 2005). Increasing population and
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urbanization result in a complex process of land use and land cover changes from
the local to global scale. This process has profoundly disrupted the structure and
function of many ecosystems (Yu and Ng, 2007).

Land use change is a dynamic process and the direction and magnitude of
landscape change differ. Land use changes modelling permits to describe pro-
cesses of landscape changes in quantitative terms and shows alterations tendencies
(Mendonça Santos, 1999; Li and Yeh, 2004; Turetta, 2004).

The methodology is based on the use of remote sensing and GIS. GIS-based
studies started in the 1990s (McBratney et al., 2003). GIS provides a useful tool to
implement the landscape approach with powerful functions and convenient model-
ing environments (Li and Yeh, 2004 – also discussed in Chapter 4) as digital soil
mapping and land use change analysis (Chapter 2 is focused in some technologies
for digital soil mapping). It allows land use and transition maps showing changes
over time but also transition matrices that show the alterations between the land
use classes in an area (Yang and Lo, 2003). Remote sensing data can be used to
quantify the type, amount, and location of land use conversion (Fung and LeDrew,
1987; Eastman and Fulk, 1993; Jensen and Cowen, 1999).

Soil parameters can be used as an indicator of land use changes and organic car-
bon is considered an important indicator (Swift and Woomer, 1999; Murage et al.,
2001; Urioste et al., 2006; Manlay et al., 2007). The soil organic carbon pool in the
surface soil is sensitive to changes in land use and soil management practice (Tan
and Lal, 2005).

The role of climatic variables in soil organic carbon dynamics has been widely
recognized at small scales. In general, soil organic carbon pool increases with pre-
cipitation and decreases with temperature (Kononova, 1966; Jenny, 1980; Burke
et al., 1989). In regions where climatic variation is not distinct, as is the case in our
study area, other parameters that are not well correlated with the climate but vary
with land use and control organic C levels are important to analyse. These include:
texture, drainage class, and slope gradient (Schimel et al., 1994; Tan and Lal, 2005).

The purpose of this study was to evaluate the spatial-temporal dynamics of land
coverage of the Campo Grande and Santa Cruz Administration Regions, in Rio de
Janeiro city for environmental management and planning.

22.2 Material and Methods

The study area is in Rio de Janeiro city, specifically in Campo Grande and Santa
Cruz Administration Regions (Fig. 22.1). This area is approximately 31 000 ha and
in the past was responsible for the agricultural production for Rio de Janeiro city.
Since 1960, this rural area is urbanized. Our study area is a land cover mosaic, with
native covers like forest, mangrove and agricultural and urban areas. For this reason,
this area is strategic for research on modelling to predict, test and choose between
urban growth scenarios. It is a multidiscipline study that involves remote sensing,
socio-economic data and landscape information, as shown in Fig. 22.2.
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Fig. 22.1 Study area localization. Rio de Janeiro city – RJ, Brazil

Fig. 22.2 Methodology used in this study
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LANDSAT5-TM images of 1984, 1994 and 1999 have been used with 5, 4 and 3
spectral bands in RGB canals, respectively. These images have been classified using
the software Spring developed by Spatial Research Institute – INPE (Câmara et al.,
1996). With land cover maps, which were generated from the interpretation and
classification of satellite images, time change analysis for the land cover have been
processed. Transition maps and matrices were generated from algorithms that apply
Markov’s Chains developed by Mansilla Baca (2002). MatLab software was used
which allows the analysis of the land cover change in a qualitative and quantitative
way over the period of 1984–1999.

In order to analyse the relationship between soils and land cover changes, 21
soil profiles of the study area were selected of National Soil Archives of Embrapa
Soils, Rio de Janeiro, Brazil (Santos et al., 2005). The data were from soils surveys
conducted between 1958 and 2003. The information considered for these profiles
were the soils orders – according to Brazilian Soil Classification System (Santos
et al., 2006) and the organic carbon stock in the top 10 cm.

22.3 Results and Discussion

22.3.1 Landscape Dynamics

Eight land cover classes were established: Forest, Shrub, Mangrove, Flooding Area,
Agriculture, Exposed Soil, Anthropogenic Areas and Urban Zone (Table 22.1).

The values found between the pairs of images point to a landscape dynamics with
conversion of natural vegetation and agriculture to urban use especially between
1994 and 1999. Between 1984 and 1999 there was a great expansion of the urban
areas and a decrease in the shrub and agriculture areas (Table 22.2).

The Transition Matrixes presented in Table 22.3 analyses the landscape space-
temporal dynamics and identify the transitional and successional land cover states.
As synthesis of change analysis results in the considered times, the difference

Table 22.1 Land cover classes

Class Land cover Description

1 Forest Atlantic Forest Fragment.
2 Shrub Atlantic Forest in regeneration after agriculture use.
3 Mangrove Low marshy areas, along riverbanks and ocean

coastlines in tropical areas.
4 Flooding Area Wetlands, probably was mangrove before.
5 Agriculture The most common is a family farm, with main

crops: banana, cassava, tomato, pumpkin and
many vegetables.

6 Exposed Soil These are areas for urban expansion.
7 Anthropogenic Areas No well define use; abandoned areas after

agriculture use with urban expansion objective.
8 Urban Urban use.
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Table 22.2 Land cover classes in hectares

Year Forest Shrub Agriculture Anthrop. area Urban

ha

1984 992 11,780 4,929 3,658 7,440
1994 2,883 4,929 6,169 4,898 8,370
1999 2,201 5,177 3,751 3,999 12,090

Table 22.3 Land cover classes Transition Matrixes (TM)

1984

Class 1 2 3 4 5 6 7 8

1 6. 2.4 0.1 0.1 0.4 0.0 0.2 0.2
2 1.0 2.5 0.0 0.4 1.2 0.2 1.6 3.1
3 0.1 0.1 6.0 2.4 0.1 0.0 0.0 1.4
4 0.1 0.5 0.7 7.5 0.4 0.0 0.4 0.619

99

5 0.4 1.6 0.0 0.7 2.6 0.1 1.9 2.6
6 0.4 2.0 0.1 0.5 1.5 0.3 1.4 4.0
7 0.4 1.9 0.0 0.5 1.4 0.2 1.5 4.1
8 0.1 0.6 0.0 0.1 0.5 0.1 0.7 7.9

Class 1: Forest; Class 2: Shrub; Class 3: Mangrove; Class 4: Flooding Area; Class 5:
Agriculture; Class 6: Exposed Soil; Class 7: Anthropogenic Areas; Class 8: Urban Zone.
∗ The main diagonal – in gray – represents the land cover class with no class alteration.

between each “State Vector (SV)” is presented in Fig. 22.3. The difference between
the State Vectors helps to understand the landscape dynamics. Positive values indi-
cate the increment of an area, and negatives values indicate a decrease. Zero indi-
cates no changes over time for a particular class.

From Fig. 22.3 and Table 22.3, it is possible to summarize the main landscape
dynamics: first, a dynamic which characterizes the succession of land cover changes
that follows the order: from Forest to Shrub to Anthropogenic Areas/Agriculture.
Second, a dynamics characterized by an increase in the urban area. The Fig. 22.4
illustrates this dynamic, witch every land use class contributes to increase the urban
class. The wider arrows represents the classes that losses more area to urban use.
These classes are agriculture (class 5), exposed soil (class 6) and anthropogenic
area (class 7). It characterizes that between 1994 and 1999 was the period of urban
expansion in the area. It is possible to distinguish the tendency of this expansion with
the conversion of anthropogenic area and exposure soil, both classes characterized
by the intention to be converted in urban use (Table 22.1).

22.3.2 Soil Properties

The majority of the soil profiles (8 profiles) are located within the orders of Argilos-
solos (Ultisols), as well as in the class “Shrub” (6 profiles) (Fig. 22.5).

The organic carbon stock differed between soil orders and different land cover
classes, but related well with the geomorphology (Fig. 22.6).
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Fig. 22.3 State Vectors difference (%) between the pairs of image Class 1: Forest; Class 2: Shrub;
Class 3: Mangrove; Class 4: Flooding Area; Class 5: Agriculture; Class 6: Exposed Soil; Class 7:
Anthropogenic Area; Class 8: Urban Zone

Fig. 22.4 1994–1999 dynamic, with detached to class 8 (Urban zone) Class 1: Forest; Class 2:
Shrub; Class 3: Mangrove; Class 4: Flooding Area; Class 5: Agriculture; Class 6: Exposed Soil;
Class 7: Anthropogenic Area; Class 8: Urban Zone
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The “Organossolos” (Histosols) has the highest median value of C stock, fol-
lowed by “Gleissolos” (Entisols), whereas the lowest values were observed in “Ar-
gissolos” (Ultisols) and “Planossolos” (Alfisols) (Fig. 22.7 and Table 22.4). It is not
surprising that “Organossolos”and “Gelissolos” contained a high C stock concentra-
tion because in this case the soils profiles were located in lowlands, with accumulate
organic material, poor drainage and the inhibition of decomposition. Similar results
have been found by Tan et al. (2005) with lowest C stock in “Ultisols” soil order
and highest in “Entisols”.

Although the data are few, it is also possible to observe the influence of geo-
morphology on C stock levels. The lowlands present the higher median values of C
(29, 38 Mgha−1) and the lower number of profiles (7 profiles) while slope presents
14 profiles and the lower median values (21, 86 Mgha−1). Slope and altitude can
influence C stock by controlling soil water, soil erosion and geologic deposition
processes. Soils profiles GB29 and GB 32, which present the lowest value of C
stock in “Gleissolos” (Entisols), are located on steep side slopes, with a favourable
decomposition conditions, that is: good drainage.

Similar C stocks were found between “Anthropogenic Areas” and “Shrub”
classes, irrespective of the soil orders. The “Urban Zone” showed the lower median
and standard deviation suggesting an interruption in organic matter accumulation
(Fig. 22.8).
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Fig. 22.7 Distribution of the C Stock (0–10 cm depth) in accordance with the soils orders GB11,
GB10. . .

The C stocks in “Organossolos” (Histosols) seems to be related to land cover
change, because the highest value found in this soil order – P1 – is under “Shrub”
class, whereas the others soil profiles are under “Agricultural” land cover class. This
suggests an Organossolo sensitivity to land cover change.

Among four land use systems – Agriculture, Shrub, Anthropogenic areas and
Urban Zone – “Argissolos” (Ultisols) contained the lowest C stock.

Many authors have observed the variability of soil properties as a result of soil
management (Nascimento et al., 1993; Lepsch et al., 1994; Lutzow et al., 2002).
Some basic statistics have been used to show variability. In this study, secondary
data soil profiles were used with few samples (21 soil profiles) in a large area
(approximately 31 000 ha). Its result in a higher standard variation (17, 46%) with
the minimum value of C stocks by 5.92 and the highest by 67.85. The data spatial

Table 22.4 Median and standard deviation of carbon stocks MgHa−1 (0–10 cm depth) according
soil order and land cover class

Soil Orders
Argissolos
(Ultisols)

Planossolo
(Alfisols)

Gleissolo
(Entisols)

Organossolos
(Histosols)

MgHa−1

Median 11.2 12.4 35.0 40.6
Standard deviation 3.0 6.1 27.35 15.9

Land Cover Class
Agriculture Anthropogenic Shrub Urban

MgHa−1

Median 21.1 13.5 13.0 6.4
Standard deviation 11.8 14.3 18.7 4.1
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Fig. 22.8 C Stock (0–10 cm depth) distribution under different land covers

distribution was not favourable for using geostatistic tools (similar comments in
section 8.1). This question highlights the need to invest in digital soil mapping,
considering environmental variables and soil-landscape relationships (the details on
digital soil mapping is discussed in Chapter 1).

22.4 Conclusions

The methodological approach was helpful to understanding the landscape dynamics.
GIS and modelling techniques allowed the integration of data and information to
better characterize landscape dynamics.

The land use change analysis evidenced this sequence of conversion classes:
from Forest to Shrub to Anthropogenic Areas/Agriculture and an increment of the
urban areas.

The C stock presents variations as in function of soil orders and land cover.
The “Organossolos” (Histosols) had the highest C stock independent of the land
cover class. The “Argissolos” (Ultisols) and the “Planossolos” (Alfisols) presented
the lowest values and also the lowest standard deviation, irrespective of the land
cover. The C stock also presented variation by geomorphology, with highest values
in lowlands.

“Agriculture”, “Anthropogenic Areas” and “Shrub” had similar C stocks. The
“Urban Zone” class had the lower mean, as well as the lower standard deviation,
which suggests a relationship between declining values of C stocks with urban
land use.

It is important to stress that this work highlighted trends, because it was not
possible to establish a correlation between soil orders and soil properties and land
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cover classes with these dataset. There are few soil profiles in the area and they
have been described at different times to the temporal series established in this
study (1984–1994–1999). For this kind of study is recommended to use soil data
synchronized with the land cover class and temporal series.

However, our results showed that mapping soil properties based on secondary
data – soil survey reports – and them cross with land cover dynamic helps to envi-
ronmental and/or urban planning, because shows the tendency of conversion areas
and evidences those with vocations to appropriate uses. This analysis helps differ-
entiate zones in the landscape with different uses and conditions, identifying not
only urban and rural settings, but also the interface between the different land cover
classes. This approach demonstrates potential to be used in land use policies, be-
cause it shows the magnitude of landscape change and its pattern. Its also contribute
to build-out modeling to project possible future land use change.

This study reinforces the need for an efficient land use planning, and provides
information to support research and planning efforts related to land development
and conservation. It represents the first approach integrating satellite imagery with
soil properties for studying the landscape dynamic in Rio de Janeiro city.
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Chapter 23
Broad-Scale Soil Monitoring Through
a Nationwide Soil-Testing Database

B. Lemercier, D. Arrouays, S. Follain, N.P.A. Saby, C. Schvartz and C. Walter

Abstract Spatial variability of soil properties strongly influenced by human activ-
ity is not well documented by most soil surveys. Soil tests performed at farmers’
request represent a large capital of soil information. In France, the results of a large
part of these soil tests are continuously gathered in a unique database, the national
soil testing database (named BDAT). The aims of the project were to analyse the
evolution of soil features within discrete entities over successive time periods and
to test the potential of the BDAT for soil dynamic monitoring. Two illustrations are
shown: spatial variability of soil pH at national scale, and evolution of soil phospho-
rus content at regional scale. A validation by census data on agricultural systems
was also tested. Taking into account sampling and statistical bias, databases such
as the BDAT appear to be relevant tools for soil properties monitoring and can be
helpful for digital soil mapping.

23.1 Introduction

Soil properties like pH, bulk density, organic matter, available phosphorus, ex-
changeable cations, cation exchange capacity or trace elements are strongly in-
fluenced by human activities, in particular agricultural practices e.g. fertilization,
amendment supply, soil tillage and crop rotation.

In classical pedological surveys, soil mapping units are generally considered to
be homogenous in space and constant across time and do not provide an acute
description of the spatial variability of dynamic soil properties. Indeed sampling
constraints constitute a bottleneck which is difficult to overcome when spatial and
temporal variabilities interact over wide areas. Consequently operational monitoring
networks with a sufficient hindsight are few. However, several studies attempted
to analyse temporal changes of soil characteristics at small scale: in England and
Wales, Bellamy et al. (2005) have studied the evolution of organic carbon status in
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soils over 25 years, Baxter et al. (2006) have performed a spatiotemporal analysis of
topsoil nutrient status and pH also across England and Wales. In Belgium, Lettens
et al. (2005) have estimated changes in soil organic carbon stocks between 1960
and 2000 for 289 landscape units, and in New Zealand, Wheeler et al. (2004) have
analyzed temporal trends in some soil test data over a 14-years period. Soil testing
databases represent a large potential source of information on spatial and temporal
variability of soil features.

Results from more than one million of soil tests performed in France since 1990
at farmers’ request were stored in a unique database (Saby et al., 2004) named the
national soil testing database (BDAT). By aggregating these results within discrete
spatial entities, maps of statistical indicators were produced at national and regional
scales. Aiming to share these data as specified in Section 24.2, the results are avail-
able on a web cartographic server (http://bdat.orleans.inra.fr).

Nationwide representations of statistical parameters derived from the BDAT
(pH, total carbonate content, organic carbon content and textural class) obviously
discriminate wide pedological domains (Walter et al., 1997; Saby et al., 2004;
Lemercier et al., 2006), despite large differences in land use historical evolution
and present agricultural systems. The interest of the BDAT for the spatial analysis
of soil features variability over large distances is thereby clearly established (Walter
et al., 1997). Through continuous new data assimilation, data is now available for
large temporal duration and evolution of soil properties may be studied.

The aims of the project were to analyse the evolution of soil features statistics
over successive time periods within discrete spatial entities and to test the potential
of soil test databases for dynamic soil monitoring. Working hypotheses for the sta-
tistical comparison of datasets from different periods in order to detect significant
temporal trends were: (i) samples are randomly distributed within the spatial entities
and (ii) sampling is independent between the compared periods.

23.2 Material and Methods

23.2.1 The Database

The data were obtained from cultivated topsoil samples and were provided by com-
mercial soil testing laboratories approved by the French Ministry of Agriculture.
This agreement ensures the use of normalized analytical methods, necessary to
gather data from 34 different laboratories in a unique database. The sampling strat-
egy was unsupervised and this may induce some bias difficult to estimate (Schvartz
et al., 1997): only cultivated land is represented, farmers’ technical motivations for
choosing fields to be sampled and frequency of soil testing are unknown.

Assimilation of new data in the database involves a systematic validation pro-
cedure in three steps: (i) computing validation and harmonisation of units, (ii) an-
alytical validation (methods, samples from cultivated topsoils, and estimate of a
minimum dataset of soil properties) and (iii) geographical validation (validity of
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location). Currently the rejection rate was about 16% and the results concerning
1,119,000 topsoil samples from cultivated fields collected between 1990 and 2004
have been validated. A list of 39 raw analytical measurements or derived indica-
tors is available but unequally filled in. An average of 10.5 criteria per sample is
completed. Exchangeable potassium, exchangeable magnesium, pH in water and
organic carbon are the most systematically accessible parameters with respectively
98%, 97%, 96% and 95% of occurrence.

23.2.2 Space and Time Aggregation

The precise spatial position of the samples was unknown. For statistical analysis
and spatial representation data were integrated within discrete spatial entities, the
administrative cantons (French mean cantonal area is 140 km2). Non-parametric
statistics were estimated for each canton having a minimum of ten samples. This
geographical scale appears as a satisfactory compromise between maximization of
the number of samples and minimization of parameters variability within a spatial
entity. Other databases of interest like agricultural censuses data are built with the
same integration level permitting data intersection. Indicators of results accuracy
are provided through maps of sampling density and maps of interquartile range per
canton.

In order to get a sufficient dataset of samples per canton and to minimize the
risk of having two results from the same field, Schvartz et al. (1997) found that
working within 5-years periods was relevant. In this study, two periods are available:
1990–1994 and 1995–1999.

A regional database on the same scheme than the national one described above
has been established over an extended period in Brittany: results from roughly
300,000 additional samples analysed between 1980 and 2003 are available in this
region and therefore 4 periods with sufficient data can be considered for Brittany:
1980–1985, 1990–1994, 1995–1999 and 2000–2003.

23.2.3 Soil Extractable Phosphorus Temporal Evolution

Whole France and two regions Brittany (in north-west France) and Nord-Pas-de-
Calais (in north France) were studied. The regions were selected due to sampling
constraints (a sufficient samples number is required to compare periods) and as-
sumption that even though soil phosphorus contents are high for both regions, trends
in evolution differ.

For Brittany, a cumulative phosphorus balance between 1980 and 2003 re-
lated to agricultural activities was calculated per canton. Data from French na-
tional agricultural censuses (animal numbers by category and exports by crops)
performed in 1978, 1988 and 2000, references from a French group (CORPEN1)

1 CORPEN: Comité d’ORientation pour des Pratiques agricoles respectueuses del’ENvironnement
(Steering Committee for Environmentally Friendly Farming Practices)
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studying agricultural practices, and statistical data on departmental deliveries of
phosphorus mineral fertilizers were used.

23.3 Results

23.3.1 Quantification of Spatial Variability of pH Values
for Topsoil Horizons

Spatial aggregation of pH results highlights large-range spatial structures. These
spatial structures remain stable from one period to another (data not shown). For
instance, the map of pH median values (Fig. 23.1) reveals marked regional trends.
Wide domains of high or low pH are identified and could be related to geological
substratum. Soils of central France, north-west, north-east and south-west France
developed on crystalline bedrocks are mainly acids whereas soils formed from lime-
stone materials of the north-east France, the Mediterranean area and the central-west
zone are alkaline.

The intra-cantonal variability appears clearly correlated with the median value:
the more the median pH is close to neutrality, the more the dispersion within the

Fig. 23.1 Maps of cantonal statistics of pH in water of cultivated topsoil for the period 1995–1999:
(A) cantonal median value; (B) number of samples per canton; (C) inter-quartile value (See also
Plate 29 in the Colour Plate Section)
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canton is large (Fig. 23.1C). This can be interpreted as the result of soil heterogene-
ity within the canton or as the effect of variable liming practices.

23.3.2 Detecting Trends in Evolution of Soil
Extractable Phosphorus

At national scale, temporal trends of soil parameters are hidden by the heterogeneity
of local situations and therefore we need to work at the regional scale to detect
evolutions and to assess their signification by statistical means. In addition, human
factors determining the value and the evolution of soil parameters are most often
managed at this level.

Soil extractable phosphorus content is significantly higher for the regions Nord-
Pas-de-Calais and Brittany than for whole France (Table 23.1). Analytical methods
being different according to the region, comparing contents is not relevant. Never-
theless, the comparison of the evolution of extractable phosphorus cantonal statistics
according to geographical area shows that extractable phosphorus content increased
in France, decreased in Nord-Pas-de Calais and increased in Brittany in a greater
extent than for whole France. In Nord-Pas-de-Calais, median value of extractable
phosphorus content decreased significantly for 31% of the cantons and increased
for 5% of them. At the opposite, this parameter increased significantly for 42% of
the cantons and decrease for 7% of them in Brittany. This phosphorus increase in
Brittany is even more significant when the data from 1980 to 1985 are compared
with the data from 1995 to 1999: cantonal median value of extractable phosphorus
content increased by 20% and this evolution was significant for 64% of the cantons.

23.3.3 Validation Through Census Data on Agricultural Systems

By linking the soil testing database to an independent source of information on
agricultural practices, we attempted to validate the detected temporal trends. A
correlation exists between soil extractable phosphorus content evolution and cu-
mulative balance of phosphorus due to agricultural activity in Brittany (Fig. 23.2).
The phosphorus enrichment increased proportionally with the cumulative balance,
mainly for classes of balances higher than 1200 kgP ha−1.

23.4 Discussion

For most of the soil parameters stored in the BDAT, large-range spatial structures
very stable over time were observed. This fact underlines the robustness of the
methodology used. Thus such legacy soil data easily available at low cost provides
a global view at small scale of the spatial variability of pedological parameters.
In several regions of France, this database is presently the unique available soil
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Fig. 23.2 Evolution of extractable phosphorus cantonal median values of cultivated topsoil from
1980–1985 to 2000–2003 related to classes of cantonal cumulative phosphorus balances from 1980
to 2003

information, except for the 1:1,000,000 scale European soil map. Thereby, this kind
of database could be of interest for regions or countries with limited soil data infras-
tructures.

With regard to temporal trends, the database allowed highlighting significant evo-
lution at regional level and can be used for medium to long term soil monitoring.
However, only well marked changes can be detected, as temporal variations are
usually smaller than spatial ones and therefore more difficult to detect in a statisti-
cally significant manner. As an illustration, in Brittany, the interdecile of cantonal
medians was 112 mg kg−1 within the period 1995–1999, whereas the mean varia-
tion of median cantonal P content was only 29 mg kg−1 between 1990–1994 and
1995–1999.

However, care is needed when interpreting the results from such a soil testing
database. The uncontrolled sampling strategy can involve heterogeneity in spatial
distribution of samples and does not consider farmers’ motivations for sampling a
given field for soil testing. The statistical bias generated is difficult to assess even if
partly offset by the great number of samples. To test the initial hypotheses regarding
the sampling strategy (random spatial distribution, independent time series), precise
georeferencing of the soil samples would be very helpful. Progressively, laboratories
tend to provide such georeferenced data. In a near future, we may expect to have a
sufficient number of precisely positioned data to be able to give up the adminis-
trative spatial support. Finer approaches like geostatistics could be then developed
and digital maps of soil properties produced. Such a methodology is presented in
Chapter 27.
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Nevertheless, soil testing databases mostly provide a partial view of the soil cover
because only chemical properties are considered and only topsoil horizons of culti-
vated land are sampled. Legacy data on agricultural topsoil could be integrated with
existing soil surveys and human and natural factors which influence soil properties
such as climate, geology, geomorphology (s.c.o.r.p.a.n terms of McBratney et al.,
2003). The relevance of the digital soil maps in terms of spatial variability and
evolution of soil dynamic characteristics should be improved.

23.5 Conclusion

We showed that legacy data initially obtained neither for mapping nor for monitor-
ing purposes can be used to study the spatiotemporal variability of soil parameters.
Gathering a large collection of validated data, the BDAT represents a key tool to
assess the effect of human activity on spatial and temporal variability of soil. Indeed,
marked regional trends but also intra-cantonal variability were underlined by aggre-
gating spatially pH analytical results from the BDAT within discrete spatial entities.
Different evolution dynamics of the extractable phosphorus status were identified
for two regions, and the increase of soil phosphorus content observed in Brittany was
validated by the comparison with agricultural practices. Using soil testing databases
can be helpful for soil properties monitoring through wide areas (regions or coun-
tries) where other soil information is sparse. Finally, the combination of soil test
results with existing soil surveys and ancillary data giving information on soil and
soil properties variability could be a very interesting contribution of this kind of
database to digital soil mapping.
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Chapter 24
Online Soil Information Systems – Recent
Australian Experience

N.J. McKenzie, D.W. Jacquier and L.J. Gregory

Abstract Australian agencies are starting to provide online access to soil in-
formation through the Australian Soil Resource Information System (ASRIS –
www.asris.csiro.au). ASRIS has been designed to integrate soil information collected
using both conventional and digital methods. Here we review our experience in
developing the system and focus on the importance of good standards for data col-
lection and exchange. There is a clear need for an international standard (in the form
of a GML schema) to enable efficient exchange of soil data. We also comment on
the problem of market failure and its affect on investment in soil information.

24.1 Introduction

Australian agencies are starting to provide online access to the best available informa-
tion on soil and land resources in a consistent format. This is being achieved through
the Australian Soil Resource Information System (ASRIS – www.asris.csiro.au).
ASRIS has been designed to integrate soil information collected using both con-
ventional and digital methods. The system is described by McKenzie et al. (2005,
2007). Here we review our experience in preparing standards and securing institu-
tional support because these are fundamental to a successful national system.

24.2 Online Soil Information Systems

A premise of most soil information systems is that users want to maximize the value
of past and future investments in computing systems and data. OGC (2005) identify
three needs that follow from this:

� the need to share and reuse data in order to decrease costs, get more or better
information, and increase the value of data holdings

N.J. McKenzie
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� the need to choose the best tool for the job, and the related need of reducing
technology and procurement risk (i.e. avoiding reliance on a single software
company)

� the need for more people with less training to benefit from using soil information
for a wide range of purposes.

The current revolution in digital communication depends heavily on standards
for software and data. Responsibilities for software reside with specialists in infor-
mation technology, while for data they rest, in our case, with soil scientists involved
in digital soil mapping.

In the past, the requirements of soil classification systems provided a motivation
for collecting consistent soil data according to defined standards. For example, many
countries adopted aspects of Soil Taxonomy and modified their systems for data
collection and storage accordingly. The World Reference Base is having a similar,
albeit less dramatic effect.

There is now much less emphasis on soil classification. Most soil information-
systems for land evaluation provide estimates of the primary variables that char-
acterize how a soil functions (e.g. nutrient supply, plant available water capacity,
potential for erosion, transport of contaminants). While many agencies are changing
how soil information is collected and analysed, there has been limited discussion
and action on how we move towards consistent methods for sampling, measuring
and reporting. If this is not addressed as a matter of urgency, we will not be able to
fully exploit the potential of online systems for soil information. Most importantly,
potential users of soil information will continue to make decisions on land planning
and management without regard to soil factors.

24.3 Australian Soil Resource Information System

The Australian Soil Resource Information System (ASRIS) has been developed to
provide primary data on soil and land to meet the demands of a broad range of users
including natural resource managers, teachers, planners, researchers, and commu-
nity groups. The online system provides access to the best available soil and land
resource information in a consistent format across the country – the level of detail
depends on the survey coverage in each region. More specifically, ASRIS provides
the following.

� A spatial hierarchy of land units. This has seven main levels of generalization.
The upper three levels provide descriptions of soils and landscapes across the
complete continent while the lower levels provide more detailed information,
particularly on soil properties, for areas where mapping has been completed.
The lowest level relates to an individual site in the field.

� A consistent set of land qualities. These are described for each land unit. Descrip-
tions from the lowest level are used to generate summaries for higher-level units.
The land qualities relate to the intrinsic capability of land to support various
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uses – the land qualities relate to soil thickness, water storage, permeability,
fertility, salinity and erodibility.

� A soil profile database. These fully characterized sites are representative of sig-
nificant areas and environments.

� Estimates of uncertainty. These are provided with most data held within ASRIS.
A distinction is made between attribute uncertainty (due to the measurement or
estimation procedure for a given soil material) and spatial uncertainty (due to the
natural variation across a landscape). The estimates are provided to encourage
formal analysis of the uncertainty of predictions generated using ASRIS data
(e.g. crop yield, runoff, land suitability for a range of purposes).

ASRIS is being released in stages. The upper levels of the hierarchy have been
recently completed for the whole country. There will be a restricted coverage at
lower levels. Data will also be available for several thousand representative pro-
files. Most data in ASRIS are from conventional surveys so vector and point for-
mats are common. Grid formats are used for environmental data (e.g. remotely
sensed images, digital terrain variables) and some soil properties including those
described by Johnston et al. (2003). The intention is to eventually provide fine-
grain grids with estimates for the most important functional properties of soils. This
will make the system consistent with the proposed global soil information system
(www.globalsoilmap.net).

At present, ASRIS provides access to soil information with a minimum of inter-
pretation. This is useful for those with technical training. However, the real benefits
of the system will become apparent when a series of interpreted views of the data
are prepared. Priorities for the coming two years include views relating to soil acid-
ification (time to critical pH, lime requirement), soil erosion by wind and water, and
soil carbon.

24.4 Lessons to Date on Measurement and Mapping

Australia has well-established protocols for some aspects of soil survey. McDonald
et al. (1990) provide standard field methods for describing landform, vegetation and
soil morphology. Laboratory methods for soil chemistry (Rayment and Higginson,
1992) are widely used but protocols for soil physical measurement are more recent
(McKenzie et al., 2002). There has been less consistency in the method of soil survey
(e.g. Beckett and Bie, 1978; Gunn et al., 1988). Most agencies use some form of
integrated survey but there are many subtle differences in field sampling, mapping
technique, approaches to classification and land evaluation. These differences are
reflected in data structures and database designs of the main state and territory agen-
cies responsible for soil survey. With this background, it was inevitable that a range
of technical problems would be encountered during the design and implementation
of ASRIS. The most significant to date are as follows.

� Existing protocols did not specify minimum data sets for soil profile description
and laboratory characterization. Agencies have data sets with particular strengths
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and weaknesses (e.g. strong on plant nutrition but weak on soil physics) but none
are comprehensive.

� The soil water regime is central to most aspects of land evaluation but few agen-
cies have even rudimentary data on soil hydraulic properties and bulk density.
This is partly due to the lack of protocols prior to 2002 when survey programs
were most active.

� The existing guidelines for survey provide minimal direction on sampling. Few
surveys record the purpose and method of sampling and this creates many prob-
lems when combining data sets. For example, some agencies sample relatively
natural sites (e.g. roadside reserves) whereas others sample soils with land use
typical of the region. Reliable estimation of, for example, soil organic carbon
and pH at a regional scale has not been possible as a result. Statistically based
sampling has been rare and there are multiple sources of bias in the state, territory
and national databases.

� Each agency has developed its own classification system for soil profiles and
mapping units. Only a few agencies have formal systems for correlation so the
task of reconciling mapping is difficult and in some regions it is more efficient to
start again.

� While most technical specialists involved in survey have a good appreciation of
soil variation, this has not been recorded effectively. The uncertainties of outputs
from surveys have not been communicated.

We have addressed these problems in several ways. Most of our effort has been
directed to the Technical Specifications for ASRIS (McKenzie et al., 2005). As
noted earlier, these define mapping units, a consistent set of land qualities, esti-
mation procedures, and the beginnings of a system for stating uncertainty. In the
longer term, survey practice must change with digital soil mapping becoming the
norm. A significant step towards this is publication of new guidelines for surveying
soil and land resources in Australia (McKenzie et al., 2008).

24.5 The Promise of Interoperable Systems

Most software for web browsing and managing spatial data can now process text
encoded in the eXtensible Mark-up Language (XML). XML is a language for cre-
ating self-describing data files. These files have headers with instructions on how to
interpret data that follow the header. Scores of industries and professional domains
have developed XML schemas (schemas are essentially formats) to share informa-
tion between organizations with diverse information systems. The Open Geospatial
Consortium (OGC) has since developed the Geography Markup Language (GML)
and this is becoming the standard XML encoding for geospatial information. GML
separates content from presentation and the latter is entirely under program control
for individual devices.

GML makes it possible to resolve many of the difficulties caused by incom-
patible data models that are typically a feature of local, regional and national soil
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information systems. The task for each custodian is to map their data to an agreed
GML schema for soil information. One-to-one mapping between all data models is
unworkable when thousands of models are involved. GML enables a many-to-one
solution.

The task for those involved with digital soil mapping is to first agree on a GML
schema for soil information. Each participating agency must then map their data
to the agreed GML schema and expose this to the rest of the world through a web
map service, web feature service, or web coverage service. This enables interactive
exchange of soil information.

With ASRIS we have gone part of the way in developing a standard data model
for soil attributes that is agreed between contributing state and territory agencies in
Australia. We are yet to develop standards for vector and raster data. At present,
data from state and territory agencies are imported to ASRIS via several means
(e.g. spreadsheets, database tables, GIS coverages) and considerable effort is needed
to manipulate it into the required format. Our long-term goal is to have an interop-
erable system where new data are imported automatically. Achieving this requires a
GML schema for soil data.

In our view, it is imperative for the soil science community to agree on an interna-
tional GML schema for soil data. This is a critical step in developing the proposed
global soil information system (www.globalsoilmap.net). The GML schema will
avoid duplication and provide many benefits. Most importantly, it will ensure soil
information is readily accessible to other disciplines.

24.6 Barriers to Investment

Online soil information systems place new technical demands on soil survey agen-
cies. The systems are also expensive to establish and require secure investment over
the long term. Contrast this with conventional surveys where funds are required
primarily at the time of survey. Obtaining the necessary funds for developing and
maintaining online systems is a major challenge that is made more difficult by sev-
eral institutional barriers to investment.

It is widely claimed by soil scientists that investment in soil and land resource
information is too small. The resulting economic and governance costs include di-
rect ones such as wasted expenditure on land development, forgone development,
damage to infrastructure, environmental rehabilitation, litigation and compensation,
and indirect costs of resource degradation including loss of ecosystem services.
Various studies report very large benefit-cost ratios for land resource information
(e.g. Olson and Marshall, 1968; Hallsworth, 1978; Klingebiel, 1996). Benefit-cost
ratios often exceed 40:1 and in some instances exceed 100:1 (e.g. Australian studies
by ACIL, 1996).

In Australia there has been a significant increase in demand for soil information
amongst industry and government (NLWRA, 2002). Despite this, public investment
in land resource survey has declined. There appears to be a substantial disconnection
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between demand and supply. We contend that market failure1 is distorting both
public and private investment in soil and land resource information regardless of
whether conventional or digital methods are used. This is supported by the following
observations.

� Consumers of soil information are not able to weigh up what they are getting for
the price (lost production is not seen, degradation is often insidious).

� The beneficiaries of soil information are many and varied but they rarely pay for
the information directly – online systems provide information at minimal cost.

� There is often a mismatch between the time needed to gather appropriate data
(years) and the time scale of the decision-making process (days to months).

� Soil information has a long life and the stream of benefits is unpredictable – at
the time of investment, all costs are known but benefits are not.

� Some major benefits only accrue when survey coverage is complete.

Several other observations relate specifically to the private sector.

� The efficiency of private survey at the enterprise scale (e.g. farm or plantation) is
greatly enhanced by regional-scale information because it provides context and
useful environmental data.

� The benefit from soil and land information is greatly enhanced when it con-
tributes to a broader regional view – individual surveys and monitoring generate
greater benefit when they fit together.

The absence of clear market signals to investors has resulted in governments at
all levels failing to have coherent strategies for investing in natural resource infor-
mation. Similarly, private sector work is fragmented and the substantial amount of
information collected by private companies is poorly utilized. Public investment in
Australia, as in most countries, is strongly influenced by neo-classical economics.
We need to understand the underlying theory and principles if we are to attract the
investment that most soil scientists contend is necessary. This requires an effective
dialogue with decision makers. Edwards (2002) summarizes the challenge: ‘. . .to
convince economists that government should take the running on any given issue,
you must first convince them that there is market failure and, second, that govern-
ment would actually make things better rather than worse’.

24.7 Conclusions

Many of the challenges encountered during the development of ASRIS are likely
to be relevant to other national systems. Implementing digital soil mapping and
taking full advantage of online GIS will not happen automatically. It requires strong
demand from users of information, an even stronger commitment from individuals

1 Market failure is a technical term used by economists to describe situations where the market (in
this case, for soil information) when left to itself does not allocate resources efficiently.
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and organizations with an interest in providing soil information, and substantial
investment. Online soil information systems require much stronger discipline in
the collection and management of soil data than soil scientists have shown to date.
This is particularly challenging because methods of survey are in transition and
the new methods for digital soil mapping are diverse. While the eventual result
may be conceptually simple (e.g. functional soil properties predicted at points in
three-dimensional space and through time), the current mix of old and new data is
complex. A priority for the digital soil mapping community is to establish an agreed
GML schema for soil data. Finally, ASRIS has gained wide support in Australia
because it is solving problems common to all contributing agencies. Most notably,
it provides an efficient way of supplying soil information to users across the coun-
try. This in turn provides a powerful incentive for coordination collaboration, and
investment.
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Chapter 25
Digital Soil Mapping Using Legacy Data
in the Eden Valley, UK

T.R. Mayr, R.C. Palmer and H.J. Cooke

Abstract The National Soil Resources Institute has a considerable amount of
legacy data in the form of auger bore observations and detailed soil maps. Both
have limitations due to inconsistencies in mapping, extent and spatial distribution
of the data. Expert knowledge and quality assessment of the inference model can be
used to analyse the available training data as well as the resulting map to identify
shortcomings. Expert knowledge will identify soils which are either under predicted
or missing from the training dataset, whereas the quality assessment will identify
soils and landscape units that are missing from the training data. In addition, the
methodology provides the means to assess accurately the number and locations of
any additional samples required. Using this framework, legacy data can be a valu-
able source of information in Digital Soil Mapping.

25.1 Introduction

The National Soil Resources Institute (NSRI) has a considerable legacy of tra-
ditional soil maps and point observations following 75 years of soil mapping in
England and Wales. The National Soil Map (NATMAP), representing a five-year
mapping programme (Soil Survey of England and Wales, 1983), contributed 150
000 geo-referenced auger bore descriptions held electronically in the NSRI com-
puterised Land Information System (LandIS). These soil observations are either
transects across the landscape or clustered within the sample farms that were in-
vestigated during the mapping phase for NATMAP.

Although only 25% of the area of England and Wales has been mapped in de-
tail, there are examples of detailed soil mapping for most soil landscapes in the
two countries. The 117 mapped areas in the 1:25 000 scale mapping programme
(1968–1980) were chosen for their pedological, geomorphological and agricultural
interest and to provide an understanding of soil patterns in all landscapes for future
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county, regional and national soil maps (Findlay, 1970). These areas correspond to
the Ordnance Survey 1:25 000 scale map series. They provide an excellent basis
for developing digital soil mapping methods (McBratney et al., 2003) as a means of
extending the current coverage of detailed soil maps in England and Wales (see also
Chapter 6).

NATMAP auger bore data and, to a lesser extent, the detailed maps incorporate
inconsistencies derived from the methods of mapping employed by the individual
soil surveyors and the purpose for which the data were collected. This paper exam-
ines potential solutions to allow for these inconsistencies and suggests how diverse
data can be most effectively used in digital soil mapping.

25.2 Materials and Methods

Legacy data (soil maps and point data) have been used in the past to derive soil-
landscape relationships. In the first approach (Mayr et al., 2001), map legends and
map unit definitions were taken to represent the mental models used by soil sur-
veyors in the field. A series of rules were devised linking the soil map units to
environmental spatial data which would have been followed by the surveyor. Once
formulated, these rules can be used to guide subsequent re-interpretations of spatial
information for the same area or can be used in similar landscapes elsewhere (Bui
et al., 1999). This approach was essentially akin to those advocated for soil resource
inventories by Thompson and Beckman (1959) and Favrot (1989) and has also been
previously reported by Mayr and Palmer (2006). In the second approach (Mayr et al.,
2006) a soil-landscape model was developed, which incorporated similar decision
making processes to those used in the field by a soil surveyor. This approach de-
pended on existing point observation data accurately reflecting the spatial distribu-
tion of soils in the landscape. Some of the data were biased by the sampling strategy
used by the soil surveyor and some methods of coping with this bias are discussed
in this paper.

25.2.1 Study Site

The Eden, rising on the western flanks of the Cumbrian Pennines, south of Kirkby
Stephen, flows north westwards towards Carlisle before discharging to the Solway
Firth. The area south of Lazonby and the Eamont confluence has been chosen for the
study, which extends to approximately 689 km2 (Fig. 25.1). The north-eastern part
of the catchment is drained by short, relatively steep streams from the Pennines;
the south-western part includes tributaries of the Lyvennet system which arise on
Ravensworth Fell and headstreams of the Eden originating on Mailerstang Common
and passing through Kirkby Stephen. The watershed along the Pennines scarp rises
to over 1000 m OD, while the river falls to about 70 m OD near Lazonby. Rainfall
exceeds 2000 mm per annum on the eastern watersheds, with a field capacity period
of over 11 months and an accumulated temperature of less than 750 day degrees
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Fig. 25.1 Location map (See also Plate 30 in the Colour Plate Section)

above 0 ◦C. The lower valley has about 850 mm annual rainfall, a field capacity pe-
riod of 215 days and an accumulated temperature of about 1300 day degrees above
0 ◦C.

25.2.2 Covariates

The small-scale soil map (1:250 000 scale NATMAP), geology (BGS), lithology
(BGS) – for further discussion see Chapter 14, 5 m DTM (Nextmap), as well
as a bioclimatic map (1:625 000 scale) were available for the project. Extensive
DTM analysis (see also Chapter 10) was carried out using TAPES, TOPAZ and
LandMapR software programs as well as custom-written applications for relief
intensity and texture. In total, 76 evidence layers were available for modelling.
Entropy reduction was used to reduce the dimensionality of often very highly cor-
related datasets.

25.2.3 Training Data

All auger bore observations were compiled in an EXCEL spreadsheet using infor-
mation from LandIS and from auger bore observations archived as paper records.
As the prime objective of this methodology was to map soil classes, all observations
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that had not been ascribed to a soil series were discarded. Also, as some of the auger
bore information pre-dated NATMAP, some of the data did not incorporate the soil
series rationalisation that was carried out as part of the NATMAP programme in
order to eliminate significant inter-regional correlation problems (Hollis and Avery,
1997).

All soil series identified within the auger bore records have therefore been
correlated and re-named, where necessary, to fit the current soil classification
protocols (Avery, 1973; Avery, 1980; Clayden & Hollis, 1984). The final num-
ber of observations available for modelling was 2400. The training dataset was
completed by attaching the covariates using Hawth’s Analysis Tool for ArcGIS
(www.spatialecology.com).

25.2.4 Expert Knowledge

As NATMAP was produced during a very short period of time it forms a coherent
dataset due to consistent series definitions and mapping guidelines. In addition, it
is the only soil map which covers all of England and Wales and consequently pro-
vides a very convenient framework in which digital soil mapping can be undertaken.
Therefore, NATMAP map units play an integral part in any digital soil mapping
approach.

In order to minimise bias in the training datasets, it was important that the local
composition of all NATMAP units were defined as accurately as possible in terms
of the areal extent of each constituent soil series. In order to describe the thematic
space, the following information was assembled for each NATMAP soil association:

� lead and constituent soil series from national NATMAP legend;
� national average proportions of constituent soil series from LandIS;
� listing of other soil series mentioned in Regional Bulletins when describing

NATMAP unit;
� identification of all auger bores recorded within the association within the catch-

ment and its buffer;
� identification of all National Soil Inventory observations within that association

nationally;
� identification of all soil series mapped within the association on detailed 1:50,000

scale soil maps that have been mapped and published since the production of
NATMAP.

25.2.5 Inference

Bayesian Belief Networks emerged as the primary tool as it offered a flexible ap-
proach to reducing the uncertainty associated with soil survey. It used the best avail-
able evidence of soil variation for the area, and adopted the best current knowledge
of its meaning. The procedure was analogous to conventional soil survey in that it
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Fig. 25.2 Model quality assessment (See also Plate 31 in the Colour Plate Section)

used a wide range of disparate evidence according to prior knowledge of its mean-
ing. It showed a similar flexibility in that it adapted to conditions of varying avail-
ability of evidence. In contrast to conventional soil survey, the rule-based method
provided a numerical estimate of the probability of occurrence for a given attribute
as it varied across the study area, by means of explicit associations with the evidence
(Fig. 25.2).

In addition, the software provided mechanisms for incorporating expert knowl-
edge by manipulating both the a priori NATMAP composition as well as the a
priori distribution of soil series, both based on the training data. The first was
achieved by addressing the probabilistic relationships between individual soil series
and NATMAP units; the second by addressing the spatial extent of individual soil
series.

25.2.6 Quality Assessment

In order to assess independently the results from any inference system beyond the
internal success rate based on entropy reduction, three tests were undertaken:

a) Spatial assessment:
The spatial support was assessed on the density and spatial distribution of the
auger bores that were available for incorporation into the model.
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b) Thematic assessment:
The thematic support was assessed on the number of auger bores that were avail-
able for each predicted soil series.

c) Feature space assessment:
The feature space analysis was based on mapping the composite of all dis-
crete node states of the covariates covered by the training data within each
NATMAP unit.

The three assessments detailed above were combined by calculating the vector
length in the 3D space provided by the three assessments.

25.3 Results and Discussion

25.3.1 Expert Knowledge

The results of the NATMAP analysis, based on local expert knowledge, are given
in Table 25.1 for one NATMAP unit. Soil series in upper case notation are taken
from the NATMAP legend, whilst the other soil series have been identified by the
NATMAP analysis of all available data. This approach will have provided a much
more robust approximation of the composition of NATMAP units than would have
been possible from reviewing all available auger bore observations as in many cases
the distribution of bores were biased by the sampling approach taken by individual
surveyors. In some cases once soil surveyors have decided on the best soil associa-
tion to represent a block of land, they would use their auger bores to help identify
the minor constituents of that soil association. In this way constituent soil series that
may occupy a relatively small proportion of a soil association can be represented
by the most bores within LandIS. Using this approach, the majority of auger bores
would represent a relatively small proportion of the soil association because larger
sample numbers are used to identify the dominant constituents compared with the
dominant series. For example (Table 25.2), the distribution of auger bores in relation
to the predicted spatial extent of individual soil series based on the above approach

Table 25.1 Results of NATMAP analysis for Denbigh 1 association (541j)

Soil series Map symbol Soil Subgroup Estimate of %age area
within soil association

POWYS Ph 3.13 36.0
SANNAN Sn 5.42 20.0
Brickfield Br 7.13 12.0
BARTON BT 5.41 10.0
Cegin Ca 7.13 8.0
MANOD Mj 6.11 5.0
Hafren HN 6.54 5.0
Wilcocks Wo 7.21 2.0
Hiraethog Hi 6.51 2.0
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Table 25.2 Estimates versus actual auger bores

Series Expected Distribution Actual Distribution

Clifton 12.2 12.5
Brickfield 10.4 13.8
Winter Hill 8.5 0.0
Salwick 6.9 9.1
Waltham 5.5 2.3
Wilcocks 5.4 6.4
Nercwys 4.3 3.3
Newbiggin 4.3 0.4
Enborne 4.0 1.9
Wick 3.8 6.4
Quorndon 3.2 0.8
Crwbin 2.4 1.1
Malham 1.9 0.0
Arrow 1.9 1.2
Wharfe 1.6 0.9
Revidge 1.4 1.8
Manod 1.2 4.0
East Keswick 1.2 0.0
Belmont 1.1 0.7
Newport 1.1 2.7
Cegin 1.1 3.7
Claverley 1.0 0.0
Flint 1.0 0.2
Salop 1.0 0.4

has shown that Brickfield, Salwick and Wilcocks series are over sampled whereas
Winter Hill, Waltham and Nercwys are under sampled.

The NATMAP analysis provided the tool for analysing the training database. It
highlighted soil series that were missing from the auger bore collection (because of
surveyor bias in the original sampling) as well as identifying those soil series that
were missing from the national overview of soil associations but might normally
have been expected to occur locally in a particular landscape (inclusions). In this
way, this procedure identified soil series that needed to be sampled and provided a
mechanism for prioritising the sampling as well as identifying those series that did
not require further sampling. The expert NATMAP analysis also allowed any soil
series with few observations to be merged with more widespread soils based on a
‘similar soils’ concept.

The NATMAP analysis provided an identification of:

� auger bores that were removed because of lack of certain key information;
� those soil series that would be present within a soil association but for which

there were no auger bores within the training database;
� those records identifying rare soils that were re-classified according to the simi-

lar/dissimilar soils concept to more extensive soils within the catchment;
� areas within the ‘thematic space’ with no or very sparse data;
� areas where additional soil sampling was required.
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In addition, the NATMAP analysis provided quantitative information that was
required to refine both the soils series-NATMAP relationships as well as the a priori
probabilities of the distribution of soil series in the Belief Network. The digital soil
maps reflect the expected distribution of soils rather better than the distribution of
soils based on the training data alone. In this way, the resultant digital soil maps
should reflect the range of soils as well as their extent more accurately than would
be the case if only the training database were used.

25.3.2 Quality Assessment

Spatial analysis
There were clear differences in the density and spatial distribution of auger bore
observations across the study site (Fig. 25.3) with nested bores from sample farms
clearly visible. The auger bore density associated with the fells is lower because the
uplands had been already mapped prior to NATMAP using air photo interpretation.

Thematic analysis
The number of auger bores that supported the predicted soil series along the escarp-
ments and on the fells were much lower (often < 10 bores/soil series) than in the

Fig. 25.3 Spatial assessment (See also Plate 32 in the Colour Plate Section)
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Fig. 25.4 Thematic assessment (See also Plate 33 in the Colour Plate Section)

Fig. 25.5 Feature space assessment (See also Plate 34 in the Colour Plate Section)
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Fig. 25.6 Combined quality assessment (See also Plate 35 in the Colour Plate Section)

valley bottom (always over 50 bores/soil series and locally > 100) (Fig. 25.4). This
reflects, in part, the priority given at the time to agricultural areas.

Feature space analysis
The results illustrated differences in the feature space covered by the models
for each of the NATMAP units (Fig. 25.5). The analysis clearly identified those
landscape units that were sparsely covered by the feature space. In this way the
NATMAP analysis also provided a means to help prioritise additional soil
sampling.

The combined quality assessment clearly identified those landscape units that
were poorly covered by the model (Fig. 25.6). Consequently, the analysis identified
areas which require additional sampling as well as the feature space in which the
sampling has to be taken place.

25.4 Conclusions

This research has shown that digital soil mapping based on legacy soil survey data
is fraught with problems. However, as long as there is a clear understanding of the
mapping rules and conventions under which the soil data were collected, diverse
soil datasets can be harmonised for the purposes of digital soil mapping. In this
case many of the methods of harmonisation were undertaken within the NATMAP
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analysis and so enhancing the role of legacy data in producing reliable digital
soil maps. Providing legacy data are analysed and used in conjunction with expert
knowledge, they provide a valuable data set for digital soil mapping and hence are
a potential rather than a curse.
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Chapter 26
Delineating Acidified Soils in the Jizera
Mountains Region Using Fuzzy Classification

L. Boruvka, L. Pavlu, R. Vasat, V. Penizek and O. Drabek

Abstract Soil acidification represents a serious problem in mountainous areas of
the Czech Republic. It is mainly caused by acid parent materials, high precipitation,
the type of vegetation, and acid deposition. These factors act in different combina-
tions and result in different soil conditions. The aim of this chapter is to distinguish
areas in the Jizera Mountains with different levels of soil acidification and sensitivity
using fuzzy classification.

A set of 98 sampling sites was analysed and sampling density was approximately
one site per 2 km2. Samples were collected from surface organic horizons (O), depth
ranged from 4 to 22 cm depending on site conditions. Soil analysis included active
and exchangeable soil pH, total content of C, N, and S, pseudototal content of Ca
and Mg (after aqua regia digestion), and the ratio of absorbances of soil sodium
pyrophosphate extract at the wavelengths of 400 and 600 nm as indicator of humus
quality (A400/A600). Moreover, concentrations of exchangeable Al in KCl extract
and organically bound Al in Na4P2O7 extract were determined.

Soil classes were calculated using fuzzy k-means method with extragrades. Five
classes were selected. The first class with high exchangeable Al content, high S and
N, and low Ca, represents the area that was most affected by the acid deposition.
The second class with the lowest pH represents strongly acid soils that have very
high sensitivity to acidification, but with smaller acid deposition. The third class
with high Ca content includes the areas that were limed in the past. The fourth
class includes principally the sites with the highest S and N deposition that are
populated by grass. The fifth class includes the areas with high Mg content; its
distribution corresponds to beech forests that have more favourable effects on soils
than spruce forests. Fuzzy classification distinguished soils with strongest sensitivity
to acidification. Positive effect of beech forest, grass cover, and liming on surface
organic soil horizons is shown.
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26.1 Introduction

Soil acidification represents a serious problem in the mountainous areas of the Czech
Republic. In some areas, acidification led to a complete forest decline. Soil acidifi-
cation is a natural process induced by acid parent material, high precipitation, and
forest vegetation cover. Moreover, it is accelerated by acid deposition (for example
Kram et al., 1997; Uhlirova et al., 2002; Klimo et al., 2006). Although S deposition
is currently decreasing due to desulfurization of thermal power stations, a different
trend can be observed in the deposition of N as a result of more road traffic (Hrkal
et al., 2006). Soils affected by acid deposition have diminished ability to neutralize
continuing inputs of strong acids, provide poorer growing conditions for vegetation,
and extend the time needed for ecosystems to recover from acid deposition (Driscoll
et al., 2003). Acid deposition alters soils by depletion of Ca, Mg and other nutrient
cations, mobilization of potentially toxic Al forms, and increasing the accumulation
of S and N in soil. Soil recovery is a long term process (Galloway, 2001). Tao et al.
(2002) based the assessment of soil sensitivity and vulnerability to acidification on
cation exchange capacity and base saturation. The sensitivity can be evaluated also
by critical loads, that is the highest depositional load that will not cause chemical
changes in soil leading to long-term harmful effects on ecosystem structure and
function. However, it is a complex issue with a number of uncertainties as reviewed
by An et al. (2001) and Skeffington (2006). Ameliorating materials like limestone or
dolomite were applied in the most endangered areas of the Czech Republic (Sramek
et al., 2006) but the effect of liming is often disputable (Formanek and Vranova,
2002) because of consequent stronger organic matter decomposition, nitrogen leach-
ing, tree root flattening etc.

The above mentioned factors can form a wide range of combinations, differing
in soil sensitivity to acidification, buffering ability, and damage to the ecosystem.
Spatial distribution of soil acidification can exhibit a strong variation in space. A
number of methods have been invented to study and map soil spatial distribution
(see Section 1.4, Chapter 2). In our previous papers, we studied spatial distribution
of acidification indices in the Jizera Mountains region as an area strongly influenced
by acidification and tried to assess the effect of stand factors on this spatial distribu-
tion (Boruvka et al., 2005a,b,c). The aim of this chapter is to distinguish parts that
differ in the level of acidification status and sensitivity using unsupervised fuzzy
classification with extragrades.

26.2 Material and Methods

A set of 98 sampling sites was analysed (Fig. 26.1). Sampling density was approx-
imately one site per 2 km2. Two objectives were followed in the sampling scheme
design: 1) to cover the whole area more or less evenly, and 2) to include differ-
ent categories of vegetation, altitude, slope aspect etc. Most sites were covered by
spruce forest (Picea abies), a smaller part was covered by beech (Fagus sylvatica)
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Fig. 26.1 Location of study site and sampling sites in the Jizera Mountans of the Czech Republic

forest. Clear-cut area in the most elevated parts of the region was populated by grass
(Calamagrostis villosa). All soils (mainly Cambisols and Podzols) were formed on
granitic bedrock, so that the effect of parent rocks can be omitted in this particular
area. Detailed description of soil data can be found in Mladkova et al. (2004).

Soil samples were collected from surface organic horizons (O), the depth ranged
from 4 to 22 cm depending on site conditions. These horizons are affected by an-
thropogenic influence the most (for example Boruvka et al., 2005d). One sample
was collected from an area 50 × 50 cm at each sampling site. The analyses included
active and exchangeable soil pH (pH-H2O and pH-KCl, respectively), total content
of C, N, and S, pseudototal content of Ca and Mg (after aqua regia digestion), and
the ratio of absorbances of soil sodium pyrophosphate extract at the wavelengths
of 400 and 600 nm as indicator of humus quality (A400/A600). Moreover, concentra-
tions of two Al forms were determined, namely exchangeable (in 0.5 M KCl extract;
AlKCl) and organically bound (in 0.05 M Na4P2O7 extract; AlNa4P2O7). For details see
Mladkova et al. (2004). In addition, C/N ratio was calculated, though it cannot serve
as a good indicator of humus quality as it is influenced by the level of N deposition.
S/Ca ratio indicating the ratio between S as the principal acidificant and Ca as a base
element was also calculated.

Unsupervised classification was chosen; for advantages and disadvantages of this
approach see Section 10.5.1. Fuzzy soil classes were calculated using fuzzy k-means
method with extragrades (McBratney and de Gruijter, 1992; see also Section 20.2),
using the program FuzME, version 2.1 (Minasny and McBratney, 2000). All mea-
sured and calculated soil characteristics listed above were used as the input data.
Maps of the spatial distribution of membership values were consequently created
using ordinary kriging. Maps of class membership values were created using Ar-
cMap 8.1 (ESRI, Inc.) software.
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26.3 Results and Discussion

Generally, the soils under study were extremely acid, with high S and N accumula-
tion and high concentration of toxic Al forms (Table 26.1).

For the fuzzy classification, five classes were selected. It provided better results
compared to 3 and 4 classes with respect to fuzziness performance index, modi-
fied partition entropy, and separation validity function (McBratney and de Gruijter,
1992). Class centres are shown in Table 26.2. Classes and their differences can be
described as follows:

Class a shows high AlKCl content, high S and N concentration, low Ca content,
and high S/Ca ratio. According to this characteristic and the spatial distribution
of membership values (Fig. 26.2), this class represents the area most affected by
acid deposition.

Class b with the lowest pH values represents strongly acid soils with very high sensi-
tivity to acidification, but with smaller acid deposition compared to the previous

Table 26.1 Basic statistical parameters of the studied dataset

Characteristic (units) Mean St.dev. Min. Max.

pH-H2O 3.9 0.26 3.5 4.6
pH-KCl 3.2 0.24 2.8 3.8
Mg (mg kg−1) 846.6 424.3 214.0 2160.0
Ca (mg kg−1) 578.9 824.6 129.0 7770.0
C (%) 28.9 6.8 8.2 45.9
S (%) 0.33 0.11 0.08 0.68
N (%) 1.48 0.36 0.33 2.16
A400/A600 7.42 1.07 4.89 10.39
AlKCl (mg kg−1) 1236.1 360.6 66.8 2890.9
AlNa4P2O7 (mg kg−1) 5042.8 2002.1 1969.4 11403.6
C/N 19.78 1.74 15.27 24.53
S/Ca 12.13 8.69 0.83 51.68

Table 26.2 Fuzzy class centres

Characteristic (units) Class a Class b Class c Class d Class e

pH-H2O 3.91 3.70 3.95 4.01 3.98
pH-KCl 3.17 2.93 3.20 3.31 3.24
Mg (mg kg−1) 699.3 740.8 662.7 643.6 1447.0
Ca (mg kg−1) 312.4 480.3 570.8 587.3 402.9
C (%) 31.18 30.81 23.54 33.01 21.84
S (%) 0.37 0.33 0.27 0.40 0.26
N (%) 1.57 1.44 1.26 1.78 1.16
A400/A600 7.79 7.67 6.76 7.22 6.99
AlKCl (mg kg−1) 2102.3 1322.2 971.3 1116.7 1062.7
AlNa4P2O7 (mg kg−1) 3130.3 2610.7 3066.7 5518.0 2811.8
C/N 19.97 21.46 18.67 18.66 18.77
S/Ca 16.98 10.22 8.24 12.16 10.18
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Fig. 26.2 Kriged maps of membership values for the five fuzzy classes (a–e) and extragrades

class, and it has lower S and N concentrations and lower C/N and S/Ca ratios.
The concentration of toxic Al forms is also smaller than in class a. This class
exhibits highest membership values in lower altitudes under spruce, which might
indicate the positive effect of lower rainfall thanks to less intensive leaching of
base cations from soils.

Class c with high Ca content includes the areas that were limed in the 1980s and
1990s. We could not take into account limed and unlimed areas in the sampling
design, as the information is not available. Soils in this class have the lowest AlKCl

content and S/Ca ratio. The effect of liming is, however, obvious in the organic
horizons, but the effect was not found in mineral soil horizons (Boruvka et al.,
2005a). Higher membership values of class c are distributed mainly in the eastern
part of the region, where liming was more intensive.

Class d includes the sites with the highest S and N deposition that are mainly veg-
etated by grass that has replaced the declined and clear-cut forest. Soils under
grassland have better soil chemical conditions and organic matter able to bind Al;
AlNa4P2O7 concentration is therefore increased. As the cleared forest areas were
limed, the concentration of Ca is high and the S/Ca ratio is only medium. pH
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values are the highest in this class. The highest membership values can be seen in
the most elevated areas of the region.

Class e includes soils with high Mg concentration, low S and N accumulation and
a low S/Ca ratio. Although the N content is lower, the C/N ratio is also relatively
low compared to other classes, which may indicate a better quality of humus. This
is supported also by slightly lower value of the A400/A600 ratio. Concentrations
of both Al forms are relatively low compared to other classes. Distribution of the
highest membership values corresponds to beech forests that have less acidifying
effects on soils than spruce forests due to better litter quality and lower acidificant
interception from dry deposition.

The extragrades represent mainly scattered locations with various properties.

26.4 Conclusions

Fuzzy classification was used for forest soil acidification assessment. Five fuzzy
classes were formed with different sensitivity and human impact. The less sensitive
are classes d and e, where soils exhibit better buffering capacity. The main reason is
the difference in vegetation cover, namely: grass (class d) and beech forest (class e).
Positive effect of liming was shown in class c and d . Classes a and b can be assessed
as the most sensitive, class a being more impacted by acid deposition than class b.
Delineation of areas with different deposition load and sensitivity to acidification in
the maps can be used for further decision making in forest management (Fig. 12.1).
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of the Czech Science Foundation.
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Chapter 27
Incorporating Legacy Soil pH Databases
into Digital Soil Maps

S.J. Baxter and D.M. Crawford

Abstract Soil data and reliable soil maps are imperative for environmental manage-
ment, conservation and policy. Data from historical point surveys, e.g. experiment
site data and farmers fields can serve this purpose. However, legacy soil information
is not necessarily collected for spatial analysis and mapping such that the data may
not have immediately useful geo-references. Methods are required to utilise these
historical soil databases so that we can produce quantitative maps of soil properties
to assess spatial and temporal trends but also to assess where future sampling is
required. This paper discusses two such databases: the Representative Soil Sam-
pling Scheme which has monitored the agricultural soil in England and Wales from
1969 to 2003 (between 400 and 900 bulked soil samples were taken annually from
different agricultural fields); and the former State Chemistry Laboratory, Victoria,
Australia where between 1973 and 1994 approximately 80,000 soil samples were
submitted for analysis by farmers. Previous statistical analyses have been performed
using administrative regions (with sharp boundaries) for both databases, which are
largely unrelated to natural features. For a more detailed spatial analysis that can
be linked to climate and terrain attributes, gradual variation of these soil properties
should be described. Geostatistical techniques such as ordinary kriging are suited to
this. This paper describes the format of the databases and initial approaches as to
how they can be used for digital soil mapping. For this paper we have selected soil
pH to illustrate the analyses for both databases.

27.1 Introduction

Legacy soil data can provide a rich source of information about the state of soil over
space and time (see Section 1.3 about legacy data as well as Chapters 23 and 25). For
example, the fertility status of agricultural topsoil has been monitored for several
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decades in different countries and with the advance of computation, databases at
State and national scale are being created (McBratney et al., 2003).

Two databases that have been digitally archived are the Representative Soil Sam-
pling Scheme (RSSS) in England and Wales (Skinner and Todd, 1998), and the
State Chemistry Laboratory database (SCL) in Victoria, Australia (MacLaren et al.,
1996). The RSSS has annually recorded soil information from agricultural land,
from 1969 to 2003, except for 1984. Tested fertility properties included soil pH,
amongst others. The pH data have been analysed by classical statistics (Skinner and
Todd, 1998; Skinner et al., 1992; Church and Skinner, 1986). In Victoria, Australia,
the former SCL has analysed approximately 80,000 soil samples submitted by farm-
ers between 1973 and 1994, for soil pH and other soil fertility tests. Initial statistical
analyses have been reported by MacLaren et al. (1996). This paper focuses on data
collected in 1991 for England and Wales and for data collected from 1973 to 1994
for Victoria. Reasons for this are explained in Section 27.2.

For both databases, analyses have been performed using administrative regions as
boundaries (e.g. Skinner and Todd, 1998). However, such databases could provide
a wealth of information at finer spatial scales using digital soil mapping and geo-
statistical techniques. The databases could be used to: explore spatial and temporal
changes of the soil properties; create digital soil maps using optimal interpolation
methods such as ordinary kriging; the uncertainties in the datasets could be quan-
tified; and the results stored in a GIS. However, such databases are not always in
a form that is suitable for spatial analysis and digital soil mapping. The purpose
of this study is to unfold some of the issues in the use of legacy soil databases
for digital soil mapping. The two databases mentioned above will be discussed and
some preliminary results given, in particular in relation to their spatial coordinates
and their suitability for geostatistical analysis.

27.2 Material and methods

The method of sampling for England and Wales is described in Church and Skinner
(1986). Each year a representative selection of farms was visited and soil samples
taken from four randomly selected fields. New farms were regularly introduced for
sampling so that farmers’ practices were not influenced as the data from the sur-
vey became known to them. Between 400 and 900 bulked soil samples were taken
annually from different agricultural fields.

In Victoria, the analytical results, enterprise and location nearest the sample site
(usually a farmer’s field excluding atypical areas) were recorded. While the samples
were taken randomly within the sampled area of the field, the fields were not selected
at random. Some bias in the data may result from a preponderance of samples taken
to assess fields suspected of having poor fertility although in latter years, a greater
emphasis was placed on whole farm monitoring and nutrient management.

For England and Wales, prior to and including 1981, the farm only was identified
by National Grid coordinates and not the four individual fields randomly selected
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at each farm for sampling. After 1981 each field was identified individually by
National Grid coordinates. For spatial analysis this meant that each field formed
a separate site for the analysis, whereas for the earlier data an average of the four
values had to be used for each farm site. This has implications for comparing the
spatial variation in the earlier years of the survey with that from the later years as
the sample support differs. We selected data from 1991 (as these had field specific
coordinates) and assessed the effect of averaging the data to approximately each
farm site by averaging the data within a radius of 5 km. These were compared with
using the full data (raw data) for each field. Temporal analysis of pH between 1971
and 2001 has been done elsewhere (Baxter et al., 2006); the concern here is to assess
the effect of averaging data to a farm level.

The Victoria data has spatial coordinates derived from the nearest locality, that is,
the nearest town, village, hamlet or sign post marking a location. There are approx-
imately 10,000 of these in Victoria, of which 2,237 had soil pH samples associated
with them. For a preliminary analysis, we used the mean value of the samples at each
locality which represents all of the soil samples taken between 1973 and 1994 as no
temporal trend was detected over the State. For this database the sample support
differs between locality. However, because of the volume of data available, this
dataset was used to ascertain whether a broad State wide assessment of the soil
could be made.

The geostatistical analyses included variography and ordinary kriging (Webster
and Oliver, 2001). Experimental variograms were computed and modelled using
GenStat (Payne, 2000). Variograms of pH were computed for 1991 for England and
Wales for the raw and averaged data, and for the data averaged at each locality in
Victoria for 1973–1994. Interpolations were made every 2.5 km for England and
Wales and every 0.025 decimal degree in Victoria on a square grid by ordinary
punctual kriging. Thus three variables are examined.

27.3 Results and Discussion

27.3.1 Summary statistics

Table 27.1. shows the summary statistics of pH computed from the raw and averaged
data for England and Wales in 1991. It also shows the summary statistics for pH
in Victoria. In England and Wales there were 716 fields and 181 farms originally

Table 27.1 Summary statistics for pH

pH No. of
values

Mean Minimum Maximum Standard deviation Skewness

Eng + Wales 1991 716 6.5 3.65 8.35 0.94 0.08
Eng + Wales 1991

averaged to 5 km
177 6.5 3.8 8.2 0.87 0.09

Victoria 1973–1994 2, 237 5.83 4.45 9.2 0.75 1.96
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Fig. 27.1 Histogram of pH in
Victoria, Australia
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sampled in 1991. After averaging the data within a radius of 5 km there was 177
values. The number of averaged data is close to the number of farms. There is little
difference in the mean values of the raw and averaged data (Table 27.1). The stan-
dard deviations are smaller for the averaged data, as would be expected, because the
sample support has increased and the local sampling effects have been removed.

The average pH for Victoria was 5.83, the maximum value for Victoria was large,
pH 9.2 (Table 27.1.). The median was pH 5.6 in Victoria. Figure 27.1 shows a his-
togram of the pH from Victoria. The distribution was positively skewed with most
samples being acid but some samples being extremely alkaline. The latter come
from areas in Victoria which naturally have moderately alkaline surface soils and
an alkaline trend down the profile. In some fields, the latter have been exposed
by erosion. The pH from England and Wales was more normally distributed with
skewness values close to 0.

27.3.2 Variography

All three variables were spatially autocorrelated. The experimental variograms of
pH for England and Wales showed evidence of spatial trend, concave shapes were
observed at longer lags; this violates the assumption in geostatistics that the variable
is random. The trend was removed by fitting a linear surface on the coordinates and
the variograms were computed again on the residuals. Figure 27.2 shows the experi-
mental variograms and their fitted models computed from the raw and averaged data
of the linear residuals for pH (pHres) for England and Wales sampled in 1991 and
for pH from Victoria. Table 27.2 shows the parameters of the models fitted to the
experimental values using GenStat (Payne, 2000) and Fig. 27.2. shows the experi-
mental values and fitted models. For the England and Wales pHres the sill variances,
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Fig. 27.2 Variograms of (a) the linear residuals of pH (pHres) for 1991 for England and Wales; (b)
the linear residuals of pH (pHres) for 1991 for England and Wales with the data averaged within
a 5 km radius; and (c) pH from Victoria for 1973–1994. The experimental values are indicated by
the symbols, the model by the line

Table 27.2 Variogram model parameters for pH

pH Model c0 c a (km) % nug

Eng + Wales 1991 linear residuals Circular 0.3117 0.2261 86.10 58.0
Eng + Wales 1991 linear residuals

averaged to 5 km
Spherical 0.2806 0.1454 92.0 65.9

pH Model c0 phi B C α

Victoria 1973–1994 Affine power 0.1683 0.3271 7.98 0.0363 1.486

Where c0 is the nugget variance, c the sill of the autocorrelated variance, a the range of spatial
dependence, α the exponent, phi the direction of maximum gradient and B and C are the gradients
in the directions of maximum and minimum change, respectively.

c0 and c, of the raw data are larger than the averaged data and the nugget:sill ratios
(c0 : c0 + c) are larger for the averaged data. This indicates that there has been some
loss of detail in describing the variation of this property with the averaged data. The
range of spatial dependence for the averaged data is longer (92 km) than that for the
raw data (86 km). Averaging the data has smoothed the variation; nevertheless the
variograms are similar therefore it is possible to discern the spatial structure with
the smaller set of data.

Variograms computed from the raw and averaged England and Wales data for
1991 with 177 sites were compared with those computed from the data of the Na-
tional Soil Inventory (NSI), which had about 5,670 sites taken on a 5 km grid (Oliver
et al., 2002). The NSI variograms showed spatial dependence at two distinct scales,
represented in the variogram as two spatial components: a short range and a long
range component. The results suggest that the small number of sites in the RSSS,
which are sparsely distributed over England and Wales, has provided a reasonable
summary of the longer scale of variation present. The variogram model for pHres

from the NSI data had a long-range component of 85 km which is similar to the
RSSS (Table 27.2).

The spatial variation of pH in Victoria showed directional differences. The vari-
ation was greater in the north-south direction compared to the east-west direction.
Therefore the spatial variation was quantified using an affine power function vari-
ogram model (Table 27.2, Fig. 27.2).
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27.3.3 Kriging

Figure 27.3 shows the maps of the kriged predictions for England and Wales. Sam-
ple locations are shown by crosses for the average data in Fig. 27.3(a), these are not
shown on the map derived from the raw data, Fig. 27.3(c), as the crosses would
be stacked up at this scale within farms. To obtain predictions on the original
scale of measurement the linear trend was added back to the predictions of the
residuals. The redder areas of the maps show where the values of the properties
are large and the bluer areas where they are small. Figure 27.3 also shows the
map of kriging variances for 1991 averaged values for England and Wales. The
larger kriging variances show where the kriged predictions are less reliable; they
decrease around the sampling sites. They are large around the edge of England
and Wales and where the data was sparse. The map of kriged predictions using
the raw data for England and Wales in 1991 shows more detail than the one us-
ing the averaged data as would be expected. However, the averaged one shows
a reasonable level of detail at the national scale. The results of this assessment
along with a comparison of the pH reported from the NSI indicate that it is

Fig. 27.3 England and Wales maps (a) kriged predictions of pH 1991 using the data averaged
within a 5 km radius, sample locations are plotted as crosses; (b) kriged estimation variances of
pH 1991 using the data averaged within a 5 km radius; and (c) kriged predictions of raw pH 1991.
Maps of kriged predictions in Victoria, Australia of (d) pH; and (e) kriged estimation variances of
pH (See also Plate 36 in the Colour Plate Section)
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feasible to base further geostatistical analyses on the averaged data. This means
that the data for earlier years can be analysed in the same way as those for lat-
ter years.

The values of pH are larger in the east and smaller in the west in England and
Wales (Fig. 27.3). This can be explained by the land use, climate and geology. The
agricultural land in the west is mainly grassland with higher annual rainfall than in
the east. Under arable cropping in the east the pH is higher. Also the main chalk and
limestone areas lie in a sequence running approximately east-west across southern
England and turning northwards to run roughly north-south through eastern England
(Skinner et al., 1992). For details of the temporal changes of pH over time at this
resolution see Baxter et al. (2006).

The map of kriged predictions for Victoria has lower values in the east and south,
and higher values in the north west (Fig. 27.3). These patterns are also linked to
climate, with the lowest pH values (< 5.5) corresponding with the highest rainfall in
the Great Dividing Range, Gippsland and the Otway ranges. Alkalinity (pH > 7.5)
is observable in the drier north west. Figure 27.3 shows the estimation variances for
pH in Victoria. These are large in the north west and east. This region has large tracts
of public land and larger farms with bigger fields and therefore fewer agricultural
soil samples will have been taken.

27.4 Conclusions

Legacy soil databases can provide a rich and valuable source of information for
digital soil mapping. This paper has shown the potential for two soil databases to
be used for digital soil mapping. Though not designed for spatial analysis, spatial
autocorrelation was present and the variables can be kriged. The England and Wales
farm averages and Victoria mean values appear to be adequate for describing large-
scale trends.

Further work is needed to quantify the accuracy of soil pH in Victoria by
comparing the predictions with exact spatially referenced measurements. There
are numerous opportunities to explore the spatial and temporal variation of the
soil properties in these databases. The soil properties could be mapped in rela-
tion to their soil texture or type of farming. The soil properties could be core-
gionalized with climate and terrain attributes. Future research could be done to
explore how topsoil samples from agricultural soils could be integrated with soil
profile information. Such an approach could enable a comprehensive assessment of
the state of the soil in natural and managed landscapes at the State and national
level.
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Chapter 28
The Digital Terrain Model as a Tool
for Improved Delineation of Alluvial Soils

V. Penizek and L. Boruvka

Abstract Typical examples of azonal soils are Fluvisols and Gleysols that occur
around watercourses; they are bound to the alluvial part of landscape and have a
characteristic spatial manifestation. They are good examples of a strong relation-
ship between landform and soil. Here we wish to verify the efficacy of different
relief characteristics derived from a digital terrain model (DTM) for the delineation
of hydromorphic soils around small watercourses. The study is focused on choos-
ing the most appropriate terrain attributes and their combinations. The study area
consists of a small 83 km2 catchment. A DTM with 10 m by 10 m pixels was de-
rived from contours with a 2 m vertical interval. Three methods were compared: (1)
combination of drainage area and slope curvature, (2) compound topographic index
(CTI) and (3) combination of drainage area and height above the watercourse. The
success of methods was verified by comparison of the width of estimated alluvial
soils and alluvial soils extent delineated in detail soil map. Detailed comparison of
the maps created showed discontinuities in predicted alluvial plain. The delineation
based on compound topographic index provided was the worst. The alluvial plain
was strongly underestimated (on average by 43%). Discontinuities of the alluvial
plain were very frequent. Steep valley bottoms around smaller watercourses, that
cause relatively low CTI values even near the watercourses, are the reason of this
failure. The third method that was supported by the assumption that alluvial soil
can be present only at some level above the watercourse with consideration of the
size of the watercourse was the most successful. The extent of alluvial soils was
underestimated by less than 22% and there were no discontinuities in the alluvial
plain delineations. This study shows that terrain attributes can be a useful aid for
delineation of soils strongly related to terrain.
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28.1 Introduction

Mapping soil is both expensive in time and money. Digital soil mapping can over-
come this problem by exploiting easily-accessible auxiliary data, representing soil-
forming factors. The choice of the auxiliary data is therefore driven by the prevailing
soil-forming factors. The problematic of exploitation of auxiliary data is further
discussed in Chapter 2. This study focused on delineation of alluvial soils repre-
sented by Fluvisols and some Gleysols. Alluvial soils occur almost worldwide. They
are good examples of a strong relationship between soil and particular landscape
units (Demek, 1988). Alluvial soils developed under one prevailing specific forming
factor – relief, differ significantly from surrounding zonal soils. Different conditions
of their development lead to their specific spatial distribution in the landscape. These
soils are special not only because of soil-forming processes, but also by their envi-
ronmental and agricultural properties.

Alluvial soils are usually chemically and physically fertile and are important for
agricultural production. They are especially important in countries and regions with
limited soil resources such as Africa (FAO, 1998). FAO (1993) describes these soils
as a soil “with a reasonably moderate to high inherent fertility status that occupy
flat, easily worked land. Therefore Fluvisols are very productive for a wide range
of dryland crops and paddy rice on the various parts of the floodplain.” For these
reasons Fluvisols have been extensively reclaimed in some areas including Thailand,
Surinam and Indonesia.

Delineating these soils on a map is an important source of information on their
extent, and can be used for the assessment of their exploitation, protection of nat-
ural resources or agricultural use. Unfortunately, in many places in the world this
information is not available, or is very limited. Traditional soil maps are available
only at small scales in many countries in the world (see Section 33.1.1 for details).
Small-scale soil maps usually overestimate the extent of alluvial soil due to map
generalization. (For example the delineated extent of Fluvisols in the Czech Repub-
lic increases from 17% on the 1:50 000 map to 26% on the 1:250 000 map (Penizek
et al., 2006). New techniques can be used for proper delineation of these soils.

Earlier studies showed that the description of these soils by modern methods is
rather complicated and can significantly influence spatial prediction of other soils
(Penizek and Boruvka, 2004). The spatial distribution of alluvial soils in the land-
scape can strongly influence the spatial prediction of other soils that are developed
under a set of soil-forming factors (zonal soils) and description of their spatial vari-
ability. This is a possible reason to study these soils separately. Spatial delineation of
these soils in landscape is the first step of their characterization. Methods integrating
relief attributes are the most appropriate.

Relief units (elements and forms) can be classified by combination of differ-
ent terrain characteristics. Alluvial plains are one of the basic relief units. They
are characterized as relatively flat area around watercourses with a mainly concave
transition to the surrounding landscape. There are typical relief properties of alluvial
plains: high values of contributing area, low slopes, no or concave curvature, or high
values of the compound topographic index (Park et al., 2001). Delineation of alluvial
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plains by digital elevation model (DEM) or digital terrain model (DTM) can be done
using these characteristics. These characteristics can be differently combined and
different criteria can be chosen (MacMillan et al., 2000; Park et al., 2001; Kozak
et al., 2004). DTM/DEM data are relatively well accessible worldwide. Elevation
data from remote sensing obtained from stereo aerial photographs or satellite images
are the most important source of DEM especially in regions with limited geographic
information (sources of DEM are discussed in Sections 10.4 and 2.2.1).

In this Chapter we aim to exploit different relief characteristics derived from
DTMs for the delineation of the extent of hydromorphic soils around small water-
courses. The study is focused on choosing the most appropriate relief characteristics
and their combinations.

The Czech Republic has relatively good information about soils and their dis-
tribution. However, studying the relation between soil distribution and relief and
finding techniques to derive soil distribution from terrain parameters can be used in
the areas where soil information is rather scarce and limited (similar problematic is
discussed in Chapter 4).

28.2 Material and Methods

28.2.1 Input Data and Area of Interest

The study area (83 km2) located in Southern Bohemia (49◦ 26.62′ N, 14◦ 43.757′ E)
represents a typical catchment with a small watercourse (Fig. 28.1). A DTM with
10 m by 10 m pixels was derived from contour lines with a vertical interval of 2 m (in
flat areas 1 m) and summit heights. Additionally, streams were used to support the
interpolation of DTM. The size of pixel was estimated by contour density (Hengl,
2006). The DTM was processed by ILWIS Academic 3.2 (ITC, 2001).

28.2.2 Methods

Three methods were compared for alluvial-plain delineation: (1) combination of
drainage area and slope curvature (Park et al., 2001), (2) compound topographic
index (CTI) and 3) combination of drainage area and height above the watercourse.

Drainage area and slope curvature (AC)
This method combines characteristics of drainage area (As) and slope curvature

(Cs) and variability of the slope curvature (Cs). Six landforms (including alluvial
plain) can be described/classified by this method (Park et al., 2001). Alluvial plain is
characterized as an area with low curvature, but with high drainage area. A negative
slope curvature is a third characteristic.

Compound topographic index (CTI)
CTI indicates areas with higher soil moisture in low parts of landscape close to

watercourses; on the other side, areas close to water divide are characterized by low
values of CTI. CTI is calculated as:
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Fig. 28.1 Area of interest; numbers indicate control cross-sections

CT I = ln

(
As

tan β

)
,

where As is drainage area and β is slope (McKenzie and Ryan, 1999). High values
of CTI can indicate hydromorphic soils on the alluvial plain.

Drainage area and height above watercourse (AI)
This method is based on consideration that the presence of alluvial soils is limited

by height above a watercourse in relation to the watercourse size. The watercourses
form the alluvial soil by periodic flooding (a soil-forming factor for Fluvisols) and
stagnation of groundwater close to the surface (a soil-forming factor for Gleysols).
The presence of alluvial soil is then given by height of any point above the wa-
tercourse (hr − ht ) where hr is altitude at given point and ht is altitude of the
watercourse, and drainage area (As), which characterizes the size of the watercourse.
The so-called “alluvial index” is described as:
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Fig. 28.2 Delineation of an alluvial plain by drainage area As and height above a watercourse
(hr − ht)

AI = log(As)

(hr − ht )
,

where As is drainage area, hr is altitude at given point and ht is altitude of the
watercourse (Fig. 28.2).

28.2.3 Verification and Validation of Results

The success of the three methods was tested by comparison of the width of estimated
alluvial soils with 10 cross sections of an existing 1:5 000 soil map. Cross-sections
were chosen in regard to different shape of the valley (given by the steepness of
the valley) and the size of the watercourse (given by the drainage area). Another
comparison was based on visual assessment of the maps created.

28.3 Results and Discussion

All three methods described above were used for alluvial-plain delineation. The
method described by Park et al. (2001) that combines drainage area and slope cur-
vature was modified. Additionally a buffer of 150 m as a maximal width of valley
at the study area was set to eliminate prediction of alluvial soil at places far from
the alluvial plain that fulfill the limits given by Park et al. (2001). The control cross-
sections showed that the alluvial plain width was underestimated by 24.5% on aver-
age (Table 28.1). Moreover, detailed comparison of the created map showed places
where the alluvial plain appeared discontinuous. Another problem was constriction
of the alluvial plain at the watercourse junctions (Fig. 28.3a).

Delineation of alluvial soils by the compound topographic index provided the
worst result. Soils on the alluvial plain are hydromorphically influenced. Alluvial
soils were delineated as areas with a CTI larger than 7, based on knowledge from
previous studies (Penizek, 2004; 2005). The CTI map was processed as the aver-
age of a 3-by-3 pixel moving window. The alluvium was strongly underestimated
(on average by 43%) by this method (Table 28.1). Discontinuities of the predicted
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Table 28.1 Prediction of alluvial plain width at control cross-sections by methods. AC – com-
bination of drainage area and slope curvature, CTI – compound topographic index and AI –
combination of drainage area and height above watercourse

Width of alluvial plain at
control cross-section (m)

Deviation between map and prediction

(%) (m)

cross-section map AC CTI AI AC% CTI% IA% AC-m TI-m AI-m

1 0 40 35 55 – – – –40 –35 –55
2 70 70 35 55 0.0 50.0 21.4 0 35 15
3 70 80 50 55 14.3 28.6 21.4 –10 20 15
4 120 70 60 80 41.7 50.0 33.3 50 60 40
5 125 85 55 75 32.0 56.0 40.0 40 70 50
6 65 65 50 55 0.0 23.1 15.4 0 15 10
7 140 90 55 100 35.7 60.7 28.6 50 85 40
8 85 55 35 60 35.3 58.8 29.4 30 50 25
9 205 120 100 190 41.5 51.2 7.3 85 105 15

10 75 90 65 75 20.0 13.3 0.0 –15 10 0

Average deviation 24.5 43.5 21.9 32 48.5 26.5

Comment: positive values indicate underestimation of predicted width of alluvium, negative values
indicate overestimation of predicted width of alluvial plain in comparison to mapped state.

alluvial plain were very frequent (Fig. 28.3b). Steep valley bottoms around smaller
watercourses, that cause relatively low CTI values even near the watercourses, are
the reason of this failure.

The third method was based on the assumption that alluvial soil can be present
only at some level above the watercourse in relation to the size of the watercourse.
This method that combines height above watercourse and drainage area was the
most successful. A value of A = 1.5 was set for delineation of the alluvial plain.
The extent of alluvial soils was underestimated by less than 22% (Table 28.1) and
there were no discontinuities in alluvial plain delineation (Fig. 28.3c). In one case
the alluvial soil was predicted where these soils were not indicated on the original
map. Even so this method provides the best result. Overall overview of success of
the methods is given in Table 28.1 and Fig. 28.5; an example of prediction along
two cross-sections is presented in Fig. 28.4.

Fig. 28.3 Detail of delineation of alluvial soil by combination of drainage area and slope
curvature (a), compound topographic index (b), combination of drainage area and height above
watercourse (c)
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Fig. 28.4 Example of delineation of alluvial soils at two control cross-sections. MAP- extent of
alluvial soils at reference map, AC – combination of drainage area and slope curvature, CTI –
compound topographic index and AI – combination of drainage area and height above watercourse

Fig. 28.5 Delineation of alluvial soils at study area by combination of drainage area and slope
curvature (A), compound topographic index (B) and combination of drainage area and height above
watercourse (C)

28.4 Conclusions

This study shows that terrain attributes can be a successful tool for delineation of
soil classes strongly related to a specific type of terrain. The results of the three
methods also showed that the success of prediction can be influenced by the choice
of proper input parameters. Different characteristics of auxiliary data can differently
serve to specific aims. One method/parameter can by successful for some study, but
in other study it can fail. Exploitation of general-purpose methods or limits seems to
have limited applicability. Training of the method in a small area and its application
to a larger extent could provide the best prediction.

Nevertheless, digital soil mapping that exploits auxiliary data can be very use-
ful and can overcome some problems of traditional soil survey and mapping (see
also Chapter 11). This method can for example be used for the successful updating
of existing medium- and small- scale maps (scales coarser than 1:50 000), where
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Fluvisols and Gleysols around smaller watercourses are usually largely overesti-
mated due to map generalisation. Exploitation of auxiliary data has large potential
especially in the parts of world with limited information about natural resources.
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Chapter 29
Building a Digital Soil Data Base of the Solimões
River Region in the Brazilian Central Amazon

W.G. Teixeira, W. Arruda, H.N. Lima, S.A. Iwata and G.C. Martins

Abstract The region near the Solimões river in the Brazilian Central Amazon re-
ceives much attention because of oil and gas transport from the Urucu river Province
to the refinery in Manaus. Information about soil characteristics and its spatial dis-
tribution is important to allow secure intervention in the case of an accident (oil
spill). The objectives of this chapter is to present the methodology used to built a
soil digital data base of this region combining soil surveys that are mainly available
as printed maps at different scales. First, the soil maps were scanned and vectorized
and the soil units were identified. All information was put in a digital soil database,
with scales from 1:250,000 to 1:10,000. The predominant soils near the borders
of Solimões River are Eutric Fluvisols and Eutric Gleysols, whereas in the terra
firme predominate yellow Ferralsols, Acrisols and Plinthosols occur. Some Podzols
are found scattered in the area, normally at the base of short valleys. Anthrosols
with rich antropic horizons also occur, which are called Terra Preta de Índio. A
soil digital database using this approach to collect all information can be used to
plan, monitor and reduce the impacts caused by the petroleum exploitation. It is
also useful for land use planners in this region.

29.1 Introduction

The region near the Solimões river in the central Amazon receives much attention
because of the exploration of oil and gas in the Urucu river Province. Petroleum is
transported from Urucu until the town of Coari through a pipeline and then by ship
to a refinery in Manaus. A net of researchers are studying different aspects in a coop-
erative project called – Potenciais impactos e riscos ambientais do transporte de gás
natural e petroleo na Amazônia (PIATAM). Piatam is a major socio-environmental
research program created to monitor the Urucu oil and natural gas production and
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transportation activities. Urucu is the largest Brazilian in-land oil-rich province,
located in the middle of the Brazilian Amazon. For the region, information about soil
characteristics and its spatial location is a key factor to allow a secure intervention
in the case of an accident like an oil spill.

Information about soil characteristics and soil maps for this region is rare and are
scattered in technical reports (EMBRAPA, 1990; CETEC, 1986; BRASIL, 1978;
IPEAM, 1970).

The objective of this study was to build a digital database with information about
soil characteristics and their localization in the Solimões river area of the Central
Amazon. This soil georeferenced digital database may be used to plan, monitor and
reduce the impacts caused by the petroleum exploitation on the environment and
the people living in the region. It also may help researchers in identifying areas
where soil should be surveyed and more data are to be collected. In this chapter, we
show the methodology used to convert printed soil maps in digital maps and how to
combine the available soil surveys for a region in an unique digital database. Some
pedological aspects of the soil in the region is also discussed.

29.2 Material and Methods

The study area is located in the border of the Solimões river comprising an area
around 12 million hectares in the Central Amazon.

The first step was a search in libraries for published soil survey available for the
central Amazon. It was identified four printed soil survey reports comprising this
region and a digital soil database:

i. an exploratory soil survey – Folha Manaus SA-20 – Project Radambrasil – Soil
map published at scale of 1:1000,000 – (BRASIL 1978);

ii. a reconnaissance soil survey of part of the city of Manacapuru – PDRI Project –
Soil map published at scale of 1:100,000 – (CETEC, 1986);

iii. a reconnaissance soil survey of the region near the Road AM 070 (Cacau
Pirêra to Manacapuru (Road AM 070) – Soil map published at 1:120,000
(IPEAM, 1970);

iv. semi-detailed soil survey for the Experimental Research station of Caldeirão –
Embrapa Amazônia Ocidental – with a soil map published at scale of 1:10,000
(EMBRAPA, 1990).

A digital soil database is also available for this region: The Digital Soil Database
of Legal Amazon – (DSDLA) – (SIPAM, 2004) has details compatible with the
scale of 1:250.000.

The soil maps were scanned and vectorized and the soil units were identified.
It was conducted in ArcGis 9.2 (ESRI, USA). Figure 29.1 illustrated the sequence
used to transform printed soil maps in soil digital maps.

The SIPAM database was used as base to georeference the other soil surveys.
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Fig. 29.1 Illustration of the sequence used to transform a printed soil maps in a soil digital map.
(A) The printed map is scanned; (B) Transform the boundary lines between the soil units in lines
vector to be identified in SIG soft wares (C) Organize the legend and the distinction between soil
units using labels and representative color for different soil classes. This example is illustrated with
the semi detailed soil map of the Experimental Research Station of Caldeirão – Embrapa Amazônia
Ocidental (EMBRAPA, 1990)

Fig. 29.2 Location of the different soil survey maps available for the Central Amazon. The maps
have different site sampling intensity ranging from compatible with a semi-detailed legend (Re-
search Station of Caldeirão – to 1:10,000) to an exploratory soil survey (SIPAM Digital Soil Data
Base – 1:250,000) (See also Plate 37 in the Colour Plate Section)
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The Fig. 29.2 shows the localization of all the soil surveys used in this study.
For some soil maps it was necessary to rectify the boundaries of soil classes units.
It was done using topographic features identified from digital elevation model gen-
erated from radar images obtained from the Shuttle Radar Topographic Mission
(SRTM). We also used optical images from Landsat 5 TM which make it possible to
identify vegetation types typically related with some classes of soil (e.g. campinara
vegetation and Podzols, and typical Igapó vegetation for flooded areas).

The classifications of soil were kept as it was published. Finally, all the infor-
mation was gathered in an unique digital soil database, with scales ranging from
1:250,000 to 1:10,000.

29.3 Results and Discussion

The Experimental Research Station of Caldeirão near the city of Manacapuru has
a semi-detailed soil survey (Fig. 29.1). In this survey, soil units were identified in
the scale of 1:10,000 and are composed typically by an unique soil class and each
soil unit. It was observed a predominance (near the border of the Solimões) of Eutric
Gleysols (Gleissolos eutróficos – labeled as HGPe). In this semi detailed soil survey
was possible to separate some area with Dystric Gleysols (Gleissolos distróficos
labeled as HGPa), those soils occur mostly in depressed areas and has a clayey
soil texture. This soil map shows also a soil unit with an Acrisol with an antropic
A horizon (Podzólico Amarelo A antrópico – labeled as Pad). This soil is locally
called as Terra Preta de Índio and the A horizon is characterized by the dark color
and often by presence of postherds, lithic artifacts and charcoal pieces. It has a high
fertility and large amount of soil organic carbon. Moreover, it also shows different
physical soil properties (Teixeira and Martins, 2003). The more widely accepted
theory about the origin of those epipedons is that they were improved by Amerindian
populations in pre-Colombian Indian settlements. Those Anthrosols have been
found mainly in the “terra firme” (i.e., areas never flooded) (Sombroek, 1966;
Lima et al., 2002). Large areas of those Antrhosols where covered by sediments
in the floodplains or where destroyed by the lateral movement of the river – a
phenomenon locally named as terras caı́das. An example of an area with an An-
throsol covered by sediments in the floodplains in this study area was described by
Teixeira et al. (2006).

Figure 29.2 shows details of the maps that are gathered in an unique database.
This digital database eases the access to information about the soil in this region. The
use of zoom functions permits to visualize details where such information is avail-
able. Figure 29.2 also shows an unpublished exploratory soil maps compiled from
the digital soil database from SIPAM. This map shows a predominance of Eutric
Fluvisols (Solos aluviais eutróficos) and Eutric Gleysols (Gleissolos eutróficos). In
the scale of this exploratory soil survey (1:250,000) it is very rare to be possible to
map an unique soil class in the map units. It has a consequence that this kind of map
is only for a rapid general appraisal of an area. For some purpose as intervention
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in an oil spill, exploratory soil surveys will be not useful and more detailed and
up-to-date soil maps are necessary especially near the Purus river (affluent of the left
border of Solimões river). In this area of the central Amazon an unique exploratory
soil map is available. However, some areas in the central Amazon is already well de-
scribed and mapped as the interval between the cities of Manacapuru and Iranduba,
where three soil surveys are available.

Figure 29.3 show the original (small box) reconnaissance map of soils near the
Roadway AM-070 – from Cacau-Pirêra to Manacapuru and also shows the re-
newed reconnaissance soil survey of the region between Cacau Pirêra and Man-
acaparu. Siltic Eutric Gleysols (Gleissolos) are dominant in a intricate pattern that
makes the surveyor note as in some part as indiscriminate hydromophic soils. In
the left border of Solimões river Dystric yellow Ferralsols (Latossolo Amarelo)
dominate in association with Plinthosols (Concrecionário Lateritico, nowadays
classified in the Soil Brazilian Classification System as Plintosolo) and Acrisols
(Podzólicos, nowadays classified in the Soil Brazilian Classification System as
Argissolos).

Figure 29.4 shows the renewed reconnaissance soil map of the borders of the
Solimões river near the city of Manacapuru. At the border of the Solimões River Eu-
tric Gleysols (Gleissolos eutróficos) and Eutric Fluvisols (Solos Aluviais eutróficos)
are the dominant soil types. In the bluff areas at both sides of the Solimões river
Acrisols (Podzólicos) and Plintosols (Plintossolos) are the major soil types. An in-
crease in the proportionate extent of Acrisols in the terra firme occurs in direction
to the nascent of the Solimões (Tables 29.1–29.3). The original publication of the
reconnaissance survey (CETEC, 1986) also distinguishes map units based on relief
and flood period. The same soil class occur in the same relief were separated when
it has a different flood permanency. It was used a system of classification based on

Fig. 29.3 Renewed reconnaissance soil map from Cacau-Pirêra to Manacapuru (Roadway AM
070) – Published by IPEAM (1970). The original map of the reconnaissance soil map from Cacau-
Pirêra to Manacapuru (Roadway AM 070) is showed in the small box left side (See also Plate 38
in the Colour Plate Section)
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Fig. 29.4 Renewed reconnaissance soil map of the soil near the border of Solimões in the city of
Manacapuru (CETEC, 1986) (See also Plate 39 in the Colour Plate Section)

flood period: less than one month (class I); among one and three months (class II);
among three and six months (class III) and more than six months (class IV). In this
area, the flood criterion is very important as the flooded area may occur in a large
portion of the terrain.

Tables 29.1, 29.2 and 29.3 show the symbols used in the maps, the number of
units mapped and the measured area relative to the total area. This type of table
and statistics are laborious in traditional mapping but easy in a digital map using
geographic information system (GIS). Soil map units in digital format allow com-
parison with other thematic databases like, for example, cross studies of land use
systems and soil class (Soares et al., 2007).
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Table 29.1 Map units symbols, dominant soil type, number of units mapped, measured area and
percent of each soil class mapped from the renewed semi detailed soil survey of the Research
Station of Caldeirão – Embrapa Amazônia Ocidental (EMBRAPA, 1990)

Map unit
symbols

Dominant soil
type§

Number of
units mapped

Area (ha) %

LAa4 Ferralsol 2 62.8 36
HGPe Eutric Gleysol 1 24.3 14
Pad Acrisol 2 15.9 9
PAa3 Acrisol 4 13.3 8
HGPa Dystric

Acrisol
3 11.5 7

PAa2 Acrisols 2 11.0 6
Hla Gleysols and

Fluvisols
2 9.0 5

PAa1 Acrisolo 1 8.2 5
LAa6 Ferralsol 1 5.3 3
LAa3 Ferralsol 2 5.2 3
LAa2 Ferralsol 1 3.7 2
LAa1 Ferralsol 4 3.2 2
LAa5 Ferralsol 1 2.6 1

§ FAO – ISRIC (2003)

This soil database is freely available in a digital format (–shape file) which makes
it possible to visualize in ArcGis (ESRI, USA) or free software as Springer (INPE,
Brazil).

Table 29.2 Map units symbols, dominant soil type, number of units mapped, measured area and
percent of each soil class mapped from the renewed reconnaissance soil survey of area between
Cacau-Pirêra and Manacapuru – Brazilian Central Amazon (IPEAM, 1970)

Map unit
symbols

Dominant soil
type§

Number of
units mapped

Area (ha) %

LA1 Ferralsol 1 18699 15
LA3 Ferralsol 1 14698 12
HG1 Gleysol 8 13192 11
Lap Ferralsol 16 12057 10
HI Gleysol and

Fluvisol
64 12022 10

HG2 Gleysol 13 11547 9
PA Acrisol 12 11096 9
Lam Ferralsol 10 7981 7
LA2 Ferralsol 1 7087 6
Lamp Ferralsol 7 6306 5
HG3 Gleysol 4 2592 2
LA4 Ferralsol 6 2554 2
CL Plinthosol 16 2397 2
PH Podzol 8 959 1
R Regosol 2 87 < 0.5

§ FAO – ISRIC (2003)
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Table 29.3 Map units symbols, dominant soil type, number of units mapped, measured area and
percent of each soil class mapped from the renewed reconnaissance soil survey of county of
Manacapuru – Brazilian Central Amazon (CETEC, 1986)

Map unit
symbols

Dominant soil
type§

Number of
units mapped

Area (ha) %

PVa Acrisol 6 27674 24
Ae2 Fluvisol 101 15105 13
HGPe4 Gleysol 95 14357 12
HGPe1 Gleysol 9 12895 11
HGPe7 Gleysol 23 12555 11
HGPe8 Gleysol 6 7522 6
HGPe6 Gleysol 21 7512 6
HGPe5 Gleysol 12 6649 6
HGPe3 Gleysol 5 5829 5
Ae1 Fluvisol 6 2314 2
HGPe2 Gleysol 11 2005 2
HGPa Gleysol 15 1259 1
PTa1 Plinthosol 9 1096 1
PTa2 Plinthosol 2 556 < 0.5

§ FAO – ISRIC (2003)

An ongoing project is the revision of the legend to follow the Brazilian Sys-
tem of Soil Classification from 1999. This project also included a databank called
SOLOAMA, containing information about the soil physical, chemical, morpholog-
ical and mineralogical properties, partly available in soil survey reports, scientific
articles and doctoral and master theses and soil data collected during PIATAM ex-
cursions in the Central Amazon.

A secondary objective of this project is to reduce the risk of loss of information
from former soil surveys and the conducting of new soil survey for the region. We
incorporated legacy soil data into new georeferenced databases and this approach to
rescue and renewal soil data is discussed in this book by Rossiter (see Chapter 6).

29.4 Conclusion

The approach to collect all available soil information in a database may be used to
plan, monitor and reduce the impacts caused by the petroleum exploitation on the
environment and the people living in the region Central Amazon. It may also be
useful for land use planners.

A limitation of a soil data base combining soil surveys of different scales is the
printing as the scale is different for different areas. This database is typically used
in a computer with a software that allows zooming the map. It may cause confusion
for non-soil specialist showing that some areas are more variable than other, which
is a consequence of a larger scale used in semi-detailed soil surveys which identified
more soil classes than in exploratory soil surveys.
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Chapter 30
Enhancing the Use of Remotely-Sensed Data
and Information for Digital Soilscape Mapping

L. Le Du-Blayo, P. Gouéry, T. Corpetti, K. Michel, B. Lemercier
and C. Walter

Abstract The lack of soil maps in Brittany in the north west of France, leads to an
approach based on the inference of soilscape units which can be delimited and char-
acterised with relatively fewer field observations than conventional survey. Whereas
geology and landform are generally used data to map soilscape units, natural and
agricultural landscapes indicate relevant information on soils within them. Remote
sensing is obviously the main source of data to map landscape units at regional scale,
but one must look carefully how to analyse landscape units, including soil proper-
ties, without simply focusing on land-use class. The proposed method for landscape
classification is based on a specific classification system developed at regional and
local scales, including the role of landscape patterns using object-oriented classi-
fication. Post-classification processing is then developed to generalise the results
and define mixed landscapes. Finally fusion techniques are tested to examine the
probability of common soilscape boundaries arising from different environmental
factors (geology, elevation, landscape).

30.1 Introduction

A central purpose of the French national program Inventory Management and Soil
Conservation is to provide digital soil maps at regional extents. For Brittany, soil
mapping is not extensive. The existing polygon maps, which are not all digitised yet,
cover approximately 20% of the area at 1:100 000, and less than 15% at 1:25 000.
So this highly developed agricultural region has quite poor soil reference maps and
Bottom Up synthesis as describe in Section 13.3.1 are not possible for the region.
Faced with this lack of spatial data on soils, and the cost-to-time ratio necessary
to collect sufficient new soil observations, one solution is to use external factors

L. Le Du-Blayo
Equipe COSTEL, UMR CNRS 6554 (Littoral Environnement Télédétection et Géomatique), Uni-
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(environmental covariates as noted in Section 1.2) to deduce soil spatial patterns,
which can then be verified locally. The program maps soilscape units (Unités de
Pédo-Paysages: UPP) at 1:250 000, and populates each UPP with a definition of lo-
cal soil classes (Unités Typologiques de Sols: UTS). This concept of a soilscape unit
(Lagacherie et al., 2001) results from the general principle, established in various
disciplines, that functional links and pressures between environmental and human
factors produce a specific landscape at the regional scale (Le Du-Blayo 2007).

In Brittany, where about 80% of the land area is agricultural, the main agricul-
tural landscape patterns (size and shape of fields, cropping and pasture land, density
of hedgerow network, waste land etc.) are closely related to soil attributes. The
landscape and landuse mosaic often reveals soils features that other factors like
geology or elevation do not (Gaddas, 2001). For example we can find three small
areas of vegetable crops precisely located on originally basic soils on aeolian sur-
face deposits, with no link to other environmental factors. The landscape/landuse
pattern is also an important factor for DSM (Digital Soil Mapping) because human
activities drive soil evolution (urbanisation, planted conifer woodland, intensive
agriculture etc.). Thus, according to the scorpan model (McBratney et al., 2003,
see Section 2.2.1), in a region like Brittany, o (organisms, vegetation or fauna or
human activity) is a key determining factor for deriving landscape/landuse units for
successful soilscape mapping (as described in Section 3.3.1).

Remote sensing is a readily available source of information on landscape/landuse,
accessible nearly all around the world and often gratis. It is well adapted to work
where there is a dearth of soil maps and data. The question is then to set up an
appropriate method for landscape/landuse unit mapping (Le Du, 2000) that can be
subsequently used for inferring soil units.

30.2 Material and Methods

The methodology comprises three main steps (Fig. 30.1):

(1) landscape/landuse classification using remotely- sensed data;
(2) post-classification processing in order to obtain compact landscape/landuse

units; and,
(3) fusion with other environmental data to extract soilscape units at the regional

extent.

30.2.1 Classification of Landscapes

In the context of this chapter ‘landscape’ refers to a combination of landform and
landuse, more formally, a spatial combination of specific elements (house, hedge,
river, wood. . .) with a specific spatial structure (regular or irregular, large or small
parcels. . .). Thus, a landscape class is defined at local scale by a composition
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Fig. 30.1 A diagram of the approach

(land use classes) and a spatial topology. At the regional scale, landscape units
are defined by a composition of landscape class (open field, bocage, suburban
area. . .) with a specific spatial organisation (homogeneous/heterogeneous, linear/
mosaic etc.).

Remote sensing is often a unique source of data concerning land use. Here we
have focussed on two specific scales.

(1) A whole-of -Brittany scale for delimiting the UPP (1:250 000). To work at this
scale, we used MODIS (MODerate resolution Imaging Spectroradiometer) im-
agery with a low spatial resolution (250 m by 250 m for bands 1, 2, 3 and 500 m
by 500 m for bands 4, 5, 6, 7). This imagery is well adapted for regional-scale
work because this it shows the main landscape contrast and covers Brittany in
a single scene. This is very important for homogeneous data and simplifies the
image preparation (Lecerf et al., 2006). Spring, summer, autumn and winter im-
ages are combined using Time Series Analysis (TSA) to integrate the seasonal
specificities of landscapes.

(2) A local scale for delimiting the UTS using medium spatial resolution satellite
imagery. This yields precise landscape classes at a local scale for the UTS. To
work at this scale, we used Landsat 5 and 7 imagery with a 30 m by 30 m spatial
resolution which shows the main details of landscapes patterns and allows and
object-oriented approach to image segmentation. Due to the size of the region
studied, the characteristics of Landsat imagery and the availability of acquired
scenes with acceptable cloud cover, we worked with a mosaic of six different
images, taken on different dates, to cover the whole of Brittany.
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The landscape unit enable a synthesis of landscape composition and pattern
which can reveal a soil system (Girard and Girard 2003). For example, the European
land-use classification, Corine Land Cover, does not reveal the set of parameters
required to perform soilscape mapping. Some classes like ‘vegetable crops’ might
enable inference of derived factors like soil hydromorphy. But overall landcover
class alone does not enable construction of a pedologic map. Additional and homo-
geneous landscape information are required all over the area of interest.

This is the reason why a specific landscape classification has been derived com-
bining land use, patterns and structures, and surface moisture. These classes can be
hierarchically developed according to the scale of interest.

For MODIS imagery, the classification accuracy is based on statistics of field
reference sample plot data and knowledge of the Brittanic landscapes. This step
needs many iterations before defining final the representative samples for each
class, with a good spread, size and form. The area and number of reference ar-
eas varies according to landscape diversity and their inner heterogeneity; for Brit-
tany we have defined 109 reference areas ranging from 750 m square to 4000 m
square.

On landsat images, we preferred object–oriented analysis because pixel-based
classification is not efficient on images obtained from medium spatial resolution
satellite sensors (Whiteside and Ahmad, 2005). Object-oriented approach for the
segmentation and classification of Landsat TM images with eCognition software
recognises the role of spatial patterns in landscape discrimination, e.g., linear wood-
land in a valley, large parcels of cereals on plains, small parcels of grass land on
hills, etc.

30.2.2 Map of Landscape Units

As landscapes in Brittany are quite complex, with an important diversity in classes
and a remarkable heterogeneity in their spatial organisation, classifications based on
MODIS and also on Landsat images, can not be use as the final result for mapping
landscape units. Post-classification processing is necessary to produce continuous
surfaces and to smooth boiundaries for image vectoring (Bou Keir et al., 2004).
Common post-classification techniques, such as filters to eliminate small clusters,
are inappropriate because of the specific shapes of some landscapes units, e.g., com-
pact shapes (urban zones and woodlands) versus linear shapes (valleys), and well
delimited classes versus mixed zones (‘bocage’). Unlike land cover maps where
parcels have clear boundaries and a single component (crop, grassland, etc.), land-
scape units are often a specific combination of different classes, and landscapes unit
boundaries often have a fuzzy transition (Robbez-Masson et al., 1999).

The method proposed here separates all classes into individual binary layers,
which are then individually processed. The purpose of the process is to generalise
the spatial representation of each class. This is done using successive iterations
of morphological openings and closings (Serra, 1982, 2004) which in turn elim-
inates small clusters and merges clusters together. Different structuring elements
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are tested until the size and shape corresponds to the specific shape of the studied
class and cartographic scale (e.g., circular structuring elements for open field class,
smaller circular elements for forests, linear structuring elements for valleys, etc.).
The iterative steps are retained for possible use in a further post-processing step
discussed below.

The last step of post-processing is to combine all the processed layers. The
raw combination of post-processed layers presents some areas where two or more
classes overlap, and some other regions with no class allocated to them.

The combination of overlapping classes is done using a set of ‘expert’ deductive
rules for particular cases (e.g., class A overlaps class B, class B overlaps class A,
class A mixed with class B, class A not compatible with class B etc.) with particular
consequences. If A is mixed with B it may mean that we have to consider a combi-
nation between these two classes as a landscape unit itself or as a transitional area
between an A landscape unit and a B landscape unit.

Regions with no class allocated are filled using previous step result of intermedi-
ate images conserved for each class, recursively, until raw we achieve a full image
with no gaps.

30.2.3 Soilscape Boundaries

The landscape map is not sufficient in itself and we have to deal with other envi-
ronmental data in order to obtain soilscape maps. The most common information
available in every country with poor environmental survey are geology and land-
form, which we choose to fuse with landscape classes to extract soilscape units at
a regional scale. To that end, we suggest the use of the theory of evidential fusion.
The main principle of data fusion is to combine information from different sensors
related to the same observed phenomenon by having a special care to the situations
where data are dubious or are in conflict. As we do not have the final soilscape
classification, which is not known a priori, we focus only on the extraction of the
most probable delimitation of soilscape units.

We chose to work on evidential fusion because its theoretical foundations are
well adapted to our application. The most popular approach was proposed in Shafer
(1976) and is known as the Dempster-Shafer (DS) evidential theory. Unlike meth-
ods generally used (e.g. Bayesian techniques), the DS theory was the first one to
introduce uncertainty in modelling and which allows expressions of ignorance. The
main principle is to deal with two kinds of information imperfection: probabilistic
uncertainty and imprecision. Let us examine these two concepts.

Uncertainty: for a given set of hypothesis, a frame of discernment that integrates
the uncertainty is defined. This latter is the set of all possible combinations. For
example, if one notes {A,B,C} a set of three hypotheses (in our specific case, this
set has only two assumptions and is {boundary, not-boundary}), the frame of dis-
cernment is: {A, B, C, A ∪ B, A ∪ C, B ∪ C, A ∪ B ∪ C} and corresponds to all
situations that we are likely to deal with. The symbol ∪ represents the union of



342 L. Le. Du-Blayo et al.

hypotheses and in then related to the uncertainty. For example, A ∪ C corresponds
to uncertain situations where A and C both hold.

Imprecision: the imprecision is defined through mass functions. For each element
of the frame of discernment, we have to define a mass function related to the impor-
tance of the corresponding hypothesis. This mass is in the interval [0,1] (1: totally
sure, 0: totally unsure). The sum of all mass functions has to be 1. For each source
of information, we have to define the mass functions for every hypotheses of the
frame of discernment. The Dempster rule of fusion combines all mass functions to
outputs that are the fused mass functions related to each hypothesis of the frame of
discernment (Shafer, 1976).

Although the DS theory has proved to be powerful for combining many sources
of information, it suffers from an important limitation: paradoxical information is
not taken into account. Indeed, some famous examples have showed that when
we have a conflict between information, the DS is likely to exhibit unexpected re-
sults. Smarandache and Dezert (2004) have then proposed the Dezert-Smarandache
(DSm) theory that extend the DS by introducing the paradox in the frame of dis-
cernment. This paradox is represented by the intersection ∩ of two hypotheses. A
new fusion rule (named the Dezert rule) that integrates this paradoxical information
is then defined (Corgne et al., 2003; Smarandache and Dezert, 2004).

30.3 Results and Discussion

30.3.1 Landscape Classification

Landscape classes are defined by expert knowledge of Brittanic landscapes, accord-
ing to existing landscape classes in other French regions (particularly in the Land-
scapes Atlases of the Ministry of Environment). A set of 150 reference areas haven
been recognised and 109 finally selected after statistical analysis. Depending on the
diversity and heterogeneity of landscapes, sample size is adapted. The selection is
progressively improved by analyzing the nature of unclassified pixels after each iter-
ation. As landscape class is not a defined object in itself (like land use for example)
but a global composition with fuzzy statistical boundaries, a binary validation on
a set of testing samples is not sufficient. Elevation is included in the classification
processing as a thematic layer to force the emergence of landscape units so that the
results (Fig. 30.2a) clearly show the main landscape units at regional scale, but also
the complexity of landscape combinations and heterogeneity.

The proposed classification from low-resolution satellite imagery is improved
with the use of Landsat imagery and the object-oriented image processing. Segmen-
tation of specific patterns (linear forests in the valleys), topographic information
(slope), and particular spectral responses (forest, meadow. . .) improve the accuracy
of classification (e.g., specific landscapes units in the valley). Again the technical
choices are focused on landscape characteristics and not land cover so that it helps
in defining the UTS locally.
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(a)

Fig. 30.2a Landscape classification realized by means of MODIS satellite images at regional scale
(Phase 1) (See also Plate 40 in the Colour Plate Section)
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30.3.2 Map of Landscape Units

The post-classification image (Fig. 30.2b) presents a simplified view of landscape
units, ready to be combined with other factors to obtain soilscape units (UPP). Then
final combination of overlapping areas depends on the topology of real landscapes.
For example, when classes A and B are combined in significant proportion, they
are both conserved in a transition zone or transformed into a new class; or when A
is included in B, A is deleted except when it is a special class (e.g., urban, wood-
land etc). Using these expert rules, the final result is very close to the reality and
complexity of local and regional landscape units (Canevet et al., 1990).

(b)

Fig. 30.2b Post-processing techniques applied to landscape classification (Phase 2) (See also
Plate 41 in the Colour Plate Section)

30.3.3 Soilscape Boundaries

In our specific application, the inputs are the three choropleth or polygon maps
(geology, relief as altitude classes, and landscape). The hypothesis are B, N (B =
Boundary, N = Not boundary). The frame of discernment is {B, N, B ∪ N, B ∩
N}. The mass function of the hypothesis B is defined by m(B(x)) = τ 2/(τ 2 +
d2(x)) where d(x) is the distance between the point x and the nearest boundary
and τ 2 is a stretch parameter. Such a mass function is close to 1 when x is near
a boundary and decreases to 0 when x is far from a boundary. The mass function
for the hypothesis N is defined as: m(N(x)) = 1 − m(B(x)). When we are dealing
with a zone which is larger than a typical soilscape unit, the hypothesis N has an
important influence in the inside of the region (m(N) ∼ 0 ). Hence, this prevents the



30 Enhancing the Use of Digital Soilscape Mapping 345

creation of new boundaries. Actually, from a soilscape unit scale point of view, the
information inside such a region is not information of ‘no boundaries’ but is rather
uncertain information. As a consequence, to cope with this problem, we applied the
defined mass functions only when we are near a boundary, i.e., d(x) < σ, σ being
a distance to define. We define mass functions as m(B(x)) = m(N(x)) = 0 and
m(B ∪ N(x)) = 1.

Results are presented in Fig. 30.3. White represents 0 and black represents 1. Fig-
ure 30.3(d) represents the fused map. It indicates the probability of the hypothesis
B (presence of a boundary) based on the three input maps.

Two extensions to the methodology are required. The first is the transformation
of the probability map into delineated soilscape units. This can be done using some
morphological processes such as watershed segmentation (Serra, 1982, 2004). The
second consists in fusing on the nature of the soilscape units instead of fusing on
the borders. This would improve the quality of the results but this requires isolating
the number and the nature of each soilscape unit in a prior step.

Using this fusion approach, we could then add other environmental data in or-
der to improve the convergence of common boundaries. In Table 30.1 we list the
accessible data which may help experts to decide on soilscape boundary location in
Brittany.

(a) (b)

(c) (d)

Fig. 30.3 (Phase 3) Mass functions related to the presence of boundaries for (a) landscape clas-
sification (b), geology and (c) altitude. Fused map (d) indicates the chance of a boundary, white
represents 0 and black 1
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30.4 Conclusions

Remote sensing proved its performance in landscape mapping, both at regional and
local extents, as we overcame land-use complexity with specific classes, reference
areas and classification techniques. Beyond the accuracy of landscape classification,
the object-oriented image analysis has a great potential for DSM for at least two rea-
sons: first because landscape patterns are more stable than the land use they contain,
second because these patterns are linked with soil types and can influence soil evolu-
tion (erosion, acidification. . .). Post-classification processing is a crucial step for the
recognition of the final spatial units and gives a interesting analysis in progressively
transitional and mixed landscapes. These results on landscape unit boundaries have
to be combined with other factors of the scorpan model. Fusion techniques can
provide information on shared boundaries from different environmental factors and
the probability of soilscape boundaries.
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Skol Vreizh – INSEE, 64 p.

Corgne S., Hubery-Moy L., Dezert J., Mercier G., 2003. Land cover change prediction with a
new theory of plausible and paradoxical reasoning. Fusion 2003 Conference, Cairns, Australia,
8–11 July 2003, 1141–1148.

Girard M.C., Girard C.M., 2003, Processing of remote sensing data. Balkema, The Netherlands,
487 p.
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Chapter 31
The Use of GIS and Digital Elevation Model
in Digital Soil Mapping – A Case Study
from São Paulo, Brazil

G.S. Valladares and M.C. Hott

Abstract This paper applied pedological mapping in an experimental center of
“APTA-Frutas” in Jundiaı́, São Paulo, Brazil, using morphometric parameters and
GIS tools. The aim of this work was to obtain a preliminary legend of a soil map
and to compare the preliminary map with maps made by the traditional soil sur-
vey methods. The area has 59 hectares and is located at a mountainous relief in
the Atlantic Plateau. The original soil map of this area was made at 1:10 000. A
digital elevation model (DEM) was generated with 4 m spatial resolution based on a
topographical map at 1:10 000 scale, where the level curves are equidistant at 5 m.
Based on the DEM we generated altitude, curvature and slope maps. In order to map
the hydromorphic soils it was generated a buffer around the hydrography. We also
calculated frequency distribution graphics of altitude, curvature and slope maps.
After the interpretation of the frequency distribution, we defined classes to predict
the soils types. The curvature map was divided into two class intervals (< or = 0
and > 0), the altitude map was divided into four class intervals (690–703, 704–714,
715–730, and 731–757 m), and the slope map was divided into four class intervals
(0–9, 10–19, 20–44, and 45–72%). The maps were reclassified and converted to
shape files. The shape files were intersected with the others to generate the final
preliminary soil map. The methodology was adequate for the preliminary mapping
of some types of soils.

31.1 Introduction

This paper applied a pedological mapping methodology (digital soil mapping), in
an experimental center of APTA-Frutas (São Paulo State Agribusiness Technology
Agency-Fruits) in Jundiaı́ Municipality, SP, Brazil, using morphometric parameters
and GIS (Geographic Information System) tools.
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The digital elevation models (DEM) (see also Chapter 15) provide information
on topography, and derivative products, such as slope that through histograms or
reference areas allows to compare with traditional soil map (Lagacherie et al., 1995),
as well as to make rules that will be applied to a DEM (McBratney et al., 2003). Both
reference areas and histograms need a wide knowledge of the study area to delineate
samples (Lagacherie et al., 2001) or to classify soils.

The local landform or relief, represented through DEM, has a major impact on
soils by controlling water and sediment movements (McKenzie and Ryan, 1999),
together with other factors, such as parent rock.

The aim of our study was to propose a methodology to obtain a preliminary leg-
end of a soil map, which may guide the pedologists in their fieldwork and augment
their understanding of the soil-landscape relationship. Previous studies have inves-
tigated this topic (Arcoverde et al., 2005; Mühlethaler et al., 2005) and the focus
of our work was to compare the preliminary map with the traditional soil maps
and to provide an alternative to support decision-making in soil survey planning
management.

31.2 Material and Methods

The study area has 59 hectares and is located at Jundiaı́, approximately 75 km north-
west of São Paulo, Brazil, in a mountainous relief in the Atlantic Plateau (Fig. 31.1).
The study area receives 1,409 mm of rain per year with the majority falling between
October and March. The land use and land cover are predominantly apple, vineyard,
peach, citrus and natural vegetation (Atlantic Forest).

Fig. 31.1 Illustration of the DEM of CAPTA–Frutas, Jundiaı́, SP, Brazil in 3D projection
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The original soil map of the area was made at 1:10 000 scale (Valadares et al.,
1971). It was digitalized and inserted in a GIS. The map’s legend was converted to
World Reference Base for Soil Resources -WRB (ISSS, 1998).

Using the TOPOGRID function with ArcInfo Workstation GIS available in Ar-
cGIS 9.0 package (ESRI, 2004), a digital elevation model (DEM) with 4 m of spatial
resolution (Fig. 31.2a) was generated, based on the 1:10 000 topographical map
(Melo and Lombardi Neto, 1999), where the level curves are equidistant at 5 m.
Based on the DEM, we generated derivated maps with ArcGIS software, like alti-
tude, curvature and slope maps (Fig. 31.2a, b and c).

In order to map hydromorphic soils, we made a buffer with 7 meters around
the hydrography (Fig. 31.5a). We have also made frequency distribution graphics
representing altitude, curvature and slope maps. We defined classes to predict the

Fig. 31.2 Maps derived from
DEM of CAPTA-Frutas,
Jundiaı́, SP, Brazil. (a)
altitude with level curves,
hydrography and buffer; (b)
curvature; (c) slope

a

b

c
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soils types. It was made after visual interpretation of natural breaks in the frequency
distribution.

The joint interpretation of all the maps and the INTERSECT function were used
to generate the preliminary soil map. The INTERSECT function was applied be-
tween the altitude and curvature maps to generated a first version of the preliminary
soil map (psoil 1). Then psoil 1 was intersected with the slope map producing a
second version of the preliminary soil map (psoil 2). In the last step, the p soil 2 was
intersected with the hydrographic buffer to generate the final preliminary soil map
(see also Sections 19.2 and 34.2, using parameters derived from digital models).

31.3 Results and Discussion

The curvature map was divided into two classes in the study area, concave and con-
vex (< or = 0 and > 0), as the mountainous relief plain ground (near 0) is minimally
representative. In the concave areas, soils like Dystric Gleysols or Orthic Acrisols
are common, while Dystric Cambisols and Xanthic Ferralsols are predominant in
the convex areas.

The altitude map varies from 690 to 757 m and was divided into four class inter-
vals (690–703, 704–714, 715–730, and 731–757 m). Fig. 31.3a shows the frequency
distribution for altitude. Within the class “690–703 m” all the Dystric Gleysols and
a part of the Orthic Acrisols occur, while in the class “higher than 730 m” oc-
cur the Dystric Cambisols and the Xanthic Ferralsols. In both intermediate classes
(704–714 and 715–730 m) the Orthic Acrisols, Dystric Cambisols and the Xanthic
Ferralsols are common. It is not possible to differentiate exactly the soil types using
the altitude map.

In the study area, slopes vary from 0 to 72%. The slopes were divided into four
class intervals (0–9, 10–19, 20–44, and 45–72%). Fig. 31.3b shows the frequency
distribution for the slope classes. Table 31.1 represents a matrix of soil types and the
altitude and slope class intervals, without considering curvature.

The maps were reclassified and converted to shape files. In the shape file for-
mat, the INTERSECT function was applied to the maps (Fig. 31.4). Firstly, a map

Fig. 31.3 Frequency distribution for altitude (a) and slope (b)
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Table 31.1 Soil types based on altitude and slope from CAPTA-Frutas, Jundiaı́, SP

Slope classes (%) Altitude classes (m)

690–703 704–714 715–730 731–757

0–9 Dystric Gleysols Orthic Acrisols Xanthic Ferralsols Xanthic Ferralsols
10–19 Orthic Acrisols Orthic Acrisols Orthic Acrisols Orthic Acrisols
20–44 Orthic Acrisols Orthic Acrisols Orthic Acrisols Orthic Acrisols
45–72 Orthic Acrisols Orthic Acrisols Orthic Acrisols Orthic Acrisols

Fig. 31.4 Simplified flowchart for elaboration of the final preliminary soil map

(psoil 1) was generated with the intersection between the altitude and curvature
shape files. This new shape file (psoil 1) was intersected with the slope shape file,
generating a second version (psoil 2). In the last step, the psoil 2 shape file was
intersected with the hydrographic buffer shape file to generate the final preliminary
soil map (Fig. 31.5a). Table 31.2 shows the interpretation of the soil types after
finishing all the maps’ intersections.

The original soil map (Fig. 31.5b) was combined with the digital soil map using
the intersect function. For the Dystric Cambisol, the equivalence area was 76%,
and for the Dystric Gleysol the equivalence area was 74%. For the Orthic Acrisol,
the equivalence was 55% and in the Xanthic Ferralsol the equivalence area was
only 15%. The Xanthic Ferralsol was confused with the Dystric Cambisol, because
both occur at the same altitude and have similar slope and curvature characteristics,
which proved to be a limitation in the proposed approach. Table 31.3 shows that
59% of the area with the Xanthic Ferralsols were classified in the digital soil map
as Dystric Cambisols soil and 26% as Orthic Acrisols soil.

In the lower altitude terraces with smaller declivities and concave forms near
the streams, the wetlands with hydromorphic soils predominate, and it was classi-
fied as Dystric Gleysols (Fig. 31.5a). Comparing Fig. 31.5a and 31.5b, the Dystric
Gleysols were overestimated in the northern part, where it was confused with the
Orthic Acrisols soil area. Table 31.3 shows that 20% of the Dystric Gleysols area
was classified as Orthic Acrisols and 6% as Dystric Cambisols in the preliminary
digital soil map (see also example in Fig. 19.1).
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Fig. 31.5 Preliminary digital soil map derived from DEM (a), and final soil map elaborated by
traditional soil mapping (b) of CAPTA-Frutas, Jundiaı́, SP, Brazil (See also Plate 42 in the Colour
Plate Section)

The Orthic Acrisols are located in the lower part of the slope. These area had
previously been underestimated (Fig. 31.5a and 31.5b), where they had been con-
fused with Dystric Cambisols and Dystric Gleysols. Table 31.3 shows that 31% of
the Orthic Acrisols area was classified as Dystric Cambisols and 14% as Dystric
Gleysols.

The Dystric Cambisols predominated in the study area and were located in the
upperslopes and in the higher parts of the landscape. Fig. 31.5 represents the results
for this soil type. Table 31.3 shows that 17% of the Dystric Cambisols area was
classified as Orthic Acrisols and 7% as Xanthic Ferralsols.
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Table 31.2 Soil types defined to produce the preliminary digital soil map after combinations be-
tween maps buffer around the hydrograph, curvature, altitude, and slope

Soil Types in Preliminary
Digital Soil Map

Combinations hydrography buffer+curvature+altitude+slope

Dystric Gleysol all sites with hydrography buffer,
no buffer + concave + (609–703 m) + (0–9%),
no buffer + convex + (609–703 m) + (0–9%)
no buffer + concave + (704–714 m) + (0–9%),
no buffer + convex + (704–714 m) + (0–9%),
no buffer + concave + (609–703 m) + (10–19%),
no buffer + convex + (609–703 m) + (10–19%),

Orthic Acrisol no buffer + concave + (609–703 m) + (>19%),
no buffer + convex + (609–703 m) + (>19%),
no buffer + concave + (704–714 m) + (10–19%),
no buffer + concave + (715–730 m) + (10–19%),
no buffer + concave + (715–730 m) + (0–9%)
no buffer + concave + (704–714 m) + (>19%),
no buffer + convex + (704–714 m) + (>19%),
no buffer + concave + (715–730 m) + (>19%),

Dystric Cambisol no buffer + convex + (715–730 m) + (>19%),
no buffer + concave + (> 730 m) + (10–19%),
no buffer + convex + (> 730 m) + (10–19%),
no buffer + concave + (> 730 m) + (>19%),
no buffer + convex + (> 730 m) + (>19%)
no buffer + convex + (704–714 m) + (10–19%),
no buffer + convex + (715–730 m) + (>19%),

Xanthic Ferralsol no buffer + convex + (715–730 m) + (0–9%),
no buffer + concave + (> 730 m) + (0–9%),
no buffer + convex + (> 730 m) + (0–9%)

Table 31.3 Soil types correspondence area (%) for traditional and preliminary soils maps from
CAPTA-Frutas, Jundiaı́, SP

Traditional Soil Map

Preliminary
Digital Soil Map

Dystric Cambisol Dystric Gleisol Xanthic Ferralsol Orthic Acrisol

Dystric Cambisol 76 6 59 31
Dystric Gleysol 0 74 0 14
Xanthic Ferralsol 7 0 15 0
Orthic Acrisol 17 20 26 55
Total 100 100 100 100

31.4 Conclusions

The proposed methodology was adequate to identify some types of soils using GIS,
and showed the importance of relief in the Atlantic Plateau soils’ formation. In
order to produce a detailed soil map using this methodology, additional fieldwork is
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necessary. For the Dystric Cambisol, the Dystric Gleysol, the Orthic Acrisol, and the
Xanthic Ferralsol the equivalence area was respectively, 76%, 74%, 55% and 15%.

The Dystric Cambisols and the Xanthic Ferralsols predominated in the upper-
slopes and in the higher parts of the landscape. In the lower altitude terraces, which
have smaller declivities and concave forms near the streams, predominate the wet-
lands with hydromorphic soils, classified as Dystric Gleysols. The Orthic Acrisols
are located in the lower part of the slope.

Soils are function of five formation factors: parent rock, relief, vegetation, climate
and time. In this study we considered only the relief factor. For large areas with
lesser scales, other soil formation factors may be included in the analysis, with the
purpose of obtaining satisfactory results.
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pp. 1725–1732.

Environmental Systems Research Institute (ESRI). 2004. ArcInfo 9.0. Redlands, CA.
ISSS International Society of Soil Science Working Group, 1998. World Reference Base for Soil

Resources. ISRIC, FAO, Rome.
Melo, A.R., Lombardi Neto, F., 1999. Planejamento Agroambiental do Centro Avançado de

Pesquisa do Agronegócio de Frutas. IAC/APTA, Campinas.
Mühlethaler, B., Ramos, V.M., Carvalho Junior, O.A., Guimarães, R.F, Bettiol, G.M., Gomes,
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Chapter 32
Geomorphometric Attributes Applied
to Soil-Landscapes Supervised Classification
of Mountainous Tropical Areas in Brazil:
A Case Study

W. Carvalho Junior, E.I. Fernandes Filho, C.A.O. Vieira, C.E.G.R. Schaefer
and C.S. Chagas

Abstract The present study aimed to improve the recognition of patterns of soils
organization in mountainous tropical landscapes, hence helping soil surveys. The
study area is located in the northwest Rio de Janeiro State, with a total area of ap-
proximately 16.470 ha. In this concern, geomorphometric features that define the
geomorphic signature of the soil-landscape, were used. Geomorphometric features
includes: elevation, relative elevation, aspect, curvature, curvature plane, curvature
profile, slope, flow direction, flow accumulation and drainage’s Euclidian distance,
being all these features obtained by geoprocessing techniques. Almost all attributes
were obtained from a digital elevation model and, therefore, the primary elevation data
wereobtained from the topographicmaps.Throughthesegeomorphometricattributes,
a geomorphometric signature of the landscape was elaborated, and the particulari-
ties of each soil-landscape unit improved the supervised classification. The results
showed the feasibility of using geomorphometric attributes to perform a supervised
classification, using either neural networks or a maximum likelihood algorithm for
soil-landscapes classification of mountainous tropical areas. In addition, we showed
that geoprocessing techniques used to extract geomorphometrics attributes can sub-
sidize soil surveys, making soil mapping faster and less biased by subjectivity.

32.1 Introduction

The study of relationships between soil and landscape, through geoprocessing tech-
niques, requires quantified geomorphometric parameters, which can be understood
as a continuous numeric description of a surface (Wood, 2000). In geomorphologic
terms, it can be understood as a group of values that describes the landform in a way
that allows to distinguish topographically different landscape. This way, the terrain
parameters need to be sensitive to the geomorphological processes.

W. Carvalho Junior
Embrapa Solos. Rua Jardim Botânico, 1024. Rio de Janeiro. RJ. Brazil. CEP 22.460-000
e-mail: waldircj@cnps.embrapa.br

A.E. Hartemink et al. (eds.), Digital Soil Mapping with Limited Data,
C© Springer Science+Business Media B.V. 2008

357



358 W. Carvalho Junior et al.

The quantification of the morphologic features of the earth surface is essential for
the knowledge of physical, chemical and biological processes that take place in the
landscape (Blaszczynski, 1997).Therefore, landforms influence,waterflow, sediment
transport, and the nature and distribution of habitats of plants and animals. In addition,
it also expresses weathering processes that act on the formation of the landscape.

In the traditional cartography, based on discreet models of space variability, at-
tributes are considered to change abruptly, contrary to what occurs in the nature and
is assumed in this study. Thus, continuous models are used in a different approach
to represent the space variability of terrain attributes, assuming that these attributes
vary gradually through the space.

The terrain digital analysis available through geographical information systems
(GIS) is a fast and economic alternative that can be applied to the establishment of
geomorphometric attributes in any portion of the earth surface, as a relatively simple
and precise procedure, using a raster data structure (Sections 7.4 and 28.4)

The raster representation assumes that the geographical space can be represented
as a regular grid of pixel or cell. Each pixel is then associated with a portion of
the landscape. The resolution - or the scale of the raster data, is represented by the
relationship between the cell size and its representation on the ground (Burrough,
1986). Chou (1997) highlights the advantages of using raster format such as: effi-
ciency in the data processing; the varying sources of available data, such as satellites
images, aerial photographs and elevation models; and finally, the possibility of orga-
nization of different features types in a same information layer. Another advantage
of the raster models is that they allow to visualize the spatial distribution of a given
attribute, comparing its distribution with other attributes (Mendonça Santos et al.,
2000). As disadvantages, Chou (1997) mentions the data redundancy, the confusion
in cell resolution and the difficulty of assigning cell values.

There is little work on continuous modeling of soil and landscape, particularly in
the tropics. Against this background, this work aimed the study of the relationship
between soils and landscapes of the highland “Mares de Morros” domain in the
Northwest Rio de Janeiro State, emcompassing the municipalities of “Varre Sai”,
“Porciúncula” and “Natividade”, trying to recognize the arrangement and distribu-
tion of geomorphological and pedological components with the help of geoprocess-
ing techniques, in order to characterize the geomorphometric pattern of each defined
soilscape unit.

32.2 Material and Methods

The study area covers approximately 16.470 ha, contained in the topographical chart
of “Varre Sai” sheet (IBGE, 1991). The digital cartographic base contains contour
lines with vertical 20 m equidistance and drainage network mapped at 1:50.000
scale, using the UTM projection system.

For the development of this study, the following softwares were used: ARC/INFO
version 8.2 (ESRI, 1994) and ArcView GIS version 3.2a (ESRI, 1996a and 1996b);



32 Geomorphometric Attributes Applied To Soil-Landscapes 359

ERDAS IMAGINE version 8.5 (ERDAS Systems, 2001); and Microsoft Excel–
2000 (Microsoft Corporation).

The soilscapes units represent groups of the soil survey map units of the Rio
de Janeiro State (EMBRAPA SOLOS, 2003). Thus, five soilscape units were de-
fined: Oxisols (P1), Ultisols (P2), Aquent Entisols (P3), Inceptisols (P4) and Rock
Outcrops (P5). The geomorphometric parameters used to elaborate the soilscapes
patterns were obtained from a digital model using the raster format, described as fol-
lows: Digital Elevation Model (DEM), derived from primary elevation data (contour
lines and surface-specific points); drainage network and limit, through interpolation;
slope (D), generated from the DEM, aspect (A), expressed as azimuth; curvature
surfaces or curvature planes (CP) and curvature profile (PC), where positives values
are related to convex surface, negative are related to concave surface, and close to
zero are defined as a flat surface; superficial flow direction (SFD) in relation to
descending gradient; superficial flow accumulation (SFA), based on the number of
cells that flow for a certain cell; relative elevation of sub-basins (RESB), that de-
scribes the variation of altimetric quota of the contribution basin of each segment of
the drainage network (Carvalho Junior, 2005); and hidrography Euclidian distance
(DEH), that describes the relationship between the distance of each cell and the
drainage. The relative areas for each soilscape can be observed in Table 32.1.

The DEM was generated from the contour lines and surface-specific points over
the entire area, obtained from the topographical chart “Varre Sai” (IBGE, 1991),
to which drainage lines and a polygonal feature of interpolation limit, were added.
The data processing was performed using the ARC/INFO software using the “TO-
POGRIDTOOLS” option that composes an interpolation method drawn to create
hydrologically consistent digital elevation models. Before the interpolation process,
a preliminary data pre-processing was performed, aiming to correct the orientation,
simplify the hidrography and graphically adjust the contour lines, characterizing the
line of the bottom valley in relation to the drainage lines.

The DEM resolution definition was in agreement with proposition of Hutchinson
& Gallant (2000), associating the visual comparison between the original contour
lines with those generated from the DEM, as well as the analysis of the total amount
of spurious depressions of each resolution. According to Carvalho Junior (2005),
the DEM evaluation of this area showed best results using a cell size of 20 or 30 m.

Since soil distribution can be spatially predicted from geographic position using
a variety of techniques (McBratney et al., 2003; Section 31.4), the soilscapes were

Table 32.1 Area values and percentage for each soilscape units in the study area

Soilscapes Area (Ha) %

P1– Oxisols 9.141 55,5
P2– Ultisols 4.658 28,3
P3– Aquent Entisols 1.080 6,6
P4 – Inceptisols 1.517 9,2
P5 – Rock outcrops 75 0,5
Total 16.470 100
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individualized by statistical parameters (maximum, minimum, medium and standard
deviations values) relative to the considered attributes (Elevation, D, THE, CP, PC,
SFS, ESA, ARSB and DEH). It was observed that the considered attributes had,
in some cases, a distribution close to the normality, while others did not follow a
normal distribution.

32.3 Results and discussion

The DEM’s derived contour lines with 20 and 30 m resolution were those closer to
the primary contour lines data (Carvalho Junior, 2005), with a number of spurious
depressions of 143 and 224, respectively. Thus, we defined the best resolution for
the DEM grid with a 20 m of cell size for this work (Fig. 32.1). This DEM had
the following statistical characteristics: maximum value of 1.135,9 m, minimum of
197,7 m, average of 628,2 m and standard deviation of 154,4 m.

The spatial analysis of the geomorphometric pattern of the soilscapes studied
showed the following statistical values (Table 32.2).

In relation to the distribution of attributes in soilscape P1, we verified that the
attribute A has a trend of higher frequency of north facing slopes (315–45◦), rep-
resenting 28% of the total. The Eastern (45–135◦) and Southern (135–225◦) facing
slopes, have 26% each, and Western facing slopes (225–315◦) represent 20% of the
total area.

With reference to the ESA attribute, despite of a broad range of variation (from
0 to 192.000), most data (96,4%) area within the range of 0–100 for soilscape P1.

In soilscape 2, the distribution of the attribute A showed a dominance of Southern-
facing slopes (direction 135–225◦), with 31% of the total, followed by West, East
and North directions, in decreasing order. With reference to ESA, similarly to
soilscape 1, despite the large variability (range of 0–235,288), most values (97,6%)
are within the range of 0–500.

In soilscape P3, 30,8% of its area is Northern facing slopes, followed by Eastern
(28,3%) and South and West with less significance. The ESA attribute was also
very variable (range: 0–241.766), but most values (87.2%) fall within the range of

Fig. 32.1 3D visualization with 3x of vertical exaggeration of hydrologic correct DEM with reso-
lution of 20 m (See also Plate 43 in the Colour Plate Section)
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Table 32.2 Values maximum, minimum, medium and standard deviations of the geomorphometric
attributes of the soilscapes

Attributes Maximum Minimum average Standard
deviation

Soilscape P1 (Oxisols)

Elevation (m) 938,8 503,6 706,0 62,0
D–slope (%) 124,9 0,0 27,9 16,5
PC–curvature profile 6,3 −4, 7 0,021 0,5
CP–Curvature planes 4,6 −4, 5 0,037 0,3
SFS– superficial flow direction 128,0 1,0 35,5 44,4
ESA– superficial flow accumulation 192.326,0 0,0 213,8 4.215,0
ARSB– relative elevation of sub-basins (m) 505,8 0,0 149,8 54,0
DEH– Euclidian distance (m) 1.381,6 0,0 125,1 94,1
A–Aspect (degrees) 360,0 0,0 169,7 105,8

Soilscape P2 (Ultisols)
Elevation (m) 1.136,0 197,7 481,5 159,2
D–slope (%) 131,4 0,0 34,6 18,0
PC–curvature Profile 6,7 −3, 9 0,037 0,5
CP–Curvature planes 4,9 −3, 6 0,028 0,4
SFS– superficial flow direction 128.000,0 1,0 25,4 37,2
ESA– superficial flow accumulation 235.288,0 0,0 334,3 5.428,2
ARSB– relative elevation of sub-basins (m) 626,9 0,0 262,5 111,6
DEH– Euclidian distance (m) 863,5 0,0 131,1 98,9
A – Aspect (degrees) 360,0 0,0 184,7 94,8

Soilscape P3 (Aquent Entisols)
Elevation (m) 795,1 197,7 579,7 160,0
D–slope (%) 83,1 0,0 10,9 10,7
PC–curvature Profile 5,1 −2, 4 0,176 0,4
CP–Curvature planes 3,2 −3, 3 0,007 0,2
SFS– superficial flow direction 128,0 1,0 33,5 42,6
ESA– superficial flow accumulation 241.766,0 0,0 3.145,3 17.748,8
ARSB– relative elevation of sub-basins (m) 626,9 0,0 139,4 71,2
DEH– Euclidian distance (m) 506,4 0,0 51,9 47,8
A–Aspect (degrees) 360,0 0,0 165,0 109,9

Soilscape P4 (Inceptisols)
Elevation (m) 1.017,9 435,8 747,5 104,2
D–slope (%) 111,0 0,2 39,5 17,2
PC–curvature Profile 4,6 −2, 7 −0, 018 0,5
CP–Curvature planes 2,8 −3, 3 0,030 0,4
SFS– superficial flow direction 128,0 1,0 27,7 39,4
ESA– superficial flow accumulation 14.724,0 0,0 23,6 184,1
ARSB– relative elevation of sub-basins (m) 549,8 59,7 260,6 65,9
DEH– Euclidian distance (m) 440,0 0,0 132,9 84,0
A–Aspect (degrees) 360,0 0,0 182,3 95,8
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Table 32.2 (continued)

Attributes Maximum Minimum average Standard
deviation

Soilscape P5 (Rock outcrops)
Elevation (m) 785,1 284,6 567,0 102,7
D–slope (%) 118,7 0,6 53,9 20,0

Soilscape P5 (Rock outcrops)
PC–curvature Profile 4,0 −3, 2 −0, 207 0,6
CP–Curvature planes 5,0 −2, 5 0,201 0,5
SFS– superficial flow direction 128,0 1,0 20,8 31,5
ESA– superficial flow accumulation 914,0 0,0 5,5 36,2
ARSB– relative elevation of sub-basins (m) 626,9 121,9 380,7 99,6
DEH– Euclidian distance (m) 640,0 0,0 221,3 119,4
A–Aspect (degrees) 360,0 0,0 197,5 87,9

0–100. With reference to the superficial accumulated flow, 10,3% of its area had
values greater than 600, due to a predominant hydromorphic landscape, with large
floodplains.

For soilscape P4, the A attribute showed 32,2% of the area with Southern facing
slopes, followed by the West facing with 25,3%, East (21.9%) and North (20.7%).
The ESA attribute had much less variability than the former soilscapes (range 0–
14.724), and most values (97,3%) fall within the range of 0–100. Values greater
than 100 represent only 2,7%, due to the highly dissected, mountainous nature of
the landscape, with scarps and steep slopes dominating.

In the P5 landscape, 40,0% of the area are Western-facing slopes, followed by
Southern (27,5%), East (20.5%) and North (12.7%) facing slopes. The relative val-
ues of ESA showed less variability compared with all others (range: 0–914), and
almost all values fall within the range of 0–100. This is consistent with the highly
mountainous and deeply dissected landscape, typical of this unit.

The grouped analysis of the geomorphometric attributes of the soilscapes allowed
the evaluation of their main differences. Table 32.3 presents the mean values and
standard deviation of the geomorphometric attributes for each soilscape.

Regarding the mean elevation values of the soilscapes, it was observed that they
occupy topographically different positions, except for the soilscapes P3 and P5
(respectively Aquent Entisols and Rock Outcrops). However, P3 soilscape showed
a greater altimetric standard deviation, indicating its widespread occurrence.

The smallest slope average occurs in soilscape P3 (Aquent Entisols), whereas
the largest is in P5 (Rock Outcrops), consistent with the typical subdue relief of
hydromorphic soils, and highland position of most rock outcrops. On the other hand,
soilscape P5 showed the steepest mean slope, in areas where erosive processes are
dominant.

The attributes PC and CP showed higher mean values, either positive or negative, in
soilscape P5, thus indicating a landscape of strong concavity or convexity, suggesting
a high degree of dissection and drainage incision. The largest mean value of ESA
is associated with soilscape P3, as expected, in view of high values for cells of this
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Table 32.3 Average and standard deviation of the geomorphometric attributes for each soilscape
of the study area

Soilscapes Elevation (m) D (%) PC CP

mean sd mean sd mean sd mean sd

P1 706,0 62,0 27,9 16,5 0,021 0,5 0,037 0,3
P2 481,5 159,2 34,6 18,0 0,037 0,5 0,028 0,4
P3 579,7 160,0 10,9 10,7 0,176 0,4 0,007 0,2
P4 747,5 104,2 39,5 17,2 −0, 018 0,5 0,030 0,4
P5 567,0 102,7 53,9 20,0 −0, 207 0,6 0,201 0,5

Soilscapes SFS ESA ARSB (m) DEH (m) A (◦)

mean sd mean Sd mean sd mean sd mean sd

P1 35,5 44,4 213,8 4.215,0 149,8 54,0 125,1 94,1 169,7 105,8
P2 25,4 37,2 334,3 5.428,2 262,5 111,6 131,1 98,9 184,7 94,8
P3 33,5 42,6 3.145,3 17.748 139,4 71,2 51,9 47,8 165,0 109,9
P4 27,7 39,4 23,6 184,1 260,6 65,9 132,9 84,0 182,3 95,8
P5 20,8 31,5 5,5 36,2 380,7 99,6 221,3 119,4 197,5 87,9

Where: mean = average and sd = standard deviation

attribute indicate areas of high water flow concentration that identify drainage chan-
nels or rivers. On the other hand, cells of this attribute with accumulated flow close to
0 indicate areas of high topography that identify the gentle sloping watershed, such as
in the cases of soilscapes P4 and P5, which possess the lowest mean values.

The mean value of the ARSB attribute for each soilscape reflects the equilibrium
between pedogenetic and morphogenetic processes. In this sense, the lowest values
occurs in soilscapes P3 and P1 (respectively Aquent Entisols and Oxisols), where
pedogenesis appears to be more active than morphogenesis. On the other hand, the
largest values of this attribute, in decreasing order from soilscapes P5, P2–P4, indi-
cate that morphogenesis and erosion acts with greater intensity in these soilscapes.

The differences between the soilscapes can be graphically observed in Fig. 32.2.

Elevation
(m)

Slope (%)

P1

P2

P3

P4

P5

PC CP SFS SFA ARSB (m) DEH (m) A (°)

Fig. 32.2 Geomorphometric patterns of the five soilscapes (the mean values for each variable were
re-scaled between 0 and 1, for the proportion of the class with maximum mean value being 1 and
with minimum mean value being 0, with the maximum indicated by the top of the figure)
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Despite the calculated mean value represents the trend of behavior for popula-
tions that show a normal distribution pattern, which is not the case of all geomor-
phometric attributes used in this study, we can expected that the variables showed
in Fig. 32.2 contribute to enhance the differentiation between the soilscapes, hence
serving as input variables for a digital mapping with use of supervised classifiers,
like done by Carvalho Junior (2005) with an artificial neural network.

32.4 Conclusions

� The more accurate the digital elevation model (DEM), the greatest representa-
tiveness will be attained for derived attributes. This, in turn, is directly dependent
upon the primary source of elevation data that define the spatial grid resolution;

� The derived attributes of DEM can contribute, separately or together, to under-
stand the soil-landscape relationship of dissected tropical areas of “Mares de
Morros”;

� The techniques of digital soil mapping, from the attributes described in this work,
allowed an easier differentiation of the defined soilscape, and help to produce a
digital classification through techniques of supervised classification;

� This approach is very useful for applying to environmental surveys in Brazil,
where availability of detailed soil data is limited.
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Chapter 33
Digital Soil Mapping of Soil Properties in
Honduras Using Readily Available Biophysical
Datasets and Gaussian Processes

Juan Pablo Gonzalez, Andy Jarvis, Simon E. Cook, Thomas Oberthür,
Mauricio Rincon-Romero, J. Andrew Bagnell and M. Bernardine Dias

Abstract Creating detailed soil maps is an expensive and time consuming task that
most developing nations cannot afford. In recent years, there has been a significant
shift towards digital representation of soil maps and environmental variables and
the associated activity of predictive soil mapping, where statistical analysis is used
to create predictive models of soil properties. Predictive soil mapping requires less
human intervention than traditional soil mapping techniques, and relies more on
computers to create models that can predict variation of soil properties. This paper
reports on a multi-disciplinary collaborative project applying advanced data-mining
techniques to predictive soil modelling for Honduras. Gaussian process models are
applied to map continuous soil variables of texture and pH in Honduras at a spatial
resolution of 1 km, using 2472 sites with soil sample data and 32 terrain, climate,
vegetation and geology related variables. Using split sample validation, 45% of vari-
ability in soil pH was explained, 17% in clay content and 24% in sand content. The
principle variables that the models selected were climate related. Gaussian process
models are shown to be powerful approaches to digital soil mapping, especially
when multiple explanatory variables are available. The reported work leverages the
knowledge of the soil science and computer science communities, and creates a
model that contributes to the state of the art for predictive soil mapping.

33.1 Introduction

Statistical Soil Modeling is the development of statistical soil models for large ar-
eas based on soil samples and digital maps of environmental variables. It is also
known in the literature as predictive soil mapping. Recent scientific advances in

J.P. Gonzalez
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soil-landscape modeling have demonstrated the power of predictive modeling of
soil characteristics (including texture, moisture, pH, and some nutrients) at high
resolution. These advances are built on statistically defined relationships between
observable features of the landscape as well as improved understanding of processes
that control soil formation. At the same time, significant advances have been made
in the availability of high resolution data on many of the driving mechanisms of soil
variability, especially terrain, climate and land-cover.

There is a significant amount of research in predictive soil mapping. For a
thorough review of existing approaches to predictive soil mapping see references
within this book as well as Nachtergaele (1996), Scull et al. (2003) and Heuvelink
and Webster (2001). However, most of the work in predictive soil mapping has
been done for temperate zones, corresponding to North America, Europe and
Australia. This is due in part to limited spatial data infrastructures, as well as
a scarcity of funding for basic generation of data and information. Very little
research has been done in developing appropriate predictive soil
mapping techniques for the tropics. The tropics have different climate patterns than
temperate zones, and different processes behind soil formation rendering some pre-
dictive soil mapping models developed for North America, Europe or Australia less
applicable.

The world is currently witnessing a growing demand for technological inno-
vation to empower developing communities (Sachs, 2002). Inspired by the cur-
rent demand for advanced technology relevant to developing communities, this
paper focuses on the topic of applying Machine Learning techniques to the prob-
lem of soil mapping in the tropics. In recent years, there has been a signifi-
cant shift towards digital representation of soil maps and environmental variables
that has created the field of predictive soil mapping (Scull et al., 2003). In pre-
dictive soil mapping, statistical analysis is used to create predictive models of
soil properties, thus requiring less human intervention than traditional soil map-
ping techniques, and relying more on computers to create models and predict soil
properties. This technique is highly relevant for improving soil information in the
tropics to respond to the demands for soil data to improve natural resource man-
agement and aid communities to better manage their resources and respond to
global changes.

The goal of this project is to develop statistical soil models for Honduras, and
create a model that matches or advances the state of the art for predictive soil map-
ping, with relevance to tropical countries. Specifically, the objective was to model
and predict variations in topsoil pH content, clay content and sand content for the
whole country at the highest spatial resolution possible. This research is developed
within the context of limited data infrastructures that many tropical countries expe-
rience, and focuses on using widely available spatial data in the development of the
models. Honduras was selected as a case study site representative of many tropical
countries. Honduras is a small tropical country (112 000 km2), but in spite of its
small size, Honduras has coastal and mountainous areas, elevations from 0 to 2870
meters, and temperatures from 10 to 30◦C.
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33.1.1 Traditional Soil Maps

Currently, 68% of the countries of the world have soil maps at 1:1 000 000 or finer.
However, these countries only represent 31% of the world’s land surface. Most of
the remaining 69% corresponds to developing countries (Nachtergaele, 1996). Since
1981 the world has a global soil map at a scale of 1:5 million. The maps, published
by FAO and UNESCO, were based on soil surveys conducted in the 1930s to 1970s.
This map provides worldwide coverage at 1:5 000 000 and has been converted into
Soil Taxonomy (Soil Survey Staff, 1975), which classifies the soils in 12 main cat-
egories (soil orders) with subcategories. For many developing countries this is the
only current source of soil information.

In Honduras, there is a partial map of soils at 1:250 000 scale produced in 1962
with vast areas of the country (> 80%) not classified (Selvaradjou et al., 2005) and
two region specific agro-ecological soil maps with very basic soil information (see
http://eusoils.jrc.it/esdb archive/EuDASM/latinamerica/lists/chn.htm). The only al-
ternative is the FAO world map, shown in Fig. 33.1. The FAO soil map of the world
is a valuable tool because of its coverage, but it has significant drawbacks: it was
made with information and technology of the 1960s; since which time there have
been significant changes in spatial information technologies such as GPS, remote
sensing and geographic information systems (GIS). Another limitation, which is
shared with traditional soil survey techniques, is the classification of soils as distinct
categories. As noted almost 40 years ago by Webster (1968), this makes substantial
assumptions about the conformity of soil variation to categorical classification, that
can lead to errors of interpretation. Such errors may not be evident to users of the
information (see Chapter 3).

A further problem of soil classifications is that although they capture some of
the general characteristics of the soil at some scales, attempts to interpret the soil
map in terms of a specific property will tend to fail since soil attributes do not
cluster perfectly: a cut on the basis of one attribute may split the variance of another

Fig. 33.1 FAO soil map for Honduras (See also Plate 44 in the Colour Plate Section)
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attribute near its peak. The failure of traditional soil survey techniques to produce
accurate results at smaller scales significantly limits the soil information available
to programs that attempt to implement community-based management of resources.

Furthermore, traditional soil maps depend on subjective expert opinion which
varies significantly depending on the person creating the maps and the soil classifi-
cation used (Hudson, 1992). The maps are therefore predominantly qualitative, and
depend on poorly specified predictive models – based on tacit knowledge – that are
not updatable.

33.1.2 Existing Approaches to Predictive Soil Mapping

There have been a number of approaches to predictive soil mapping, differing both
in terms of statistical technique and auxilary data used in the mapping. Many exist-
ing approaches to predictive soil mapping use a derivative of Kriging (Krige, 1951;
Matheron, 1962). Ordinary Kriging is a form of weighted local spatial interpolation
that uses a Gaussian model for the data. Its main drawbacks are the fact that it
does not use knowledge of soil materials or processes, and that it requires a large
number of closely-spaced samples in order to produce satisfactory results. There are
extensions to this method that allow the use of ancillary data, but they are difficult
to extend to more than one ancillary variable although methods for this do exist.

Some of the most promising approaches to predictive soil mapping are expert
systems and regression trees (Corner et al., 2002). Expert systems use expert knowl-
edge to establish rule-based relationships between environment and soil properties.
Often they do not use soil data to determine soil-landscape relationships, but some
approaches do. Regression Trees are decision trees with linear models in the leaves.
They create a piecewise linear representation of the predicted variable. Using this
method Henderson et al. (2005) obtained the very good results, which are able to
explain more than 50% of the variance of several soil properties such as pH, clay
content and sand content.

33.2 Methods

33.2.1 Input Datasets

The input soil data was collated by CIAT and consists of 2670 soil profiles taken dur-
ing the 1990s distributed throughout the country. Each soil sample site contains data
on texture, pH, organic carbon, organic matter, nitrogen, exchangeable aluminium,
and electric conductivity for 4 different horizons, although data was incomplete for a
number of sites and for a number of variables. Of the 2670 sites, 2472 had complete
information for texture of the topsoil (taken at a depth up to 20–30 cm), and 2451
had data in pH of topsoil. Other variables were missing considerable amounts of
data, and hence were not analysed here.
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Available for training and prediction were 32 terrain, climate, vegetation and
geology related variables. The emphasis was made to select variables potentially
available for any tropical country, rather than to rely on data generated specifically
for this purpose that. Terrain variables were generated from two different DEMs;
SRTM 3 arc second (approx. 90 m resolution) available for the globe from the
CSI-CGIAR (Jarvis et al., 2006), and a 50 m Honduras DEM derived from 1:100
000 cartographic sheets hereon referred to as TOPO. Both DEMs were used due to
concerns that 90 m spatial resolution was too coarse to capture local soil variation
present in the input soil data, although SRTM data presents a significant opportunity
for predictive soil mapping given its global coverage. Vegetation data was derived
from the SPOT Vegetation products, available globally at 1 km spatial resolution,
and the climate variables were generated from the WorldClim climate database (Hi-
jmans et al., 2005), also available for the globe at 1 km spatial resolution. MODIS
vegetation data (EVI and NDVI) could considerably improve the vegetation vari-
ables, but the data was not available for this study. The geology variable was derived
from digitizing a 1:500 000 map sheet, and geological classes were ordered into ages
through expert consultation to ensure that the variable was continuous rather than
categorical (Gaussian Process models can only use continuous variables). The full
list of variables and their respective spatial resolutions is shown in Table 33.1.

33.2.2 Gaussian Processes for Predictive Soil Mapping

We chose the approach of Gaussian Processes, a powerful, non-parametric regres-
sion technique with solid probabilistic foundations. The main advantages of Gaus-
sian Processes over other approaches is that they provide well defined confidence
intervals, which are very important for soil scientists to assess the quality of the
model; and that they allow the use of spatial interpolation and numerous ancillary
features to create the model. Kriging can be considered a special case of Gaussian
Processes in which only spatial interpolation is used and no ancillary features are
included in the model.

Gaussian Processes can be seen as a generalization of Gaussian distributions to
function space, which is of infinite dimension. Even though they are not new, they
have regained relevance as a replacement for supervised neural networks (Gibbs,
1997; MacKay, 1997). Gaussian Processes are equivalent to several other mathe-
matical approaches including neural networks with infinite number of hidden units,
radial basis functions with infinite number of basis functions, least squares support
vector machines and kernel ridge regression.

33.2.2.1 Covariance Function

The idea with Gaussian processes is to put a prior in the probability of the inter-
polating function given the data. Since this prior is Gaussian, a Gaussian Process
is defined by its covariance function. The covariance function and its hyperparam-
eters define the family of functions that can be chosen by the Gaussian Process for
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interpolating the data. The covariance function selected was the squared covariance
with a linear term as shown below:

C(xi , x j ) = θ1 exp

[
−1

2

L∑

l=1

(x (l)
i − x (l)

j )2

r2
l

]
+ θ2 + θ3δi j +

L∑

l=1

σ 2
wx (l)

i x (l)
j

where

L number of inputs
l l th input
θ1 vertical scale
rl length scale
θ2 bias
θ3 output noise
σw linear term

33.2.2.2 Learning the Hyperparameters and Selecting Variables

The covariance function depends on a set of hyperparameters that need to be de-
termined. The best way to determine the hyperparameters of a Gaussian Process is
to learn them from the data by maximizing the likelihood of a prediction given the
training data and the parameters. This approach has a regularizing effect as well,
therefore reducing the likelihood of having a model that overfits the data.

However, because Gaussian Processes can use a large number of ancillary vari-
ables, a regularization step is also required to limit the number of variables used in
the model. In order to keep training time low and to further prevent overfitting we
use the following variable selection approach: an training set of 20% of available
soil samples is used to create an initial model, and its performance is evaluated on
60% of the available samples (validation set). When several variables had similar R2

values, expert opinion selected the variable considered most important to include in
the model. We continued adding variables until the R2 score of the model stopped
improving. Once the most important variables were determined, a new model was
trained with the combined 80% of the samples. In order to obtain an independent
estimate of the performance of the model, the model is tested against the remaining
20% of the samples (independent test set). With this approach it takes approximately
27 h to select variables and create each model. This process only takes place once,
unless new variables become available and they need to be added to the model.

33.2.2.3 Prediction

Once a model is chosen, the next step is to use that model to generate soil maps
for an area of interest. In order to do this, features from digital maps of the area
are used as the inputs to the model, therefore creating a predicted map for a soil
component. We generated maps for pH, sand content, and clay content in the topsoil
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of Honduras. Even though the prediction stage of Gaussian Processes is much faster
than the training stage, prediction is required for all points, therefore the process is
very computationally intensive. With the current implementation, using a Pentium
4 @1.8 GHz, it takes 21 ms to generate the prediction for one location. The time
required to generate a map depends on the size of the map and its resolution. For
Honduras (112, 000 km2), it takes 40 minutes to generate a map with 1 km grid size,
3.4 days with 90 m grid size and 30 days with 30 m grid size. If we were to generate
a map of Africa it would take 7.2 days, 2.4 years and 22 years respectively. However,
this assumes that all the calculations take place on a single computer, which is not
likely to be the case. If multiple computers are available, each one could process a
much smaller area therefore reducing the total time required proportionally to the
number of computers available.

33.3 Results

33.3.1 Accuracy of Current Techniques

In order to understand the significance of the results achieved, it is important to
be aware of the accuracy of current techniques for soil mapping. Measurements
of soil characteristics can have a variability of 20% or more between laboratories
(Nachtergaele, 1996) and many quantitative prediction methods explain less than
10% of variation. Henderson et al. (2005) explained up to 50% of the variance of
pH in soil in Australia and are the motivating force behind the current effort for
predictive soil mapping at CIAT.

33.3.2 Topsoil pH

The pH in the topsoil produced the best results the statistical validation. Two differ-
ent models were created: one that includes the x and y location of the samples as
variables (i.e. uses spatial interpolation), and one that does not. The model that uses
spatial interpolation performed better, but the one that does not gives better insight
into the driving factors for pH determination.

The variables found to be relevant for the model with spatial interpolation were
x and y (spatial location of the sample) and P5 (maximum temperature of warmest
month). The R2 for this model is 0.454 (for the test data), that is, the model explains
approximately 45% of the variance in the data. From a computer science or engi-
neering perspective, this number seems very low. However, for soil prediction and
from a soil science perspective, it is acceptable. The performance of the model for
the training set (80%) and the test set (20%) are shown (Fig. 33.2). The resultant map
of pH for Honduras with 1 km spatial resolution (Fig. 33.3) demonstrates the het-
erogeneity of pH across the country, with only some areas of relatively homogenous
pH coinciding with specific classes of the FAO soil map (Fig. 33.1). The prediction
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Fig. 33.2 Model performance for pH in topsoil. The figure on the left shows the comparative
performance of the model vs. a mean predictor. The x coordinate is the bound, in pH units, and the
y coordinate is the percentage of the predictions that fit within the predicted value +/− the bound.
For example, 95% of the predictions will fall within 1 pH unit of the predictions for the training
set. This number is slightly lower for the independent test set (92%) and much lower for a mean
predictor (80%). The figure on the right shows actual values versus predicted values. In an ideal
case, both would be the same (solid, green line), but in practice there will always be dispersion
around the y axis. The more dispersion, the worse the model is (See also Plate 45 in the Color
Plate Section)

Fig. 33.3 Predicted map of pH in topsoil and 67% confidence interval (See also Plate 46 in the
Color Plate Section)
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has a 67% confidence interval of about 0.5 pH units, although this is greater in the
eastern part of the country where less soil samples were present.

When no spatial interpolation is used the variables selected by the model are P5
(Maximum temperature of warmest month), P2 (Mean diurnal temperature range),
P16 (Precipitation of wettest quarter), and geology class of parent material. The R2

for this model is 0.3652 (for the test data) (Fig. 33.4), which is significantly lower
than for the model using spatial interpolation, but can still be considered useful
especially under circumstances where irregular or lower densities of soil profile
data is available. The resultant map of pH using this model (Fig. 33.5) is similar
to the map when spatial interpolation was used, but the 67% confidence interval
increases to approximately 0.6. This is still satisfactory given the inherent errors in
laboratories, and based on alternative sources of information.

33.3.3 Sand and Clay Content in Topsoil

The models for sand and clay content performed poorly compared to the topsoil pH.
While the results using spatial interpolation were acceptable and still comparable
to some existing approaches, these results had more limited predictive value. The
R2 for sand was 0.235 (with spatial interpolation) and 0.1032 (without spatial in-
terpolation). For clay, R2 was 0.167 (with spatial interpolation) and 0.140 (without
spatial interpolation).

Fig. 33.4 Model performance for pH in topsoil without spatial interpolation (See also Plate 47 in
the Color Plate Section)
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Fig. 33.5 Predicted map of pH in topsoil and 67% confidence interval, without using spatial inter-
polation (See also Plate 48 in the Color Plate Section)

There are several possible causes for the reduced performance of the sand and
clay models. One of the most plausible explanations is that the clay and sand content
are not as spatially correlated as pH, therefore requiring higher resolution input
variables to accurately predict variation.

33.4 Conclusions and Future Work

Gaussian processes have proven to be a powerful technique for predictive soil map-
ping, successfully predicting 17–45% of variability in pH, sand and clay content
in Honduras. They produce quantitative predictions with solid confidence intervals,
combine pedogenic factors with spatial interpolation, allow for complete coverage
of an area and enable continued improvement.

The map of pH variation for Honduras (Fig. 33.1) indicates the dominance of
climate as a predictive variable at national scale. The weaker influence of terrain and,
to a lesser extent geology, seems surprising, given the plentiful evidence of the ca-
pacity of terrain variables to predict soil variation (e.g. Gessler et al., 2000). It seems
reasonable to explain this as a result of the scale-dependent power of terrain, relative
to that of climate (Burrough, 1983). This can be explained as follows: Over a small
area that typifies such studies of terrain-influence, climate variation is very small,
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and unable to influence soil variation. As the area expands, climate influences soil
formation more discernibly, and tends to dominate the power of terrain and available
geological information. The weaker influence of geology is difficult to explain, and
may reflect a confounding effect of map unit interpretation. The surprisingly weak
influence of terrain may reflect the inability to provide variables at sufficient reso-
lution (90 m.) to reflect soil formation processes, or more powerful terrain indices
are required. Further work should compare directly Gaussian Process models with
more established techniques for soil mapping such as kriging or regression trees.

Nevertheless, the digital soil map of pH and clay and sand content created using
Gaussian Processes provides a step forward in terms of information resources on soil
variation for Honduras. The map is now being used to generate models of species
distributions for important crop wild relative species (see Jarvis et al., 2005 for
background), and for assessing suitability of crops. It could also be used in a range
of applications which require high resolution soil property data, including weather
insurance and studies of the impacts of global climate change (see Chapter 3).
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Chapter 34
Digital Mapping of Soil Classes in Rio de Janeiro
State, Brazil: Data, Modelling and Prediction

M.L. Mendonça-Santos, H.G. Santos, R.O. Dart and J.G. Pares

Abstract A soil database for Rio de Janeiro State was collated in Access, for a
project on quantifying the magnitude, spatial distribution and organic carbon in
the soils of Rio de Janeiro State (Projeto Carbono RJ). The main activities were
the search, selection, analysis and review of the data for each soil profile already
described in the study area, the georeferencing of each soil profile (when spatial co-
ordinates were not available) and the input of new soil profiles into a new interface.
The Rio de Janeiro soil dataset now contains 731 soil profiles, 2744 soil horizons,
and 48 soil attributes usually described at the soil survey process. From this soil
dataset, only 431 soil profiles that were adequately geo-located have been used in
this application. The dataset contains limited data for bulk density and hydraulic soil
properties, among others. From this dataset, quantitative modelling and digital soil
mapping have been completed experimentally at 90 m resolution, using soil data and
predictor variables, such as satellite images, lithology, a prior soil map and a DEM
and its derivates. This dataset, which is one of the more complete soil datasets in
Brazil, is being used as a testbed for learning and teaching DSM, using a variety of
methods based on the scorpan model (McBratney et al., 2003). In the first instance,
the soil dataset was used to predict soil classes at the Order level of the Brazilian
Soil Classification System – SiBCS (Embrapa, 2006). Five models were built and
their results were compared and mapped.

34.1 Introduction

Digital Soil Mapping has been defined by Lagacherie and McBratney (2007) as “the
creation and population of spatial soil information systems by numerical models in-
ferring the spatial and temporal variations of soil types and soil properties from soil
observation and knowledge and from related environmental variables”. The main
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use of the this approach is to replace the polygon-based soil maps of the past with
digital maps of soil properties and classes and their associated uncertainties for areas
previously mapped, or for new areas. These maps are stored and manipulated in
digital form in a GIS environment, creating the possibility of vast arrays of data for
analysis and interpretation at any time.

Prediction of soil classes and properties in digital soil mapping relies on finding
relationships between soil and the predictor variables of soil-forming factors and
processes. The rationale is based on Jenny’s equation, which was asserted to list the
factors responsible for soil formation, rather than a quantitative formulation,

S = f (c, o, r, p, t, . . .),

where S stands for soil, c represents climate, o organisms including humans, r relief,
p parent material and t time.

McBratney et al., (2003) have generalised and formalised a Jenny-like formula-
tion not with the aim of explaining the variables responsible for the soil-forming pro-
cess but rather for empirical quantitative descriptions of the relationships between
soil and the other spatially-referenced factors (or environmental co-variates) which
are used here as soil spatial prediction functions. Seven factors are considered:

s: soil, other properties of the soil at a point;
c: climate, climatic properties of the environment at a point;
o: organisms, vegetation or fauna or human activity;
r : topography, landscape attributes;
p: parent material, lithology;
a: age, the time factor;
n: space, spatial position.

Soil can be considered as a factor because soil can be predicted from its proper-
ties, or soil properties from its class or other properties. The scorpan model can be
written as follows:

Sc = f(scorpan) or Sa = f(scorpan)

where Sc is a set of soil classes and Sa is a soil attribute and s refers to soil in-
formation either from a prior map, or from remote or proximal sensing or expert
knowledge. Implicit in this are the spatial coordinates x, y and an approximate or
vague time coordinate ∼t . This time coordinate can be expressed as “at about some
time t”. Each factor will be represented by a set of one or more continuous or cate-
gorical variables, e.g., r by the elevation, slope or other DEM attribute. The sources
of data, the methods to estimate f (. . .), as well as the steps to perform the scorpan
framework are presented and discussed in review presented by McBratney et al.,
(2003).

The Rio de Janeiro dataset described below, that represents one of the more or-
ganised Brazilian soil datasets, is being used as a testbed for teaching and learning
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DSM techniques. In this chapter, we use the Rio de Janeiro dataset and digital soil
mapping procedures to predict soil classes at the Order level of the Brazilian Soil
Classification System (Embrapa, 2006), using regression/classification trees as the
predictive modeling framework. Five different models were built and compared, in
order to access the best approach.

34.2 Material and Methods

34.2.1 The Study Area

The study area is Rio de Janeiro State, located between longitudes 41 ◦W and 45 ◦W
and latitudes 20 ◦30′S and 23 ◦30′S with an area of about 44 000 km2 (Fig. 34.1). It
corresponds to 89 of the 1:50 000 topographic sheets of IBGE (Brazilian Institute of
Geography and Statistics). The area is characterised by eight large landscape types
(Fig. 34.2), namely, Coastal Plains, North-Northwest Fluminense, Rio Paraı́ba do
Sul Middle Valley, Mountainous Area, Upper Itabapoana River Plateau, Serra dos
Orgãos, Bocaina and Mantiqueira (Lumbreras et al., 2003; Rio de Janeiro, 2001),
which are described as follows:

34.2.1.1 Coastal Plains

This is the most heterogeneous physiographic domain. It embraces all of the exten-
sive flooded areas such as swamps, lowlands, beach margins, sand dunes and even
isolated hills and massive mountainous alignments, up to 1 000 metres in elevation.

In the Coastal Plains a natural vegetation of subdeciduous tropical forest and
sandbank vegetation prevails, close to the coast, with an Aw climate type, tropi-
cal dry, with 3–6 months of drought. It is an area characterised by high temper-
atures, moderate rainfall and high evaporation rate where Gleissolos Melânicos
or Gleissolos Háplicos and Gleissolos Tiomórficos (Aquent Entisols), Planossolos
Hidromórficos (Alfisols), Espodossolos Cárbicos or Ferrocárbicos (Spodsols) are
found. In this area, the most intense urban and industrial expansion has occurred.
Argissolos Vermelhos and Vermelho-Amarelos (Ultisols), Neossolos Quartzarênicos
(Quartzipsaments), Organossolos (Histosols) and Cambissolos Háplicos (Incepti-
sols), also occur. On the edge of the Coastal Plain is a tabular flat relief surface,
where deep well drained soils prevail (Yellow Latossolos and Yellow Argissolos –
Oxisols and Ultisols).

34.2.1.2 North – Northwest Fluminense

It is an extensive area dominated by high and low hills, where Ultisols and Alfisols,
with moderate or high natural fertility are found. There are also more developed and
leached soils (low fertility Red-yellow Latossolos and Red-yellow Argissolos), char-
acterised by the thick C horizons, that extend to great depths. Gleissolos Háplicos
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Fig. 34.1 The study area location and the soil profile distribution on the elevation map, extracted
from the SRTM DEM (Jarvis et al., 2006) at 90 m pixel resolution



34 Digital Mapping of Soil Classes in Rio De Janeiro State, Brazil 385

Fig. 34.2 Landscape types of Rio de Janeiro state

and Planossolos Hidromóficos (Aquent Entisols and Alfisols occur in the restricted
and discontinuous fluvial plains in the valley bottoms, with eventually Neossolos
Flúvicos (Fluvent Entisols), occasionally with presence of toxic levels of salts and/or
sodium in subsurface.

34.2.1.3 Rio Paraı́ba do Sul Middle Valley

This region consists of an extensive depression between the Sea Range and the
scarps of the Mantiqueira mountains. Here we find Yellow Latossols derived from
Tertiary sedimentary deposits characterized by a flat tabular relief. Between these
hills we find the fluvial plains of the Paraı́ba do Sul river, where Neossolos Flúvicos
and Cambissolos Háplicos (Fluvent Entisols and Inceptisols) of high natural fertility
occur. The soils close to the Paraı́ba do Sul river channels are commonly Red-yellow
and Red Argissolos, usually not very thick and of good natural fertility (high base
saturation). They are quite dissected and eroded, in such a way that in some places
the gullies constitute a severe limitation to land use. Low nutrient status Red-yellow
Latossolos and Red-yellow Argissolos (Oxisols and Ultisols) prevail. Cambissolos
Háplicos and Red-yellow Argissolos (Inceptisols and Ultisols) of high susceptibility
to erosion are also common in this area.
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34.2.1.4 Mountainous Area – Central Rio de Janeiro State

Most of the Mountainous Area is inserted in the steep relief of Serra dos Órgãos,
north of the Sea Range aligned to the coastline of Rio de Janeiro State. In the Moun-
tainous Area the soils are not very thick (Cambisols/Inceptisols) or are very leached
(Ferralsols/Oxisols). Ultisols/Acrisols are found on cooler, drier slopes.

In this area, the humid climate and the lower average temperatures in the moun-
tains favours the accumulation of organic matter, creating soils with thick humic A
horizons.

Cambisols (Inceptisols) prevail in scarps and steep slopes at higher altitudes,
with shallow soils associated with rock outcrops. These soils also occur in areas
where more gentle relief is observed, constituting flat terraces (at around 900 m)
where deposits of pre-weathered gneiss are thicker, resulting in very deep Oxisols.
The humic character on the surface of these soils is related to the mild climate
where the decomposition of the organic matter is slower, forming quite thick A
horizons.

34.2.1.5 Serra dos Órgãos – Part of the Central Rio de Janeiro
Mountainous Area

The Sea Range crosses the whole Rio de Janeiro State in a WSW-ENE direction,
accompanying the structural direction of the geological substratum. In its southerly
portion, on the boundary with São Paulo State, it comes very close to the sea, con-
stituting a peculiar environment, considered to be a different environmental domain,
denominated by the Mountains of Bocaina – South Rio de Janeiro coast, described
ahead. In the mountains and mountainous scarps are found Cambissolos Háplicos
(Inceptisols) and due to the very high slope gradients and to the widespread occur-
rence of rock outcrops, Neossolos Litólicos (Lithic Entisols) also occur and, to a
less extent, Red-yellow Latossolos (Oxisols), in general not very thick as well as
Red and Red-yellow Argissolos Eutróficos (Ultisols and Alfisols).

34.2.1.6 Bocaina – South Rio de Janeiro Mountainous Coast

This domain includes a mountainous group represented by part of the Sea Range,
called the mountains of Bocaina, that extends from Itaguaı́ County, Rio de Janeiro,
to the boundary with the State of São Paulo. It comes very close to the sea, delin-
eating a coast line cut out by rocky walls, intermingled with narrow fluvio-marine
deposits. In these alluvial plains occur Neosolos Flúvicos and Gleissolos Háplicos
(Fluvent and Aquic Entisols), while in the sandbanks Espodossolos Cárbicos or
Ferrocárbicos (Spodsols) are found. Shallow soils like Cambissolos Háplicos and
Neossolos Litólicos (Inceptisols and Lithic Entisols) and, in positions of less uneven
relief, Red-yellow Latossolos (Oxisols). In these areas Cambissolos Húmicos (Hu-
mic Inceptisols) are commonly found and more rarely, rather shallow Red-yellow
Latossolos.
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34.2.1.7 Upper Itabapoana River Plateau

This plateau rises to 700 m and has a more humid and mild climate than the ex-
tensive adjacent depression, and a more preserved forest cover. The prevailing hilly
relief where Red-Yellow Latossolos occurs is used primarily for pasture and sec-
ondarily for growing coffee. Strongly undulating terrain is also common and the
dominant soils are Red-Yellow Latossolos and, in a smaller proportion, Red-Yellow
Argissolos and Cambissolos (Oxisols, Ultisols and Inceptisols) and rock outcrops.

34.2.1.8 Serra da Mantiqueira

This is a group of mountains with similar characteristics to the coastal Sea Range,
separated from it by the large depression of the Paraı́ba do Sul River Middle Valley,
between the states of Minas Gerais and São Paulo. Its most outstanding feature
is the alkaline rock topography of Itatiaia, where we find the highest peak in the
State, rising to 2 787 m above sea level. The local climate and vegetation cover are
typically of higher altitudes, where Neossolos Litólicos and Cambissolos Húmicos
(Lithic Entisols and Humic Inceptisols) are mostly found. In surrounding areas,
in relatively lower relief positions and uneven topography, we find Cambissolos
Háplicos (Inceptisols), rock outcrops and relatively thin Red-Yellow Latossolos.
In the lower slopes, Red-Yellow Latossolos (Oxisols) and Red-Yellow Argissolos
(Ultisols) are found.

34.2.2 Soil and Ancillary Datasets

A new soil database was built in Access and Delphi, in order to facilitate the search,
selection, analysis and review of the data for each soil profile already described in
the State. This also allowed the georeferencing of soil profiles (when spatial coor-
dinates were not available) and the addition of new data from the soil profiles and
other measurements.

From the original soil dataset (731 soil profiles), only 431 soil profiles could
be used in this application (Fig. 34.1), since the others could not be adequately
geo-located. As illustrated in Fig. 34.1, the existing soil profiles are unequally dis-
tributed in the study area, with only a few in the southern part of the state. Soil
attributes (both morphological and chemical), vegetation and landform information
were recorded by different researchers who have performed soil surveys in the area
over time. The previous work was synthesized and updated by Carvalho Filho et al.,
(2003). Additional soil profiles were described and sampled during the so-called
“Projeto Carbono RJ” (Mendonça-Santos et al., 2005) and added to the database.

The Brazilian Soil Classification System – SiBCS (Embrapa Solos, 2006) was
used to allocate the soil profiles at Order level. The 431 soil profiles used in this
application pertain to 9 from the 13 soil Orders of the SiBCS (Fig. 34.3). Detailed
information on the soil sampling procedure and physico-chemical methods of anal-
yses are given in Embrapa Solos (1997).
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Fig. 34.3 Soil Order and frequency of the 431 soil profiles used in the modeling process

In this application the following covariates were used as predictor variables to

build the spatial soil class prediction models: Geocover
TM

mosaic (bands 7, 4 and 2
in RGB), freely distributed by NASA (https://zulu.ssc.nasa.gov/mrsid/); the NDVI
index (using band 2 instead of 3); Land Use/Land Cover (LULC) map of Rio de
Janeiro State, derived from Landsat ETM+ (Mendonça-Santos et al., 2003) which
use in digital soil mapping is further discussed in Chapter 16; the Lithology class
map (Rio de Janeiro, 2001) and SRTM DEM 90 m, obtained from the CGIAR
database at http://srtm.csi.cgiar.org (Jarvis et al., 2006).

The SRTM DEM 90 m had no data values in the lowest zones as shown in
Fig. 34.4. In order to fill those gaps, the empty DEM zones were interpolated
using Vesper software (Minasny et al., 2002). The new DEM 90 m was then
used as input to the LandMapR software (MacMillan, 2003), to obtain the DEM
derivates to be used in predictive models, which suitability is further discussed in
Section 10.4.

The soil dataset was complemented with the covariates of environmental factors
for each soil data point, extracted using ERDAS Imagine software (Leica Geosys-
tems, 2003). An ancillary dataset representing the whole study area was interpolated
onto a 90-m grid corresponding to the SRTM DEM, and populated with environ-
mental and soil variables. Exploratory statistical analysis was performed on soil
data in JMP software (SAS Institute, 2005). The modelling and prediction of soil
classes was done by a regression/classification tree, using See5 software (RuleQuest
Research, 2003). The output results were imported and mapped in ArcGIS (ESRI,
2004).
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Fig. 34.4 SRTM DEM 90 m showing the no data and negative value areas, with the subsets where
kriging was performed

34.2.3 Modelling and Prediction of Soil Classes

To predict soil classes a classification/decision tree algorithm (program See 5.0,
Rulequest Research, 2003) was used. The data were partitioned into prediction
(3/4 of the data) and validation (1/4 of the data) sets. The program provides an error
assessment for both subsets.

A tree structure was generated by partitioning the data recursively into a number
of groups, each division being chosen to maximise some measure of difference in
the response variable in the resulting groups, as discussed in Section 10.5.1. Ta-
ble 34.1 illustrates the main data and information used to build every soil class pre-
diction model, varying the predictor variables (M1, M2, M3, M4 and M5) (at Order
level). Information was obtained in almost all factors of scorpan model as shown in
Table 34.1, including a preexisting polygon based soil class map (Carvalho Filho
et al., 2003) and a Lithology class map (Rio de Janeiro, 2001).

In order to compare the performance of the models accounting for the number of
parameters used, Akaike’s Information Criterion (AIC) (Akaike, 1973) was used as
a quality index:

AIC = −2 loglike + 2 m
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where loglike is the log-likelihood of the prediction, and m is the number of param-
eters used in the model. This index is a compromise between the goodness of fit and
the parsimony of the model. The best model is the one that has the smallest AIC.

The log-likelihood for class prediction (k = 1, . . . , K ) is calculated as follows
(Hastie et al., 2001):

loglike =
K∑

k=1

log p̂k

where p̂k is the proportion correctly classified as class k:

p̂k = 1

Nk

∑
I (yi = k),

and N = total number of data (soil profiles)

34.3 Results and Discussion

The main difference between the models is the set of predictor variables used to
build them. In model 5 (M5) only data on the r factor of scorpan model were used to
build the model (DEM derivates: ELEV, ASPECT, PLAN, PROF, QWETI, SLOPE).
In M4, satellite images and NDVI index (Landsat ETM+7 Images, bands 7, 4, 3 and
NDVI), were used in addition to DEM derivates (ELEV, ASPECT, PLAN, PROF,
QWETI, SLOPE), as data sources for the o and r factors of the scorpan model.
Model 3 (M3) was built using data source for o (Landsat ETM+ 7 Images, bands 7,
4, 3 and NDVI); r (ELEV, ASPECT, PLAN, PROF, QWETI, SLOPE) and p (Lithol-
ogy classes polygon map) factors of the scorpan model. Model 2 (M2) is similar to
M3, but has one more source of information for the o factor: the LULC class map.
M1 differs from M3 in only one important aspect: it includes soil information from
a prior polygon-based soil map.

Results for the prediction of SiBCS – Soil Order and the performance measure
(AIC) of each model are given in Table 34.2.

In a general way, all models were able to give a good prediction of soil classes
at the highest categorical level (Order) of SiBCS, showing reasonable error values,
what means that soil classes in the study area could be predicted from environmental

covariates, that can be easily, cheaply or even freely acquired, like Geocover
TM

images and the SRTM DEM 90 m (models M4 and M5).
As can be observed, M5 (with only DEM derivates) had the worse performance

(highest AIC) and was able to predict only 7 from the original 9 soil classes repre-
sented in the soil dataset (Fig. 34.3). A surprising performance was shown by M4,

with the bands and NDVI from the Geocover
TM

mosaic, in addition to the DEM
derivates, giving the second smallest AIC.
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Fig. 34.5 Resulting maps of predicted soil classes from the five models (See also Plate 50 in the
Colour Plate Section)
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The best model was M1, which was able to predict all the 9 soil classes included
in the model, with a very good performance (the smallest AIC) as well as their
spatial distribution all over the study area (soil classes appear where expected), in a
fairly generalised soil map (Oder level of SiBCS). In fact, M1 was an exceptional
model due to the use of the existing soil information (polygon soil map) to esti-
mate soil class. The use of the s factor of the scorpan model, was first proposed by
McBratney et al., (2003), and which is perfectly logical, but has not been previously
tested as a source to predict soil classes.

Figure 34.5 illustrates the resulting maps for each model. Model M2 has per-
formed a poor error, predicting the “Gleissolo” class for almost all landscape type
VII (Serra dos Órgãos) with the highest elevation (Fig. 34.2). In fact, this soil type
could occur in this landscape type, but only in very small areas restricted to the
valley bottoms, close to the drainage network, water channels and rivers. Another
misclassification was that in M2 M3 and M5 have not or poorly predicted the
“Espodossolos” class, in comparison with M1 (the best model) or M4 (the second
best model).

Fair consistency is observed between the landscape types and soil Orders through-
out the map, mainly as provided in M1 (Fig. 34.6), in accordance with the expert
knowledge acquired from field work.

Fig. 34.6 Digital soil class map (at order level of SiBCS) as predicted by the best model (M1) with
landscape types (See also Plate 49 in the Colour Plate Section)
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34.4 Conclusions and Remarks

Five different models (M1. . .M5) were built and tested using DSM procedures, in
order to predict soil classes. Even though the available soil profiles did not have
an optimal distribution in the study area, it was possible to predict soil classes and
their spatial distribution through the study area at higher categorical level using
431 soil profiles and soil and landscape covariates. This work demonstrates that the
soil-landscape relationship can be predicted in a quantitative and efficient way, using
available information on data sources and existing methodologies in the s.c.o.r.p.a.n.
procedure. This approach is very promising as a procedure to predict soil (classes
and/or properties) in areas with lack of soil information, as is the case in much of
Brazil. This kind of information can be directly used, support other environmental
and planning studies or can help on deciding the needs for new sampling efforts for
more detailed studies.
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Chapter 35
Synthesis and Priorities for Future Work
in Digital Soil Mapping

F. Carré and J.L. Boettinger

35.1 Introduction

This chapter is a brief synthesis of the contents of the previous chapters. We aim
to analyze the important points presented and provide a perspective of digital soil
mapping research and development efforts needed in the future.

Three important steps in the digital soil mapping process are explored in this
book: (1) the input data for soil and other environmental covariates, (2) the infer-
ence systems for the prediction of the distribution of soil types and classes, and (3)
protocols and their demand for the delivery and exchange of digital soil mapping
outputs. Figure 35.1 represents the different issues presented in the book.

35.2 The Input Data on Soil and Other Environmental
Covariates

We can distinguish two different strategies of digital soil mapping with sparse soil
data infrastructures: (i) with legacy soil data (existing soil maps and soil observa-
tions), (ii) in the absence of legacy soil data. Two different approaches have been
developed:

1. When legacy soil data in the form of soil maps are available, the quality of legacy
data must be evaluated in order to assess the accuracy of the digital soil mapping
output. Although this work is a logical first step in digital soil mapping, in this
book there is one case (Chapter 25) where different legacy soil data already exist.
Once the quality of the data is evaluated, it can be corrected through the use of
ancillary soil data, usually derived from Digital Elevation Models (DEM). In
Chapter 6 it is called ‘the rescuing of legacy data’.

F. Carré
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DIGITAL SOIL MAPPING WITH SPARSE SOIL DATA 

INFRASTRUCTURES
-The methodological framework (Chapter 2)- 

WITH LEGACY SOIL DATA WITHOUT LEGACY SOIL DATA

 Availability (Chapter 5) 
 Evaluation of the quality 
(Chapter 25)  
 Correction & rescue of the 
legacy data (Chapters 6, 9, 18, 
25, 28)

Special work on ancillary, 
spectral data (Chapters 13, 14, 
16, 20, 21, 30, 32)

THE INFERENCE SYSTEM 
(Chapters 4, 8, 10, 17, 19, 

22, 26, 29, 31, 33, 34)

DIGITAL SOIL MAPPING PRODUCTS AND 

THEIR DELIVERY

  Demand of DSM products (Chapter 3, 24) 
 Platform & protocols for presenting & 
delivering DSM products (Chapters 7, 10, 
11, 12, 15, 23, 24, 27)

Fig. 35.1 Scheme for an operational framework of DSM

Chapter 5 related the quantity of legacy soil data (generally traditional soil maps)
with socio-economic indicators like the Gross Domestic Product (GDP), reflecting
also the history of a country. Although the relations are not direct, it is clear that the
national coverage of detailed soil maps increases with increasing GDP.

Legacy soil data in the form of soil observations can also be useful for digital soil
mapping but only if the point data are properly georeferenced (e.g., Chapter 25).
Other soil observations can be useful for inferring soil properties from classes and
for soil assessment (e.g., Chapters 23, 27), and may be considered further in the
delivery of digital soil mapping products in the section below.

Legacy soil data represent crucial information for digital soil mapping. From
these soil maps, soil scientists can learn about the pedological context as well as
some insight in the spatial variability. Since legacy data are also the history of soil
mapping, several conclusions can be drawn on their relevance and their usage. This
final point is emphasized in the demand and delivery of digital soil mapping outputs
section below.

2. When no legacy data exist, the work is focused on utilizing reliable and af-
fordable technologies and methodologies for deriving ‘scorpan’ factors or soil
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covariates. An innovative technique was presented in Chapter 13 on Diffuse
Reflectance Spectroscopy (DRS), which allows for measuring soil properties,
particularly the concentrations of organic carbon, carbonates, clay, sand, water,
and metals in specific environments. The focus is on calibrating the relationships
between real soil property measurements and the visible-near infrared and mid-
infrared reflectances, with the ultimate goal of building a spectral library of soils.

Satellite-derived spectral data such as MODIS, Landsat, and ASTER are being
used for modeling environmental covariates. For example, Chapter 30 presents a
sophisticated methodology for deriving soilscape patterns through object-oriented
landscape and landuse classification of satellite images, post-classification process-
ing and fusion with other environmental factors. The inclusion of the soil covariate
of landuse/field pattern is quite innovative in the digital soil mapping methodology,
and has a strong impact on soil functioning. Moreover, the analysis of satellite im-
ages through time reduces the bias caused by one-time measurement of transient
properties (e.g., soil water content, crop cover).

When no legacy data exist – particularly no georeferenced measurements of soil
properties– it is important to optimize the sampling of future measurements. There
are several approaches existing in the literature and Chapter 20 proposes a fuzzifi-
cation of the environmental covariates to stratify the area in few classes where field
sampling can be focused to establish the relationships between soil and environmen-
tal conditions.

35.3 The Inference System for Digital Soil Mapping with Limited
Soil Data Infrastructure

The soil inference systems presented in the different chapters largely depend on
the existence and quantity of soil measurements, as described in Chapter 2. If no
legacy data exist, a top-down approach is necessary for having a first recourse on
the sampling from the covariates. If legacy data exist, a bottom-up approach has to
be used for understanding and modeling the pedological context of the area, and to
map soil variability (for more information on these two approaches see Chapter 17).

With the increase in the soil measurements database, the tendency for non-spatial
statistical models will be to use combined or ensemble models, which come from
data-mining techniques. For instance, Chapter 33 describes the usage of Gaussian
models for mapping topsoil pH, clay and sand content in Honduras. This technique
allows for stratifying the dataset and for finding the most suitable models for pre-
dicting a variable to apply on each subset. The overall accuracy of the prediction is
then increased with a first stratification of the dataset.

The major techniques found in the different chapters dealing with soil inference
systems are explained in McBratney et al. (2003).
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35.4 The Demand and Proposed Protocol for Digital Soil
Mapping Outputs Delivery and Exchange

The analysis of the demand for digital soil mapping outputs (see Chapters 3 and 24)
is highly relevant since it allows for:

1. adapting digital soil mapping outputs to specific user needs,
2. putting constraints on protocols and data input before deriving the inference

systems,
3. emphasizing communication and collaborations with other scientists, more ori-

ented to resource management for making digital soil assessment,
4. building legislation and international agreements for a better soil conservation

policy (through a better communication on soil).

The primary need of soil data concerns the spatial distribution of soil proper-
ties, particularly at medium to high resolution since the users need data for land
management (see Chapter 10). As stated in Chapter 24, there is now less empha-
sis on soil classification maps although such information remains of interest for
soil scientists to understand pedogenesis. Since soil properties maps are linked to
actual soil measurements, field and laboratory measurements should be standard-
ized to allow for the assessment of the accuracy of the related soil map with an
independent dataset. The standardization includes sampling protocol, measurements
and accuracy assessments. Moreover, in order to facilitate data exchange between
soil mapping institutes and soil map users, protocols should be set up concerning
web-communication. This involves work on platforms of data representation and
downloads and structure of metadata with explicit quality analysis/quality control
methodologies. A clear and interesting example for Australia is presented in Chap-
ter 24 and is a good starting point to increase the potential investments for future
similar work.

35.5 Lessons Learnt and Future Priorities

The chapters dealing with limited spatial soil data infrastructure make a bridge be-
tween the concept of digital soil mapping (which had been presented in the first
digital soil mapping workshop in Montpellier, France) and the operation of the dig-
ital soil mapping process (e.g., Chapter 34). They show that digital soil mapping
is not yet operational from an application point of view. This can be explained by
the fact that the world can be stratified into two parts leading to different method-
ologies: a part where a lot of legacy soil data (particularly traditional soil maps and
georeferenced point data) exist, and a part where there are no legacy soil data. The
digital soil mapping techniques which are involved cannot be the same, leading to
different outputs. The different points to focus on for short-term research on digital
soil mapping are the following:
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1. Evaluating and using legacy data in digital soil mapping.
2. Exploring new sampling schemes and environmental covariates in digital soil

mapping.
3. Using integrated sensors or other new technologies for inferring soil properties

or status.
4. Innovative inference systems (new methodologies for predicting soil classes and

properties, and estimating uncertainties).
5. Using digital soil mapping products and their uncertainties for soil assessment

and environmental applications.
6. Protocol and capacity building for making digital soil mapping operational.

These different points will be the issues addressed at the next digital soil mapping
workshop which will be held in Utah in October 2008.

Reference

McBratney, A., Mendonça Santos, M.L., Minasny, B., 2003. On digital soil mapping. Geoderma
117, 3–52.



Colour Plate Section

Plate 1 Estimated depth (cm) to top of zone of accumulation of secondary carbonates (See also
Figure 4.1 on page 48)
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(a)

Plate 2 Portion of East Konyango (Kenya) soil map (See also Figure 6.1A on page 76)

(b)

Plate 3 Perspective view, soil map draped on SRTM elevation model (See also Figure 6.1B on
page 76)
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Plate 4 Status of soil surveys in the United States. (approximately 1:2,000,000) (See also
Figure 7.1 on page 84)

Plate 5 Individual soil mapping units as portrayed in the Soil Survey of Barbour County, Alabama
(Trayvick, 1995) (See also Figure 7.2 on page 85)
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Plate 6 Portion of the Dane County, Wisconsin soil survey (Glocker and Patzer, 1978) produced
from the Web Soil Survey (See also Figure 7.3 on page 85)

Plate 7 Status of SSURGO digitizing in the United States. (approximately 1:2,000,000) (See also
Figure 7.4 on page 86)
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Plate 8 K availability map from calculated K soil profiles with associated spatial information (See
also Figure 8.6 on page 100)

Plate 9 K availability from descriptive statistics application to calculated K soil profiles in a third-
order classification to Acrisols, Luvisols e Ferralsols (See also Figure 8.7 on page 100)
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Plate 10 The topographic map sheet resulting from the field work and the mapping units after
digitized (See also Figure 9.3 on page 108)

Plate 11 Continuous georeferenced digitized soil map of the Serra Gaúcha region (See also
Figure 9.4 on page 109)
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Plate 12 Soil map with conventional soil information, analytical DEM hill shading and fusion of
the hill shading with the conventional soil map (See also Figure 9.5 on page 110)
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Plate 13 Illustration of access to and use of free spatial data that is widely available for most areas,
even those considered to have sparse spatial data availability (See also Figure 10.2 on page 119)
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Exaggerated manure application 

Recommended manure application 

Realistic manure application 

Point Sources and realistic manure application
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80mm

P concentration in ppm:

Plate 14 P concentration (ppm) in runoff for four scenarios and three different storm sizes (See
also Figure 12.2 on page 158)
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Plate 15 Parent Material Map for Britain (version 0.1) (See also Figure 14.2 on page 176)
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Plate 16 Final 3D soil-geology model for the SW of the Brakenhurst site (500 × 500 m, 8x ver-
tical exaggeration). The model shows the topsoil A-Horizon in dark brown, partially overlying the
E-Horizon of a surface water gley in beige. The brown horizon is an amalgamation of all sub-
soil B-Horizons, which are underlain be the red B/C horizon which constitutes mainly weathered
and soliflucted bedrock. Bedrock sandstone is shown in green, and mudstone in pink (See also
Figure 15.4 on page 189)

Plate 17 (A) Map illustrating a 10-class unsupervised classification of a raster data layer stack
containing the soil enhancement ratios of Landsat spectral band ratios 3/2, 3/7, and 5/7; slope;
compound topographic index; fractional vegetation cover derived from the NDVI in the Green
River Basin of Wyoming, USA.
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Plate 17 (Continued) (B) Image of the first three components of the principal components analysis
(PCA) of the Landsat 7 ETM+ image of a Basin and Range landscape in southwestern Utah. The
box at lower left indicates the approximate location of the area shown in Fig. 16.2. The PCA image
distinguishes areas of different parent materials (e.g., sedimentary vs. igneous rocks as indicated
in Fig. 16.2), and different vegetation density (e.g., high vegetation density is represented by green
areas at tops of mountains in upper left and in irrigated fields in lower right, in contrast to the
red to purple areas on the arid alluvial fans with low vegetation density). (C) Map illustrating
a supervised classification of the PCA, focusing on the area indicated by the upper right box in
B. Training areas were selected in the field for the supervised classification. Each color relates
to a predicted soil map unit relating to soil class (e.g., loamy-skeletal Typic Haplocalcids) and
dominant vegetation (e.g., Artemisia tridentata ssp. wyomingensis community) (See also Figure
16.3 on page 199)
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Plate 18 Maps resulting from the bottom-up (a) and the top-down (b) approaches (See also
Figure 17.2 on page 208)

Plate 19 Comparison between contours of the manually drafted 1:250,000 map (in black) to the
results of the bottom-up (a) and top-down (b) approaches for the Eastern (1) and Southern (2) parts
(See also Figure 17.3 on page 209)
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Plate 20 Comparison of flow-accumulation based on a Monte Carlo simulation using a single-flow
approach (a) and a multiple-flow approach (b) for a section of the geological map of the Republic
of Niger (c = original, d = corrected) (See also Figure 18.2 on page 216)
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á
M

un
ic

ip
al

it
y

(u
p

of
pl

at
e)

,S
en

ti
ne

la
do

Su
lM

un
ic

ip
al

it
y

(m
id

dl
e

of
pl

at
e)

,a
nd

A
rr

oi
o

Po
rt

ão
W

at
er

sh
ed

(b
ot

to
m

◦)
(S

ee
al

so
Fi

gu
re

19
.1

on
pa

ge
22

8)



420

Plate 22 Location of study site: Heshan Farm, Nenjiang county, Heilongjiang Province, China
(See also Figure 20.1 on page 238)

Plate 23 Soil map produced from SoLIM using the soil-landscape model constructed using the
FCM-based method (See also Figure 20.4 on page 242)
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Plate 24 Kenya, dominant land use types (FAO 2005) (See also Figure 21.1 on page 249)
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Plate 25 Spatial pattern (a) and temporal trend (b) of biomass 1981–2003 (See also Figure 21.2
on page 252)

Plate 26 Spatial pattern (a) and temporal trend (b) of annual rainfall 1980–2002 (See also Figure
21.4 on page 253)
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Plate 27 Trend of rain-use efficiency 1981–2002 (See also Figure 21.6 on page 254)
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Plate 28 Kenya: black spots of land degradation between 1981 and 2003 (See also Figure 21.7 on
page 256)
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Plate 29 Maps of cantonal statistics of pH in water of cultivated topsoil for the period 1995–1999:
(A) cantonal median value; (B) number of samples per canton; (C) inter-quartile value (See also
Figure 23.1 on page 276)

Plate 30 Location map (See also Figure 25.1 on page 293)
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Plate 31 Model quality assessment (See also Figure 25.2 on page 295)

Plate 32 Spatial assessment (See also Figure 25.3 on page 298)
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Plate 33 Thematic assessment (See also Figure 25.4 on page 299)

Plate 34 Feature space assessment (See also Figure 25.5 on page 299)
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Plate 35 Combined quality assessment (See also Figure 25.6 on page 300)

Plate 36 England and Wales maps (a) kriged predictions of pH 1991 using the data averaged
within a 5 km radius, sample locations are plotted as crosses; (b) kriged estimation variances of
pH 1991 using the data averaged within a 5 km radius; and (c) kriged predictions of raw pH 1991.
Maps of kriged predictions in Victoria, Australia of (d) pH; and (e) kriged estimation variances
of pH (See also Figure 27.3 on page 316)
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Plate 37 Location of the different soil survey maps available for the Central Amazon. The maps
have different site sampling intensity ranging from compatible with a semi-detailed legend (Re-
search Station of Caldeirão – to 1:10,000) to an exploratory soil survey (SIPAM Digital Soil Data
Base – 1:250,000) (See also Figure 29.2 on page 329)

Plate 38 Renewed reconnaissance soil map from Cacau-Pirêra to Manacapuru (Roadway AM
070) – Published by IPEAM (1970). The original map of the reconnaissance soil map from Cacau-
Pirêra to Manacapuru (Roadway AM 070) is showed in the small box left side (See also Figure 29.3
on page 331)
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Plate 39 Renewed reconnaissance soil map of the soil near the border of Solimões in the city of
Manacapuru (CETEC, 1986) (See also Figure 29.4 on page 332)
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(a)

Plate 40 Landscape classification realized by means of MODIS satellite images at regional scale
(Phase 1) (See also Figure 30.2a on page 343)
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(b)

Plate 41 Post-processing techniques applied to landscape classification (Phase 2) (See also
Figure 30.2b on page 344)

Plate 42 Preliminary digital soil map derived from DEM (a), and final soil map elaborated by
traditional soil mapping (b) of CAPTA-Frutas, Jundiaı́, SP, Brazil) (See also Figure 31.5 on page
354)
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Plate 43 3D visualization with 3x of vertical exaggeration of hydrologic correct DEM with reso-
lution of 20 m (See also Figure 32.1 on page 360)

Plate 44 FAO soil map for Honduras (See also Figure 33.1 on page 369)

Plate 45 Model performance for pH in topsoil. The figure on the left shows the comparative per-
formance of the model vs. a mean predictor. The x coordinate is the bound, in pH units, and the y
coordinate is the percentage of the predictions that fit within the predicted value +/− the bound.
For example, 95% of the predictions will fall within 1 pH unit of the predictions for the training
set. This number is slightly lower for the independent test set (92%) and much lower for a mean
predictor (80%). The figure on the right shows actual values versus predicted values. In an ideal
case, both would be the same (solid, green line), but in practice there will always be dispersion
around the y axis. The more dispersion, the worse the model is (See also Figure 33.2 on page 376)
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Plate 46 Predicted map of pH in topsoil and 67% confidence interval (See also Figure 33.3 on
page 376)

Plate 47 Model performance for pH in topsoil without spatial interpolation (See also Figure 33.4
on page 377)



435

Plate 48 Predicted map of pH in topsoil and 67% confidence interval, without using spatial inter-
polation (See also Figure 33.5 on page 378)

Plate 49 Digital soil class map (at order level of SiBCS) as predicted by the best model (M1) with
landscape types (See also Figure 34.6 on page 394)
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Plate 50 Resulting maps of predicted soil classes from the five models (See also Figure 34.5 on
page 393)
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233–235, 242, 259, 262, 269, 273, 280,
284, 286–289, 291–292, 294, 300–301,
311–312, 317, 325, 338, 347, 349, 351,
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364, 367, 373, 381–383, 388, 395, 397,
399–403

future of, 34
Digital surface model, 127
Digital terrain analysis, 214–215, 226, 234
Digital terrain model (DTM), 187, 216,

319, 321
Digitized polygon map, 111
DigMapGB50, 175
Discrete model of spatial variation (DSMV),

70
Discrete spatial entities, 274–275, 280
Dispersion index, 209–210
Drainage area, 319, 321–324
Drought, 35–36, 39–40, 255, 383
DS theory, 341–342
DSM, see Digital Soil Mapping
DSMV, see Discrete model of spatial variation
DTM, see Digital terrain analysis
Dynamic monitoring, 273
Dystric Cambisol, 352–354, 356

E
East African war system transverse Mercator

projection, 75
ECognition software, 340
Electromagnetic induction (EMI), 17, 19, 22
Electromagnetic spectrum, 16, 194
Electron spin resonance (ESR), 17
Ellipsoid mapping, 214
Embrapa soils, 91–92, 264
End product testing, 139
Endoaquents and Endoaqults, 226
England’s soil action plan, 174
Enhanced thematic mapper plus (ETM+),

21, 194
Ensemble prediction, 219
Entisols, 109, 226, 267–268, 359, 362–363,

385–387
Entropy reduction, 293
Environment configuration patterns, 236
Environmental covariates, 4, 143, 195–197,

201, 222, 338, 399, 401, 403
Environmental planning, 87, 261
Environmental problems, 157
ERDAS Imagine, 195, 200, 249, 359
ERDAS Systems, 359
Error-bands, 217, 222
Error matrices, 227, 229
Euclidean distance, 219
EuDASM, 75
Expector, 130
Expert knowledge, 123, 294, 296

Exploratory soil maps, 53, 59–61,
104, 330

EXtensible Mark-up Language (XML), 286

F
Fagus sylvatica, 304
False discovery rate (FDR), 28
FAO, see Food and Agricultural Organization
Farm Security and Rural Investment

Act of 2002, 86
Farmers’ land use decisions, 155
FCM classification, 238, 240
Feature selection, 214, 217, 222
Feature space

analysis, 300
assessment, 296

Ferralsols, 92, 95–96, 99–100, 327, 331,
352–353, 386

Dystric yellow, 331
Rhodic, 94, 100
Xanthic, 100, 352–354, 356

Field-investigation, 237
Finland, 23, 58
Flooding area, 264, 267
Fluvisols, 319–320, 322, 326–327, 330

Eutric, 327, 330–331
Food and Agricultural Organization (FAO), 22,

32, 40, 58, 248–249, 320, 369, 375
Forest management activities, 132
France, 13, 59–60, 198, 203, 273–277, 402
Frequency domain moisture sensors, 17
FT-IR spectrometer, 170
Fusion, 110, 338, 341–342, 345, 401
Fuzziness performance index, 306
Fuzzy

c-means classifier (FCM), 236
c-partition, 236
classification, 25, 131, 235, 303–304,

306, 308
heuristic approach, 124
k-means, 303, 305
transition, 219, 340

G
Gambia, 60, 71
Gamma

radiometrics, 19, 22
radiometry, 17, 27
-ray spectrometry, 19, 22
spectrometric, 181

GAPS computer program, 154
Gaussian models for mapping topsoil pH, 401
Gaussian process, 25, 31, 367, 371, 374–375,

378–379
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Generalization, 214, 219, 284, 320, 371
GenStat, 313–314
Geo-information technology, 72
Geo-referenced point samples, 116
Geochemical surveys, 180
Geocover mosaic, 391
Geographic Information System (GIS), 4, 46,

48, 59, 69–72, 81, 88, 103–105, 107,
109–111, 125, 130–131, 152, 157,
173–174, 179, 184, 226, 233–235, 262,
269, 287–288, 312, 332, 349, 351, 355,
358, 369, 382

Geography Markup Language (GML), 286
Geological map of the Republic of Niger, 215
Geological modelling, 187, 190
Geology map, 38, 174, 177–180, 197
Geomorphology, 75, 265, 269, 280
Geomorphometric

attributes, 358, 362
pattern, 360

Geophysical-geochemical maps, 187
Geophysical surveys, 184
Geoprocessing, 48, 93, 357
Geospatial data infrastructure (GSDI), 71
Geostatistical analyses, 313, 317
Geostatistical techniques, 234, 311
Geostatistics, 31
Geotechnologies, 92
Germany, 55, 60, 215, 221
Ghana, 181
GIS, see Geographic Information System
Gleissolo, 109, 267, 330–331, 383, 386, 394
Gleysols, 58, 320, 322, 326–327, 330, 353–354

Dystric, 330, 352–354, 356
Eutric, 327, 330–331
Fibric Histic Stagnic, 241
Siltic Eutric, 331

Global climate change, 35, 39–40, 379
Global Inventory Modelling and Mapping

Studies (GIMMS), 248–249
Global positioning system, 72–73, 77,

105–107, 109, 369
Global soil information, 33, 285, 287
GML schema, 283, 287, 289
Good manufacturing practices (GMP), 145
GPS, see Global Positioning System
Green River Basin, 13, 197
Ground penetrating radar (GPR), 17, 177
GSI3D, 186–188, 190

H
Harmonisation, methods of, 300
Heilongjiang Province, 237

Heuristic (expert knowledge) classification
approache, 123

Hidrography euclidian distance (DEH), 359
Hidromorphic landscape, 362
High-resolution elevation data, 44, 49
Ho mogenization, 82
Honduras, 32, 367–369, 371, 375, 378–379,

401
Hyper-spectral, 181
Hyperion, 20
Hyperparameters, 374
Hyperspectral images, 9

I
IFSAR, see Interferometric Synthetic

Aperture Radar
ILWIS Academic 3.2, 321
Imprecision, 6, 341–342
Inceptisols, 109, 227, 359, 385–387
Inclusion index, 209–210
India, 55
Indonesia, 320
Inference system, 9, 16, 171, 295, 399–403
Information Communication Technologies

(ICTs), 37
Infrared, 18, 21–23, 45, 165, 194–195, 401
Input data, 9, 16, 38–39, 89, 113–114,

116–117, 120, 122–123, 125, 127,
130, 138, 145, 153, 195, 211, 221, 238,
305, 399

layers, quality of, 125
Input maps, quality of, 126
Integrating risk assessment, 157
Interferometric Synthetic Aperture Radar

(IFSAR), 43–47, 49
International Society of Soil Science, 58
International Union of Soil Sciences (IUSS),

55, 58
Intra-cantonal variability, 276, 280
Intrinsic data quality, 138, 140, 146
Inventory management and soil conservation,

337
Investigation of Soil Types, 240
Ion-selective field effect transistor (ISFET), 23
ISO, 140–142, 144
Itabapoana River Plateau, 383, 387
IUSS, see International Union of Soil Sciences

J
Jamaica, 60
Japan, 55
Jenny’s equation, 382
Jizera mountains, 303–304
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K
K-nearest neighbour, 215, 218–219
Kalman filter, 25
Kappa coefficient, 209
Kappa index, 225, 227, 229–230
KENSOTER database, 249
Kenya, 75, 77, 143, 247–248, 250, 252, 254
Kriging, 7–8, 32, 16, 32, 305, 312–313, 316,

370–371, 379
multiple indicator, 7
ordinary, 7, 305, 311–313

L
Laboratory methods for soil chemistry, 285
Land degradation, 10, 33, 35, 59, 247–248,

253–255
Land degradation assessment in drylands

(LADA), 248
Land evaluation procedures, 152
Land use, 155, 197, 388
Land use/land cover (LULC), 388
Land zoning, 104, 137
Land information system (LandIS), 291,

293–294, 296
LandMapR, 130–131, 293, 388
Landsat 5, 45–46, 194, 196, 261, 264, 330, 339
Landsat 7 ETM+, 194–198
Landsat

imagery, 194, 201, 339, 342
satellite program, 194
spectral
. . . . . . . . .bands, 195, 197
. . . . . .data, 193, 195–197, 201
thematic mapper, 27
TM images, 340

Landscape
classification of, 338
dynamics, 264
model, 240–241
units, map of, 340, 344

Landuse, 69, 74, 338, 401
Latin hypercube sampling (LHS), 25
Latossolos, 109, 383, 385–387

Red-yellow, 383, 385–386
Layer stacking, 198
Legacy data, 5–6, 9, 23, 70, 73, 75, 138, 147,

170, 174, 204, 280, 291–292, 301, 311,
399–401, 403

agricultural topsoil, 280
Legacy soil data, 5, 23, 138, 146, 169, 277,

311–312, 317, 334, 399–400, 402
LIDAR, 9, 119
Lithological layers, 204

Lithology, 117, 204, 207, 210, 293, 382
class map, 388–389

Loess, 178
Log-likelihood, 227, 391
Logistic regression, 26, 46–47, 225–227
Luvisols, 58, 92, 95, 99
Lyvennet system, 292

M
Machine learning techniques, 368
Macro-economics, 53
Mailerstang-common, 292
Major land resource area (MLRA), 82
Mantiqueira mountains, 385
Mapping techniques, 32
Market failure, 283, 288
Markov’s Chains, 261, 264
Mata Atlantica, 92, 95
Meso-scale soil variation, 35
Mesociation, 204
Mexico, 55
Microwave, 17–18
Mid infrared (mid-IR), 165–167, 170
Minimum legible delineation (MLD), 74
Misclassification error, 28
Moderate Resolution Imaging Spectroradio-

meter (MODIS), 21, 37, 248, 339–340,
371, 401

Modern soil survey, 84–86
Modified partition entropy, 306
MODIS, see Moderate Resolution Imaging

Spectroradiometer,
Mojave desert, 44
Molisols, 226
Mollic Bori-Udic Cambosols, 241
Monte Carlo, 216–217, 221
Morocco, 181
Morphology, 117, 187, 204, 267, 285
Morphometric parameters, 349
Multi-theme data, 146
Multiple linear regression (MLR), 167, 226
Multispectral, 21, 195
Multivariate adaptive regression splines

(MARS), 167
Multivariate calibration, 166
Munsell soil colour chart, 18
Murray-Darling Basin, 114

N
National Aeronautics and Space Administra-

tion (NASA), 194
National Cooperative Soil Survey (NCSS),

82–83, 88
National Grid coordinates, 312–313
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National Oceanic and Atmospheric
Administration (NOAA), 21, 71,
247–248

National soil archive, 91–92, 94, 264
National soil inventory (NSI), 315
National soil map (NATMAP), 291
National Soil Resources Institute (NSRI), 291
NATMAP, 291–298, 300
Natural-resource planning, 49
NDVI, see Normalized difference vegetation

index
Near-infrared, 18, 21–22, 165–167, 170,

194–196, 248
Net primary productivity, 248, 253–255
Netherlands, 55
Netica by NorSys, 130
New Zealand, 274
Niger, 215–216, 221
NIR, see Near-infrared, 195
Nitossolos, 109
Nominal datasets, 214
Normalized difference ratio, 195, 197–198
Normalized difference vegetation index

(NDVI), 21, 27, 195–198, 200,
247–250, 254–255, 371, 388, 391

Northwest Fluminense, 383
Number of soil scientists, 53, 55, 60–61, 159
Numerical models of soil prediction, 4, 6–7

O
Object-oriented, 339, 342, 347, 401
Online

soil information systems, 283, 287, 289
soil mapping, 49

Open Geospatial Consortium (OGC), 286
Optimum index factor (OIF), 197
Ordnance survey, 292
Organossolos, 267–269, 383
Orthic acrisols, 352–354, 356
Ortophoto mosaic, 153
Outlier

-based removal, 222
detection, 217, 219, 221

Oxisols, 109, 226, 359, 363, 383,
385–387

P
Pampa, 95, 99–100
Pantanal biomes, 100
PARCC, 141
Parent material map (PMM), 174, 197
Partial least squares regression (PLSR), 167
Participatory approach, 157
Peat, 178

Pedolandscape
database, 204
mapping, 203
model, 206
units, 205

Pedological province, 204
Pedometric

soil modelling, 139
techniques, 4, 152

Pedotransfer functions, 6, 10, 16, 27, 167, 171
Personal Digital Assistants (PDA), 105
Phosphorus, 167, 273, 275–277, 280
Picea abies, 304
Planossolos, 267, 269, 383, 385
Plant nutrient mapping, 92
Plinthosols, 327, 331
Polycombinational soil areal, 204
Polygon-based soil maps, 43, 49, 382
Polygonal soil maps, 129
Positional

errors, 128
inaccuracies, 214

Post-classification image, 344
Powder River Basin, 197
Pre-mapping estimates, 43, 46–47, 49
Predictive maps, quality of, 127–128
Predictive soil mapping, 32, 70, 237, 367–368,

370–371, 375, 378
Principal components analysis (PCA), 46, 197
Principal components regression (PCR), 167
Priori hypothesis, 5
Probabilistic uncertainty, 341
Profile curvature, 216, 225, 227, 234–235, 238
Protocols, 114, 116, 120, 125
Proximal sensing, 19–20, 382
Proxy sensors, 9
Pseudo-maps of peat distribution, 178

Q
Quality assessment, 295, 298
Quality management, 138, 144–147
Quantified analysis, 177
Quantitative soil

information, history of, 31
mapping, 31

Quaternary deposits, 177

R
R-project, 171
Radar based techniques, 181
Radial basis function networks (RBFN), 167
Radiometric, 49
Rain-use efficiency, 247, 253–255
Random Sub sampling, 218
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Raster-based soil-landscape models, 49
Ravensworth Fell, 292
Reconnaissance map of soils, 331
Reflectance and emission data, 193
Reflectance spectroscopy, 18, 22, 165–166, 401
Regolith-catenary units, 4
Regression tree, 25–27, 32, 167, 370, 379
Relief-F approach, 217
Remote sensing, 4, 15, 17, 19, 48, 59, 88, 152,

178, 181, 184, 195, 233–234, 247, 262,
321, 369

Removing uncertainties, 213, 217
Representative soil sampling scheme, 311–312
Research and development, 55, 399
Residual maximum likelihood (REML), 25
Rio de Janeiro, 92, 196–197, 261–264, 270,

358–359, 381–383, 386, 388–389
@RISK computer program, 154
Rock classification scheme, 179, 190
Rock Outcrops, 359, 362
Root mean square (RMS), 126–127, 250
Routine Operational Application, 130
RUE, see Rain-use efficiency, 253
Rural decision making process, 159
Russia, 55
Rwanda, 64

S
S-Plus, 130
Sampling

density, 304
methods, 25
protocol, 402

Sand and Clay Content in Topsoil, 377
Satellite imagery, 44, 49, 270, 339, 342
Satellite-serived remote-sensing imagery, 194
Scorpan, 6, 15–16, 19–20, 25–28, 78, 174,

195–196, 222, 233–234, 280, 338, 347,
382, 389, 391, 394–395, 400

See5 software, 130, 388–389
Segmentation, 209, 211, 339–340
Semantics, 74
Separation validity function, 306
Serra da Mantiqueira, 387
Short-wave infrared (SWIR), 21–22, 45,

194, 197
Shrub, 264–265, 267–269
Shuttle Radar Topography Mission (SRTM),

37, 40, 72–73, 77, 117, 138, 177,
215–216, 221, 225, 227, 229–330, 371,
388, 391

SiBCS, 391
Similar soils, 297

Simulation models, 160
Single-purpose geology map, 174
SIPAM, 328, 330
Slope curvature, 44, 319, 321, 323
Slope gradient, 71, 73, 123, 126, 225, 227,

234–235, 238–239, 262, 386
Small natural region, 204
Small-scale soil map, 293
Soil acidification, 285, 303–304, 308
Soil allocation functions, 6
Soil and ancillary datasets, 387
Soil and Geological Surveys, 185
Soil Brazilian Classification System, 331
Soil classes, 6, 28, 70, 88–89, 92–93, 95, 100,

104–105, 113–114, 116–117, 123,
125–126, 128, 137, 195–196, 201,
218–219, 225–227, 230, 234–235, 293,
305, 325, 330, 334, 338, 382–383,
388–389, 391, 394–395, 403

Soil classification, 36, 39, 71, 94, 100, 128,
171, 226, 284, 294, 369–370, 402

Soil covariates, processing of, 4
Soil data

collection of, 5
information, 211
mart, 85
quality
. . . . . . . . .dimensions, 138, 143, 145, 147
. . . . . .definition of, 147

Soil database, 204
Soil diffuse reflectance spectra, 166–167
Soil-environment

database development, 235
relationships, 242–243

Soil extractable phosphorus temporal
evolution, 275

Soil fertility, 10, 23, 92, 312
Soil-forming factors, 204, 227, 229–320, 382
Soil-geomorphic understanding, 138
Soil heterogeneity, 277
Soil horizon, 92–93, 186–187, 190–191,

303, 307
Soil hydraulic properties, 286
Soil information systems, 146, 283
Soil-landscape

model, 43–44, 49–50, 69, 72, 140, 235,
237, 241–243, 292, 368

. . . . . . . . .development of, 237

. . . . . .establishment of, 240

. . . . . . . . .evaluation of, 241
modelling, 44, 69, 72, 140, 368
relationship, 32, 44, 48, 50, 103, 105, 120,

226, 235, 269, 292, 350, 364, 370, 395
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Soil map
of Central Hesse, 215, 221
density, 53, 55, 61
detailed, 53, 59–61, 292, 367, 400
of World, 32, 58
unit, 39, 49, 73–74, 82, 84, 194, 197,

225–227, 292
Soil mapping, 4, 6–9, 13, 103, 139, 142, 144,

370–371
quality in, 139

Soil organic carbon research, 171
Soil-parent material map, 173
Soil pollution, 10
Soil polygons, 108, 111
Soil properties, 3, 5–7, 9–10, 16, 20–23, 25,

27–28, 31–32, 43–44, 49–50, 54, 70,
78, 82, 96, 101, 105, 114, 116–117,
125, 127, 137, 165, 167–171, 180,
197–198, 201, 204, 216, 233–234,
261, 265, 268–270, 273–274, 279–280,
284–285, 289, 311–312, 317, 330,
367–368, 370, 381–382, 400–403

Soil resource inventories, 13, 69, 292
Soil spectral libraries, 165, 167–170
Soil survey, 4–6, 8–10, 22, 23, 31, 33,

43–44, 46–50, 54, 58–59, 64, 69–75,
77–78, 82–86, 88–89, 91–92, 94, 101,
103–107, 111, 114, 138–139, 143,
152–153, 165, 171, 177, 180–181, 190,
195, 200–201, 204, 208, 226–227, 230,
237, 261, 270, 273, 280, 285, 287, 292,
294–296, 300, 327–328, 330–331, 334,
350, 359, 369, 387

area, 84
geographic overlay, 73, 85–86, 89
information, 83, 86–87
usefulness of, 153

Soil surveying, 4–6, 181
Soil surveyor, 6, 8, 10, 23, 54, 64, 69, 73, 77,

105, 111, 152, 204, 208, 237, 292, 296
Soil system, 204, 340
Soil taxonomy, 226, 237, 284, 369
Soil testing database, 274
Soil typological units, 204
Soils and Terrain Database (SOTER), 59, 77
Soilscape, 13, 186, 190, 218, 204, 215, 338,

340–341, 344–345, 347, 358–360,
362–364, 401

boundary, 341, 344–345
units, 338, 341, 344–345, 359

SOLIM, 114, 123–124, 130–131, 237,
241–242

South Africa, 55

South Korea, 55
Space and time aggregation, 275
Spain, 59
Sparse spatial data, 113, 116–117, 119–120
Spatial

allocation errors, 204, 210
analysis, 274, 298, 311–313, 317, 360
assessment, 295
distribution of soil acidification, 304
information, 94, 157
neighborhood search, 218
noise removal, 219
resolution, 8
soil inference system, 9
-temporal dynamics, 261–262
variability, quantification of, 276

Spatial Research Institute, 264
Spatially-referenced factors, 382
Spectral

data, 170, 194–195, 197, 401
Gamma, 177
resolution, 194

Spectroscopic analyses, 171
Splitting rules, 122
SRTM, see Shuttle Radar Topography Mission
SSURGO, see Soil Survey Geographic Overlay
Standard deviation (SD), 249
Standard operation procedures (SOP), 145
State chemistry laboratory database (SCL), 312
State vector (SV), 265
Statistical and geostatistical techniques, 5, 13
Statistical soil modeling, 367
Stepwise multiple linear regression (SMLR),

167
Stepwise regression, 27
Stream power index (SPI), 225, 227
Subagging, 219
Subsurface information system, 186
Superficial flow accumulation (SFA), 359
Superficial flow direction (SFD), 359
Supervised classification, 28, 121–122, 124,

200, 206–207, 218, 357, 364
Surficial geology, 58, 120
SWIR, see Short-wave infrared
Switzerland, 55
Synoptic satellite image, 69, 153
Synthesis and Priorities, 399
Synthetic Aperture RADAR (SAR), 17–18
Systat, 130

T
Tacit knowledge, 82–83, 113, 120, 122, 370
Taxonomic
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aggregation, 205–207
distance, 28, 207, 210

Temporal monitoring, 191
Terrain models, 72–73
Texture, 19, 21, 58, 77, 107, 117, 120, 126,

180, 204, 207, 255, 262, 293, 317, 330,
367–368, 370

Thailand, 320
Thematic

accuracy, 128–129
analysis, 298
assessment, 296, 299
databases, 332
errors, 128
space, 294, 297

Thermal infrared, 17, 21, 44–45, 194
3D modelling, 183
Three generations of soil maps, 59
Time domain reflectometer (TDR), 17
Time series analysis (TSA), 339
Top-down approach (TD), 206, 211
TOPAZ, 293
Topographic

index, 13, 200, 319–321
wetness index, 27, 225, 227, 234–235, 238

Topographical characteristic, 238
Topography, 37, 58, 110, 230, 234, 350, 363,

382, 387
TOPOGRID function, 351, 359
Topsoil pH, 375
Total data quality management (TDQM),

145, 147
Total quality management, 145
Traditional soil survey, 23, 44, 49, 54, 64, 69,

75, 82–83, 86, 88–89, 105, 194, 200,
227, 325, 349, 369–370

Transition Matrixes, 264
Trinidad & Tobago, 60
Turkey, 55, 58

U
UK, 60, 173–175, 177–181, 183–186, 197, 291
Ultisols, 109, 227, 265, 267–269, 359, 383,

385–387
Uncertainty, 8, 33–35, 38–39, 54, 127,

138–140, 146–147, 167, 186, 285–286,
294, 341–342

UNESCO, 369
Universal transverse mercator (UTM), 195
Unsupervised

approaches, 121
classification, 50, 120–121, 200

UPP, 338–339, 344
Upscaling, 204, 208

Urban areas, 107, 248, 261–262, 264, 269
Urban zone, 264, 267–269
Uruguay, 105
US Geological Survey (USGS), 200
US National Soil Survey Handbook, 88
USA, 54–55, 58, 63, 72–73, 75, 186, 195–196,

198, 200, 328, 333
UTM

grid, 107–108
projection, 105, 358

V
Variable selection, 167, 374
Variograms, 313, 315
Variography, 313–314
Vegetation, 37, 195–196, 371

density, 196–197
index, 4, 74, 247–248

Vesper software, 388
Virtuous cycle, 155
Vis-NIR, 165–167, 170–171, 401
Visible-NIR spectroscopy, 166
Visualization tools, 8, 160

W
Water-holding capacity, 83
Water pollution problem, 157
Watershed

management, 104
pollution model, 155
segmentation, 345

Weather insurance, 379
Weathered zone, 180
Web-based delivery, 37
Web soil survey, 49, 85
Wetness index, 204–205, 207, 225, 227
World Bank funding, 174
World Congress of Soil Science, 58
World Food Program, 36
World reference base, 59, 284, 351
WorldClim, 37, 40, 371

X
X-ray absorption fine-structure spectroscopy

(XAFS), 19
Xanthic Ferralsol, 100, 352–354, 356
XML, see EXtensible Mark-up Language

Z
Z test, 227
Zonal soils, 320
Zoning, 75, 104, 111, 137
Zooming, 334
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