Oracle SQL

-

Oracle SQL

The Essential Reference

Oracle SQL

The Essential Reference

David C. Kreines

Foreword by Ken Jacobs

O’REILLY"

Beijing - Cambridge - Farnbam - Kéln - Paris - Sebastopol - Taipei - Tokyo

Oracle SQL: The Essential Reference
by David C. Kreines

Copyright © 2000 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.
Editors: Deborah Russell and Jonathan Gennick
Production Editor: Darren Kelly

Cover Designer: Ellie Volckhausen

Printing History:

September 2000: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly & Associates, Inc. Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as trademarks. Where those designations
appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

The association between the image of a scorpion and the topic of Oracle SQL is a trademark
of O'Reilly & Associates, Inc. Oracle® and all Oracle-based trademarks and logos are
trademarks or registered trademarks of Oracle Corporation, Inc. in the United States and other
countries. O'Reilly & Associates, Inc. is independent of Oracle Corporation.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Library of Congress Cataloging-in-Publication Data

Kreines, David C.
Oracle SQL : the essential reference / David Kreines.--1st ed.
p. cm.
Includes bibliographical references and index.
ISBN 1-56592-697-8
1. SQL (Computer program language) 2. Oracle (Computer file) I. Title.

QA76.73.867 K74 2000
005.75'85—dc21 00-046520

For my children, Michael and Mattheuw.

You make me proud.

—David C. Kreines

Table of Contents

FOV@WONA ..., ix
Prefaicecccooooiiiiiiiiiiiiiiiiiiiii XXVii
1. Elements Of SOLccccccooiiiiiiiiiiiiiii e 1
Lexical CONVENTONSciiiiiiiiiiiiiiit ittt 2
Naming in SQL ...uiiiiiiiiiiieiii e 3
SChemMa ODJECES ...viiiiiiiiiiiiiii e 4
DIALALYPES .eeivieiieeiie ettt 6
DAt CONVEISION ..iiiniiiiiii e 13
Relational OPEeratorsc..iiiiiiiiiiiiiie ettt 14
Structure of @ SQL StAteMENLocoiviiiiiiiiiiiieiiieeciie et 20
SQL SEALEIMEIILSvvttviiiieeeee e ettt e e e e e ettt e e e e e e e e ettt eeeeeaaaeeaannenenes 24

2. Data Definition Statementsccccovvvnninnnnnnnnn. 32
SQL DDL Statements by Taskccccoviiiiiiiiiiiiiiiiieee e 32
SQL StatemMent SYNTAXooiiiiiiiiiiiiiiiieiiiiit ettt 38

3. Data Manipulation and Control Statements 106
SQL DML and Control Statements by Taskcccooiiniiiiiiiiiii 106
SQL Stat@MENt SYNTAKX ...eviiiiiiiiiieeiiiiiiee ettt e ettt e et e e e e 107

4. Common SQL EIementscccccccoovovvniiiviiiiiiiiiieeeens 133
5. SOL FUNCLIONS ... 145
AGEregate FUNCHOMNSooiiiiiiiiiiieie ettt 146
NUMETIC FUNCHOIS ..ot 153

vii

viii Table of Contents
Character FUNCHONSooviiiiiiiiiiiiie i 162
Date FUNCHOMNS ..iiiiiiiiiiiiiieiii et 174
Conversion FUNCUHONSccoiiiiiiiiiiiiiii e 182
Other FUNCHONSiiiiiiiiiiiii it 190

O. SQLFPLUS ... 204
CommANd-TANE SYNEAX ...oiuiiiiiiiiieiie ettt 204
SQL*Plus Editing Commandscccccovviiiiiriiniiiiieiie e 208
Formatting SQL*PIUS OULPULeiiiiiiiiiiiiieiiieee e 211
Miscellaneous SQL*Plus Commandsccccoovviiviiiiiiiiiiiiieiecie e 221
SQL*Plus Variables and Related Commandsccooevviiiviiiiiieeinn.n. 238
SQL*Plus System Variablesccocoiiiiiiiiiiiiiii e 241

7o PL/ZSQOL ..o 262
The Structure of PL/SQLcooiviiiiiiiiiiiiieie et 263
BlOCK HEAAET ..iiiiiiiiiiiiiciii e 265
Declaration SECHONiiiiiiiiiiii it 265
EXECULION SECHOMN ..tviiiiiiiiiiiiiiiiiiii e 280
EXCEPUON SECHOMLeiiiiiiiiiiiiiiiii e 298
Procedures and Packagescccoocviviiiiiiiiiiiiii 304
TIIGZEIS ettt 318

8. SOL Statement TUNING ..o, 324
Using EXPLAIN PLAN oot 325
Using Oracle’s SQL Trace Facilitycccoooiviiiiiiiiiiiiiicice 334
SQL*PIUS TUNING AIAS ..iiiiiiiiiiii et 345
Improving Query Performanceccccooiiiiiiiiiiiieiieeeeeee e 351

A, SOL RESOUITCESoooooieieeeieeeeieeee e 3601

Foreword

SOL: A Venerable History and
a Vital Future

The SQL language is the lingua franca of database management. Fluency in SQL is
as important for a developer or a database administrator as is knowledge of a pro-
gramming language or knowledge of the business needs of the application. The
book you hold in your hands can be an indispensable guide to successfully
exploiting the power of SQL as implemented in Oracle8i.

SQL has a long and venerable history, a critical role in today’s e-commerce IT sys-
tems, and a bright future. I've described the origins, evolution, and future of SQL
in this Foreword in the hope that it will deepen your appreciation of SQL as you
read this excellent language reference.

Programming and Data Access
Languages

General-purpose programmable computers were first developed during World War
II for military applications. The UNIVAC I, the first commercial general-purpose
machine, was delivered in 1951. Several generations of programming languages
have been developed since that time. Fach generation has improved the produc-
tivity of programmers by automating mechanical tasks, allowing a programmer to
concentrate on the higher-level concepts related to the application.

The earliest programs were written in machine code—the numbers corresponding
to the instructions the programmer wanted to store in the machine’s memory.

ix

X Foreword

Assembly language, which allowed the programmer to use names instead of num-
bers for instructions and memory locations, was developed in the early 1950s. The
development of higher-level programming languages represented a significant step
in raising the semantic level at which programmers work. A succession of such
programming languages were invented, from Fortran (1957) to C (1972) to Java
(1995), and their history is marked by a succession of growing and fading popular-
ity. In addition to Fortran, C, and Java, Algol, COBOL, Ada, C++, and Basic are just
a few of the important languages we have used to develop applications and sys-
tems programs.

In contrast to this plethora of procedural programming languages, today there is
only one widely used data access language: SQL. SQL is a non-procedural data
access language, as it leaves to the database management system the responsibil-
ity of determining how data will be processed to resolve a query. The application
programmer needn’t be concerned with the data access path and processing steps
required to produce the desired result. Just as it was easier to write applications
programs in higher-level procedural programming languages as compared to low-
level machine code and assembly language, the SQL language makes it easier to
access data in application programs or in an ad hoc, interactive fashion. SQL
allows the application programmer to concentrate on business logic, rather than be
concerned with the issues of using indexes or navigating through chains of point-
ers to retrieve or update data.

SQL was developed in the mid-to-late 1970s and is still evolving, but seems
unlikely to be superseded. Unlike procedural programming languages, where no
major language ever seems to fall into complete disuse, today the vast majority of
database management systems implement a dialect of SQL. The Rosetta stone con-
tained the data that unlocked the mystery of the ancient Egyptian language and
hieroglyphics, and thus led to a better understanding of ancient Egyptian history
and culture. Today, many would regard SQL as the language that unlocks the
value of data and information in enterprise databases everywhere.

There are several dialects of SQL in different vendors’ implementations, but most
of the SQL language is common to most of the commercial database management
systems now on the market. To be sure, there have been other data access lan-
guages, some developed in universities and others implemented in commercial
products. But no data access language has been so successful or widely imple-
mented as SQL. Professor Michael Stonebreaker of the University of California at
Berkeley has even called SQL “intergalactic dataspeak.”

Foreword xi

The Origins of SOL

So, where did SQL come from, how has it evolved, and where is it going? The
story of SQL begins at the IBM research laboratories near San Jose, California in
the 1970s. Ted Codd, a mathematician and research fellow at IBM, created a for-
mal theory of data management and wrote a seminal paper entitled “A Relational
Model of Data for Large Shared Data Banks”, published in the Communications of
the ACM in June 1970. He defined the relational data model, consisting of data
structures (tables of rows and columns); operations (like selection, projection, and
joins) on that data; and integrity rules that ensure consistency of data (primary
keys and referential integrity, for example).

Codd’s rigorous mathematical definition of the relational model allowed him to
define a procedure for designing databases that preserve data integrity and mini-
mize redundancy. So-called normalization theory defines third normal form,
where every table in the database has a primary key that can uniquely identify
each row in the table, and where each column in the row is dependent on the pri-
mary key. A database designed in third normal form is especially able to support
applications and queries that cannot be anticipated at database design time.

Codd also defined a mathematical data manipulation language, DSL/Alpha. This
language was based on the mathematics of set theory, and could be used to
express queries and manipulate the data tables that comprise a relational data-
base. Codd proved that a relational database could be manipulated in any required
way using the operations he defined, so that any result that is consistent with the
database could be derived. He called this property relational completeness.

The language Codd defined was very powerful, as compared with the more tradi-
tional approach of writing a program that would navigate through complex chains
of pointers linking records in the non-relational databases of the time. Codd’s lan-
guage could answer questions like “find the employees who make more than their
managers” in just a few lines, as compared with the pages of programs it would
otherwise take.

In the early 1970s a group was formed in the IBM Research Division to develop a
prototype relational database management system based on Codd’s ideas. A
project called System R, led by Frank King, was started. The objective of the
project was to develop a complete relational database prototype supporting SQL,
while still delivering key attributes of existing non-relational databases, including
multi-user support, transactions, security, and good performance.

The System R group recognized that Codd’s mathematical DSL/Alpha language
was too difficult for non-mathematicians to comprehend. So, they created a lan-
guage called SQUARE, standing for Specifying Queries as Relational Expressions.

Xii Foreword

Although an improvement over DSL/Alpha, SQUARE was not suitable for key-
board entry, as it required subscripts which were not easy to represent at the time.

The group then decided to adapt the ideas of SQUARE to an approach based on
English keywords, because it was easier to type. They extended and improved
their new language and called it SEQUEL, standing for Structured English Query
Language. The name was subsequently changed to SQL because of trademark
issues. Most often pronounced “sequel,” SQL is sometimes pronounced “ess-que-
ell,” but both are in common usage. In 1974, Don Chamberlin and Ray Boyce
authored a paper entitled “SEQUEL: A Structured English Query Language” that
was published in the Proceedings of the May 1974 ACM SIGMOD Workshop on
Data Description, Access, and Control. This was the first widely circulated paper
about the language that wasProceedings of the May 1974 ACM SIGMOD Work-
shop on Data Description, Access and Control to become SQL.

A group of the people involved in the early development of System R and SQL
met for a twenty-fifth anniversary reunion in 1995. They reminisced about the peo-
ple and the project, and provided valuable insights about how SQL was devel-
oped. A transcript of their discussion is available on the World Wide Web, at the
following URL: http://www.mcjones.org/System_R/SQL_Reunion_95/index.htmi.

The SQL Language

A key aspect of SQL (and of Codd’s original data manipulation language) is that it
expresses operations against sets of data, in a non-procedural form, rather than
requiring a program that retrieves records one by one, and specifies sequences of
steps to process each record. Unlike programs written in most languages, which
specify sequences of steps to be performed, a SQL statement expresses the result
the user desires, and the database management system is responsible for produc-
ing that result as efficiently as possible. A SQL statement specifies the operations
(like filtering, grouping,and sorting) to be performed on sets of rows, and the
database system determines the precise ways in which the data will be accessed
and the sequence of the various processing steps needed to produce the desired
result. A very useful aspect of SQL is the “closure” property: a query result is gen-
erated in the form of a table. Therefore, the set of rows returned by a query can
be inserted into another table, or used as part of a query expression in SQL, as a
“subquery” or as part of a view definition.

Another important element of the original definition of SQL was that it included
syntax for defining the content of the database. The database administrator defines
its schema—the names of tables and the names and data types of their columns,
among other things—using so-called DDL (Data Definition Language), which is, in
fact, not a separate language, but a set of SQL commands (or “verbs”) like CRE-

Foreword X1t

ATE, DROP and ALTER. This aspect of SQL is as much part of the SQL language as
is DML (Data Manipulation Language), the part of SQL used to query and update
the database. DDL is comprised of the verbs SELECT, INSERT, UPDATE, and
DELETE and other SQL verbs such as GRANT and REVOKE, which are used to
specify the privileges users have to access data.

Significantly, SQL specifies that the meta-data used to describe the contents of the
database be itself stored in the database, in rows and columns of the tables in the
data dictionary. The data dictionary (or catalog) tables can also be queried using
SQL, so applications can be written that dynamically adjust to the shape and con-
tent of the database on which they are operating.

The inventors of SQL did not originally design it to be a complete programming
language. The non-procedural set-oriented capabilities of SQL are ideal for data
access and manipulation, but the business logic of an application requires a more
traditional procedural language. The System R developers created Embedded SQL,
a “sub-language” that permits application programmers to use SQL statements
within host programming languages such as COBOL, Fortran, and C. SQL state-
ments prefixed by the words “EXEC SQL” can be embedded in the source code of
programs and can reference variables of the host programming language (“host
variables”). A program called a precompiler replaces the embedded SQL state-
ments with calls to a DBMS-specific program library.

While many aspects of SQL conform to the original definitions of Codd’s relational
theory, many concessions were also made in its definition to facilitate perfor-
mance, ease of use, or ease of implementation. For example, in Codd’s language,
a query result always consisted of distinct rows because, by definition, the “projec-
tion” operation eliminates duplicates. In SQL, duplicates can appear in the set of
rows returned by a query unless the keyword DISTINCT appears in the query’s
SELECT list.

Furthermore, as a computer language, SQL has its quirks and shortcomings. An
ideal language perhaps would be more orthogonal and regular, with fewer restric-
tions on which language elements can appear in which contexts. Some critics of
SQL find fault with SQL’s treatment of missing information (nulls), or with the fact
that SQL often supports several ways to write the same query.

Chris Date, an author and lecturer who has done much to popularize relational
technology and SQL, has often been one of the most vocal critics of the SQL lan-
guage. In fact, Date and Codd disagree vehemently about the proper way to treat
missing data. But, for all its critics and all its faults, and those of the database man-
agement systems that implement it, SQL has proven to be immensely valuable, and
has become successful far beyond its inventors’ expectations.

xiv Foreword

The Commercial Development of SOL
through the 1980s

In 1977, Larry Ellison and two others founded what became Relational Software
Incorporated (RSD with the expressed purpose of bringing to market the world’s
first commercial relational database management system. They were inspired by
Codd’s 1970 paper describing the relational model and the 1974 paper describing
SQL, and they decided to develop from scratch a commercial product that was as
compatible as possible with the prototype being developed at IBM’s research facil-
ities. Ellison’s vision was to implement a SQL system on small minicomputers, and
he correctly anticipated that in addition to the novelty of a relational database, IBM
compatibility would be attractive to the market. Indeed, so complete was their
commitment to strict compatibility with System R that Larry Ellison himself called
Don Chamberlin at IBM to request the error numbers that the system used. Early
demonstrations of ORACLE often included the “underpaid managers” query used
to illustrate the power of the IBM System R prototype. ORACLE was small in size
and lean in resource requirements compared to System R, which ran on large,
water-cooled mainframe computers.

In 1979, RSI released the first commercially available relational database, ORACLE.
The name ORACLE was taken from a project Ellison and his colleagues had
worked on for the U.S. Government. Version 1 of ORACLE was an internal proto-
type, so the first commercial release was ORACLE Version 2. The SQL implementa-
tion in ORACLE V2 was reasonably complete for its time, as it included joins, sub-
queries, and views, as well as a unique language extension for processing hierar-
chies, the CONNECT BY clause. The next major version added innovations like an
outer join, a date/time datatype and numerous built-in functions.

The system’s first customers were successful in deploying simple departmental
applications, mostly for decision support rather than for mission-critical transac-
tion processing requirements. Many of these early users of ORACLE were so
impressed with the power of the relational model and the ease of use SQL pro-
vided that they often overlooked many of the reliability shortcomings of the early
releases of ORACLE. RSI, which changed its name in 1982 to Oracle Corporation,
began to grow very rapidly, doubling each year for 10 years. Oracle established its
present headquarters campus in Redwood Shores, California in 1989. One of the
small ironies of the database world is that the closest airport to Oracle’s headquar-
ters is in San Carlos, and it sports the three-letter code SQL!

There have been many implementations of SQL since the introduction of ORACLE
back in 1979, and the commercial success of relational technology is extraordi-
nary. Perhaps surprisingly, it took a while for IBM to benefit from its research on
relational database management and its development of SQL. Although Codd’s

Foreword xv

work was published in 1970 and the SQL language was first described in 1974,
IBM took many years to bring to market its first SQL product. It wasn’t until 1981
that IBM introduced SQL/DS (which used much of the original System R proto-
type code) for the DOS/VSE and VM operating systems. In 1985, IBM released the
first version of DB2 for mainframes running MVS, though it was careful to posi-
tion it as suitable only for departmental applications with predominantly decision
support requirements, so as not to compete with its flagship hierarchical system
IMS. But because of IBM’s dominance in the IT industry at the time, these
announcements greatly accelerated the acceptance of SQL and relational systems,
as it became clear that SQL would become a de facto industry standard.

The IBM researchers were not the only visionaries who anticipated the great
potential of relational databases, nor was Larry Ellison the only one to see the sig-
nificant commercial opportunity at hand for the companies that brought the tech-
nology to market. Professor Michael Stonebreaker and his computer science
students at the University of California at Berkeley had, since the early 1970s, been
developing a relational database prototype called INGRES for the then very new
Unix operating system. The Berkeley team was building on Codd’s ideas, but there
was a definite spirit of competition, at least for academic recognition, between the
INGRES group and the IBM researchers. In 1980, Stonebreaker formed a company
called Relational Technology Incorporated (RTD), to bring INGRES to market. Even-
tually, RTI changed its name to Ingres Corporation. The company was later bought
by Ask, Inc., and subsequently by Computer Associates, which now market the
Openlngres product.

INGRES implemented a data access language called QUEL, which was similar to
SEQUEL. Some people argued that QUEL was a “better” language than SQL, since
it had fewer arbitrary restrictions (it was more “orthogonal”), and had some capa-
bilities SQL lacked. Whatever its technical merits, QUEL did not have the market
momentum SQL did, as it was seen as a proprietary language. The perception was
that SQL was likely to become a de facto industry standard, with implementations
likely to be available from several vendors. As a result, to remain competitive, in
about 1986 Ingres Corporation implemented a subset dialect of SQL, layered above
the existing QUEL interface, but missing some key features like nulls and sub-
queries. Later releases of INGRES supported a native SQL implementation.

In the early days of the relational database market, staunch defenders of existing
non-relational databases dismissed SQL and relational databases as mere toys,
never to be suitable for significant business applications. The advocates of SQL
and relational systems praised the productivity of their systems, and claimed that
theoretical performance obstacles could be overcome.

Some people argued that the high-level relational interface of SQL could not com-
pete with low-level navigational interfaces called by application programmers.

Xvi Foreword

Others argued that the physical storage organization of relational tables and the
required access by data values through indexes could never perform as well as
direct access through pointers embedded in record structures. The System R devel-
opers claimed that automatic compilation of SQL statements and query optimiza-
tion would overcome these problems. Over the years, of course, improvements in
relational technology (along with dramatic improvements in hardware perfor-
mance) made SQL systems suitable for even the most demanding transaction pro-
cessing systems. Relational database systems have also been able to take
advantage of the set-oriented nature of SQL to support parallel execution of SQL
statements across multiple CPUs, providing highly scalable performance for com-
plex queries against large data warehouse databases.

During the 1980s, several other vendors introduced SQL systems. Relational Data
Systems, later renamed Informix Corporation, introduced its namesake database
management system with a SQL interface in 1984. Among other hardware ven-
dors, Digital Equipment Corporation released Rdb in 1985. Rdb implemented not
SQL, but a competing relational language, called RDML. RDML was fairly popular
with Digital customers, but Digital never attempted to make it more popular, much
less standardize it. Recognizing the need to comply with the industry standard,
Digital released Rdb Version 5 in 1988 with a full native SQL implementation. In
1994, Digital Equipment sold Rdb to Oracle Corporation, which still markets and
supports the product.

The introduction, in 1985, of the Teradata parallel query machine was a notable
milestone in the evolution of SQL. The Teradata system used a special-purpose
hardware platform comprised of Intel 8086 processors connected with a propri-
etary tree network, and was the first commercial database product that could auto-
matically execute SQL statements in parallel. Teradata’s SQL dialect, however, was
limited, initially lacking support for views and referential integrity. The Teradata
system was oriented toward the query processing needs of data warehouse appli-
cations, and was not generally regarded as applicable to transaction processing
systems.

Britton-Lee, a spin-oft from Ingres, also designed and sold a “relational database
machine” that found limited market success, was soon bought by Teradata, and
eventually disappeared from the market. Teradata was acquired by NCR (which
itself was later bought and spun off by AT&T). Today, NCR/Teradata has aban-
doned the approach of specialized hardware, and it runs on general-purpose plat-
forms using the Windows NT and Unix operating systems. Teradata has been quite
successful in the data warehouse market, especially with large retailers having
multiple terabytes of data in their data warehouses. Teradata and Britton-Lee both
found it difficult to keep pace with the innovations in hardware and software

Foreword Xvii

design and achieve the economies of commodity hardware with a proprietary
approach that requires specialized hardware.

Another notable milestone was the introduction of NonStop SQL from Tandem in
1987. NonStop SQL was optimized for excellent transaction processing perfor-
mance and high availability. Tandem supported its performance claims by run-
ning a workload that simulated simple banking transactions. A derivative of this
benchmark eventually became the basis of the first industry-standard benchmarks
developed by the Transaction Processing Performance Council (TPC). The intro-
duction of NonStop SQL put to rest the myth that relational systems could not
deliver the performance required for high-end transaction processing applications.

Sybase was an important but relative latecomer to the SQL market; the first ver-
sion of SQL introduced by Sybase Inc. in 1987. Microsoft acquired the rights to the
source code of the Sybase product and in 1993 introduced SQL Server for Win-
dows NT.

Sybase was designed for the client/server architecture, where the application runs
on a PC or workstation and accesses a database server across the network. As in
the case of parallel execution, we see an unexpected benefit of the high-level
nature of the SQL language and interface. Invoked by just a few network mes-
sages, a single SQL statement can iterate over large sets of rows, or join tables
together, for example. In general, with lower-level navigational interfaces such
operations would incur excessive network traffic.

Sybase was the first programmable SQL database system, and this had consider-
able market impact. With Sybase, DBAs or application developers could imple-
ment business logic and enforce data integrity rules with triggers and stored
procedures written in Transact-SQL, the company’s proprietary procedural lan-
guage. DBAs and application developers could write programs that contained
embedded SQL statements to retrieve or update database data to perform a com-
plete business transaction. Triggers could be associated with database tables to
execute after INSERT, UPDATE, or DELETE operations to validate the transactions,
do auditing, or perform other transformations. This approach reduces network traf-
fic because an entire business transaction can be executed with a stored proce-
dure, invoked efficiently across the network. With stored procedures, which are
stored within the database and executed within the database server, the applica-
tion program need not communicate with the server for each record access, nor
indeed for each SQL statement required to complete the business transaction.

Another important benefit of programmability is the ability of the database server
to protect the integrity of the data from malicious or errant ad hoc users and appli-
cations accessing the database across a network. While basic relational integrity
rules such as referential integrity are generally best defined declaratively, as part of

XUiil Foreword

the database schema, database triggers make it possible for the server to actively
enforce arbitrary business rules that require a procedural definition. By centraliz-
ing business logic in the database, it need not be coded in every application that
accesses the database, thus avoiding redundancy and errors, and making it feasi-
ble to provide end users with direct access to the data.

For its part, Oracle Corporation used the Ada programming language as a model
for PL/SQL, its own proprietary procedural language. Like Ada, PL/SQL includes
language features like exception handling and parameter type declarations that
facilitate the development of reliable, large-scale, and complex systems. The pro-
cedural language eventually added to the SQL standard resembles PL/SQL in many
respects. PL/SQL first appeared for client-side use (in Oracle’s SQL*Forms) in 1988,
and with Oracle7 in 1992 for triggers and stored procedures that execute within
the database.

The Evolution of SQL: the 1990s and
Beyond

If the 1970s was the decade of SQL invention, and the 1980s was the decade of
SQL commercialization, then the 1990s was the decade of SQL evolution. During
this period, the various vendors with SQL products raced to bring to market the
features needed to support new and demanding applications. Commercial SQL
products and the SQL standards have both been extended, in recent years, with
new features to support object-oriented programming languages and multimedia
data, integration with Java and XML, and the requirements of data warehouse
applications. SQL is clearly a living language, with new capabilities developed in
response to market demands.

In the early 1990s, the object-oriented programming paradigm became popular for
commercial application development, because programmers found they could
write complex applications more quickly and reliably using the object approach.
An object-oriented language permits the programmer to define types (or classes)
that describe not only the structure of data, but its behavior as well. Types can
have complex structures and can include procedures (methods) as part of their
definition. Types can be derived from other types, inheriting attributes from par-
ent types. A fundamental concept of the object paradigm is that every object has a
distinct identifier, and one object can refer directly to another via its object identi-
tier.

Although it was not until the late 1990s that object technology had an influence on
the direction of SQL, the ideas of object programming are not new, having origi-
nated in the 1960s with the Simula and Smalltalk programming languages. Many
object-oriented programming languages have been developed, but the first such

Foreword Xix

language to attract a wide following for commercial use was C++, an upward-com-
patible extension of C. Part of the success of C++ was due to its interoperability
with existing C programs, and the fact that programmers of C need not learn an
all-new language.

The object model stands in stark contrast to the relational model, with its simple
data structures (tables, rows, and columns) and non-navigational approach to data
access. Very fundamentally, the relational model relies on value-based addressing,
where rows are located by the values of data stored in the (primary) key col-
umn(s). In a SQL database, a join operation matches rows from multiple tables by
comparing the values of their columns. This approach is very much the antithesis
of object references that directly point from one object to another.

Because of the strong differences in their type systems, much has been made of
the so-called “impedance mismatch” between SQL and object-oriented program-
ming languages. Some people have argued that SQL and the relational database
model is obsolete, and that only database systems designed to make program-
ming language objects seamlessly persistent can meet the needs of modern appli-
cations. Others have developed products that perform mappings of the simple data
types and structures of the database to the types defined in applications.

In recent years, relational database vendors such as Oracle, IBM, and Informix
have added object capabilities to the SQL language. These object-relational prod-
ucts, and the most recent SQL standard, permit the definition of types that are sim-
ilar to those of the object languages, but not identical with any of them. These
extended SQL types can have multiple values per column, may have methods or
functions as part of their definition, may inherit attributes from higher-level types,
and may contain attributes whose value is a reference (a pointer!) to instances of
objects of a particular type. This enhanced SQL of the extended relational model
provides the database designer with the ability to more directly model the real
world, and makes it possible for a system to directly map database types to types
of object-oriented programming languages such as C++ and Java.

A key goal of the approach to extending SQL is to preserve the benefits of the
relational model, including non-procedural query capability over sets of objects
(which are generally stored in tables). New object-oriented applications can co-
exist with existing relational applications, and the database system can synthesize
objects from traditional relational data through a new feature called an object view.
The object-oriented SQL extensions were added in an upward-compatible way,
much the way C++ was developed from C. Although there are some efforts to
define new database languages that are more purely object-oriented, SQL, with
these new object capabilities, has until now successfully defended its role as the
“universal dataspeak.”

xx Foreword

The vendors of object-relational databases have used extended SQL to provide
support within their products for datatypes that were previously difficult to man-
age in a relational database, including text, video, and audio data. Users of these
products can also define application-specific datatypes and index types using
extended SQL.

Emerging Internet technologies have also made new demands on SQL. Java is a
portable object-oriented language that is particularly suitable for developing appli-
cations designed for Internet deployment. SQL has evolved quickly in recent years
to accommodate the quickly growing community of Java developers. Database
vendors have rapidly agreed upon and introduced in their products interfaces that
integrate Java with SQL. The JDBC call interface permits Java programs to send
SQL statements to a database server for execution. The SQLJ specification allows
SQL to be embedded in Java programs in a way that is similar to other host pro-
gramming languages such as COBOL and Fortran. Oracle8i, for example, supports
the execution of both JDBC and SQLJ programs within the database server. Thus,
SQLJ and JDBC programs can execute on the client, at the application server tier,
or within the database server itself as stored procedures, database triggers, or
methods for object types. The SQL language will continue to evolve to even bet-
ter integrate with Java—for example, by supporting the use of Java classes as the
definitions of data types of columns.

XML, the Extended Markup Language, is another Internet technology that is influ-
encing the evolution of SQL. Because XML makes data self-describing, it is espe-
cially suitable for information exchange between independently developed
applications and between enterprises. Electronic commerce applications, for exam-
ple, can use XML to exchange data such as orders, payments, and customer infor-
mation. Naturally, since most business applications use relational databases, it
becomes important for SQL data and XML data to coexist.

Just as SQL has grown to accommodate Java and its object model, it has already
begun to be extended to facilitate use of XML data. The rich object extensions of
today’s SQL language are well suited to support convenient representations or
mappings of XML data, bringing database manipulation and query to static XML
data structures. Vendors such as Oracle have moved aggressively to implement
capabilities that can map XML data structures to database data, and to produce
XML-formatted results from SQL queries. The integration of SQL with emerging
XML-based query languages is also an area of active development within vendor,
standards and academic communities.

Although SQL is extremely powerful in many areas, it has never provided strong
support for analytic tasks, despite the importance of SQL for data warehouse appli-
cations. Many basic business intelligence calculations have required extensive pro-
gramming outside of standard SQL, often with significant performance challenges.

Foreword XXt

While some proprietary SQL extensions designed to address these requirements
have existed in a few specialized products, only recently has the vendor commu-
nity agreed on standardized SQL extensions to meet these needs.

The CUBE and ROLLUP extensions to the GROUP BY clause have been added to
the SQL standard and to several SQL products. These operators fill in totals and
subtotals across values of the grouping columns, and facilitate generation of aggre-
gates for “cross-tab” reports. Data warehouse and business intelligence users have
had a long-standing need for SQL to support rankings and moving averages, and
to perform period-to-period comparisons. However, queries like “show the top 10
and bottom 10 salespeople in each region,” or “compute the 13-week moving
average of a stock price” have been difficult or impossible to express in standard
SQL. Recently, Oracle and IBM have jointly designed and submitted for standard-
ization new capabilities that address these requirements. Oracle8i Release 2 intro-
duced a set of powerful analytic functions that supports ranking, moving averages,
comparison of values at different levels of aggregation, and period-to-period com-
parisons.

Standardization of the SQL Language

Because of IBM’s dominance in the 1980s, SQL was destined to be an important
language for database management. Oracle closely followed the IBM definition of
SQL, the first of several vendors to do so, making it a de facto standard. However,
SQL would not be such a universal data access language without the efforts of
national and international standards bodies to develop a public specification of the
language.

If the SQL language is the Rosetta stone that unlocks access to the world’s infor-
mation, then the SQL standard document is something of a Rosetta stone itself.
Other than vendor documentation, the SQL standard provides the only formal,
complete definition of the syntax and semantics of the SQL language.

The history of the standards process is interesting. In the 1950s, the U.S. Depart-
ment of Defense established the Conference on Data Systems Languages (CODA-
SYL) to develop a standardized computer programming language for business
applications. CODASYL developed the COBOL language and was the parent orga-
nization of the Data Base Task Group (DBTG), which in 1971 published a set of
specifications by which COBOL programs might navigate databases that imple-
mented the pointer-based “network model.” It is from these origins that the efforts
to formally standardize the SQL language arose.

Commonly known as the ANSI SQL Committee, the H2 Technical Committee on
Database is chartered by the National Committee for Information Technology Stan-
dards (NCITS) to develop American National Standards for database languages and

xxii Foreword

for representing the United States in related international standardization activities.
The committee was originally established in 1978 to formally standardize the rec-
ommendations of the CODASYL committee. While it maintained responsibility for
the standard for network databases, the committee also began work on a standard
for relational databases in 1982.

Although the SQL committee started its work on relational databases with a for-
mal specification of IBM’s SQL, initial efforts were devoted to addressing the many
perceived deficiencies in SQL. The engineers working on this effort were pleased
with the resulting “improved” language (which they named RDL for Relational
Database Language). However, RDL was quite different from the emerging de
facto standard SQL represented by DB2. Reconsidering the value of a new data-
base language that diverged from commercially available implementations, in 1984
the committee abandoned its previous efforts, and reset its document to the origi-
nal IBM SQL contribution as the basis for the ANSI and ISO de jure standards.

The first formal SQL standard was published in 1986, and comprised approxi-
mately 100 pages. This standard defined a bare bones language that represented
the common features of the most important SQL implementations of the time,
including many of their arbitrary restrictions. The document defined the basic SQL
language, including the ability to CREATE tables and views, but not the ability to
DROP or ALTER them, nor to GRANT or REVOKE access privileges.

The lack of referential integrity capabilities in SQL-86 was a glaring omission, from
the viewpoint of relational database advocates. Because of the heated criticism, the
SQL standards committee quickly released a specification called the “Integrity
Enhancement Feature” to address this shortcoming. This feature included the abil-
ity to define primary and foreign keys as part of the database schema, with the
requirement that inserts, updates, and deletes not result in rows for which a for-
eign key did not match the primary key of another table. This basic feature meant
that a very fundamental data integrity rule could be enforced automatically by sys-
tems implementing the standard. The Integrity Enhancement Feature was incorpo-
rated into the 1989 revision of the SQL standard that also included a specification
for embedding SQL in COBOL, Fortran, and C.

The next standard was adopted in 1992 and is known as SQL-92. SQL-92 added
numerous capabilities to the SQL language, including outer joins, date-time and
other datatypes, standardized error reporting, a set of standardized catalog tables,
dynamic schema manipulation (DROP, ALTER, GRANT, and REVOKE), and the
ability for host programs to execute SQL statements not defined at compile time
(dynamic SQL). Other features new with SQL-92 included cascaded update and
delete referential actions, transaction consistency levels, scrolled cursors, and
deferred constraint checking. The standard comprised nearly 600 pages, and was
divided into three levels:

Foreword XXiii

e Entry SQL-92 contained only features from SQL-89.
e Intermediate SQL-92 added about half of the new features.

e Full SQL-92 represented the complete standard.

Both the SQL-86 and SQL-89 standards defined a subset of the SQL language as it
was implemented in commercial database products. In contrast, when it was
defined, the SQL-92 standard anticipated developments in SQL products, and still
serves as a guide to software development. Vendors typically follow the specifica-
tion when they implement the new features it defines, but SQL-92 also contains
features that no vendor has ever implemented.

The current standard, SQL-1999, was published in July 1999, and comprises nearly
2000 pages in all its parts. Work actually began on this standard in 1990, as the
SQL committee deferred many features from SQL-92 to the next standard, known
during its development as SQL3. The long development period of SQL3 was due
to its wide-ranging scope and, in particular, to the incorporation of object capabili-
ties in SQL. There were many opinions and false starts to reconcile before consen-
sus was achieved. Many debates involved the subtle distinctions between abstract
data types (ADTs) defined as referenceable “object ADTs” and those defined as
embedded “value ADTs,” with many proposals considered, adopted, and replaced
in various drafts of SQL. Eventually, the committee members resolved their differ-
ences by compromising on a single model of abstract types that unified their prop-
erties.

The powerful set of object oriented extensions incorporated in the new SQL stan-
dard constitute an object model very similar to that of Java, easing the task of
using the two languages together. SQL-1999 adds facilities for user-defined types
(ADTs) with both behavior (methods) and an encapsulated internal structure
(including arrays and named row types). The definition of an ADT can be derived
from a more general type (single inheritance). SQL-1999 supports strong typing
with compile-time checking and dynamic method dispatch (polymorphism).
Instances of object data types can be stored in a column in an ordinary table.
However, each instance of such types that is stored as a row (in a typed table) has
a persistent object ID that can be referenced from SQL statements, and can be per-
sistently stored as an attribute of another object.

The core SQL functionality, or SQL/Foundation, contains many other features in
addition to object functionality, some anticipating commercial implementation, and
others long present in a variety of commercial products. SQL-1999 includes the fol-
lowing new features, among many others:

xxiv Foreword

e User-defined procedures and functions, including those defined externally

e Row-level and statement-level database triggers that fire before or after
INSERT, UPDATE, or DELETE

e A Boolean datatype and large objects (binary and character LOBs)
e Support for character sets, translations, and collations (orderings)
e New WHERE predicates (for all, for some, similar to)

e Updateable views

e Roles for defining security profiles

e Savepoints to which a partly complete transaction can roll back

e Recursive queries, which permit processing bills of materials

In addition to the core functionality of SQL/Foundation, the SQL committee has
developed other parts of the SQL specification, including some that utilize the
object model now part of SQL. Briefly, these include the following parts of SQL-
1999:

e SQL/PSM (persistent stored modules): procedural language capabilities for
looping, branching, procedure invocation, and dynamic exception handling

e SQL/OLB (object language bindings) defining the way the Java language inter-
faces with the SQL language and accesses SQL data

e SQL/MED (management of external data) specifying interfaces that permit SQL
to access data stored in operating system or non-SQL sources

e SQL/CLI (call level interface) specifying an application programming interface
for SQL and database services

e SQL/Temporal, defining features that support time-varying views of database
content

Also, separate from the standard itself, but layered upon the new ADT capabili-
ties, the SQL committee is developing the SQL/MM (multimedia data) specifica-
tion, defining functionality for managing text, spatial, and image data.

Clearly, SQL is no longer a simple language for defining, accessing, and managing
tables containing rows of columns each with a single value. With SQL-1999, the
language that had its origins in the mathematics of the formal relational model has
gone beyond its original pragmatic deviations from that model. Like the network
data model defined by CODASYL, SQL-1999 now supports complex data record
structures with arrays, groups, repeating groups, and nested repeating groups.
With this power and complexity, the database design process moves beyond the
database normalization principles defined by Ted Codd. Database designers will
need a strong understanding of the processing requirements of the application, as

Foreword Xxv

well as knowledge of data dependencies, to fully benefit from the power of the
data structures and hierarchies now possible with SQL-1999.

The SQL standard is large, and a complete detailed understanding of every aspect
of the language is perhaps beyond human understanding. Today no commercial
products implement the entire standard, and, given the size of the standard, it
seems unlikely that they ever will. Further, different products implement different
sets of features and there is no certification test of compliance to the standard.
What, then, are the benefits of this specification?

Generally speaking, vendors do look to the standard specification for design guid-
ance when implementing new features. Thus, product interoperability and porta-
bility of applications from one implementation to another is facilitated, at least for
most mainstream features. Further, vendors frequently cooperate on designs for
SQL features within the standards process to prevent divergence of new capabili-
ties in future products. Also, companies choosing SQL products can evaluate a
vendor’s commitment to compatibility and to technology leadership by comparing
the features within a product against the standard. A DBA or developer who has
experience with one SQL implementation can leverage that knowledge with other
products, because the various dialects of SQL differ from one another in a way
that’s more like regional accents than entire languages.

SOL: A Success Story

The unparalleled success of relational database technology and the SQL language
is one of the great achievements of the IT industry. A number of factors have con-
tributed to that success.

The strong foundation of SQL as a non-procedural data access language, and its
relational theoretical underpinnings, have proven to be a powerful starting point,
despite the evolution of SQL beyond those beginnings. Improvements in hard-
ware and software technology have overcome the initial concerns about perfor-
mance of relational databases. The high-level nature of the SQL interface has
turned out to be particularly suitable to parallelism for data warehousing and to
programmatic database extensions needed in client/server and Internet environ-
ments. SQL and relational databases have been a critical success factor for a wide
range of customer applications, from the simplest department application to mis-
sion-critical transaction processing systems and enormous data warehouses that
support business intelligence. Responding to competitive pressure, database ven-
dors have continually innovated and extended their SQL implementations, at the
same time being forced by the market to conform to and contribute to the stan-
dards process. The standards process has given SQL legitimacy and a roadmap for
further development. SQL has proven its ability to adapt to changing market

XXV Foreword

requirements, such as the rise of give a sense ofdata warehousing and new tech-
nologies like objects, Java, and XML.

One look at the classified ads for IT professionals should provide an appreciation
of the value of a good working understanding of SQL. Knowledge of the history of
SQL, and some sense of its future can help those familiar with the language and
the technology appreciate its value even more.

—Ken Jacobs, VP Product Strategy, Server Technologies,
Oracle Corporation

Preface

The roots of relational database systems extend back to 1970, when Dr. E. F. Codd
published a paper entitled “A Relational Model of Data for Large Shared Data
Banks.” The paper appeared in the June 1970 issue of Communications of the
ACM, the journal of the Association of Computer Machinery (ACM). That paper
changed the world of computing forever; the model for a relational database man-
agement system (RDBMS) that Codd proposed ultimately became the definitive
standard for relational databases, and relational databases are the predominant
database type in use today.

Codd’s model required a new language to access the database, so IBM developed
Structured English Query Language and first gave it the name SEQUEL in 1974.
Unfortunately, a trademark already existed for SEQUEL, so “English” was dropped
from the name and the new language was renamed SQL, or Structured Query
Language. (However, it is still pronounced “sequel.”)

In 1979 Larry Ellison and Bob Miner founded Relational Software, Inc. (RSD and
began developing the first commercially viable implementation of Codd’s model,
along with the SQL language, and the company released Oracle V.2 as the world’s
first relational database. Relational Software soon changed its name to Oracle Sys-
tems, and subsequently to Oracle Corporation. The rest is history.

SQL soon grew in popularity, but each vendor implemented it in different ways
and with different features. A standard was finally developed by ANSI and ISO; the
most recent standards are:

* E.F. Codd, “A Relational Model of Data for Large Shared Data Banks,” Communications of the ACM 13,
6 (June 1970) 377-387.

XXV

Xxviii Preface

e ANSI X3.135-1992, “Database Language SQL”
e ISO/IEC 9075:1992, “Database Language SQL”

Today, virtually all vendors of database systems claim to have implemented a rela-
tional model, and all use SQL as their access language. SQL-92 defines four levels
of compliance: Entry, Transitional, Intermediate, and Full. A conforming SQL
implementation must support at least Entry SQL. Oracle8 fully supports Entry SQL
and has many features that conform to Transitional, Intermediate, and Full SQL.

Audience for This Book

This book was written for Oracle developers and database administrators (DBAs)
who use SQL. The book is designed as a reference; the material is intentionally
presented as concisely as possible. Since I assume that you are already somewhat
familiar with relational concepts and the basics of the SQL language, I have
attempted to provide you with the information you need in a location and format
that allows you to access it quickly, as required. If you are looking for clear, con-
cise information about Oracle’s implementation of SQL, with plenty of summary
tables and quick reference to syntax and usage, then you have come to the right
place. However, if you are trying to learn SQL, and want a tutorial that will teach
you about it from start to finish, you will probably want to start with an introduc-
tory text. Hang on to this book, however — you’ll find it very useful later on!

I certainly don’t want to deter you from buying and using this book, but T want
you to know that my approach is to cram as much concise and fast-moving mate-
rial as possible into these pages.

Versions of Oracle

This book was written using Oracle Version 8.1.6, and all information presented is
accurate for that version. Most of the material applies to Oracle Versions 7.3 and 8.0
as well, but some new features were added to SQL in Version 8.1 (Oracle81).

Beginning with Oracle Version 8.0, a new option called the Object Option became
available. Effective with Oracle Version 8.1.6 (Oracle8i Release 2), the Object Option
is included in the base release of all Oracle server products. In my experience, this
option is not yet widely used; it is, however, tremendously complex and it adds a
significant amount of syntax to the SQL language. In fact, Oracle’s Object Data-
base would require an entire book to cover properly. Consequently, I decided to
omit the Object features from the hardcopy version of this book. If you do use the
Object Option, you will find the full syntax available on the O’Reilly web site at
www.oreilly.com/catalog/orsqiter and in Oracle’s SQL Reference Manual. If you,
like most current Oracle users, don’t use the Object features, I think you will find

Preface XXIX

the hardcopy book much easier to use without the extra material. Once the option
is in wider use, I'll include it in a later edition of this book. Let me know what you
think about this decision!

Contents of This Book

This book contains the following chapters:

Chapter 1, Elements of SQL, outlines general elements and requirements of the SQL
language, including: structure, naming standards, characteristics of various datatypes,
relational operators, and so on.

Chapter 2, Data Definition Statements, presents each of the SQL statements used
for definition or modification of database objects. I have included a brief explana-
tion of what each statement does, along with structured syntax, definitions of syn-
tax elements as required, and a short example illustrating use.

Chapter 3, Data Manipulation and Control Statements, is similar in structure to
Chapter 2, but lists the SQL statements used to manipulate data and control ses-
sions in the database.

Chapter 4, Common SQL Elements, presents portions of the SQL language that are
applicable to multiple types of SQL statements. The clauses shown in this chapter
are referenced by the statements presented in Chapters 2 and 3.

Chapter 5, SQL Functions, summarizes the rich array of SQL functions available for
use in Oracle. For convenience they are grouped by purpose; for example, all
character string manipulation functions are presented together.

Chapter 6, SQL*Plus, presents Oracle’s standard interface to the SQL language.
SQL*Plus is such an integral part of Oracle that no programmer can do without it.
This chapter provides a summary of the use of this product that T hope conveys
the power of SQL*Plus.”

Chapter 7, PL/SQL, provides a concise definition of the structure and syntax for the
basic elements of PL/SQL, as well as the basic syntax for creating and using Ora-
cle procedures, functions, packages, and triggers.t

* The information presented in this chapter is only the tip of the iceberg. For more information about
SQL*Plus, see Jonathan Gennick’s Oracle SQL*Plus: The Definitive Guide (O'Reilly & Associates, 1999)
and Oracle SQL*Plus Pocket Reference (O'Reilly & Associates, 2000).

t Speaking of icebergs, PL/SQL is a monumental one. For more information about PL/SQL, see Steven
Feuerstein and Bill Pribye’s Oracle PL/SQL Programming, 2nd Edition (O'Reilly & Associates, 1998) and
the other PL/SQL books in the Feuerstein series.

XXX Preface

Chapter 8, SQL Statement Tuning, explains how the Oracle kernel actually exe-
cutes the SQL statements presented in this book and provides invaluable informa-
tion on how to make SQL statements and programs perform well.

Appendix A, SQL Resources, provides listings of SQL-related books, other publica-
tions, organizations, and web sites that may be useful.

Conventions Used in This Book

This book uses a number of standard conventions that let me clearly display the
detailed syntax of SQL statements:

Constant width
Used to show syntax diagrams and the output of commands.

Contant width bold
Used to represent user input in examples that show user interaction.

Initial_Cap_Italics
Indicates a common element of SQL that is documented in Chapter 4. These
elements usually end in “Clause,” as in Storage_Clause.

lowercase italics

Indicates items that are replaced by actual values in a SQL statement.
UPPERCASE

Indicates keywords or components of SQL syntax.

Braces { }
Indicate that one item is required from the list provided within the braces.
Items in the list are separated by vertical bars (). Note that this list may be
quite extensive and that a single item may include several keywords.

Ellipses (...)
Indicate that the previous keyword or group of keywords may be repeated as
required.

Square brackets []
Indicate that the item(s) enclosed within the square brackets are optional. Mul-
tiple optional items are separated by a vertical bar (1).

Underline
Indicates that the underlined keyword or value is the default.

column
The name of a column in a table.

colummn_list
The name of one or more columns in a table, separated by commas.

Preface XXXE

Sfilename
The valid operating system name for a file, normally enclosed in single quotes.
integer
A whole number, such as 0, 1, 2, etc.
schema
The name of a collection of objects in the database, also called the user, user-
name, or owner.
string
One or more characters enclosed in single quotes, such as ‘this is a string’.

table
The name of a table.

tablespace
The name of a tablespace in the database.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

Comments and Questions

I have tested and verified the information in this book to the best of my ability,
but you may find that features have changed or that I have made mistakes. If so,
please notify me by writing to:

O'Reilly & Associates

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

XXXTD Preface

You can also send O'Reilly messages electronically. To be put on the mailing list
or request a catalog, send email to:

info@oreilly.com
To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

There is a web site for this book, where you can find examples and errata. (Previ-
ously reported errors and corrections are available for public view there.) You can
access this page at:

bttp.//www.oreilly.com/catalog/orsqlter

For more information about this book and others, see the O'Reilly web site:
http.//www.oreilly.com

You can also contact me directly; send email to:

dkreines@usa.net

Acknowledgments

I am indebted to a great many people who have contributed in large and small
ways to the creation of this book.

This book began with a conversation with my editor at O’Reilly, Deborah Russell,
who agreed that there was a real need for a book like this, and pushed me to get
it done. T would like to thank her for providing invaluable comments on content,
structure, and style. She is probably even happier than I am that this book is done!

The first Oracle employee I ever met was Ken Jacobs, who at the time was serv-
ing as our technical sales support liaison. Over the following 15-plus years I have
had many interactions with Ken, who is known to the Oracle community for his
remarkable expertise and quiet competence. Ken is a technical genius, an excel-
lent scuba diver, and a really great person. I am honored that he agreed to write
the Foreword for this book. Ken, I am forever in your debt!

I am grateful beyond words to Jonathan Gennick, who not only provided a
detailed technical review and editorial assistance, but also supplied massive
amounts of material and helped rescue me from the brink of disaster! It suffices to
say that, for me, backups have taken on a new level of importance!

Special thanks go to John Beresniewicz, Steven Feuerstein, and Brian Laskey, as
well as to Richard Sarwal and Sandy Venning from Oracle Corporation, who gen-
erously gave up their time to provide a technical review for this book.

Preface XXxiti

I am also immensely grateful to my loving and supportive wife, Suzanne, who
once again tolerated my nightly retreats to my basement “cave,” not to mention my
spending a significant portion of our vacation at the beach hunched over a laptop
in the corner.

I would like to thank my colleagues at Rhodia, including Brian McMahon, Dave
Flood, Bin Pan, Deb Irwin, Joaquin Lucero, Paul Mars, Nick Palmer, and Frank
Foley, for doing early reads of the “work in progress” and for putting up with me
in general!

This book certainly would not have been possible without a lot of hard work and
support from the staff at O'Reilly & Associates: Darren Kelly, who managed the
production process; Ann Schirmer, who copyedited the book; Maureen Dempsey,
who proofread the book; Ellie Volckhausen who found the scorpion and created
the cover; Rob Romano who developed the figures; David Chu, the editorial assis-
tant who helped prepare the book for production; and James Carter, Deborah
Smith, and Nancy Williams who provided production support.

Elements of SQL

SQL was developed to provide easy access to relational databases, so it is able to
perform the following kinds of actions:

e Querying data from a database

e Inserting data into a database

e Deleting data from a database

e Creating and manipulating database objects

e Controlling access to the database

Strictly speaking, SQL is not a language at all, but rather a means of conveying
instructions to the Oracle database. It differs from traditional programming lan-
guages in several important ways:

e SQL provides automatic navigation to data.
e SQL operates on sets of data, rather than on individual data elements.
e SQL is declarative, not procedural, and does not provide procedural control.

e SQL programming is done at the logical level; there is little need to deal with
the details of implementation.

Simply put, when programming in SQL you tell Oracle what you want to do, but
not how it should be done. However, this approach can be both a blessing and a
curse. Consider the following SQL statement:

SELECT ename, deptno, sal, comm

FROM scott.emp

WHERE hiredate > '01-JAN-00';
This simple SQL statement tells the database to display a list consisting of name
(ename), department number (deptno), salary (sal), and commission (comm) for

2 Chapter 1: Elements of SOL

each employee hired after January 1, 2000. Such a program might have taken hun-
dreds of lines of code in an “old style” procedural language, but takes only three
lines in SQL. At the same time, however, Oracle is not always too smart about
how it retrieves data. Although Oracle’s internal “query optimizer” has steadily
improved, there are still many ways to improve SQL performance, and Chapter 8,
SOL Statement Tuning, is dedicated to this subject.

The lack of procedural control was viewed by some as a disadvan-
tage of SQL, so Oracle Corporation developed PL/SQL (Procedural
Language/SQL), which is discussed in Chapter 7, PL/SQOL.

SQL statements, also known as SQL commands, are combinations of the following:
Keywords
Reserved words with specific operational meaning to Oracle.

Variables
Data elements, which may be dynamically replaced with text or numeric val-
ues. In SQL these are the names of objects such as columns, tables, or views.

Literals
Constant data, including text strings and numbers.

Operators
Symbols or words that operate on one or more variables or literals.

Lexical Conventions

SQL statements are composed of commands, variables, and operators, which are
described in detail in this and subsequent chapters. A SQL statement is con-
structed from:

e Characters A through Z (or the equivalent from your database character set)

e Numbers 0 through 9

e Spaces

e The following special characters: +-*=?21@ () _ ., <> | $ #

Naming in SQL 3

Oracle strongly discourages the use of # and $.

Other characters, such as &, are also used in SQL statements, but
may be intercepted and interpreted by SQL*Plus if you are using that
tool. See Chapter 6, SQL*Plus, for more information.

A SQL statement can contain one or more of the following items anywhere a sin-
gle space can occur:

e Tab
e Carriage return
e Multiple spaces

e Comments

Certain components of SQL statements (such as variable names and
strings) may contain other characters, as long as they are enclosed in
double quotes.

The following two SELECT statements, for example, are evaluated in exactly the
same way by Oracle and both return the same result set:

SELECT ename, empno, sal FROM scott.emp WHERE sal>500;

SELECT ename,
empno, sal

FROM scott.emp

WHERE sal > 500;

SQL is generally not case-sensitive, so case is not significant except in literals,
which are enclosed in quotes.

Be aware that a variable name enclosed in double quotes will be
case-sensitive. This fact is especially important if you access your
Oracle database using Microsoft Access, which creates objects using
lowercase names.

Naming in SQL

Most naming requirements in SQL are actually requirements of the Oracle data-
base; names that are acceptable for schema objects (defined in the next section) in

4 Chapter 1: Elements of SOL

the Oracle database are acceptable in SQL, and vice versa. The following rules
apply to the names of schema objects in Oracle:

e They may comprise 1 to 30 alphanumeric characters.

e They must begin with a letter.

e They may include an underscore (_).

e They may include a dollar ($) or pound sign (#), although Oracle discourages
the use of these characters.

e They may not be a reserved word.

e They may not be the name of a SQL command.

A name may begin with and/or contain any characters if it is
enclosed in double quotes.

Schema Objects

A schema object is a logical collection of data or other objects that are owned by a
user and stored in the database. The following types of objects are considered
schema objects:

e Clusters

e Database links

e Database triggers

e Dimensions

e External procedure libraries
e Index-organized tables

e Indexes

¢ Index types

e Materialized views/snapshots
e Materialized view logs/snapshot logs
e Nested table types

e Object types

e Operators

e Packages

Schema Objects 5

e Sequences

e Stored functions

e Stored procedures
e Synonyms

e Tables

e Varying array types
e Views

e Database links

General Syntax

Generally, you reference schema objects in SQL statements using the following
syntax:

schema.object_name.object_part@dblink

These syntax elements have the following meaning:

schema
The name of the schema that owns the object. In Oracle, a schema corre-
sponds one-to-one with a username; if the schema is omitted from a refer-
ence to a schema object, then the username that is currently logged in is used
by default.

object_name
The name of the object being referenced, such as a table.

object_part
The name of a part of an object, for those schema objects that have a part,
such as a column of a table.

dblink
The name of a database link referencing a remote database.

The syntax shown here, with a schema name followed by a period, then followed
by an object name (for example, scott.emp) is commonly referred to as dot nota-
tion. Generally, if the schema. portion of a name is omitted; the schema of the
user currently connected to the database will be used by default.

For example, the following SQL statement queries data from a table, which is a
schema object named emp in the schema scott. This schema is located in a remote
database and is referenced by the database link test:

SELECT ename, empno, sal

FROM scott.emp@test
WHERE sal > 500;

6 Chapter 1: Elements of SOL

Partition Syntax

When referencing a specific partition or subpartition of a partitioned table, use the
following syntax:
schema. table name {PARTITION (partition) |

SUBPARTITION (subpartition)
)

These syntax elements have the following meaning:

schema
The name of the schema that owns the object. In Oracle, a schema corre-
sponds one-to-one with a username, and if the schema is omitted from a refer-
ence to a schema object, then the username that is currently logged in is used
by default.

table_name
The name of the table being referenced.

Dpartition
The name of a partition of the table.

subpartition
The name of a subpartition of the table.

This construct is known as a partition-extended table name. A partition-extended
table name may not have a database link associated with it. Therefore, if you want
to access this object on a remote database, you must create a view that can be
accessed using the general schema object syntax described previously.

Datatypes

Oracle stores data in the database in any of three basic families of datatypes: charac-
ter, numeric, and date. Both the character and numeric families have several distinct
datatypes associated with them, which are described in the following sections.

Character Data

Character data is any string of one or more bytes of data that will not be the direct
target of an arithmetic operation. Oracle (and SQL) supports several types of char-
acter data, which are listed below with their usage syntax:

CHAR [(Iength)]

Fixed-length character data, with a maximum length of 2000 bytes. length speci-
fies the maximum length of the character string to be stored.

Datatypes 7

VARCHAR2 [(Ilength)]

Variable-length character data, with a maximum length of 4000 bytes. length speci-
fies the maximum length of the character string to be stored.

NCHAR [(length)]

Fixed-length character data consisting of characters from a National Character Lan-
guage (NLS) supported character set. Since a character may require more than one
byte, the maximum length is 2000 bytes (which may allow fewer than 2000 charac-
ters). length specifies the maximum length of the character string to be stored.

NVARCHAR2 [(length)]

Variable-length character data consisting of characters from a National Language
Support (NLS) character set. Since a character may require more than one byte, the
maximum length is 4000 bytes (which may allow fewer than 4000 characters).
length specifies the maximum length of the character string to be stored.

LONG
Variable-length character data with a maximum length of 2 gigabytes.
RAW

Raw binary data with a maximum length of 2000 bytes. RAW data will not be con-
verted by Oracle when moving between systems with different character sets.

LONG RAW

Raw binary data with a maximum length of 2 gigabytes. LONG RAW data will not
be converted by Oracle when moving between systems with different character
sets.

The following character datatypes are also recognized for compatibility with ANSI
SQL:

CHARACTER

CHARACTER VARYING

CHAR VARYING

NATIONAL CHARACTER
NATIONAL CHAR

NATIONAL CHARACTER VARYING
NATIONAL CHAR VARYING
NCHAR VARYING

Large Objects

Oracle provides several datatypes that support storage of large amounts of data in
a single column. These datatypes are often used to store images, sound, and other
large objects:

8 Chapter 1: Elements of SOL

BLOB
Large, raw binary data with a maximum length of 4 gigabytes. BLOB data will
not be converted by Oracle when moving between systems with different
character sets. When a BLOB column is referenced, a LOB locator is returned.

CLOB
Large character data with a maximum length of 4 gigabytes.

NCLOB
Large character data consisting of characters from a National Language Sup-
port (NLS) character set with a maximum length of 4 gigabytes. NCLOB data
will not be converted by Oracle when moving between systems with different
character sets.

BFILE
Provides access to a binary file stored in an operating system file external to
the Oracle database. The file can have a maximum size of 4 gigabytes.

Numeric Data

Numeric data is data that can participate in an arithmetic operation directly with-
out data conversion. Oracle has only a single type of numeric data: the NUMBER
type.

NUMBER data can hold values between 10-130 and 9.99999...x 10125,
but the number will be accurate only to 38 positions.

A NUMBER data element can be expressed as:

NUMBER [(precision[,scale])]

precision
The number of digits in the number, which can range from 1 to 38.

scale
The number of digits to the right of the decimal point, which can range from -84
to 127.

If scale is omitted, the number is treated as an integer number, and no decimal
portion is stored. If both scale and precision are omitted, the number is treated as
a floating-point number.

Datatypes 9

It is a good idea to always specify a precision for a number
datatype. If you do not, some ODBC drivers will assume a precision
of 0, as opposed to the Oracle default of 38. In such cases, the
ODBC-compliant client tool will not be able to insert or update rows
where the column value is not 0.

Although all numeric data is stored by Oracle as a NUMBER, the following
datatypes are also recognized for compatibility with ANSI SQL:

FLOAT

NUMERIC

DECIMAL

NUMBER

INTEGER

INT

SMALLINT

DOUBLE PRECISION
REAL

Dates

The DATE datatype is used by Oracle to store date and time information. Oracle
DATE data is stored in a proprietary format that contains the following information:

e Century
e Year

e Month

e Day

e Hour

e Minute
e Second

To store data in a DATE datatype, the date and/or time information must be con-
verted into Oracle’s internal format. If the character representation of a date
matches the default format (as specified by the NLS_DATE_FORMAT parameter in
the initialization file, INIT.ORA), then Oracle can perform this conversion automati-
cally. For example, if the default NLS_DATE_FORMAT of DD-MON-YY is in effect,
then the following SQL statement will insert the date July 4, 2076 into a table col-
umn called T_DATE:

INSERT INTO sample_table (t_date)
VALUES ('07-JUL-76");

10 Chapter 1: Elements of SOL

If the date and/or time information is available in another format, you can use one
of Oracle’s built-in TO_DATE functions to perform the conversion. For example, if
the same date is presented as 07/04/76, then the SQL statement shown here,
which uses Oracle’s TO_DATE function, inserts the following row of data:

INSERT INTO sample_table (t_date)

VALUES (TO_DATE('07-JUL-76', 'MM/DD/YY')) ;
See Chapter 5, SQL Functions, for more information on TO_DATE and other con-
version functions.

NULL

One sometimes confusing aspect of SQL is the concept of a NULL. NULL is the
absence of data; it is neither character nor numeric. Both character and numeric
data elements can be set to NULL, which indicates that the element contains no
value whatsoever.

NULL is not the same as zero. In fact, any arithmetic operation involving a data
element containing NULL will evaluate to NULL. For example, if the current value
of a is NULL, then the following expression will evaluate to NULL:

(a+10)*20

This feature of Oracle can make life difficult for a programmer if
arithmetic will be performed involving a column that could contain a
NULL. Luckily, Oracle provides the NVL function to take care of this
problem. See Chapter 5 for more information.

Similarly, when using comparisons, a NULL will never match a condition, even
though it may logically seem that it should. If coll contains the value NULL, then
the following clause:

WHERE coll <> 1

will not resolve to TRUE.

You can test for the presence or absence of NULL in a data element. The condi-
tion IS NULL evaluates to TRUE if the expression evaluates to NULL, and to FALSE
if it does not.

Locators

Oracle provides several datatypes whose primary purpose is to provide efficient
reference to objects stored both within and outside the database.

Datatypes 11

ROWID

ROWID returns a string that represents the physical location of a row of data and
contains all the information Oracle needs to locate a row of data, including:

e The data file containing the row
e The block of the file containing the row
e The position of the row in the data block

e The object number of the object (Oracle8 only)

Except in the case of tables stored in clusters, a ROWID will uniquely identify any
single row of data.

ROWID is always returned as an 18-character string and may be used in a Data
Manipulation Language (DML) statement just like any other Oracle column.

While ROWID can be stored in a table column, you should never
rely on a row retaining its ROWID value. Since the ROWID repre-
sents a physical location, the value can change if the row is stored
differently. For example, an export followed by an import will
almost certainly invalidate any stored ROWID.

UROWID

Because some types of Oracle objects may not have physical locations that are
fixed or generated by Oracle (such as objects accessed via a Transparent Gate-
way), Oracle has developed the Universal ROWID (UROWID) datatype, which can
contain the physical ROWID when it is available; otherwise, it contains the logical
ROWID. Oracle strongly recommends that you use the UROWID datatype in place
of ROWID so either type of location information can be accommodated.

Pseudo-Colummns

While not actual datatypes, Oracle supports several special-purpose data elements.
These elements are not actually contained in a table, but are available for use in
SQL statements as though they were part of the table.

ROWNUM

For each row of data returned by a SQL query, ROWNUM will contain a number
indicating the order in which the row was retrieved. For example, the first row
retrieved will have a ROWNUM of 1, the second row will have a ROWNUM of 2,
and so on. This approach can be useful for limiting the number of rows returned

12 Chapter 1: Elements of SOL

by a query. To display only ten rows of the emp table, the following SQL state-
ment makes use of the ROWNUM pseudo-column:
SELECT *

FROM emp
WHERE ROWNUM < 11;

ROWNUM returns a number indicating the order in which the row
was retrieved from the table, but this is not always the order in
which a row is displayed. For example, if a SQL statement includes
an ORDER BY clause, rows will not be displayed in ROWNUM
sequence, since ROWNUM is assigned before the sort operation.

CURRVAL

When using Oracle SEQUENCE values, (see “CREATE/ALTER/DROP SEQUENCE”
in Chapter 2, Data Definition Statements), the pseudo-column CURRVAL returns
the current value of the sequence. To reference CURRVAL, it must be associated
with a sequence:

[schema.] sequence name.CURRVAL

schema
The owner of the sequence. If schema is omitted, Oracle assumes the user-
name under which you are currently connected to the database.

sequence_name
The name of an Oracle sequence.

CURRVAL
The current value of the sequence.

NEXTVAL
When using Oracle SEQUENCE values, the pseudo-column NEXTVAL returns the

next value of the sequence and causes the sequence to increment by one. You can
only reference NEXTVAL if it is associated with a sequence:
[schema.] sequence_name.NEXTVAL

schema
The owner of the sequence. If omitted, the userid under which you are cur-
rently logged in is used.

sequence_name
The name of an Oracle sequence.

NEXTVAL
The next value of the sequence.

Data Conversion 13

Oracle will only increment the sequence once in a given SQL state-
ment, so if a statement contains multiple references to NEXTVAL, the
second and subsequent reference will return the same value as
CURRVAL.

LEVEL

For each row returned by a hierarchical query (using the CONNECT BY clause),
LEVEL returns 1 for a root node, 2 for a child of a root, and so on. A root node is
the highest node within an inverted tree. A child node is any nonroot node, a par-
ent node is any node that has children, and a leaf node is any node without
children.

USER

This pseudo-column will always contain the Oracle username under which you
are connected to the database.

SYSDATE

This pseudo-column will contain the current date and time. This column is a stan-
dard Oracle DATE datatype.

The date and time contained in SYSDATE comes from the server that processes
the query, not the client from which the query is run. So if you connect to a server
in Tokyo from a client workstation in London, the date and time will be that of the
server in Tokyo (and the date will probably be a day ahead).

If you return a SYSDATE column via a database link (for example,
SELECT SYSDATE FROM dual@london), the date and time will be
returned from the server you are connected to, not the remote server
referenced by the database link.

Data Conversion

There are multiple ways to represent data in a database. For example, a salary,
which is normally considered a numeric value such as 25,000 can be represented
easily as a character string such as “25000”. Likewise, an employee ID can be rep-
resented as a number (500) or a string (“500”). If you attempt to perform an arith-
metic operation on a character value in most computer languages, an error will
occur. Not so with SQL. Oracle automatically performs a data conversion when it

14 Chapter 1: Elements of SOL

is necessary (and possible) to complete a requested operation. In the following
SQL statement, assume that sal is defined in the database as CHAR(6)—a charac-
ter string with a fixed length of six bytes:

SELECT ename, SAL * 1.1

FROM scott.emp;
The character string (sal) is multiplied by a numeric constant (1.1). To perform this
operation, Oracle first converts the string into a number, and then performs the
multiplication. This type of automatic conversion is an implicit data conversion.

While convenient, implicit data conversion also has a cost in CPU
utilization, so be careful when deciding how to store data elements
in the database.

Implicit data conversion can have an unexpected negative impact on
performance, since it can dramatically affect the way the Oracle
query optimizer generates an execution plan. For example, use of an
index may be suppressed due to implicit data conversion, resulting
in a full table scan.

SQL also provides several functions that perform explicit data conversion:
TO_CHAR
Performs numeric-to-character and date-to-character conversions

TO_NUMBER
Performs character-to-numeric conversion

TO_DATE
Performs character-to-date conversion

See Chapter 5 for more information.

Relational Operators

An operator manipulates data elements and returns a result. The data elements that
are operated upon are called operands or arguments, and a special character or
keyword represents the actual operator. Oracle SQL supports several types of
operators, listed in this section.

Arithmetic Operators

Arithmetic operators perform arithmetical calculations on a pair of data elements
and/or constants. Table 1-1 lists the arithmetic operators available in SQL.

Relational Operators 15

Table 1-1. SQL’s Arithmetic Operators

Operator Description Example

+ Addition sal + comm
- Subtraction sal — comm
* Multiplication | sal * 1.1

/ Division sal / 12

- Negation —sal

+ Identity +sal

Concatenation Operator

The concatenation operator (| |) combines two character strings. Consider the fol-
lowing SQL statement:

SELECT fname || ' ' || lname
FROM employee master;

This statement returns (for each row) a single string consisting of the first name, a
space, and the last name.

Although most Oracle platforms use solid vertical bars (I 1) as the
concatenation operator, some platforms, most notably IBM plat-
forms using the EBCDIC character set, use the broken vertical bars
(1 1). When converting between ASCII and EBCDIC character sets,
the conversion of these characters may not be correct.

If one of two concatenated strings is NULL, the result is a non-NULL string. The
NULL string is treated as an empty string. If both strings being concatenated are
NULL, then the resulting string is NULL. If either of the operands is a VARCHAR2
datatype, the resulting string is a VARCHAR2 datatype as well.

A concatenated string may not be longer than 2000 characters if the
operands are CHAR datatypes, or 4000 characters otherwise. Other
character types, like LONG and CLOB, cannot be concatenated.

Comparison Operators

Comparison operators are used to compare two data elements (or a data element
and a constant) and return a result that is TRUE, FALSE, or NULL, depending on

16

Chapter 1: Elements of SOL

how the values in the two elements relate to each other. Table 1-2 lists the com-
parison operators available in SQL.

Table 1-2. SQL’s Comparison Operators

Operator Use Description Example
= a=b Tests for equality of two | SELECT *
operands. FROM emp
WHERE sal =500
1= al=>b Tests for inequality of SELECT *
two operands. FROM emp
WHERE sal =500
A= anh=b Tests for inequality of SELECT *
two operands. FROM emp
WHERE sal A=500
<> a<>b Tests for inequality of SELECT *
two operands. FROM emp
WHERE sal <>500
< a<b Tests that operand a is SELECT *
less than operand b. FROM emp
WHERE sal <500
I< al<b Tests that operand a is SELECT *
not less than operand b. | FROM emp
This is the same as >=. WHERE sal <500
> a>b Tests that operand a is SELECT *
greater than operand b. FROM emp
WHERE sal >500
> al>b Tests that operand a is SELECT *
not greater than oper- FROM emp
and b. This is the same WHERE sal >500
as <=,
<= a<=b Tests that operand a is SELECT *
less than or equal to FROM emp
operand b. This is the WHERE sal <=500
same as !>.
>= a>=b Tests that operand a is SELECT *
greater than or equal to | FROM emp
operand b. This is the WHERE sal >=500
same as <.
IN alN (bc...) Tests that operand a SELECT *
matches at least one ele- | FROM emp
ment of the list provided | WHERE sal IN
(operand b, operand c, (500,600,700)
etc.).
NOT IN aNOT IN Tests that operand a SELECT *
(bc..) does not match any ele- | FROM emp
ment of the list provided | WHERE sal NOT IN
(operand b, operand c, (500,600,700)

etc.).

Relational Operators

17

Table 1-2. SQL’s Comparison Operators (continued)

Operator Use Description Example
ANY a= ANY Tests that the relation- SELECT *
(be..) ship specified (e.g., =, FROM emp
a< ANY <> <, > etc.) is true for | WHERE sal = ANY
(b,c...) at least one element of (500,600,700)
a> ANY the list provided (oper-
(b,c...), etc. and b, operand ¢, etc.).
When testing for equal-
ity, this is equivalent to
IN.
SOME a = SOME Tests that the relation- SELECT *
(bc...) ship specified (e.g., =, FROM emp
a < SOME <> <, > etc.) is true for | WHERE sal = SOME
(b,c...) at least one element of (500,600,700)
a> SOME the list provided (oper-
(b,c...), etc. and b, operand ¢, etc.).
When testing for equal-
ity, this is equivalent to
IN.
ALL a= ALL (b,c...) | Tests that the relation- SELECT *
a< ALL (b,c...) | ship specified (e.g., =, FROM emp
a< ALL <> <, > etc.) is true for | WHERE sal > ALL
(b,c...), etc. every element of the list | (500,600,700)
provided (operand b,
operand ¢, etc.).
BETWEEN a BETWEEN b | Tests that operand a is SELECT *
and ¢ greater than or equal to | FROM emp
operand b and less than | WHERE sal BETWEEN
or equal to operand c. 400 AND 600
NOT a NOT Tests that operand a is SELECT *
BETWEEN BETWEEN b less than operand b or FROM emp
and ¢ greater than operand c. WHERE sal NOT
BETWEEN 400 and 600
EXISTS EXISTS (query) | Tests that the query SELECT *
returns at least one row. | FROM emp e
WHERE EXISTS
(SELECT deptno
FROM dept d
WHERE deptno=
e.deptno)
NOT EXISTS NOT EXISTS Tests that the query SELECT *
(query) does not return a row. FROM emp e

WHERE NOT EXISTS
(SELECT deptno
FROM dept d
WHERE deptno=
e.deptno)

18

Chapter 1: Elements of SOL

Table 1-2. SQL’s Comparison Operators (continued)

Operator Use Description Example
LIKE aLlIKE b Tests that operand a SELECT *
matches pattern oper- FROM emp
and b. The pattern may | WHERE ename LIKE
contain _, which ‘SMI%’
matches a single charac-
ter in that position, or %,
which matches all char-
acters.
NOT LIKE aNOT LIKE b | Tests that operand a SELECT *
does not match pattern FROM emp
operand b. The pattern WHERE ename NOT
may contain _, which LIKE ‘SMI%’
matches a single charac-
ter in that position, or %,
which matches all char-
acters.
IS NULL a IS NULL Tests that operand a is SELECT *
NULL. FROM emp
WHERE comm IS
NULL
IS NOT NULL aIS NOT NULL | Tests that operand a is SELECT *
not NULL. FROM emp
WHERE comm IS NOT
NULL

Logical Operators

SQL provides logical operators that are similar to those available in most other
programming languages. The logical operators AND and OR combine the results
of two Boolean values to produce a single result based on them, while the logical
operator NOT inverts a result. The Boolean values may be any expression that can
be evaluated to TRUE or FALSE. Usually the values come from comparison expres-
sions. Table 1-3 presents the logical operators available in SQL, along with the
possible results from each.

Table 1-3. SQL’s Logical Operators

Operator Operand 1 Operand 2 Result

AND TRUE TRUE TRUE
FALSE FALSE FALSE
TRUE FALSE FALSE
FALSE TRUE FALSE
TRUE NULL NULL
FALSE NULL FALSE

Relational Operators

19

Table 1-3. SQL’s Logical Operators (continued)

Operator Operand 1 Operand 2 Result
NULL TRUE NULL
NULL FALSE FALSE
NULL NULL NULL

OR TRUE TRUE TRUE
FALSE FALSE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
TRUE NULL TRUE
FALSE NULL NULL
NULL TRUE TRUE
NULL FALSE NULL
NULL NULL NULL

NOT TRUE FALSE
FALSE TRUE
NULL NULL

Set Operators

Unlike other relational operators that operate on one or more individual data ele-
ments, set operators work on the entire set of data returned by two queries.
Table 1-4 describes the set operators available in SQL.

Table 1-4. SQL’s Set Operators

Operator

Description

Example

UNION

UNION ALL

Combines all rows returned by both queries and

eliminates duplicate rows.

Combines all rows returned by both queries and

includes duplicate rows.

SELECT *

FROM emp
WHERE deptno=10
UNION

SELECT *

FROM emp
WHERE sal > 500

SELECT *

FROM emp
WHERE deptno=10
UNION ALL
SELECT *

FROM emp
WHERE sal > 500

20 Chapter 1: Elements of SOL

Table 1-4. SQL’s Set Operators (continued)

Operator Description Example

MINUS Takes the rows returned by the first query, SELECT *
removes rows that are also returned by the second | FROM emp
query, and returns the rows that remain. MINUS

SELECT *

FROM emp
WHERE sal > 500

INTERSECT | Returns only the rows returned by both queries. SELECT *

FROM emp

WHERE deptno = 10
INTERSECT

SELECT *

FROM emp

WHERE SAL>500

Structure of a SQL Statement

A SQL statement can be broken into three major components:

e The SQL operation
e The target

e The condition

Only the first two components are required; the condition is optional or may not
apply, depending on the SQL operation being performed.

The SQL Operation

There are four basic operations performed by a SQL DML statement. Each of these
is discussed in this section. Each operation is also the name of a SQL statement,
and the detailed syntax for each statement can be found in Chapter 3, Data
Manipulation and Control Statements.

SELECT

The SELECT statement is probably the most common and widely used of all SQL
statements. The purpose of a SELECT statement is to retrieve data from the data-
base. The statement may return data elements from one or more database tables or
views, from expressions involving data elements from at least one database table
or view and/or constant, or from constants. A SELECT statement always has a tar-
get component, and often has a condition component. The target of a SELECT
statement is the set of tables and views listed in the FROM clause (the tables and
views from which data is retrieved). The condition is the expression in the WHERE
clause, and possibly in the HAVING clause as well, that restricts the rows that will

Structure of a SQL Statement 21

be returned. If no condition is specified, all rows of the target table(s) and/or
view(s) are returned.

INSERT

The INSERT statement creates new rows of data in a target database table or view.
The statement provides a list of columns that will receive the data provided (all
columns of the table or view are implied if no list is provided) and a correspond-
ing list containing the data elements to be placed in each column. The condition
component does not apply to an INSERT.

UPDATE

The UPDATE statement modifies data already in a database table or view. The
UPDATE statement always has an associated target, and usually has a condition as
well. If no condition is specified, all rows of the target table are updated.

DELETE

The DELETE statement removes rows from a database table or view. This state-
ment will always have an associated target, and usually has a condition as well. If
no condition is specified, all rows of the target table or view are removed.

The Target

All SQL DML statements operate on one or more database tables or views. The
purpose of the target component is to identify those tables or views. This compo-
nent takes a different form depending on the statement with which it’s being used.
For example, the SELECT and DELETE statements have similar target structures:

SELECT *
FROM emp --This is the target component
WHERE depno = 10

DELETE
FROM emp --This is the target component
WHERE deptno = 10

The INSERT and UPDATE statements, however, use the target differently:

INSERT INTO emp --This is the target component
(empno, ename, sal, hiredate)
VALUES ('1234', 'Dave Kreines',500,'06-01-00")

UPDATE emp --This is the target component
SET sal = 600
WHERE empno = '1234'

22 Chapter 1: Elements of SOL

Joins

When two or more tables or views are referenced as the target of a SELECT state-
ment, this is called a join. One of the fundamental concepts of a relational data-
base is the ability to combine two or more tables into a single result set by
specifying how the tables are related (thus the term relational). Two or more
tables or views are typically related to each other by one or more columns that
share common data. Such a column is called a key column. An example of a key
column might be a department number. Figure 1-1 illustrates such a relationship.

EMP Table DEPT Table
empno Key 'depTo
Iname dname
fname location
3a|

eptno
| 9P |

Figure 1-1. Two tables related through a common key

The target component specifies the tables or views to be included in a join, and
the condition component tells Oracle how to relate the tables or views to each
other.

The following example joins the emp and dept tables:

SELECT ename, location

FROM emp, dept

WHERE emp.deptno = dept.deptno
This statement instructs Oracle to return the name and location for each employee
from the database by first forming all possible combinations of data rows from the
two tables, and then returning all rows where the two department numbers match.
Note that the number of rows in each table can be different; it is the data value
that is used for the match. One row from the dept table can, and probably will,
match multiple rows of the emp table.

The idea of forming all possible combinations of all rows by joining
two tables is conceptual. Oracle almost always finds a more optimal
way to generate the join results.

If no condition is specified for a join, all possible combinations of rows from the
two tables are returned as the result. In other words, every row of the first table is
matched with every row of the second table (assuming that two tables are joined).

Structure of a SQL Statement 23

This result is known as a Cartesian product, and it is usually something you want
to avoid. The number of rows returned is equivalent to the number of rows in the
first table multiplied by the number of rows in the second. If your tables are large
to begin with, the number of rows in the Cartesian product can become extremely
large. Performance will suffer greatly by having to generate those rows, and they
are not likely be of much use anyway. Cartesian products usually represent a mis-
take in writing a query.

The existence of two or more tables or views in the FROM clause,
with no corresponding set of join conditions in the WHERE clause,
always results in a Cartesian product.

Outer join

In the standard join, rows are only returned when there are corresponding rows in
each of the joined tables or views. An outer join allows data to be returned even if
no matching row exists in one of the tables. The outer join is specified by adding
(+) to the end of the column names for the table that you want to make optional.
In other words, (+) means “add a phantom row to this table that contains NULL
values for all columns if a matching row does not exist.” Here is an example of an
outer join that displays a NULL location if there is no matching department num-
ber in the dept table:

SELECT ename, location

FROM emp, dept

WHERE emp.deptno = dept.deptno (+)
Normally, a query joining the emp and dept tables would return rows for only the
employees who had been assigned to a valid department. By adding (+) to the
end of the dept.deptno column name, we make the join into an outer join. Rows
are now returned for all employees, whether or not they have a valid department
assignment.

The Condition

The condition component, which is specified using the WHERE clause, identifies
the specific rows to be operated on by a SELECT, UPDATE, or DELETE statement.
While a WHERE clause may be very complex, it ultimately evaluates to either
TRUE or FALSE for each row of data, and that action controls whether or not the
operation takes place for each row. Consider the following query:

SELECT *

24 Chapter 1: Elements of SOL

FROM emp

WHERE sal > 500
Oracle will look at each row of data in the emp table and evaluate the condition
sal > 500. Rows for which this expression evaluates to TRUE will be returned,
while those for which this condition evaluates to FALSE or unknown (those with
values of sal that are less than or equal to 500 or that contain NULL) will not be
returned.

Another important use for the WHERE clause is to identify the columns that relate
one table to another to perform a join. Here is a query that includes a simple join:

SELECT ename, loc

FROM emp, dept

WHERE emp.deptno = dept.deptno
Both the emp and dept tables have a column called deptno, which contains the
department number. The columns do not need to have the same name, but they
do have to contain data with the same meaning. In this example, each emp row
contains a department number in a column named deptno. The department num-
ber also exists in the deptno column of the dept table. Since we know that a
department number in the emp table has the same meaning as one in the dept
table, these columns can be used to specify a join condition.

In the example, the column name (deptno) was prefixed by the
name of the table (emp or dept). This prefix occurs because both
tables in the join have identically named columns. As a result, you
need to qualify the column names with the table names so Oracle
knows which column you are referring to. Oracle would return an
error if you failed to do this because the column names would then
be ambiguous. What is intended may be obvious to you, but not to
Oracle!

SOL Statements

There are a large number of SQL statements supported for Oracle and described in
subsequent chapters of this book. As an aid to identifying the particular SQL state-
ment you might need and helping you find it in the book, Table 1-5 presents a list
of SQL commands in alphabetical order, along with a short description, and the
chapter number and heading where you can find the full syntax and description of
that statement.

SOL Statements

25

Table 1-5. SQL Statements Covered in This Book

Found in

SQL Statement Description Chapter Under This Heading

ALTER CLUSTER Redefines future storage 2 “CREATE/ALTER/
allocations or allocates an DROP CLUSTER”
extent for a cluster

ALTER DATABASE Changes one or more 2 “CREATE/ALTER
characteristics of an exist- DATABASE”
ing database

ALTER FUNCTION Recompiles a stored 7 “ALTER FUNCTION”
PL/SQL function

ALTER INDEX Changes the characteris- 2 “CREATE/ALTER/
tics of an index DROP INDEX”

ALTER Changes the storage char- | 2 “CREATE/ALTER/

MATERIALIZED VIEW | acteristics or automatic DROP MATERIAL-
refresh characteristics of a IZED VIEW”
materialized view or
snapshot

ALTER MATERIAL- Changes the storage char- | 2 “CREATE/ALTER/

IZED VIEW LOG acteristics of a material- DROP MATERIAL-
ized view log IZED VIEW LOG”

ALTER PACKAGE Recompiles a PL/SQL 7 “ALTER PACKAGE”
package

ALTER PROCEDURE Recompiles a PL/SQL 7 “ALTER PROCE-
stored procedure DURE”

ALTER PROFILE Adds, changes, or 2 “CREATE/ALTER/
removes a resource limit DROP PROFILE”
from an existing profile

ALTER RESOURCE Modifies the formula cal- 2 “ALTER RESOURCE

COST culating the total resource COST”
cost used in a session

ALTER ROLE Changes the authoriza- 2 “CREATE/ALTER/
tion level required to DROP ROLE”
enable a role

ALTER ROLLBACK Changes the online status | 2 “CREATE/ALTER/

SEGMENT of a rollback segment or DROP ROLLBACK
modifies its storage char- SEGMENT”
acteristics

ALTER SEQUENCE Changes the characteris- 2 “CREATE/ALTER/
tics of an Oracle sequence DROP SEQUENCE”

ALTER SESSION Changes the functional 2 “ALTER SESSION”
characteristics of the cur-
rent database session

ALTER SNAPSHOT Changes the storage char- | 2 “CREATE/ALTER/

acteristics or automatic
refresh characteristics of a
snapshot

DROP SNAPSHOT”

206

Chapter 1: Elements of SOL

Table 1-5. SQL Statements Covered in This Book (continued)

Found in
SQL Statement Description Chapter Under This Heading
ALTER SNAPSHOT Changes the storage char- | 2 “CREATE/ALTER/
LOG acteristics of a snapshot DROP SNAPSHOT
log LOG”
ALTER SYSTEM Makes dynamic changes 2 “ALTER SYSTEM”
to the database instance
ALTER TABLE Modifies the characteris- 2 “CREATE/ALTER/
tics of a table DROP TABLE”
ALTER TABLESPACE Changes the characteris- 2 “CREATE/ALTER/
tics of an existing DROP TABLESPACE”
tablespace
ALTER TRIGGER Recompiles a PL/SQL 7 “ALTER TRIGGER”
trigger
ALTER USER Changes the security and 2 “CREATE/ALTER/
storage characteristics of a DROP USER”
user
ALTER VIEW Recompiles a view 2 “CREATE/ALTER/
DROP VIEW”
ANALYZE Collects or deletes statis- 2 “ANALYZE”
tics about an object in the
database
ASSOCIATE Associates a method of 2 “ASSOCIATE STATIS-
STATISTICS statistics computation TICS”
with database objects
AUDIT Sets up auditing for spe- 2 “AUDIT (SQL State-
cific SQL statements in ments)”
subsequent user sessions
AUDIT Sets up auditing for a spe- | 2 “AUDIT (Schema
cific schema object Objects)”
CALL Executes a stored PL/SQL 2 “CALL”
procedure
COMMENT Adds a comment about a 2 “COMMENT”
table, view, snapshot, or
column
CREATE CLUSTER Creates a cluster that con- | 2 “CREATE/ALTER/
tains at least one table DROP CLUSTER”
with one or more col-
umns in common
CREATE Recreates a control file, 2 “CREATE CONTROL-
CONTROLFILE allowing changes to some FILE”
parameters
CREATE DATABASE Creates a database and 2 “CREATE/ALTER
specifies parameters asso- DATABASE”

ciated with it

SOL Statements

27

Table 1-5. SQL Statements Covered in This Book (continued)

Found in

SQL Statement Description Chapter Under This Heading

CREATE DATABASE Creates a database link to | 2 “CREATE/DROP

LINK provide access to objects DATABASE LINK”
on a remote database

CREATE DIMENSION | Creates a dimension that 2 “CREATE/DROP
defines a parent-child DIMENSION”
relationship between
pairs of column sets

CREATE DIRECTORY | Creates a directory object | 2 “CREATE/DROP
that specifies an operating DIRECTORY”
system directory for stor-
ing BFILE objects

CREATE FUNCTION Creates a stored PL/SQL 7 “CREATE FUNCTION”
function

CREATE INDEX Creates an index on at 2 “CREATE/ALTER/
least one column of a DROP INDEX”
table or cluster

CREATE MATERIAL- Creates a materialized 2 “CREATE/ALTER/

IZED VIEW view, also called a snap- DROP MATERIAL-
shot IZED VIEW”

CREATE MATERIAL- Creates a materialized 2 “CREATE/ALTER/

IZED VIEW LOG view log DROP MATERIAL-

IZED VIEW LOG”

CREATE PACKAGE Creates a PL/SQL package “CREATE PACKAGE”

CREATE PROCEDURE | Creates a PL/SQL stored “CREATE PROCE-
procedure DURE”

CREATE PROFILE Creates a profile to set 2 “CREATE/ALTER/
limits on database DROP PROFILE”
resources

CREATE ROLE Creates a role, which is a 2 “CREATE/ALTER/
set of privileges that can DROP ROLE”
be granted to users

CREATE ROLLBACK Creates a rollback seg- 2 “CREATE/ALTER/

SEGMENT ment, which is used by DROP ROLLBACK
Oracle to store data nec- SEGMENT”
essary to roll back
changes made by transac-
tions

CREATE SCHEMA Creates multiple tables 2 “CREATE SCHEMA”

and/or views, and issues
grants in a single state-
ment

28

Chapter 1: Elements of SOL

Table 1-5. SQL Statements Covered in This Book (continued)

Found in

SQL Statement Description Chapter Under This Heading

CREATE SEQUENCE Creates an Oracle 2 “CREATE/ALTER/
sequence used to auto- DROP SEQUENCE”
matically generate
sequential numbers

CREATE SNAPSHOT Creates a snapshot (or 2 “CREATE/ALTER/
materialized view) DROP SNAPSHOT”

CREATE SNAPSHOT Creates a snapshot log 2 “CREATE/ALTER/

LOG DROP SNAPSHOT

LOG”

CREATE TABLE Creates a table by specify- | 2 “CREATE/ALTER/
ing the structure or refer- DROP TABLE”
encing an existing table

CREATE TABLESPACE | Creates a new tablespace, | 2 “CREATE/ALTER/
optionally specifying DROP TABLESPACE”
default storage character-
istics for objects subse-
quently created in the
tablespace

CREATE TRIGGER Creates a PL/SQL trigger 7 “CREATE TRIGGER”

CREATE Creates a temporary “CREATE TEMPO-

TEMPORARY tablespace RARY TABLESPACE”

TABLESPACE

CREATE USER Creates a new database 2 “CREATE/ALTER/
user and assigns security DROP USER”
and storage properties

CREATE VIEW Create a view 2 “CREATE/ALTER/

DROP VIEW”

CREATE SYNONYM Creates a public or private | 2 “CREATE/DROP SYN-
synonym for a database ONYM”
object

DROP SYNONYM Removes a public or pri- 2 “CREATE/DROP SYN-
vate synonym from the ONYM
database

DELETE Deletes one or more rows | 3 “DELETE”
from a table, view, or
snapshot

DISASSOCIATE Disassociates a method of | 2 “DISASSOCIATE STA-

STATISTICS statistics computation TISTICS”
from database objects

DROP CLUSTER Removes a cluster from 2 “CREATE/ALTER/
the database DROP CLUSTER”

DROP DATABASE Removes a database link 2 “CREATE/DROP

LINK

from the database

DATABASE LINK”

SOL Statements

29

Table 1-5. SQL Statements Covered in This Book (continued)

Found in

SQL Statement Description Chapter Under This Heading

DROP DIMENSION Removes a dimension 2 “CREATE/DROP
from the database DIMENSION”

DROP DIRECTORY Removes a directory 2 “CREATE/DROP
object from the database DIRECTORY”

DROP FUNCTION Removes a stored PL/SQL 7 “DROP FUNCTION”
function

DROP INDEX Removes an index from 2 “CREATE/ALTER/
the database DROP INDEX”

DROP MATERIAL- Removes a materialized 2 “CREATE/ALTER/

IZED VIEW view (or snapshot) from DROP MATERIAL-
the database IZED VIEW”

DROP MATERIAL- Removes a materialized 2 “CREATE/ALTER/

IZED VIEW LOG view log from the data- DROP MATERIAL-
base IZED VIEW LOG”

DROP PACKAGE Removes a PL/SQL pack- 7 “DROP PACKAGE”
age from the database

DROP PROCEDURE Removes a PL/SQL stored 7 “DROP PROCEDURE”
procedure from the data-
base

DROP PROFILE Removes a profile from 2 “CREATE/ALTER/
the database DROP PROFILE”

DROP ROLE Removes a role from the 2 “CREATE/ALTER/
database DROP ROLE”

DROP ROLLBACK Removes a rollback seg- 2 “CREATE/ALTER/

SEGMENT ment from the database DROP ROLLBACK

SEGMENT”

DROP SEQUENCE Removes a sequence from | 2 “CREATE/ALTER/
the database DROP SEQUENCE”

DROP SNAPSHOT Removes a snapshot from | 2 “CREATE/ALTER/
the database DROP SNAPSHOT”

DROP SNAPSHOT Removes a snapshot log 2 “CREATE/ALTER/

LOG from the database DROP SNAPSHOT

LOG”

DROP TABLE Removes a table from the 2 “CREATE/ALTER/
database DROP TABLE”

DROP TABLESPACE Removes a tablespace 2 “CREATE/ALTER/
from the database DROP TABLESPACE”

DROP TRIGGER Removes a PL/SQL trigger 7 “DROP TRIGGER”
from the database

DROP USER Removes a user from the 2 “CREATE/ALTER/
database DROP USER”

30

Chapter 1: Elements of SOL

Table 1-5. SQL Statements Covered in This Book (continued)

Found in
SQL Statement Description Chapter Under This Heading
DROP VIEW Remove a view from the 2 “CREATE/ALTER/
database DROP VIEW”
EXPLAIN PLAN Creates an explanation of | 2 “EXPLAIN PLAN”
the execution plan for a
SQL statement
GRANT Grants a system privilege | 2 “GRANT (System Priv-
or role to one or more ilege or Role)”
users and/or roles
GRANT Grants privileges on a 2 “GRANT (Object Priv-
database object to one or ileges)”
more users or roles
INSERT Inserts a row of data into 3 “INSERT”
a table or view
NOAUDIT Stops auditing defined by | 2 “NOAUDIT (Schema
a prior AUDIT statement Objects)”
for schema objects
NOAUDIT Stops auditing defined by | 2 “NOAUDIT (SQL
a prior AUDIT statement Statements)”
for SQL statements
RENAME Changes the name of an 2 “RENAME”
existing table, view,
sequence, or private
synonym
REVOKE Removes a system privi- 2 “REVOKE (System
lege or role from one or Privilege or Role)”
more users and/or roles
REVOKE Revokes privileges on a 2 “REVOKE (Object
database object from one Privileges)”
or more users or roles
SAVEPOINT Identifies a point in a 3 “SAVEPOINT”
transaction to which you
can roll back using the
ROLLBACK command
SELECT Retrieves data from a 3 “SELECT”
table, view, or snapshot
SET CONSTRAINT Specifies at the transac- 3 “SET CONSTRAINT”
tion level how constraints
are checked
SET ROLE Enables or disables roles 3 “SET ROLE”

for the current session

SOL Statements 31
Table 1-5. SQL Statements Covered in This Book (continued)
Found in
SQL Statement Description Chapter Under This Heading
SET TRANSACTION Establishes the current 3 “SET TRANSACTION”
transaction as read-only
or read-write, or specifies
the rollback segment to
be used by the transaction
TRUNCATE Removes all rows from a 3 “TRUNCATE”
table or cluster
UPDATE Changes the value stored | 3 “UPDATE”

in column of data in one
or more tables, views, or
snapshots

Data Definition
Statements

SQL statements fall into two categories: Data Definition Language (DDL) and Data
Manipulation Language (DML). You invoke DDL statements when you need to
manipulate the structure of your Oracle database. You can use DDL statements to
define, modify, and remove every type of object that can exist in an Oracle data-
base. For this reason, it is critically important that you understand DDL statements
and know how to use them properly. Many of the DDL statements require special
database privileges and are normally executed by the DBA; for DBAs, of course,
knowledge of DDL is a requirement. But Oracle developers and designers will also
find knowledge of these statements to be very useful. Because DDL statements can
perform so many different functions, there are a large number of them, and many
have a wide range of options and syntax choices. This chapter provides a quick
reference to what these SQL statements do and how you issue them.

SQL statements in the second category, DML, are used to manipulate the actual
data contained in an Oracle database. DML statements are covered in Chapter 3,
Data Manipulation and Control Statements.

SOL DDL Statements by lask

Often one of the most frustrating and time-consuming aspects of working with an
Oracle database is simply finding the proper statement to accomplish a particular
task. Table 2-1 lists most common data definition tasks, along with the appropri-
ate SQL statements used to accomplish each task. You will find the detailed syn-
tax of each statement later in this chapter.

32

SOL DDL Statements by Task

33

Table 2-1. Common DDL Tasks and Their Corresponding SQL Statements

If you want to

Use this statement

Add a column/integrity constraint to a table

Add a comment about a table, view, snapshot, or column
into the data dictionary

Add a resource limit from an existing profile
Add datafiles to an existing tablespace
Add/rename data files

Allocate an extent for a cluster

Allocate an extent for the table
Allow/disallow access to a table
Allow/disallow writing to a table
Allow/disallow writing to a tablespace
Associate a method of statistics computation with database
objects

Audit a specific schema object

Audit specific SQL statements

Back up the current control file

Begin/end a backup by putting a tablespace in backup or
normal mode

Bring a rollback segment online/offline

Change a resource limit from an existing profile

Change a user’s default role

Change a user’s default table space

Change a user’s password

Change a user’s profile

Change a user’s tablespace quotas

Change a user’s temporary tablespace

Change an existing tablespace

Change database control file parameters

Change parameters for a database

Change storage parameters for an existing tablespace
Change the authorization level required to enable a role
Change the characteristics of an index

Change the characteristics of an Oracle sequence
Change the dynamically modifiable characteristics of the
running database instance

Change the formula used to calculate the total resource
cost used in a session

ALTER TABLE
COMMENT

ALTER PROFILE

ALTER TABLESPACE
ALTER TABLESPACE
ALTER CLUSTER

ALTER TABLE
GRANT/REVOKE ROLE
ALTER TABLE

ALTER TABLESPACE
ASSOCIATE STATISTICS

AUDIT

AUDIT

ALTER DATABASE
ALTER TABLESPACE

ALTER ROLLBACK
SEGMENT

ALTER PROFILE
ALTER USER

ALTER USER

ALTER USER

ALTER USER

ALTER USER

ALTER USER

ALTER TABLESPACE
CREATE CONTROLFILE
ALTER DATABASE
ALTER TABLESPACE
ALTER ROLE

ALTER INDEX
ALTER SEQUENCE
ALTER SYSTEM

ALTER RESOURCE COST

34 Chapter 2: Data Definition Statements

Table 2-1. Common DDL Tasks and Their Corresponding SQL Statements (continued)

If you want to

Use this statement

Change the functional characteristics of the current data-
base session, including several National Language Support
(NLS) characteristics

Change the name of a database
Change the name of a schema object

Change the name of an existing table, view, sequence, or
private synonym

Change the online status of a rollback segment

Change the security and storage characteristics of a user
Change the storage characteristics of a materialized view
log

Change the storage characteristics of a snapshot log
Change the storage characteristics or automatic refresh
characteristics of a materialized view (or snapshot)
Change the storage characteristics or automatic refresh
characteristics of a snapshot

Choose archivelog/noarchivelog mode

Collect statistics about an object in the database

Copy a new table from an existing table

Create a cluster

Create a database

Create a database link to access objects on a remote
database

Create a dimension that defines a parent-child relationship
between pairs of column sets

Create a directory object that specifies an operating system
directory for storing BFILE objects

Create a materialized view (also called a snapshot)
Create a materialized view log

Create a new database user
Create a new tablespace
Create a PL/SQL package
Create a PL/SQL package body

Create a PL/SQL trigger that is automatically executed
when a particular SQL statement is executed against a
table

Create a profile to set limits on database resources

Create a public or private synonym for a database object

ALTER SESSION

CREATE CONTROLFILE
RENAME
RENAME

ALTER ROLLBACK SEG-
MENT

ALTER USER

ALTER MATERIALIZED
VIEW LOG

ALTER SNAPSHOT LOG

ALTER MATERIALIZED
VIEW

ALTER SNAPSHOT

ALTER DATABASE
ANALYZE

CREATE TABLE AS
CREATE CLUSTER
CREATE DATABASE
CREATE DATABASE LINK

CREATE DIMENSION

CREATE DIRECTORY

CREATE MATERIALIZED
VIEW

CREATE MATERIALIZED
VIEW LOG

CREATE USER

CREATE TABLESPACE
CREATE PACKAGE
CREATE PACKAGE BODY
CREATE TRIGGER

CREATE PROFILE
CREATE SYNONYM

SOL DDL Statements by Task

35

Table 2-1. Common DDL Tasks and Their Corresponding SQL Statements (continued)

If you want to

Use this statement

Create a role

Create a rollback segment

Create a snapshot
Create a snapshot log
Create a standalone function

Create a table by either specifying the structure or refer-
encing an existing table

Create a temporary tablespace

Create a view

Create an explanation of the execution plan for a SQL
statement

Create an index for one or more columns of a table or
cluster

Create an Oracle sequence used to automatically generate
sequential numbers

Delete a cluster from the database

Delete a database link from the database
Delete a dimension from the database
Delete a directory object from the database
Delete a function from the database

Delete a materialized view (or snapshot) from the
database

Delete a materialized view log from the database

Delete a PL/SQL package from the database

Delete a profile from the database

Delete a public or private synonym from the database
Delete a resource limit from an existing profile

Delete a role from the database

Delete a rollback segment from the database

Delete a sequence from the database
Delete a snapshot from the database
Delete a snapshot log from the database

Delete a system privilege or role from one or more users
and/or roles

Delete a tablespace from the database

Delete a trigger from the database

CREATE ROLE

CREATE ROLLBACK
SEGMENT

CREATE SNAPSHOT
CREATE SNAPSHOT LOG
CREATE FUNCTION
CREATE TABLE

CREATE TEMPORARY
TABLESPACE

CREATE VIEW
EXPLAIN PLAN

CREATE INDEX

CREATE SEQUENCE

DROP CLUSTER

DROP DATABASE LINK
DROP DIMENSION
DROP DIRECTORY
DROP FUNCTION

DROP MATERIALIZED
VIEW

DROP MATERIALIZED
VIEW LOG

DROP PACKAGE
DROP PROFILE
DROP SYNONYM
ALTER PROFILE
DROP ROLE

DROP ROLLBACK
SEGMENT

DROP SEQUENCE
DROP SNAPSHOT
DROP SNAPSHOT LOG
REVOKE

DROP TABLESPACE
DROP TRIGGER

36 Chapter 2: Data Definition Statements

Table 2-1. Common DDL Tasks and Their Corresponding SQL Statements (continued)

If you want to

Use this statement

Delete a user from the database
Delete a view from the database
Delete an index from the database

Delete privileges on a database object from one or more
users or roles

Delete statistics about an object in the database
Delete a table from the database

Disable a database trigger

Disable a role for the current session

Disable auditing by reversing the effect of a prior audit
statement

Disassociate a method of statistics computation from data-
base objects

Enable a database trigger

Enable a role for the current session
Enable/disable all triggers on a table
Enable/disable autoextending the size of data files
Enable/disable table locks on a table

Grant a system privilege or role to one or more users and/
or roles

Grant privileges on a database object to one or more users
or roles

Identify migrated and chained rows in a table or cluster

Issue multiple CREATE TABLE, CREATE VIEW, and
GRANT statements

Modify the column characteristics of a table
Modify the degree of parallelism for a table

Modify the integrity constraints associated with a table
and/or its columns

Modify the storage characteristics of a rollback segment

Modify the storage characteristics of a table
Open/mount the database

Perform media recovery

Place a tablespace online

Recompile a PL/SQL package

Recompile a standalone function
Recompile a stored function

Recompile a stored package

DROP USER
DROP VIEW
DROP INDEX
REVOKE

ANALYZE

DROP TABLE
ALTER TRIGGER
SET ROLE
NOAUDIT

DISASSOCIATE
STATISTICS

ALTER TRIGGER
SET ROLE

ALTER TABLE
ALTER DATABASE
ALTER TABLE
GRANT

GRANT

ANALYZE
CREATE SCHEMA

ALTER TABLE
ALTER TABLE
ALTER TABLE

ALTER ROLLBACK
SEGMENT

ALTER TABLE
ALTER DATABASE
ALTER DATABASE
ALTER TABLESPACE
ALTER PACKAGE
ALTER FUNCTION
ALTER FUNCTION
ALTER PACKAGE

SOL DDL Statements by Task

37

Table 2-1. Common DDL Tasks and Their Corresponding SQL Statements (continued)

If you want to

Use this statement

Recompile a stored procedure
Recompile a view
Recreate a control file

Recreate SQL commands to build the database to the trace
file

Remove a cluster from the database

Remove a database link from the database
Remove a dimension from the database
Remove a directory object from the database
Remove a function from the database

Remove a materialized view (or snapshot) from the
database

Remove a materialized view log from the database

Remove a PL/SQL package from the database

Remove a profile from the database

Remove a public or private synonym from the database
Remove a resource limit from an existing profile
Remove a role from the database

Remove a rollback segment from the database

Remove a sequence from the database
Remove a snapshot from the database
Remove a snapshot log from the database

Remove a system privilege or role from one or more users
and/or roles

Remove a tablespace from the database
Remove a trigger from the database
Remove a user from the database
Remove a view from the database
Remove an index from the database

Remove privileges on a database object from one or more
users or roles

Remove statistics about an object in the database
Remove a table from the database

Rename an existing table, view, sequence, or private
synonym

Shrink a rollback segment to an optimal or given size

ALTER PROCEDURE
ALTER VIEW

CREATE CONTROLFILE
ALTER DATABASE

DROP CLUSTER

DROP DATABASE LINK
DROP DIMENSION
DROP DIRECTORY
DROP FUNCTION

DROP MATERIALIZED
VIEW

DROP MATERIALIZED
VIEW LOG

DROP PACKAGE
DROP PROFILE
DROP SYNONYM
ALTER PROFILE
DROP ROLE

DROP ROLLBACK
SEGMENT

DROP SEQUENCE
DROP SNAPSHOT
DROP SNAPSHOT LOG
REVOKE

DROP TABLESPACE
DROP TRIGGER
DROP USER

DROP VIEW

DROP INDEX
REVOKE

ANALYZE
DROP TABLE
RENAME

ALTER ROLLBACK
SEGMENT

38 Chapter 2: Data Definition Statements

Table 2-1. Common DDL Tasks and Their Corresponding SQL Statements (continued)

If you want to Use this statement

Specify a formula to calculate the total cost of resources ALTER RESOURCE COST
used by a session
Start backup of a tablespace by placing it in backup mode | ALTER TABLESPACE

Stop auditing defined by a prior AUDIT statement NOAUDIT

Stop backup of a tablespace ALTER TABLESPACE
Take a data file online/oftline ALTER DATABASE
Take a tablespace online/offline ALTER TABLESPACE
Validate the structure of a table, index, or cluster ANALYZE

Validate the structure of an object in the database ANALYZE

SOL Statement Syntax

This section provides a detailed reference to each of the SQL statements used to
create and maintain database objects. Each statement is listed in at least one of its
forms, with a short explanation of the statement’s purposes, its exact syntax and
associated parameters, an example, and usage notes when applicable.

Many of these statements are normally used only for administration
of a database and are typically issued by a DBA. For this reason,
many statements require specific privileges. Some statements also
apply only when specific Oracle options, such as the Partition
Option or the Object Option, are installed.

ALTER RESOURCE COST

ALTER RESOURCE COST
[CPU_PER_SESSION weight]
[CONNECT_TIME weight]
[LOGICAL, READS_PER_SESSION weight]
[PRIVATE_SGA weight]
Modifies the formula used to calculate the session’s total resource cost. This cost

may then be limited by the COMPOSITE_LIMIT parameter in a user’s profile.

Keywords

CPU_PER_SESSION
Specifies the amount of CPU time used in a session (in hundredths of a second).

CONNECT _TIME
Specifies the total elapsed time for a session (in minutes).

ALTER SYSTEM 39

LOGICAIL_READS_PER_SESSION
Specifies the number of database blocks read in a session, including those
read from memory and disk.

PRIVATE_SGA
Specifies the amount of memory a session can allocate in the shared pool of
the System Global Area (SGA) (in bytes). Only applies when using the multi-
threaded server and allocating private space in the SGA for the session.

weight
Integer weight of each resource.

The total resource cost is calculated by multiplying the amount of
each resource used in the session by the weight assigned to that
resource, and adding the products for all four resources. The result is
expressed in service units. You must activate the ALTER RESOURCE
COST privilege to issue this statement.

Example
Assign weights to CPU_PER_SESSION and CONNECT_TIME:

ALTER RESOURCE COST
CPU_PER_SESSION 100
CONNECT_TIME 2

The resulting cost in service units (SU) is calculated as:

SU = (CPU_Time*100) + Connect_Time*2;

ALTER SESSION

See Chapter 3 for a full description of this statement.

ALTER SYSTEM

ALTER SYSTEM
{[SET
{ [RESOURCE_LIMIT = TRUE | FALSE] |
[GLOBAL_NAMES = TRUE | FALSE] |
[MT'S_SERVERS = integer] |
[MT'S_DISPATCHERS = 'protocol, integer’] |
[LICENSE MAX SESSIONS = integer] |
[LICENSE SESSIONS_WARNING = integer] |
[LICENSE MAX USERS = integer]
3
[ENABLE RESTRICTED SESSION] |
[DISABLE RESTRICTED SESSION] |

40 Chapter 2: Data Definition Statements

[FLUSH SHARED POOL] |
[CHECKPOINT [GLOBAL | LOCAL]] |
[CHECK DATAFILES GLOBAL | LOCAL] |
[SWITCH LOGFILE] |
[ENABLE DISTRIBUTED RECOVERY] |
[DISABLE DISTRIBUTED RECOVERY] |
[DISCONNECT SESSION ’sid integer, session _integer' [POST_TRANSACTION] [IMMEDIATE]] |
[SUSPEND | RESUME]
[KILL SESSION 'sid integer, session integer‘ [IMMEDIATE]] |
[ARCHIVE_LOG [THREAD integer]
{[START [TO ’'destination’]]
[STOP]
[SEQUENCE integer [TO ’'destination’]]
[CHANGE integer [TO ’'destination’]]
[CURRENT [TO ’destination’]]
[GROUP integer [TO 'destination’]]
[LOGFILE 'filename' [TO 'destination’]]
[NEXT [TO ’'destination’]]
[ALL [TO 'destination’]]
}
}

Makes dynamic changes to a database instance.

Keywords

RESOURCE_LIMIT
Specifies whether resource limits will be enforced (TRUE) or not enforced
(FALSE).

GLOBAL_NAMES
Specifies whether global naming will be enforced (TRUE) or not enforced
(FALSE).

MTS_SERVERS
Changes the minimum number of shared multithreaded server (MTS) processes.

MTS_DISPATCHERS
Changes the number of dispatcher processes for the named protocol. The
database must be open to issue this statement.

LICENSE_MAX_SESSIONS
Specifies the maximum number of sessions permitted on this instance. A value
of 0 indicates no limit.

LICENSE_SESSIONS_WARNING
Specifies the maximum number of sessions permitted on this instance before a
warning message is written to the alert log file. A value of 0 indicates no limit.

LICENSE_MAX_USERS
Specifies the maximum number of users in this database. A value of 0 indi-
cates no limit.

ALTER SYSTEM 41

ENABLE RESTRICTED SESSION
Allows only users with the RESTRICTED SESSION privilege to log on to the
instance. The database may be dismounted, mounted, open, or closed when
issuing this statement.

DISABLE RESTRICTED SESSION
Allows any user with the CREATE SESSION privilege to log on to the instance.
The database may be dismounted, mounted, open, or closed when issuing this
statement.

FLUSH SHARED POOL
Clears all data from the instance’s shared pool. The database may be dis-
mounted, mounted, open, or closed when issuing this statement.

CHECKPOINT
Causes Oracle to perform a GLOBAL or LOCAL checkpoint. GLOBAL per-
forms a checkpoint for all instances that have opened the database; LOCAL
performs a checkpoint only for the instance to which you are connected. The
database may be open or closed when issuing this statement.

CHECK DATAFILES
Verifies access to online data files. GLOBAL verifies that all instances that have
opened the database can access the datafiles, while LOCAL verifies that the
instance to which you are connected can access the datafiles. The database
may be open or closed when issuing this statement.

SWITCH LOGFILE
Causes Oracle to switch redo log file groups.

ENABLE DISTRIBUTED RECOVERY
Specifies that distributed recovery is to be enabled and, in a single-process
environment, is used to initiate distributed recovery.

DISABLE DISTRIBUTED RECOVERY
Specifies that distributed recovery is to be disabled.

DISCONNECT SESSION
Disconnects the specified session from the database by killing the dedicated
server process or the MTS virtual circuit.

POST_TRANSACTION

Specifies that ongoing transactions be completed before the session is dis-
connected.

IMMEDIATE
Specifies that the session be disconnected immediately, without waiting for
transactions to complete. If POST_TRANSACTION is specified, this keyword
will be ignored.

42 Chapter 2: Data Definition Statements

KILL SESSION
Terminates a session using SID and SERIAL# from the V$SESSION view. If the
session is waiting for an activity, such as an operation on a remote database,
to complete, Oracle will wait until this activity is complete unless IMMEDIATE
is specified.

SUSPEND
Specifies that all I/O activity for all instances should be suspended until an
ALTER SYSTEM RESUME command is issued. All tablespaces should be in hot
backup mode before issuing this statement.

RESUME
Specifies that normal I/O operations should be resumed following an ALTER
SYSTEM SUSPEND statement.

ARCHIVE_LOG
Manually archives redo log file groups or enables/disables automatic
archiving.

THREAD
Specifies the thread containing the redo log file group to be archived. This
parameter is required only when running the Oracle Parallel Server option in
parallel mode.

START
Enables automatic archiving of redo log groups.

STOP
Disables automatic archiving of redo log groups.

SEQUENCE
Specifies the log sequence number of the redo log file group to be manually
archived. The database must be mounted, but may be open or closed to issue
this statement.

CHANGE
Manually archives the online redo log file group containing the redo log entry
with the system change number (SCN) specified by the integer. If the SCN is
the current log group, a log switch is performed. The database must be open
to use this parameter.

CURRENT
Manually forces a log switch and archives the current redo log file group. The
database must be open to use this parameter.

GROUP
Manually archives the online redo log file group with the specified GROUP
value, which can be found in the DBA_LOG_FILES parameter in the INIT.ORA

ANALYZE 43

file. The database must be mounted, but may be open or closed when issuing
this statement.

LOGFILE
Manually archives the online redo log file group containing the log file mem-
ber identified by filename. The database must be mounted, but may be open
or closed when issuing this statement.

NEXT
Manually archives the next online redo log file group that is full but has not
yet been archived. The database must be mounted, but may be open or closed
when issuing this statement.

ALL
Manually archives all online redo log file groups that are full, but that have not

yet been archived. The database must be mounted, but may be open or closed
when issuing this statement.

Except as noted, the database must be mounted and open to issue
these statements.

Examples
Change the number of dispatcher processes to 10 for TCP and 8 for DECNet:

ALTER SYSTEM
SET MTS_DISPATCHERS = 'TCP,10'
MTS_DISPATCHERS = 'DECnet,8';

Enforce Oracle licensing by setting the maximum number of sessions to 100 and
the warning threshold to 80:

ALTER SYSTEM
SET LICENSE_MAX_SESSIONS = 100
LICENSE_SESSIONS_WARNING = 80;

Archive log sequence number 123 to the specified location:

ALTER SYSTEM
ARCHIVE LOG SEQ 123 TO '/disk09/oracle/archive';

ANALYZE

See Chapter 3 for a complete description of this statement.

44 Chapter 2: Data Definition Statements

ASSOCIATE STATISTICS

ASSOCIATE STATISTICS WITH
{COLUMNS [schema.]table.column[, [schema.]table.column...] |
FUNCTIONS [schema.]function[, [schema.]function...] |
PACKAGES [schema.]packagel, [schema.]package. . .] |
INDEXES [schema.]index[, [schema.]index...] |
}
{USING [schema.]statistics_type |
DEFAULT COST (cpu_cost,io_cost,network cost) |
DEFAULT SELECTIVITY default selectivity
}

Associates a method of statistics computation with database objects.
Keywords
COLUMNS

Specifies that a list of columns will be provided.
schema

The schema containing the specified table.
table

The name of the table containing the specified column.
column

The column name for which an association is defined.
FUNCTIONS

Specifies that one or more functions will be associated.
PACKAGES

Specifies that one or more packages will be associated.
INDEXES

Specifies that one or more indexes will be associated.
USING statistics_type

Specifies the statistics type being associated.

DEFAULT COST
Specifies that default costs will be provided for CPU, I/O, and the network.
This keyword is not valid if the COLUMNS keyword is used.
cpu_cost
Integer representing the CPU cost of a single execution or access.
i0_cost
Integer representing the I/O cost of a single execution or access.
network_cost
Integer representing the network cost of a single execution or access.

AUDIT (Schema Objects) 45

DEFAULT SELECTIVITY default_selectivity
Specifies an integer between 1 and 100, representing the default selectivity as
a percentage. This keyword is not valid if the COLUMNS keyword is used.

To remove or disassociate statistics from an object, use the DISASSO-
CIATE STATISTICS command.

Example
Create an associate for the emp_sal function using the cost function cost_funct:

ASSOCIATE STATISTICS WITH FUNCTIONS emp_sal USING cost_funct;

AUDIT (Schema Objects)

AUDIT {object_option[,object _option ...] | ALL}

ON {[schema.]objectname | DIRECTORY directory name | DEFAULT}
[BY SESSION [WHENEVER [NOT] SUCCESSFUL]

[BY ACCESS [WHENEVER [NOT] SUCCESSFUL]

Sets up auditing for a specific schema object.
Keywords

object_option
Indicates that a particular operation will be audited. The following operations
are valid: ALTER, AUDIT, COMMENT, DELETE, EXECUTE, GRANT, INDEX,
INSERT, LOCK, RENAME, SELECT, and UPDATE. The keyword ALL specifies
all the operations.

object_name
Specifies the name of the schema object to be audited.

DIRECTORY directory_name
Specifies the name of a directory to audit.

DEFAULT
Establishes the specified object option as the default for objects that have not
yet been created.

BY SESSION
Causes Oracle to write a single record for all SQL statements of the same type
issued in the same session.

BY ACCESS
Causes Oracle to write a single record for each audited statement.

46 Chapter 2: Data Definition Statements

WHENEVER SUCCESSFUL
Chooses auditing only for SQL statements that complete successfully.

WHENEVER NOT SUCCESSFUL
Chooses auditing only for SQL statements that fail or result in errors.

Examples

Audit for any UPDATE statement issued for scott’s bonus table:
AUDIT UPDATE ON scott.bonus;

Audit for any unsuccessful operation on scott’s emp table:

AUDIT ALL ON scott.emp WHENEVER NOT SUCCESSFUL;

AUDIT (SQL Statements)

AUDIT {system option | sqgl_option}[, {system option | sgl_option ...}]
{[BY usernamel,username ...]1] |
[BY PROXY [ON BEHALF OF {ANY|usernamel,username]]}

}

{[BY SESSION] [WHENEVER [NOT] SUCCESSFUL] |
[BY ACCESS] [WHENEVER [NOT] SUCCESSFUL]

}

Sets up auditing for specific SQL statements in subsequent user sessions.
Keywords
system_option
Specifies that SQL statements authorized by the named system privilege be
audited.
sql_option
Specifies a set of SQL statements to be audited.
BY username
Specifies that SQL statements issued by the named user be audited.
BY proxy
Specifies that SQL statements issued by the specified proxy be audited.

ON BEHALF OF ANY
Specifies that SQL statements issued on behalf of any user be audited.

ON BEHALF OF user
Specifies the user on whose behalf the proxy executes the specified statement.

BY SESSION
Causes Oracle to write a single record for all SQL statements of the same type
issued in the same session.

CALL 47

BY ACCESS

Causes Oracle to write a single record for each audited statement.
WHENEVER SUCCESSFUL

Chooses auditing only for SQL statements that complete successfully.
WHENEVER NOT SUCCESSFUL

Chooses auditing only for SQL statements that fail or result in errors.

Audit records are written to the audit trail, which is a database table
containing audit records that can be accessed through data dictio-
nary views. Auditing must be enabled using the AUDIT_TRAIL
parameter in the INIT.ORA file.

Example

Audit for any unsuccessful SELECT statement (which may indicate an attempt to
read a table for which a user has not been granted access):

AUDIT SELECT TABLE
WHENEVER NOT SUCCESSFUL;

CALL

CALL [schema.] [package.]{function | procedure}[@dblink]
(expression|, expression..]) [INTO :host_variable [[INDICATOR] :indicator. variable]]

Executes a stored PL/SQL function or procedure.

Keywords

schema
Specifies the name of the schema that contains the package, function, or
procedure.
package
Specifies the name of the package that contains the function or procedure.
Sfunction
Specifies the name of a function to be executed.

procedure

Specifies the name of a procedure to be executed.
dblink

Specifies the name of a database link.

expression
Specifies an argument to the function or procedure.

48 Chapter 2: Data Definition Statements

INTO
Specifies for a function the name of the host variable that will hold the return
value.

INDICATOR
Specifies the name of a variable that will indicate the condition of the host
variable.

COMMENT

COMMENT ON {TABLE [schema.]{table | view | snapshot} |
COLUMN [schema.]{table | view | smapshot}.column

}
IS ‘text’

Adds a comment about a table, view, snapshot, or column into the data dictionary.

Keywords

schema
Specifies the name of a schema containing the table, view, or snapshot that
will have a comment associated with it. If schema is omitted, the current
schema is assumed.

TABLE

Specifies that the comment be associated with a table, view, or snapshot.

table

Specifies the name of a table with which the comment will be associated.
view

Specifies the name of a view with which the comment will be associated.

snapshot
Specifies the name of a snapshot with which the comment will be associated.

COLUMN
Specifies that the comment be associated with a column.

column
Specifies the name of the column to be commented.

text
The actual text of the comment. This text will be recorded in the data
dictionary.

You can use the COMMENT ON COLUMN command to drop a com-
ment. Simply set the comment to a null string ().

CREATE/ALTER/DROP CLUSTER 49

Example
Add a comment to the ename column of scott’s emp table:

COMMENT ON COLUMN scott.emp.ename IS 'Last name from personnel records';

CREATE/ALTER/DROP CLUSTER

CREATE CLUSTER [schema.]clustername
(column datatypel, column datatype ...])
Physical Attributes_Clausel]
SIZE integer [K | M]]
TABLESPACE tsname]
STORAGE Storage Clause]
INDEX]
[SINGLE TABLE] HASHKEYS integer HASH IS expression]
{PARALLEL [integer] | NOPARALLEL}]
CACHE | NOCACHE]

Creates a cluster, which is a schema object containing one or more tables with one
or more columns in common.
ALTER CLUSTER [schema.]clustername
[SIZE integer[K | M]]
[Physical Attributes_Clausel
[STORAGE Storage Clause]
[{PARALLEL [integer] | NOPARALLEL}]
[ALLOCATE EXTENT
(EXTSIZE integer[K | M] [DATAFILE ‘filename’] [INSTANCE integer])]

Redefines future storage allocations or allocates an extent for a cluster.

DROP CLUSTER [schema.]clustername
[INCLUDING TABLES]
[CASCADE CONSTRAINTS]

Removes a cluster from the database.

Keywords

cluster_name
Specifies the name of the cluster.
column
Specifies the name of the column that defines the cluster key.
datatype
Specifies the datatype of the column.
PCTUSED

Changes the minimum percentage of used space that Oracle will maintain in
each block. Values can range from 0 to 99, and the default is 40.

50 Chapter 2: Data Definition Statements

PCTFREE
Changes the percentage of space kept free for future updates to the rows con-
tained in this cluster. Values can range from 0 to 99, and the default is 10.

INITTRANS
Changes the number of transaction entries allocated to each block in the clus-
ter. Values can range from 1 to 255, but should not normally be changed from
the default of 2.

MAXTRANS
Changes the maximum number of concurrent transactions that can update a
block of the cluster. Values can range from 1 to 255, but should not normally
be changed from the default, which is a function of the Oracle block size.

SIZE
Determines how much space is allocated to store rows with the same cluster
key. The value should be a divisor of the Oracle block size, and will be
rounded up to the next larger divisor if necessary.

TABLESPACE
Specifies the name of the tablespace where this cluster will be stored. If omit-
ted, the default tablespace for the schema owner will be used.

STORAGE Storage_Clause
Specifies the physical storage characteristics. See Chapter 4, Common SQL Ele-
ments, for detailed information.

INDEX
Specifies that an indexed cluster be created. This keyword is not valid for a
hash cluster.

SINGLE TABLE
Specifies that this cluster is a special type containing only one table.

HASHKEYS integer
Specifies that a hash cluster be created with integer hash keys.

HASH IS expression
Specifies an expression to be used as the hash function for the hash cluster.

NOPARALLEL
Specifies that the cluster be created serially. This is the default.

PARALLEL [integer]
Specifies that Oracle will select a degree of parallelism equal to the number of
CPUs available on all participating instances, multiplied by the value of the
PARALLEL_THREADS_PER_CPU initialization parameter. If integer is specified,
it indicates the degree of parallelism.

CREATE/ALTER/DROP CLUSTER 51

CACHE
Specifies that the blocks retrieved for this table are placed at the most recently
used end of the buffer cache when a full table scan is performed.

NOCACHE
Specifies that the blocks retrieved for this table are placed at the least recently

used end of the buffer cache when a full table scan is performed. This is the
default.

EXTSIZE integer
Specifies the size of the new extent in bytes, kilobytes, or megabytes.
DATAFILE
Specifies the name of the operating system datafile in the tablespace contain-
ing this cluster that is to hold the new extent. If omitted, Oracle will select a
datafile.
INSTANCE
Makes the new extent available to the specified instance, which is identified
by the initialization parameter INSTANCE_NUMBER. This parameter can only
be used when running in parallel mode.
INCLUDING TABLES
Specifies that all tables belonging to the cluster be dropped.
CASCADE CONSTRAINTS
Specifies that all referential integrity constraints from tables outside the cluster
referring to primary and unique keys in the cluster’s tables will be dropped.

Clustering can improve database performance and efficiency. Com-
mon columns are stored only once, and the data from all tables is
normally stored contiguously.

Examples

Create a cluster in scott’s schema that will allocate 512 bytes per block to cluster
keys and allow a maximum of 20 extents for the cluster. All other values will be
defaults:

CREATE CLUSTER demo.employee
SIZE 512K
STORAGE (MAXEXTENTS 20) ;

Alter an existing cluster to allocate 512 bytes per block to cluster keys and allow a
maximum of 20 extents for the cluster:
ALTER CLUSTER demo.employee

SIZE 512K
STORAGE (MAXEXTENTS 20) ;

52 Chapter 2: Data Definition Statements

Remove a cluster and all the tables it contains from the database:

DROP CLUSTER demo.employee INCLUDING TABLES;

CREATE CONTROLFILE

CREATE CONTROLFILE [REUSE] [SET] DATABASE dbname

LOGFILE [GROUP integer] filespec[, [GROUP integer] filespec ...]
{RESETLOGS | NORESETLOGS}

[MAXLOGFILES integer]

[MAXLOGMEMBERS integer]

[MAXLOGHISTORY integer]

[MAXDATAFILES integer]
[
[

MAXINSTANCES integer]

ARCHIVELOG | NOARCHIVELOG]
DATAFILE (filespec|,filespec ...])
CHARACTER SET character. set

Recreates a control file, allowing changes to some parameters.

Keywords

REUSE
Specifies that one or more existing control files specified in INIT.ORA can be
reused and overwritten. If this keyword is omitted and if any of the control
files named in INIT.ORA exists, an error will result.

SET
Specifies that the supplied dbname will be a new name for the database. Valid
names are one to eight characters long.

DATABASE
Specifies the name of the database. Unless you use the SET command, this
must be the current name of the database.

LOGFILE
Specifies members of all redo log file groups, which must all exist.

RESETLOGS
Specifies that the contents of the log files listed in the LOGFILE clause should
be ignored. Each file listed in the LOGFILE clause must have a SIZE specified.

NORESETLOGS
Specifies that all files listed in the LOGFILE clause (which must be current
redo log files and not restored from backups) should be reused with their
original sizes.

MAXLOGFILES
Specifies the maximum number of redo log file groups that can ever be cre-
ated for the database. The default and maximum values are operating system-
dependent. This value must be at least 2, and should be at least 3.

CREATE CONTROLFILE 53

MAXLOGMEMBERS
Specifies the maximum number of redo log group copies that may exist in the
database. The minimum is 1, and the default and maximum are operating
system-dependent.

MAXLOGHISTORY
Specifies the maximum number of archived redo log file groups for automatic
media recovery of the Parallel Server. The minimum value is 1, and the default
and maximum are operating system-dependent.

MAXDATAFILES
Specifies the maximum number of datafiles that can ever be created for the
database. The minimum is 1, but it should never be set lower than the largest
number of datafiles ever created in the database.

MAXINSTANCES
Specifies the maximum number of instances that can have the database
mounted and open. This parameter applies only to the Parallel Server.

ARCHIVELOG
Specifies that the database will be run in archivelog mode.

NOARCHIVELOG
Specifies that the database will not be run in archivelog mode and that online
redo log files will be reused. This option is the default.

DATAFILE
Specifies the names of all datafiles in the database, which must all exist.

character_set
Specifies the name of the character set used to create the database, if different
from the default.

I strongly recommend that you back up the entire database, includ-
ing control files and redo log files, before you issue this command.

Example
Recreate a control file for a database called TEST:

CREATE CONTROLFILE REUSE DATABASE TEST
LOGFILE GROUP 1 ('/diskOl/oracle/logl.log','/disk02/oracle/logl.log")
GROUP 2 ('/disk03/oracle/log2.log','/disk04/oracle/log2.log")
NORESETLOGS
DATAFILE '/diskl0/oradata/db0l1.dbs'
MAXLOGFILES 6
MAXDATAFILES 128
ARCHIVELOG;

54 Chapter 2: Data Definition Statements

CREATE/ALTER DATABASE

CREATE DATABASE [dbname]

CONTROLFILE [REUSE]

LOGFILE [GROUP integer] (filespec[, [GROUP integer] filespec ...])
MAXLOGFILES integer]

MAXLOGMEMBERS integer]

MAXLOGHISTORY integer]

MAXDATAFILES integer]

MAXINSTANCES integer]

ARCHIVELOG | NOARCHIVELOG]

CHARACTER SET charset

NATIONAL CHARACTER SET charset

DATAFILE (filespec|[,filespec ...]) [Autoextend Clause]

[
[
[
[
[
[
[
[

Creates a database and specifies parameters associated with it.

ALTER DATABASE [dbname]
{ARCHIVELOG | NOARCHIVELOG |
MOUNT [[STANDBY | CLONE] DATABASE] |
CONVERT |
OPEN [READ WRITE [RESETLOGS | NORESETLOGS] | READ ONLY] |
ACTIVATE STANDBY DATABASE |
RENAME FILE 'filename‘ [,’filename’ ...] TO 'filename‘ [,’'filename’ ...] |
RENAME GLOBAL_NAME TO databasel.domain[.domain ...]1] |
RESET COMPATIBILITY |
ENABLE [PUBLIC] THREAD integer |
DISABLE THREAD integer |
CHARACTER SET character_set |
NATIONAL CHARACTER SET character._set |

CREATE DATAFILE ’filename’[,’'filename’ ...] [AS filespec] |
DATAFILE 'filename’[,’filename’ ...]
{ONLINE |

OFFLINE [DROP} |
RESIZE integer[K | M] |
END BACKUP |
Autoextend_Clause
o
TEMPFILE 'filename’[,’filename’ ...]
{ONLINE |
OFFLINE
DROP |
RESIZE integer[K | M] |
Autoextend Clause
3
ADD LOGFILE [THREAD integer]
[GROUP integer] filespec|, [GROUP integer] filespec ...] |

ADD LOGFILE MEMBER ’filename’ [RESUSE] [,’filename’ [RESUSE] ...]
TO logfile descriptor|,logfile descriptor ...] |
DROP {GROUP integer | 'filename‘ | (’'filename',’filename’[,’'filename’ ...]1)} |

DROP LOGFILE MEMBER ’filename’[,’filename’ ...]1 |

CREATE STANDBY CONTROLFILE AS 'filename’ [REUSE] |

BACKUP CONTROLFILE TO {‘filename’ [REUSE] | TRACE {RESETLOGS | NORESETLOGS]} |
RECOVER [AUTOMATIC FROM ‘Iocation’]

CREATE/ALTER DATABASE 55

RECOVER [STANDBY] DATABASE [UNTIL {CANCEL | TIME date | CHANGE integer}] |
RECOVER [STANDBY] DATABASE USING BACKUP CONTROLFILE |
RECOVER [STANDBY] TABLESPACE {tablespace | DATAFILE 'filename'}
UNTIL [CONSISTENT WITH] CONTROLFILE |
RECOVER TABLESPACE tablespacel, tablespace ...] |
RECOVER DATAFILE filename[,filename] |
RECOVER LOGFILE filenamel,filename] |
RECOVER CONTINUE [DEFAULT] |
RECOVER CANCEL |
RECOVER MANAGED STANDBY DATABASE {TIMEOUT integer | CANCEL [IMMEDIATE]}

Changes one or more characteristics of an existing database.

Keywords

dbname
Specifies the name of the database. May be one to eight characters long and
must not be a reserved word.

CONTROL FILE REUSE
Specifies that one or more existing control files specified in INIT.ORA can be
reused and overwritten. If this keyword is omitted and any of the control files
named in INIT.ORA exists, an error will result. If the parameters specified
require that the control file be larger than the current size, the command will
fail. Note that this option is not normally used for a new database creation.

LOGFILE
Specifies the names of one or more redo log files to be created.

MAXLOGFILES
Specifies the maximum number of redo log file groups that can ever be cre-
ated for the database. The default and maximum value are operating system-
dependent. This value must be at least 2, and should be at least 3.

MAXLOGMEMBERS
Specifies the maximum number of copies of a redo log group that may exist in
the database. The minimum is 1, and the default and maximum are operating
system-dependent.

MAXLOGHISTORY
Specifies the maximum number of archived redo log file groups for automatic
media recovery of the Parallel Server. The minimum value is 1, and the default
and maximum are operating system-dependent.

MAXDATAFILES
Specifies the maximum number of datafiles that can ever be created for the
database. The minimum is 1, but it should never be set lower than the largest
number of datafiles ever created in the database.

56 Chapter 2: Data Definition Statements

MAXINSTANCES
Specifies the maximum number of instances that can have the database
mounted and open. This parameter applies only to the Parallel Server.

ARCHIVELOG
Specifies that the database will be run in archivelog mode, which means that a
redo log group must be archived before the redo log group can be reused. If
the group has not been archived, the database will halt until archiving occurs
successfully. This mode is required to perform media recovery.

NOARCHIVELOG
Specifies that redo log groups will not be archived and may be reused imme-
diately by Oracle. This option is the default.

CHARACTER SET
Specifies the character set that the database will use to store data. This charac-
ter set cannot be changed after database creation. The choices and default are
operating system-dependent.

NATIONAL CHARACTER SET
Specifies the national character set that will be used for specifically desig-
nated columns. If omitted, the default database character set is used.

DATAFILE
Specifies the names of all datafiles in the database. If omitted, a single datafile
will be created by default for the SYSTEM tablespace.

Autoextend_Clause
Specifies whether a data file will be extended automatically. See Chapter 4 for
more details.

MOUNT STANDBY DATABASE
Specifies that the standby database be mounted.

MOUNT CLONE DATABASE
Specifies that the clone database be mounted.

CONVERT
Specifies that the database data dictionary be converted from Oracle7 to
Oracle8 or Oracle8i.

OPEN READ WRITE
Specifies that the database be opened in read/write mode. This option is the
default.

RESETLOGS
Resets the log sequence number to 1 and invalidates all redo entries in the
existing online and archived log files. This option should only be specified
after performing incomplete media recovery or when opening the database

CREATE/ALTER DATABASE 57

after performing media recovery with a backup control file; otherwise, NORE-
SETLOGS should be used. If the database is opened with the RESETLOGS key-
word, you should immediately perform a complete backup of the database.

NORESETLOGS
Makes no change to the status of the current log sequence number and redo
log entries.

OPEN READ ONLY
Specifies that the database be opened in read-only mode, which makes que-
ries possible but disables write operations.

ACTIVATE STANDBY DATABASE
Specifies that the state of the database be changed from standby to active.

RENAME FILE filenamel TO filenameZ2
Specifies that the name of a datafile, temporary file, or log file be changed in
the control file. Note that this keyword does not affect the name of the operat-
ing system file.

RENAME GLOBAL NAME TO
Specifies that the global name of the database be changed to the supplied
value, which may be up to eight characters.

RESET COMPATIBILITY
Specifies that the compatibility of the database be reset to the version speci-
fied. This change is effective the next time the database is started.

ENABLE THREAD
Specifies that the thread of redo log files is enabled in a Parallel Server envi-
ronment. If the keyword PUBLIC is specified, the enabled thread is available
to any instance. Otherwise, the thread is available only to an instance that spe-
cifically requests it.

DISABLE THREAD
Specifies that the thread of redo log files is disabled and made unavailable to
all instance of a Parallel Server environment.

CREATE DATAFILE
Specifies that a new empty datafile be created in place of an old one (which
may have been lost without backup). Media recovery must be performed
before the datafile is usable.

ONLINE
Specifies that the datafile is to be brought online.

OFFLINE
Specifies that the datafile is to be brought offline.

58 Chapter 2: Data Definition Statements

RESIZE
Specifies that the size of the datafile is to be increased or decreased to the
indicated size.

END BACKUP
Specifies that media recovery will not be performed when the database starts
after a hot backup was interrupted.

TEMPFILE
Specifies that changes be made to a temporary datafile.

DROP
Specifies that the temporary datafile be removed from the database.

ADD LOGFILE
Specifies that one or more redo log file groups be added. THREAD may be
indicated in a Parallel Server environment.

ADD LOGFILE MEMBER
Specifies that a new member filename be added to an existing redo log file
group. REUSE may be used to indicate that filename already exists.

logfile_descriptor
Specifies an existing redo log file group either as GROUP integer or as a list of
Sfilenames.

DROP GROUP
Specifies that the entire redo log file group is to be dropped after an ALTER
SYSTEM SWITCH LOGFILE statement has been issued. The dropped group
may be specified either as GROUP integer or as a list of filenames.

DROP LOGFILE MEMBER filename
Specifies that one or more individual redo log file members be dropped.

CREATE STANDBY CONTROL FILE
Specifies that a control file be created to maintain a standby database.

BACKUP CONTROL FILE TO
Specifies that the current control file be backed up to the indicated filename.
If the keywords TO TRACE are specified, a set of SQL statements will be writ-
ten to the trace file instead of creating a backup of the control file. If RESET-
LOGS is specified, the SQL statements written will include ALTER DATABASE
OPEN RESETLOGS. If NORESETLOGS is specified, the SQL statement ALTER
DATABASE OPEN NORESETLOGS will be written.

RECOVER FROM
Specifies the location from which archived redo log files required for recovery
will be read. If the keyword AUTOMATIC is specified, the name of the next

CREATE/ALTER DATABASE 59

archived redo log file required for recovery will be generated, using the LOG_
ARCHIVE_DEST and LOG_ARCHIVE_FORMAT initialization parameters.

RECOVER DATABASE

Specifies that the entire database be recovered. If the STANDBY keyword is
supplied, the standby database will be recovered using the control file and
archived redo log files from the primary database. The keywords UNTIL CAN-
CELLED may be supplied, specifying that the database be recovered until the
operation is canceled using the RECOVER CANCEL clause. The TIME key-
word specifies that time-based recovery be performed up to the supplied time.
The CHANGE keyword indicates that recovery will be performed to just before
the specified system change number.

RECOVER DATABASE USING BACKUP CONTROL FILE
Specifies that a backup control file (instead of the current control file) be used.

RECOVER STANDBY TABLESPACE UNTIL CONSISTENT WITH CONTROL FILE
Specifies that tablespace on an old standby database be recovered using the
control file from the current standby database.

RECOVER STANDBY DATAFILE UNTIL CONSISTENT WITH CONTROL FILE
Specifies that datafile on an old standby database be recovered using the con-
trol file from the current standby database.

RECOVER TABLESPACE
Specifies one or more tablespaces (which must be offline) to be recovered.

RECOVER DATAFILE
Specifies one or more datafiles (which must be offline) to be recovered.

RECOVER LOGFILE
Specifies that media recovery should continue using the log file(s) supplied.

RECOVER CONTINUE DEFAULT
Specifies that recovery will continue using the redo log file that would be
automatically generated. This keyword is equivalent to RECOVER AUTO-
MATIC, except that no prompt for filenames exists.

RECOVER CONTINUE
Specifies that recovery of multiple instances should continue after it was inter-
rupted to disable a thread.

RECOVER CANCEL
Specifies that cancel-based recovery be ended.

RECOVER MANAGED STANDBY DATABASE
Specifies that recovery should occur using sustained standby recovery mode,
which assumes the standby database as an active component.

60 Chapter 2: Data Definition Statements

TIMEOUT
Specifies the number of minutes to wait for a requested archived redo log file
to become available for writing to the standby database.

CANCEL
Specifies that sustained recovery be ended after the current archived redo file
has been applied, unless the IMMEDIATE keyword, which terminates after
applying the next redo log file read is specified.

Example
Create a new database called TEST:

CREATE DATABASE TEST

LOGFILE GROUP 1 ('/diskOl/oracle/logl.log','/disk02/oracle/log2.log")
SIZE 50K,

GROUP 2 ('/disk03/oracle/log2.log','/disk04/oracle/log2.log")

SIZE 50K

MAXLOGIFLES 5

DATAFILE '/diskl0/oradata/system0l.dbf' SIZE 50M

MAXDATAFILES 100

ACHIVELOG;

CREATE/DROP DATABASE LINK

CREATE [SHARED] [PUBLIC] DATABASE LINK dblink
[CONNECT TO {CURRENT USER |
username IDENTIFIED BY password
[AUTHENTICATED BY username IDENTIFIED BY password]

1
[USING ’connect string’]

Creates a database link, which allows access to objects on a remote database.
DROP [PUBLIC] DATABASE LINK dblink

Removes a database link from the database.

Keywords

dblink
Specifies the name of the database link being created. Must be a valid Oracle
object name.

SHARED
Specifies that a single network connection be shared across users when the
multithreaded server is configured.

PUBLIC
Specifies that the database link will be available to all users. If omitted, the
database link is private and available only to you.

CREATE/DROP DIMENSION 61

CONNECT TO CURRENT USER
Specifies that a current user database link be created, which requires a global
user with a valid account on the remote database.

CONNECT TO username
Specifies the username and password used to connect to the remote database.

AUTHENTICATED BY
Specifies a username and password on the remote database to be used for
authentication when the SHARED keyword is used.

USING
Specifies the Net8 database specification for the remote database.

If the CONNECT TO clause is omitted, the account username and
password currently logged in, not the username and password of the
creator, will be used when the database link is invoked.

Examples
Create a public database link to scott’s account on the TEST database:

CREATE PUBLIC DATABASE LINK testscott
CONNECT TO scott IDENTIFIED BY tiger
USING 'TEST';

Users on the local database may now access any of scott’s objects for which they
have privileges on the TEST database. For example, to select from the emp table
on the remote database, you can use a SQL statement such as the following:

SELECT * FROM emp@testscott;
Remove the public database link named testscott from the database:

DROP PUBLIC DATABASE LINK empscott;

CREATE/DROP DIMENSION

CREATE [FORCE | NOFORCE] DIMENSION [schema.]dimension
LEVEL level IS {level table.level column |
(Ievel_table.level column, level_ table.level column ...)}
HIERARCHY hierarchy (child level CHILD OF parent_level
[JOIN KEY {child key_column | (child key. column,child key column ...)}
REFERENCES parent_level] |
ATTRIBUTE level DETERMINES {dependent_column | (dependent_column,
dependent_column ...)}

Creates a dimension, which defines a parent-child relationship between pairs of
column sets.

62 Chapter 2: Data Definition Statements

DROP DIMENSION [schema.]dimension

Removes a dimension from the database.

Keywords

FORCE
Specifies that the dimension be created, even if the referenced tables do not
exist.

NOFORCE
Specifies that the dimension be created only if the referenced objects exist
(defaulp).

schema
Name of the schema in which this dimension will be created.

dimension
Name of the dimension.

LEVEL
Defines a level with a name that defines dimension hierarchies and attributes.

level_table.level _column
Specifies the columns (up to 32) for the level.

HIERARCHY
Specifies the name of a hierarchy.

child_level
Name of a level that has an 7-to-1 relationship with a parent level.

CHILD OF
Specifies the name of a parent level.

JOIN KEY
Specifies the name of a column in the JOIN condition with a parent table.

REFERENCES
Specifies the name of the parent level.

ATTRIBUTE
Specifies the name of a level or hierarchy.

DETERMINES dependent_column
Specifies the name of a column that is dependent on an attribute level.

Examples
Create a dimension on the city, state, and country tables:

CREATE DIMENSION location
LEVEL city_code IS (city.city, city.state)
LEVEL state_code IS state.state

CREATE/DROP DIRECTORY 03

LEVEL country_code IS country.country
HIERARCHY region (
City_code CHILD OF
State_code CHILD OF
Country_code
JOIN KEY city.state REFERENCES state_code
JOIN KEY state.country REFERENCES country_ code;

Remove the dimension named location from the database:

DROP DIMENSION location;

CREATE/DROP DIRECTORY
CREATE [OR REPLACE] DIRECTORY directory name AS 'path name'

Creates a directory object that specifies an operating system directory for storing
BFILE objects.

DROP DIRECTORY directory._name

Removes a directory object from the database.

Keywords

OR REPLACE
Specifies that this directory object should replace any existing directory object
with the same name.

directory_name
Name of the directory object.

path_name
The operating system directory’s full case-sensitive pathname.

Oracle does not check to see if the directory actually exists on the
host operating system, so be sure to check the path you provide
carefully.

Examples

Create a directory object graphic_home on the host disk storage system that an
Oracle application will use for storing graphical images:

CREATE DIRECTORY graphic_home AS '/diskl3/data/graphics’';
Remove the directory object graphic_home:

DROP DIRECTORY graphic_home;

64 Chapter 2: Data Definition Statements

CREATE/ALTER/DROP FUNCTION

See Chapter 7, PL/SQL, for a complete description of these statements.

CREATE/ALTER/DROP INDEX

CREATE [UNIQUE | BITMAP] INDEX [schema.]indexname
ON {[schema.]TABLE [alias] ({column|col expr] [ASC | DESC]
[, {colum|col_expr} [ASC | DESC] ...]) |

CLUSTER [schema.]cluster

}
[{ [GLOBAL PARTITION BY RANGE (column list)

(Global_Partition Clause[,Global_ Partition Clause...])

[TABLESPACE {tablespace | DEFAULT}]

[Physical Attributes_Clausel

[STORAGE Storage Clause]

[NOSORT | REVERSE]

[UNRECOVERABLE | LOGGING | NOLOGGING]

[ONLINE]

[COMPUTE STATISTICS]

[COMPRESS integer | NOCOMPRESS]

[PARALLEL integer | NOPARALLEL]] |
[LOCAL (PARTITION partition
[Physical Attributes_Clause]l [TABLESPACE tablespace] [LOGGING | NOLOGGING]
[, PARTITION partition
[Physical Attributes_Clause] [TABLESPACE tablespace] [LOGGING | NOLOGGING] ...])
[TABLESPACE {tablespace | DEFAULT}
[Physical_Attributes_Clause]
STORAGE Storage Clause]
NOSORT | REVERSE]
UNRECOVERABLE | LOGGING | NOLOGGING]
ONLINE]
COMPUTE STATISTICS]
COMPRESS integer | NOCOMPRESS]

[PARALLEL integer | NOPARALLEL]] |
[LOCAL {STORE IN {tablespacel, tablespace..] |DEFAULT) |

(PARTITION [partition] [TABLESPACE tablespace]
[,PARTITION [partition] [TABLESPACE tablespace] ...])

[
[
[
[
[
[

}
[TABLESPACE {tablespace | DEFAULT}
[Physical_ Attributes_Clause]
[STORAGE Storage Clause]
[NOSORT | REVERSE]
[UNRECOVERABLE | LOGGING | NOLOGGING]
[ONLINE]
[COMPUTE STATISTICS]
[COMPRESS integer | NOCOMPRESS]
[NOSORT | REVERSE]
[PARALLEL integer | NOPARALLEL]] |
[LOCAL {STORE IN (tablespacel,tablespace ...] | DEFAULT) |
(PARTITION [partition]
[Physical Attributes_Clause]

CREATE/ALTER/DROP INDEX

65

[TABLESPACE tablespace]
{STORE IN {tablespacel,tablespace ...]|DEFAULT) |
(SUBPARTITION subpartition [TABLESPACE tablespace]
[, SUBPARTITION subpartition [TABLESPACE tablespace]
}
}
[TABLESPACE {tablespace | DEFAULT}
[Physical_Attributes Clause]
[STORAGE Storage Clause]
[NOSORT | REVERSE]
[UNRECOVERABLE | LOGGING | NOLOGGING]
[ONLINE]
[COMPUTE STATISTICS]
[COMPRESS integer | NOCOMPRESS]
[PARALLEL integer | NOPARALLEL]
1

Creates an index on one or more columns of a table or cluster.

ALTER INDEX [schema.]indexname
[DEALLOCATE UNUSED [KEEP integer[K | M]]
[ALLOCATE EXTENT (
[SIZE integer[K | M]]
[DATAFILE ‘filename’]
[INSTANCE integer])]
[PARALLEL integer | NOPARALLEL]
[Physical Attributes_Clausel
[STORAGE Storage Clause]
[UNRECOVERABLE | LOGGING | NOLOGGING]
[{REBUILD [{PARTITION partition | SUBPARTITION subpartition}]
[PARALLEL integer | NOPARALLEL]
[TABLESPACE tablespace]
[ONLINE]
[Physical_Attributes_Clause]
[COMPRESS integer | NOCOMPRESS]
[LOGGING | NOLOGGING]] |
REBUILD {REVERSE | NOREVERSE} |
REBUILD PARAMETERS (‘rebuild parameters’)
1
PARAMETERS (‘alter. parameters’)]
ENABLE | DISABLE]
UNUSABLE]
RENAME TO new_index name]
COALESCE]
Partition Clause]

Changes the characteristics of an index.
DROP INDEX [schema.]indexname

Removes an index from the database.

-1))

66 Chapter 2: Data Definition Statements

Keywords

UNIQUE
Specifies that the value of the column(s) upon which the index is based must
be unique.

BITMAP
Specifies that the index be created as a bitmap rather than using the normal
B-tree structure.

ON CLUSTER
Specifies that the index be built on a cluster (which cannot be a hash cluster)
and specifies the cluster name.

ON TABLE
Specifies that the index be built on a table and specifies the table name.

alias
Specifies an alias name for the table on which the index is being built. This
option is required if the index references any object type attributes or object
type methods.

ASC
Specifies that the index should be created in ascending order, based on the
database character set’s character values.

DESC
Specifies that the index should be created in descending order, based on the
database character set’s character values.

Physical_Attributes_Clause

Specifies the physical attributes of this index. See Chapter 4 for detailed
information.

STORAGE
Specifies the physical storage characteristics. See Chapter 4 for detailed
information.

TABLESPACE
Specifies the name of the tablespace where this index will be stored. If omit-
ted, the default tablespace for the schema owner will be used.

UNRECOVERABLE
Specifies that redo log records will not be written during index creation. This
option speeds the creation of indexes, but in the case of a database failure, the
records cannot be recovered by applying log files. Instead, the index must be
recreated. This keyword is Oracle7 syntax, and is equivalent to specifying
NOLOGGING in Oracle8 or Oracle8i.

CREATE/ALTER/DROP INDEX 67

LOGGING
Specifies that redo log records will be written during index creation. This
option is the default.

NOLOGGING
Specifies that redo log records will not be written during index creation. In
case of a database failure, the index cannot be recovered by applying log files.
Instead, it must be recreated. This option speeds the creation of indexes.
ONLINE
Specifies that DML operations may be performed on the table being indexed
during the index creation.
COMPUTE STATISTICS
Specifies that statistics be computed and inserted into the data dictionary dur-
ing index creation.
COMPRESS
Specifies that key compression be enabled.
NOCOMPRESS
Specifies that key compression be disabled. This option is the default.
NOSORT
Specifies that the rows being indexed were loaded in ascending order and do
not have to be sorted during index creation.
REVERSE
Specifies that (except for ROWID) bytes of the index block will be stored in
reverse order. This keyword cannot be used with NOSORT.
PARALLEL
Specifies that Oracle will create the index in parallel, selecting a degree of par-
allelism equal to the number of CPUs available on all participating instances
q p pating
multiplied by the value of the PARALLEL_THREADS_PER_CPU initialization
parameter. If integer is specified, this specifies the degree of parallelism.
NOPARALLEL
Specifies that the index be created serially. This option is the default.
GLOBAL PARTITION BY RANGE
Specifies that the global index be partitioned on the range of values from the
specified columns.
column_list
Specifies the name(s) of the column(s) on which the index is partitioned.
Global_Partition_Clause

Specifies characteristics of the individual partitions. See Chapter 4 for detailed
information.

68 Chapter 2: Data Definition Statements

LOCAL
Specifies that the index is partitioned on the same columns, the same number
of partitions, and the same partition bounds as the table on which the index is
built.

PARTITION
Specifies the name of individual partitions, which must be equal to the num-
ber of table partitions and provided in the same order.

LOCAL STORE IN
Specifies how index hash partitions or index subpartitions will be distributed
across tablespaces.

DEFAULT
Specifies that for a local index on a hash or composite-partitioned table, the
tablespace specified at the index level will be overridden, and the same parti-
tion or subpartition that the table resides in will be used.

SUBPARTITION
Specifies the name of a subpartition.

DEALLOCATE UNUSED
Specifies that unused space at the end of the index be freed and made avail-
able for other uses in the database.

KEEP
Specifies a number of bytes above the high water mark that should remain as
part of the index after dealloaction.

ALLOCATE EXTENT
Specifies that a new extent be allocated for this index.

SIZE
Specifies the size of the extent to be allocated.

DATAFILE
Specifies the name of the datafile to contain the new extent. If omitted, Ora-
cle chooses a datafile from those available for this index.

INSTANCE
Specifies that the new extent be made available to this instance only. If omit-
ted, the extent will be made available to all instances.

REBUILD PARTITION
Specifies a partition of the index to be rebuilt.

REBUILD SUBPARTITION
Specifies a subpartition of the index to be rebuilt.

REBUILD REVERSE
Specifies that the bytes of the index block be stored in reverse order (without
ROWID) when the index is rebuilt.

CREATE/ALTER/DROP INDEX 69

REBUILD NOREVERSE
Specifies that the bytes of the index block be stored without reversing when
the index is rebuilt.

rebuild_ parameters
Specifies the parameter string to be passed to the indextype routine for
rebuilding a global index.

alter_ parameters
Specifies the parameter string to be passed to the indextype routine when
altering a global index.

ENABLE
Specifies that a disabled function-based index be enabled.

DISABLE

Specifies that a function-based index be disabled.
UNUSABLE

Specifies that the index be marked unusable.
RENAME TO

Specifies that the index be renamed.

COALESCE
Specifies that the contents of index blocks be merged to free blocks for reuse.

If storage options are omitted, Oracle allocates storage for the index
as follows:

e If the indexed table has no rows, the default storage values for
the tablespace are used.

e If the indexed table has rows and the resulting index can be
contained in no more than 25 data blocks, a single extent is
allocated for this index.

e If the indexed table has rows and the resulting index is more
than 25 data blocks, five equal-sized extents are allocated for
this index.

Examples

Create an index on the empno and ename columns of scott’s emp table, with the
indicated storage parameters:

CREATE INDEX emp_ndx ON scott.emp (empno, ename)
STORAGE (INITIAL 50K NEXT 10K PCTINCREASE 0 MAXEXTENTS 10)
TABLESPACE users
PCTFREE 20;

70 Chapter 2: Data Definition Statements

Alter the index emp_ndx owned by scott so new extents added for this index will
be 4K each and will not grow. Also specify that each data block added to this
index will contain five initial transaction entries:
ALTER INDEX scott.emp_ndx

INITTRANS 5

STORAGE (NEXT 4096 PCTINCREASE 0) ;
Remove the index emp_ndx from scott’s schema in the database. When an index
is dropped, all space it previously occupied is returned to the free space pool:

DROP INDEX scott.emp _ndx;

CREATE/ALTER/DROP MATERIALIZED VIEW

CREATE MATERIALIZED VIEW [schema.]materialized view name
[Physical Attributes_Clause]
[TABLESPACE tablespace]
[STORAGE Storage Clause]
[REFRESH
[FAST | COMPLETE | FORCE]
[START WITH date]
[NEXTREF date]
AS materialized view query

Creates a materialized view (also called a snapshot), which is the result of a query
run against one or more tables or views.
ALTER MATERIALIZED VIEW [schema.]materialized view_name
[Physical_ Attributes_Clause]
[STORAGE Storage Clause]
[REFRESH
[FAST | COMPLETE | FORCE]
[START WITH date]
[NEXTREF date]
Changes the storage or automatic refresh characteristics of a materialized view (or
snapshot).

DROP MATERIALIZED VIEW [schema.]materialized view name

Removes a materialized view (or snapshot) from the database.

Keywords

TABLESPACE
Specifies the name of the tablespace in which this materialized view will be
created. The default tablespace for the schema owner is the default.

STORAGE
Specifies the physical storage characteristics. See Chapter 4 for detailed
information.

CREATE/ALTER/DROP MATERIALIZED VIEW 71

REFRESH
Specifies the mode and times for automatic refreshes. FAST means use the
materialized view log associated with the master table; COMPLETE means
refresh by re-executing the materialized view’s query; FORCE is the default,
and means that Oracle will decide if a FAST refresh is possible and, if not, will
do a COMPLETE refresh.

START WITH
Specifies a date for the next automatic refresh time using a standard Oracle
date expression.

NEXTREF
Specifies a new date expression for calculating the interval between automatic
refreshes.

AS materialized_view_query

Provides the actual SQL query that is used to populate the materialized view
and is subject to the same restrictions as a view.

The script dbmssnap.sql must be run by SYS before you attempt to
create a materialized view.

Because Oracle appends 7-character identifiers to the snapshot name
when creating materialized view objects in the schema, you should
limit the materialized view name to 27 characters or less.

Examples

Create a materialized view of scott’s emp table, which is located on a server called
uk. The materialized view will be populated tomorrow. It will then be refreshed
seven days from today, and every seven days after that:

CREATE MATERIALIZED VIEW uk_emp
REFRESH COMPLETE
START WITH SYSDATE + 1
NEXT SYSDATE + 7
AS SELECT * FROM scott.emp@UK;

Schedule the scott user’s materialized view dept_snap to be refreshed at midnight
tomorrow, and then every week:

ALTER MATERIALIZED VIEW scott.dept_snap
REFRESH COMPLETE

72 Chapter 2: Data Definition Statements

START WITH TRUNC (SYSDATE + 1)
NEXT TRUNC (SYSDATE + 7);

Remove the materialized view uk_emp from the database:

DROP MATERTALIZED VIEW uk_¢ ;

CREATE/ALTER/DROP MATERIALIZED VIEW LOG

CREATE MATERIALIZED VIEW LOG ON [schema.] tablename
[Physical Attributes_Clause]
[TABLESPACE tablespace]
[STORAGE Storage Clause]
Creates a materialized view log, which is a table associated with the master table
of a materialized view used to control materialized view refreshes.
ALTER MATERTALIZED VIEW LOG ON [schema.]tablename

[Physical Attributes_Clause]
[STORAGE Storage Clause]

Changes the materialized view log’s storage characteristics.
DROP MATERTALIZED VIEW LOG ON [schema.]table_name

Removes a materialized view log from the database.

Keywords

tablename
Specifies the name of the table for which the materialized view log will be
maintained.

Physical_Attributes_Clause
Specifies the physical characteristics of this materialized view log. See
Chapter 4 for detailed information.
TABLESPACE
Specifies the name of the tablespace in which this materialized view log will
be created. The default tablespace for the schema owner is the default.
STORAGE
Specifies the physical storage characteristics. See Chapter 4 for detailed
information.

Examples
Create a materialized view log on scott’s emp table:

CREATE MATERIALIZED VIEW LOG scott.emp
STORAGE (INITIAL 50K NEXT 50K PCTINCREASE 0)
TABLESPACE USERS;

CREATE/ALTER/DROP PROFILE 73

Change the next extent size for the materialized view log on scott’s emp table to
50K:

ALTER MATERTALIZED VIEW LOG scott.emp
STORAGE (NEXT 50K) ;

Remove the materialized view log associated with scott’'s emp table from the
database:

DROP MATERIALIZED VIEW LOG ON scott.emp;

CREATE/ALTER/DROP PACKAGE

See Chapter 7 for a complete description of these commands.

CREATE/ALTER/DROP PROCEDURE

See Chapter 7 for a complete description of these commands.

CREATE/ALTER/DROP PROFILE

CREATE PROFILE profile name LIMIT
[SESSIONS_PER USER integer | UNLIMITED | DEFAULT]
[CPU_PER_SESSION integer | UNLIMITED | DEFAULT]
[CPU_PER_CALL integer | UNLIMITED | DEFAULT]
[CONNECT TIME integer | UNLIMITED | DEFAULT]
[IDLE TIME integer | UNLIMITED | DEFAULT]
[LOGICAL_READS PER_SESSION integer | UNLIMITED | DEFAULT]
[LOGICAL_READS_PER CALL integer | UNLIMITED | DEFAULT]
[PRIVATE_SGA {integer [K | M] | UNLIMITED | DEFAULT]}]
[COMPOSITE_LIMIT {integer | UNLIMITED | DEFAULT}]
[FATLED LOGIN_ATTEMPTS expression | UNLIMITED | DEFAULT]
[PASSWORD_LIFE_TIME expression | UNLIMITED | DEFAULT]
[PASSWORD_REUSE_TIME expression | UNLIMITED | DEFAULT]
[PASSWORD_LOCK_TIME expression | UNLIMITED | DEFAULT]
[PASSWORD_GRACE_TIME expression | UNLIMITED | DEFAULT]
[PASSWORD_VERIFY_FUNCTION function | NULL | DEFAULT]

Creates a profile to set limits on database resources.

ALTER PROFILE profile name LIMIT
[SESSIONS_PER USER integer | UNLIMITED | DEFAULT]
[CPU_PER_SESSION integer | UNLIMITED | DEFAULT]
[CPU_PER CALL integer | UNLIMITED | DEFAULT]
[CONNECT TIME integer | UNLIMITED | DEFAULT]
[IDLE TIME integer | UNLIMITED | DEFAULT]
[LOGICAL_READS PER _SESSION integer | UNLIMITED | DEFAULT]
[LOGICAL_READS_PER CALL integer | UNLIMITED | DEFAULT]
[PRIVATE_SGA integer [K | M] | UNLIMITED | DEFAULT]
[COMPOSITE LIMIT integer | UNLIMITED | DEFAULT]
[FAILED LOGIN ATTEMPTS expression | UNLIMITED | DEFAULT]

74 Chapter 2: Data Definition Statements

[PASSWORD_LIFE_TIME expression | UNLIMITED | DEFAULT]
[PASSWORD_REUSE_TIME expression | UNLIMITED | DEFAULT]
[PASSWORD_LOCK_TIME expression | UNLIMITED | DEFAULT]
[PASSWORD_GRACE_TIME expression | UNLIMITED | DEFAULT]
[PASSWORD_VERIFY_FUNCTION function | NULL | DEFAULT]

Adds, changes, or removes a resource limit from an existing profile.
DROP PROFILE profile name [CASCADE]

Removes a profile from the database.

Keywords
profile_name
Name of the profile to be created.

SESSIONS_PER_USER
Limits the number of concurrent sessions for a user.

CPU_PER_SESSION
Limits the amount of CPU time that can be used in a session (in hundredths of
a second).

CPU_PER_CALL
Limits the amount of CPU time for a call (a parse, execute, or fetch) (in hun-
dredths of a second).

CONNECT_TIME
Limits the total elapsed time for a session (in minutes).

IDLE_TIME
Limits the amount of continuous inactive time during a session (in minutes).

LOGICAL_READS_PER_SESSION
Limits the number of database blocks read in a session, including those read
from memory and disk.

LOGICAL_READS_PER_CALL

Limits the number of database blocks read for a call (a parse, execute, or
fetch).

PRIVATE_SGA
Limits the amount of memory a session can allocate in the SGA’s shared pool
(in bytes).

COMPOSITE_LIMIT

Limits the total resource cost for a session (in service units). See ALTER
RESOURCE COST earlier in this chapter for additional information.

UNLIMITED
Specifying this value means that no limit will be imposed on this resource.

CREATE/ALTER/DROP PROFILE 75

DEFAULT
Specifying this value means that the limit specified in the DEFAULT profile will
be used for this resource.

FAILED_LOGIN_ATTEMPTS
Specifies the number of failed login attempts allowed before the account is
locked.

PASSWORD_LIFE_TIME
Specifies the number of days the password may be used before it expires and
must be changed.

PASSWORD_REUSE_TIME
Specifies the number of days before which a previously used password may
be reused. If set to integer, PASSWORD_REUSE_MAX must be set to
UNLIMITED.

PASSWORD_REUSE_MAX
Specifies the number of password changes required before the current pass-
word can be reused. If set to integer, PASSWORD_REUSE_TIME must be set to
UNLIMITED.

PASSWORD_LOCK_TIME
Specifies the number of days an account will remain locked after the FAILED_
LOGIN_ATTEMPTS limit is exceeded.

PASSWORD_GRACE_TIME
Specifies the number of days after password expiration that a login will be
allowed with a warning message.

PASSWORD_VERIFY_FUNCTION
Specifies the name of a PL/SQL function used to verify passwords. Setting this
parameter to NULL indicates that no verification will be performed. To apply
the limits associated with the profile to a specific user, you must assign the
profile to the user with the CREATE USER or ALTER USER command. Resource
limits must also be enabled either via the RESOURCE_LIMIT INIT.ORA parame-
ter or by using the ALTER SYSTEM command.

Examples

Define a limit of 5 concurrent sessions and 10 minutes of inactivity for the admin
profile:
CREATE PROFILE admin
SESSIONS_PER_USER 5
IDLE_TIME 10;
Redefine a limit of 10 concurrent sessions and 15 minutes of inactivity for the
admin profile:

76 Chapter 2: Data Definition Statements

ALTER PROFILE admin
SESSIONS_PER_USER 10
IDLE TIME 15;

Remove the admin profile from the database:

DROP PROFILE admin;

CREATE/ALTER/DROP ROLE

CREATE ROLE rolename
[NOT IDENTIFIED | IDENTIFIED BY password | IDENTIFIED EXTERNALLY]

Creates a role, which is a set of privileges that can be granted to users.

ALTER ROLE rolename
[NOT IDENTIFIED | IDENTIFIED BY password | IDENTIFIED EXTERNALLY]

Changes the authorization level required to enable a role.
DROP ROLE rolename

Removes a role from the database.

Keywords

rolename
Name of the role to be created.

NOT IDENTIFIED
Specifies that a user who was granted the role does not need to be verified
when enabling it.

IDENTIFIED BY
Specifies that the password must be provided when enabling the role.

IDENTIFIED EXTERNALLY
Specifies that the operating system verifies the user enabling the role.

When you create a role, you are automatically granted that role
WITH ADMIN OPTION, which allows you to grant or revoke the
role or modify it using the ALTER ROLE command.

Examples
Create a role called manager and assign the password ‘dilbert’ to it:
CREATE ROLE manager IDENTIFIED BY dilbert;
Change the existing MANAGER role to use operating system authentication:

ALTER ROLE manager IDENTIFIED EXTERNALLY;

CREATE/ALTER/DROP ROLLBACK SEGMENT 77

Remove the manager role from the database:

DROP ROLE manager;

CREATE/ALTER/DROP ROLLBACK SEGMENT

CREATE [PUBLIC] ROLLBACK SEGMENT segment_name
TABLESPACE tablespace
[STORAGE Storage Clause]

Creates a rollback segment, which Oracle uses to store data necessary to roll back
changes made by transactions.

ALTER ROLLBACK SEGMENT segment_name
[STORAGE Storage Clause]
[ONLINE | OFFLINE]
[SHRINK]

Changes the online status of a rollback segment or modifies storage characteristics.
DROP ROLLBACK SEGMENT segment_name

Removes a rollback segment from the database.

Keywords

PUBLIC
Specifies that this rollback segment is available to any instance. If omitted, it is
only available to the instance naming it in the ROLLBACK_SEGMENTS param-
eter in the INIT.ORA file.

segment_name
Name of the rollback segment to be created.

TABLESPACE
Specifies the name of the tablespace where this rollback segment will be
created.

STORAGE
Specifies the physical storage characteristics. See Chapter 4 for detailed
information.

ONLINE
Specifies that the named rollback segment be brought online.

OFFLINE
Specifies that the named rollback segment be taken offline.

SHRINK
Specifies that the named rollback segment should be reduced to the size spec-
ified, or to the OPTIMAL size if no size is specified.

78 Chapter 2: Data Definition Statements

When it is created, a rollback segment will be offline. It must be
brought online by using the ALTER ROLLBACK SEGMENT statement
or by restarting the database with the rollback segment named in the
INIT.ORA file.

Examples
Create a rollback segment rbs02:

CREATE ROLLBACK SEGMENT rbs02
TABLESPACE rollback
STORAGE (INITIAL 40K NEXT 40K OPTIMAL 80K);

Take the rollback segment rbs02 offline:
ALTER ROLLBACK SEGMENT rbs02 OFFLINE;

Change the storage allocation for rbs02 so each extent will be 30K, its optimal size
will be 60K, and a maximum of 10 extents will be permitted:

ALTER ROLLBACK SEGMENT rbs02
STORAGE (NEXT 30K MAXEXTENTS 10 OPTIMAL 60K);

Remove the rollback segment rbs02 from the database:

DROP ROLLBACK SEGMENT rbs02;

CREATE SCHEMA

CREATE SCHEMA AUTHORIZATION schema
[CREATE TABLE statement]
[CREATE VIEW statement]
[GRANT statement]

Creates multiple tables and/or views, and issues grants in a single statement.

Keywords

schema
Specifies the name of the schema to be created, which must be the same as
your username.

CREATE TABLE

This is a CREATE TABLE statement, as shown later in this chapter.
CREATE VIEW

This is a CREATE VIEW statement, as shown later in this chapter.

GRANT
This is a GRANT statement, as shown later in this chapter.

CREATE/ALTER/DROP SEQUENCE 79

You must have the same privileges required for the CREATE TABLE,
CREATE VIEW, and GRANT statements to issue this statement. Indi-
vidual commands within the CREATE SCHEMA statement must not
be terminated with the SQL termination character.

Example

Create a schema for scott consisting of two tables and a view, and grant privileges
on the view to a role:

CREATE SCHEMA AUTHORIZATION scott
CREATE TABLE dept (
deptno NUMBER NOT NULL,
dname VARCHAR2 (20) ,
location VARCHAR2(15),
avg_salary NUMBER (9,2))
CREATE TABLE emp (

ename VARCHAR2 (20) ,
deptno NUMBER,

sal NUMBER (7,2),
comm NUMBER (7,2))

CREATE VIEW deptview AS SELECT deptno,dname, location FROM dept
GRANT SELECT ON deptview TO non_admin;

CREATE/ALTER/DROP SEQUENCE

CREATE SEQUENCE [schema.]sequence name
[INCREMENT BY integer]
[START WITH integer]
[MAXVALUE integer | NOMAXVALUE]
[MINVALUE integer | NOMINVALUE]
[CYCLE | NOCYCLE]
[CACHE integer | NOCACHE]
[ORDER | NOORDER]

Creates an Oracle sequence that can be used to automatically generate sequential
numbers during database operations.
ALTER SEQUENCE [schema.]seguence name

[INCREMENT BY integer]

[MAXVALUE integer | NOMAXVALUE]

[MINVALUE integer | NOMINVALUE]

[CYCLE | NOCYCLE]

[CACHE integer | NOCACHE]

[ORDER | NOORDER]
Changes the characteristics of an Oracle sequence, including range, number of
sequence numbers cached in memory, and whether sequential order is preserved.

DROP SEQUENCE [schema.]sequence name

Removes a sequence from the database.

80 Chapter 2: Data Definition Statements

The DROP SEQUENCE and CREATE SEQUENCE commands can be
issued sequentially to restart a sequence at a lower number. How-
ever, all GRANTS to the sequence will also have to be recreated.

Keywords

INCREMENT BY
Specifies the increment between sequence numbers and can be positive or
negative (but not 0). The default is 1.

START WITH
Specifies the first sequence number to be generated. The default is the MIN-
VALUE for ascending sequences and MAXVALUE for descending sequences.
MAXVALUE
Specifies the largest value the sequence number can reach. The default is
NOMAXVALUE, which means the maximum value is 1027,
MINVALUE
Specifies the smallest value the sequence number can reach. The default is
NOMINVALUE, which means the minimum value is 1.
CYCLE
Specifies that when sequence numbers reach MAXVALUE they will begin
again at MINVALUE. The default is NOCYCLE.

NOCYCLE
Specifies that after reaching the maximum value, no additional sequence num-
bers will be generated.

CACHE
Specifies how many sequence numbers Oracle will pregenerate and keep in
memory. Note that when the database is shut down, unused sequence num-
bers stored in cache will be lost. The default is 20.

NOCACHE
Specifies that no sequence numbers are pregenerated to memory.

ORDER
Specifies that sequence numbers are guaranteed to be issued in the order of
request. The default is NOORDER.

NOORDER
Specifies that sequence numbers are not guaranteed to be generated in the
order of request.

CREATE/ALTER/DROP SNAPSHOT 81

The generation of a sequence number is not affected by the subse-
quent rollback of the transaction; once generated, that sequence
number will not be available again, so gaps can occur. Sequence
numbers are accessed by using the pseudo-columns CURRVAL and
NEXTVAL.

Examples

Create a sequence ord_seq so that the next sequence number generated will be
101 and order will be guaranteed. The sequence will reach a maximum value of
9999 and then recycle to 1:

ALTER SEQUENCE ord_seq
START WITH 101
MINVALUE 1
MAXVALUE 9999
CYCLE
ORDER;

Modify the sequence ord_seq in the scott schema so that the next sequence num-
ber generated will be 10,001 and the order will be guaranteed:

ALTER SEQUENCE scott.ord_seq
MINVALUE 10001
ORDER;

Remove the sequence ord_seq from the scott schema in the database:

DROP SEQUENCE scott.ord_seq;

CREATE/ALTER/DROP SNAPSHOT

CREATE SNAPSHOT |[schema.]snapshot_name
[Physical_ Attributes_Clause]
[TABLESPACE tablespace]

[STORAGE Storage Clause]
[REFRESH
[FAST | COMPLETE | FORCE]
[START WITH date]
[NEXTREF datel
AS snapshot_query

Creates a snapshot, which is the result of a query run against one or more tables
Or views.

ALTER SNAPSHOT [schema.]snapshot_name
[Physical Attributes_Clause]
[STORAGE Storage Clause]

[REFRESH
[FAST | COMPLETE | FORCE]

82 Chapter 2: Data Definition Statements

[START WITH date]
[NEXTREF date]

Changes the storage or automatic refresh characteristics of a snapshot.
DROP SNAPSHOT [schema.]snapshot_name

Removes a snapshot from the database.

Keywords

Physical_Attributes_Clause
Specifies physical attributes of this snapshot. See Chapter 4 for detailed
information.

TABLESPACE
Specifies the name of the tablespace where this snapshot will be stored. If
omitted, the default tablespace for the schema owner will be used.

STORAGE
Specifies physical storage characteristics. See Chapter 4 for detailed
information.

REFRESH
Specifies the mode and times for automatic refreshes. FAST means use the
snapshot log associated with the master table; COMPLETE means refresh by
re-executing the snapshot’s query; FORCE is the default, and indicates that
Oracle will decide if a FAST refresh is possible or a COMPLETE refresh is
necessary.

START WITH
Specifies a date for the next automatic refresh time using a standard Oracle
date expression.

NEXTREF
Specifies a new date expression for calculating the interval between automatic
refreshes.

AS
Provides the actual SQL query used to populate the snapshot and subject to
the same restrictions as a view.

The script dbmssnap.sql has to be run by SYS to create the built-in
DBMS_SNAPSHOT package before attempting to create a snapshot.

Since Oracle appends seven-character identifiers to the snapshot
name when creating snapshot objects in the schema, you should
limit the snapshot name to 23 characters or less.

CREATE/ALTER/DROP SNAPSHOT LOG 83

Examples

Create a snapshot of scott’s emp table, which is located on a server called uk. The
snapshot will be populated tomorrow and refreshed seven days from now and
every seven days thereafter:
CREATE SNAPSHOT uk_
REFRESH COMPLETE
START WITH SYSDATE+1
NEXT SYSDATE+7
AS SELECT * FROM scott.emp@UK;
Schedule scott user’s snapshot dept_snap to be refreshed at midnight tomorrow
and every week thereafter:
ALTER SNAPSHOT scott.dept_snap
REFRESH COMPLETE

START WITH TRUNC (SYSDATE + 1)
NEXT TRUNC (SYSDATE + 7);

Remove the snapshot emp_UK from the database:

DROP SNAPSHOT emp_UK;

CREATE/ALTER/DROP SNAPSHOT LOG

CREATE SNAPSHOT LOG ON [schema.]tablename
[Physical_ Attributes_Clause]
[TABLESPACE tablespace]
[STORAGE Storage Clause]
Creates a snapshot log (a table associated with the master table of a snapshot and
used to control refreshes of snapshots).
ALTER SNAPSHOT LOG ON [schema.]tablename

[Physical_ Attributes_Clause]
[STORAGE Storage Clause]

Changes the storage characteristics of a snapshot log.
DROP SNAPSHOT LOG ON [schema.]table name

Removes a snapshot log from the database.

Keywords

tablename
Specifies the name of the table for which the snapshot log will be maintained.

Physical_Attributes_Clause
Specifies the physical attributes of this snapshot. See Chapter 4 for detailed
information.

TABLESPACE
Specifies the name of the tablespace where this snapshot will be stored. If
omitted, the default tablespace for the schema owner will be used.

84 Chapter 2: Data Definition Statements

STORAGE
Specifies the physical storage characteristics. See Chapter 4 for detailed
information.

Examples

Create a snapshot log on scott’s emp table:

CREATE SNAPSHOT LOG ON scott.emp
STORAGE (INITIAL 50K NEXT 50K PCTINCREASE 0)
TABLESPACE users;

Change the next extent size for the snapshot log on scott’s emp table to 500K:

ALTER SNAPSHOT LOG scott.emp
STORAGE (NEXT 500K) ;

Remove the snapshot log associated with scott’s emp table from the database:

DROP SNAPSHOT LOG ON scott.emp;

CREATE/DROP SYNONYM

CREATE [PUBLIC] SYNONYM synonym name
FOR [schema.]object_namel[@dblink]

Creates a public or private synonym for a database object.
DROP [PUBLIC] SYNONYM [schema.]synonym name

Removes a public or private synonym from the database.

Keywords

PUBLIC
Specifies that this synonym will be available to all users. If omitted, the syn-
onym will be available only to the schema owner.

synonym_name
Specifies the name of the new synonym.

object_name
Specifies the name of the object to which the synonym will refer. It may
include a reference to a remote database by appending the @dblink syntax.

Oracle resolves object names in the current schema first, so a
PUBLIC synonym will only be used if the object name is not pref-
aced with a schema name, is not followed by a dblink, and does not
exist in the current schema.

CREATE/ALTER/DROP TABLE

85

Examples
Create a public synonym for scott’s emp table on the UK database:

CREATE PUBLIC SYNONYM uk_emps
FOR scott.emp@UK;

Remove the public synonym uk_emps from the database:

DROP PUBLIC SYNONYM uk_emps;

CREATE/ALTER/DROP TABLE

CREATE [GLOBAL] [TEMPORARY] TABLE [schema.]tablename
(column datatype [DEFAULT expression] [Column Contraint]
[,column datatype [DEFAULT expression] [Column_Contraint]]..)

[Table Constraint_Clause]
[Physical_ Attributes_Clause]
[TABLESPACE tablespace]
[STORAGE Storage Clause]
[LOGGING | NOLOGGING]

[CLUSTER (column[,column ...])]
[{ORGANIZATION HEAP

[Physical_ Attributes Clause]

[TABLESPACE tablespace]

[STORAGE Storage Clause]

[LOGGING | NOLOGGING] |

ORGANIZATION INDEX

[PCTTHRESHOLD integer]

[COMPRESS integer | NOCOMPRESS]

[Physical_Attributes Clause]

[TABLESPACE tablespace]

[STORAGE Storage Clause]

[LOGGING | NOLOGGING]

[[INCLUDING column] OVERFLOW
[Physical Attributes_Clausel
[TABLESPACE tablespace]

[STORAGE Storage Clause]
[LOGGING | NOLOGGING]
}
[LOB {(lob_item[,lob item ...]) STORE AS
([TABLESPACE tablespace]
[{ENABLE | DISABLE} STORAGE IN ROW]
[STORAGE Storage Clause]
[CHUNK integer]
[PCTVERSION integer]
[CACHE | NOCACHE [LOGGING | NOLOGGING]]
)
)|
(lob_item) STORE AS [(lob_segname)]
[([TABLESPACE tablespace]
[{ENABLE | DISABLE} STORAGE IN ROW]
[STORAGE Storage Clause]
[CHUNK integer]

86 Chapter 2: Data Definition Statements

[PCTVERSION integer]

[CACHE | NOCACHE [LOGGING | NOLOGGING]]
)]
}

[Partition_Clausel]

[ENABLE | DISABLE ROW MOVEMENT]

[CACHE | NOCACHE]

[MONITORING | NOMONITORING]

[PARALLEL integer | NOPARALLEL]

[ENABLE | DISABLE [VALIDATE | NOVALIDATE]]
{UNIQUE (column[, column ...] | PRIMARY KEY | CONSTRAINT constraint_name}
[USING INDEX
[TABLESPACE tablespace]

[Physical Attributes_Clausel
[STORAGE Storage Clause]
[NOSORT]
[LOGGING | NOLOGGING]]
EXCEPTIONS INTO [schema.]table name]
CASCADE]]

[AS subquery]

Creates a table either by specifying the structure or by referencing an existing
table.

ALTER TABLE [schema.]tablename
[ADD ([column datatype [DEFAULT expression] [Column Constraint_Clause]
[,column datatype [DEFAULT expression] [Column Constraint_Clause] ...)]
[Table Constraint_Clause]
[LOB {(lob_item[,lob _item ...]) STORE AS
([TABLESPACE tablespace]
[{ENABLE | DISABLE} STORAGE IN ROW]
[STORAGE Storage Clause]
[CHUNK integer]
[PCTVERSION integer]
[{CACHE | NOCACHE [LOGGING | NOLOGGING]}]
)|
(lob_item) STORE AS [(lob_segname)]
[([TABLESPACE tablespace]
[{ENABLE | DISABLE} STORAGE IN ROW]
[STORAGE Storage Clause]
[CHUNK integer]
[PCTVERSION integer]
[CACHE | NOCACHE [LOGGING | NOLOGGING]]
)1

[Partition_Clausel]

[MODIFY [(column datatype [DEFAULT expression] [Column Constraint_Clause]
[,column datatype [DEFAULT expression] [Column Constraint_Clause] ...)]]
[{NESTED TABLE | VARRAY} collection item [RETURN AS {LOCATOR | VALUE}]]

[MOVE [ONLINE] [Physical_Attributes_Clause]

{ [TABLESPACE tablespace] [LOGGING | NOLOGGING] |

[PCTTHRESHOLD integer]

[COMPRESS integer | NOCOMPRESS]

[INCLUDING column] OVERFLOW
[Physical_Attributes Clause]

CREATE/ALTER/DROP TABLE

87

[TABLESPACE tablespace]
[STORAGE Storage Clause]
[LOGGING | NOLOGGING]
}
[LOB {(lob_item[,lob _item ...]) STORE AS
([TABLESPACE tablespace
[{ENABLE | DISABLE} STORAGE IN ROW]
[STORAGE Storage Clause]
[CHUNK integer]
[PCTVERSION integer
[{CACHE | NOCACHE [LOGGING | NOLOGGING]}]
)
(lob_item) STORE AS [(lob_segname)]
[([TABLESPACE tablespace
[{ENABLE | DISABLE} STORAGE IN ROW]
[STORAGE Storage Clause]
[CHUNK integer]
[PCTVERSION integer
[{CACHE | NOCACHE [LOGGING | NOLOGGING]}]
)1
[Physical Attributes Clause] [STORAGE Storage Clause]
[LOGGING | NOLOGGING]
[MODIFY CONSTRAINT constraint_name Constraint_State Clause]

[DROP CONSTRAINT constraint_name] [{PRIMARY | UNIQUE (column[,column ..

[{DROP COLUMN column | DROP COLUMN (column[,column ...]1}
[CASCADE CONSTRAINTS] [INVALIDATE] [CHECKPOINT integer]
[DROP {UNUSED COLUMNS | COLUMNS CONTINUE} [CHECKPOINT integer]
[{SET UNUSED COLUMN column | SET UNUSED COLUMN (column[,column ...]}
[CASCADE CONSTRAINTS | INVALIDATE]
[{ALLOCATE EXTENT ([SIZE integer[K | M]]
[DATAFILE ‘filename’]
[INSTANCE integer]
)|
DEALLOCATE UNUSED [KEEP integer[K | M]]
H
[CACHE | NOCACHE]
[MONITORING | NOMONITORING]
[RENAME TO new_table name]
[{MINIMIZE | NOMINIMIZE} RECORDS_PER_BLOCK]
[PCTTHRESHOLD integer | INCLUDING column]
[OVERFLOW [Physical_ Attributes Clause]
[ALLOCATE EXTENT ([SIZE integer [K | M]]
[DATAFILE ‘filename’]
[INSTANCE integer]
)
[DEALLOCATE UNUSED [KEEP integer[K | M]]
[LOGGING | NOLOGGING]
[Partition Clause [Partition Clause] ...]
[PARALLEL integer | NOPARALLEL]
[{ENABLE | DISABLE}] [{TABLE LOCK | ALL TRIGGERS}]

.1)1 [CASCADE]]

Modifies the column or storage characteristics of a table or the integrity con-

straints associated with a table and/or its columns.

88 Chapter 2: Data Definition Statements

DROP TABLE [schema.]table name
[CASCADE CONSTRAINTS]

Removes a table from the database.

Keywords

GLOBAL TEMPORARY
Specifies that the table to be created will be a temporary table with a struc-
ture visible to all sessions, but with data visible only to the creating session. A
temporary table must be created in a temporary tablespace.

column
Specifies the name of a column to be created as part of this table.

datatype
Specifies the datatype to be associated with column.

DEFAULT
Specifies a default value for the column, which will be used if rows inserted
into the table omit values for the column. The expression must match the
datatype of the column.

Column_Constraint_Clause
Specifies a column constraint using the syntax found in Chapter 4.

Table_Constraint_Clause
Specifies a table constraint using the syntax found in Chapter 4.

Physical_Attributes_Clause
Specifies the physical attributes of this table. See Chapter 4 for specifics.

TABLESPACE
Specifies the name of the tablespace where this table will be stored. If omit-
ted, the default tablespace for the schema owner will be used.

STORAGE
Specifies physical storage characteristics. See Chapter 4 for specifics.

LOGGING
Specifies that redo log records will be written during object creation. This
option is the default.

NOLOGGING
Specifies that redo log records will not be written during object creation. In
case of database failure, the operation cannot be recovered by applying log
files, and the object must be recreated. This option will speed the creation of
database objects.

CREATE/ALTER/DROP TABLE 89

ORGANIZATION HEAP
Specifies that no order is associated with the storage of rows of data in this
table. This option is the default.

ORGANIZATION INDEX
Specifies that the table be created as an index-organized table, meaning that

the data rows are actually held in an index that is defined on the primary key
of the table.

PCTTHRESHOLD
Specifies the percentage of space in each index block reserved for data rows.
Any part of a data row that cannot fit in this space will be placed in the over-
flow segment.

COMPRESS
Specifies that keys be compressed.

NOCOMPRESS
Specifies that keys not be compressed. This option is the default.

INCLUDING
Specifies the point at which a table row is to be divided between index and
overflow portions. All columns following column (except primary key col-
umns) will be stored in the overflow segment.

OVERFLOW
Specifies that index-organized table rows that exceed the PCTTHRESHOLD
value be placed in a segment described in this clause.

LOB
Specifies storage attributes for LOB (Large OBject) data.

lob_item
Specifies the name of a LOB column.

STORE AS
Specifies the name of the LOB data segment.

ENABLE STORAGE IN ROW
Specifies that the LOB value is stored in the row. If specified for an index-
organized table, OVERFLOW must also be specified. This option is the default.

DISABLE STORAGE IN ROW
Specifies that the LOB value be stored outside the row.

CHUNK
Specifies the number of bytes (rounded up to the nearest database block size)
allocated for LOB manipulation.

90 Chapter 2: Data Definition Statements

PCTVERSION
Specifies the maximum percentage of the LOB storage space used in creating
a new version of the LOB.

ENABLE ROW MOVEMENT

Specifies that a row may be moved to a different partition or subpartition if
required due to an update of the key.

DISABLE ROW MOVEMENT
Specifies that rows may not be moved to a different partition or subpartition,
and returns an error if an update to a key would require such a move.

MONITORING
Specifies that modification statistics can be collected for this table.

NOMONITORING
Specifies that modification statistics will not be collected for this table. This
option is the default.
ENABLE
Specifies that a constraint will be applied to all new data in the table.
DISABLE
Specifies that a constraint will be disabled for the table.
VALIDATE
When specified with ENABLE, this keyword causes Oracle to verify that all
existing data in the table comply with the constraint.
NOVALIDATE
When specified with ENABLE, this keyword prevents Oracle from verifying
that existing data in the table comply with the constraint, but ensures that new
data added to the table does comply with the constraint.
USING INDEX
Specifies the characteristics of an index used to enforce a constraint.
EXCEPTIONS INTO
Specifies the name of a table into which Oracle places information about rows
violating the constraint. This table must be explicitly created by running the
UTLEXCPT1.SQL script before using this keyword.
AS
Specifies a subquery used to insert rows into the table upon creation. If col-
umn definitions are omitted from the CREATE TABLE statement, the column
names and datatypes will be copied from the table referenced in the subquery.
DROP
Drops an integrity constraint.

CREATE/ALTER/DROP TABLE 91

ALLOCATE EXTENT
Explicitly allocates a new extent for the table using the specified parameters.

CASCADE CONSTRAINTS
Specifies that all referential integrity constraints referring to primary and
unique keys in the table to be dropped will also be dropped.

Examples
Create a new table named dept in scott’s schema:

CREATE TABLE scott.dept (

deptno NUMBER (2) NOT NULL,
dname VARCHAR2 (14) ,
loc VARCHAR (15))

TABLESPACE USERS
STORAGE (INITIAL 40K NEXT 4K PCTINCREASE 0)
PCTFREE 15;

Create a copy of scott’s emp table:

CREATE TABLE test_emp
AS SELECT * FROM scott.emp;

Add a new column to scott’s emp table:

ALTER TABLE scott.emp
ADD (bonus NUMBER(7,2));

Increase the size of the bonus column to nine digits:

ALTER TABLE scott.emp
MODIFY (bonus NUMBER(9,2));

Add a primary key constraint to scott’s emp table:

ALTER TABLE scott.emp
MODIFY (empno CONSTRAINT pk_emp PRIMARY KEY) ;

Remove scott’s emp table from the database:

DROP TABLE scott.emp;

When you drop a table, all rows are deleted. Any indexes remaining
on the table are also automatically deleted, regardless of what
schema created or currently owns them. If the table to be dropped is
a base table for a view, or if it is referenced in any stored proce-
dure, the view or procedure will be marked invalid (but not
dropped). If the table is the master table for a snapshot, the snap-
shot is not dropped. Likewise, if the table has a snapshot log, that
snapshot log is not dropped.

92 Chapter 2: Data Definition Statements

CREATE/ALTER/DROP TABLESPACE

CREATE TABLESPACE tablespace_name
DATAFILE ' filename‘ [SIZE integer [K | M] [REUSE]] [Autoextend Clause]
[, ' filename* [SIZE integer [K | M] [REUSE]] [Autoextend Clause]]
DEFAULT STORAGE Storage Clause
[ONLINE | OFFLINE]
[PERMANENT | TEMPORARY]
[LOGGING | NOLOGGING]
[MINIMUM EXTENT integer]

Creates a new tablespace, optionally specifying default storage characteristics for
objects subsequently created in the tablespace.

ALTER TABLESPACE tablespace name
{

[ADD DATAFILE filename [SIZE integer [K | M]] [REUSE]]

[Autoextend Clause]

[RENAME ' filenamel‘ TO 'filename2’]

[DEFAULT STORAGE Storage Clause

[ONLINE] | OFFLINE]

[PERMANENT | TEMPORARY]

[BEGIN BACKUP | END BACKUP]

[LOGGING | NOLOGGING]

[MAXIMUM EXTENT integer]

}

Changes an existing tablespace by adding or changing datafiles, changing storage
parameters, taking the tablespace offline, putting the tablespace online, placing it
in backup mode, or taking it out of backup mode.

DROP TABLESPACE tablespace name
[INCLUDING CONTENTS] [CASCADE CONSTRAINTS]

Removes a tablespace from the database.

Keywords
DATAFILE

Specifies the name of the operating system datafile for this tablespace. SIZE is
required unless the file already exists. If the file does already exist, the REUSE
keyword must be specified.

DEFAULT STORAGE
Specifies the physical storage characteristics. See Chapter 4 for detailed
information.

ONLINE
Brings the tablespace online after creation. This option is the default.

OFFLINE
Leaves the tablespace offline after creation.

CREATE/ALTER/DROP TABLESPACE 93

PERMANENT
Specifies that the tablespace may contain permanent objects.
TEMPORARY
Specifies that the tablespace will create only temporary objects.
LOGGING
Specifies that redo log records will be written during object creation within

this tablespace. This option is the default, but may be overridden by specify-
ing NOLOGGING at the object level.

NOLOGGING
Specifies that redo log records will not be written during object creation in this
tablespace. In case of a database failure, such operations cannot be recovered
by applying log files and the objects must be recreated. This option speeds the
creation of database objects.

MINIMUM EXTENT
Specifies that every used or free extent size in the tablespace is at least as
large as, and is a multiple of, integer. This parameter controls free space
fragmentation.

BEGIN BACKUP
Signals to Oracle that the tablespace is being backed up, thereby changing log
file behavior to accumulate all block changes for this tablespace. Note that this
statement does not actually perform a backup; it signals to Oracle that the
backup is about to begin.

END BACKUP
Signals to Oracle that the tablespace backup is complete, thereby restoring log
file behavior to normal.

INCLUDING CONTENTS
Specifies that any objects contained in this tablespace be dropped automati-
cally. If this keyword is not included and any objects exist in the tablespace,
the statement will fail.

CASCADE CONSTRAINTS
Specifies that referential integrity constraints from tables outside this tablespace
that refer to primary and unique keys in the tables of this tablespace be
dropped.

Examples
Create a new 25-megabyte tablespace called users:

CREATE TABLESPACE users
DATAFILE '/disk09/oracle/oradata/users0l.dbf' SIZE 25M
DEFAULT STORAGE (INITIAL 500K NEXT 50K PCTINCREASE 0);

94 Chapter 2: Data Definition Statements

Add a new 25-megabyte datafile to the users tablespace:

ALTER TABLESPACE users
ADD DATAFILE '/disk09/oracle/oradata/users02.dbf' SIZE 25M;

Signal Oracle that a backup of the users tablespace is about to begin:

ALTER TABLESPACE users
BEGIN BACKUP;

Remove the users tablespace and (all objects it contains) from the database:

DROP TABLESPACE users INCLUDING CONTENTS;

CREATE TEMPORARY TABLESPACE

CREATE TEMPORARY TABLESPACE
TEMPFILE 'filename' [SIZE integer [K | M] [REUSE]]
[Autoextend clause]
[EXTENT MANAGEMENT LOCAL]
[UNIFORM] [SIZE integer [K | M]]

Creates a temporary tablespace, which is used to hold temporary objects (retained
only for the duration of a session).

Like any other tablespace, a temporary tablespace can be dropped
with the DROP TABLESPACE command.

Keywords

TEMPFILE
Specifies the name of the operating system datafile for this temporary
tablespace.

SIZE
Specifies the size of the file in bytes, kilobytes (K), or megabytes (M). SIZE is
required unless the file already exists. If the file already exists, the REUSE key-
word must be specified.

REUSE
Specifies that the operating system file must already exist and be reused for
this temporary tablespace.

INITIAL
Specifies the size of the first extent for a new object in bytes, kilobytes (K), or

megabytes (M). If not a multiple of the database block size, the size will be
rounded up to a multiple of it.

CREATE/ALTER/DROP USER 95

Autoextend_clause
Specifies whether autoextend will be in effect for the datafile. See Chapter 4
for more information.

EXTENT MANAGEMENT LOCAL
Specifies that the temporary tablespace be locally managed, meaning that
some portion of this tablespace is set aside for a bitmap.

UNIFORM SIZE
Specifies the size for all extents in this tablespace in bytes, kilobytes (K) or
megabytes (M), and indicates that all extents will be equally sized. If omitted,
the extent size defaults to 1 megabyte.

Temporary tablespaces are not affected by media recovery.

Example

Create a temporary tablespace called tempspace that contains 100 megabytes of
space allocated in equal-sized extents of 2 megabytes each:
CREATE TEMPORARY TABLESPACE tempspace

TEMPFILE '/disk09/oracle/oradata/tempsp0l.dbf' SIZE 100M
EXTENT MANAGEMENT LOCAL UNIFORM SIZE 2M;

CREATE/ALTER/DROP TRIGGER

See Chapter 7 for a complete description of these statements.

CREATE/ALTER/DROP USER

CREATE USER username
[IDENTIFIED [BY password | EXTERNALLY]]
[DEFAULT TABLESPACE tablespace
[TEMPORARY TABLESPACE tablespace]
[QUOTA [INTEGER [K | M] | UNLIMITED] ON tablespace]
[QUOTA [INTEGER [K | M] | UNLIMITED] ON tablespace]

[PROFILE profilename]
Creates a new database user and assigns security and storage properties.

ALTER USER username
[IDENTIFIED [BY password | EXTERNALLY]]
[DEFAULT TABLESPACE tablespace]
[TEMPORARY TABLESPACE tablespacel
[QUOTA [INTEGER [K | M] | UNLIMITED] ON tablespace]

96 Chapter 2: Data Definition Statements

[QUOTA [INTEGER [K | M] | UNLIMITED] ON tablespace]

[PROFILE profilename]
[DEFAULT ROLE
{rolenamel, rolename ...] |
ALL [EXCEPT rolenamel,rolename ...]] |
NONE
3

Changes the security and storage characteristics of a user.

DROP USER username [CASCADE]

Removes a user from the database, and optionally removes objects created by that
user.

Keywords

IDENTIFIED BY
Specifies the password used for this user account, or if EXTERNALLY is speci-
fied, that authentication of this user will be handled by the operating system.

You can use the ALTER USER command to change your own pass-
word, regardless of whether or not you have the ALTER USER sys-
tem privilege.

DEFAULT TABLESPACE
Specifies the name of the tablespace used by default when this user creates a
database object.

TEMPORARY TABLESPACE
Specifies the name of the tablespace used for the creation of temporary seg-
ments when operations such as sorts require more memory than is available.

QUOTA
Specifies the amount of space this user is permitted to use for object storage in
the specified tablespace. UNLIMITED means that there is no limit to the stor-
age used (subject to the total size of the tablespace).

PROFILE

Sets the user’s profile to profilename, which subjects the user to the limits
specified in that profile.

CASCADE
Specifies that all objects in the user’s schema be dropped before removing the
user. This keyword must be specified if the user schema contains any objects;
otherwise, the command will fail.

CREATE/ALTER/DROP VIEW 97

If you specify the CASCADE option, referential integrity constraints
on tables in other schemas that refer to primary and unique keys on
tables in this schema will also be dropped. If tables or other data-
base objects in this schema are referred to by views or synonyms, or
stored procedures, functions, or packages in another schema, then
those referring objects will be marked invalid, but not dropped.

Examples
Create a new user scott:

CREATE USER scott IDENTIFIED BY tiger
DEFAULT TABLESPACE users
TEMPORARY TABLESPACE temp
QUOTA 500K ON users;

Create the same user, but ensure that the account be authenticated by the operat-
ing system:

CREATE USER opsS$scott IDENTIFIED EXTERNALLY
DEFAULT TABLESPACE users
TEMPORARY TABLESPACE temp
QUOTA 500K ON users;

Assign a new password to scott:
ALTER USER scott IDENTIFIED BY lion;
Change the default and temporary tablespaces for user scott:

ALTER USER scott
TEMPORARY TABLESPACE temp
DEFAULT TABLESPACE users;

Remove the user scott and the contents of his schema from the database:

DROP USER scott CASCADE;

CREATE/ALTER/DROP VIEW

CREATE [OR REPLACE] [FORCE|NOFORCE] VIEW [schema.]viewname
[(alias[,alias ...])]

AS viewguery
[WITH CHECK OPTION [CONSTRAINT constraint]]

Creates a view.

ALTER VIEW [schema.]viewname COMPILE
Recompiles a view.

DROP VIEW [schema.]view_name

Removes a view from the database.

98 Chapter 2: Data Definition Statements

Keywords

OR REPLACE
Specifies that the view be replaced if it already exists.

FORCE
Specifies that the view be created regardless of whether the view’s base tables
exist, or whether the owner of the schema has privileges on them.

NOFORCE
Specifies that the view be created only if the base tables exist and the owner
of the schema has privileges on them. This option is the default.

viewname
Specifies the name of the view to be created.

alias
One or more aliases that correspond to columns or expressions returned by
the view’s query.

viewquery
Any SQL SELECT statement. See Chapter 3 for the syntax of the SELECT state-
ment.

WITH CHECK OPTION
Specifies that inserts and updates performed through the view must result in
rows that the view query can select.

CONSTRAINT
Specifies a name for the CHECK OPTION constraint. The default is a system-
assigned name in the form SYS_Cn, for which 7z is an integer resulting in a
unique name.

COMPILE

This keyword is required when altering a view and causes the view to be
recompiled.

The ALTER VIEW statement explicitly recompiles a view, and its use
is recommended after changes are made to any of the view’s under-
lying base tables.

Examples
Create a view called emploc:

CREATE OR REPLACE VIEW emploc
(empno, lname, location) AS
SELECT empno, ename, 1loc

DISASSOCIATE STATISTICS

99

FROM scott.emp, scott.dept
WHERE emp.deptno = dept.deptno;

Recompile scott’s view emploc:
ALTER VIEW scott.emploc RECOMPILE;
Remove scott’s emploc view from the database:

DROP VIEW scott.emploc;

DISASSOCIATE STATISTICS

DISASSOCIATE STATISTICS FROM
{COLUMNS [schema.]table.column[, [schema.]table.column ...] |
FUNCTIONS [schema.]function|, [schema.]function ...] |
PACKAGES [schema.]packagel, [schema.]package ...] |
INDEXES [schema.]index[, [schema.]index ...]
}

Disassociates a method of statistics computation from database objects.

Keywords
COLUMNS

Specifies that a list of one or more columns be provided.
schema

The schema containing the specified table.
table

The name of the table containing the specified column.
column

The column name for which an association is defined.
FUNCTIONS

Specifies that one or more functions will be disassociated.
PACKAGES

Specifies that one or more packages will be disassociated.

INDEXES
Specifies that one or more indexes will be disassociated.

Example
Remove a statistics association from function emp_sal:

DISASSOCIATE STATISTICS FROM FUNCTIONS emp_sal;

100 Chapter 2: Data Definition Statements

EXPLAIN PLAN

See Chapter 3 and Chapter 8, SQL Statement Tuning, for a complete explanation of
this statement.

GRANT (Object Privileges)

GRANT {object_priv[,object_priv ...] | ALL [PRIVILEGES]}
ON {[schema.]object_name |
DIRECTORY directory. name |
JAVA {SOURCE | RESOURCE} [schema.]java_object
}
TO {username | role | PUBLIC}
[WITH GRANT OPTION]

Grants privileges on a database object to one or more users or roles.

Keywords

object_priv
Specifies the name of the object privilege to be granted. Valid privileges are:
ALTER, DELETE, EXECUTE, INDEX, INSERT, REFERENCES, SELECT, and
UPDATE.

object_name
Specifies the name of the object on which privileges are to be granted.

DIRECTORY
Specifies the name of a directory object on which privileges are to be granted.

JAVA SOURCE
Specifies the name of a Java source object on which privileges are to be
granted.

JAVA RESOURCE
Specifies the name of a Java resource object on which privileges are to be
granted.

username
Specifies the name of the user who will be granted the object privilege.

role
Specifies the name of a role that will be granted the object privilege.

PUBLIC
Specifies that the object privilege be granted to all current and future users.

WITH ADMIN OPTION
Specifies that the grantee of the privilege can grant the privilege to others.

GRANT (System Privilege or Role) 101

The object must be in your schema, or you must have been granted
the object privileges with the GRANT OPTION.

Example
Grant INSERT and UPDATE privileges on scott’s emp table to debby:

GRANT insert, update ON scott.emp TO debby;

GRANT (System Privilege or Role)

GRANT {privilege | role}l,{privilege | role} ...]
TO {username | rolename | PUBLIC}[,{username | rolename | PUBLIC} ...]
[WITH ADMIN OPTION]

Grants a system privilege or role to one or more users and/or roles.

Keywords
privilege

Specifies the name of a system privilege to be granted.
role

Specifies the name of a role to be granted.

username
Specifies the name of a user to be granted a privilege or role.

rolename
Specifies the name of a role to be granted a privilege or role.

PUBLIC
Specifies that the granted privilege or role be granted to all users, including
those not yet created.

WITH ADMIN OPTION
Specifies that the grantee of the privilege or role can grant the privilege or role
to others, and may alter or drop the role.

Examples
Grant the account_admin role to scott and debby:
GRANT account_admin TO scott, debby;
Grant the CREATE USER and DROP USER privileges to the dba_assist role:

GRANT create user, drop user TO dba_assist;

102 Chapter 2: Data Definition Statements

NOAUDIT (Schema Objects)

NOAUDIT object_option[,object_option ...]
ON {[schema.]objectname | DIRECTORY directory name | DEFAULT}
[WHENEVER [NOT] SUCCESSFUL]

Stops auditing defined by a prior AUDIT statement for schema objects.

Keywords

object_option
Indicates that auditing on a particular operation will be stopped. The follow-
ing operations are valid: ALTER, AUDIT, COMMENT, DELETE, EXECUTE,
GRANT, INDEX, INSERT, LOCK, RENAME, SELECT, and UPDATE. The key-
word ALL is equivalent to specifying all of the operations.

object_name
Specifies the name of the schema object for which auditing will be stopped.

DIRECTORY
Specifies the name of a directory for which auditing will be stopped.

DEFAULT
Specifies that no auditing will be performed as the default for objects that have
not yet been created for the specified object option.

WHENEVER SUCCESSFUL
Turns off auditing only for SQL statements that complete successfully.

WHENEVER NOT SUCCESSFUL
Turns off auditing only for SQL statements that fail or result in errors.

Examples

Turn off auditing for any UPDATE statement issued for scott’s bonus table:
NOAUDIT UPDATE ON scott.bonus;

Turn off auditing for any unsuccessful operation on scott’s emp table:

NOAUDIT ALL ON scott.emp WHENEVER NOT SUCCESSFUL;

NOAUDIT (SQL Statements)

NOAUDIT {statement opt | system priv}[,{statement opt | system priv} ...]
[BY {usernamel,username ...] | proxy [ON BEHALF OF {ANY | username
[,username ...]1}]}]
[WHENEVER [NOT] SUCCESSFUL]

Stops auditing defined by a prior AUDIT statement for SQL statements.

RENAME 103

Keywords

statement_opt
Specifies a statement option for which auditing will be stopped.
system_priv
Specifies a system privilege for which auditing will be stopped.
BY username
Stops auditing only for SQL statements issued by a wusername in this list. The
default option is to stop auditing for all users.
BY proxy
Stops auditing only for SQL statements issued by proxy on behalf of a user or
a list of specific users.
WHENEVER SUCCESSFUL
Stops auditing only for SQL statements that complete successfully. If NOT is

specified, auditing stops only for SQL statements that result in an error. If this
clause is omitted, auditing stops for all SQL statements, successful or not.

Example
Stop auditing of INSERT and DELETE statements issued by scott:

NOAUDIT INSERT,DELETE BY scott;

RENAME

RENAME oldname TO newname

Changes the name of an existing table, view, sequence, or private synonym.

Integrity constraints, indexes, and grants on the old object are auto-
matically transferred to the new object.

Keywords

oldname
Specifies the name of the existing object for which you want to assign a new
name.

newname
Specifies the new name for the database object.

104 Chapter 2: Data Definition Statements

Objects that depend on the renamed object (e.g., views, synonyms,
stored procedures, or functions) will be marked invalid.

Example
Change the name of the emp table to employees:

RENAME emp TO employees;

REVOKE (Object Privileges)

REVOKE {object_privl[,object_priv ...] | ALL [PRIVILEGES]}
ON [schema.]object_name
FROM {username | role | PUBLIC}

Revokes privileges on a database object from one or more users or roles.

Keywords

object_priv
Specifies the name of the object privilege to be granted. Valid privileges are:
ALTER, DELETE, EXECUTE, INDEX, INSERT, REFERENCES, SELECT, and
UPDATE.

object_name
Specifies the name of the object on which privileges are granted.

username
Specifies the name of the user who will be granted the object privilege.

role
Specifies the name of a role that will be granted the object privilege.

PUBLIC
Specifies that the object privilege be granted to all current and future users.

Example
Revoke INSERT and UPDATE privileges on scott’s emp table from debby:

REVOKE insert,update ON scott.emp FROM debby;

REVOKE (System Privilege or Role)

REVOKE {privilege | role}l,{privilege | role} ...]
FROM {username | rolename | PUBLIC}[,{username | rolename | PUBLIC} ...]

Removes a system privilege or role from one or more users and/or roles.

REVOKE (System Privilege or Role) 105

Keywords

privilege
Specifies the name of a system privilege to be revoked.

role
Specifies the name of a role to be revoked.

username
Specifies the name of a user from whom a privilege or role is to be revoked.

rolename
Specifies the name of a role from which a privilege or role is to be revoked.

PUBLIC
Specifies that the granted privilege or role no longer be available to all users
by default.

Examples
Revoke the account_admin role from scott and debby:
REVOKE account_admin FROM scott,debby;
Revoke the CREATE USER and DROP USER privileges from the dba_assist role:

REVOKE create user, drop user FROM dba_assist;

Data Manipulation
and Control
Statements

Data Manipulation Language (DML) statements access and manipulate data stored
in the Oracle database. You can use them to insert, update, delete, and read data.
Control statements are related, since they are used to control how Oracle operates
when accessing data in the database. There are not as many DML and control
statements as there are DDL (Data Definition Language) statements, but many do
have a wide range of options and syntax choices. This chapter provides a quick
reference to the functionality of these SQL commands and a guide to the syntax of
each.

SOL DML and Control
Statements by Task

Table 3-1 lists the most common data manipulation tasks, along with the appropri-
ate SQL statements used to accomplish each task. The detailed syntax of each
statement is listed later in this chapter.

Table 3-1. Common DML Tasks, Control Tasks, and SQL Statements

If you want to Use this command
Change data in rows of a table, view, or snapshot UPDATE

Change the characteristics of your session ALTER SESSION
Check constraints after each DML statement SET CONSTRAINT
Collect statistics about an object in the database ANALYZE

Create an explanation of the execution plan for a SQL statement EXPLAIN PLAN
Defer checking of constraints until the end of the transaction SET CONSTRAINT
Delete rows from a table, view, or snapshot DELETE

Delete statistics about an object in the database ANALYZE

106

ALTER SESSION

107

Table 3-1. Common DML Tasks, Control Tasks, and SQL Statements (continued)

If you want to

Use this command

Disable roles for the current session

Enable roles for the current session

Establish the current transaction as read-write

Establish the current transaction as read-only

Identify migrated and chained rows in a table or cluster
Insert a row of data into a table or view

Mark a point in a transaction to which you can roll back
Remove all rows from a table or cluster

Retrieve data from tables, views, or snapshots

Specify the rollback segment to be used by the transaction

Validate the structure of an object

SET ROLE

SET ROLE

SET TRANSACTION
SET TRANSACTION
ANALYZE

INSERT
SAVEPOINT
TRUNCATE

SELECT

SET TRANSACTION
ANALYZE

SOL Statement Syntax

This section provides a detailed reference to each of the SQL statements likely to
be used when working with data in an Oracle database. Each statement is listed in
one or more of its forms, with a short explanation of the statement’s purpose, its

exact syntax and associated parameters, an example, and usage notes when

applicable.

ALTER SESSION

ALTER SESSION
{{SET

[CONSTRAINT[S] = IMMEDIATE | DEFERRED | DEFAULT] |
[CREATE_STORED_OUTLINES = TRUE | FALSE | category name] |

[CURRENT SCHEMA = schema] |

[CURSOR_SHARING = FORCE | EXACT] |
[DB_BLOCK_CHECKING = TRUE | FALSE] |
[DB_FILE MULTIBLOCK READ_COUNT = integer] |
[FAST_START_IO_TARGET = integer] |

[FLAGGER = ENTRY | INTERMEDIATE | FULL | OFF] |
[GLOBAL_NAMES = [TRUE | FALSE] |

[HASH AREA SIZE = integer] |
[HASH_JOIN_ENABLED = TRUE | FALSE] |

[HASH MULTIBLOCK_IO_COUNT = integer] |
[INSTANCE = integer] |

[ISOLATION_LEVEL = SERIALIZABLE | READ COMMITTED] |

[LABEL = 'text' | DBHIGH | DBLOW | OSLABEL] |
[LOG_ARCHIVE_DEST integer =

{''" | LOCATION=pathname | SERVICE=tnsnames_service}

[MANDATORY | OPTIONAL] [REOPEN[=integer]]] |

[LOG_ARCHIVE_DEST_STATE integer = ENABLE | DEFER] |

[LOG_ARCHIVE_MINIMUM_SUCCEED_DEST = integer] |

108 Chapter 3: Data Manipulation and Control Statements

[MAX_DUMP_FILE SIZE = integer | UNLIMITED]
[NLS_CALENDAR = 'text'] |
[NLS_COMP = ‘text'] |
[NLS_CURRENCY = 'text'] |
[NLS_DATE_FORMAT = 'date_format'] |
[NLS_DATE LANGUAGE = language] |
[NLS_DUAL,_CURRENCY = 'text'] |
[OPTIMIZER GOAL = ALL _ROWS | FIRST ROWS | RULE | CHOOSE] |
[NLS_ISO_CURRENCY = territory] |
[NLS_LABEL,_FORMAT = label format] |
[NLS_NUMERIC_CHARACTERS = 'text'] |
[NLS_LANGUAGE = language] |
[NLS_SORT = sort | BINARY] |
[NLS_TERRITORY = territory] |
[OBJECT CACHE_MAX_SIZE PERCENT = integer] |
[OBJECT_CACHE_OPTIMAL, SIZE = integer] |
[OPTIMIZER_INDEX_ CACHING = integer] |
[OPTIMIZER INDEX_COST ADJ = integer] |
[OPTIMIZER MAX PERMUTATIONS = integer] |
[OPTIMIZER MODE = ALL _ROWS | FIRST _ROWS | RULE | CHOOSE] |
[OPTIMIZER PERCENT PARALLEL = integer] |
[PARALLEL,_BROADCAST ENABLED = TRUE | FALSE] |
[PARALLEL_INSTANCE_GROUP = 'text'] |
[PARTITION_VIEW_ENABLED = TRUE | FALSE] |
[PLSQL_V2_COMPATIBILITY = TRUE | FALSE] |
[QUERY_REWRITE_ENABLED = TRUE | FALSE] |
[QUERY_REWRITE_INTEGRITY = ENFORCED | TRUSTED | STALE_TOLERATED] |
[REMOTE_DEPENDENCIES MODE = TIMESTAMP | SIGNATURE] |
[SESSION_CACHED_CURSORS = integer] |
[SKIP_UNUSABLE_INDEXES = TRUE | FALSE] |
[SORT_AREA RETAINED SIZE = integer] |
[SORT_AREA SIZE = integer] |
[SORT_MULTIBLOCK_READ COUNT = integer] |
[SQL_TRACE = TRUE | FALSE] |
[STAR_TRANSFORMATION ENABLED = TRUE | FALSE] |
[TIMED_STATISTICS = TRUE | FALSE] |
[USE_STORED_OUTLINES = TRUE | FALSE | 'category name'] |
i
[CLOSE DATABASE LINK dblink] |
[ADVISE COMMIT | ROLLBACK | NOTHING] |
[{ENABLE |DISABLE} COMMIT IN PROCEDURE] |
[{ENABLE |DISABLE|FORCE} PARALLEL {DML | DDL} [PARALLEL integer]

}

Changes the current database session’s functional characteristics, including several
National Language Support (NLS) characteristics.

Keywords
CONSTRAINTIS]
Specifies when conditions defined by a deferrable constraint are enforced.

IMMEDIATE means that conditions are checked immediately after each DML
statement. DEFERRED indicates that the conditions are checked when the

ALTER SESSION 109

transaction is committed. DEFAULT restores all constraints to their initial state,
as defined when they were created.

CREATE_STORED_OUTLINES
Specifies whether Oracle will store an outline for each query. If category_
name is provided, then outlines will be created and stored in the category_
name category.

CURRENT_SCHEMA
Changes the current schema to the specified schema. Although the schema is
changed, the user is not, and no additional privileges are available.

CURSOR_SHARING
Specifies the kind of SQL statements that can share a cursor. If FORCE is spec-
ified, statements may share a cursor if they are identical except for some liter-
als and if the differences do not affect the meaning of the statement. EXACT
means that only identical SQL statements may share a cursor.

DB_BLOCK_CHECKING
Specifies whether data block checking is performed.

DB_FILE_ MULTIBLOCK_READ_COUNT
Specifies the number of blocks read during a single I/O operation when per-
forming a sequential scan. The default is 8.

FAST START IO_TARGET
Specifies the target number of reads and writes to and from cache that should
be performed during crash or instance recovery.

FLAGGER
Specifies a FIPS flagging level, which causes an error message to be gener-
ated whenever a SQL statement does not conform to ANSI SQL-92 standards.
Note that there is currently no difference between ENTRY, INTERMEDIATE,
and FULL.

GLOBAL_NAMES
Controls whether global name resolution will be enforced for this session.

HASH_AREA_SIZE
Specifies the amount of memory (in bytes) used for hash joins.

HASH_JOIN_ENABLED
Specifies whether hash joins will be performed in queries.

HASH _MULTIBLOCK_I0_COUNT
Specifies the number of data blocks to be read or written during a hash join.

INSTANCE
Specifies that in a Parallel Server environment, database files should be
accessed as though the session were connected to the specified instance.

110 Chapter 3: Data Manipulation and Control Statements

ISOLATION_LEVEL

Specifies how database modifications are to be handled. SERTALIZABLE means
if an attempt is made to update a row that has been updated and not yet com-
mitted by another session, the statement will fail; this option is consistent with
the serializable transaction isolation mode specified in the SQL-92 standard.
READ COMMITTED means that Oracle’s default behavior will be in effect, and
if a row is locked by another uncommitted transaction, the statement will wait
until the row locks are released.

LABEL
Changes the DBMS session label to the label specified by text, the label equiv-
alent of DBHIGH or DBLOW, or the operating system label (OSLABEL).

LOG_ARCHIVE_DEST integer
Specifies a location for archived redo log file groups. Up to five locations may
be defined, as specified by integer, and the archiving process will attempt to
archive redo log files to each.

Specifies that no destination is defined for this archive log destination. How-
ever, at least one archive log destination (1-5) must have a location defined.

LOCATION
Specifies the operating system location for archived redo log files.

SERVICE
Specifies the name of a Net8 service running a standby database associated
with the tnsnames_service entry in the tnsnames.ora file.

MANDATORY
Specifies that archiving to the destination must succeed before the redo log
file is made available for reuse.

OPTIONAL
Specifies that archiving to the destination does not have to succeed before the
redo log file is made available for reuse.

REOPEN
Specifies the number of seconds that must pass after an error is encountered
during archiving to the destination before future archives to the destination
can be attempted.

LOG_ARCHIVE_DEST_STATE_integer
Specifies the state to be associated with the corresponding LOG_ARCHIVE_
DEST_integer. ENABLE means that any valid LOG_ARCHIVE_DEST can be
used. DEFER indicates that the LOG_ARCHIVE_DEST_infeger with the same
value of integer will not be used.

ALTER SESSION 111

LOG_ARCHIVE_MINIMUM_SUCCEED_DEST
Specifies the minimum number of destinations that must be written to success-
fully before a redo log file can be reused.

MAX_DUMP_FILE SIZE
Specifies the maximum size for a trace dump file in blocks. If UNLIMITED is
specified, there is no size limit.

NLS_CALENDAR
Specifies a new calendar type.

NLS_COMP
Specifies the linguistic comparison to be performed using the rules associated
with the NLS_SORT parameter supplied as text.

NLS_CURRENCY
Specifies the local currency symbol returned by the number format element L.
This parameter overrides the defaults set by NLS_TERRITORY.

NLS_DATE_FORMAT
Specifies the default date format. The date_ format must be a valid Oracle date
format mask. This parameter overrides the defaults set by NLS_TERRITORY.

NLS_DATE_LANGUAGE
Specifies the language to use for day and month names, as well as for other
specified date values. This parameter overrides the defaults set by NLS_
LANGUAGE.

NLS_DUAL_CURRENCY
Specifies the value to be returned by the number format element U (normally
used for the Euro).

NLS_ISO_CURRENCY
Specifies the territory whose ISO currency symbol should be used. This para-
meter may override the defaults set by NLS_TERRITORY.

NLS_LABEL_FORMAT
For Trusted Oracle only; changes the default label format for the session.

NLS LANGUAGE
Specifies the language for Oracle messages, day and month names, and sort
sequences.

NLS_NUMERIC_CHARACTERS
Specifies the decimal character and group separator. The value of ‘fext’ must
be in the form ‘dg’, where d is the decimal character, and g is the group char-
acter. This parameter may override the defaults set by NLS_TERRITORY.

112 Chapter 3: Data Manipulation and Control Statements

NLS_SORT
Specifies the collating sequence for character sorts. BINARY specifies a binary
sort, while sort specifies the name of a specific sort sequence.
NLS_TERRITORY
Specifies the values of the default date format, numeric decimal, and group

separator, and the local and ISO currency symbols. This parameter may over-
ride the defaults set by NLS_LANGUAGE.

OBJECT_CACHE_MAX_SIZE_PERCENT
Specifies the percentage by which the object cache can grow beyond the opti-
mal size. The default is 10.

OBJECT_CACHE_OPTIMAL_SIZE
Specifies the optimal size (in kilobytes) for the object cache. The default is
100.

OPTIMIZER_GOAL
For Oracle7, specifies the optimization goal for this session. The following
goals are valid:
ALL_ROWS
Optimize for best overall throughput.

FIRST_ROWS
Optimize for best response time.

RULE
Use rule-based optimization.

CHOOSE
Use cost-based optimization if possible; otherwise, use rule-based optimi-
zation.

OPTIMIZER _INDEX CACHING
Specifies the percentage of index blocks assumed to be in the cache.

OPTIMIZER INDEX COS1_AD]
Specifies a percentage indicating the importance that the optimizer attaches to
the availability of an index path instead of a full table scan.

OPTIMIZER MAX_PERMUTATIONS
Specifies the number of table permutations the optimizer will consider for
large join operations.

OPTIMIZER_MODE
For Oracle8, specifies the optimization goal for this session. The following
goals are valid:

ALL_ROWS
Optimize for best overall throughput.

ALTER SESSION 113

FIRST_ROWS
Optimize for best response time.

RULE
Use rule-based optimization.

CHOOSE
Use cost-based optimization if possible; otherwise, use rule-based opti-
mization.
OPTIMIZER PERCENT PARALLEL
Specifies the amount of parallelism the optimizer uses when computing costs.
The default is 0, which indicates no parallelism.

PARALLEL, BROADCAST_ENABLED
Specifies that parallel processing can be used to enhance performance during
hash and merge joins.

PARALLEL_INSTANCE_GROUP
Specifies the parallel instance group used when spawning parallel query slave
processes. This option is valid only when running Parallel Server in parallel
mode.

PARTITION_VIEW_ENABLED
Specifies that unnecessary table access can be eliminated during operations on
partitioned views.

PLSQL_V2_COMPATIBILITY
Specifies whether or not PL/SQL constructs that were legal in Oracle7 (under
PL/SQL 2.0), but are now illegal in Oracle8, are allowed. A value of TRUE
allows the old constructs. A value of FALSE disallows them.

QUERY_REWRITE_ENABLED
Specifies whether query rewrite will be in effect for materialized views. Query
rewrite is disabled if OPTIMIZER_MODE is set to RULE.

QUERY_REWRITE_INTEGRITY
Specifies consistency levels for query rewrites. ENFORCED indicates that sys-
tem-enforced relationships are relied on so that data integrity can be guaran-
teed. TRUSTED means that materialized views created with the ON PREBUILD
TABLE clause are supported and unenforced join relationships are accepted.
STALE_TOLERATED means that any stale but usable materialized view may be
used.

REMOTE_DEPENDENCIES_MODE
Specifies how dependencies of remote stored procedures are handled.

SESSION_CACHED_CURSORS
Specifies the number of cursors for this session that may be retained in cache.

114 Chapter 3: Data Manipulation and Control Statements

SKIP_UNUSABLE_INDEXES
Specifies whether operations will be permitted on tables with unusable
indexes or index partitions. TRUE means all such operations will be allowed,
while FALSE causes such operations to return an error.

SORT_AREA_RETAINED_SIZE
Specifies the maximum amount of memory in bytes that will be retained by
each sort operation after the first fetch.

SORT _AREA_SIZE
Specifies the maximum amount of memory in bytes that each sort operation
will use.

SORT_MULTIBLOCK_READ_COUNT
Specifies the number of blocks to read each time the sort performs a read
from temporary segments. The default is 2.

SOQI_TRACE
Controls whether performance statistics are generated. The initial value is set
in the INIT.ORA file.

STAR_TRANSFORMATION_ENABLED
Specifies whether cost-based optimization will be applied to star queries.
TIMED_STATISTICS

Specifies whether (TRUE) or not (FALSE) Oracle requests time information
from the operating system when generating time-based statistics.

USE_STORED_OUTLINES
Specifies whether the optimizer will use stored outlines when generating exe-
cution plans. If category_name is provided, only outlines stored under that
category will be used.

CLOSE DATABASE LINK
Closes a connection to a remote database using the database link dblink. This
command succeeds only if the database link is not in use and there is no
pending commit across the link.

ADVISE
Sends advice for forcing a distributed transaction to a remote database by
placing the value 'C' (COMMIT), 'R' (ROLLBACK), or " (NOTHING) in DBA_
2PC_PENDING_ADVICE on the remote database.

ENABLE COMMIT IN PROCEDURE
Specifies that procedures and stored functions can issue COMMIT and ROLL-
BACK statements.

ALTER SESSION 115

DISABLE COMMIT IN PROCEDURE
Specifies that procedures and stored functions may not issue COMMIT and
ROLLBACK statements.

ENABLE PARALLEL
Specifies that the DML or DDL statements following in the session be exe-
cuted in parallel, if possible. This option is the default for DDL statements.

DISABLE PARALLEL
Specifies that the DML or DDL statements following in the session be exe-
cuted serially. This option is the default for DML statements.

FORCE PARALLEL
Specifies that subsequent statements in the session be executed in parallel.

DML
Specifies that the ENABLE, DISABLE, or FORCE PARALLEL keyword applies to
DML (Data Manipulation Language) statements.

DDL
Specifies that the ENABLE, DISABLE, or FORCE PARALLEL keyword applies to
DDL (Data Definition Language) statements.

PARALLEL
Specifies the degree of parallelism. The integer will override a parallel clause
specified in a DDL statement, but will not override a parallel hint specified in
a subsequent DML statement.

Many of the parameters that may be set using this command are
defined on an instance-wide basis by parameters in the initialization
file (INIT.ORA). Although defaults are indicated here when appropri-
ate, the values of the initialization parameters will override those
defaults and be the de facto default values. Be sure that you under-
stand the use of each parameter before attempting to set it for a
session.

Examples
Enable the SQL Trace facility for your session:

ALTER SESSION
SET SQL_TRACE = TRUE;

116 Chapter 3: Data Manipulation and Control Statements

SQL_TRACE should be set to FALSE except when performance statis-
tics are desired, since this option degrades overall database perfor-
mance. If SQL_TRACE is set to TRUE, a trace file will be created in
the udump directory. If a large number of SQL statements are exe-
cuted, this directory may become filled.

Set the language to French and then override the date format with an American-
style date format using a four-digit year:

ALTER SESSION
SET NLS_LANGUAGE = French;
ALTER SESSION
SET NLS_DATE_FORMAT = 'mm/dd/yvyyy';

ANALYZE

ANALYZE {TABLE [schema.]tablename |
INDEX [schema.]indexname |
CLUSTER [schema.]clustername
}
{COMPUTE STATISTICS |
ESTIMATE [SAMPLE integer {ROWS | PERCENT}] STATISTICS
DELETE STATISTICS
VALIDATE STRUCTURE [CASCADE]
LIST CHAINED ROWS [INTO [schema.]tablename]
}
Collects or deletes statistics about an object in the database, validates the structure

of an object, or identifies migrated and chained rows in a table or cluster.

Keywords

COMPUTE STATISTICS
Computes the exact statistics for the entire named object and stores them in
the data dictionary.

ESTIMATE STATISTICS
Estimates statistics for the named object and stores them in the data dictio-
nary. The optional SAMPLE clause may be used to specify the sample size to
use. The SAMPLE clause contains the following keywords:
ROWS
Causes integer rows of a table or cluster, or infeger entries from an index,
to be sampled.
PERCENT

Causes integer percent of the rows of a table or cluster, or integer percent
of the entries in an index, to be sampled. The valid range for PERCENT is

DELETE 117

1-99. If SAMPLE is not specified, a default value of 1050 rows will be used
as the sample size.
DELETE STATISTICS

Causes all statistics stored in the data dictionary for the named object to be
deleted.

VALIDATE STRUCTURE
Causes the structure of the named object to be validated. The CASCADE key-
word will also cause indexes associated with the named object to be validated.

LIST CHAINED ROWS
Generates a list of chained and migrated rows for the named table or cluster
(this operation is not permitted on an index). Entries are made in a table
named CHAINED_ROWS, which is assumed to exist in the user’s schema. The
INTO clause may be used to specify a different name for the target table.

You must own the object to be analyzed or have the ANALYZE ANY
privilege. If you want to use the LIST CHAINED ROWS operation to
list into a table, that table must be in your schema or you must have
the INSERT privilege on it. COMPUTE STATISTICS results in more
accurate statistics, but is likely to take longer. ESTIMATE STATIS-
TICS is normally much faster and almost as accurate. The object
being analyzed will be locked while statistics are being collected, so
the faster ESTIMATE STATISTICS may be preferable in a heavy trans-
action environment. Statistics are accessible in the ALL_TABLES,
USER_TABLES, and DBA_TABLES views. Some column statistics are
accessible in the ALL_TAB_COLUMNS, USER_TAB_COLUMNS, and
DBA_TAB_COLUMNS views. Cluster statistics also appear in USER_
CLUSTERS and DBA_CLUSTERS.

Example
Analyze scott’s emp table using a 50 percent sample size:

ANALYZE TABLE scott.emp ESTIMATE SAMPLE 50 PERCENT STATISTICS;

DELETE

DELETE [FROM] ({[schema.

schema.

table[@dblink] |

table PARTITION (partition) |
schema.] table SUBPARTITION (subpartition) |
schema.]view[@dblink] |

schema.] snapshot[@dblink] |

subquery [WITH {READ ONLY]] |

CHECK OPTION [CONSTRAINT constraint_name])
]

118 Chapter 3: Data Manipulation and Control Statements

[table alias]
[WHERE condition]
[RETURNING expression|,expression ...] INTO data item[,data_item ...]]

Deletes rows from a table, view, or snapshot.

Keywords

FROM
Optional keyword to aid readability.

schema
The name of the schema containing the table or view from which rows are
deleted. If omitted, the current userid is assumed.

table
The name of a table from which rows are to be deleted.

dblink
The name of a database link used to access the table or view from which rows
are to be deleted.

PARTITION
Specifies that rows are to be deleted from a partition (named partition) of the
specified table.
SUBPARTITION
Specifies that rows are to be deleted from a subpartition (named subpartition)
of the specified table.
subquery
Specifies a subquery, which determines the rows that are candidates for dele-
tion. See SELECT later in this chapter for more information on subqueries.
WITH READ ONLY
Specifies that the subquery cannot be updated.
WITH CHECK OPTION
Specifies that no changes can be made to the table underlying the subquery
that would result in rows that are not included in the subquery.

CONSTRAINT
Specifies a constraint name to associate with the CHECK OPTION.

table _alias
Specifies an alias (or alternate name) for the table, view, or subquery.

WHERE
Specifies the condition that will be used to identify the rows to be deleted.
The specified condition may be any valid WHERE condition.

EXPLAIN PLAN 119

RETURNING
Specifies that the value(s) of the specified expression(s) are to be returned for
rows deleted by this command. This keyword is valid only from within a PL/SQL
program.

INTO

Specifies the PL/SQL variables into which the values returned for rows deleted
by this command are to be stored.

If a table_alias is specified, any columns referenced in the DELETE
statement with a specific table reference must be qualified using the
table_alias and not the table name.

Examples

Delete all rows from scott’s emp table for employees who have salaries above
2000:

DELETE FROM scott.emp
WHERE sal>2000;

Delete all rows from scott’s emp table for employees who have salaries greater
than the average salary:

DELETE FROM scott.emp
WHERE sal>(SELECT AVG(sal) FROM scott.emp);

EXPLAIN PLAN

EXPLATIN PLAN
SET STATEMENT ID = 'text'
[INTO [schema.]tablename[@dblink]]
FOR SQI, statement

Creates an explanation of the execution plan for a SQL statement.

Keywords

SET STATEMENT_ID
Specifies a text string used to identify the result of this EXPLAIN PLAN state-
ment. The default is NULL.

INTO
Specifies the name and location of the plan table. The default is to use a table
named PLAN_TABLE in your current schema.

FOR
Specifies the SQL statement for which the plan is to be generated.

120 Chapter 3: Data Manipulation and Control Statements

You must have the INSERT privilege on the destination table (speci-
fied by INTO) before issuing this command. The destination table is
usually called PLAN_TABLE, and can be created by running the
script utlxplan.sql. The value specified in the SET clause appears in
the STATEMENT_ID column of the destination table.

Example

The following example generates an execution plan for a SQL statement. The out-
put will be placed in the plan_table table in the current schema:

EXPLAIN PLAN
SET STATEMENT ID = 'Planl'
FOR
SELECT ename, sal, comm, loc
FROM emp, dept
WHERE emp.deptno = dept.deptno;

See Chapter 8, SQL Statement Tuning, for a discussion of the plan table.

INSERT

INSERT INTO {schema.{table[{@dblink] |
table PARTITION (partition) |
table SUBPARTITION (subpartition) |
view[@dblink] |
} [table_alias]
[(columnl[, column..])
{VALUES (exprl,expr.]) |
subquery
}
[RETURNING expression[,expression...] INTO data_item[,data item..]]

Inserts a row of data into a table or view.

If a table_alias is specified, any columns referenced in the INSERT
statement with a specific table reference must be qualified using the
table_alias and not the table name.

Keywords

schema
The name of the schema containing the table or view into which rows are to
be inserted. If omitted, the current userid is assumed.

INSERT 121

table
The name of a table into which rows are to be inserted.

dblink
The name of a database link used to access the table or view into which rows
are to be inserted.

PARTITION
Specifies that rows are to be inserted into a partition (named partition) of the
specified table.

SUBPARTITION
Specifies that rows are to be inserted into a subpartition (named subpartition)
of the specified table.

view
The name of a view into which rows are to be inserted.

table _alias
Specifies an alias (or alternate name) for the table or view.

column
Specifies the name(s) of one or more columns in the table or view into which
values will be stored. If the VALUES keyword is specified, then for each col-
umn specified, a corresponding expr must be specified in the VALUES clause.
If the list of column names is omitted, the list is considered to contain all col-
umns of the table or view.

VALUES
Specifies the value(s) to be stored in each column of the row to be inserted.
expr can be any valid SQL expression, and there must be exactly as many
exprs listed as there are columns specified for the table or view. If no column
list is supplied, there must be the same number of expressions as columns in
the table or view.

subquery
Specifies a subquery, which returns values to be stored in the row to be
inserted. If a list of columns is specified for the table or view into which rows
are to be inserted, subquery must return exactly the same number of columns,
in the same sequence. If no column list is specified, subquery must return the
same number of columns as fable or view. See SELECT later in the chapter for
more information on subqueries.

RETURNING
Specifies that the value(s) of expression for rows inserted by this command are
to be returned. This keyword is valid only from within a PL/SQL program.

122 Chapter 3: Data Manipulation and Control Statements

INTO
Specifies that value(s) returned for rows inserted by this command are to be
stored in the PL/SQL variable(s) data_item.

Examples

Insert new rows into scott’s emp table. Only the five specified columns will have
values:

INSERT INTO emp (empno, ename, hiredate, mgr, sal)
VALUES (7999, 'KREINES', '01-JUN-00', 7839, 500)

Insert new rows into a table called newemp using a subquery to populate the
rows. All columns receive values from the subquery:

INSERT INTO newemp
SELECT * FROM scott.emp WHERE comm > 0;

SAVEPOINT
SAVEPOINT savepoint

Identifies a point in a transaction to which you can roll back using the ROLLBACK
command.

savepoint
Specifies a name for the savepoint being created.

Example

Set a savepoint, update the sa/ column of the emp table, and then issue a ROLL-
BACK command to return the state of the table to the condition at the time the
savepoint was established:

UPDATE emp
SET comm = comm * 1.1;

SAVEPOINT updtsal;

UPDATE emp
SET sal = sal * 1.1;

ROLLBACK TO updtsal;

SELECT
SELECT [DISTINCT | UNIQUE | ALL]
{[schema.] {table. | view. | snapshot.}* |

expr [[AS] alias]|,expr [[AS] alias] ...] |
*
FROM {schema.{table[@dblink] |

table PARTITION (partition) |

SELECT 123

table SUBPARTITION (subpartition) |
table SAMPLE [BLOCK] sample percent |
view[@dblink] |
snapshot[@dblink] |
(subquery)
} [table alias]
[, {schema. {table[@dblink] |
table PARTITION (partition) |
table SUBPARTITION (subpartition) |
table SAMPLE [BLOCK] sample percent |
view[@dblink] |
snapshot[@dblink] |
(subguery)
b
}[table_alias]
.l
[WHERE condition]
[GROUP BY {expr[,expr ...] |
CUBE (expr[,expr ...1) |
ROLLUP (expr(,expr ...])
}
[HAVING condition]
[[START WITH condition] CONNECT BY condition]
[{UNION [ALL] | INTERSECT | MINUS} {subgquery)
[, {UNION [ALL] | INTERSECT | MINUS} {subguery) ...]]
[ORDER BY {expr | position | alias} [ASC | DESC]
[, {expr | position | alias} [ASC | DESC] ...]
[FOR UPDATE [OF schema.{table | view].column[,schema.{table | view].colum ...]
[NOWAIT]

Retrieves data from tables, views, or snapshots.

Keywords

DISTINCT
Specifies that only one copy of a row should be returned, even if there are
duplicate rows. A duplicate row is one that returns the same values for all col-
umns listed in the SELECT list.

ALL
Specifies that all rows should be returned, including duplicates. This option is
the default.

schema
The name of the schema containing the table or view. If omitted, the current
userid is assumed.

table

Specifies the name of a table.
view

Specifies the name of a view.

124 Chapter 3: Data Manipulation and Control Statements

snapshot
Specifies the name of a snapshot.
* Specifies that all columns are to be returned, and is the equivalent of listing
each column of the table, view, or snapshot.
expr
Any valid Oracle expression, usually involving one or more columns from the
table, view, or snapshot.

AS Specifies an alias (or alternate name) for a column or expression. The key-
word AS is optional.

FROM
Specifies the name(s) of one or more tables, views, or snapshots from which
data is to be retrieved.

PARTITION
Specifies that data be retrieved from the partition of ftable identified by
partition.

SUBPARTITION
Specifies that data be retrieved from the subpartition of table identified by
subpartition.

SAMPLE [BLOCK]
Specifies that a random sample of the rows in the table is to be selected.
Replace sample_percent in the syntax with the percentage that you want to
use. If the optional keyword BLOCK is specified, block sampling instead of
row sampling will be performed.

subquery
Any valid SELECT statement. Note that a subquery may not contain a FOR
UPDATE clause.

table_alias
Specifies an alias (or alternate name) for a table, view, or snapshot.

WHERE
Specifies that only rows meeting condition will be retrieved. condition will be
evaluated, and only rows that evaluate to TRUE will be returned. If this clause
is omitted, all rows will be returned.

GROUP BY
Specifies that rows are to be grouped according to the provided expression(s)
(expr), and a single row of summary information be returned for each group.

CUBE
Specifies that rows are to be grouped based on all possible combinations of
values from the provided list of expressions.

SELECT 125

ROLLUP
Specifies that rows are to be grouped based on values from the provided list
of expressions, and summary rows be returned for each expr, along with an
additional superaggregate row.

HAVING
Specifies that data be returned only for groupings meeting condition, which is
evaluated for TRUE in the same manner as a WHERE condition.

START WITH
Specifies the row(s) used as the root of a hierarchical query. If omitted, all
rows of the table will be considered root rows.

CONNECT BY
Specifies the relationship between parent and child rows in the hierarchy.

UNION [ALL]
Specifies that the results of the SELECT statement that precedes this keyword
are to be combined with the results of the SELECT statement that follows.

INTERSECT
Specifies that the results of the SELECT statement that precedes this keyword
are to be combined with the results of the SELECT statement that follows, and
only the rows that appear in both are to be returned.

MINUS
Specifies that the results of the SELECT statement that precedes this keyword
are to be combined with the results of the SELECT statement that follows. Any
row appearing in the following SELECT will be removed from the set of rows
to be returned by the first.

ORDER BY
Specifies that rows are to be sorted before being returned. The sort may be
performed on expression(s), alias(es), or position(s). In the syntax, position is
an integer referring to the expression’s position in the SELECT list. The first
item in the SELECT list is considered to be in position 1.

ASC
Specifies that values are to be sorted in ascending sequence—from lowest to
highest. This is the default.

DESC
Specifies that values are to be sorted in descending sequence—from highest to
lowest.

FOR UPDATE
Specifies that the selected rows are to be locked. If the keyword OF is speci-
fied, only rows in the table specified will be locked.

126 Chapter 3: Data Manipulation and Control Statements

NOWAIT
Specifies that if a table is already locked, Oracle should not wait for the lock
to be released. If NOWAIT is not specified, Oracle will wait for the lock to be
released.

If a table_alias is specified, any ambiguously defined columns refer-
enced in the SELECT statement must be qualified using the fable_
alias, and not the table name.

Examples
Retrieve all columns for all rows of scott’s emp table:

SELECT *

FROM scott.emp;
Retrieve a specified set of columns from the emp and dept tables in scott’s
schema:

SELECT ename, dname, hiredate, sal, comm

FROM scott.emp, scott.dept

WHERE emp.deptno = dept.deptno;
Retrieve a specified set of columns from the emp and dept tables in scott’s
schema. Use a table alias for the emp table. Use a subquery to limit the rows
selected to those with a salary higher than the average salary. Then return the
rows in order from the lowest salary to the highest salary:

SELECT ename, dname, hiredate, sal, comm
FROM scott.emp a, scott.dept
WHERE a.deptno = dept.deptno
AND sal > (SELECT AVG(sal)
FROM scott.emp)
ORDER BY sal;

Retrieve the highest and lowest salaries for each department. Column aliases are
used:

SELECT dname Department, MAX(sal) Maximum, MIN(sal) Minimum

FROM scott.emp, scott.dept

WHERE emp.deptno = dept.deptno
GROUP BY dname;

SET CONSTRAINT

SET {CONSTRAINT | CONSTRAINTS} {ALL | constraint[,constraint.]}
{IMMEDIATE | DEFERRED}

SET ROLE 127

Specifies at the transaction level whether specific constraints are checked after
each DML statement or deferred until the end of a transaction.

This statement applies only to deferrable constraints.

Keywords
ALL

Specifies that all deferrable constraints for the transaction are affected by this
statement.

constraint
Specifies the name of a deferrable constraint.

IMMEDIATE
Specifies that the conditions enforced by the constraints are to be checked
after each DML statement is completed.

DEFERRED

Specifies that the conditions enforced by the constraints are to be checked
after the entire transaction is complete and committed.

The success of deferrable constraints can be tested by issuing the
statement SET CONSTRAINTS ALL IMMEDIATE before the COMMIT
statement is issued.

Example
Defer two constraints until the transaction is complete:

SET CONSTRAINTS chk sal,chk_comm DEFERRED;

SET ROLE

SET ROLE
{role [IDENTIFIED BY password] [,role [IDENTIFIED BY password ...]] |
ALL EXCEPT role[,role ...] |
NONE
}

Enables or disables roles for the current session.

128 Chapter 3: Data Manipulation and Control Statements

Keywords

role
Specifies the name of the role to be enabled.

IDENTIFIED BY
Specifies the password for the role. This option is required if the role is pass-
word protected.

ALL
Specifies that all roles granted to you are to be enabled. If the EXCEPT clause
is included, the specified roles will not be enabled, but all other roles granted
to you will be.

NONE
Specifies that all roles granted to you are to be disabled for this session.

Example

Enable the developer role for the current session:

SET ROLE developer IDENTIFIED BY manager;

SET TRANSACTION

SET TRANSACTION {READ ONLY |
READ WRITE |
ISOLATION LEVEL {SERIALIZABLE | READ COMMITTED)} |
USE ROLLBACK SEGMENT seg_name
}
Establishes the current transaction as read-only or read-write or specifies the roll-

back segment to be used by the transaction.

Keywords

READ ONLY
Specifies that the current transaction is read-only.

READ WRITE
Specifies that the current transaction is read-write.

ISOLATION_LEVEL

Specifies how database modifications are to be handled. SERIALIZABLE means
that if an attempt is made to update a row that has been updated and not yet
committed by another session, the statement will fail; this situation is consis-
tent with the serializable transaction isolation mode specified in the ANSI SQL-
92 standard. READ COMMITTED means that Oracle’s default behavior will be
in effect, and if a row is locked by another uncommitted transaction, the state-
ment will wait until the row locks are released.

TRUNCATE

129

USE ROLLBACK SEGMENT

Assigns this transaction to the rollback segment specified by seg _name. This

clause implies READ WRITE and cannot be specified with READ ONLY.

If used, this statement must be the first in your transaction. A trans-
action is ended with a COMMIT or COMMIT WORK statement.

Example

Specify a rollback segment and perform an update transaction:

SET TRANSACTION
USE ROLLBACK SEGMENT rbs99;

UPDATE emp
SET SAL = SAL*1.1;

COMMIT;

TRUNCATE

TRUNCATE {TABLE [schema.]table [{PRESERVE | PURGE} SNAPSHOT LOG] |
CLUSTER [schema.]cluster
}
[{DROP | REUSE} STORAGE]

Removes all rows from a table or cluster.

To execute a2 TRUNCATE command, you must either be the owner
of the table to be truncated, or have the DROP ANY TABLE system

privilege. Merely being granted privileges on the table will not be
sufficient.

Keywords
table

Specifies the name of the table from which rows are to be removed.
cluster

Specifies the name of the cluster from which rows are to be removed.
PRESERVE SNAPSHOT LOG

Specifies that existing snapshot logs on this table should be preserved when
the table is truncated. This option is useful when a table is being reloaded

130 Chapter 3: Data Manipulation and Control Statements

during an EXPort/TRUNCATE/IMPort operation, since a fast refresh will not be
triggered.

PURGE SNAPSHOT LOG
Specifies that existing snapshot logs on this table should be purged when the
table is truncated.

DROP STORAGE

Deallocates storage used by the rows and returns the space to the free space
pool. This option is the default.

REUSE STORAGE
Retains the space used by the deleted rows. This option is useful if the table
or cluster will be reloaded with data.

The TRUNCATE statement does not create rollback records, so it
cannot be rolled back. This characteristic makes TRUNCATE
extremely fast, and it is preferable to DELETE FROM, unless the roll-
back capability is required. When a table is truncated and the DROP
STORAGE clause is specified, only the initial extent of the table is
retained; all other storage is deallocated.

Example
Remove all rows from scott’s emp table, and deallocate the space used:

TRUNCATE TABLE scott.emp;

UPDATE

UPDATE { .1table[{@dblink] |

schema.] table PARTITION (partition) |
.]1table SUBPARTITION (subpartition) |

schema.] table SAMPLE [BLOCK] sample_percent |

schema.] view[@dblink] |

schema.] snapshot [@dblink]

[table alias]
SET {column={expr | (subquery)}[,column={expr | (subquery)} ... |
(column[, column ...])=subquery

}
[WHERE condition]
[RETURNING expression|,expression ...] INTO data item[,data_item ...]]
Changes the value stored in one or more columns of data in one or more tables,
views, or snapshots.

UPDATE 131

Keywords

schema
The name of the schema containing the table or view that is to be updated. If
omitted, the current userid is assumed.

table
Specifies the name of a table to be updated.
view
Specifies the name of a view to be updated.
snapshot
Specifies the name of a snapshot to be updated.
PARTITION
Specifies that data be updated in the partition of table identified by partition.

SUBPARTITION
Specifies that data be updated in the subpartition of table identified by
subpartition.

SAMPLE
Specifies that a random sample of the rows in the table be updated. The sam-
ple size is specified by sample_percent. If the optional keyword BLOCK is
specified, block sampling rather than row sampling will be performed.

subquery
Any valid SELECT statement. Note that a subquery may not contain a FOR
UPDATE clause.

table_alias
Specifies an alias (or alternate name) for a table, view, or snapshot.

column
The name of a column in the table, view, or snapshot that will be updated.

expr
Any valid Oracle expression.

WHERE
Specifies that only rows meeting condition will be updated. The condition will
be evaluated, and only rows that evaluate to TRUE will be updated. If this
clause is omitted, all rows will be updated.

RETURNING

Specifies that the value(s) of expression for rows updated by this statement are
to be returned. This keyword is valid only from within a PL/SQL program.

132 Chapter 3: Data Manipulation and Control Statements

INTO
Specifies that value(s) returned for rows updated by this statement are to be
stored in the PL/SQL variable(s) data_item.

Examples

Update all employees in scott’s emp table who have a current salary of less than
2000. Increase their salary by 10 percent:

UPDATE scott.emp
SET sal = sal * 1.1
WHERE sal < 2000;

Update all employees in scott’s emp table who have a current salary less than
2000. Increase both their salary and commission by 10 percent:

UPDATE scott.emp

SET sal = sal * 1.1,

comm=comm*1.1
WHERE sal < 2000;

Update a random 15 percent sample of employees in scott’s emp table. Increase
both salary and commission by 10 percent for employees whose current salary is
less than 2000:

UPDATE scott.emp SAMPLE 15
SET sal = sal * 1.1,

comm = comm * 1.1
WHERE sal < 2000;

Common SQL
Elements

Many components of SQL syntax are used in multiple SQL statements. These com-
ponents, often referred to as SQL clauses, can be somewhat complex themselves.
To simplify the presentation of SQL syntax in Chapter 2, Data Definition State-
ments, and Chapter 3, Data Manipulation and Control Statements, 1 have col-
lected these common elements here. In the earlier chapters, T simply referenced
their names and syntactical positions in the individual SQL syntax descriptions.

Autoextend_Clause

AUTOEXTEND {OFF |
ON [NEXT integer[K | M]]
[MAXSIZE {integer[K | M] | UNLIMITED}]
Specifies whether or not files will be permitted to grow in size. When files are
allowed to grow in size, this clause also specifies the growth parameters.

Keywords

OFF
Specifies that the autoextend feature should not be enabled, and that the file
will not be permitted to grow in size.

ON
Specifies that when the file becomes full and additional space is requested, the
file will be extended in size by the amount specified by the NEXT parameter,
up to the limit specified by the MAXSIZE parameter.

NEXT
Specifies the amount of space in bytes, kilobytes (K), or megabytes (M) that
will be added to the file when growth occurs.

133

134 Chapter 4: Common SQL Elements

MAXSIZE
Specifies the maximum size in bytes, kilobytes (K), or megabytes (M) for the
file. The autoextend feature does not extend the file beyond this size.
UNLIMITED
Specifies that the file is permitted to grow up to the capacity of the physical

disk, or the maximum size permitted by the operating system, whichever is
less.

Column_Constraint_Clause

[CONSTRAINT constraint_name]

{[NULL | NOT NULL] |

[UNIQUE | PRIMARY KEY (column[,column ...])] |

[REFERENCES [schema.]table [(column[,column ...])] [ON DELETE {CASCADE | SET NULL}] |
[CHECK (condition)]

}

[Constraint_State Clause]

Defines column constraints.

Keywords

CONSTRAINT
Specifies the name for the constraint. If omitted, Oracle will assign a name in
the form SYS_Cnnn, where nnn is an integer number.

NULL
Specifies that the column may contain a value of NULL.

NOT NULL
Specifies that the column may not contain a value of NULL.

UNIQUE
Specifies that the value in this column must not duplicate a value for the same
column in any other row of the table; that is, the value of this column must be
unique for all rows of the table. Note, however, that more than one row may
contain NULL in this column.

PRIMARY KEY
Specifies that the column or combination of columns, serves as the primary
key for the table in which it is defined. A primary key column may not con-
tain NULL, and no value of the primary key may appear in the same column
of any other row in the table (i.e., the key value must be unique).

REFERENCES
Specifies the table and column(s) which are referenced by a foreign key. The
combination of referenced columns must represent either a PRIMARY KEY
constraint or a UNIQUE constraint on the target table.

Constraint_State_Clause 135

ON DELETE CASCADE
Specifies that when a row containing a primary or unique key is deleted, rows
containing dependent foreign keys will also be automatically deleted.

ON DELETE SET NULL
Specifies that when a row containing a primary or unique key is deleted,
dependent foreign keys will be automatically changed to NULL.

CHECK
Specifies a condition that must evaluate to TRUE or NULL for the constraint to
be satisfied.

Constraint_State_Clause
Specifies how the constraint will be applied to data in the column.

Constraint_State_Clause

[{DEFERRABLE [INITIALLY {IMMEDIATE | DEFERRED} |
NOT DEFERRABLE [INITTALLY IMMEDIATE] |
INITIALLY IMMEDIATE [[NOT] DEFERRABLE] |
INITTALLY DEFERRED

1]

[RELY | NORELY]

[USING INDEX
[INITRANS integer]

MAXTRANS integer]

PCTFREE integer]

TABLESPACE tablespace name]

NOSORT]

LOGGING | NOLOGGING]

Storage_Clausel]

[ENABLE | DISABLE]

[VALIDATE | NOVALIDATE]

[EXCEPTIONS INTO [schema.]table]]

Allows a constraint to be selectively enabled or disabled.

DEFERRABLE
Specifies that the constraint may be deferred. A deferred constraint will not be
checked until the transaction is committed.

INITIALLY IMMEDIATE
Specifies that the constraint should initially be evaluated immediately after the
execution of each DML statement. The SET CONSTRAINTS statement may be
used within a transaction to alter this behavior.

INITIALLY DEFERRED
Specifies that the constraint should initially be checked only when a transac-
tion is committed. The SET CONSTRAINTS statement may be used within a
transaction to alter this behavior.

136 Chapter 4: Common SQL Elements

NOT DEFERRABLE
Specifies that constraint checking may not be deferred for this constraint.

RELY
Specifies that a materialized view (or snapshot) will be eligible for query
rewrite even if an associated constraint is not validated. This keyword is valid
only for materialized views.

NORELY
Specifies that a materialized view (or snapshot) will be not be eligible for
query rewrite if an associated constraint is not validated. This keyword is valid
only for materialized views.

USING INDEX
Specifies that an index will be used to validate a unique or primary key
constraint.

INITRANS
Specifies the initial number of transaction entries allocated in each data block
of an index. One transaction entry is required for each concurrent transaction
that updates the block.

MAXTRANS
Specifies the largest number of transaction entries that may be allocated in
each data block for this index. This keyword limits the number of concurrent
transactions that can update the block. The default is based on the block size.

PCTFREE
Specifies the percentage of space in each index block reserved for updates of
index values.

TABLESPACE
Specifies the name of the tablespace where the index for a constraint will be
stored.

NOSORT
Specifies that the data rows are stored in the database in ascending order, so
no sort is required when creating the index.

LOGGING
Specifies that redo log records will be written during index creation. This
option is the default behavior.

NOLOGGING
Specifies that redo log records will not be written during index creation. In the
case of a database failure, the index creation operation cannot be recovered
by applying log files. Instead, the index must be recreated. This option speeds
the creation of constraints using indexes.

LOB_Storage_Clause 137

Storage_Clause
Specifies the storage characteristics for the index used to enforce the con-
straint. See the “Storage_Clause” section later in this chapter.

ENABLE
Specifies that the constraint be applied immediately to all new data in the
table or view.

DISABLE
Specifies that the constraint be disabled and not applied to data in the table or
view.

VALIDATE
Specifies that any existing data in the table or view must comply with the
constraint.

NOVALIDATE
Specifies that any existing data in the table or view should not be checked for
compliance with the constraint.

EXCEPTIONS INTO
Specifies a table into which Oracle will place the rowids of rows violating this

constraint. The table must already exist and can be created with the script
UTLEXCPT1.SQL. Note that VALIDATE must be specified to use this keyword.

LOB_Storage_Clause

{LOB {(lob_item[,lob item.]) STORE AS
([TABLESPACE tablespace]
[{ENABLE | DISABLE} STORAGE IN ROW]
[STORAGE Storage Clause]
[CHUNK integer]
[PCTVERSION integer
[CACHE | NOCACHE [LOGGING | NOLOGGING]]
)|
LOB (lob _item) STORE AS [(lob_segname)]
[([TABLESPACE tablespace]
{ENABLE | DISABLE} STORAGE IN ROW]
STORAGE Storage Clause]
CHUNK integer]
PCTVERSION integer
CACHE | NOCACHE [LOGGING | NOLOGGING]]

1

Specifies storage parameters to be applied to LOB (Large OBject) data segments in
a table, partition, or subpartition.

138 Chapter 4: Common SQL Elements

Keywords

LOB
Specifies that LOB storage parameters be provided for the listed LOB items.
Any unlisted LOB item will use the same storage parameters as the table, parti-
tion, or subpartition. Note that Oracle automatically creates a system-managed
index for each LOB item listed with this keyword.

STORE AS
The storage parameters to be applied immediately follow this keyword.

TABLESPACE
Specifies the name of the tablespace in which the LOB will be stored.

ENABLE STORAGE IN ROW
Specifies that the LOB data may be stored in the data row if its size is less than
approximately 4000 bytes. This option is the default behavior.

DISABLE STORAGE IN ROW
Specifies that the LOB data is always stored outside the data row.

STORAGE
Specifies the storage parameters for the LOB segment. See the “Storage_
Clause” section later in this chapter for details.

CHUNK
Specifies that integer bytes should be allocated for LOB manipulation. Note
that integer will be rounded up to a multiple of the Oracle block size.

PCTVERSION
Specifies the maximum percentage of LOB storage space to be used for creat-
ing new versions of the LOB. The default is 10 percent.

CACHE
Specifies that LOB data will be retained in memory for faster access.

NOCACHE
Specifies that LOB data will not be retained in memory. This option is the
default behavior.

LOGGING
Specifies that redo log records will be written during creation of LOB storage.
This option is the default behavior.

NOLOGGING
Specifies that redo log records will not be written during creation of LOB stor-
age. In case of a database failure, the operation cannot be recovered by apply-
ing log files and the object must be recreated. This option speeds creation of
database objects. Note that this option cannot be specified if CACHE is
specified.

Partition_Clause 139

STORE AS
Specifies the name of a LOB segment, which can only be used when listing a
single LOB item.

Partition_Clause

{PARTITION BY RANGE (column[,column..])
PARTITION [partition _name] VALUES LESS THAN (value list)

[LOB_Storage_Clause]

[Physical_ Attributes_Clause]

[TABLESPACE tablespace_name] [LOGGING | NOLOGGING]

[{SUBPARTITIONS integer [STORE IN (tablespace namel, tablespace name ...]) |

(SUBPARTITION [subpartition name] [TABLESPACE tablespace name]

[LOB_Storage Clause]

[, SUBPARTITION [subpartition name] [TABLESPACE tablespace name]
[LOB_Storage Clause] ...]

1

[, PARTITION [partition name] VALUES LESS THAN (value list)

[LOB_Storage_Clause]

[Physical Attributes_Clause]

[TABLESPACE tablespace_name] [LOGGING | NOLOGGING]

[{SUBPARTITIONS integer [STORE IN (tablespace namel, tablespace name ...]) |

(SUBPARTITION [subpartition name] [TABLESPACE tablespace_name]

[LOB_Storage Clause]

[, SUBPARTITION [subpartition name] [TABLESPACE tablespace name]
[LOB_Storage Clause] ...]

3 I

PARTITION BY RANGE (column[,column ...])
[SUBPARTITION BY HASH (column[,column]
[SUBPARTITIONS integer [STORE IN (tablespace namel, tablespace name ...]11]1]
{PARTITION [partition name] VALUES LESS THAN (value_list)
[LOB_Storage_Clause]
[Physical_ Attributes_Clause]
[TABLESPACE tablespace_name] [LOGGING | NOLOGGING]
[{SUBPARTITIONS integer [STORE IN (tablespace namel, tablespace name ...]) |
(SUBPARTITION [subpartition name] [TABLESPACE tablespace name]
[LOB_Storage Clause [, LOB_storage clause ...]
[, SUBPARTITION [subpartition name] [TABLESPACE tablespace namel
[LOB_Storage Clause [, LOB_storage clause ...]
1
[, PARTITION [partition name] VALUES LESS THAN (value list)
[LOB_Storage_Clause]
[Physical Attributes_Clause]
[TABLESPACE tablespace_name] [LOGGING | NOLOGGING]
[{SUBPARTITIONS integer [STORE IN (tablespace namel, tablespace name ...]) |
(SUBPARTITION [subpartition name] [TABLESPACE tablespace name]
[LOB_Storage Clause]
[, SUBPARTITION [subpartition name] [TABLESPACE tablespace name]
[LOB_Storage Clause] ...]
3 I

140 Chapter 4: Common SQL Elements

PARTITION BY HASH (column[,column ...])
[{PARTITIONS integer [STORE IN (tablespace namel[, tablespace name ...]) |
(PARTITION [partition name] [TABLESPACE tablespace name] [LOB Storage Clause]
[, PARTITION [partition name] [TABLESPACE tablespace name] [LOB Storage Clause]
|
}
Specifies partitioning parameters and is also used to define range partitioning,

composite partitioning, or hash partitioning.

Keywords

PARTITION BY RANGE
Specifies that the table is to be partitioned by ranges of values in the listed
columns.

PARTITION... VALUES LESS THAN
Specifies a name for the partition and one or more values (corresponding 1 to
1 with the column list of the PARTITION BY RANGE keyword) serving as
maximum values for inclusion in the partition. The value list may contain the
keyword MAXVALUE, which represents the highest possible value for a given
column.

LOB_Storage_Clause
Specifies the LOB storage parameters for this partition. See the “LOB_Storage_
Clause” section earlier in this chapter for details.

Physical_Attributes_Clause
Specifies the physical attributes for this partition; see the “Physical_Attributes_
Clause” section later in this chapter.

TABLESPACE
Specifies the name of the tablespace where this partition or subpartition will
be stored.

LOGGING
Specifies that redo log records will be written during object creation. This
option is the default.

NOLOGGING
Specifies that redo log records will not be written during object creation. In
case of a database failure, the operation cannot be recovered by applying log
files and the object must be recreated. This option speeds creation of data-
base objects.

SUBPARTITIONS
Specifies that integer subpartitions are to be created for this partition.

Physical_Attributes_Clause 141

STORE IN
Specifies the name or names of one or more tablespaces in which subparti-

tions are to be created.
SUBPARTITION
Specifies subpartitions by name.
PARTITION BY HASH
Specifies that hash subpartitions are to be created based on the column list
supplied.

PARTITIONS
Specifies that integer partitions are to be created.

PARTITION
Specifies the name for a partition in partition_name. If partition_name is
omitted, Oracle assigns a name using the format SYS_Pnnn.

Partitioning is an extra-cost option and is only available in the Ora-
cle Enterprise Server products.

Physical_Attributes_Clause

[INITRANS integer]
[MAXTRANS integer]
[PCTFREE integer]
[PCTUSED integer]
Specifies schema object characteristics affecting the utilization of space in an Ora-

cle block.

Keywords

INITTRANS
Specifies the number of transaction entries allocated to each block of the
object. The allowed range of values is 1 to 255, and should not normally be
changed from the default of 2.

MAXTRANS
Specifies the maximum number of concurrent transactions that can update a
block of the object. Values are 1 to 255, and should not normally be changed
from the default. The default is a function of the Oracle block size.

142 Chapter 4: Common SQL Elements

PCTFREE
Specifies the percentage of space in each data block kept free for future
updates to the object. The permissible range of values is 0 to 99. The default
value is 10.

PCTUSED
Specifies the percentage of space in each data block that Oracle attempts to
keep filled. The permissible range of values is 0 to 99, and the default is 40.

Storage_Clause

STORAGE (
[INITIAL integer [K | M]]
NEXT integer [K | M]]
MINEXTENTS integer]
MAXEXTENTS [integer | UNLIMITED]]
PCTINCREASE integer]
FREELISTS integer]
FREELIST GROUPS integer]
OPTIMAL [integer [K | M]]]

[
[
[
[
[
[
[
[BUFFER_POOL {KEEP | RECYCLE | DEFAULT}]

)

Specifies how storage within an Oracle tablespace is allocated to an individual
object.

Keywords

STORAGE
Specifies the database object’s physical storage characteristics.

INITIAL
Specifies the size of the first extent for the database object in bytes, kilobytes
(K), or megabytes (M). If not a multiple of the database block size, this size
will be rounded up to a multiple of the database block size.

NEXT
Specifies the size of the next extent for the database object in bytes, kilobytes
(K) or megabytes (M). If not a multiple of the database blocksize, this size will
be rounded up to a multiple of database blocksize.

MINEXTENTS
Specifies the number of extents to be allocated when the database object is
created. The minimum and default value is 1, except for rollback segments,
which have a minimum and default of 2.

MAXEXTENTS
Specifies the maximum number of extents that may be allocated for the data-
base object. The default varies according to the database block size. If the

Table_Constraint_Clause 143

keyword UNLIMITED is specified, there is no upper limit to the number of
extents allowed.

PCTINCREASE
Specifies the percentage by which each extent grows over the previous extent.
The default is 50, which means that each extent will be one and one-half
times larger than the previous extent.

FREELISTS
Specifies the number of free lists contained in each freelist group for this data-
base object. The default is 1, and the maximum depends on the database
block size.

FREELIST GROUPS
Specifies the number of groups of free lists for this database object. The
default is 1. This parameter should be used only with the Parallel Server
option.

OPTIMAL
For rollback segments only, integer specifies the optimal size Oracle attempts
to maintain by deallocating unused rollback segment extents. If no size is
specified, the rollback segment will never be reduced in size. The default
behavior, which you get when you omit the OPTIMAL clause, is to never
shrink rollback segments at all.

BUFFER_POOL

Specifies how schema objects are to be assigned to buffer pools. KEEP means
the object will be assigned to the KEEP buffer pool and retained in memory
permanently, if possible. RECYCLE means that the object will be assigned to
the RECYCLE buffer pool and removed from memory as soon as it is not
needed. DEFAULT means the object will be assigned to the DEFAULT buffer
pool, which will utilize the standard least-recently-used (LRU) algorithm for
buffer reuse. Note that the KEEP and RECYCLE pools must be configured by
the DBA prior to use.

Table_Constraint_Clause

[CONSTRAINT constraint_name]
{[UNIQUE | PRIMARY KEY] (column[,column ...]1)] |
[CHECK (condition)] |
[FOREIGN KEY (column[,column ...])
REFERENCES [schema.]table [(column[,column ...]1)]
[ON DELETE {CASCADE | SET NULL}]]
}

[Constraint_State Clause]

Defines constraints on a table.

144 Chapter 4: Common SQL Elements

Keywords

CONSTRAINT
Specifies a name for the constraint. If omitted, Oracle assigns a name in the
form SYS_Cnnn, where nnn is an integer number.

UNIQUE
Specifies that the value in the column(s) must not duplicate a value for the
same column(s) in any other row of the table. The value of the column or col-
umns in the constraint must be unique for each row in the table. Note, how-
ever, that more than one column may contain the value NULL.

PRIMARY KEY
Specifies that the column(s) identified by column will serve as the primary key
for the table in which it is defined. A primary key column may not contain
NULL, and no value of the primary key may appear in the same column(s) of
any other row in the table.

CHECK
Specifies a condition that must evaluate to TRUE or NULL for the constraint to
be satisfied.

FOREIGN KEY

Specifies that one or more columns in this table participate in a foreign key
referential integrity relationship.

REFERENCES
Specifies the table and column(s) that are referenced by this foreign key
constraint.

ON DELETE CASCADE
Specifies that when a row containing a primary or unique key is deleted,
dependent foreign keys will be deleted automatically.

ON DELETE SET NULL
Specifies that when a row containing a primary or unique key is deleted,
dependent foreign keys will be changed to NULL automatically.

Constraint_State_Clause
Specifies how the constraint will be applied to data in the table. See the
“Constraint_State_Clause” section earlier in this chapter.

SOL Functions

Oracle implements a large number of built-in functions you can invoke from SQL
or PL/SQL. If you're going to be working in either of these languages, you must
have a good knowledge of these functions. If you're working with SQL, you’ll also
have a number of aggregate functions at your disposal. All are documented in this
chapter, along with examples. Many of these examples show how to invoke the
functions via SQL*Plus; for more information, see Chapter 6, SQL*Plus.

This chapter describes SQL functions within the following categories:
e Aggregate functions

e Numeric functions

e Character functions

e Date functions

e Conversion functions

e Other (miscellaneous) functions

A note about function parameters is in order. Each function descrip-
tion contains a syntax block showing the parameters that may be
passed to a function. In many cases, the parameter descriptions are
obvious, and I've chosen not to specifically describe them. The ABS
function is an example of this type of description. If you read the
function description and look at the examples, it will be obvious
how the function can be used. When necessary, I've included
detailed parameter descriptions for other functions.

145

146 Chapter 5: SQL Functions

Aggregate Functions

Aggregate functions are SQL functions designed to allow you to summarize data
from multiple rows of a table or view. These aggregate functions, many of which
are useful for data warehouse applications, are only valid for use in SQL state-
ments. Unlike the other built-in functions, they cannot be directly invoked from a
PL/SQL expression (see Chapter 7, PL/SQL, for more information about PL/SQL
programming). Table 5-1 lists the available aggregate functions.

Table 5-1. Oracle’s Aggregate Functions

Function Description
AVG Returns the average value of a column over a set of rows
COUNT Returns the number of non-NULL values in a column over a set of rows

GROUPING | Allows you to insert subtotal (superaggregate) rows into a query that uses
Oracle’s ROLLUP and CUBE extensions

MAX Returns the maximum value of a column over a set of rows

MIN Returns the minimum value of a column over a set of rows

STDDEV Returns the standard deviation of all values in a column for a set of rows
SUM Sums the values in a column for a set of rows

VARIANCE Returns the variance of values in a column for a set of rows

GROUP BY

When used with an aggregate function, the GROUP BY clause causes Oracle to
report the result for each distinct value of a column. The following example uses
GROUP BY to break out the count of objects by database user:

SQL> SELECT owner, COUNT (object_name)

2 FROM dba_objects
3 GROUP BY owner;

OWNER COUNT (OBJECT_NAME)
CTXSYS 164
DBSNMP 4
GNIS 2
MDSYS 137
OEMREP 230

The GROUP BY clause causes results to be sorted into different buckets—one for
each distinct value in the GROUP BY column. The COUNT function then reports
the count of OBJECT_NAME columns in each of those buckets.

Aggregate Functions 147

If you want to count rows, not values, in a specific column, you can use the aster-
isk (*) as the COUNT parameter. For example:

SELECT COUNT(*) FROM dba_objects

When you count column values, whether a column contains NULL values makes a
difference. NULLs are generally ignored. In the case of COUNT, NULL values won’t
be counted. Using the asterisk causes all rows to be counted, including those with
NULL values.

DISTINCT and ALL

Most aggregate functions optionally accept the DISTINCT and ALL keywords in
their parameter list. These keywords allow you to control the manner in which
duplicate column values are handled. The keywords have the following meanings:

DISTINCT
Causes the aggregate function to look only at distinct values, ignores dupli-
cates.

ALL
Causes the aggregate function to look at all values, including duplicates.

Consider a table with the values shown in the following query:

SQL> SELECT * FROM agg demo;

The agg demo table contains three rows, with two distinct values stored in col-
umn X. Two rows have a value of 2, and one has a 1. Note the effect of the DIS-
TINCT and ALL keywords in the following example:

SQL> SELECT COUNT (x), COUNT(DISTINCT x), COUNT(ALL x)
2 FROM agg demo;

COUNT (X) COUNT (DISTINCTX) COUNT (ALLX)

Counting all values is the default behavior. The DISTINCT keyword causes only
the distinct values to be counted. In this example, there are two distinct values: 1
and 2. The ALL keyword explicitly asks for the default behavior.

148 Chapter 5: SOL Functions

Aggregate Functions and NULL Values

In most cases, aggregate functions ignore NULL values. Consider the following
extension of the previous section’s example. This time, the agg demo table con-
tains a NULL value:

SQL> SELECT * FROM agg demo;

null

This version of the agg demo table is used in most aggregate func-
tion examples given in this chapter.

Using the COUNT function to count the number of values in column X yields the
following results:

SQL> SELECT COUNT (x), COUNT (DISTINCT x), COUNT(ALL X)
2 FROM agg_demo;

COUNT (X) COUNT (DISTINCTX) COUNT (ALLX)

Notice that in no case was the NULL value counted; instead, the NULL values were
totally ignored.

There are two cases when aggregate functions do not ignore NULLS.
One is the special case when COUNT(®) is used, causing Oracle to
count rows, not column values. The GROUPING function represents
the other case. GROUPING summarizes the data for a group of rows
containing a NULL value in a GROUP BY column.

AVG
AVG([DISTINCT | ALL] expr)

Computes the average value of a column or expression over the set of rows
returned by a query, or the set of rows specified by a GROUP BY clause.

GROUPING 149

Example

SQL> SELECT AVG(x), AVG(DISTINCT x), AVG(ALL Xx)
2 FROM agg demo;

AVG(X) AVG(DISTINCTX) AVG(ALLX)

1.66666667 1.5 1.66666667

COUNT

COUNT ({* | [DISTINCT | ALL] expr})

Counts the number of values in a column or expression over the set of rows
returned by a query, or the set of rows specified by a GROUP BY clause.

Example

SQL> SELECT owner, object_type, COUNT (*)
2 FROM dba_objects
3 GROUP BY owner, object_type;

OWNER OBJECT_TYPE COUNT (*)
CTXSYS INDEX 35
CTXSYS INDEXTYPE 1
CTXSYS LIBRARY 2
CTXSYS OPERATOR 2
CTXSYS PACKAGE 29
CTXSYS PACKAGE BODY 24
GROUPING

GROUPING (expr)

Determines whether a NULL value for a specified column or expression repre-
sents an added row or a legitimate group of values.

The GROUPING function was introduced in Oracle87, and is designed for use in
SELECT statements that use the CUBE and ROLLUP operators that were also intro-
duced in Oracle8i. CUBE and ROLLUP both cause extra rows to be inserted into a
query to summarize a group of records. These extra rows contain NULL values in
the GROUP BY columns. GROUPING returns a 1 if the NULL value results from an
additional row returned from using CUBE or ROLLUP; otherwise, it returns a 0.

Example

The query in this example returns a count of database objects by owner and type.
The ROLLUP keyword causes Oracle to insert an extra row for each owner that
gives the total count for that owner. This row has a NULL value in the OBJECT_
TYPE column. An additional row is inserted at the end of the rowset that gives the

150 Chapter 5: SQL Functions

total number of objects for all owners. This row has NULL values for both the
OWNER and the OBJECT_TYPE columns.

In this particular query, the OWNER and OBJECT_TYPE columns would never
normally be NULL, so you can safely take the presence of a NULL value as an indi-
cator that the row was inserted as a subtotal row. However, that won’t be the case
for all queries. A mechanism is thus needed to reliably determine whether a row
returned by a query represents an additional rollup row as opposed to database
information. Enter the GROUPING function. In this example, the GROUPING func-
tion was applied to the OBJECT_TYPE column, and it will return a 1 to indicate
rows that contain a NULL object type because that row was added as a result of
using the ROLLUP keyword:
SQL> SELECT owner, object_ type, COUNT(*), GROUPING(object_type)

2 FROM dba_objects
3 GROUP BY ROLLUP (owner, object_type);

OWNER OBJECT_TYPE COUNT (*) GROUPING (OBJECT_TYPE)
CTXSYS INDEX 35 0
CTXSYS INDEXTYPE 1 0
CTXSYS LIBRARY 0
CTXSYS OPERATOR 2 0
CTXSYS PACKAGE 29 0
CTXSYS PACKAGE BODY 24 0
CTXSYS PROCEDURE 1 0
CTXSYS SEQUENCE 3 0
CTXSYS TABLE 26 0
CTXSYS TYPE 4 0
CTXSYS TYPE BODY 3 0
OWNER OBJECT_TYPE COUNT (*) GROUPING (OBJECT_TYPE)
CTXSYS UNDEFINED 1 0
CTXSYS VIEW 33 0
CTXSYS *null* 164 1
DBSNMP SYNONYM 4 0
DBSNMP *null* 4 1
GNIS INDEX 1 0
GNIS TABLE 1 0
GNIS *null* 2 1
null *null* 12185 1
MAX

MAX ([DISTINCT | ALL] expr)

Computes the maximum value of a column or expression over the set of rows
returned by a query or specified by a GROUP BY clause.

MIN 151

Example

This example uses the MAX function in several ways to find the largest value of
the X column in the agg_demo table:

SQL> SELECT MAX(x), MAX(DISTINCT x), MAX(ALL X)
2 FROM agg d ;

Notice that using ALL or DISTINCT does not affect the value
returned by the MAX function. It doesn’t matter whether MAX looks
at one or many occurrences of each value. In either case, the maxi-
mum value will be the same.

MIN
MIN([DISTINCT | ALL] expr)

Computes the minimum value of a column or expression over the set of rows
returned by a query or the set of rows specified by a GROUP BY clause.

Examples

This example uses the MIN function in several ways to find the smallest value of
the X column of the agg_demo table:

SQL> SELECT MIN(x), MIN(DISTINCT x), MIN(ALL X)
2 FROM agg _demo;

MIN(X) MIN(DISTINCTX) MIN(ALLX)

Using ALL or DISTINCT does not affect the value returned by the
MIN function. It doesn’t matter whether MIN looks at one or many
occurrences of each value. In either case, the minimum value will be
the same.

152 Chapter 5: SQL Functions

STDDEV
STDDEV ([DISTINCT | ALL] expr)

Computes the standard deviation of the values of a column or expression over the
set of rows returned by a query or the set of rows specified by a GROUP BY
clause.

Example

This example uses the STDDEV function to find several standard deviations of val-
ues in the x column of the agg demo table:

SQL> SELECT STDDEV(x), STDDEV(DISTINCT x), STDDEV(ALL X)
2 FROM agg demo;

STDDEV (X) STDDEV (DISTINCTX) STDDEV (ALLX)

.577350269 .707106781 .577350269

The standard deviation of distinct values is different from the other
two methods; a standard deviation depends on the number of obser-
vations and DISTINCT returns fewer values than the other two
methods.

SUM

SUM([DISTINCT | ALL] expr)

Computes the sum of the values of a column or expression over the set of rows
returned by a query or specified by a GROUP BY clause.

Example

SQL> SELECT SUM(x), SUM(DISTINCT x), SUM(ALL x)
2 FROM agg demo;

SUM(X) SUM(DISTINCTX) SUM(ALLX)

VARIANCE
VARIANCE ([DISTINCT | ALL] expr)

Computes the variance of the values of a column or expression over the set of
rows returned by a query or the set of rows specified by a GROUP BY clause.

ACOS 153

Example

SQL> SELECT VARIANCE(x), VARIANCE (DISTINCT x), VARIANCE (ALL x)
2 FROM agg demo;

VARIANCE (X) VARIANCE (DISTINCTX) VARIANCE (ALLX)

.333333333 .5 .333333333

Like the standard deviation, a variance depends on the number of
observations, so DISTINCT returns fewer rows and therefore results
in a different variance.

Numeric Functions

Numeric functions include those that take numbers as arguments and return
numeric values. Many of these functions are related to trigonometry. There are
also logarithmic functions and several general-purpose functions.

ABS (n)
Returns the absolute value of a number: the value with any negative sign removed.

Example

SQL> SELECT ABS(-1), ABS(1)
2 FROM dual;

ABS(-1) ABS (1)

ACOS

ACOS (n)

Returns the arc cosine of a value between -1 and 1. This function reverses the out-
put of the COS function. The result is an angle expressed in radians, which will
fall between inclusively in the range 0 to .

Example

SQL> SELECT ACOS(-1), ACOS(0), ACOS(1)
2 FROM dual;

ACOS(-1) ACOS(0) ACOS (1)

3.14159265 1.57079633 0

154 Chapter 5: SQL Functions

ASIN

ASIN(n)

Returns the arc sine of a value between -1 and 1. This function reverses the out-
put of the SIN function. The result is an angle expressed in radians, which will fall
inclusively in the range -n/2 and /2.

Example

SQL> SELECT ASIN(-1), ASIN(0), ASIN(1)
2 FROM dual;

ASIN(-1) ASIN(0) ASIN(1)

-1.5707963 0 1.57079633
ATAN
ATAN (n)

Returns the arc tangent of a value. This function reverses the TAN function out-
put. The result is an angle expressed in radians, which will fall inclusively in the
range -1/2 and /2.

Example

SQL> SELECT ATAN(.781285627), TAN(.663225116)
2 FROM dual;

ATAN(.781285627) TAN(.663225116)

.663225116 .781285627

ATAN2

ATAN2 (n, m)

Returns the arc tangent of the value n/m. In other words ATAN2(#n,m) is the same
as ATAN(#n/m). The result is an angle expressed in radians, which will fall inclu-
sively in the range -n/2 and m/2.

Example

SQL> SELECT ATAN2(.4,2), ATAN(.2)
2 FROM dual;

.19739556 .19739556

COSH 155

CEIL
CEIL(n)
Returns the lowest valued integer that is greater than or equal to the input. If 7 is

already an integer, n will be returned.

Example

SQL> SELECT CEIL(10), CEIL(10.5), CEIL(-10.5)
2 FROM dual;

CEIL(10) CEIL(10.5) CEIL(-10.5)

Notice that for negative numbers, the sign is relevant: -10 is greater than -10.5.

COS
COS (n)
Returns the cosine of an angle, where the angle is expressed in radians.

Example

SQL> SELECT COS(0)
2 FROM dual;

COSH
COSH (n)
Returns the hyperbolic cosine of an angle, where that angle is expressed in

radians.

Example

SQL> SELECT COSH(0)
2 FROM dual;

156 Chapter 5: SQL Functions

EXP
EXP (n)

Returns the value of e raised to the power n.

Example

The constant e is approximately equal to 2.71828183. The following example
shows two ways of computing e raised to the third power. The results are slightly
different because the EXP function uses a closer approximation of e than was used
in the other expression.

SQL> SELECT EXP(3), 2.71828183*2.71828183%2.71828183
2 FROM dual;

EXP(3) 2.71828183%2.71828183*2.71828183

20.0855369 20.085537

FLOOR
FLOOR (n)
Returns the largest integer value that is less than or equal to the input value.

Example

SQL> SELECT FLOOR(9.9), FLOOR(-9.9)
2 FROM dual;

FLOOR(9.9) FLOOR(-9.9)

As with CEIL, the sign is relevant; -10 is less than -9.9.

GREATEST
GREATEST (expr [,expr...])

Returns the highest value from the list of arguments supplied. The GREATEST
function can be used with character strings and dates, as well as with numbers.

Examples
Return the largest value from a list of numbers:
SQL> SELECT GREATEST(1,2,3) FROM dual;

GREATEST(1,2,3)

LN 157

Return the largest value from a list of character strings:

SQL> SELECT GREATEST('One', 'Two') FROM dual;
GRE

Two
Return the largest (most recent) value from a list of dates:

SQL> SELECT GREATEST(TO_DATE('11/15/1961', 'MM/DD/YYYY'),
2 TO DATE('12/29/1988', 'MM/DD/YYYY'))
3 FROM dual;

GREATEST (

If you mix datatypes, Oracle uses the datatype of the first argument
as a base and converts (if possible) all other arguments to that type
before choosing the greatest value.

LEAST

LEAST (expr [,expr...])

Returns the lowest value from the list of arguments supplied. The LEAST function
can be used with character strings and dates, as well as with numbers.

Example

SQL> SELECT LEAST(1,2,3) FROM dual;

LEAST(1,2,3)

LN (n)

Returns the natural logarithm of a number. The LN and EXP functions are comple-
mentary.

158 Chapter 5: SQL Functions

Example

SQL> SELECT LN(100), EXP(4.60517019) FROM dual;

LN(100) EXP(4.60517019)

4.60517019 100

LOG
LOG (m, n)

Returns the base m logarithm of the number 7.

Parameters

m Specifies a positive number other than 0 or 1 that represents the logarithm
base.

n Specifies a number, which must be positive, for which you want the base m

logarithm.

Example

SQL> SELECT LOG(10,10000) FROM dual;

LOG(10,10000)

MOD
MOD (m,n)

Returns the remainder left over when m is divided by 7.

Example
SQL> SELECT MOD(18,12), MOD(30,12), MOD(30,30)
2 FROM dual;

MOD(18,12) MOD(30,12) MOD(30,30)

In the first case, 12 goes into 18 once with 6 left over. In the second case, 12 goes
into 30 twice, but still with 6 left over. In the final case, 30 goes into 30 evenly,
and nothing is left over.

ROUND 159

POWER

POWER (m, nn)

Raises m to the power of 7. In other words, this function returns m.

Parameters

m Specifies a nonzero number.

n Specifies a power. If m is positive, # may be any positive or negative num-
ber. If m is negative, n must be an integer.

Example

SQL> SELECT POWER(10,3), POWER(-10,-3), POWER(-10,3)
2 FROM dual;

POWER (10,3) POWER(-10,-3) POWER(-10,3)

ROUND

ROUND (1, m)

Rounds a value to a specified number of decimal places.
Parameters

n Specifies a value to be rounded.

m Specifies the number of decimal places to preserve in the result. This number
must be an integer. A negative value for m results in the value being rounded
to the left of the decimal point.

Example

SQL> SELECT ROUND(123.45), ROUND(123.45,1), ROUND(123.45,-1)
2 FROM dual;

ROUND(123.45) ROUND(123.45,1) ROUND(123.45,-1)

160 Chapter 5: SOL Functions

SIGN

SIGN(n)

Returns a value indicating the sign of 7. The number returned by the SIGN func-
tion will be one of the following:

-1 The number is negative
0O The number is zero
1 The number is positive

Example

SQL> SELECT SIGN(76), SIGN(0), SIGN(-76.17)
2 FROM dual;

SIGN(76) SIGN(0) SIGN(-76)

SIN
SIN(n)
Returns the sine of the angle 7, which must be expressed in radians.

Example

SQL> SELECT SIN(3.14), SIN(0)
2 FROM dual;

SIN(3.14) SIN(0)

.001592653 0

SQRT

SQRT (n)

Returns the square root of », which must be a positive number.
Examples

SQL> SELECT SQRT(100), 10*10, SQRT(81), 9*9 FROM dual;

SQRT (100) 10*10 SQRT(81) 9*9

TRUNC

TAN

TAN (n)

Returns the tangent of the angle 7, which must be expressed in radians.

Example

SQL> SELECT TAN(.291456794), ATAN(.3) FROM dual;

TAN(.291456794) ATAN(.3)

.299999999 .291456794

TANH

TANH (n)

Returns the hyperbolic tangent of the angle 7, which must be expressed in

radians.

Example

SQL> SELECT TANH(0), TANH(3.14) FROM dual;

0 .996260205

TRUNC

TRUNC (n [,m])

Truncates a number to a specific number of decimal places.

Parameters

n Specifies a number to be truncated.

m Specifies the number of decimal places to preserve in the result. Truncating all
decimal places is the default. Negative values for m result in digits being trun-

cated to the left of the decimal point.

Example

SQL> SELECT TRUNC(99.99), TRUNC(99.99,1), TRUNC(99.99,-1)

2 FROM dual;

TRUNC (99.99) TRUNC(99.99,1) TRUNC(99.99,-1)

162 Chapter 5: SQL Functions

This function truncates at the specified number of decimal places
and does not perform rounding.

Character Functions

In its manuals, Oracle divides character functions into two classes—those that
return character values and those that return numeric values. The SUBSTR func-
tion, which returns a substring of a larger string, is an example of the former. The
LENGTH function, which returns the length of a string, is an example of the latter.
This book combines the two types into one section for ease of reference.

ASCII

ASCII (char)

Returns the decimal representation of a character, based on the character set in
effect for the database. A true ASCII value will be returned only if a 7-bit ASCII
character set is in use for the database. Notice that the parameter to the ASCII

function may be a string as well as a single character. However, if a string is pro-
vided, the ASCII function returns a value based on the first character of that string.

Example

SQL> SELECT ASCII('D'), ASCII('Dave') FROM dual;

ASCII('D') ASCII('DAVE')

CHR

CHR(n [USING NCHAR_CS])

Returns the character from the database character set associated with the specified
numeric value. If USING NCHAR_CS is specified, the database’s national character
set is used.

Example

SQL> SELECT CHR(68), CHR(68 USING NCHAR CS) FROM dual;

ccC

DD

INSTR 163

This example was generated using an ASCII character set.

CONCAT
CONCAT (stringl, string2)
Concatenates two input strings and returns the result. The CONCAT function is

equivalent to using the concatenation operator (l1); see Chapter 1, Elements of
SQL, for more information about this operator.

Example

SQL> SELECT CONCAT('Good ', 'Morning'), 'Good ' || 'Morning'’
2 FROM dual;

CONCAT ('GOOD 'GOOD' | | 'MOR

Good Morning Good Morning

GREATEST

See the definition for GREATEST in the section describing numeric functions.

INITCAP

INITCAP (string)

Changes the first letter of each word in a string to uppercase and all other letters
to lowercase.

Example

SQL> SELECT INITCAP('good MORNING, dave') FROM dual;

INITCAP ('GOODMORNI

Good Morning, Dave

INSTR
INSTR (stringl, string2[, nl, ml])

Searches string1 to find string2 and returns the character position in stringl where
string2 begins.

164 Chapter 5: SQL Functions

Parameter
string1

Specifies the string you want to search.
string2

Specifies the string you want to find.

n Specifies the character position from which the search should begin. The
default is to begin searching from the first character, which is position 1. Use
negative values to specify the starting position relative to the right end of
string1, rather than the left.

m Specifies which occurrence of string2 you want to find (f it occurs more than
once). The default is to find the first occurrence.

Examples

SQL> SELECT INSTR('easy come, easy go','easy') FROM dual;

INSTR ('EASYCOME, EASYGO', 'EASY')

INSTRB
INSTRB(stringl, string2[, nl[, m]])

Searches string1 to find string2 and returns the byte position in stringl where
string2 begins.

INSTRB is similar to INSTR, except that the return value represents a byte index
into stringri, not a character index. When a single-byte character set is used,
INSTR and INSTRB return the same result; a difference only occurs when using a
multibyte character set.

LEAST

See the definition for LEAST in the section describing numeric functions.

LPAD 165

LENGTH

LENGTH (string)
Returns the number of characters in a string.

Example

SQL> SELECT LENGTH('Dave'), LENGTH('Brighten the corner where you are.')
2 FROM dual;

LENGTH('DAVE') LENGTH ('BRIGHTENTHECORNERWHEREYOUARE. ')

LENGTHB

LENGTHB (string)

Returns the length of a string in bytes. LENGTHB returns the same result as
LENGTH, except when a multibyte character set is used.

LOWER
LOWER (string)
Converts all characters in a string to lowercase.

Example

SQL> SELECT LOWER('LIFE IS a Wonderful tHINg.') FROM dual;

LOWER (' LIFEISAWONDERFULTHI

life is a wonderful thing.

LPAD
LPAD(stringl, nl[, string2])
Pads the left side of stringl with spaces, or with copies of the character string
specified by string2, until the size of the resulting string reaches 7 characters.
Parameters
string1

Specifies the string that you want padded.

n Specifies the number of characters that you want in the result.

166 Chapter 5: SOL Functions

string2
Specifies the character sequence used to pad the input string to reach the
desired length. This parameter defaults to a single space.

Example
SQL> SELECT LPAD('X',3), LPAD('X',3,'Y'), LPAD('RIGHT',12,'LEFT')

2 FROM dual;

LPA LPA LPAD('RIGHT'

X YYX LEFTLEFTRIGHT

LTRIM
LTRIM(stringl [,string2])

Removes specific characters from the left side of a string.

Parameters

string1
Specifies the string from which you want leading characters removed.

string2
Specifies a string containing the set of characters to remove. This parameter
defaults to a single space. Trimming stops when the function encounters a
character not present in this string.

Examples

SQL> SELECT LTRIM(' The default is to trim leading spaces.')
2 FROM dual;

LTRIM (' THEDEFAULTISTOTRIMLEADINGSPACES

The default is to trim leading spaces.

SQL> SELECT LTRIM('***You can trim other characters as well.',6'*')
2 FROM dual;

LTRIM(' ***YOUCANTRIMOTHERCHARACTERSASW

You can trim other characters as well.

SQL> SELECT LTRIM('**@@*@You can even trim multiple characters.','*@')
2 FROM dual;

LTRIM(' **@@*@YOUCANEVENTRIMMULTIPLECHA

You can even trim multiple characters.

NLS_UPPER 167

NLS_INITCAP
NLS_INITCAP(string[, 'NLS_SORT=sort’])

Performs like INITCAP, but uses the national character set.

Parameters

string
Specifies the input character string.

sort

Specifies the name of the linguistic sort sequence specifying capitalization
rules for the language being used.

Example

SQL> SELECT NLS INITCAP('money', 'NLS_SORT=XFRENCH')
2 FROM dual;

NLS_LOWER
NLS_LOWER (string[, 'NLS_SORT=sort’])

Performs like LOWER, but uses the national character set.

Parameters

sting
Specifies the input character string.

sort
Specifies the name of the linguistic sort sequence specifying capitalization
rules for the language being used.

Example

SQL> SELECT NLS_LOWER('MONEY', 'NLS_SORT=XFRENCH')
2 FROM dual;

NLS_UPPER
NLS_UPPER (string[, 'NLS_SORT=sort’])

Performs like UPPER, but uses the national character set.

168 Chapter 5: SOL Functions

Parameters
string
Specifies the input character string.

sort
Specifies the name of the linguistic sort sequence specifying capitalization
rules for the language being used.

Example

SQL> SELECT NLS_UPPER('money', 'NLS_SORT=XFRENCH')
2 FROM dual;

NLSSORT
NLSSORT (string[, 'NLS_SORT=sort'])
Returns the byte string used to represent a value that is being sorted using a lin-
guistic sort sequence.
Parameters
string
Specifies a character string.

sort
Specifies the name of a linguistic sort sequence or the keyword BINARY. If
BINARY is used, NLSSORT returns the exact byte values of the input string.

Example

SQL> SELECT NLSSORT('MONEY', 'NLS SORT=XFRENCH') FROM dual;

NLSSORT ('"MONEY ', 'NLS_SORT=XFRENCH")

505A55288200010101010100
SQL> SELECT NLSSORT('money', 'NLS SORT=XFRENCH') FROM dual;
NLSSORT ('"MONEY ', 'NLS_SORT=XFRENCH")

505A55288200020202020200

RPAD 169

REPLACE
REPLACE (string, search string [,replacement_string])
Searches a string and replaces one substring with another. This function also may
be used to delete occurrences of a substring.
Parameters
string
Specifies the input string and the string to search.

search_string
Specifies the substring to search for.
replacement_string

Specifies the string you want to use in place of the search_string. If you omit
this optional argument, all occurrences of search_string will be deleted.

Examples

SQL> SELECT REPLACE('The sky is blue.', 'blue', 'red') FROM dual;

REPLACE (' THESKY

The sky is red.
SQL> SELECT REPLACE('The sky is blue red.',' red') FROM dual;
REPLACE (' THESKYI

The sky is blue.

RPAD
RPAD(stringl, nl, string2])
Pads the right side of stringl with spaces or copies of the character string speci-
fied by string2 until the size of the resulting string reaches 7 characters.
Parameters
string1
Specifies the string that you want padded.
n Specifies the number of characters you want in the result.
string2

Specifies the character sequence used to pad the input string to reach the
desired length. This parameter defaults to a single space.

170 Chapter 5: SQL Functions

Example

SQL> SELECT RPAD('X',3), RPAD('X',3,'Y'), RPAD('RIGHT',12,'LEFT')
2 FROM dual;

RPA RPA RPAD('RIGHT'

X XYY RIGHTLEFTLEF

RTRIM
RTRIM(stringl [,string2])

Removes specific characters from the right side of a string.

Parameters

string1
Specifies the string from which you want trailing characters removed.

string2
Specifies a string containing the set of characters to remove. This defaults to a
single space. Trimming is performed from right to left and stops when the
function encounters a character not in this set.

Examples

SQL> SELECT RTRIM('The default is to trim trailing spaces. ")
2 FROM dual;

RTRIM (' THEDEFAULTISTOTRIMLEADINGSPACES

The default is to trim trailing spaces.

SQL> SELECT RTRIM('You can trim other characters as well.***', '*1)
2 FROM dual;

RTRIM(' ***YOUCANTRIMOTHERCHARACTERSASW

You can trim other characters as well.

SQL> SELECT RTRIM('You can even trim multiple characters. **@@*@',6'*@')
2 FROM dual;

RTRIM(' **@@*@YOUCANEVENTRIMMULTIPLECHA

You can even trim multiple characters.

SUBSTR 171

SOUNDEX
SOUNDEX (string)

Returns a string of digits representing phonetic pronunciation of the input string.
The following steps are used to derive the output string:

1. The first letter of the string is retained.
2. All occurrences of the following letters are removed: a, e, h, i, o, u, w, and y.
3. Any remaining letters are replaced with digits as shown in Table 5-2.
4. The resulting string is truncated to four characters in length.
Using SOUNDEX can make it easier to search for a given string, because you don’t
need to spell it in exactly the correct way to get a match.
Table 5-2. SOUNDEX Letter-to-Digit Correspondence

Letters SOUNDEX Digit
b, f’ p) v

¢ gk q,8x 2
d, t
1

m, n

(<) WAV BENESNRG VE (SR

T

Example

SQL> SELECT SOUNDEX('O''Reilly'), SOUNDEX('ORiley'), SOUNDEX('OH Riley')
2 FROM dual;

SOUN SOUN SOUN

0640 0640 0640

SUBSTR
SUBSTR (string, m [,n])

Returns a portion of a string.

Parameters
string
Specifies the input string.
m Specifies the index of the first character to extract from char. Indexing begins

with 1 and is an offset from the left end of the string. You can use a negative
value to specify an offset from the right end of the string.

172 Chapter 5: SQL Functions

n Specifies the number of characters to extract. This parameter is optional. By
default, you get all characters from position m to the end of the string.

Examples

SQL> SELECT SUBSTR('OneTwoThree',7) FROM dual;

SUBSTRB
SUBSTRB (string, m [,n])

Returns a portion of a string. SUBSTRB is identical to SUBSTR, except that m and
n refer to bytes, not to characters. This is only an issue when the string is based
on a multibyte character set.

TRANSLATE
TRANSLATE (string, from string, to_string)
Modifies a string by translating one set of characters into another.

string
The input character string.

Sfrom_string
The set of characters you want to translate.

to_string
The set of new characters that will replace from_string. Each character of
JSfrom_string in the input string is replaced by the corresponding character from
the to_string. Characters in from_string with no corresponding elements in fo_
string are deleted.

TRIM 173

Examples

The following two examples translate the digits 0 through 9 into the letters a
through j. In the second example, the from_string contains a period and the to_
string does not. This situation causes the period to be deleted:

SQL> SELECT TRANSLATE('123.45','0123456789', 'abcdefghij') FROM dual;

TRIM

TRIM([LEADING | TRAILING | BOTH]
[trim character FROM] string)

Removes both leading and trailing spaces (or other character) from a string.

Parameters

LEADING
Specifies that only leading spaces be trimmed.

TRAILING
Specifies that only trailing spaces be trimmed.

BOTH
Specifies that both leading and trailing spaces be trimmed.

trim_character
Specifies some other character to trim instead of a space.

string
Specifies the input string.

Examples

SQL> SELECT TRIM(' TEENA ') FROM dual;

174 Chapter 5: SQL Functions

UPPER
UPPER (string)
Converts all the characters in a string to uppercase.

Example

SQL> SELECT UPPER('LIFE IS a Wonderful tHINg.') FROM dual;

UPPER (' LIFEILSAWONDERFULTHI

LIFE IS A WONDERFUL THING.

Date Functions

Date functions operate on dates or return date values. Some of the functions
return the current date and time, truncate a date/time value to a specific unit, or
compute the number of months between two dates.

Many examples in the section use the TO_CHAR and TO_DATE functions. These
date conversion functions accept date format strings as arguments. To keep the
examples as simple to read as possible, I've assumed that the default date format
is ‘dd-Mon-yyyy’. In some examples in which a different format is used (to include
time, for example), the example begins with an ALTER SESSION command.

ADD_MONTHS
ADD_MONTHS (d, n)
Adds n months to the date d. Negative values of n may be used to subtract

months from d. The following rules control whether or not the day of the month is
affected:

e If the original date represents the last day of its month, the resulting date will
be adjusted so that it is also the last day of the month.

e If keeping the same day of the month results in an invalid date, because the
new month has fewer days than the original (e.g., January has 31, but Febru-
ary has 28), the day will be adjusted downward to fit the new month.

If neither of the rules listed here applies, the day of the month will not be
changed.

Examples

SQL> SELECT ADD MONTHS (TO_DATE ('1l-Jan-2000'), 3) FROM dual;

ADD_MONTHS (

01-Apr-2000

MONTHS_BETWEEN 175

SQL> SELECT ADD MONTHS (TO_DATE('31-Jan-2000'), 1) FROM dual;

ADD_MONTHS (

29-Feb-2000
SQL> SELECT ADD MONTHS (TO_DATE ('29-Feb-2000'), -1) FROM dual;
ADD_MONTHS (

31-Jan-2000

GREATEST

See the definition for GREATEST in the section describing numeric functions.

LAST_DAY

LAST DAY (d)

Returns the date corresponding to the last day of the month in which the date d
falls.

Example

SQL> SELECT LAST DAY (TO DATE('13-FEB-2000')) FROM dual;

LAST DAY (TO

29-Feb-2000

LEAST

See the definition for LEAST in the section describing numeric functions.

MONTHS_BETWEEN

MONTHS_BETWEEN (d1, d2)

Returns the number of months between the two dates d7 and d2.

If both dates represent the same day of the month or represent the last day of their

respective months, an integer value will be returned. Otherwise, MONTHS_
BETWEEN will return a fractional value.

Examples
SQL> SELECT MONTHS_BETWEEN (TO_DATE('29-Dec-1999'), TO_DATE('29-Dec-1988'))
2 FROM dual;

MONTHS_BETWEEN (TO_DATE (' 29-DEC-1999"') , TO_DATE (' 29-DEC-1988"))

176

Chapter 5: SQL Functions

SQL> SELECT MONTHS_ BETWEEN (TO_DATE('12-May-2000'), TO_DATE('29-Dec-1988"'))

2 FROM dual;

MONTHS_BETWEEN (TO_DATE (' 12-MAY-2000") , TO_DATE (' 29-DEC-1988"))

136.451613

The fractional value returned by MONTHS_BETWEEN is based on a
31-day month. This value gets a bit weird when you cross a month
boundary. In the second example, you can see that 136 months gets
you from 29-Dec-1988 to 29-Apr-2000. Multiply the fractional por-

tion of 0.451613 by 31, and you get 14 days. This seems rather
strange since there are only 13 days between April 29 and May 12,
but for purposes of calculating the fractional result, the MONTHS_
BETWEEN function uses 31 for the number of days in April.

NEW_TIME

NEW_TIME(d, z1, z2)

Converts a date/time value from one time zone to another.

Parameters

d Specifies the date/time value to convert.

z1 Specifies the source time zone. This parameter must be one of the time zone
identifiers shown in Table 5-3.

z2 Specifies the destination time zone. This parameter must be one of the time
zone identifiers shown in Table 5-3.

Table 5-3. Time Zone Identifiers

Time Zone Identifier

Time Zone

AST
ADT
BST
BDT
CST
CDT
EST
EDT
GMT

Atlantic Standard Time
Atlantic Daylight Time
Bering Standard Time
Bering Daylight Time
Central Standard Time
Central Daylight Time
Eastern Standard Time
Eastern Daylight Time

Greenwich Mean Time

NEXT DAY 177

Table 5-3. Time Zone Identifiers (continued)

Time Zone Identifier | Time Zone

HST Alaska-Hawaii Standard Time

HDT Alaska-Hawaii Daylight Time

MST Mountain Standard Time

MDT Mountain Daylight Time

NST Newfoundland Standard Time

PST Pacific Standard Time

PDT Pacific Daylight Time

YST Yukon Standard Time

YDT Yukon Daylight Time
Example

The following example demonstrates that 8:00 A.M. Pacific Standard Time is equiv-
alent to 11:00 A.M. Eastern Standard Time. The ALTER SESSION command alters
the default date format to cause the time of day to be displayed along with the
date:

SQL> ALTER SESSION SET NLS_DATE FORMAT = 'dd-Mon-yyyy hh:mi am';
Session altered.

SQL> SELECT NEW_TIME (TO_DATE('8-May-2000 8:00 am', 'dd-mon-yyyy hh:mi am'),
2 'PST', 'EST')
3 FROM dual;

NEW_TIME (TO_DATE (' 8-

08-May-2000 11:00 am

NEXT_ DAY
NEXT_DAY (d, string)

Computes the next occurrence of a specific weekday.

Parameters

d Specifies a date value. Any time component in the date is preserved and is
returned in the result.

string
Specifies the name of a weekday. This parameter may be a full name, such as
Wednesday, or an abbreviation, such as Wed. Day names must be valid for
your current NLS_DATE_LANGUAGE setting.

178 Chapter 5: SQL Functions

Example

SQL> SELECT NEXT DAY ('20-May-2000', 'SATURDAY'),
2 NEXT DAY ('20-May-2000', 'Sun')
3 FROM dual;

27-May-2000 21-May-2000

NEXT_DAY always looks forward. If the date you pass in as a parameter happens
to fall on the day you are searching for, NEXT_DAY returns the subsequent occur-
rence of that day. In the example, 20-May-2000 happens to fall on a Saturday, yet
the function returns 27-May-2000 as a result because that is the “next” Saturday. If
you want NEXT_DAY to return your input date as a result, you should subtract 1
from it first. For example:

SQL> SELECT NEXT DAY (TO DATE('20-May-2000')-1, 'SATURDAY')
2 FROM dual;

20-May-2000
The TO_DATE function was used in this second example because Oracle won’t
allow you to subtract 1 from a character string. Subtracting 1 from the date caused
NEXT_DAY to return 20-May-2000, which happens to fall on a Saturday.

ROUND
ROUND(d [, fmt])

Rounds a date/time value to the nearest date/time unit specified.

Parameters
d Specifies a date/time value.
Jfmt
Specifies a date format element. See Table 5-4 for a complete list. The input

value will be rounded to the unit specified by this format element. Rounding a
date/time value to the nearest day is the default.

Rounding is not the same as truncating. Rounding a date may result
in a new date that is greater than the date you started with. If you
don’t want to round up, use the TRUNC function instead.

ROUND

179

Example

SQL> ALTER SESSION SET NLS_DATE FORMAT = 'DD-Mon-YYYY hh24:mi';

Session altered.

SQL> SELECT ROUND(TO_DATE('21-Jul-2000 15:20')) day,

2
3

ROUND (TO_DATE('21-Jul-2000 15:20'), 'HH') hour,
ROUND (TO_DATE('21-Jul-2000 15:20'), 'YYYY') year

4 FROM dual;

22-Jul-2000 00:00 21-Jul-2000 15:00 01-Jan-2001 00:00

Table 5-4. Date Format Elements

Format Element

Function

-/,
‘text’

AD or A.D.
BC or B.C.

AM or A.M.
PM or P.M.

CcC
SCC
D
DAY
DD
DDD
DY
HH
HH12
HH24
w
IYYY
Yy
IY

MI
MM
MON

Punctuation may be included anywhere in the date format string, and
will be included in the output.

Quoted text may also be included in the date format string, and will be
reproduced in the output.

Includes an A.D. or B.C. indicator with the date.
Prints AM or PM, whichever applies to the time.

The century number. This number is 20 for years 1900 through 1999.
Same as CC, but B.C. dates are negative.

The number of the day of the week (1 through 7).

The name of the day (Saturday, Sunday, Monday, etc.).

The day of the month.

The day of the year.

The abbreviated name of the day (Sat, Sun, Mon, etc.).

The hour of the day. This hour will be 1 through 12.

The hour of the day. This hour will be 1 through 12, the same as HH.
The hour of the day on a 24-hour clock (0 through 23).

The week of the year (1 through 53).

The four-digit year.

The last three digits of the year.

The last two digits of the year.

The last digit of the year.

The Julian day. Day 1 is equivalent to Jan 1, 4712 B.C.

The minute.

The month number.

The three-letter month abbreviation.

180 Chapter 5: SOL Functions

Table 5-4. Date Format Elements (continued)

Format Element | Function

MONTH The month name, fully spelled out.

Q The quarter of the year. Quarter 1 is Jan—Mar, quarter 2 is Apr—Jun, etc.

RM The month’s number in Roman numerals.

RR When used with TO_CHAR, returns the last two digits of the year.

RRRR When used with TO_CHAR, returns the four-digit year.

SS The second.

SSSSS The number of seconds since midnight.

wWw The week of the year.

W The week of the month. Week 1 starts on the first of the month, Week
2 starts on the eighth of the month, etc.

Y, YYY The four-digit year with a comma after the first digit.

YEAR The year spelled out in words.

SYEAR The year spelled out in words, with a leading negative sign when the
year is B.C.

YYYY The four-digit year.

SYYYY The four-digit year, with a leading negative sign when the year is B.C.

YYY The last three digits of the year number.

YY The last two digits of the year number.

Y The last digit of the year number.

SYSDATE
SYSDATE

Returns the current date and time. The time component of the result includes
hours, minutes, and seconds. SYSDATE is also known as a pseudo-column. See
Chapter 1 for more information.

Examples
SQL> SELECT SYSDATE FROM dual;
SYSDATE
21-May-2000
SQL> ALTER SESSION SET NLS_DATE FORMAT = 'DD-Mon-YYYY hh24:mi';
Session altered.
SQL> SELECT SYSDATE FROM dual;
SYSDATE

21-May-2000 15:16:40

Conversion Functions 181

TRUNC
TRUNC (d [, fmt])

Returns a date/time value truncated to the unit specified. TRUNC is similar to
ROUND, but it always rounds down, never up.

Use TRUNC when you want to be sure that you are working with
only a date, and not a date combined with a time component.

Parameters
d Specifies a date/time value.
Jmt
Specifies a date format element. See Table 5-4 for a list of these elements. The

input value will be truncated (rounded down) to the unit specified by this for-
mat element. Truncating a date/time value to the day is the default.

Examples

SQL> ALTER SESSION SET NLS_DATE FORMAT = 'DD-Mon-YYYY hh24:mi';
Session altered.

SQL> SELECT TRUNC (TO_DATE('21-Jul-2000 15:20')) day,
2 TRUNC (TO_DATE('21-Jul-2000 15:20'), 'HH') hour,
3 TRUNC (TO_DATE('21-Jul-2000 15:20'), 'YYYY') year
4 FROM dual;

21-Jul-2000 00:00 21-Jul-2000 15:00 01-Jan-2000 00:00

Conversion Functions

Conversion functions allow the conversion of values from one datatype to another.
The most commonly used conversion functions are:

TO_CHAR
Converts a date or a numeric value to a character string.

TO_NUMBER
Converts a character string to a numeric value.

182 Chapter 5: SOL Functions

TO_DATE
Converts a character string to a date value.

There are a number of other conversion functions available; all are included in this
section.

CHARTOROWID
CHARTOROWID (char)

Converts a CHAR or VARCHAR?2 value to a ROWID value. The ROWID type in this
case is the Oracle? type.

Example

SQL> SELECT *
2 FROM dual
3 WHERE ROWID = CHARTOROWID('AAAADCAABAAAAVUAAA');

CONVERT
CONVERT (string, dest_char._set[, source char.set])

Converts a character string from one character set to another.

Parameters
string
Specifies a character string to convert.

dest_char_set
Specifies the name of the destination character set.

source_char_set
Specifies the name of the source character set. This parameter defaults to the
database character set.

Example
SQL> SELECT CONVERT (CHR(194) || CHR(133) || CHR(64) || CHR(213)
2 || cER(137) || CHR(131) || CHR(133),
3 '"US7ASCII', 'WES8EBCDIC37C')

4 FROM dual;

Be Nice

ROWIDTOCHAR 183

HEXTORAW

HEXTORAW (string)

Converts hexadecimal digits contained in a character string to a RAW value com-
posed of bytes corresponding to those digits.

Example

SQL> SELECT DUMP (HEXTORAW ('C28540D5898385"'))
2 FROM dual;

DUMP (HEXTORAW ('C28540D5898385"))

Typ=23 Len=7: 194,133,64,213,137,131,133

RAWTOHEX

RAWTOHEX (raw)

Converts a RAW value to a character string of hexadecimal digits in which each
2-character hex digit corresponds to one byte of the raw value.

Example

SQL> SELECT RAWTOHEX (HEXTORAW('C28540D5898385'))
2 FROM dual;

C28540D5898385

ROWIDTOCHAR

ROWIDTOCHAR (rowid)

Converts a ROWID value to a character string.
Example

The following example uses the ROWIDTOCHAR function to explicitly convert a
ROWID value to a character string:

SQL> SELECT ROWID, ROWIDTOCHAR(ROWID) FROM dual;

ROWID ROWIDTOCHAR (ROWID)

As this example shows, ROWID values are implicitly converted to character strings
whenever you select them from a table using SQL*Plus. For this reason, you often

184 Chapter 5: SOL Functions

see SELECT statements that retrieve ROWIDs, but that do not explicitly convert
them.

TO_CHAR (Converting Dates to Character Strings)
TO_CHAR(d [, fmt [, 'nlsparams’]])

Converts a date/time value into a character-based representation of that value.

Parameters

d Specifies a date/time value (of type DATE).
Sfmt

Specifies a date format string made up of the elements shown in Table 5-4.

nlsparams
Specifies a string in the form NLS_DATE IANGUAGE=langname, where
langname represents a valid NLS language name. The NLS language name
affects the spelling used for day and month names.

Examples

SQL> SELECT TO_CHAR (SYSDATE) , TO_CHAR (SYSDATE, 'dd-Mon-yyyy hh:mi:ss PM')
2 FROM dual;

TO_CHAR (SYSDATE) TO_CHAR (SYSDATE, 'DD-MON

21-May-2000 17:40 21-May-2000 05:40:43 PM

SQL> SELECT TO_CHAR (SYSDATE, 'dd-Mon-yyyy', 'NLS_DATE LANGUAGE=FRENCH')
2 FROM dual;

TO_CHAR (SYS

21-Mai-2000

TO_CHAR (Converting Numbers to Character Strings)
TO_CHAR(n [, fmt [, 'nlsparams’]])

Converts a numeric value into a character-based representation of that value.

Parameters

n Specifies a numeric value to convert.

Smi

Specifies a number format specification made up of the elements shown in
Table 5-5.

TO_CHAR (Converting Numbers to Character Strings) 185

nisparams
Specifies a character string made up of one or more of the following ele-
ments, allowing you to specify various NLS characteristics for the result.

NLS_NUMERIC_CHARACTERS=''dg"'
Allows you to specify the characters to use for decimal points and group
separators. The d character becomes the decimal point and the g charac-
ter becomes the group separator. For this parameter to take effect, you
must use D and G in your format specification to mark the location of the
decimal point and group separator, respectively.
NLS_CURRENCY=""text"'
Allows you to specify the currency symbol (up to 10 characters long) to
use in place of any L characters contained in the format specification.
NLS_TSO_CURRENCY=''territory"'

Allows you to specify the NLS territory whose currency symbol you want
to use in place of any C characters contained in the format specification.

The nisparams settings are strings embedded within a string. The
quotes you see around the values are doubled single quotes, not
double quotes.

Example

SQL> SELECT TO_CHAR(75917.63,'$99,999.99') a,
2 TO_CHAR(75917.63, 'L99G999D99',

3 'NLS_NUMERIC CHARACTERS='',*'' NLS CURRENCY=''$$$''') b,
4 TO_CHAR(75917.63, 'C99G999D99"',
5 'NLS_ISO_CURRENCY=''JAPAN''') c

6 FROM dual;
$75,917.63 $$5759+%18 JPY759,18

Table 5-5. Numeric Format Elements

Format
Element | Function

9 Used to control the number of significant digits to be displayed.

0 Used to mark the spot in the result where you want to begin displaying lead-
ing 0s. It replaces one of the 9s. The extreme left of the format string is the
most common location for a 0, but you can place it elsewhere.

$ Causes a number to be displayed with a leading dollar sign.

186 Chapter 5: SOL Functions

Table 5-5. Numeric Format Elements (continued)

Format
Element | Function

, Places a comma in the output.
Marks the location of the decimal point.
B Forces 0 values to be displayed as blanks.

MI Used at the end of a format string to cause a trailing negative sign to be dis-
played for negative values.

S May be used at the beginning or end of a format string and causes a sign to be
displayed. The “+” sign is used to mark positive numbers, and the “-” negative
sign marks negative numbers. When you use S, a sign will always be dis-
played.

PR Causes negative values to be displayed within angle brackets. For example:
-123.99 will be displayed as “<123.99>”. Positive values will be displayed with
one leading and one trailing space in place of the angle brackets.

D Marks the location of the decimal point.

®)

Places a group separator (usually a comma) in the output.

C Marks the place where you want the ISO currency indicator to appear. For
U.S. dollars, this will be USD.

L Marks the place where you want the local currency indicator to appear. For
U.S. dollars, this will be the “$” (dollar sign) character. You cannot use L and
C in the same format specification.

\% Used to display scaled values. The number of digits to the right of the V indi-
cates how many places to the right the decimal point is shifted before the
number is displayed.

EEEE Causes SQL*Plus to use scientific notation to display a value. You must use
exactly four Es and they must appear at the right end of the format string.

RN Allows you to display a number using Roman numerals. This is the only for-
mat element for which case makes a difference. An uppercase “RN” yields
uppercase Roman numerals, while a lowercase “rn” yields Roman numerals in
lowercase. Numbers displayed as Roman numerals must be integers and must
be from 1 to 3,999.

DATE Causes SQL*Plus to assume that the number represents a Julian date and dis-
play it in mm/dd/yy format.

TO_DATE
TO_DATE (string [, fmt [, 'nlsparams']])

Converts the character-string representation of a date/time value into a value of
type DATE.

TO_LOB 187

Parameters

string
Specifies a character-string representation of the date/time value to be
converted.

Sfmt

Specifies a date format string made up of the elements shown in Table 5-4.

nisparams
Specifies a string in the form NLS_DATE IANGUAGE=langname, where
langname represents a valid NLS language name. The NLS language name
affects the spelling used for day and month names.

Example

DECLARE
x DATE;
BEGIN
X

TO_DATE ('21-May-2000", 'dd-Mon-yyyy") ;

X := TO_DATE('5/21/2000 7:15 PM', 'mm/dd/yyyy hh:mi pm');

TO_LOB
TO_LOB (Ilong_column)

Converts a LONG or LONG RAW value into a CLOB, BLOB, or NCLOB. This func-
tion can be used only in the subquery of an INSERT . . . SELECT FROM statement
when using that statement to populate a LOB column. LONG values are con-
verted to either CLOB or NCLOB values, depending on the destination column’s
datatype. LONG RAW values are converted to BLOB values.

Example

SQL> CREATE TABLE lob_ table(x CLOB);
Table created.
SQL> CREATE TABLE long table(x LONG);
Table created.
SQL> INSERT INTO long table (x) VALUES ('test'):;
1 row created.
SQL> INSERT INTO lob_table (x)
2 SELECT TO_LOB(x)

3 FROM long table;

1 row created.

188 Chapter 5: SOL Functions

TO_MULTI_BYTE

TO_MULTI_BYTE (char)

Converts single-byte characters to their multibyte equivalents. If a single-byte char-
acter does not have a multibyte equivalent, it is left unchanged. This function is
designed for use with strings based on a multibyte character set.

Example

SQL> SELECT TO_MULTI_BYTE('Be Nice') FROM dual;

Be Nice

TO_NUMBER
TO_NUMBER (string [, fmt[, 'nlsparams’]])

Converts a character-based representation of a numeric value to a NUMBER value.

Parameters

string
Specifies a character string containing the character-based representation that
you want to convert.

Sfmt

Specifies a number format specification made up of the elements shown in
Table 5-5.

nlsparams
Specifies a character string made up of one or more of the following ele-
ments, allowing you to specify various NLS characteristics for the result:

NLS_NUMERIC_CHARACTERS=''dg"''
Allows you to specify the characters to use for decimal points and group
separators. The d character becomes the decimal point and the g charac-
ter becomes the group separator. For this to take effect, you must use D
and G in your format specification to mark the location of decimal point
and group separator, respectively.

NLS_CURRENCY=""text"'
Allows you to specify the currency symbol (up to 10 characters long) to
use in place of any L characters contained in the format specification.

NLS_ISO_CURRENCY=''territory""
Allows you to specify the NLS territory whose currency symbol you want
to use in place of any C characters contained in the format specification.

TRANSLATE USING 189

Examples
SQL> VARIABLE x NUMBER
SQL> SELECT TO_NUMBER('123.45') INTO :x FROM dual;

TO_NUMBER ('123.45")

SQL> SELECT TO_NUMBER('$123,456.78','$999,999.99') INTO :x FROM dual;
TO_NUMBER ('$123,456.78"', '$999,999.99")

123456.78

TO_SINGLE_BYTE
TO_SINGLE_BYTE (char)

Converts multibyte characters to their single-byte equivalents. If a multibyte char-
acter does not have a multibyte equivalent, it is left unchanged. This function is
designed for use with strings based on a multibyte character set.

Example

SQL> SELECT TO_SINGLE BYTE('Be Nice') FROM dual;

TRANSLATE USING

TRANSLATE (text USING {CHAR_CS | NCHAR_CS})

Converts text into the database character set or the national character set.

Parameters

text
Specifies a string that you want to translate.

CHAR_CS
Causes the string to be converted from the national character set into the data-
base character set. The result is returned as a VARCHAR2 value.

NCHAR_CS
Causes the string to be converted from the database character set into the
national character set. The result is returned as an NVARCHAR?2 value.

Example

SQL> SELECT TRANSLATE('Be Nice' USING NCHAR CS)
2 FROM dual;

190 Chapter 5: SQL Functions

Be Nice

Other Functions

Several functions don’t fall neatly into any of the other categories, so they are
listed here. The DECODE, NVL, and USER functions are three of the most impor-
tant in this category. Others to be aware of include SYS_CONTEXT, DUMP, and
VSIZE.

BFILENAME
BFILENAME (directory, filename)

Returns a BFILE locator that points to a file that you specify.

Parameters

directory
Specifies a directory, previously created using the CREATE DIRECTORY state-
ment that contains the file.

Sfilename
Specifies a name of the file to which you want the locator to point. Note that
you can create locators to files that do not exist.

Example

DECLARE
admin_photo BFILE;
BEGIN
admin_photo := BFILENAME ('/home/oracle', 'administrator_photo.Jjpg');

END;

DECODE

DECODE (expr, search,result [,search,result...] [,default])

Provides the capabilities of an inline IF statement. DECODE is arguably one of the
most useful of Oracle’s built-in functions. You pass DECODE an input value and a
list of value/result pairs. DECODE then looks for the pair in which the value
matches the input. When that pair is found, DECODE returns the result from that
pair as the result of the function. If no matching value is found, DECODE returns
the default result.

DECODE 191

DECODE is one of the few functions that can correctly operate on a
NULL value.

DECODE cannot be invoked from a PL/SQL expression; it can only
be invoked from an SQL statement.

Parameters

expr
Specifies an input value. DECODE compares this value with subsequent
search values to find the matching value/result pair.

search
Specifies the value portion of a value/result pair.

result
Specifies the result portion of a value/result pair.

default
Specifies an optional default result that DECODE returns if none of the search
values match the input expression.

DECODE is limited to a maximum of 255 parameters.

Datatypes are controlled by the first search,result pair. The input expression and
all search values are converted to the datatype of the first search value. The return
value is converted to the datatype of the first result value.

Examples

DECODE can be used for many creative purposes. Three common uses are to
expand coded values into more readable forms, to convert rows into columns, and
to return one of several columns based on the value of another. The following
example shows DECODE being used to interpret a coded field in the V$DATA-
FILE view. The default return value, Invalid plugged_in “/value”, should never be
returned.

SQL> COLUMN name FORMAT A50
SQL> SELECT name,
2 DECODE (plugged_in,

3 0, 'Not Plugged In',
4 1, 'Plugged In',
5 'Invalid pugged_in value') plugged_in

6 FROM v$datafile;

192 Chapter 5: SOL Functions

NAME PLUGGED_IN

/s01/app/oracle/oradata/donna/system0l.dbf Not Plugged In
/s01/app/oracle/oradata/donna/oemrep0l .dbf Not Plugged In
/s01/app/oracle/oradata/donna/rbs01.dbf Not Plugged In
/s01/app/oracle/oradata/donna/temp0l.dbf Not Plugged In
/s01/app/oracle/oradata/donna/users0l.dbf Not Plugged In
/s01/app/oracle/oradata/donna/indx01.dbf Not Plugged In
/s01/app/oracle/oradata/donna/drsys01.dbf Not Plugged In
/s01/app/oracle/oradata/donna/oemrep02 .dbf Not Plugged In
/s01/app/oracle/oradata/donna/gnis_data_01.dbf Plugged In

/s01/app/oracle/oradata/donna/gnis_index 01.dbf Plugged In

Another creative use of DECODE is to convert query results that would normally
be returned as several rows into one row consisting of several columns. Consider
the query in the following example that counts the number of objects owned by
SYS and SYSTEM:

SQL> SELECT owner, COUNT(*)
2 FROM dba_objects
3 WHERE OWNER IN ('SYS', 'SYSTEM')
4 GROUP BY owner;

OWNER COUNT (*)
SYS 6174
SYSTEM 16l

What if you wanted to get just one row back with a value for each of those users?
You can do that using DECODE. The trick is to write two DECODE expressions
that each checks for a different username. For example:

SQL> SELECT SUM(DECODE (owner, 'SYS',1,0)), SUM(DECODE(owner, 'SYSTEM',1,0))
2 FROM dba_objects;

SUM (DECODE (OWNER, 'SYS',1,0)) SUM(DECODE (OWNER, 'SYSTEM',1,0))

Here, the first DECODE returns a value of 1 for all objects owned by SYS, and 0
for everything else. The second DECODE does the same thing, but for SYSTEM.
Summing on the two columns allows you to get one total for each user, with only
one row returned by the query. This technique works only when you have a fixed
number of results that you are looking for. There is no way to extend the tech-
nique to list a variable number of users horizontally.

The third use for DECODE mentioned earlier is to return one of several different
columns (or expressions) based on the value of a column. The following query
against DBA_TAB_COLUMNS uses DECODE to return the appropriate datatype
declaration based on the DATA_TYPE column:

DUMP 193

SELECT owner, table_name, column_name,
DECODE (data_type,
'"VARCHAR2', 'VARCHAR2 (' || TO_CHAR(data_length) || ")',
'"NUMBER', DECODE (data_precision,
NULL, 'NUMBER',
'NUMBER (' ||
TO_CHAR (data_precision) |
TO_CHAR (data_scale) || ')

A
)

FROM dba_tab_columns

WHERE data_type IN ('VARCHAR2', 'NUMBER');
For simplicity, this example handles only VARCHAR2 and NUMBER datatypes, but
you can readily see how the logic could be extended to properly display other
datatypes. Note the use of a nested DECODE function to handle NUMBER types.
Floating-point numbers are declared without a precision and scale. The nested
DECODE causes NUMBER declarations to include a precision and scale only when
one was originally specified.

DUMP
DUMP (expr [,return format [,start_position [,length]]])

Returns a VARCHAR? string showing the datatype and the internal representation
of data stored within a column or of the data returned by an expression.

Parameters

expr
Specifies the data to be dumped. This parameter can be a column name or a
valid SQL expression.

return_format
Specifies a format that controls the manner in which the dumped data is
formatted:

8 Use octal notation.
10 Use decimal notation. This is the default.
16 Use hexadecimal notation.

17 Display the result using characters.

If you add 1000 to the format specifier, the name of the character set
will be returned as well. This is useful only when you dump a char-
acter column or the result of a character expression.

194 Chapter 5: SOL Functions

start_position
Specifies a starting byte for the data to be dumped. The default is to start with
the first byte of data.

length
Specifies a number of bytes to dump. The default is to dump all the data.

Examples

SQL> SELECT DUMP (SYSDATE) FROM dual;

DUMP (SYSDATE)

Typ=13 Len=8: 208,7,5,21,16,59,57,0

SQL> SELECT DUMP('Hi There',16) FROM dual;
DUMP ('HITHERE', 16)

Typ=06 Len-8: 48,69,20,54,68, 65,72, 65

SQL> SELECT DUMP('Hi There',1016) FROM dual;
DUMP ('HITHERE', 1016)

Typ=96 Len=8 CharacterSet=US7ASCII: 48,69,20,54,68,65,72,65

EMPTY_BLOB
EMPTY_BLOB()

Returns an empty BLOB locator, which can be used to initialize a BLOB column.

Example

SQL> CREATE TABLE x(b blob);
Table created.
SQL> INSERT INTO x (b) VALUES (EMPTY BLOB());

1 row created.

Unlike other functions, EMPTY_BLOB must be followed with paren-
theses even though no parameters are passed.

NLS_CHARSET _DECL_LEN 195

EMPTY_CLOB
EMPTY_CLOB()

Returns an empty CLOB locator, which can be used to initialize a CLOB column.

Example

SQL> CREATE TABLE x(c clob);
Table created.
SQL> INSERT INTO x (c) VALUES (EMPTY CLOB());

1 row created.

Unlike other functions, EMPTY_CLOB must be followed with paren-
theses even though no parameters are passed.

NLS_CHARSET_DECL_LEN
NLS_CHARSET DECL_LEN (bytecnt, csid)
Returns the declaration width of an NCHAR column (in terms of the number of

characters), based on the byte count provided.

Parameters

bytecnt
Specifies the size, in bytes, of the NCHAR column.

csid
Specifies a number identifying the NLS character set you use for the column.
You can use the NLS_CHARSET_ID function to get the character set number to
correspond to a character set name.

Example
SQL> SELECT NLS_CHARSET DECL_LEN(100,NLS CHARSET ID('US7ASCII'))
2 FROM dual;

NLS_CHARSET _DECL_LEN (100, NLS_CHARSET _ID('US7ASCII'))

196 Chapter 5: SQL Functions

NLS_CHARSET_ID
NLS_CHARSET_ID(text)
Returns the ID number corresponding to a given NLS character set name.

Example

SQL> SELECT NLS_CHARSET ID('US7ASCII'), NLS_CHARSET ID('WES8EBCDIC37C')
2 FROM dual;

NLS_CHARSET_ID('US7ASCII') NLS_CHARSET_ID('WES8EBCDIC37C')

NLS_CHARSET_NAME
NLS_CHARSET_NAME (n)

Returns the name corresponding to a given NLS character set ID number.

Example

SQL> SELECT NLS_CHARSET NAME (1), NLS_CHARSET NAME(90)
2 FROM dual;

NLS_CHAR NLS_CHARSET

US7ASCII WESEBCDIC37C

NVL

NVL (exprl, expr2)

Returns an alternative value to use if a given input value is NULL. NVL returns
expr2 if exprl is NULL; otherwise, it simply returns expr1.

Parameters

exprl
Specifies a value to be tested for NULL. If this value is not NULL, it is also the
value returned by the function.

expr2
Specifies a value to be returned when expri is NULL.

Example

SQL> SELECT username, NVL(TO_CHAR(lock_date), 'Not Locked')
2 FROM dba_users;

USERNAME NVL (TO_CHAR (LOCK_

SYS_CONTEXT 197

SYS Not Locked
SYSTEM Not Locked
GNIS 21-May-2000 17:18

SYS_CONTEXT
SYS_CONTEXT (namespace, attribute name [, length])

Returns the value of an attribute in an application context namespace.

Parameters

namespace
Specifies the name of a namespace previously created using the CREATE
CONTEXT statement. You may also specify the default namespace USERENV.

attribute
Specifies the name of an attribute within the namespace. That attribute’s value
is then returned by this function. Several predefined attributes are available for
use with the default USERENV namespace. These attributes are listed in
Table 5-6.

length
Specifies the length you want to allow for an attribute’s return value. This
optional parameter is only available beginning with Oracle 8.1.6, and only for
the AUTHENTICATION_DATA attribute.

Table 5-6. Predefined Attributes in the USERENV Namespace

Max Release
Attribute Name Description Length Introduced

AUTHENTICATION_ | The data used to authenticate a user. If | 2564000 | 8.1.6
DATA authentication is via an X.503 certificate,
the content of the certificate will be
returned in hexadecimal format.

This is the only option for which the
SYS_CONTEXT function’s LENGTH
parameter may be used. The maximum
length you can specify is 4000 bytes.

AUTHENTICATION_ | Indicates how the user was authenti- 30 8.1.6
TYPE cated. One of the following values will
be returned:

DATABASE: a username and password
were used.

0S: operating system authentication was
used.

NETWORK: authentication was via a net-
work protocol or the Advanced Net-
working Option (ANO).

PROXY: authentication was by OCI (Ora-
cle Call Interface) proxy.

198 Chapter 5: SQL Functions

Table 5-6. Predefined Attributes in the USERENV Namespace (continued)

Max Release
Attribute Name Description Length Introduced
BG_JOB_ID If the current session was created by an 30 8.1.6

Oracle background process, this
attribute will be the job ID of the ses-
sion. Otherwise, it will be NULL.

CLIENT_INFO Returns up to 64 bytes of user session 64 8.1.6
information stored using the DBMS_
APPLICATION_INFO package.

CURRENT_SCHEMA The current schema name. This usually 30 8.1.5
matches the current username. How-
ever, if you log in as the INTERNAL
user, or as SYSDBA or SYSOPER, your
schema name will be SYS.

CURRENT_ The ID number associated with the cur- | 30 8.1.5
SCHEMAID rent schema.
CURRENT_USER The current username. If a stored proce- | 30 8.1.5

dure has been invoked, this may not be
the same as the login username
returned by SESSION_USER.

CURRENT_USERID The ID number associated with the cur- | 30 8.1.5
rent user.

DB_DOMAIN The database domain as specified by 256 8.1.6
the DB_DOMAIN initialization parame-
ter.

DB_NAME The database name as specified by the 30 8.1.6
DB_NAME initialization parameter.

ENTRYID Your auditing entry identifier. This 30 8.1.6

attribute is not valid in distributed SQL
statements. In addition, the AUDIT_
TRAIL initialization parameter must be
set to TRUE.

EXTERNAL_NAME The external name of the database user. | 256 8.1.6
For users authenticated by SSL, this is
the distinguished name (DN) from the
user’s V.503 certificate.

FG_JOB_ID The session’s job ID if the session was 30 8.1.6
created by a client’s foreground pro-
cess. Otherwise, it is NULL.

HOST The name of the machine from which 54 8.1.6
the client is connecting.

INSTANCE The number identifying the instance to 30 8.1.6
which you are currently connected.

IP_ADDRESS The user’s IP address. This address only | 30 8.1.5

applies to TCP/IP connections.

SYS_CONTEXT 199
Table 5-6. Predefined Attributes in the USERENV Namespace (continued)
Max Release
Attribute Name Description Length Introduced
ISDBA Returns TRUE or FALSE, depending on 30 8.1.6
whether or not the ISDBA role is
enabled.
LANG The ISO abbreviation for your current 62 8.1.6
language name.
LANGUAGE Your current language setting, territory 52 8.1.6
setting, and database character set
name.
NETWORK_ The name of the network protocol used | 256 8.1.6
PROTOCOL for the connection. This name comes
from the Net8 connect string’s PROTO-
COL attribute.
NLS_CALENDAR The current NLS calendar name. 62 8.1.5
NLS_CURRENCY The current NLS currency indicator. 62 8.1.5
NLS_DATE_ The current NLS date format. 62 8.1.5
FORMAT
NLS_DATE_ The current NLS date language. 62 8.1.5
LANGUAGE
NLS_SORT The current sort base. 62 8.1.5
NLS_TERRITORY The current NLS territory name. 62 8.1.5
OS_USER The operating system username of the 30 8.1.6
client process that initiated the database
connection.
PROXY_USER The name of the user who opened the 30 8.1.6
current session on behalf of the current
session user.
PROXY_USERID The user ID of the user who opened the | 30 8.1.6
current session on behalf of the current
session user.
SESSION_USER The name with which the current user 30 8.1.5
logged in. Note that this name does not
change even when a stored procedure
owned by another user is invoked.
SESSION_USERID The ID number associated with the ses- | 30 8.1.5
sion user.
SESSIONID Your auditing session identifier. This 30 8.1.6

attribute is not valid in distributed SQL
statements.

200

Chapter 5: SQL Functions

Table 5-6. Predefined Attributes in the USERENV Namespace (continued)

Max Release
Attribute Name Description Length Introduced
TERMINAL The operating system identifier for the 10 8.1.6

current session’s client. In a distributed
environment, this can only be used for
remote SELECT statements and it
returns the identifier for your local ses-
sion.

Examples

SQL> SELECT SYS_ CONTEXT ('USERENV', 'SESSION USER')
2 FROM dual;

SYS_CONTEXT ('USERENV', ' SESSION_USER')

SQL> SELECT SYS_CONTEXT ('USERENV', 'NLS_SORT')
2 FROM dual;

SYS_CONTEXT ('USERENV', 'NLS_SORT"')

SYS_GUID

SYS_GUID()

Returns a 16-byte RAW value that can be used as a globally unique identifier. On
most platforms, the value is a combination of the host ID, a process (or thread) ID,

and a sequence number.

RAW values are converted to hexadecimal when displayed by SQL*Plus, so in the
example, 32 rather than 16 characters are displayed in the result, since each char-

acter has been displayed using two hexadecimal digits.

Example

SQL> SELECT SYS_GUID() FROM dual;

SYS_GUID()

6827BA0CLCF2D067E0300B0A100C0246

USER 201

Unlike other functions, SYSGUID must be followed with parenthe-
ses even though no parameters are passed.

UID
UID

Returns an integer value that uniquely identifies the current database user. The
value comes from the V$SESSION view’s USER# column.

Example

SQL> SELECT UID FROM dual;

USER
USER

Returns the current username. Normally, USER returns the username used to log
into the database. When invoked from within a stored procedure or function,
however, USER returns the name of the procedure or function’s owner. USER is
also known as a pseudo-column. See Chapter 1 for more information.

When invoked from within a trigger, USER returns the login user-
name.

Example

SQL> SELECT USER FROM dual;

202

Chapter 5: SQL Functions

USERENV

USERENV (option)

Returns information about the current user.

Parameter

option

Specifies the exact piece of information to be returned, and must be one of
the values listed in Table 5-7. The value returned by this function is always a
VARCHAR2 character string.

Beginning with the Oracle 8.1.6 release, the SYS_CONTEXT func-
tion may also be used to retrieve these user environment values.

Table 5-7. USERENV Option Values

Option Description

ENTRYID Returns an auditing entry identifier. The AUDIT_TRAIL initialization
parameter must be TRUE for this option to be valid, and you cannot use
this option in a distributed environment.

INSTANCE Returns the instance identifier.

ISDBA Returns TRUE or FALSE, depending on whether or not the ISDBA role is
enabled.

LANG Returns the abbreviation for the current ISO language.

LANGUAGE | Returns the user’s current language and territory settings.

SESSIONID | Returns the auditing session identifier. The AUDIT_TRAIL initialization
parameter must be TRUE for this option to be valid, and you cannot use
this option in a distributed environment.

TERMINAL Returns the current session’s operating system terminal identifier.

Example

SQL> SELECT USERENV ('INSTANCE'),USERENV('ISDBA') FROM dual;

USERENV (' INSTANCE') USEREN

VSIZE

VSIZE (expr)

Returns the size, in bytes, of the value’s internal representation.

VSIZE 203

Examples
SQL> SELECT VSIZE(SYSDATE) FROM dual;

VSIZE (SYSDATE)

SQL> SELECT VSIZE (username) FROM dba users;

VSIZE (USERNAME)

SOL*Plus

SQL*Plus is Oracle’s primary command-line interface to the database. It allows you
to execute SQL statements and PL/SQL blocks and to format output. It also gives
you a certain amount of operational control. SQL*Plus has been available since the
earliest versions of Oracle (when it was called the User Friendly Interface (UFD).
SQL*Plus can execute the following types of statements:

e SQL statements (DDL and DML) corresponding to the ANSI SQL standard and
Oracle extensions

e PL/SQL statements, a proprietary SQL language extension from Oracle

e SQL*Plus statements, proprietary formatting and operational statements from
Oracle

In simple terms, this means that SQL*Plus works with source statements directly,
without the need for separate compilation. SQL statements are sent to the Oracle
server (locally or via Net8 or SQL*Net), where they are parsed and executed.
PL/SQL blocks are also sent to the Oracle server, where they are compiled and
executed. SQL*Plus statements are executed directly by the running copy of
SQL*Plus.

Command-Line Syntax

SQL*Plus is a command-line utility and is usually invoked from a command
prompt. The syntax for invoking SQL*Plus from a command prompt is as follows:

sglplus [option] [usernamel/password] [@hostnamel] [@script] [parml] [parm2] . . .

204

Command-Line Synitax 205

Keywords

option

Specifies an option that controls the operation of SQL*Plus and has the follow-

ing syntax:

[-]
[-?
-M

]
[-M[ARKUP] HTML [ON | OFF]

[HEAD text]
[BODY text]
[ENTMAP {ON | OFF}]
[SPOOL {ON | OFF}]
[PRE[FORMAT] {ON | OFF}]]
[-R[ESTRICT] {1 | 2 | 3}]
[-S[ILENT]]]
- Displays the use and syntax of the SQL*Plus command line and then exits

to the operating system.

-7 Displays the version number for SQL*Plus and then exits to the operating
system.

MARKUP HTML
Specifies that HTML output be generated for this SQL*Plus session.

ON
Specifies that HTML output be generated using the options specified.

OFF
Specifies that HTML output not be generated. This option is the default.

HEAD
Specifies that fext be used as content for the <HEAD> tag. Heading text
must be enclosed within quotes. By default, text is ‘<TITLE>SQL*Plus
Report</TITLE>.

BODY
Specifies that fext be used as content for the <BODY> tag. Body text must
be enclosed within quotes.

ENTMAP ON
Specifies that SQL*Plus display the special characters “<”, “>” and “&” as
the HTML entities &1t;, >, and &, respectively.

ENTMAP OFF
Specifies that SQL*Plus not change display of the special characters “<”, “>”
and “&”.

SPOOL ON

Specifies that SQL*Plus write HTML tags to the start and end of each file
created by the SQL*Plus SPOOL command.

206

Chapter 6: SOL*Plus

SPOOL OFF
Specifies that SQL*Plus not write HTML tags to the start and end of each
file created by the SQL*Plus SPOOL command.

PREFORMAT ON
Specifies that SQL*Plus write output inside the HTML <PRE> tag.

PREFORMAT OFF
Specifies that SQL*Plus not write output inside the HTML <PRE> tag.

RESTRICT
Specifies that a restriction level, as indicated by 1, 2, or 3, be in effect for
this session. Restriction levels disable certain SQL*Plus commands, as
shown in Table 6-1.

SILENT
Specifies that all SQL*Plus information and prompt messages be sup-
pressed, including the command prompt, the echoing of commands, and
the banner normally displayed when you start SQL*Plus.

username

The Oracle username for the account to which you are connecting.

password

The username’s password. If omitted, SQL*Plus will prompt for the password.

hostname

The hostname assigned to the database to which you are connecting. Typi-
cally, this hostname is resolved using tnsnames.ora or Oracle Names. If the
hostname is omitted, SQL*Plus will attempt to take it from an environment
variable or registry entry named LOCAL. If there is no LOCAL environment
variable or registry entry, SQL*Plus will attempt a connection to the local data-
base identified by your current ORACLE_SID setting.

script

The name of a SQL*Plus script to be executed upon successful connection to
the database.

parml, parm?2 ...

Optional parameters that will be passed to SQL*Plus and that may be refer-
enced using substitution variables within a SQL*Plus script. String parameters
containing spaces or other special characters must be enclosed in single
quotes.

Command-Line Synitax 207

Table 6-1. Commands Disabled by Restriction Levels

Command Level 1 Level 2 Level 3
EDIT Yes Yes Yes
GET No No Yes
HOST or ! Yes Yes Yes
SAVE No Yes Yes
SPOOL No Yes Yes
START or @ or @@ No No Yes
STORE No Yes Yes
Examples

If you are connecting to a local database and you've set your ORACLE_SID envi-
ronment variable properly, you can invoke SQL*Plus using the following simple
command:

sglplus
SQL*Plus will be started and you will be prompted to enter a username and pass-

word. You will then be connected to the default Oracle instance.

If you prefer, you can pass your username and password on the command line.
The following command will connect you to your default instance and log you in
as the user scott:

sqglplus scott/tiger

The command in the next example starts SQL*Plus and runs a SQL script named
report1.sql. You'll be prompted for a username and password:

sqglplus @reportl

The command in this final example starts SQL*Plus and connects you as the user
scott to the Oracle instance pointed to by the Net8 service named test. The SQL
script report2.sql is then executed. The values 1000 and 5000 represent command-
line parameters that are passed to the script:

sqlplus scott/tiger@test @report2 1000 5000

The actual SQL*Plus executable name may vary from platform to
platform and from release to release. For example, the executable
name for the command-line version of SQL*Plus Version 8.0 under
Windows 95/98 is PLUSSO.EXE. The executable name for the GUI
version on that platform is PLUSSOW.EXE.

208 Chapter 6: SOL*Plus

SOL*Plus Editing Commands

When a SQL*Plus session is started, you are presented with the SQL*Plus prompt,
which indicates that SQL*Plus is ready to accept input. The default prompt is SQL>.
Input is free-form, and can consist of: SQL statements (DML or DDL), PL/SQL
code, and SQL*Plus commands.

SQL*Plus commands are executed immediately and not saved. SQL statements and
PL/SQL blocks are stored in a memory buffer known as the SQL*Plus buffer. Buffer
contents are organized into lines. As you enter a SQL statement or a PL/SQL block,
a new buffer line is created each time you press the Enter key. The commands
described in this section allow editing and related operations on the contents of
the SQL*Plus buffer, and may be entered directly from the SQL> prompt. They may
also be included in a SQL*Plus script.

Most editing commands operate on what is termed the current line.
The current line is always the line that was most recently entered or
displayed, and SQL*Plus always marks it with an asterisk. If the line
you want to edit is not current, you can use the LIST command to
make it so. Then you can execute other editing commands to enter
changes that you wish to make.

APPEND
A[PPEND] text

Adds (appends) text to the end of the current line.

CHANGE
C[HANGE] /old/[new/]

Changes old to new in the current line. To delete text, supply an old value with-
out a corresponding new value.

Examples
Change the string “abc” to “xyz”:
CHANGE /abc/xyz/

In the next example, because no new text was supplied, the specified text is sim-
ply removed from the line being edited:

CHANGE /abc/

GET 209

CLEAR
CL[EAR] BUFF [ER]

Deletes all lines from the buffer.

DEL

DEL [Iline | *]

Deletes the specified line, or the current line from the buffer.

DEL {begin end | line * | * line}

Deletes a specific range of lines from the buffer.

DEL {line LAST | * LAST}

Deletes all lines starting at a specific line, or the current line, from the buffer.
DEL LAST

Deletes the last line from the buffer.

Keywords
line
Specifies a line number.

*

Specifies the current line.

begin

Specifies the first line to be deleted in a multiline delete. All lines from begin
to end will be deleted.

end
Specifies the last line to be deleted in a multiline delete. All lines from begin
to end will be deleted.

LAST
Specifies the last line in the buffer.

GET
GET filename [LIS[T] | NOL[IST]]

Places the contents of a file into the buffer.

Keywords

Sfilename
Specifies the name of an operating system file whose contents will be placed
into the buffer, replacing the current buffer contents.

210 Chapter 6: SOL*Plus

LIST
Specifies that the file contents are to be listed to the display when the buffer is
loaded. This option is the default.

NOLIST
Specifies that the contents of the file are not to be listed.

The GET command is normally used only to load a file containing a
single SQL statement because SQL*Plus cannot execute multiple
statements from the buffer.

INPUT

I[NPUT] [text]

Adds one or more lines to the buffer. The new lines are inserted after the current
line. The provided fext will be entered into the buffer. If fext is omitted, SQL*Plus

will prompt for each new line of text to be entered until a null line is entered to
terminate.

LIST

L[IST]

Displays all lines in the buffer.

L[IST] line

Displays a single line in the buffer.
LIST] *

Displays the current line in the buffer.
L[IST] LAST

Displays the last line in the buffer.
L[IST] {begin end | begin LAST | line LAST | * LAST}
Displays a range of lines in the buffer.
Keywords

line
Specifies a line number.

* Specifies the current line.

Formatting SQL*Plus Output 211

LAST
Specifies the last line in the buffer.
begin
Specifies the first line to be listed. All lines from begin to end will be listed.

end
Specifies the last line to be listed. All lines from begin to end will be listed.

SAVE
SAV[E] filename {CREATE | REPLACE | APPEND}

Saves the buffer contents into the specified file. The buffer contents are preserved.

Keywords
CREATE

Creates a new file. The file must not already exist if this option is specified.
This option is the default.

REPLACE
Replaces the contents of an existing file. If the file does not exist, SQL*Plus
will create it.

APPEND
Adds the buffer contents to the end of the specified file.

Only a single SQL statement or PL/SQL block will be contained in
the buffer and saved to disk. No SQL*Plus commands will be stored,
even if they have been previously executed, since they are not saved
in the buffer. To create a script containing SQL*Plus commands, you
must use a text editor.

Once the contents of the buffer are saved to a file, the GET com-
mand can be used to retrieve that file. The START command may be
used to execute the command in that file.

Formatting SQL*Plus Output

While SQL*Plus provides some basic default formatting of output, you can also
customize your output in various ways to produce “finished” reports. The follow-
ing commands implement the formatting capabilities of SQL*Plus. You can enter
these commands from a SQL*Plus prompt or include them in a SQL*Plus script.

212 Chapter 6: SOL*Plus

BREAK (With Parameters)

BRE[AK] [ON column | expression | ROW | REPORT [action [action]]]. . .

Specify where and how to change the formatting of a report. BREAK is often used
with COMPUTE to generate totals and subtotals.

Keywords

column
Causes the specified action to occur whenever the value of the specified col-
umn changes.

expression
Causes the action to occur whenever the value of the specified expression
(which must exactly match an expression in the SELECT statement) changes.

ROW
Causes the action to occur whenever SQL*Plus returns a row.

REPORT
Causes the corresponding COMPUTE command to be executed at the end of
the report.

action
Can be one or more of the following:
SKI/P]
Skips 7 lines before printing the row on which the break occurred.
SKI[P] PAGE

Skips the necessary number of lines to advance to a new page. If SET
NEWPAGE 0 was specified, prints a formfeed character.

NODUP[LICATES]
Causes blanks to be printed instead of the value of the break column
when the value is the same as the value in the preceding row.

DUP[LICATES]
Causes the value of the break column to be printed for every row, regard-
less of whether or not the value changes.

BREAK (Without Parameters)

BREAK

Lists all current BREAK definitions.

BTITLE (Defining) 213

BTITLE (Controlling)
BTI[TLE] ON | OFF

Turns the printing of the bottom title ON or OFF without affecting its definition.

BTITLE (Defining)
BTI[TLE] [printspec [text | variable] . . .]

Creates and formats a title that appears at the bottom of each page.

Keywords
printspec
One or more of the following clauses used to place and format the text or
variables in the title:
cOL
Starts text or variable in column n.

SIKIP]
Skips # lines before printing text or variable. The default number of line
to skip is 1.

TAB
Skips n print positions forward (or backward if 7 is negative) before print-
ing text or variable.

LE[FT]
Prints text or variable aligned with the left margin.

CE[NTER]
Prints text or variable centered on the page. The LINESIZE setting is used
to calculate page width.

RIIGHT]
Prints text or variable aligned with the right margin.

BOLD
Prints text or variable in bold print.

FORMAT
Formats ftext or variable according to the format model specified in for-
matstring. See Table 5-5 for available numeric formats.

text
A character string to be printed on the page. Multiple words must be enclosed
in single quotes.

214 Chapter 6: SOL*Plus

variable
A user variable or a system-maintained variable.

BTITLE (Displaying)
BTI[TLE]

Displays the current BTITLE definition.

CLEAR
CL[EAR] option

Resets or erases the current value of a SQL*Plus option.

Keyword
option
May be one of the following:
BRE[AKS]
Removes the definitions set by the BREAK command.
BUFF/ER]
Clears all text from the buffer.
COL[UMNS]
Resets column definitions set using the COLUMN command to their
defaults.
COMPIUTES]
Removes all definitions set by the COMPUTE command.
SCR[EEN]
Clears the screen.
SOL
Clears all text from the buffer.
TIMIING]

Deletes all timing areas created by the TIMING command.

COLUMN
COL[UMN] {column | expression} [option . . .]

Specifies the display characteristics for a column or expression using one or more
options.

COL[UMN] {column | expression}

Displays the current display attributes for the named column or expression.

COLUMN 215

Keywords

column
A column name used in a SQL statement.

expression
An expression used in a SQL statement.

option
One or more of the following:
ALI[AS]

Assigns an alias name to the column or expression, which can then be
used in subsequent BREAK, COMPUTE, or other COLUMN commands.

CLE[AR]
Resets attributes for this column or expression to their defaults.

FOLD_A[FTER]
Inserts a carriage return after the heading and after the column contents
for each row of output displayed by SQL*Plus.

FOLD_B[EFORE]
Inserts a carriage return before the heading and before the column con-
tents for each row of output displayed by SQL*Plus.

FORIMAT]

Specifies a character string containing the format used to control how the
column contents are displayed. See Table 5-4 for available date formats
and Table 5-5 for available numeric formats. For character columns, use
the format specifier Axx where xx is a number representing the column
width in terms of characters. SQL*Plus cannot format DATE columns;
those must be formatted in the SELECT statement using the TO_CHAR
function.

HEA[DING]
Defines the column string. If string contains blanks or punctuation, it must
be enclosed in either single or double quotes. The HEADSEP character,
which is a vertical bar (1) by default, can be used to place line breaks in
the heading.

JUSTIIFY]
Aligns the heading as specified. By default, headings for NUMBER col-
umns default to RIGHT alignment, and the headings for other column
types default to LEFT alignment.

LIKE
Copies the display attributes of the named column, expression, or alias,
and applies them to the column that you are formatting.

216 Chapter 6: SOL*Plus

NEWIL[INE]
Starts a new line before displaying the value for the column or expression.
NEW_VIALUE]
Specifies that the column value be held in the specified variable, which
can then be used in TTITLE and BTITLE commands.

NOPRIINT]
Prevents the printing of a column or expression.

NUL[I] text
Specifies a character string to be displayed when the value of a column or
expression is NULL.

OLD_V[ALUE]
Specifies that the previous value of a column or expression is to be held
in the specified variable, which can then be used in TTITLE and BTITLE
commands.

OFF
Disables the display attributes for a column or expression without affect-
ing the attributes’ definition.

ON
Enables the display attributes for a column or expression after they have
previously been turned OFF.

TRUINCATED]
Specifies that a value that is too long for the column is to be truncated.

WOR/D_WRAPPED]
Specifies that a value that is too long for the column is to be wrapped to
the next line, starting with the first full word of the string that does not fit
in the width of the column.

WRA[PPED]
Specifies that a value that is too long for the column is to be wrapped to
the next line, starting with the first character of the string that does not fit
in the width of the column.

COMPUTE

COMP [UTE] [function [LABEL text][function [LABEL text]] . . . 1

OF [{expr | column | alias} ...]

ON {expr | colum | alias | REPORT | ROW}

Causes SQL*Plus to calculate and display summary lines using standard computa-
tions on selected subsets of rows.

REPFOOTER (Controlling) 217

Keywords

Sunction ...
Is one or more of the following standard mathematical functions; if you spec-
ify more than one function name, use at least one space to separate the
names:

AVG
COUINT]
MAX[IMUM]
MIN[IMUM]
NUMIBER]
STD

SUM
VARI[IANCE]

LABEL
Specifies that text be used as a label to be printed for the computed value.
The label prints left-justified and is truncated to the column width or linesize,
whichever is smaller. The maximum label length is 500 characters. If this key-
word is omitted, text defaults to the unabbreviated function keyword.

The label for the computed value appears in the specified break col-
umn. To suppress the label, use the NOPRINT option of the COL-
UMN command on the break column.

OF
Specifies the expression(s), column(s), or alias(es) to use in the computation.
These options must also be listed in the SELECT statement to which the COM-
PUTE applies.

ON
Specifies the entity which, when its value changes, triggers COMPUTE to dis-
play the computed value. ON must match a corresponding BREAK statement.

REPFOOTER (Controlling)
REPF[OOTER] ON | OFF

Turns the report footer ON or OFF without affecting its definition.

Keywords

ON
Specifies that report footers are to be printed.

218 Chapter 6: SOL*Plus

OFF
Specifies that report footers are not to be printed.

REPFOOTER (Defining)
REPF [OOTER] [PAGE] [printspec [text | variable] [printspec [text | variable] . . . 1]

Places a report footer on the bottom of each report.

Keywords

PAGE
Specifies that a new page be started after printing the report footer.
printspec
Specifies that one or more of the following clauses are be used to place and

format text or variables:

cOL
Starts text or variable in column n.
SIKIP]
Skips 7 lines before printing text or variable. The default number of lines
to skip is 1.
TAB
Skips n print positions forward (or backward, if # is negative) before
printing text or variable.
LE[FT]
Prints text or variable aligned with the left margin.
CE[NTER]
Prints text or variable centered on the page. The LINESIZE setting is used

to calculate page width.

RIIGHT]
Prints fext or variable aligned with the right margin.

BOLD
Prints fext or variable in bold print.
FORMAT
Formats ftext or variable according to the format model specified in for-
matstring. See Table 5-5 for available numeric formats.
text

A character string value to be printed as part of the report footer. Text contain-
ing spaces or punctuation characters must be enclosed in quotes.

REPHEADER (Defining) 219

variable
A user or system-maintained variable (e.g., SQL.PNO for the page number).
The variable’s contents will be displayed as part of the report footer.

REPFOOTER (Displaying)
REPF [OOTER]

Displays the current report footer definition.

REPHEADER (Controlling)

REPH[EADER] ON | OFF

Turns the report header ON or OFF without affecting its definition.

REPHEADER (Defining)
REPH[EADER] [PAGE] [printspec [text | variable] [printspec [text | variablel]l . . .]

Places a report header on the top of each report.

Keywords
PAGE
Specifies that a new page be started after printing the report header.
prinispec
Specifies that one or more of the following clauses are to be used to place and

format text or variables:

cOL
Starts text or variable in column .

SIKIP]
Skips 7 lines before printing text or variable. The default number of lines
to skip is 1.

TAB
Skips 7 print positions forward (or backward, if 7 is negative) before
printing fext or variable.

LE[FT]
Prints text or variable aligned with the left margin.

CE[NTER]
Prints text or variable centered on the page. The LINESIZE setting is used
to calculate page width.

RIIGHT]
Prints text or variable aligned with the right margin.

220 Chapter 6: SOL*Plus

BOLD
Prints text or variable in bold print.

FORMAT
Formats fext or variable according to the format model specified in for-
matstring. See Table 5-5 for available numeric formats.

text
A character string value to be printed as part of the report header. Text con-
taining spaces or punctuation characters must be enclosed in quotes.

variable
A user variable or system-maintained variable (e.g., SQL.PNO for the page
number). The variable’s contents will be displayed as part of the report
header.

REPHEADER (Displaying)
REPH [EADER]

Displays the current report header definition.

TTITLE (Controlling)
TTI[TLE] ON | OFF

Turns the top title ON or OFF without affecting its definition.

TTITLE (Defining)
TTI[TLE] [printspec [text | variable] . . .]

Creates and formats a title that appears at the top of each page.

Keywords

printspec
Includes the following clauses used to place and format text or variables:

CcOL
Starts fext or variable in column 7.

SIKIP]
Skips 7 lines before printing text or variable. The default number of lines
to skip is 1.

TAB
Skips n print positions forward (or backward, if # is negative) before
printing text or variable.

@ 221

LE[FT]
Prints text or variable aligned with the left margin.

CE[NTER]
Prints text or variable centered on the page. The LINESIZE setting is used
to calculate page width.

RIIGHT]
Prints text or variable aligned with the right margin.

BOLD
Prints fext or variable in bold print.

FORMAT
Formats fext or variable according to the format model specified in for-
matstring. See Table 5-5 for available numeric formats.

text
A character string value to be printed as part of the page title. Text containing
spaces or punctuation characters must be enclosed in quotes.

variable
A user variable or system-maintained variable (e.g., SQL.PNO for the page
number). The variable’s contents will be displayed as part of the page title.

TTITLE (Displaying)
TTI[TLE]

Displays the current TTITLE definition.

Miscellaneous SQL*Plus Commands

The SQL*Plus commands described in this section are used to perform a variety of
tasks. These commands may be entered directly from a SQL*Plus prompt, or they
may be included in a SQL*Plus script.

@

@filename

Runs a series of SQL*Plus commands, and/or SQL and/or PL/SQL statements con-
tained in a file. filename specifies the name of an operating system file containing
SQL and/or PL/SQL statements.

222 Chapter 6: SOL*Plus

This command is equivalent to specifying START filename.

Command files may be nested; in other words, a command file may
contain another @filename command.

@@

@@filename

Runs a series of SQL*Plus commands, and/or SQL and/or PL/SQL statements con-
tained in a file as a nested command. filename specifies the name of an operating
system file containing SQL and/or PL/SQL statements that will be executed by
SQL*Plus. When the script is complete, control will be passed back to the script
that invoked it. If no path is specified, the file being invoked is expected to be in
the same directory as its parent.

ARCHIVE LOG

ARCHIVE LOG {LIST |
STOP |
START [TO destination] |
NEXT [TO destination] |
ALL [TO destination] |

log_sequence [TO destination]

}

Controls or displays information about archive logging. This command is intended
for DBAs.

Keywords
LIST

Specifies that SQL*Plus is to display information about the current state of
archiving.

SsT0P
Specifies that the automatic archiving of log files be stopped.

START
Specifies that the automatic archiving of log files be started. If TO destination
is specified, all archived log files will be written to this destination.

NEXT
Specifies that the next redo log file group is to be archived manually (f it is
filled). If TO destination is specified, the redo log file group will be written to
this destination for this command only.

CONNECT 223

ALL
Specifies that all filled redo log file groups be archived manually. If TO desti-
nation is specified, the redo log file groups will be written to this destination
for this command only.

log_sequence
Specifies that the log file group identified by log sequence be manually
archived. If TO destination is specified, the redo log file group will be written
to this destination for this command only.

CONNECT

CONN[ECT] usernamel[/password] [@hostname] [AS {SYSOPER | SYSDBA}]
Connects to a database using the specified username and password.
CONN[ECT] /[@hostname] [AS {SYSOPER | SYSDBA}]

Connects to the database using operating system authentication.
CONN[ECT] INTERNAL[/password]

Connects to a database internally.

Keywords

username
The Oracle username to use while connecting to the database.

password
The password associated with the provided username. If omitted, SQL*Plus
will prompt for a password.

hostname
The hostname assigned to the database to which you are connecting. This
hostname is typically resolved using the tnsnames.ora file or Oracle Names.

AS SYSOPER
Specifies that the user will connect as an operator.

AS SYSDBA
Specifies that the user will connect as a database administrator.

Specifies that the operating system username under which you are already
logged in will be concatenated with the current value of the INIT.ORA parame-
ter OS_AUTHENT_PREFIX (by default OPS$). The resulting username must
exist as a database user (created with CREATE USER username IDENTIFIED
EXTERNALLY). For example, if OS_AUTHENT_PREFIX is set to the default

224 Chapter 6: SOL*Plus

value and you are logged into the operating system or network as SCOTT, an
Oracle username OPS$SCOTT must exist and have the CONNECT privilege.

INTERNAL
Specifies that an internal connection be made.

COPY

COPY {FROM username|/password] [@hostname] |
TO username|/password]@hostname] |
FROM username|/password] [@hostname] TO usernamel/password] [@hostname] }
{APPEND | CREATE | INSERT | REPLACE} destination_table [(column[,column . . .])]
USING gquery)
Copies data returned from a query to another table in either the local or remote

database.
Keywords

username
The name of the user account (schema) from and/or to which data will be
copied.

password
The password associated with the specified user account.

hostname
The SQL*Net or Net8 connect string for the database being connected to.

FROM
Specifies the username, password, and hostname for the database from which
data will be copied. If omitted, the account SQL*Plus is currently logged into
will be used.

TO
Specifies the username, password, and hostname for the database to which
data will be copied. If omitted, the account SQL*Plus is currently logged into
will be used.

APPEND
Causes rows to be inserted into destination_table if it exists; otherwise,
destination_table is created.

CREATE
Creates destination_table before inserting rows. If destination_table already
exists, an error results.

INSERT
Causes rows to be inserted into destination_table. If the table does not exist,
an error results.

DISCONNECT 225

REPILACE
Causes destination_table to be deleted, if it exists, and a new version created
before rows are copied.

destination_table
The name of the table that will receive the rows being copied.

column
The name of a column in destination_table where data will be inserted. If col-
umns are specified, their number must match the number of columns being
returned by query.

query
Any valid SQL SELECT statement. This statement is used to return the rows
and columns that will be copied.

DESCRIBE
DESC[RIBE] {[schema.]object[@hostname] [column] | [schema.] object].subobject] }

Lists the definition(s) for the specified database object.

Keywords

schema
Specifies the schema that contains the object to be described.

object
The name of the object to be described. The name can be for a table, view,
synonym, function, procedure, or package.

hostname
The Net8 connect string for the database containing the object to be described.

column

The name of a column in a table (Oracle7 only).
subobject

The name of a function or procedure in a package.

DISCONNECT
DISC [ONNECT]

Commits any pending transactions and disconnects the current user from the data-
base without exiting SQL*Plus.

226 Chapter 6: SOL*Plus

EDIT

ED[IT] [filename]

Invokes the system editor (as specified by the value of the user variable _EDITOR).
Sfilename specifies the name of a file to be opened by the editor. If filename does
not exist, it will be created. If the command is invoked without a filename, the
current contents of the buffer are passed to the editor and are returned to the
buffer when editing is complete.

EXECUTE

EXE[CUTE] statement

Executes a single PL/SQL statement; commonly used to execute a stored procedure.

Example

EXECUTE scott.funclib.do_calc;

EXIT

EXIT [SUCCESS | FAILURE | WARNING | n | var | :bind variable]
[COMMIT | ROLLBACK]

Commits all pending transactions (unless ROLLBACK is specified), passes a return
code to the operating system, and exits SQL*Plus.

Keywords

SUCCESS
Exits normally with a return code indicating success. This option is the default
behavior.

FAILURE
Exits with a return code indicating failure.

WARNING
Exits with a return code indicating a warning.

Exits with a specific numeric return code.
var

Exits using the value of the specified user-defined or system variable as the
return code.

bind_variable
Exits using the value of the specified bind variable, created using the VARI-
ABLE command, as the return code.

RECOVER 227

COMMIT
Commits pending changes to the database before exiting.

ROLLBACK
Rolls back pending changes before exiting.

HELP
HELP [topic]

Invokes the SQL*Plus help system and displays help information on topic, if speci-
fied; topic comes from the list of SQL*Plus topics; if no fopic is specified, a list of
topics is displayed.

Help is not always available. The HELP command, for example, is
not implemented for Windows platforms, and other platforms may
require that the DBA specifically install the help feature.

HOST
HO[ST] [command]

Executes an operating system command without leaving SQL*Plus; command is
any valid operating system command. If it is not specified, you’ll be taken to a sys-
tem prompt where you can execute system commands, and you’ll remain at the
system prompt until EXIT is entered.

PAUSE

PAU[SE] [text]

Displays an empty line, followed by a line containing fext (if specified), and waits
for the user to press the return key; fext is the string (quotes are not necessary)
that will appear on the output device.

RECOVER

RECOVER {[AUTOMATIC] [FROM location]

{ [STANDBY] DATABASE

[UNTIL {CANCEL | CHANGE change number | TIME time} |
USING BACKUP CONTROLFILE |

[STANDBY] DATAFILE filenamel, filename ...]
[UNTIL [CONSISTENT [WITH] CONTROLFILE |

[STANDBY] TABLESPACE tablespacel, tablespace ...]
[UNTIL [CONSISTENT [WITH] CONTROLFILE |

228 Chapter 6: SOL*Plus

TABLESPACE tablespacel, tablespace ...] |
DATAFILE filenamel,filename ...] |
LOGFILE filename |
CONTINUE [DEFAULT] |
CANCEL
i
MANAGED STANDBY DATABASE {TIMEOUT integer | CANCEL [IMMEDIATE]}
}
[PARALLEL integer | NOPARALLEL]
Performs media recovery on a database, tablespace, datafile, or logfile. This com-

mand is intended for DBAs.

Keywords

AUTOMATIC
Specifies that during a recovery operation, the name of the next required
archived log file will be automatically generated using the LOG_ARCHIVE_
DEST (or LOG_ARCHIVE_DEST_1) and LOG_ARCHIVE_FORMAT parameters
from the INIT.ORA initialization file. If this keyword is omitted and LOGFILE is
not specified, the user will be prompted for the name of each archived log file
as required.

FROM
Specifies the location of archived log files to be read. location must be pro-
vided in an operating system-dependent form (typically a fully qualified direc-
tory name), and if this keyword is specified, the value of location overrides
the value of the LOG_ARCHIVE_DEST or LOG_ARCHIVE_DEST 1 parameters
in the INIT.ORA file.

STANDBY
Specifies that the standby database, which must be mounted and not open,
will be recovered using the control file, and that archived redo log files will be
copied from the primary database.

DATABASE
Specifies that the entire database be recovered.

UNTIL CANCEL
Specifies that an incomplete, cancel-based recovery be performed. Recovery
proceeds by prompting with the suggested filenames of archived redo log
files, and recovery completes when “CANCEL” is entered instead of a filename.

UNTIL CHANGE
Specifies that incomplete, change-based recovery be performed. integer is the
System Change Number (SCN) following the last change to be recovered.

RECOVER 229

UNTIL TIME
Specifies that incomplete, time-based recovery be performed up to the time
provided in time, which must be enclosed in single quotes using the format
YYYY-MM-DD:HH24:MI:SS’.

USING BACKUP CONTROLFILE
Specifies that recovery be performed using a backup control file instead of the
current control file.

DATAFILE
Specifies that a lost or damaged datafile be recovered. If STANDBY is speci-
fied, a datafile on the standby database is to be recovered using the control
file and archived redo log files copied from the primary database. Any num-
ber of datafiles may be listed for recovery.

UNTIL CONSISTENT WITH CONTROLFILE
Specifies that the recovery of a standby datafile (or tablespace) is to use the
current standby database control file.

TABLESPACE

Specifies that the tablespace named tablespace be recovered. Up to 16
tablespaces may be listed for recovery.

LOGFILE
Specifies that recovery be continued by applying the logfile identified by
logfile.

CONTINUE
Specifies that multi-instance recovery is to continue after it has been inter-
rupted to disable a thread.

DEFAULT
Specifies that recovery is to continue using the redo log file that would be
automatically generated if no other logfile was specified. This keyword is
equivalent to specifying AUTOMATIC, except that Oracle does not prompt for
a filename.

CANCEL
Specifies that cancel-based recovery (using the UNTIL CANCEL keyword) is to
be stopped.

MANAGED STANDBY DATABASE
Specifies that sustained standby recovery, which assumes that the standby
database is an active component of an overall standby database architecture, is
to be performed. The primary database actively archives its redo log files to
the standby site, where they are used for a managed standby recovery
operation.

230

Chapter 6: SOL*Plus

TIMEOUT

Specifies, in integer minutes, the time that the sustained recovery operation
waits for a requested archived log redo to be available for writing to the
standby database. If the redo log file does not become available within that
time, the recovery process terminates with an error message. The statement
can be issued again to return to sustained standby recovery mode. If this key-
word is not specified, the database remains in sustained standby recovery
mode until the statement is reissued with the RECOVER CANCEL clause, or
until instance shutdown or failure.

CANCEL IMMEDIATE

Specifies that the sustained recovery operation is to be terminated after apply-
ing all the redo records in the current archived redo file or after the next redo
log file is read, whichever comes first.

PARALLEL integer

Specifies that recovery be performed using a degree of parallelism (the num-
ber of parallel threads used in parallel operations) equal to the number of
CPUs available on all participating instances, multiplied by the value of the
PARALLEL_THREADS_PER_CPU parameter in the INIT.ORA file. If integer is
provided, that degree of parallelism will be used instead of the automatic cal-
culation. The PARALLEL keyword overrides the RECOVERY_PARALLELISM ini-
tialization parameter in INIT.ORA.

NOPARALLEL

Specifies that recovery be performed serially, and not in parallel. This option is
the default.

This command is equivalent to the RECOVER command in Server
Manager, and is available starting with SQL*Plus Version 8.1. Recov-
ery can be very complex, and should be attempted only by an expe-
rienced DBA. For more information, see Oracle’s Oracle8i Backup
and Recovery Guide.

REMARK

REM[ARK] [text]

Indicates that all characters following on the same line be treated as a comment.

SET

SET system variable value

Set a SQL*Plus system variable to the specified value.

SHOW 231

Keywords

system_variable
The name of a valid SQL*Plus system variable (see “SQL*Plus System Vari-
ables” later in this chapter).

value
A valid value for the system variable.

SHOW

SHO[W] [var]

Lists the value of a specific SQL*Plus setting, or of all settings.
SHO[W] ERR[ORS] [typel] [[schema.]name]

Displays compilation errors from an attempt to create or replace a stored PL/SQL
program unit.

Keywords

var
May be one of the following:

ALL

BTI[TLE]

LABEL (obsolete beginning with Oracle87)

LNO

PARAMETERS

PNO

REL[EASE]

REPF[OOTER]

REPH[EADER]

SGA

SPOOIL]

SQLCODE

TTI[TLE]

USER
In addition to these specific items, you can also use any SQL*Plus system vari-
ables that can be used with the SET command.

ERRORS
When specified without an additional keyword, displays the errors for the

most recently compiled PL/SQL procedure. When #ype and name are included,
errors are shown for the most recent compilation of that object.

232 Chapter 6: SOL*Plus

type
May be one of the following:

FUNCTION
PROCEDURE
PACKAGE
PACKAGE BODY
TRIGGER
VIEW
TYPE
TYPE BODY

schema
Specifies the name of the schema that contains the named object. If omitted,
the current schema is assumed.

name
Specifies the name of the stored object for which errors are to be displayed.

SHUTDOWN
SHUTDOWN [NORMAL | IMMEDIATE | TRANSACTIONAL | ABORT]

Shuts down an Oracle instance. This command is intended for DBAs.

Keywords

NORMAL
Specifies that a normal shutdown is to be performed. A normal shutdown will
prevent new user logins and wait for all users to disconnect before shutting
down the instance.

IMMEDIATE
Specifies that an immediate shutdown is to be performed. An immediate shut-
down prevents new user logins and disconnects each user when the currently
executing SQL statement is complete. When all users are disconnected, the
instance will be shut down.

TRANSACTIONAL
Specifies that a transactional shutdown is to be performed. A transactional
shutdown prevents new user logins and disconnects any user whose transac-
tion is complete (i.e., no COMMIT is pending). As each remaining user com-
pletes the current transaction via a COMMIT or ROLLBACK statement, the
session is disconnected. When all users are disconnected, the instance will be
shut down.

START 233

ABORT
Specifies that the instance is to be shut down without regard to pending trans-
actions. No rollback information is written and dirty buffers are not written to
disk before the shutdown. Crash recovery will be performed when the data-
base is started.

This command is equivalent to the SHUTDOWN command in Server
Manager and is available starting with Oracle Version 8.1.

SPOOL

SPOOL

Displays the current spooling status.
SPO[OL] [filename|.extension]] | [OFF | OUT]

Spools all subsequent SQL*Plus output to a file.

Keywords

filename[.extension]
The filename and optional extension for the file to which the output will be
written. If an extension is not supplied, .LIS or .LST (depending on the plat-
form) will be used as the extension.

OFF
Stops spooling.

our
Stops spooling, and sends the output file to the default printer. This option is
not supported on all platforms. For example, it is not supported under
Windows.

The SPOOL OFF command must be supplied when spooling is com-
plete or the spooled file will not be saved.

START
STA[RT] filename [argl [arg2...]]

Runs a series of SQL*Plus commands, and/or SQL and/or PL/SQL statements con-
tained in a file.

234 Chapter 6: SOL*Plus

Keywords

Sfilename
Specifies the name of an operating system file containing SQL and/or PL/SQL
statements.

arg
One or more arguments to be passed to the script. These arguments may be
referenced within the SQL or PL/SQL script as &1, &2, etc. Arguments are posi-
tional and are separated by spaces.

This command is equivalent to specifying @filename.

Command files may be nested; in other words, a command file may
contain another START filename command.

STARTUP

STARTUP [FORCE] [RESTRICT]
[PFILE=f1ilename]

{MOUNT | OPEN [database_name] | NOMOUNT}
[EXCLUSIVE | {PARALLEL | SHARED} [RETRY]]

Starts an Oracle instance. This command is intended for DBAs.

Keywords

FORCE
Specifies that the instance is to be forced to start. If the instance is already run-
ning, this keyword forces a SHUTDOWN ABORT, followed by the specified
STARTUP.

RESTRICT
Specifies that the database is to be opened in restricted mode, which allows
only users with the RESTRICTED SESSION privilege to connect.

PFILE
Specifies that the instance should be started using parameters contained in the
file provided by pfilename. This file must be available on the machine run-
ning SQL*Plus.

MOUNT
Specifies that the instance is to be started and the database is to be mounted,
but not opened.

STORE 235

OPEN
Specifies that the instance is to be started and the database is to be mounted
and opened. This option is the default.

database_name
Specifies the name of the database and overrides the value of the parameter
DB_NAME in the initialization file.

NOMOUNT
Specifies that the instance is to be started, but the database is not to be
mounted or opened.

EXCLUSIVE
Specifies that the database is to be mounted and/or opened only by this
instance, and cannot be shared by any other instance.

PARALLEL
Specifies that the database is to be mounted and/or opened so other instances
can access it simultaneously. This keyword is a synonym for SHARED.

SHARED
Specifies that the database is to be mounted and/or opened so other instances
can access it simultaneously. This keyword is a synonym for PARALLEL.
RETRY
Specifies that if another instance is performing a recovery on this database,
Oracle will retry the open operation every five seconds until the database
recovery is complete and the operation is successful.

This command is equivalent to the STARTUP command in Server
Manager, and is available starting with Oracle Version 8.1.

STORE

STORE SET filename [CRE[ATE] | REP[LACE] | APP[END]]

Saves attributes of the current SQL*Plus environment in a file as a list of SET
commands.

Keywords

Sfilename
Specifies the name of an operating system file that will contain the SET
commands.

236 Chapter 6: SOL*Plus

CREATE
Creates a new file; the filename must not exist if this option is specified.
REPLACE
Replaces the contents of any existing file; if the filename does not exist, it is
created.

APPEND
Adds the contents of the buffer to the end of the specified file.

TIMING

TIMING

Lists the number of active timers.
TIMI[NG] [START text | SHOW | STOP]
Starts, stops, or lists elapsed timers.
Keywords

START
Sets up a timer and names it fext.

SHOW

Lists the current timer’s name and timing data.

STOP
Lists the current timer’s name and timing data, then deletes the timer.

Don’t confuse the TIMING command with the SET TIMING ON and
SET TIMING OFF commands. The TIMING command controls active
timers, while the SET TIMING command controls the automatic
reporting of elapsed time for individual SQL statements.

WHENEVER OSERROR

WHENEVER OSERROR {EXIT {SUCCESS | FAILURE | n | var | :bind variable}
[COMMIT | ROLLBACK] |
CONTINUE [COMMIT | ROLLBACK | NONE]
}

Specifies the action to be taken by SQL*Plus if an operating system error occurs.

Keywords

EXIT
Directs SQL*Plus to exit as soon as an operating system error is detected.

WHENEVER SOLERROR 237

COMMIT
Directs SQL*Plus to execute a COMMIT before exiting or continuing after an
operating system error occurs.

CONTINUE
Turns off the EXIT option.

FAILURE
Exits with a return code indicating failure.

Exits and returns the specified numeric return code.

NONE
Directs SQL*Plus to take no action after an operating system error.

ROLLBACK
Directs SQL*Plus to execute a ROLLBACK before exiting or continuing after an
operating system error occurs.

SUCCESS
Exits normally with a return code indicating success. This option is the default
behavior.

var
A user-defined or system variable, the value of which will be used as the
return code.

bind_variable
A bind variable, created in SQL*Plus with the VARIABLE command, the value
of which will be used as a return code.

WARNING
Exits with a return code indicating a warning status.

WHENEVER SQLERROR

WHENEVER SQLERROR {EXIT {SUCCESS | FAILURE | n | var | :bind variable}
[COMMIT | ROLLBACK] |
CONTINUE [COMMIT | ROLLBACK | NONE]
}

Specifies the action to be taken by SQL*Plus if an error is generated by a SQL
statement or a PL/SQL block.
Keywords

EXIT
Directs SQL*Plus to exit as soon as a SQL or PL/SQL error is detected.

238 Chapter 6: SOL*Plus

COMMIT
Directs SQL*Plus to execute a COMMIT before exiting or continuing after a
SQL or PL/SQL error is detected.

CONTINUE
Turns off the EXIT option.

FAILURE
Exits with a return code indicating failure.

A specific numeric return code to be returned.

NONE
Directs SQL*Plus to take no action after a SQL or PL/SQL error.

ROLLBACK
Directs SQL*Plus to execute a ROLLBACK before exiting or continuing after a
SQL or PL/SQL error is detected.

SUCCESS
Exits normally with a return code indicating success. This option is the default
behavior.

var
A user-defined or system variable, the value of which will be used as the
return code.

bind_variable
A bind variable, created in SQL*Plus with the VARIABLE command, the value
of which will be used as a return code.

WARNING
Exits with a return code indicating a warning status.

SOL*Plus Variables and Related
Commands

SQL*Plus provides a mechanism for the creation and use of user variables. The
commands and constructs described in this section are used to manipulate
SQL*Plus user variables. You can enter these commands and constructs directly
from a SQL*Plus prompt, or include them in a SQL*Plus script.

&

&n

Inserts a command-line parameter.

ACCEPT 239

&var

Creates a SQL*Plus variable varand prompts for a value each time &var is encoun-
tered.

Keywords

n
Specifies the position on the command line for the parameter that will be
inserted. Each occurrence of &n is replaced with the corresponding parame-
ter from the command line. For example, &1 would be replaced with the value
of the first parameter specified on the command line.

var
Specifies the name of a SQL*Plus variable that will be replaced by a value sup-
plied at the time the statement or command is executed. The terminal session
running SQL*Plus will be prompted for the value.

&&
&&var

Creates a SQL*Plus variable that is replaced with a value that is retained for subse-
quent use. var specifies the name of a SQL*Plus variable that is replaced by a
value supplied at the time the statement or command is executed. The terminal
session running SQL*Plus is prompted for the value the first time &&var is encoun-
tered, and the value is retained until the end of the SQL*Plus session, or until var
is undefined.

ACCEPT

ACC[EPT] var [type] [FORMAT formatstring] [DEFAULT default] [PROMPT text | NOPROMPT]
[HIDE]

Reads a line of input and stores it in a variable.

Keywords

var
Specifies the name of a variable that will hold the supplied value.

type
Restricts the type of input allowed, and may be either NUMBER, CHAR, or
DATE.

FORMAT
Specifies that formatstring will be used as the input format for the input. See
Table 5-5 for available numeric formats.

240 Chapter 6: SOL*Plus

DEFAULT

Specifies that default will be used as a value if no input is supplied.
PROMPT

Specifies the text to be displayed as a prompt before accepting input.

HIDE
Specifies that the value input not be displayed on the screen.

DEFINE

DEF[INE] var = text

Creates a variable and assigns a text string to it.
DEF[INE] [var]

Lists the current value of a specified user variable or of all user variables.

Keywords

var
Specifies the name of a SQL*Plus variable.

text
Specifies a string of CHAR text that will be stored in var.

PRINT
PRI [NT] bind variable

Displays the current value of a variable. bind_variable specifies the name of a
bind variable (created with the VARIABLE command) to be displayed.

UNDEFINE
UNDEF [INE] var

Deletes a user variable; var specifies the name of the user variable to be deleted.

VARIABLE

VAR[IABLE] bind variable
[NUMBER | CHAR | VARCHAR2 | NVARCHAR2 | CLOB | NCLOB | REFCURSOR]

Declares a bind variable that can be referenced in PL/SQL.
VAR [IABLE]

Displays a list of all declared bind variables.

APPINFO 241

Keywords
bind_variable

Specifies the name of a bind variable to be created.
NUMBER

Specifies that bind_variable be a NUMBER variable.
CHAR

Specifies that bind_variable be a CHAR variable.
VARCHARZ2

Specifies that bind_variable be a VARCHAR2 variable.
NVARCHARZ2

Specifies that bind_variable be an NVARCHAR?2 variable.
CLOB

Specifies that bind_variable be a CLOB variable.
NCLOB

Specifies that bind_variable be an NCLOB variable.

REFCURSOR
Specifies that bind_variable be a REFCURSOR variable.

See Chapter 7, PL/SQL, for more information about these PL/SQL
variable types.

SOL*Plus System Variables

The SQL*Plus system-level variables described in this section control various
aspects of SQL*Plus’ operation, and may be referenced in the SQL*Plus SET and
SHOW commands.

APPINFO
APPI[NFO]{ON | OFF | text}
Controls the automatic registering of command files through the built-in DBMS_

APPLICATION_INFO package to enable the performance and resource usage of
each command file that will be monitored by the DBA.

242 Chapter 6: SOL*Plus

Keywords

ON
Specifies that automatic registration be enabled.

OFF
Specifies that automatic registration be disabled.

text
Specifies that text be registered if no command file is being run or if APPINFO
is set to OFF.

ARRAYSIZE
ARRAY[SIZE] {n}

Sets the number of rows that SQL*Plus will fetch from the database at one time; n
specifies the number of rows to be fetched at one time. Valid values are 1 to 5000;
the default is 15.

AUTOCOMMIT
AUTO[COMMIT] {ON | OFF | IMM[EDIATE] | m}

Controls when Oracle commits pending changes to the database.

Keywords

ON
Commits pending changes to the database after each successful SQL state-
ment or PL/SQL block is executed.

OFF

Suppresses automatic committing so that you must commit changes manually.
This option is the default.

IMMEDIATE
Functions the same as ON.

Commits after every 7 successful SQL statements or PL/SQL blocks.

AUTOPRINT
AUTOP[RINT] {ON | OFF}

Controls the automatic printing of bind variables.

AUTOTRACE 243

Keywords

ON
Specifies that bind variables be automatically printed after each PL/SQL block
or SQL statement in which they are referenced.

OFF
Specifies that bind variables not be printed automatically. This option is the
default.

AUTORECOVERY

AUTORECOVERY {ON | OFF}

Controls whether the RECOVER command runs without user intervention. This
variable is intended for DBAs.

Keywords

ON
Specifies that autorecovery be used. Autorecovery allows the RECOVER com-
mand to be run automatically, as long as the archived log files are located in
the destination to which the INIT.ORA file’s LOG_ARCHIVE_DEST parameter
points.

OFF
Specifies that autorecovery is not enabled and that user intervention is

required to specify log file names when using the RECOVER command. This
option is the default.

AUTOTRACE
AUTOT[RACE] {ON | OFF | TRACE[ONLY]} [EXP[LAIN]] [STAT[ISTICS]]

Causes SQL*Plus to display a report on the execution of successful SQL DML
statements.

Keywords
ON

Causes a trace report to be displayed after each execution of a DML statement.
OFF

No trace report is displayed. This option is the default.

TRACEONLY

Causes a trace report to be displayed, but suppresses the printing of query
data.

244 Chapter 6: SOL*Plus

EXPLAIN
Causes SQL*Plus to show the query execution plan for each SQL DML state-
ment that is executed. The EXPLAIN PLAN statement is used to get the execu-
tion plan, and your plan table must have a schema for this option to work.
STATISTICS
Causes SQL*Plus to display execution statistics for each executed statement.

BLOCKTERMINATOR

BLO [CKTERMINATOR] [c]

Sets the nonalphanumeric character used to end PL/SQL blocks; c¢ specifies the
character that terminates entry of a PL/SQL block, but does not cause it to be exe-
cuted. To execute the block, you must subsequently issue a RUN or / (slash) com-
mand. The default value is a period.

CLOSECURSOR

CLOSECUR[SOR] ON | OFF

Controls whether SQL*Plus closes the cursor after a SQL statement is executed.

This variable is obsolete beginning with Oracle8i.

CMDSEP
CMDS[EP] {c | ON | OFF}

Sets the character used to separate multiple SQL*Plus commands entered on one
line.

Keywords

c
Specifies the character (which must not be alphanumeric) used to separate
SQL*Plus commands. The default is a semicolon (;).

ON
Turns on the ability to enter multiple commands on one line and automati-
cally sets the command separator character to a semicolon (;).

OFF
Turns off the ability to enter multiple commands on a line.

CONCAT 245

COLSEP

COLSEP text

Sets the text to be printed between columns returned by a query. The default for
text is one space.

COMPATIBILITY
COM[PATIBILITY] V7 | V8 | NATIVE

Specifies the version of Oracle to which a session is currently connected.

Keywords

V7
Specifies that the SQL*Plus session is connected to an Oracle7 database, or
that if the SQL*Plus session is connected to an Oracle8 database, the behavior
should emulate that of Oracle7.

V8
Specifies that the SQL*Plus session is connected to an Oracle8 database.
NATIVE

Indicates that you wish the database to determine the setting. If connected to
Oracle8, for example, compatibility would default to V8.

CONCAT
CON[CAT] ¢ | ON | OFF

Sets the character used to terminate a substitution variable reference.

Keywords

¢ Specifies a character to terminate a substitution variable reference, if you wish
to immediately follow the variable reference with a character that SQL*Plus
would otherwise interpret as a part of the substitution variable name. The
default is a period.

ON
Resets the value of CONCAT to a period.

OFF
Specifies that no CONCAT character be set.

246 Chapter 6: SOL*Plus

COPYCOMMIT
COPYC [OMMIT] n

Controls the number of batches after which the COPY command commits changes
to the database; n specifies the number of batches to be copied by the COPY com-
mand before a commit is issued. Since the size of a batch is controlled by ARRAY-
SIZE, the number of rows copied before each commit will be ARRAYSIZE * . If
COPYCOMMIT is set to zero (the default), COPY performs a commit only at the
end of a copy operation.

COPYTYPECHECK

COPYTYPECHECK ON | OFF

Controls whether or not SQL*Plus checks to be sure that source and destination
datatypes match when you use the COPY command to copy data from one table
to another.

DEFINE
DEF[INE] ¢ | ON | OFF

Sets the character used to prefix substitution variables.

Keywords

c
Changes the value of the define character to this character.

ON
Changes the value of the define character back to the default “&”, and enables
the define feature.

OFF
Turns off the define feature.

ECHO
ECHO ON | OFF

Controls whether SQL*Plus, when executing the START command, lists each state-
ment in a command file as it is executed.

ESCAPE 247

EDITFILE
EDITF[ILE] filename
Sets the default filename for the EDIT command. filename specifies the name of a

file that will be executed when the EDIT command is issued. For more informa-
tion about the EDIT command, see EDIT in this chapter.

EMBEDDED

EMB[EDDED] ON | OFF

Controls where on a page each report begins.

Keywords

ON
Allows a report to begin anywhere on a page. Page numbering will continue
from one report to another.

OFF
Forces each report to start at the top of a new page. Page numbering will
begin with 1 for each report. This option is the default.

ESCAPE
ESC[APE] ¢ | ON | OFF

Defines the character to use as the escape character, which indicates that SQL*Plus
should treat a substitution character as an ordinary character rather than as a
request for variable substitution.

Keywords
c

Changes the value of the escape character to this character.
ON

Changes the value of the escape character back to the default backslash (“\”),
and enables the escape feature.

OFF
Turns off the escape feature. This option is the default.

248 Chapter 6: SOL*Plus

FEEDBACK

FEED[BACK] {6 | n | OFF | ON}

Specifies a threshold for when the number of records returned by a query is to be
displayed.

Keywords

n
Specifies the number of records required to be returned before a feedback
number is displayed. The default is 6.

ON
Enables the feedback display and sets 7 to 1.

OFF
Turns off the feedback display.

FLAGGER
FLAGGER OFF | ENTRY | INTERMED[IATE] | FULL

Checks to make sure SQL statements conform to the ANSI/ISO SQL-92 standard.

Keywords
OFF
Turns off the FIPS flagging feature. This option is the default.
ENTRY
Specifies that SQL should be checked at the SQL-92 Entry standard.
INTERMED/IATE]
Specifies that SQL should be checked at the SQL-92 Intermediate standard.

FULL
Specifies that SQL should be checked at the SQL-92 Full standard.

You may execute SET FLAGGER even if you are not connected to a
database. FIPS flagging will remain in effect across SQL*Plus ses-
sions until a SET FLAGGER OFF (or ALTER SESSION SET FLAGGER
= OFF) command is successful or until you exit SQL*Plus. When
FIPS flagging is enabled, SQL*Plus displays a warning for the CON-
NECT, DISCONNECT, and ALTER SESSION SET FLAGGER com-
mands, even if they are successful.

HEADSEP 249

FLUSH
FLU[SH] ON | OFF

Controls when output is sent to the user’s display device.

Keywords

ON

Specifies that output may be buffered before being sent to the display device.
This option is the default.

OFF
Specifies that output be displayed immediately.

HEADING

HEA[DING] ON | OFF

Controls printing of column headings in reports.

Keywords
ON
Prints column headings in reports. This option is the default.

OFF
Suppresses column headings.

HEADSEP
HEADS[EP] c¢ | ON | OFF

Defines the heading separator character.

Keywords
c
Changes the value of the heading separator character to this character.
ON
Changes the value of the heading separator character back to the default “|”

and enables the head separator feature. This option is the default.

OFF
Turns off the head separator feature.

250 Chapter 6: SOL*Plus

Headings are interpreted when they are defined, so subsequent
changes to HEADSEP won't affect existing heading definitions.

INSTANCE

INSTANCE instance name | LOCAL

Specifies a default database to connect to when using the CONNECT command.

Keywords

instance_name
Specifies the Net8 service name for the instance.
LOCAL

Specifies that the default instance is the local database. This option is the
default.

The local database is determined by an operating system—specific
setting. In Windows, for example, it is set using the LOCAL parame-
ter in the registry file.

LINESIZE
LIN[ESIZE] n
Sets the total number of characters SQL*Plus displays on one line; n specifies the

total number of characters that will be displayed on one line before wrapping to a
new line. The default is 80.

When spooling output to a file, LINESIZE determines the record
length of the output records produced. Note, however, that addi-
tional characters (for example, a carriage return and linefeed) may
be appended, depending on the operating system.

LOBOFFSET

LOBOF [FSET] n

MARKUP HTML 251

Sets the starting position from which CLOB and NCLOB data is retrieved and dis-
played; n specifies that CLOB and NCLOB data be retrieved starting at character
position 7. The default is 1.

LONG

LONG n

Sets the maximum width for displaying LONG, CLOB, and NCLOB values and for
copying LONG values; 7 specifies the maximum width in bytes. The default is 80.

LONGCHUNKSIZE
LONGC [HUNKSIZE] n

Sets the size of the increments in which SQL*Plus retrieves a LONG, CLOB, or
NCLOB value; n specifies the size of a long chunk in bytes. The default is 80.

MARKUP HTML

MARK [UP] HTML [ON | OFF]
[HEAD text]
[BODY text]
[ENTMAP {ON | OFF}]
[SPOOL {ON | OFF}]
[PRE[FORMAT] {ON | OFF}]
Controls whether SQL*Plus will generate HTML output. This command is available

starting with SQL*Plus 8.1.0.

Keywords

ON
Specifies that HTML output be generated using the specified options.

OFF
Specifies that HTML output not be generated. This option is the default.

HEAD
Specifies that the fext be used as content for the <HEAD> tag. Heading text
must be enclosed within quotes. By default, text is ‘<TITLE>SQL*Plus Report</
TITLE>'.

BODY
Specifies that text be used as content for the <BODY> tag. Body text must be
enclosed within quotes.

252 Chapter 6: SOL*Plus

ENTMAP ON
Specifies that SQL*Plus display the special characters “<”, “>” and “&” as the
HTML entities &1t ;, > and &, respectively.

ENTMAP OFF
Specifies that SQL*Plus not change display of the special characters “<”, “>”
and “&”.

SPOOL ON
Specifies that SQL*Plus write HTML tags to the start and end of each file cre-
ated by the SQL*Plus SPOOL command.

SPOOL OFF
Specifies that SQL*Plus not write HTML tags to the start and end of each file
created by the SQL*Plus SPOOL command.

PREFORMAT ON
Specifies that SQL*Plus write output inside the HTML <PRE> tag.

PREFORMAT OFF
Specifies that SQL*Plus not write output inside the HTML <PRE> tag.

NEWPAGE
NEWP[AGE] n | NONE

Sets the number of blank lines printed between the top of each page and the top
title.

Keywords

n
Specifies the number of blank lines printed at the top of a new page. If the
value is zero, the formfeed character will be used to mark the beginning of
each page (including the first page). A formfeed character will clear the screen
on most terminals. The default is 1.

NONE
Specifies that SQL*Plus will print neither blank lines nor a formfeed character
between report pages.

NULL

NULL text

Sets the text used to represent a null value when displaying the results of a SQL
SELECT statement.

PAUSE 253

Keyword

text
Specifies the text representing the value of NULL when displaying the results
of a SELECT statement.

NUMFORMAT
NUMF [ORMAT] formatstring
Sets the default format for displaying numbers; formatstring specifies the number

format used by default when displaying numeric data. See Table 5-5 for available
number formats.

NUMWIDTH
NUM[WIDTH] n

Sets the default width for displaying numbers; 7 specifies the number of digits to
be displayed for numeric data. The default is 10.

NUMFORMAT overrides NUMWIDTH, so SET NUMWIDTH 5, fol-
lowed by SET NUMFORMAT -999,999.99, results in an 11-character
wide column.

PAGESIZE

PAGES[IZE] n

Sets the number of lines in each page; n specifies the number of lines to be
printed on each page.

PAGESIZE can be set to zero to suppress all headings, pagebreaks,
titles, the initial blank line, and other formatting information. This
option can be useful when spooling output to a file.

PAUSE
PAU[SE] ON | OFF | text

Controls scrolling of displayed data.

254 Chapter 6: SOL*Plus

Keywords

OFF
Specifies that the output is not paused while displaying. This option is the
default.

ON
Specifies that the output be paused at the beginning of each output page. The
user must press the <ENTER> key to resume output.

text
Specifies that output be paused at the beginning of each output page. The
string specified by text will be displayed, and the user must press the ENTER
key to resume output. text may include terminal control sequences to control
functions like color or inverse video.

RECSEP
RECSEP WR[APPED] | EA[CH] | OFF

Controls how records are separated.

Keywords

WRAPPED
Causes SQL*Plus to print a record separator (which consists of a single line
consisting of the RECSEPCHAR character repeated LINESIZE times) only after
wrapped lines.

EACH
Causes SQL*Plus to print a record separator (which consists of a single line
consisting of the RECSEPCHAR character repeated LINESIZE times) after each
row.

OFF
Prevents SQL*Plus from printing any record separators.

RECSEPCHAR
RECSEPCHAR {' ' | ¢}

Defines the record separator character; ¢ specifies the character to be used as the
record separator character.

SERVEROUTPUT (Oracle? Syntax)

SERVEROUT[PUT] ON | OFF} [SIZE nl]

SERVEROUTPUT (Oracle8 Syntax) 255

Controls whether SQL*Plus displays the output of stored procedures or PL/SQL
blocks executed from the SQL*Plus prompt. Such output is most often generated
by the DBMS_OUTPUT.PUT_LINE procedure.

Keywords

ON
Displays the output.

OFF
Suppresses the output of DBMS_OUTPUT.PUT_LINE. This option is the
default.

SIZE

Sets the number of output bytes that can be buffered within the server. The
default for 7 is 2000, and 7 must be between 2000 and 1,000,000.

SERVEROUTPUT (Oracle8 Syntax)

SERVEROUT [PUT] {ON | OFF}
[SIZE n]
[FOR[MAT] {WRA[PPED] | WOR[D WRAPPED] | TRU[NCATED]}]

Controls whether or not SQL*Plus displays the output of stored procedures or PL/SQL
blocks executed from the SQL*Plus prompt. Such output is most often generated by
the DBMS_OUTPUT.PUT_LINE procedure.

Keywords

ON
Displays the output.

OFF
Suppresses the output of DBMS_OUTPUT.PUT_LINE. This option is the
default.

SIZE
Sets the number of output bytes that can be buffered within the server. The
default for » is 2000, and » must be between 2000 and 1,000,000.

WRAPPED
Specifies that output is to be wrapped within the current linesize. Line breaks
can occur in the middle of words.

WORD WRAPPED
Specifies that output is to be word-wrapped within the current linesize. Line
breaks will occur between words.

TRUNCATED
Specifies that any line longer than the linesize will be truncated.

256 Chapter 6: SOL*Plus

SHIFT
SHIFT[INOUT] {VIS[IBLE]|INV[ISIBLE]}

Allows correct alignment for terminals that display shift characters.

Keywords

VIS/[IBLE]
Displays shift characters.

INV[ISIBLE]
Does not display shift characters. This option is the default.

The SET SHIFTINOUT command is useful for terminals, such as the
IBM 3270 terminal, that display shift characters together with data.

SHOWMODE
SHOW[MODE] ON | OFF

Controls whether SQL*Plus lists the old and new settings of a SQL*Plus system
variable when the SET command is used.

Keywords

ON
Causes SQL*Plus to list settings when a change is made. (This option results in
the same behavior as the now obsolete SHOWMODE BOTH command.)

OFF
Suppresses listing of old and new settings when a change is made. This option
is the default.

SQLBLANKLINES
SQLBL [ANKLINES] ON | OFF

Controls whether SQL*Plus allows blank lines to be embedded within a SQL
command.

SOLPREFIX 257

SQLCASE
SQLC[ASE] MIX[ED] | LO[WER] | UP[PER]

Controls the case conversion of SQL statements and PL/SQL blocks (including any
quoted text literals) just prior to execution.

Keywords

MIX[ED]
Specifies that case will not be changed.

LOI/WER]
Specifies that all characters will be converted to lowercase.

UP[PER]
Specifies that all characters will be converted to uppercase.

SQLCONTINUE
SQLCO[NTINUE] text

Sets the character sequence SQL*Plus displays as a prompt after a SQL*Plus com-
mand is continued beyond one line. The default for textis “>”.

SQLNUMBER

SQLN[UMBER] ON | OFF

Controls whether SQL*Plus uses the line number as part of the prompt when you
enter a multi-line SQL statement.

Keywords

ON
The line number is made part of the prompt. This is the default setting.

OFF
The line number is not made part of the prompt.

SQLPREFIX
SQLPRE[FIX] ¢

Sets the SQL*Plus prefix character; ¢ specifies the character to be used as the
SQL*Plus prefix. While you enter a SQL command or PL/SQL block, you can enter
a SQL*Plus command on a separate line, prefixed by this character, and that com-
mand will be executed without disturbing the SQL statement you enter. The
SQL*Plus prefix character must be nonalphanumeric, and the default is “#”.

258 Chapter 6: SOL*Plus

SQLPROMPT
SQLP[ROMPT] {SQL> | text}

Sets the SQL*Plus command prompt.

SQLTERMINATOR

SQLT[ERMINATOR] ¢ | ON | OFF

Sets the character used to end and execute SQL commands.
Keywords

c
Changes the terminator character’s value to this character.

ON
Changes the value of the terminator character back to the default “;” and
enables the SQL terminator feature.

OFF

Turns off the SQL terminator feature.

SUFFIX
SUF [FIX] text
Sets the default file extension that SQL*Plus uses in commands referring to com-

mand files; fext specifies the extension to use when referring to SQL command
files and when the operating system supports file extensions. The default is .SQL.

SUFFIX does not control the extension used for spool files, but is
used in conjunction with START, GET, etc.

TAB
TAB ON | OFF

Controls how SQL*Plus formats whitespace in terminal output.

Keywords

ON

Specifies that SQL*Plus uses TAB characters when inserting large amounts of
whitespace into terminal output.

TRIMOUT 259

OFF
Specifies that SQL*Plus uses spaces to format whitespace in the output.

TERMOUT
TERM[OUT] ON | OFF

Controls whether SQL*Plus displays the output generated by commands executed
from a command file or the terminal screen.

TIME
TI[ME] ON | OFF

Controls whether time is displayed as part of the current prompt.

The displayed time will be taken from the clock on the machine on
which SQL*Plus is currently running, which may not necessarily be
the server the session is connected to. For example, if you are run-
ning SQL*Plus on a workstation in London (set to local time) and
you are connected to an Oracle server in Moscow, London time will
be displayed.

TIMING
TIMI[NG] ON | OFF

Controls display of timing statistics.

Keywords

ON
Specifies that timing information (elapsed time and CPU time, when available)
will be displayed after the completion of each SQL statement.

OFF
Specifies that no timing information will be displayed. This option is the
default.

TRIMOUT
TRIM[OUT] ON | OFF

Controls whether SQL*Plus allows trailing blanks at the end of each line displayed
on the terminal.

260 Chapter 6: SOL*Plus

Keywords

ON
Causes SQL*Plus to remove blanks from the end of each line. This option
improves performance, especially when accessing SQL*Plus from a slow dial-
up connection. This option is the default.

OFF

Causes SQL*Plus to display any trailing blanks that might be contained on a
line.

TRIMSPOOL
TRIMS[POOL] ON | OFF

Controls whether SQL*Plus allows trailing blanks at the end of each line written to
a spool file.

Keywords

ON
Causes SQL*Plus to remove trailing blanks from the end of each line written to
a spool file.

OFF

Causes SQL*Plus to include trailing blanks when writing output to a spool file.
This option is the default.

UNDERLINE
UND[ERLINE] ¢ | ON | OFF

Sets the character used to underline column headings.

Keywords

c
Changes the value of the underline character to this character.

ON
Changes the value of the underline character back to the default “-” and
enables the underline feature.

OFF
Turns off underlining.

WRAP 201

VERIFY
VER[IFY] ON | OFF

Controls whether SQL*Plus lists the text of a modified line of a SQL or PL/SQL
block before and after SQL*Plus replaces substitution variables with values.

Keywords

ON
Specifies that the line containing modified text be displayed. This is the
default.

OFF
Specifies that the line containing modified text not be displayed. Note that this
option affects display only; the substitution will still occur.

WRAP
WRA[P] ON | OFF

Controls how SQL*Plus displays data output if it is too long for the current line
width.

Keywords

ON
Specifies that the row’s display should be continued (wrapped) on one or
more subsequent lines. This option is the default.

OFF
Specifies that if a row is longer than the current line width, the display of the
row should be truncated.

PL/SOL

The power, flexibility, and utility of the SQL language are undeniable. However, as
Oracle and its developers became more sophisticated, SQL’s inherent limitations,
particularly its lack of procedural control, became apparent. SQL is a fourth-
generation language, which means that the programmer specifies what is to be
done, but not how. Other languages, like C, are known as third-generation lan-
guages. With these languages, the programmer maintains control over exactly how
the program operates. Each approach is useful and each has its own set of advan-
tages and disadvantages.

In response to the need for third-generation type procedural capabilities, particularly
within Oracle’s development tools, Oracle created the PL/SQL language. PL/SQL,
which stands for “Procedural Language extensions to SQL,” first appeared with Ora-
cle Version 6, and the language has been updated and improved with each subse-
quent release of Oracle.

The PL/SQL language looks a lot like ADA, the third-generation language devel-
oped for the United States Department of Defense. PL/SQL is also based on SQL
and allows the use of standard SQL statements. In fact, PL/SQL can be used to
write 3GL-like procedural code, but can also contain SQL statements and refer-
ence database objects.

PL/SQL is used in virtually every Oracle tool available today, and provides the
developer with a rich array of procedural and nonprocedural capabilities. PL/SQL
code can be developed to run “standalone” from SQL*Plus, as part of an Oracle
form or report, as a component of a web application, or even stored in and exe-
cuted by the Oracle database itself. This chapter focuses only on the basics of
PL/SQL.*

262

The Structure of PL/SQL 263

The Structure of PL/SQL

PL/SQL code is built in blocks, which are logical units of work. Multiple blocks
may be arranged sequentially (one after the other) to perform tasks in sequence,
or blocks may be nested; a PL/SQL block may contain another block of PL/SQL
code, for example.

A PL/SQL block consists of up to four distinct sections:

Block header
This optional section identifies a block name and type (e.g., procedure, func-
tion, anonymous). If omitted, the block will be considered an anonymous
block with no name.

Declaration section
This optional section defines (and optionally initializes) variables and cursors
used in the block. It is not required if no variables or cursors are used.

Execution section
This optional section contains the PL/SQL (and SQL) executable statements
executed by the PL/SQL runtime engine.

Exception section
This section contains instructions that customize the handling of errors
encountered during execution of the block.

Figure 7-1 shows the structure of a PL/SQL block.

Figure 7-2 shows the code for a simple PL/SQL block that will give a 10 percent
raise to all employees who were hired over 90 days ago.

You can use PL/SQL to create several different types of modular structures, each of
which has a particular purpose:

Anonymous block
An unnamed PL/SQL block that can perform one or more PL/SQL actions.
Anonymous blocks are most often used to impose structure on a larger collec-
tion of PL/SQL code. An anonymous block does not contain a block header.

Named block
An anonymous block that has been given a name, but is otherwise the same
as an anonymous block.

* Entire books have been written on PL/SQL, and we will not try to duplicate them here. For a more com-
plete discussion of PL/SQL, I strongly urge you to refer to Oracle PL/SQL Programming, Second Edition
(O’Reilly & Associates) by Steven Feuerstein and Bill Pribyl.

2064 Chapter 7: PL/SQOL

Block Header

IS

Declaration Section

BEGIN

Execution Section

EXCEPTION

Exception Section

END;

Figure 7-1. The structure of a PL/SQL block

PROCEDURE give_raise IS } < Block Header
DECLARE

cutoff_date DATE; } <« Declaration Section
BEGIN

cutoff_date := SYSDATE-90 < Execution Section

UPDATE emp

SET sal = sal * 1.1
WHERE hiredate < cutoff_date;

EXCEPTION <« Exception Section
WHEN NO_DATA_FOUND THEN NULL;}
END;

Figure 7-2. A sample PL/SQL block

Function
A named PL/SQL block that performs some action and returns a single value.
A function can accept one or more parameters.

Procedure
A named PL/SQL block that performs one or more actions. A parameter list
may be used to pass values into and/or out of the procedure.

Package
A named collection of PL/SQL functions and/or procedures. A package may
also include variables.

Declaration Section 265

Block Header

Except for anonymous blocks, all PL/SQL blocks begin with a block header. The
general syntax of the PL/SQL block header is:

{{PROCEDURE | FUNCTION} name IS | <<name>> }

Keywords

PROCEDURE
Indicates that the block is a PL/SQL procedure.

FUNCTION
Indicates that the block is a PL/SQL function.

name
Specifies the name to be assigned to the block. If used to create a named
block, then the name appears within pairs of angle brackets (<< >>) and the IS
keyword is omitted.

Declaration Section

The declaration section is required if any variables are to be used in a PL/SQL
block. The declaration section also defines cursors, types, local procedures, and
functions that are used in a block. If no variables or other elements need to be
declared, then this section may be omitted.

A PL/SQL variable is not the same as a table column. A column
name, which may appear, for example, in a SELECT statement or
WHERE clause, is not a variable and does not need to be declared.
However, the target of a SELECT...INTO... statement is a variable,
and must be declared.

Declaring Variables

Several different types of variables may be defined in a PL/SQL block. You can use
simple, scalar variables to hold numeric, character string, and date values. You can
declare record variables that allow you to manipulate several related values
together. You can even declare in-memory tables and arrays.

The syntax for declaring a scalar variable is shown here:
variable name type [CONSTANT] [NOT NULL] [:=initial_ value]

Declares a variable explicitly.

266 Chapter 7: PL/SQL

variable name [schema.] table name.column name%TYPE
Declares a variable by reference to an existing database column.
variable name pl/sql_variable¥TYPE

Declares a variable by reference to a previously defined PL/SQL variable.

Keywords

variable_name
Specifies the variable’s name. A valid name may be up to 30 characters long,
must begin with a letter, and may contain the letters A to Z, digits 0 to 9,
underscores, dollar signs, and pound signs. Variable names are normally case-
insensitive, but may be made case-sensitive by enclosing them in double
quotes. Reserved words cannot be used as variable names except within dou-
ble quotes.

Lype
Specifies the datatype of the variable. Table 7-1 lists the available datatypes.
CONSTANT
Specifies that an initial value is specified for this variable and that the value
cannot be changed.

NOT NULL
Specifies that an initial value is specified for this variable and that the variable
may not be set to NULL.
initial_value
Specifies the variable’s initial value. If omitted, the initial value of the variable
will be NULL. Note that an initial value must be specified if either CONSTANT
or NOT NULL is specified.
schema
Specifies the name of a schema in the database. If omitted, the current schema
is used.
table_name
Specifies the name of a table in the specified schema of the database.
column_name
Specifies the name of a column in the specified table.
Dpl/sql_variable
Specifies the name of a previously declared PL/SQL variable.

Variable datatypes
Table 7-1 summarizes the valid PL/SQL datatypes.

Declaration Section

267

Table 7-1. PL/SQL Datatypes

Datatype

Description

Numeric

BINARY_INTEGER

DEC

DECIMAL

DOUBLE PRECISION
FLOAT

INT

INTEGER

NATURAL

NUMBER

NUMERIC
PLS_INTEGER

Two’s complement signed binary representation of integer val-
ues.

Decimal number; equivalent to NUMBER.

Decimal number; equivalent to NUMBER.
Double-precision decimal number; equivalent to NUMBER.
Floating-point decimal number; equivalent to NUMBER.

Integer number; equivalent to NUMBER, but with no scale speci-
fied.

Integer number; equivalent to NUMBER, but with no scale speci-
fied.

Equivalent to BINARY INTEGER, but restricted to values of 0
through 2,147,483,647.

Oracle’s internal representation of decimal or integer numeric
values, which is optimized for precision and storage efficiency.

Equivalent to NUMBER.

Stores signed integers between —2,147,483,647 and 2,147,483,647.
Used for faster computation than that obtained by NUMBER.

POSITIVE Equivalent to BINARY INTEGER, but restricted to values of 1
through 2,147,483,647.

REAL Real number; equivalent to NUMBER.

SMALLINT Small integer; equivalent to NUMBER.

Character

CHAR Fixed-length character string.

CHARACTER Fixed-length character string.

LONG A PL/SQL-specific character string essentially like a VARCHAR?2,
with a maximum length of 32,760 bytes. Note that this length is
shorter than a LONG database column.

LONG RAW Similar to LONG, but will not be converted between character
sets.

NCHAR Fixed-length NLS (National Language Support) character data,
with a maximum length of 32,767 bytes.

NVARCHAR?2 Variable-length NLS character data, with a maximum length of
32,767 bytes.

RAW Similar to CHAR, but will not be converted between character
sets.

ROWID Binary internal representation of the physical location of a data

row. This should be used for Oracle7 and Oracle7 compatibility
only.

268 Chapter 7: PL/SQL

Table 7-1. PL/SQL Datatypes (continued)

Datatype Description

UROWID Universal Row ID, a binary internal representation of the physi-
cal, logical, or non-Oracle location of a data row. UROWID,
rather than ROWID, should be used with Oracle8 forward.

STRING Equivalent to VARCHAR2.
VARCHAR Equivalent to VARCHAR2.
VARCHAR?2 Variable-length character string, with a maximum length of

32,767 bytes. Note that this length is longer than the VARCHAR
database column type, which has a maximum length of 4000
(2000 in Oracle?).

Boolean

BOOLEAN ‘ Boolean data, with values of TRUE, FALSE, or NULL.

Date/Time

DATE ‘ Oracle internal date format.

Large Object

BFILE Stores the location of large binary objects contained in operating
system files.

BLOB Stores a locator for a large binary object.

CLOB Stores a locator for a large block of single-character data.

NCLOB Stores a locator for a large block of NLS character data.

In addition to the datatypes listed in Table 7-1, PL/SQL allows vari-
ables to have their types defined by reference to an existing data-
base column or to a previously declared PL/SQL variable, as shown
in the earlier declaration syntax.

Variable scope

The scope of a variable refers to the portion of the entire PL/SQL program in
which the variable is available for use. PL/SQL variables become available in the
declaration section where they are declared and remain available for the entire
block, including any nested blocks. Figure 7-3 illustrates two variables in a PL/SQL
program consisting of two blocks.

In Figure 7-3, the variable “aaa” is available for the entire program, including the
inner block. The variable “bbb”, however, is declared in the inner block, so it is
available only within that block. It is not available in the outer block.

Declaring a Record Type 269

DECLARE < Beginning of outer block
aaa NUMBER ;
BEGIN
DECLARE < Beginning of inner block
bbb NUMBER;
BEGIN

END;

END;

Figure 7-3. The scope of PL/SQL variables

Declaring Records

In PL/SQL, you can declare a record type when you want to manipulate a number
of related variables as a unit. For example, you might want to treat the columns
empno, ename, sal, and comm as a single unit (or record) within a PL/SQL pro-
gram. This PL/SQL type is similar to a structure in C. To use a record, you must
first define a record type. You can then declare record variables based on that
type.

Declaring a Record Type
TYPE type name IS RECORD (
variable name type [NOT NULL] [:=initial_ value]
[, variable name type [NOT NULL] [:=initial_value] ...])

Declares a record type.

Keywords

type_name
Specifies the name of the record type.
variable_name
Specifies the name of a PL/SQL variable.
Lype
Specifies the datatype of the variable. See Table 7-1 for a list of valid PL/SQL
datatypes.
NOT NULL

Specifies that an initial value be specified for the variable, and that the vari-
able may not be set to NULL.

270 Chapter 7: PL/SQL

initial_value
Specifies the initial value of the variable. If omitted, the initial value of the
variable will be NULL. Note that an initial value must be specified if either
CONSTANT or NOT NULL is specified.

Declaring a Record Based on a Type
record name type name

Once a record type is declared, you can declare one or more record variables of
that type using this syntax.

Keywords

record_name
The name to be assigned to the new instance of the record type.

lype_name
The name of a record type. This type may be defined using the TYPE state-
ment, or it may be a %ROWTYPE.

Examples
A record type may be declared as follows:

DECLARE
TYPE Emp_Rec_Type IS RECORD (
Empno NUMBER(4) NOT NULL,
Ename VARCHAR2 (10),
Hiredate DATE,
Sal NUMBER(7,2),
Comm NUMBER(7,2));

Instances of the record type Emp_Rec_Type can then be declared as follows:

old_emp Emp_Rec_Type;
new_emp Emp Rec_Type;

Records can be the target of a SQL SELECT statement by using the
INTO clause.

Referencing Fields in a Record
record_name.variable name

Individual fields of a record can be referenced using the dot notation syntax
shown here.

TYPE (Index-by Tables) 271

Keywords

record_name
Specifies the name of the record.

variable_name
Specifies the name of a variable in the record.

Example

The following PL/SQL statement places the current date and time into a record, in
the field named hiredate:

new_emp.hiredate := SYSDATE;

%ROWTYPE
record name [schema.]table name¥ROWTYPE

Often, a record needs to be declared with the same structure as a table in the data-
base. PL/SQL provides the simple syntax shown here to define such a record.

Keywords

recorvd_name
Specifies the name of the record.

schema
Specifies the name of a schema in the database. If omitted, the current schema
is used.

table_name
Specifies the name of a table in the specified schema.

%ROWTYPE
Specifies that a record be created where the names and datatypes of the fields
in the record match the names and datatypes of a row in the table.

Index-by Tables

You can declare index-by tables when you need to work with multiple occur-
rences of a variable. These tables are similar to, but not quite the same as, arrays
in C. An index-by table type must be declared before you can declare an index-by
table based on that type.

TYPE (Index-by Tables)

TYPE tabletype name IS TABLE OF
{type | variable¥TYPE |[schema.]table name3ROWTYPE}
INDEX BY BINARY_INTEGER;

Declares an index-by table type.

272 Chapter 7: PL/SQL

Keywords

tabletype_name
Specifies the name of the index-by table type.

type
Specifies a valid PL/SQL datatype. Each element of the resulting table repre-
sents an occurrence of the specified type.

variable
Specifies the name of a PL/SQL variable that was previously defined. The
variable¥eTYPE syntax allows you to create a table based on an existing vari-
able declaration.

schema
The name of the schema containing table name. If omitted, the current
schema is used.

table_name
Identifies a database table. The table_namé¥ROWTYPE syntax allows you to
easily create an index-by table where each element represents an occurrence
of a record that matches the structure of the specified table.

INDEX BY BINARY_INTEGER
A string required for an index-by table type declaration.

The result of a table-type declaration is an in-memory table with two columns:

KEY (always a BINARY_INTEGER)
VALUE (whatever type was defined in the declaration statement)

Declaring an Index-by Table
table name tabletype name;

Once an index-by table type has been declared, you can declare and work with
variables of that type by using the standard PL/SQL declare syntax shown here to
declare an index-by table based on an existing type.

table_name (key)

After a table is declared, you can reference individual elements using this syntax.

Keywords

table_name
Specifies the name of the table.

key
Specifies the index to a specific row of the table. This index must be an inte-
ger value.

Declaring an Index-by Table 273

Example

This code declares a table of VARCHAR2 values that can be used to hold
employee names:

DECLARE
TYPE ename_table_type IS TABLE OF varchar2 (10)
INDEX BY BINARY_INTEGER;

ename_table ename table_type;

Once you’ve declared the ename_table, the following statement assigns a value of
“KING” to one of the table’s elements:

ename_table(10) := 'KING';

Index-by tables may be sparsely populated. You can have a table
where element 1 and element 1000 exist, but where elements 2
through 999 do not exist. If you reference an element of an index-by
table that does not exist, PL/SQL will raise a NO_DATA_FOUND
exception. In your code, you should either write an exception han-
dler to trap that exception, or use the EXISTS method to verify that
an element exists before you reference it. Later sections describe
these language elements.

Index-by Table Methods

PL/SQL index-by table types have methods associated with them that may be ref-
erenced in PL/SQL statements. Table 7-2 lists the available methods, along with the
type of the return value (if any).

Table 7-2. Methods Available with PL/SQL Index-by Tables

Method Return Value Type | Description

COUNT NUMBER Returns the number of rows in the table

DELETE Deletes all rows from the table

DELETE(x) Deletes the row with key x from the table

DELETE(x,)) Deletes all rows with keys between x and y from
the table

EXISTS(x) BOOLEAN Returns TRUE if a row with key x exists in the
table; otherwise, returns FALSE

FIRST BINARY_INTEGER | Returns the key of the row of the table with the
lowest key

LAST BINARY_INTEGER | Returns the key of the row of the table with the
highest key

274 Chapter 7: PL/SQL

Table 7-2. Methods Available with PL/SQL Index-by Tables (continued)

Method Return Value Type | Description

NEXT(x) BINARY_INTEGER | Returns the key of the row of the table with the
lowest key that is higher than the supplied key

PRIOR(x) BINARY_INTEGER | Returns the key of the row of the table with the
highest key that is lower than the supplied key

The DELETE method is only available in Oracle8 and above. Prior to
that version, no mechanism was available for deleting rows from an
index-by table.

Methods are referenced using the following syntax:
table_name.method[(x[,y...])]
Keywords

table_name
Specifies the name of the table.

method
Specifies the method, as listed in Table 7-2.
x[,y...D

Specifies one or more arguments if required for the method (see Table 7-2).

Examples

This example checks for the existence of a table element with a key of 10, and
changes its case to initial capitals if it exists in the table. If it does not exist, the lit-
eral “Missing” is inserted:

IF ename_table.EXISTS(10) THEN

ename_table(10) := INITCAPS (ename_table(10));
ELSE

ename_table(10) := 'Missing';
END IF;

In this example, the FIRST, NEXT, and LAST methods are used to iterate through
all the existing rows in a table:

t_key := ename_table.FIRST;

LOOP
ename_table(t_key) := INITCAPS(ename_table(t_key)):;
EXIT WHEN t_key = ename_ table.LAST;

t_key := ename_table.NEXT(t_key) ;
END LOOP;

TYPE (VARRAY) 275

In the loop, each element of the table is converted to initial caps. The current key
is checked against the highest key, and the loop is exited when those two values
match. Otherwise, the next key is obtained using the NEXT method. Note that the
current key is passed to the method for use as a starting point. NEXT starts with
the element specified by the current key and searches for the next nonempty table
element.

Variable-sized Arrays

Variable-sized arrays are a collection type with a specific number of elements.
Unlike the situation with index-by tables, the maximum number of elements in an
array is fixed when the array is declared. Variable-sized arrays are also called
VARRAYsS, and they may be used to hold the contents of a VARRAY column in a
database table. As with the other collection types, you must first declare a variable
array type, then you may declare variables of that type.

Variable-sized arrays are only available with Oracle8i Enterprise Edi-
tion. They are not available in the Standard Edition.

TYPE (VARRAY)

TYPE vartype name IS {VARRAY | VARYING ARRAY} (maxsize)
OF data_type [NOT NULL]

Declares a VARRAY array type.

Keywords

vartype_name
The name you want to give the type.

maxsize
Specifies the maximum number of entries you want the variable-sized array to
hold.

data_type
Specifies the datatype for the elements of the array.

Once a type for a variable-sized array is declared, you can declare variables of that
type using the following syntax:

varray._name vartype name;

276 Chapter 7: PL/SQL

Before values can be assigned to array elements, you must initialize the array by
calling its constructor function, whose name is identical to the name of the under-
lying type name.

Example

The following example shows two VARRAYs being created. One is initialized as an
empty array; no parameters are passed to its constructor method. The other is ini-
tialized as an array of three elements:

DECLARE
TYPE num_array IS VARRAY (100) OF NUMBER;

numl num_array;
num2 num array;
BEGIN
--Call the constructor methods
numl := num array();
num?2 := num array(l,2,3);

--Extend each array in order to add one value.
numl.extend;

numl (1) := 1;

num?2 . extend;

num2 (4) := 4;
END;

VARRAYs cannot be extended beyond their maximum declared size.

VARRAY Array Methods

Table 7-3 shows the methods available with PL/SQL variable-sized arrays.

Table 7-3. Methods Available with PL/SQL Variable-sized Arrays

Method Return Value Type | Description

COUNT INTEGER Returns the number of rows in the table.

DELETE Deletes all rows from the table.

DELETE(x) Deletes the row with index x from the table.

DELETE(x,)) Deletes all rows from the table with indexes
between x and y, inclusively.

EXISTS(x) BOOLEAN Returns TRUE if the index x represents a valid
entry in the table; otherwise, returns FALSE.

CURSOR 277

Table 7-3. Methods Available with PL/SQL Variable-sized Arrays (continued)

Method Return Value Type | Description

FIRST INTEGER Returns the lowest used index value for the table.

LAST INTEGER Returns the highest used index value for the table.

NEXT(x) INTEGER Returns the next valid index subsequent to the
index you specify as an input parameter.

PRIOR(x) INTEGER Returns the highest valid index prior to the index
you specify as an input parameter.

TRIM None Deletes the entry with the highest index value.

TRIM(x) None Deletes the specified number of entries from the
end of the table. These entries will be the x highest
entries.

EXTEND None Adds one entry to the nested table.

EXTEND(x) None Adds x entries to the nested table.

EXTEND(x,)) | None Adds x entries to the nested table and makes them

all copies of the entry for index y.

LIMIT INTEGER Returns the maximum declared size for the array.

Declaring Cursors

PL/SQL cursors allow a SELECT statement that returns multiple rows to be exe-
cuted; you can then iterate through each of those rows using a loop. SQL state-
ments for cursors do not need to be parsed each time the cursor is opened. To
work with the cursors that you declare, you must use the OPEN, FETCH, and
CLOSE statements. These statements are described in the “Execution Section” sec-
tion later this chapter.

CURSOR

CURSOR cursor._name IS
select_statement
[FOR UPDATE [OF column[,column...]] [NOWAIT]];

Declares a cursor.

Keywords

CURSOR
A required keyword indicating that a PL/SQL cursor is being declared.

cursor_name
A valid PL/SQL name used to identify the cursor.

278 Chapter 7: PL/SQL

select_statement
A valid SQL SELECT statement. This statement may reference PL/SQL vari-
ables in the WHERE clause, as long as these variables have been declared and
are available in the block.

FOR UPDATE
Specifies that when a row is selected as a result of a FETCH operation’s using
this cursor, an exclusive row lock will be acquired on that row so that it may
later be updated. If the row is locked, PL/SQL will wait for the lock to be
released (unless NOWAIT is specified). The WHERE CURRENT OF clause of
the UPDATE or DELETE statement may be used to update or delete the row
most recently returned by a cursor fetch operation.

OF columnl, column...]

Specifies one or more columns that will be updated following the FETCH.
NOWAIT

Specifies that if the retrieved row is locked by another process, Oracle will not

wait for the lock to be released and will return the error, “ORA-00054:
resource busy and acquire with NOWAIT specified.”

The SELECT statement associated with a cursor may not include the
INTO clause. Instead, data is retrieved into PL/SQL variables using a
FETCH statement. See the “Executing Cursors” section later in this
chapter.

Example

The following cursor declaration includes a SELECT statement that retrieves all
rows from the scott.emp table with a salary greater than the current value of the
PL/SQL variable t_sal, which must already have been declared:
CURSOR emp_cursor IS
SELECT sal, comm

FROM scott.emp
WHERE sal > t_sal;

Declaring Exceptions

Exceptions are used by PL/SQL to handle errors and other conditions that may
occur during the execution of a PL/SQL program. Oracle has predefined excep-
tions that it throws for common errors. You can also define your own.

PRAGMA EXCEPTION_INIT 279

EXCEPTION
exception_name EXCEPTION

Declares an exception of your own.

Keywords
exception_name
A valid PL/SQL name for the exception.

EXCEPTION

A keyword required to indicate that this declaration is for a user-defined
exception.

If you declare a named exception without tying it to a specific error
number using the PRAGMA EXCEPTION_INIT statement (described
next), then the only way that exception will be raised is by raising it
manually in your code.

PRAGMA EXCEPTION_INIT
PRAGMA EXCEPTION_INIT (exception name, ora_number);

Associates an exception with a specific Oracle error number.

Keywords
PRAGMA EXCEPTION_INIT

Invokes a compiler directive that associates a named exception with a specific
Oracle error number.
exception_name
A valid PL/SQL name for the exception.
ora_number
The Oracle error number you want to tie to the named exception.

Oracle error numbers are almost always negative. If you want to trap
the error ORA-02292, use -2292 as your ora_number value.

After declaring an exception, you can associate your exception with a specific Ora-
cle error number so that when the specified error occurs, Oracle will automati-
cally raise the exception.

280 Chapter 7: PL/SQOL

If you declare a named exception without using PRAGMA
EXCEPTION_INIT to tie it to a specific error number, the only way
that exception will ever be raised is if you raise it manually in your
code.

Execution Section

The execution section of a PL/SQL block is the only required section. It contains
the PL/SQL code that actually performs some action; the exception section also
performs an action, but only after being triggered by an action in the execution
section. The general syntax of the execution section is:

BEGIN
{assignment_statement |
proc_call |
control_statement |
PL/SQI,_block |
SQOL
}i
[{assignment_statemanet |
proc_call |
control_statement |
PL/SQI,_block |
SQOL
oo 1
END;
Keywords

BEGIN
A required keyword marking the beginning of the execution section.
assignment_statement
Any valid PL/SQL assignment statement. These statements normally consist of
a variable and an expression separated by an := operator.
proc_call
A call to a PL/SQL procedure or function.
control_statement
Any valid PL/SQL control statement. These statements are described later in
this chapter.
PL/SQL_block

Any complete PL/SQL block. A PL/SQL block contained with an execution
section is called a nested block.

Execution Section 281

SOL
Any valid SQL DML statement, such as SELECT, INSERT, UPDATE, DELETE,
ROLLBACK, or COMMIT.

END
A required keyword marking the end of the execution section.

Assignment Statements

An assignment statement provides a value to a PL/SQL variable. The general syn-
tax of a PL/SQL assignment statement is:

variable := expression;
Keywords

variable
Any previously declared PL/SQL variable.

The PL/SQL symbol for assignment. Note the difference between := and the
typical = used in many other languages.

expression
Any valid PL/SQL expression.

Expressions

PL/SQL expressions consist of one or more PL/SQL variables optionally combined
with one or more PL/SQL operators. In PL/SQL, an expression may appear in one
of the following locations:

e On the right side of an assignment statement
e As part of a control statement

e As part of a SQL statement

The PL/SQL operators that may be used in expressions, along with their relative
precedence (where 1 is the highest) are listed in Table 7-4.

Table 7-4. PL/SQL Operators

Operator Description Type Precedence
Il Concatenate two character strings Character | 4
+ Addition Numeric 4
+ Unary identity (when used as a positive sign) Numeric 2
- Subtraction Numeric | 4
- Unary negation (when used as a negative sign) Numeric 2

282 Chapter 7: PL/SQL

Table 7-4. PL/SQL Operators (continued)

Operator Description Type Precedence
* Multiplication Numeric | 3
i Exponentiation Numeric 1
/ Division Numeric | 3
= Equality Numeric 5
1= Non-equality Boolean 5
<> Non-equality Boolean 5
~= Non-equality Boolean 5
< Less than Boolean 5
> Greater than Boolean 5
<= Less than or equal to Boolean 5
>= Greater than or equal to Boolean 5
IS NULL Test for NULL value Boolean 5
LIKE Test equality of character strings using mask Boolean 5
BETWEEN | Test inclusion in range Boolean 5
IN Test inclusion in list Boolean 5
AND Logical AND evaluation Boolean 6
OR Logical OR evaluation Boolean 7
NOT Logical negation Boolean 1

Control Statements

PL/SQL control statements are used to control the execution behavior of a PL/SQL
block. The existence of control statements provides PL/SQL with its procedural, or
third-generation, capabilities. These capabilities distinguish it from SQL.

IF-THEN-ELSE

IF expression THEN
statement; [statement; ...]

[ELSIF expression THEN

statement; [statement; ...]
[ELSIF expression THEN

statement; [statement; ...] ...]
1
[ELSE

statement; [statement; ...]]
END IF;

Executes one or more statements based on the logical evaluation of Boolean
expressions.

IF-THEN-ELSE 283

Keywords

IF
Required keyword that indicates the beginning of conditional processing.

expression
Any valid PL/SQL expression returning a Boolean result.

THEN
A required keyword indicating that the statement(s) to follow will be exe-
cuted if expression evaluates to TRUE.

statement
Any valid PL/SQL assignment statement, SQL statement, procedure call, or
function call.

ELSIF
Optional keyword indicating an alternative expression to be evaluated if the
primary expression is FALSE. If the ELSIF expression is evaluated and is TRUE,
the statements following the ELSIF will be executed. As many alternate condi-
tions (ELSIF) may be specified as are required.

ELSE
Optional keyword preceding statements to be executed in the event that none
of the IF or ELSIF expressions evaluate to TRUE.

END IF
Required keyword that indicates the end of the IF statement. Each IF must be
ended by only one END IF keyword.

Only one set of statements will be executed in an IF-THEN-ELSE
statement. Once an expression evaluates to TRUE, the associated
statements are executed and control is transferred to the statement
following the END IF keyword.

Example

In the following example, salaries are adjusted and bonuses are awarded accord-
ing to the initial value of an employee’s salary per pay period. If the salary is less
then $1000, a 10 percent raise is given (salary * 1.10), but no bonus is awarded.
Salaries between $1001 and $1500 get an 8 percent raise and a $500 bonus. Sala-
ries between $1501 and $2000 get a 5 percent raise and a $750 bonus. Everyone
else—those with salaries over $2000—gets a 2 percent raise and a $1000 bonus:
IF salary < 1000 THEN
salary := salary * 1.10;

bonus := 0;
ELSIF salary BETWEEN 1001 AND 1500 THEN

284 Chapter 7: PL/SQL

salary := salary * 1.08;
bonus := 500;
ELSIF salary BETWEEN 1501 AND 2000 THEN
salary := salary * 1.05;
bonus := 750;
ELSE
salary := salary * 1.02;
bonus := 1000;
END IF;

LOOP

[<<label>>]

LOOP

[EXIT;]

[EXIT WHEN condition;]

statement; [statement; ...]

END LOOP [<<label>>];

Performs one or more statements repetitively, optionally terminating execution
when a condition is met or when an explicit EXIT command is issued. Each state-
ment between LOOP and END LOOP is executed sequentially. If an EXIT com-
mand has not been encountered, control is passed back to the first statement in

the loop.

Keywords

<<label>>
Specifies an optional label for the loop. The loop is labeled by a <<label>>
preceding the LOOP statement and the corresponding END LOOP statement
may then optionally reference the same label.

LOOP
Required keyword indicating that subsequent statements, until the END LOOP
keyword is reached, be performed repetitively.

EXIT
Optional keyword that causes control to be passed to the next statement after
the END LOOP keyword. EXIT is actually an executable statement that usu-
ally appears after an IF statement embedded in the loop. This keyword may
appear in any statement between the LOOP and END LOOP keywords, and
may appear multiple times. Note that EXIT is not strictly a component of the
LOOP syntax, but is included here for clarity, since it is often used in LOOP
programming.

EXIT WHEN
Optionally specifies a condition which, when it evaluates to TRUE, causes
control to be transferred to the next statement after the END LOOP keyword.
This keyword may appear in any statement between the LOOP and END

WHILE Loop 285

LOOP keywords, and may appear multiple times. The specified exit condition
is evaluated when the EXIT WHEN statement is encountered. Note that EXIT
WHEN is not strictly a component of the LOOP syntax, but is included here
for clarity, since it is often used in LOOP programming.

statement
Any valid PL/SQL assignment statement, SQL statement, procedure call, or
function call.

END LOOP
Required keyword indicating the end of the LOOP structure.

It is perfectly legal to have a loop structure without an EXIT or EXIT
WHEN keyword. However, such a loop will run forever, which is
probably not what you intended!

Example

In this example, which uses a PL/SQL table, the loop continues until one of two
conditions occur: if a row of the table is NULL, the loop immediately exits. The
loop is also ended when the value of loop_counter reaches 100.

loop_counter := 0;
LOOP

EXIT WHEN loop_counter = 100;

loop_counter := loop_counter+l;

IF salary_ table(loop_counter) IS NULL THEN EXIT;

salary_ table(loop_counter) := salary table(loop_counter) * 1.1;
END LOOP;

WHILE Loop

[<<label>>]

WHILE condition LOOP
statement; [statement;...]
END LOOP [<<label>>];

Performs one or more statements repetitively until a condition is not met. When

the last statement is executed, control is passed back to the first statement for exe-
cution. This iterative execution continues until condition evaluates to FALSE.

Keywords

<<label>>

Specifies an optional label for the loop. The loop is labeled by a <<label>>
preceding the WHILE statement, and the corresponding END LOOP statement
may then optionally reference the same label.

286 Chapter 7: PL/SQL

WHILE ...LOOP
Specifies that this is a WHILE loop that will execute as long as condition eval-
uates to TRUE. When condition evaluates to FALSE, the keyword will cause
control to be transferred to the next statement following the END LOOP key-
word. The condition is tested before each execution of the loop body.

Statement
Any valid PL/SQL assignment statement, SQL statement, procedure call, or
function call.

END LOOP
Required keyword indicating the end of the LOOP structure.

The condition is evaluated prior to each iteration of the loop. If the
condition is TRUE, all statements in the loop are executed; if it eval-
uates to FALSE, control is passed to the next statement after the END
LOOP keyword.

Example

This example is similar to that shown earlier with the LOOP command, and dem-
onstrates how the same result can be accomplished using different methods. Here,
two statements are repeatedly executed (one to increment the variable loop_
counter and one to update the corresponding element of the salary table) until the
value of loop_counter reaches 100. At that point, it is no longer less than 100, and
the loop terminates:

loop_counter := 0;
WHILE loop_counter < 100 LOOP
loop_counter := loop_counter+l;
salary(loop_counter) := salary(loop_counter) * 1.1;
END LOOP;
FOR Loop
[<<label>>]

FOR counter IN [REVERSE] start .. end LOOP
statement; [statement;...]
END LOOP [<<label>>];

Performs a sequence of statements a defined number of times.

Keywords

<<label>>
Specifies an optional label for the loop. The loop is labeled by a <<label>>
preceding the FOR statement, and the corresponding END LOOP statement
may then optionally reference the same label.

GOTO 287

counter

Specifies the name of a variable used to hold the count of iterations through
the loop. After each iteration of the loop, counter is incremented by 1, unless
REVERSE is specified, in which case counter is decremented by 1. This vari-
able is automatically defined as a BINARY_INTEGER and does not need to be
declared in the block. If a variable of the same name is declared and available
in the block, its declaration is temporarily overridden while the FOR loop is
active, unless it is explicitly referenced using blockname.variable notation.

REVERSE
Specifies that counter will be decremented from end to start when the FOR
loop is executed.

Start
Specifies the beginning value for counter, unless REVERSE is specified. If
REVERSE is specified, start represents the ending value for the counter.

end
Specifies the last value for counter; that is, when counter reaches this value,
the FOR loop is terminated and control is passed to the executable statement
immediately following the END LOOP statement. If REVERSE is specified, end
specifies the initial value of counter, which is then decremented by 1 until
start is reached.

statement
Any valid PL/SQL assignment statement, SQL statement, procedure call, or
function call.

END LOOP
Required keyword indicating the end of the LOOP structure.

Example

This example performs the same operation as the example shown for the WHILE
loop, but is written using a FOR loop. Here the first 99 elements of the salary table
are updated:

FOR loop_counter IN 1..99 LOOP

salary(loop_counter) := salary(loop_counter) * 1.1;
END LOOP;

GOTO
GOTO label;

Transfers program control to the executable statement immediately following label.
The following rules must be observed when using the GOTO statement:

* You can’t jump into a block from outside a block.

e You can’t jump into the middle of a loop.

288 Chapter 7: PL/SQOL

e You can’t jump into the middle of an IF statement.

e You can’t jump out of an exception handler and back into the code.

Example

In this example, when salary is greater than 1000, control is passed to the label
no_raise, and the next statement to be executed assigns the current date to the
variable up_date:
IF salary > 1000 THEN
GOTO no_raise;

END IF;
Salary := salary * 1.1;

<<no_raise>>
up_date := SYSDATE;

NULL
NULL;

The NULL statement does absolutely nothing. It can be used as a placeholder
when developing new code or to replace the contents of a deeply nested portion
of an IF statement that you no longer want to execute.

Example

In the following example, NULL has been used as a placeholder for code that
needs to be written later:
IF emp_sal < 0 THEN
--Write this later when the specs are finished
NULL;
ELSE
print_paycheck (emp_no, emp_sal);
END IF;

SOL Statements

The ability to use SQL within a PL/SQL program is one of PL/SQL’s major
strengths. By adding the ability to use variables in SQL code, PL/SQL becomes a
powerful and robust language that can take full advantage of complex Oracle
databases.

There are some limitations to the use of SQL in PL/SQL, however. Most notable is
that only Data Manipulation Language (DML) and control statements are permit-
ted in PL/SQL. The following SQL statements are permitted in a PL/SQL block:

SELECT
INSERT

SELECT 289

UPDATE

DELETE

COMMIT
ROLLBACK

SET CONSTRAINTS
SET ROLE

SET TRANSACTION
SAVEPOINT

LOCK TABLE

Data Definition Language (DDL) statements, including session and system control
statements, are not allowed in PL/SQL. EXPLAIN PLAN is also not allowed.

There is a way to execute DDL statements from PL/SQL through the
use of the DBMS_SQL built-in package. The use of this package (and
the other built-in packages) is beyond the scope of this book. For
more information about the use of DBMS_SQL, refer to the Oracle
Built-in Packages (O'Reilly & Associates) by Steven Feuerstein,
Charles Dye, and John Beresniewicz.

SQL used in a PL/SQL program differs from “standard” SQL in the following impor-
tant ways:

e The INTO keyword permits data to be read from a database table and placed
into a PL/SQL variable or record.

e PL/SQL variables may be used anywhere a constant or expression would be
permitted, including in the WHERE clause. Thus, although the names of tables
and columns must be known when the code is written, the values for col-
umns and other expressions need not be.

e SQL statements executed in PL/SQL do not return data to the screen or other
output device.

The specific syntax for each permitted SQL statement is presented below, with two
exceptions. COMMIT and ROLLBACK are the same as in standard SQL, so their
syntax is not repeated.

SELECT

SELECT select_list

INTO {pl/sqgl_record | variable [, variable..]}
FROM table list

[WHERE where clause];

290 Chapter 7: PL/SQL

Selects data from an Oracle table (or view), and places the result in a PL/SQL
record or into one or more PL/SQL variables.

Keywords

select_list
Specifies the list of columns to be retrieved by the statement. See Chapter 3
for more information.

Dpl/sql_record
Specifies the name of a PL/SQL record to receive the data returned by the
SELECT statement. The record must contain exactly the same number of vari-
ables as are listed in the select list, and their types must be compatible. If the
datatype of a field in the record differs from the corresponding column in the
select list, the two types must be compatible enough for Oracle to implicitly
convert from one to the other.

table_list
Specifies the name of one or more tables from which data will be selected.

variable
Specifies the name of a previously declared PL/SQL variable. There must be
exactly the same number of variables as columns in the select list, and each
must be of the same (or compatible) type.

where_clause
Specifies the WHERE conditions for this SELECT. Expressions in the WHERE
clause may include previously declared PL/SQL variables.

This syntax description is for the basic form of the SELECT state-
ment. Keep in mind that there are additional clauses available. These
clauses include the GROUP BY and ORDER BY clauses. See
Chapter 3, Data Manipulation and Control Statements, for the full
syntax of the SELECT statement, including descriptions of all the
clauses.

Example

This example retrieves KING’s row from the emp table and places the values for
hiredate, sal, and comm into the corresponding PL/SQL variables:

DECLARE
t_hiredate DATE;
t_salary NUMBER;
t_commission NUMBER;
BEGIN
SELECT hiredate, sal, comm

UPDATE 291

INTO t_hiredate, t_salary, t_commission
FROM scott.emp
WHERE ename = 'KING';

END;
INSERT
INSERT INTO [schema.]table (column[,column..])
VALUES ({expression[,expression.] | select_statement});

Inserts a new data row into the specified table, providing values for each speci-
fied column. Alternatively takes the results from a query, and inserts them into the
specified table.

Keywords

schema
The name of the schema that contains table. If omitted, the current schema is
used.

table
Specifies the name of a table into which new rows will be inserted.

column
Specifies the name of a column in table that will receive data specified in the
VALUES clause.

expression
Specifies a valid PL/SQL expression, which may contain a previously declared
PL/SQL variable or record type.

select_statement
Specifies that the data to be inserted is the result of this SELECT statement.
The SELECT statement must return one column for each column listed in the
INSERT INTO clause, and the types must be compatible.

Example
The code in the following PL/SQL block inserts a new row into the emp table:

BEGIN
INSERT INTO emp (empno, ename, sal)
VALUES (1111, 'Gennick', 2500);
END;

UPDATE

UPDATE [schema.]table
SET {column = expression|,column = expression.] |
column[, column.] = (select_statement)

}

292 Chapter 7: PL/SQL

WHERE {where clause | CURRENT OF cursor._name};

Updates one or more rows of a table.

Keywords

schema
The name of the schema that contains fable. If omitted, the current schema is
used.

table
Specifies the name of a table for which rows will be updated.

column
Specifies the name of a column in the table being updated.

expression
Any valid SQL expression.

select_statement
Any valid SELECT statement, which must return the appropriate number and
type of data elements. SELECT statements used in the SET clause must be
enclosed within parentheses.

where_clause
Specifies the WHERE conditions for this update. Expressions in the WHERE
clause may include previously declared PL/SQL variables.

CURRENT OF
Specifies that the update be applied to the row most recently fetched and
locked by the named cursor.

cursor_name
Specifies the name of a PL/SQL cursor used to fetch data from the table being
updated.

Example

The following example updates the records of all employees who work for
employee number 7788 and doubles their salaries:

BEGIN
UPDATE emp
SET sal = sal * 2
WHERE mgr = 7788;
END;

The following, more complex UPDATE statement, sets the salary of each employee
to 90 percent of their manager’s salary. Employees without managers do not
receive a salary adjustment:

BEGIN
UPDATE emp e

DELETE 293

SET sal = (SELECT sal * 0.90
FROM emp m
WHERE e.mgr = m.empno)
WHERE mgr IS NOT NULL;
END;

DELETE

DELETE FROM [schema.]table
WHERE {where_clause | CURRENT OF cursor_name};

Deletes one or more rows of a table.

Keywords

schema
The name of the schema that contains fable. If omitted, the current schema is
used.

table
Specifies the name of a table from which rows will be deleted.

where_clause
Specifies the WHERE conditions for this delete. Expressions in the WHERE
clause may include previously declared PL/SQL variables.

CURRENT OF
Specifies that the delete be applied to the row most recently fetched via the
named cursor.

cursor_name
Specifies the name of a PL/SQL cursor used to fetch data from the specified
table.

Example
The following example deletes managers who make too much money:

BEGIN
DELETE FROM emp m
WHERE empno IN (SELECT mgr FROM emp)
AND sal * 0.90 > (SELECT MAX(sal)
FROM emp e
WHERE e.mgr = m.empno) ;
END;

In this case, “too much money” is defined as any salary that is still greater than the
highest salary of that manager’s subordinate employees when multiplied by 90
percent. Those managers are history.

294 Chapter 7: PL/SQL

Executing Cursors

PL/SQL cursors provide a method of accessing multiple rows of data from an Ora-
cle database and maintaining complete control of program execution for each row.
You must perform the following four steps to use a PL/SQL cursor:

1. Declare the cursor (see the “Declaring Cursors” section earlier in this chapter).
2. Open the cursor.
3. Issue FETCH statements to retrieve the data.

4. Close the cursor.

The following sections show the general syntax of the PL/SQL statements required
during cursor execution.

OPEN

OPEN cursor._name;

Opens a PL/SQL cursor for use within the current block. This cursor must not
already be open.

FETCH
FETCH cursor._name INTO {variable list | record};

Reads a row of data from the cursor result set into the specified PL/SQL vari-
able(s). Each successive FETCH will read a new row of data from the result set
until no more rows remain to be read.

Keywords

FETCH
Specifies that a row be returned from the SQL statement associated with
cursor_name.

cursor_name
Specifies the name of a cursor that has previously been declared and opened.

variable_list
One or more previously declared PL/SQL variables into which column values
returned by the SELECT statement associated with the cursor will be placed.

record
A previously declared PL/SQL record into which columns returned by the
SELECT statement associated with the cursor will be placed. The fields in the
record must match those in the underlying SQL statement’s select list.

Cursor FOR Loops 295

CLOSE

CLOSE cursor._name;

Closes a cursor and frees associated resources. The cursor must have previously
been declared and opened.

Cursor FOR Loops

FOR {variable list | record}
IN {cursor._name | (select_statement)} LOOP

[p1/sql_statement; ...]
END LOOP;
While it is usually necessary to explicitly OPEN a cursor, FETCH from it, and then
CLOSE the cursor, PL/SQL provides a shortcut to perform this processing. This
shortcut is called the cursor FOR loop, and it is useful when you want to do a sim-
ple iteration through all the rows returned by a cursor’s underlying SQL SELECT
statement.

Keywords

variable_list
One or more previously declared PL/SQL variables into which column values
returned by the SELECT statement associated with cursor_name will be
placed.

record
A previously declared PL/SQL record into which column values returned by
the SELECT statement associated with cursor_name will be placed.

cursor_name
Specifies the name of a cursor that has previously been declared. The cursor is
implicitly opened when the statement is executed.

select_statement
As an alternative to specifying a cursor name, you may provide a SELECT
statement as part of the FOR loop syntax. If you do, you must enclose the
SELECT statement within parentheses.

END LOOP
Indicates the end of the cursor FOR loop. When all the data has been fetched,
the loop ends and the cursor is implicitly closed.

296 Chapter 7: PL/SQL

When a cursor FOR loop is executed, the cursor associated with it is
opened and rows of data are fetched. After each row is fetched, the
PL/SQL statements between the FOR ... IN statement and the END
LOOP statement are executed. When all rows have been fetched, the
cursor is closed and execution continues with the statement follow-
ing the END LOOP.

Example

The following example shows a cursor FOR loop used to iterate through the
records returned by the cursor named emp_cursor:

BEGIN
FOR v_emp_data IN emp_cursor LOOP /*Begin the loop and open the cursor*/
-- a row is implicitly fetched, so now process it
bonus := v_emp_data.sal * 1.12; /*Assign a 12% bonus*/
INSERT INTO bonus (empno, bonus)
VALUES (v. data.empno, bonus) ;

-- now the loop will check for more rows, and fetch another if possible
END LOOP;
COMMIT;

/* Continue with other processing*/
END;
This second example does the same thing as the first, except that the SELECT
statement to be executed is made part of the FOR loop:

BEGIN
FOR v_emp_data IN (SELECT * FROM emp) LOOP
-- a row is implicitly fetched, so now process it
bonus := v_emp_data.sal * 1.12;
INSERT INTO bonus (empno, bonus)
VALUES (v_emp_data.empno, bonus) ;

-- now the loop will check for more rows,
-- and fetch another if possible

END LOOP;

COMMIT;

END;

The definition of the record v_emp_data used in these two examples must match
the number and datatypes of the columns returned by each cursor’s underlying
SQL statement. In the second example, since SELECT * was used, you could
declare the record as v_emp_data emp%ROWTYPE.

Cursor Attributes 297

Referencing Cursor Attributes

Once a cursor is declared, four attributes can be used to get information about that
cursor. These attributes, together with the possible values that they can return, are
summarized in Table 7-5.

Table 7-5. Attributes of PL/SQL Cursors

Attribute Description Value Meaning

%FOUND Indicates whether a row | TRUE The previous FETCH
of data has been returned a data row.
returned.

FALSE The previous FETCH did
not return a data row; all
rows have been
retrieved.

NULL The cursor has been
opened but no FETCH
has been executed.

%NOTFOUND | Indicates that a data row | TRUE The previous FETCH did
has not been returned. not return a data row; all
This attribute is the rows have been
opposite of %WFOUND. retrieved.

FALSE The previous FETCH
returned a data row.

NULL The cursor has been
opened but no FETCH
has been executed.

%ISOPEN Indicates whether the TRUE The cursor has been
cursor is opened. opened.

FALSE The cursor has not been
opened or has been
closed.

%ROWCOUNT | Indicates the number of 0 The cursor has been
rows returned by this opened but no FETCH
cursor so far. has been executed.

Positive integer | The number of rows that
have been retrieved by
FETCHs from this cursor.

Cursor Attributes

cursor._name.attribute

References a cursor attribute.

298 Chapter 7: PL/SQL

Keywords

cursor_name
The name of a previously declared PL/SQL cursor. This cursor may be closed
or open. If referencing an attribute associated with an implicit cursor G.e.,
single-row SELECT, INSERT, DELETE, or UPDATE), the name of the implicit
cursor is SQL.

attribute
The name of the attribute to be referenced.

Example

The following example declares a cursor that selects rows from the scott.emp table
that have a value for the sal column greater than 100. The executable block reads
each row (using a FETCH within a LOOP) into the salary variable and increments
a variable named sal_total until all rows have been read. The %NOTFOUND
attribute is used to detect the point at which all rows have been processed:

DECLARE
sal_total NUMBER :=0; /*Variable for salary sum */
salary emp.sal$TYPE /*Variable for salary FETCHed by cursor */

CURSOR emp_cursor IS /*Declare the cursor */
SELECT sal FROM scott.emp WHERE sal > 100;
BEGIN
OPEN emp_Cursor; /* Open the cursor */

LOOP
FETCH emp_cursor INTO salary; /*Read a row into salary */
EXIT WHEN emp_cursor3NOTFOUND; /*See if all rows have been read */
sal_total := sal total + salary; /*Add salary to total */

END LOOP; /*Go back to the top of the loop */

CLOSE emp_cursor; /*Close the cursor */
END;

Exception Section

Even the best-written PL/SQL programs encounter errors or unexpected events.
PL/SQL provides a powerful and flexible method for handling both expected and
unexpected events through the use of exceptions and exception handlers. Any
Oracle error (those reported with Oracle error numbers in the form ORA-xxxxx)

PL/SQL runtime error, or user-defined condition (not necessarily an error), can be
handled.

PL/SQL compile errors are not handled by PL/SQL exception han-
dling, since these errors occur prior to execution of the PL/SQL
program.

Exception Section 299

PL/SQL error handling is fairly straightforward. When an error occurs in a running
PL/SQL program, an exception is raised and the appropriate exception handler
takes control.

Types of Exceptions

PL/SQL handles two types of exceptions: predefined and user-defined. User-
defined exceptions must be declared in the DECLARE section (see the “Declaring
Exceptions” section earlier in this chapter) of a PL/SQL block. Predefined excep-
tions are supplied to handle the most common types of errors and are summa-
rized in Table 7-6.

Table 7-6. Predefined PL/SQL Exceptions

Exception Oracle Error | Description
CURSOR_ALREADY_OPEN ORA-06511 An attempt was made to open a cursor
that was already open.
DUP_VAL_ON_INDEX ORA-00001 A unique constraint was violated.
INVALID_CURSOR ORA-01001 An illegal operation, such as an attempt

to close an already closed cursor, was
attempted with a cursor.

INVALID_NUMBER ORA-01722 An implicit or explicit conversion from
character to numeric failed in a SQL
statement.

LOGIN_DENIED ORA-01017 | A login was denied because of an
invalid username or password.

NO_DATA_FOUND ORA-01404 | A query returned no rows.

NOT_LOGGED_ON ORA-01012 The session is not connected to Oracle.

OTHERS An error occurred that was not pre-
defined.

PROGRAM_ERROR ORA-06501 | An internal PL/SQL error occurred.

ROWTYPE_MISMATCH ORA-06504 | The types of a host cursor variable and
a PL/SQL cursor variable did not match.

STORAGE_ERROR ORA-06500 | The process ran out of memory.

TIMEOUT_ON_RESOURCE ORA-00051 A resource was requested, but the

operation timed out. This event often
occurs while waiting for a lock.

TOO_MANY_ROWS ORA-01422 A SELECT statement returned more
than one row.
TRANSACTION_BACKED_OUT | ORA-00061 A deadlock condition forced a ROLL-
BACK.

VALUE_ERROR ORA-06502 A conversion error occurred in a proce-
dural statement.

ZERO_DIVIDE ORA-01476 | A division by 0 was attempted.

300 Chapter 7: PL/SQL

When an exception occurs, it is said to be “raised.” Predefined
exceptions are raised when the exception event occurs. User-defined
exceptions are raised by the explicit execution of a RAISE command
(described in the later section, “Exception Handling Statements”). In
either case, when an exception is raised, execution is immediately
transferred to the appropriate exception handler. This transfer is one-
way; there is no method available to return to the executable section.

You can easily work around this limitation on returns by using
nested PL/SQL blocks; once an exception is handled, control can
pass to the outer block to continue execution.

Exception Handling
The exception section of a PL/SQL block has the following syntax:

EXCEPTION
[WHEN exception_name THEN
pl/sqgl_statements
[WHEN exception name THEN
pl/sql_statements...]]
[WHEN OTHERS THEN
pl/sql_statements]
END;

Keywords

exception_name
The name of a predefined exception or a previously declared user-defined
exception.

Dpl/sql_statements
One or more valid SQL or PL/SQL statements to be executed when the speci-
tied exception is raised.

WHEN OTHERS
Defines a catch-all exception handler that is executed when no other handlers
apply.

END
Marks the end of the exception section and the end of the block.

Example

The code in this example attempts to retrieve the salary and name for a specific
employee (if there is no record of the specified employee, a row is inserted into
an error log table):

Exception Section 301

DECLARE
emp_name emp.enamedtype;
emp_sal emp.sal%type;
empno_to_find NUMBER := 9999;
BEGIN
SELECT ename, sal
INTO emp_name, emp_sal
FROM emp
WHERE EMPNO = empno_to_find;
EXCEPTION
WHEN NO_DATA_FOUND THEN
INSERT INTO error_log (empno, error_message)
VALUES (empno_to_find, 'Missing employee record');
END;

Exception bandling functions

Table 7-7 lists the two PL/SQL built-in functions provided to make error handling
more convenient, particularly if the WHEN OTHERS exception handler is
executed.

Table 7-7. Exception Handling Functions

Function Returns
SQLCODE Oracle error number encountered
SQLERRM Text of Oracle error encountered

Raising exceptions
Exceptions may be raised in a PL/SQL block in one of the following three ways:
e An Oracle error may occur, triggering an exception automatically.

e A RAISE statement may be used to explicitly raise an exception.

e A call may be made to the RAISE_APPLICATION_ERROR procedure.

Exceptions raised as the result of an Oracle error are automatic, and not much
more needs to be said about them. The other two methods must be implemented
with code that you write.

Exception Handling Statements

You can use the RAISE statement and the RAISE_APPLICATION_ERROR proce-
dure in the execution section of a PL/SQL block to raise an exception. You can
also include them in an exception handler to reraise an exception or raise a new
exception.

302 Chapter 7: PL/SQL

RAISE
RAISE exception name

Raises an exception. Usually the RAISE statement is used to raise a previously defined
user-defined exception, but it can also raise one of the predefined exceptions.

When you issue RAISE from within the execution portion of a PL/SQL
block, you must always specify the name of the exception that you
want to raise. You can also use RAISE from within an exception han-
dler to reraise an exception to the parent PL/SQL block. When you
do that, you can omit the exit name, causing the current exception to
be raised again.

Example

The following example illustrates one use of the RAISE statement (when you try to
use the create_emp procedure to create a new employee and you fail to specify a
salary other than zero dollars, the procedure fails with an error):

CREATE OR REPLACE
PROCEDURE create_emp (emp_no IN NUMBER,
) name IN VARCHAR2,
) sal IN NUMBER)
IS
--Declare a user-defined exception, and associate it with
--an error code of -20000.
no_salary EXCEPTION;
PRAGMA EXCEPTION_INIT (no_salary,-20000) ;

BEGIN
--Raise an exception if salary zero or null.
IF NVL() sal,0) = 0 THEN
RAISE no_salary;
END IF;

INSERT INTO emp (empno, ename, sal)
VALUES (emp_no, emp_name, emp_sal);
EXCEPTION
WHEN no_salary THEN
--Reraise the exception
RAISE;
END;

When an attempt is made to use create_emp to insert a record with a zero salary,
a no_salary exception is raised. That exception causes control to jump to the asso-
ciated exception handler. In the exception handler, the RAISE statement raises the
same exception again, propagating it to the code that invoked the procedure.

RAISE_APPLICATION_ERROR 303

RAISE_APPLICATION_ERROR

RATSE_APPLICATION_ERROR (error.number, error. text|, keep errorsl]) ;

Provides a method to define error numbers and messages for conditions not han-
dled by standard Oracle errors.

Keywords

error_number
The number you want to use for the error being raised. This number should
be between -20,000 and -20,999 to avoid conflict with Oracle error numbers.
That range was set aside by Oracle for user-defined error numbers.

error_text
A character string between 1 and 2048 bytes in length providing text to be
associated with the error being raised.

keep_errors
A Boolean value, either TRUE or FALSE. If TRUE is specified, the error will be
added to a list of errors that have been raised. If FALSE, this error will replace
previous errors on the error stack. The default behavior is that specified by
FALSE.

RAISE_APPLICATION_ERROR is often useful from within a trigger. If
you decide in a trigger that you want the triggering SQL statement to
fail, all you need to do is call RAISE_APPLICATION_ERROR. For
more information about triggers, see the discussion in the “Triggers”
section later in this chapter.

Example

The following code shows RAISE_APPLICATION_ERROR used in a trigger to pre-
vent a new employee record from being inserted without a name:

CREATE OR REPLACE TRIGGER emp_insert
BEFORE INSERT ON emp
FOR EACH ROW
BEGIN
IF :new.ename IS NULL THEN
RATISE APPLICATION_ERROR(-20000, 'Employees must have a name.');
END IF;
END;

The code in this trigger checks to see if the employee name in the new record is
NULL. If the new name is NULL, a call to RAISE_APPLICATION_ERROR is made.
Raising an error in a BEFORE trigger always causes the triggering statement to fail.

304 Chapter 7: PL/SQL

Now there certainly are easier ways to enforce a NOT NULL constraint, but this
code clearly illustrates the potential use of RAISE_APPLICATION_ERROR.

Procedures and Packages

Most third-generation languages include the ability to create discrete program
units, called subprograms, that can be executed by other programs. PL/SQL also
includes this capability. Using PL/SQL, you can implement two types of subpro-
grams: procedures and functions. The characteristics of each are summarized in
Table 7-8.

Table 7-8. Characteristics of PL/SQL Procedures and Functions

Characteristic Procedure Function
Can accept input parameters Yes Yes
Can return parameter values Yes Yes
Returns a single value No Yes
Can be referenced in an expression No Yes
Is stored in the database in compiled form Yes Yes

As you can see from Table 7-8, the primary difference between a
procedure and a function is that functions return a single value, and
can thus be used in a PL/SQL expression anywhere a PL/SQL vari-
able or constant may be used. PL/SQL procedures, on the other
hand, do not return values and cannot form part of an expression.

Procedures

A PL/SQL procedure is much like a subroutine, or subprogram, in other lan-
guages. It can accept one or more parameters or arguments as input, can operate
on these parameters, and may replace the values in one or more of these parame-
ters with new values. The program that invoked the procedure (the calling pro-
gram) can then access these new values. PL/SQL procedures are created and
maintained using the SQL DDL statements CREATE PROCEDURE, ALTER PROCE-
DURE, and DROP PROCEDURE.

CREATE PROCEDURE

CREATE [OR REPLACE] PROCEDURE [schema.]procedure_name
[(argument [IN | OUT | IN OUT] [NOCOPY] datatype
[,argument [IN | OUT | IN OUT] [NOCOPY] datatype ...1)]

CREATE PROCEDURE 305

[AUTHID {CURRENT USER | DEFINER}]
{Is | AS} {plsql_code |
LANGUAGE {JAVA NAME 'string" |
C [NAME name] LIBRARY libname [WITH CONTEXT] [PARAMETERS parms}}
Creates a stored procedure or replaces an existing version of a stored procedure
with a new version.

Keywords

OR REPLACE
Specifies that an existing stored procedure be replaced.
schema

The name of the schema to contain the procedure. Storing the procedure in
your current schema is the default.

procedure_name
The name you want to give this procedure.

argument
The name of an argument to the procedure.

IN
Specifies that the argument is an input that must be supplied when the proce-
dure is called. This specification is the default. Within the procedure, you
won't be allowed to assign a value to an input argument.

our
Specifies that the argument is an output and will be set by the procedure
before control is returned to the calling program. Within the procedure, you
will be allowed to store a value into an output variable, but you won’t be
allowed to refer to that value.

IN OUT
Specifies that the argument is both an input and an output. A value must be
supplied when the procedure is called, and another value may be set by the
procedure prior to its return.

NOCOPY
Specifies that the argument should be passed by reference rather than by
value. Passing an argument by value requires that a copy be made. Passing an
argument by reference requires only that a memory address be passed,
thereby providing significantly enhanced performance. This keyword affects
OUT and IN OUT arguments, and it is the default for IN arguments.

datatype
The argument’s datatype, which can be any datatype supported by PL/SQL.

AUTHID
Specifies whose privileges the function will execute under.

306 Chapter 7: PL/SQL

CURRENT_USER
Specifies that the privileges and schema of the current user will be used when
executing this function.
DEFINER
Specifies that the privileges and schema of the function owner will be used
when executing this function; this is the default behavior.
Dlsql_code
The PL/SQL code to implement this procedure.
LANGUAGE
Specifies that the PL/SQL procedure is mapped to a Java or C method.
JAVA NAME
Specifies that the function is mapped to a Java method.
string
Specifies the Java implementation of the method.
C [NAME]
Specifies that the function is mapped to a C method.
name
Specifies the name of the C routine.
libname
Specifies the name of the library containing the C routine.
WITH CONTEXT

Specifies that a context pointer be passed to the C routine.

parms
Specifies the parameter(s) to be passed to the C routine.

If you are creating a procedure from SQL*Plus and the procedure
does not compile correctly, use the SQL*Plus command SHOW
ERRORS to see specific error messages that were generated.

Example

The procedure created by the CREATE PROCEDURE statement in the following
example reads a row from the emp table and gives an employee a raise. The first
parameter is p_ename, and it identifies the employee by name. The procedure cal-
culates a new salary and passes it back in the second parameter, newsal:

CREATE OR REPLACE PROCEDURE give_raise

(p_ename IN VARCHAR2,
newsal OUT NUMBER)

CREATE PROCEDURE 307

AS
t_sal NUMBER;
t_deptno NUMBER;
BEGIN
SELECT sal, deptno
INTO t_sal, t_deptno
FROM emp
WHERE ename = p_ename;

IF t_deptno = 10 THEN
newsal := t_sal*l.1l;
ELSIF t_deptno =20 THEN
newsal := t_sal*1.08;
ELSE
newsal := t_sal*1.05;
END IF;

The keywords CREATE [OR REPLACE] PROCEDURE ... [ASIIS]
replace the DECLARE label that is normally found at the beginning
of a PL/SQL code block. In this case, the DECLARE is implied and
the declarations follow the procedure header

The following example shows the output from a PL/SQL block, executed from
SQL*Plus, which demonstrates how the give_raise procedure can be called. In the
first call to give_raise, a string literal is used to pass the employee name to the
procedure. In the second call, the employee name is assigned to a variable, and
that variable is then passed as a parameter to give_raise:

SQL> SET SERVEROUTPUT ON
SQL> DECLARE

2 _name emp.ename%type;

3 new_salary NUMBER;

4 BEGIN

5 give raise('KING', new salary);

6 DBMS_OUTPUT.PUT_LINE('King''s new salary is ' ||

7 TO_CHAR (new_salary, '$999,999.99'));
8

9 emp_name:='SCOTT';

10 give raise(emp_name, new salary);

11 DBMS_OUTPUT.PUT_LINE('Scott''s new salary is ' ||

12 TO_CHAR (new_salary, '$999,999.99'));
13 END;

14 /

King's new salary is $5,500.00
Scott's new salary is $3,240.00

PL/SQL procedure successfully completed.

308 Chapter 7: PL/SQL

ALTER PROCEDURE

ALTER PROCEDURE [schema.]procedure name COMPILE [DEBUG]
Recompiles a procedure already stored in the Oracle database.
Keywords

schema
The name of the schema containing the procedure. If omitted, the current
schema is assumed.
procedure_name
The name of the existing procedure to be recompiled.
COMPILE
Causes the procedure to be recompiled.
DEBUG

Causes the PL/SQL compiler to generate debugging code for use by the PL/SQL
debugger.

This command first causes the recompilation of all objects upon
which the procedure is dependent. If any of those objects are
invalid, the procedure being recompiled will also be marked invalid.

Example

The following example explicitly recompiles the procedure called give_raise in
schema scott:

ALTER PROCEDURE scott.give_raise COMPILE

DROP PROCEDURE
DROP PROCEDURE [schema.]procedure name

Removes a procedure from the database.

Keywords

schema
The name of the schema containing the procedure to be dropped. If omitted,
the current schema is assumed.

procedure_name
Specifies the name of the procedure to be dropped.

CREATE FUNCTION 309

Example
The following example removes the procedure give_raise from the database:
DROP PROCEDURE give raise

In this case, since the schema name was not explicitly specified in the DROP PRO-
CEDURE command, you need to log in as the procedure owner for the procedure
to be dropped.

Functions

PL/SQL functions are similar to functions in many other languages. Like PL/SQL
procedures, PL/SQL functions are created and maintained with SQL DDL state-
ments, which are listed in this section. As I mentioned previously, a function is
very much like a procedure: it can have arguments that are passed to the function
as well as arguments that can be passed back from the function (and arguments
that can do both); it is built as one or more blocks of PL/SQL code with the same
structure as other PL/SQL blocks, and can be stored in the database. There is,
however, one crucial distinction: a PL/SQL function returns a single value and
therefore is used as part of a PL/SQL expression.

PL/SQL functions are created and maintained using the SQL DDL statements CRE-
ATE FUNCTION, ALTER FUNCTION, and DROP FUNCTION.

CREATE FUNCTION

CREATE [OR REPLACE] FUNCTION [schema.]function name
[(argument [IN | OUT | IN OUT] [NOCOPY] datatype
[,argument [IN | OUT | IN OUT] [NOCOPY] datatype..])]
RETURN datatype
[AUTHID {CURRENT USER | DEFINER}]
[DETERMINISTIC]
[PARALLEL ENABLE]
{Is|AaS} {plsql_code |

LANGUAGE {JAVA NAME ’string' |

C [NAME name] LIBRARY libname [WITH CONTEXT] [PARAMETERS parms}}

Creates a stored function.

Keywords

OR REPLACE
Specifies that an existing stored function be replaced.

schema
The name of the schema to contain the function. If omitted, the current user’s
schema is assumed.

310 Chapter 7: PL/SQL

Sunction_name
The name for the function being created.

argument
The name of an argument to the function.

IN
Specifies that the argument is an input that must be supplied when the func-
tion is called; this is the default argument type.

our
Specifies that the argument is an output that will be set by the function prior
to its return.

IN OUT
Specifies that the argument is both an input and an output. A value can be
supplied when the function is called, and the function may in turn change that
value prior to returning.

NOCOPY
Specifies that the argument be passed by reference rather than by value. Pass-
ing an argument by value requires that a copy be made. Passing an argument
by reference requires only that a memory address be passed, thereby provid-
ing significantly enhanced performance. This keyword affects OUT and IN
OUT arguments, and it is the default for IN arguments.

datatype
The argument’s datatype, which can be any datatype supported by PL/SQL.

RETURN datatype
Specifies the datatype of the value returned by the function.

AUTHID
Specifies under whose privileges the function will execute.

CURRENT_USER
Specifies that the current user’s privileges and schema will be used when exe-
cuting the function.

DEFINER
Specifies that the privileges and schema of the function’s owner will be used
when executing the function; this is the default behavior.

DETERMINISTIC
Tells the Oracle optimizer that the function will always return the same result
for any given input. The query optimizer can then use this information to
avoid redundant calls to the function. Do not use DETERMINISTIC if there are
any factors other than the input parameters that can affect the function’s result.

CREATE FUNCTION 311

PARALLEL_ENABLE
Specifies that the query optimizer may execute this function in parallel as part
of a parallel query operation. Only specify PARALLEL_ENABLE if the function
does not use any package variables or other session-specific information.
Dlsql_code
The PL/SQL code to implement the function.
LANGUAGE
Specifies that the function is mapped to a Java or C method.

JAVA NAME

Specifies that the function is mapped to a Java method.
string

Specifies the Java implementation of the method.
C [NAME]

Specifies that the function is mapped to a C method.
name

Specifies the name of the C routine.

libname
Specifies the name of the library containing the C routine.

WITH CONTEXT
Specifies that a context pointer be passed to the C routine.

parms
Specifies the parameter(s) to be passed to the C routine.

As with stored procedures, if you are creating a function from
SQL*Plus and that function does not compile correctly, you can use
the SQL*Plus SHOW ERRORS command to see the specific error
messages.

Examples

The CREATE FUNCTION statement in the following example creates a function to
return the salary of an employee from the scott user's emp table. The employee
number is used to identify the employee, and it is passed to the function as an
argument:

CREATE FUNCTION get_sal
(emp_num IN NUMBER)
RETURN NUMBER
IS

emp_sal NUMBER (8,2);

312 Chapter 7: PL/SQL

BEGIN
SELECT sal
INTO emp_sal
FROM scott.emp
WHERE emp_num = empno;
RETURN emp_sal;
END;
After creating the get_sal function, you can use the following code to get the sal-
ary for a specific employee:

SQL> select get_sal(7788) from dual;

GET_SAL(7788)

In the scott demo schema, employee number 7788 is named SCOTT. His salary, as
you can see from this example, is $3000.

ALTER FUNCTION

ALTER FUNCTION [schema.] function name COMPILE [DEBUG]

Recompiles a stored function.

Keywords

schema
The name of the schema containing the function. If omitted, the current user’s
schema is assumed.

Sunction_name
The name of the function to be recompiled.

COMPILE
Causes the function to be recompiled.

DEBUG
Causes the compiler to insert debug code for use by the PL/SQL debugger.

Example

The following example shows how to use ALTER FUNCTION to recompile the
function get_sal:

ALTER FUNCTION get_sal COMPILE

DROP FUNCTION

DROP FUNCTION [schema.] function_name

Removes a function from the database.

DROP FUNCTION 313

Keywords

schema
The name of the schema containing the function to be dropped. If omitted,
the current user’s schema is assumed.

Sunction_name
The name of the function to be dropped.

Example
Use the following statement to drop the function get_sal:

DROP FUNCTION get_sal

Packages

It's often desirable to create a number of related PL/SQL procedures and functions
and to maintain and store them together. PL/SQL packages are designed to do just
that. A PL/SQL package is a collection of related functions, procedures, and vari-
ables that are created together with a single set of commands, and are stored
together within the database.

A package may contain functions, procedures, variables, types, and cursors. In
general, anything that can appear in the DECLARE section of a PL/SQL program
can be included in a package.

One benetfit of using packages is that they give you a mechanism for
implementing global PL/SQL variables. Packages maintain their state
throughout a database session, so once you set a package variable to
a value, that value becomes accessible to code in any other PL/SQL
block executed as part of the same session. In essence, package vari-
ables can function as global variables.

Unlike functions and procedures, which can be created with a single CREATE
statement, packages are created in two distinct steps:

1. Create the package specification, sometimes referred to as the package header.
2. Create the package body.

The package specification can be considered a “table of contents” for a package. It
contains information about the package, such as procedure and function declara-
tions, but it does not contain any actual PL/SQL code.

The package body contains all the PL/SQL code used to implement the functions
and procedures that are declared in the package specification. Note that this code

314 Chapter 7: PL/SQL

includes the specifications for the functions and/or procedures (i.e., name, param-
eters, and parameter modes), even though these specifications have already been
included in the package specification. Furthermore, these specifications must be
the same in both the package specification and the package body.

PL/SQL packages are created and maintained using the SQL DDL statements CRE-
ATE PACKAGE, CREATE PACKAGE BODY, ALTER PACKAGE, and DROP
PACKAGE.

CREATE PACKAGE

CREATE [OR REPLACE] PACKAGE [schema.]package name
[AUTHID {CURRENT USER | DEFINER}]
{Is | AS} plsqgl package spec

Creates a PL/SQL package specification.

Keywords

OR REPLACE
Specifies that an existing package specification be replaced.

schema
The name of the schema containing this package. If omitted, the current user’s
schema is assumed.

package_name
The name of the package to be created.

AUTHID
Specifies under whose privileges the functions and procedures in the package
will execute.

CURRENT_USER
Specifies that the privileges and schema of the current user will be used when
executing the functions and procedures in this package.

DEFINER
Specifies that the privileges and schema of the package owner will be used
when executing the functions and procedures in this package; this specifica-
tion is the default behavior.

Dlsql_package_spec
The PL/SQL package specifications, which may include procedure and func-
tion specifications, variable declarations, cursor declarations, and type
declarations.

CREATE PACKAGE BODY 315

The SQL*Plus SHOW ERRORS command can be used to display
details about compilation errors that occur when creating a package
specification.

Examples

The following example creates a package specification for a package named emp_
pkg in the scott user’s schema:

CREATE OR REPLACE PACKAGE scott.emp_pkg AS
FUNCTION emp_sal (empnum IN NUMBER) RETURN NUMBER;
PROCEDURE update_sal (empnum IN NUMBER, pct_increase IN NUMBER,
update_count OUT NUMBER) ;
PROCEDURE add_bonus (empnum IN NUMBER, bonus_amt IN NUMBER) ;
END emp_pkg;

CREATE PACKAGE BODY

CREATE [OR REPLACE] PACKAGE BODY [schema.]package name
{Is | AS}
plsgl_declaration [plsgl_declaration ...]
[BEGIN
pl/sql_initialization codel
END [package _name] ;

Creates a PL/SQL package body.
Keywords

OR REPLACE
Specifies that an existing package body should be replaced.

schema
The name of the schema to contain the package. If omitted, the current
schema is assumed.

package_name
The name of the package whose body you are creating.

Dlsql_declaration
A PL/SQL declaration, which may be a procedure, function, variable, type, or
cursor.

Pplsql_initialization_code
A block of PL/SQL code that will be executed when the package is first loaded
into memory by an Oracle session.

316 Chapter 7: PL/SQL

The package specification should already exist before a package
body can be created; otherwise, Oracle will issue a warning message.

Examples

The following example shows a CREATE PACKAGE BODY statement that creates a
body for the emp_pkg package in the scott user’s schema:

CREATE OR REPLACE PACKAGE BODY scott.emp pkg AS
--Declare package-level variables
update_count NUMBER;

FUNCTION emp_sal (empnum IN NUMBER)
RETURN NUMBER IS
emp_sal NUMBER (8,2);

BEGIN

SELECT sal

INTO emp_sal

FROM scott.emp

WHERE empnum = empno;

RETURN emp_sal;
END;

PROCEDURE update_sal
(empnum IN NUMBER, pct_increase IN NUMBER, update count OUT NUMBER)
IS
BEGIN
UPDATE scott.emp
SET sal = sal+ sal*pct_increase
WHERE empnum = empno;
update_count := update_count + 1;
END;

PROCEDURE add_bonus (empnum IN NUMBER, bonus_amt IN NUMBER) is
BEGIN

UPDATE scott.emp

SET comm = comm + bonus_amt

WHERE empnum = empno;

update_count := update_count + 1;

END;

BEGIN
--Here is the package initialization code.
update_count := 0;

END emp_pkg;

ALTER PACKAGE 317

This CREATE PACKAGE BODY statement corresponds to the CRE-
ATE PACKAGE statement shown in the previous section. Each func-
tion or procedure defined in the CREATE PACKAGE statement was
also defined here in the CREATE PACKAGE BODY statement. Also
note that those declarations are identical, down to the function
parameter names and types. Those items must be identical. If you
provide different names for a parameter in the specification and the
body of a function, PL/SQL won’t recognize the two as a match.

ALTER PACKAGE

ALTER PACKAGE [schema.]package name
COMPILE [DEBUG] [PACKAGE | SPECIFICATION | BODY]

Recompiles a stored package specification, body, or both.

Keywords

schema
The name of the schema containing the package. If omitted, the current
schema is assumed.

package_name

The name of the package to be recompiled.

COMPILE
Causes the package to be recompiled.

DEBUG
Causes the PL/SQL compiler to create debug information for use with the PL/SQL
debugger.

PACKAGE
Specifies that both the package specification and the package body be recom-
piled; this is the default behavior.

SPECIFICATION
Specifies that only the package specification be recompiled.

BODY
Specifies that only the package body be recompiled.

Examples

The following statement explicitly recompiles the specification and the body of the
emp_pkg package in the scott user’s schema:

ALTER PACKAGE scott.emp_pkg COMPILE PACKAGE

318 Chapter 7: PL/SQL

The following statement recompiles only the body for the package:

ALTER PACKAGE emp_pkg COMPILE BODY

DROP PACKAGE
DROP PACKAGE [BODY] [schema.]package name

Removes a package from the database.

Keywords

schema
The name of the schema containing the package to be dropped. If omitted,
the current schema is assumed.

package_name
The name of the package to be dropped.

BODY
Specifies that only the package body, and not the specification, be dropped.

If DROP PACKAGE is used without the BODY qualifier, both the
package specification and the package body will be dropped.

Examples

The following statement drops both the package specification and the package
body for the package named emp_pkg:

DROP PACKAGE emp_pkg
The following statement drops only the emp_pkg package body:

DROP PACKAGE BODY emp_pkg

Triggers

A trigger represents a special type of PL/SQL block that you can tie to an event.
When a trigger is executed by the Oracle database, it is said to “fire.” The most
commonly used types of triggers are Data Manipulation Language (DML) triggers
that fire in response to INSERT, UPDATE, and DELETE statements. There are 15
different DML trigger types, listed in Table 7-9.

Triggers

319

Table 7-9. Oracle’s DML Trigger Types

Triggered

Trigger Event for Each Description

BEFORE Statement | Executes code before an INSERT statement is executed

INSERT on the target table

BEFORE Row Executes code before each row is INSERTed into the tar-

INSERT get table

AFTER INSERT Statement | Executes code after an INSERT statement is executed on
the target table

AFTER INSERT Row Executes code after each row is INSERTed into the target
table

INSTEAD OF Row Executes code instead of the INSERT for each row on

INSERT which an INSERT is attempted

BEFORE Statement | Executes code before an UPDATE statement is executed

UPDATE on the target table

BEFORE Row Executes code before each row of the target table is

UPDATE UPDATEd

AFTER UPDATE | Statement | Executes code after an UPDATE statement is executed on
the target table

AFTER UPDATE | Row Executes code after each row of the target table is
UPDATEd

INSTEAD OF Row Executes code instead of the UPDATE statement for each

UPDATE row for which an UPDATE is attempted

BEFORE Statement | Executes code before a DELETE statement is executed on

DELETE the target table

BEFORE Row Executes code before a row is DELETEd from the target

DELETE table

AFTER DELETE Statement | Executes code after a DELETE statement is executed on
the target table

AFTER DELETE | Row Executes code after a row is DELETEd from the target
table

INSTEAD OF Row Executes code instead of the DELETE statement for each

DELETE row for which a DELETE is attempted

Along with the DML triggers described in Table 7-9, Oracle8i intro-
duced triggers on database events that allow you to run code auto-
matically on instance startup, instance shutdown, and when users
connect. Each of these new trigger categories represents a large sub-

ject in its own right. In this book, I focus only on the DML triggers,
the triggers that SQL programmers are most likely to encounter. For
information on database triggers, see Oracle PL/SQL Programming
Guide to Oracle8i Features (O'Reilly & Associates, 1999) by Steven
Feuerstein.

320 Chapter 7: PL/SQL

A trigger can include any legal PL/SQL statement(s) with the following exceptions:

e A trigger may not issue a COMMIT, ROLLBACK, or SAVEPOINT statement, and
may not call any function or procedure that issues one of these statements.

e A trigger may not declare a LONG or LONG RAW variable.

e A trigger may not perform DML operations on the table for which it is defined.

The following sections show the SQL syntax for the DDL statements used to work
with triggers.

Triggers are created and maintained using the SQL DDL statements CREATE TRIG-
GER, ALTER TRIGGER, and DROP TRIGGER.

CREATE TRIGGER

CREATE [OR REPLACE] TRIGGER [triggerschema.]triggername
{BEFORE | AFTER | INSTEAD OF}
{INSERT | DELETE | UPDATE [OF column[,column ...]]}
[OR {INSERT | DELETE | UPDATE [OF column[,column ..]]}..]
ON [tableschema.]{tablename | viewname}
[REFERENCING [OLD [AS] old] [NEW [AS] newl]]
[FOR EACH ROW [WHEN condition]]
plsqgl_block
Creates a trigger, a stored PL/SQL block associated with a table or view, which is

automatically executed in response to a particular SQL statement or set of statements.

Keywords

triggerschema
The name of the schema to contain the trigger. If omitted, the current schema
is assumed.

triggername
The name of the trigger to be created.

BEFORE
Specifies that the trigger is to be fired before executing the triggering
statement.

AFTER
Specifies that the trigger is to be fired after executing the triggering statement.

INSTEAD OF
Specifies that the code associated with this trigger, instead of the event that
originally fired the trigger, is to be executed.

INSERT
Specifies that the trigger is to be fired when an INSERT statement adds a row
to the table.

CREATE TRIGGER 321

DELETE
Specifies that the trigger is to be fired when a DELETE statement removes a
row from the table.

UPDATE OF
Specifies that the trigger is to be fired when an UPDATE statement changes
the value in one of the columns specified in the OF clause. If the OF clause is
omitted, an UPDATE to any column will cause the trigger to fire.

ON
Introduces the clause that specifies the name of the table on which the trigger
is to be created.

tableschema
The name of the schema containing the table on which the trigger is to be
defined. This name defaults to the current user’s schema.

tablename
The name of the table on which the trigger is defined. This table must exist
within the specified schema.

viewname
The name of the view on which the trigger is defined. This view must exist
within the specified schema.

REFERENCING
Specifies correlation names. This specification allows code in the PL/SQL
block to refer to old and new values from the rows affected by DML state-
ments that cause the trigger to fire. The default values are OLD and NEW.

FOR EACH ROW
Specifies that this trigger is to be a row trigger, which is fired once for each
row that is affected by the triggering mechanism and that meets the condi-
tions specified in the WHEN clause. If FOR EACH ROW is omitted, the trigger
will be fired once for each execution of the triggering statement.

WHEN
Specifies a SQL condition that must be true in order for the trigger to fire.

plsqgl _block
The PL/SQL block that will be executed when the trigger fires. This block may
not contain COMMIT, ROLLBACK, or SAVEPOINT statements.

Example

The statements in the following example create an audit table named track_sal_
changes and a trigger on the scott user’s emp table. The trigger fires in response to
INSERT statements and in response to UPDATE statements that result in salary
changes. The trigger then logs the old salary value to the audit table:

322 Chapter 7: PL/SQL

CREATE TABLE track_sal changes (
empno NUMBER,
sal NUMBER)
/
CREATE OR REPLACE TRIGGER scott.empaud
BEFORE INSERT OR UPDATE OF sal
ON scott.emp
FOR EACH ROW WHEN (
(new.sal <> old.sal)
OR ((new.sal IS NOT NULL) AND (old.sal IS NULL)))

BEGIN
/* Write the record */
INSERT INTO track_sal_changes
VALUES (:new.empno, :old.sal);
END;

ALTER TRIGGER
ALTER TRIGGER [schema.]triggername {ENABLE | DISABLE}

Enables or disables a database trigger.

Keywords

schema
The name of the schema containing the trigger. If omitted, the current schema
is assumed.
triggername
Specifies the name of the trigger to alter.
ENABLE
Specifies that this trigger is to be fired when a triggering statement is issued.
DISABLE

Specifies that this trigger is not to be fired when a triggering statement is
issued.

Unlike other ALTER commands, the ALTER TRIGGER statement does
not change the definition or structure of a trigger; this change must
be done with a CREATE OR REPLACE TRIGGER statement. A trigger
is automatically enabled when it is created. The ENABLE ALL TRIG-
GERS and DISABLE ALL TRIGGERS clauses of the ALTER TABLE
statement may also perform this function.

Example
The following statement disables the scott user’s empaud trigger:

ALTER TRIGGER scott.empaud DISABLE

DROP TRIGGER 323

DROP TRIGGER
DROP TRIGGER [schema.]trigger. name

Removes a trigger from the database.

Keywords

schema
The name of the schema containing the trigger to be dropped. If omitted, the
current schema is assumed.

triggername
Specifies the name of the trigger to be dropped.

Example
The following statement removes the empaud trigger from the database:

DROP TRIGGER empaud

SOL Statement Tuning

If you work with Oracle, it won'’t be long before you are confronted with the need
to tune SQL statements. You will write a “simple” query that ends up with a pro-
jected run time of about a week. You wrote it, so you should be able to fix it. Or
someone will write a query that takes too long to execute. You will be seen as the
source of all Oracle knowledge (after all, you did get that week-long query to run
in under a minute!), and, consequently, you will be handed the job of making that
query run faster. Tuning SQL statements goes hand-in-hand with writing SQL
statements.

You need to understand Oracle’s approach to executing a SQL statement before
you will be able to tune it effectively. Then you have to determine whether there
is a better approach. Finally, assuming there is a better approach, you need to get
Oracle to use it. To help you do these things, Oracle has built the following fea-
tures into its software:

EXPLAIN PLAN statement
You can use this statement to determine Oracle’s execution plan for a SQL
statement.

SOL Trace facility
Not only gets you the execution plan, but also collects vital statistics related to
a statement’s execution.

SOL*Plus SET AUTOTRACE command
Causes SQL*Plus to automatically display the query plan and execution statis-
tics for statements as you execute them.

SOL*Plus TIMING command
Allows you to measure elapsed execution time.

324

Using EXPLAIN PLAN 325

Optimizer bints
Allow you to tell Oracle how you want it to execute a particular query.

Tuning often centers on SELECT statements, and those statements are the basis for
all the examples in this chapter. Note, though, that INSERT, DELETE, and UPDATE
statements may be tuned in the same manner as SELECT statements.

Using EXPLAIN PLAN

When faced with the task of making a slow SQL statement run faster, you first
need to find out how Oracle is currently executing that statement. Whenever you
execute a statement, a part of Oracle known as the optimizer constructs a list of
steps that will be used to execute the statement. This list of steps is referred to as
an execution plan. For example, if you select data from a table to print a report,
one possible execution plan is to read all the rows in a table. Most execution plans
are a bit more complex than that, and involve such tasks as reading indexes, join-
ing tables, and sorting data.

Oracle includes two optimizers—one rule-based, the other cost-
based. The rule-based optimizer is old, and Oracle discourages its
use. The cost-based optimizer makes decisions based on statistics
collected by the ANALYZE statement. The OPTIMIZER_MODE initial-
ization parameter controls the default optimizer choice for an
instance. You can override it at the session level using the ALTER
SESSION statement, and at the statement level using hints.

You can discover the execution plan Oracle is going to use for a SQL statement by
using Oracle’s EXPLAIN PLAN statement. That statement is prepended to the state-
ment you are interested in tuning. For example:

EXPLATN PLAN

SET STATEMENT ID = 'emp_report’

FOR

SELECT empno, ename

FROM emp

ORDER BY hiredate;
When you use EXPLAIN PLAN, Oracle doesn’t display its execution strategy on the
screen; instead, it inserts rows into a table. This table is referred to as the plan
table, and you must query it properly to see the results. Of course, the plan table
must exist too, so if you've never used EXPLAIN PLAN before, you may need to
create the plan table first.

326 Chapter 8: SQL Statement Tuning

Creating the Plan Table

Oracle provides a script to create the plan table. The script is named wutlxplan.sql,
and on Linux or Unix systems, it resides in your $ORACLE_HOME/rdbms/admin
directory. On a Windows system, the directory will be something like E:\ORACLE\
ORA8SI\RDBMS\ADMIN or C:\ORANT\RDBMSSO\ADMIN. You can run the script
from SQL*Plus, as shown in this example:

SQL> @$ORACLE HOME/rdbms/admin/utlxplan.sql
Table created.
The resulting plan table will look like this:

SQL> DESCRIBE plan_table

Name Null? Type
STATEMENT _ID VARCHAR2 (30)
TIMESTAMP DATE

REMARKS VARCHAR? (80)
OPERATION VARCHAR2 (30)
OPTIONS VARCHAR2 (30)
OBJECT_NODE VARCHAR?2 (128)
OBJECT_OWNER VARCHAR2 (30)
OBJECT_NAME VARCHAR2 (30)
OBJECT_INSTANCE NUMBER (38)
OBJECT_TYPE VARCHAR2 (30)
OPTIMIZER VARCHAR?2 (255)
SEARCH_COLUMNS NUMBER

ID NUMBER (38)
PARENT ID NUMBER (38)
POSITION NUMBER (38)
COST NUMBER (38)
CARDINALITY NUMBER (38)
BYTES NUMBER (38)
OTHER_TAG VARCHAR2 (255)
PARTITION_START VARCHAR2 (255)
PARTITION_STOP VARCHAR? (255)
PARTITION_ID NUMBER (38)
OTHER LONG
DISTRIBUTION VARCHAR? (30)

The name of the table does not have to be plan_table, but that’s the default and
it’s usually easiest to leave it that way. If you don’t have access to the utlxplan.sql
script, you can create the table manually. Just be sure that the column names and
datatypes match those shown here.

The question sometimes comes up regarding the number of plan tables you
should have in any given database. In theory, you could create just one plan table,
grant all your users access to it, and have everyone share it. In practice, it's usu-
ally easiest to let each user create his own plan tables.

Using EXPLAIN PLAN 327

The columns in the plan table change somewhat from one release of
Oracle to the next. Often, this change is made to support new fea-
tures that have been added. The three partition-related columns, for
example, were added when partitioning was introduced in Oracle8.
If you have an old plan table that's been around for a while, you
may want to drop and recreate it to ensure that you have the latest
version.

Explaining a Query

Once you have a plan table, you are ready to use the EXPLAIN PLAN statement.
There are three things that you need to do in order to explain a plan:

1. Decide on a statement ID for the statement that you are explaining. This ID
may be any character string up to 30 characters in length.

2. Delete any existing plan table records with the same statement ID.

3. Execute the EXPLAIN PLAN statement.

When you execute the EXPLAIN PLAN statement, Oracle inserts several records
into the plan table to describe the execution plan for the statement being
explained. The plan table may hold execution plans for many statements at one
time. The statement ID that you supply identifies the records for a given statement
and differentiates them from records for other statements. Use of a statement ID is
optional, but encouraged.

The EXPLAIN PLAN statement does not clear existing records from the plan table.
If you are explaining a statement for a second time, plan table records from the
first time will remain in the table. If you use the same statement ID both times,
you'll get unusable results. These results often appear to repeat the same step, or
sequence of steps, several times. To be safe, delete existing records with the state-
ment ID you are about to use.

The syntax is for EXPLAIN PLAN is very simple. Just put the keywords EXPLAIN
PLAN, plus a few clauses, in front of the SQL statement of interest. The complete
syntax looks like this:

EXPLATN PLAN
SET STATEMENT ID = 'text'
[INTO [schema.]tablename[@dblink]]
FOR SQI, statement

328 Chapter 8: SQL Statement Tuning

For a complete description of the EXPLAIN PLAN syntax, refer to
Chapter 3, Data Manipulation and Control Statements.

The following example demonstrates how EXPLAIN PLAN is used. The SELECT
statement being explained runs against tables in the scott schema, and produces a
list of employees, their departments, and their salary grades. The results are sorted
highest salary first. Notice that a DELETE is used first to clear out old records with
the statement ID we are about to use:

SQL> DELETE
2 FROM PLAN TABLE
3 WHERE statement id = 'emp_report';

8 rows deleted.

SQL>
SQL> EXPLAIN PLAN
2 SET STATEMENT ID = 'emp_ report'
FOR
SELECT e.empno, e.ename, d.dname, e.sal, sg.grade
FROM emp e, dept d, salgrade sg
WHERE e.deptno = d.deptno
AND e.sal > sg.losal
AND e.sal < sg.hisal
ORDER BY sal DESC;

O 0w Jo Ul W

Explained.

Other than seeing the word “Explained,” you won'’t see any output when you exe-
cute this EXPLAIN PLAN statement because Oracle stores the query plan in the
plan table. Retrieving and interpreting the results is your next task.

Viewing the Execution Plan

Execution plans are hierarchical in nature. That is, the task of executing a query is
one large step, which can be broken down into one or more smaller steps. Each
of those steps might then be broken down further into even smaller steps. This
division continues until the bottom is reached. To look at such an execution plan,
you need to execute a hierarchical query such as the one shown here:

SELECT LPAD(' ', 2*(level-1)) ||
operation || ' ' || options
[l ' || object pame || ' ' []
DECODE (id, 0, 'Cost = ' || position)
"Query Plan"

FROM plan_table

START WITH id = 0 AND statement_id

Using EXPLAIN PLAN 329

= 'statement_id'
CONNECT BY PRIOR id = parent_id
AND statement_id = 'statement_id';

The START WITH and CONNECT BY clauses in this query are used
to organize the results in a hierarchy. The ID and PARENT_ID fields
in the plan table determine that hierarchy; each step is indented
underneath its parent. The LPAD expression in the query’s select list
is used to indent the results to reflect the hierarchy. Each plan table
record contains an ID and a PARENT_ID column. The results of each
step are fed as input into the parent step, which is identified by the
PARENT_ID.

If this query is used to view the plan for the emp_report statement that was
explained in the previous section, the following results will be displayed:

SELECT STATEMENT Cost = 9
SORT ORDER BY
HASH JOIN
MERGE JOIN CARTESIAN
TABLE ACCESS FULL DEPT
SORT JOIN
TABLE ACCESS FULL SALGRADE
TABLE ACCESS FULL EMP

The step that is indented the most is executed first. In this example, the first step is
a full table scan of the salgrade table. The results from this step are then fed as
input into the parent step. Table 8-1 explains each step of this plan in detail. The
different possible plan operations are explained in Table 8-2.

Table 8-1. The emp_report Execution Plan Explained

Execution Plan Step Explanation
SORT JOIN The SORT JOIN operation sorts a rowset to prepare
TABLE ACCESS FULL SALGRADE for a merge join. In this case, the rowset consists of all
rows in the SALGRADE table.
MERGE JOIN CARTESIAN The Cartesian product of the DEPT and SALGRADE
TABLE ACCESS FULL DEPT tables is the result of this step. Oracle reads the entire
SORT JOIN DEPT table, combines that rowset with the results of

TABLE ACCESS FULL SALGRADE | the previous SORT JOIN operation, and produces a
rowset consisting of all possible combinations of
DEPT and SALGRADE rows.

HASH JOIN The results of the merge join are then joined with the
MERGE JOIN CARTESIAN EMP table. This time, Oracle uses a hashing algorithm
... to join the two rowsets. Many rows from the Cartesian
TABLE ACCESS FULL EMP product will be eliminated in this operation because

only a few relate to an EMP record.

330 Chapter 8: SQL Statement Tuning

Table 8-1. The emp_report Execution Plan Explained (continued)

Execution Plan Step Explanation
SORT ORDER BY The results of the hash join are fed into a sort opera-
HASH JOIN tion. This sort orders the result set according to the
ORDER BY clause specified in the query.
SELECT STATEMENT Cost = 9 The results of the sort operation are fed back to the
SORT ORDER BY user or application as the results of the SELECT state-
ment itself.

When two steps in an execution plan are indented by the same
amount, it is not possible to know which will execute first. It really
doesn’t matter, because the end result is the same in terms of the
resources used to execute the statement.

The cost for an execution plan comes from the POSITION field in the record with
an ID value of 0. In this example, the cost was 9. Query cost should never be
looked at as an absolute value. Query cost is always relative to other queries
against the same database. A query with a cost of 9 requires half the I/O and CPU
resources of a query with a cost of 18, but you won't know if that’s half a minute
or half an hour until you actually execute the query.

Query costs are estimated only when the cost-based optimizer is used. You also
must have statistics on at least one of the tables involved in the query. If you have
no statistics for your tables, Oracle will fall back on the rule-based optimizer, and
won’t compute a cost.

Keep your statistics up-to-date. Out-of-date statistics will result in an
inaccurate cost. They may also result in Oracle’s choosing a subopti-
mal execution plan.

Interpreting the Results

The execution plan returned by the query shown in the previous section includes
three columns of information for each step:

OPERATION column
Identifies the major operation to be performed

OPTIONS column
Further qualifies how that operation is to be performed. There are several
types of sorts, for example.

Using EXPLAIN PLAN 331

OBJECT_NAME column
Where applicable, identifies the object on which the operation will be per-
formed. The object will usually be a table or index. If the OBJECT_NAME for
an operation is blank, the object consists of one or more rowsets returned by
the operation’s children.

Table 8-2 describes the various operations and options you might see in an execu-
tion plan.

Table 8-2. EXPLAIN PLAN Operations

Operation Options Description
AND-EQUAL This step will have two or more child steps,
each of which returns a set of ROWIDs. The
AND-EQUAL operation selects only the ROW-
IDs that are returned by all the child operations.
BITMAP CONVERSION Converts a bitmap from a bitmap index to a set
TO ROWIDS of ROWIDs that can be used to retrieve the
actual data.
CONVERSION Converts a set of ROWIDs into a bitmapped
FROM ROWIDS | representation.
CONVERSION Counts the number of rows represented by a
COUNT bitmap.

INDEX SINGLE
VALUE

INDEX RANGE
SCAN

INDEX FULL
SCAN

MERGE

MINUS

OR

Retrieves the bitmap for a single key value. For
example, if the field was a YES/NO field, and
your query wanted only rows with a value of
“YES”, this operation would be used.

Similar to BITMAP INDEX SINGLE VALUE, but
bitmaps are returned for a range of key values.

Scans the entire bitmapped index.

Merges two bitmaps together and returns one
bitmap as a result. This is an OR operation
between two bitmaps. The resulting bitmap will
select all rows from the first bitmap, plus all
rows from the second bitmap.

This operation is the opposite of a MERGE, and
may have two or three child operations that
return bitmaps. The bitmap returned by the first
child operation is used as a starting point. All
rows represented by the second bitmap are
subtracted from the first. If the column is nul-
lable, all rows with NULL values are also sub-
tracted.

Takes two bitmaps as input, ORs them together,
and returns one bitmap as a result. The
returned bitmap will select all rows from the
first, plus all rows from the second.

332 Chapter 8: SQL Statement Tuning

Table 8-2. EXPLAIN PLAN Operations (continued)

Operation Options Description

CONNECT BY Rows are retrieved hierarchically, because the
query was written with a CONNECT BY clause.

CONCATENATION Combines multiple sets of rows into one set,
essentially a UNION ALL.

COUNT Counts the number of rows that have been
selected from a table.

STOPKEY The number of rows to be counted is limited by
the use of ROWNUM in the query’s WHERE
clause.

FILTER Takes a set of rows as input, and eliminates

some of them based on a condition from the
query’s WHERE clause.

FIRST ROW Retrieves only the first row of a query’s result
set.
FOR UPDATE Locks retrieved rows. This operation would be

the result of specifying FOR UPDATE in the
original query.

HASH JOIN Joins two tables using a hash join method.

INDEX UNIQUE The lookup of a unique value from an index.
You would only see this value when the index
(e.g., the index used to enforce a primary key
or a unique key) is unique.

RANGE SCAN An index is being scanned for rows that fall into

a range of values. The index is scanned in
ascending order.

RANGE SCAN Same as RANGE SCAN, but the index is
DESCENDING scanned in descending order.

INLIST ITERATOR One or more operations are to be performed
once for each value in an IN predicate.

INTERSECTION Takes two rowsets as input, and returns only
rows that appear in both sets.

MERGE JOIN Joins two rowsets based on a common value.
Both rowsets will first have been sorted by this
value. This operation is an inner join.

OUTER Similar to a MERGE JOIN, but performs an outer
join.
ANTI Indicates that an anti-join is being performed.
SEMI Indicates that a semi-join is being performed.
MINUS This operation is the result of the MINUS opera-

tor. Two rowsets are taken as inputs. The
resulting rowset contains all rows from the first
input that do not appear in the second.

Using EXPLAIN PLAN

333

Table 8-2. EXPLAIN PLAN Operations (continued)

Operation

Options

Description

NESTED LOOPS

PARTITION

PROJECTION

REMOTE

SEQUENCE

SORT

TABLE ACCESS

OUTER

SINGLE

ITERATOR

ALL

INLIST

AGGREGATE

UNIQUE
GROUP BY

JOIN

ORDER BY

FULL

CLUSTER

HASH

This operation has two children, each returning
a rowset. For every row returned by the first
child, the second child operation will be exe-
cuted.

Represents a nested loop used to perform an
outer join.

Executes an operation for one or more parti-
tions. The PARTITION_START and
PARTITION_STOP columns give the range of
partitions over which the operation is per-
formed.

Indicates that the operation will be performed
on a single partition.

Indicates that the operation will be performed
on several partitions.

Indicates that the operation will be performed
on all partitions.

Indicates that the operation will be performed
on the partitions, and is driven by an IN
predicate.

Takes multiple queries as input and returns a
single set of records. This operation is used
with INTERSECTION, MINUS, and UNION
operations.

Indicates that a rowset is being returned from a
remote database.

Indicates that an Oracle sequence is being
accessed.

Applies a group function, such as COUNT, to a
rowset, and returns only one row as the result.

Sorts a rowset and eliminates duplicates.

Sorts a rowset into groups. This operation is the
result of a GROUP BY clause.

Sorts a rowset in preparation for a join. See
MERGE JOIN.

Sorts a rowset according to the ORDER BY
clause specified in the query.

Indicates that Oracle will read all rows in the
specified table.

Indicates that Oracle will read all rows in a
table that match a specified index cluster key.

Indicates that Oracle will read all rows in a
table that match a specified hash cluster key.

334 Chapter 8: SQL Statement Tuning

Table 8-2. EXPLAIN PLAN Operations (continued)

Operation Options Description
BY ROWID Indicates that Oracle will retrieve a row from a
table based on its ROWID.
UNION Takes two rowsets, eliminates duplicates, and

returns the result as one set.

VIEW Executes the query behind a view and returns
the resulting rowset.

Once you understand the execution plan Oracle is using for a query, you can look
for ways to improve the results. See the section “Improving Query Performance”
later in this chapter.

Using Oracle’s SOL Trace Facility

The information from EXPLAIN PLAN is useful, but it tells only half the story.
Knowing the execution plan for a statement is one thing, but properly tuning a
query requires correlating that execution plan with resource usage, and Oracle’s
built-in SQL Trace facility allows this action. Using SQL Trace, statistics can be gen-
erated showing the resources consumed by SQL statements that are executed. SQL
Trace tracks the following information for each SQL statement that is executed:

e The number of executions

e The number of times the statement was parsed

e The number of rows returned

e The number of physical reads

e The number of logical reads

e The elapsed time spent executing the statement

e The CPU time spent executing the statement

This information is valuable for two reasons:

1. It allows you to identify those statements consuming the most resources.

Those statements are the ones you need to tune.

2. Tt provides concrete data by which you can measure your tuning efforts. You
can see the effect that a changed execution plan has on physical I/O counts
and CPU time immediately.

From a high level, the process of using SQL Trace looks like this:

1. Set key initialization file parameters, notably TIMED_STATISTICS.

2. Enable tracing for the database session.

Using Oracle’s SQL Trace Facility 335

3. Run the SQL statements that are being tuned.
4. Disable tracing for the session.

5. Find the trace files.

6. Format the trace file using the tkprof utility.

7. Review the tkprof output.

You can iterate these steps as often as necessary, making changes as you go, until
acceptable performance is achieved.

SQL Trace is not a program in itself. It's a capability built into the
Oracle server software. The files generated by SQL Trace are not
very readable, so Oracle provides the tkprof utility to format them.
The tkprof utility summarizes the trace information and presents it in
a useful format.

Parameters to Set

Before running SQL Trace, there are three initialization parameters that need to be
checked:

TIMED_STATISTICS
MAX_DUMP_FILE_SIZE
USER_DUMP_DEST

TIMED_STATISTICS

The TIMED_STATISTICS parameter needs to be TRUE for SQL Trace to be able to
collect any timing information about the statements you're executing. You can set
this parameter in your instance parameter INIT.ORA file, or you can set it using
either the ALTER SYSTEM or ALTER SESSION statements. For example:

ALTER SYSTEM SET TIMED_STATISTICS = TRUE;

ALTER SESSION SET TIMED STATISTICS = TRUE;
If you're attempting to trace a session created by a program that connects to the
database, you'll have difficulty enabling timed statistics at the session level. You
would need to modify your program to issue the necessary ALTER SESSION state-
ment. If you can’t do that, your only option is to enable timed statistics at the
instance level using the ALTER SYSTEM statement. The overhead for collecting
timed statistics is minimal, so there’s no need to spend a lot of time worrying
about the issue. Enable them for the instance, if that’s what it takes.

336 Chapter 8: SQL Statement Tuning

MAX_DUMP_FILE_SIZE

The MAX_DUMP_FILE_SIZE parameter places a limit on the size of the trace files
that Oracle generates. Trace files can become very large very quickly, especially if
you are running a program that executes a large number of SQL statements in a
short period of time. The size limit is specified as operating system blocks, and the
default limit is operating system-specific. However, you can specify any limit using
the MAX_DUMP_FILE_SIZE parameter. Here are some examples:

ALTER SYSTEM SET MAX DUMP_FILE_SIZE = 100;

ALTER SESSION SET MAX_DUMP_FILE SIZE = 100;

MAX_DUMP_FILE_SIZE = 100;
The first two statements set MAX_DUMP_FILE_SIZE at the instance and session
levels, respectively. The third line shows how you would specify the limit in an
instance parameter file. In all cases, the limit is set at 100 operating system blocks.

USER_DUMP_DEST

The USER_DUMP_DEST parameter controls where the trace files are written. It
should point to a directory somewhere on your system. This parameter may only
be modified at the instance level using the ALTER SYSTEM statement. You can’t
change it at the session level.

Enabling and Disabling SQL Trace

SQL Trace can be enabled for an entire instance or a single session. Enabling this
capability for an instance is taking the shotgun approach: it targets everyone con-
nected to that instance and it results in a lot of trace files. This is not usually a
good approach.

The most useful approach is enabling SQL Trace for a specific session as follows:

1. Run a program that you want to test, and use it to establish a session.

2. Log in using SQL*Plus, and use the DBMS_SYSTEM built-in package to con-
trol the tracing of the statements executed by the tested program.

Enabling SQL Trace for an instance

To enable SQL Trace for an instance, place the following entry in the instance
parameter file, then stop and restart the instance:
SQL_TRACE = TRUE

When tracing is enabled at the instance level, every session connected to the
instance will generate a trace file. Trace information will be collected for each ses-
sion until the size of a session’s trace file exceeds the MAX_DUMP_FILE_SIZE.

Using Oracle’s SQL Trace Facility 337

When the trace file for a session hits the maximum size, tracing stops for that one
session.

Enabling SQL Trace for your session

You can’t issue an ALTER SYSTEM command to change the SQL_TRACE setting for
the entire instance. However, you can use an ALTER SESSION statement to change
it for a single session. For example:

ALTER SESSION SET SQL_TRACE=TRUE;

ALTER SESSION SET SQL_TRACE=FALSE;
Use this method if you want to collect trace information for SQL statements that
you execute in your current session. For all SQL statements executed while SQL_
TRACE=TRUE, trace information will be written to the session’s trace file. When
you finish tracing, simply issue an ALTER SESSION statement that sets SQL_TRACE
to FALSE. Tracing will also stop if you hit the limit on trace file size.

Enabling SQL Trace for anotber session

The DBMS_SYSTEM built-in package contains a procedure named SET_SQL_
TRACE_IN_SESSION that can be used to turn SQL tracing on and off for any ses-
sion connected to the database. Use this approach to collect trace information for
a session other than your own. The DBMS_SYSTEM.SET_SQL_TRACE_IN_SES-
SION procedure takes three parameters, and the formal definition looks like this:
DBMS_SYSTEM. SET_SQL_TRACE_IN_SESSION (sid IN NUMBER,

serial# IN NUMBER,

sqgl_trace IN BOOLEAN) ;
The V$SESSION view can be queried for a list of users, together with their sid and
serial# values. Those values can then be used in a call to SQL_TRACE_IN_SES-
SION to enable and disable tracing for a specific user. In the following example,
tracing is enabled and disabled for the user jeft:

SQL> SELECT username, sid, serial#
2 FROM v$session;

USERNAME SID SERIAL#
JEFF 8 31
SYS 11 10

9 rows selected.
SQL> EXECUTE DBMS_SYSTEM.SET SQL_TRACE_IN_SESSION(8,31,TRUE) ;

PL/SQL procedure successfully completed.

338 Chapter 8: SQL Statement Tuning

SQL> EXECUTE DBMS_SYSTEM.SET SQL TRACE_IN SESSION(8,31,FALSE);

PL/SQL procedure successfully completed.

In this example, we query V$SESSION for a list of users. We find that jeff, the user
we are interested in, has a sid of 8 and serial# of 31. These values are then used in
two calls to DBMS_SYSTEM.SET_SQL_TRACE_IN_SESSION. The first call enables
tracing. The second disables it again. Tracing will also stop if the trace file size
limit is reached.

Sometimes you’ll have multiple sessions using the same username. If
that’s the case, you may have difficulty figuring out which is the ses-
sion that you want to trace. One viable technique is to query V$SES-
SION, then start up the session you want to trace. Doing that usually
involves running a program that connects to the database. Then
query V$SESSION again. If you include the LOGON_TIME column
with the second query, it’s usually fairly easy to pick out the session
that you just started.

Finding Trace Files

Finding trace files after they have been generated can be somewhat difficult. Trace
files are all written to the USER_DUMP_DEST directory, but their names (e.g., ora_
815.tr¢) are system-generated. When tracing a specific user session, a good way to
find the associated trace file is to list all the files in the USER_DUMP_DEST direc-
tory and look at their timestamps. The timestamp will reflect the time when the file
was last modified, which will correlate to the time tracing stopped. Remember that
tracing can stop because the MAX_DUMP_FILE_SIZE was reached. If the maxi-
mum file size was reached, the timestamp will reflect when that occurred. Other-
wise, the timestamp will reflect the time tracing was explicitly disabled, so keep
close track of the time when you enable and disable tracing.

On Linux and Unix systems, the number in the filename represents
the ID number of the operating system process that created the file.
Sometimes that number can be a useful aid in finding the correct
file. Another method is to search the trace files for a specific SQL
statement using a utility such as grep.

Using Oracle’s SQL Trace Facility 339

Formatting Trace Output with tkprof

Once the trace file is located, the tkprof utility can be used to summarize the trace
data into a useful format. tkprof can sort the results so that queries are sorted
based on the amount of CPU or I/O used. tkprof can also automatically execute an
EXPLAIN PLAN statement for each SQL statement in the trace file.

The tkprof utility is command-line driven, which means that information is passed
to it using command-line parameters. The syntax to use looks like this:
tkprof tracefile outputfile

[EXPLAIN=username/password]

[TABLE=[schema.] tablename]

[PRINT=1integer]

[AGGREGATE={YES | NO}]

[INSERT=f1lename]

[SYS={YES_| NO}]

[RECORD={YES | NO}]

[SORT=sort_options

Keywords

tracefile
Is the name of a trace file.

outputfile
Is the name of the file to which tkprof will write formatted trace output.
EXPLAIN
Causes tkprof to generate an execution plan for each SQL statement in the
trace file. It does this by connecting as the specified user and issuing an
EXPLAIN PLAN statement. Typically, you should use the same username here
that was used by the session creating the trace file in the first place. The tkprof
utility will use a table named PROF$PLAN_TABLE to hold output from the
EXPLAIN PLAN statement, and will create that table if necessary.

TABLE
Allows you to specify the name of a plan table to use when executing
EXPLAIN PLAN statements. The default name is plan_table, and the default
schema is the one for the user specified by the EXPLAIN parameter. Use this
parameter if you have multiple users executing tkprof simultaneously and
using the same username for the EXPLAIN parameter. Use of tkprof by multi-
ple users will conflict if all users try to use the same plan table.

PRINT
Tells tkprof to generate output only for the first integer SQL statements in the
trace file.

340 Chapter 8: SQL Statement Tuning

AGGREGATE
Controls whether or not tkprof summarizes the results from multiple execu-
tions of the same SQL statement. The default is YES. Thus, if you execute the
same statement 1000 times, tkprof will summarize the statistics from all 1000
executions. If you set AGGREGATE=NO, each execution will be reported sep-
arately. It’s usually more convenient to take the default and view the results in
summary form.

INSERT
Causes tkprof to generate a file of INSERT statements that can later be used to
save the trace information in a database table. The script file will also contain
a CREATE TABLE statement to create the table referenced by the INSERT
statements.

SYS
Indicates whether or not you want recursive SQL statements included in the
output file. Recursive SQL statements are those that Oracle generates behind
the scenes to parse or execute user-issued statements. To parse a SELECT
statement, for example, Oracle might need to query the data dictionary. Those
queries would be considered recursive SQL statements. The default is to
include them.

RECORD
Causes tkprof to generate a SQL script consisting of all user-issued SQL state-
ments found in the trace file. You can use this script later to replay the trace
session. The script file will be named using the filename that you specify here.
You may optionally include a path and an extension.

SORT
Causes tkprof to sort the output file according to the sort_options that you
specify. Table 8-3 describes the available options. Specify multiple options by
placing them in a comma-separated list.

A number of options are available when sorting tkprof output. Sorting is useful
because it allows you to move the worst-performing statements to the top of the
file, and it is not necessary to read the entire file to find the statements most in
need of tuning. The sort options listed in Table 8-3 allow you to choose the per-
formance metrics on which to sort.

Table 8-3. The tkprof Sort Options

Description/Phase ‘ Parse ‘ Execute ‘ Fetch ‘ Other

The number of times a statement was parsed, prsent | execnt fchent | N/A
executed, or fetched

CPU time spent parsing, executing, or fetching prscpu | execpu | fchepu | N/A

Using Oracle’s SQL Trace Facility 341

Table 8-3. The tkprof Sort Options (continued)

Description/Phase Parse Execute | Fetch Other
Elapsed time spent parsing, executing, or prsela | exeela fchela | N/A
fetching

Physical disk reads while parsing, executing, or prsdsk | exedsk | fchdsk | N/A
fetching

The number of buffers accessed for consistent prsqry | exeqry | fchqry | N/A
read purposes while parsing, executing, or

fetching

The number of buffers accessed for a current prscu execu fcheu N/A
read while parsing, executing, or fetching

The number of library cache misses while prsmis | exemis | N/A N/A
parsing or executing

The total number of rows fetched N/A N/A fchrow | N/A
The userid of the user who parsed the statement | N/A N/A N/A userid

tkRprof Example
The following command was issued from a Unix environment:

$ tkprof ora 718.trc ora_718.lst SORT=execpu EXPLAIN=scott/tiger
TKPROF: Release 8.1.5.0.2 - Production on Tue Mar 14 17:46:22 2000

(c) Copyright 1999 Oracle Corporation. All rights reserved.

$
This command reads from a trace file named ora_718.trc and writes formatted out-
put to a file named ora_718.ist. The trace file results are sorted by execution CPU
time; statements consuming the most CPU during execution will be listed first. The
EXPLAIN parameter causes tkprof to execute an EXPLAIN PLAN on each statement it
encounters. To do this, tkprof will log in to the database as the user named scott.

There is one important caveat when using the tkprof EXPLAIN
parameter to generate execution plans for the statements in a trace
file. The execution statistics in a trace file are gathered while the
statements are executing, but the execution plan that tkprof gener-
ates is generated when the tkprof utility is run. Things could change
between the time you trace and format the results, and the execu-
tion plan generated by tkprof may not be the plan that was used
when the statement was actually executed. To guard against this
problem, run tkprof as soon as possible after a trace file is gener-
ated. Also avoid creating indexes, analyzing tables, or doing any-
thing else that might affect execution plans for the traced statements.

342 Chapter 8: SQL Statement Tuning

Interpreting tkRprof Output

The tkprof output file is a text file that contains a section of information for each
SQL statement found in the trace file. For each SQL statement, the following infor-
mation is provided:

e The text of the SQL statement itself
e Statistics from the execution of that SQL statement
e Information on library cache misses and the optimizer goal

e The execution plan for the statement

If you ran a trace on the SQL statement presented at the beginning of this chapter
(the one that queried three tables in the scott schema to produce a report of
employee salary levels), and then wanted tkprof to format the results, the output
for that statement would resemble:

SELECT e.empno, e.ename, d.dname, e.sal, sg.grade
FROM emp e, dept d, salgrade sg

WHERE e.deptno = d.deptno

AND e.sal > sg.losal

AND e.sal < sg.hisal

ORDER BY sal DESC

call count cpu elapsed disk query current Yows
Parse 1 0.03 0.04 9 149 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 0.02 0.03 6 3 12 12
total 4 0.05 0.07 15 152 12 12

Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 20 (SCOTT)

12 SORT ORDER BY
12 HASH JOIN
20 MERGE JOIN CARTESIAN

5 TABLE ACCESS FULL DEPT
20 SORT JOIN
5 TABLE ACCESS FULL SALGRADE

14 TABLE ACCESS FULL EMP

Rows Execution Plan
0 SELECT STATEMENT GOAL: CHOOSE
12 SORT (ORDER BY)
12 HASH JOIN

Using Oracle’s SQL Trace Facility 343

20 MERGE JOIN (CARTESIAN)

5 TABLE ACCESS GOAL: ANALYZED (FULL) OF 'DEPT'

20 SORT (JOIN)

5 TABLE ACCESS GOAL: ANALYZED (FULL) OF 'SALGRADE'
14 TABLE ACCESS GOAL: ANALYZED (FULL) OF 'EMP'

The timed statistics are very helpful in identifying statements with performance
problems. Once a problem statement is identified, the execution plan can be
reviewed to determine if there is a better, more efficient approach to executing
that statement.

The pbases of statement execution
SQL statements are executed in the following three phases:

Parse phase
In this phase, Oracle takes the original SQL statement, checks the syntax,
determines which objects are involved, checks the security on those objects,
and then generates an execution plan for the statement. Oracle stores execu-
tion plans and the parsed versions of SQL statements in the shared pool. In an
ideal situation, each SQL statement should only need to be parsed once, after
which it can be executed many times.

Execution phase
In this phase, Oracle does the actual work of executing the statement. For
INSERT, UPDATE, and DELETE statements, the execution phase represents the
bulk of the work. For SELECT statements, the execution phase is when Oracle
finds the rows that need to be returned as the result of the query. Any sorting
and grouping will be done here.

Fetch phase
This phase only applies to SELECT statements. In this phase, Oracle returns
rows to the application that executed the SELECT statement.

SQL Trace captures statistics for each of these three phases. The tkprof utility
reports these statistics and reports the combined totals for all three phases. The
statistics for each phase include the items shown in Table 8-4.

Table 8-4. Statistic Descriptions

Statistic Description

COUNT Reports the number of times a statement was parsed or executed. In the case
of SELECT statements, it also reports the number of fetches that the applica-
tion made to retrieve data.

CPU Reports the amount of CPU time used during each of the three phases.
ELAPSED | Reports the amount of elapsed time used during each of the three phases.

DISK Reports the number of database blocks that were physically read from the
disk during each of the three phases.

344 Chapter 8: SQL Statement Tuning

Table 8-4. Statistic Descriptions (continued)

Statistic Description

QUERY Reports the number of buffers that were retrieved in consistent mode. Buft-
ers are usually retrieved in consistent mode when the SQL statement in
question is a SELECT.

CURRENT | Reports the number of buffers that were retrieved in current mode. Buffers
are usually retrieved in current mode when INSERT, UPDATE, or DELETE
statements are executed.

Key elements to look for in a tkprof report

What you look for in a trace file somewhat depends on why you are running the
trace in the first place, but here are some suggestions for results you might watch
for:

e High CPU or elapsed times

e Parse counts that are significantly greater than 1

e High numbers of library cache misses

e A high ratio of physical disk reads to consistent and current buffer retrievals

If a trace was run in response to user complaints, those complaints are most often
voiced in terms of the time needed to perform a certain task or run a certain job. It
is thus reasonable to run a trace while the task is performed or while the job in
question is running, look at the CPU and elapsed times, and determine which que-
ries are using the most time. Those queries usually represent the greatest opportu-
nity for a performance improvement.

Be aware that a high CPU time, or elapsed time, itself is not always
bad. You also need to consider the statement being executed
together with the number of times that it is executed. Ask if the time
for a single execution seems reasonable, given what the statement is
doing.

Ideally, a statement should be parsed only once. Subsequently, the parsed version
of the statement and the execution plan should remain in the shared pool for use
next time the statement is executed. Parsing is expensive, so if the parse counts
are high relative to the execution counts, the size of your shared pool may need to
be increased.

A high number of overall library cache misses (not necessarily for a single state-
ment) also indicates that the shared pool may be too small. Oracle caches data
dictionary information in the shared pool. Library cache misses represent times

SOL*Plus Tuning Aids 345

when Oracle couldn’t find needed data dictionary information in the shared pool
and was forced to read it from disk instead.

A high number of physical reads relative to the number of consistent or current
reads indicates that full table scans are taking place. Check the execution plan to
be sure.

Full table scans are not always bad. Just be sure that they are hap-
pening intentionally and not because you forgot to create an index.

SOL*Plus Tuning Aids

SQL*Plus has two features that can be useful when testing and tuning SQL state-
ments. The SET AUTOTRACE command can be used to place SQL*Plus into a
mode in which it displays the execution plan and statistics for each SQL statement
that is executed. SQL*Plus also implements commands that allow tracking of the
elapsed time necessary to execute one or more SQL statements.

SET AUTOTRACE

The SET AUTOTRACE command causes SQL*Plus to display the execution plan
and the following statistics for each statement that is executed:

e The number of recursive SQL statements executed

e The number of blocks retrieved in current mode (db block gets)

e The number of blocks retrieved in read consistent mode (consistent gets)

e The number of physical reads from disk

¢ The amount of redo used

e The number of bytes transmitted via Net8 to the client executing the statement
e The number of bytes received via Net8 from the client

e The number of Net8 messages (roundtrips) exchanged between the client and
server

e The number of in-memory sorts
e The number of sorts performed using disk

e The total number of rows processed

346 Chapter 8: SQL Statement Tuning

Some of these statistics differ from what is provided with SQL Trace; others are the
same. Unlike the statistics generated from SQL Trace, statistics from SET
AUTOTRACE are not broken out into parse, execution, and fetch phases.

Prerequisites for using autotrace

Some prerequisites must be met before using SET AUTOTRACE. If execution plans
are desired, a plan table must exist in the schema and the name of that plan table
must be plan_table. SQL*Plus will automatically use that table when autotrace is
enabled. The process for creating a plan table was described earlier in this chap-
ter in the “Creating the Plan Table” section.

If you wish to produce autotrace statistics, the user for whom the statistics are gen-
erated must have access to the dynamic performance views that SQL*Plus uses to
get those statistics. This access should normally be granted through the use of a
role named PLUSTRACE. Oracle supplies a script named plustrce.sql to create this
role. The script resides in the sqiplus/admin directory underneath the Oracle home
directory.

On older releases of Oracle for Windows NT, look for a directory
named plus80 or plus73.

To create the PLUSTRACE role, log in as the user SYS (this login is usually done
by the DBA), and execute the plustrce.sql script as shown in this example:

SQL> CONNECT sys/change_on_install
Connected.

SQL> @$ORACLE_HOME/sqlplus/admin/plustrce
SQL>

SQL> DROP ROLE PLUSTRACE;

drop role plustrace
*

ERROR at line 1:
ORA-01919: role 'PLUSTRACE' does not exist

SQL> CREATE ROLE PLUSTRACE;
Role created.

SQL>
SQL> GRANT SELECT ON v_$sesstat TO PLUSTRACE;

Grant succeeded.

SQL> GRANT SELECT ON v_$statname TO PLUSTRACE;

SOL*Plus Tuning Aids 347

Grant succeeded.
SQL> GRANT SELECT ON v_$session TO PLUSTRACE;
Grant succeeded.
SQL> GRANT PLUSTRACE TO DBA WITH ADMIN OPTION;
Grant succeeded.

SQL>
SQL> SET ECHO OFF

Don’t worry about the error shown in the previous example—it is
normal if the role has not been created before. Oracle attempts to
drop the role prior to creating it (in case it already exists), and the
error results when there is no role to drop.

Once the script has been executed, a database role named PLUSTRACE will exist,
and this role can be granted to users who need to use SET AUTOTRACE.

Showing statistics and the plan

To see both statistics and the execution plan for statements that are executed, you
must use the command SET AUTOTRACE ON. Then you can issue any SQL state-
ment for which testing is desired.

Example

SQL> SET AUTOTRACE ON
SQL> SELECT e.empno, e.ename, d.dname, e.sal, sg.grade
2 FROM emp e, dept d, salgrade sg

3 WHERE e.deptno = d.deptno
4 AND e.sal > sg.losal

5 AND e.sal < sg.hisal

6 ORDER BY sal DESC;

EMPNO ENAME DNAME SAL GRADE
7839 KING ACCOUNTING 5000 5
7566 JONES RESEARCH 2975 4
7698 BLAKE SALES 2850 4
7782 CLARK ACCOUNTING 2450 4
7499 ALLEN SALES 1600 3
7844 TURNER SALES 1500 3
7934 MILLER ACCOUNTING 1300 2
7521 WARD SALES 1250 2
7654 MARTIN SALES 1250 2
7876 ADAMS RESEARCH 1100 1

348 Chapter 8: SQL Statement Tuning

7900 JAMES SALES 950 1
7369 SMITH RESEARCH 800 1

12 rows selected.

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=9 Card=1 Bytes=75)

1 0 SORT (ORDER BY) (Cost=9 Card=1 Bytes=75)

2 1 HASH JOIN (Cost=7 Card=1 Bytes=75)

3 2 MERGE JOIN (CARTESIAN) (Cost=5 Card=20 Bytes=700)

4 3 TABLE ACCESS (FULL) OF 'DEPT' (Cost=1 Card=4 Bytes=8
8)

5 3 SORT (JOIN) (Cost=4 Card=5 Bytes=65)

6 5 TABLE ACCESS (FULL) OF 'SALGRADE' (Cost=1 Card=5 B
ytes=65)

7 2 TABLE ACCESS (FULL) OF 'EMP' (Cost=1 Card=14 Bytes=560
)

Statistics

922 recursive calls
13 db block gets
152 consistent gets
16 physical reads
0 redo size
1689 Dbytes sent via SQL*Net to client
809 bytes received via SQL*Net from client
4 SQL*Net roundtrips to/from client
17 sorts (memory)
0 sorts (disk)
12 rows processed

When testing is complete, issue the SET AUTOTRACE OFF command to turn off
the autotrace feature.

Showing only the plan or statistics

The output of autotrace can be limited to only the execution plan or only the sta-
tistics. To see only the plan, enable autotrace using the following command:

SET AUTOTRACE ON EXPLAIN
To limit autotrace to display only the statistics, use this command:

SET AUTOTRACE ON STATISTICS

When you run autotrace in this limited manner, it may not be neces-
sary to meet all the prerequisites. No plan table is needed if you do
not display the execution plan, and no PLUSTRACE role is neces-
sary if you do not display the statistics.

SOL*Plus Tuning Aids 349

Suppressing the query’s output
If you want to see the autotrace information for a query but not the query’s results,
use:

SET AUTOTRACE TRACEONLY

The TRACEONLY keyword replaces ON, so the following commands are also
valid:

SET AUTOTRACE TRACEONLY EXPLAIN

SET AUTOTRACE TRACEONLY STATISTICS
The TRACEONLY option can save you from having to watch a lot of data scroll by
on the screen. Realize though, that the SQL statement is still executed. In fact, the
query’s results are even transmitted back to the client. The only difference TRACE-
ONLY makes is that SQL*Plus doesn’t display those results.

Timers

SQL*Plus has two built-in facilities that can measure the elapsed time when execut-
ing SQL statements. The SET TIMING command functions similarly to SET
AUTOTRACE, but reports the elapsed time after each statement. The TIMING com-
mand allows a timer to be started and stopped at any time.

SET TIMING

The SET TIMING ON command causes SQL*Plus to report the elapsed time for
each SQL statement executed, as shown in the following example.

The SET TIMING OFF command is used to turn off the timing feature:

SQL> SET TIMING ON
SQL> SELECT e.empno, e.ename, d.dname, e.sal, sg.grade
2 FROM emp e, dept 4, salgrade sg

3 WHERE e.deptno = d.deptno
4 BAND e.sal > sg.losal

5 AND e.sal < sg.hisal

6 ORDER BY sal DESC;

EMPNO ENAME DNAME SAL GRADE
7839 KING ACCOUNTING 5000 5
7566 JONES RESEARCH 2975 4
7698 BLAKE SALES 2850 4
7782 CLARK ACCOUNTING 2450 4
7499 ALLEN SALES 1600 3
7844 TURNER SALES 1500 3
7934 MILLER ACCOUNTING 1300 2
7521 WARD SALES 1250 2

350 Chapter 8: SQL Statement Tuning

7654 MARTIN SALES 1250 2
7876 ADAMS RESEARCH 1100 1
7900 JAMES SALES 950 1
7369 SMITH RESEARCH 800 1

12 rows selected.

Elapsed: 00:00:00.01

This example was run on a Linux system. On Linux and Unix,
SQL*Plus reports the elapsed time in hours, minutes, seconds, and
hundredths of a second. In a Windows environment, time is reported
in milliseconds.

TIMING

The SQL*Plus TIMING command may be used to arbitrarily start and stop a timer.
Use the command TIMING START to start a timer and TIMING STOP to stop the
timer. When a timer is stopped, the elapsed time is displayed. For example:

SQL> TIMING START
SQL>

SQL> TIMING STOP
Elapsed: 00:00:05.15

Normally SQL statements would be run between the two TIMING commands so
that timings are meaningful.

To display the time without stopping the timer, use the TIMING SHOW command:

SQL> TIMING START
SQL> TIMING SHOW
Elapsed: 00:00:03.40
SQL> TIMING SHOW
Elapsed: 00:00:06.93

Multiple timers may be run simultaneously by issuing more than one TIMING
command, as shown below:

SQL> TIMING START
SQL> TIMING START
SQL> TIMING STOP
Elapsed: 00:00:05.46
SQL> TIMING STOP
Elapsed: 00:00:15.66

When multiple timers are used, they are always stopped in reverse of the order in
which they were started. Consider each timer nested inside the other. To stop the
outermost timer, you must stop all the innermost timers.

Improving Query Performance 351

Improving Query Performance

If your query performance is unsatisfactory, remember that methods are available
to help you improve it. You may want to:

e Modify the database structure
e Gather up-to-date statistics
e Rewrite the query

e Use optimizer hints to control the execution plan

Modifying Database Structure

Database structure modifications usually involve the creation of indexes. It's
important to have the proper indexes to support your queries, but indexes aren’t
always the answer to poor performance. Other structural changes include separat-
ing table data and index data onto separate disks, spreading data over multiple
disks, partitioning the data, and clustering data. However, these changes aren’t
likely to improve performance dramatically if you have a poorly written query to
begin with.

Gatbering Statistics

If the cost-based optimizer is in use, then table and index statistics play a large
role in determining the execution plan that Oracle will use for any given state-
ment. It’s important that there be a set of statistics that results in the generation of
good execution plans. In theory, up-to-date statistics that reflect the data accu-
rately would always result in the best execution plans. In practice, occasional per-
formance drops have been experienced after analyzing tables. Oracle8i actually
includes a feature that allows the import of an arbitrary set of statistics to serve as
the basis for optimizer-generated execution plans.

Rewriting Queries

Rewriting a query can sometimes have a big impact on performance. Consider the
following query, which retrieves a list of employees located in cities other than
Boston, New York, and Chicago:

SELECT empno, ename

FROM emp, dept

WHERE emp.deptno = dept.deptno

AND dept.loc NOT IN ('NEW YORK', 'BOSTON', 'CHICAGO');

352 Chapter 8: SQL Statement Tuning

The execution plan for this query looks like this:

SELECT STATEMENT Cost = 3
NESTED LOOPS
TABLE ACCESS FULL DEPT
TABLE ACCESS FULL EMP

Notice that the estimated query cost is 3. It’s possible to rewrite this query using a
NOT EXISTS predicate instead of joining the emp and dept tables. Here’s how that
query would look:

SELECT empno, ename
FROM emp
WHERE NOT EXISTS (
SELECT *
FROM dept
WHERE emp.deptno = dept.deptno
AND dept.loc IN ('NEW YORK', 'BOSTON', 'CHICAGO'));

The execution plan for this version of the query looks like this example:

SELECT STATEMENT Cost = 1
FILTER
TABLE ACCESS FULL EMP
TABLE ACCESS BY INDEX ROWID DEPT
INDEX UNIQUE SCAN PK_DEPT

The second version of the query has a cost of 1, as opposed to a cost of 3 for the
first, so the second query is likely the better choice. You can’t depend totally on
the optimizer’s cost estimate though, because it’s just that—an estimate. To be sure
of which query performs best, perform some trial runs to collect some real perfor-
mance. You could use SQL Trace for that purpose, allowing you to compare CPU
time, elapsed time, and I/O between the two choices.

Using Optimizer Hints

The use of optimizer hints can also yield significant performance benefits, since
they allow the execution plan to be modified and tuned based on knowledge of
the actual data in the database.

Rather than allow Oracle total control over how a query is executed, specific
directions can be provided to the optimizer through the use of hints. A hint, in
Oracle, is an optimizer directive that is embedded in an SQL statement as a com-
ment. For example:
SELECT /*+ FULL(dept) */
empno, ename, dname

FROM emp, dept
WHERE emp.deptno = dept.deptno;

Improving Query Performance 353

The hint in this case is FULL(depv); it tells Oracle to do a full table scan of the dept
table. Oracle will honor this hint and perform a full table scan of dept when join-
ing the tables, even if it appears that doing so will degrade performance.

The only time that Oracle does not honor a hint is when it is physi-
cally or logically impossible to do so.

Hint syntax

A hint applies to a single SQL statement, and hints may only be specified for
SELECT, INSERT, UPDATE, and DELETE statements. The hint takes the form of a
specially formatted comment and must appear immediately after the keyword that
begins the statement:

keyword /*+ [hint|comment...] */

keyword
The SQL command, which must be SELECT, UPDATE, or DELETE. The hint
must immediately follow the keyword that begins the statement.

bint
The hint itself, sometimes with one or more arguments enclosed in parenthe-
ses. Tables 8-5 through 8-10 provide a complete list of possible hints. Hints
are not case-sensitive. A single comment may contain more than one hint, as
long as the hints are separated by at least one space.

comment
A user-specified comment. Oracle allows comments to be interspersed with
hints.

Note that the table name in the second example below is emp, but an alias of e
has been specified. The hint for the table uses the same alias, and is specified as
FULL(e). Whenever an alias is used, the alias name must be used in any hints for
the table:

SELECT /*+ FULL(emp) */ empno, ename
FROM emp
WHERE sal < 4000;

SELECT /*+ FULL(e) do a full tablescan on the emp table, because
most employees do have billing rates < 4000. */
empno, ename
FROM emp e
WHERE sal < 4000;

354 Chapter 8: SQL Statement Tuning

If multiple hints are supplied for a statement, they must all appear in the same
comment, as shown below:

SELECT /*+ FULL(emp) FIRST ROWS */ empno, ename
FROM emp
WHERE sal < 4000;

When subqueries are used, they are allowed to have their own hints. The hint for
a subquery follows the keyword that starts the query, as shown in the following:

SELECT /*+ FIRST ROWS */ empno, ename
FROM emp
WHERE NOT EXISTS (
SELECT /*+ FULL(dept) */ *
FROM dept
WHERE emp.deptno = dept.deptno
AND dept.loc IN ('NEW YORK', 'BOSTON', 'CHICAGO'));

When using hints, be careful to get the syntax exactly right. Because
hints are embedded in the statements as comments, Oracle can’t do
any syntax checking. Oracle regards any incorrectly specified hint as
a comment. In addition, you should always do an EXPLAIN PLAN
after you code your hints, just to ensure that the optimizer really
does what you think you told it to do.

Hints are always bonored when possible

Hints are always honored if it is physically and logically possible to honor them. If
one hint conflicts with others, or if it cannot possibly be implemented, Oracle will
simply ignore the hint altogether. In the following example, the USE_CONCAT hint
makes no sense because the query does not contain an OR condition. This query
cannot be broken into two queries (with the results subsequently UNIONed
together), so Oracle will ignore the hint. A bad hint is honored, however, when-
ever it is possible to implement:
SELECT /*+ USE_CONCAT */
empno, ename
FROM emp
WHERE ename = 'SCOTT';
In the next example, the query contains a hint to do an index scan on the pri-
mary key index for the emp table. The primary key for emp is the empno col-
umn, and consequently there is an index on that column. This query seeks one
record based on the employee name:
SELECT /*+ INDEX(emp pk_emp) */
ename

FROM emp
WHERE ename = 'SCOTT';

Improving Query Performance 355

Although it makes no sense to use the index on empno to retrieve an employee
by name, Oracle will honor the request to use the primary key index with the fol-
lowing execution plan:

SELECT STATEMENT Cost = 2
TABLE ACCESS BY INDEX ROWID EMP
INDEX FULL SCAN PK_EMP

Oracle will read every entry in the primary key index, retrieve the associated row
from the employee table, and check the name to see if it has a match. This is
worse than doing a full table scan! Oracle implements this plan because the hint
requested it and because it is physically possible.

Types of Hints

Oracle hints can be divided loosely into the following categories:
e Optimizer goal hints

e Access method hints

e Join order hints

e Join operation hints

e Parallel execution hints

e Other hints

The next few sections describe the hints available in each category.

Optimizer goal hints

Optimizer goal hints allow you to influence the optimizer’'s overall goal when for-
mulating an execution plan. For example, the hint can specify that the plan should
be optimized to return the first record as quickly as possible. Table 8-5 gives a list
of these hints.

Table 8-5. Optimizer Goal Hints

Hint Description
ALL_ROWS Tells the optimizer to produce an execution plan that minimizes resource
consumption.

FIRST_ROWS | Tells the optimizer to produce an execution plan with the goal of getting
to the first row as quickly as possible.

CHOOSE Allows the optimizer to choose between the rule-based and the cost-
based mode. If statistics are present for tables in the query, the cost-
based approach will be taken.

RULE Forces the optimizer to use a rule-based approach for the statement.

356 Chapter 8: SQL Statement Tuning

Avoid the RULE hint whenever possible. That hint causes the rule-
based optimizer to be used. The rule-based optimizer uses a fixed
set of rules when determining the execution plan for a statement and
does not attempt to factor in the ultimate cost of executing that plan.
The cost-based optimizer, on the other hand, bases its decision on
the estimated I/O and CPU overhead required by various alternative
plans. While Oracle still supports the rule-based optimizer, it hasn’t
been enhanced in years, won’t be enhanced in the future, and may
be desupported at some point. Oracle is putting its development
effort into the cost-based optimizer.

Access method bhints

Access method hints allow control of how data is accessed. For example, Oracle
can be directed to perform a full table scan or to use an index when accessing a
table, and the name of the specific index to be used can be specified. All access
method hints take at least a table name as an argument because different access
methods may be specified for different tables in the query.

Some access method hints are index-related and allow identification of indexes to
be used. In many cases, such as with the INDEX hint, the index name may or may
not be specified. The following hint tells Oracle to perform an index scan on the
emp table, but that it’s up to Oracle to pick the index:

/*+ INDEX (emp) */

This hint is useful if Oracle is expected to make the correct choice, or if hardcod-
ing an index name into the hint is not desirable. You have the option however, of
specifying the exact index to use. Here’s an example:

/*+ INDEX (emp pk_emp) */

In this example, the exact index name is specified. A list of indexes may be speci-
tied, and Oracle will choose from the indexes in that list; for example:

/*+ INDEX (emp pk_emp, emp_dept_indx) */

In this example, assume that seven indexes exist for the emp table, but only two
would be useful for the query in question. The hint provided tells Oracle to use an
index scan to access the emp table, using either the index named pk_emp or the
index named emp_dept_indx.

The AND_EQUAL hint is special because it requires at least two
indexes to be specified. That's because the hint causes Oracle to
merge the results of two index scans. You can’t do that unless you
have two indexes to scan.

Improving Query Performance

357

Table 8-6 lists the access method hints.

Table 8-6. Access Method Hints

Hint

Description

FULL(table_name)

ROWID(table_name)

CLUSTER(table_name)

HASH(table_name)

HASH_AJ(table_name)

INDEX(table_name index_name...])

INDEX_ASC(table_name lindex_name...])

INDEX_COMBINE(table_name
lindex_name...])

INDEX_DESC(table_name lindex_name...]))

INDEX_FFS(table_name lindex_name...])
MERGE_AJ(table_name)

AND_EQUAL(table_name index_name
index name...)

USE_CONCAT

Requests a full table scan of the specified
table, regardless of any indexes that may
exist.

Tells Oracle to perform a scan of the speci-
fied table based on ROWIDs.

Tells Oracle to do a cluster scan of the
specified table. This hint is ignored if the
table is not clustered.

Tells Oracle to perform a hash scan of the
specified table. This hint is ignored if the
table is not clustered.

Tells Oracle to do a hash anti-join of the
specified table.

Tells Oracle to access the specified table
via an index scan. You may specify which
index to use; otherwise Oracle chooses the
index. You may also specify a list of
indexes to choose from, and Oracle will
choose from that list.

Similar to the INDEX hint, but tells Oracle
to scan the index in ascending order.

Tells Oracle to use some combination of
two indexes. You may specify which
indexes to choose from or let Oracle make
the choice.

Similar to INDEX_ASC, but forces Oracle to
scan the index in descending order.

Tells Oracle to do a fast full index scan.
Turns a NOT IN subquery into a merge
anti-join.

Tells Oracle to scan two or more indexes

and merge the results. You must specify at
least two index names.

Turns a query with OR conditions into two
or more queries unioned together with a
UNION ALL.

Join order bints

Join order hints allow control over the order in which Oracle joins tables. There
are only three of these hints, listed in Table 8-7.

358 Chapter 8: SQL Statement Tuning

Table 8-7. Join Order Hints

Hint Description

ORDERED Tells Oracle to join tables from left to right, in the same
order in which they are listed in the FROM clause.

STAR Tells Oracle to use a star query execution plan, if at all pos-
sible. This step can only work if at least three tables are
joined, and the largest table has a concatenated index on
columns that reference the two smaller tables. The two
smaller tables are joined first, then a nested-loop join is
used to retrieve the required rows from the largest table.

STAR_TRANSFORMATION | Tells Oracle to transform the query into a star query, if pos-
sible, and then use the best plan for that query.

Join operation bints

Join operation hints allow control of the way two tables are joined. Oracle uses
three basic methods whenever two tables are joined:

Merge join
This type of join is performed by sorting rows from each table by the join col-
umns. Once the two rowsets have been sorted, Oracle reads through both and
joins any matching rows. A merge join often uses fewer resources than the
other options, but all records must be sorted before the first row is returned. It
also requires sufficient memory and temporary disk space to handle the sort.

Nested loops join

The method used for this type of join corresponds to the image most people
have when they think of joining tables. Oracle picks one table as the driving
table and reads through that table row by row. For each row read from the
driving table, Oracle looks up the corresponding rows in the secondary table
and joins them. Because no sort is involved, a nested loops join will usually
get you the first record back more quickly than a merge join. For the same
reason, a nested loops join also does not require large amounts of disk space
and memory. However, a nested loops join may result in a considerably
greater number of disk reads than a merge join.

Hash join
This type of join is similar to a merge join, but a sort is not required. A hash
table is built in memory to allow quick access to the rows from one of the
tables to be joined. Then rows are read from the other table. As each row is
read from the second table, the hash function is applied to the join columns
and the result used to find the corresponding rows from the first table.

Along with the hints used to specify the join method, other hints are lumped into
the join operation category. Table 8-8 lists all the join operation hints.

Improving Query Performance

359

Table 8-8. Join Operation Hints

Hint

Description

USE_NL(table_name)

USE_MERGE((table_name)

USE_HASH(table_name)
NO_MERGE

DRIVING_SITE(table_name)

Tells Oracle to use a nested loop when joining this table.
The table specified by this hint is the one accessed by
the innermost loop. The other table is the driving table.

Tells Oracle to use the sort merge method when joining
this table.

Tells Oracle to use a hash join for the specified table.

Applies to queries that contain joins on one or more
views. It prevents Oracle from merging the query from a
view into the main query.

This hint applies when executing a distributed join, one
that joins tables from two or more databases. Without a
hint, Oracle chooses which database actually collects the
tables and does the join. By using the hint, you tell Ora-
cle that you want the join performed by the database
containing the specified table.

Parallel execution bhints

Parallel execution hints influence the way Oracle executes a query in a parallel
processing environment. When running with a single CPU or when parallel pro-
cessing has been disabled, parallel processing is not possible and these hints will
be ignored. Parallel execution hints are illustrated in Table 8-9.

Table 8-9. Parallel Execution Hints

Hint

Description

PARALLEL(table_name
[, degree [, num_instancesl))

NO_PARALLEL(table_name)
APPEND

NOAPPEND

Tells Oracle to access data from the indicated table in
parallel processing mode. You can optionally specify the
degree of parallelism to use and the number of instances
that will be involved. The keyword DEFAULT may be
used for both arguments, in which case Oracle decides
the values based on parameters in the INIT.ORA file and
the table definition.

Using the PARALLEL hint in an INSERT statement auto-
matically turns on APPEND mode. See the APPEND and
NO_APPEND hints.

Tells Oracle not to access the specified table in parallel.

Applies only to INSERT statements. It tells Oracle not to
attempt to reuse any free space that may be available in
any extents currently allocated to the table.

This hint is the opposite of APPEND and tells Oracle to
use any free space in extents currently allocated to the
table. The hint exists because APPEND becomes the
default behavior whenever a PARALLEL hint is used in an
INSERT statement.

360

Chapter 8: SOL Statement Tuning

Table 8-9. Parallel Execution Hints (continued)

Hint

Description

PARALLEL_INDEX (table_
name, index_name [,degree
[, num_instancesl)

Tells Oracle to access data from the indicated table by
scanning the specified index in parallel processing mode.
The index must be a partitioned index. You can option-
ally specify the degree of parallelism to use and the num-
ber of instances that will be involved. The keyword
DEFAULT may be used for both arguments, in which
case Oracle decides the values based on parameters in
the INIT.ORA file and the table definition.

Other bints

A few hints don’t fit neatly into one of the other categories. These hints are listed

in Table 8-10.

Table 8-10. Other Hints

Hint

Description

CACHE (table_name)

NOCACHE (table_name)

PUSH_SUBQ

Applies only when a full table scan is performed on the
specified table. It tells Oracle to place blocks for that table at
the most recently used end of the buffer cache so they will
remain in memory as long as possible. This can be useful for
small lookup tables that you expect to access repeatedly.

This hint is the opposite of CACHE and tells Oracle to place
blocks at the least recently used end of the buffer cache,
where they will be cleared out as soon as possible.

Tells Oracle to evaluate nonmerged subqueries as soon as
possible during query execution. If you expect the subquery
to eliminate a large number of rows, this hint can improve
performance.

SOL Resources

In this appendix, I have listed some useful resources, both online and offline, that
may help you with SQL, SQL*Plus, and PL/SQL. I hope you find them helpful!

Books

There are many excellent Oracle books on the market today. This section lists
some that I find particularly helpful:

Aronoff, Eyal, Kevin Loney, and Noorali Sonawalla. Advanced Oracle Tuning and
Administration. Osborne McGraw-Hill, 1997. This book includes the most
comprehensive discussion and explanation of the EXPLAIN PLAN facility avail-
able anywhere.

Feuerstein, Steven, and Bill Pribyl. Oracle PL/SQL Programming, Second Edition.
O'Reilly & Associates, 1997. Hands down, the definitive guide to PL/SQL. If it’s
about PL/SQL (through Oracle8), it’s in this book!

Feuerstein, Steven. Oracle PL/SQL Programming: Guide to OracleSi Features.
O'Reilly & Associates, 1999. This book contains a very nice summary of all the
new PL/SQL features available in Oracle8i. It's a great supplement to Oracle
PL/SQL Programming, Second Edition.

Feuerstein, Steven. Advanced Oracle PL/SQL Programming with Packages. O'Reilly
& Associates, 1996. This book provides all the information you will ever need
about developing your own PL/SQL packages.

Feuerstein, Steven, Charles Dye, and John Beresniewicz. Oracle Built-in Packages.
O'Reilly & Associates, 1998. Once you've mastered PL/SQL programming, this
book takes you to the next level by explaining how to leverage the built-in
packages Oracle provides with the database.

361

362 Appendix A: SQL Resources

Gennick, Jonathan. Oracle SQL*Plus: The Definitive Guide. O'Reilly & Associates,
1999. A complete guide to all the nuances of SQL*Plus. This book has a wealth
of information for both the beginner and the experienced SQL programmer.

Kreines, David and Brian Laskey. Oracle Database Administration: The Essential
Reference. O'Reilly & Associates, 1999. Sure, I'm biased, but this book has all
the information you need to effectively manage an Oracle database.

Lomasky, Brian, and David Kreines. Oracle Scripts. O'Reilly & Associates, 1998.
This book is full of utilities and routines that function as excellent tools for
day-to-day development and administration and that are excellent learning
examples of complex SQL programming techniques.

Niemiec, Richard Oracle Performance Tuning Tips & Techniques. Osborne
McGraw-Hill, 1999. If you want access to the collective tuning experience of
some real SQL experts, this book has it.

Other Publications

Select
This publication, produced as a membership benefit by the International Ora-
cle Users Group—Americas IOUG-A), contains a variety of articles and col-
umns on Oracle programming and articles containing SQL-related tips,
techniques, and practices.

Oracle Magazine
This magazine, which is published by Oracle Corporation, is primarily a mar-
keting tool, but it also carries articles (often by Oracle technical staff or experi-
enced developers) on SQL and PL/SQL development.

Many Oracle user groups and special interest groups also publish newsletters con-
taining useful information for SQL programmers.

Organizations

International Oracle Users Group—Americas JOUG-A)
401 North Michigan Avenue

Chicago, IL 60611 USA

Voice: (312) 245-1579

fax: (312) 527-6785

email: ioug@ioug.org

Web Sites 363

European Oracle Users Group (EOUG)
Brigittenauer Linde 50-54, A-1203
Vienna, Austria

Voice: +43 1 33777 870

fax: +43 1 33777 873

email: eoug@at.oracle.com

Asia-Pacific Oracle Users Group (APOUG)
PO Box 3046

The Pines, Doncaster East

VIC 3109, Australia

Voice: +61 3 9842 3246

fax: +61 3 9842 3050

email: 100242.1746@compuserve.com

Australian Oracle User Group (AUSOUG)
PO Box 16

Wilston QLD 4051 Australia

Voice: +61 7 3352 7985

fax: +61 7 3352 7135

Web Sites

butp.//www.oracle.com
Oracle Corporation’s web site. Contains a wide variety of information on
almost any Oracle-related topic and links to other sites, including the Oracle
Support site.

http://www.ioug.org
Operated by the IOUG-A. Contains technical articles from Select magazine,
papers from IOUG-A conferences, a technical repository, and a technical dis-
cussion forum.

http.//www.eoug.com
The web site for the EOUG. Contains information of general interest to Oracle
developers, including information on conferences and educational events for
Europe, the Middle East, and Africa.

bttp://www.ausoug.org
The web site for the AUSOUG. Contains information of general interest to Ora-
cle developers, including information on conferences and educational events
for Australia.

bttp.//www.revealnet.com
This site hosts the PL/SQL “Pipeline,” a free online discussion community for
PL/SQL topics that attracts some of the best and most experienced Oracle talent

364 Appendix A: SQL Resources

from around the world. Beginners are welcome. The atmosphere is very cor-
dial, and participants are tolerant of all levels of questions.

bttp.//technet.oracle.com
Oracle Technology Network’s (OTN) web site, which is operated by Oracle
Corporation. Contains a wide variety of technical resources for Oracle devel-
opers. Provides access to the full Oracle documentation set, code samples, and
white papers.

btp.//www.ixora.com.au
This site is definitely not for the faint of heart or beginner, but it does contain
an unmatched depth of information on Oracle tuning and internals.

htp.//www.primarykey.com
If you are looking for a book about any aspect of Oracle, this is the place to
find it. This site is operated by people who actually know about Oracle and
who can help you find the resources you need.

Symbols

& (ampersand) command (SQL*Plus), 238
* arithmetic operator, 15, 282

** arithmetic operator, 282

&& command (SQL*Plus), 239

@ command (SQL*Plus), 221

@@ command (SQL*Plus), 222

I< comparison operator, 16

I= comparison operator, 16, 282

1> comparison operator, 16

< comparison operator, 16, 282

<= comparison operator, 16, 282

= comparison operator, 16, 282

> comparison operator, 16, 282

>= comparison operator, 16, 282

A= comparison operator, 16

~= comparison operator, 282

+ (identity) arithmetic operator, 15, 281
— (minus) arithmetic operator, 15, 281
— (negation) arithmetic operator, 15, 281
+ (plus) arithmetic operator, 15, 281

/ (slash) arithmetic operator, 15, 282
<> comparison operator, 16, 282

| | concatenation operator, 15, 281

A

ABS function, 153

abstract data types (ADTs), xxi
ACCEPT command (SQL*Plus), 239
access method hints, 356-357
ACOS function, 153

Index

Ada programming language, xvi
ADD_MONTHS function, 174
ADTs (abstract data types), xxi
aggregate functions, 146-153
ALL keyword and, 147
DISTINCT keyword and, 147
GROUP BY clause and, 146
NULL values and, 148
AGGREGATE option (EXPLAIN PLAN), 333
ALL comparison operator, 17
ALL keyword, 147
ALL option (EXPLAIN PLAN), 333
ALL_ROWS hint, 355
ALTER CLUSTER statement, 25
DDL tasks, 33
syntax of, 49-52
ALTER DATABASE statement, 25
DDL tasks, 33-38
syntax of, 54-60
ALTER FUNCTION statement, 25
DDL tasks, 36
PL/SQL functions and, 312
ALTER INDEX statement, 25
DDL tasks, 33
syntax of, 64-70
ALTER MATERIALIZED VIEW LOG
statement, 25
DDL tasks, 34
syntax of, 72
ALTER MATERIALIZED VIEW statement, 25
DDL tasks, 34
syntax of, 70-72

365

366

Index

ALTER PACKAGE statement, 25
DDL tasks, 36
PL/SQL packages and, 317
ALTER PROCEDURE statement, 25
DDL tasks, 37
PL/SQL procedures and, 308
ALTER PROFILE statement, 25
DDL tasks, 33, 35, 37
syntax of, 73-76
ALTER RESOURCE COST statement, 25
DDL tasks, 33
syntax of, 38
ALTER ROLE statement, 25
DDL tasks, 33
syntax of, 76

ALTER ROLLBACK SEGMENT statement, 25

DDL tasks, 33-37
syntax of, 77
ALTER SEQUENCE statement, 25
DDL tasks, 33
syntax of, 79-81
ALTER SESSION statement, 25
DDL tasks, 34
DML tasks, 106
SQL Trace
enabling, 337
setting parameters, 335
syntax of, 107-116
ALTER SNAPSHOT LOG statement, 26
DDL tasks, 34
syntax of, 83
ALTER SNAPSHOT statement, 25
DDL tasks, 34
syntax of, 81-83
ALTER SYSTEM statement, 26
DDL tasks, 33
SQL Trace parameters, setting, 335
syntax of, 39-43
ALTER TABLE statement, 26
DDL tasks, 33, 36
syntax of, 85-91
ALTER TABLESPACE statement, 26
DDL tasks, 33, 36, 38
syntax of, 92-94
ALTER TRIGGER statement, 26
DDL tasks, 36
PL/SQL triggers and, 322
ALTER USER statement, 26
DDL tasks, 33
syntax of, 95-97

ALTER VIEW statement, 26
DDL tasks, 37
syntax of, 97-99
ANALYZE statement, 26
DDL tasks, 34, 36-38
DML tasks, 106
syntax of, 116
AND logical operator, 18, 282
AND_EQUAL hint, 357
AND-EQUAL operation (EXPLAIN
PLAN), 331
anonymous blocks, PL/SQL, 263
ANSI SQL, xix, xxv
character datatype compatibility, 7
numeric datatype compatibility, 9
ANTI option (EXPLAIN PLAN), 332
ANY comparison operator, 17
APOUG (Asia-Pacific Oracle Users
Group), 363
APPEND command (SQL*Plus), 208
APPEND hint, 359
APPINFO command (SQL*Plus), 241
ARCHIVE LOG command, 222
arithmetic operators, 14, 281
arrays, variable-sized, 275-277
ARRAYSIZE command (SQL*Plus), 242
ASCII function, 162
Asia-Pacific Oracle Users Group
(APOUG), 363
ASIN function, 154
assignment statements, PL/SQL, 281
ASSOCIATE STATISTICS statement, 26
DDL tasks, 33
syntax of, 44
ATAN function, 154
ATAN2 function, 154
AUDIT statement (schema objects), 26
DDL tasks, 33
syntax of, 45
AUDIT statement (SQL statements), 26
DDL tasks, 33
syntax of, 46
Australian Oracle User Group
(AUSOUG), 363
AUTOCOMMIT command (SQL*Plus), 242
Autoextend_Clause, 133
AUTOPRINT command (SQL*Plus), 242
AUTORECOVERY command
(SQL*Plus), 243
AUTOTRACE command (SQL*Plus), 243

Index

367

autotrace (see SET AUTOTRACE command)
AVG function, 148

B

BETWEEN comparison operator, 17, 282
BFILE datatype
Oracle, 8
PL/SQL, 268
BFILE objects, storing, 63
BFILENAME function, 190
BINARY_INTEGER datatype (PL/SQL), 267
BITMAP operation (EXPLAIN PLAN), 331
blank lines
setting number of, 252
in SQL commands, 256
BLOB columns, initializing, 195
BLOB datatype
Oracle, 8
PL/SQL, 268
block headers, PL/SQL, 263, 265
blocks, PL/SQL (see PL/SQL, blocks)
BLOCKTERMINATOR command
(SQL*Plus), 244
books, Oracle, 361
BOOLEAN datatype (PL/SQL), 268
Boyce, Ray, x
BREAK command (SQL*Plus)
with parameters, 212
without parameters, 212
BTITLE command (SQL*Plus)
controlling, 213
defining, 213
displaying, 214
buffer, SQL*Plus, 208-211
BY ROWID option (EXPLAIN PLAN), 334

C
C++ programming language, xvii
CACHE hint, 360
CALL statement, 26, 47
Cartesian product, 23
case conversion, SQL and PL/SQL, 257
CEIL function, 155
Chamberlin, Don, x
CHANGE command (SQL*Plus), 208
CHAR datatype
Oracle, 6
PL/SQL, 267
CHAR VARYING datatype, 7

CHARACTER datatype
Oracle, 7
PL/SQL, 267
character functions, 162-174
character strings, 182-190
converting dates to, 184
converting numbers to, 185-187
CHARACTER VARYING datatype, 7
CHARTOROWID function, 182
CHOOSE hint, 355
CHR function, 162
CLEAR command (SQL*Plus), 209, 214
CLOB columns, initializing, 195
CLOB data and LOBOFFSET
command, 251
CLOB datatype
Oracle, 8
PL/SQL, 268
CLOB values, displaying, 251
CLOSE statement (PL/SQL), 295
CLOSECURSOR command (SQL*Plus), 244
CLUSTER hint, 357
CLUSTER option (EXPLAIN PLAN), 333
clusters
changing, 49-52
creating, 49-52
removing, 49-52
removing rows from, 129
CMDSEP command (SQL*Plus), 244
CODASYL (Conference on Data Systems
Languages), xix
Codd, E.F., ix—xiii, xxv
COLSEP command (SQL*Plus), 245
COLUMN command (SQL*Plus), 214-216
Column_Constraint_Clause, 134
columns
adding comments about, 48
adding to tables, 85-91
associating statistics with, 44
clusters and, 49
creating indexes on, 64-70
defining constraints of, 134
disassociating statistics from, 99
modifying, 86-91
specifying display characteristics
for, 214-216
command-line syntax, SQL*Plus, 204-207
COMMENT statement, 26
DDL tasks, 33
syntax of, 48

368

Index

committing changes to databases, 242
comparison operators, 15-18; 282
COMPATIBILITY command
(SQL*Plus), 245
composite partitioning, 139-141
COMPUTE command (SQL*Plus), 216
CONCAT command (SQL*Plus), 245
CONCAT function, 163
CONCATENATION operation (EXPLAIN
PLAN), 332
concatenation operator, 15, 281
condition component of SQL
statements, 23
Conference on Data Systems Languages
(CODASYL), xix
CONNECT BY operation (EXPLAIN
PLAN), 332
CONNECT command (SQL*Plus), 223
INSTANCE command and, 250
constraints
defining column, 134
defining table, 143
disabling/enabling, 135-137
setting, 126
Constraint_State_Clause, 135-137
control files, creating, 52-53
control statements, PL/SQL, 282-288
CONVERSION COUNT option (EXPLAIN
PLAN), 331
CONVERSION FROM ROWIDS option
(EXPLAIN PLAN), 331
conversion functions, 182-190
CONVERSION TO ROWIDS option
(EXPLAIN PLAN), 331
CONVERT function, 183
COPY command (SQL*Plus), 224
COPYCOMMIT command (SQL*Plus), 246
COPYTYPECHECK command
(SQL*Plus), 246
COS function, 155
COSH function, 155
cost-based optimizer, 325, 356
gathering statistics, 351
query costs and, 330
COUNT function, 149
COUNT method (PL/SQL)
index-by tables, 273
variable-sized arrays, 276
COUNT operation (EXPLAIN PLAN), 332

COUNT statistic, SQL Trace, 343
CPU statistic, SQL Trace, 343
CPU times and tkprof reports, 344
CREATE CLUSTER statement, 26
DDL tasks, 34
syntax of, 49-52
CREATE CONTROLFILE statement, 26
DDL tasks, 33, 34, 37
syntax of, 52-53
CREATE DATABASE LINK statement, 27
DDL tasks, 34
syntax of, 60
CREATE DATABASE statement, 26
DDL tasks, 34
syntax of, 54-60
CREATE DIMENSION statement, 27
DDL tasks, 34
syntax of, 61-63
CREATE DIRECTORY statement, 27
DDL tasks, 34
syntax of, 63
CREATE FUNCTION statement, 27
DDL tasks, 35
PL/SQL functions and, 309-312
CREATE INDEX statement, 27
DDL tasks, 35
syntax of, 64-70
CREATE MATERIALIZED VIEW LOG
statement, 27
DDL tasks, 34
syntax of, 72
CREATE MATERIALIZED VIEW
statement, 27
DDL tasks, 34
syntax of, 70-72
CREATE PACKAGE BODY statement
DDL tasks, 34
PL/SQL packages and, 315
CREATE PACKAGE statement, 27
DDL tasks, 34
PL/SQL packages and, 314
CREATE PROCEDURE statement, 27
PL/SQL procedures and, 304-307
CREATE PROFILE statement, 27
DDL tasks, 34
syntax of, 73-76
CREATE ROLE statement, 27
DDL tasks, 35
syntax of, 76

Index

CREATE ROLLBACK SEGMENT
statement, 27
DDL tasks, 35
syntax of, 77
CREATE SCHEMA statement, 27
DDL tasks, 36
syntax of, 78
CREATE SEQUENCE statement, 28
DDL tasks, 35
syntax of, 79-81
CREATE SNAPSHOT LOG statement, 28
DDL tasks, 35
syntax of, 83
CREATE SNAPSHOT statement, 28
DDL tasks, 35
syntax of, 81-83
CREATE SYNONYM statement, 28
DDL tasks, 34
syntax of, 84
CREATE TABLE AS statement
DDL tasks, 34
CREATE TABLE statement, 28
DDL tasks, 35
syntax of, 85-91
CREATE TABLESPACE statement, 28
DDL tasks, 34
syntax of, 92-94
CREATE TEMPORARY TABLESPACE
statement, 28
DDL tasks, 35
syntax of, 94-95
CREATE TRIGGER statement, 28
DDL tasks, 34
PL/SQL triggers and, 320-322
CREATE USER statement, 28
DDL tasks, 34
syntax of, 95-97
CREATE VIEW statement, 28
DDL tasks, 35
syntax of, 97-99
CUBE keyword, xix, 149
current line, SQL*Plus, 208-211
CURRENT statistic, SQL Trace, 344
CURRVAL pseudo-column, 12
cursor FOR loop, 295
CURSOR statement (PL/SQL), 277
CURSOR_ALREADY_OPEN exception
(PL/SQL), 299

cursors
PL/SQL (see PL/SQL, cursors)
SQL*Plus, 244

D

data access languages, vii
data conversion, 13
Data Definition Language (see DDL)
data dictionary, xi
adding comments to, 48
Data Manipulation Language (see DML)
database instances, making dynamic
changes to, 39-43
database links
creating, 60
removing, 60
database objects
associating statistics with, 44
creating synonyms for, 84
disassociating statistics from, 99
granting privileges on, 100
listing definitions for, 225
removing synonyms from, 84
revoking privileges on, 104
database structure and performance
improvements, 351
databases
changing characteristics of, 54-60
committing pending changes to, 242
connecting to, 223
connecting to default, 250
copying data from/to, 224
creating, 54-00
object-relational, xvii
performing recovery operations
on, 228-230
triggers, 319
datatypes
conversion functions for, 182-190
Oracle, 6-11
PL/SQL, 267-268
Date, Chris, xi
DATE datatype

Oracle, 9
PL/SQL, 268
dates

converting to character strings, 184
format elements for, 179

370

Index

dates (continued)
functions, 174-181
returning current, 181
DBMS_APPLICATION_INFO package, 241
DBMS_OUTPUT.PUT_LINE procedure, 255
DBMS_SYSTEM package, 336-338
DDL (Data Definition Language)
common tasks, 33-38
SQL statement syntax, 38-105
SQL clauses, 133-144
statements used in PL/SQL
functions, 309-313
packages, 313-318
procedures, 304-309
triggers, 318-323
DEC datatype, 267
DECIMAL datatype
Oracle, 9
PL/SQL, 267
declaration section (see PL/SQL, blocks)
DECODE function, 191-193
default databases, connecting to, 250
deferrable constraints, 126
DEFINE command (SQL*Plus), 240, 246
DEL command (SQL*Plus), 209
DELETE method (PL/SQL)
index-by tables, 273
variable-sized arrays, 276
DELETE statement, 21, 28
DML tasks, 106
in PL/SQL programs, 293
syntax of, 117
trigger events and, 318-321
DESCRIBE command (SQL*Plus), 225
Digital Equipment Corporation, Xiv
dimensions
creating, 61-63
removing, 61-63
directory objects
creating, 63
removing, 63
DISASSOCIATE STATISTICS statement, 28
syntax of, 99
DISCONNECT command (SQL*Plus), 225
DISK statistic, SQL Trace, 343
display devices, sending output to, 249
DISTINCT keyword, 147
DML (Data Manipulation Language)
common tasks, 106
SQL statement syntax, 107-132

SQL clauses, 133-144
statements used in PL/SQL, 288
trigger types, 318-323

DOS/VSE operating system, Xiii
dot notation, 5
referencing fields in a record, 270
DOUBLE PRECISION datatype
Oracle, 9
PL/SQL, 267
DRIVING_SITE hint, 359
DROP CLUSTER statement, 28
DDL tasks, 35, 37
syntax of, 49-52
DROP DATABASE LINK statement, 28
DDL tasks, 35, 37
syntax of, 60
DROP DIMENSION statement, 29
DDL tasks, 35, 37
syntax of, 61-63
DROP DIRECTORY statement, 29
DDL tasks, 35, 37
syntax of, 63
DROP FUNCTION statement, 29
DDL tasks, 35, 37
PL/SQL functions and, 312
DROP INDEX statement, 29
DDL tasks, 36, 37
syntax of, 64-70
DROP MATERIALIZED VIEW LOG
statement, 29
DDL tasks, 35, 37
syntax of, 72
DROP MATERIALIZED VIEW statement, 29
DDL tasks, 35, 37
syntax of, 70-72
DROP PACKAGE statement, 29
DDL tasks, 35, 37
PL/SQL packages and, 318
DROP PROCEDURE statement, 29
PL/SQL procedures and, 308
DROP PROFILE statement, 29
DDL tasks, 35, 37
syntax of, 73-76
DROP ROLE statement, 29
DDL tasks, 35, 37
syntax of, 76
DROP ROLLBACK SEGMENT statement, 29
DDL tasks, 35, 37
syntax of, 77

Index

371

DROP SEQUENCE statement, 29
DDL tasks, 35, 37
syntax of, 79-81
DROP SNAPSHOT LOG statement, 29
DDL tasks, 35, 37
syntax of, 83
DROP SNAPSHOT statement, 29
DDL tasks, 35, 37
syntax of, 81-83
DROP SYNONYM statement, 28
DDL tasks, 35, 37
syntax of, 84
DROP TABLE statement, 29
DDL tasks, 36, 37
syntax of, 85-91
DROP TABLESPACE statement, 29
DDL tasks, 35, 37
syntax of, 92-94
DROP TRIGGER statement, 29
DDL tasks, 35, 37
PL/SQL triggers and, 323
DROP USER statement, 29
DDL tasks, 36, 37
syntax of, 95-97
DROP VIEW statement, 30
DDL tasks, 36, 37
syntax of, 97-99
DUMP function, 194
DUP_VAL_ON_INDEX exception
(PL/SQL), 299

E

ECHO command (SQL*Plus), 246
EDIT command (SQL*Plus), 226
EDITFILE command (SQL*Plus), 247
ELAPSED statistic, SQL Trace, 343
elapsed times and tkprof reports, 344
Ellison, Larry, xii

EMBEDDED command (SQL*Plus), 247

Embedded SQL, xi
EMPTY_BLOB function, 195
EMPTY_CLOB function, 195
EOUG (European Oracle Users
Group), 363

errors

operating system, 230

Oracle, 299

SQL statement, 237
ESCAPE command (SQL*Plus), 247

European Oracle Users Group
(EOUG), 363
exception handling, PL/SQL (see PL/SQL,
exception handling)
EXCEPTION statement (PL/SQL), 279
EXECUTE command (SQL*Plus), 226
execution phase, SQL statement
execution, 343
execution plans (see EXPLAIN PLAN
statement)
execution section (see PL/SQL, blocks)
EXISTS comparison operator, 17
EXISTS method (PL/SQL)
index-by tables, 273
variable-sized arrays, 276
EXIT command (SQL*Plus), 226
EXP function, 156
EXPLAIN PLAN statement, 30
creating the plan table, 326
DDL tasks, 35
DML tasks, 106
explaining a plan, 327
hierarchical queries, 328-330
interpreting results, 330-334
operations/options in execution
plans, 331-334
performance tuning, 325-334
syntax of, 119, 327
viewing the execution plan, 328-330
explicit data conversion, 14
expressions, PL/SQL, 281
EXTEND method (PL/SQL), variable-sized
arrays, 277

F

FEEDBACK command (SQL*Plus), 248
fetch phase, SQL statement execution, 343
FETCH statement (PL/SQL), 294
files

increasing size of, 133

setting default extensions, 258
FILTER operation (EXPLAIN PLAN), 332
FIRST method (PL/SQL)

index-by tables, 273

variable-sized arrays, 277
FIRST ROW operation (EXPLAIN

PLAN), 332

FIRST_ROWS hint, 355
FLAGGER command (SQL*Plus), 248

372

Index

FLOAT datatype
Oracle, 9
PL/SQL, 267
FLOOR function, 156
FLUSH command (SQL*Plus), 249
footers, formatting (see REPFOOTER
command)
FOR loop, 286
FOR loop, cursor, 295
FOR UPDATE operation (EXPLAIN
PLAN), 332
format elements
date, 179
numeric, 186
formatting SQL*Plus output, 211-221
%FOUND cursor attribute, 297
FULL hint, 357
FULL option (EXPLAIN PLAN), 333
functions, PL/SQL, 309-313
characteristics of, 304
Oracle built-in functions, 145-203
SQL, 145-203

G

GET command (SQL*Plus), 209
global PL/SQL variables, 313
GOTO statement (PL/SQL), 287

GRANT statement (object privileges), 30

DDL tasks, 36
syntax of, 100
GRANT statement (system privilege or
role), 30
DDL tasks, 33, 36
syntax of, 101
GREATEST function, 156
GROUP BY clause, xix, 146

GROUP BY option (EXPLAIN PLAN), 333

GROUPING function, 149

H

HASH hint, 357

hash join method, 358

HASH JOIN operation (EXPLAIN
PLAN), 332

HASH option (EXPLAIN PLAN), 333

hash partitioning, 139-141

HASH_AJ hint, 357

headers, formatting (see REPHEADER
command), 219
HEADING command (SQL*Plus), 249
HEADSEP command (SQL*Plus), 249
HELP command (SQL*Plus), 227
HEXTORAW function, 183
hierarchical queries and execution
plans, 328-330
hints
access method, 356-357
join operation, 358
join order, 357
optimizer, 352-355
optimizer goal, 355
parallel execution, 359
HOST command (SQL*Plus), 227
host variables, xi
hostname keyword (SQL*Plus), 206
HTML output, generating, 251

I
IBM

commercial development of SQL at, xii

origins of SQL at, ix
IF-THEN-ELSE statements
(PL/SQL), 282-284
implicit data conversion, 14
IN comparison operator, 16, 282
INDEX FULL SCAN option (EXPLAIN
PLAN), 331
INDEX hint, 357

INDEX operation (EXPLAIN PLAN), 332
INDEX RANGE SCAN option (EXPLAIN

PLAN), 331

INDEX SINGLE VALUE option (EXPLAIN

PLAN), 331
INDEX_ASC hint, 357
index-by tables

declaring, 271

methods for, 273
INDEX_COMBINE hint, 357
INDEX_DESC hint, 357
indexes

access method hints and, 356-357

changing, 64-70

creating, 64-70, 351

performance improvements and, 351

removing, 64-70
INDEX_FFS hint, 357

Index

373

Informix Corporation, xiv
Ingres Corporation, xiii
INITCAP function, 163
initialization parameters
ALTER SESSION statement, 115
SQL Trace, 335
INIT.ORA initialization file, 115, 335
INLIST ITERATOR operation (EXPLAIN
PLAN), 332
INLIST option (EXPLAIN PLAN), 333
INPUT command (SQL*Plus), 210
INSERT statement, 21, 30
DML tasks, 107
in PL/SQL programs, 291
syntax of, 120
trigger events and, 318-322
INSTANCE command (SQL*Plus), 250
INSTR function, 163
INSTRB function, 164
INT datatype
Oracle, 9
PL/SQL, 267
INTEGER datatype
Oracle, 9
PL/SQL, 267
International Oracle Users Group—Americas
(I0UG-A), 362
INTERSECT set operator, 20
INTERSECTION operation (EXPLAIN
PLAN), 332
INVALID_CURSOR exception
(PL/SQL), 299
INVALID_NUMBER exception
(PL/SQL), 299
IOUG-A (International Oracle Users
Group—Americas), 362
IS NOT NULL comparison operator, 18
IS NULL comparison operator, 18, 282
%ISOPEN cursor attribute, 297
ITERATOR option (EXPLAIN PLAN), 333

J

Jacobs, Ken, vii—xxiv
Java and SQL, xviii
join operation hints, 358
JOIN option (EXPLAIN PLAN), 333
join order hints, 357
joins, 22
Oracle hints and, 357

K

key columns, 22
keywords

SQL, 2

SQL*Plus, 205-207
King, Frank, ix

L

languages, data access/programming, vii
large object (LOB) datatypes
converting values into, 188
Oracle, 7
PL/SQL, 268
LAST method (PL/SQL)
index-by tables, 273
variable-sized arrays, 277
LAST_DAY function, 175
LEAST function, 157
LENGTH function, 165
LENGTHB function, 165
LEVEL pseudo-column, 13
library cache misses and tkprof
reports, 344
LIKE comparison operator, 18, 282
LIMIT method (PL/SQL), variable-sized
arrays, 277
LINESIZE command (SQL*Plus), 250
LIST command (SQL*Plus), 210
literals, SQL, 2
LN function, 157
LOB datatypes, 7
converting values into, 188
LOBOFFSET command (SQL*Plus), 251
LOB_Storage_Clause, 137-139
LOG function, 158
logarithmic functions, 153-162
logtiles, performing recovery operations
on, 228-230
logical operators, 18, 282
LOGIN_DENIED exception (PL/SQL), 299
LONG command (SQL*Plus), 251
LONG datatype
Oracle, 7
PL/SQL, 267
LONG RAW datatype
Oracle, 7
PL/SQL, 267
LONGCHUNKSIZE command
(SQL*Plus), 251

374

Index

LOOP statement (PL/SQL), 284
LOWER function, 165

LPAD function, 165

LTRIM function, 166

M

MARKUP HTML command (SQL*Plus), 251
materialized view logs

changing, 72

creating, 72

removing, 72
materialized views

changing, 70-72

creating, 70-72

removing, 70-72
MAX function, 150
MAX_DUMP_FILE_SIZE

parameter, 336-338
merge join method, 358
MERGE JOIN operation (EXPLAIN
PLAN), 332

MERGE option (EXPLAIN PLAN), 331
MERGE_AJ hint, 357
MIN function, 151
MINUS operation (EXPLAIN PLAN), 332
MINUS option (EXPLAIN PLAN), 331
MINUS set operator, 20
MOD function, 158
months, adding to dates, 174
MONTHS_BETWEEN function, 175

N

named blocks, PL/SQL, 264
namespaces, returning attribute values
in, 197-200
naming requirements in SQL, 3
NATIONAL CHAR datatype, 7
NATIONAL CHAR VARYING datatype, 7
NATIONAL CHARACTER datatype, 7
NATIONAL CHARACTER VARYING
datatype, 7
National Committee for Information
Technology Standards
(NCITS), xix
National Language Support (NLS)
character sets and NCLOB data, 8
characteristics, changing, 111
functions, 167, 196

NATURAL datatype (PL/SQL), 267
NCHAR datatype
Oracle, 7
PL/SQL, 267
NCHAR VARYING datatype, 7
NCITS (National Committee for Information
Technology Standards), xix
NCLOB data and LOBOFFSET
command, 251
NCLOB datatype
Oracle, 8
PL/SQL, 268
NCLOB values, displaying, 251
NCR, xiv
nested loops join method, 358
NESTED LOOPS operation (EXPLAIN
PLAN), 333
NEWPAGE command (SQL*Plus), 252
NEW_TIME function, 176
NEXT method (PL/SQL)
index-by tables, 274
variable-sized arrays, 277
NEXT_DAY function, 178
NEXTVAL pseudo-column, 12
NLS (see National Language Support)
NLS_CHARSET_DECL_LEN function, 196
NLS_CHARSET_ID function, 196
NLS_CHARSET_NAME function, 196
NLS_INITCAP function, 167
NLS_LOWER function, 167
NLSSORT function, 168
NLS_UPPER function, 167
NOAPPEND hint, 359
NOAUDIT statement (schema objects), 30
DDL tasks, 36, 38
syntax of, 102
NOAUDIT statement (SQL statements), 30
DDL tasks, 36, 38
syntax of, 102
NOCACHE hint, 360
NO_DATA_FOUND exception
(PL/SQL), 299
NO_MERGE hint, 359
NonStop SQL, xv
NO_PARALLEL hint, 359
normalization theory, ix
NOT BETWEEN comparison operator, 17
NOT EXISTS comparison operator, 17
NOT IN comparison operator, 16

Index

375

NOT LIKE comparison operator, 18
NOT logical operator, 19, 282
%NOTFOUND cursor attribute, 297
NOT_LOGGED_ON exception
(PL/SQL), 299
NULL command (SQL*Plus), 252
NULL statement (PL/SQL), 288
NULL values
aggregate functions and, 148
DECODE function and, 191-193
GROUPING function and, 149
NVL function and, 197
NUMBER datatype

Oracle, 8
PL/SQL, 267
numbers

converting to character strings, 185-187
formatting, 253
NUMERIC datatype
Oracle, 9
PL/SQL, 267
numeric format elements, 186
numeric functions, 153-162
NUMFORMAT command (SQL*Plus), 253
NUMWIDTH command (SQL*Plus), 253
NVARCHAR?2 datatype
Oracle, 7
PL/SQL, 267
NVL function, 10, 197

o

Object Option (Oracle), xxvi
OBJECT_NAME column and execution
plans, 331
object-oriented programming, xvi
vs. relational database model, xvii
objects, schema (see schema objects)
OPEN statement (PL/SQL), 294
operating system errors, 230
OPERATION column and execution
plans, 330
operators
PL/SQL, 281
SQL, 2
optimization, ALTER SESSION statement
and, 112
optimizer goal hints, 355
optimizer hints, 352-355

OPTIMIZER_MODE initialization
parameter, 325
optimizers, 325
estimating query costs, 330
gathering statistics, 351
option keyword (SQL*Plus), 205
OPTIONS column and execution
plans, 330
OR logical operator, 19, 282
OR option (EXPLAIN PLAN), 331
ORA-00001 error, 299
ORA-00051 error, 299
ORA-00061 error, 299
ORA-01001 error, 299
ORA-01012 error, 299
ORA-01017 error, 299
ORA-01404 error, 299
ORA-01422 error, 299
ORA-01476 error, 299
ORA-01722 error, 299
ORA-06500 error, 299
ORA-06501 error, 299
ORA-06502 error, 299
ORA-06504 error, 299
ORA-06511 error, 299
Oracle
aggregate functions, 146, 148-153
built-in functions, 145-203
data conversion, 13
datatypes, 6-11
errors, PL/SQL exception handling
for, 299
evolution of, xii
hints, 352-360
access method, 356357
join operation, 358
join order, 357
optimizer, 352-355
optimizer goal, 355
parallel execution, 359
Object Option, xxvi
relational operators, 14-20
resources, 361-364
schema objects, 3-6
sequence operations, 79-81
SEQUENCE values, 12
special character restrictions, 3
special-purpose data elements, 11-13
specifying session versions, 245

376

Index

Oracle (continued)
SQL statements, 25-31
executing, 325-334
tuning, 324-360
Trace facility, SQL, 334-345
versions of, xxvi
web sites, 363
Oracle Magazine, 362
ORDER BY option (EXPLAIN PLAN), 333
ORDERED hint, 358
OTHERS exception (PL/SQL), 299
outer joins, 23
OUTER option (EXPLAIN PLAN), 332, 333

P

packages, PL/SQL, 265, 313-318
PAGESIZE command (SQL*Plus), 253
parallel execution hints, 359
PARALLEL hint, 359
PARALLEL_INDEX hint, 360
parameters
initialization, 115, 335
partitioning, 139-141
storage, 137-139
parse counts and tkprof reports, 344
parse phase, SQL statement execution, 343
PARTITION operation (EXPLAIN
PLAN), 333
partition syntax, 6
Partition_Clause, 139-141
partition-extended table name, 6
password keyword (SQL*Plus), 206
PAUSE command (SQL*Plus), 227, 253
performance tuning (see SQL statements,
tuning)
phases of SQL statement execution, 343
Physical_Attribute_Clause, 141
plan tables
creating, 326
explaining a plan, 327
SET AUTOTRACE command and, 346
PLS_INTEGER datatype (PL/SQL), 267
PL/SQL, xvi, 2, 262-323
assignment statements, 281
blocks
anonymous, 263
block headers, 263, 265
components of, 263
declaration section, 263, 265-280
exception section, 298-304

execution section, 263, 280-298
functions, 264, 304, 309-313
packages, 265, 313-318
procedures, 264, 304-309
triggers, 318-323
case conversion, 257
control statements, 282-288
Cursors
attributes of, 297-298
closing, 295
declaring, 277-278
executing, 294-296
opening, 294
reading rows of data, 294
DELETE statement in, 293
DML statements used in, 288
exception handling, 278, 298-304
functions, 301
predefined exceptions, 299
statements, 301-304
user-defined exceptions, 299
expressions, 281
functions, 145-203
INSERT statement in, 291
operators, 281
record variables, declaring, 269-271
SELECT statement in, 289
using SQL statements with, 288-293
structure of, 263
UPDATE statement in, 291
variables (see variables, PL/SQL)
PLUSTRACE database role, 346
plustrce.sql script, 346
POSITIVE datatype (PL/SQL), 267
POWER function, 159
PRAGMA EXCEPTION_INIT statement
(PL/SQL), 279
predefined exceptions, PL/SQL, 299
prefix character, setting, 257
PRINT command (SQL*Plus), 240
printing, automatic, 242
PRIOR method (PL/SQL)
index-by tables, 274
variable-sized arrays, 277
Procedural Language/SQL (see PL/SQL)
procedures, PL/SQL, 264, 304-309
profiles
changing, 73-76
creating, 73-76
removing, 73-76

Index

377

PROGRAM_ERROR exception
(PL/SQL), 299
programming languages, vii
PROJECTION operation (EXPLAIN
PLAN), 333
prompt
displaying time as part of, 259
setting character sequence for, 257
setting the, 258
pseudo-columns, 11-13
PUSH_SUBQ hint, 360

Q

QUEL vs. SQL, xiii

queries
hierarchical, 328-330
improving performance of, 351-360
rewriting, 351

QUERY statistic, SQL Trace, 344

R

RAISE statement (PL/SQL), 300, 302
RAISE_APPLICATION_ERROR procedure
(PL/SQL), 303
range partitioning, 139-141
RANGE SCAN DESCENDING option
(EXPLAIN PLAN), 332
RANGE SCAN option (EXPLAIN PLAN), 332
RAW datatype
Oracle, 7
PL/SQL, 267
RAW values
converting hexadecimal digits to, 183
converting into large object (LOB)
datatypes, 188
SYS_GUID function and, 201
RAWTOHEX function, 183
Rdb, xiv
RDL (Relational Database Language), xx
REAL datatype
Oracle, 9
PL/SQL, 267
record types, declaring, 269
record variables
declaring, based on a type, 270
referencing fields in, 270
RECOVER command (SQL*Plus), 228-230
AUTORECOVERY command and, 243
RECSEP command (SQL*Plus), 254

RECSEPCHAR command (SQL*Plus), 254
relational completeness, ix
Relational Data Systems, xiv
Relational Database Language (RDL), xx
relational operators, 14-20
Relational Software Incorporated (RSD), xii
Relational Technology Incorporated
(RTD, xiii
REMARK command (SQL*Plus), 230
REMOTE operation (EXPLAIN PLAN), 333
RENAME statement, 30
DDL tasks, 34, 37
syntax of, 103
REPFOOTER command (SQL*Plus)
controlling, 217
defining, 218
displaying, 219
REPHEADER command (SQL*Plus)
controlling, 219
defining, 219
displaying, 220
REPLACE function, 169
reports
printing column headings in, 249
SQL*Plus formatting commands
for, 211-221
resource costs, calculating, 38
resources, Oracle/SQL, 361-364
REVOKE statement (object privileges), 30
DDL tasks, 36, 37
syntax of, 104
REVOKE statement (system privilege or
role), 30
DDL tasks, 33-37
syntax of, 104
roles
changing, 76
creating, 76
disabling/enabling, 127
granting, 101
removing, 76
revoking, 104
ROLLBACK command, SAVEPOINT
statement and, 122
rollback segments
changing, 77
creating, 77
removing, 77
transactions and, 128
ROLLUP keyword, xix, 149

378

Index

ROUND function, 159, 178
%ROWCOUNT cursor attribute, 297
ROWID datatype

Oracle, 11

PL/SQL, 268
ROWID hint, 357
ROWIDTOCHAR function, 184
ROWNUM pseudo-column, 11
rows

accessing multiple, 294-296

deleting, 117

inserting, 120

removing, 129

selecting, 122-126
%ROWTYPE, 271
ROWTYPE_MISMATCH exception

(PL/SQL), 299
RPAD function, 169
RSI (Relational Software Incorporated), xii
RTI (Relational Technology
Incorporated), xiii

RTRIM function, 170
RULE hint, 355
rule-based optimizer, 325

query costs and, 330

warning against use of, 356

S

SAVE command (SQL*Plus), 211
SAVEPOINT statement, 30

DML tasks, 107

syntax of, 122
scalar variables, declaring, 265-268
schema objects

auditing

setting up, 45
stopping, 102

cluster operations, 49-52

naming requirements for, 3

syntax for, 5

types of, 4

utilizing space, 141
schemas, x

creating, 78
script keyword (SQL*Plus), 206
Select (publication), 362
SELECT statement, 20, 30

DML tasks, 107

in PL/SQL programs, 289

syntax of, 122-126

SEMI option (EXPLAIN PLAN), 332
SEQUEL (Structured English Query
Language), x
SEQUENCE operation (EXPLAIN
PLAN), 333
SEQUENCE values, 12
sequences
changing, 79-81
creating, 79-81
removing, 79-81
renaming, 103
SERVEROUTPUT command (SQL*Plus)
Oracle7 syntax, 255
Oracle8 syntax, 255
sessions
changing characteristics of, 107-116
disabling/enabling SQL Trace, 336-338
setting parameters for, 115
specifying Oracle versions, 245
SET AUTOTRACE command, 345-349
prerequisites for using, 346
showing statistics and execution
plan, 347
showing statistics or execution plan, 348
suppressing query output, 349
SET command (SQL*Plus), 230
SHOWMODE command and, 256
system variables and, 241
SET CONSTRAINT statement, 30
DML tasks, 106
syntax of, 126
set operators, 19
SET ROLE statement, 30
DDL tasks, 36
DML tasks, 107
syntax of, 127
SET TIMING command, 349
SET TRANSACTION statement, 31
DML tasks, 107
syntax of, 128
SET_SQL_TRACE_IN_SESSION
procedure, 337
SHIFT command (SQL*Plus), 256
SHOW command (SQL*Plus), 231
system variables and, 241
SHOW ERRORS command (SQL*Plus), 306
SHOWMODE command (SQL*Plus), 256
SHUTDOWN command (SQL*Plus), 232
SIGN function, 160
SIN function, 160

Index

379

SINGLE option (EXPLAIN PLAN), 333
SMALLINT datatype
Oracle, 9
PL/SQL, 267
snapshot logs
changing, 83
creating, 83
removing, 83
snapshots
changing, 70-72, 81-83
creating, 70-72, 81-83
deleting rows from, 117
removing, 70-72, 81-83
retrieving data from, 122-126
updating data in, 130-132
SOME comparison operator, 17
SORT operation (EXPLAIN PLAN), 333
SOUNDEX function, 171
special characters in SQL statements, 2
SPOOL command (SQL*Plus), 233
spool files, controlling trailing blanks, 260
SQL
actions performed by, 1
adding object-oriented extensions, xvii
case conversion, 257
clauses, 133-144
commercial development of, xii—xvi
comparison operators, 15-18
core functionality of, xxi
data conversion, 13
datatypes, 6-11
evolution of, xvi—xix
functions (see SQL functions)
Java and, xviii
key aspects of, x
language standardization, xix—xxiii
logical operators, 18
naming requirements in, 3
origins of, ix
relational operators, 14-20
resources, 361-364
set operators, 19
shortcomings of, xi
Trace facility (see Trace facility, SQL)
vs. QUEL, xiii
XML and, xviii
SQL functions, 145-203
aggregate, 146-153
character, 162174

conversion, 182-190
date, 174-181
numeric, 153-162

SQL statements, x, 1-3

alphabetical listing of, 25-31
auditing
setting up, 46
stopping, 102
components of, 20-24
condition component, 23
DDL (Data Definition
Language), 32-105
DELETE, 21
DML (Data Manipulation
Language), 106-132
errors generated by, 237
executing, 325-334
explaining execution plans, 119
INSERT, 21
phases of statement execution, 343
in PL/SQL programs, 288-293
SELECT, 20
special characters used in, 2
special-purpose data elements, 11-13
syntax
for DDL, 38-105
for DML, 107-132
for schema objects, 5
for SQL clauses, 133-144
target component, 21
tkprof output, interpreting, 342-345
Trace facility, 334-345
tuning, 324-360
EXPLAIN PLAN statement
and, 325-334
optimizer hints, 352-355
query performance, 351-360
SET AUTOTRACE command
and, 345-349
SET TIMING command and, 349
TIMING command and, 350
UPDATE, 21

SQL-1999 standard, xxi—xxiii
SQL-86 standard, xx
SQL-89 standard, xxi
SQL-92 standard, xx

compliance levels, xxvi
FLAGGER command and, 248

380

Index

SQLBLANKLINES command
(SQL*Plus), 256
SQLCASE command (SQL*Plus), 257
SQLCODE function (PL/SQL), 301
SQLCONTINUE command (SQL*Plus), 257
SQL/DS, xiii
SQLERRM function (PL/SQL), 301
SQL/Foundation, xxi
SQLNUMBER command (SQL*Plus), 257
SQL*Plus, 204-261
buffer, editing the, 208-211
command-line syntax, 204-207
commands
disabled by restriction levels, 206
separating, 244
editing the current line, 208-211
executable name for, 207
formatting output, 211-221
invoking, 207
SET AUTOTRACE command, 345-349
SET TIMING command, 349
system variables, 241-261
TIMING command, 350
user variable commands, 238-241
SQLPREFIX command (SQL*Plus), 257
SQLPROMPT command (SQL*Plus), 258
SQLTERMINATOR command
(SQL*Plus), 258
SQRT function, 160
SQUARE (Specifying Queries as Relational
Expressions), ix
standards, SQL, xix—xxiii, xxvi, 248
STAR hint, 358
START command (SQL*Plus), 233
STAR_TRANSFORMATION hint, 358
STARTUP command (SQL*Plus), 234
statistics
associating, 44
collecting/deleting, 116
disassociating, 99
displayed by SET AUTOTRACE, 345
improving query performance, 351
timed, 335, 343
STDDEV function, 152
Stonebreaker, Michael, viii, xiii
STOPKEY option (EXPLAIN PLAN), 332
storage parameters and LOB data, 137-139
Storage_Clause, 142
STORAGE_ERROR exception (PL/SQL), 299

STORE command (SQL*Plus), 235
STRING datatype (PL/SQL), 268
subprograms, PL/SQL (see PL/SQL, blocks,
functions/procedures)
substitution variables, prefixing, 246
SUBSTR function, 171
SUBSTRB function, 172
SUFFIX command (SQL*Plus), 258
SUM function, 152
Sybase, xv
synonyms
creating, 84
removing, 84
renaming, 103
syntax
common clauses, 133-144
for DDL statements, 38-105
for DML statements, 107-132
for PL/SQL, 262-323
for schema objects, 5
for SQL clauses, 133-144
for SQL functions, 145-203
for SQL*Plus, 204-261
SYS_CONTEXT function, 197-200
SYSDATE function, 181
SYSDATE pseudo-column, 13
SYS_GUID function, 201
system privileges
granting, 101
revoking, 104
System R group, ix—xiv
system variables, SQL*Plus, 241-261

T

TAB command (SQL*Plus), 258
TABLE ACCESS operation (EXPLAIN
PLAN), 333
Table_Constraint_Clause, 143
tables
changing, 85-91
creating, 85-91
defining constraints on, 143
deleting rows from, 117
index-by, 271-275
inserting rows into, 120
operations on, 21-23
removing, 85-91
removing rows from, 129
renaming, 103

Index

381

tables (continued)
retrieving data from, 122-126
updating data in, 130-132
tablespaces
allocating storage in, 142
changing, 92-94
creating, 92-94
performing recovery operations
on, 228-230
removing, 92-94
temporary, 94
TAN function, 161
Tandem, xv
TANH function, 161
target component of SQL statements, 21
temporary tablespaces, 94
Teradata parallel query machine, xiv
TERMOUT command (SQL*Plus), 259
TIME command (SQL*Plus), 259
time zones, converting from/to, 176
timed statistics, 335, 343
TIMED_STATISTICS parameter, 335
TIMEOUT_ON_RESOURCE exception
(PL/SQL), 299
timers, starting/stopping, 350
times, returning current, 181
TIMING command, 350
TIMING command (SQL*Plus), 236, 259
titles, formatting (see BTITLE/TTITLE
commands)
tkprof utility, 339-345
formatting trace output, 339-341
interpreting the output file, 342-345
sort options, 340
syntax of, 339-341
what to look for in trace files, 344
TO_CHAR function, 14
converting dates to character
strings, 184
converting numbers to character
strings, 185-187
TO_DATE function, 10, 14, 187
TO_LOB function, 188
TO_MULTI_BYTE function, 188
TO_NUMBER function, 14, 188
TOO_MANY_ROWS exception
(PL/SQL), 299
TO_SINGLE_BYTE function, 189

Trace facility, SQL, 334-345
disabling/enabling, 336-338
initialization parameters, setting, 335
statistic descriptions, 343
tkprof utility (see tkprof utility)

trace files
finding, 338
limiting size of, 336-338
what to look for in, 344

trace output, formatting, 339-345

trace reports, displaying, 243

trailing blanks, controlling, 259

Transaction Processing Performance

Council (TPO), xv

TRANSACTION_BACKED_OUT exception

(PL/SQL), 299

transactions
SAVEPOINT statement and, 122
setting permissions for, 128

TRANSLATE function, 172

TRANSLATE USING function, 190

triggers, PL/SQL, 318-323

trigonometric functions, 153-162

TRIM function, 173

TRIM method (PL/SQL), variable-sized

arrays, 277

TRIMOUT command (SQL*Plus), 259

TRIMSPOOL command (SQL*Plus), 260

TRUNC function, 161, 181

TRUNCATE statement, 31
DML tasks, 107
syntax of, 129

TTITLE command (SQL*Plus)
controlling, 220
defining, 220
displaying, 221

tuning SQL statements (see SQL statements,

tuning)

TYPE statement (PL/SQL)
index-by tables, declaring, 271
records, declaring, 269
variable-sized arrays, declaring, 275

types, data (see datatypes)

U

UID function, 201
UNDEFINE command (SQL*Plus), 240
UNDERLINE command (SQL*Plus), 260

382

Index

UNION ALL set operator, 19
UNION operation (EXPLAIN PLAN), 334
UNION set operator, 19
UNIQUE option (EXPLAIN PLAN), 332, 333
UPDATE statement, 21, 31
DML tasks, 106
in PL/SQL programs, 291
syntax of, 130-132
trigger events and, 318-321
UPPER function, 174
UROWID datatype
Oracle, 11
PL/SQL, 268
USE_CONCAT hint, 357
USE_HASH hint, 359
USE_MERGE hint, 359
USE_NL hint, 359
User Friendly Interface (UFD) (see
SQL*Plus)
USER function, 201
USER pseudo-column, 13
user variable commands,

SQL*Plus, 238-241
user-defined exceptions, PL/SQL, 299
USER_DUMP_DEST directory, 338
USER_DUMP_DEST parameter, 336
USERENYV function, 202
USERENV namespace attributes, 198-200
username keyword (SQL*Plus), 206
users

changing, 95-97

creating, 95-97

removing, 95-97
utlxplan.sql script, 326

v

VALUE_ERROR exception (PL/SQL), 299
VARCHAR datatype (PL/SQL), 268
VARCHAR?2 datatype
Oracle, 7
PL/SQL, 268
VARIABLE command (SQL*Plus), 240
variables
PL/SQL
assignment statements, 281
datatypes, 267-268
declaring, 265-268
expressions, 281
implementing global, 313

index-by tables and, 271-275
record types and, 269-271
scope of, 268
SQL, 2
SQL*Plus
system, 241-261
user, 238-241
variable-sized arrays, 275-277
VARIANCE function, 152
VARRAYS, 275-277
VERIFY command (SQL*Plus), 261

VIEW operation (EXPLAIN PLAN), 334

views
changing, 97-99
creating, 97-99
deleting rows from, 117
inserting rows into, 120
joins and, 22
operations on, 21-23
removing, 97-99
renaming, 103
retrieving data from, 122-126
updating data in, 130-132
VSIZE function, 203

W

web sites, Oracle, 363
WHENEVER OSERROR command
(SQL*Plus), 236
WHENEVER SQLERROR command
(SQL*Plus), 237

WHERE clause, 23

WHILE loop (PL/SQL), 285
whitespace, formatting, 258
WRAP command (SQL*Plus), 261

X
XML and SQL, xviii

VA

ZERO_DIVIDE exception (PL/SQL), 299

About the Author

David C. Kreines is the Manager of Database Services for Rhodia, Inc., a subsid-
iary of Rhone-Poulenc S.A., and the coauthor of Oracle Database Administration:
The Essential Reference (O'Reilly & Associates, 1999) and Oracle Scripts (O'Reilly &
Associates, 1998). Dave has worked with Oracle as a developer and database
administrator since 1985, on a wide variety of platforms, from PCs to mainframes.
He is an Oracle Certified Professional, is certified as a DBA, and has been a
frequent contributor to Oracle conferences, user groups, and publications, both in
the United States and in Europe. Dave served two terms as president of the Inter-
national Oracle Users Group—Americas (IOUG-A), and spent ten years on the
board of directors.

Colophon

Our look is the result of reader comments, our own experimentation, and feed-
back from distribution channels. Distinctive covers complement our distinctive
approach to technical topics, breathing personality and life into potentially dry
subjects.

The animal on the cover of Oracle SQL: The Essential Reference is a scorpion.
Fossil records indicate that scorpions were among the first arachnids, and the pres-
ence of gills in some fossil specimen may indicate that the scorpion evolved from
a sea-dwelling ancestor. Today, scorpions dwell in desert habitats, where they
sleep under rocks or in sand burrows during the day, and come out at night to
hunt insects. Scientists know of approximately 1,300 species of scorpions, ranging
in size from one to eight inches, and ranging in color from yellow-brown to green
to black.

The scorpion locates its prey by detecting air-born vibrations through the sensory
hairs on its pedipalps (claws). The scorpion then uses its pedipalps to grasp the
prey while injecting it with paralyzing venom from the aculeus (stinger) on the
end of its tail. A scorpion also uses its venomous sting for defense against would-
be devourers, which include fellow arachnids, centipedes and spiders, as well as
lizards, birds, and small mammals.

The scorpion’s mating ritual involves an elaborate courtship dance, during which
the male and female grasp claws; the male secretes spermatophore on a rock or
twig over which the female crosses, drawing in the sperm. Gestation can last up to
one and a half years for some species, after which the female gives birth to

numerous live young, who spend their first week or two traveling around on their
mother’s back.

Scorpions produce venom that is deadly to humans. Don’t walk barefoot in the
desert at night, or, if you must, shine a black light before you—scorpions fluo-
resce in ultraviolet light!

Darren Kelly was the production editor, Ann Schirmer was the copyeditor, and
Maureen Dempsey was the proofreader for Oracle SQL: The Essential Reference.
Claire Cloutier, Linley Dolby, Sarah Jane Shangraw, and Mary Sheehan provided
quality control. Judy Hoer wrote the index. Interior composition was done by
James Carter, Deborah Smith, and Nancy Williams.

Ellie Volckhausen designed the cover of this book, based on a series design by
Edie Freedman. The cover image is a 19th-century engraving from the Dover
Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress 4.1
using Adobe’s ITC Garamond font.

Alicia Cech and David Futato designed the interior layout based on a series design
by Nancy Priest. Mike Sierra implemented the design in FrameMaker 5.5.6. The
text and heading fonts are ITC Garamond Light and Garamond Book; the code
font is Constant Willison. The illustrations that appear in the book were produced
by Robert Romano using Macromedia FreeHand 8 and Adobe Photoshop 5. This
colophon was written by Sarah Jane Shangraw.

Whenever possible, our books use a durable and flexible lay-flat binding. If the
page count exceeds this binding’s limit, perfect binding is used.

	Oracle SQL
	Table of Contents
	Foreword
	SQL: A Venerable History and a Vital Future
	Programming and Data Access Languages
	The Origins of SQL
	The SQL Language
	The Commercial Development of SQL through the 1980s
	The Evolution of SQL: the 1990s and Beyond
	Standardization of the SQL Language
	SQL: A Success Story

	Preface
	Audience for This Book
	Versions of Oracle
	Contents of This Book
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	Elements of SQL
	Lexical Conventions
	Naming in SQL
	Schema Objects
	General Syntax
	Partition Syntax

	Datatypes
	Character Data
	Large Objects
	Numeric Data
	Dates
	NULL
	Locators
	Pseudo- Columns

	Data Conversion
	Relational Operators
	Arithmetic Operators
	Concatenation Operator
	Comparison Operators
	Logical Operators
	Set Operators

	Structure of a SQL Statement
	The SQL Operation
	The Target
	The Condition

	SQL Statements

	Data Definition Statements
	SQL DDL Statements by Task
	SQL Statement Syntax

	Data Manipulation and Control Statements
	SQL DML and Control Statements by Task
	SQL Statement Syntax

	Common SQL Elements
	SQL Functions
	Aggregate Functions
	GROUP BY
	DISTINCT and ALL
	Aggregate Functions and NULL Values

	Numeric Functions
	Character Functions
	Date Functions
	Conversion Functions
	Other Functions

	SQL* Plus
	Command- Line Syntax
	Keywords
	Examples

	SQL* Plus Editing Commands
	Formatting SQL* Plus Output
	Miscellaneous SQL* Plus Commands
	SQL* Plus Variables and Related Commands
	SQL* Plus System Variables

	PL/ SQL
	The Structure of PL/ SQL
	Block Header
	Declaration Section
	Declaring Variables
	Declaring Records
	Index- by Tables
	Index- by Table Methods
	Variable- sized Arrays
	VARRAY Array Methods
	Declaring Cursors
	Declaring Exceptions

	Execution Section
	Assignment Statements
	Expressions
	Control Statements
	SQL Statements
	Executing Cursors
	Referencing Cursor Attributes

	Exception Section
	Types of Exceptions
	Exception Handling
	Exception Handling Statements

	Procedures and Packages
	Procedures
	Functions
	Packages

	Triggers

	SQL Statement Tuning
	Using EXPLAIN PLAN
	Creating the Plan Table
	Explaining a Query
	Viewing the Execution Plan
	Interpreting the Results

	Using Oracle™s SQL Trace Facility
	Parameters to Set
	Enabling and Disabling SQL Trace
	Finding Trace Files
	Formatting Trace Output with tkprof
	tkprof Example
	Interpreting tkprof Output

	SQL* Plus Tuning Aids
	SET AUTOTRACE
	Timers

	Improving Query Performance
	Modifying Database Structure
	Gathering Statistics
	Rewriting Queries
	Using Optimizer Hints
	Types of Hints

	SQL Resources
	Books
	Other Publications
	Organizations
	Web Sites

	Index

