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Preface 

This text book is intended for studies in the theory of structural dynamics, with 
focus on civil engineering structures that may be described by line-like beam or 
beam-column type of systems, or by a system of rectangular plates. Throughout 
this book the mathematical presentation contains a classical analytical description 
as well as a description in a discrete finite element format, covering the 
mathematical development from basic assumptions to the final equations ready for 
practical dynamic response predictions. Solutions are presented in time domain as 
well as in frequency domain. It has been my intention to start off at a basic level 
and step by step bring the reader up to a level where the necessary safety 
considerations to wind or horizontal ground motion induced dynamic design 
problems can be performed, i.e. to a level where dynamic displacements and 
corresponding cross sectional forces can actually be calculated. However, this is 
not a text book in wind or earthquake engineering, and hence, relevant load 
descriptions are only included in so far as it has been necessary for the 
performance of illustrative examples. For more comprehensive descriptions of 
wind and earthquake induced dynamic load and load effects the reader should 
consult the literature, e.g. refs. [15] and [16]. Less attention has been given to 
other load cases, e.g. to any kind of shock or impact loading. Also, a 
comprehensive description of structural damping properties are beyond the scope 
of this book, but again, for the sake of completeness, a chapter covering the most 
important theories behind structural damping has been included. The special 
theory of the tuned mass damper has been given a comprehensive treatment, as 
this is a theory not fully covered elsewhere. For the same reason a chapter on the 
problem of moving loads on beams has been included. 

The reading of this book will require some knowledge of structural 
mechanics, i.e. the basic theory of elasticity. Also, readers unfamiliar with the 
theory of stochastic processes and time domain simulations should commence 
their studies by reading Appendices A and B, or another suitable text book. 

The drawings have been prepared by Anne Gaarden. Thanks to her and all 
others who have contributed to the writing of this book. 

 
Trondheim, September 2012                                            Einar N. Strømmen 
 



Notation 

Matrices and vectors: 

Matrices are in general bold upper case Latin or Greek letters, e.g. Kor Φ . 

Vectors are in general bold lower case Latin or Greek letters, e.g. qor φ . 

[ ]diag ⋅ is a diagonal matrix whose content is written within the bracket. 

( )det ⋅ is the determinant of the matrix within the bracket. 

( )tr ⋅ is the trace of a matrix. 

 

Imaginary quantities: 

i is the imaginary unit (i.e. 1i = − ). 

( )Re ⋅ is the real part of the variable within the brackets. 

( )Im ⋅ is the imaginary part of the variable within the brackets. 

 

Superscripts and bars above symbols: 

Super-script T indicates the transposed of a vector or a matrix. 

Super-script * indicates the complex conjugate of a quantity. 

Dots above symbols (e.g. r& , r&&) indicates time derivatives, i.e. /d dt , 2 2/d dt . 

Prime on a variable (e.g. LC′ or φ ′ ) indicates its derivative with respect to a 

relevant variable, e.g. d dxφ φ′ = . Two primes is then the second derivative (e.g. 
2 2d dxφ φ′′ = ) and so on. 

Bar ( − ) above a variable (e.g. r ) indicates its time invariant average value. 

Tilde ( ∼ ) above a symbol (e.g. nM% ) indicates a modal quantity. 

Hat ( ∧ ) above a symbol (e.g. Ĥη ) indicates a normalised quantity. 

 

The use of indices and superscript: 

Index ,x y  or z  refers to the corresponding structural axis. 

i and j  are general indices on variables. 



X Notation
 

n and m  are mode shape or element numbers. 

p and k  are in general used as node numbers. 

 

Abbreviations: 

CC and SC are short for the centre of cross-sectional neutral axis and the shear 

centre. 

tot is short for total. 

max,min are short for maximum and minimum. 

L or
A  means integration over the entire length or the area of the system. 

 

Latin letters: 

 

A  Area, cross sectional area 

jA  Coefficient associated with variable j  
* *
1 6A A−  Aerodynamic derivatives associated with the motion in torsion 

, ,m nA A A  Connectivity matrix (associated with element m or n) 

a  Coefficient, Fourier coefficient, amplitude 

ja  Fourier coefficient vector associated with variable j  

B  Cross sectional width 

b  Coefficient, band-width parameter 

cb  Distance between cable planes is a suspension bridge 

qb  Buffeting dynamic load coefficient matrix at cross sectional level 

C , C Damping coefficient or matrix containing damping coefficient 

aeC , aeC  Aerodynamic damping, aerodynamic damping matrix 

c , 0c  Coefficient,damping coefficient at cross sectional level 

0c  Damping matrix at a cross sectional level 

, aec c  Damping matrix at element level, aerodynamic damping matrix 

,Co Co  Co-spectral density, co-spectral density matrix 

jCov  Covariance matrix associated with variable j  

D , d  Cross sectional depth, Coefficient 

d , kd  Element displacement vector, element end displacement component 

E  Modulus of elasticity 



Notation XI
 

e , ce  Exponential number ( 2.718281828≈ ), Cable sag 

F , F  Element force vector, force 

, nf f  Frequency [Hz], eigen frequency associated with mode n  

( )f ⋅  Function of variable within brackets 

G  Modulus of elasticity in shear 

( )g ⋅ , g  Function of variable within brackets, gravity constant 

( ) ,H t H  Horizontal cable force component 
* *
1 6H H−  Aerodynamic derivatives associated with the across-wind motion 

nH , rH  Frequency response function, frequency response matrix 

,Hη ηH%%  Modal frequency response functions, matrix containing 
n

Hη
%  

ch , mh  Length of suspension bridge hangers, hanger length at mid span 

rh  Vertical distance between shear centre and hanger attachment 

0h  Height (above girder) of suspension bridge tower 

,t wI I  St Venant torsion and warping constants 

jI  Turbulence intensity of flow components , orj u v w=     

yI , zI  Moment of inertia with respect to bending abouty or z axis 

I  Identity matrix 

i  The imaginary unit (i.e. 1i = − ) 

,J  J  Joint acceptance function, joint acceptance matrix 

j  Index variable 

K , K  Stiffness, stiffness matrix 

aeK , aeK  Aerodynamic stiffness, aero dynamic stiffness matrix 

k  Index variable, node or sample number 

pk  Peak factor 

, aek k  Stiffnessmatrix at element level, aerodynamic stiffness matrix 

L  Lagrange function 

L  Length (of structural system) 
m

nL  Integral length scales (m = y, z or θ, n = u,v or w) 

el  Effective length 

,g gM M  Concentrated mass at position Mx , mass matrix containing gM  

mM  Bending moment (m=x, y, z) 

m  Index variable 

m ,M  Mass, mass matrix 



XII Notation
 

nm%  Modally equivalent and evenly distributed mass 

0m , m  Mass matrix at a cross sectional level, Mass matrix at element level 

N  Number, number of elements in a system 

rN  Number of degrees of freedom in a system 

,x yN N  Normal force (in orx y  directions) 

n  Index variable 

nn  Matrix containing time invariant element end forces 

, ,F qP P P  Work performed by external forces acting on the system 
* *

1 6P P−  Aerodynamic derivatives associated with the along-wind motion 

p  Index variable, node or sample number 

jQ  External load vector component in directions ,  or j x y z=   

q , q  Pressure, distributed load or load vector at cross sectional level 

R ,R  External load, reaction force, external load vector at system level 

,R  R%%  Modal load, Modal load vector 

r ,r  Cross sectional displacement or rotation, displacement vector 

elr , elr  Element cross sectional displacement, displacement vector 

pr  Polar radius 

St  Strouhal number 

S , S  Auto or cross spectral density, cross-spectral density matrix 

jS  Cross spectral density matrix associated with variable j  

s  General coordinate ( , ors x y z=    ) 

, ,M mT T T  Motion energy of the system body masses 

,t T  Time, total length of time window 

, ,M mU U U  Strain energy stored in the material fibres of the system 

U  Instantaneous wind velocity in the main flow direction 

u  Fluctuating along-wind horizontal velocity component 

V  Volume 

V , RV  Mean wind velocity, resonance mean wind velocity 

,y zV V  Shear forces 

v  Fluctuating across wind horizontal velocity component 

extW , intW  External, internal work 

w  Fluctuating across wind vertical velocity component 

, ,X Y Z  Cartesian structural global axis 



Notation XIII
 

, ,x y z  Cartesian structural element cross sectional main neutral axis (with 

origo in the shear centre, x in span-wise direction and z vertical) 

rx  Chosen span-wise position for response calculation 

 

Greek letters: 

 

α Coefficient 

β  Phase angle, coefficient 

β  Matrix, matrix containing mode shape derivatives 

, ,z θγ γ γ  Shear strain, shear strain associated with shear forceor torsion 

δ  Incremental displacement operator 

∂  Derivative operator 

ε , ε , jε  Strain, strain vector, strain component ( ,  or j x y z= ) 

ζ orζ  Damping ratio or damping ratio matrix 

η ,η  Generalised coordinate, vector containing modN η  components 

θ  Index indicating cross sectional rotation or load (about shear centre) 

κ  Coefficient 

ν  Poisson’s ratio, coefficient 

λ  Coefficient, wave length 

μ  Coefficient, friction coefficient 

Π  Total energy 

ϑ  Coefficient 

ρ , jρ  Densityof air, density of component associated with j  
2,σ σ  Standard deviation, variance 

xσ , τ  Normal stress, Shear stress 

, ,y zn n nθφ φ φ Continuous mode shape components in y , z  and θ  directions 

( ),x yϕ  Plate mode shape functions 

Φ  mod3 N⋅ by modN  matrix containing all mode shapes nφ  

rΦ  3 by modN  matrix containing the content of Φ  at rx x=  

nφ  Mode shape number n  

ψ  Chosen approximate mode shape function, angle 

, nψ ψ  Chosen approximate mode shape matrix, discrete mode shape 

,ψ ψ
)) )

 Contains first and second order derivatives of ψ  



XIV Notation
 

Ω  Coefficient 

ω  Circular frequency (rad/s) 

nω  Eigenfrequency associated with mode shape n  

( )n Vω  Resonance frequency assoc. with mode n at mean wind velocity V  

 

Symbols with both Latin and Greek letters: 

 

,fΔ Δω  Frequency segment 

tΔ  Time step 
sΔ  Spatial separation (s = x, y or z) 
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Chapter 1 

Basic Theory 

1.1   Introduction 

This text book focuses on the prediction of dynamic response of slender line-like 
civil engineering structures. It is a general assumption that structural behaviour is 
linear elastic and that any non-linear part of the relationship between load and 
structural displacements may be disregarded. It is taken for granted that the load 
direction throughout the entire span of the structure is perpendicular to the axis in 
the direction of its span.  

It is assumed that the mean value (static part) of any load is constant such that 
structural response can be predicted as the sum of a mean value and a fluctuating 
part, as illustrated in Fig. 1.1.a. As shown in Fig. 1.1 and 1.2 a line-like beam or  
 

 

Fig. 1.1 Structural axes and displacement components 
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Fig. 1.2 Basic axis and vector definitions 

beam-column type of structural element is described in a Cartesian coordinate 

system [ ], ,x y z , with its origin at the shear centre of the cross section, x is in the 

span direction and with y  and z  parallel to the main neutral structural axis CC 

(i.e. the neutral axis with respect to cross sectional bending according to Hook’s 
law and Navier’s hypothesis), which will coincide with the mass centre if material 
density and modulus of elasticity do not change over the area of the cross section). 

Response displacements yr , zr , rθ  and load components yF , zF , yq , zq  and 

qθ  are referred to the shear centre (SC), while response displacement xr  and load 

component xF  are referred to the origin of main neutral axis . Similarly, the cross 

sectional stress resultants yV , zV  and xM  are referred to the shear centre, while 

bending moment and axial stress resultants yM , zM  and N  are referred to the 

origin of main neutral axis. The basic units are as follows: 
 

• displacement: meter ( m ) 

• time: second ( s ) 

• mass: kilogram ( kg ) 

• force: Newton ( 2N kg m s= ⋅ , [1, 2]). 

1.2   d’Alambert’s Principle of Instantaneous Equilibrium 

In statics the equilibrium condition of a system subject to a set of constant 

concentrated forces is given by 0iF = , where iF  (with unit N ) are all the 
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relevant forces in the direction of ,  or i x y z= . It comes from the requirement 

that a system in static equilibrium must be at rest or in a situation of constant 
speed, i.e. that its acceleration in any direction ir (with unit m/s2) is equal to zero. 

Newton’s second law will then require that 0i iF M r= ⋅ =  , where M  is the 

mass of the body. However, in dynamics any equilibrium consideration will have 
to include the motion of the system. This is done by adopting the principle of 
d’Alambert (first published by Lagrange [3]) that equilibrium for a system in 
motion can be established by considering an instantaneous situation where the 
system is frozen at an arbitrary position in space and time, and that the 
acceleration of the system can be interpreted as an inertia force in accordance with 
Newton’s second law, i.e. as a resistance against being accelerated. 

Discrete Systems 

Below, examples of discrete systems are illustrated in Figs. 1.3, 1.5-1.9 and 1.11. 
For such systems the relevant equilibrium requirements are most conveniently 
established in a vector-matrix description. Let a system of a simple mass M  and 
a linear elastic spring with stiffness K  be suspended in a vertical position as 
illustrated in Fig. 1.3. To the left the system is shown at its unloaded position. Let 
the system then be subject to gravity Mg  (where g  is the gravity acceleration 

constant) and a constant time invariant force F . In this position the system is at 
rest in its static position and it has been displaced a distance r . As shown in Fig. 

1.3.b the equilibrium requirement is then that K r M g F⋅ = ⋅ + , from which r  

may be calculated if all other quantities are known. Let the system then be subject 

to an additional dynamic force ( )F t , which is accompanied by a corresponding 

dynamic displacement ( )r t . The equilibrium condition is then that the external 

forces ( )M g F F t⋅ + +  must be equal to the sum of the elastic spring force 

totK r⋅  and a resistance inertia force totM r⋅   in accordance with Newton’s 

second law and the principle of d’Alambert, i.e. that 

( )tot totM r K r M g F F t⋅ + ⋅ = ⋅ + +  (1.1)

Introducing that ( )totr r r t= +  then 

( ) ( )M r K r r M g F F t⋅ + ⋅ + = ⋅ + +  (1.2) 

Since the static equilibrium condition is that 

K r M g F⋅ = ⋅ +  (1.3) 
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Fig. 1.3 Simple spring-mass system 

it is seen that Eq. 1.2 may be reduced accordingly into a purely dynamic 
equilibrium condition 

( )M r K r F t⋅ + ⋅ =  (1.4) 

Thus, it may be concluded that the equilibrium condition for such a linear elastic 
system may be split into two, a static time invariant condition and a dynamic 
equilibrium condition where only dynamic loads are included and where the 
forces due to the instantaneous acceleration of the system itself is represented by a 
set of inertia forces acting in the opposite direction of the motion. Hence, by 
splitting the load (concentrated or evenly distributed) into a mean time invariant 
part and a fluctuating part 

( )
( )
( )
( )

x x

tot y y

z z

F F t

t F F t

F F t

  
  = + = +   
  

   

F F F

 

or 

( )
( )
( )

( )
( )
( )

,

,

,

y y

tot z z

q x q x t

q x q x t

q x q x tθ θ

   
   

= + = +   
   
   

q q q  (1.5)
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then the mean and fluctuating parts of the response displacements as well as the 
corresponding cross sectional stress resultants 

( )
( )
( )

( )
( )
( )

,

,

,

y y

z z

r x r x t

r x r x t

r x r x tθ θ

   
   

+ = +   
   
   

r r

   

and   

( )
( )
( )
( )
( )

( )

( )
( )
( )
( )
( )

( )

,

,

,

,

,

,

yy

zz

xx

yy

zz

V x tV x

V x tV x

M x tM x

M x tM x

M x tM x

N x tN x

   
   
   
   
   +
   
   
   
     

 (1.6)

may be obtained by separately satisfying the relevant static and dynamic 
equilibrium requirements of the system. 

Let us first assume that ( ) 0F t = , but that the system in Fig. 1.3 has been set 

into an oscillating motion by imposing an initial displacement ( )0r  and ( )0r . 

The solution to Eq. 1.4 is then given by 

( ) ( ) ( )sin cosn nr t b t c tω ω= ⋅ + ⋅  (1.7)

where b  and c are coefficients which may be determined from the position and 

velocity conditions at 0t = , i.e. that ( )0r c=  and ( )0 nr bω= , and where the 

frequency of motion nω  may be obtained by introducing Eq. 1.7 into Eq. 1.4, 

from which it is obtained that 

( ) ( )2 0nK M r tω− ⋅ =  (1.8)

A non-trivial solution ( ) 0r t ≠  can then only be obtained if 2 0nK Mω− = , and 

thus, the frequency of a free unloaded and oscillatory motion is given by 

n K Mω = . The motion is harmonic because it contains only a single and 

stationary frequency. This is what we call the eigenfrequency of the system. It has 
the unit rad/s. [In some cases it may be convenient to convert it into 

( )2n nf ω π=  Hz (1/s), while yet another option is to introduce the period of the 

motion 1n nT f= .] Furthermore, since for two arbitrary angles 1α  and 2α  

( )1 2 1 2 1 2sin sin cos cos cosα α α α α α⋅ + ⋅ = −  (1.9)
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then the solution in Eq. 1.7 may readily be converted into 

( ) ( )cosr t a tω β= ⋅ −
 
where ( ) ( )

( ) ( )

2 22 2 0 0

tan 0 0

n

n

a b c r r

b c r r

ω

β ω

 = + =   +      
= =  ⋅   




 (1.10) 

Or, and most often more conveniently, ( )r t  may be expressed in a complex 

format by defining ( )1 2*i ia c i b a e a a eβ β− −= − ⋅ = =  where i  is the complex 

unit ( 1i = − ) and ( ) ( )tan Im Rea a b cβ = = . Thus, it is seen that 

( ) ( ) ( )

( ) ( ) ( )

Re Re

Re Re cos

i t i t

i ti i t

r t a e c i b e

a e e a e a t

ω ω

ω ββ ω ω β−−

 = ⋅ = − ⋅ ⋅ 
 = = ⋅ = ⋅ − 

 (1.11)

and, as shown above, ( )0c r=  and ( )0 nb r ω=  . A plot of ( )r t  is illustrated 

in Fig. 1.4. 

 

Fig. 1.4 Simple unloaded and undamped motion of single degree of freedom system 

 

Example 1.1 

 

 

Fig. 1.5 Single mass with two parallel springs 



1.2   d’Alambert’s Principle of Instantaneous Equilibrium 7 

A single mass with two parallel springs is shown on the left hand side in Fig. 
1.5 above. Next, it has been given an arbitrary harmonic displacement 

( ) Re i tr t ae ω =   , and to the far right is shown the corresponding free body 

diagram of forces acting on the mass. Thus, equilibrium will require 
 

 ( )1 2 0Mr K K r+ + =  and thus, introducing ( ) Re i tr t ae ω =   , then 

 2
1 2 0K K Mω+ − =  rendering ( )1 2n K K Mω = +  

 
from which it may be concluded that stiffness contributions in parallel are 
additive. 

Example 1.2 

A single mass with two springs in sequence is shown on the left hand side of Fig. 
1.6. Next, it has been given an arbitrary harmonic displacement 

( )2 2Re i tr t a e ω =   . During this motion the connection between the two springs 

has undergone a corresponding harmonic displacement ( )1 1Re i tr t a e ω =   . The 

resisting force in the upper spring is 1 1K r , while the resisting force in the lower 

spring is ( )2 2 1kF K r r= − . The force throughout the sequence of springs must be 

unchanged, and thus 
 

  ( )1 1 2 2 1K r K r r= −   2
1 2

1 2

K
r r

K K
=

+
      

1 2
2

1 2
k

K K
F r

K K
=

+
 

 

Fig. 1.6 Single mass with two springs in sequence 
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Equilibrium of the mass (see right hand side of Fig. 1.6) will then require 

 1 2
2 2

1 2

0
K K

Mr r
K K

+ =
+

  which with ( )2 2Re i tr t a e ω =    

 21 2

1 2

0
K K

M
K K

ω− =
+

 and thus n totK Mω =

 where 

1

1 2

1 1
totK

K K

−
 

= + 
 

 

It may be concluded that stiffness contributions in sequel are inversely additive. 

Example 1.3 

A single mass with a spring on either side is shown on the left hand side of  
Fig. 1.7 below. The springs have been pre-stretched by a constant (time invariant) 

normal force N  such that prior to any displacement the system is in a state of 
equilibrium. It is taken for granted that the system displacements are never larger 
than that which will cause the springs to slacken. Next, it has been given an 

arbitrary harmonic displacement ( ) Re i tr t ae ω =   , and to the far right is 

shown the corresponding free body diagram of forces acting on the mass. Thus, 
equilibrium will require 

 ( ) ( )1 2 0Mr N K r N K r+ + − − =  which with ( ) Re i tr t ae ω =    

  2
1 2 0K K Mω+ − =  and thus ( )1 2n K K Mω = +  

from which it may be concluded that stiffness contributions are additive. 

 
Fig. 1.7 Single mass with springs on either side 
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Example 1.4 

 

Fig. 1.8 Small displacement pendulum 

The classic case of a simple pendulum is shown in Fig. 1.8 above. For simplicity, 
the mass and bending stiffness of the rod are assumed negligible. At an arbitrary 

rotation ( ) Re i tt a e ω
θθ  =    a free body diagram of the system is shown to the 

right. In this situation the mass M  is subject to the gravity force Mg  and 

tangential acceleration 
 

( )2

d
L

dt
θ

 
and corresponding restoring inertia force ( )2

d
M L ML

dt
θ θ⋅ =  

 
Instantaneous moment equilibrium about the rotation point p  will then require 

( ) sin 0ML L Mg Lθ θ⋅ + ⋅ =   ( ) sin 0g Lθ θ+ ⋅ =  

which cannot be analytically solved unless we assume θ  small such that 

sinθ θ≈ , in which case 
 

 ( ) 0g Lθ θ+ ⋅ =  and thus Re i ta e ω
θθ  =     

 rendering 2 0g L ω− =  from which n g Lω =  is obtained. 
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Fig. 1.9 Spring mass system with two degrees of freedom 

The system in Fig. 1.3, as well as all the examples above, contains only one 
unknown displacement component. We say they have one degree of freedom. A 
system with two degrees of freedom is illustrated in Fig. 1.9. I.e., 

 
• the number of degrees of freedom in a system is equal to the number of 

unknown displacement components that are necessary in order to enable a 
complete depiction of the position of the system at all times. 

 

The system in Fig. 1.9 has two degrees of freedom, 1r  and 2r . The equilibrium 

requirements (see right hand side free body diagram of 1M  and 2M  in Fig. 1.9 

above) are then given by 

( )
( )

1 1 1 1 1 2 2 1

2 2 1 2 2 2

0

0

K r M r F K r r

K r r M r F

⋅ + ⋅ − − ⋅ − = 


⋅ − + ⋅ − = 




 (1.12)

This may more conveniently be written in a matrix-vector format 

1 1 1 2 2 1 1

2 2 2 2 2 2

0

0

M r K K K r F

M r K K r F

+ −         
+ =         −         




 (1.13)

which, by defining 

1

2

r

r

 
=  
 

r
  

1

2

0

0

M

M

 
=  
 

M
  

1 2 2

2 2

K K K

K K

+ − 
=  − 

K
  

and  
1

2

F

F

 
=  
 

F  (1.14) 



1.2   d’Alambert’s Principle of Instantaneous Equilibrium 11 

may be reduced into a most compact format 

⋅ + ⋅ =M r K r F  (1.15)

If =F 0  then the solution is a harmonic motion which may be described by 

( )Re i te ω= ⋅r φ
   

where   [ ]1 2
T

a a=φ  (1.16)

By introducing this into Eq. 1.15 then the following requirement is obtained 

( )2ω− ⋅ ⋅ =K M φ 0  (1.17) 

Thus, ≠r 0  can only be obtained if ( )2det 0ω − ⋅ = K M , rendering 

( ) ( )2 2 2
1 2 1 2 2 2 0K K M K M Kω ω+ − ⋅ − − =  (1.18)

  ( ) ( )( )4 2
1 2 1 2 2 1 1 2 2 0K K M K M K M K Mω ω−  + +  + =   (1.19) 

which has the following roots 

2
2 1 2 2 1 2 2 1 2
1

1 2 1 2 1 2

2
2 1 2 2 1 2 2 1 2
2

1 2 1 2 1 2

1 1

2 4

1 1

2 4

K K K K K K K K

M M M M M M

K K K K K K K K

M M M M M M

ω

ω

   + + = + − + −        

   + +
= + + + −   
    

 (1.20)

Eq. 1.17 is an eigenvalue problem whose solution is given by 1ω  and 2ω . They 

are the eigenfrequencies of the system. The number of eigenfrequencies will 
always be the same as the number of degrees of freedom in the system. They are 
usually presented in ascending order because in almost all practical cases it is a 
few of the lowest that are of primary interest. For each eigenfrequency there is a 
corresponding eigenvector. Introducing 1ω  back into Eq. 1.17 we obtain 

( )1 1 2
1 2 1 1 2

1
a

K K M Kω

 
 =

+ −  
φ  (1.21)
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If we introduce 2ω  back into Eq. 1.16 we obtain 

( )2 1 2
1 2 2 1 2

1
a

K K M Kω

 
 =

+ −  
φ  (1.22)

It is seen from Eq. 1.17 that 1φ  and 2φ  may be arbitrarily scaled (e.g. by setting 

1 1a = ). I.e., they do not represent the actual displacements of the system, only its 

shape. We call them the mode shapes of the system. It is only if we have a forcing 
action on the system that we can quantify a corresponding displacement response. 

Let for instance 7
1 2 2 10  K K Nm= = ⋅  and 6

1 2 10M M kg= =   . Then 

1 2.76 rad/sω =  and corresponding mode shape [ ]1 1 1 1.618
T

a=φ , while 

2 7.24 rad/sω =  and its corresponding mode shape [ ]2 1 1 0.618
T

a= −φ .The 

motion represented by 1ω  and 1φ  is shown in the upper diagram in Fig. 1.10, and 

similarly, the motion represented by 2ω  and 2φ  is shown in the lower diagram 

in Fig. 1.10. In both cases ( )1 0 0.5r t = =  and ( )1 0 0.5r t = =  

 

Fig. 1.10 Harmonic motion of two degree of freedom system  at eigenfrequencies 1ω   

and 2ω  
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Example 1.5 

To illustrate the effects of rotational inertia, a beam on flexible supports 1K  and 

2K  is shown in Fig. 1.11. For simplicity, it is assumed infinitely rigid, i.e. its 

bending stiffness is large. The free body diagram at arbitrary displacements 

( )1 1Re i tr t a e ω =    and ( )2 2Re i tr t a e ω =    is illustrated on the right hand side 

of Fig. 1.11. In this case it is necessary to demand vertical as well as moment 
equilibrium. First it is seen that 

 the beam displacement is given by ( ) ( )1 2 1,r x t r r r x L= + −  

 while the support forces 1 1 1R K r=  and 2 2 2R K r=  

 

Fig. 1.11 Rigid beam on flexible supports  

Thus, vertical equilibrium will require 

( )

( )

1 2 1 1 2 2 1 2 1
0 0

1 1 2 2 1 2 0
2

L L x
R R mrdx K r K r m r r r dx

L

mL
K r K r r r

 + + = + + + −  

= + + + =

    

 

 

while moment equilibrium about the beam end p  will require 

( ) 21 2
2 2 2 1 2 1 2 2

0 0

0
6 3

L L r rx
R L mrxdx K r L m r r r xdx K r L mL

L
  + = + + − = + + =      
      

Introducing ( ) ( )1 1Re i tr t a e ω=  and ( ) ( )2 2Re i tr t a e ω=  then these equations 

turn into 

( )2
1 1 2 2 1 2 0

2

mL
K a K a a aω+ − + =

  
and   2 1 2

2 2 0
6 3

a a
K a mLω  − + = 

 
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which may more conveniently be written 

2 2
1 2

1

22 2
2

02 2

0

6 3

mL mL
K K

a

amL mL
K

ω ω

ω ω

    − −             =        − −  
  

 

A non-trivial solution can only be obtained if the determinant to the coefficient 
matrix is zero, i.e. that 

2 2
1 2

2 2
2

2 2
det 0

6 3

mL mL
K K

mL mL
K

ω ω

ω ω

    − −         =
  − −  

  

 

 

  4 21 2 1 24 12 0
K K K K

mL mL mL mL
ω ω − + + = 

 
 

 

and thus, the following eigenfrequencies (in ascending order) are obtained 

2 2
1 2 1 1 2 22n

K K K K K K

mL mL mL mL mL mL
ω

     = + − +        
  

If, for instance 1 2K K K= = , then 
2

2n
K K

ml mL
ω  =  

 


( )
( )

1

2

2

6

K mL

K mL

ω

ω

 = 
=

 

Introducing ( )1 2K mLω ω= =  into the second row of the matrix-vector 

relationship above 

2 2
1 1 1 2 0

6 3

mL mL
a K aω ω − + − = 

        
      1 2a a=  

implying that the motion is purely translational (in vertical direction). Introducing 

( )2 6K mLω ω= =  into the second row of the matrix-vector relationship 

above 

 2 2
2 1 2 2 0

6 3

mL mL
a K aω ω − + − = 

 
  1 2a a= −  

implying that the motion is purely rotational (about the mid-span of the beam). 
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Continuous Systems 
 

Below, a continuous line-like system is illustrated in Fig 1.12. For such a system 
the relevant equilibrium requirements are at this stage most conveniently 
established in the form of one or several differential equations. 

 

Fig. 1.12 Line-like continuous beam subject to distributed dynamic load 
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The situation of a simple beam subject to a distributed dynamic load ( ),zq x t  

(i.e. with unit N/m) is illustrated in Fig. 1.12.a. It is taken for granted that the 
system is symmetric about the z -axis such that the response motion is exclusively 
taking place in the direction of z . Since the system itself is continuous, so is the 

displacement ( ),zr x t , and therefore, it will be necessary to determine the 

dynamic displacement response at all positions x in order to enable a complete 
description of its motion at all times. Thus, in this case it is meaningless to 
introduce the concept of degrees of freedom in the system. Rather, as mentioned 
above, we resort to calculus to obtain a solution. As shown in Fig. 1.12.b, an 
incremental element dx  will require moment equilibrium (about the mid-point c) 

0y zdM V dx− =  (1.23)

as well as force equilibrium in the z  direction 

0z z z zq dx m dx r dV⋅ − ⋅ ⋅ + =  (1.24)

where zm  is the mass per unit length of the beam associated with motion in the z  

direction. From Eq. 1.23 we obtain z yV M ′= , while from Eq. 1.24 we obtain 

z z z zV q m r′ = − + ⋅  . Thus 

y z z zM q m r′′ = − + ⋅   (1.25) 

Since the dynamic motion exclusively takes place in the direction of z , the cross 

section of the beam is subject to pure bending about the y  axis (i.e. 0yM ≠  and 

0zV ≠  while all other cross sectional stress resultants are equal to zero). The 

cross sectional neutral axis is defined by the axis through which there is zero 
strain. Adopting Navier’s hypothesis [4,5] that a cross section that is perpendicular 
to the system neutral axis prior to bending will remain perpendicular to the neutral 
axis after bending. This will render a strain distribution (see Fig. 1.12) 

( )c c
x c

z d z d
z

dx dx

α α α αε
⋅ − + ⋅

= = − ⋅  (1.26) 

where cz  is the distance from the neutral axis (CC) to an arbitrary cross sectional 

element dA . Let us assume linear elasticity and take it for granted that 

displacements are small such that zrα ′≈ . Then x z cr zε ′′= − ⋅ , and thus: 

x xEσ ε= ⋅     2

0x z c
A A

y c x z c z y
A A

N dA r E z dA

M z dA r E z dA r EI

σ

σ

 ′′= = − =



′′ ′′= ⋅ = − = −


 

 
 (1.27)
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The requirement that 0N =  is used to determine the position of the neutral axis 

(i.e. that c
A

z dA =0), while 2
y c

A

I z dA=   is defined as the second area moment of 

the cross section. Thus 

( )
2

2 z y z z z
d

r EI q m r
dx

′′− = − + ⋅   (1.28)

which, provided yEI  is constant along the span, may be simplified into 

  z z y z zm r EI r q′′′′⋅ + ⋅ =  (1.29) 

This is the dynamic equilibrium condition for a perfectly elastic and continuous 

line-like beam type of system with constant properties ( zm  and yEI ) along its 

span, and whose load and cross sectional properties are such that the motion will 
only take place in the direction of z . Let us assume that the beam in Fig. 1.12 is 
unloaded, i.e. 0zq = . The general solution to Eq. 1.29 is then given by a 

harmonic motion 

( ) ( ), Re i t
z zr x t x e ωφ = ⋅    

  
2 0y y z yEI mφ ω φ′′′′ − =  (1.30)

where ( )z xφ  is a shape function whose fourth derivative must be shapewise 

congruent to itself, i.e. 

( ) 1 2 3 4sin cos sinh coshz
x x x x

x a a a a
L L L L

φ λ λ λ λ       = + + +       
       

 (1.31)

and where λ  is a non-dimensional wave length dependent of the system 
boundary conditions. 

 

Example 1.6 
 

Let us for simplicity assume that the beam in Fig. 1.12 is simply supported. This 

implies that ( ) ( )0, , 0z zr x t r x L t= = = =  and that the cross sectional bending 

moments ( ) ( )0, , 0y yM x t M x L t= = = = , which will require (see the 

expression of yM  in Eq. 1.27) that ( ) ( )0, , 0z zr x t r x L t′′ ′′= = = = . Thus, 
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( )
( )

0 0

0 0

z

z

x

x

φ
φ

= = 
′′ = = 

  
2 4

4 2

0

0

a a

a a

+ = 
− = 

  1 2 0a a= =  

and 
 

( )
( )

( ) ( )
( ) ( ) ( ) ( )1

3

0 sin sinh 0
sin sinh 0

sin sinh 00

z

z

x L a

ax L

φ λ λ
λ λ

λ λφ
= =       =    ⋅ =      −′′ = =     

 

 

It is readily seen that ( )sinh 0λ =  will require 0λ = , which is a non-relevant 

solution rendering ( ), 0zr x t = , and thus, we must demand 3a  and ( )sin λ  equal 

to zero, which implies that nλ π=  where 1, 2,3,...n = . Thus 

( ) 1, sin Re i t
z

x
r x t n a e

L
ωπ   = ⋅ ⋅    

 

Introducing this into Eq. 1.30 then the following is obtained: 

( )4 2 0y zEI n L mπ ω− =  

Thus, the eigenfrequency and corresponding eigenmode of the system are given by 

( )2
z y zn

n L EI mω π=
       

and      ( ) ( )sinz x n x Lφ π=  

The three first mode shapes are illustrated in Fig. 1.13. 

 

Fig. 1.13 Mode shapes of simply supported beam 
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Fig. 1.14 Line-like continuous thin walled beam subject to torsion 
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A system containing the problem of torsion is illustrated in Fig. 1.14.a. For 
simplicity a beam with a thin walled tube type of cross section is chosen 

( )dt R . The beam is assumed to have constant physical properties along its 

span. It is subject to a distributed torsion load ( ),q x tθ  (i.e. with unit Nm/m). As 

shown in Fig. 1.14.b the connection between shear angle γ  and incremental 

change of cross sectional rotation drθ  is given by dx R drθγ ⋅ = ⋅ , i.e. Rrθγ ′= . 

Assuming that θτ  is constant across the tube thickness dt  and independent of α  

(see Fig. 1.14.d), then the torsion moment 

( )
2

2 2

0

2x d d
A

M RdA R t d R t
π

θ θ θτ τ α π τ≈ = = ⋅   (1.32)

Introducing G GRrθ θτ γ ′= ⋅ = , then 

x t

x t

M GI r

M R I
θ

θτ
′= 
=      

where     32t dI R tπ=  (1.33)

The dynamic inertia (per unit length, see Fig. 1.14.e and f) is given by 

( )
2

2
2 m

M A

d
M dm Rr R r R dA dx r m dx

dt
θ θ θ θ θρ

 
= ⋅ ⋅ = =  

 
    (1.34) 

where mρ  is the material density and mθ  is the cross section rotational mass 

(with unit 2kgm m ). (In this case the cross section is a tube and then 
32 d mm R tθ π ρ= .) The equilibrium requirement for an incremental element dx  

is then given by (see Fig. 1.14.e) 

0xdM q dx Mθ θ+ − =           tm r GI r qθ θ θ θ′′− =  (1.35) 

Let us assume that the beam in Fig. 1.14 is unloaded, i.e. 0qθ = . The general 

solution to Eq. 1.35 is then given by a harmonic motion 

( ) ( ), Re i tr x t x e ω
θ θφ = ⋅   (1.36)
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Example 1.7 
 

Let us also assume that the torsion beam in Fig. 1.14 is simply supported and that 
it has fork bearings at its ends, such that the torsion boundary conditions are 

( ) ( )0, , 0r x t r x L tθ θ= = = = . The general solution is then given by 

( ) ( ), sin Re i tr x t x L a e ω
θ λ  = ⋅ ⋅   

where λ  is the non-dimensional wave length of the mode shape. From the 

boundary condition ( ), 0r x L tθ = =  it is seen that ( )sin 0λ = , which implies 

that nλ π= . Thus 

( ) ( ), sin Re i tr x t n x L a e ω
θ π  = ⋅ ⋅   

Introducing this into Eq. 1.35 will then render 

( )2 2 0tn L GI mθπ ω− =  

Thus, the eigenfrequency and corresponding eigenmode of the system are given by 
 

t
n

GIn

L mθ
θ

πω =
      

and     ( ) ( )sinx n x Lθφ π=  

 
See further elaboration below. 

 

In the special case of a thin walled tube it was shown that 32 d mm R tθ π ρ=  and 

32t dI R tπ= . It should be noted that in a more general case (see Fig. 1.15) 

( )
2

2
2

2

m
M A

m
A

d
M dm r r R r r dA dx r m dx

dt

m r dA

θ θ θ θ θ

θ

ρ

ρ

 
= ⋅ ⋅ ⋅ = =      

 =


 



 
 (1.37) 

while for a closed box type of cross section (see Fig. 1.15) 
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2
2

2

2

4

m
x

A A A A

t m
s

A
M adA Gar adA G a dA r G tds r

ds

I A ds t

θ θ θ θτ
    ′ ′ ′= = = =             
 = 


   


 (1.38) 

It should also be noted that in general the torsion stiffness will contain 
contributions from warping. As illustrated in Fig. 1.16, the phenomenon is caused 
by shear forces V  that occur in flanges at a distance a  from the shear centre, 
rendering a torsion moment contribution 

x j j
j

M V a= ⋅  (1.39)

 

 

Fig. 1.15 Rotation inertia of a box type of cross section 
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Fig. 1.16 Torsion due to cross sectional warping 

For a simple beam element the connection between the shear force and the 
bending moment is shown in Eq. 1.23, while the connection between the bending 
moment and the second derivative of the displacement is shown in Eq. 1.27. Thus, 
for an arbitrary flange shown in Fig. 1.16.c 

( )
2

2j j j j j
d d

V EI r a EI a r
dx dx

θ θ
 

′′′= − = − 
 

 (1.40)

Thus, the contribution from warping is given by 

( ) 2
x j j j j j j j

j j j

M V a EI a r a E I a rθ θ
 

′′′ ′′′= ⋅ = ⋅ = ⋅ ⋅  
 

    (1.41)
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which, by defining the warping constant 2
w j j

j

I I a= , renders x wM EI rθ′′′= . 

Thus 

x t wtot
M GI r EI rθ θ′ ′′′= − +  (1.42)

Returning to the equilibrium requirement in Eq. 1.35 (i.e. that 
0xdM q dx Mθ θ+ − = ) will then render the following more general differential 

equation for torsion 

  t wm r GI r EI r qθ θ θ θ θ′′ ′′′′− + =  (1.43)

The calculation of tI  and wI  may be found in the literature of structural 

mechanics. Setting 0qθ =  and solving Eq. 1.43 rather than the simpler version in 

Eq. 1.35 will then provide a more accurate eigenfrequency 

2

1t w
n

t

GI EIn n

L m L GIθ
θ

π πω
  = +  

   
 (1.44)

than that which has been developed in Example 1.7. 

1.3   The Principle of Energy Conservation 

As previously mentioned it is in the following taken for granted that material 
behaviour with respect to axial and shear strain is linear elastic, as indicated in 
Fig. 1.17.a. In addition to this, it is a general requirement that any force, 
concentrated or distributed, is conservative, i.e. during a motion from position A 
to another position B through any path s , the size and direction of the force will 
remain unchanged. See Fig. 1.17.b. 

 

Fig. 1.17 Linear elasticity and conservative forces 
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Energy in Line-Like Type of Systems 

In general the principle of d’Alambert is adopted such that at all times and 
positions the system is in a condition of physical equilibrium, having included 
inertia body forces according to Newton’s second law. It is taken for granted that 
the system is in a permanent condition of thermal equilibrium, i.e. that thermal 
contributions to the energy balance may be disregarded. Thus, the instantaneous 
energy variation in the system at any time and position is defined by 

 
• the energy P  held by external forces acting on the system, 
• the motion (kinetic) energy T  of the system body masses, and 
• the strain energy U  stored in the material fibres of the system. 

 
The relevant energy considerations in a simple mass-spring system are illustrated 

in Fig. 1.18. As can be seen a force ( )F t  moving a positive displacement r  has 

lost its ability to perform the work F r⋅ , i.e. it has reduced its energy level by 

F r⋅ . The only restriction to ( )F t  is that it is independent of the path of motion 

(see Fig. 1.17.b above). Thus, if a force and the direction of motion coincide, then 
the force is losing ability to perform work, P F r= − ⋅ , while if the force and 
direction of motion are opposite to each other (the force is ‘lifted’) then the force 
has gained energy i.e. it has gained ability to perform work P F r= ⋅ . In vector 
description a concentrated force vector F  moving a displacement r  is gaining the 
energy 

( )
0

T T
FP d= − = −

r

r F r F r  (1.45)

while for a distributed force vector q  the gain of energy is given by 

( ) ( ) ( )
0

, ,T T
q

L L

P t x dx d t x dx= − ⋅ ⋅ = − ⋅ ⋅  
r

r q r q r  (1.46)

If a body with mass M , unconstrained and small enough to be mathematically 
treated as a single particle is moving with an acceleration r , then its motion 
energy is identical to the work that has been performed in order to obtain this 
acceleration. Since the force (inertia) resistance to an acceleration is Mr , then the 
work performed from rest to position r  is given by 

( )
0 0 0

1 1
   

2 2

t t
T T T Td

M d M dt M dt M
dt
 = ⋅ = = 
   

r

r r r r r r r r        (1.47) 
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Fig. 1.18 Energy considerations in a simple mass-spring system 

Thus, at any time t  and velocity condition r  of the system, it has gained a motion 
energy defined by 

( ) 1

2
T

MT M=r r r    (1.48)

This is called the kinetic energy of the mass M . Similarly, if a continuous line-

like system with distributed mass ( )m x  is in a plane motion e.g. in the z  

direction then its kinetic energy is given by 

( ) ( ) ( ) 21
,

2m z z
L

T r m x r x t dx= ⋅      (1.49)
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Strain energy is the energy stored in the system because material has been 
stretched or compressed. A simple illustration is shown in Fig. 1.18, where a 
spring with stiffness K  has been stretched a displacement r , rendering a spring 

energy 2 2K r⋅  (see Fig. 1.18.d). By adopting linear elasticity 

=σ Eε  (1.50) 

where      ( ) x

yz

σ
τ
 

=  
 

σ r
       

( ) x

yz

ε
γ
 

=  
 

ε r
      

and    
0

0

E

G

 
=  
 

E  (1.50) 

then the strain energy for an incremental material element dAdx  is defined by 

( ) ( )
0 0 0

2 22 2

0 0
2 2 2 2

TT T
M

yzx
yz yzx x

x x yz yz

dU d d d

E d G d E G
E G

γε γ τε σε ε γ γ

= ⋅ = ⋅ ⋅ = ⋅ ⋅

= + = + = +

  

 

ε ε ε
r σ ε E ε ε ε E ε

 (1.51) 

Thus, the total strain energy in the system is given by 

( )
22

0

1

2
yzT x

M
L A L A

U d dA dx dA dx
E G

τσ     
  = ⋅ = +             

    
ε

r σ ε  (1.52) 

Let us for instance assume that xσ  is caused by pure bending about the y  axis 

(i.e. by yM ), and that yzτ  is caused by torsion (i.e. by xM ) on a tube type of 

cross section. For such a continuous system it has previously been shown (see Eq. 
1.27) that 

x x

x z c

E

r z

σ ε
ε

= ⋅ 
′′= − ⋅   

 
( ) ( ) ( )

22
2 22z cx

c z y z
A A A

Er z
dA dA E z dA r EI r

E E

σ  ′′−
′′ ′′= = =  

 
    (1.53) 

and similarly (see Eq. 1.33) that 

yz G

Rr

θ

θ

τ τ γ

γ

= = 


′=   

 
( ) ( ) ( )

22
2 22

t
A A A

GRr
dA dA G R dA r GI r

G G
θθ

θ θ
τ ′  

′ ′= = =  
 

    (1.54) 

Thus, the strain energy in a continuous system subject to mono-axial bending and 
torsion is given by 

( ) ( )221

2m y z t
L

U EI r GI r dxθ
 ′′ ′= +
   (1.55) 
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It should be noted that Eq. 1.55 is applicable for any continuous line-like beam 
subject to mono-axial bending and St. Venant torsion, i.e. it is not restricted to a 
beam with a tube type of cross section as long as tI  is correctly calculated for the 

cross section in question. For the case of bi-axial bending it is necessary to add 

( )2

z yEI r′′  into the integration of mU . 

Basic Ideas 

The basic idea behind all energy methods is that under the conditions mentioned 
above (physical and thermal equilibrium) energy can neither be created nor 
destroyed; it can only be transformed from one state to another. This idea 
manifests itself in three alternative ways. First, the Rayleigh-Ritz method [6] is 
based on d’Alambert’s perception of inertia. The observation is that from the point 
of view of an observer outside of a system the total energy at any time 

T U PΠ = + +  (1.56)

is constant, and therefore the variation δ  of Π  with respect to its variables ( t ,r  

and r ) is equal to zero, i.e. that 

0δΠ =  (1.57) 

Secondly, there is the principle of Hamilton & Euler/Lagrange [7]. This is not 
based on d’Alambert’s perception of inertia, i.e. the observer is not standing still 
considering the energy account at a particular time t . Rather, it is based on the 

balance of energy transfer between T  and ( )U P+ . The observer is himself 

sitting on the system and his observation is that the energy in the system is 
changing between exclusively kinetic (where 0=r ) and exclusively the sum of 
strain and load energies (where 0=r ). The transfer of energy between these two 
extremes may be described by the Lagrange function 

( ) ( ) ( ) ( ),L T U P= −  +  r r r r r   (1.58) 

Hamilton’s assumption is that in the time interval between 1t  and 2t  the energy 

transfer (i.e. the difference between that which comes in and that which goes out 
as you travel with the system in time) 

( ) ( )
2

1

, ,
t

t

f L dt= r r r r   (1.59) 

will occur along a functional ridge (there is no waste of energy in any direction) 

such that the variation of ( ),f r r  with respect to its variables will always be zero, 

i.e. that 
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( ), 0fδ =r r  (1.60) 

Finally, and most importantly, there is the principle of virtual work which is 
usually attributed to d’Alambert and Lagrange. It is like the Rayleigh-Ritz method 
based on d’Alambert’s perception of inertia. The observation is that from the point 
of view of an observer outside of a system, a free body in physical equilibrium 
will not change its energy level for any incremental change δ r  of its position. 
The only restriction imposed on δ r  is that it is time invariant. Otherwise, δ r  is 
arbitrary or virtual. Hence, it has been labelled the principle of virtual work. 

 

Example 1.8 
 

Let us for simplicity consider the system in Fig. 1.18. Imposing a time invariant 
and non-zero virtual displacement rδ  to the mass M  of the rigid body diagram 

on the right hand side of the illustration, then ( )dT Mr rδ=   (because rδ  is 

time invariant), sdU F rδ=  and dP F rδ= − . Since sF Kr=  then the change of 

energy level is given by 

( ) 0d Mr Kr F rδΠ = + − =  

rendering the system equilibrium condition: Mr Kr F+ = . 
 
 

While the methods of Rayleigh-Ritz (Chapter 1.4) and Hamilton-Euler-Lagrange 
(Chapter 1.5) are usually only used in cases of calculating the eigenfrequency of 
special systems, the principle of virtual work is widely used throughout structural 
mechanics for development of relevant equilibrium requirements of general 
systems, as well as the development of the finite element method. The principle of 
virtual work is presented in chapter 1.6 below. 

1.4   The Rayleigh-Ritz Method 

The Rayleigh-Ritz method is usually used to determine approximate values of 
eigenfrequencies. It may be used in a continuous as well as a discrete system. For 
the simple single degree of freedom system illustrated in Fig. 1.18, in motion at an 
arbitrary position r , the mass has at this position gained a kinetic energy of 

2 2T Mr=  , while at the same time the spring has been stretched such that it has 

obtained an elastic energy of 2 2U Kr=  (as illustrated in Fig. 1.18.d). The force 

F  at the arbitrary positive position r  has gained an energy of P Fr= −  
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(negative because F  and r  are in the same direction, and thus, it has lost the 
ability to perform that work). In this position the system is in equilibrium and the 
total energy is given by 

( ) 2 21 1
,

2 2
r r U T P Kr Mr FrΠ = + + = + −   (1.61)

Obviously, the variation of Π  can be performed on any of its variables t , r  and 

r . Let us in this case perform the variation on t . Thus 

( ) ( )

2 21 1

2 2

0

d
Kr Mr Fr dt

dt

Krr Mrr Fr dt r Mr Kr F dt

δ  Π = + − 
 

= + − = + − =



    
 (1.62)

which can only be fulfilled at all times if 

     Mr Kr F+ =  (1.63)

again rendering the equilibrium condition of the system Since we are primarily 
interested in using the method to calculate eigenfrequencies and associated 
eigenmodes we shall in the following take it for granted that the system is 
unloaded and undamped. Let 

[ ]1 2
T

i Nr r r r=r    (1.64) 

be the displacement vector that is required for a sufficient description of the 
motion of the system. Let 

ijM

 
 =  
 
 

M

 

      

and     ijK

 
 =  
 
 

K

 

       

1,2,...,

1,2,...,

i N

j N

= 
= 

 (1.65) 

be the corresponding mass and stiffness matrices. The strain and kinetic energies 
are then given by 

1

2
TU = r Kr

     
and     

1

2
TT = r Mr   (1.66) 

and thus 

( ) ( )1
,

2
T TΠ = +r r r Kr r Mr    (1.67)
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For such an unloaded and undamped system the motion will be harmonic, i.e. the 

motion is given by the product of a mode shape [ ]1 2
T

i Nφ φ φ φ=φ    

and a harmonic function, which here will be described in a complex format, i.e. 

Re i te ω = ⋅ r φ
     

and    Re i ti e ωω = ⋅ r φ  (1.68) 

Thus 

( ) ( ) ( )
2 2

2 2Re Re
2 2

i t i t
T T Te eω ω

ω ω
   

Π = − = −   
   

φ φ Kφ φ Mφ φ K M φ  (1.69)

Since there is no other energy in the system it is seen that any variation 

( ) 0δΠ =φ
     

is obtained if     ( )2ω− ⋅ ⋅ =K M φ 0  (1.70) 

which implies that for a system in harmonic motion in absence of external forces 
the sum of kinetic and strain energy are always zero. It is an eigenvalue problem 
identical to that which has previously been obtained by using the equilibrium 
requirements, see Eq. 1.17. However, in many cases in structural engineering a 
good insight into the particular mass and stiffness distribution in a system may 
permit an adequate guess of what the mode shapes will look like. Thus, an 
approximate solution may readily be obtained. Let for instance 

T≈φ ψ a  (1.71) 

where [ ]1 2
T

i Na a a a=a    is a vector of N  unknown coefficients 

and where [ ]1 2
T

i N=ψ ψ ψ ψ ψ   in a discrete format is a matrix 

of N  conveniently chosen and fully known vectors iψ , or in a continuous format 

[ ]1 2
T

i Nψ ψ ψ ψ=ψ    is a vector containing fully known 

functions iψ  (e.g. polynomials, or a combination of harmonic sinus, cosine or 

hyperbolic type of functions), whichever is most convenient. The only restriction 
we shall impose on the content of ψ  is that none of the vectors iψ  or functions 

iψ  violates the physical boundary conditions of the system. Then 
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( ) ( )

( ) ( ) ( ) ( )

( )

2
2

2
2

2
2

Re
2

Re
2

Re
2

i t
T T

i t T TT T T T

i t
T T T T

e

e

e

ω

ω

ω

ω

ω

ω

 
Π = − 

 
   = −     
 

= − 
 

a φ Kφ φ Mφ

ψ a K ψ a ψ a M ψ a

a ψKψ a a ψMψ a

 (1.72) 

 
Imposing such an approximation to the displacement function is a restriction 
which is equivalent to adding artificial stiffness to the system, in which case 

( ) ( )Π ≥ Πa φ . Obviously, the closer ψ  is to the exact solution φ  the closer 

( )Π a  is to ( )Π φ , but ( )Π a  cannot become smaller than ( )Π φ . Thus, a 

best fit solution will be obtained if ( )Π a  is minimised, i.e. if 

( )
0

ia

∂Π
=

∂
a

     

     ( )2 0T T T T

ia
ω∂ − =

∂
a ψKψ a a ψMψ a  (1.73)

This will then render N  equation for the determination of the content of the 

unknown a  vector. It is advantageous that the iψ  functions are as close to 

orthogonal and representing the actual mode shapes as possible. 
 

 
Example 1.9 

 
Let us for simplicity apply the method to the mass spring system shown in Fig. 1.9, 
whose solution is previously obtained from equilibrium considerations in Eqs. 

1.12 – 1.22. Let us further simplify the mathematics by setting 1 2K K K= =  and 

1 2M M M= = . Referring to Eq. 1.14, the mass and stiffness matrices of the 

system are then given by 

                       
1 0

0 1
M
 

=  
 

M
     

and         
2 1

1 1
K

− 
=  − 

K  

Let us assume      [ ]1 1 1
T=ψ

     
and     [ ]2 1 1

T= −ψ , i.e. that   
1 1

1 1

 
=  − 

ψ  
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Then ( )2 2
1 1 2 22 5T T K a a a a= + +a ψKψ a  and ( )2 2 2

1 22 2T T M a aω= +a ψMψ , 

and thus: 

   

( ) ( ) ( )

( ) ( ) ( )

2 2
1 2 1

1

2 2
1 2 2

2

2 2 4 0

2 10 4 0

T T T T

T T T T

K a a M a
a

K a a M a
a

ω ω

ω ω

∂ − = + − = ∂
 ∂ − = + − =
∂

a ψKψ a a ψMψ a

a ψKψ a a ψMψ a
 

which may be rewritten into the following matrix format 
 

 
( )

( )
2

1 12

22 2

ˆ1 2 11 1 2 0 0

1 5 0 2 0ˆ1 5 2

a aM

a aK

ω
ω

ω

 −           − = =                   −    

 

 

where ˆ K Mω ω= . This requirement can only be fulfilled if the determinant 

to the coefficient matrix is zero, i.e. if ( )( )2 2ˆ ˆ1 2 5 2 1 0ω ω− − − = . 

The solution is given by 2 3 5
ˆ

2 2
ω = ±  from which, in ascending order, the 

following eigenvalues are obtained 

( )

( )
1

2

1
3 5 0.618

2

1
3 5 1.618

2

K
K M

M

K
K M

M

ω

ω


= − ≈ 


= + ≈ 

 

The corresponding eigenmodes may be obtained by consecutively introducing 

either of those back into the eigenvalue equation above. I. e., if 1ω ω=  then 

 

         
( )2

1 1 21 2 0K M a aω − + =         
      2 10.236a a≈ −  

 

and thus        
1

1 1
1

1 1 0.764

0.2361 1 1.236
T a

a
a

    
≈ = =    −−    

φ ψ a  

If 2ω ω=  then ( )2

2 1 21 2 0K M a aω − + =  
     2 14.236a a≈  



34 1   Basic Theory 

and thus 
1

2 1
1

1 1 5.236

4.2361 1 3.236
T a

a
a

    
≈ = =    − −    

φ ψ a  

 

The method may equally effectively be applied to continuous systems. Let us for 
instance consider an undamped and unloaded line-like beam in plane motion e.g. 
in the z  direction. Then (see Eqs. 1.49 and 1.55) 

 

( ) ( )2 21 1

2 2m m z z y z
L L

T U m r dx EI r dx′′Π = + = +   (1.74)

It has previously been shown that in this case the motion is given by 

( ) ( ), Re i t
z zr x t x e ωφ = ⋅  . Introducing this into Eq. 1.74 the following is 

obtained 

( )
2

2 2 2Re
2

i t

y z z z
L L

e
EI dx m dx

ω
φ ω φ

   ′′Π = −  
    
   (1.75) 

0δΠ =  at any value of t  and any variation of zφ  will then require 

( )2 2 2 0y z z z
L L

EI dx m dxφ ω φ′′ − =   (1.76) 

from which the eigenfrequency 

( )
1 2

2 2
z y z z z

L L

EI dx m dxω φ φ
 

′′=  
  
   (1.77) 

is obtained. This is called the Rayleigh quotient (in its most simple format). 
 

 
Example 1.10 

 
From Eq. 1.77 an approximate value of the eigenfrequency may be obtained by 

assuming a mode shape ( )z xψ  as close to the exact solution as possible.  
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Fig. 1.19 Cantilevered beam 

The case of a cantilevered beam with constant cross section properties m and 

yEI  is illustrated in Fig. 1.19. 

Let us assume ( ) ( )z zx xφ ψ≈  where ( ) 1 cos
2z

x
x

L

πψ  = −  
 

. Thus 

 

( )
11

2 22
2

2
0 0

4 2
2

0 0

cos
2

2
1 cos

2

L L

z
y y

z L L
z

z

x
dx dx

LEI EI

m m L xdx dx
L

πψ
πω

πψ

     ′′           = ⋅ =            −           

 

 
 

 

1

2
2

4 4
4 3.67

32 2
4

y y
z

z z

EI EI

m L m L

π
πω π

 
   = ⋅ ≈  

   −
 

 

A more exact solution is ( )43.52z y zEI m Lω = . 
 

1.5   The Principle of Hamilton and Euler-Lagrange 

While Rayleigh-Ritz method is based on variation on the total energy 
T U PΠ = + +  in a system at a particular time and position, the method of 

Hamilton and Euler-Lagrange is based on variation of the Lagrange function of 
instantaneous energy balance (i.e. the difference between that which comes in and 
that which goes out) as you travel with the system in time: 
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( ) ( ) ( ) ( ), ,L T U P t= −  +  r r r r r   (1.78)

Assuming for simplicity that the displacement is a continuous function ( ),r x t  

rather than a discrete vector, it is seen that the integral of ( ),L r r  over an 

arbitrary time interval from 1t  to 2t : 

( ) ( )
2

1

, ,
t

t

f r r L r r dt=    (1.79) 

is only dependent on the path along which it has changed during the motion from 

1t  to 2t . The basic principle of Hamilton [40] is then based on the assumption that 

the change of energy balance from 1t  to 2t  will occur along a path (a functional 

ridge) where the variation of ( ),f r r  with respect to r  and r  is zero, rendering 

( ) ( ) ( ) ( )2 2

1 1

, ,
, , 0

t t

t t

L r r L r r
f r r L r r dt dt

r r
δ δ

∂ ∂ 
= = + = ∂ ∂ 
 

 
 


 (1.80)

Let ( )tε  be a small arbitrary perturbation, independent of the path itself, but such 

that 0ε =  at 1t  and 2t . Then a first order expansion 

( ) ( ) ( )2 2

1 1

, ,
,

t t

t t

L r r L r r
L r r dt dt

r r
δ ε ε ε ε

 ∂ ∂ 
+ + = + ∂ ∂ 

 
 

 


 (1.81)

and integrating the second term by parts, then 

( ) ( ) ( ) ( )

( ) ( )

22 2

1 11

2

1

, , ,
,

, ,

tt t

t tt

t

t

L r r L r r L r rd
L r r dt dt

r r dt r

L r r L r rd
dt

r dt r

δ ε ε ε ε ε

ε

  ∂  ∂ ∂  + + = + −    ∂ ∂ ∂     

 ∂ ∂  = −  ∂ ∂   

 



  


 

 


 

(1.82) 

For all 0ε ≠  this can only become zero if 

( ) ( ), ,
0

L r r L r rd

r dt r

∂ ∂ 
− = ∂ ∂ 

 


 (1.83)

This is known as the Euler equation. 
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Example 1.11 
 

Let us for instance consider an undamped single degree of freedom system with 
stiffness K  and mass M , subject to a force F  (see Fig. 1.3). The Lagrange 
function is then given by: 

2 21 1

2 2
L Mr Kr Fr

 = − − 
 


 

Introducing this into Euler’s equation will then render 

( ) ( ) 0
d

Kr F Mr F Kr Mr
dt

− − − = − − =   and thus Mr Kr F+ =  

which is identical to the equilibrium condition that was developed in Eq. 1.4, and 
which was also derived from variation of Π  (with respect to t ) in Example 1.8. 

 
 

Euler’s equation (Eq. 1.83) may be further expanded if an approximate series 
solution is adopted 

( ) ( )
1

, ,
N

i
i

r x t r x t
=

=  (1.84) 

where the variables of ( ),ir x t  are split into a set of shape functions ( )i xψ  and 

corresponding time domain functions ( )i tη  such that 

( ) ( ) ( ),i i ir x t x tψ η= ⋅  (1.85) 

It is taken for granted that ( ),ir x t  are independent functions and then Hamilton’s 

principle can only be fulfilled if Euler’s equation is satisfied independently for all 

( ),ir x t . Thus 

0
i i

L d L

r dt r

 ∂ ∂− = ∂ ∂ 
 (1.86)

Furthermore, it is observed that 

i
i i i i

i

dr
r

d
η ψ η

η
∂ = ∂ = ∂  and 

i
i i i i

i

dr
r

d
η ψ η

η
∂ = ∂ = ∂

  


 (1.87) 
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Thus, Eq. 1.86 may be replaced by 

0
i i

L d L

dtη η
 ∂ ∂− = ∂ ∂ 

 (1.88) 

Introducing Eq. 1.58 into Eq. 1.88 (acknowledging that U η∂ ∂   and P η∂ ∂   are 

both zero)) will then render 

0
i i i i

d T T U P

dt η η η η
 ∂ ∂ ∂ ∂− + + = ∂ ∂ ∂ ∂ 

 (1.89) 

Obviously, there will altogether by N  such equations. They are called Lagrange’s 

equations. It is an obvious requirement to the ( )i xψ  functions that they satisfy 

the physical boundary conditions of the system, but it is not a requirement that 
they are orthogonal. 

 
 

Example 1.12 
 

Let us for instance consider the undamped and unloaded cantilevered beam shown 
in Fig. 1.19 (Example 1.10). Its mass m and bending stiffness EI  are assumed 

constants along its entire span L . The following series solution is adopted 

 ( ) ( ) ( ) ( ) ( )1 1 2 2,zr x t x t x tψ η ψ η= ⋅ + ⋅  where 
2

1

3
2

x

x

ψ

ψ

= 


= 
 

The two functions 2
1 xψ =  and 3

2 xψ =  will both satisfy the physical boundary 

conditions ( ) ( )0 0 0x xψ ψ ′= = = = . Then 

 

( )

( ) ( ) ( )

5 2 2 222 2 3 1 1 2 2
1 2

0 0

2 2 2 2
1 2 1 1 2 2

0 0

1

2 2 2 5 3 7

1
2 6 2 3 3

2 2

L L
z z

z z

L L
y

y z y

m m L L L
T m r dx x x dx

EI
U EI r dx x dx EI L L

η η η ηη η

η η η η η η

 
= = + = + +     


′′= = + = + + 


 

 

   

 

 
while 0P = . Introducing this into Eq. 1.89, with i  consecutively equal to 1 and 
2, then the following is obtained: 
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( )

( )

5

1 2 1 2

5 2
2

1 2 1 2

2
2 2 3 0

2 5 3

2
2 3 6 0

2 3 7

z
y

z
y

m L L
EI L L

m L L L
EI L L L

η η η η

η η η η

 + + + =  
  

  + + + =     

 

 
 

which may more conveniently be written 
 

5
1 1

2 2
2 2

2 3 2 5 3 0
2

023 6 3 2 7
z

y

L Lm L
EI L

L L L L

η η
η η

        + =        
       




 

 

Assuming a simple harmonic motion  
1 1

2 2

Re{ }i ta
e

a
ωη

η
   

=   
      

then the following 

is obtained 

5
12

2 2
2

2 3 2 5 3
2

23 6 3 2 7
z

y

L L am L
EI L

aL L L L
ω

      
− =             

0  

This is a classical eigenvalue problem similar to that which has previously been 
seen for two degrees of freedom systems. A non-trivial solution can only be 

obtained if [ ]1 2
T

a a= ≠a 0 , and thus, we must have that 

5
2

2 2

2 3 2 5 3
det 2 0

23 6 3 2 7
z

y

L Lm L
EI L

L L L L
ω

    
− =         

 

rendering the following quadratic equation 

2
4 4

2 21224 15120 0z z

y y

m L m L

EI EI
ω ω
   

− + =      
   

 

whose solution is given by  
4

2 1211.5
612 359424

12.5
z

y

m L

EI
ω
  = ± ≈     

 

Thus, its solution is in ascending order rendering the following eigenfrequencies 
of the system 

 
41

3.54 y
z

z

EI

m L
ω =  and 

42
34.81 y

z
z

EI

m L
ω =  
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More exact values are 4
1

3.52z EI mLω =  and 4
2

22.03z EI mLω = . 

Obviously, the accuracy of the solution is entirely dependent of how well the 

approximation ( ) ( ) ( ) ( ) ( )1 1 2 2,r x t x t x tψ η ψ η= ⋅ + ⋅  is able to describe the 

exact shape of the dynamic displacement of the system. Thus, it may be concluded 

that the choice of 2
1 xψ =  and 3

2 xψ =  are well suited to describe the first mode 

shape, but that they are incapable of describing anything in the vicinity of the 
second mode shape. 

1.6   The Principle of Virtual Work 

The principle of virtual work is usually attributed to d’Alambert, but it was first 
presented in a variation format by Lagrange [8]. It contains d’Alambert’s 
perception of instantaneous inertia. The basic assumption is that for an observer at 
rest outside of a system that is in a physical condition of equilibrium the total 
energy level will not change for any incremental change δ r  of the position of the 
system. The only restriction imposed on δ r  is that it is time invariant. Otherwise, 
δ r  is arbitrary or virtual. Hence, it has been labelled the principle of  
virtual work. The upper left hand side illustration on Fig. 1.20 shows the  
free-body-diagram of a line-like continuous type of system. For simplicity,  
its displacement is in the z  direction alone and with corresponding bending about 
the y  axis. At arbitrary time t  the system has an instantaneous position ( ),zr x t  
and corresponding support reaction forces nR  , 1,2, , Rn N=  . It is subject to 
external loads ( )zF t  and ( ),zq x t . The lower left hand side illustration shows 
the same system, but now with an additional time invariant and arbitrary (virtual) 
displacement ( )zr xδ . 

In our case we shall assume that ( )zr xδ  complies with the geometric 

boundary conditions of the system, i.e. that zrδ , zrδ ′ , zrδ ′′  or zrδ ′′′  are zero at 

support positions wherever this may be required of the boundaries of the system  
itself. [This is not a general requirement to the application of the method, but in 
our case it is merely a convenient choice as it implies that no energy changes will 

take place by the support forces  during the virtual motion .] While 

external forces have performed work and thereby had their energy level reduced, 
the inertia forces have been lifted to a higher position in the force field of the 
system and thereby had their energy level increased. Thus, during the motion from 

 to  the energy level of external force  is 

changed by 

 (1.90) 

nR ( )zr xδ

( ),zr x t ( ) ( ),z zr x t r xδ+ ( )zF t

( )
( )

( ) ( )
( ) ( )

,

,

r x t r xz F z F

F z z F z
r x tz F

P F t dr r x F t
δ

δ δ
+

= − = − ⋅
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Fig. 1.20 The principle of virtual work applied to a line-like continuous system 

Similarly, the change of energy level for the external force ( ),zq x t  is given by 

( )
( )

( ) ( )
( ) ( )

,

,

, ,
r x t r xz z

q z z z
L r x t Lz

P q x t dx dr r x q x t dx
δ

δ δ
+  = −   = − ⋅  

  
    (1.91) 

The sum of energy changes to the distributed mass inertia force 

( ) ( ),z zm x dx r x t⋅   and possible concentrated mass contribution ( ),z MM r x t⋅   

are given by 
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( ) ( )
( )

( ) ( )
( ) ( ) ( )

,

,

, ,
r x t r xz z

m z z z z z
L r x t Lz

P m x r x t dx dr r x m x r x t dx
δ

δ δ
+  =   =  

  
     (1.92) 

and 

( )
( )

( ) ( )
( ) ( )

,

,

, ,
r x t r xz M z M

M z M z M z M
r x tz M

P M r x t dr r x M r x t
δ

δ δ
+

=  ⋅  = ⋅  ⋅        (1.93) 

In addition to this we shall now include a resistance force commonly attributed to 
internal damping in the system. The origin and effects of structural damping is 
discussed in Chapter 9. Here, we shall conveniently assume a viscous type of 
damping which will generate an internal cross sectional force component 

( ) ( ),z zc x dx r x t⋅   (see Fig. 1.21) whose energy change is given by 

( ) ( )
( )

( ) ( )
( ) ( ) ( )

,

,

, ,
r x t r xz z

c z z z z z
L r x t Lz

P c x dx r x t dr r x c x r x t dx
δ

δ δ
+  =  ⋅  = ⋅ ⋅  

  
      (1.94) 

and where zc  is a cross sectional viscous damping coefficient associated with 

motion in the vertical direction. 

 

Fig. 1.21 Resistant viscous damping force due to vertical motion 

During the motion from ( ),zr x t  to ( ) ( ),z zr x t r xδ+  the strain in the system 

has changed from ( ),x x tε  to ( ) ( ),x xx t xε δε+  as shown on the upper right 

hand side illustration in Fig. 1.20. The corresponding change of strain energy is 
given by 
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( ) ( ){ }
( )

( ) ( )
( ) ( )

,

,

, ,
x t xx x

x x x x
L A x t L Ax

U x t dA d dx x x t dAdx
ε δε

ε
δ σ ε δε σ

+ 
 =   =  
 

      (1.95)

Since the virtual motion zrδ  is time invariant then the change of kinetic energy in 

the motion from ( ),zr x t  to ( ) ( ),z zr x t r xδ+  is zero, and thus, the total change 

of energy is given by 

F q m M cP P P P P Uδ δ δ δ δ δ δΠ = + + + + +  (1.96)

The basic idea is that during the motion from ( ),zr x t  to ( ) ( ),z zr x t r xδ+  the 

total energy in the system cannot have changed, i.e. that 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

, ,

, ,

, 0

z F z z z z z z
L L

z M z M z z z
L

x x
L A

r x F t r x q x t dx r x m x r x t dx

r x Mr x t r x c x r x t dx

x x t dAdx

δ δ δ δ

δ δ

δε σ

Π = − − +

+ +

+ =

 



 



   (1.97)

Since we have so far restricted ourselves to in-plane motion and corresponding 
normal stress and strain components (see Eq. 1.27) 

( )x x z cE E r zσ ε ′′= ⋅ = ⋅ − ⋅  and x z cr zδε δ ′′= − ⋅ (1.98) 

then 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2

, ,

, ,

x x z c z c
L A L A

c z z y z z
L A L

U x x t dAdx r x z Er x t z dAdx

E z dA r x r x t dx EI r x r x t dx

δ δε σ δ

δ δ

′′ ′′= = −  ⋅ −    

 
′′ ′′ ′′ ′′= =  

 

   

  
 (1.99)

and thus, 0δΠ =  will require 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

, ,

, ,

,

z F z z z z M z M
L

z z z z z
L L

y z z
L

r x F t r x q x t dx r x M r x t

r x m x r x t dx r x c x r x t dx

EI r x r x t dx

δ δ δ

δ δ

δ

⋅ + ⋅ − ⋅  ⋅  

− ⋅  ⋅  − ⋅  ⋅    

′′ ′′= ⋅ ⋅



 





   (1.100) 
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Example 1.13 
 

Let us for instance consider the case of an unloaded and undamped case of an 
arbitrary continuous system where the response is harmonic, i.e. that 

 

 
( )
( )

0

, 0

z

z

F t

q x t

= 


= 
 0zc =  and ( ) ( ), Re i t

z zr x t x e ωφ = ⋅   

 

where ( )z xφ  is the mode shape of the system. Let us choose the virtual 

displacement 

( ) ( )z zr x x aδ φ δ= ⋅  

where aδ  is an incremental amplitude variation. Introducing this into Eq. 1.100 
will then render 

 

( ) ( ) ( ) ( ) ( ) ( )2 i t i t
z z z y z z

L L

x a m x i x e dx EI x a x e dxω ωφ δ ω φ φ δ φ   ′′ ′′−   ⋅ ⋅ = ⋅   ⋅         

I.e.:  ( ) ( ) ( )2 22
z z y z

L L

x m x dx EI x dxω φ φ′′  ⋅ = ⋅        

Thus, the eigenfrequency of the system is given by 

( ) ( ) ( )
1

22 2
z y z z z

L L

EI x dx x m x dxω φ φ
  ′′= ⋅     ⋅    
  
   

which is the Rayleigh quotient, identical to that which was obtained by the use of 
Rayleigh-Ritz method, see Eq. 1.77. 

 
While we above have been restricted to consider a system with in-plane loads and 
motion in the z  direction (with corresponding normal stress and strain 

components, xσ  and xε ), a more general case will comprise displacements 

( ),
T

x y zx t r r r rθ =  r  (1.101) 

and corresponding stresses 

( ) ( ) ( ), , , , , , , ,tot x y z t x y z x y z t= +σ σ σ  (1.102) 
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where ( ) [ ], ,
T

xx y z θσ τ=σ  is the mean (static) part of the total stress vector 

on an arbitrary cross section along the span, and where ( ) [ ], , ,
T

xx y z t θσ τ=σ  

is the corresponding fluctuating (dynamic) part. (The reason why σ  need to be 
included is that the mean time invariant cross sectional forces will affect the 
stiffness properties of the system, as will become more evident later. If desirable, 
initial structural displacements may also be included.) Furthermore, the system 
may be subject to arbitrary external concentrated and distributed forces 

( ),
T

i F y z i
x t F F Fθ =  F  and ( ),

T

i y z i
x t q q qθ =  q  (1.103) 

and it may contain concentrated masses ( )g Mj
M x . Similarly, the virtual 

displacement and corresponding virtual strain may contain components 

( ) T

x y zx r r r rθδ δ δ δ δ =  r
   

and   ( ) [ ], , ,
T

xx y z tδ δε δγ=ε
   

(1.104) 

Thus, in a more general format Eq. 1.100 may be written 

( ) ( ){ } ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

1 1 1

0

,

,

NN NqF MT T T
F M g M

i ji i jL i

T T T
g tot

L L L A

x t x x t dx x x

x x t dx x x dx dAdx

δ δ δ

δ δ δ

= = =

    +   −        
  

−   −   =   

  

   

r F r q r M r

r m r r c r ε σ



 
 

(1.105) 

where { }g g g gj y z j
diag M M M θ=M  is a concentrated mass matrix at an 

arbitrary position Mx  and identified by index j , and where 

0 0 0

0 0

0 0

0

x

y y z

g
z z y

y z z y

m

m m e

m m e

m e m e mθ

 
 − =  
 
 − 

m  (1.106)

is the cross sectional mass matrix (see Figs. 1.1 and 1.2). The damping matrix 0c  

is defined by 

0 x y zdiag c c c cθ =  c  (1.107) 

where , ,  and x y zc c c cθ  are cross sectional viscous damping coefficients 

associated with motion velocities in , , ,x y z θ  directions. As can be seen, the right 
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hand side of Eq. 1.105 contains the total change of strain energy during the virtual 

displacements ( )xδr : 

( )T T T T
tot

L A L A L A L A

dAdx dAdx dAdx dAdxδ δ δ δ= + = +       ε σ ε σ σ ε σ ε σ  
(1.108) 

Let us first focus on the second term, i.e. on the dynamic stress contributions to 
the change of strain energy. We have previously adopted elastic material 
behaviour and Navier’s hypothesis. In addition to bi-axial bending, we shall here 
also include strain due to axial elongation (see Fig. 1.22.a) and general shear strain 
due to torsion (see Fig. 1.22.b), but for simplicity, shear strain due to shear forces 
is assumed negligible. 

 

Fig. 1.22 Strain due to axial elongation and shear strain due to torsion 

Thus 

 
x x

x x y c z c

E

r r y r z

σ ε
ε

= ⋅ 
′ ′′ ′′= + ⋅ − ⋅ 

 and 
yz

p

G

r r

θ

θ

τ τ γ
γ

= = ⋅ 
′= ⋅ 

 (1.109) 

where c yy y e= −  and c zz z e= −  (see Figs. 1.1 and 1.2). Then 
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( )
( )

( )
( )

T
xxT

L A L A

T

x y c z c x y c z c

L A p p

dAdx dAdx

r r y r z E r r y r z
dAdx

r r G r r

θ

θ θ

σδε
δ

τδγ

δ

δ

  
=   

   

   ′ ′′ ′′ ′ ′′ ′′+ − ⋅ + −
   =
   ′ ′⋅   

   

 

ε σ

                 

(1.110) 

Performing the vector multiplication and cross sectional integration we obtain 

2

2 2

T

L A

x x y c z c y x c y c z c c
L A A A A A A

z x c y c c z c p
A A A A

dAdx

r E r dA r y dA r z dA r E r y dA r y dA r y z dA

r E r z dA r y z dA r z dA r Gr r dA dxθ θ

δ

δ δ

δ δ

⋅ =

    
′ ′ ′′ ′′ ′′ ′ ′′ ′′+ − + + −           

 
′′ ′ ′′ ′′ ′ ′− + − +      

 

      

   

ε σ

 

(1.111) 
 

The cross sectional neutral axis centre with respect to elastic bending is defined by 

c

c
A

c c

y

z dA

y z

 
  = 
  
 0

     

and     

2

2

2

1

c z

ycA

tp

A

y I
dA

Iz

Ir

   
   
   =   
   
     

                              (1.112) 

and thus 

T
x x y z y z y z t

L A L

dAdx r EAr r EI r r EI r r GI r dxθ θδ δ δ δ δ ′ ′ ′′ ′′ ′′ ′′ ′ ′= + + +   ε σ  (1.113)

Let us then turn to the first part of the right hand side of Eq. 1.108, i.e. to the 
contribution of the mean (static) part of the total stress vector to the change of 

strain energy during the virtual displacement ( ) T

x y zx r r r rθδ δ δ δ δ =  r . 

It is in the following focused on the contributions from cross sectional stress 

resultants axial load N  and bending moments yM  and zM . (I.e., any shear 

force and torsion moment contributions are disregarded.) The effects of N  is 
illustrated in Figs. 1.23.a and b, and in Fig. 1.24. As shown in Fig. 1.24 an  
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Fig. 1.23 The effects of a time invariant axial force  

additional shear stress contribution  will occur due to the normal stress 

component . It may readily be obtained from simple moment equilibrium of 

an infinitesimal element , i.e. from the condition that 

 where  ( ) is the radial distance 

between the infinitesimal element and the shear centre. 
 

N

θτ
N A

dA dx⋅

( ) ( ) ( )scdA dx N A dA r drθ θτ  ⋅ ⋅ = ⋅  scr pr=
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Fig. 1.24 The effect of  on torsion shear stresses 

Omitting all higher order terms, it is seen that the total change of energy 

contribution from N  is then given by 

( ) ( ) ( ) ( )

( ) ( )2
0

y y y y y y z z z z z z
L L

sc sc y y z z
L A L

r Nr r d r N r dr r Nr r d r N r dr

N
r r dx r dAr r Nr r Nr r Ne r dx

Aθ θ θ θ

δ δ δ δ δ δ

δ δ δ δ

 ′ ′ ′ ′ ′ ′ − + + + + − + + +  

 ′ ′ ′ ′ ′ ′ ′ ′+ ≈ + + 
 

 

  
 

(1.114) 

where  

 

(1.115) 

 

N

( ) ( )2 22 2 2 2 2
0

1 1
sc c y c z p y z

A A

e r dA y e z e dA e e e
A A

 = = + + + = + +   
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Fig. 1.25 The effects of time invariant bending moments  and  yM zM
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and 

                         

(1.116) 

 

The effects of biaxial bending moments yM  and zM  are illustrated in  

Figs. 1.25.a and b. Omitting all higher order terms, it is seen that the total change 

of energy contribution from yM  and zM  are given by 

( )( )( )

( )( )( )
( )( )( )
( )( )( )

( )

y y y y y y
L

z z z z z z

y y y y y y

z z z z z z

y y z z y y z z
L

r M r r d r M dM r dr

r M r r d r M dM r dr

r M r r d r M dM r dr

r M r r d r M dM r dr

r M r r M r r M r r M r dx

θ θ θ

θ θ θ

θ θ θ

θ θ θ

θ θ θ θ

δ δ δ

δ δ δ

δ δ δ

δ δ δ

δ δ δ δ

 ′ ′ ′− + + +

′ ′ ′+ − + + +

′ ′ ′+ − + + +

′ ′ ′+ − + + + 
′ ′ ′ ′ ′ ′ ′ ′≈ − + + +




                    

(1.117) 

By the joining of Eqs. 1.113, 1.114 and 1.117, then 
 

)( 2
0

T
tot x x y z y z y z t

L A L

y y z z y y z z y y z z
L

dAdx r EAr r EI r r EI r r GI r dx

r Nr r Nr r Ne r r M r r M r r M r r M r dx

θ θ

θ θ θ θ θ θ

δ δ δ δ δ

δ δ δ δ δ δ δ

 ′ ′ ′′ ′′ ′′ ′′ ′ ′= + + + + 

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + − − − −

  



ε σ

 

(1.118) 

 

Thus, in a general format the principle of virtual displacements for continuous 
line-like structures is given by 

 
 

( ){ } ( ) ( ){ }

( ) ( )

( )

1 1 1

2
0

NN NqF MT TT
F M g M

i ji i jL i

T T
g

L L

x x y y y z z z y z y
L

z y z t y y z z

x dx x x

dx dx

r EAr r Nr M r r Nr M r r EI r

r EI r r GI r Ne r M r M r

θ θ

θ θ θ

δ δ δ

δ δ

δ δ δ δ

δ δ

= = =

    ⋅ + ⋅ −   ⋅    
  

− ⋅ ⋅ − ⋅ ⋅ =

 ′ ′ ′ ′ ′ ′ ′ ′ ′′ ′′+ − + − +

′′ ′′ ′ ′ ′ ′ ′+ + + − −

  

 



r F r q r M r

r c r r m r



 

dx
 

 
 

 
(1.119) 

Although by first glance this may seem rather complex, it is in fact a remarkably 
powerful toolbox. 

 

( ) ( )2 2 21 1
p c c y z

A

e y z dA I I
A A

= + = +
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Example 1.14    The Beam Column 

 

Fig. 1.26 Simply supported beam subject to a time invariant axial force N  

Let us for instance consider a simply supported beam with no external dynamic 

load F  or q  as illustrated in Fig. 1.26. It is assumed that 0y ze e= =  (i.e. that 

the shear centre coincides with the centroid) and that its end supports have fork 

bearings, i.e. that ( ) ( )0 0r x r x Lθ θ= = = = . The beam is subject to a time 

invariant axial force N . Otherwise, all time invariant moments xM , yM and 

zM  as well as possible concentrated masses gM  are equal to zero. Let us also 

disregard any axial displacement and assume ( ), 0
T

y zx t r r rθ =  r . Thus, 

( ) 0
T

y zx r r rθδ δ δ δ =  r . 

I.e., our investigation is limited to the search of its lowest undamped 
eigenfrequencies. Then Eq. 1.119 reduces to 

( ) ( )2
0

0 0

0 0

0 0

T
y y y

z z z
L

y y z z y z y z y z t
L

r m r

r m r dx

r m r

N r r r r r EI r r EI r r GI Ne r dx

θ θ θ

θ θ

δ
δ
δ

δ δ δ δ δ

     
     

− =     
     
     

 ′ ′ ′ ′ ′′ ′′ ′′ ′′ ′ ′+ + + + + 









 

Based on the results in Chapter 1.2 (see Examples 1.6 and 1.7) it seems 
reasonable to assume that the mode shapes associated with these eigenfrequencies 
are simple sinus functions, i.e. that a harmonic motion is given by 
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Re sin

y y

i t
z z

r a
n x

r a e
L

r a

ω

θ θ

π
    
      =            

    

 and thus we choose sin

y y

z z

r a
n x

r a
L

r aθ θ

δ δ
πδ δ

δ δ

   
     =          
   

 

 
Introducing this into the equation above, then the following is obtained 

( )

4 4 2 2

2 2
2 2
0 0

y z y z y z t y y

z z y y y z z z

n n n n
a EI a a EI a a GI a a Na

L L L L

n n
a Na a Ne a a m a a m a a m a

L L

θ θ

θ θ θ θ θ

π π π πδ δ δ δ

π πδ δ ω δ δ δ

       + + + +       
       

   + − + + =   
   

 

This may more conveniently be written 

2

2 2

2
0

2

0 0

0 0

0 0

0 0

0 0 0

0 0

z

y

z y

t

y y

z z

n
EI N

L
a

n n
a EI N

L L
a

GI Ne

m a

m a

m a

θ

θ θ

π

δ
π πδ

δ

ω

    +  
             +               +     

   
   − =   
   

   

 

from which it is seen that the pre-multiplication by 
T

y za a aθδ δ δ    is 

obsolete, and thus the following eigenvalue problem is obtained 

2

2
2

2
0

0 0

0 0

ˆ0 0 0 0 0

0 0
0 0

z

y y

y z z

t

n
EI N

L
m a

n
EI N m a

L
m a

GI Ne
θ θ

π

π ω

    +  
         

      + − =                  +      

 

where  ( )ˆ L nω ω π= . From this a non-trivial solution can only be obtained if the 

determinant to the coefficient matrix is zero, rendering 
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( )
2 2

2 2 2 2
0ˆ ˆ ˆ 0z y y z t

n n
EI N m EI N m GI Ne m

L L θ
π πω ω ω

      + − + − + − =      
         

 

Introducing the Euler buckling forces 

( )2

2
y

Ey

n EI
N

L

π
= , 

( )2

2
z

Ez

n EI
N

L

π
=  and 

2
0

t
Ex

GI
N

e
=  

associated with bending about the y  and z  axes and with pure torsion, then the 

solution above is reduced to 

2 2
2 2

2

ˆ ˆ1 1

ˆ1 0

z y y z
E Ez y

t
Ex

n N n N
EI m EI m

L N L N

N
GI m

N θ

π πω ω

ω

          + − ⋅ + −                 
  
 ⋅ + − =     

 

As can be seen, the solution will contain three independent eigenfrequencies 

( )ˆ n Lω ω π= , one associated with motion in the y  direction 

 
2

2ˆ 1z
y

y Ez

EIn N

L m N

πω
  = +       

  
2

1z
y

y Ez

EIn N

L m N

πω
  = +       

 

one associated with motion in the z  direction 

 

2
2ˆ 1y
z

z Ey

EIn N

L m N

πω
    = +      

  
2

1y
z

z Ey

EIn N

L m N

πω
    = +      

 

and one associated with pure torsion 

 2ˆ 1t

Ex

GI N

m Nθ
θ

ω
 

= +  
 

  1t

Ex

GIn N

L m Nθ
θ

πω
 

= +  
 

 

This solution is identical to that which has been obtained in Chapter 1.2 (see 
Examples 1.6 and 1.7), except the additional effect of the time invariant axial 

force N . If N  is positive, then it has a positive contribution to the sideway or 
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torsion stiffness of the system due to element stretching. However, if N  is 
negative, i.e. compression, then its contribution to system stiffness is negative due 
to sideway or torsion buckling. 

Let us also consider the special case of a taught string, i.e. the case that 

bending and torsion stiffness ( )2
yL EIπ , ( )2

zL EIπ  and 2
0tGI e  are all 

insignificant as compared to N , then the solution above reduces to 

2 2 2
2 2 2 2

0 0y z
n n n

N m N m Ne m
L L L θ
π π πω ω ω

           − − − =        
           

 

from which the following eigenfrequencies are obtained 

y
y

n N

L m

πω =  z
z

n N

L m

πω =  and 
2
0Nen

L mθ
θ

πω =  

1.7   Galerkin’s Method 

In Galerkin’s method [9] the equilibrium requirement in the form of a differential 
equation (or an interconnected group of differential equations) of an unloaded and 
undamped dynamic system in harmonic motion 

( ), 0f r r =  (1.120) 

is converted into a numerical eigenvalue problem 

⋅ =A a 0  (1.121) 

with unknown coefficients 1

T

i Na a a ψ
 =  a   , by imposing an 

approximate solution comprising a linear combination of unknown coefficients ia  

and a corresponding set of known functions ( )i xψ , such that 

( )
1

Re
N

i t
i i

i

r a x e
ψ

ωψ
=

≈ ⋅ ⋅  (1.122) 

and then applying the method of weighted residuals in its functional space (i.e. its 
length L , its surface A  or its volume V ). Thus, the approximate solution 
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1

0
N

i t
i i

i

f a e
ψ

ωψ
=

 
  =
 
 
  (1.123)

is successively weighed with the same functions ( )j xψ , 1,2,......,j Nψ= , and 

integrated over L  (or A ), rendering the set of numeric equations in Eq. 1.121, 
which fully written is then given by 

11 1 1 1

1

1

j N

i ij iN i

NN N j N N

A A A a

A A A a

aA A A

ψ

ψ

ψω ψ ψ ψ

             =             

0

 

     
 

    
 

 (1.124)

where 

( ),ij i j
L

A f dxψ ψ ω= ⋅  or ( ),ij i j
A

A f dAψ ψ ω= ⋅
    

(1.125) 

This is a general method which may offer an approximate solution to often 

complex systems. It is a requirement to the accuracy of the solution that ( )i xψ  

fulfils (more or less) the geometric boundary conditions of the system. It is 
advantageous that they are as close to orthogonal as possible. 

To illustrate the use of Galerkin’s method let us consider an undamped and 
unloaded continuous beam, whose motion is restricted to displacements in the z  
direction. Its differential equation has been developed in Eq. 1.29, i.e.: 

( ),   0z z z z y zf r r m r EI r′′′′= ⋅ + ⋅ =   (1.126)

Let us for simplicity assume that its mass zm  and bending stiffness yEI  are 

constants along its entire span L . The following harmonic solution is adopted 

( ) ( ) ( ){ }1 1 2 2, Re i t
zr x t a x a x e ωψ ψ=  ⋅ + ⋅  ⋅   (1.127)

Introducing this into Eq. 1.126 then the following is obtained: 

( ) ( ) ( )2
1 1 2 2 1 1 2 2,    +   0i i y zf a EI a a m a aψ ψ ψ ω ψ ψ′′′′ ′′′′= ⋅ ⋅ − ⋅ + ⋅ =  (1.128)
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Pre-multiplying Eq. 1.128 by 1ψ  and integrating over the entire length L  renders 

( ) ( )2 2
1 1 1 2 1 2 1 1 2 1 2   +   0y z

L L

EI a a dx m a a dxψ ψ ψ ψ ω ψ ψ ψ′′′′ ′′′′⋅ ⋅ ⋅ ⋅ − ⋅ + ⋅ ⋅ =   (1.129) 

Similarly, pre-multiplying Eq. 1.128 by 2ψ  and integrating over the length L : 

( ) ( )2 2
1 2 1 2 2 2 1 2 1 2 2   +   0y z

L L

EI a a dx m a a dxψ ψ ψ ψ ω ψ ψ ψ′′′′ ′′′′⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ =   (1.130)

These two equations may then more conveniently be written 

2
1 1 1 2 1 1 2 12

2
2 1 2 2 22 1 2

    0

    0y z
L

a
EI m dx

a

ψ ψ ψ ψ ψ ψ ψ
ω

ψ ψ ψ ψ ψ ψ ψ

  ′′′′ ′′′′      − ⋅ =       ′′′′ ′′′′         
  (1.131) 

It is usually more convenient to express 1ψ  and 2ψ  by the non-dimensional 

coordinate x̂ x L= . Introducing that ( )( ) ( ) 1ˆ ˆ ˆd dx d dx dx dx d dx Lψ ψ ψ −= =  

and defining 

1
1 1 1 2

2 1 2 20

    
ˆ

    
dx

ψ ψ ψ ψ
ψ ψ ψ ψ

′′′′ ′′′′ 
=  ′′′′ ′′′′ 
A  and 

21
1 1 2

2
0 2 1 2

dx
ψ ψ ψ

ψ ψ ψ

 
=  

  
B  (1.132)

then the following eigenvalue problem is obtained 

( )λ− =A B a 0  (1.133) 

where 

2 4
z ym L EIλ ω=  and [ ]1 2

T
a a=a (1.134) 

 

Example 1.15 

 

Fig. 1.27 Continuous beam with fixed end supports 
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Fig. 1.28 Shape functions 1ψ  and 2ψ  

Let us for instance consider the case of a continuous beam with fixed end 

supports as shown in Fig. 1.27 [i.e. ( ) ( )0 0z zr x r x L= = = =  and 

( ) ( )0 0z zr x r x L′ ′= = = = ], and assume the following shape functions (see  

Fig. 1.28) 
 

 ( ) ( ) 2
1 ˆ ˆsinx xψ π=     and ( ) ( ) 2

2 ˆ ˆ ˆsin 1.5x x xψ π=   −   

 
whose fourth derivatives are given by 

 

 ( ) ( )4
1 ˆ ˆ  8 cos 2x xψ π π′′′′ = −  and ( ) ( ) ( )4

2
1

ˆ ˆ  3 cos 3
2

x xψ π π′′′′ = −  

 
Introducing this into Eq. 1.132 and performing the integration will then render 

 

 
195 0  

0 897 

 
≈  
 

A  and 
0.375 0

0 0.1858

 
≈  
 

B  
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It is seen that due to the orthogonality properties between the chosen shape 
functions A  and B  are diagonal. Thus, from Eq. 1.133 the following eigenvalues 
are obtained 

 

Thus 1 520λ =   
41

22.8 y
z

z

EI

m L
ω =  and [ ]1 1 0

T=a  

and 2 4828λ =   
42

69.5 y
z

z

EI

m L
ω =  and [ ]2 0 1

T=a  

 
More exact values are 

41
22.4 y

z
z

EI

m L
ω =  and 42

61.7 y
z

z

EI

m L
ω =  (1.191) 

I.e., the error is only about 2% for 
1z

ω  and about 12% for 
2zω . Obviously, the 

accuracy of the method will improve with the ability of the shape functions to 
represent the correct mode shapes of the system. 
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Chapter 2 

One and Two Degree of Freedom Systems 

2.1   Introduction 

While we in Chapter 1 focused on the basic mathematical methods of determining 
the structural properties of free vibrations, we shall now turn to the more realistic 
cases of including the effects of damping and the possibility of an external 
fluctuating force. However, in this chapter we limit ourselves to only consider the 
cases of single or two degrees of freedom systems, subject to a single harmonic 
force. Such a load case is virtually absent in the field of structural dynamics. 
Nonetheless, the case of a single harmonic force on simple systems is an 
illustrative overture to the ensuing chapters in this book. It is taken for granted that 
forces are rectilinear. 

The addition of damping stems from the observation that any structural system 
which is initially given a displacement or impact and then left to oscillate by itself 
will more or less slowly lowering the size of its motion and finally return to a 
condition of rest. That which causes this diminishing effect of oscillations is an 
internal force attributed to what we call damping. The concept of damping was 
first presented in Chapter 1, see Fig. 1.21. Damping in general is further discussed 
in Chapter 9. Here we shall only mention that for a full scale structure its cause is 
complex and often difficult to identify. It will in general include contributions 
from friction in joints and supports, material nonlinearities and submerged flow 
resistance (e.g. in air or water). In structural mechanics, damping has usually been 
represented by an internal force conveniently assumed proportional to the velocity 
of the system. Such a force effect is what we call viscous damping. In general, this 
is adhered to throughout this book, except a single case of pure friction damping 
included in Chapter 9. 

2.2   Unloaded Single Degree of Freedom System 

The system of a single mass, spring and viscous damper is shown in Fig. 2.1.a. 
The corresponding free body diagram in accordance with Newton’s second law 
and the principle of d’Alambert is shown in Fig. 2.1.b. Hence, equilibrium 
comprise the contributions from 
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Fig. 2.1 Single mass, spring and viscous damper system 

 

Fig. 2.2 Static and dynamic load and response 

• an external force ( )totF t  (with unit N ), 

• a spring force proportional to the body displacement ( )K totF K r t= ⋅ , where 

K  (with unit N m ) is the elastic spring constant, 

• a damping force proportional to the body velocity ( )C totF C r t= ⋅  , where C  

(with unit Ns m ) is the viscous damping constant, and 

• an inertia force proportional to and in the opposite direction of the body 

acceleration ( )I totF M r t= ⋅  , where M  (with unit kg ) is the mass. 

It is seen that equilibrium I C K totF F F F+ + =  will then require the solution of 

the following equation 

( ) ( ) ( ) ( )tot tot tot totM r t C r t K r t F t⋅ + ⋅ + ⋅ =   (2.1)
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As illustrated in Fig. 2.2, it is taken for granted that the fluctuating load is 
stationary during the entire time window considered relevant for the calculations 
performed throughout this book, i.e. the external force will comprise a time 

invariant (static) part F  and a fluctuating (dynamic) part ( )F t . It was shown in 

Chapter 1.2 that the displacement will then also comprise the sum of a time 

invariant part r  and a fluctuating part ( )r t . Introducing this into Eq. 2.1 will 

then render 

( ) ( ) ( ) ( )M r t C r t K r r t F F t⋅ + ⋅ + ⋅  +  = +    (2.2)

and thus, it is seen that response calculations may be split into the solution of a 
time invariant equilibrium requirement 

F K r= ⋅  (2.3) 

and the solution of a purely dynamic equilibrium requirement 

( ) ( ) ( ) ( )M r t C r t K r t F t⋅ + ⋅ + ⋅ =   (2.4) 

Thus, the principle of superposition between time invariant and dynamic load 
effects is applicable. The static load cases will in the following not be pursued. 

Let us first consider the unloaded case ( ) 0F t = . The general solution of a 

freely oscillating but damped system is given by 

( ) ( )Re tr t a eα= ⋅  (2.5) 

where a  is the amplitude and α  is an unknown constant, which, after 
introduction of Eq. 2.5 into Eq. 2.4, may be determined from the condition 

2 0M C Kα α+ + =  (2.6) 

Dividing by M  and introducing the undamped eigenfrequency n K Mω =  

and the damping ratio 

( )2n nC Mζ ω=  (2.7) 

then 

( ) ( )2
2 1 0n n nα ω ζ α ω+ + =  (2.8)

Thus, the following solution is obtained 

2 1n n nα ω ζ ζ= − ± −  (2.9)
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It is seen that there are two values of α  that will satisfy Eq. 2.6. The solution to 

( )r t  will then comprise the sum of these alternatives, 

( ) ( ) ( )1 1 2 2, ,r t r t r tα α= +  (2.10)

and it contains two alternative types of motion, depending on 1nζ ≥  or 1nζ < . 

Case 1: 1nζ >  

Let us first consider the case that 1nζ > . Then the expression under the root sign 

in Eq. 2.9 is positive, and thus, 

( )2
1 1n n nα ω ζ ζ= − + −  and ( )2

2 1n n nα ω ζ ζ= − − −
  

(2.11) 

The corresponding solution is given by 

( )
2 21 11 2

1 2 1 2 1 2
t t tt t n n n n n dr t r r a e a e a e a e eω ζ ω ζ ζ ωα α − − − − 

= + = + = + 
    

(2.12) 

Introducing the initial conditions that 

( )
( ) ( ) ( )

1 2 0

2 2
1 2 0

0

0 1 1n n n n n n

r t a a r

r t a a rω ζ ζ ω ζ ζ

= = + = 



= = − + − + − − − = 
 

 (2.13)

and solving with respect to 1a  and 2a , then the following solution is obtained 

( ) ( )
( )

2 12 20
0

2 12 20
0

1 2 1

1 2 1

tn n
n n n

n

t tn n n d
n n n

n

r
r t r e

r
r e e

ω ζ

ω ζ ζ ω

ζ ζ ζ
ω

ζ ζ ζ
ω

−

− − −

 = + − + − 
 

  − − − + − ⋅ 
  




 (2.14) 

This solution is illustrated in Fig. 2.3.a, and as can be seen, there are no 
oscillations of the system, the response is more or less rapidly dropping towards a 
condition where the system is at rest in its original position. Hence, we call it the 
over-damped solution. 

Case 2: 1nζ =  

Let us then consider the case that 1nζ = . Then 1 2 nα α ω= = − , and hence an 

obvious solution is that 1 1
tnr a e ω−= . Since 2r  must contain the same boundary 
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conditions as 1r  it is a reasonable assumption that ( )2 1r f t r= ⋅ , where ( )f t  is 

an unknown function, whose properties must be such that the solution satisfies the 

equilibrium condition given in Eq. 2.4 [with ( ) 0F t = ], i.e. that 

( ) ( )1 1 1 1 12 0M f r f r f r C f r f r K f r⋅ ⋅ + ⋅ + ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ =      (2.15) 

This may be rewritten into 

( ) ( )1 1 1 1 1 12 0f Mr Cr Kr f Mr Cr f Mr⋅ + + + ⋅ + + ⋅ =     (2.16) 

It is seen that the first bracket contains 1r  inserted into Eq. 2.4. It must therefore 

be equal to zero. Since 2 n nC Mω ζ=  (see Eq. 2.7) and 1nζ = , then the second 

bracket is also zero because 

( )1 1 1 12 2 2 0t tn n
n nMr Cr M a e M a eω ωω ω− −+ = − + =  (2.17) 

and thus, we must demand that 0f = , which implies that ( )2 2
tnr t a te ω−= . 

Hence 

( ) ( )1 2
tnr t a a t e ω−= +  (2.18) 

Introducing that ( ) 00r t r= =  and ( ) 00r t r= =  , then the following is obtained 

( ) ( )0 0 0
tn

nr t r r r t e ωω − = + +   (2.19) 

This solution is illustrated in Fig. 2.3.a, and as can be seen, there are still no 
oscillations of the system, but this is the transition between that which is shown in 
Fig. 2.3.a and that which is shown in Fig. 2.3.b, where oscillations actually occur. 
Hence, we call it the critically damped solution, and 2cr nC Mω=  is called the 

critical damping coefficient. 
 

Case 3: 1nζ <  

 

Finally, let us consider the case that 1nζ < . Then the expression under the root in 

Eq. 2.9 is negative, and thus, the solution will contain the complex roots 

( )2
1 1n n niα ω ζ ζ= − + −  and ( )2

2 1n n niα ω ζ ζ= − − −  (2.20)

Dividing throughout the equilibrium condition in Eq. 2.4 by M  and introducing 

that 2 n nC M ω ζ=  (see Eq. 2.7) and 2
nK M ω=  then 
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22 0n n nr r rω ζ ω+ + =   (2.21) 

Again, it is assumed that 

 ( ) ( ) ( )1 2r t r t r t= +  where 1 1

2 2

sin

cos

t

t

r a e t

r a e t

α

α

γ

γ

 =


=
             (2.22) 

Introducing 1r  into Eq. 2.21 will then require that 

( ) ( )2 2 22 sin 2 cos 0n n n n nt tα γ ω ζ α ω γ γ α ω ζ γ− + + + + =  (2.23)

for all values of t , which can only be fulfilled if 

n nα ω ζ= −  and 21n nγ ω ζ= − (2.24) 

Similarly, introducing 2r  into Eq. 2.21 will then require that 

( ) ( )2 2 22 cos 2 sin 0n n n n nt tα γ ω ζ α ω γ γ α ω ζ γ− + + − + =  (2.25)

for all values of t , which will be satisfied for the same solution that was obtained 
in Eq. 2.24. Thus 

( ) ( ) ( )2 2
1 2sin 1 cos 1 tn n

n n n nr t a t a t e ω ζω ζ ω ζ − = − + − ⋅  
 (2.26) 

Introducing that ( ) 00r t r= =  and ( ) 00r t r= =  , then the following is obtained 

( ) ( ) ( )2 20 0
02

sin 1 cos 1
1

tn n n n
n n n n

n

r r
r t t r t e ω ζζ ω ω ζ ω ζ

ζ
−

 + = − + − ⋅
 − 


 (2.27)

Using the trigonometric property that ( )1 2 1 2 1 2cos sin sin cos cosx x x x x x− = ⋅ + ⋅  

then this solution may more conveniently be written 

( ) ( )costn n
d nr t a e tω ζ ω β−= ⋅ ⋅ −  (2.28) 

where 21d n nω ω ζ= − , and where 

( )
( )

2
2 2

0 0 0

2
0 0

1

tan 1

d n n

n d n n

a r r r

r r

ω ζ ζ

β ω ζ ζ


= + + − 


= + − 





 (2.29)
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This solution (setting 0 0 1nr T r =  where 2n nT π ω= ) is illustrated in Fig. 2.3.b, 

and as can be seen, the system is oscillating with a frequency of dω , which we 

call the damped eigenfrequency, and it decays exponentially with a rate 

determined by nζ . We call this the under-damped solution. The special case that 

0 0r =  implies that 0 da r ω=   and 2nβ π= , rendering 

( ) ( )0 sintn n
d

d

r
r t e tω ζ ω

ω
−=


 (2.30)

which is a useful result in connection with impact loading. It is in the following 

consistently taken for granted that 1nζ << . 

 

Fig. 2.3 Free oscillations of single degree of freedom system 

2.3   Single Degree of Freedom System with Harmonic Load 

Let us consider the case of a harmonic sinusoidal load with amplitude 0F  and an 

arbitrary frequency ω , i.e. the case that ( ) 0 sinF t F tω= ⋅ . The solution ( )r t  to 

the equilibrium condition in Eq. 2.4 
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( ) ( ) ( ) ( )M r t C r t K r t F t⋅ + ⋅ + ⋅ =   (2.31) 

may then be split into the sum of a solution ( )hr t  to the homogeneous equation 

( ) ( ) ( ) 0h h hM r t C r t K r t⋅ + ⋅ + ⋅ =   (2.32)

and a particular solution ( )pr t  to 

( ) ( ) ( ) ( )p p pM r t C r t K r t F t⋅ + ⋅ + ⋅ =   (2.33)

As mentioned above, it is taken for granted that 1nζ  , and as shown in  

Chapter 2.2 above, the homogeneous solution is then given in Eq. 2.28, i.e. 

( ) ( )costn n
h h d hr t a e tω ζ ω β−= ⋅ ⋅ −  (2.34)

where 21d n nω ω ζ= − , and where ha  and hβ  will be determined from the 

conditions that ( )0 0r t = =  and ( )0 0r t = = . A particular solution to Eq. 2.33 

is given by 

( ) sin cosp p pr t b t c tω ω= +  (2.35)

Introducing this into Eq. 2.33 will then imply that 

( )( ) ( )2
0sin cos cos sin sinp p p pK M b t c t C b t c t F tω ω ω ω ω ω ω− + + − =  (2.36)

which may also written 

( ) ( )2 2
0 sin cos 0p p p pK M b C c F t C b K M c tω ω ω ω ω ω   − − − + + − =   

  (2.37)

Since this requirement can only be achieved at all times if both terms are 
simultaneously equal to zero, it is seen that 

( )
( )

2

0

2 0

p

p

K M C b F

cC K M

ω ω

ω ω

 − −      ⋅ =       −    

 (2.38)

rendering 
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(2.39) 

Introducing 2
n K Mω =  and ( ) ( )2 2n n nC M C Kζ ω ω= = ⋅ , see Eq. 2.7, then 

( ) ( )
( )2

0
22 2

1 1

21 2

p n

p n n
n n n

b F

c K
ω ω

ζ ω ωω ω ζ ω ω

   −= ⋅ ⋅   
−       − +

 

 (2.40)

Thus:          

 

(2.41)

Since ( ) 1 2sin cos sin sin cos sin cosa a a a aα β β α β α α α⋅ − = ⋅ ⋅ − ⋅ ⋅ = −  

where ( ) ( )2 22 2
1 2 cos sina a a a aβ β+ = + = , it is seen that 

( ) ( )sinp p pr t a tω β= ⋅ −  (2.42)

where 

( ) ( )

( ) ( ) ( ) ( )

22 2

0 0
2 22 2 22 2

1 2

1 21 2

n n n

p

n n nn n n

F F K
a

K

ω ω ζ ω ω

ω ω ζ ω ωω ω ζ ω ω

 − +
 = =

     − +− +         

(2.43) 

and 
( )2

2
tan

1
n n

p

n

ζ ω ωβ
ω ω

=
−

                                         

(2.44) 

Thus, the total solution ( ) ( ) ( )h pr t r t r t= +  is given by 

( ) ( ) ( )
( ) ( )

0

22 2

sin
cos

1 2

ptn n
h d h

n n n

tF
r t a e t

K
ω ζ ω β

ω β
ω ω ζ ω ω

− −
= − +

 − +
 

(2.45) 

 

( ) ( )

( )
( )

( ) ( )
( )

2

0
2 222

2
0
2 22

1

0

p

p

K M Cb F

c C K MK M C

K MF

CK M C

ω ω

ω ωω ω

ω

ωω ω

−
= ⋅

− −− +

−
=

−− +

( )
( )( ) ( )

( ) ( )

2

0
22 2

1 sin 2 cos

1 2

n n n

p

n n n

t tF
r t

K

ω ω ω ζ ω ω ω

ω ω ζ ω ω

− −
= ⋅

 − + 
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As mentioned above, it is assumed that the system is starting off at rest where 

( ) ( )
( ) ( )

( ) ( )

0

22 2

sin
0 cos 0

1 2

p
h h

n n n

F K
r t a

β
β

ω ω ζ ω ω

⋅
= = − =

 − +            

(2.46) 

and 

( ) ( ) ( )
( ) ( )0

22 2

cos
0 sin cos 0

1 2

p
h d h n h

n
n n

F K
r t a

ω β
ω β ζω β

ω ωζ
ω ω

⋅ ⋅
 = = − + = 

     − +   
     



 

(2.47)
 

from which it is obtained that 

( ) ( )

( ) ( )
0

22 2

sin cos

1 2

p h
h

n n n

F
a

K

β β

ω ω ζ ω ω
= ⋅

 − + 

 
(2.48)

( ) ( ) ( )22 2tan 1 2 2 1h nβ ζ ω ω ζ ζ = − + + −
 

 (2.49)

Thus:      ( )

( )
( ) ( ) ( )

( ) ( )
0

22 2

sin
cos sin

cos

1 2

p tn n
d h p

h

n n n

e t t
F

r t
K

ω ζβ
ω β ω β

β

ω ω ζ ω ω

−⋅ ⋅ − + −
= ⋅

 − +     

(2.50) 

It is seen that the response may be split into a transient part 

( ) ( )
( )

( )

( ) ( )
0

22 2

sin cos

cos
1 2

tn n
p d h

trans
h

n n n

e tF
r t

K

ω ζβ ω β
β

ω ω ζ ω ω

− ⋅ −
= ⋅ ⋅

 − + 

 
(2.51)

and a steady state part 

( ) ( )
( ) ( )

0

22 2

sin

1 2

p
st

n n n

tF
r t

K

ω β

ω ω ζ ω ω

−
= ⋅

 − + 

 
(2.52)

Due to the decaying exponential function in ( )transr t  it is a transient contribution 

to the response because it only lasts for a limited period of time, i.e. 
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( )lim 0trans
t

r t
→∞

  =   (see also the plot in Fig. 2.4), while ( )str t  is a steady state 

contribution because, after a certain period of time, it will constitute the entire 
response on its own and then remain unchanged with increasing time. The larger 

nζ  the quicker ( )transr t  dies out. 
 
 

Example 2.1 
 

Introducing 0.3 rad/snω = , nω ω=  and 0.02nζ =  then the reduced response 

( ) 0r t r  (where 0 0r F K= ) according to Eq. 2.50 is shown in Fig. 2.4 below. 

 

Fig. 2.4 Forced response of simple single degree of freedom system, ( )0 sinF F tω=
 

Elaboration 2.1: The Phenomenon of Beating 
 

If damping is very low and the forcing frequency ω  is very close to the 

eigenfrequency nω , then the particular phenomenon of “beating” may occur.  

Let for simplicity 0nζ ≈ . Let also 1nω ω ≈ , but nω ω≠ . Then 0pβ ≈  (see 

Eq. 2.44) and d nω ω≈ . Thus 
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( ) ( ) ( )
( )

0
2

sin
cos

1
h n h

n

tF
r t a t

K

ω
ω β

ω ω
= ⋅ − + ⋅

−
 

Imposing the requirements that ( )0 0r t = =  and ( )0 0r t = =  will then render 

 

 
2h
πβ =  and 

( ) ( )
0 0

2 2

1 1

1 1
h

nn n

F F
a

K K

ω
ωω ω ω ω

= − ⋅ ⋅ ≈ − ⋅
− −

 

 
Thus, the following approximate solution is obtained 

 ( ) ( ) ( )
( )

( ) ( )
( )

0 0
2 2

sin sin sin 2 cos2

1 1

n b

n n

t t t tF F
r t

K K

ω ω ω ω

ω ω ω ω

− ⋅⋅≈ ⋅ ≈ ⋅
− −

 

where ( ) 2nω ω ω= +  is the average frequency and b nω ω ω= −  is the 

frequency of the “beat”. The special case of 0.3 n rad sω =  and 0.9nω ω =  is 

illustrated in Fig. 2.5 below. 

 

Fig. 2.5 Typical “beat” response 
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2.4   The Steady State Response in a Complex Format 

In some cases of impact or shock load effects it is the transient part of the response 
which is of primary interest for structural safety considerations. But, in most cases 
the load will render a more or less stationary type of response, in which case it is 

the steady state part which is of main concern. Let ( )F t  be a harmonic function 

which in a complex format may be expressed by 
 

 

( ) ( ) ( )0 0 0Re Re cos sin cosi tF t F e F t i t F tω ω ω ω= ⋅ = ⋅ + ⋅ = ⋅  

 

 
(2.53) 

 

 

where it has been taken for granted that the amplitude 0F  is real. [It should be 

acknowledged that while we in Chapter 2.3 above adopted a forcing function 

( ) 0 sinF t F tω= ⋅ , rendering a ( ) ( ) ( )sinr t a tω ω β= ⋅ −  type of steady state 

response, it is of no consequence that we now adopt ( ) 0 cosF t F tω= ⋅ , as this 

will simply render a ( ) ( ) ( )cosr t a tω ω β= ⋅ −  type of response.] The 

corresponding steady state response function may then be expressed by 
 

 

( ) ( )Re i tr t A e ωω = ⋅   

 

 
(2.54) 

 

 

where ( )A ω  is a complex amplitude ( )A b icω = + . Thus 

( ) ( )( )Re cos sin cos sinr t b ic t i t b t c tω ω ω ω=  + +  = ⋅ − ⋅   (2.55)

Introducing                  

( ) * 2 2

cos
tan

sin
n

n
n

a A A A b c

a b c

a c b

ω

β
β

β

= = = + 
⋅ =  −

 = ⋅ = −                                

(2.56) 

then 

( ) ( )
( ) ( )
cos sin

cos cos sin sin cosn n n

r t b t c t

a t t a t

ω ω
ω β ω β ω β

= ⋅ + − ⋅

= ⋅ ⋅ + ⋅ = ⋅ −
 (2.57) 
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Thus, it is seen that 
 

 

( ) ( ) ( ) ( )Re cosi t
nr t A e A tωω ω ω β = ⋅ = ⋅ −   

 

 
(2.58) 

 

 

In general, the complex amplitude ( )A ω  and the phase angle nβ  are determined 

by fulfilment of the equilibrium condition. Thus, introducing Eq. 2.54 into 

( ) ( ) ( ) ( )M r t C r t K r t F t⋅ + ⋅ + ⋅ = 
                              

(2.59) 

then the following is obtained 

( ) ( )2
0

i t i tM Ci K A e F eω ωω ω ω− + + =  (2.60)

Dividing throughout the equation by K and introducing that 2
n K Mω =  and 

( ) ( )2 2n n nC M C Kζ ω ω= = ⋅ , then 

( ) ( )
120 1 2n n n

F
A i

K
ω ω ω ζ ω ω

−
 = ⋅ − +
 

 (2.61)

which, by multiplication and division by the complex conjugate of the 
denominator, may be expressed by 

( )
( ) ( )

( ){ }20
22 2

1 2
1 2

n n n

n n n

F K
A iω ω ω ζ ω ω

ω ω ζ ω ω
 = ⋅ − − ⋅  − +

 

 
(2.62)

As shown in Eqs. 2.56 and 2.57 above, the response ( ) ( ) ( )cos nr t A tω ω β= ⋅ −  

is then defined by its amplitude 

( ) ( ) ( )
1

2 22 2* 2 2 0 1 2n n n
F

A A A b c
K

ω ω ω ζ ω ω
−

  = = + = − +   
 (2.63) 

and phase angle        
( )2

2
tan

1
n n

n

n

c

b

ζ ω ωβ
ω ω

−= =
−

                                (2.64) 

0 0F K r=  is the static displacement of the system if load amplitude 0F  had 

acted on its own. Defining the non-dimensional frequency response function 

(complex and associated with eigenfrequency nω ) by 



2.4   The Steady State Response in a Complex Format 75 

 

( ) ( )
12ˆ 1 2n n n nH iω ω ω ζ ω ω

−
 = − +   

 

 
(2.65) 

 

 
it is seen that 

 
 

( ) ( ) ( ) ( )0
ˆ cos nr t F K H tω ω β= ⋅ ⋅ −  

 

 
(2.66) 

 

 
I.e., the steady state dynamic response of a simple single degree of freedom system 

subject to a harmonic load ( ) 0 cosF t F tω= ⋅  is also a cosine, but delayed by a 

phase nβ  (determined by Eq. 2.64), and an amplitude which is equal to the static 

effect of 0F  magnified by the absolute value of the frequency response function 

( )Ĥ ω . A plot of ( )Ĥ ω  and nβ  at 0.02nζ =  are shown in Fig. 2.6. 

 

Fig. 2.6 Plots of ( )Ĥ ω  and nβ  (at 0.02nζ = ) 
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Example 2.2   Single Storey Shear Frame 

 

Fig. 2.7 Single storey shear frame 

A single storey shear frame is shown in Fig. 2.7 above. It is called a shear 
frame because the bending stiffness of the beam is assumed infinitely large, and, 
as illustrated below, its displacement pattern will create a condition of large shear 
forces (as well as bending) in the columns. The connection between the shear 
force and the sideway column displacement is shown in the upper right hand side 
of Fig. 2.7. For simplicity, the distributed mass of the columns ( cm ) is assumed 

negligible. At an arbitrary displacement ( ) Re i tr t ae ω =    a free body diagram 

of the system is shown in the lower illustration of Fig. 2.7. Since 

( ) ( ) ( )312 yV t EI L r t= ⋅  horizontal equilibrium is expressed by 0Mr Kr+ = , 

where M  is the total mass of the beam, and ( )3 32 12 24y yK EI L EI L= ⋅ = . 

Introducing Re i tr ae ω =    and thus 

                 
3 224 0yEI L Mω− =

            ( )324n yEI MLω =  
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Let us assume 2.4 L m= , 960 M kg= , 43.5 10  yEI N m= ⋅  and 0.01nζ =  

then 7.96 n rad sω = . Let us also assume ( ) ( )0 cosF t F tω=  where 

3
0 2 10  F N= ⋅ . 

Then  ( ) ( )

( ) ( )
22 2

0.033 cos

1 2

n

n n n

t
r t

ω β

ω ω ζ ω ω

⋅ −
=

 − +
 

 where   
( )2

0.02
tan

1
n

n

n

ω ωβ
ω ω

=
−

 

 

It is seen that if 1nω ω   then 0nβ ≈  and ( ) 0 0.033 r t F K m≈ = .  

This is what we call a quasi-static type of response. It is the  
stiffness which is decisive. If 1nω ω =  then 2nβ π=  and 

( ) ( ) ( ) ( )0 1 2 sinn nr t F K tζ ω= ⋅ ⋅ . We call this response resonant. It is the 

damping ratio that is decisive. If 1nω ω   then nβ π≈ , while the response 

( ) ( ) ( ) ( ) ( ) ( )2 2
0 0cos cosn n nr t F K t F M tω β ω ω ω ω β≈ − = − , i.e. it is 

the mass that is decisive. 
 

2.5   Response to a General Periodic Load 

A simple single degree of freedom system subject to a fluctuating load ( )F t  with 

period FT  is illustrated in Fig. 2.8 below. It is taken for granted that its mean 

value is zero, i.e. that 

 

Fig. 2.8 Single degree of freedom system subject to periodic load 
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( )
0

1
0

TF

F

F F t dt
T

= =  (2.67) 

Let a Fourier transform of the load (in simple harmonic cosine and sinus 
functions) be given by 

( ) ( )
1

cos sin
N j

j j j j
j

F t B t C tω ω
=

= +  (2.68) 

where                            ( )
0

cos2
sin

TF
j j

j jF

B t
F t dt

C tT

ω
ω

   
= ⋅   

      


                             

(2.69) 

 

and where 2j F Fj T jω π ω= ⋅ = ⋅  (and where the obvious formal requirement 

that jN → ∞  is omitted for the sake of simplicity). By defining 

2 2
j j jF B C= +

       
and       

sin

cos

j j Fj

j j Fj

C F

B F

β

β

=
 =      

     tan j
Fj

j

C

B
β =

    

(2.70) 

then 

( ) ( ) ( )

( ) ( )
1 1

1 1

cos sin cos cos sin sin

cos Re

N Nj j

j j j j j F j j F jj j
j j

N Nj j i tj F j
j j F jj

j j

F t B t C t F t F t

F t F e
ω β

ω ω β ω β ω

ω β

= =

−

= =

= + = +

= − = ⋅

 

 
   

(2.71) 

We have seen in Chapter 2.4 above that the steady state response of a single 

degree of freedom system to a harmonic load ( ) ( )0Re i tF t F e ω= ⋅  was given by 

( ) ( ) ( ) ( ) ( )0 0ˆ ˆcos Re Rei t i t
n n n

F F
r t H t H e a e

K K
ω ωω ω β ω ω   = − = =    

 (2.72)

Therefore, for the more general case that 
 

 

( ) ( )
1

Re
N j i tj F j

j
j

F t F e
ω β−

=
= ⋅  

 

 
(2.73) 
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the corresponding response will be given by 

( ) ( ) ( ) ( ) ( )
1 1

Re cos
N Nj ji tj F j

j j j F nj j
j j

r t a e a t
ω β

ω ω ω β β
−

= =
= ⋅ = − − 

      

(2.74) 

where ( )j j ja b icω = + , i.e. ( ) 2 2
j j ja b cω = +  and tan n j jj

c bβ = . Taking 

the time domain Fourier transform throughout the dynamic equilibrium condition 

( ) ( ) ( ) ( )M r t C r t K r t F t⋅ + ⋅ + ⋅ = 
 

(2.75) 

will then require that for every jω  setting 

{ } ( )2

1

Re 0
N j i tj F j

j j j j
j

M Ci K a F e
ω β

ω ω
−

=

 − + + − =   (2.76) 

and thus, from an equilibrium point of view we must have that 

12
j j j ja F M Ci Kω ω

−
 = − + +   (2.77) 

Introducing that 2
n K Mω =  and ( ) ( )2 2n n nC M C Kζ ω ω= = ⋅ , and 

defining the non-dimensional frequency response function 

( ) ( )
12ˆ 1 2n j j n n j nH iω ω ω ζ ω ω

−
 = − +  

 (2.78)

then the following is obtained 

( ) ( )ˆ
j j ja F K H ω= ⋅  (2.79) 

and thus 
 

 

( ) ( ) ( ) ( ) ( )
1 1

ˆ ˆRe cos
N Nj ji tj Fj jj

j j j F nj j
j j

F F
r t H e H t

K K

ω β
ω ω ω β β

−

= =
= = − −   

 

 
(2.80) 
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where 
 
 
 
 

( )

( )

1
2 22 2

2

ˆ 1 2

2
tan

1

j j
j n

n n

n j n
n j

j n

H
ω ω

ω ζ
ω ω

ζ ω ω
β

ω ω

−
       = − +    
       

=
−

 

 
 
 
 

(2.81) 
 
 
 
 

 

Fig. 2.9 Single degree of freedom system subject to fluctuating load 

The development above may readily be made applicable to a more general 

fluctuating load (see Fig. 2.9.a) by letting FT T=  become large, formally 

T → ∞ , and transformed into a continuous format where jN → ∞ , 

2j Tω π= ⋅  and 2 T dπ ω→ ). Introducing the Euler equations 

( )1
cos

2
i t i tj j

jt e e
ω ωω −= +

      
and     ( )1

sin
2

i t i tj j
jt i e e

ω ωω −= − −
      

(2.82) 

into Eq. 2.68 renders 

( ) ( ) ( )
( ) ( )

1

1

1

2

1

2

i t i t i t i tj j j j
j j

j

i t i tj j
j j j j

j

F t B e e iC e e

B iC e B iC e

ω ω ω ω

ω ω

∞ − −

=

∞ −

=

 = + − −  

 = − + +  




 (2.83) 
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which, by defining ( ) 2j j jD B iC= −
                                             

(2.84) 

 
may be expanded into positive and fictitious negative ω  domain, such that 
imaginary parts in the positive ω  domain will consistently cancel out the same 
imaginary parts in the negative ω  domain (see Fig. 2.9.b), and then 

( ) ( )2
2

i t i tj j
j j

T
F t D e D e T

ω ω π
π

∞ ∞

−∞ −∞

 = ⋅ = ⋅ 
 

   (2.85)

 

Defining    

( ) ( )

( )( ) ( )
0 0

1

2 2 2

1 2 1
cos sin

2 2 2

j j j j

T T
i tj

j j

T T
G D B iC

T
F t t i t dt F t e dt

T

ω

ω
π π

ω ω
π π

−

 = = −


= − =


 
 

  (2.86) 

 

and letting  and T j →∞ , 2j Tω π= ⋅  and 2 T dπ ω→ , then the following is 

obtained: 

( ) ( )

( ) ( )
0

1

2

i t

i t

F t G e d

G F t e dt

ω

ω

ω ω

ω
π

∞

−∞
∞

−


= ⋅ 



= ⋅ 





 (2.87)

[It should be noted that if ( )F t  has the unit N , then the Fourier function ( )G ω  

will have the unit Ns rad .] Similarly, in a complex format, the dynamic response 

may be expressed by 

( ) ( ) i tr t g e dωω ω
∞

−∞

= ⋅  (2.88)

where the Fourier function ( )g ω  may be determined by demanding fulfilment of 

the equilibrium requirement in Eq. 2.75 at every ω  setting (which is equivalent to 
taking the Fourier transform throughout the equation and demanding fulfilment in 
frequency domain). Thus 

( ) ( )2M Ci K g Gω ω ω ω − + + =   (2.89)
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from which the following is obtained 
 

 

( ) ( ) ( )ˆ i t
n

G
r t H e d

K
ωω

ω ω
∞

−∞

= ⋅ ⋅  

 

 
(2.90) 

 

 
 
 
 

where 
 
 
 

( ) ( )

( ) ( )

12

0

ˆ 1 2

1

2

n n n n

i t

H i

G F t e dtω

ω ω ω ζ ω ω

ω
π

−

∞
−

 = − +   

= ⋅



 

 
 
 
 

(2.91) 
 
 
 

 

and 2
n K Mω =  and ( )2n nC Mζ ω= . This is what constitutes the basis for the 

frequency domain dynamic response calculation of structures subject to stochastic 
load. It is seen that the necessity of operating on the real values vanish with the 
introduction of a double sided ω  domain, as all imaginary quantities cancel out 
with the fictitious double sided integration (as shown in Fig. 2.8). 

2.6   Systems with Two Degrees of Freedom 

A simple system with two degrees of freedom is shown in Fig. 2.10.a. The 
necessary equilibrium considerations for each of the two bodies are illustrated in 
Fig. 2.10.b. Thus 

( ) ( )
( ) ( )

1 1 1 1 1 1 2 2 1 2 2 1 1

2 2 2 2 1 2 2 1 2

0

0

M r C r K r C r r K r r F

M r C r r K r r F

+ + − − − − − = 


+ − + − − = 

   

  
 (2.92)

which may more conveniently be written 

⋅ + ⋅ + ⋅ =M r C r K r F   (2.93) 

where the displacement and load vectors are defined by [ ]1 2
T

r r=r  and 

[ ]1 2
T

F F=F , and where the mass, damping and stiffness matrices are given by 

1

2

0

0

M
M

M

 
=  
     

( )1 2 2

2 2

C C C

C C

 + − 
=  − 

C
   

( )1 2 2

2 2

K K K

K K

 + − 
=  − 

K
  

(2.94) 
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Fig. 2.10 Simple system with two degrees of freedom 

The situation of undamped free oscillations (where 0=F  and 0=C ) has 

previously been solved in Chapter 1.2, rendering the eigenfrequencies 1ω  and 

2ω  (see Eq. 1.20), as well as the corresponding eigenmodes [ ]1 11 21
Tφ φ=φ  

and [ ]2 12 22
Tφ φ=φ  given in Eqs. 1.21 – 1.22. 

 
 

Elaboration 2.2: The Dynamic Absorber 
 

Let us for simplicity assume that the damping is insignificant (i.e. that

1 2 0C C= ≈ ) and that the system is subject to a single harmonic load 

( )1 10
Re i tF F e ω= ⋅  and 2 0F = . Thus, the equilibrium requirement (Eq. 2.93) 

becomes 

( ) ( )11 1 11 2 2 0

2 2 22 2

0
Re

0 0
i t

FM r rK K K
e

M r rK K
ω  + −      

+ =        −        




 

We have previously seen that the response to such a harmonic excitation is  
given by 
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10

20

Re i t
r

e
r

ω
  
 =      

r  

Introduced into the equilibrium equation this will render 

( )
( )

2
1 2 1 2 1 10 0

2
202 2 2

0

K K M K r F

rK K M

ω

ω

 + − −      =      − −     

 

and thus 

( )( )
( )2

1 10 2 20
2 2 2

20 1 2 1 2 2 2 2

r F K M

r K K M K M K K

ω
ω ω

   −
 = 
 + − − −    

 

Introducing 1 1 10
K Mω = and 2 2 20

K Mω = , then the following is 

obtained: 

( ) ( )
( )2

1 10 20 0
2 2

2 10 2 1 1 2 2 10 0

11

1 1 1

r F

r K K K K K

ω ω

ω ω ω ω

    −  = ⋅           + − − −         

 

which is the basic idea behind the dynamic absorber. 

To illustrate its effect let us for simplicity choose 1 20 0
ω ω≈  (i.e. that 

1 1 2 2K M K M≈ ) and 2 1 2 1M M K K μ≈ = . Then 

( ) ( )
( )2

1 10 10 0
2 2

2 10 1 10 0

11

1 1 1

r F

r K

ω ω

μ ω ω ω ω μ

    −  = ⋅           + − − −         

 

The frequency response function of the main system, 10
r , is illustrated in Fig. 2.11 

below. As can be seen, if the load frequency ω  is close to 10
ω , which is the 

eigenfrequency of the body subject to the load, then 10
r  becomes unduly large if 

0μ = , but, if for instance 0.01μ =  then 10
r  is reduced to virtually nothing. This 

is known as the dynamic absorber effect. It is the basic idea behind the more 
useful concept of the tuned mass damper, which is given an extensive presentation 
in Chapter 9.4. 
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Fig. 2.11 The dynamic absorber, 1 20 0
ω ω≈  

 

 
Example 2.3     Two Storey Shear Frame 

 

 
 

a) General system 

Fig. 2.12 Two storey shear frame 
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b) Establishing content to the equilibrium equations 

Fig. 2.12  (continued) 

For an effective development of the equilibrium conditions of systems with 
more than one degree of freedom it is convenient to introduce a more robust 
approach. We know that in a matrix format the equilibrium requirements to the 
two storey shear frame in Fig. 2.12 above may be written 

 

11 12 1 11 12 1 11 12 1 1

21 22 2 21 22 2 21 22 2 2

M M r C C r K K r R

M M r C C r K K r R

             
+ + =             

             

 
 

 

 

Demanding equilibrium in the fictitious setting that 1 0r ≠  and 2 0r =  (see  

Fig. 2.12.b), then 

1 11 1 11 1 11 1

2 21 1 21 1 21 1

R M r C r K r

R M r C r K r

= + +
= + +

 
 

 

rendering the first column in the matrices in the equilibrium condition above. 

Similarly, if we demand equilibrium in the fictitious setting that 1 0r =  and 2 0r ≠ , 

then 

1 12 2 12 2 12 2

2 22 2 22 2 22 2

R M r C r K r

R M r C r K r

= + +
= + +

 
 

 

rendering the second column in the matrices in the equilibrium condition above. 
Let us in the following for simplicity assume that damping is exclusively 

associated with the motion of masses 1M  and 2M , and define 

3
1 124 yK EI L=  and 3

2 224 yK EI L=  
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then 

1)    1 0r ≠  and 2 0r =  (see Fig. 2.21.b)       
( )1 1 1 1 1 1 2 1

2 2 1

R M r C r K K r

R K r

 = + + +


= −

 
 

 

2    1 0r =  and 2 0r ≠                                     
1 2 2

2 2 2 2 2 2 2

R K r

R M r C r K r

= −
 = + +  

 

 
Thus, the equilibrium condition of the two storey frame in Fig. 2.12 is given by 

( )1 1 1 1 1 11 2 2

2 2 2 2 2 22 2

0 0

0 0

M r C r r RK K K

M r C r r RK K

 + −            
+ + =            −            

 
 

 

which may be written in the following more compact way 

+ + =Mr Cr Kr R   

where [ ]1 2
T

r r=r , [ ]1 2
T

R R=R  and 

 

1

2

0

0

M

M

 
=  
 

M
        

1

2

0

0

C

C

 
=  
 

C
      

( )1 2 2

2 2

K K K

K K

 + − 
=  − 

K  

 
The undamped and unloaded eigenvalues and corresponding eigenmodes may as 

usual be obtained by setting C  and R  both equal to zero, and impose the 
harmonic motion 

( ) ( )1

2

Re i tr
t e

r
ω 

= = 
 

r a  where [ ]1 2
T

a a=a  

Thus, the following eigenvalue problem is obtained 
 

( )2ω− =K M a 0  

 

which, fully written is 
( )

( )
2

1 2 1 2 1

2
22 2 2

0

0

K K M K a

aK K M

ω

ω

 + − −      =       − −  

 

 
Its solution may be obtained by setting the determinant to the coefficient matrix 
equal to zero, rendering the following fourth order polynomial solution 
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4 21 2 2 1 2

1 2 1 2

0
K K K K K

M M M M
ω ω

 +− + + = 
 

 

 
whose roots are given by 

1 21 22
1 2 2 1 2 2 1 2

1 2 1 2 1 2

1 1

2 4

K K K K K K K K

M M M M M M
ω

     + +  = + ± + −    
       

 

Let for instance 1 2K K= , 2K K= , 1 2M M=  and 2M M= , then the solution 

to the eigenvalue problem 

( )
( )

2

1

2
2

3 2 0

0

K M K a

aK K M

ω

ω

 − −      =       − −  

 

is given by 
2 5 3

4 4

M

K

ω = ±  and thus 

( )1

2

2

2

K M

K M

ω

ω

 =


 =

 

 
From the second row of the eigenvalue problem it is seen that 

2

1 21 0
M

a a
K

ω 
− + − =  

 
 

It is seen from the eigenvalue problem that one is free to scale the content of the 

eigenmodes [ ]1 2
T

a a=φ . Eigenmodes associated with eigenvalues 1ω  and 

2ω  are then obtained by successively introducing 1ω  and 2ω  into the equation 

above. Thus: 
 

1) 1ω ω=    2 1 2a a =  and thus [ ]1 2
T=φ  

 

2) 2ω ω=    2 1 1a a = −  and thus [ ]1 1
T= −φ  

 
The numerical eigenvalue problem is more thoroughly presented in Chapter 4.4. 
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Chapter 3 

Eigenvalue Calculations of Continuous Systems 

3.1   Eigenvalue Calculations of Simple Beams 

A simple beam is defined as a single span beam whose cross section is symmetric 
about the y - as well as the z - axis, i.e. its shear centre and its centre of pure 

linear bending coincides with its mass centre ( 0y ze e= = ). It is homogenous and 

line-like in the sense that along the entire span it contains only one type of 
material, and the cross section is small as compared to the length of the beam such 
that it may mathematically be modelled as a single line through its shear centre. 

Furthermore, it is assumed that time invariant mean cross sectional forces ( N , 

yM  and zM ) are zero, and that the motion of the system is restricted such that it 

is only zr  that is unequal to zero. The more general case of beams with non-

symmetric cross section where yr , zr  and rθ  are simultaneously unequal to zero 

is covered in Chapter 3.2, while the effects of time invariant forces are included in 
the cases covered in Chapter 3.3. The most typical four cases of boundary 
conditions for simple beams are illustrated in Fig. 3.1.c. As shown in Chapter 1.1 
(see Eqs. 1.23 – 1.36), an exact solution to the problem of undamped and unloaded 
free oscillations 

 ( ) ( ), Re i t
z zr x t x e ωφ = ⋅   (3.1) 

of a continuous system can be obtained by solving the differential equation of 
dynamic equilibrium 

   =0z z y zm r EI r′′′′+    2
z 0y z zEI mφ ω φ′′′′− =

         
(3.2) 

which can only be obtained for all values of x  if the fourth derivative of zφ  is 

shapewise congruent to itself. Thus, the general solution (conveniently expressed 

in the non-dimensional coordinate x̂ x L= ) is given by 

 ( ) ( ) ( ) ( ) ( )1 2 3 4ˆ ˆ ˆ ˆsin cos sinh coshz x a x a x a x a xφ λ λ λ λ= + + +  (3.3) 
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Fig. 3.1 Typical continuous system and some relevant boundary conditions 

 

where the coefficients ja , 1, 2, 3 or 4j = , and the non-dimensional wave length 

λ  are all determined from the relevant boundary conditions at the beam element 

ends, i.e. at ˆ 0x =  and ˆ 1x = . Apart from boundary requirements to ( )z xφ  itself, 

the boundary conditions may entail requirements to the slope 

( ) ( ) ( ) ( ) ( ) ( )1 2 3 4ˆ ˆ ˆ ˆcos sin cosh sinhz x L a x a x a x a xφ λ λ λ λ λ′ =  − + +    (3.4) 

to the bending moment 

( ) ( )

( ) ( ) ( ) ( ) ( ){ }2
1 2 3 4

, Re

ˆ ˆ ˆ ˆRe sin cos sinh cosh

i t
y y z y z

i t
y

M x t EI r EI x e

EI L a x a x a x a x e

ω

ω

φ

λ λ λ λ λ

 ′′ ′′= − = − = 

− − − + +  
 (3.5) 
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or to the shear force 

( ) ( )
( ) ( ) ( ) ( ) ( ){ }3

1 2 3 4

, ,

ˆ ˆ ˆ ˆRe cos sin cosh sinh

z y

i t
y

V x t M x t

EI L a x a x a x a x e ωλ λ λ λ λ

′= =

− − + + +  
 (3.6) 

In general, there will be four boundary conditions, two at either ends of the beam, 
rendering a relative connection between the coefficients ja , 1, 2, 3 or 4j =  and a 

transcendental equation ( ) 0f λ = . Thus, since it is only the relative connection 

between the coefficients that can be obtained it is only the shape of zφ  that can be 

determined, i.e. one of the coefficients is arbitrary and may conveniently be 
chosen equal to unity. Furthermore, the transcendental equation obtained from the 
four boundary conditions will have an infinite number of solutions 

,  n 1, 2, 3,nλ λ= =  , each representing a possible satisfaction of the relevant 

boundary conditions. Thus, there will be an infinite number of possible mode 

shapes ( )ˆz nn
xφ λ , which, introduced back into the differential equation of 

dynamic equilibrium (Eq. 3.2), will render 

( ) ( )4 2 ˆ 0y n z z nn
EI L m xλ ω φ λ − ⋅ =                                  

(3.7)
 

Thus, a corresponding set of eigenfrequencies are obtained 

 ( )2 4
z n y zn

EI m Lω λ=  (3.8) 

As mentioned above (see also Eq. 3.7), the size of zn
φ  is arbitrary, i.e. they are 

merely shapes that may be scaled up or down at will. In the following 1a  is 

conveniently set equal to unity. From a structural safety point of view it is in 
general only a few of the lowest values of zn

ω  and corresponding set of mode 

shapes zn
φ  that are of interest. The reason for this is that higher eigenvalues are 

likely to lie beyond the frequency band of possible load excitation. 
 
 

Beam Type 1, Simple Supports at Either Ends (See Fig. 3.1.c) 
 

For beam type 1 in Fig. 3.1.c the boundary conditions require 
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( )
( )

( )
( )

2 4
2 4

2 4

1 3 3

1 3

0 0   0
0

00 0

0   sin sinh 0 0
 

sin sinh 0 sin sinh =00

z

y

z

y

x a a
a a

a aM x

x L a a a

a aM x L

φ

φ λ λ
λ λ λ λ

= =  + =    = = − + == =  


= =  + = =      − + = ⋅= =   

 (3.9) 

The non-trivial solution to the transcendental equation ( )=sin sinh =0f λ λ λ⋅  is 

that n nλ λ π= = , 1,2,3,n =  , rendering n mode shape functions 

 ( ) ( )ˆsinz nn
x xφ λ=  (3.10) 

Introducing Eq. 3.10 back into Eq. 3.1 and 3.2 will then render Eq. 3.8, from 
which the eigenfrequencies may be obtained. The four first mode shapes and 
corresponding λ -values are shown in Fig. 3.2 below. 

 

Fig. 3.2 Beam type 1, beam with simple supports at either ends 
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Beam Type 2, Fixed Support on One Side, Free on the Other (See Fig. 3.1.c) 
 

For beam type 2 in Fig. 3.1.c the boundary conditions require 

( )
( )

( )
( )

( ) ( )
( ) ( )

2 4 4 2

1 3 3 1

1 2

1 2

0 0 0

00 0

0 sin sinh cos cosh 0

cos cosh sin sinh 00

z

z

y

z

x a a a a

a a a ax

M x L a a

a aV x L

φ
φ

λ λ λ λ
λ λ λ λ

= = + = = −     + = = −′ = =   


= =   + + + =    + − − == =          

(3.11) 

 

( )
( )

2

1

sin sinh

cos cosh

cos cos h 1=0

a

a

λ λ
λ λ

λ λ

 −
= − +

 ⋅ +

 (3.12) 

 

Fig. 3.3 The three first zero crossing points of ( ) cos cosh 1f λ λ λ= ⋅ +  

In Fig. 3.3 are shown the three first zero crossings of the transcendental equation 

( ) cos cosh 1f λ λ λ= ⋅ + . In general, there are an infinite number of such 

crossings. The non-trivial solutions nλ λ= , 1,2,3,n =   to the transcendental 

equation ( ) cos cosh 1 0f λ λ λ= ⋅ + =  will then render the relevant mode shapes 
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( ) ( ) ( ) ( )sin sinh
ˆ ˆ ˆ ˆsin sinh cos cosh

cos cosh
n n

z n n n nn
n n

x x x x
λ λφ λ λ λ λ
λ λ

+
 = − + − +

 (3.13) 

The corresponding set of eigenfrequencies are given in Eq. 3.8. The four first 
mode shapes and corresponding λ -values are shown in Fig. 3.4. 

 

Fig. 3.4 Beam type 2, fixed support on one side and free on the other 

Beam Type 3, Fixed Supports at Either Ends (See Fig. 3.1.c) 
 

For beam type 3 in Fig. 3.1.c the boundary conditions require 

( )
( )
( )
( )

( ) ( )
( ) ( )

2 4 4 2

1 3 3 1

1 2

1 2

0 0 0

00 0

0 sin sinh cos cosh 0

0 cos cosh sin sinh 0

z

z

z

z

x a a a a

a a a ax

x L a a

x L a a

φ
φ

φ λ λ λ λ
φ λ λ λ λ

= = + = = −     + = = −′ = =   


 = = − + − =    ′ = = − − + =         

(3.14) 
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( )
( )

2

1

cos cosh

sin sinh

cos cos h 1=0

a

a

λ λ
λ λ

λ λ

 −
= +

 ⋅ −

 (3.15) 

The relevant mode shapes 

( ) ( ) ( )
( ) ( ) ( )cos cosh

ˆ ˆ ˆ ˆsin sinh cos cosh
sin sinh

n n
z n n n nn

n n

x x x x
λ λ

φ λ λ λ λ
λ λ

−
 = − + − +

 (3.16) 

may then be obtained from the non-trivial solutions nλ λ= , 1,2,3,n =   to the 

transcendental equation ( ) cos cosh 1 0f λ λ λ= ⋅ − = , while the corresponding 

set of eigenfrequencies given in Eq. 3.8. The four first mode shapes and 
corresponding λ -values are shown in Fig. 3.5. 

 

Fig. 3.5 Beam type 3, fixed supports at either ends 

Beam Type 4, Fixed Support at One End, Simple at the Other (Fig. 3.1.c): 
 

For beam type 4 in Fig. 3.1.c the boundary conditions require 
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( )
( )
( )

( )
( ) ( )
( ) ( )

2 4 4 2

1 3 3 1

1 2

1 2

0 0 0

00 0

0 sin sinh cos cosh 0

0 sin sinh cos cosh 0

z

z

z

y

x a a a a

a a a ax

x L a a

M x L a a

φ
φ

φ λ λ λ λ
λ λ λ λ

= = + = = −     + = = −′ = =   


= =   − + − =    = = + + + =  

     (3.17) 

 

( )
( )

2

1

sin sinh

cos cosh

cos sin h sin cosh =0

a

a

λ λ
λ λ

λ λ λ λ

 −
= − +

 ⋅ − ⋅

 (3.18) 

The non-trivial solutions nλ λ= , 1,2,3,n =   to the transcendental equation 

( ) cos sin h sin cosh =0f λ λ λ λ λ= ⋅ − ⋅  will then render the relevant mode 

shapes 

( ) ( ) ( )
( ) ( ) ( )sin sinh

ˆ ˆ ˆ ˆsin sinh cos cosh
cos cosh

n n
z n n n nn

n n

x x x x
λ λ

φ λ λ λ λ
λ λ

−
 = − − − −

 (3.19) 

and the corresponding set of eigenfrequencies are given in Eq. 3.8. The four first 
mode shapes and corresponding λ -values are shown in Fig. 3.6. 

 

Fig. 3.6 Beam type 4, fixed support at one side and simple at the other 
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3.2   Beams with Non-symmetric Cross Section 

In the previous chapter we dealt with simple unloaded and undamped single span 
beams whose cross section was assumed to be symmetric about the y  as well as 

the z  axis, such that 0y ze e= = . It was also taken for granted that all time 

invariant cross sectional forces (e.g. N , yM  and zM ) were zero. In that case 

there was no coupling between response components yr , zr  and rθ , and 

therefore, any eigenvalue or response calculation could be handled separately for 
each of these components, and we chose to focus on zr . In this chapter we shall 

adopt the same restrictions, except that we shall now consider the possibility of a 
non-symmetric cross section, i.e. the situation that ye  and ze  are unequal to zero. 

This is a more complex case than that which was dealt with in Chapter 3.1 above. 
Rather than making an attempt to solve the differential equation, it is more 
convenient to turn to the principle of virtual work, which was presented in Chapter 
1.6, rendering the general expression in Eq. 1.119. Under the assumptions given 
above, Eq. 1.119 is reduced into 

( )

0 0 0

0 0 0

0 0 0

0 0 0

T
g x x y z y z y y

L L

T
x x

y z y

yz zL

t

dx r EAr r EI r r EI r r EAr dx

r EA r

r EI r
dx

EIr r

r GI r

θ θ

θ θ

δ δ δ δ δ

δ
δ
δ
δ

′ ′ ′′ ′′ ′′ ′′ ′ ′− = + + +

′ ′     
     ′′ ′′     = ⋅ ⋅     ′′ ′′
     

′ ′′          

 



r m r

         

(3.20) 

where ( ),
T

x y zx t r r r rθ =  r
 

and ( ) T

x y zx r r r rθδ δ δ δ δ =  r
 

and where 

 

0 0 0

0 0

0 0

0

x

y y z

g
z z y

y z z y

m

m m e

m m e

m e m e mθ

 
 − =  
 
 − 

m  (3.21) 

Since we are here only considering an unloaded and undamped system, the 
solution is a purely harmonic motion, which may be written on the format 
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( )

( )
( )
( )
( )

( ), Re Re

x x

y y i t i t

z z

a x

a x
x t e e

a x

a x

ω ω

θ θ

ψ
ψ
ψ
ψ

  
  
  = ⋅ = ⋅ ⋅  
  
    

r Ψ a
 (3.22) 

where x y zdiag θψ ψ φ ψ =  Ψ  is a four by four matrix containing all the 

relevant mode shape functions and where 
T

x y za a a aθ =  a  is a four by 

one vector containing the corresponding amplitudes of motion. The choice of xψ , 

yψ , zψ  and θψ  may be based on the results obtained in Chapter 3.1 above or on 

chosen approximations fulfilling the boundary conditions. The virtual 
displacement is arbitrary, and therefore, we conveniently choose δ δ= ⋅r Ψ a  

where 
T

x y za a a aθδ δ δ δ δ =  a , and thus, Eq. 3.20 becomes 

 

( ) ( )2

2

2

2

2

0 0 0

0 0 0

0 0 0

0 0 0

T i t
g

L

x

T z y i t

L y z

t

i e dx

EA

EI
e dx

EI

GI

ω

ω

θ

δ ω

ψ
ψ

δ
ψ

ψ

−

 ′
 

′′ 
=  

′′ 
 

′  





ψ a m ψa

a a
 (3.23) 

rendering 

2

2
2

2

2

0 0 0

0 0 0

0 0 0

0 0 0

x

z yT T T
g

L L y z

t

EA

EI
dx dx

EI

GI θ

ψ
ψ

δ ω δ
ψ

ψ

 ′
 

′′ 
=  

′′ 
 

′  

 a ψ m ψ a a a
 (3.24) 

which, by defining 

2

2

2

2

0 0 0

0 0

0 0

0

x x

y y y z yT
g

z z z y zL L

y z y z y z

m

m m e
dx dx

m m e

m e m e m

θ

θ

θ θ θ θ

ψ
ψ ψ ψ

ψ ψ ψ

ψ ψ ψ ψ ψ

 
 

− 
= =  

 
 

−  

 M ψ m ψ
 (3.25) 
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and 

 

2

2

2

2

0 0 0

0 0 0

0 0 0

0 0 0

x

z y

L y z

t

EA

EI
dx

EI

GI θ

ψ
ψ

ψ

ψ

 ′
 

′′ 
=  

′′ 
 

′  

K
 (3.26) 

and acknowledging that the pre-multiplication by Tδ a  is obsolete, then the 
following eigenvalue problem is obtained 

 ( )2ω− ⋅ =K M a 0   (3.27) 

It is readily seen that the xr  component is independent of the other three yr , zr  
and rθ  components. Thus, it is given a separate treatment below. 

Case 1: Along Span Wave Propagation 

Along span structural oscillations ( ),xr x t  in a line like beam is what we more 

generally associate with wave propagation. As mentioned above, the xr  

displacements may be handled separately from the other components, and thus, 
extracting the first row and column from Eq. 3.27, the following is obtained: 

 
2 2 2 0x x x x

L L

EA dx m dx aψ ω ψ
 

′ − =  
 
   (3.28) 

and thus, the eigenfrequency associated with along span wave propagation is 
given by 

 

1
2

2 2
x x x x

L L

EA dx m dxω ψ ψ
 

′=   
 
   (3.29) 

The mode shape function covering most relevant cases may generally be 
expressed by 

 ( ) ( )sin cosx x L b x Lψ λ λ= + ⋅  (3.30) 
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where the coefficient b  and the wave length λ  may be found from the boundary 
conditions. For beam types 1, 2 and 4 in Fig. 3.1, the boundary conditions 

( )0, 0xr x t= =  and ( ) ( ), , 0xN x L t EAr x L t′= = = =  will require 

( ) ( )0 0x xx x Lψ ψ ′= = = = . The first boundary condition ( )0 0x xψ = =  will 

require 0b = , The solution is then ( )sinx x Lψ λ= . The wave length λ  may 

be found from the second boundary condition ( )( ) cos 0x x L Lψ λ λ′ = = = , 

rendering the non-trivial solution 2nλ π π= − , 1,2,3,n =  . Thus, since 

( ) ( )sin 2 sin 2 1 0nλ π=  −  =  , the following is obtained 

( ) ( )

( )

2 2

0
2 2

2

0

cos
1

2
sin

L

x Ln
x x

x

EA L x L dx
EA EA

n
m L m L

m x L dx

λ λ
ω λ π

λ

 = = = − 
 




 (3.31) 

For beam type 3 in Fig. 3.1 the boundary conditions ( )0, 0xr x t= =  and 

( ), 0xr x L t= =  will require ( ) ( )0 0x xx x Lψ ψ= = = = . From the first 

boundary condition 0b = . The second will require ( )sin 0λ = , and thus, 

nλ π= . The solution is then ( )sinx n x Lψ π= , rendering 

2
2 2

2
0 0

cos sin
L L

x xn
x

EAn n x n x
EA dx m dx n

L L L m L

π π πω π
      = =      

       
   (3.32) 

Case 2: Bi-axial Bending and Torsion 

After the extraction of the xr  component, the mass and stiffness matrices in  

Eqs. 3.25 and 3.26 are reduced into 

 

2

2

2

0

0

y y y z y

z z z y z
L

y z y z y z

m m e

m m e dx

m e m e m

θ

θ

θ θ θ θ

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ ψ ψ

 −
 
 =
 
 − 

M  (3.33) 
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and                      

2

2

2

0 0

0 0

0 0

z y

y z
L

t

EI

EI dx

GI θ

ψ

ψ

ψ

 ′′
 
 ′′=
 
 ′ 

K

                            

(3.34) 

and accordingly, the eigenvalue problem in Eq. 3.27 may be written 

( )
( )

( )

2 2 2 2

2 2 2 2

2 2 2 2 2

0

0

z y y y y z y

y z z z z y z
L

y z y z y z t

EI m m e

EI m m e dx

m e m e GI m

θ

θ

θ θ θ θ θ

ψ ω ψ ω ψ ψ

ψ ω ψ ω ψ ψ

ω ψ ψ ω ψ ψ ψ ω ψ

 ′′ −
 
 ′′ − − ⋅ = 
 ′− −  

 a 0

   

(3.35) 

As can be seen, if the cross section is symmetric about both axis y  and z   

(i.e. 0y ze e= = ), then there are three independent solutions, one associated with 

pure motion in the y  direction 

 
2 2

y z y y y
L L

EI dx m dxω ψ ψ′′=    (3.36) 

one associated with pure motion in the z  direction 

 
2 2

z y z z z
L L

EI dx m dxω ψ ψ′′=    (3.37) 

and one associated with pure cross sectional twisting (torsion) 

 2 2
t

L L

GI dx m dxθ θ θ θω ψ ψ′=    (3.38) 

The same will occur if for instance ym  and zm  are constants along the span of 
the beam and yψ  and θψ  as well as zψ  and θψ  are orthogonal. Otherwise, i.e. 
in the case of no cross sectional symmetry about neither y  nor z  axes nor any 
mode shape orthogonality, then the motion will contain some coupling between 
motion in y  and z  directions and cross sectional twisting (torsion). By  
pre-multiplication of Eq. 3.35 by 
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1
2

2

2

0 0

0 0

0 0

y y

z z
L

m

m dx

mθ θ

ψ

ψ
ψ

−
  
     

  
    

  (3.39) 

it may be written in the following more convenient format 

 

( )
( )

( )

2 2 2

2 2 2

2 2 2 2
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y z y y

z y z z

z y y z

e M M

e M M

e M M e M M

θ

θ

θ θ θ θ θ

ω ω ω

ω ω ω

ω ω ω ω

 −
 
 − − ⋅ = 
 

− −  

a 0

 

 

   
 (3.40) 

where 

2 2 2and

and

y y y z z z
L L L

y y y z z z
L L

M m dx M m dx M m dx

M m dx M m dx

θ θ θ

θ θ θ θ

ψ ψ ψ

ψ ψ ψ ψ
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


= =


  

 

  

 
    (3.41) 

As usual, a non-trivial solution requires ≠a 0 , and therefore the eigenvalues may 
be obtained by setting the determinant to the coefficient matrix in Eq. 3.40 equal 
to zero, rendering 

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

2 2

6

2 2

2 2 2 4

2 2 22 2

1

1 1

0

z y y z

y z

y z z y
y z

z y

y z y z y z

e M e M

M M M M

e M e M

M M M M

θ θ

θ θ

θ θ
θ

θ θ

θ θ θ

ω

ω ω ω ω

ω ω ω ω ω ω ω ω ω ω

 
 − − − 
  
    
    − + − + +            
 + + − =  

 

   

 

     (3.42) 

As can be seen, there are three possible eigenvalues which are determined by the 
zero crossings of a third order polynomial, each representing an eigenvalue and a 
corresponding coupled motion. In general, only a numerical solution can be 
obtained. However, analytical solutions may be obtained for the special cases that 
either  ye  or ze  are equal to zero. The solution to the case that 0ye =  is dealt 

with in Case 3 below. 
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Case 3: Mono-axial Bending and Torsion 

Let for instance 0ye = . Then Eq. 3.40 is further reduced into 

 

( )
( )

( )

2 2 2

2 2

2 2 2

0

0 0

0

y z y y

z

z y

e M M

e M M

θ

θ θ θ

ω ω ω

ω ω

ω ω ω

 −
 
 − ⋅ = 
 

−  

a 0

 

 
 (3.43) 

from which at is readily seen that the first eigenvalue 1 zω ω= , representing pure 

motion in the z  direction, while the other two, representing a coupled horizontal 
and torsion motion, may be determined from 

 ( )( ) ( ) ( )22 2 2 2 4 0y z y ye M M Mθ θ θω ω ω ω ω− − − =    (3.44) 

  ( ) ( ) ( )2 4 2 2 2 2 21 0z y y y ye M M Mθ θ θ θω ω ω ω ω ω − − + + =  
    (3.45) 

If ( ) ( )2
1z y ye M M Mθ θα = =   , then there is only one positive root 

 ( )2

2 1 yθ θω ω ω ω= +  (3.46) 

If ( ) ( )2
1z y ye M M Mθ θα = >   , there is still only one positive root 

( ) ( ) ( )( )
( )

22 2 2

2

1 1 4 1

2 1

y y yθ θ θ

θ

ω ω ω ω α ω ω
ω ω

α

   − + + + + −      =
−

 (3.47) 

The solution to these two cases (i.e. that 1α ≥ ) is shown in Fig. 3.7 below. 

If ( ) ( )2
1z y ye M M Mθ θα = <   , then there are two positive roots 

( ) ( ) ( ) ( )
22 2 2

2,3 1 1 4 2 1y y yθ θ θ θω ω ω ω ω ω α ω ω α
   = + − +  −        

  (3.48) 

The solution is shown in Fig. 3.8 below. 
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Fig. 3.7 Non-sym. cross section, 2 θω ω  for ( ) ( )2
1z y ye M M Mθ θα = ≥    

 

Fig. 3.8 Non-sym. cross section, 2 θω ω , 3 θω ω , ( ) ( )2
1z y ye M M Mθ θα = <    
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Example 3.1 

Let us for instance consider a simply supported beam (type 1 in Fig. 3.1.c), and 

still assume that 0ye = . Then ( )siny z n x Lθψ ψ ψ π= = = . Let us also for 

simplicity assume constant cross section properties along the entire span of the 
beam. 

Acknowledging that ( ) ( )2 2

0 0
sin cos 2

L L
n x L dx n x L dx Lπ π= =   then: 
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πω φ φ

πω φ φ

  ′′= =  
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
  ′′= =  

 


  ′= =    

 

 
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and thus   

( ) ( )

( ) ( )

( )

1
22 2 42

1
22 2 42

1
2 2 22

y z y y y z yL L

y y z z z y zL L

t tL L

EI dx m dx n EI m L

EI dx m dx n EI m L

GI dx m dx n GI m Lθ θ θ θ θ

ω φ φ π

ω φ φ π

ω φ φ π


′′ = =


 ′′= =



′= =


 

 

 

 

As shown above, in the special case that 2 1z ye m mθα = = , then there is only 

one positive root: ( )2

2 1 yθ θω ω ω ω= + . 

If 2 1z ye m mθα = > , then there is still only one positive root 

( ) ( ) ( )( ) ( )
22 2 2

2 1 1 4 1 2 1y y yθ θ θ θω ω ω ω ω ω α ω ω α
     = − + + + + −  −            

However, if 2 1z ye m mθα = < , then there are two positive roots 

( ) ( ) ( ) ( )
22 2 2

2,3 1 1 4 2 1y y yθ θ θ θω ω ω ω ω ω α ω ω α
   = + − +  −        



 
 

Introducing either of these eigenvalue solutions jω  back into Eq. 3.43 
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    − ⋅ =    
       −  

 

 

 

 

it is seen that ya  and za  are arbitrary and may conveniently be chosen equal to 

unity, in which case (from the first row)  ( ) ( )2
1 y j z ya e m mθ θω ω = −  

 

Thus, the unloaded undamped harmonic motion for such a system is given by 

1) either purely vertical ( ) 1Re sin i t
zr a n x L e ωπ = ⋅ ⋅   where 1 zω ω=  

2) or a combined sideway and torsion 

( ){ } ( )2

1
Re sin

1
i ty j

y j z yj

r n x
a e

e m m Lr

ω

θθ

π
ω ω

       =      −       

where 2

3or j

ω
ω

ω


= 


 

(i.e. for combined sideway and torsion there are two alternative eigenfrequencies 
and corresponding mode shapes). 

3.3   The Beam Column 

In Chapter 3.1 we dealt with a simple unloaded and undamped single span beam 
whose cross section was assumed to be symmetric about the y  as well as the z  

axis, such that 0y ze e= = . It was also taken for granted that all time invariant 

cross sectional forces were zero. In this chapter we shall adopt the same 
restrictions, except that we shall now consider the possible presence of time 

invariant cross sectional forces N , yM  and zM . Again, this is a more complex 

case than that which was dealt with in Chapter 3.1, and rather than making an 
attempt to solve the differential equation, it is, like we did in Chapter 3.2, more 
convenient to turn to the principle of virtual work, which was presented in Chapter 
1.6, rendering the general expression in Eq. 1.119. The xr  will not be included, 

simply because there is no interaction between xr  and cross sectional forces N , 

yM  and zM , and thus, xr  may be handled separately as shown in Chapter 3.2. 

(Though, it should be noted that stresses due to wave propagation will be 

augmented by the presence of initial stresses due to N , yM  and zM .) Under the 

assumptions given above Eq. 1.119 is reduced to 
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Fig. 3.9 The beam column 
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thus, the solution is purely
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by one vector containing
displacement is arbitrary
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 (3.49

T
rθ   and ( ) T

y zx r r rθδ δ δ δ =  r , and wher

mθ   and ( )2 2
0 p y ze e I I A= = +  (see Eq. 1.115). W

g the situation of an unloaded and undamped system, an
y harmonic, i.e. 
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Ψ a  (3.50

z θψ ψ   is a three by three diagonal matrix containin

ape functions and where 
T

y za a aθ =  a  is a thre

g the corresponding amplitudes of motion. The virtu
y, and therefore, we conveniently choose δ δ= ⋅r Ψ a
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2

2 2

2

2

2

2 2
0

0 0

0 0

0 0

0 0 0 0

0 0 0 0

00 0

z y

T T i t T
g y z

L L
t

y y y
i t

z z z
L

y y z z

EI

dx e EI dx

GI

M

N M dx e

M Me

ω

θ

θ
ω

θ

θ θθ

ψ

δ ω δ ψ

ψ

ψ ψ ψ
ψ ψ ψ

ψ ψ ψ ψψ

  ′′
    ′′= 

 
 ′  

 ′ ′ ′       ′ ′ ′+ −  
   ′ ′ ′ ′′      

 


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(3.51) 

which, by defining 

 2 2 2T
g y y z z

L L L L

dx diag m dx m dx m dxθ θψ ψ ψ
 

= =  
  

   M Ψ m Ψ  (3.52) 
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0 z y y z t

L L L

diag EI dx EI dx GI dxθψ ψ ψ
 

′′ ′′ ′=  
  
  K  (3.53) 

and 

2

2

2 2
0

0

0

y y y

G z z z
L

y y z z

N M

N M dx

M M Ne

θ

θ

θ θ θ

ψ ψ ψ

ψ ψ ψ
ψ ψ ψ ψ ψ

 ′ ′ ′−
 
 ′ ′ ′= −
 

′ ′ ′ ′ ′− −  

K  (3.54) 

renders the eigenvalue problem           ( )2ω− ⋅ =K M a 0   (3.55) 

where 0 G= +K K K    (3.56) 

 
Example 3.2 

 
Let us for simplicity consider the simply supported beam (type 1 in Fig. 3.1.c), i.e. 

that ( )siny z n x Lθψ ψ ψ π= = =  and that yEI , zEI , tGI , N , yM  and zM  

are all constants along the span of the beam. Acknowledging that 
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( )

( ) ( )

( ) ( )

2 2

0

22 2

0

42 2

0

sin 2

cos 2

sin 2

L

j
L

L

j j k
L L

L

j
L

dx n x L dx L

dx dx n x L dx n L L

dx n x L dx n L L

ψ π

ψ ψ ψ π π

ψ π π


= = 



′ ′ ′= = = 


′′ = = 


 

  

 

,  or 
j

y z
k

θ
=


 

then the mass and stiffness matrices are given by  

0 0

0 0
2

0 0

y

z

m
L

m

mθ

 
 =  
 
 

M

   

and 

4 2 2

4 2 2

2 2 2 2
2
0

0

0
2

z y

y z

y z t

n n n
EI N M

L L L

L n n n
EI N M

L L L

n n n n
M M GI e N

L L L L

π π π

π π π

π π π π

      + −      
      
 

      = + −           
 
        − − +                

K  

from which the following eigenvalue problem (see Eq. 3.55) is obtained 

4 2

4 2

2 2 2

2

1 0

0 1

1

0 0

0 0

0 0

z y
Ez

y z
Ey

y z t
E

y

z

n N n
EI M

L N L

n N n
EI M

L N L

n n n N
M M GI

L L L N

m

m

m

θ

θ

π π

π π

π π π

ω

      + −            
       + −             

        − − +                   
 
 −  

 
 

⋅ =



a 0

 

where ( )2
E yy

N n L EIπ=
 
and ( )2

E zz
N n L EIπ=

 
are the Euler buckling 

load with respect to bending about the y  and z  axes, and where 
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2
0E tN GI eθ =  is the Euler buckling load with respect to torsion. Defining as 

usual 

( )2
y z yn L EI mω π=

  
( )2

z y zn L EI mω π=
 

( ) tn L GI mθ θω π=  

and pre-multiplication by ( ) ( ) ( ){ } 1
4 4 2

z y tdiag n L EI n L EI n L GIπ π π
−

 
 

 

then the eigenvalue problem is given by 

( )

( )

2

2

2

2

2

1 0

0 1

1

y

E yz z

z

E zy y

y z

t t E

MN

N n L EI

MN

N n L EI

M M N

GI GI N θθ

ω
ω π

ω
ω π

ω
ω

     + − −        
     + − − ⋅ =   

    
 

    − − + −   
     

a 0  

If 0y zM M= =  then there are three independent eigenvalues: 

1 1y Ez
N Nω ω= +

     2 1z E y
N Nω ω= +

    
3 1 EN Nθ θω ω= +  

Obviously, for the special situation that 0N =  we are back at the simple bending 

theory presented in Chapter 3.1 above, where 1 yω ω= , 2 zω ω=  and 3 θω ω=  

(not necessarily given in ascending order). It is also seen that if N  is equal to 

either of Ey
N− , Ez

N−  or EN θ−  then 1ω , 2ω  or 3ω  is equal to zero.  

If 0zM =  while 0yM ≠  then the relevant eigenvalue problem becomes 

( ) ( ){ }
( )

( )

2 2

2

2

1 0

0 1 0

0 1

E y y zz

E zy

y t E

N N M n L EI

N N

M GI N N θθ

ω ω π

ω ω

ω ω

 + − − 
 

+ − = 
 
 − + −
  

a 0  

As can be seen, in this case 1 1z Ez
N Nω ω= +  while 2ω  and 3ω  are the 

solution to the second order equation 
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( )

2 2 2

2
1 1 0y

E y Ez z t

MN N

N N n L EI GIθθ

ω ω
ω ω π

         + − ⋅ + − − =            
 

which may more conveniently be written 
2

4 2 2

2 2 2 2
1 1 1 1 0y

E E E E Ey yz z z

MN N N N

N N N N Mθ θ θ θ

ω ω ω
ω ω ω ω

        
− + − + + + + − =                
        

 

where E z tz

n
M EI GI

L

π=  is the lateral torsion buckling load for the beam 

(causing bending about the z  axis and cross sectional twisting). Thus, the 
eigenfrequencies are defined by the two roots (in ascending order) 

1
22 22 2

2,3 2 2
1 1 1 1 2

2

y y y y

E E E E Ez z z

MN N N N

N N N N M
θ

θθ θθ θ

ω ω ωωω
ωω ω

         = + + + + − + +                    



 

which, if 0N = , simplifies into 

2 22 2

2,3 2 2
1 1 2

2

y y y y

Ez

M

M
θ

θθ θ

ω ω ωωω
ωω ω

   
= + − +        

  

Plots of 2ω  and 3ω  are shown in Figs. 3.10 and 3.11. 

 

Fig. 3.10 2 θω ω  in the presence of bending moment yM , y Ez
M Mβ = , 0N =  
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Fig. 3.11 3 θω ω  in the presence of bending moment yM  , y Ez
M Mβ = , 0N =  

It is seen that if 1y Ez
M M = , then the total torsion stiffness is zero, and thus, 

there is only one solution 2 0ω = .) 

3.4   The Shallow Cable Theory 

While the stiffness properties of beams or beam-columns mainly relies on cross 
sectional bending and torsion ( yEI , zEI  and tGI ), a cable relies almost entirely 
on its axial elastic stiffness property EA  and the presence of an axial force N . 
I.e., it is in the following assumed that we are dealing with a cable whose bending 
and torsion properties yEI , zEI  and tGI  are negligible. Thus, a cable will only 
offer stiffness against displacement xr , yr  and zr , while the problem of torsion is 
irrelevant. 

It is taken for granted that the cable catenary (derived from the Latin word for 
chain, commonly used for the geometry of an idealised cable as described above 
and suspended in the gravity field) is fairly shallow, i.e. that the sag is less that 
about a tenth of its suspended length, such that the theory first presented by Irvine 
& Caughey [10] may be adopted. Since the theory below is primarily included as a 
prelude to the theory of suspension bridges in Chapter 3.5, it is focused on the 
situation that the cable supports are at identical levels, see Fig. 3.12. It is 
convenient to choose coordinate axes as shown in Fig. 3.12.a. 
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Fig. 3.12 The shallow cable in the gravity field 

The Catenary 
 

Let us first consider the situation of a shallow cable in the gravity field (see  
Fig. 3.12.a) with the aim of determining its static geometry, i.e. the cable position 

cz  at an arbitrary coordinate x . It is then at rest and all forces are time invariants. 

For a finite element ds  at this position subject to the vertical gravity force q ds⋅  

(see Fig. 3.12.b) the force equilibrium requirements are given by 
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0

0z

dH

dV q ds

= 


+ ⋅ = 
 (3.57) 

while moment equilibrium about its midpoint is given by 

( ) ( ) 0
2 2 2 2

c c
z z z c z

dz dzdx dx
H V H dH V dV Hdz V dx− + + − + ≈ − =

     
(3.58) 

It is seen from Eq. 3.57 that H  is constant along the entire cable span, and from 
Eqs. 3.58 that 

 c
z

dz
V H

dx
=  (3.59) 

Thus (Eq. 3.57) 

 

2

2
0cd z ds

H q
dxdx

⋅ + ⋅ =
 (3.60) 

Defining H qα = −  ( cz  is here defined positive downwards) and 

acknowledging that ( )2
1 cds dx dz dx= + , it is seen that 

 ( ) 21 1c cz zα′′ ′= +
 (3.61) 

Introducing tanc
c

dz
z

dx
γ′ = =  (see Fig. 3.12.b) 

       ( ) 2
2

1 1 1 1
tan 1 tan

coscos
c

d d
z

dx dx

γγ γ
α α γγ

′′ = = = + =
              

(3.62) 

from which it is obtained that 

 
2 2

cos cos

cos 1 sin

dx
d d

γ γγ γ
α γ γ

= =
−

 (3.63) 

 
 



3.4   The Shallow Cable Theory 115 

The integral of the left hand side of this equation is 

 1
dx x

C
α α

= +  (3.64) 

where 1C  is an unknown integration constant, while the integral of the right hand 

side may be obtained by substituting sinτ γ=  

 ( )2 2

cos 1
Arctanh

1 sin 1
d d

γ γ τ τ
γ τ

= =
− −   (3.65) 

i.e. ( )1 tanh
x

C Arc τ
α

+ = , and thus 1tanh
x

Cτ
α
 = + 
 

. Furthermore, since 

( ) ( )
( )

2 2 2 2 2
1 1

1

cos 1 sin 1 1 tanh 1 cosh

cos 1 cosh

x C x C

x C

γ γ τ α α
γ α

= − = − = − + = + 


 = + 
 (3.66) 

and  
1

11

1

tanh
sin

tan sinh
cos cos

cosh

c

x
C

x
z C

x
C

γ τ αγ
γ γ α

α

−

 +    ′ = = = = = + 
   +       

(3.67) 

then the following is obtained 

1 1 2 1 2sinh cosh coshc
x x H qx

z C dx C C C C
q H

α
α α

− −     = + = + + = + +     
      (3.68) 

Thus, since the cosh  function is symmetric, then the cable geometry is given by 

 
1 2coshc

H q
z x C C

q H
 = − ⋅ ⋅ − + 
 

 (3.69) 

where 1C  and 2C  are integration constant to be determined from the relevant 

geometric boundary conditions. If, as we in the following shall take for granted, 

the boundary conditions are defined by ( )0 0cz x = =  and ( ) 0cz x L= = , then 

 

( )1 2

1 2

cosh 0

cosh 0

H
C C

q

H qL
C C

q H

− − + = 



  − − + =    

 (3.70) 
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which is satisfied if 1 2

qL
C

H
=  and 2 cosh

2

H qL
C

q H
 =  
 

. Thus, the cable 

geometry is given by 

 cosh cosh
2 2c

H qL qx qL
z

q H H H

    = − −        
 (3.71) 

It is seen that       sinh sinh
2 2c

qx qL qL qx
z

H H H H
   ′ = − − = −   
   

                     (3.72) 

is zero at mid span, i.e. at 2x L= . The cable sag is given by 

 ( )2 cosh 1
2c c

H qL
e z x L

q H

  = = = −    
 (3.73) 

An approximate solution to cz  can be obtained by using the series expansion 

( ) 2 4cosh 1 2! 4!η η η= + + + , where it for small arguments of η  will suffice 

to include only the two first terms. Thus 

 
2 2 21 1

1 1 1
2 2 2 2 2c

H qL qx qL qL x x
z

q H H H H L L

        ≈ + − + − = −       
         

 (3.74) 

which is the well-known parabola solution. It is worth noting that the 
corresponding approximate expression to the sag is given by 

 ( )2 8ce qL H≈  (3.75) 

and that 

1 2
2c
qL x

z
H L
 ′ ≈ − 
                 

          
( ) ( )
( ) ( )

0 2

2

c

c

z x qL H

z x L qL H

 ′ = =


′ = = −                 

(3.76) 

 
 



3.4   The Shallow Cable Theory 117 

 

Fig. 3.13 Overall equilibrium 

The Tensile Force 
 

The tensile force is given by (see Eqs. 3.58 and 3.72) 

 

2 2
2 2

2

1 1

1 sinh cosh
2 2

cz
z

dzV
N H V H H

H dx

qx qL qx qL
H H

H H H H

   = + = + = +   
  

   = + − = ⋅ −   
   

 (3.77) 

rendering 

 

( ) ( )

( )

0 cosh
2

2

qL
N x N x L H

H

N x L H

 = = = =  
 

= = 
 (3.78) 

The Cable Length 

Since 3 5sinh 3! 5!η η η η= + + +  it is seen from Fig. 3.13 that 

( ) ( )
2

2

3 2

0 cosh sinh
2 2

1 1
1

2 3! 2 2 24

z z
qL qL

V x V x L H H H
H H

qL qL qL qL
H

H H H

    = = = = − =        

        ≈ + = +        
           

 (3.79) 
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and that overall equilibrium will require 

 ( ) ( )
2

1
0 1

24z z
qL

V x V x L qL q ds q
H

  = + = = + = ⋅ = ⋅  
   




  (3.80) 

where   is the length of the cable. From this it may be deduced that 

 

2
1

1
24

qL
L

H

  = +  
   

  (3.81) 

That this is correct may be shown by integration of ds , i.e. 

2
2

0 0

00

1 1 sinh
2

2
cosh sinh sinh

2 2 2

L L
c

LL

dz qL qx
ds dx dx

dx H H

qL qx H qL qx H qL
dx

H H q H H q H

    = = + = + −   
     

      = − = − =      
      

  







 (3.82) 

and thus               
3 2

2 1 1
1

2 3! 2 24

H qL qL qL
L

q H H H

      ≈ + = ⋅ +      
         


           

(3.83) 

 

Since the sag ( )2 8ce qL H≈  this may alternatively be written 

 
2

8
1

3
ce

L
L

  ≈ ⋅ +  
   

  (3.84) 

The Cable Elongation 
 

Assuming that the cable stiffness is constant along its span, then the cable 
elongation due to the gravity field is given by 

( ) ( )
2

2

0

2
2

0 0

1
1

1 cosh
2

L
c

c
L L L

L L
c

H dz dxN
ds ds ds dz dx dx

E EA EA

dzH H qx qL
dx dx

EA dx EA H H

σε
+

Δ = ⋅ = = = +

    = + = −         

   

 



(3.85) 
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Substituting 2qx H qL Hβ = −  then the following is obtained 

 

2 22 2
2

22

sinh 2
cosh  

4 2

sinh 1
2

qL H qL H

qL HqL H

H H
d

qEA qEA

HL H qL

EA qL H

β ββ β
−−

 Δ = = +  

  = +  
  



 (3.86) 

which may be expanded into 

 

3 2
1 1

1 1
2 3! 12

HL H qL qL HL qL

EA qL H H EA H

        Δ ≈ + + = +       
           

  (3.87) 

and alternatively expressed by the cable sag (see Eq. 3.75) 

 
2

16
1

3
ceHL

EA L

  Δ ≈ +  
   

  (3.88) 

The Differential Equations of Dynamic Equilibrium 
 

We are now ready to establish the relevant equilibrium requirements for an 
infinitesimal element ds  of the shallow cable in a harmonic type of dynamic 
motion, see Fig. 3.14. Basically, the problem is highly non-linear. What is shown 
below is a small displacement linearized theory. It is taken for granted that the 

cross section axial force comprise a time invariant part ( )N x  from the gravity 

field plus an additional contribution ( ),N x t  from the cable motion itself, and 

thus, the same applies to its horizontal and vertical components H  and zV  (see 

Fig. 3.15), i.e. 

( ) ( ),totN N x N x t= +
              

          
( ) ( )
( ) ( )

,

,

tot

z z ztot

H H x H x t

V V x V x t

 = +
 = +

 (3.89) 

while the out of plane component yV  is only caused by the dynamic motion. 
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Fig. 3.14 Cable displacements and internal forces 
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Thus ( ),y ytot
V V x t=  (3.90) 

We shall assume shallowness, and for the initial cable geometry adopt the 
approximate catenary curve given in Eq. 3.74 (see also Eq. 3.75), i.e. 

 
2

1 4 1
2c c
qL x x x x

z e
H L L L L

   ≈ − = −   
   

 (3.91) 

 

Fig. 3.15 Element equilibrium 
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In addition to shallowness we shall in the following adopt the simplification 
that the cable motion in the x  direction xr  is negligible. This is a minor sacrifice 

bearing in mind that our main application of the theory is intended for the use in 
connection with suspension bridges. It has the advantageous consequence that the 
equilibrium requirement in the x  direction (see Fig. 3.15) 

 ( ) 0
d

H H
dx

+ =  (3.92) 

implies that H  and ( )H t  are independent of x . The corresponding equilibrium 

requirements in y  and z  directions are then given by (see Fig. 3.15) 

 ( )
0

0

y c y

z z c c z

dV m r ds

d V V m g ds m r ds

− ⋅ = 


+ + ⋅ − ⋅ = 




 (3.93) 

where cm  is the cable mass per unit length (here assumed constant along the span 

of the cable). Similarly, moment equilibrium taken about axes through the element 
midpoint and parallel to the y  and z  directions, are given by 

 
( ) ( ) ( )
( )

0

0

c z z z

y y

H H d z r V V dx

H H dr V dx

+ ⋅ + − + ⋅ = 


+ ⋅ − ⋅ = 
 (3.94) 

from which the following is obtained 

 
( )

( ) ( )

y
y

z z c z

dr
V H H

dx
d

V V H H z r
dx


= + 


+ = + + 

 (3.95) 

and thus 

( )

( ) ( )

y
c y

c z c c z

drd
H H m r

ds dx

d d
H H z r m g m r

ds dx

 
+ =  

  
  + + + =    




 (3.96) 

 

Since H  and ( )H t  are independent of x , we see that Eq. 3.96 may be  

replaced by 
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( )

( ) ( )

2

2

2

2

y
c y

c z c c z

d r dx
H H m r

dsdx

d dx
H H z r m g m r

dsdx


+ = 



+ + + = 




 (3.97) 

from which it is seen that the static case ( H , yr , zr  are all zero) is defined by 

0c cHz m g′′ + =             c cHz m g′′ = −      and     c
c

m g
Hz H

H
′′ = −

          
(3.98) 

Taking it for granted that dynamic displacements are small, i.e. that 

y yHr Hr′′ ′′<<
     

and     z zHr Hr′′ ′′<<                                 (3.99) 

and that shallowness justifies ds dx≈ , then Eq. 3.97 becomes 

 
( )
( ) ( ) ( )

0y c y

z c z c

r m H r

r m H r m g H H H

′′ − ⋅ = 


′′− ⋅ = ⋅ 




 (3.100) 

This is the differential equation for unloaded and undamped motion of a shallow 

cable. What remains is to find an expression for ( )H t , i.e. to find the increase of 

cable tension during a small dynamic vertical motion ( ),zr x t  [as ( ),yr x t  will 

not involve any cable stretching, only a sideway skipping rope displacement]. The 

cable elongation ( )s tΔ  may be found by combining 2 2 2
cds dx dz= +  and 

 ( ) ( )22 2
c zds ds dx dz dr+ Δ = + +  (3.101) 

from which the following is obtained: 

( )22 22

2 2

2

1

1
1 2 1 1 2 1

2

1

2

c z c z

c cz z z z

c cz z z

dx dz dr ds dz drds dx

ds ds ds ds ds

dz dzdr dr dr dr

ds ds ds ds ds ds

dz dzdr dr dr

ds ds ds ds ds

+ + −Δ   = = + + −      

      = + ⋅ + − ≈ + ⋅ + −     
       

 = ⋅ + ≈ ⋅ 
 

 (3.102) 
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Since 
H dx

N ds
=  and 

ds N

ds E EA

σε Δ= = =  then 
ds H ds

ds EA dx

Δ =
 

and thus 

 c zdz drH ds

EA dx ds ds
≈  (3.103) 

which may also be written 

 
3

c z
c z

dz drH ds
z r

EA dx dx dx
  ′ ′= = ⋅ 
 

 (3.104) 

Recalling that ( ) ( )0 0z zr x r x L= = = = , and that (see Eqs. 3.74 and 3.75) 

 2

2

8
1 2 4 1 2

2

8

c c
c

c c

e eqL x x
z

H L L L L

z e L

   ′ ≈ − = − = Χ        
′′ = − 

 (3.105) 

where ( )2 8c ce m gL H≈  and 2L xΧ = − , then spanwise integration of the 

right hand side of Eq. 3.104 renders 

 

[ ] 20
0

8L L L
L c c

c z c z c z z z
L o o

m g e
z r dx z r z r dx r dx r dx

H L
′ ′ ′ ′′= − = =     (3.106) 

while corresponding integration of the left hand side renders 

( )

3
23 3 2
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2
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32 1 8
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L
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L

dzH ds H ds H
dx dx dx

EA dx EA dx EA dx

eH H
z dx d

EA EA L

e eH H
L

EA EA LL

−

−

     = = +             
   ′≈ + = + Χ Χ        

      = Χ + Χ = +      
         

  

   (3.107) 

Thus 

2

2

8
1 8 c c

z
L

e eH
L r dx

EA L L

  ⋅ + ≈  
   


     

( ) ( )2

8
,c

z
e L

eEA
H t r x t dx

L
 = 

     

(3.108) 

where ( )2
1 8e cL e L = +
 

 . 
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Defining                               
2

2 8 c

e

e EA L

L H
λ  =  

  
                                         (3.109) 

and recalling that ( )2 8c ce m gL H≈  then Eq. 3.100 may be replaced by 

 
( )
( ) ( )2 3

0

1

y c y

z c z zL

r m H r

r m H r L r dxλ

′′ − ⋅ = 


′′ − ⋅ = 




 (3.110) 

These are the differential equations for unloaded and undamped dynamic motion 
in y  and z  directions of the shallow cable (as presented by Irvine & Caughey 

[10]). As can be seen, there is no coupling between yr  and zr  motion, and 

therefore, they may conveniently be handled separately. In general, the solutions 
to such second order differential equations are given by 

 
( ) ( )
( ) ( )

, Re

, Re

i t
y y

i t
z z

r x t x e

r x t x e

ω

ω

φ

φ

 = ⋅ 


 = ⋅   
 (3.111) 

where yφ  and zφ  represent the mode shapes of the motion. The solutions are dealt 

with below. 
 

Horizontal Motion 
 

Let us first consider the case of out of plane horizontal motion, i.e. the situation 

that ( ), 0yr x t ≠  and ( ), 0zr x t = . Introducing ( ) ( ), Re i t
y yr x t x e ωφ =    into 

the differential equation ( ) 0y c yr m H r′′ − = , then 

 ( )2 0y c ym Hφ ω φ′′ + =  (3.112) 

which can only be satisfied for all values of x  if the second derivative of yφ  is 

congruent to yφ  itself, and simultaneously satisfy the boundary conditions  

( ) ( )0 0y yx x Lφ φ= = = = , rendering ( )siny yn n
a n x Lφ π= , 1,2,3,n =  . 

Thus, the following is obtained: 

 ( )2 2 0cn L m Hπ ω− + =  (3.113) 

from which the eigenfrequencies 
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 ( )2
y cn

n H m Lω π=  (3.114) 

are obtained. The corresponding two first eigenmodes are shown in Fig. 3.16. 

 

Fig. 3.16 Mode shapes yn
φ  associated with out of plane horizontal motion 

Vertical Anti-symmetric Motion 
 

Let us then consider the case of purely vertical motion, i.e. the situation that 

( ), 0yr x t =  and ( ), 0zr x t ≠ , and let us also assume that the motion is anti-

symmetric with respect to the midpoint of the span, e.g. as indicated in Fig. 3.17. 

Then the integral z
L

r dx  is equal to zero (i.e. no cable stretching), and thus 

 ( ) 0z c zr m H r′′− ⋅ =  (3.115) 

 

Fig. 3.17 Vertical in plane anti-symmetric motion 
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Introducing ( ) ( ), Re i t
z zr x t x e ωφ = ⋅   then  2 0c

z z
m

H
φ ω φ′′ + =              (3.116) 

whose anti-symmetric solution is ( )sin 2z zn n
a n x Lφ π= , 1,2,3,n =  , and 

thus 

 ( )2 22 0cn L m Hπ ω− + =  (3.117) 

from which the eigenfrequencies 

 ( )22z cn
n H m Lω π=  (3.118) 

are obtained. The corresponding two first eigenmodes are shown in Fig. 3.18. 

 

Fig. 3.18 Mode shapes zn
φ  assoc. with vertical anti-sym. in plane motion 

Vertical Symmetric Motion 

 

Fig. 3.19 Vertical symmetric motion 
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Finally, let us consider the case of purely vertical motion, i.e. the situation that 

( ), 0yr x t =  and ( ), 0zr x t ≠ , and also assume that the motion is symmetric with 

respect to the midpoint of the span, e.g. as indicated in Fig. 3.19 above. Then the 

integral z
L

r dx  is not zero (i.e. cable stretching will occur), and thus 

 ( ) ( )2 31z c z zL
r m H r L r dxλ′′− ⋅ =   (3.119) 

Introducing ( ) ( ), Re i t
z zr x t x e ωφ = ⋅   then 

 ( )2 2 31z z zL
L dxφ β φ λ φ′′ + =   (3.120) 

where 2 2
cm Hβ ω= . The solution satisfying the boundary conditions as well 

as Eq. 3.120 for all values of x  is given by 

 ( ) ( ){ }1 cos 2 cos 2z za x L Lφ β β= −  −    (3.121) 

Thus 
( )
( )0

cos 2
1

cos 2

L

z z
L

x L
dx a dx

L

β
φ

β
  −   = − 
  

   (3.122) 

which may more easily be solved by substituting 2x LΧ = − , rendering 

[ ]
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L L
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L
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L

β
φ

β

β β
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−

 Χ = − Χ 
  

 Χ   = Χ − = −    ⋅      

 

         

(3.123) 

Introducing Eqs. 3.121 and 3.123 into Eq. 3.120 

( )
( )

( )
( )

2 2
2

3

cos 2 cos 2 2
1 tan

cos 2 cos 2 2

x L x L L
L

L L L

β β β λ ββ
β β β

  −   −         + − = −        
 (3.124) 

will then render the following transcendental equation 

 
2 3

2
tan

2 2 2

L L Lβ β β
λ

     = −     
     

 (3.125) 

Since 2 2
cm Hβ ω= , then any solution nβ β=  to this equation represents an 

eigenfrequency 
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 n n cH mω β=  (3.126) 

and a corresponding eigenmode 

 
( )

( )
cos 2

1
cos 2

n
z zn n

n

x L
a

L

β
φ

β
  −   = − 
  

 (3.127) 

where zn
a  is arbitrary and may conveniently be set at unity. The solution heavily 

depends on the stiffness parameter λ  (defined in Eq. 3.109) as shown in  
Fig. 3.20, where either side of Eq. 3.125 have been plotted for various values of 
λ . The solution, i.e. n Lβ  versus λ π , is plotted in Fig. 3.21, covering the three 

first eigenmodes of the system. The effect of the stiffness parameter to the 
modeshapes is illustrated in Fig. 3.22, where the first eigenmode is shown for 
various values of the stiffness parameter. As can be seen, increasing the stiffness 
parameter will significantly change the shape of the eigenmode. Finally, the three 
lowest eigenmodes at 5λ π =  are shown in Fig. 3.23. They are all symmetric 

with respect to the mid span. 

 

Fig. 3.20 Plots of either side of transcendental Eq. 3.125 
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Fig. 3.21 Reduced eigenfrequency n Lβ  vs. stiffness parameter λ π  
 

 

Fig. 3.22 The first symmetric modeshape at increasing stiffness parameters 

1,  3 and 5λ π =  
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Fig. 3.23 The three lowest symmetric modeshapes at 5λ π =  

If λ →∞ , which, in the limit, is identical to the case that the cable is 
inextensible, then the transcendental expression in Eq. 3.125 becomes 

 ( )tan 2 2L Lβ β=  (3.128) 

rendering the following approximate solution 

( )

1
1 2

2
2 2

2
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2
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2
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m L

β π ω

β π ω

β π ω π


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

≈ ⋅  ≈ 



  ≥ ≈ + ⋅  ≈ +         

(3.129) 

If 0ce L → , which, in the limit, is identical to the case that the cable becomes 

what in structural mechanics is called a taut string, then 0λ →  and the 
transcendental expression in Eq. 3.125 will require that 
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 ( )tan 2Lβ → −∞  (3.130) 

rendering the solution that 

( )2 1 2nL nβ π= −
         

               ( ) 2
2 1n

c

H
n

m L
ω π= −

                

(3.131) 

3.5   The Single Span Suspension Bridge 

Having battled through the shallow cable theory it is only a short step to include 
the problem of eigenvalue calculations for a single span suspension bridge, as, if 
its cable planes are identical and vertical, it will simply behave as a combination 
of two cables and a beam. The overall geometry of such a bridge is illustrated in 
Fig. 3.24. For the sake of simplicity, symmetry is taken for granted and the shear 
centre of the main beam is assumed to coincide with its centroid. 

 
 

 
 
 

 

Fig. 3.24 The single span suspension bridge 
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The flexibility of hangers as well as backstays and towers are for simplicity 
ignored, usually considered minor discrepancies in the calculation of the  
eigenvalues of the system. Under these circumstances the main girder and the two 
cable planes move in perfect harmony, and consequently, the motion may be split 
into three independent components, one out of plane horizontal, one in plane 
vertical and one in pure main girder torsion. Below, it has been distinguished 
between distributed girder mass  in motion in the  direction and its 
distributed mass  in motion in the  direction, as it has been taken for granted 
that the latter contains half the self-weight of the suspension hangers (while the 
other half has been included in the self-weight of the two cables). The relevant 
system properties have been defined in Fig. 3.25. The solution strategy is based on 
Galerkin’s method (see Chapter 1.7) and the assumption that the displacement 
components may be approximately represented by a harmonic series expansion, as 
first applied by Sigbjørnsson & Hjorth-Hansen [11]. 

 

 

Fig. 3.25 Idealised system properties 

Since the stiffness properties of the system heavily depend on the axial force in 
the cables, it is necessary to start with considering the static (time invariant or 
mean) situation. As shown in Fig. 3.26, it is assumed that the construction 
procedure is such that all the weight of the main beam is transferred via the 
hangers directly into the two cables, and to earth via the backstays and the towers. 
This is the most usual way of suspension bridge construction, and it has the 
consequence that the main girder shear forces at its connection to the two towers 

are negligible, i.e. that . (Even at a different 

construction procedure this is a reasonable approximation, at least for long span 
suspension bridges.)  

ym y

zm z

( ) ( )0 0b bV x V x L= = = ≈
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Fig. 3.26 The construction procedure 

 

Fig. 3.27 The hanger force distributed per unit length 2s zq m g≈  

Two aspects regarding the time invariant equilibrium condition are worth 
noting before we proceed with the problem of dynamics. First, as illustrated in 
Fig. 3.27, the distributed hanger force (per unit length) is 2s zq m g≈ . Secondly, 

as shown in Fig. 3.28, the time invariant vertical cable equilibrium will require 

 
1

2c zdV m ds m dx g
 = + 
 

 (3.132) 
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(3.133) 

Introducing (see Eqs. 3.74 and 3.75) 4 1c c
x x

z e
L L
 ≈ − 
 

 then 
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 (3.134) 

rendering 
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 (3.135) 

Dynamic Motion in the Horizontal y Direction 

Let us first consider the case of dynamic motion in the out of plane horizontal 
direction, as illustrated in Fig. 3.30. Then the equilibrium requirement for an 
infinitesimal element dx  of the main girder is given by (see Fig. 3.30.a and b and 
Eqs. 1.23 – 1.29) 

 
4

4
2y y cy

y y y y z s y
c

d r r r
m r c r EI q q

hdx

−
+ + + =   (3.136) 

while the corresponding equilibrium requirement for each of the cables is given by 
(see Fig. 3.29.a and c) 

 
2

2
cy y cy

c cy cy y s cy
c

d r r r
m r c r H q q

hdx

−
+ − − =   (3.137) 
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Fig. 3.30 Dynamic motion in horizontal direction 
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where yq  and cyq  are the dynamic loads per unit length on the girder and on each 

of the cables, yr  and cyr  are the displacements, yc  and cyc  are the damping 

coefficients, 2s zq m g=  is the hanger force (per unit length) and ch  is the 

hanger length. Since we adopt Eq. 3.91, i.e. that ( )( )4 1c cz e x L x L≈ − , then 

 ( )2
1 2c m c c m ch h e z h e x L= + − = + −  (3.138) 

where mh  is defined in Fig. 3.24. Let us consider the unloaded and undamped 

case (i.e. that yc  and cyc  as well as yq  and cyq  are all zero), and assume the 

following harmonic sinus Fourier series solution (taking it for granted that the 
main girder is simply supported at the towers) 

 

( ) ( )
( ) ( )

,

,

i t
y y

i t
cy cy

r x t x e

r x t x e

ω

ω

φ

φ

= ⋅ 


= ⋅      

where     

( ) ( )

( ) ( )

1

1

sin

sin

N

y yn
n

N

cy cyn
n

x a n x L

x a n x L

φ π

φ π

=

=


= 



= 




     

(3.139) 

 
Introducing this into Eq. 3.136 

 

( )

( )

2

4
2

2
1

 

sin 0

1 2

y cy
y y z y z

c

N z y cyn n
z y y yn n

n
m c

m i EI m g
h

m g a an n
EI a m a

L Lx
h e

L

φ φ
ω φ φ

π πω
=

−
′′′′+ + =

  
  −     + − =           + −      


  (3.140) 

 
we adopt a Galerkin approach by consecutive pre-multiplication of Eq. 3.140 with 

( ) ( )2 sinL p x Lπ , 1,2,3,p =  , and integrating over the span renders 

 

( ) 2

1

0
N

pn pn y pn cy y yn n n n
n

a a m aα γ γ ω
=

 + − − =  
   

1,2,3, ,p N=        (3.141) 
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( ) ( )
( )( )

4
4

0

0

2  for p
sin sin

0                 for p n
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0

&  odd

if p oddsin sin2
    

&  even1 4 1
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L
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pn pn
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n p x n x EI n

EI dx L
L L L L

n

p x L n x Lm g
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ne L h e x L x L

ππ π πα

γ

π π
γ γ

   =       = ⋅ =        
       ≠


 =


⋅ 

= + − − 





( ) ( )
0

0

         0

 for p2
sin sin

0  for p n

pn

L
y

y y yn p

else

m n
m m m p x L n x L dx

L

γ

π π




 =

  ≠



== = ⋅ = 
≠

 
 

(3.142) 

 
Similarly for the cable equation, i.e. introducing Eq. 3.139 into Eq. 3.137 

 

( )

( )

2

2
2

2
1

2 2

2 2 sin 0

1 2

y cy
c cy cy z

c

N z y cyn n
cy c cyn n

n
m c

m i H m g
h

m g a an n
H a m a

L Lx
h e

L

φ φ
ω φ φ

π πω
=

−
′′− − =

  
  −     − − =           + −      


 (3.143) 

 

and then we consecutively pre-multiply Eq. 3.143 with ( ) ( )2 sinL p x Lπ , 

1,2,3, ,p N=  , [i.e. first pre-multiplying by ( ) ( )2 sin 1L x Lπ , then by 

( ) ( )2 sin 2L x Lπ , and so on] and integrate over the entire span, then 

 

( ) 2

1

0
N

pn y pn pn cy c cyn n n n
n

a a m aγ β γ ω
=

 − + + − =  
, 

1,2,3, ,p N= 
 

(3.144)
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where 

2
2

0

0

2 2  for p
2 sin sin

0                for  p

2  for p2
2 sin sin

0                for  p

L

pn

L
c

c c cn p

n
n p x n x H n

H dx L
L L L L

n

m np x n x
m m m dx
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ππ π πβ

π π

   =       = ⋅ =                ≠ 
=    = = ⋅ =     ≠     



 

 (3.145) 

The sequence index 1,2,3, ,p N=   and the series summations in Eqs. 3.141 

and 3.144 may conveniently be replaced by 

11 11 11 1 1 1 1

11 11 11 1 1 1 1
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0
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


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
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(3.146)

 

Thus, defining the displacement amplitude vector 

 
1

T

y y y yp N
 =  a a a a   (3.147) 

where 
T

y y cyp p p
a a =  a , and where the stiffness matrix 
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11 1 1

1

1
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 
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where 
pp pp pp

pp
pp pp pp

α γ γ
γ β γ
+ − 

=  − +  
Ω  and 

1 1

1 1pn pnγ
− =  − 

γ , and 

the mass matrix 

 
1y y y yp N

diag  =  M m m m     (3.149) 

where 
0

0

yp
yp

cp

m

m

 
 =
  





m , then Eq. 3.146 may be written 

 ( )2
y y yω− =K M a 0  (3.150) 

which is a classical eigenvalue problem similar to those encountered before. 
 

Elaboration 3.1 

An approximate solution may be obtained for the first two eigenfrequencies by 
setting 2N = . Then 

( ) ( )

4
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Thus, the eigenvalue problem in Eq. 3.150 is given by 
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Its solution is 

2
2

11 11 11 11 11 11 11 11 11
1 2 4 2 4 2y

y c y c y cm m m m m m

α γ β γ α γ β γ γω
 + + + += + − − +  
 

 

2
2

22 22 22 22 22 22 22 22 22
2 2 4 2 4 2y

y c y c y cm m m m m m

α γ β γ α γ β γ γω
 + + + += + − − +  
 
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Table 3.1 Numeric example 

L  

( )m  
zEI  

( )2Nm  

H  

( )N  

g

( )2m s
y zm m=

( )kg m

cm  

( )kg m
ce  

( )m  

mh  

( )m  

1250  123.5 10⋅  81.12 10⋅ 9.81  9000  1900  120  2.75  

 
Using the values given in Table 3.1 above, renders 1 0.34yω =  and 

2 0.68 rad/syω = . 

 
 

Example 3.3 
 

By increasing the number of Fourier components to 4N =  a more comprehensive 
solution may be obtained. Again, adopting the numerical values given in Table 3.1 
above, then the solution to the eigenvalue problem in Eq. 3.150 renders the four 
first eigenmodes and corresponding eigenfrequencies associated with suspension 
bridge horizontal motion as shown in Fig. 3.31 below. 

 

Fig. 3.31 Lowest four eigenvalue solutions for suspension bridge in horizontal motion, 
4N = ; fully drawn lines: main girder, broken lines: the cables 
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Dynamic in Plane Motion in the Vertical z Direction 
 

 
a) Vertical (asymmetric) motion 

 

 
 

b) Hangers and main girder displacements 
 

 
 

c) Infinitesimal bridge element dx  

Fig. 3.32 Dynamic in plane motion in vertical direction 
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Let us then consider the case of dynamic motion in the vertical direction, as 
illustrated in Fig. 3.32. Since we neglect the flexibility of the hangers, then the two 
cables will act in perfect harmony (as if they are one) and in harmony with the 

main girder as illustrated in Fig. 3.32.b, i.e. c zz
r r= . Therefore, it is not necessary 

to distinguish between the motion of the girder and the motion of the cables, as 

they are identical. Thus, defining ( )totH H H t= + , then the equilibrium 

requirement for an infinitesimal bridge element dx  with respect to forces in the x  
direction is given by (see Fig. 3.32.c) 

( )2 2 0tot tot totH H dH− + + =
      

      0totdH =                      (3.151) 

Since we know from before that 0dH = , then also ( ) 0dH t = . The 

corresponding equilibrium requirement with respect to forces in the z  direction is 
given by (see Fig. 3.32c) 

( ) ( )2 2 2c z z c z z z tot z ztot
m ds m dx r m ds m dx g c dxr dV dV q dx+ + + + − − =   (3.152) 

where 2z z ctot z
q q q= +  is the dynamic loads per unit length on the girder and on 

the two cables, zr  is the vertical displacement, zc  is the damping coefficient, and 

( )totV V V t= +  is the total vertical force component in each of the cables and zV  

is the vertical shear force in the girder. Thus, the differential equation associated 
with vertical motion is given by 

 2 2 2c z z z z tot z c z ztot

ds ds
m m r c r V V m m g q

dx dx
   ′ ′+ + − − + + =   
   

   (3.153) 

As can be seen from Fig. 3.32.c 

 
( )

( )

tan
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z z

tot

z

V V V d
z r z r

H H H dx

V V Hz Hz H H r

ψ+ ′ ′= = = + = +
+

′ ′ ′ + = + + +
 (3.154) 

from which it is seen that 

 
( ) ( ) z

V Hz

V t Hz H H r

′ = 
′ ′= + + 

 (3.155) 
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Let us introduce that (see Eqs. 1.23 and 1.27) 

 ( )z y y z y z
d

V M EI r EI r
dx

′ ′′ ′′′= = − = −  (3.156) 

and the time invariant equilibrium requirement 2 2 c zdV m gds m gdx= +  (see 

Eq. 3.132), and only consider the unloaded and undamped case, then Eq. 3.153 
becomes 

 ( )2 2    0c z z z y z
ds

m m r Hz H H r EI r
dx

   ′′ ′′ ′′′′+ − + + + =    
  (3.157) 

Within the shallow cable theory it is a usual approximation that ( )H t H<< , and 

that ( )
1 22

1 1ds dx dz dx = + ≈  . Furthermore, since (see Eq. 3.91) 

4 1c m c c m c
x x

z e h z e h e
L L
 = + − ≈ + − − 
        

      2

8 ce
z

L
′′ ≈

           
(3.158) 

and (see Eq. 3.108, noting that in Chapter 3.4 we focused on cable vibrations 
alone, and then cz  and correspondingly also zr  was defined positive downwards, 

while we here focus on the entire bridge and therefore more conveniently, we 
define z  and zr  positive upwards) 

( ) ( ) ( )2
0

8 L
c c

z
e

EA e
H t r dx

L
= −

      

where      
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1 8 c
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  = +  
   


         

(3.159) 

and where ( )c
EA  is the product of elastic modulus and cross sectional area 

assumed identical for each of the cables, then Eq. 3.157 is reduced into 

 ( ) ( )2

4
0

128
2 2    0

L
c c

c z z z z y z
e

EAe
m m r r dx Hr EI r

L
′′ ′′′′+ + − + =


 (3.160) 

Again, taking it for granted that the main girder is simply supported at the towers, 
and adopting a harmonic Fourier series solution 

( ) ( ), i t
z zr x t x e ωφ= ⋅

           
where          ( ) ( )

1

sin
N

z zn
n

x a n x Lφ π
=

=  (3.161) 
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then Eq. 3.160 becomes 

( )

( )
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 (3.162) 

A Galerkin type of approach by consecutive pre-multiplication of Eq. 3.162 with 

( ) ( )2 sinL p x Lπ , 1,2,3,p =  , and integrating over the entire span renders 
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(3.164) 

while, recalling that 
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 (3.165) 

and where 

( ) ( )z

0

2 m  for p2
2 sin sin

0  for p n

L
c

z c zp

m np x n x
m m m dx

L L L

π π  + =   = + =     ≠    
  (3.166) 
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The 1,2,3, ,p N=   sequence and series summations in Eq. 3.162 may 

conveniently be written in the form of a classical eigenvalue problem: 

11 11

1 111 1 1

2
1

1

0

pp pp

NN NN

z zn N

z zp pn pN p p

N Nn NN z zN N

m a

m a

m a

κ λ

κ λ

κ λ

μ μ μ

μ μ μ ω

μ μ μ

 + 
 
  + +
 
 
  + 

                   − =                       

0

0

0

0





 
    



     
  

(3.167) 

Thus, defining the displacement amplitude vector 

 
1

T

z z z zp N
a a a =  a    (3.168) 

the stiffness matrix 

11 11 11 1 1

1

1

n N

pp pp p pn pNz

NN NN N Nn NN

κ λ μ μ μ

κ λ μ μ μ

κ λ μ μ μ

+   
   
   
   += +
   
   
   +   

 
    

    
 

0

K

0

  

(3.169) 

and the mass matrix                  ( )2z c zm m= +M Ι                                       (3.170) 

where I  is the identity matrix, then Eq. 3.167 is given by 

 ( )2
z z zω− =K M a 0  (3.171) 

As shown in Fig. 3.33 below, the solution for the first four eigenvalues converges 
at 4N ≥ . 
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Fig. 3.33 Convergence of eigenvalue solution 

 

Example 3.4 

An approximate solution for the first four eigenfrequencies may be obtained by 
setting 4N = . Then Eq. 3.170 becomes 
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    
       + +       
       
    

   
 
                − + =                     
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Defining 
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2

2

2

y
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EIπ
= ,  

( ) 222

3

32 c c

e y

EA Le L
d

L EIπ
  =    

    
 and 

( ) ( )2
ˆ

2y cL EI m m

ωω
π

=
+

 

then 

2
1

2
2

2
3

2
4

ˆ1 0 3 0

ˆ0 16 4 0 0

ˆ3 0 81 9 9 0

ˆ0 0 0 256 16

z

z

z

z

ac d d

ac

ad c d

ac

ω

ω
ω

ω

   + + −
   

+ −   
=   

+ + −   
   + −   

0  

and thus, the solution to the eigenvalue problem is defined by the zero crossings of 
the polynomial 

( )( ) ( )
2

2 2 2 2ˆ ˆ ˆ ˆ16 4 256 16 1 81 9 0
9 3

d d
c c c d cω ω ω ω

    + − + − + + − + + − − =    
     

 

It has four real roots, whose indices are referred to below in ascending order. The 
first, which is associated with an anti-symmetric mode shape, is defined by 

2ˆ16 4 0c ω+ − =           1ˆ 2 4 cω = +           ( )

2 2

41

4 2
2

2

y
z

c

EI HL

m m L

π
ω π

+
=

+
 

The third, also associated with an anti-symmetric mode shape, is defined by 

2ˆ256 16 0c ω+ − =        3ˆ 4 16 cω = +       ( )

2 2

43

16 2
4
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EI HL

m m L

π
ω π

+
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+
 

The second and the fourth, both associated with symmetric mode shapes, are 
defined by the roots of 

( )
2

2 2ˆ ˆ1 81 9 0
9 3

d d
c d cω ω   + + − + + − − =   

   
 

rendering 
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2 2 2

2,4 4

5 4
41 5 40 4

9 9 32
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c

EI d d d
c c

m m L

π
ω π

     = + + + − +    +     
  
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Example 3.4 

Setting the number of Fourier components at 12N =  a sufficiently accurate 
solution may be obtained. Adopting the numerical values given in Table 3.2 
below, then the solution to the eigenvalue problem in Eq. 3.171 renders the four 
first eigenmodes and corresponding eigenfrequencies associated with suspension 
bridge vertical motion as shown in Fig. 3.34 below. 

Table 3.2 Numeric example 

L  

( )m  
yEI  

( )2Nm  

H  

( )N  
zm  

( )kg m
cm  

( )kg m
ce  

( )m  

cA  

( )2m  

cE  

( )2N m

1250  120.2 10⋅  81.12 10⋅ 9000  1900  120  0.22  120.2 10⋅

 

Fig. 3.34 Lowest four eigenvalue solutions for suspension bridge in vertical motion, 
12N =  

Dynamic Motion in Pure Torsion 

Finally, we shall consider the case of dynamic motion in pure torsion. Since we 
assume that the dynamic stretching of hangers is insignificant, then the cables will 
act in perfect harmony as illustrated in Fig. 3.35.a, i.e. 2c cz

r r bθ= ± , where cb  

is the distance between cables. A sideway view is illustrated in Fig. 3.35.b. 
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a) Cross sectional view 

 
 

b) Sideways view 

Fig. 3.35 Dynamic motion in torsion 

As before, ( )totH H H t= + , ( )totV V V t= + , and, as there are no forces 

acting on the main girder in x  and z  directions 
 

0totdH =              0dH =      &     0dH =  (3.172) 
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When the system is at rest then (recalling that the hanger force per unit length 

2s zq m g≈ ) 

0s cdV q dx m gds− − =            2 2
z z

c c
m g m gds

V m g m g
dx

′ = + ≈ +
   

(3.173) 

Furthermore, recalling from Eqs. 3.155 that ( ) zV Hz H H r′ ′= + +  and from  

Eq. 3.159 that ( ) ( ) ( ) ( )2

0

8
L

e c zc
H t EA e L r dx = −   , it is seen from Fig. 3.35 

that the cable at 2cy b= −  is stretched a vertical displacement ( )2z cr b rθ= − , 

in which case (assuming ( )H t H<< ) 

 ,
2 2
c c

z
b b

V y t Hz Hr H z H rθ
  ′ ′ ′ ′= − ≈ + = − 
 

 (3.174) 

where ( )( ) ( ) ( )( )
0

8 2
L

e c cc
H EA L e L b r dxθ =    . Similarly, at 

2cy b= +  the cable is relaxed a vertical displacement ( )2z cr b rθ= + , in 

which case (still assuming ( )H t H<< ) 

 ,
2 2
c c

z
b b

V y t Hz Hr H z H rθ
  ′ ′ ′ ′= + ≈ + = − + 
 

 (3.175) 

Torsion moment equilibrium for the main girder about its shear centre is  
fulfilled by 

2

2
2

0
2 2 2 2

c
x c

c c c c
tot r tot r

b
q dx dM c dxr m dx m ds r

b b b b
dV y r h dV y r h

θ θ θ θ θ

θ θ

  + − − +  
   

       + = ⋅ − − = − ⋅ + =       
       

 
 (3.176) 

where mθ  is the mass moment of inertia for the main girder, cθ  is its cross 

sectional damping coefficient (if such an effect is necessary to include) and rh  is 

the vertical distance from the shear centre to the point of suspender attachment 

(see Fig. 3.35.a). Thus, assuming 1ds dx ≈ , then the differential equation for 

motion in pure torsion becomes 
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2

2
2 2 2 2

2 2

c c c c
c tot tot

c c
tot tot r x

b b b b
m m r c r V y V y

b b
V y V y h r M q

θ θ θ θ

θ θ

        ′ ′+ + − = − = −       
         
    ′ ′ ′+ = + = − − =    

    
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 (3.177) 

where  
2 2 2 2

2 2 2 2
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tot c

c c cz
tot c

b b bm g
V y V V y m g H z H r

b b bm g
V y V V y m g H z H r

θ

θ
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    


    ′ ′ ′ ′′ ′′= − = + = − = + + −       

 

Thus 

( )
2

2
2
c

c c z r xtot

b
m r c r H b z H r m m gh r M qθ θ θ θ θ θ θ′′ ′′ ′+ + − + + − =   (3.178) 

where 2 2c ctot
m m m bθ θ= +  and ( ) ( ) ( )( )

0

8 2
L

e c cc
H EA L e L b r dxθ =    . 

Introducing 28 cz e L′′ =  and (see Eq. 1.42)  x t wM GI r EI rθ θ′ ′′ ′′′′= − , then the 

following is obtained: 

 

( )

( )

2 2

2
0

32
2

2  +

L
c c c c

tot
e

c z r t w

EAe b b
m r c r r dx H r

L

m m gh r GI r EI r q

θ θ θ θ θ θ

θ θ θ θ

  ′′+ + − 
 

′′ ′′′′+ + − =

 


 (3.179) 

In the following we shall only consider the unloaded and undamped situation, i.e. 
that qθ   and cθ  are zero. Again, taking it for granted that the main girder has a 

fork type of simple support at the towers, and adopting a harmonic Fourier series 
solution 

( ) ( ), i tr x t x e ω
θ θφ= ⋅

     
where     ( ) ( )

1

sin
N

n
n

x a n x Lθ θφ π
=

=
        

(3.180) 

then Eq. 3.179 becomes 
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(3.181) 

A Galerkin type of approach by consecutive pre-multiplication of Eq. 3.181 with 

( ) ( )2 sinL p x Lπ , 1,2,3,p =  , and integrating over the entire span renders 

( ) 2

1

0
N

pn pn pn pnn n tot nn
n

a a m aθ θ θ θϑ ν χ ω
=

 Ω + + + − =    , 1,2,..,p N=     (3.182) 

where 
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(3.183) 
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2  for p2
2 sin sin

0                      for p n

L
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(3.185) 
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θ θ π π
== ⋅ = 
≠


      

(3.186) 

while, recalling that 
0

2  for  1,3,5,
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0          for 2,4,6,
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
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156 3   Eigenvalue Calculations of Continuous Systems 
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
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
              

(3.187) 

The 1,2,3, ,p N=   sequence and series summations in Eq. 3.182 may 

conveniently be replaced by 

11 11 11
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 
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 (3.188) 

Thus, defining the torsion amplitude vector 

 
1

T

p N
a a aθ θ θ θ
 =  a    (3.189) 

the mass matrix 

 
tot

mθ θ=M Ι  (3.190) 

where 2 2c ctot
m m m bθ θ= +  and I  is the identity matrix, the stiffness matrix 
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11 11 11
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1

1

pp pp pp

NN NN NN

p N

p pp pN

N Np NN

θ

ϑ ν

ϑ ν

ϑ ν
χ χ χ

χ χ χ

χ χ χ

Ω + + 
 
 
 Ω + +=
 
 
 Ω + + 

 
 
 
 +
 
 
 
  





 

   

   
 

0

K

0

 (3.191) 

then Eq. 3.188 is given by                 ( )2
θ θ θω− =K M a 0

                           
(3.192) 

which, again is a classical eigenvalue problem similar to those encountered before. 
The convergence for the first four eigenvalue solutions will occur already at 

4N > . 
 

Elaboration 3.3 

An approximate solution for the first four eigenfrequencies may be obtained by 
setting 4N = . Then Eq. 3.192 becomes 

(
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 + −
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 
 − 

a 0
 

where 2 2c ctot
m m m bθ θ= + . It is seen that the solutions for the two anti-

symmetric modes associated with 2ω  and 4ω  may directly be obtained from 
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( )2
22 22 22 0

tot
mθϑ ν ωΩ + + − =

   
and   ( )2

44 44 44 0
tot

mθϑ ν ωΩ + + − =  

Thus, 

( ) ( )
2

2
2

22 22 22
2

2 22 2
c

t w
c z r

tot tot tot

b
GI L EI H m m gh

m L m mθ θ θ

πϑ ν πω
+ + +Ω + +  = = + 

 
 

( ) ( )
2

2
2

44 44 44
4

4 24 2
c

t w
c z r

tot tot tot

b
GI L EI H m m gh

m L m mθ θ θ

πϑ ν πω
+ + +Ω + +  = = + 

 
 

 
After elimination of rows and columns two and four, the solutions for the two 

symmetric eigenmodes associated with 1ω  and 3ω  are defined by the requirement 

that the determinant to the remaining matrix is zero, i.e. that 

( ) ( )2 2 2
11 11 11 11 33 33 33 33 13 0

tot tot
m mθ θϑ ν χ ω ϑ ν χ ω χΩ + + + − ⋅ Ω + + + − − =  

Defining    

( ) ( )

2 4 2 2

1

2

10 82 10
2

1610
2

9

c
t w

c c c
c z r

e

b
k GI EI H

L L L

EAe b
m m gh

L L

π π π

π

      = + +      
     


  + + +     

 

and 
( )22 4 2 2

2
168

8 80 8
2 9
c c c c

t w
e

EAb e b
k GI EI H

L L L L L

π π π
π

      = + + −               
 

and  
( )2

3
162

3
c c c

e

EAe b
k

L Lπ
 =  
  

 

then the solutions for 1ω  and 3ω  are given by:  
2 2

1 2 3
1,3 2

tot

k k k

mθ
ω

+
=


. 

 

Example 3.5 
Increasing the number of Fourier components to 8N = , and adopting the 
numerical values given in Tables 3.3 and 3.4 below, then the solution to the 
eigenvalue problem in Eq. 3.192 renders the four first eigenmodes and 
corresponding eigenfrequencies associated with suspension bridge torsion motion 
as shown in Fig. 3.36 below. 
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Table 3.3 Numeric example 

L  

( )m  
H  

( )N  

mθ  

( )2kgm m  

cm  

( )kg m  

ce  

( )m  

cA  

( )2m  

cE  

( )2N m  

1250  1.12 10⋅ 250000  1900  120  0.22  120.2 10⋅  
 

zm  

( )kg m  

tGI  

( )2Nm  

wEI  

( )4Nm  

cb  

( )m  

rh  

( )m  

g  

( )2m s  

9000 120.2 10⋅  120.9 10⋅  15  1.8  9.81  

 

Fig. 3.36 Lowest four eigenvalue solutions for suspension bridge in torsion, 8N =  
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Chapter 4 

The Finite Element Method in Dynamics 

4.1   Introduction 

As linearity has been taken for granted, a formal finite element approach to the 
problem of structural dynamics will comply with the computational methods 
usually applied elsewhere in theory of elasticity. However, in dynamics it is 
necessary to add the effects of mass in motion as well as internal damping, which, 
for a line like system, will affect the shape of motion into a combination of 
harmonic and hyperbolic functions, see Chapter 3, and thus also the overall 
physical properties of the system. Nonetheless, it is in the following assumed that 
the shape of motion may with sufficient accuracy be described by polynomials. 
Thus, from a computer programming point of view, all the well-known stiffness 
properties as well as numeric iteration procedures from other fields of structural 
mechanics will be applicable. In dynamics it is often the load that needs special 
attention, e.g. in the form of a frequency domain stochastic description or in a time 
domain simulation of wind, earthquake ground accelerations or other types of 
environmental loads. For the special case of wind induced dynamic response 
calculations it should be noted that due to the fairly short correlation lengths and 
sharply dropping coherence properties of the wind field there will be demanding 
requirements for the choice of largest element length. The same applies to the 
choice of time stepping increment in a time domain solution. For the case of 
earthquake ground acceleration there may be other challenges, e.g. shock type of 
excitation effects or the beneficial effects of plasticisation at specially designed 
joints or other non-linear effects from structural motion. Having adopted a system 
of six degrees of freedom in each node p  (see Fig. 4.1), there is a global load 
vector 

 1

T

tot p N p tot

 =  R R R R   (4.1) 
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Fig. 4.1 Global degrees of freedom and external loads 

 

where [ ]1 2 3 4 5 6
T

p ptot tot
R R R R R R=R  and a corresponding 

displacement vector 

 1

T

tot p N p tot

 =  r r r r   (4.2) 

where [ ]1 2 3 4 5 6
T

p ptot tot
r r r r r r=r  and pN  is the number of nodes in 

the system. Thus, the total number of degrees of freedom will in general be 6 pN . 

It is taken for granted that forces as well as displacements at global level comprise 
a time-invariant mean value (the static part) and a fluctuating (dynamic) part, i.e. 

 
( )

( )
tot

tot

t

t

= + 


= + 

R R R

r r r
 (4.3) 

Similarly, it is taken for granted that this also applies at element level, see Eqs. 4.5 
– 4.7. In general, the external nodal force vector may contain contributions from 
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forces defined at global le

node p  may contain con

1,2, ,6i =  , as well as c

1

2
n

n

 
=  
 

R
R

R
        






R

R

defined at element level b

Fig. 4.2 External load nq  an

For simplicity, it is in t
is two-dimensional in glo
system, as shown in Fig. 4

 

16

evel as well as forces defined at element level. I.e., pR  

ntributions from globally defined concentrated forces R
contributions (see Fig. 4.2) 

[ ]
[ ]

1 1 2 3 4 5 6

2 7 8 9 10 11 12

T

n

T

n

R R R R R R

R R R R R R

=

=

R

R
                

(4.4

by distributed loads 
T

n x y zq q q qθ =  q . 

 

nd load vector i n+R R  at element level 

the following taken for granted that the structural system
obal X  and Z  axis, and that Y  is perpendicular to th
4.1. The effects of a time invariant mean axial force nN

63

at 

i , 

4) 

m 
he 

n ,  
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assumed constant in each element n , together with primary bending moments 

( )yM x  and ( )zM x  are included to account for the possible stiffness changes 

associated with axial or lateral torsion buckling. The main focus is on the 
establishment of the necessary theory, and to the completion of eigenvalue 
solution strategies. Dynamic excitation will be covered by the introduction of 
ground motion acceleration in Chapter 7, wind loading in Chapter 8 and spanwise 
moving loads in Chapter 11. 

4.2   The Analysis at Element Level 

A free body diagram of an arbitrary beam (line-like) type element n , with local 
axis x , y  and z  is illustrated in Fig. 4.3. At position x  along its span the cross 

sectional displacements and rotation (torsion) are defined by 

 ( ) ( ) ( ), ,
T

el x y z el eltot eltot
x t r r r r x x tθ = = + r r r  (4.5) 

where index el  indicates quantities within the span of the element. At ends 1   

and 2  the element have nodal stress resultants 

 

Fig. 4.3 Twelve degrees of freedom element 
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 (4.6) 

and corresponding local displacements 

( )
[ ]

[ ]
1 1 2 3 4 5 61

2 2 7 8 9 10 11 12

 where 

T

tottot
tot T

tot tottot

d d d d d d
t

d d d d d d

 =  = = +  
  =

dd
d d d

d d
    

(4.7) 

It is assumed that the cross sectional displacement vector ( ),eltot
x tr  may with 

sufficient accuracy be described by the product of a shape function matrix 

( )
1 7

2 6 8 12

3 5 9 11

4 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

x

ψ ψ
ψ ψ ψ ψ

ψ ψ ψ ψ
ψ ψ

 
 
 =
 
 
 

Ψ

  

(4.8)

 

and the nodal displacement vector ( )tot td , i.e. 

 ( ) ( ) ( ),el tottot
x t x t= ⋅r Ψ d  (4.9) 

where the twelve shape function ( ) , 1 12i x iψ = − , are given in Fig. 4.4. As 

mentioned in the introduction to this chapter, these are identical to the shape 
functions commonly used elsewhere in structural mechanics. Since they are 
polynomial, it should be noted that they will represent an accurate solution to the 
time-invariant (static) part of the response but not to the dynamic part, as they will 
not fully satisfy the spanwise differential equation of motion (which, as we have 
seen before, will require a solution containing a combination of harmonic and 
hyperbolic functions). However, this will usually not render unduly erroneous 
results as long as the element length is kept sufficiently short. 

Applying the principle of virtual work (see Chapter 1.6) at an arbitrary position 

of external and internal equilibrium defined by , the system is subject 

to an incremental virtual displacement (see Fig. 4.5) 

  (4.10) 

compatible with 

( )
[ ]

[ ]
1 1 2 3 4 5 61

2 2 7 8 9 10 11 12

 where 

T

tottot
tot T

tot tottot

F F F F F F
t

F F F F F F

 =  = = +  
  =

FF
F F F

F F

( ),eltot
x tr

( ) T

el x y zx r r r rθδ δ δ δ δ =  r
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Fig. 4.4 Shape functions iψ , 1 12i = −  

[ ]
[ ]

1 1 2 3 4 5 61

2 2 7 8 9 10 11 12

 where 
T

T

d d d d d d

d d d d d d

δ δ δ δ δ δ δδ
δ

δ δ δ δ δ δ δ δ

 =  =  
  =

dd
d

d d
 (4.11) 

such that ( ) ( )el x xδ δ= ⋅r Ψ d  (4.12) 
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Fig. 4.5 Element and element stress resultants subject to virtual displacement 

According to Eq. 1.119 the following work balance applies 

( ) ( )

( )
( ) ( ) ( )

0

2
0

L
T T T

tot el v el el g el
L

x x y z y z y z tL

y n y y z n z z n y y z zL

dx dx

r EAr r EI r r EI r r GI r dx

r N r M r r N r M r r N e r M r M r dx

θ θ

θ θ θ θ

δ δ δ

δ δ δ δ

δ δ δ

− − =

′ ′ ′′ ′′ ′′ ′′ ′ ′+ + + +

 ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + − + − − 

 




 d F r c r r m r

(4.13) 

where                 

0 0 0

0 0

0 0

0

x

y y z

g
z z y

y z z y

m

m m e

m m e

m e m e mθ

 
 − =  
 
 − 

m

                              

(4.14) 

 
contains the distributed mass properties of the element, and 

 v x y zdiag c c c cθ =  c  (4.15) 



168 4    The Finite Element Method in Dynamics 

contains the distributed viscous damping properties of the element. Let us now 
define the two shape derivative matrices (where primes indicate derivation with 
respect to x ) 

 

( ) 2 6 8 12

3 5 9 11

4 10

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

x
ψ ψ ψ ψ

ψ ψ ψ ψ
ψ ψ

 
 ′ ′ ′ ′ =
 ′ ′ ′ ′
 ′ ′ 

Ψ


 

(4.16) 

 

( )
1 7

2 6 8 12

3 5 9 11

4 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

x

ψ ψ
ψ ψ ψ ψ

ψ ψ ψ ψ
ψ ψ

′ ′ 
 ′′ ′′ ′′ ′′ =
 ′′ ′′ ′′ ′′
 ′ ′ 

Ψ


   

(4.17) 

 
such that 

 

0
T

y z totr r rθ ′ ′ ′ =  Ψd


     
and     0

T

y zr r rθδ δ δ δ ′ ′ ′ =  Ψ d


      
(4.18) 

 
T

x y z totr r r rθ ′ ′′ ′′ ′ =  Ψd


    
and    

T

x y zr r r rθδ δ δ δ δ ′ ′′ ′′ ′ =  Ψ d


   
(4.19) 

 
Introducing Eqs. 4.12, 4.18 and 4.19 into Eq. 4.13, then 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T TT
tot v tot g tot

L L

T T

n tot n tot
L L

dx dx

dx dx

δ δ δ

δ δ

− − =

+

 

 

d F Ψ d c Ψd Ψ d m Ψd

Ψ d k Ψd Ψ d n Ψd

 

      (4.20) 

where 

0 0 0

0 0 0

0 0 0

0 0 0

z
n

y

t

EA

EI

EI

GI

 
 
 =  
 
  

k

    

and    

2
0

0 0 0 0

0 0

0 0

0

n yn

n
n zn

y z nn n

N M

N M

M M N e

 
 − 

=  −
 
 − − 

n

   

(4.21) 

This may be further developed into 
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( ) ( )

( ) ( )

T T T T
g tot v tot

L L

T T T T
n n tot tot tot

L L

dx dx

dx dx

δ δ

δ δ

⋅ + ⋅

 
+ + ⋅ = 

  

 

 

d Ψ m Ψ d d Ψ c Ψ d

d Ψ k Ψ Ψ n Ψd d d F

 

    

                

(4.22) 

It is seen that the pre-multiplication by Tδ d  is obsolete and may be discarded. 
Introducing 

( )tot t= +d d d
      

and     ( )tot t= +F F F                   (4.23) 

and defining                           0

T
g

T
n

TG L n

T
v

dx

 
   
   
  =  
   
       



Ψ m Ψm

k Ψ k Ψ
k Ψ n Ψ
c Ψ c Ψ

  

 

                                   

(4.24) 

then the following equilibrium condition at element level is obtained 

 ( )( )0 G+ + + + = +md cd k k d d F F   (4.25) 

In the case of a time invariant static solution then ( )td  and ( )tF  are zero,  

and thus 

 =kd F  (4.26) 

where 0 G= +k k k . I.e. the static and the dynamic equilibrium requirements may 

be handled in separate operation (the superposition principle applies). Thus, the 
dynamic equilibrium condition is given by 

 + + =md cd kd F   (4.27) 
 

 

Elaboration 4.1: Twelve Degrees of Freedom Beam Element 
 

The element stiffness, damping and mass matrices are defined in Eq. 4.24. By 
introducing the shape functions in Eq. 4.8 and its derivatives in Eqs. 4.16 and 
4.17, then the element mass, damping and stiffness matrices may readily be 
obtained by integration over the element length. [It should be noted that the 
development of damping properties at element level is not necessarily a rational 
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choice. Alternatively, damping properties may be introduced at a structural global 
level (i.e. associated directly with the global degrees of freedom), e.g. in the form 
of Rayleigh damping or simply a diagonal type of modal damping matrix, see 
Chapter 9.] Thus, the element mass matrix is given by: 

 

 11 12

21 22

 
=  
 

m m
m

m m
 where 21 12

T=m m  

 
and 

2
1

2
2 2 4 2 6

2
3 3 4 3 5

11 2
0 4 4 5 4 6

2
5

2
6

0 0 0 0 0

0 0

0

. 0

x

y y z y

L
z z y z

z y y z

z

y

m

m m e m

m m e m
dx

m m e m e

sym m

m

θ

ψ
ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ

ψ
ψ

 
 

− 
 
 

=  
− 

 
 
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  

m  
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1 7
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ψ ψ ψ ψ ψ ψ
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 
 − 
 
 
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x

y y z y
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z z y z

z y y z
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y

m
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m m e m e

sym m

m

θ

ψ
ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ
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ψ

 
 

− 
 
 

=  
− 

 
 
 
  

m  
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The element damping matrix is given by: 11 12

21 22

 
=  
 

c c
c

c c
  

where  21 12
T=c c  

and 

2
1

2
2 2 6

2
3 3 5

11 2
0 4

2
5

2
6

0 0 0 0 0

0 0 0

0 0
 

0 0

. 0

x

y y

L
z z

z

y

c

c c

c c
dx

c
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c

θ
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ψ ψ ψ

ψ ψ ψ
ψ

ψ
ψ

 
 
 
 
 

=  
 
 
 
 
 
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3 9 3 11
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5 9 5 11
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0 0 0 0 0

0 0 0 0
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x
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c
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c
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θ
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ψ ψ ψ ψ
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 
 
 
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 
 
 
 
 

c  

The element stiffness matrix associated with purely material properties is  
given by: 

 11 12

21 22

 
=  
 

k k
k

k k
 where 21 12

T=k k  and 
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The element stiffness matrix associated with axial and lateral torsion buckling 
effects is given by: 

 11 12

21 22

G G
G

G G

 
=  
  

k k
k

k k
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21 12
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G G=k k  
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Ready-made integrations are given in Appendix C.1. 

 
 

Elaboration 4.2: Six Degrees of Freedom Beam Element 
 

For a purely in-plane bending type of problem the six degrees of freedom element 
shown in Fig. 4.6 will suffice, in which case the following applies: 
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Fig. 4.6 Six degrees of freedom element 
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Ready-made integrals are given in Appendix C.2. 

 
 

Elaboration 4.3: Distributed Forces in the Element Span 

Consistent load effects of distributed forces, e.g. ( ),
T

x y zx t q q q qθ =  q  

in the span of an element n  (see Fig. 4.2) may alternatively be included in the 
virtual work balance in Eq. 4.13, in which case 

( )TT T T T
el n

L L L

dx dx dxδ δ δ δ= = =  r q ψ d q d ψ q d R  

where T
n

L

dx= R ψ q  should be added to the left hand side of  Eq. 4.13. It 

may readily be shown that 
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2
n

n
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 
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R
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The transformation of nR  into global load components follow the same 

transformation as nd , i.e. the contribution to global loads from distributed forces 

on element number n  is given by n nA R , where nA  is the connectivity matrix 

defined in Eq. 4.28 below. 

 
4.3   The Global Analysis 

Before proceeding it is necessary to define the six by pN  connectivity matrix nA  

describing the relationship between element degrees of freedom ntot
d  and global 

degrees of freedom totr , defined such that: 

 

n n tottot
=d A r       n n n n tot n n ntot

= + = = +d d d A r A r A r
           

(4.28) 

 
Let us apply to the discrete system (the system as reduced to a non-continuous 

collection of nodes) a set of virtual displacements δ r  consistent with totr  

 n nδ δ= ⋅d A r  (4.29) 

Since the virtual work exerted by the external forces at global level must be  
equal to the sum of the virtual work of the internal stress resultants at element 
nodes, then 

 
1

N
T T

tot n ntot
n

δ δ
=

⋅ = ⋅r R d F  (4.30) 

where N  is the total number of elements in the system. Introducing 

( )TT T T
n n nδ δ δ= ⋅ = ⋅d A r r A , then 

 
1

N
T T T

tot n ntot
n

δ δ
=

⋅ = ⋅ ⋅r R r A F  (4.31) 

Again, pre-multiplication by Tδr  is obsolete, and thus, it is seen that the 
equilibrium condition at a global structural level is given by 

 
1

N
T

tot n ntot
n=

= ⋅R A F  (4.32) 

Recalling from Eq. 4.25 that 
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 ( )n n n G ntot tot
= + + +F md cd k k d   (4.33) 

and introducing Eq. 4.28 

 ( )n n n G n tottot
= + + +F mA r cA r k k A r   (4.34) 

it is seen that Eq. 4.32 becomes 

( ){ }
1 1

N N
T T T T

tot p n n n n n n n G n tottot tot
n n= =

= + = + + + R R A R A mA r A cA r A k k A r     (4.35) 

where ptot
R  are external load contributions added directly in at node p , while 

ntot
R  are load contributions associated with distributed loads on element n  (see 

Fig. 4.2 and Elaboration 4.3 above). Thus, defining the global structural properties 

 
0 1

T
n n

TN
n n

T
n n n

TG
n G n

=

         =           



A mAM

C A cA

K A kA
K A k A

 (4.36) 

then the following equilibrium condition at global level is obtained 

 ( ) ( ) ( ) ( ) ( )0 Gt t t t+ + +  +  = + Mr Cr K K r r R R   (4.37) 

Defining 0 G= +K K K , this may conveniently be split into a time invariant mean 

(static) part 

 ⋅ =K r R  (4.38) 

and a purely dynamic part 

 ( ) ( ) ( ) ( )t t t t⋅ + ⋅ + ⋅ =M r C r K r R   (4.39) 

The solution to this equation is at the core of all structural dynamics. Various 
possible strategies will be presented in Chapters 5 and 6, while relevant solutions  
to the problems of ground motion and wind induced dynamic forces will be 
presented in Chapters 7 and 8. The special problem of structural damping will be 
dealt with in Chapter 9. 
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It is in the following taken for granted that M , C  and K  are all symmetric, 
quadratic and invertible matrices, and that they are real and positive definite. Their 
dimension is rN  by rN , where rN  is the number of degrees of freedom in the 

system ( 6r pN N= ⋅  where pN  is the number of nodes in the system). 

Elaboration 4.4: Condensation of Obsolete Degrees of Freedom 
 

Any degree of freedom nr  that due to structural restrictions or boundary 

conditions are equal to zero may be discarded simply by deleting the row and 

column associated with nr . If two degrees of freedom nr  and n jr +  are linearly 

dependent of each other, then the relevant rows and columns associated with nr  

and n jr +  may simply be added linearly, or as expressed in a mathematical way 

 if =Ar B  and 1=r Dr  then ( ) 1
T T=D AD r D B  

In some cases it may also be a convenient solution strategy to reduce the number 

of degrees of freedom in a system from 
1 2r r rN N N= +  to 

1r
N  simply by not 

allocating mass and damping to the 
2r

N  degrees of freedom that are considered 

obsolete. The system reduction may then be obtained by rewriting the original 
equilibrium condition 

+ + =Mr Cr Kr R   into 1 1 11 12 1 111 11

2 2 21 22 2 2

            
+ + =            

            

r r K K r RM 0 C 0

r r K K r R0 0 0 0

 
 

 

from which 1 1
2 22 2 22 21 1

− −= −r K R K K r  and thus the reduced equilibrium condition 

is given by 

 ( )1 1
11 1 11 1 11 12 22 21 1 1 12 22 2

− −+ + − = −M r C r K K K K r R K K R   

 
Example 4.1 

A simple bridge type of structural system is illustrated in Fig. 4.7. It has five 
elements and two relevant degrees of freedom. For simplicity, the effect of axial 
force in the columns is disregarded. Let us assume that  and 

. We shall then establish the mass and stiffness matrices of the 

system. 
 

2 1 3m m=

2 1 2EI EI=
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Fig. 4.7 Bridge type of structure; a) structural system, b) relevant degrees of freedom, node 
and element numbering 

 

Fig. 4.8 Elements types a  and b  

 

The system contains two types of elements, i.e. elements types a  and b  as 
illustrated in Fig. 4.8. The properties of element type a  may be extracted from 
the properties of the six degrees of freedom element in Appendix C.2, simply by 
omitting the first and the fourth degrees of freedom. Thus: 
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The properties of element type b  may also be extracted from the six degrees of 
freedom element in Appendix C.2. However, for this element type it is more 
consistent to use the following shape functions (see right hand side of Fig. 4.8): 
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Defining [ ]1 2ψ ψ=Ψ  and [ ]1 2
ˆ̂ ψ ψ′′ ′′=Ψ  then (see Eq. 4.24) 

( )
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As mentioned above, the system has two global degrees of freedom 1r  and 2r . 

Hence, the stiffness and mass matrices will be two by two 

 11 12

21 22

K K

K K

 
=  
 

K  and 11 12

21 22

M M

M M

 
=  
 

M  

The contribution from element number 1 is then given by 
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The contribution from element number 2 is given by 

 
( )

( )2
1

2 3

2 4 4 0

0 04

EI L

L

 
=  

  
K  and 

( ) ( )2
1

2

3 4 4 4 0
420 0 0

m L L 
=  

  
M  

The contribution from element number 3 is given by 
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The contribution from element number 4 is given by 
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The contribution from element number 5 is given by 
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This is a two degree of freedom system. The solution to its eigenvalue problem 
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Fig. 4.9 Eigenmodes 1φ  and 2φ  

4.4   The Numeric Eigenvalue Problem 

Most structural systems have very low damping. Thus, they possess a distinct set 
of preference frequencies and associated shapes of motion which largely depend 
on the mass and stiffness distribution within the system. We call them 
eigenfrequencies and associated normal modes (or simply modeshapes). These 
properties play an important role in the evaluation of potential danger of excitation 
and to establish consistent solutions that focus on the most relevant aspects of 
what can be expected to occur (e.g. the normal mode method as presented in 
Chapter 5). In most cases they may be determined by solving the undamped and 
unloaded version of Eq. 4.39, rendering a classic eigenvalue problem which is 
covered in this chapter. (However, in some cases is it necessary to include 
damping, and that case is briefly covered in Chapter 4.5 below.) The solution to an  
eigenvalue problem plays a significant part in mathematics, and there are 
numerous effective routines for its numerical solution (see e.g. Bell [12]). It is 
beyond the scope of this book to cover the subject in great detail. However, in 
Chapters 2 and 3, where continuous and no more than two degrees of freedom 
systems have been covered, it has been demonstrated that the subject is a 
necessary part of the identification of dynamic properties to structural systems. 
Thus, for the sake of completeness a brief coverage is given below. 
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General Background 

The steady state solution to the undamped and unloaded version of Eq. 4.39 

 ( ) ( )t t⋅ + ⋅ =M r K r 0  (4.40) 

is given by ( ) ( )Re i tt e ω= ⋅r φ , where 1

T

k Nr
ϕ ϕ ϕ =  φ    is a 

vector with length equal to the number of degrees of freedom ( rN ) in the system, 

and containing the displacement (or rotation) components associated with the 
relevant degrees of freedom at the structural position assigned to node p  (see Fig. 

4.1). Introducing this into Eq. 4.40, then the following is obtained 

 ( )2ω− =K M φ 0  (4.41) 

The solution to this equation is in mathematics known as the general eigenvalue 

problem. By pre-multiplication with 1−M  then the special eigenvalue problem is 
obtained 

 ( )λ− =A I φ 0  (4.42) 

where I is the identity matrix, 2λ ω=  and 1−=A M K . Similarly, by pre-

multiplication with 2 1ω − −− K  then the inverse version of the special eigenvalue 
problem is obtained, i.e. 

 ( )β− =B I φ 0  (4.43) 

where 2β ω−=  and 1−=B K M . It is readily seen that any of Eqs. 4.42 and 4.43 

may be chosen for the determination of ω  and φ . In general there will be rN  

possible solutions, as a nontrivial φ  will require that the determinant to λ−A I  

must be equal to zero, and this may be expressed by expanding ( )det λ−A I  into 

an rN  dimensional polynomial 

 ( ) ( ) ( )( ) ( ) ( )1 2det i Nr
f λ λ λ λ λ λ λ λ λ λ= − = − − − −A I    (4.44) 

whose roots 1 2, , , Nr
λ λ λ  (see Fig. 4.9) all represents a possible solution to the 

eigenvalue problem. 
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Fig. 4.10 rN  dimensional polynomial ( )f λ  

It is customary to arrange the eigenvalues in ascending order, i.e. 

1 2 i Nr
λ λ λ λ≤ ≤ ≤  , because it is the lowest that requires the least amount of 

energy to excite. The corresponding set of eigenmodes iφ , 1,2, , ri N=  , may 

then be obtained by re-introducing any of the solutions iλ  back into Eq. 4.42  

(or 4.43) 

 ( )i iλ− =A I φ 0  (4.45) 

Thus, it is seen that iφ  is scalable, i.e. that it may be multiplied or divided by any 

constant number. It only represents a characteristic shape of structural 
displacements. The actual displacements cannot be quantified unless a full version 
of Eq. 4.39 is solved. Re-writing Eq. 4.45 into 

 i i iλ=Aφ φ  (4.46) 

it is seen that an eigenmode iφ  of a matrix A  is a non-zero vector which 

multiplied by A  is the vector itself multiplied by a constant iλ  called the 

eigenvalue of A . For a two by two matrix 

 11 12

21 22

a a

a a

 
=  
 

A  (4.47) 

and corresponding eigenmode [ ]1 2
T

i i
ϕ ϕ=φ  this is illustrated in Fig. 4.11. 
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Fig. 4.11 Eigenmode and eigenvalue in two-dimensional vector space 

Example 4.2: Polynomial Solution to Simple Two by Two Systems 
 

Let 11 12

21 22

a a

a a

 
=  
 

A . Then the solution to the eigenvalue problem 

( ) 11 12 1 11 12 1

21 22 2 21 22 2

1 0 0

0 1 0

a a a a

a a a a

ϕ λ ϕ
λ λ

ϕ λ ϕ
  −          

− = − = =           −           
A I φ  

 

is given by   
( )( )

( )

11 12
11 22 12 21

21 22

2
11 22 11 22 12 21

det

0

a a
a a a a

a a

a a a a a a

λ
λ λ

λ

λ λ

− 
= − − − − 

= − + + − =

 

rendering   ( )
2

11 22 11 22
1,2 11 22 12 212 2

a a a a
a a a aλ + + = ± − − 

 
 

and      ( )11 1,2 1 12 2 0a aλ ϕ ϕ− + =
        

         
1,2 112

1 12

a

a

λϕ
ϕ

−
=  
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Fig. 4.12 Graphic illustration 

 

Let for instance 
2 2

2 5

 
=  
 

A . Then 
1

2

6

1

λ
λ

=
 =

 while 1
1

12

ϕ
ϕ

 
=  
 

φ  and 

1
2

10.5

ϕ
ϕ

 
=  − 

φ . 

It is seen that they are orthogonal, i.e. that 1 2 0T =φ φ . Since they are 

arbitrarily scalable, it is often convenient to scale them such that ˆ ˆ 1T
i i =φ φ , i.e. 

1 1 1 1

0.45
ˆ

0.9
T  

= ≈  
 

φ φ φ φ
     

and      2 2 2 2

0.9
ˆ

0.45
T  

= ≈  − 
φ φ φ φ  

The normalised eigenmode 1φ̂  is illustrated in Fig. 4.12 above. As can be seen 
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1 1

0.45 2.7
ˆ 6

0.9 5.4
λ    

= =   
   

φ
   

is identical to    1

2 2 0.45 2.7
ˆ

2 5 0.9 5.4

     
= =     
     

Aφ  

The same holds for 2φ̂ . 

 
Eigenmode Orthogonality 

Let 2
iω  and 2

jω , and corresponding iφ  and jφ , be two arbitrary but 

independent and non-trivial solutions (different from zero) to the general 

eigenvalue problem ( )2ω− =K M φ 0 , i.e. 

 
( )2

i iω− =K M φ 0
      

and      ( )2
j jω− =K M φ 0  (4.48) 

Pre-multiplying the first with T
jφ  and the second by T

iφ  

 
2 0T T

j i i j iω− =φ Kφ φ Mφ
      

and      2 0T T
i j j i jω− =φ Kφ φ Mφ  (4.49) 

transpose throughout the second (recalling that K and M  are symmetric) 

 2 0T T
j i j j iω− =φ Kφ φ Mφ  (4.50) 

and subtracting the first, then the following is obtained 

 ( )2 2 0T
i j j iω ω− =φ Mφ  (4.51) 

Thus, since i jω ω≠  we must conclude that 

 0T
j i =φ Mφ  (4.52) 

It is seen from the first part of Eq. 4.49, 2 0T T
j i i j iω− =φ Kφ φ Mφ , that since iω  

is a non-trivial solution different from zero, we must also have that 

 0T
j i =φ Kφ  (4.53) 

Thus, the eigenmode solutions to the general eigenvalue problem are M  and K  

orthonormal. Similarly, let iλ  and jλ , and corresponding iφ  and jφ , be two 

arbitrary but independent and non-trivial solutions different from zero to the 

special eigenvalue problem ( )λ− =A I φ 0 , i.e. 

 ( )i iλ− =A I φ 0
       

and      ( )j jλ− =A I φ 0  (4.54) 
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Pre-multiplying the first with T
jφ  and the second by T

iφ  

 
0T T

j i i j iλ− =φ Aφ φ φ
      

and      0T T
i j j i jλ− =φ Aφ φ φ  (4.55) 

transpose throughout the second (recalling that because K and M  are symmetric, 
so is A ) 

 0T T
j i j j iλ− =φ Aφ φ φ  (4.56) 

and subtracting the first, then the following is obtained 

 ( ) 0T
i j j iλ λ− =φ φ  (4.57) 

Again, since i jλ λ≠  we must conclude that 

 0T
j i =φ φ  (4.58) 

Thus, the eigenmode solutions to the special eigenvalue problem are orthogonal. 

Since 0T
j i =φ φ  and 0jλ ≠  it is seen from Eq. 4.56 that as long as i j≠  also 

 0T
j i =φ Aφ  (4.59) 

 

The Rayleigh Quotient 

Pre-multiplying ( )2
i iω− =K M φ 0  by T

iφ  it is seen that 

 2
T
i i

i T
i i

ω =
φ Kφ
φ Mφ

 (4.60) 

which in structural dynamics is called the Rayleigh quotient. It is also seen that if 
the mode shapes are scaled such that 

 ˆ T
i i i i=φ φ φ Mφ  (4.61) 

then                                               ˆ ˆ 1T
i i =φ Mφ                                                  (4.62) 

and thus                                       2 ˆ ˆT
i i iω =φ Kφ                                                 (4.63) 

Similarly, pre-multiplying ( )i iλ− =A I φ 0  by T
iφ  it is seen that 

 
T
i i

i T
i i

λ =
φ Aφ
φ φ

 (4.64) 
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and if the mode shapes are scaled (by the norm of iφ ) such that 

 ˆ T
i i i i=φ φ φ φ  (4.65) 

then ˆ ˆ 1T
i i =φ φ  (4.66) 

and thus ˆ ˆT
i i iλ =φ Aφ  (4.67) 

Recalling that ( )i iλ− =A I φ 0  where 1

T

i k Nr i
ϕ ϕ ϕ =  φ    and 

that there will be as many eigenmodes as there are degrees of freedom, then this 
may be expanded to an overall level by defining 

1
ˆ ˆ ˆ ˆ

i Nr
 =  Φ φ φ φ 

   
and    1 i Nr

diag λ λ λ =   λ
   

(4.68) 

in which case the equation covering the entire eigenvalue vector space is given by 

 ˆ ˆ− =AΦ Φλ 0  (4.69) 

and since ˆ ˆT =Φ Φ I  (4.70) 

then pre-multiplication with  renders         ˆ ˆT=λ Φ AΦ  (4.71) 

Elaboration 4.5: The Similarity Transformation 

Similarly we may define the eigenmode vector space 1 i Nr
 =  Φ φ φ φ   

and correspondingly 1 i Nr
diag λ λ λ =   λ , then 

 − =AΦ Φλ 0   

Pre-multiplication by the inverse of a non-singular rN  by rN  matrix Y  

 1 1− −− =Y AΦ Y Φλ 0   

and defining a new unknown matrix 1−=Z Y Φ , then 

 1− − =Y AYZ Zλ 0   

from which the following transformed eigenvalue problem is obtained 

 − =BZ Zλ 0   

ˆ TΦ
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where 1−=B Y AY . It is seen that A  and B  have the same eigenvalues λ , but 

different eigenmodes Φ  and Z . This is a linear similarity transformation. The 

connection between Φ  and Z  is given by 1−=Z Y Φ , and thus 

 =Φ YZ  
 

Elaboration 4.6: The Cholesky Decomposition 

The Cholesky decomposition is presented in appendix B.4. The reason why it has 
been included is that apart from being used in the simulation of non-coherent time 
series from spectra, it is in some cases convenient to perform a Cholesky 
decomposition of the mass matrix M  (which in our case is always real) to obtain a 
solution to the general eigenvalue problem 

 ( )2ω− =K M φ 0  

Thus, it is written as the product of a lower triangular matrix Y  and its transposed 

 T=M YY  

Introducing this into the equation above, defining T=z Y φ  and pr-multiplying 

by 1−Y  

 ( ) ( )1 11 2 1T T Tω
− −− −− =Y K Y z Y YY Y z 0  

will render the equivalent eigenvalue problem 

 ( )2ω− =B I z 0  

where ( ) 11 T −−=B Y K Y . The original eigenmodes may then be retrieved from 

 ( ) 1T −
=φ Y z  

The advantage of this transformation becomes particularly apparent if 

 ( )1 i Nr
diag M M M=M    

in which case 

( )
( ) ( )

1 2 1 21 2 1 2
1

1 1 2 1 21 1 2 1 2
1

T
i Nr

T
i Nr

diag M M M

diag M M M
− − −− − −

= = =

= = =

Y Y M

Y Y M

 

 
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and thus 

 1 2 1 2− −=B M KM  and 1 2−=φ M z  

Below, the numeric routines of direct and inverse vector iterations as well as the 
Jacobi method are included, not because they are more important than many of the 
alternative routines available, but because they represent two main classes of 
approaches, namely iterations on A  itself and iterations on a transformed version 

of A . They all require a opening vector 0ψ . Obviously, the closer 0ψ  is to the 

exact solution the faster convergence is obtained. 

Direct (Power) Vector Iteration 

Starting with sound engineering guess 0ψ  as an initial solution to 

 ( )k kλ− =A I ψ 0  (4.72) 

where 1−=A M K , may iteratively be expanded into an improved solution by 

          1,2, ,k N=                                 (4.73) 

where ( ) ( )1 1 1
T

k k k− − −=Aψ Aψ Aψ  is the norm of the previous solution. 

The corresponding eigenvalue may be determined by using the Rayleigh quotient 

 
T
k k

k T
k k

λ =
ψ Aψ
ψ ψ

 (4.74) 

(Normalisation of kψ  such that after each step ˆ T
k k k k=ψ ψ ψ ψ  is optional.) 

The method is not widely in use because the solution converges towards a larger 
dominant eigenvalue, provided 0ψ  has a non-zero component in the direction of 

the corresponding eigenmode. 
 

Inverse Vector Iteration 
 

The inverse vector iteration method is in principal equivalent to the direct method 
presented above, only it operates on the inverse eigenvalue problem (see Eq. 4.43) 

 ( )k kβ− =B I ψ 0  (4.75) 

 

1

1

k
k

k

−

−
=

Aψψ
Aψ
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where 1−=B K M  and 2
k kβ ω−= . Let 1 0 0 0ˆ T=ψ ψ ψ ψ  be the normalised 

vector of an initial guess 0ψ . Then 

ˆk k=ψ Bψ           where            1

1 1

ˆ k
k T

k k

−

− −

=
ψψ

ψ ψ
                   

(4.76) 

 

and because ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0T T T T
k k k k k k k k k k kβ β β− = − = − =ψ B I ψ ψ Bψ ψ ψ ψ ψ , then 

 ˆ T
k k kβ =ψ ψ  (4.77) 

The main advantage with this method is that with a choice of 0ψ  that is not 

unduly off target it will always converge towards the solution with numerically 

lowest eigenfrequency 1ω  and corresponding eigenmode 1φ̂ , i.e. 
 

 2
1 1k k

β β ω −
→∞⎯⎯⎯→ =  and 1

ˆˆ k k→∞⎯⎯⎯→ψ φ                    

(4.78) 
 

The second or any higher eigenvalue may be determined by introducing a shift 
(see Fig. 4.13 below) and rewrite the original eigenvalue problem into 

 ( )2μ ω μ − − − = K M M φ 0  (4.79) 

 

Fig. 4.13 Eigenvalue polynomial ( )f λ  with shift 
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Defining  and pre-multiplication by  will then 

render the following equivalent eigenvalue problem 

  (4.80) 

where ( ) 1
μ μ −= −B K M M . Thus, iterations may be performed in an equivalent 

procedure to that which has been shown above, and the solution will converge 

towards the eigenvalue immediately above μ , while 1k kω μ β= + . 

 
Example 4.3: Inverse Vector Iteration 

 
Let us consider the simple shear frame shown in Fig. 4.13.a and let 

4
3

1

3
1

12
9 10  N/m

M 6 10  kg

EI

H

  = ⋅ 
 

= ⋅     

4
3

2

3
2

12
6 10  N/m

M 6 10  kg

EI

H

  = ⋅ 
 

= ⋅    

4
3

3

3
3

12
3 10  N/m

M 3 10  kg

EI

H

  = ⋅ 
 

= ⋅

 

The stiffness of a shear beam is shown in Fig. 4.10.b. The necessary mass  
and stiffness properties of the system may then be established by successive  
unit displacements as illustrated in Fig. 4.10.c, from which the following is 
obtained 

 4

5 2 0

6 10 2 3 1

0 1 1

− 
 = ⋅ − − 
 − 

K  and 3

2 0 0

3 10 0 2 0

0 0 1

 
 = ⋅  
  

M  

Then ( ) 1

1 30 1 30 1 60

0 1 30 1 12 1 24

1 30 1 12 11 120

μ −
 
 = = =  
  

B K M  

and the successive inverse iterations are shown in Table 4.1 below, starting with 

[ ]0 1 1 1
T=ψ

    
      [ ]1 0 0 0ˆ 0.5774 0.5774 0.5774

TT= ≈ψ ψ ψ ψ  

( ) 12β ω μ
−

= − ( ) 1β μ −− −K M

( )μ β− =B I φ 0
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Fig. 4.14 Three degree of freedom shear frame 

The iterative value of ω  vs. k  is shown in Fig. 4.14. As can be seen the 

convergence is approaching its limit value 1 2.5055 rad/sω ≈  from below. It 

represents the first (lowest) eigenvalue of the system. The corresponding 
normalised eigenmode is given by 

[ ]1 6 6 6 6ˆ 0.2504 0.5478 0.7982
TT≈ = =φ ψ ψ ψ ψ  
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Table 4.1 Inverse vector iteration 

k 1 2 3 4 5 6 

( )0μ =B  
1 1 1ˆ T

k k k k− − −=ψ ψ ψ ψ  

0.0333  0.0333  0.0167 
0.0333  0.0833  0.0417 
0.0333  0.0833  0.0914 

0.5774 
0.5774 
0.5774 

0.3034 
0.5766 
0.7586 

0.2597 
0.5554 
0.7900 

0.2523 
0.5495 
0.7965 

0.2509 
0.5481 
0.7979 

0.2506 
0.5478 
0.7982 

  
 

ˆk k=ψ Bψ  

 

0.0481 
0.0914 
0.1203 

0.0420 
0.0898 
0.1277 

0.0403 
0.0879 
0.1274 

0.0400 
0.0874 
0.1272 

0.0399 
0.0873 
0.1272 

0.0399 
0.0873 
0.1272 

       

ˆ T
k k kβ =ψ ψ  0.15 0.1614 0.1599 0.l594 0.1593 0.1593 

1 2
kω β −=  2.582 2.4891 2.5008 2.5047 2.5055 2.5055 

 
To obtain the second eigenvalue trial and error has shown that 24μ =  is a 

suitable choice of shift. Then 

( ) 1 2

5.303 1.894 4.735

10 1.894 2.462 6.155

9.47 12.31 5.777
μ μ − −

− 
 = − = − 
 − − 

B K M M  

Table 4.2 Inverse vector iteration with shift 

k 1 2 3 4 5 6 

( )210 24μ⋅ =B  
1 1 1ˆ T

k k k k− − −=ψ ψ ψ ψ  

5.303   1.894   -4.735 
1.894   2.462   -6.155 
-9.47   -12.31   5.777 

0.5774 
0.5774 
0.5774 

0.1511 
-0.1104
-0.9823

0.5317 
0.6146 
-0.5827

0.3669 
0.3323 
-0.8688

0.42299 
0.4338 
-0.7956 

0.4034 
0.3995 
-0.8232 

  
 

ˆk k=ψ Bψ  

 

0.0142 
-0.0104
-0.0924

0.0524 
0.0606 
-0.0575

0.0674 
0.0611 
-0.1597

0.0689 
0.0689 
-1.1258

0.06831 
0.0677 
-0.1394 

0.0679 
0.0681 
-0.1349 

       

ˆ T
k k kβ =ψ ψ   0.0577 0.1664 0.1567 0.1692 0.1657 

( )1 2
1 kω β μ= +   6.4289 5.4781 5.5119 5.469 5.480 
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The successive inverse iterations, again starting with 
 

[ ]0 1 1 1
T=ψ

      
       [ ]1 0 0 0ˆ 0.5774 0.5774 0.5774

TT= ≈ψ ψ ψ ψ  

 

are shown in Table 4.2 above. Thus 2 5.48 rad/sω ≈  and 

 

 [ ]2 6 6 6 6ˆ 0.4099 0.4111 0.8143
TT≈ = = −φ ψ ψ ψ ψ . 

 
 

The Jacobi Method 
 

(The method is named after the German mathematician Carl Gustav Jacob Jacobi, 
[41].) Let the overall eigenvalue problem 

 ( )− =A λ Φ 0  (4.81) 

be defined by 

 
11 1 1

1

1

i N

i ii iN

N Ni NN

a a a

a a a

a a a

 
 
 
 =
 
 
  

A

 
    

 
    

 

 and 

1

i

N

λ

λ

λ

 
 
 
 =
 
 
  

0

λ
0




 

and [ ]

1 1 1

1 2

1

N i i i

N N Ni N

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

      
      
      
      = =
      
      
            

Φ φ φ φ
  

   
  

(4.82) 

The Jacobi method is then based on a successive similarity transformation 

                1 1 1
T

k k k k− − −=A Y A Y                    1,2,3, , kk N=   (4.83) 

where Y  is an N  by N  orthogonal ( 1 T− =Y Y ) vector rotation matrix 
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1

cos sin

1

sin cos

1

i j

i

j

α α

α α

 
 ↓ ↓ 
 
 

− ← 
 
 =
 
 
 
 ←
 
 
  

Y



 

 



 (4.84) 

and where α  is determined such that all other off-diagonal terms become zero, 

                  i.e. 

2
tan 2   for  

4                 for  

ij

ii jj

a
i j

a a

i j

α

α π


= ≠ − 

= = 

 (4.85) 

It is seen that by successive expansion of Nk
A  

 

1 1 1

1 2 2 2 1

1 2 3 3 3 2 1

1 1 1 1

T
N N N Nk k k k

T T
N N N N Nk k k k k

T T T
N N N N N N Nk k k k k k k

T T T
N k k Nk k

− − −

− − − − −

− − − − − − −

− −

=

=

=

=

A Y A Y

Y Y A Y Y

Y Y Y A Y Y Y

Y Y Y AY Y Y   

 (4.86) 

the solution is equivalent to a vector rotation of kA  into a position of 
T T
k k k k k kk→∞⎯⎯⎯→Ψ A Ψ Ψ λ Ψ , where 1 2 1 1k k k k k− −= ⋅ ⋅ = ⋅Ψ Y Y Y Y Ψ Y , i.e. 

a vector rotation which will converge towards λΦ , and thus 

 
1 2 1

Nk Nk

Nk Nk

→∞

− →∞

⎯⎯⎯⎯→ 
⋅ ⎯⎯⎯⎯→ 

A λ

Y Y Y Φ
 (4.87) 

The advantage with the Jacobi method is that all the relevant eigenvalue solutions 
are obtained in one go. 
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Example 4.4: Jacobi Vector Iterations 
 

Let 4

5 2 0

6 10 2 3 1

0 1 1

− 
 = ⋅ − − 
 − 

K  and 3

2 0 0

3 10 0 2 0

0 0 1

 
 = ⋅  
  

M  

 
(i.e. identical to that which has been investigated in Example 4.3 above). As 
shown in Elaborations 4.3 and 4.4 it is greatly advantageous if M  is  
diagonal, in which case an overall solution may be obtained by defining 

1 i Nr
 =  Φ φ φ φ   and ( )1 i Nr

diag λ λ λ=λ    

( )− =K λM Φ 0  

Introducing 1 2
1 i Nr

 = = Z z z z M Φ   (i.e. 1 2−=Φ M Z ) and pre-

multiplying by 1 2−M    ( )1 2 1 2− −− =M K λM M Z 0
 

then the 

following is obtained   ( )− =A λ Z 0
  

where  1 2 1 2− −=A M KM  

   

50 20 0

20 30 14.1421

0 14.1421 20

− 
 = − − 
 − 

A  

The development of kY  and corresponding iterations are shown in Table 4.3. 

Thus   

63.72 0 0

0 6.28 0

0 0 30

 
 ≈  
  

λ

    

    [ ]1 2 7.982 2.506 5.477diag= =ω λ  

As can be seen, the first and the second eigenvalues comes out as the second and 
the third entry. Their numerical values comply well with that which was obtained 
in Example 4.3 above. The eigenmode matrix is given by 

 1 2

0.0105 0.0039 0.0065

0.0072 0.0086 0.0065

0.0033 0.0125 0.0129

−
− 

 ≈ = − − 
  

Φ M Z  
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Table 4.3 Jacobi vector iteration 

 
k 

,i j  

tan 2α  
α  

 

kY  

 

 

1
T

k k k k−=A Y A Y  

 

 

1k k k−=Z Z Y  

 

 
1 

1,  2

2

0.5536

i j= =
−

−
 

0.851 0.526 0

0.526 0.851 0

0 0 1

−
62.36 0 7.43

0 17.64 12.03

7.43 12.03 20

−
−

 

0.851 0.526 0

0.526 0.851 0

0 0 1

−  

 
 

2 
2,  3

10.192

0.7365

i j= = 1 0

0 0.741 0.672

0 0.672 0.741

o

−
62.36 4.99 5.51

4.99 6.73 0

5.51 0 30.92

 

 

0.851 0.389 0.353

0.526 0.630 0.571

0 0.672 0.741

−
− −  

 
 

3 
1,  3

0.3502

0.1684

i j= =

 

0.986 0 0.168

0 1 0

0.168 0 0.986

− 63.30 4.92 0

4.92 6.73 0.84

0 0.84 29.97

−
−

 

 

0.779 0.389 0.491

0.614 0.630 0.475

0.124 0.672 0.730

−
− −  

 
 

4 
1,  2

0.1741

0.0862

i j= =

 

0.996 0.861 0

0.861 0.996 0

0 0 1

− 63.72 0 0.072

0 6.31 0.83

0.072 0.83 29.97

−
−

− −
 

0.81 0.321 0.491

0.558 0.681 0.475

0.182 0.659 0.730

−
− −  

 
 

5 
2,  3

0.0705

0.0352

i j= = 1 0 0

0 0.999 0.035

0 0.035 0.999

−
63.72 0.003 0.072

0.003 6.28 0

0.072 0 30

− −
−
−

0.81 0.303 0.502

0.558 0.663 0.499

0.182 0.684 0.707

−
− −  

 
 

6 
1,  3

0.0043

0.0021

i j= =
−
−

 

1 0 0002

0 1 0

0.002 0 1−
 

63.72 0.003 0

0.003 6.28 0

0 0 30

−

 
 

0.811 0.303 0.500

0.556 0.664 0.500

0.180 0.684 0.707

−
− −

 
 

 

It is seen that [ ]310 0.1719 0.2447 0.2499T diag−≈ ⋅Φ Φ  and thus, the 

normalised version of the mode shape matrix is given by 

 

( )1 2
0.7986 0.2501 0.4083

ˆ 0.5475 0.5480 0.4083

0.2507 0.7983 0.8165

T

− 
 = = − − 
  

Φ Φ Φ Φ

 

As can be seen, also the mode shapes complies well with that which was obtained 
in Example 4.3 above. Convergence of eigenvalues as obtained by the inverse 
method in Example 4.3 and from the Jacobi method in Example 4.4 are shown in 
Fig. 4.15. 
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Fig. 4.15 Convergence of inverse and Jacobi iterations (Examples 4.3 and 4.4) 

 

Elaboration 4.7: Damped Eigenvalues 
 

For a damped but unloaded system the solution to + + =Mr Cr Kr 0   
 

may be obtained by adding a dummy equation, e.g. − =Ir Ir 0   (where I  is the 
identity matrix), in which case the  problem may be re-stated into 

 

 
−       

+ =       
       

I 0 r 0 I r
0

0 M r K C r


   

 

Defining a new variable 
 

=  
 

r
z

r
 and the matrices 

 
=  
 

I 0
B

0 M
 and 

− 
=  
 

0 I
A

K C
, then the equation above is   + =Bz Az 0  
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Since the damping affected solution is given by ( )Re teλ=r φ
   

then 

 Re teλ

λ
  

=   
  

φ
z

φ
 

Thus, the solution may be obtained from the eigenvalue problem 
 

 ( ) zλ+ =A B Φ 0  where [ ]Tz λ=Φ φ φ  

 

If =C 0 , then we are back to the ordinary eigenvalue problem previously 
described in this chapter, and as we have seen, λ  is negative and purely 
imaginary (i.e. iλ ω= ) while φ  only contains real quantities. This means that 

the motion is a simple harmonic and its size and shape remains unchanged with 
time, and all the degrees of freedom are in phase. If ≠C 0 , then λ  will be 
complex (and not necessarily purely imaginary) while φ  may also contain 

complex quantities. This means that the motion is not a simple harmonic, it is 
decaying with time (as long as all entries in C  are positive), while its shape is 
time dependent as there is a phase between the motion of the various degrees of 
freedom in the system. Let us consider the most simple case of a single degree of 
freedom system 

0Mr Cr Kr+ + =     
1 0

0 M

 
=  
 

B ,  
0 1

K C

− 
=  
 

A
  

and tr
e

r
λϕ

λϕ
   

= =   
   

z


 

Then the eigenvalue problem is given by  
1

K C M

λ ϕ
λ λϕ

−   
=   +   

0 , from which 

a non-trivial solution is obtained from ( ) 0C M Kλ λ+ + = , which may 

alternatively be written 

2

0
0 0

2 1 0
λ λζ

ω ω
   

+ + =   
   

, where 0 K Mω =  and ( )0 02C Mζ ω=  

Its solution is given by 2
0 0

0

1
λ ζ ζ

ω
= − ± − . There are three possible scenarios: 

1) 0 1ζ >    ( )
2 21 10 00 00 0

1 2
t ttr t e a e a e

ω ζ ω ζζ ω − − −−  
= + 

  
 

2) 0 1ζ =    ( ) 0tr t a e ω−= ⋅  
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3) 00 1ζ< <    
( )

( )

2 21 10 00 00 0
1 2

20 0
0 0

Re

cos 1

i t i tt

t

r t e a e a e

a e t

ω ζ ω ζζ ω

ζ ω ω ζ

− − −−

−

   
 = +       


= ⋅ −

 

 

In the first case where 0 1ζ >  then the system is over-critically damped and the 

motion is consistently decaying without any oscillations, i.e. there is no such thing 
as an eigenvalue solution. In the second case where 0 1ζ =  the system is critically 

damped and the motion is still consistently decaying without any oscillations. In 
the third case where 00 1ζ< <  the system is under-critically damped and the 

motion is oscillating with a frequency of 2
0 01dω ω ζ= − , but still decaying. 

(This is identical to that which was obtained in Chapter 2.2, where the various 
types of motions are illustrated in Fig. 2.3 and a more comprehensive solution to 
the case that 0 1ζ =  is given in Eq. 2.18.) 

Let us then consider the more demanding case of a two degree of freedom 
system 

 

 
1 0

0 1
M

 
=  

 
M  

1 0

0 1
C
 

=  
 

C  and 
2 1

1 1
K

− 
=  − 

K  

 
It is convenient first to solve the eigenvalue problem ( )0 0λ− =K M φ 0 , 

rendering 

0
1

2 0
0

2 1

1 1

M

K
M

K

λ ϕ
ϕλ

 − −   
=   

   − −  

0

       

         

0

20

10

2.6183 5

0.3822 2

0.618
 

1.618

M

K
λ

ϕ
ϕ

 
= ± ≈ 


 − ≈  

 

 
 

i.e.     

0 0 01 1 1

0 0 02

1 0.526
ˆ0.618   rad/s  &      

1.618 0.851

1 0.851
ˆ1.618   rad/s  &      

0.618 0.526

K

M

K

M

ω

ω

= = =

= = =
− −2 2
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Then, by adding C  the eigenvalue problem is given by ( ) zλ+ =A B Φ 0  where 

[ ]Tz λ=Φ φ φ , and where 

0 0 1 0

0 0 0 1

2 0

0

K K C

K K C

− 
 − −   = =   − 
 − 

0 I
A

K C
    

1 0 0 0

0 0 1 0 0

0 0 0 0

0 0 0

M

M

 
    = =    
 
 

I
B

M
 

   ( )
( )

1

2

1

2

0 1 0

0 0 1

2 1 0

1 1 0

C K M K

C K M K

λ ϕ
λ φ

λ λϕ
λ λϕ

−   
   −    =
   − +
   − +   

0  

 
The non-trivial damped eigenvalues may then be determined from the requirement 
that the determinant to the coefficient matrix is zero, i.e. that 

 

2

3 1 0
C M C M

K K K K
λ λ λ λ      + + + + =              

and thus 0
3 5

2 2

C M M

K K K
λ λ λ + = − ± = − 
 

 

where 2
0 0n

λ ω= , 1,2n = , and where 01
ω  and 02

ω  are the un-damped 

eigenfrequencies of the system.  

Thus ( )2 2
0 0

n
C Mλ λ ω+ + =  

   
2 2

2 2
0 02 2 2 2n n

C C C C
i

M M M M
λ ω ω   = − ± − = − ± −   

   
 

Introducing ( )0 02
n n

C Mζ ω= , 1,2n = , then 2
0 0 01

n n n
iλ ω ζ ζ= − ± − . 

Thus, the following roots are obtained: 

 

2
1 0 0 01 1 1

2
2 0 0 01 1 1

1

1

i

i

λ ω ζ ζ

λ ω ζ ζ

 = − + −

 = − − −

 

2
3 0 0 02 2 2

2
4 0 0 02 2 2

1

1

i

i

λ ω ζ ζ

λ ω ζ ζ

 = − + −

 = − − −

 

It is seen that the eigenvalues come in complex conjugate pairs. The 
corresponding eigenmodes may be obtained from the third row of the equation 
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1 2 1 1 2 1
3 5

2 2 0
2 2

C M

K K
ϕ ϕ λ λ ϕ ϕ ϕ ϕ

  − + + = − + − ± =       

2

1

1.618

0.618

ϕ
ϕ


 = −

 

I.e.:                 

1 2 1 2

3 4 3 4

1 0.526
ˆ ˆ      

1.618 0.851

1 0.851
ˆ ˆ   

0.618 0.526

    = =  = =    
    


    = =  = =    − −   

φ φ φ φ

φ φ φ φ
 

which is identical to that which was obtained for the un-damped case. The reason 
for this comes from the choice of damping matrix which contains no coupling 
between the two degrees of freedom. In a general case the damped eigenmodes 
will also be complex, implying there is a phase (time lag) between the occurrences 
of the various degrees of freedom. 
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Chapter 5 
The Normal Mode Method 

5.1   Introduction 

In Chapter 4 we developed the equilibrium condition 

( ) ( ) ( ) ( )t t t t⋅ + ⋅ + ⋅ =M r C r K r R 
                                

(5.1) 

for a general discrete system with a chosen set of degrees of freedom 

1

T

p Nr
 =  r r r r   and subject to a corresponding set of external 

loads 1

T

p Nr
 =  R R R R  . Because structural systems have very 

low damping, we demonstrated that they have distinct sets of preference 
frequencies nω  and associated shapes of motion nφ , which, under the 

assumption of a general harmonic and stationary motion ( )Re i te ω=r φ , emerged 

from the eigenvalue solution of the undamped and unloaded version of Eq. 5.1 

( )2ω− =K M φ 0
                                           

(5.2) 

These are all equations in what we define as being expressed in the physical 
degrees of freedom, or alternatively, in what we call the original coordinates. 
Frequency nω  and associated shape vectors nφ  are called the eigenfrequencies 

and eiegenmodes of the system. As can be seen, they largely depend on the mass 
and stiffness distribution within the system. We have seen (Eqs. 4.48 – 4.59) that 
the eigenmodes nφ  are mass orthogonal, i.e. they are linearly independent vectors 

with respect to the mass distribution. If the system is given an arbitrary 
perturbation and it is left to oscillate by itself without any further external 
influence, then what will occur is an eigenmode oscillation at the corresponding 
eigenfrequency, depending on the type of perturbation that was applied. Thus, it 
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has been conceived that if the system is subject to any external load an 
approximate solution may be obtained by separation of variables (position and 
time) and a linear combination of a limited set of known (or chosen) eigenmodes, 
i.e. 

( ) ( )
mod

1

N

n n
i

t tη
=

≈ r φ
                                        

(5.3) 

where ( )n tη  are the new unknown variables in the system. This is an approach 

that in most cases of structural engineering has proved to be reliable and accurate. 
It has the advantage that it enables a direct focus on that which is important, and it 
should be noted that while rN  may be an uncomfortably large number, modN  

may with sufficient accuracy be chosen at a very low number (in some special 
cases it may even suffice to set mod 1N = ). Thus, computational advantage may 

be considerable. As indicated above, it should also be noted that in some cases it 
may render sufficient accuracy to apply approximate shape functions, i.e. to 
replace nφ  by n n≈ψ φ , where nψ  is based on sound engineering judgement of 

what can be expected. 
As we have seen in Chapters 1 and 3, in some cases it is convenient to 

establish the dynamic equilibrium conditions in a continuous format. For instance, 
the differential equilibrium condition for a simple beam whose motion is 
exclusively in the z -direction is given by 

  z z z z y z zm r c r EI r q′′′′⋅ + ⋅ + ⋅ = 
                                   

(5.4) 

in which case the shape functions are continuous ( )zn
xϕ  and thus 

( ) ( ) ( )
mod

1

,
N

z z nn
n

r x t x tϕ η
=

≈ ⋅
                                      

(5.5) 

The concept is known as the normal mode method. The method is intended  
for the calculation of dynamic load effects. For low frequency (quasi-static)  
type of problems it may be advisable to replace the eigenmodes by static  
shape functions, or alternatively to pursue a solution in original degrees of 
freedom. 

5.2   The Discrete Normal Mode Approach 

In a discrete format it is convenient to define the mode shape matrix 
 

 1 2 modn N =  Φ φ φ φ φ 
                       

(5.6) 
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where nφ  ( mod1,2, ,n N=  ) contains the mode shape numerical values, each 

associated with the corresponding global degree of freedom number 

1,2, , rp N=   

 1 2

T

n p Nr
φ φ φ φ =  φ  

                          
(5.7) 

and a time dependent unknown vector 

 ( ) 1 2 mod

T

n Nt η η η η =  η  
                          

(5.8) 

(The content of η  is often called generalised coordinates.) Thus, Eq. 5.3 may be 

written 

 ( ) ( ) ( )
mod

1

N

n n
i

t t tη
=

≈ = ⋅r φ Φ η
                                 

(5.9) 

 

Fig. 5.1 Discrete system 
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Introducing Eq. 5.9 into Eq. 5.1 and pre-multiplying the entire equation by  
will then render 

 
                

(5.10) 

Defining the modally equivalent structural properties 

 

 modal mass matrix:          

 modal damping matrix:    

 modal stiffness matrix:     

T

T

T

• =
• = 
• = 

M Φ MΦ
C Φ CΦ
K Φ KΦ






                        

(5.11) 

and the modal load vector 

( ) ( )Tt t=R Φ R
                                                

(5.12) 

then the following modal dynamic equilibrium condition is obtained 

 ( ) ( ) ( ) ( )t t t t+ + =Mη Cη Kη R   
                                

(5.13) 

Due to the orthogonal properties of the mode shapes all the off diagonal terms in 

M  and K  are zeros. Thus 

 
n

n

diag M

diag K

 =  


 =   

M

K

 

 
 where 

T
n n n

T
n n n

M

K

= 


= 

φ Mφ

φ Kφ




            

(5.14) 

However, introducing an arbitrary mode shape nφ  and its corresponding 

eigenfrequency nω  into Eq. 5.2 

 ( )2
n nω− =K M φ 0

                                            
(5.15) 

and pre-multiplying by T
nφ  it is readily seen that nK  may more conveniently be 

determined from 

 2T T
n n n n nω=φ Kφ φ Mφ    2

n n nK Mω= 
                (5.16) 

 

TΦ

( ) ( ) ( ) ( )T T T Tt t t t+ + =Φ MΦη Φ CΦη Φ KΦη Φ R 
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Furthermore, the damping properties of a structural system are usually obtained 
from unloaded decay motions or ambient more or less resonant recordings, i.e. 
damping data are in general associated with a particular mode shape. Therefore, it 

is common practice to introduce modN  modal damping ratios nζ , each associated 

with its corresponding mode shape and critical modal damping 2 n nM ω . Thus 

ndiag C =  C   where 2n n n nC M ω ζ= 
             (5.17) 

The modal equilibrium condition in Eq. 5.13 together with the basic coordinate 
transformation in Eq. 5.9 may then be used to solve complex dynamic load effect 
cases. A solution strategy in time or frequency domain is optional. It should be 

noted that, apart from loading time series ( )tR , it is in a modal format sufficient 

to know the content of the mass matrix M , the mode shape matrix 

1 modn N =  Φ φ φ φ  , corresponding eigenfrequencies nω  and 

damping ratios nζ . (I.e., as soon as a necessary set of nφ  and corresponding nω  

have been determined then the stiffness matrix K  is no longer needed.) Modal 
damping properties are further discussed in Chapter 9. 

 
 

Example 5.1 
 

The three storey shear frame shown in Fig. 5.2 has original degrees of freedom 

( ) [ ]1 2 3
T

t r r r=r  

Associated with each of these degrees of freedom it is subject to the external load 

2Re i t
R e ω = ⋅ R a

     
where         

[ ]
2 is its second lowest eigenfrequency

1800 1800 900  (with unit )
T

R N

ω


=a
 

The three storey shear frame has previously been dealt with in Example 4.3, 
where the two lowest eigenfrequencies and corresponding eigenmodes 

 1 2.5 rad/sω ≈  and [ ]1 0.25 0.55 0.8
T=φ  

 2 5.5 rad/sω ≈  and [ ]2 0.41 0.41 0.81
T= −φ  
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Fig. 5.2 Three storey shear fr

were obtained by an in
(including the third) ar

corresponding modal dam

3 0.03ζ = . In addition to

 

1

0

0

M
= 


M

Since the load frequency

sufficiently accurate solu
the two first eigenmodes a

 

( ) ( ) [
1

2

3

r

t r t

r

 
 = = = 
  

r Φη φ

 

Then the modal equilibriu

where 
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frame 

nverse vector iteration procedure. The mode shape
re illustrated in Fig. 5.3.a. It is assumed that th

mping ratios are given by 1 0.02ζ = , 2 0.025ζ =  an

o this we need the mass matrix 

3
2

3

0 0 2 0 0

0 3 10 0 2 0  with unit 

0 0 0 1

M kg

M

  
  = ⋅  
   

 

y is exclusively identical to 2ω  it is assumed that 

ution may be obtained in a modal approach where on
are included, i.e. that 

]
11 21

1 1 1
1 2 12 22

2 2 2
13 23

0.25 0.41

0.55 0.41

0.8 0.81

ϕ ϕ
η η η

ϕ ϕ
η η η

ϕ ϕ

   
       = =              −  

φ φ

um condition is given by + + =Mη Cη Kη R     

od

es 
he 

nd 

a 

nly 




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31

2

0.25 0.41 2 0 0 0.25 0.41
0

0.55 0.41 3 10 0 2 0 0.55 0.41
0

0.8 0.81 0 0 1 0.8 0.81

T

TM

M

     
       = = = ⋅              − −     

M Φ MΦ


  

   1

2

4110 00

0 39860

M

M

   
= ≈   

  
M


  

 1 1 11

2 2 22

411 02 00

0 10960 20

MC

MC

ω ζ
ω ζ

     
= = =     

   

 
 C  

 
2
1 1 51

2
2 2 2

0 0.26 00
10

0 1.20 0

MK

K M

ω
ω

    
= = =    

     
K


 

 

and  [ ] ( ) 11
1 2

2 2

Re Re
T

T RT i t i t
R T

R

R
e e

R
ω ω

   
 = = = ⋅ =          

φ a
R Φ R φ φ a

φ a


  

   ( )
0.25 0.41 1800

2160
0.55 0.41 Re 1800 Re

747
0.8 0.81 900

T

i t i tt e eω ω
    

      = ⋅ ≈              −    

R  

The solution to the modal equilibrium equation 

 
1 1 11 1 11

2 2 22 2 22

0 00

0 00

M K RC

M K RC

η η η
η η η

           
+ + =           

           

   
   

 

is given by ( ) ( )Re i tt e ω
η= ⋅η a  where 

1 2

T
a aη η η =  a , 

which introduced into the equilibrium equation 

12 1 1 11

2 2 22 2

0 00
Re Re

0 00

aM K RC
i

aM K RC

η

η
ω ω

          − + + =                        

  
   

and pre-multiplication by 1−K  renders ( )1 1 1

2 22

ˆRe
a R K

a R K

η
η

η
ω

     = =    
      

a H
 
   

where ( ) 1

2

ˆ 0ˆ
ˆ0

H

H
ω

 
=  
  

H  and 

 
( ) ( )

( ) ( )
( ) ( )

2
1 1 1

1 2 22 2
1 1 1 1 1 1

1 21ˆ
1 2 1 2

i
H

i

ω ω ζ ω ω
ω ω ω ω ζ ω ω ζ ω ω

− −
= =

− +  − + 
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( ) ( )
( ) ( )

( ) ( )

2
2 2 2

2 2 22 2
2 2 2 2 2 2

1 21ˆ
1 2 1 2

i
H

i

ω ω ζ ω ω
ω ω ω ω ζ ω ω ζ ω ω

− −
= =

− +  − + 

 

The trace of the absolute value of the frequency response matrix is illustrated in 
Fig. 5.3.b. Thus 

 ( ) ( ) ( )
( )

1 1 11

2 2 2 2

ˆ
Re Re

ˆ
i t i tH R K

t e e
H R K

ω ω
η

ωη
η ω

  ⋅   = = ⋅ = ⋅    ⋅     
η a

 

   

and since ( ) ( )
1 11 21

1
2 12 22

2
3 13 23

r

t r t

r

ϕ ϕ
η

ϕ ϕ
η

ϕ ϕ

   
    = = =             

r Φη  then 

( )
( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

11 1 1 1 21 2 2 2

12 1 1 1 22 2 2 2

13 1 1 1 23 2 2 2

1 2
11 1 1 21 2 21 2

1 2
12 1 1 22 21 2

ˆ ˆ

ˆ ˆRe

ˆ ˆ

ˆ ˆ

ˆ ˆRe

i ii t i t
R R

i ii t
R R

H R K H R K

t H R K H R K

H R K H R K

H e a e K H e a e K

H e a e K H e a

β βω ω

β βω

φ ω φ ω
φ ω φ ω
φ ω φ ω

φ ω φ ω

φ ω φ ω

− −

− −

  +
  
 = + 
   +   

+

= +

r

 

 

   

   

   

 



( ) ( )
2

1 2
13 1 1 23 2 21 2

ˆ ˆ

i t

i ii t i t
R R

e K

H e a e K H e a e K

ω

β βω ωφ ω φ ω− −

  
  
  
  
   +     



 

 

where 

( ) ( )

( ) ( )

1 222 2
1 1 1 1

1 222 2
2 2 2 2

ˆ 1 2

ˆ 1 2

H

H

ω ω ζ ω ω

ω ω ζ ω ω

−

−

  = − +   

  = − +     

and  
( )

( )

1 1
1 2

1

2 2
2 2

2

2
tan

1

2
tan

1

ζ ω ωβ
ω ω

ζ ω ωβ
ω ω

=
−

=
−

 

Thus 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 11 1 1 1 21 2 2 21 2
ˆ ˆcos cosR Rr t H a K t H a K tφ ω ω β φ ω ω β= − + −    

( ) ( ) ( ) ( ) ( ) ( ) ( )2 12 1 1 1 22 2 2 21 2
ˆ ˆcos cosR Rr t H a K t H a K tφ ω ω β φ ω ω β= − + −    

( ) ( ) ( ) ( ) ( ) ( ) ( )3 13 1 1 1 23 2 2 21 2
ˆ ˆcos cosR Rr t H a K t H a K tφ ω ω β φ ω ω β= − + −    

A plot of the response displacements are shown in Fig. 5.4. 
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a) Mode shapes 

 
b) Trace of the absolute vale of the frequency response matrix 

 
Fig. 5.3 Mode shapes and modal frequency response function 
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Fig. 5.4 Response displacements, 5.5 rad sω = , 1 0.023β = −  and 2 2β π=  

5.3   The Normal Mode Approach in a Continuous Format 

The main idea behind the normal mode approach is to enable the designer to focus 
on the important aspects of the problem and to weed out superfluous 
computational efforts. For a continuous line-like system it is favourable to 
establish the necessary equilibrium conditions in accordance to the cross sectional 
three component load and displacement vectors illustrated in Fig. 5.5. Thus, the 

mode shape for such a system will contain three components yφ , zφ  and θφ  as 

shown in Fig. 5.6, and correspondingly, for a multi-mode approach it is 
convenient to organise the mode shape in cross sectional components as shown in 
Fig. 5.7, i.e. 

( )
( )
( )
( )

( )
( )
( )

( ) ( ) ( ) ( )
mod mod

1 1

,

, ,

,

y yN N

z z n n n
n n

n

r x t x

x t r x t x t t x t

r x t xθ θ

φ
φ η η
φ= =

   
   

= ≈ = ⋅ = ⋅   
   
   

 r φ Φ η

  

(5.18) 

where         ( ) 1 2 modn Nx  =  Φ φ φ φ φ 
                             

(5.19) 
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Fig. 5.5 Cross sectional loads and displacements 

( ) T

n y zx θφ φ φ =  φ
                                            

(5.20) 

and              ( ) 1 2 mod

T

n Nt η η η η =  η  
                                

(5.21) 

(Return to a discrete description may readily be performed on final equations.) 
Similarly (see Fig. 5.5), the distributed and concentrated load vectors are defined 
by 

( ),
T

y zx t q q qθ =  q
     

and     ( ),
T

j F y z j
x t F F Fθ =  F

        
(5.22) 

Let us for simplicity also assume that the system contains no concentrated mass 
set into dynamic motion. The dynamic equilibrium condition may then be 
obtained by applying the principle of virtual work as obtained in Eq. 1.119, i.e. 

 

( ){ }

( ) ( )

( )

0
1

2
0

NF T T T T
F j g

j L L L

y y y z z z y z y z y z
L

t y y z z

x dx dx dx

r Nr M r r Nr M r r EI r r EI r

r GI r Ne r M r M r dx

θ θ

θ θ θ

δ δ δ δ

δ δ δ δ

δ

=
+ = +

 ′ ′ ′ ′ ′ ′ ′′ ′′ ′′ ′′+ − + − + +

′ ′ ′ ′ ′+ + − − 

   



 r F r q r m r r c r

    

(5.23) 
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Fig. 5.6 Continuous systems 

 

Fig. 5.7 Multiple modes for a continuous system 
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where          ( )
( )
( )
( )

( )
( )
( )

( )
mod

1

y yN

z z n
n

n

r x x

x r x x x

r x xθ θ

δ φ
δ δ φ δη δ

δ φ=

   
   

= = = ⋅   
   
   

r Φ η

             

(5.24) 

and                   1 mod

T

n Nδ δη δη δη =  η  
                               

(5.25) 

and where 

0

.

y y z

g z z y

m m e

m m e

Sym mθ

− 
 =  
 
 

m  and 0

0 0

0

y

z

c

c

Sym cθ

 
 =  
 
 

c           (5.26) 

see Eqs. 1.106 and 1.107 (excluding contributions from the motion in the x  
direction). Defining 

( ) ( )

( ) ( )

1 mod

1 mod

=  where  and 

=  where  and 

y y

z n N n z

y y

z n N n z

r

r x t

r

r

r x t

r

θ θ

θ θ

φ
φ
φ

φ
φ
φ
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    ′ ′= =     
   ′ ′   

′′ ′′       ′′ ′′= =        ′ ′    

Φ η Φ φ φ φ φ

Φ η Φ φ φ φ φ

      

           

 

(5.27) 

and, similarly 

( ) ( )=

y

z

r

r x x

rθ

δ
δ δ
δ

′ 
 ′ 
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Φ η


          

and                  ( ) ( )=

y

z

r

r x x

rθ

δ
δ δ
δ

′′ 
 ′′ 
 ′ 

Φ η


     

(5.28) 

then Eq. 5.23 may be written 

( ){ } ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1

0 0

NF T T T
F j g

j L L

T TT
G

L L L

x dx dx

dx dx dx

δ δ δ

δ δ δ

=
+ = +

+ +

  
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Φ η F Φ η q Φ η m Φη

Φ η c Φη Φ η k Φη Φ η k Φη


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(5.29) 

where 
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and     

2
0

0

0

y

G z

y z

N M

N M
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 − −  

k

      

(5.30) 

Performing the transposed operations 

( ){ }
1

0 0

NF TT T T T T
F j g

j L L

T T T T T T
G

L L L

x dx dx

dx dx dx

δ δ δ

δ δ δ

=
+ = ⋅ +

⋅ + ⋅ + ⋅

  

  

η Φ F η Φ q η Φ m Φ η

η Φ c Φ η η Φ k Φ η η Φ k Φ η
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

       

(5.31) 

it is seen that pre-multiplication by Tδη  may be omitted, and thus, the dynamic 

equilibrium equation in modal coordinates is given by 

( ) ( ) ( ) ( )t t t t⋅ + ⋅ + ⋅ =M η C η K η R   
                                 

(5.32) 

where                           
0

T
g

L

T

L

dx

dx
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



M Φ m Φ
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

                                                      (5.33) 

                     0 G= +K K K  
       where      

0 0
T

L

T
G G

L

dx

dx

 =
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=
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



K Φ k Φ

K Φ k Φ
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(5.34) 

and            F q= +R R R  
          

where       

( ){ }
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F F j
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dx


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

 =
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
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(5.35) 

[If there are concentrated masses 
T

j y z j
M M Mθ =  M  in motion at 

positions jx , 1,2,3, , Mj N=   then the modal mass calculation in Eq. 5.33 is 

expanded into ( ){ }
NM TT

g j j
jL

dx x= + M Φ m Φ Φ M .] 
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Elaboration 5.1: Mode Shape Orthogonality in a Continuous Format 
 

The organisation of the mode shapes in Eqs. 5.19 and 5.20 is different (but usually 
more compact) than that which is obtained from a finite element solution of the 
system in original degrees of freedom, defined in Eqs. 5.6 and 5.7. However, the 
orthogonal properties of the system still apply. This is readily seen by considering 
the undamped and unloaded case to Eq. 5.32, in which case the relevant harmonic 
solution is given by 

( ) i tt e ω= ⋅η a  

where 1 mod

T

n Na a a =  a    is a vector containing the amplitude 

contributions associated with each of the modes that participates in the motion. 

Introduced into Eq. 5.32 (with C  and R  at zero) the following is obtained 

( )2ω− =K M a 0   

from which a non-trivial solution 0≠a  can only be obtained if K  and M  are the 
solution to the eigenvalue problem of the system, i.e. they are diagonal 

 ndiag K =  K   and ndiag M =  M   

while nω ω=  is the corresponding eigenvalue of the system. 

The orthogonal properties may also be shown by return to the basic differential 
equations of unloaded and undamped equilibrium shown for the case of 
continuous systems in Chapter 1 (see Eqs. 1.29 and 1.40) 

• y-direction equilibrium  0y y z ym r EI r′′′′+ =  

• z-direction equilibrium  0z z y zm r EI r′′′′+ =  

• torsion equilibrium 0tm r GI rθ θ θ′′+ =  

Let us for instance consider the differential equation of vertical equilibrium and 
introduce two equally valid harmonic eigenvalue solutions 

 

 ( ),

i tn
zn

z i tm
zm

e
r x t

e

ω

ω

φ

φ

= 


   

2

2

    (1)

   (2)

y z n z zn n

y z m z zm m

EI m

EI m

φ ω φ

φ ω φ

′′′′ =

′′′′ =
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Let us then pre-multiply equations (1) and (2) by zm
φ  and zn

φ , respectively, and 

integrate over the span of the system 
 

   

2

2

(1)    dx

(2)    dx

z y z n z z zm n m n
L L

z y z m z z zn m n m
L L

EI m dx

EI m dx

φ φ ω φ φ

φ φ ω φ φ

′′′′ =

′′′′ =

 

 
 

 

Taking it for granted that the system has simply supported, fixed or free ends, and 
integrating the left hand side of these expressions by parts twice 

 

  
0

0

 dx   dx

  dx  dx

L

z y z z y z z y zn m n m n m
L L

L

z y z z y z z y zn m n m n m
L L

EI EI EI

EI EI EI

φ φ φ φ φ φ

φ φ φ φ φ φ

′′′′ ′′′ ′ ′′′= −

′ ′′ ′′ ′′ ′′ ′′= − + =

 

 
 

it is seen that 

 

2

2

(1)    dx

(2)    dx

z y z n z z zm n m n
L L

z y z m z z zn m n m
L L

EI m dx

EI m dx

φ φ ω φ φ

φ φ ω φ φ

′′ ′′ =

′′ ′′ =

 

 
 

Subtraction (1) – (2) will then render: ( )2 2 0n m z z zn m
L

m dxω ω φ φ− =  

and since 2 2 0  for  n m n mω ω− ≠ ≠  then 0z z zn m
L

m dxφ φ =  

which proves the mass orthogonal properties of the mode shapes associated with 
vertical motion. For the other displacement components an equivalent proof may 
readily be developed. 
 

 
Thus, 

 
T

g n
L

dx diag M = =  M Φ m Φ 

     

where     T
n n g n

L

M dx= φ m φ

     

(5.36) 

 

0 G ndiag K = + =  K K K   
     

where     2
n n nK Mω= 

                 (5.37) 

 
and, similarly to that which was adopted in the discrete modal approach, we define 
the modal damping matrix by (see Eq. 5.17) 
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T
n

L

dx diag C = =  C Φ cΦ 

          

where       2n n n nC M ω ζ= 
      (5.38) 

where nζ  is the modal damping ratio associated with mode shape nφ . 

 
Case 1: Multi-mode Approach 

 
In case of a multi-mode approach the equilibrium condition in modal degrees of 
freedom is given by Eq. 5.32 and the necessary calculation of modal mass may 
readily be obtained by combining Eqs. 5.26 and 5.36, rendering 

( ) ( ) 22 2

T
n n g n

L

y y y z z z z yn n n n n n n
L

M dx

m e m e m dxθ θ θ θφ φ φ φ φ φ φ

=

 = − + + + 





φ m φ

   

(5.39) 

The modal load F q= +R R R    is obtained from Eq. 5.35, rendering 

( ){ }

( )
1 mod

1

where   

NF TT
F F j F F Fn N

j

NF

F y y z zn n j n j n j
j

x R R R

R F F Fθ θφ φ φ
=

 = =   

= + +





R Φ F    



          

(5.40) 

and 

( )
1 mod

where   

T
T

q q q qn N
L

q y y z zn n n n
L

dx R R R

R q q q dxθ θφ φ φ

 = =   

= + +





R Φ q    


                    

(5.41) 

 
Case 2: Single-Mode Approach 

 
In case of a single-mode approach the equilibrium condition is reduced to 

( ) ( ) ( ) ( )n n n nM t C t K t R tη η η⋅ + ⋅ + ⋅ =   
                      

(5.42) 

where n F qn n
R R R= +    and all other quantities are defined in Eqs. 5.37 – 5.41 

above. 
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Elaboration 5.2: The Rayleigh Quotient in a Continuous Format 
 

It has been shown above that 2
n n nK Mω=   i.e. that 2

n n nK Mω =    
 

Thus: 

0
02

T T
n n n G n

Gn n n L L
n T

n n n g n
L

dx dx
K KK

M M dx
ω

+
+

= = =
 



φ k φ φ k φ

φ m φ

    
 

   

 

This is the so-called Rayleigh quotient, here expanded to apply to any line-like 
system with non-symmetric cross section and the possible presence of time 

invariant forces N , yM  and zM . Using sound engineering judgement and 

setting 
 

 
T T

n y z n y zn n n n n nθ θφ φ φ ψ ψ ψ   = ≈ =   φ ψ  

 

then the Rayleigh quotient may be used to make approximate calculations of the 
eigenfrequency 

 

 2
0

T T T
n n n n G n n g n

L L L

dx dx dxω
 

≈ +  
 
  ψ k ψ ψ k ψ ψ m ψ
    

 

 

Introducing 0k , Gk  and gm  from Eqs. 5.26 and 5.30 then the following is 

obtained 
 

( )
( )

( ) ( )

2 2 2 2 2 2 2
0

2

2

2

2 2

y z z y t y zn n n n n n
L

y y z zn n n
n

y y y z z z z yn n n n n n n
L

EI EI GI N e

M M dx

m e m e m dx

θ θ

θ

θ θ θ θ

ψ ψ ψ ψ ψ ψ

ψ ψ ψ
ω

ψ ψ ψ ψ ψ ψ ψ

 ′′ ′′ ′ ′ ′ ′+ + + + +

′ ′ ′− + ≈
 − + + + 




 

 

It should be noted that for simplicity warping torsion effects have not been 
included above. It may readily be inferred from Eqs. 1.39 – 1.42 that the stiffness 

contribution from this effect is given by 2
wL

EI dxθψ ′′′ . It may simply be added to 

the numerator above. 
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Example 5.2 
 

 

Fig. 5.8 Simple symmetric beam subject to distributed load ( ),zq x t  

Let us consider the beam shown in Fig. 5.8. It is subject to a distributed and 
dynamic load 

 ( ) ( ) ( ) ( )0 0 0, Re Re cosi t i t
zq x t q e q e q tψ ψ ω= = ⋅ = ⋅  

 

Its cross section is for simplicity symmetric about y  and z  axes, such that its 

shear centre coincides with the centroid. It is taken for granted that cross 
sectional properties are constant along its span. We know from Chapter 1.2 (see 
Example 1.6) that the two first mode shapes of such beams are given by 

 

 
( )
( )

1

2

ˆsin

ˆsin 2

x

x

ϕ π
ϕ π

= 


= 
 where x̂ x L=  

 

Using the Rayleigh- quotient (see Elaboration 5.2 above) then the following 
eigenfrequencies are obtained: 
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( ) ( ) ( )

( )

22 2
1

2 40 0
1 4

22
1

0 0

sin

sin

L L

y y
y

L L
z

z z

EI dx EI L x L dx
EI

m L
m dx m x L dx

ϕ π π
ω π

ϕ π

 ′′ − 
= = =

  

 

 
 

( ) ( ) ( )

( )
( )

22 2
2

42 0 0
2 4

22
2

0 0

2 sin 2

2

sin 2

L L

y y
y

L L
z

z z

EI dx EI L x L dx
EI

m L
m dx m x L dx

ϕ π π
ω π

ϕ π

 ′′ − 
= = =

  

 

 
 

 

The system has the following modal properties: 
 

  
2

1 1
0 0

sin
2

L L
z

z z
m Lx

M m dx m dx
L

πϕ  = = = 
    

 and 
2

2 2
0 0

2
sin

2

L L
z

z z
m Lx

M m dx m dx
L

πϕ  = = = 
    

 

while 

2
1 1 1

1 1 1 12

K M

C M

ω
ω ζ

=

=

 
   and 

2
2 2 2

2 2 2 22

K M

C M

ω
ω ζ

=

=

 
   

 

Similarly, the modal loads associated with mode shapes 1ϕ  and 2ϕ  are given by 
 

 ( )0
1 1 0

0 0

2
Re sin Re

L L
i t i t

z
Lqx

R q dx q e dx e
L

ψ ωπϕ
π

  = = = ⋅  
   

   

 2 2 0
0 0

2
Re sin 0

L L
i t

z
x

R q dx q e dx
L

ψ πϕ
  = = =  

   
   

 

Thus, the modal equilibrium condition is given by ( ) ( ) ( ) ( )t t t t⋅ + ⋅ + ⋅ =M η C η K η R     

where 

 1

2

1 00

0 120

M mL

M

   
= =   

  
M


  

 
1 11 1 11

2 22 2 22

2 02 00

0 220 20

MC mL

MC

ω ζω ζ
ω ζω ζ

     
= = =     

   
C

 
   
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2 2
1 1 11

2 2
2 2 2 2

0 00

20 0 0

MK mL

K M

ω ω

ω ω

    
= = =    

        
K


 

 

 

and  1 0

2

12
Re

0
i tR Lq

e
R

ω

π
    

= = ⋅    
   

R

 . 

 

I.e.: 
2

1 1 1 1 1 1 0
2

2 2 2 2 22

2 0 01 0 14
Re

0 20 1 00

i tq
e

m
ωη ω ζ η ω η

η ω ζ η η πω

             
+ + =             

              

 
 

 

 

The steady state solution to this equation is given by: ( ) 1 1

2 2

Re i ta
t e

a
ωη

η
    

= = ⋅    
    

η . 

Thus 
2

1 1 1 12 0
2
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2 0 01 0 14
Re Re
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i ta q
i e

a m
ωω ζ ω

ω ω
ω ζ πω

             − + + =          
             

 

   ( ){ } 1 0
2

2 1

14ˆRe Re
0

i ta q
e

a m
ωω

π ω
     =     
     

E  

where  ( )
( ) ( ){ }

( ) ( ){ }
2

1 1 1

2
2 2 2

1 2 0
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0 1 2

i

i

ω ω ω ω ζ
ω

ω ω ω ω ζ

 − +
 =  

− +  

E  

 

is the non-dimensional impedance matrix of the system. The unknown amplitude 

vector [ ]1 2
T

a a=a  is then given by 

 

( )1 0
2

2 1

14 ˆRe
0

i ta q
e

a m
ωω

π ω
     = = ⋅    
     

a H  where   

( ) 111
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ˆ 0ˆ ˆ
ˆ0

H

H
ω −  

= =  
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H E  
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11 1
1 1

ˆ 1 2H i
ω ω ζ
ω ω

−
    
 = − +   
         

and    

12

22 2
2 2

ˆ 1 2H i
ω ω ζ
ω ω

−
    
 = − +   
     

 

( )ˆ ωH  is what we call the modal non-dimensional frequency response matrix. 

Thus, 
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( ) ( ) ( ) [ ] [ ]

[ ] ( ) { }
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1 2 1 2
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0 0 1
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1 1
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( ) ( )
( ) ( )
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1 1 1 1 1 1
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ω ω ζ ω ω
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11 11
ˆ ˆ iH H e φ−= ⋅  where 
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( ) ( )
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Thus 

( ) { } ( )

( ) ( )

( ) ( )

0 1 0 1
1 12 2

1 1

0

22 21
1 1 1

4 4ˆ ˆ, Re cos

sin cos2

1 2

i i t
z

q q
r x t H e e H t

m m

x L tq L

K

φ ωϕ ϕ ω φ
π ω π ω

π ω φ
π

ω ω ζ ω ω

−= ⋅ = ⋅ −

⋅ −
= ⋅ ⋅

 − + 


 

As can be seen, the 2nd mode shape is not excited at all. The reason for this is that 
the load is evenly distributed and constant along its span while the spanwise 
integration of the 2nd mode is zero. In general, a load that is constant along the 
span will only excite symmetric modes. 

 

Example 5.3 
 

Let us consider the case of an identical beam to that which was investigated in 
Example 5.2, except in this case it is subject to a concentrated dynamic load 

( ) ( )0Re i tF t F e ω= ⋅  at 3Fx L=  as shown in Fig. 5.9. Still ( )1 ˆsin xϕ π=  

and ( )2 ˆsin 2 xϕ π= , x̂ x L=  and, as shown in Example 5.2, then 

2 4 4
1 y zEI m Lω π=  and ( )42 4

2 2 y zEI m Lω π=  while 1 2 2zM M m L= =  , 

2
1 1 1K Mω=  , 2

2 2 2K Mω=  , 1 1 1 12C M ω ζ=   and 2 2 2 22C M ω ζ=  . 
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Fig. 5.9 Simple beam with concentrated dynamic load ( ) ( )0Re i tF t F e ω= ⋅  

However, in this case 

( ) ( ) ( )1 1 0 0
3

3 sin 3 Re Re
2

i t i tR x L F t F e F eω ωϕ π    = = ⋅ = ⋅ = ⋅   
  

and  ( ) ( ) ( )2 2 0 0
3

3 sin 2 3 Re Re
2

i t i tR x L F t F e F eω ωϕ π    = = ⋅ = ⋅ = ⋅   
  

and thus the modal equilibrium condition ( ) ( ) ( ) ( )t t t t⋅ + ⋅ + ⋅ =M η C η K η R     

with [ ]( )1 2Re
T i ta a e ω=η  given by 
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Thus, (see Example 5.2 above) 

 ( )
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1
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K H t

ω ω φη
η ω ω φ
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


 where 
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( ) ( )
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1
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ω ω

ζ ω ωφ
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The dynamic response at an arbitrary point x  is then given by 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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1 2 1 1 2 2

2
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t
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t
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η
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Φ η

 

 

 
 

 

Elaboration 5.3: Determination of Cross Sectional Forces 
 

In the case of a discrete normal mode approach the results of the calculations are 

the displacements in original finite element coordinates ( ) ( )t t=r Φη . Thus, the 

element end forces may be calculated the way it would be done in a regular finite 

element approach, i.e. ( )n n n nt = + +F md cd kd   where ( ) ( )n nt t=d A r , see 

Chapter 4. 
In the case of a continuous normal mode approach 
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Chapter 6 

Frequency and Time Domain Response 
Calculations 

6.1   Introduction 

The relevant equilibrium equations that are necessary for the pursuit of a solution 
to the problem of dynamic load effects have been developed above, in Chapters 4 
with respect to the original degrees of freedom (see Eq. 4.39) and in Chapter 5 
with respect to the modal degrees of freedom (see Eq. 5.13 for a discrete system 
description and Eq. 5.32 for a continuous system description). In this chapter we 
shall present possible solution strategies. Basically, one is free to choose 
whichever approach is deemed most suitable solution strategy, e.g. with respect to 
efficiency or accuracy. In any case, there are three alternatives: 

 
• a solution in time domain where the load and corresponding response 

development is pursued stepwise for a sufficiently long period of time, in 
which case time series of the structural response is obtained, 

• an incremental stepwise state-space solution in time domain based on the 
Duhamel integral and applying the fluctuating load as a consecutive sequence 
of short impulses, or 

• a solution where a Fourier transform is applied throughout the equilibrium 
equation and the problem is transferred into a frequency domain description, 
in which case a frequency domain spectral representation of the response is 
obtained. 

 
Below, the time domain approach is presented in Chapter 6.3, while the frequency 
domain approach is presented in Chapters 6.4 and 6.5. The state-space solution 
and the Duhamel integral are presented in Chapter 6.6. For the sake of 
completeness the time invariant mean (static) as well as the quasi-static solutions 
are presented in Chapter 6.2. The quasi-static solution is only applicable if the 
there are no significant dynamic effects in the system, i.e. if the effects of  



230  

 

Fig. 6.1 Cross sectional force

Fig. 6.2 Necessary cross sect
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structural velocity and accelerations are negligible. This may be assumed to occur 
if the load is slowly fluctuating at low frequencies or if the lowest eigenfrequency  
of the system is beyond say 5 Hz. (However, it must not be inferred from this that 
beyond this limit there are no fluctuating load effects, as the limit is only an 
indication of where inertia and damping effects are negligible. Beyond this limit 
there may still be considerable quasi-static fluctuating stresses.) Otherwise, the 
solution strategy must be based on the methods shown in Chapters 6.3 – 6.5, 
whichever is most suitable. In any case, it is taken for granted that the total 
displacement response may be obtained as a sum of the time invariant solution r  

and a fluctuating part ( )tr , i.e. ( ) ( )tot t t= +r r r . Having determined the 

fluctuating total dynamic displacement response it is in all design cases necessary 

to determine the corresponding cross sectional design forces ( )tot t= +F F F  for 

all elements n  in order to enable a safety assessment of the system. In a time 
domain solution extreme values may be taken directly from time series as 
illustrated in Fig. 6.2. In a frequency domain solution where it is the spectral 

densities of the response that has been determined, ( )rr ωS , a similar approach 

may be adopted together with a time domain simulation of the relevant response 
quantities (see Appendix B), or from a probabilistic approach where the extreme 
values are obtained from the standard deviation of the dynamic response 
multiplied by a statistically appropriate peak factor (see Appendix A and 
Elaborations 6.3 and 6.4). 

6.2   The Time Invariant and Quasi-static Solutions 

It is generally recommended that the time invariant and quasi-static solutions are 
pursued in original degrees of freedom. The reason for this is that a solution in 
modal degrees of freedom is associated with displacement functions obtained from 
the eigenvalue problem, i.e. with the mode shapes of the system, and these 
functions may render a solution whose derivatives deviates considerably from the 
more relevant static solution. 

 
The Time Invariant Solution 

 
The time invariant mean (static) solution in original degrees of freedom may be 
obtained from Eq. 4.38, i.e.: 

 1−= ⋅r K R  (6.1) 
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The corresponding cross sectional forces on an arbitrary element n  may be 
obtained from Eq. 4.26, i.e. 

 n n n n n= =F k d k A r  (6.2) 

where ( )0n G n
= +k k k . 

 
The Quasi-static Solution 

 
If the lowest eigenfrequency of the structure is high, and the structural behaviour 
is quasi-static, then the solution may be obtained as a sum of the time invariant 

solution r  (given in Eq. 6.1 above) and a fluctuating part 

 ( ) ( )1t t−= ⋅r K R  (6.3) 

If ( )tR  is known for a sufficiently long period of time, then ( )tr  may be 

obtained directly form Eq. 6.3. If only the stochastic properties of the load process 
are known quantities, i.e. if only the cross spectral densities of all load 
components are known 
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 (6.4) 

 
where 6r pN N= ⋅  and pN  is the number of nodes in the system, then a time 

domain solution may still be pursued, but this will require the time domain 
simulations of R , e.g. as shown in Appendix B. Alternatively, a stochastic 
solution may be directly obtained by developing the corresponding covariance 
properties of the displacement components, i.e. 
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(6.5)

 

where RRCov  may be obtained from a frequency domain integration of Eq. 6.4: 

 ( )
0

RR RR dω ω
∞

= Cov S  (6.6) 

Assuming Gaussian and stationary stochastic properties, then for design purposes 
the extreme response values may be obtained from 

 maxmaxtot p rk= + = +r r r r σ  (6.7) 

where pk  is a peak factor defined in Eq. A.45 and, and where rσ  is a vector 

containing the square root of all the entries on the diagonal of rrCov  in Eq. 6.5. 
 

 
Elaboration 6.1: The Spectra of the Quasi Static Solution 

 
An alternative approach may be chosen if it is considered necessary or 
advantageous to obtain time domain plots of the quasi-static response. It is seen 
that by taking the Fourier transform throughout Eq. 6.3 

 

   ( ) ( )1
r Rt t−= ⋅a K a  
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where ra  and Ra  are vectors containing the Fourier amplitudes of the response 

and load, respectively, and thus the cross spectral density matrix of the response 
components is given by 
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where ( ) ( ){ } ( ){ }*1
lim

T
RR R R

T T
ω ω ω

π→∞
= ⋅S a a . From ( )rr ωS  a time 

domain simulation (see Appendix B) may be performed to obtain time series of 
the instantaneous values of the response. The corresponding response covariance 
matrix may readily be obtained by frequency domain integration 

 

 ( )
0

rr rr dω ω
∞

= Cov S  

6.3   Response Calculations in Time Domain 

In a time domain solution the total displacement response may be obtained as a 
sum of the time invariant solution r  (given in Eq. 6.1) and a purely dynamic part 

( )tr , i.e. 

 ( ) ( )tot t t= +r r r  (6.8) 

A solution strategy may be pursued in the original finite element degrees of 
freedom (developed in Chapter 4.3) or in modal coordinates (see Chapters 5.2 and 
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5.3). If a solution in original degrees of freedom is pursued, then the calculation of 

( )tr  will require the solution of the dynamic equation given in Eq. 4.39: 

( ) ( ) ( ) ( )t t t t⋅ + ⋅ + ⋅ =M r C r K r R  . If a solution in modal degrees of freedom is 

pursued, then the calculation of ( )tr  will first require the solution of the dynamic 

equation given in Eq. 5.13 or 5.32: ( ) ( ) ( ) ( )t t t t+ + =Mη Cη Kη R    , after which 

the response may be obtained from Eq. 5.9 or 5.18: ( ) ( )t t= ⋅r Φ η . Since the 

size of the relevant matrices in a modal format is generally considerably smaller 
than those in original coordinates, it is recommended to think twice before an 
approach in original coordinates is chosen. However, for the sake of generality, 
the symbolism shown below is that of an approach in original coordinates. There 
are a number of iteration procedures available for a time domain solution strategy. 
Only a selected few are included below. In any case, as illustrated in Fig. 6.3, a 
time domain solution will involve some discrete representation of the load 

processes R  or R  at time steps kt  ( 1,2, , kk N=  ), followed by a stepwise 

calculation of the corresponding response (r  or η ). Based on knowledge of the 

response at time step kt  and discrete load values, the task at hand is to calculate 

the response at time step 1kt + . 

 

Fig. 6.3 Time domain 
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Such a forward prediction routine is called explicit if it is based on the known 
response history alone. It is called implicit if it contains assumptions about the 
response development or equilibrium condition in the unknown future of the 

system. I.e., in an explicit routine ( )kt t+ Δr  is a function of r , r  and r  at 

kt t= , while an implicit routine contains some assumptions about the 

development of the motion in the time step between kt  and kt t+ Δ . Obviously, 

the shorter time step, the easier it is to obtain a good solution. There are two main 
classes of forward iteration strategies, the direct iteration procedures and the 
numeric integration methods. Some of these are presented below. 

 
The Second Central Difference Method 

 
Consider the situation at time step 1kt − , kt  and 1kt + . A Taylor series expansion 

of 1k +r  and 1k −r  is given by: 
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 (6.9) 

Thus, considering only the three first terms of the Taylor series expansion, 

1 1k k+ −−r r  renders 

 ( )1 1
1

2k k kt + −≈ ⋅ −
Δ

r r r  (6.10) 

while 1 1k k+ −+r r  renders 

 ( )1 12

1
2k k k k

t
+ −≈ ⋅ − +

Δ
r r r r  (6.11) 

Dynamic equilibrium at kt  is given by 

  k k k k+ + =M r Cr Kr R   (6.12) 

Introducing kr , kr  and kr  from Eqs. 6.10 and 6.11 

 ( ) ( )1 1 1 12

1 1
 2

2k k k k k k ktt
+ − + −⋅ − + + ⋅ − + =

ΔΔ
M r r r C r r Kr R  (6.13) 
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and solving for 1k +r  

 ( )
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2 2
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Thus, it is seen that 1k +r  may be estimated based on knowledge about the load 

and response quantise at kt  and 1kt − , i.e. this  approach belongs among the 

explicit routines. For the establishment of initial conditions at 0t =  before the 

iteration procedure can start it is necessary to define (choose) 0r  and 0r . From 

dynamic equilibrium (Eq. 6.12) at 0t =  the corresponding acceleration 

 ( )1
0 0 0 0 −= ⋅ − −r M R Cr Kr   (6.15) 

is obtained, while eliminating 1r  from (see Eqs. 6.10 and 6.11) 
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renders 
2

1 0 0 02

t
t−

Δ= − Δ ⋅ +r r r r   (6.17) 

Then, introducing this back into Eq. 6.15, the following is obtained 
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The stability of the second central difference method may be evaluated by 
considering an undamped and unloaded single mode system (se Eqs. 6.13) with 

modal mass nM , stiffness nK  and eigenfrequency 2
n n nK Mω =   : 
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which, for a simple harmonic motion ( )Re tr a eλ= ⋅  (where a  is the 

amplitude), will render 
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and thus the response at 1kt +  is given by 
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where 1c  and 2c  are constants dependant on initial conditions. In a second order 

equation 2 0x xα β γ+ + =  the product of the roots 1 2x x γ α⋅ = . Thus, it is 

seen that ( ) ( )
1 2

1t te eλ λΔ Δ⋅ = , and it may be taken for granted that both roots are 

distinct. A positive radicand in the solution in Eq. 6.20 will render two real roots, 
and since the product of the two roots is unity one of them must be larger than 
one, and thus, the solution is consistently growing, i.e. it is unstable. A negative 
radicand on the other hand will render complex roots, and the product of the two 
roots can only be unity if they are complex conjugates and both has an absolute 
value equal to one. Thus, the solution is numerically stable if 
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2

n

t
ω

Δ ≤
                           

(6.22) 

 

where (obviously), nω  is the largest eigenfrequency expected to play any 

significant role in the response behaviour of the system. In any case tΔ  should 

not be chosen larger than about ( )max
1 2 Rω  where 

maxRω  is the largest 

frequency contained in the load. 
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Numeric Integration Methods 
 

The numeric integration methods belong among the implicit routines. They are 
based on the assumption that future response quantities may be obtained from the 
situation at the onset of the time step and an integration of the approximate higher 
order development between time steps, i.e. that 
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 where 0 tτ≤ ≤ Δ             (6.23) 

 

 

Fig. 6.4 Numeric integration assumptions 
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As illustrated in Fig. 6.4 the approximation is that the acceleration variation 
within the time step is either assumed constant and equal to its initial value, it is 
assumed equal to the average acceleration over the time step, or it is assumed 
linear across the time step. If constant initial acceleration is adopted (see  
Fig. 6.4.a), then 
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If the concept of a constant average acceleration is adopted (see Fig. 6.4.b), then 
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and thus 
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If the concept of a linear acceleration is adopted (see Fig. 6.4.c), then 

 ( ) ( )1k k k tτ τ+= + − Δr r r r     (6.28) 

in which case 
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(6.29)) 
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and thus 

( ) ( )

( )
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(6.30) 

The concept of integrating an assumed variation of the acceleration between kt  

and 1kt +  presented above may all be generalised into the following formulation 

(first suggested by Newmark [32]): 
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 (6.31) 

where γ  and β  are weighting parameters, each to be chosen according to 

prescribed requirements regarding numerical stability and accuracy. From the 
second expression in Eq. 6.31 the acceleration at 1kt +  

 ( )1 12

1 1 1
1

2k k k k ktt β ββ+ +
  = − − + −  ΔΔ   

r r r r r    (6.32) 

is obtained, which, combined with the first expression in Eq. 6.31, renders 

 ( )1 1 1 1
2k k k k kt

t

γ γ γ
β β β+ +

   = − − − ⋅ − − Δ ⋅   Δ    
r r r r r    (6.33) 

For convenience the conditions at kt  may be defined by 
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 (6.34) 

in which case 1k +r  and 1k +r  simplifies into 
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Introducing this into the dynamic equilibrium equation at 1kt +  

 1 1 1 1 k k k k+ + + ++ + =M r Cr Kr R   (6.36) 

will then render 

 1 12

1
k k k ktt

γ
ββ + +

 
+ + = + ⋅ + ⋅ ΔΔ 

M C K r R M a C b  (6.37) 

Defining 21

11

1
effk

eff k k kk

tt

γ
ββ+

++

= + + ΔΔ 
= + ⋅ + ⋅ 

K M C K

R R M a C b
 (6.38) 

and thus 1
1 1 1k eff effk k

−
+ + += ⋅r K R  (6.39) 

 

It is seen that the response at time step 1kt +  is calculated from the load at 1kt +  as 

well as the displacement, velocity and acceleration response at kt . If the system is 

entirely linear, then effK  remains constant throughout the iterations. 

Hilber, Hughes & Taylor [33] have suggested an extension of Newmark’s 
method by the introduction of the numerical dampening coefficient 0α ≤  into the 

dynamic equilibrium condition at 1kt +  

 ( ) ( )1 1 1 1 1k k k k k αα α α α+ + ++ + − + + − =M r Cr Cr Kr Kr R    (6.40) 

and accordingly, evaluate the dynamic load at ( ) 1 11 k k kt t t tα α α+ ++ − = + Δ . I.e., 

if load linearity within the time step is adopted, then 

 ( ) 11 k kα α α+= + −R R R  (6.41) 

Combining Eqs. 6.35, 6.40 and 6.41 and solving for 1k +r  will then again render 
1

1 1 1k eff effk k
−

+ + += ⋅r K R , but now 
1effk+K  and 

1effk+R  are extended into 
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 (6.42) 
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where 

 1
2k k k kt

t

γ γ γ
β β β

   = + ⋅ + + − Δ ⋅   Δ   
c C K r C r C r   (6.43) 

For all of the numeric integration methods the establishment of initial conditions 
at 0t =  before the iteration procedure can start requires the choice of 0r  and 0r . 

From dynamic equilibrium at 0t =  the corresponding acceleration 

 ( )1
0 0 0 0 −= ⋅ − −r M R Cr Kr   (6.44) 

is obtained, and thus, iteration may commence. 
Stability may be evaluated from the properties of a single degree of freedom 

system (or a modal approach) similar to that which has been shown for the central 
difference method above. In general, the Newmark method is unconditionally 
stable if 

0 1 2γ γ≥ =        and    
2

0
1 1

4 2
β β γ ≥ = + 

 
                        (6.45) 

For β -values below 0β  it is only conditionally stable. The stability limit is then 

given by 

 
0

1
cr

n

t t
ω β β

Δ ≤ Δ =
−

 (6.46) 

Positive or negative numeric damping is introduced into the system depending on 

0γ γ>  or 0γ γ< . Positive numeric damping may be used as an effective tool to 

dampen out undesirable effects of higher modes in the system (which may also be 
obtained by adopting Hilber, Hughes & Taylor method with 1 3 0α− < < ). With 

1γ =  and 0β =  Newmark’s method becomes identical to a numeric integration 

method based on the assumption of constant initial acceleration which is only 
conditionally stable. If 1 2γ =  and 1 4β =  then Newmark’s method becomes 

identical to a numerical integration method based on the assumption of a constant 
average acceleration, which is unconditionally stable. If 1 2γ =  and 1 6β =  

then Newmark’s method becomes identical to a numerical integration method 
based on the assumption of a linear variation of the acceleration, in which case the  
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stability limit is given by 12cr nt ωΔ = . As previously mentioned tΔ  should 

never be chosen larger than about ( )max
1 2 Rω  where 

maxRω  is the largest 

frequency contained in the load. 
 

Tangent-Stiffness Approach 
 

For large displacements or heavily non-linear material problems the stiffness may 
change considerably throughout the response process, in which case a sufficient 
level of accuracy may be obtained by updating the stiffness from one time step to 
the next. In such cases a tangent-stiffness approach may be adopted. Assuming a 
system of only short elements and sufficiently short time steps (such that linearity 
within each time step may be justifiable), then the change of internal forces from 

kt  to 1kt +  is given by 

 int tan
k kΔ = ⋅ ΔR K r  (6.47) 

where tan
kK  is the updated tangent stiffness at kt  and 1k k+Δ = −r r r . Thus, the 

internal force vector at 1kt +  is 

 int int tan
1k k k+ = + ⋅ ΔR R K r  (6.48) 

The dynamic equilibrium condition at 1kt +  is then given by (see Eq. 6.36) 

 int tan
1 1 1 k k k k k+ + ++ + + Δ =M r Cr R K r R   (6.49) 

By introducing the Newmark iteration scheme given in Eqs. 6.32 and 6.33 (and 
that 1k k+ − = Δr r r ) into Eq. 6.49, then the following is obtained 
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12

1

1 1
 1 1 1

2 2

k k k

k k k k

tt

t
t

γ
ββ

γ γ
β β β β

+
 

+ + ⋅ Δ = − ΔΔ 
        + ⋅ + − ⋅ + ⋅ − ⋅ + − ⋅ Δ ⋅        Δ         

M C K r R R

M r r C r r   
    

(6.50) 

Thus 

 ( )1 int
1  eff k k eff effk k k

−
+Δ = ⋅ − + ⋅ + ⋅r K R R M a C b  (6.51) 
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where 
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 (6.52) 

Such a procedure will generally require error control. This may be obtained by 

minimising the estimated external load error 1
err
k+ΔR , defined as the difference 

between the actual load at 1kt +  and the corresponding load which can be 

calculated from the estimated displacements 

 ( )int
1 1 1 1 err

k k k k k est+ + + +Δ = − + +R R M r Cr R   (6.53) 

Thus, iterations until 1
err
k+ΔR  is less than a specified limit will be required within 

each time step. Initial conditions and stability criteria are identical to those 
presented above for the numeric integration methods. 

 
 

Elaboration 6.2: Determination of Cross Sectional Forces 
 

Having determined a sufficiently long time window of the response vector kr  the 

corresponding element end forces associated with element number n  
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may subsequently be obtained by (see Eq. 4.27): 

 

 n n n nk k k k
= + +F md cd kd   where n n kk

=d A r  
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6.4   The Frequency Domain Solution in Original Coordinates 

If the load is given in the form of its stochastic properties (mean values, 
covariance and cross spectral densities) a time domain solution may still be 
pursued, but this will then require the time domain simulation of the load 
components at all nodes (e.g. as suggested in Appendix B.3). However, in many 
cases it may be more appropriate to pursue a stochastic solution in frequency 
domain. Such a solution may be obtained in original degrees of freedom, or 
alternatively, and often far more convenient, in modal degrees of freedom. The 
solution strategy in original degrees of freedom is shown below, while the 
corresponding solution in modal degrees of freedom is shown in Chapter 6.5. 

From a stochastic solution in frequency domain it is the corresponding 
statistical properties of the response that will emerge, i.e. the result of the response 
calculation is the covariance matrix 

2
1 1 1 1
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2
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j ji j
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  

    

 (6.54) 

where rN  is the number of degrees of freedom in the system. Assuming 

stationary and Gaussian probability density distributions (of load and hence, also 
of the response), then extreme values of displacement events are given by 

 maxmaxtot p rk= + = +r r r r σ  (6.55) 

where r  is given in Eq. 6.1, pk  is a peak factor defined in Appendix A and rσ  

is a vector containing all the standard deviations of the chosen set of displacement 
degrees of freedom in the system. rσ  may be extracted from the square root of 

the elements contained on the diagonal of the covariance matrix in Eq. 6.54. Since 
it is taken for granted that all load and response quantities are stationary a Fourier 
transform will render predictable coefficients throughout the entire time window 
of the process. Thus, a response calculation in frequency domain in original  
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coordinates is based on the dynamic equilibrium equation given in Eq. 4.39. 

( ) ( ) ( ) ( )t t t t⋅ + ⋅ + ⋅ =M r C r K r R  . Taking the Fourier transform throughout 

this equation, i.e. setting 

( ) ( )Re i t
rt e ω

ω
ω= ⋅r a

      
and     ( ) ( )Re i t

Rt e ω

ω
ω= ⋅R a

       
(6.56) 

where ( )r ωa  and ( )R ωa  are rN  by 1 vectors containing the Fourier 

coefficients of the displacement and load processes, then the dynamic equilibrium 
equation is satisfied for each ω -setting if 

 ( )2
r Riω ω− + + ⋅ =M C K a a  (6.57) 

Thus, ( )r r Rω= ⋅a H a  (6.58) 

where 

 ( ) ( ) 12
r iω ω ω

−
= − + +H M C K  (6.59) 

The cross spectral density matrix of the response quantities corresponding to the 
chosen degrees of freedom 
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may be obtained by 
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where ( ) ( )*1
lim T

RR R R
T T

ω
π→∞

= ⋅S a a  is the cross spectral density matrix of the 

load. As illustrated in Figs. 4.1 and 4.2 it is assumed that the load vector comprise 

contributions pR  from global external forces as well as contributions nR  from 

distributed element loads ( ),n x tq , i.e. that 
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= + ⋅R R A R  (6.62) 

where N  is the number of elements in the system. Defining the Fourier amplitude 

vectors Rp
a  and Rn

a  of pR  and nR , and assuming that the cross coherence 

between externally added load contributions pR  and those defined at element 

level nR  is zero or negligible, i.e. that ( ) 0R Rp n
ω ≈S , then 
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where 
( ) ( )
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and where R Rp p
S  is an rN  by rN  matrix containing the cross spectral density 

of the pR  forces while R Rn m
S  is an rN  by rN  matrix containing the cross 

spectra between integrated element load forces of elements n  and m . The 
response covariance matrix may then be obtained simply by integration 
throughout the frequency domain, i.e. 
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 (6.65) 

 
 

Elaboration 6.3: Covariance between Element End Forces 
 

For the calculations of the ensuing stochastic properties of cross sectional 
response forces at element end points it is necessary also to determine the 
covariance between the displacement response and its derivatives. The general 
solution to the problem of determining the covariance between a stationary 

process ( )x t  and its derivatives ( )x t  and ( )x t  is given in Appendix A (see Eq. 

A.96), where it has been shown that for a stationary process 

[ ] [ ] 0E x x E x x⋅ = ⋅ =   . Then 

2

2

0 2 4

1 0

 0 0

0

rr rr rr

rr rr rr rr

rr rr rr

d

ω
ω ω

ω ω

∞
 −     = ⋅      −    


Cov Cov Cov

Cov Cov Cov S

Cov Cov Cov

 

  

  

 

Since the displacement response vector associated with element number n  is 

given by n n= ⋅d A r  it is seen that 
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while 
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Thus, the following is obtained ( )
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The response force vector 
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associated with element number n  is defined by the local element dynamic 
equilibrium condition (see Eq. 4.27) 

 n n n n n n n= + +F m d c d k d   

and thus: 
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6.4   The Frequency Domain Solution in Original Coordinates 251 

from which the following is obtained: 
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where d dn n
Cov   , d dn n

Cov   , d dn n
Cov , d dn n

Cov   and d dn n
Cov   are defined 

above. It should be noted that if damping has been defined at a global level (e.g. in 
the form of Rayleigh damping α β= +C M K ), then the damping properties at 

element level should comply with the same choices of damping properties (i.e.

n n nα β= +c m k ). It is also worth noting that if the chosen element length nL  is 

sufficiently small then the mass and damping terms above will be small, and hence 
T

F F n d d nn n n n
≈ ⋅ ⋅Cov k Cov k . 

 

Elaboration 6.4: The Variance of Stress Components 
 

Design calculations are intended to cover a certain unfavourable loading 
condition, e.g. an extreme wind or earthquake excitation that is characteristic to 
the particular place where the structure is located, and whose probability of 
occurrence is suitably small. In this situation it is the comparison of structural 
strength or capacity to the extreme value of some critical stress or stress resultant 
that is of interest. The situation is illustrated in Fig. 6.2. Since structural behaviour 
is assumed linear elastic, these quantities may in general be obtained from the 
extreme values of the displacements as shown above. 

However, in this situation mean values are time invariants, and the response 
calculations have inevitably been based on predetermined values taken from 
standards or other design specifications. They have been established from 
authoritative sources to represent the characteristic values within a certain short 
term load condition chosen for the special purpose of design safety considerations. 
Therefore, in a particular design situation time invariant quantities may be 
considered as deterministic quantities, and thus, the mean values of displacements 
or stress resultants may be obtained directly from simple linear static calculations. 
I.e., it is only the fluctuating part of the response quantities that requires treatment 
as stochastic or transient processes. However, in a design situation it is necessary 
to consider the combined effects of stresses or stress resultants, and therefore, it is 
not only the standard deviation of processes that are of interest but also the 
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covariance between fluctuating components. For instance, let a fluctuating 
(dynamic) displacement response at arbitrary position x  
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be associated with corresponding cross sectional moment and shear force 
components 
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Then the normal stress xσ  and shear stress yzτ  components at cross sectional 

position x  are given by 
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where yI  and zI  are moments of inertia associated with bending about y  and z  

axis, yA  and zA  are the cross sectional shear areas (rendering averaged values of 

shear stresses) and, for simplicity assuming that we are dealing with a closed box type 
of cross section, mA  is the sector area inscribed by the cross section and 0t  is the 

material thickness at position x . The variance of the normal stress is then given by 
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Where 2 2
M yy

E Mσ  =   , 2 2
M zz

E Mσ  =    and M M y zy z
Cov E M M =   . This 

may be further developed into 
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where ( )M M M M M My z y z y z
Covρ σ σ=  is the covariance coefficient 

between yM  and zM  fluctuations. Similarly, the variance of the shear stress is 

given by 
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6.5    The Frequency Domain Solution in Modal Coordinates 

By defining the mode shape matrix 1 modn N =  Φ φ φ φ   and  

modal coordinates ( ) 1 mod

T

n Nt η η η =  η    such that 

 ( ) ( )t t= ⋅r Φ η  (6.66) 

then it was shown in Chapter 5 that the dynamic equilibrium condition in original 
discrete coordinates 

 ( ) ( ) ( ) ( ) t t t t+ + =M r Cr Kr R   (6.67) 

may be transformed into an equivalent equilibrium condition in modal coordinates 

 ( ) ( ) ( ) ( )t t t t+ + =Mη Cη Kη R   
 (6.68) 

(see Eqs. 4.39 and 5.13 or 5.32). Taking the Fourier transform throughout this 
equation, i.e. setting 

( ) ( )Re i tt e ω
η

ω
ω= ⋅η a

    
and    ( ) ( )Re i t

Rt e ω

ω
ω= ⋅R a 


 
     (6.69) 

where ( )η ωa  and ( )R ωa   are modN  by 1 vectors containing the Fourier 

coefficients of the modal coordinates and the modal load, and pre-multiplying  

by 1−K , then the modal dynamic equilibrium equation is satisfied for each  
ω -setting if 

 ( )1 2 1 1
Ri ηω ω− − −− + + ⋅ =K M K C I a K a 

     (6.70) 

Recalling that 

ndiag M =  M 
        ndiag K =  K 

       
and     ndiag C =  C 

        
(6.71) 

where T
n n nM =φ Mφ , 2

n n nK Mω=   and 2n n n nC M ω ζ=   (see Eqs. 5.11, 5.14, 

5.16 and 5.17), then 

 ( ) 1ˆ
Rη η ω −= ⋅ ⋅a H K a 

  (6.72) 
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where 
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The cross spectral density matrix of the modal coordinates is defined by 

( )

1 1 1 1 mod

*

1 mod

1mod mod mod mod

lim

m N

T

n n m n N
T

N N N Nm

S S S

S S S
T

S S S

η η η η η η

η η
η η η η η ηηη

η η η η η η

ω
π→∞

 
 
 

⋅  = =  
 
 
 
 

a a
S

 

    
 

    
 

 (6.74) 

Introducing Eq. 6.72, then 
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(6.75) 

where ( ) ( )*1
lim T

RR R RT T
ω

π→∞
= ⋅S a a     is the cross spectral density matrix of the 

modal load. Furthermore, since ( ) ( )t t=r Φη  then r η= ⋅a Φ a , and thus 
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(6.76) 

A Discrete Format 

Since ( ) ( )Tt t=R Φ R  then T
RR = ⋅a Φ a , and thus 
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( ) ( ) ( ) ( )
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   (6.77) 

By combination of Eqs. 6.75 – 6.77, then the following is obtained: 
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(6.78) 

where ( )RR ωS  is defined in Eq. 6.63. 

A Continuous Format 

Let us also consider a continuous format (see Chapter 5.3, Eqs. 5.18 – 5.22 and 
5.32) and for simplicity assume that the entire load is defined by 

( ),
T

y zx t q q qθ =  q  (i.e. p =R 0  and 0xq = ), then 

 1 mod

TT
n N
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dx R R R = =  R Φ q      (6.79) 

The Fourier transform of ( )tR  is then 

( ) ( ) ( ),T
qR
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x x dxω ω= ⋅a Φ a

  

where ( ),
T
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x a a a θω  =  a (6.80) 
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(6.81) 
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where             ( )1 2, ,
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 (6.83) 

As can be seen, if the load is stochastic and non-coherent in space then the 
calculations of the dynamic effects will inevitably involve spatial averaging. 

6.6   The State-Space Equation and the Duhamel Integral 

In elaboration 4.5 the damped eigenvalue problem was solved by the introduction 

of an additional dummy equation =Ir - Ir 0   and a substitute variable 

 ( ) [ ]Tt = z r r  (6.84) 

Thus, the equilibrium equation ( ) ( ) ( ) ( )t t t t=Mr +Cr +Kr R   may be expanded 

into 

 
−         

+ =         
         

I 0 r 0 I r 0

0 M r K C r R


   (6.85) 

Pre-multiplying by 

 
1−

 
 
 

I 0

0 M
 (6.86) 

                    1 1 1− − −

−        + =        
        

0 I 0I 0 r r

0 I r rM K M C M R


                       (6.87) 
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and introducing 

1 1− −

− 
= −  

 

0 I
D

M K M C
     

and    
1−

 
=  
 

0
Q

M R
                     (6.88) 

then ( ) ( ) ( )t t t= ⋅ +z D z Q  (6.89) 

This is the state-space equation. Its general solution is given by 

 ( ) ( ) ( )0

0

0Re
t

s s

t

t t e e dτ τ⋅ ⋅
  = ⋅ + ⋅ 
  

D Dz z Q  (6.90) 

where 0 0s t t= −  and s t τ= − , and where the mathematical operation 

( )
0

1

!

s
ss k

k

e e
k

∞

=

 
= =  

 
D D D . Let us for simplicity consider a single degree of 

freedom system, whose starting condition is defined by 

 ( ) ( )
( )

0
0

0

0 0
0

0 0

r t
t

r t

 =  = = =   =   
z


 (6.91) 

Then Eq. 6.89 is reduced to 

 ( ) ( ) ( )t t t= +z Dz Q  (6.92) 

where   
r

r

 
=  
 

z


,     
0 1

K M C M

 
=  − − 

D
      

and    
0

R M

 
=  
 

Q
          

(6.93) 

The general solution is given by 

 ( ) ( )
0

Re
t

st e dτ τ⋅  = ⋅ 
  
 Dz Q  (6.94) 

where   ( ) ( )se f s g s= ⋅ + ⋅D I D
    

and 
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1 1 2

2 1
1 2

1 2
1 2
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s
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α

α α

α α α

α α α α
α α
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

=  − ≠ −

`  ( )
1

1 2

1 2

1 2
1 2

            if 

 if 

s

s s

se

g s e e

α

α α

α α

α α
α α

 =


=  − ≠ −        

(6.95) 
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and where 1α  and 2α  are the roots in the damped eigenvalue problem 

 2 0M C Kα α+ + =  (6.96) 

I.e.:          2
0 0

0

1
α ζ ζ
ω

= − ± −
     

where     
( )

0

0 02

K M

C M

ω
ζ ω

 =


=       

(6.97) 

 

Assuming 0 1ζ <           
1 0 0

2 0 0

d

d

i

i

α ζ ω ω
α ζ ω ω

= − +
 = − −     

where     2
0 01dω ω ζ= −  

Thus 

 ( )
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0 0 0 01

0 0 0 02

1 2 2
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d

d

d
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i
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
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 (6.98) 

rendering 
( ) ( )
( ) ( )

0 0
0 0

0 0

cos sin

1 sin

s
d d d

s
d d

f s e s s

g s e s

ζ ω

ζ ω

ω ζ ω ω ω

ω ω

−

−
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 (6.99) 

from which it is seen that 

( ) ( ){ } ( ) ( )
( ) ( ) ( )

( )
( ) ( )

( )
( )

2
0 0 0

0 0

0 0 0 0

0

2

1 sin
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d d d
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g s sR R
e
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ζ ω

ω ζ ω

ω ω
ζ ω ω ζ ω ω ω
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   ⋅
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 (6.100) 

Thus, the following solution is obtained 

( ) ( )
( )

( ) ( )
( )

( ) ( )
0 0

00
0

1
sin

cos sin

dt
dt

d d
d

t
r t R

t e d
r t M

t t

ζ ω τ
ω τ

ωτ
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ωω τ ζ ω τ
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 

z
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(6.101) 

The expression 

 ( ) ( ) ( )0 01
sint

d
d

h t e t
M

ζ ω ττ ω τ
ω

− −− = −  (6.102) 



260 6   Frequency and Time Domain Response Calculations 

is the unit impulse response function, and 

 ( ) ( ) ( )
0

t

r t R h t dτ τ τ= ⋅ −  (6.103) 

is the Duhamel integral. As illustrated in Fig. 6.5, ( )h t τ−  is the linear 

relationship between the impulse load 0R t⋅ Δ  and the corresponding incremental 

displacement response ( ) ( ) ( )0r t R t h t τ= Δ −  and thus, as illustrated in Fig. 6.6, 

the response to an arbitrary load impulse sequence nR tΔ  ( 1, 2,3,n =  )  may be 

perceived as a continuous succession of such impulses, and thus the response may 
be obtained by integration, i.e. 

 ( ) ( ) ( ) ( ) ( )
0 1 0

lim
tN

nt n

r t R t h t N t R h t dτ τ τ
Δ → =

= ⋅ Δ ⋅ − ⋅ Δ = ⋅ −   (6.104) 

 

Fig. 6.5 Incremental displacement response using the Duhamel integral 
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Fig. 6.6 The impulse response method 
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Equivalent expressions are obtained in modal coordinates. Let us substitute 

( ) ( )t t=r Φη
    

where     

( )

1 mod

1

1 mod

n N

T

n k Nr n

T

n Nt

φ φ φ

η η η

  =  
  =  

  =  

Φ φ φ φ

φ

η

 

 

 
          

(6.105) 

into Eq. 6.85 

 
−         
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Φ Φ

0 M η K C η R


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and pre-multiply by 
T

 
 
 
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 will render the same in modal coordinates 
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(6.107) 

Pre-multiplying by 
1−

 
 
 

I 0
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 (6.108) 
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(6.109) 

and introducing 
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 

=  
 

η
y

η
,        
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
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 
=  
 

0
Q
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

 
        

(6.110) 

then ( ) ( ) ( )t t t= ⋅ +y D y Q  (6.111) 

which is equivalent to that which was obtained in original coordinates in Eq. 6.89 
above. Thus, the unit impulse response function and the Duhamel integrals for an 

arbitrary mode nφ  with corresponding eigenfrequency nω  are given by 
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( ) ( ) ( )

( ) ( ) ( )
0

1
sintn n

n nd
n nd

t

n n n

h t e t
M

t R h t d

ζ ω ττ ω τ
ω

η τ τ τ

− − − = − 


= ⋅ − 








 (6.112) 

where 21n n nd
ω ω ζ= − . A direct solution strategy using the impulse response 

method in original degrees of freedom is not often pursued, because it involves the 
determination of an rN  by rN  transfer matrix containing the load effects in all 

p  nodes ( 1,2, , rp N=  ) due to a unit impulse in any arbitrary node number k  

( 1,2, , rk N=  ), which for a real system may be a formidable task. However, in 

a modal format, where all matrices in the equilibrium condition are diagonal, the 
method is effective and straight forward as long as the load is not unduly 
demanding. Defining an modN  by 1 vector 

 ( ) 1 mod

T

n NR R Rτ  =  R      (6.113) 

and an modN  by modN  diagonal matrix 

 ( )ndiag h t τ = − h   (6.114) 

then ( ) ( ) ( )
0

t

t t dτ τ τ= − ⋅η h R   (6.115) 

 

Elaboration 6.5: Impulse Loads 
 

For a single degree of freedom system the impulse response function may be 

developed in a more physically direct way by defining a force ( )R τ  which has a 

largest value 0R  and is acting only during a short time period from 0τ =  to 

tτ = Δ . It is assumed that during this period any build-up of elastic spring forces 
and viscous damping forces within the system may be ignored, such that instantly 

 

  ( ) ( )Mr Rτ τ=  
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Fig. 6.7 The impulse response function 

Integration will then render 

( ) ( ) ( ) ( )
0

0 0

t t
t

Mr d M r Mr t R dt Iτ τ τ τ
Δ Δ

Δ=   = Δ = ≈      where 0I R t= Δ  

I.e., any motion of the system during the impulse period tΔ  is ignored such that at 

the end of the impulse ( ) 0r tΔ =  and ( )r t I MΔ = . Thus, the response of the 

system from time 0t =  and onwards is given by (see Eq. 2.30) 

 ( ) ( )0 sintn n
d

d

r
r t e tω ζ ω

ω
−=


 where ( )0r r t I M= Δ =   

Thus, the impulse response function is given by 

 ( ) ( )sintn n
d

d

I
r t e t

M
ω ζ ω

ω
−=  

The link to the Duhamel integral is obvious as the introduction of the limiting 

situation that ( ) ( )I R dτ τ τ=  will render 
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and thus 

 ( ) ( ) ( ) ( )
0 0

sin
t t

tn n
d

d

R
r t dr e t d

M
ω ζ ττ

ω τ τ
ω

− −= = −   

 

 
Example 6.1: The Step Load Case 

 

Fig. 6.8 The step load case 

A solution to the step load case 

 ( ) ( ) ( )0

0

sin
t

tn n
d

d

R
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M
ω ζ τ ω τ τ

ω
− −= −  

may be obtained by the substitution s t τ= − , rendering 
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0
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Thus 

 

( ) ( ) ( )0 1 sin cost nn n
n d d

d

R
r t e t t

K
ω ζ ω ζ ω ω

ω
−   = − +  

     

The solution is shown in the upper diagram in Fig. 6.10, in the special case that 

2 n rad sω =  and 0.02nζ = . 
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Example 6.2: The Half Sinus Impulse Load Case 

 

Fig. 6.9 The half sinus impulse load case 

An approximate solution to the case of an impulse load in the shape of half a 
sine wave with duration T  (see Fig. 6.9 above) may be obtained by using the 
Duhamel integral. But, since an accurate solution to the problem of a sine load to 
a single degree of freedom system has been developed in Chapter 2.3, it is in this 

case possible to develop an accurate solution. First, at t T≤  the solution is given 
in Eq. 2.50, i.e. 
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and where the artificial load frequency Tω π= . Defining 
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and 
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it is seen that     
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1
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2
0

Td n
d

r t T
A e

R K
ω ζω −=

=


. 

Second, at t T>  then the system is free to oscillate without any loading, and thus, 
the solution is given in Eq. 2.26, i.e. 

 
( ) ( ) ( )1 2sin costn n

d dr t e a t a tω ζ ω ω−  = ⋅ +   

The initial conditions to this freely decaying motion is that 
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Thus, defining ( )1 1 0â a R K=  and ( )2 2 0â a R K= , it is seen that 
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from which the following solution is obtained 
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Thus, at t T>  

 
( ) ( ) ( ) ( )0 1 2ˆ ˆsin costn n

d dr t R K e a t a tω ζ ω ω−  = ⋅ ⋅ +   

The response will have its largest response ( ) ( )0max
1.75r t R K  ≈ ⋅   if 

0.8dT T ≈ , where 2d dT π ω=  is the eigen-period of the system. This 

particular case is illustrated in the lower diagram in Fig. 6.10 below. 

 

Fig. 6.10 Upper diagram: the step load case. Lower diagram: the half sinus impulse load 
case 
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Chapter 7 
Dynamic Response to Earthquake Excitation 

7.1 Introduction 

Earthquake excitation of civil engineering structures is in general a complex 
process. However, an idealised situation where the structure is subject to 
representative single component horizontal ground acceleration will usually 
suffice for design purposes. The problem of dynamic response calculations under 
such excitation is pursued in the present chapter. For simplicity, the focus of the 
theory below is limited to structures with main extension in the vertical direction 
(e.g. vertical frames or cantilevered type of tower buildings). A typical time series 
of such a ground motion is illustrated in the upper diagram in Fig. 7.1. Its spectral 
 

 
Fig. 7.1 Typical horizontal ground acceleration due to earthquake excitation (upper 
diagram: time domain, lower diagram: frequency domain) 
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density is shown in the lower diagram. As can be seen, a typical earthquake 
excitation is a non-periodic transient process. Hence, the perception of earthquake 
excitation as a random base acceleration process may not be suitable for a full 
frequency domain approach, as this may require some stationarity in the process. 
Thus, the dynamic response calculations for a system subject to earthquake 
excitation may often require a solution strategy in time domain. Nonetheless, in 
many cases a frequency domain solution may still render sufficiently accurate 
results, particularly if the response is close to quasi-static or narrow-banded 
resonant, i.e. if the system is either fairly stiff or else very slender. 

7.2   Single Degree of Freedom Shear Frame 

Let us first consider the simple case of a single storey shear frame, i.e. a single 
storey frame with an infinitely stiff beam and columns whose distributed mass is 
insignificant. The eigenvalue calculation for this case is shown in Example 2.2. 

The system is now subject to horizontal ground acceleration ( )gr t . The basic 

idea is that the total horizontal acceleration of the system is the ground 

acceleration plus the acceleration of the system itself, i.e. that tot gr r r= +  , and 

thus, the equilibrium condition of the mass in motion is given by: 

 ( ) 0gM r r Cr Kr+ + + =      gMr Cr Kr Mr+ + = −  
        

(7.1) 

where ( )32 12 yK EI L= , M  is the mass of the beam (assuming negligible 

column mass contribution) and C  is the overall damping coefficient of the 
system. Taking the Fourier transform throughout Eq. 7.1, i.e. setting 

 
( )
( )

( )
( )Re

r i t

rg g

ar t
e

ar t
ω

ω

ω
ω

  
=   

      



                            

(7.2) 

will then render 

( )2
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(7.3) 

By pre-multiplication with , and the introduction of 

                       

(7.4) 
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Fig. 7.2 Single storey shear frame 

then the following is obtained 

( ) ( ) ( )ˆ
r rg

M
a H a

K
ω ω ω= − 

                                       
(7.5) 

The physical response ( )r t  may then be obtained from the first row of Eq. 7.2. If 

the initial transient part of the response is disregarded, and the ground acceleration 
is narrow banded, i.e. it may be represented by a single harmonic component 

    
( ) ( )Re

i tg
g r gg

r t a e
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then 
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(7.7) 

where ( ) ( )2
tan 2 1n g n g nβ ζ ω ω ω ω = −  

. If, on the other hand, the 

ground acceleration may be represented by a stationary stochastic process whose 
spectral density is given by 
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( ) ( ) ( )*1
limr r rg g gT

S a a
T

ω ω ω
π→∞

= ⋅  
                             

(7.8) 

 

Then, recalling that 2
nK Mω= , the spectral density of the corresponding 

dynamic response is given by 

( ) ( ) ( ) ( ) ( )
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*
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(7.9) 

and the corresponding variance of the response ( )r t  is given by 

 ( ) ( ) ( )22 4

0 0
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r rr n rg

S d H S dσ ω ω ω ω ω ω
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(7.10) 

2
rσ  may most often with sufficient accuracy be split into a background part and a 

resonant part, i.e. 
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(7.11) 

 

where 2
rg

σ   is the ground acceleration variance. It is seen that the background 

(quasi-static) part of the standard deviation of the response is 2
r ng

σ ω  while the 

resonant part of the standard deviation is given by ( ) ( )34r n n ng
Sπ ω ω ζ . (It 
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should be noted that the peak factor of the background part is likely to be in the 
order of 3.5 – 4.5, see Eq. A.45, while the peak factor for the resonant part is 

likely to be slightly above 2 ). 
If structural damping forces are small, then the shear force in the columns may 

be obtained by the equilibrium requirement that ( ) ( )2 0y gV t M r r+ + =  , and 

since ( ) 0gM r r Kr+ + =  , then 

( ) ( )2 yV t Kr t=
                                              

(7.12) 

Thus, if gr  is narrow banded (close to harmonic), then 
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(7.13) 

while, if gr  is stochastic and broad banded, then 
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2
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(7.14) 

7.3   Two Degrees of Freedom Shear Frame 

A two storey frame with infinitely stiff beams and columns whose distributed 
mass is negligible is shown in Fig. 7.2. This is a two-degree of freedom system, 

[ ]1 2
T

r r=r , and the eigenvalue calculations for this case is shown in Example 

2.3. The system is now subject to a horizontal ground acceleration ( )gr t . Again, 

the basic idea is that the total horizontal acceleration is the ground acceleration 
plus the acceleration of the system itself, i.e. that 

1

2

g
tot

g

r r

r r

+ 
=  +  

r
 


 

                                               

(7.15) 

and thus, the equilibrium condition in original degrees of freedom is given by 

tot + + =Mr Cr Kr 0 
                                            (7.16) 
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Fig. 7.3 Two storey shear frame 

where ( )ndiag M=M , 1 or 2n = , and C  and K  are defined in Example 2.3. 

By defining 

[ ]1 1
T

g =A
                                                   

(7.17) 

this may also be written 

g gr+ + = −Mr Cr Kr MA  
                               

(7.18) 

By introducing modal coordinates 

= ⋅r Φ η            where         
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η

Φ φ φ
             (7.19) 

and pre-multiplication by TΦ , then the modal dynamic equilibrium condition is 
given by 

+ + =Mη Cη Kη R   
                                           (7.20) 

where 
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and 
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and where the modal load vector is given by 

g gr= −R M 
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(7.23) 

Introducing this into Eq. 7.20 then the following is obtained: 
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(7.24) 

Taking the Fourier transform throughout Eq. 7.24, i.e. setting 
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(7.25) 

and pre-multiplying by 1−K , then the following is obtained 
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(7.26) 

Introducing the modal frequency response matrix 
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it is seen that 
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(7.28) 

For instance, if gr  is stationary and narrow banded (close to harmonic), i.e. 
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Since ( ) ( )t t=r Φη , it is seen that 
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(7.31) 
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Example 7.1 
 

Let us consider the two storey frame in Fig. 7.3 and assume: 
 

 6
1 120 10  K N m= ⋅  6

1 4 10  M kg= ⋅  and 1 0.01ζ =  

 6
2 100 10  K N m= ⋅  6

2 2 10  M kg= ⋅  and 2 0.02ζ =  
 

Then (see Example 2.3), 
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Let us assume 21 rg
a m s=  and that gr  has a constant period of 2 gT s=  (i.e. 

gω π= ). Then 
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The response is shown in Fig. 7.4. 
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Fig. 7.4 Response to simple harmonic ground acceleration 
 

 

 

On the other hand, if gr  is a broad banded stochastic process defined by its 

spectral density ( )rg
S ω , then (see Eq. 7.28) 
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where 
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The dynamic response itself is given by = ⋅r Φ η , and thus 
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(7.37) 

The relevant variances and co-variances are given by 

( )
2
1 1 2

2
0 2 1 2

r r r
r

r r r

Cov
d

Cov

σ
ω ω

σ

∞  
 =
  

S

                            

(7.38) 

 
 



280 7   Dynamic Response to Earthquake Excitation 

 

Elaboration 7.1: Quasi Static Response 
 

In cases where 1gω ω<<  then the response is primarily quasi-static, i.e. 
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The shear forces in the columns may be obtained from simple equilibrium 
consideration. Thus 
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y tot

V V M r

V M r

− + = 
+ = 




                                 

(7.39) 

 
which may be written 

y tot+ =BV Mr 0
                                         

(7.40) 

where M  and totr  are defined in Eqs. 7.15 and 7.16, 1 2

T

y y y
V V =  V  and 

2 2

0 2

− 
=  
 

B
                                                

 (7.41) 

Since damping is disregarded, then tot + =Mr Kr 0 , and thus 
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(7.42) 

If gr  is a broad banded stochastic process, then 
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(7.43) 
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and 
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(7.45) 

  1
1 12V ry

Kσ σ=
                                                 

(7.46) 

7.4   The General Case of a Discrete System 

The system shown in Fig. 7.5 is intended to represent a more general type of 

structural system, which in a finite element format has rN  degrees of freedom. As 

indicated in Fig. 7.5 it is taken for granted that the ground acceleration ( )gr t  is 
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close to horizontal. In an arbitrary node p  the system may have several degrees 

of freedom, of which one kr  may be associated with a displacement (more or less) 

parallel to the ground. In original degrees of freedom the equilibrium condition for 
this system is then given by 

( ) ( ) ( ) ( )t t t t+ + =Mr Cr Kr R 
                                 

(7.47) 

where 

( ) ( )g gt r t= −R MA 
                                               

(7.48) 

and 

1
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where     
1  at   
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=
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(7.49) 

 
Introducing the modal format 

=r Φη          where       
1 mod

1 mod

n N

T

n Nη η η
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
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Φ φ φ φ

η

 

 
          (7.50) 

 

Fig. 7.5 A more general type of system 
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and pre-multiplying by TΦ , then the modal equilibrium condition is given by 

 

g+ + =   Mη Cη Kη R
                                       

(7.51) 

 

where 
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(7.52) 

and 

( ) ( )T
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(7.53) 

 
Taking the Fourier transform throughout this equation, i.e. introducing 
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and pre-multiplying by 1−K , then 

( )2 1 1 1 T
g rg
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from which it is seen that 
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(7.56) 

where 
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(7.57) 

and ( ) ( )
12ˆ 1 2n n n nH iω ω ζ ω ω

−
 = − +
 

. Thus, the spectral density matrix of 

the modal degrees of freedom is given by 
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where ( ) *1
limr r rg g gT

S a a
T

ω
π→∞

=    is the spectral density of the ground motion 

acceleration. Since =r Φη  then ( ) ( )r ηω ω=a Φa  and thus the spectral density 

response matrix is given by 
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In the special case that the response is quasi-static, then the response covariance 
matrix is given by 
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(7.60) 
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Elaboration 7.2: Non-symmetric Two Storey Shear Frame 

 

Fig. 7.6 Two storey shear frame with non-matching shear and mass centres 

 
A two storey shear frame with non-matching shear and mass centres is illustrated 

on Fig. 7.6. The ground acceleration ( )gr t  has been split into a component 

( )g y
r t  parallel to the global y -axis and a component ( )gz

r t  parallel to the 

global z -axis. The system has six degrees of freedom 
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Fig. 7.7 Y , z  and θ  equilibrium, component by component 

The content of M , C  and K  may conveniently be obtained by considering the 
equilibrium condition for each component, one after the other, as illustrated in Fig. 
7.7. Let for instance damping be associated with corresponding stiffness 
contributions, then: 
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Since the superposition principle applies, the load effects of R  and g g−MA r  

may be handled in separate calculations. 
 

 

Example 7.2: Single Mode Solution with Torsion and z Direction 
Coupling 

 

For the case above, let us for simplicity assume that 0ze = . Then the motion yr  in 

the y  direction may be handled separately and identical to that which has been 
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1 1

1 1

2 2

2 2
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0 0
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y
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y
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M e M

e M M

M e M

e M M

θ

θ

 
 
 

=  
 
 
  

M

 

and  ( ) ( )

1

1

2

2

y
g g gz

y

M

e M
t r t

M

e M

 
 
 − = −  
 
  

 MA r  

Let us for simplicity only include a single mode [ ]1 2 3 4
T

n n
φ φ φ φ=φ  and 

corresponding eigenfrequency nω . Then the modal mass is given by 

( ) ( )2 2 2 2
1 1 2 1 3 3 4 2 2 41 2

2 2T
n n n y yM e M e M M Mθ θφ φ φ φ φ φ φ φ= = + + + + + φ Mφ  

Modal stiffness and damping are given by 2
n n nK Mω= 

 and 2 n n nC Mζ ω=  , 

while the modal load is defined by 

( )T
n n g g g nz

R t r A= − = −  φ MA r
  

where ( ) ( )1 2 1 3 4 2n y yA e M e Mφ φ φ φ= + + +  

Setting ( ) ( )n nt tη= ⋅r φ  then, as usual, the modal equilibrium condition 

is expressed by 

 n n n n n n nM C K Rη η η+ + =     

Taking the Fourier transform throughout this equation and pre multiplying by 1
nK− ,  
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then ( ) ( ) ( )2
1 2

Rn n
n n n rn gz

n n

a A
i a a

K Kηω ω ζ ω ω ω ω − + = = − ⋅
 


   

where ( )n
aη ω  and ( )rgz

a ω  are the Fourier amplitudes of the modal degree of 

freedom and the ground acceleration. Thus 

( ) ( ) ( )ˆn
rn gz

n

A
a H a

Kη ω ω ω= − 
 

where ( ) ( )
12ˆ 1 2n n nH iω ω ω ζ ω ω

−
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( ) ( ) ( )

*
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Since ( ) ( )n nt tη= ⋅r φ , then ( ) ( )r n n
aηω ω= ⋅a φ , and hence 

( ) ( )
1 1 1 2 1 3 1 4

2 2 2 3 2 4 *

3 3 3 4

4 4

1
lim

.

r r r r r r r r

r r r r r r T
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S φ φ φ φ
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In the special case that the response is quasi static, then 

( )

2
1 1 2 1 3 1 4

2
2 2 3 2 4

2
03 3 4

2
4

.

r r r r r r r

r r r r r
rr rr

r r r

r
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σ

σ
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σ
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 
 
 
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C S  

  ( ) ( ) ( ) 22
2 2

0

T T
rr n n n n n r n n n r n ng gz z

ov A M S d A Mω ω ω σ ω
∞   ≈ =     

 C φ φ φ φ  

where rgz
σ   is the standard deviation of the horizontal ground acceleration. 
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7.5   The Case of Continuous Line-Like Systems 

For a continuous line-like system, in Fig. 7.8 arbitrarily represented by a 
cantilevered beam, the instantaneous equilibrium condition of an incremental 
element dx  is shown in the lower illustration of Fig. 7.8. Let, as usual introduce 

 

( )
( )
( )
( )

( ) ( ) ( ) ( ) ( )
mod mod

1 1

,

y yN N

z z n n n
n n

n

r x
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(7.61) 

 

where 
( )

( )
1 mod

1 mod

n N

T

n N

x

t η η η

  =  


  =  

Φ φ φ φ

η

 

 
                (7.62) 

 

and where the modN  mode shapes ( ) T

n y zx θφ φ φ =  φ  are assumed to be 

continuous functions of x . The solution has been developed in Chapter 6.5 (and 
5.3), where it was shown that for a continuous system subject to a distributed 

stochastic load ( ),
T

y zx t q q qθ =  q  then the response at position rx  is 

given by 

( ) ( ) ( ) ( ),

r r r r r ry y y z y

T
rr r r r r r r r r rz y z z z
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where 
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         (7.64) 

 
and 
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( ) ( )
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(7.65) 

 

 

Fig. 7.8 Continuous line-like system 
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and 

(7.66) 

 
As illustrated in Fig. 7.8, the inertia force due to horizontal ground acceleration is 
given by 

( )
y g

tot g z g g g

r r

d dx r r dx
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(7.67) 

where               

0

.

y y z
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and       

1

0

0

 
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  

A                (7.68) 

 
Thus, it is seen that the horizontal ground acceleration is equivalent to an evenly 
distributed horizontal load 

( ),
T

y z g gx t q q q rθ = = − q m A
                         

(7.69) 

whose Fourier transform is defined by 

( ),
T

q q q q r gy z g
x a a a aθω  = = − a m A

                 
(7.70) 

and thus, its cross spectral load effect is given by 
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where ( ) ( )*1
limr r rg g gT

S a a
T

ω
π→∞

=    is the spectral density of the 

horizontal ground acceleration. Thus, the modal cross spectral density ( )n m
Sη η ω  

in Eq. 6.65 is given by 
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The relevant variances and co-variances are then given by 
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(7.73) 

 
This will generally be applicable to any continuous system subject to horizontal 
ground acceleration. The actual response itself may be obtained by a time domain 
simulation from spectra (see Appendix B) or by a frequency domain integration, 
as shown in Eq. 7.73. 

 
Elaboration 7.3: Single Mode Single Component Response 

 

If a single mode approach is considered adequate, i.e. mod 1N = , and there are no 

cross sectional asymmetry in the entire system, i.e. if 
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then the response calculation simplifies into ( ) ( ) ( )2,r r r y ry y n n n
S x x Sη ηω φ ω= ⋅  
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Frequency domain integration may in most cases with sufficient accuracy be split 
into a background part and a resonant part, and thus 
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Chapter 8 
Wind Induced Dynamic Response Calculations 

8.1   Introduction 

It is in the following taken for granted that the main wind direction throughout the 
entire span of the structure is perpendicular to the direction of its span. The wind 
velocity vector is split into three fluctuating orthogonal components, U in the main 
wind direction, and v and w in the across wind horizontal and vertical directions. 
Typical full scale recordings of U, v and w  are illustrated in Figs. 8.1 and 8.2 
above. For a relevant structural design situation it is assumed that U may be split 
into a mean value V that only varies with height above ground and a fluctuating 
part u, i.e. U V u= + . V is commonly known as the mean wind velocity, and u, v 
and w are the turbulence components, created by friction between the terrain and 
the flow of the main weather system. It is taken for granted that the instantaneous 

wind velocity pressure is given by Bernoulli’s equation ( ) 2 2q t Uρ= . Within the 

relevant time and space of response calculations it is also taken for granted that the 
variations of the wind velocity components are stationary and homogeneous. 

If an air flow is met by the obstacle of a more or less solid line−like structure, 
the flow/structure interaction will give raise to forces acting on the system. Unless 
the body is extremely streamlined and the speed of the flow is very low and 
smooth, these forces will fluctuate. Firstly, because the oncoming flow in which 
the structure is submerged contains turbulence, i.e. it is itself fluctuating in time 
and space. Secondly, on the surface of the structure additional flow turbulence and 
vortices are created due to friction as well as flow separation, causing vortices to 
be shed in the wake of the body. And finally, if the structure is flexible the 
fluctuating forces will cause the body to oscillate, and the alternating flow and the 
oscillating body will interact and generate further forces. The first of these effects 
is known as buffeting, the second as vortex shedding, and the third is aerodynamic 
motion induced forces. In literature, the response calculations due to buffeting and 
vortex shedding are usually treated separately. The reason for this is that for most 
civil engineering structures they occur at their strongest in fairly separate wind 
velocity regions, i.e. vortex shedding is at its strongest at fairly low wind 
velocities, while buffeting occur at stronger wind velocities. An illustration of 
what can be expected is shown in Fig. 8.3. At large wind velocities, in the vicinity 
of a certain limiting (critical) wind velocity, the response curve may increase  
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Fig. 8.1 Typical recording of along wind velocity U component 

 

Fig. 8.2 Typical recording of across wind velocity v and w components 
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Fig. 8.4 Line-like structure in
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The situation for a horizontal element is show in Fig. 8.5. (The situation for a 
vertical element is identical, except that w  should be replaced by v .) The cross 
section at an arbitrary position x  is first given the time invariant (mean) 

displacements ( )yr x , ( )zr x  and ( )r xθ . In this position the wind velocity vector is 

( ),V u x t+  in the along wind horizontal direction and ( ),w x t  in the vertical across 

wind direction. It is about this position that the structure oscillates. Adopting the 
principle of d’Alambert, the cross section is given an additional dynamic 

displacements ( ),yr x t , ( ),zr x t  and ( ),r x tθ . In this position the instantaneous 

cross sectional drag, lift and moment forces in flow axes are given by 
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 (8.1)

where DC , LC  and MC  are cross sectional characteristic load coefficients from 

static tests (see Fig. 8.6), r e lV  is the instantaneous relative wind velocity and α  

is the angle of flow incidence. Transformation into structural axis is obtained by 
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where: 
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


 (8.3) 

The first linearization involves the assumption that the fluctuating flow 

components ( ),u x t  and ( ),w x t  are small as compared to V, and that structural 

displacements (as well as cross sectional rotation) are also small. Then cos 1β ≈  

and ( ) ( ) ( )sin tan / /z y zw r V u r w r Vβ β β≈ ≈ ≈ − + − ≈ −   , and thus 

( ) ( )2 22 2 2 2rel y z y

z

V V u r w r V Vu Vr

r r r r w V r Vθ θ θ θα β

= + − + − ≈ + − 

= + + ≈ + + − 

  


 (8.4)
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The second linearization 
As illustrated in Fig. 8.6,
replaced by the following

( )
( )
(

D

L

M

C

C

C

α
α
α






where  and fα  are the 

incidence, and where DC′
curves at . It follows 

simplicity the following n

( )
( )
( )

D D

L L

M M

C C

C C

C C

α
α
α

 
  =  
   

Fig. 8.6 Load coefficients ob
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involves the flow incidence dependent load coefficient
, the nonlinear variation of the load coefficient curves 
 linear approximation 

)
)
)

( )
( )
( )

( )
( )
( )

D D

L f L

M M

C C

C C

C C

α α
α α α
α α

′    
    ′= + ⋅    
    ′    

 (8.

mean value and the fluctuating part of the angle of flo

D′ , LC′  and MC ′  are the slopes of the load coefficien

from Eq. 8.4 that rθα =  and / /f zr w V r Vθα = + −  . Fo

notation is introduced 

D

L

M






 and

( )
( )
( )

D D

L L

M M

C C

C C

C C

α
α
α

′ ′   
   ′ ′=   
   ′ ′  

 (8.6

btained from static tests 

ns

ts. 
is 

5)

w 

nt 

or 

6)
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Combining Eqs. 8.2 – 8.6 

2 2
2

0

y D D L
z z

z y L L D

M Mtot

q DC DC BC
r w rV w

q V u r BC r BC DC
V V V

q B C B C

θ

θ

ρ
      ′  −
      −     ′= + − + + − +                    ′        

 
 

(8.7)

and discarding higher order terms (i.e. terms containing the square or the product 
of quantities that have been assumed small) the following is obtained 

( )
( )
( )
( )

( )
( )
( )

,

, ,

,

y y

tot z z q q qae ae

q x q x t

x t q x q x t

q x q x tθ θ

   
   

= + = + ⋅ + ⋅ + ⋅   
   
   

q q b v c r k r  (8.8)

Where 

( ) [ ],
T

x t u w=v and ( ),
T

y zx t r r rθ =  r  (8.9)

( )
( )2

/

2

y D

z L

M

q D B C
V B

x q C

q BCθ

ρ
   
   = =   
     

q  (8.10)

( )
( ) ( )( )

( )( )
2 / /

ˆ2 /
2 2

2

D D L

q L L D q

M M

D B C D B C C
VB VB

x C C D B C

BC BC

ρ ρ
 ′ −
 
 ′= + = ⋅
 

′ 
 

b b  (8.11) 

( )
( ) ( )( )

( )( )
2 / / 0

2 / 0
2

2 0

D D L

q L L Dae

M M

D B C D B C C
VB

x C C D B C

BC BC

ρ
 ′ −
 
 ′= − +
 

′ 
 

c  (8.12) 

( )
( )2

0 0 /

0 0
2

0 0

D

q Lae

M

D B C
V B

x C

BC

ρ
′ 

 ′=  
 ′ 

k  (8.13) 

It is seen that the total load vector comprises a time invariant (mean static) part 

( ) T

y zx q q qθ =  q  (8.14)

and a fluctuating (dynamic) part 
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( ),
T

y z q q qae ae
x t q q qθ = = ⋅ + ⋅ + ⋅ q b v c r k r  (8.15) 

where 
q ⋅b v  is the dynamic loading associated with turbulence ( u  and w

 

) in the 

oncoming flow, while qae
⋅c r  and qae

⋅k r  are motion induced loads associated with 

structural velocity and displacement. The theory is applicable in time domain as well 
as in frequency domain. For an element that is vertical in the flow, the local axis 
system is maintained and thus, the necessary load equations may simply be obtained 
by replacing w  by v  in Eqs. 8.3 – 8.15. 

Used in a frequency domain approach qae
c  and 

qae
k  in Eqs. 8.12 and 8.13 may 

be expanded into the more general theory of aerodynamic derivatives, first 
developed in the field of aeronautics and later made applicable to line like civil 
engineering structures by Scanlan & Tomko [44]. Following their notations, the 
frequency domain versions of qae

c  and qae
k  are then given by 

( )
2

ˆ
2q i qae ae

B
V

ρ ω= ⋅ ⋅c c and ( )
2

2 ˆ
2q i qae ae

B
V

ρ ω= ⋅   ⋅ k k  (8.16) 

where 

* * *
1 5 2

* * *
5 1 2

* * 2 *
5 1 2

ˆ
qae

P P BP

H H BH

BA BA B A

 
 

=  
 
  

c

 

and 

* * *
4 6 3

* * *
6 4 3

* * 2 *
6 4 3

ˆ
qae

P P BP

H H BH

BA BA B A

 
 

=  
 
  

k  (8.17) 

The non-dimensional coefficients * * *, , ,  1 6k k kP H A k = −  contained in ˆ
qae

c  and ˆ
qae

k  

are usually called aerodynamic derivatives. Usually, they have been 
experimentally determined in wind tunnel aeroelastic section model tests, where 
they are given as functions of the reduced mean wind velocity ( )ˆ

nV V Bω= , where 

B is the cross sectional width and nω  is the in-wind resonance frequency 

associated with the modelled mode shape of the system. For the purpose of full 
scale calculations the similarity requirements between model scale and full scale 
conditions must be fulfilled, and thus, the aerodynamic derivatives will have to be 
extracted as functions of ( )ˆ

nV V Bω= , which itself is affected by stiffness 

contributions from qae
k . Hence, iterations may be required. 
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The solution is based on a modal frequency domain approach, as previously 
developed in Chapter 5.3 and further developed in Chapter 6.5. Thus, the entire 
focus is on the calculation of the variances and co-variances of the fluctuating 
displacement components see Fig. 8.8. Since the flow is assumed Gaussian, 
stationary and homogeneous and the structural system is linear elastic, then the 
same stochastic properties will apply to the response, and thus, extreme values of 
the response at an arbitrary position rx  along the span may be obtained from (see 

Appendix A) 

( )maxtot r p rx k= +r r σ
 
where 

T

y z

T

r y z

r r rθ

θσ σ σ

  =  

  =  

r

σ
 (8.18) 

and where 
pk  is a peak factor defined in Eq. A.45, or else, 

maxtotr  may be taken 

from a representative number of time domain simulations. In a modal format the 

cross sectional displacements ( ),
T

y zx t r r rθ =  r  may be replaced by the 

sum of the products between natural eigenmodes ( )
 

T

n y z n
x θφ φ φ =  φ  (see 

Chapter 5.3) and unknown exclusively time dependent functions ( )n tη , i.e. 

( )
( )
( )
( )

( ) ( ) ( )
mod

1

 n

,

yN

z n
n

x

x t x t x t

xθ

φ
φ η
φ=

 
 

= ⋅ = ⋅ 
 
 

r Φ η  (8.19) 

where m odN  is the number of modes that has been deemed necessary for a 

sufficiently accurate or representative solution (see Fig. 5.7). The mode shape 
matrix ( )xΦ  and the generalised coordinate vector ( )tη  are defined by 

( ) 1 m o d
. . . . . .n Nx  =  Φ φ φ φ

 and ( ) 1 mod
..... .....

T

n Nt η η η =  η . It was 

then shown in Chapter 5.3 that the introduction of Eq. 8.19 into the equilibrium 
equations, followed by consecutive weighing with each (orthogonal) modeshape 
and span-wise integration will render m odN  equivalent modal equilibrium 

conditions (see Eq. 5.32) 
 

( ) ( ) ( ) ( )qt t t t⋅ + ⋅ + ⋅ =M η C η K η R     (8.20)

where  
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n

n

n

diag M

diag C

diag K

 =   =  


 =   

M

C

K

 

 

 

and

( )

2

2

T
n n g n

L

n n n n

n n n

M dx

C M

K M

ω ζ

ω

 = ⋅ ⋅

 =
 =


 φ m φ

 

 
 (8.21) 

and where 

T
q

L

dx= R Φ q  (8.22) 

What remains is to expand this theory to cover the load case of wind buffeting 

( ),
T

y z q q qae ae
x t q q qθ = = + ⋅ + ⋅ q b v c r k r  (see Eq. 8.15) where  

( ) ( )
( ) ( )

, ,  if the system is horisontal

, ,  if the system is vertical

T

T

u x t w x t

u x t v x t

=    

=    

v

v
 (8.23) 

The modal load vector is then given by 

( ) ( ) ( )

( )
exp

1 mod
exp

exp exp exp

,

... ...

T
q

L

T

n N q q qae ae
L

T T T
q q qae ae

L L L

t x x t dx

dx

dx dx dx

= ⋅

 = + + 

= + ⋅ + ⋅





  

R Φ q

φ φ φ b v c r k r

Φ b v Φ c Φ η Φ k Φ η







 (8.24) 

and thus 

 ( ) ( ) ( ) ( )q ae aet t t t= + +R R C η K η    (8.25) 

where: 

( )
( ) ( ) ( )

1 mod

exp

,

T

n N

T
n n q

L

t R R R

R t x x t dx

 =   
= 




R

φ b v

    

  (8.26) 

is the flow induced (buffeting) part of the modal load, and where 
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exp

exp

T
ae qae

L

T
ae qae

L

dx

dx

=




= 






K Φ k Φ

C Φ c Φ



  (8.2
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2 2 2 2 2 2T T

y z y zn n n
n

θ θσ σ σ σ σ σ   =     (8.29)

Given an arbitrary mode shape (see Fig. 8.9) 

( ) T

n y z n
x θφ φ φ =  φ  (8.30)

with eigenfrequency nω  and modal damping ratio nζ . The displacement 

response at a particular position rx  associated with this mode is simply 

( ) ( ) ( ),r n r nx t x tη= ⋅r φ . Since there is only a single mode then Eq. 8.28 is reduced to 

( ) ( ) ( ) ( ) ( ) ( )n n n ae n n ae n nn n
M t C C t K K t R tη η η⋅ + − ⋅ + − ⋅ =       (8.31) 

where 

2

2

T
n g n

Ln

n n n n

n n n

dx
M

C M

K M

ω ζ

ω

 
  
   =   
     
  

φ m φ

 
 

 (8.32) 

exp

exp

T
ae n q nn ae

L

T
ae n q nn ae

L

K dx

C dx

=




= 






φ k φ

φ c φ



  (8.33) 

and 

( ) ( ) ( ) ( ) ( )
exp exp

, ,T T
n n n q

L L

R t x x t dx x x t dx= = φ q φ b v  
(8.34) 

Transition into the frequency domain is obtained by taking the Fourier transform 
on either side of Eq. 8.31. Thus, 

( ) ( ) ( ) ( )2
n n ae n ae Rn n n n

M C C i K K a aηω ω ω ω − + − + − ⋅ =       (8.35) 

where 
n

aη  and Rn
a   are the Fourier amplitudes of ( )n tη  and ( )nR t , 

 



308 8   Wind Induced Dynamic Response Calculations 

 

( ) ( ) ( )
exp

,T
n q vRn

L

a x x dxω ω=  φ b a  
(8.36) 

and 

( ) [ ]
( ) [ ]

,  if the system is horisontal

,  if the system is vertical

T
v u w

T
v u v

x a a

x a a

ω

ω

= 


= 

a

a
 (8.37) 

Pre-multiplying Eq. 8.35 by ( )1 21n n nK Mω− =  , then the following is obtained 

( ) ( ) ( )
ˆ

n
Rn n

n

H
a a

Kη
ω

ω ω= ⋅   (8.38) 

where 

( )
12

ˆ 1 2
2

ae aen n
n n

n nn n n

K C
H i

K M

ω ωω ζ
ω ωω

−
   
  = − − + − ⋅        


   (8.39) 

is the non-dimensional modal frequency-response-function. Introducing 

ae ae nn n
K Kκ =    and ( )2ae ae n nn n

C Mζ ω=   , then 

( ) ( )
12

ˆ 1 2n ae n aen n
n n

H i
ω ωω κ ζ ζ
ω ω

−
  
 = − − + − ⋅ 
   

 (8.40) 

The single–sided spectrum of ( )n tη  is given by 

( ) ( ) ( ) ( )
2

* *
2

ˆ
1 1

lim lim
n

R Rn n n n nT T
n

H
S a a a a

T TK
η η η

ω
ω

π π→∞ →∞
= ⋅ ⋅ = ⋅ ⋅ ⋅   (8.41)

( )
( )

( )
2

2

ˆ
n

Rn n
n

H
S S

K
η

ω
ω ω = ⋅   (8.42) 

 

where the single-sided spectrum of the modal loading is defined by (see Eq. 8.36) 
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( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ){ } ( )

( ) ( ) ( )

*

*

exp exp

*
1 1 2 2 1 2

exp

1 1 2 2 1 2

exp

1
lim

1
lim , ,

1
lim , ,

, ,

R R Rn n nT

T

T T
n q v n q v

T
L L

T T T
n q v v q n

T
L

T T
n q vv q n

L

S a a
T

x x dx x x dx
T

x x x x dx dx
T

x x x x dx dx

ω
π

ω ω
π

ω ω
π

ω

→∞

→∞

→∞

= ⋅

        =          

=

=

 





  

φ b a φ b a

φ b a a b φ

φ b S b φ

 
(8.43) 

( expL  indicates integration over the wind exposed length of the system). In most 

cases cross spectra between turbulence components may be ignored, and thus 

( ) ( ) ( ){ }
( ) ( )
( ) ( )

( )
( )

*
1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1
, , lim , ,

, , , , , , 0

, , , , 0 , ,

T
vv v v

T

uu uw uu

wu ww ww

x x x x
T

S x x S x x S x x

S x x S x x S x x

ω ω ω
π

ω ω ω
ω ω ω

→∞
=

   
= ≈   
   

S a a

(8.44) 

if the system is horizontal, and 

( ) ( ) ( ){ }

( ) ( )
( ) ( )

( )
( )

*
1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1
, , lim , ,

, , , , , , 0

, , , , 0 , ,

T
vv v v

T

uu uv uu

vu vv vv

x x x x
T

S x x S x x S x x

S x x S x x S x x

ω ω ω
π

ω ω ω
ω ω ω

→∞
= =

   
≈   

   

S a a

 
(8.45) 

if the system is vertical. Linearity implies that the Fourier amplitudes of the 
displacement components at an arbitrary position rx  are given by 

( )
( )
( )
( )

( ) ( ) ( )
 

,

ry y r

r r z r rz n n

rr n

r nn

n

a x

x a x a x a

xa θθ

η η

φ
ω φ ω ω

φ

   
   

= = ⋅ = ⋅   
   
    

a φ  (8.46) 

 

The cross spectral density matrix of the three displacement components is then 
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( ) ( )
( ) ( ){ } ( )

*

* *

1
, lim

1 1
lim lim

T
r rn T

T T
n

T T

r rn n
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from which the following is obtained: 
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where ( ) ( )*1
lim
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Tη η ηω
π→∞

= ⋅  is given in Eq. 8.42. Thus (see also Eqs. 

8.42, 8.43 and 8.48) 

 

(8.49)

The response covariance matrix is obtained by frequency domain integration of 

( ),n rx ωS , and thus 
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(8.50) 

where 
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The total response covariance matrix may be obtained by adding up 
contributions from all modes deemed necessary for a sufficiently accurate 
solution, i.e. 
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= Co C  (8.52) 

Elaboration 8.1: Single Mode Single Component Horizontal System 
For simplicity, let us consider a single mode single component and perfectly 
horizontal system, e.g. the case that the mode shape only contains a single 
horizontal  component 
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Let us also take it for granted that , uσ , wσ  and all cross sectional quantities 

are constants, then 
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where  u uI Vσ=  and w wI Vσ=  are the turbulence intensities, 

1 2x x xΔ = −  is the spatial (span-wise) separation, and where 1x  and 2x  are 

two arbitrary positions. Introducing 

2
y y yK Mω=   

and the modally equivalent and evenly distributed mass 

y

V
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2 2 2
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then the following expression is obtained for the standard deviation of the 
dynamic response in the along wind y direction associated with mode shape n  
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The non-dimensional frequency response function is given by 
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Similarly, if ( ) [ ]0 0
T

n z n
x φ≈φ  then 

( )
( )

( ) ( ) ( )

( ) ( ) ( )

23 2

1 22
0 exp

1
2 2

2
1 22 2

ˆ
2

, ,
2

z rn
z r n z zn n n

n nz Ln
L

uu ww
L u L D w

u w

x B V
x H x x

m Bdx

S x S xD
C I C C I dx dx d

B

φ ρσ ω φ φ
ωφ

ω ω
ω

σ σ

∞   = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅    

 Δ Δ    ′+ +             

  

 
where: 
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Example 8.1 
Let us consider a typical slender bridge type of system, where the three modes 

, ,k m n  

0 0
T

k yφ =  φ  [ ]0 0
T

m zφ=φ  [ ]0 0
T

n θφ=φ  

with corresponding eigenfrequencies , ,y z θω ω ω  have been singled out for a 

response calculation. Let us assume that the main girder cross section of the 
bridge is close to a flat plate, in which case the following load coefficient 
properties may be adopted 
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are the non–dimensional  joint acceptance functions. Integrating across the entire 
frequency domain, then the following response standard deviations are obtained: 
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Let us focus exclusively on the response in the y (drag) direction, and consider a 

suspension bridge with span 1200L m=  that is elevated at a position 50fz m= . Let 

us for simplicity assume that the relevant mode shape ( ) ( )siny x x Lφ π=  and that 

2rx L= , in which case ( ) 1y rxφ = . Let us also assume that the entire span is 

flow exposed, i.e. expL L= , and adopt the following wind field properties: 
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1) the turbulence intensity 0.15u uI Vσ= =  

2) the integral length scale: ( )0.3
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4) the normalised co-spectrum: ( ) ( )ˆ , expuu uxCo x C x Vω ωΔ = − ⋅ ⋅Δ  

where ( )9/ 2 1.4ux uy f
C C π= = ≈ . 

Let us allot the following values to the remaining constants that are necessary 

for a numerical calculation of ( )2r ry
x Lσ = : 

 

 
Since ym  is constant along the span, then the modally equivalent and evenly 

distributed mass y ym m= . Finally, let us adopt quasi–static values to the 

aerodynamic derivatives, in which case 0aey
κ =  and the aerodynamic damping 
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ζ  is given by 
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The standard deviation of the dynamic response at 2rx L=  is then given by 
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The chosen single point spectral density and corresponding normalised co–
spectrum of the turbulent u  component are shown on the top left and right hand 
side diagrams in Fig. 8.10. The non-dimensional frequency response function and 
the squared normalised joint acceptance functions are shown on the lower left and 
right hand side diagrams in Fig. 8.10. The response spectrum of the along wind 
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yr  component at 2rx L=  and 40 /V m s=  is shown in Fig. 8.11. As can be 

seen, it contains a broad banded background part and a narrow banded resonant 
part at 0.4 /rad sω = . The standard deviation of the dynamic response at 

2rx L=  is plotted versus the mean wind velocity in Fig. 8.12. From the 

response spectrum in Fig. 8.11 a time domain simulation (see Appendix B) has 
been extracted, see Fig. 8.13. 

 

 

Fig. 8.10 Top left and right: single point u  spectrum and corresponding normalised co-

spectrum, lower left and right: frequency response function  and joint acceptance function 
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Fig. 8.11 Response spectrum of yr  displacements at 2rx L=  and 45 /V m s=  

 

Fig. 8.12 The standard deviation of the dynamic response at 2rx L=  versus the mean 

wind velocity 



318 8   Wind Induced Dynamic Response Calculations 

 

 

Fig. 8.13 Time domain response simulation at 2rx L=  and 45 V m s=  

Elaboration 8.2: Vertical System with Span-Wise Variable Properties 
For a vertical tower type of system where cross sectional properties 

( ) ( ) ( ) ( ) ( ), , ,  and D D LB x D x C x C x C x′  

as well as mean wind velocity ( )V x  and turbulence intensities ( )uI x  and ( )vI x  are 

variables along the span, then a calculation of its single mode single component 

 
0 0

T

n y n
φ ≈  φ  response spectral density at position rx  is given by 
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General Multi-mode Response Calculations 
In the final section of this chapter it is assumed that a full multi-mode approach is 
required (see also Chapters 5.3 and 6.5), i.e. that 

 

( ) ( ) ( ),x t x t= ⋅r Φ η  (8.53) 
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 (8.54) 

and that the modal equilibrium equation is given by (see Eq. 8.28) 

( ) ( ) ( ) ( ) ( ) ( )ae aet t t t⋅ + − ⋅ + − ⋅ =M η C C η K K η R       (8.55) 
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where M , C  and K  are m odN  by m odN  diagonal matrices defined in Eq. 

8.18, and the modal m odN  by one flow induced load vectors is given by 

( ) 1 mod
... ...

T

n Nt R R R =  R   
 

where 

( )
exp

T
n n

L

R dx= ⋅ φ q  (8.56) 

and where 
aeC  and 

aeK  are m odN  by m odN  matrices 

ae aenm
C

 
 =  
 
 

C
 

 

 
 

ae aenm
K

 
 =  
 
 

K
 

 

 
 (8.57) 

whose elements on row n  column m  are given by 

exp

T
n q mae enm

T
ae L n q mnm ae

C
dx

K

   ⋅ ⋅
   =
   ⋅ ⋅   


φ c φ

φ k φ



  (8.58) 

where qae
c  and qae

k  are three by three motion dependent cross sectional load 

coefficient matrices, e.g. as given in Eqs. 8.12 and 8.13 or alternatively as given in 
Eq. 8.16, whichever is deemed most appropriate. First, the Fourier transform is 
taken throughout Eq. 8.55, i.e. 

( ) ( )
0

i tt e ω
η

ω
ω

∞

=
= ⋅η a and ( ) ( )

0

i t
Rt e ω

ω
ω

∞

=
= ⋅R a   (8.59) 

and thus, Eq. 8.55 is satisfied at all frequencies if 

( ) ( ) ( ) ( ) ( )2
ae ae ae Ri ηω ω ω ω − − + − + − ⋅ =  

    M M C C K K a a  (8.60) 

Pre-multiplication by 1−K , recalling that 

2

2

n n

n n n

diag M

diag M

ω

ω ζ

 =  


 =  

 

 

K

C
 (8.61) 

and introducing a reduced modal load vector 
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( ) ( )
( ) ( )

exp1
2ˆ ˆ

,
TT

n q
L

n n
R R

x x dx

M

ω

ω ω
ω

−

 ⋅
 
 = ⋅ =
 
 
 


  

φ a

a K a  (8.62) 

where ( ),
T

q q q qy z
x a a a θω  =  a , then the following is obtained 

( ) ( ) ( )ˆ
ˆ

Rη ηω ω ω= ⋅a H a  (8.63) 

where 

( )
1

1 2 1
2

21ˆ n
ae ae

nn

diag diag iη
ζω ω ω

ωω

−
− −      = − − + −            

  H I K K K C  (8.64) 

is the non-dimensional frequency-response-matrix, and I  is the m odN  by m odN  

identity matrix. It is convenient to define the following m odN  by m odN  matrices 

[ ] ( )
1

11

2

ae ae

ae n aediag ω

−

−

=



= ⋅ ⋅ 

 



κ K K

ζ K C
 (8.65) 

as well as introducing [ ]ndiag ζ=ζ . The non-dimensional frequency-response-

matrix is then given by 

( ) ( )
12

1 1ˆ 2ae ae
n n

diag i diagη ω ω ω
ω ω

−
      = − − ⋅ + ⋅ ⋅ −            

H I κ ζ ζ  (8.66) 

Recalling that ( )1 21 n ndiag Mω−  =  
 K , then the content of 

ae aenm
κ

 
 =  
 
 

κ
 

 
 

and ae aenm
ζ

 
 =  
 
 

ζ
 

 
 (8.67) 

are given by (see Eq. 8.16) 
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( )
( )

exp
2 2

1

T
n q mae

Laenm
aenm T

n n n n n n
L

dx
K

M m dx
κ

ω ω
= = ⋅







 

φ k φ

φ φ
 (8.68) 

( )
( )

exp
2

ˆ

1

2 2

T
n q mae

Laen nm
aenm T

n nn n n n
L

dx
C

mM dx

ωζ
ωω

= = ⋅






 

φ c φ

φ φ
 (8.69) 

 
Elaboration 8.3: Aerodynamic Stiffness and Damping 
Fully expanded versions of Eqs. 8.68 and 8.69 are given by 

(

) ( )

* * * * *
4 6 6 6 42

exp

* * * 2 * 2 2 2
4 3 3 3

1
ae y y z y y y z z znm n m n m n m n m n m

n n L

z y z y zn m n m n m n m n n n
L

P H BA P H
m

BA BP BH B A dx dx

θ

θ θ θ θ θ θ

κ φ φ φ φ φ φ φ φ φ φ
ω

φ φ φ φ φ φ φ φ φ φ φ

= + + + + +

+ + + + +






 

(

) ( )

* * * * *
1 5 5 5 1

exp

* * * 2 * 2 2 2
1 2 2 2

1

2ae y y z y y y z z znm n m n m n m n m n m
n n L

z y z y zn m n m n m n m n n n
L

P H BA P H
m

BA BP BH B A dx dx

θ

θ θ θ θ θ θ

ζ φ φ φ φ φ φ φ φ φ φ
ω

φ φ φ φ φ φ φ φ φ φ φ

= + + + +

+ + + + + +






 

 
Returning to Eq. 8.63, the response spectral density matrix ( m odN  by m odN  and 

containing single-sided spectra) is obtained from the basic definition of spectra as 
expressed from the Fourier amplitudes, and thus, the following development applies 
(see general development in Chapter 6.5): 

( ) ( ) ( ) ( )
( )

**
ˆ ˆ

* * *
ˆ ˆ ˆ

1 1 ˆ ˆlim lim

1ˆ ˆ ˆ ˆlim

TT
R RT T

T T T
R R RT

T T

T

η η η η η

η η η η

ω
π π

π

→∞ →∞

→∞

 = ⋅ = ⋅  
 = ⋅ ⋅ ⋅ = ⋅ ⋅  

S a a H a H a

H a a H H S H
 (8.70) 

where 
R̂

S  is an m odN  by m odN  normalised modal load matrix 
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( ) ( )

( )

*
ˆ ˆ ˆ

*
ˆ1

*
ˆ ˆ ˆ ˆ ˆ ˆ1 mod

*
ˆ

mod

1
lim

1
lim

T
R R RT

R

R R R R R Rn m N n mT

RN

T

a

a a a a S
T

a

ω
π

ω
π

→∞

→∞

= =

  
  
    
        ⋅ =        
       
    

S a a

  
 

  

 
(8.71) 

whose elements on row n  column m  are given by 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

*
ˆ ˆ ˆ ˆ

*

exp exp
2 2

*
1 1 2 2 1 2

exp

2 2

1
lim

, ,
1

lim

1
lim , ,

R R R Rn m n mT

TT T
n q m q

L L

T
n n m m

T T
n q q m

T
L

n n m m

S a a
T

x x dx x x dx

T M M

x x x x dx dx
T

M M

ω
π

ω ω

π ω ω

ω ω
π

ω ω

→∞

→∞

→∞

 =  

    
 = ⋅ 
 
 
 

 ⋅ ⋅ ⋅ 
=

⋅

 



φ a φ a

φ a a φ

 

 

 

(8.72) 

Thus, the elements of ( )R̂
ωS  are given by 

( )
( ) ( ) ( )

( ) ( )
1 1 2 2 1 2

exp
ˆ ˆ 2 2

, ,T
n qq m

L

R Rn m
n n m m

x x x x dx dx

S
M M

ω

ω
ω ω

⋅ ⋅

=
⋅


 

φ S φ

 
(8.73) 

where ( )1 2, ,qq x x ωS  is the spectral density matrix of cross sectional loads. Since 

( ) ( ) ( ) ˆ, / 2
T

y z q qq q q x x t VBθ ρ  = =  b v b v , then its Fourier transform is 

( ) ( ) ( ) ( )ˆ, / 2 ,

qy

q q q vz

q

a

x a VB x x

a θ

ω ρ ω

 
 

= = ⋅ ⋅ 
 
  

a b a  (8.74) 
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where ( ) [ ],
T

v u wx a aω =a  or ( ) [ ],
T

v u vx a aω =a  depending 

on whether the system is horizontal or vertical (see Eqs. 8.23). Thus 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

*
1 2 1 2

2
*

1 1 2 2

2

1 1 2 2

1
, , lim , ,

1ˆ ˆlim , ,
2

ˆ ˆ, ,
2

T
qq q q

T

T T
q v v q

T

T
q vv q

x x x x
T

VB
x x x x

T

VB
x x x x

ω ω ω
π

ρ ω ω
π

ρ ω

→∞

→∞

 = ⋅ 

   = ⋅ ⋅ ⋅ ⋅    

 = ⋅ ⋅ ⋅ 
 

S a a

b a a b

b S b

 (8.75) 

where ( )1 2, ,vv x x ωS  is defined in Eqs. 8.44 or 8.45 depending on whether the 

system is horizontal or vertical. Then the content of the m odN  by m odN  

normalised modal load matrix 

( ) ( )ˆ ˆ ˆR R Rn m
Sω ω

 
 

=  
 
  

S

 

 

 (8.76) 

is given by 

( ) ( ) ( ) ( ){ } ( )

( )( )

2
1 1 1 2 2 2 1 222

exp
ˆ ˆ 2 2

2 23 3
2

ˆˆ ˆ, ,

2

ˆ
2 2

T T
n q v v q m

L

R Rn m
n n m m

nm
n m n m

x x x x x x dx dx
V B

S
M M

B B V V
J

m m B B

ω
ρ

ω ω

ρ ρ
ω ω

 
 

 
=   
 

   
= ⋅ ⋅ ⋅ ⋅   

   


 

 

φ b I S b φ

 
(8.77) 

where 

[ ]v u wdiag I I=I  or [ ]v u vdiag I I=I  and 2 2
v uu u ww wdiag S Sσ σ =  S  

or 2 2
v uu u vv vdiag S Sσ σ =  S  depending on whether the system is horizontal or 

vertical, and where the mod modN N⋅  joint acceptance functions 2ˆ
nmJ , are defined 

by 

( ) ( ) ( ) ( ){ } ( )2
1 1 1 2 2 2 1 2

exp2

ˆˆ ˆ, ,

ˆ

T T
n q v v q m

L

nm
T T
n n m m

L L

x x x x x x dx dx

J

dx dx

ω ⋅ 
=

  
    
  



 

φ b I S b φ

φ φ φ φ
(8.78) 
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Elaboration 8.4: Joint Acceptance Function for Horizontal System 
A fully expanded version of the numerator in Eq. 8.78 

( ) ( ) ( ) ( ){ } ( )2 2
1 1 1 2 2 2 1 2

exp

ˆˆ ˆ, ,T T
nm n q v v q m

L

J x x x x x x dx dxω = ⋅  φ b I S b φ  

for a horizontal system whose cross sectional properties are constant along its span 
is given by 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
2 2 2

1 2

exp

2
2 2 2

1 2

2 22 2
1 2

1 2 1 2

ˆ ˆ2

ˆ ˆ2

ˆ ˆ2

4

nm y y D u uu D L w wwn m
L

z z L u uu L D w wwn m

M u uu M w wwn m

y z z yn m n m

D D
J x x C I S C C I S

B B

D
x x C I S C C I S

B

x x BC I S BC I S

x x x x

D

θ θ

φ φ

φ φ

φ φ

φ φ φ φ

      ′= + −     
      

  ′+ + +  
   

 ′+ +  
 + + ⋅ 



( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

1 2 1 2

2 2

1 2 1 2

2 2

ˆ ˆ

ˆ ˆ4

ˆ ˆ4

D L u uu D L L D w ww

y yn m n m

D M u uu D L M w ww

z zn m n m

L M u uu L D M w ww

D D
C C I S C C C C I S

B B B

x x x x

D D
C BC I S C C BC I S

B B

x x x x

D
C BC I S C C BC I S

B

θ θ

θ θ

φ φ φ φ

φ φ φ φ

   ′ ′+ − +      
 + + ⋅ 

  ′ ′+ −    

 + + ⋅ 
  ′ ′+ +    

1 2dx dx







 

 
and the corresponding reduced version is given by 

( ) ( )

2
2

2 2 2 2 2 2

ˆ nm
nm

y z n y zn n m m m
L L

J
J

dx dxθ θφ φ φ φ φ φ
=
   

+ + ⋅ + +      
   
 

 

The reduced cross spectra ˆ
uuS  and ˆ

wwS  are defined by 

( )
( )

2
1 2

2
1 2

ˆ , , /

ˆ , , /

uu uu u

ww ww w

S S x x

S S x x

ω σ

ω σ

 =


=
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Since spatial averaging will eliminate any complex parts of the cross spectra, then 

( ) ( ) ( )12
1 2 2

,ˆ ˆRe , , / ,u
uu uu u uu

u

S x
S S x x Co x

ω
ω σ ω

σ
=   = ⋅ Δ   

( ) ( ) ( )12
1 2 2

,ˆ ˆRe , , / ,w
ww ww w ww

w

S x
S S x x Co x

ω
ω σ ω

σ
=   = ⋅ Δ   

where 1 2x x xΔ = − , ˆ
uuCo  and ˆ

wwCo  are the reduced u- and w- component  

co-spectra (see Eq. A.89). 

Extracting from the mode shape matrix 1 mod
... ...i N = Φ φ φ φ  a three by 

m odN  matrix associated with a chosen span-wise position rx  

( ) ( ) ( ) ( )

( )
( )
( )

( )
( )
( )

( )
( )
( )

1 mod

1 mod

.... ....

.... ....

r r r n r N r

y r y r y r

z r z r z r

r r r
n N

x x x x

x x x

x x x

x x xθ θ θ

φ φ φ
φ φ φ
φ φ φ

 =  
      
       =            
       

Φ φ φ φ

 (8.79) 

then the three by three cross spectral density matrix of the unknown displacements 

yr , zr  and rθ  at rx x=  

( ),

r r r r r ry y y z y

rr r r r r r r rz y z z z

r r r r r ry z

S S S

x S S S

S S S

θ

θ

θ θ θ θ

ω

 
 
 =
 
 
 

S  (8.80) 

 
is given by 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( ) ( ) ( )

*

*

1
, lim

1
lim

T
rr r r r r r

T

T T T
r r r r r r r r

T

x x x
T

x x x x
T

η η

η η η

ω ω ω
π

ω ω ω
π

→∞

→∞

   =    

= = ⋅ ⋅

S Φ a Φ a

Φ a a Φ Φ S Φ
 (8.81) 

where ( )η ωS  is given in Eq. 8.70, i.e.: 

( ) ( ) ( ) ( ) ( ) ( )*
ˆ

ˆ ˆ, T T
rr r r r r rR

x x xη ηω ω ω ω = ⋅ ⋅ ⋅ ⋅ S Φ H S H Φ  (8.82) 
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where ( )R ωS   is defined in Eqs. 8.76 – 8.78. The corresponding covariance 

matrix is simply obtained by frequency domain integration, i.e. 

( ) ( )

2

2

0
2

,

r r r r ry y z y

rr r r r r r r rr rz y z z

r r r r ry z

Cov Cov

ov x Cov S x d

Cov Cov

θ

θ

θ θ θ

σ

σ ω ω

σ

∞

 
 
 = = 
 
  

C S  (8.83) 

Example 8.2 
Let us again (similar to example 8.1) consider a suspension bridge with a  single 
span of 1200L m=  that is elevated at a position 50fz m= , but now we set out to 

calculate the dynamic response at 2rx L=  associated with two mode shapes 

 1 1
0 0

T

zφ =  φ  and 2 2
0 0

T

θφ =  φ  

with corresponding eigenfrequencies 1 0.7ω =  and 2 2.75 /rad sω = . As can be 

seen, 1φ  contains only the displacement component in the across wind vertical 

direction while 2φ  only contains torsion. Thus 

[ ]1 2 1

2

0 0

0

0

z

θ

φ
φ

 
 

= =  
 
  

Φ φ φ  which may be simplified into 1

2

0

0

z

θ

φ
φ

 
=  
  

Φ  

Let us assume that 

( ) ( )1

1
sin sin 3

2z x L x Lφ π π=  −    and ( )2
sin x Lθφ π=  

Thus, the aim of this example is to calculate the corresponding dynamic response 

quantities r rz z
σ  and r rθ θσ  at 2rx L=  and the covariance r rz

Covθ
 between 

them. It is taken for granted that the chosen mean wind velocity will also be set in 
the vicinity of the instability limit of the system, such that in-wind changes to 
resonance frequencies may not be ignored. Again, it is assumed that the cross 
section has the following static load coefficient properties: 

0LC =  2.5LC ′ =  0MC =  0.8MC ′ =  and

 D L
D

C C
B

′  

 

(Quantifying the drag coefficient is obsolete since y direction response is not 
excited.) 
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It is taken for granted that 
expL L= . Let us adopt the following wind field 

properties: 
 

1) the turbulence intensity 0.08w wI Vσ= =  

2) the integral length scales: 

   
( )0.3

100 10 162
x f

u fL z m= ⋅ = ,  

    12
x xf f

w uL L=  

3) the normalised auto spectral density: 

    ( ) ( )

( )2 5 3

1.5ˆ

1 2.25

x f
w w

w
x fw

w

S L V
S

L V

ω
ω

σ ω
= =

+
 

4) the normalised co-spectrum: 
( ) ( )

( )
ˆ , exp

6.5/ 2 1.0

ww wx

wx wy f

Co x C x V

C C

ω ω
π

 Δ = − Δ
 = = ≈

 

(where 
1 2x x xΔ = − ) Let us allot the following values to the remaining constants 

that are necessary for a numerical calculation of the relevant dynamic response 
quantities at 2rx L= : 

 

ρ 

(kg/m3) 

B 
(m) 

D 
(m) 

1m  

(kg/m) 
2m  

(kgm2/m) 
1ω  

(rad/s)
2ω  

(rad/s)
1ζ  2ζ  

1.25 20 4 12500 425000 0.7 2.75 0.005 0.01 
 

Since 1m  and 2m  are constant along the span, then the modally equivalent and 

evenly distributed masses 1 1m m=  and 2 2m m= . It should be noted that 

 2
1

0
4

L

z
L

dxφ =  2
2

0
2

L L
dxθφ =  

1 2
0

4

L

z
L

dxθφ φ =  

 

Finally, let us for simplicity adopt quasi-static values to the aerodynamic 

derivatives, except for *
2A  which is responsible for aerodynamic damping in 

torsion. Adopting ( )2*
2 M M nA C V Bβ ω′= −  and 0.2Mβ =  provides a good 

approximation to the flat plate properties. Thus, the aerodynamic derivatives 
associated with motion in the across wind vertical direction and torsion are given 
by: 
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*
1

*
2

* 2
3

ˆ

0

ˆ
L

H V

H C

H V

   
   ′= − ⋅   
   
    

 and 

*
1

* 2
2

* 2
3

ˆ

ˆ

ˆ
M M

A V

A C V

A V

β

   −
   

′= ⋅ − ⋅   
   
     

 and

 

* *
4 4

* *
5 5

* *
6 6

H A

H A

H A

 
 

= 
 
  

0  

 

where: ( )ˆ
nV V B Vω=     and where ( )n Vω , 1 or 2n = , is the in-wind resonance 

frequency. The aerodynamic coefficients associated with changes in stiffness and 
damping are then given by: 

( ) ( )
2

* 2 * 2 2
3 3

exp
2ae z znm n m n m n n

n L L

B
BH B A dx dx

m θ θ θ θ
ρκ φ φ φ φ φ φ= ⋅ + + 

 

( ) ( )
2

* * 2 * 2 2
1 1 2

exp
4ae z z z znm n m n m n m n n

n L L

B
H BA B A dx dx

m θ θ θ θ
ρζ φ φ φ φ φ φ φ φ= ⋅ + + + 

 

where n  and m  are equal to 1 or 2. Introducing the choice of aerodynamic 
derivatives given above, then: 

11
0aeκ = , 

*
31 2 22 3 3

exp *
3212

1 1 1 11
2 2 2

z
L

ae L
z

L

BH dx
B B B V

H C
m m m Bdx

θφ φ
ρ ρ ρκ

ωφ
 ′= ⋅ = ⋅ = ⋅ ⋅  
 



  
 

21
0aeκ = ,

2 2 *
32 22 4 4

exp *
3222

2 2 2 22
2 2 2

L

ae M

L

B A dx
B B B V

A C
m m m Bdx

θ

θ

φ
ρ ρ ρκ

ωφ
 ′= ⋅ = ⋅ = ⋅ ⋅  
 



  
 

2 *
112 2 2

exp *
1211

1 1 1 11
4 4 4

z
L

ae L
z

L

H dx
B B B V

H C
m m m Bdx

φ
ρ ρ ρζ

ωφ
′= ⋅ = ⋅ = − ⋅ ⋅



  
, 

12
0aeζ =  
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*
12 12 3 3

exp *
1221

2 2 2 22
4 8 8

z
L

ae M

L

BA dx
B B B V

A C
m m m Bdx

θ

θ

φ φ
ρ ρ ρζ

ωφ
′= ⋅ = ⋅ = − ⋅ ⋅



  
 

2 2 *
22 22 4 4

exp *
2222

2 2 2 22
4 4 4

L

ae M M

L

B A dx
B B B V

A C
m m m Bdx

θ

θ

φ
ρ ρ ρζ β

ωφ
 ′= ⋅ = ⋅ = − ⋅ ⋅  
 



  
 

The non-dimensional frequency response function is then given by 

 

( ) ( )
12

2
12 12

2
22 2

1
1

111 1

1
2 21 222

ˆ 2

0 01 0

0 1 0 0

00 0
2

00

ae ae
n n

ae

ae

ae

ae ae

diag i diag

i

η
ω ωω
ω ω

κ ω
ω

κ ω

ζω ζ
ω

ζ ζ ζω

−

−

−

−
−

−

      = − − + ⋅ ⋅ −            
    = − − +   
        

       −              

H I ζ ζκ

 

It is worth noting that since
11

0aeκ =  then 1ω  will remain unchanged with 

increasing mean wind velocities. The absolute value of the determinant of the 
non–dimensional frequency response function (at 0V = ) is shown in Fig. 8.14. 
The content of the normalised modal load matrix 

( )
ˆ ˆ ˆ ˆ1 1 1 2

ˆ
ˆ ˆ ˆ ˆ2 1 2 2

R R R R

R
R R R R

S S

S S
ω

 
 =
  

S  

is given by: ( )
2 23 3

2
ˆ ˆ

ˆ
2 2 nmR Rn m

n m n m

B B V V
S J

m m B B

ρ ρω
ω ω

   
= ⋅ ⋅ ⋅ ⋅   

    
 

where the reduced joint acceptance function ˆ
nmJ  is given in Eq. 8.78. 
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Fig. 8.14 The absolute value of the determinant of the frequency response matrix at 0V =  

An expanded version of the joint acceptance function itself is given in 
Elaboration 8.4 above. Under the present circumstances it simplifies into 

( ) ( ) ( ) ( ) ( )2
22 2

11 1 2 1 221 1 10
exp

,ˆ Lww
z z L w z

wL

S x
J x x C I dx dx dx

ω
φ φ φ

σ
Δ′= ⋅ ⋅ ⋅   

( ) ( ) ( ) ( )2 2 2 2
12 1 2 1 221 2 1 20 0

exp

,ˆ L Lww
z L M w z

wL

S x
J x x C BC I dx dx dx dxθ θ

ω
φ φ φ φ

σ
Δ′ ′=     

 

( ) ( ) ( ) ( ) ( )2
22 2

22 1 2 1 222 2 20
exp

, Lww
M w

wL

S x
J x x BC I dx dx dxθ θ θ

ω
φ φ φ

σ
Δ′= ⋅ ⋅ ⋅   

 

Introducing ( ) ( ) ( )ˆ, ,ww w wwS x S Co xω ω ωΔ = ⋅ Δ  and w wI Vσ= , then the content 

of the normalised modal load matrix is given by 
 

2 2
21 12

ˆ ˆJ J=
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 ( ) ( ) ( )
2

2
11

ˆ ˆ 21 1 2
1 1

10
2

L
wR R L

z

VBC
S S

m dx

ψ ωρω ω
ω φ

  ′  =          
 

 ( ) ( ) ( )
2 2

12
ˆ ˆ1 2 2 2

1 2 1 2
1 20 0

2
L M

wR R L L

z

VB C BC
S S

m m dx dxθ

ρ ψ ω
ω ω

ω ω φ φ

 ′ ′
=   
    

 

 ( ) ( )ˆ ˆ ˆ ˆ2 1 1 2R R R R
S Sω ω=

 

and ( ) ( ) ( )
2

22
22

ˆ ˆ 22 2 2
2 2

20
2

M
wR R L

VB C
S S

m dxθ

ψ ωρω ω
ω φ

  ′  =          
 

where: 

 ( ) ( ) ( )
1 2

11 1 2 1 21 10 0
ˆ ,

L L

z z wwx x Co x dx dxψ φ φ ω = ⋅ ⋅ Δ     

 ( ) ( ) ( )
1 2

12 1 2 1 21 20 0
ˆ ,

L L

z wwx x Co x dx dxθψ φ φ ω = ⋅ ⋅ Δ     

 ( ) ( ) ( )
1 2

22 1 2 1 22 20 0
ˆ ,

L L

wwx x Co x dx dxθ θψ φ φ ω = ⋅ ⋅ Δ     

The joint acceptance functions 1 1ψ , 1 2ψ  and 2 2ψ  are shown in Fig. 8.15. The 

normalised modal load matrix ( )R̂
ωS  is then given by 

 

( )

( ) ( )
( )( )

( ) ( )

( ) ( )

ˆ ˆ ˆ ˆ1 1 1 2
ˆ

ˆ ˆ ˆ ˆ2 1 2 2

2
2

11 122 2 2

2 2 22 1 1
1 1 20 0 0

2 2 2
1 1 2 2

2 221 1

22 2
20

4

.

R R R R

R
R R R R

L L ML L L

z z
w

M L

S S

S S

m
C BC C

m dx dx dxVB S

m m
m

Sym BC
m dx

θ

θ

ω

ψ ω ψ ωω
ω φ φ φρ ω

ω ω
ψ ωω

ω φ

 
 =
  

    ′ ′ ′  
    =

    ′    
  

  



S




 


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Fig. 8.15 Joint acceptance functions 

And thus, the spectral density response matrix at 2rx L=  is given by (see 

Eq. 8.82) 

( ) ( ) ( ) ( )2, 2 2
r r r rz z z T

rr r r
r r r rz

S S
L L L

S S
θ

η
θ θ θ

ω ω
 

= = ⋅ ⋅ 
  

S Φ S Φ  

where: ( ) ( ) ( ) ( )*
ˆ

ˆ ˆT
Rη η ηω ω ω ω= ⋅ ⋅S H S H  and ( ) 1 0

2
0 1r L
 =  
 

Φ  

 

Introducing the impedance matrix ( ) 11 12

21 22

E E

E E
ω  

=  
 

E  where 

 ( )
2

11 1 11
1 1

1 2 aeE i
ω ω ζ ζ
ω ω
 

= − + − 
 

 12 12aeE κ=−  

 
21 21

2

2 aeE i
ω ζ
ω

= −  and

 ( )
2

22 222 22
2 2

1 2ae aeE i
ω ωκ ζ ζ
ω ω

 
= − − + − 

 
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then ( ) 11 12 22 121

21 1121 22

ˆ ˆ 1ˆ
ˆ ˆ det

H H E E

E EH H
η ω −  − 

= = =   −   
H E

E
 

rendering the following expression for the spectral density response matrix at 
2rx L=  

 ( ) ( )2 22 4
11 122

2
1 2 1 2

21 22

ˆ ˆ
2,

ˆ ˆ2 2
w

rr w
w

S SSB B V V
L I

m m B B S S

η η

η η

ωρ ρω
ω ω σ

      =           
S

 
 

where: 
 

( ) * * *
11 11 12 11 12 1211

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2LL LM MMS H H H H H Hη ω γ γ γ= ⋅ + ⋅ ⋅ ⋅ + ⋅  

 

( ) ( )* * * *
11 21 12 21 11 22 12 2212

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
LL LM MMS H H H H H H H Hη ω γ γ γ= ⋅ ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅  

 

( ) ( )* * * *
11 21 21 12 22 11 22 1221

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
LL LM MMS H H H H H H H Hη ω γ γ γ= ⋅ + ⋅ + + ⋅ ⋅  

 

( ) * * *
21 21 21 22 22 2222

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2LL LM MMS H H H H H Hη ω γ γ γ= ⋅ + ⋅ ⋅ + ⋅  

 

where 

 
( )

2

112 2 2

21 1
10

LL L L

z

m
C

m dx

ψ ωωγ
ω φ

 
 ′=  
 
 




 
( )2

12

2 2
1 20 0

LM L M L L

z

BC C
dx dxθ

ψ ω
γ

φ φ
′ ′=

 
 

and ( ) ( )
2

2 221 1

22 2
20

MM M L

m
BC

m dxθ

ψ ωωγ
ω φ

 
 ′=  
 
 




 

The corresponding covariance matrix is then obtained by frequency domain 
integration: 

 ( ) ( )
2

2
0

2 2,
r r r rz z z

rr r rr

r r r rz

Cov
x L L d

Cov

θ

θ θ θ

σ
ω ω

σ

∞  
 = = =
  

Cov S  
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The absolute value of the determinant of the non-dimensional frequency 
response function at a mean wind velocity of 40 V m s=  is shown in the top left 

hand side diagram in Fig. 8.16. The top right hand side diagram shows the cross 
spectrum between zr  and rθ  while the two lower diagrams show the spectral 

densities of zr  and rθ , both at 2x L=  and at a mean wind velocity of 

40 V m s= . As can be seen, there are traces of modal coupling. In this case the 

coupling effects are exclusively motion induced. Comparing ( )ˆdet ωH  shown in 

the top left hand side diagram of Fig. 8.14 to that which is shown in Fig. 8.16 it is 
seen that the resonance frequency associated with the second mode shape (in 
torsion) is no longer precisely at 2.75 rad s , but slightly below. It is also seen 

that the resonance peaks are reduced, and particularly the peak associated with 

1z
φ  at 1 0.7  rad sω = . A time domain simulation of zr  and rθ  at 2x L=  and 

40 V m s=  is shown in Fig. 8.17 (from spectra shown in Fig. 8.16). The 

standard deviation of the dynamic responses in the across wind direction ( zr ) and 

in torsion ( rθ ) at various mean wind velocities are shown on the two left hand  

 

 

Fig. 8.16 Top left: absolute value of frequency response function. Top right: cross spectrum 
between vertical and torsion response components. Lower left and right: spectra of response 
components in vertical direction and torsion. . 40  V m s=
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Fig. 8.17 Time domain simulation of dynamic response at  and  

 

Fig. 8.18 Top and lower left: dynamic response in vertical direction and torsion. Top right: 
covariance coefficient. Lower right: resonance frequency associated with 2nd mode. 

 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

2x L= 40  V m s=
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and  

( )
2

2ˆ cos exp
3 3qm

m m

x x
Co x

D Dλ λ

    Δ Δ Δ = ⋅ −   
     

       or m z θ=  (8.87) 

where, 2s sfω π= , ( )2ˆ 2q qz z
V Bσ σ ρ=  and ( )2 2ˆ 2q q V Bθ θσ σ ρ=  are 

the non-dimensional root mean square lift or torsion moment coefficients, mb  is a 

non-dimensional load spectrum band width parameter, mλ  is a non-dimensional 

coherence length scale and xΔ  is span–wise separation, i.e. 1 2x x xΔ = −  where 

1x  and 2x  are two arbitrary positions along the span of the system. 

 
Elaboration 8.6 

By substituting ( )x Dλ αΔ = , 1 3a =  and 2 3b = , and using the known integral 

( ) ( ) ( ) ( )2 2

0

cos exp 2 exp 2b a d a b aα α α π
∞

   ⋅ − = ⋅ −
     it may readily be shown 

that ( ) ( ) ( ) 1

0

ˆ 3 2qm
Co x d x e D Dπ λ λ

∞
−Δ Δ = ⋅ ⋅ ≈ . 

For the description of the characteristic motion induced load effects at lock-in 
Vickery & Basu [20, 21] have suggested that this may be accounted for by a 

negative motion dependent aerodynamic modal damping ratio, aen
ζ , such that the 

total modal damping ratio associated with mode n  is given by 

tot n aen n
ζ ζ ζ= −  (8.88) 

This is equivalent to the introduction of motion dependent aerodynamic 
derivatives as described in chapter 8.2 above. Let us for consistency adopt the 
notation given in Eqs. 8.16 and 8.17, and then it is the aerodynamic derivatives 

*
1H  and 

*
2A  that are responsible for aerodynamic damping effects in the vertical  

( z ) direction or in torsion (θ ). Assuming that in the vicinity of a distinct vortex 

shedding type of response all other motion induced effects may be ignored, then in 
this mean wind velocity region 

( )
2

*
1

2 *
2

0 0 0

0 0
2

0 0

ae n
B

V H

B A

ρ ω
 
 

≈  
 
 

C

       

and     0ae ≈K  (8.89) 
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where 

2
*
1 1 z

az
z

H K
a D

σ  
 = −  
           

and      

2
*
2 1aA K

a
θ

θ
θ

σ   = −  
   

 (8.90) 

and where 
az

K  and 
aK θ

 are velocity dependent damping coefficients equivalent to 

those defined by Vickery & Basu [20, 21]. Since 0ae ≈K  it is a reasonable 

assumption that ( ) ( )0n nV Vω ω≈ = , and then the aerodynamic damping term in Eq. 

8.88 may be taken from Eq. 8.69, i.e.: 

( )
( )

* 2 2 * 2
1 2

2
exp exp

2 2 242 2

T
n ae n zn n

L Laen
ae Tn

nn n n n n n y zn n n
L L

dx H B A dx
C B

mM m dx dx

θ

θ

φ φ
ρζ

ω ω φ φ φ

⋅ ⋅ +

= = = ⋅
⋅ + +

 

 

φ C φ

φ φ


 

 (8.91)

where 

( )2 2 2
n n

n T
n n y zn n n

L L

M M
m

dx dxθφ φ φ
= =

⋅ + + φ φ

 
  

(8.92) 

is the evenly distributed and modally equivalent mass associated with mode n . 

am
K  ( or m z θ= ) are the coefficients that account for the accelerating part of the 

motion induced load when V  is close to Rn
V . Apart from being cross sectional 

characteristics, they are functions of V  and the resonance frequency of the mode 
in question (see right hand side diagram in Fig. 8.20). za D  and aθ  are quantities 

associated with the self-limiting nature of vortex shedding, i.e. they represent 
upper displacement or rotation limits at which the aerodynamic damping becomes 
insignificant. {It should be noted that in Eq. 8.89 the damping coefficients are 
defined such that consistency is obtained with the general definition of 
aerodynamic derivatives in Eqs. 8.16 and 8.17 rather than the definition adopted 
by Vickery & Basu. Thus, the 

az
K  values given by Vickery & Basu in references 

[20, 21] are applicable in the expressions given above if they are multiplied by 

( )2
4 D B }. Vortex shedding induced load effects at or in the vicinity of lock-in 

is dependent on the dynamic response of the structure, because the total damping 
in each mode is unknown prior to any knowledge about the actual structural 
displacements. Thus, response calculations will inevitably involve iterations. It 
should be acknowledged that the peak factor for vortex shedding response does 
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not comply with the theory behind what may be obtained from Eq. A.45. For an 
ultra-narrow-banded vortex shedding response the peak factor is close to 1.5 

(theoretically 2 ). For broad-banded response Eq. A.45 will most often render 
conservative results. A few time domain simulations of response spectra (see 
Appendix B) will give a good indication on what peak factor should be chosen. 

 
Multi-mode Response Calculations 
The general solution of a multi-mode approach to the problem of calculating 
vortex shedding induced dynamic response is identical to that which has been 
presented above for buffeting response calculations. I.e., the general solution to 

the calculation of the three by three cross spectra response matrix ( ),rr rx ωS  is 

given in Eq. 8.82, while the corresponding covariance matrix is given in Eq. 8.83. 
The m odN  by m odN  frequency response matrix ( )ˆ

η ωH  is given in Eq. 8.66 

while the modal load matrix ( )R̂
ωS  is given in Eqs. 8.76 – 8.78, except that for 

vortex shedding the motion induced load is assumed exclusively related to 
structural velocity, and its effect applies to the actual modal response and not to 
the individual Fourier components. As shown in Eq. 8.89, this implies that 

0ae =K  and ( )2 * 2 *
1 2/ 2 0ae nB diag H B Aρ ω  = ⋅ ⋅  C , and thus 

( ) [ ]( ) [ ] ( ){ } 12ˆ 1 2 1n n aediag i diagη ω ω ω ω ω
−

= − ⋅ + ⋅ ⋅ −H I ζ ζ  (8.93) 

where [ ]ndiag ζ=ζ  and the content of aeζ  is given by 

( )
( )
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exp
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* 2 *
1 2

2
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2 2 2
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T
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L
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L

n y zn n n
L

dx
C

mM dx

H dx B A dx
B
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θ θ

θ

ωζ
ωω

φ φ φ φ
ρ

φ φ φ

⋅ ⋅

= = ⋅
⋅

+

= ⋅
+ +





 





 



φ C φ

φ φ
 (8.94) 

where *
1H and *

2A , are given in Eq. 8.90 and where nm  is defined in Eq. 8.92. If *
1H

and *
2A  are taken as modal constants and independent of span-wise position, then, 

due to the orthogonal properties of the mode shapes, aeζ  becomes diagonal, i.e. 
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ae aen
diag ζ =  ζ  

where  

( )

* 2 2 * 2
1 2

2
exp exp

2 2 24

zn n
L L

aen
n y zn n n

L

H dx B A dx
B

m dx

θ

θ

φ φ
ρζ

φ φ φ

+

= ⋅
+ +

 

  (8.95) 

This implies that ( )ˆ
η ωH  is an m odN  by m odN  diagonal matrix. In vortex 

shedding induced vibration problems it is usually not essential to include the along 
wind load effects. The load vector may then be reduced to 

( ) [ ], 0
T

zx t q qθ=q  (8.96) 

and the corresponding Fourier transform is 

( ), 0
T

q q qz
x a a θω  =  a  (8.97) 

The cross sectional load spectrum is defined by 

( ) ( )*
* *

* *

0 0 0 0 0 0
1

, lim lim 0 0

00

T
q q

qq q q q q q q q qz z z z z zT T

q q q qzq q q qz

x a a a a S S
T T

S Sa a a a

θ θ

θ θ θθ θ θ

ω
π π→∞ →∞

   
   
 Δ = = =  
   
     

a a
S  

(8.98)

The problem is greatly simplified if the cross coupling between zq  and qθ  may 

be disregarded (i.e. they occur at distinctly different mean wind velocities), in 
which case 

( )
0 0 0

, 0 0

0 0

qq q qz z

q q

x S

S θ θ

ω

 
 

Δ ≈  
 
  

S  (8.99) 

where q qz z
S  and q qS θ θ

 are given by 

( ) ( )
( ) ( )

ˆ

ˆ
q q q qz z z z

q q q q

S S Co x

S S Co xθ θ θ θ

ω

ω

= ⋅ Δ 


= ⋅ Δ 
 (8.100) 
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The single point spectra 
qz

S  and 
qS θ

 are defined in Eq. 8.86, while the reduced 

co–spectra ˆ
qz

Co  and ˆ
qCo θ

 are defined in Eq. 8.87. Thus, the elements of 
R̂

S  (see 

Eq. 8.73) are reduced to 

( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ){ }

( ) ( )
( ) ( ) ( ) ( )
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1 2 1 2
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φ S φ

 

 
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(8.101) 

Furthermore, it is a reasonable assumption that the integral length–scale of the 
vortices Dλ  is small as compared to the flow exposed length expL  of the structure, 

and since zq  and qθ  are caused by the same vortices their coherence properties 

are likely to be identical, in which case [recalling that ( ) ( )
0

ˆ
qm

Co x d x Dλ
∞

Δ Δ ≈  

(see Elaboration 8.6)] the following is obtained: 

( )
( ) ( ) ( ) ( )

( ) ( )
exp exp

ˆ ˆ 2 2

2 q z z qz n m n m
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R Rn m
n n m m
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ω ω

 
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⋅

 

 
 

(8.102)

Again, due to the orthogonal properties of the mode shapes this implies that 

( )R̂
ωS  becomes diagonal, i.e. 

( )ˆ ˆR Rn
diag Sω  =  S  (8.103) 

where 

( )
( )

( ) ( )2 2
ˆ 22

exp exp

2
q z qR z n nn

L Ln n

D
S S dx S dx

M
θθ

λω ω φ ω φ
ω

 
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 
 

 
 (8.104) 
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While the calculation of the spectral response matrix is given in Eq. 8.82, it 

should be noted that if the simplifications above hold then both ˆ
ηH  and 

R̂
S  are 

diagonal, in which case 

( ) ( ) ( ) ( ) ( ) ( ) ( )
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( ) ( ) ( )
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(8.105) 

where 

( ) ( ) ( )2

ˆ
ˆ

Rn n n
S H Sη ηω ω ω= ⋅  (8.106) 

and ˆ
n

Hη  is given by (see Eq. 8.93) 

( ) ( )
12

ˆ 1 2 n aen
n n

n
H iη

ω ωω ζ ζ
ω ω

−
  
 = − + ⋅ − ⋅ 
   

 (8.107) 

and aen
ζ  is given in Eq. 8.95. The corresponding covariance response matrix 

( )rr rxCov  for the dynamic response at span-wise position rx  is then given by 

( ) ( )
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(8.108) 

where 

2

0n n
S dη ησ ω

∞
=  (8.109) 

is the variance contribution from an arbitrary mode n . Usually, vortex shedding 
induced dynamic response is largely resonant and narrow-banded. It will then 
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suffice to only consider the resonant part of the frequency domain integration in 
Eq. 8.109, and discard the background part. Thus, 

( ) ( )

( ) ( )
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 (8.110) 

where (see Eqs. 8.104 and 8.86) 
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(8.111) 

and 2s sfω π= . As mentioned above, the calculations will inevitably demand 

iterations, because 
*
1H and 

*
2A  are functions of r rz z

σ  and r rθ θσ . The iterations may 

be demanding as they will take place on the difference between nζ  and aen
ζ , which 

in general is a small quantity. 

Example 8.3 
Let us consider a single span suspension bridge with span exp 1200L L m= =  and set 

out to calculate the vortex shedding induced dynamic response at 2rx L=  

which is associated with the three mode shapes 

1 1

0
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2 2
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φ  

with corresponding eigenfrequencies 0.7 , 1.6 and 2.75 rad s . As can be seen, 

1φ  and 2φ  contain only the displacement component in the across wind vertical 

direction while 3φ  only contains torsion. Let us adopt the following structural 

properties: 
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and the following vortex induced wind load properties: 

St ˆqz
σ  ˆqθσ  zb  bθ  za  aθ  z θλ λ=

0azK  0aKθ  

0.1 0.9 0.3 0.15 0.1 0.4 0.1 1.2 0.2 0.02 
 

where ( )2ˆ 2q qz z
V Bσ σ ρ=  and ( )2ˆ 2q q V Bθ θσ σ ρ= . Since zm  and mθ  

are constant along the span, then the modally equivalent and evenly distributed 
masses 1 2 zm m m= =   and 3m mθ= . Finally, let us adopt the following wind 

velocity variation of the relative aerodynamic damping coefficient 
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In this case (see Eq. 8.108) 
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and thus: 
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From Eqs. 8.110 and 8.111 (and taking it for granted that z θλ λ λ= = ) the 

following variance contributions are obtained 
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What then remains are the aerodynamic damping contributions given in Eq. 8.95, 
from which the following is obtained: 
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The relevant response diagrams are shown in Fig. 8.22 below. 
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Fig. 8.22 Vortex shedding induced across wind and torsion response 

Single Mode Single Component Response Calculations 
A single mode single component response calculation is obtained by assuming 
that any of the following two conditions apply 
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Mode shape summation and off diagonal terms in Eq. 8.108 will then vanish, 
rendering all covariance quantities obsolete, and r rS  will simply contain the 
response variances of a single mode excitation on its diagonal. Thus, the response 
spectrum and the displacement variance associated with the excitation of an 
arbitrary mode n  are given by 
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where 
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and where aerodynamic damping properties may be extracted from Eq. 8.95, 
rendering 
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Again, vortex shedding induced dynamic response is largely resonant and narrow-
banded. It will then suffice to only consider the resonant part of the frequency 
domain integration in Eq. 8.113, and discard the background part. Thus, 
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As mentioned above, it is also a reasonable assumption that the integral length–
scale Dλ  for zq  and qθ  are identical. Adopting the convenient notation 
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and introducing 
R̂n

S  from Eqs. 8.111, then the following is obtained 
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and where ( )/ 2R nn
V D Stω π= ⋅ . 

Elaboration 8.7 
For the simple case of a single mode across wind response calculation, the 
standard deviation of the dynamic response at rx x=  is given by: 
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and where the resonance mean wind velocity ( )2R zz
V D Stω π= . Under these 

circumstances the equation above may be rewritten into the following fourth order 
polynomial 

( )4 2 2ˆ ˆˆ ˆ1 0r rz z
σ ζ σ β− − − =  

where 



8.4   Dynamic Response to Vortex Shedding 353 

 

2

2 2

exp

4ˆ
z

z z L

a zz
L

dx
m

KB dx

φ
ζζ

ρ φ
=






 

and 
( )

1 2

3

5 2 7 4 22

ˆ
ˆ

2

qz r z z

z a zz z z
L

x gD

b K aStm dx

σφ ρ λβ
π φ

 
 

=  
  
 


 

and where ( )ˆr r zz z
a Dσ σ= . Thus, the reduced standard deviation of the vortex 

shedding induced dynamic response is given by 
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Thus, no iterations are required. Similarly, for the simple case of a single mode 
torsion response calculation, then 
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Chapter 9 
Damping 

9.1   Introduction 

The introduction of small or moderate damping forces into the theory of structural 
dynamics is based on the simple observation that any linear elastic system set into 
a free unloaded motion will harmonically oscillate in a characteristic modeshape 
which gradually decays until the system again is at rest. The preference of a 
harmonic modeshape is usually associated with the characteristic largest period 
(i.e. the lowest eigenfrequency) of the system, as this is its slowest possible free 
motion, and therefore it requires the least amount of energy exchange between 
inertia and stress fluctuations. The reason for the decay of the motion (diminishing 
of kinetic energy) is ascribed to damping forces within the system or between the 
system and its surrounding air or water. There are several possible sources to these 
forces within a structural system: 

• there are material stress-strain fluctuations causing yielding and cracking in 
structural elements (at micro as well as at macro level), 

• there are sliding (and hence, friction) in support connections, in inner joints 
and in joints between structural elements and secondary elements such as 
cladding, inner walls etc., 

• there are stress-strain fluctuations and radiation in adjacent soil and structure 
interaction, 

• there are resistance from surrounding air or water, and 
• in earthquake prone areas there may be buildings with inner joints or 

supports deliberately designed to dissipate energy during large structural 
motions. 

The magnitude of these damping forces will in general depend on 

• the relevant static and dynamic stress-strain condition (e.g. bending and 
shear vs. pure axial strain), 

• the type of motion (e.g. at support connections and inner joints), as well as 
• temperature and humidity (e.g. in concrete and wood). 

Even for the simplest types of structural systems the damping sources are by and 
large unidentifiable, and for normal buildings it is necessary to rely on overall 
behaviour. Thus, the choice of properties that may be ascribed to structural 
damping must in general be based on observations or recordings of decaying 
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model experiments or preferably from full scale motion. Since it is very difficult 
to set a structural system into motion in anything beyond its first eigenmode the 
few observations that are available are almost exclusively associated with this 
motion, i.e. most data is strictly spoken only relevant for a motion in the mode 
shape associated with the first eigenfrequency of the system. Hence, what can be 
found in the literature are usually the modal damping properties associated with 
the modal degrees of freedom and not the damping properties associated with the 
original degrees of freedom in the system. It is considered a reasonable 
assumption that the damping effects are higher at higher modeshapes. 

9.2   Damping Models 

In structural dynamics there are two main models of damping, i.e. viscous and 
friction type of damping forces. The single degree of freedom mathematics of 
these models is described below. It is usually assumed that the overall physical 
behaviour of the inner forces of a single degree of freedom system may be 
replaced by a single material model comprising elastic and damping forces that are 
additive. Thus, possible material models may be illustrated as shown in Fig. 9.1. 
In both cases, the material model comprise a spring and a damper in parallel 
(because they are assumed additive). It is taken for granted that the spring is 
linear, i.e. that the spring force is proportional to its elongation. To the left in Fig. 
9.1 is shown a viscous type of damper. The characteristic property of this damper 
is that the damper force is proportional to the velocity of its elongation. The origin 
of this type of material model is usually accredited to William Thomson, 1st Baron 
Kelvin (1824 – 1907) and Voldemar Voigt (1850 – 1919). To the right in Fig. 9.1 
is shown a friction type of damper. Its characteristic property is that the damper 
elongation is zero until the force has exceeded a certain minimum value, after 
which the damping force is proportional to a constant friction coefficient, and 
hence, independent of any further damper elongation. This type of dry friction 
force is usually accredited to Charles-Augustine de Coulomb (1736 - 1806). It is 
in the following taken for granted that damping is a small quantity. 
 

 

Fig. 9.1 Viscous and friction damping models 

Viscous Damping: 
Throughout this book it has been taken for granted that it is a viscous type of 
damping that prevails. It was first touched upon in Chapter 1.6 for a continuous 
beam (see Fig. 1.21), while a complete solution was developed in Chapter 2.2 for 
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a freely oscillating single degree of freedom system (see Figs. 2.2 and 2.3). For a 
real continuous system this solution applies to the case of unloaded free 

oscillations in any of its mode shapes ( )n xφ  with corresponding modal 

properties nM , nK  and nC . Let us consider a simple system (e.g. a beam) 

whose eigenmodes ( )n xφ  are containing only a single ,  or y z θ  component. Let 

us for simplicity also assume that at the position of maximum displacement, rx , 

the mode shape has been normalised to unity. At this position the system is given 

an initial displacement 0r  and a velocity 0r . Then the decaying displacements at 

rx  is given by ( ) ( ) ( ) ( ),r n r n nr x t x t tφ η η= ⋅ = , where ( )n tη  is the solution to 

the modal equilibrium condition 

( ) ( ) ( ) 0n n n n n nM t C t K tη η η+ + =    (9.1) 

which is given by (see Eq. 2.28) 

( ) ( )costn n
d nt a e tω ζ

ηη ω β−= ⋅ ⋅ −  (9.2) 

where ( )2 n nC M ω ζ=   is the damping ratio (in the following it is taken for 

granted that 1nζ << ), 2
nK M ω=  , 21d n nω ω ζ= − , and where 
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Fig. 9.2 Free decaying motion at rx  
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The decaying oscillation at rx  is illustrated in Fig. 9.2 above. The amplitude of 

motion at jt T=  is given by 

( )cos
Tn n j

d j nj
a a e T

ω ζ
η ω β−= ⋅ ⋅ −

 
(9.4) 

The amplitude of motion p  periods later, i.e. at ( )2j d j dt T pT T p π ω= + = +  is 

given by 
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 (9.5) 

Recalling that 21d n nω ω ζ= −  it is seen that the natural logarithm to the 

ratio between ja  and j pa +  is given by 

( )
2

22
ln ln
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j p T nn n d
n n
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e p p

a
ω ζ πζπω ζ

ω ζ+

 
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 (9.6) 

The logarithmic decrement of damping associated with mode shape ( )n xφ  is a 

measure of the decay of the process from one amplitude to the next, i.e. it is 
defined by 

2
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2
ln
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j n
n

j n

a

a

πζλ
ζ+

 
= =   − 

 (9.7) 

Since it has been taken for granted that 1nζ << , then 

2n nλ πζ≈  (9.8) 

The loss of energy during a load cycle due to viscous damping may be 
illustrated by considering the single degree of freedom system illustrated in Fig. 
9.3. The system is subject to a harmonic and perfectly resonant load 

( ) 0 sin nF t F tω= , rendering the steady state harmonic response (see Chapter 

2.3) 

( ) ( )0 0sin 2 cosn nr t r t r tω π ω= − =  (9.9) 

where ( )0 0 2 nr F Kζ= . Introducing 2
nK Mω=  and ( )2n nC Mζ ω=  it is 

seen that ( )0 0 nr F Cω= . 
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Fig. 9.3 Single degree of freedom system subject to resonant load 

The inner elastic force is KF Kr= , while the inner damping force is 

( ) 2
0 0sin 1 cosC n n n nF Cr C r t Cr tω ω ω ω= = ⋅ − = − ⋅ − . Thus, it is seen that the total 

inner force i K CF F F= +  in the system is given by 

2
0 1 cosi n nF Kr Cr tω ω= − −  (9.10) 

which may also be written 
2 2

0 0

1i

n

F Kr r

Cr rω
   − + =   
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 (9.11) 

or alternatively 

2 2

0 0

1C

n

F r

Cr rω
   

+ =   
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 ( )2
0 01C nF Cr r rω= −  (9.12) 

The elliptic function of iF  versus r  (Eq. 9.11) is illustrated in Fig. 9.4.a. 

 
a) Viscous damping hysteresis b) Material stress-strain hysteresis 

Fig. 9.4 Typical viscous damping and material stress-strain hysteresis 
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The area CW  within the curve is the viscous energy dissipation within one 

cycle of motion. For a linearly elastic system CW  may in general be defined by 

C C
s

W F dr=   (9.13) 

(where 
s
  indicates a single load cycle integration). In the case above 
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The corresponding linear elastic strain energy per cycle of motion is given by 
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r
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The energy dissipation coefficient is then defined by 

( )2D C Ke W Wπ=  (9.16) 

which, for the case above, may be further developed into 
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Thus  

( )4n C KW Wζ π=  (9.18) 

A typical test recording of material stress-strain hysteresis is illustrated in Fig. 

9.4.b. The damping energy dissipation is the area CW  within the hysteresis, while 

the corresponding linear elastic strain energy is given by 

0
2
0

0

1

2KW d E d E
ε

ε
σ ε ε ε ε= = =   (9.19) 

The equivalent viscous damping ratio as obtained from such a test recording is 
then given by 

( )4eq C KW Wζ π=  (9.20) 
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Fig. 9.5 Decaying unloaded motion after initial displacement 0r  and velocity 0 0r = ; top 

diagram: viscous damping, lower diagram: friction damping 

Setting 0 0r =  and 0.1nζ =  then a normalised version of the decaying 

unloaded motion in Fig. 9.2 may be quantified, as shown in the upper curve in Fig. 
9.5. Reading off the amplitudes at arbitrary positions it may readily be shown that 

the rate of decay coincides with 0.1nζ = . 

 
Dry Friction (Coulomb Damping): 
A single degree of freedom system with a dry friction type of damper is illustrated 

in Fig. 9.6. The basic idea behind such a damper is that the damping force CF  is 

proportional to a friction coefficient μ  and to the normal force N  applied 

perpendicular to the friction surfaces, i.e. 

( )CF sign r Nμ= ⋅
 
where ( ) 1  if   0

1  if   0

r
sign r

r

+ ≥
= − <





 (9.21) 

and that it is independent of the displacement ( )r t . 
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Fig. 9.6 Single degree of freedom system with dry friction type of damper 

(It should be noted that a real friction damper designed as indicated above will 
have a static friction coefficient when the body is at rest which is higher than the 
friction coefficient it will exhibit when it is in motion. This effect is disregarded 
below. It is also taken for granted that the friction surface is parallel to the motion 
of the system.) Thus, the instantaneous equilibrium condition for the system in 
free unloaded motion ( 0F = ) is given by 

 

( ) ( )
( ) ( )

  if  0

  if  0

C

C

Mr t Kr t F r

Mr t Kr t F r

+ = − ≥ 


+ = + < 

 

 
 (9.22) 

The homogeneous solution ( 0CF = ) in a resonant motion ( nω ω= ) is given 

by 

( )cos n nr a tω β= ⋅ −  (9.23) 

where the amplitude a  and the phase angle nβ  will depend on the initial 

conditions ( ) 00r t r= =  and ( ) 00r t r= =  . The particular solution is 

  if  0

  if  0
C

C

r F K r

r F K r

= − ≥ 
= + < 




 (9.24) 

Thus, 

( )
( )

1 1

2 2

cos    if  0

cos    if  0

n n C

n n C

r a t F K r

r a t F K r

ω β

ω β

= − − ≥ 


= − + < 




 (9.25) 
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I.e., it is necessary to follow the process as ( )r t  varies between positive and 

negative values. Let us for instance assume that the system is initially moved at a 

positive distance 0r N Kμ  and then let loose to oscillate freely and without 

any further external forces until it stops all by itself (i.e. 0 0r = ). The motion is 

then as illustrated in the lower diagram in Fig. 9.5 [with ( )0 0.05N Krμ = ]. It 

may be determined the following way: 
 

0 2n nt T π ω≤ ≤ = : 0r ≤  

  

( )
( ) ( )
( )

2 0 2 0 2

0

0

0    & 0

cos

2 2

C C n

C n C

n C

r t a F K r a r F K

r t r F K t F K

r t T r F K

β

ω

 = = + =  = − =
 = − +
 = = − +

             (9.26) 

2 2n n nT t T π ω≤ ≤ = : 0r >  

  

( )
( ) ( )
( )

2 0 2 0

0

0

2 2   3

3 cos

4

n C C C

C n C

n C

r t T a F K r F K a r F K

r t r F K t F K

r t T r F K

ω
 = = − − = − +  = −


= − −
 = = −  

(9.27) 

 
and so on until the spring force is less than the friction force, after which the 
displacement remains constant. (It may readily be shown that the peak to peak 

amplitude reduction is in general given by 4 CF K .) The hysteresis iF  and CF  

versus ( )r t  is illustrated in Fig. 9.7. It is seen that while the elastic work 

performed by the spring is still 2
0 2KW Kr= , the work performed by the friction 

damper is given by 

04CW r Nμ=  (9.28) 

and thus, the equivalent viscous damping ratio is given by 

0
2

00

41 2

4 2
eq

r N N

KrKr

μ μζ
π π

= =  (9.29) 

Thus it is seen that eqζ  for a dry friction type of damper is inversely 

proportional to the amplitude of motion 0r  (i.e., it is likely to be large at small 

amplitudes of motion). 
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Fig. 9.7 Friction force hysteresis 

9.3   Structural Damping 

There are several more or less easily identifiable sources to the damping forces 
that sums up to resist the oscillating motion of a real structure. Throughout this 
book it is taken for granted that the overall properties of these forces are viscous, 
i.e. they are linearly proportional to structural velocity. The limited number of 
sources makes it difficult to give a simple description of what will be 
representative in a mathematical model of the dynamic properties of real systems. 
By and large it is necessary to rely on model experiments or full scale 
observations, e.g. ambient vibration recordings or deliberate tests where the 
structure is set into a more or less freely oscillating motion. As illustrated in Fig. 
9.8 the statistical scatter of the data available for concrete, steel or wooden civil 
engineering structures is large. The main bulk of available data is related to small 
amplitude of motion in the first eigenmode of the system. The obvious reason for 
this is that in higher modes the energy input is rapidly increasing, rendering it 
unduly demanding to be excited. One of the first major publications regarding 
structural damping was presented by Lazan [30], who provided basic data for 
several relevant material damping properties. Full scale observations have been 
recorded among others by Lagomarsino [31], Çelebi [32], Jeary [33] and Satake 
et.al. [34]. It is generally agreed that the damping ratio is increasing with 
increasing eigenfrequency and also with increasing amplitude of motion. 

Lagomarsino took his data from fairly small amplitudes of motion, suggesting 
1

1 1 1 1 1ζ α ω α ω−
−= +  where 

1 1

1 1

0.045 & 0.0011 for Concrete

0.02   & 0.0012 for Steel

α α
α α

−

−

≈ ≈
 ≈ ≈

 (9.30) 

while Satake et.al. had data more relevant for earthquake induced large amplitude 
of motion, suggesting 
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Fig. 9.8 Bandwidth variation of the damping ratio for typical civil engineering structures 

 

where

0

1

0

1

0.0018

0.0022  for Concrete

470

0.0029

0.0021  for Steel

400

α
α
β
α
α
β

 ≈ 
 ≈ 

 ≈ 


≈ 
 ≈  ≈ 

 
(9.31)

and where maxr is the peak displacement at the top of the building and L  is the 

building height. A similar amplitude dependency was observed by Jeary [33].  
 

1 0 1 1 max

5
max 2 10

r L

r L

ζ α α ω β
−

= + + 


≤ ⋅ 
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Fig. 9.9 Damping ratio associated with first eigenfrequency (Lagomarsino [31] and Satake 
et.al. [34]). Upper diagram: reinforced concrete buildings, lower diagram: steel buildings. 

Eqs. 9.30 and 9.31 have been plotted in Fig. 9.9. Quantification of the relevant 
damping ratio should in general be obtained from national or international 
standards, keeping in mind that what can usually be obtained is only that which is 
associated with the first or the lower mode shapes of the system. As indicated 
above, it is usually the lower mode damping properties that are known from 
experiments and full scale observations. However, in structural dynamics it is not 
enough to establish the damping ratio for the lowest or the lowest few eigenmodes 
of the system. In fact, the type of damping coefficients that is required will depend 
on the type of solution strategy that has been chosen. If the chosen solution 
strategy is in modal degrees of freedom η , then 

T
ndiag C = =  C Φ CΦ 

 
where 2n n n nC M ω ζ=   (9.32) 

and thus, it is necessary to quantify all nζ , mod1, ,n N=  , where modN  is the 

number of modes deemed necessary to be included in the response prediction. If 
the chosen solution strategy is in original degrees of freedom r , then it is the  
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entire content of the rN  by rN  damping matrix C  (where rN  is the total 

number of degrees of freedom) that needs to be filled. Apart from choosing a 

diagonal more or less conservative version (e.g. based on nζ ), there are two main 

options: 

• to perform a direct inversion from the modal damping matrix and the mass 
matrix as suggested by Wilson & Penzien [35], or 

• to adopt the so-called theory of Rayleigh damping (as suggested by Lord 
Rayleigh [36]). 

The direct development suggested by Wilson & Penzien is based on Eq. 9.32 and 
that 

T
ndiag M = =  M Φ MΦ  where T

n n nM =φ Mφ  (9.33) 

From Eq. 9.32 it is seen that 

( )1 1T− −=C Φ CΦ  (9.34) 

But, since Φ  is non-quadratic, its inversion has no meaning, and hence, it is 
more convenient to observe from Eq. 9.33 that 

1 1 T− −= =I M M M Φ MΦ    (9.35) 

Thus, since 1−=I Φ Φ  and M  is symmetric it is seen that 

1 1 T− −=Φ M Φ M  ( ) ( )1 1 1T TT− − −= =Φ M Φ M MΦM   (9.36) 

Introducing this into Eq. 9.34 and observing that ndiag M =  M   and 

2 n n ndiag M ω ζ =  C  , then the following is obtained 

1 1 T T− −= =C MΦM CM Φ M MΦDΦ M    (9.37) 

where 1 1 2 n n ndiag Mω ζ− −  = =  D M CM    . Thus, it is necessary to quantify all 

nζ  within the frequency domain that is relevant for a sufficiently accurate 

solution. 
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Rayleigh damping is based on the simple hypothesis that wherever there is a 
mass or stiffness contribution to the equilibrium condition in original degrees of 
freedom (i.e. a mass in motion or elastic stress fluctuations) then there will also be 
energy dissipation due to what may be covered by a viscous damping model 
where 

α β= +C M K  (9.38) 

By using the orthogonality properties of the mode shapes and developing C  from 
this hypothesis, it is seen that 

( )2

T T T

T T
n n n n n ndiag diag M

α β α β

α β α βω

= = + = +

  = + = +   

C Φ CΦ Φ MΦ Φ KΦ M K

φ Mφ φ Kφ

  

  (9.39) 

Since 2 n n ndiag M ω ζ =  C   then ( )22 n n n n nM Mω ζ α βω= +  , and thus 

( )1 2n n nζ αω βω−= +  (9.40) 

Since it is usually only first mode data 1ζ  associated with 1ω  that may be 

found in the literature, it is a common strategy to determine α  and β  such that 

this pair will constitute the minimum point of the curve 

( ) ( )1 2n n n nζ ω αω βω−= + . This may readily be obtained by setting 

( )21
0

2
n

n
n

ζ αω β
ω

−∂
= − + =

∂
 2

nα ω β=  (9.41) 

from which the corresponding β  may be obtained from 

( )2 1 2n n n nζ ω βω βω−= +  n nβ ζ ω=  (9.42) 

Thus, by choosing 1 1α ω ζ=  and 1 1β ζ ω=  then 

1 1

12
n

n
n

ωζ ωζ
ω ω
 

= + 
 

 (9..43) 

and the coordinates ( 1ζ , 1ω ) will always be at the minimum point, as illustrated in 

Fig. 9.10 below. 
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Fig. 9.10 Rayleigh damping with coordinates 1ζ , 1ω  at its minimum 

In some cases this strategy may render a too steep or too moderate rate of 
increase at the upper end of the relevant band of eigenfrequencies. In that case it 
may be a better strategy to choose two points on the curve, e.g. the coordinates 

( )1 1,ω ζ  and ( )2 2,ω ζ , in which case 

( )
( )

1
1 1 1

1
2 2 2

2

2

ζ αω βω

ζ αω βω

−

−

= + 


= +   

  

( )

( )

1 2 2 1 1 2
2 2
2 1

2 2 1 1
2 2
2 1

2

2

ω ω ω ζ ω ζ
α

ω ω
ω ζ ω ζ

β
ω ω

−
= − 


− = − 

 (9.44) 

With this strategy it is to some extent possible to steer the upper tail of the curve 
such that the effects of eigenmodes associated with large eigenfrequencies may 
either fully contribute or effectively be damped out. Though, care must be taken to 
secure an acceptable position of the minimum point of the curve. 

A more general type of damping variation may be obtained by setting 

j
n j n

j

aζ ω=  (9.45) 

From this general expression it is seen that the Rayleigh damping model is 
obtained by 
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1,1j = −  1
1 1n n na aζ ω ω−

−= +  (9.46) 

while the so called Caughey damping model [37] is obtained by 

1,0,1j = −  1
1 0 1n n na a aζ ω ω−

−= + +  (9.47) 

This type of damping may be chosen if there are additional damping 
dependencies, e.g. an increase with increasing amplitude of motion. 

9.4   The Tuned Mass Damper 

The tuned mass damper (see Elaboration 2.2) may be regarded as an effective way 
of adding artificial damping into an otherwise lightly damped system. It is in 
particular a most effective way of damping out resonant or near resonant 
oscillations. It should be noted that a tuned mass damper will only affect the 
effective damping properties of the system, it will not affect its stiffness, and thus, 
it is not helpful to reduce a problem of p quasi static behaviour. 

 
The Tuned Mass Damper for a Single Degree of Freedom System: 
The idea of a tuned mass damper may most easily be understood by considering 
a single degree of freedom system with an additional much smaller mass as 
illustrated in Fig. 9.11 below. 

 

Fig. 9.11 Single degree of freedom system with tuned mass damper 
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The equilibrium conditions of the two bodies are then given by 

( ) ( )
( ) ( )

1 1 1 1 2 2 1 1 1 2 2 1 1

2 2 2 2 1 2 2 1

0

0

M r C r C r r K r K r r R

M r C r r K r r

+ − − + − − − = 


+ − + − = 

   

  
 (9.48) 

which may also be written 

1 1 1 2 2 1 1 2 2 1 1

2 2 2 2 2 2 2 2

0

0 0

M r C C C r K K K r R

M r C C r K K r

+ − + −             
+ + =             − −             

 
 

 (9.49) 

or 

0 0 0 0 0 0 0+ + =M r C r K r R   (9.50) 

where: [ ] [ ]0 1 2 0 1,  0
T T

r r R= =r R , and 

1
0

2

0

0

M

M

 
=  
 

M
 

1 2 2
0

2 2

C C C

C C

+ − 
=  − 

C
 
and 1 2 2

0
2 2

K K K

K K

+ − 
=  − 

K  

For simplicity, let us introduce 1r r= , and, rather that operating on the total 

displacements 2r  of the additional mass, it is convenient to introduce the relative 

displacement 2 1r r rΔ = − , i.e. that 

1

2

1 0

1 1

r r r

r r r r

       
= =       + Δ Δ      

 (9.51) 

which may alternatively be written 

0 =r Ψr  where 
1 0

1 1

 
=  
 

Ψ
 

and 
r

r

 
=  Δ 

r  (9.52) 

Introducing this into Eq. 9.50 and pre-multiplying by TΨ  

0 0 0 0
T T T T+ + =Ψ M Ψr Ψ C Ψr Ψ K Ψr Ψ R   (9.53) 

then the following is obtained 

+ + =Mr Cr Kr R   (9.54) 

where 
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1 2 2

0
2 2

T M M M

M M

+ 
= =  

 
M Ψ M Ψ , 

1
0

2

0

0
T K

K

 
= =  

 
K Ψ K Ψ   

 
1

0
2

0

0
T C

C

 
=  

 
C Ψ C Ψ=  and 

( )1
0 0

T R t 
= =  

 
R Ψ R   

 
Basically, this is a two degrees of freedom system identical to that which has 

been dealt with in Chapter 2.6 and whose eigenvalue problem in original degrees 

of freedom [ ]0 1 2
T

r r=r  was solved in Chapter 1.2, see Eqs. 1.20 – 1.22. In the 

present case of relative degrees of freedom the eigenvalue problem is obtained 

from Eq. 9.54 by setting =C 0 , =R 0  and i te ω=r φ , where [ ]1 2
Tφ φ=φ , 

and after pre-multiplication by 1−K  then the following is obtained 

( )2 1ω −− =I K M φ 0  (9.55) 

where 

1 1 2 21

2 2 2

1 0

0 1

K M M M

K M M
− +   

=    
   

K M  (9.56) 

Thus 

2 21 2 2

1 1 1

2 2 22 2

2 2

1

1

M M M

K K

M M

K K

ω ω
φ
φω ω

+ − −     =    − − 
 

0  (9.57) 

rendering 

2
1 2 2 1 2 2 1 2

1 2 1 2 1 22

1 2

1 2

4

2

M M M M M M M M

K K K K K K

M M

K K

ω

 + ++ ± + − 
 =  (9.58) 

(which is identical to that which was obtained in Eq. 1.20). For a tuned mass 

damper it may be taken for granted that 2 1M M , and thus 
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1 2 1 2

1 2 1 22

1 2

1 2

2

M M M M

K K K K
M M

K K

ω

 
+ ± − 

 ≈  1 1 1

2 2 2

K M

K M

ω

ω

 ≈


≈
 (9.59) 

Pre-multiplication by 1−K  and taking the Fourier transform throughout Eq. 
9.54, i.e. setting 

( ) ( ) i t
rt e ω

ω
ω= ⋅r a

 

and ( ) i t
R e ω

ω
ω= ⋅R a  (9.60) 

where 

( ) [ ]T
r r ra aω Δ=a and ( ) 1

0
T

R Raω  =  a  (9.61)

are the Fourier coefficient vectors of r  and R , then the following is obtained 

( ) ( ) ( ) 11ˆ
0

R
r

a Kω
ω ω

 
= ⋅  

  
a H  (9.62) 

where  

( )
( )

2
1 11 1 2 1

2
2 2

ˆ D
i

D

μ ω ω
ω ω

ω ω
− − −

 −
 = + − =
 − 

H I K C K M  (9.63) 

and 

( ) ( )( )
( ) ( )

2
1 1 1 1

2
2 2 2 2

1 1 2

1 2

D i

D i

ω μ ω ω ζ ω ω

ω ω ω ζ ω ω

= − + + 


= − +   

where 

( )
( )

2 1

1 1 1 1

2 2 2 2

2

2

M M

C M

C M

μ
ζ ω
ζ ω

=


= 
= 

 (9.64) 

Thus 



374 9   Damping 

( )
( ) ( )

( )
( )
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2 1
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1 2 1 2 2 1

1ˆ D

D D D

μ ω ω
ω

μ ω ω ω ω ω ω
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 =
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H  (9.65) 

Defining 

1

1 2

ω̂ ω ω
α ω ω

= 
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  (9.66) 
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 d

e

α
μ



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= − 
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

 (9.67) 

then Eq. 9.65 may be written in the following more convenient way 

( ) ( ) ( )
( ) ( )

11 12

21 22

ˆ ˆˆ ˆˆ ˆ
ˆ ˆˆ ˆ

H H

H H

ω ω
ω
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 
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H  (9.68) 
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
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= 
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 (9.69) 
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Fig. 9.12 The frequency response function for a single degree of freedom system with a 
tuned mass damper 

Then the idea behind the tuned mass damper reveals itself by looking at a plot 
of the absolute values of the non-dimensional frequency response function 

( )11
ˆ ˆH ω , which is directly associated with the dynamic response of the main 

system r , see Fig. 9.12 above. As can be seen, the addition of a small damper is 

equivalent to adding damping into the main system, and even when the mass ratio 

2 1M Mμ =  is only one percent or below its effect is significant. The response 

spectral density matrix ( )r ωS , containing the spectral density of ( )r t  and 

( )r tΔ  on its diagonal and the cross spectral densities between ( )r t  and ( )r tΔ  

on its off-diagonal terms, is defined by 
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(9.70) 

where 

( ) ( ) ( )*
1 1 1

1
limR R R

T
S a a

T
ω ω ω

π→∞
= ⋅  (9.71) 

is the spectral density of the load acting on the main system. Let us for simplicity 
assume a fairly broad banded load and a near to resonant response, in which case 

the response variances 2
rσ  and 2

rσΔ  are given by (see Newland, [38]) 

( ) ( ) ( )

( ) ( )

212 1
112

10 0

2 2
2 3 1 4 1 2 3 1 211

2 2 2
1 1 2 3 1 4 3

ˆ ˆ
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S d H d
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a a a a a b a b bS

K a a a a a a

ω
σ ω ω ω ω

π ω

∞ ∞

= ≈ ⋅

− + + −
= ⋅

− −

 
 (9.72) 

and 

( ) ( ) ( ) ( ) 221 12 1 1 1 2
212 2 2 2

1 1 1 2 3 1 4 30 0

ˆ ˆ
2

R R
r r r

S S a d
S d H d

K K a a a a a a

ω π ω
σ ω ω ω ω

∞ ∞

Δ Δ Δ= ≈ =
− −  (9.73) 

where all the constants are defined in Eqs. 9.67 – 9.69. 
 

Elaboration 9.1: Optimum Choice of Damper Properties 
In general there is no mathematical optimum choice of damper properties. In most 
cases it is a matter of how large a damper it is convenient (or possible) to include 
into the design of the main system (what can usually be expected is μ  in the 

range between 0.005 and 0.05). However, 
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Den Hartog [26] recommends 1 1
2 1

ω ωω
α μ

= =
+

 and

 
( )2 3

3

8 1

μζ
μ

=
+

 

while R. Luft [39] recommends 1 1
2

1 3 2

ω ωω
α μ

= =
+  

and 2
3

1
4 4

μ μζ  = − 
 

 

 

Fig. 9.13 Recommended damper properties 

The Tuned Mass Damper in a Continuous Line-Like System: 
For a real system it may be necessary to install dampers specially designed to 
provide artificial damping to several modes. Let us first consider the case of a 

continuous beam or column with dampers jM , 1,2, , jj N=  , at corresponding 

positions jx , as shown in Fig. 9.14. The beam itself is subject to a distributed load 

( ),zq x t  while it is taken for granted that the tuned mass dampers are unloaded. 

For simplicity, it is in the following also taken for granted that the motion of the 
beam is a single component displacement in the z -direction. It is also taken for 
granted that the damper masses are small, and that the motion of the system itself 

may modally be described by ( ) ( ) ( ),zr x t x t= ⋅Φ η , where Φ  contains mode 
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shapes from an eigenvalue solution in original coordinates (with or without the 

dampers, assuming 1j j nM Mμ =   ). 

 

 

Fig. 9.14 Beam (or column) with dampers jM  at positions jx  

At arbitrary position x  and time t  the system is then in motion ( ),zr x t , see 

Fig. 9.15.a, while at the same time, an arbitrary mass damper jM  at position jx  

is in motion ( )jz
r t , see Fig. 9.15.b. At this particular time the internal forces in 

the beam as well as in the mass damper are illustrated in Fig. 9.16.a and b, and the 
instantaneous equilibrium condition of the entire system may then be established 
by adopting d’Alambert’s principle and the principle of virtual displacements, see 
Chapter 1.6. I.e., as illustrated in Fig. 9.15 the beam is given a virtual 

displacement ( )zr xδ  and the damper is given a virtual displacement jz
rδ . 

During this virtual displacement the total energy of the system has not been 
changed, and thus, external work must equal internal work, i.e. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , ,

, , , ,

z z z z z z j z j
jL

j j j j x xz
j L A

q x t m x r x t c x r x t r x dx F t r x

M r t F t r x z t x z t dAdx

δ δ

δ σ δε

 − −  + 

 − + = 



  

 


 (9.74) 

where zq , zm  and zc  are distributed load, mass and viscous damping coefficient 

(i.e. per unit length), xσ  is normal stress associated with zr , xδε  is normal strain 

associated with zrδ  and 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, ,

, ,

j j j z j j j z jz z

j j j j j z j j z jz z

F t C r t r x t K r t r x t

C r t K r t C r x t K r x t

   = − + −   
 = + − + 

 

 
 (9.75) 
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a) The beam 

 
b) Arbitrary mass damper  

Fig. 9.15 Beam and mass damper motion and virtual displacement 

where jC  and jK  are the damping and stiffness properties of the thj  mass 

damper. From Chapter 1.2 (see Eqs. 1.26 – 1.27) we know that 

( ) ( ) ( )

( )

, ,
,y y z

x z
y y

x z

M x t EI r x t
z z Er x t z

I I

r x z

σ

δε δ

′′− 
′′= = = − ⋅ 


′′= − ⋅ 

 (9.76) 

and thus 



380 9   Damping 

( ) ( ) ( ) ( )
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  
 (9.77) 

Introducing this into Eq. 9.74, then the following is obtained (see Eq. 1.119): 

( ) ( ) ( ) ( ) ( ) ( )
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 (9.78) 

Let us first consider the most simple case of a single mode (and single 

component) ( )z xφ  approach with only one mass damper ( 1M , 1C , 1K ) at 

position 1x  within the span of the beam. Then (as the motion of the damper alone 

will represent a mode shape of its own) 

( ) ( ) ( )
( ) ( )1 1

,

1

z z zr x t x t

r t t

φ η
η

= ⋅ 


= ⋅ 
 (9.79) 

and correspondingly, we choose virtual displacements 

( ) ( )
1 11
z z zr x x

r

δ φ δη
δ δη

= ⋅ 


= ⋅ 
 (9.80) 

Introducing this into Eq. 9.78, then the following is obtained 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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 (9.81) 

which may more conveniently be written 
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a) The beam 

 
 

b) Arbitrary mass damper  

Fig. 9.16 Internal beam and mass damper forces 

( ) ( ) ( ) ( )0 0 0 0 0 0 0

T T
z z z z z z z z z

t t t tδ δ + + = η M η C η K η η R     (9.82) 

where 

[ ]10

T
z zη η=η [ ]1

T
z zδ δη δη=η

0
0

T
z zR =  R   
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and 
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The pre-multiplication by T
zδη  may obviously be omitted, and thus the 

equilibrium condition in total modal coordinates is given by 

( ) ( ) ( ) ( )0 0 0 0 0 0 0z z z z z z z
t t t t+ + =M η C η K η R     (9.83) 

Defining the relative damper motion and corresponding modal quantity 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 11 , 1z zr t t r t r x t t x tη η φ ηΔ = ⋅ Δ = − = ⋅ − ⋅  (9.84) 

it is readily seen that 
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 (9.85) 

from which the following is obtained: 

( ) ( ) ( )0z z zt x t= ⋅η Ψ η  (9.86) 

where [ ]1
T

z zη η= Δη  are the new relative degrees of freedom and 
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Ψ  (9.87) 

Introducing this into Eq. 9.83 and pre-multiplication by T
zΨ  will then render the 

following equilibrium condition in relative modal coordinates: 

( ) ( ) ( ) ( )z z z z z z z
t t t t+ + =M η C η K η R     (9.88) 

where 



9.4   The Tuned Mass Damper 383 
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and 

0
0

TT
z z z zR = =  R Ψ R    (9.91) 

Eqs. 9.88 – 9.91 are mathematically identical to that which was developed for 
the case of a single degree of freedom system with an additional small mass in 
Eqs. 9.48 – 9.59, only with the properties of the single degree of freedom system 
replaced by the modal properties of the continuous system in a single mode and 
single component approach. Thus, the entire developments of a frequency domain 
approach in Eqs. 9.60 – 9.69 will also apply to the present case, only by replacing 
single degree of freedom properties by their equivalent modal quantities. Thus: 
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where ( )Rz
S ω  is the spectral density of the modal load on the main system, and 
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 (9.93) 
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 (9.95) 

and where zζ  and 1ζ  are the damping ratios of the beam and the mass damper, 

respectively. Assuming that the beam is subject to an evenly distributed stochastic 

load ( ),zq x t  with a cross spectral density ( ),qz
S xω Δ , where a bx x xΔ = −  is 

the absolute value of spatial separation between arbitrary positions ax  and bx , 

then 
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 (9.96) 

The physical response quantities may be obtained by acknowledging that 
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from which it follows that 
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Again, if ( )Rz
S ω  is sufficiently broad banded, then a near to resonant 

response will occur, in which case the response variances are given by (see 
Newland [38]) 
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      

 (9.99) 

and 

( )
( )

( )

( )

22
12

0 0

2
1 2

2 2 2
1 2 3 1 4 3

ˆ ˆ

2

zRz
r r r z

z

zRz

z

S
S d H d

K

S a d

K a a a a a a

ω
σ ω ω ω ω

π ω

∞ ∞

Δ Δ Δ= ≈ ⋅

= ⋅
− −

 


 
      

 (9.100) 

 
Example 9.1: 
A suspension bridge is subject to wind induced vortex shedding oscillations in its 
second vertical mode 

( ) ( )2
ˆ ˆ0.4 sin 0.6 sin 3z x xφ π π= ⋅ − ⋅ ,

 
x̂ x L=  
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Fig. 9.17 Vortex shedding excitation of second vertical mode of suspension bridge 

Basic structural data are defined by: 
 

3 (kg/m )ρ  (m)L   (m)B  (m)D  (kg/m)zm
2

(rad/s)zω
2zζ  

1.25 1200 20 3.5 9000 0.9 0.005 
 

The necessary data for the description of the vortex shedding load is the 
following: 

( )2ˆ 2q qz z
V Bσ σ ρ=  zb  St  λ  

az
K  La  

0.63 0.1 0.16 3.5 0.294 0.3 
The modal mass associated with this mode is 

 2 6
2

0

2.808 10  
L

z z zM m dx kgφ= = ⋅

 

while 2
2

0

L

z z z zm M dx mφ= =  

The spectral density of the cross sectional dynamic vortex shedding load has 
previously been described in Chapter 8.4 
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( )
22

1
exp

q sz
qz

zs z

S
bb

σ ω ωω
πω

  − = − 
   

 

where 2
qz

σ  is the variance of the cross sectional vortex shedding load, zb  is its 

band width and 2s VSt Dω π=  is the shedding frequency, V  is the mean wind 

velocity and St  is the relevant Strouhal number. At resonance 

2s zω ω=
 
 2

2
3.1 m/s

2
z

R

D
V V

St

ω
π

= = ≈  

Assuming that the coherence length Dλ  of the vortices is small as compared 

to the length L  of the system, then, with sufficient accuracy, the modal load is 
defined by 

( ) ( ) ( )
2 2

2
1 22

0

1
2 exp

L
R sz

q zR zz
zz s

S DS x dx
bb

σ ω ωω λ ω φ
π ω

  − ≈ = − 
   




  

where ( ) ( )2 2 2
2

0 0

2
L

q zR R zz z
S d D x dxσ ω ω λ σ φ

∞

= =    

It is taken for granted that the vortex shedding induced aerodynamic damping is 
defined by 

222

1
4

rz
ae az z

z L

B
K

m a D

σρζ
  
  = −  

   

 

where 2
rz

σ  is the variance of the dynamic response, az
K  is an aerodynamic 

damping coefficient and La  is a limiting motion parameter. The spectral density of 

the dynamic response at mid-span is then given by 

 ( ) ( ) ( ) ( )22

2 2
ˆ2, 2r r z r z z Rz z

S x L x L K H Sω φ ω ω = = =    

where ( ) ( ) ( )
12

2 2 2
ˆ 1 2z z z ae zz

H iω ω ω ζ ζ ω ω
−

 = − + −    
is the frequency response 

function and ( )2 2
2 2

0

L

z z z zK m x dxω φ= ⋅  is the modal stiffness associated with 
2z

φ . The 

modal load spectrum ( )Rz
S ω  at resonance (

2s zω ω= ) and the absolute value of 

the frequency response function are shown in Fig. 9.18. Due to the motion 
dependent aerodynamic damping any response calculations will involve 
iterations. 
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Fig. 9.18 Modal load spectrum (upper curve) and modal frequency response function at 

2x L=  (lower curve), 
2

3.1 m/sRV V= =  

 
Fig. 9.19 Response spectrum of displacement zr  at 2x L=  (upper curve) and 

corresponding time domain version (lower curve) when the system has no additional tuned 
mass damper, 

2
3.1 m/sRV V= =  
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The response spectrum due to vortex shedding prior to any tuned mass damper 
is shown in the upper diagram in Fig. 9.19. A corresponding time domain 
simulation is illustrated in the lower diagram. As can be seen, the maximum 
dynamic displacements are in the order of about 0.4 m. This is deemed unduly 
large. In an attempt to quench the problem it has been decided to install a mass 
damper at mid-span (see Fig. 9.17). Choosing 

0.006μ = , ( )1 2
1 1 0.994zω ω μ= + =

 
and 

( )1 3

3
0.047

8 1

μζ
μ

= =
+

 

then (See Eqs. 9.93 and 9.98) the spectral densities of the dynamic response at 
mid-span and the corresponding relative displacements of the damper are given 
by 

( ) ( ) ( )
2

22 ˆ ˆz r
r r zz Rz z z

z

x L
S H S

K

φ
ω ω

 = 
=  
 

 and
( )

( )
2

1

2

ˆ ˆz
r r Rz

z

H
S S

K

ω
ωΔ Δ =   

where 

( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

2
1 2

2 3 4
1 2 3 4

2
2

1 2 3 4
1 2 3 4

ˆ ˆ1ˆ
ˆ ˆ ˆ ˆ1

ˆˆ
ˆ ˆ ˆ ˆ1

zz

z

b i b i
H

a i a i a i a i

d i
H

a i a i a i a i

ω ω
ω ω ω ω

ω
ω ω ω ω

 + +
 =
 + + + +



=
+ + + +

 

   



   

 

and 

1

1

ˆ z

z

zM M

ω ω ω
α ω ω
μ

=
=

=




 

( )

( )

1 1

2
2 1

3 1

2
4

2

1 4

2 1

z

z

z

a

a

a

a

ζ αζ

μ α αζ ζ
α αζ μ ζ

α

= +

= + + +

=  + +  

=



  
  


 

1 1

2
2

2
2

2b

b

d

αζ

α

α

=

=

= −

 
 

 
 

2

2

4

z z aez

ae az z
z

B
K

m

ζ ζ ζ

ρζ

= −

≈
 

Plots of ( )2,r r rz z
S x L ω=  and ( )r rS ωΔ Δ  are shown in Fig. 9.20, while 

corresponding time domain simulations of ( )2,z rr x L t=  and ( )r tΔ  are shown 

in Fig. 9.21. 
The variance of the displacement response of the bridge beam and the variance 

of the relative displacement of the damper may readily be obtained from the 
simulations, or more directly, from integration of spectra, rendering 

 ( )
0

0.0386 mr r rz z z
S dσ ω ω

∞

= =  

and ( )
0

0.3443 mr r rS dσ ω ω
∞

Δ Δ Δ= =  
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Fig. 9.20 Reduced response spectral densities of  at  (solid line) and of tuned 

mass damper  relative to  (broken line) 

 

Fig. 9.21 Time domain simulations of  and  

 

zr 2x L=
rΔ zr

( )zr t ( )r tΔ
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Under the present conditions this seems manageable. However, it should be 
noted that a suspension bridge similar to the one illustrated in Fig. 9.17 will have 
an asymmetric vertical eigenmode at a lower eigenfrequency than the symmetric 
case which has been dealt with above. Therefore, an extended case study 
including both of these eigenmodes is given further consideration in Example 9.2 
below. 

The case shown above is only adequate if the problem is limited to a case with 
only one mass damper ( 1M , 1C , 1K ) intended to quench unwanted response in a 
single mode (and single component) oscillations. Let us therefore also consider the 

case of a multi-mode system with tuned mass dampers at positions jx , 

1,2, , jj N=  , i.e. the case that there are installed jN  dampers defined by the 

properties 

d j

d j

d j

diag M

diag C

diag K

 =   =  


 =   

M

C

K

1,2, , jj N=   (9.101) 

intended to quench oscillations associated with jN  (or less) modes. Still, it is 

taken for granted that all damper masses are small as compared to the modal mass 
of the system itself. The displacement of the main system may then be described 
in modal coordinates by 

( ) ( ) ( ) ( ) ( )
mod

1

,
N

z z z z zn n
n

r x t x t x tφ η
=

= ⋅ = ⋅ Φ η  (9.102) 

where 

( )

( )

1 mod

1 mod

z z z zn N

T

z z z zn N

x

t

φ φ φ

η η η

 =    


  =    

Φ

η

 

 
 (9.103) 

The mass damper displacements in original coordinates are defined by 

( ) 1

T

d j N j
t r r r =  r    (9.104) 

Since the displacement of each damper alone will represent a mode shape on its 

own, i.e. 1j jr η= ⋅ , then dr  in original coordinates is equivalent to dη  in modal 

coordinates, i.e.: 

( ) ( ) 11
T

d d j N j
t t η η η = ⋅ =   r η  (9.105) 

Thus, our real and modal degrees of freedom are defined by 
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( )
( )
,z

d

r x t

t

 
=  
 

r
r

 

and 
( )
( )

z

d

t

t

 
=  
 

η
η

η
 (9.106) 

On these degrees of freedom we impose a corresponding set of time invariant 
virtual displacements 

( )z

d

r xδ
δ

δ
 

=  
 

r
r

 (9.107) 

where 

1

T

d j N j
r r rδ δ δ δ =  r    (9.108) 

Introducing this into Eq. 9.78, then the following is obtained 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

1

1

, , ,

, ,

, ,

,

z z z z z z y z z
L L L

N j

j j j j j z j j z j z j
j

N j

j j j j j j j z j j z j j
j

z z
L

m r x t r x dx c r x t r x dx EI r x t r x dx

C r t K r t C r x t K r x t r x

M r t C r t K r t C r x t K r x t r

q x t r x dx

δ δ δ

δ

δ

δ

=

=

′′ ′′+ +

 − + − − 

 + + + − − 

=

  







 

 

  

 (9.109) 

The strategy is then to use the orthogonality properties of the mode shapes 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

z n m

z n m
L

y n m

m x x x

c x x x dx

EI x x x

φ φ
φ φ
φ φ

 
  = 
 ′′ ′′ 

 0  (9.110) 

and successively introduce 

11 1

1

mod 1mod mod

1)  and 

)  and 

)  and 

T

z z z d j N j

T

z z z d j Nn n j

T

z z z d j NN N j

r r r r r

n r r r r r

N r r r r r

δ φ δ δ δ δ δ

δ φ δ δ δ δ δ

δ φ δ δ δ δ δ

 = =  




 = =   



  = =   

r

r

r

 

 

 

 

 

 
(9.111) 
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Replacing ( ),zr x t  by ( ) ( )z zx t⋅Φ η  and ( )jr t  by ( )j tη  this will yield 

mod jN N+  equations, where the equation associated with 

( ) ( ) 1 and 
T

z z z d j Nn n j
r x x r r r rδ φ δ δ δ δ δ = ⋅ =  r    is given by 

 

( ) ( ){ ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ){ ( ) ( ) ( ) ( ) ( ) ( )}
( )

2

1

2

1 1 1

1

N j

z z z z z z z j z j zn n n n n n n n n
j

N jN N

j z j z j z j j j z j jn n n n
j j j

N j

j j j j j j j z j z j z j zn n n n
j

z zn n

r M t C t K t C x t

K x t C x t K x t

r M t C t K t C x t K x t

r R t

δ η η η φ η

φ η φ η φ η

δ η η η φ η φ η

δ

=

= = =

=

+ + +

+ − − 


+ + + − −

=



  



   



  



 
(9.112) 

where 

2

2

2

z znzn

z z zn n
L

zn y zn

mM

C c dx

K EI

φ

φ

φ

  
  
 = 
  
 ′′    








 

and ( ) ( ) ( ),z z zn n
L

R t x q x t dxφ=   (9.113) 

Like usual, it is convenient to define the modal property matrices: 

z zn

z zn

z zn

diag M

diag C

diag K

 =  
 =  


 =   

M

C

K

 

 

 
 

and ( ) 1 mod

T

z z z zn N
t R R R =   

R      (9.114) 

In addition to this it is convenient to define (see also Eq. 9.101): 

( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 111 mod

1 mod

1 mod

z z zn Nz

z j z j z j z jn Nd

z N j z N z N z Nj n j N j

x x xx

x x x x

x x x x

φ φ φ

φ φ φ

φ φ φ

  
  
  
  
 = = 
  
  
  
    

Φ

ΦΦ

Φ

 

   

 
   

 

 (9.115) 

and 



394 9   Damping 

T
d d d

T
d d d

= 


= 

K Φ K Φ

C Φ C Φ



  (9.116) 

The total mod jN N+  equations contained in Eq. 9.112 may then conveniently be 

written 

T
z zT z z d d d

d dd d d d

T
z Tz d d d z

dd d d

δ

δ

       + − +       −       
    + − + =     −       

η ηM 0 C C Φ C
r

η η0 M C Φ C

ηK K Φ K R
r

ηK Φ K 0

   
 

  
 (9.117) 

As can be seen, the pre-multiplication by Tδr  may be omitted, and thus the 
equilibrium condition in total modal coordinates is given by 

T
z zz z d d d

d dd d d d

T
zz d d d z

dd d d

      + −+       −       
    + −+ =    −      

η ηM 0 C C Φ C
η η0 M C Φ C

ηK K Φ K R
ηK Φ K 0

   
 

  
 (9.118) 

It is readily seen that the total degrees of freedom (see Eq. 9.106) 

( )
( )

( ) ( ) ( ) ( ),z z z zz

d d d

r x t x t tx

t

     ⋅  
= =      

     

Φ η ηΦ 0
r η η0 I

 (9.119) 

may alternatively be expressed in relative displacement degrees of freedom 
 

( )
( )

( )
( )

( ) ( )
( )

,,

,

zz zz

d ddz j d

r x tr x t tx

t tx t

     
= =      Δ+ Δ       

ηΦ 0
r ηΦ Ir r

 (9.120) 

or 

( )
( )

( ) ( )
( )

( ) ( ),z z z z
rel rel

d d

r x t x t x
t

t t

     
= = =     Δ Δ     

Φ η Φ 0
r η

r η 0 I
 (9.121) 

where the relative modal coordinate vector is given by 

( ) [ ]T
rel z dt = Δη η η  (9.122) 
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(and where I  is an jN  by jN  identity matrix, while the size of 0  depend on its 

first or second row position, i.e. and 0  is a 1 by jN  vector when it is located on 

the first row while 0  is a 1 by modN  vector when it is located on the second 

row). Thus, by combining Eqs. 9.119 and 9.120 it is seen that 

( ) ( ) ( ) ( )
( )

zz zz

dd d

tt xx

t

     
=       Δ       

ηη Φ 0Φ 0
ηη Φ I0 I

 (9.123) 

rendering 

( ) ( )
( )

zz

d dd

tt

t

    
=      Δ    

I 0 ηη
Φ I ηη

 (9.124) 

Defining the transformation matrix 

d

 
=  
 

I 0
ψ

Φ I
 (9.125) 

then 

( ) ( )relt t=η Ψη  

Introducing this into Eq. 9.118 and pre-multiplying by TΨ  then the equilibrium 
condition in relative modal degrees of freedom is given by 

( ) ( ) ( ) ( )rel rel relt t t t+ + =Mη Cη Kη R     (9.126) 

where 

T T
T z z d d d d d

d d d d

   += =   
    

M 0 M Φ M Φ Φ M
M Ψ Ψ

0 M M Φ M

   (9.127) 

T T
T zz d d d d d

z
dd d d

   + −= =   
−    

 C 0C Φ C Φ Φ C
C Ψ Ψ

0 CC Φ C
 (9.128) 

T T
T zz d d d d d

z
dd d d

   + −= =   
−    

 K 0K Φ K Φ Φ K
K Ψ Ψ

0 KK Φ K
 (9.129) 

 
and 
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T z z   
= =   

   

R R
R Ψ

0 0

   (9.130) 

A general solution to the modal equilibrium condition in Eq. 9.126 may be 

obtained in a frequency domain approach. It is then convenient first to split M  
into 

ˆ ˆ
z z d z

d d d

  
= +   

    

   M 0 M DΦ M D
M

0 M M Φ 0
 (9.131) 

where 1ˆ T
z d d
−=D M Φ M , after which the entire equation is pre-multiplied by 1−K . 

Since 

1
1

1

ˆ ˆNmodz z d

Nd djd

−
−

−

      
 = +                  

  
I 0K 0 M 0 DΦ D

K M
0 I0 M Φ 00 K

 (9.132) 

it is seen that the following is obtained: 

mod mod

mod

2
mod mod

2
mod

1 1
mod mod

1
1modmod

ˆ ˆ

2

N N N j z

dN N Nj j

z N N j N d z

dd NN N d jj

z N N z N Nj j z zz

NdN N d jjN N dj

−

−

− −

−

      Δ    
   +     +    Δ     
        + =    Δ      

I 0 η
η0 I

ω 0 I DΦ D η
ηΦ I0 ω

ω 0 ζ 0 K Rη
0η0 ζ0 ω




 






 (9.133) 

where 
z zn

d j

diag

diag

ω

ω

  =  


 =  

ω

ω
 

and 
z zn

d j

diag

diag

ζ

ζ

  =  


 =  

ζ

ζ
 

and where the indices on the identity and zero matrices indicate their size, i.e. the 
number of rows and columns (a single index means that the matrix is square). 
Taking the Fourier transform 

( )
( )

z z i t

d d

e
η ω

ηω

ω
ωΔ

  
=   Δ     


aη
η a

 and 
( )11

1 1

z Rz z i tz

N Nj j

e ω

ω

ω−−   
 = 
     


K aK R

0 0


 

 

throughout Eq. 9.133 will then require that for every ω -setting 
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( )
( ) ( )

( )1

1

ˆ z Rz z

Nd j

η

η

ωω
ω

ω

−

Δ

  
 = ⋅ 
     

K aa
H

a 0




 (9.134) 

where 

( )
( ){ }

{ }

1
2 2

mod mod

2 2

ˆ ˆˆ ˆ ˆ2
ˆ

ˆ ˆ ˆ2

N z N d z z z

d d N d d dj

i

i
ω

−
 − + + −
 =  

− − +  

I ω I DΦ ω ζ ω D
H

ω Φ I ω ω ζ
 (9.135) 

and where ˆ z zn
diag ω ω =  ω

 
and ˆ

d jdiag ω ω =  ω . As shown in Eq. 

9.121, at a particular position rx  where we wish to determine the structural 

displacement response ( ),z rr x t  and the corresponding relative displacement 

response of all the jN  mass dampers ( )d tΔr  

( )
( ) ( ) ( )

( )
,z r z

r r
d d

r x t t
x

t t

   
=   Δ Δ   

η
ψ

r η
 

where 

( ) 1

mod

z r N j
r

N N Nj j

x 
 =
  

Φ 0
Ψ

0 I
 (9.136) 

A Fourier transform will then render 

( )
( )

( )
( )
( )

,r r zz
r r

r

a x
x

η

η

ωω
ωω ΔΔ

  
=   

     

a
ψ

aa
 (9.137) 

Thus 

( )

( )
( )
( ) ( )

( )
( )

( ) ( )
( )

( ) ( )
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*

*

*
1 1

1 1

1
, lim

1
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T
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T
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T
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T
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z zR Rz z
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T
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T
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T
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η η

η η

ω
π

ω ω
π ω ω

ω ω
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π

→∞ Δ Δ

→∞ Δ Δ
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→∞

   
= =   

   

          =      
            

            
          

S
a a

a a
ψ ψ

a a

K a K a
ψ H ψ H

0 0

 
  T



  

(9.138) 

from which the following is obtained 



398 9   Damping 

( ) ( ) ( ) ( ) ( ) ( )* ˆˆ ˆ, T T
r r r r r rRx x xω ω ω ω= ⋅ ⋅ ⋅ ⋅S Ψ H S H Ψ  (9.139) 

where (recalling that zK  is diagonal and real) 

( ) ( ) ( )1 1
mod

mod

ˆ
T

z z N NR jz
R

N N Nj j

ω
ω

− − ⋅ ⋅ =  
  

K S K 0
S

0 0




 
 (9.140) 

and 

( ) ( ) ( )

( )

( ) ( ) ( )

*

1 mod

1
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where  

and  ,

T
R R Rz z zT

T

R R R Rz z z zn N

q zR z nzn
L

T

a a a

a t a x x dx

ω ω ω
π

ω

ω φ

→∞

 = ⋅

  =   
 =




S a a

a

  

   



   

(see also Eq. 9.113), and where ( ),qz
a x ω  is the Fourier amplitude of the 

distributed load ( ),zq x t . 

 
Example 9.2: 

 

 

Fig. 9.22 Suspension bridge vertical modes susceptible to vortex shedding 
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The suspension bridge in Example 9.1 has two onerous vertical eigenmodes 
and corresponding eigenfrequencies and damping ratios 
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 =
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which are vulnerable to wind induced vortex shedding oscillations, see Fig. 9.22 
above. Therefore, it has been decided to install three mass dampers (A, B and C) 
with the mass properties 0.0025A Cμ μ= =  and 0.005Bμ =  at positions 

0.2Ax L= , 0.5Bx L=  and 0.8Cx L= . Since mass dampers A and C are 
primarily intended to quench possible oscillations in the first vertical mode while 
the mass damper B is intended to quench oscillations in the second, it is taken for 
granted that 

 
( )

( )
1

2

1

1

A C z A

B z B

ω ω ω μ

ω ω μ

= = + 
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Basic structural data and load properties are given in Example 9.1 above. 
Since there are two modes that may be excited, there will be two critical wind 
velocities 

 

1
1 1

2
2 2
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2
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z
s z R

z
s z R

D
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ω ω
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=  = ≈

=  = ≈
 

for the onset of resonant vortex shedding induced oscillations. There are two 
mode shapes and three mass dampers, and hence, the size of the system is 5 by 5. 
It is necessary to establish the following matrices: 

( ) ( )1 2z z zx xφ φ =  Φ  

( )
( )
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( ) ( )
( ) ( )
( ) ( )

1 2

1 2

1 2

A Az zz A

d z B B Bz z

z C C Cz z

x xx

x x x

x x x

φ φ

φ φ

φ φ

 
   
   = =   
    

 

Φ
Φ Φ

Φ
 

 1

2

0

0

z
z

z

M

M

 
=  
  

M



  where 

2
11
2

02 2

L
zz

z
z z

M
m dx

M

φ

φ

  
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Assuming that the covariance between vortex shedding forces at 
1RV  and 

2RV  

are negligible, assuming that the resonance cases 
1RV  and 

2RV  are most relevant 

cases, i.e. 2s VSt Dω ω π= =  and taking it for granted that the tuned mass 

dampers are effective such that ( ),zr x t  is small, in which case 0aez
ζ ≈ ,  then 
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where 
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In this case it will suffice to  
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because due to symmetry or asymmetry the response at Cx  will be equal to or 

opposite to the response at Ax . What then remains is to calculate 

1ˆ T
z d d
−=D M Φ M  and the frequency response function 
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 and then the spectral 

density of the response components are given by 
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Setting 
1RV V= , then the spectral densities of the dynamic response of the 

main system at 0.2r Ax x L= =  and of the relative dynamic response of the mass 

damper A are shown in Fig. 9.23. As could be expected, they are centred on the 

resonance frequency 
1

0.7 z rad sω = . Corresponding time domain plots are 
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shown in Fig. 9.24. The response is not particularly narrow banded, and hence, a 
fairly high peak factor should be adopted. As can be seen, the excitation of the 

main system at Bx  and mass damper B are small. Similarly, setting 
2RV V= , 

then the spectral densities of the dynamic response of the main system at 

0.5r Bx x L= =  and of the relative dynamic response of the mass damper B are 

shown in Fig. 9.25. This time they are centred on the resonance frequency 

2
0.9 z rad sω = . Corresponding time domain plots are shown in Fig. 9.26. 

Again the response is not particularly narrow banded, while the excitation of the 

main system at Ax  and mass damper A are small. However, as to whether or not 

relative damper displacements in the order of 1 m±  are manageable is a 
practical design question. 

 

 

Fig. 9.23 1RV V= , response of main system to the left, response of mass dampers A and B 

to the right 
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Fig. 9.24 1RV V= , response of main system top diagram, response of mass damper A in 

lower diagram 

 

Fig. 9.25 2RV V= , response of main system to the left, response of mass dampers A and 

B to the right 
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Fig. 9.26 2RV V= , response of main system top diagram, response of mass damper B in 

lower diagram 

 
Fig. 9.27 Arbitrary mass damper number  attached to node  

The Mass Damper in a Finite Element Format: 
The theory above may also be formulated in a finite element format. It is in the 

following assumed that the system contains N  elements, pN  nodes and jN  

j p



9.4   The Tuned Mass Damper 405 

mass dampers. As illustrated in Fig. 9.27 it is taken for granted that the mass 
dampers are all attached to a node, i.e. that an arbitrary mass damper j  with 

properties jM , jC  and jK  is attached to node p . 

Let the damper properties be defined by the diagonal matrices 

d j

d j

d j

diag M

diag C

diag K

 =   =  


 =   

M

C

K

1,2, , jj N=   (9.141) 

and, at global level, the rN  physical degrees of freedom of the system and 

corresponding load components are defined by 

1

1
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r r r
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 

 
 (9.142) 

At element level the physical degrees of freedom and corresponding force 
components are as usual defined by 
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 (9.143) 

As shown in Chapter 4, the equilibrium condition at element level is given by 

( ) ( ) ( ) ( )n n n n n n nt t t t= + +F m d c d k d   (9.144) 

where nm , nc  and nk  are defined in Chapter 4.2. The connection between local 

and global degrees of freedom is defined by the connectivity matrix nA  such that 

n n=d A r  (9.145) 

Let the jN  damper degrees of freedom be defined by 

1

T

d j N j
r r r =  r    (9.146) 
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In addition to this, it is necessary to define a vector pr  with length jN , containing 

all the global degrees of freedom associated with a mass damper (i.e. the global 
degrees of freedom at a node where there is attached a mass damper and whose 
degree of freedom is parallel to that response motion) 

( ) at mass damper number  
T

p p pj
r r j = =  

r      (9.147) 

Furthermore, it is convenient to define a rN  by 1 vector ja  

( )0 1 at the  position of mass damper number  0
T

j pr j =  a  
 

(9.148) 

such that an arbitrary p j
r  associated with mass damper number j  is identified by 

T
p jj

r = a r . Thus, the jN  by rN  connectivity matrix pA  between pr  and r  is 

defined by 

p p=r A r
 
where 1

T

p j N j
 =  A a a a   (9.149) 

Finally, it is convenient to define the vectors 

1

1

T

d j N j

T

d j N j

F F F

Q Q Q

 =   

 =   

F

Q

 

 
 (9.150) 

 

Fig. 9.28 Internal forces in mass damper number j  
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where jF  is the sum of internal spring and damper forces associated with mass 

damper j  and jQ  is the corresponding inertia force, see Fig. 9.28, from which it 

is seen that 

( ) ( ) ( ) ( )d d d p d d p d d p d d p= − + − = − + −F C r r K r r C r A r K r A r     (9.151) 

and 

d d d=Q M r  (9.152) 

To the equilibrium condition of this system there is imposed a set of virtual 
displacements 

1

T

p Nr
r r rδ δ δ δ =  r    (9.153) 

on the rN  degrees of freedom of the system itself, and 

1

T

d j N j
r r rδ δ δ δ =  r    (9.154) 

on the jN  mass damper degrees of freedom. Accordingly n nδ δ=d A r  and 

p pδ δ=r A r . Thus 

( )
1

0
N

T T T T
n n p d d d d

n

δ δ δ δ
=

− + − + =r R d F r F r F Q  (9.155) 

from which the following is obtained 

( )
( )

T T T T T
p d p p d p p d d p d d

T T
d d p d p d d d d d d

δ

δ δ

+ + + + − −

+ − − + + + =

   

  

r Mr Cr Kr A C A r A K A r A C r A K r

r C A r K A r M r C r K r r R
(9.156) 

where 

1

nN
T
n n n

n
n

=

  
   =   
     


M m

C A c A

K k
 (9.157) 

and nm , nc  and nk  are cross sectional mass , damping and stiffness matrices of 

element number n. This may more conveniently be written 
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T T T
p d p p d

d d d dd p d

TT T
p d p p d

d dd p d

δ
δ

δ
δ

  + −        +          −         
 + −      + =       −        

C A C A A Cr M 0 r r

r 0 M r rC A C

K A K A A K r r R
r r 0K A K

 
 

 (9.158) 

As can be seen, the pre-multiplication by the virtual displacement vectors may 

be omitted, and thus the equilibrium condition of a discrete rN  by rN  system 

with a set of jN  mass dampers is given by 

T T
p d p p d

d d dd p d

T T
p d p p d

dd p d

 + −     
+       −       

 + −    
+ =     −     

C A C A A CM 0 r r

0 M r rC A C

K A K A A K r R
r 0K A K

 
 

 (9.159) 

which may also be transformed into relative coordinates 

Nr

p d p d p Nd dj

       
= = =        + + Δ Δ         

I 0r rr r
r r A r r A Ir r

 (9.160) 

where Nr
I  and N j

I  are rN  by rN  and jN  by jN  identity matrices. Thus 

rel
d d

   
=   Δ   

r r
Ψ

r r
 

where 
Nr

rel
p N j

 
=  
  

I 0
Ψ

A I
 (9.161) 

By introducing this into the equilibrium equation above and pre-multiplication 

by T
relΨ  then the following equilibrium condition in relative degrees of freedom 

is obtained 

T T
p d p p d

d d d d dd p d

 +            + + =             Δ Δ Δ             

M A M A A M r C 0 r K 0 r R
r 0 C r 0 K r 0M A M

 
 

 (9.162) 
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Chapter 10 
Rectangular Plates 

10.1   Introduction 

The development below is limited to cover the theory of rectangular thin and 
plane plates. It is often referred to as the Kirchhoff-Love theory, as it was first 
presented by A.E.H. Love [45] based on basic assumptions outline by G.R. 
Kirchhoff (1824 – 1887). Perpendicular to the plate it is subject to a fluctuating 

and distributed load ( ), ,zq x y t  (with unit 2N m ). In the plane of the plate it 

may be subject to time invariant evenly distributed axial loads xN  and yN (with 

units N m ). It is taken for granted that the plate is homogeneous and isotropic, 

that it is linear elastic, and, although this is not a general requirement, it is most 
often assumed that the plate thickness h  is constant. Since the plate is thin as 

compared to its overall dimension ( and x yh L L ) it is assumed that stresses 

perpendicular to the plate plane may be ignored. For the same reason Navier’s 
 
 

 

Fig. 10.1 Rectangular, plane and isotropic plate 
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hypothesis [4] is adopted, implying that a straight section which is normal to the 
middle surface before any plate deformations will remain straight after 
deformations, i.e. there are no cross sectional distortion. Finally, the theory is 

limited to plate deformations  which are small, such that for any cross 

sectional rotation  it will be sufficiently accurate to assume that  and 

that , . Finally, in establishing the relevant 

equilibrium conditions it is taken for granted that the principle of d’Alambert 
applies. Thus, it is seen that the Kirchhoff-Love theory is an extension of the beam 
theory first presented in Chapter 1.2. 

 

 

Fig. 10.2 Definition of stress components 

The relevant normal and shear stress components xσ , yσ , xyτ , yxτ , xzτ  and 

yzτ  are shown in Fig. 10.2. Considering an infinitesimal element dx dy dz⋅ ⋅  then 

the requirements with respect to force equilibrium in the x and y  directions 

 

( ) ( )
( ) ( )

0

0

x x x yx yx yx

y y y xy xy xy

d dydz dydz d dxdz dxdz

d dxdz dxdz d dydz dydz

σ σ σ τ τ τ

σ σ σ τ τ τ

+ − + + − = 


+ − + + − = 
          (10.1) 

 

and moment equilibrium about a vertical axis sz  through the middle of the 

element 
 

 

( ), ,zr x y t

α cos 1α ≈
sin tan zr jα α≈ ≈ ∂ ∂ or j x y=
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( ) ( ) 0
2 2 2 2xy xy xy yx yx yx
dx dx dy dy

d dydz dydz d dxdz dxdzτ τ τ τ τ τ+ + − + − =
   

(10.2) 

will render               
0

0

x yx

y xy

x y

y x

σ τ
σ τ

∂ ∂ + ∂ ∂ = 
∂ ∂ + ∂ ∂ = 

       and     xy yxτ τ=
           

(10.3) 

Thus, for the relevant in plane stress components it will suffice to focus on xσ , 

yσ  and xyτ . 

 

Fig. 10.3 Superposition of in-plane strain components 

The relationship between stresses xσ , yσ , xyτ  and corresponding strain 

components xε , yε  and xyγ  may, as illustrated in Fig. 10.3, be obtained by using 

the principle of superposition, i.e. by adding the effects of each strain component 
separately: 

 alone 

 alone 

 alone 

x x
yxx

xy x

y y y x
y y

x y

xy
xy xy xy xy

E

E E
E

E E

G
G

ε σ σσσ ε υε υε

ε σ σ σσ ε υ
ε υε

ττ γ τ γ

=   = −= −  
=    = −  = −  

  = = 


                    

(10.4) 

where E  is the elastic normal stress modulus, G  is the corresponding shear 
stress modulus and υ  is the Poisson ratio. (For an elastic homogeneous and 

isotropic material the shear stress modulus is given by ( )2 1G E υ=  +   , see 

e.g. Timoshenko & Goodier [5].) Thus, 
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1 1

1 1

1

0

0

0 0

x x

y y

xy xy

E E

E E

G

υε σ
ε υ σ
γ τ

− −

− −

−

    −
    

= −    
    

                                    

(10.5) 

 

from which the following in-plane stress-strain relationship is obtained 
 

( )
2

1 0

1 0
1

0 0 1 2

x x

y y

xy xy

E
σ υ ε
σ υ ε

υ υτ γ

    
    =    −    −                                 

(10.6) 

 

First, it is for simplicity assumed that the displacements ( ), ,zr x y t  are so small 

that they will only cause insignificant stretching, i.e. that 
 

( ) ( )

( ) ( )

1 2 22 2

1 2 22 2

1 2

1 2

z z

z z

dx dr dx r x dx

dy dr dy r y dy

 + ≈ + ∂ ∂ ≈  


  + ≈ + ∂ ∂ ≈                        

(10.7) 

 

and thus, the normal stresses xσ  and yσ  that are associated with the deformation 

zr  will only create pure plate bending, as illustrated in Fig. 10.4. It is seen that for 

an infinitesimal element dx dy dz⋅ ⋅  

 
2

2 2

2

2

2 2

2

2 2

2

2

z z z

z
x

z z z

z
y

z z z z z z

z
xy

r r r
dx z z

x xx r
z

dx x

r r r
dy z z

y yy r
z

dy x

r r r r r r
dx z z dx z z

x y x x y x y y r
z

dx dx x y

ε

ε

γ

 ∂ ∂ ∂− + ⋅ + ⋅   ∂ ∂∂ ∂  = = − ⋅ ∂ 
  ∂ ∂ ∂− + ⋅ + ⋅   ∂ ∂∂ ∂ = = − ⋅ 

∂
   ∂ ∂ ∂ ∂ ∂ ∂− + ⋅ + ⋅ − + ⋅ + ⋅      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   = + = − ⋅

∂ ∂









   

(10.8) 
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Fig. 10.4 Pure plate bending 

 

Thus                      

2 2

2 2

22

zx

y z

xy z

r x

z r y

r x y

ε
ε
γ

   ∂ ∂
  

= − ⋅ ∂ ∂  
   ⋅ ∂ ∂ ∂      

                                            (10.9) 

 
from which the following connection between the instantaneous displacement 

( ), ,zr x y t  and the ‘cross sectional’ stress resultants xM , yM  and xyM  

(moments per unit length), see Fig. 10.5, is obtained: 

 

( )
( )

2 2
2

2 2

2 2

1 0

1 0

0 0 1

0 0 1

x y
zh

y x
z

xy yxh
z

yx xy

M z
r x

M z
dx D r y

M z
r x y

M z

σ υ
σ υ
τ υ

υτ
−

−       ∂ ∂       − −     = = ∂ ∂      − −        ∂ ∂ ∂  −   −     



       

(10.10) 
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where                 ( )
2 3

2
2 2

21 12 1

h

h

E Eh
D z dz

υ υ−

= =
− −                                     (10.11) 

 

is the plate stiffness (from which it is also seen that yx xyM M= − ). 

10.2   The Differential Equation of Motion 

What then remains is to establish the equilibrium conditions for an infinitesimal 

element dx dy⋅ . For such an element the stress resultants (per unit length) are 

defined in Fig. 10.5. In addition to these forces, the element is subject to external 

forces zq dxdy , xN dy  and yN dx  ( xN  and yN  assumed constants) as well as 

resisting inertia and damping forces ( )zmr dxdy  and ( )zcr dxdy , where m  is the 

plate mass ( 2kg m ) and c  is its damping coefficient (with unit 3Ns m ). The 

relevant plate deformations and the variation of stress resultants in the y  direction 

are illustrated in Fig. 10.6. A similar variation will occur in the x  direction. The 
normal force variation (in both x  and y  directions) is illustrated in Fig. 10.7. 

Thus, the following equilibrium requirements are obtained: 
 

1) Force equilibrium in x -direction: 

( ) 0yx yx yxV dV dx V dx+ − =
  
   0yxdV =

 

2

2

0
h

yx yx
h

V dzτ
−

 = =
     

(10.12) 

2) Force equilibrium in y -direction: 

( ) 0xy xy xyV dV dy V dy+ − =
  
  0xydV =

2

2

0
h

xy xy
h

V dzτ
−

 = =         (10.13) 

3) Force equilibrium in z -direction: 

    

( ) ( ) ( )
2 2

2 2
0

z z z xz xz xz yz yz yz

z z z z z z
x x y y

q dxdy mr cr dxdy V dV dy V dy V dV dx V dx

r r r r r r
N dx dy N dy N dy dx N dx

x x y xx y

− + + + − + + −

   ∂ ∂ ∂ ∂ ∂ ∂
+ + − + + − =      ∂ ∂ ∂ ∂∂ ∂   

 
 

     

2 2

2 2
yzxz z z

z z x y z

VV r r
mr cr N N q

x y x y

∂∂ ∂ ∂+ − − − − =
∂ ∂ ∂ ∂

 
                  

(10.14) 
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4) Moment equilibrium about an axis through the mid-point p  and parallel to x: 

( )
( ) ( )

2 2

0

yz yz yz

x x x yx yx yx

V dV dx dy V dx dy

M dM dx M dx M dM dy M dy

+ + + 


+ − + + − =   

                                     
yxx

yz

MM
V

y x

∂∂
= − −

∂ ∂
                                       (10.15) 

5) Moment equilibrium about an axis through the mid-point p  and parallel to y: 

( )
( ) ( )

2 2

0

xz xz xz

y y y xy xy xy

V dV dy dx V dy dx

M dM dy M dy M dM dx M dx

− + − + 


+ − + + − =   

                            
y xy

xz

M M
V

x y

∂ ∂
= +

∂ ∂                                         

(10.16) 

6) Moment equilibrium about an axis through the mid-point p  and parallel to z: 

( ) ( ) 0
2 2 2 2xy xy xy yx yx yx
dx dx dy dy

V dV dy V dy V dV dx V dx+ + − + − =  

                                        xy yxV V=                                                (10.17) 

 

 

Fig. 10.5 Definition of stress resultants 
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Fig. 10.6 Deformation and cross sectional stress resultant variation in y -direction 

 

Fig. 10.7 The effects of in-plane (membrane) axial forces 

Thus, Eq. 10.14 may be further developed into (see Eq. 10.10): 

( )

2 2

2 2

2 2 22 2 2

2 2 2 2

2 2 22 2

2 2 2

2 22

2 2

2 1

yzxz z z
z z x y

xy yx yx z z
z z x y

z z z
z z

z

VV r r
mr cr N N

x y x y

M M MM r r
mr cr N N

x y x yy x x y

r r r
mr cr D D

x y x yx x y

r r
D

y x

υ υ

υ

∂∂ ∂ ∂+ − − − −
∂ ∂ ∂ ∂

∂ ∂ ∂∂ ∂ ∂= + + − + − − −
∂ ∂ ∂ ∂∂ ∂ ∂ ∂

   ∂ ∂ ∂∂ ∂= + + + + −      ∂ ∂ ∂ ∂∂ ∂ ∂   

∂ ∂∂+ +
∂ ∂

 

 

 

2 2

2 2 2
z z z

x y z
r r

N N q
y x y

  ∂ ∂− − =  ∂ ∂ ∂      

 (10.18) 
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from which the following differential equation is obtained: 
 

4 4 4 2 2

4 2 2 4 2 2
2z z z z z

z z x y z
r r r r r

mr cr D N N q
x x y y x y

 ∂ ∂ ∂ ∂ ∂+ + + + − − =  ∂ ∂ ∂ ∂ ∂ ∂ 
 

     

(10.19) 

 

In general eigenvalues may be obtained under the condition that c  and zq  are 

zero, in which case the plate is free oscillate in an unknown eigenfrequency nω  

and a corresponding eigenmode ( ),n x yϕ , i.e. 

 

( )Re , i tn
z nr x y e ωϕ = ⋅                                           

(10.20) 

 
Thus, Eq. 10.19 is transformed into the following eigenvalue problem: 

 
4 4 4 2 2

2
4 2 2 4 2 2

2 0n n n n n
x y n nD N N m

x x y y x y

ϕ ϕ ϕ ϕ ϕ ω ϕ
 ∂ ∂ ∂ ∂ ∂+ + − − − =  ∂ ∂ ∂ ∂ ∂ ∂       

(10.21) 

10.3   Solution to the Eigenvalue Problem 

There are three possible solution strategies: to search for an exact solution to the 
differential equation throughout the space of the system, to apply an approximate 
solution to an energy formulation (e.g. Rayleigh-Ritz) or to apply an approximate 
solution to the weighted residuals method of Galerkin. 

The choice of an exact solution will render a transcendental equation whose 
roots may be obtained numerically. This solution strategy is in general rather 
cumbersome. Nonetheless, the method, including a few examples, is briefly 
presented below. Many of the classic solutions have been obtained by an energy 
formulation. This method is not included below, where the main focus is on the 
Galerkin method of weighted residuals, as this approach is far more effective and 
well suited for practical applications (and computer programming) than any other 
analytical method. 

 
Exact Eigenvalue Solution to the Differential Equation 

 

It is seen from Eq. 10.21 that the second and fourth derivatives of ( ),n x yϕ  must 

be congruent to ( ),n x yϕ  itself, i.e. the solution is given by a sum of harmonic 

and hyperbolic functions. Thus, for an isotropic rectangular plate with constant 
mass and thickness, the general solution to the eigenvalue problem is given by 
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( ) ( ) ( ),n p kx y x yϕ ϕ ϕ= ⋅                                     (10.22) 

where 
 

( ) ( ) ( ) ( ) ( )1 2 3 4ˆ ˆ ˆ ˆ ˆsin sinh cos cosh

ˆ or ,      or 

j j j j j

x y

s c s c s c s c s

j p k s x L y L

ϕ λ λ λ λ = + + + 


= =      

(10.23) 

 

The necessary connection between nω  and jλ  may be obtained by introducing 

Eqs. 10.22 and 10.23 into the differential equation (Eq. 10.21), while jλ  may be 

determined from the joint solution of the relevant boundary conditions: 
 

1) At ˆ ˆ0  or  1s s= =  for simply supported edge:   2

2

0   0

=0 0
ˆ

z j

x j

y

r

M

M s

ϕ

ϕ

=  =


∂   = ∂

 

 

2) At ˆ ˆ0  or  1s s= =  for fixed (clamped) edge:  

0          0

0
0

ˆ0

z j

jz

z

r

r x

r y s

ϕ
ϕ

=  =


∂∂ ∂ = 
 =∂ ∂ = ∂

 

 

3) At ˆ ˆ0  or  1s s= =  for free edge:                        

2

2

3

3

0
0

0 ˆ

0
0

0 ˆ

x j

y

xz j

yz

M

M s

V

V s

ϕ

ϕ

 = ∂ = = ∂ 


= ∂  = = ∂

 

where ˆn n n n n
j x jx L sϕ ϕ−∂ ∂ = ⋅∂ ∂  and similarly ˆn n n n n

j y jy L sϕ ϕ−∂ ∂ = ⋅∂ ∂ , 

and 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2

2 2

3

3 3

1 ˆ ˆ ˆ ˆsin sinh cos cosh
ˆ

ˆ ˆ ˆ ˆcos cosh sin sinh
1

ˆ ˆ ˆ ˆsin sinh cos coshˆ

ˆ ˆ ˆ ˆcos cosh sin sinh1

ˆ

n

n
j j j j

j

j j j j
n

j j j j
j

j j j jn

j

s s s s
s

s s s s

s s s ss

s s s s

s

ϕ
ϕ λ λ λ λ

λ
λ λ λ λ

ϕ
λ λ λ λλ
λ λ λ λϕ

λ

 
 ∂   

  ∂
   −
 ∂  =
   − −∂   
   −∂   

 ∂ 

1

2

3

4

c

c

c

c

 
 
 
 
 
 

  (10.24) 
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Four boundary conditions will always render a four by four coefficient matrix 

which multiplied by [ ]1 2 3 4
T

c c c c  is equal to zero, and thus, to obtain a 

non-trivial solution the determinant of the coefficient matrix must be equal to 
zero. 

 
 

Example 10.1 Exact Solution to the Eigenvalue Problem 
 

 

Fig. 10.8 Simply supported rectangular plate 

The case of a plate with all four edges simply supported (i.e. the edges are 
restrained from any motion in the z  direction but free to rotate about the x  and 
y  axis) is illustrated in Fig. 10.8 above. In this case the solution is particularly 

simple: 
 

( ), sin sinn
x y

x y
x y p k

L L
ϕ π π

  
= ⋅          

with any combination of 
1,2,3,

1,2,3,

p

k

=
 =




 

 
Introducing this into the differential equation (10.21) will then render 

 
1 222 22 2 224

yx
n

x y x y

NND p k p k

m L L m L m L

πππω
          = + + +                    
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a) Pure bending of square plate: if x yL L L= =  and 0x yN N= =  then 

 ( )( )22 2
n p k L D mω π= + , rendering 

 1st eigenmode: 1 and 1p k= =   ( )2
1 2 L D mω π=  

 2nd eigenmode: 1 and 2p k= =   ( )2
2 5 L D mω π=  

 3rd eigenmode: 2 and 2p k= =   ( )2
3 8 L D mω π=  

 4th eigenmode: 1 and 3p k= =   ( )2
4 10 L D mω π=  

 and so on. 
 

b) Pure bending of rectangular plate: if x yL L≠  but 0x yN N= =  then 

 

22
2y

n
x y

L D
p k

L L m

πω
     = +          

 

 E.g., if 2y xL L =  

 1st eigenmode: 1 and 1p k= =   ( )2
1 5 L D mω π=  

 2nd eigenmode: 1 and 2p k= =   ( )2
2 8 L D mω π=  

 3rd eigenmode: 1 and 3p k= =   ( )2
3 13 L D mω π=  

 4th eigenmode: 2 and 1p k= =   ( )2
4 17 L D mω π=  

 and so on. 
 

c) The square membrane: if x yL L L= = , x yN N N= =  and 0D ≈  then 

 2 2
n

N
p k

L m

πω = + , rendering 

 1st eigenmode: 1 and 1p k= =   1 2L N mω π=  

 2nd eigenmode: 1 and 2p k= =   2 5L N mω π=  

 3rd eigenmode: 2 and 2p k= =   3 8L N mω π=  

 4th eigenmode: 1 and 3p k= =   4 10L N mω π=  

 and so on. 
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Galerkin’s Method 

By far the most effective solution to the eigenvalue problem is obtained by using 
the Galerkin method (of weighted residuals, see Chapter 1.7) as follows. Let us 
adopt an approximation in the form of a series solution 

( ) ( )
1

, , ,
N p

i t i t
z p p

p

r x y t a x y e eω ωψ
=

= ⋅ ⋅ = ⋅ ⋅ Ψ a
                

(10.25) 

where               
( ) 1

1

, p N

T

p N p

x y

a a a

ψ ψ ψ  =  


 =   

Ψ

a

 

 
                              

(10.26) 

 

and where pa  are unknown coefficients while pψ  are chosen known functions, 

whose only requirement is that they satisfy the boundary conditions of the system. 
Introducing this into the differential eigenvalue equation (Eq. 10.21) 

 
4 4 4 2 2

2
4 2 2 4 2 2

2 0x yD N N m
x x y y x y

ω
  ∂ ∂ ∂ ∂ ∂ + + − − − =   ∂ ∂ ∂ ∂ ∂ ∂   

Ψ Ψ Ψ Ψ Ψ Ψ a
    

(10.27) 

 

pre-multiply by TΨ , and integrate over the total plate area x yA L L= ⋅  will then 

render an eigenvalue problem 

 

           
( )2ω− =K M a 0

                                              
(10.28) 

 

where             

( ) ( ), ,

T
pk

A

pk p k
A

m dA M

M m x y x y dAψ ψ

  
  = =      
 = ⋅ ⋅






 

 
M Ψ Ψ

                                   

(10.29) 

and 
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4 4 4 2 2

4 2 2 4 2 2
2T

x y pk
A

D N N dA K
x x y y x y

 
  ∂ ∂ ∂ ∂ ∂   = + + − − =     ∂ ∂ ∂ ∂ ∂ ∂     

 


Ψ Ψ Ψ Ψ Ψ

K ψ
 

 
4 4 4 2 2

4 2 2 4 2 2
2k k k k k

pk p x y
A

K D N N dA
x x y y x y

ψ ψ ψ ψ ψψ
  ∂ ∂ ∂ ∂ ∂ = + + − −   ∂ ∂ ∂ ∂ ∂ ∂   


  

(10.30) 

 

This will then render approximate eigenvalues nω  and coefficients na , from 

which the corresponding approximate eigenmodes are given by ( ),n nx yϕ =Ψa . 

The accuracy of the solution will entirely depend on the ability of the chosen 

shape functions ( ),p x yψ  to portray the real mode shapes of the system. If m  

and D  are constants (independent of x  and y ) then it may be convenient to 

separate the variables in the shape functions 
 

( ) ( ) ( ),p px pyx y x yψ ψ ψ= ⋅
                                 

(10.31) 

 
in which case 

( ) ( ) ( ) ( )
0 0

LL yx

pk px kx py kyM m x x dx y y dyψ ψ ψ ψ= ⋅ ⋅ ⋅ 
                 

(10.32) 

4

4
0 0

2 42

2 2 4
0 0 0 0

22

2 2
0 0 0 0

2

LL yx
kx

pk px py ky

L LL Ly yx x
ky kykx

px py px kx py

L LL Ly yx x
kykx

x px py ky y px kx py

d
K D dx dy

dx

d dd
dx dy dx dy

dx dy dx

dd
N dx dy N dx dy

dx dy

ψψ ψ ψ

ψ ψψψ ψ ψ ψ ψ

ψψψ ψ ψ ψ ψ ψ


= +




+



− −

 

   

   
  

(10.33) 

 

where xL  and yL  are the plate lengths in the x  and y  directions. To facilitate a 

numeric approach, this may be transformed into a normalised vector-matrix 
version by defining 
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1

1

ˆ  , 

ˆ  , 

T

x n NLx

T

y n NLy

L x x x

L y y y

 = =    


  = =     

x x x

y y y

 

 
              

(10.34) 

 

and 1 1
T T T

x y px py N x N yp p
 =  Ψ ψ ψ ψ ψ ψ ψ 

            
(10.35) 

 

where       

( ) ( ) ( )
( ) ( )

1

1

ˆ ˆ ˆ

ˆ ˆ ˆ

T

px px px n px NLx

T

py py py n py NLy

x x x

y y y

ψ ψ ψ

ψ ψ ψ

 =    


   =       

ψ

ψ

 

 
       (10.36) 

 

Acknowledging that , 1,2j =  and defining 

 

( )
( )

( ) ( )
4

4

ˆ

ˆ

ˆ

x

x L y Lx y

x

m A

L D A

A x y L N L N

mL Dω ω

= ⋅ Δ

= ⋅ ⋅ Δ 


Δ = Δ ⋅ Δ = ⋅ 

= 

M M

K K

             

(10.37) 

 
then the following normalised eigenvalue problem is obtained 

 

( )2ˆ ˆω̂− =K M a 0
                                             

(10.38) 

where the content of M̂  and K̂  are given by 
 

( ) ( )ˆ T T
pk px kx py kyM = ⋅ψ ψ ψ ψ

                                    
(10.39) 

 
and 

 
 

1

ˆ

j j

j j j
xx L x

∂ ∂= ⋅
∂ ∂

 and 
1

ˆ

j j

j j j
yy L y

∂ ∂= ⋅
∂ ∂
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Table 10.1 Some relevant shape functions 

 

( ) ( ) ( ) ( ) ( )1 2 3 4
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆsin sinh cos coshp p p p ps c s c s c s c sψ λ π λ π λ π λ π= + + +  

ˆ ˆ ˆor s x y= , 1,2,3,p =  

( ) ( )
( ) ( )

ˆ ˆsin sinh

ˆ ˆcos cosh

p p

p
p p

λ π λ π
α

λ π λ π

−
=

−
 

( ) ( )
( ) ( )

ˆ ˆsin sinh

ˆ ˆcos cosh

p p

p
p p

λ π λ π
γ

λ π λ π

+
=

+
 

( ) ( )
( ) ( )

ˆ ˆcos cosh

ˆ ˆsin sinh

p p

p
p p

λ π λ π
β

λ π λ π

−
=

−
 

( ) ( )
( ) ( )

ˆ ˆcos cosh

ˆ ˆsin sinh

p p

p
p p

λ π λ π
κ

λ π λ π

−
=

+
 

 
Case 

Coefficients, jc  Wave length, pλ  

1c  2c  3c  4c  1̂λ  ˆ
pλ , 

2p ≥  
 

 

 
1 

 
0 

 
0 

 
0 

 
1 

 
p  

 

 

 
1 

 
1−  

 

pα−
 

pα  
5

4
≈  

4 1

4

p +
 

 

 

 
1 

 
1−  

 

pκ  
 

pκ−  
3

2
≈  

2 1

2

p +
 

 

 

 
1 

 
1−  

 

pγ−  
 

pγ  
3

5
 

2 1

2

p −
 

 

 

 
1 

 
1−  

 

pκ  
 

pκ−  
3

4
≈  

4 1

4

p −
 

 

 

 
1 

 
1−  

 

pα−
 

pα  
1

2
 

2 1

2

p −
 

 

 
 
1 

 
1 

 

pγ−  
 

pγ  
5

4
≈  

4 1

4

p +
 

  
 

 
1 

 
1 

 

pα−
 

pα−
3

2
≈  

2 1

2

p +
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( )

( ) ( )

( )

2 24 2

4 2 2

4 4 2 2

4 2

42

ˆ 2
ˆ ˆ ˆ

ˆ ˆ

kyT T T Tkx x kx
pk px py ky px py

y

kyT T T Tx x x kx
px kx py px py ky

y

y y Tx
px kx

y

dd L d
K

Ldx dx dy

dL N L d

L Ddy dx

N L L

D L

     
 = ⋅ + ⋅                

    
 + ⋅ − ⋅            

 
− ⋅  

 

ψψ ψψ ψ ψ ψ ψ

ψ ψψ ψ ψ ψ ψ ψ

ψ ψ ψ
2

2ˆ
kyT

py

d

dy

 
 
 
 

ψ

  

(10.40) 

 

In general, sufficient accuracy may be obtained by choosing shape functions that 
comply with the corresponding eigenvalue solution of simple beams whose 
boundary conditions are identical to that of the relevant plate system. Some useful 
cases are listed in Table 10.1. 
 

 
Example 10.2 Galerkin Solution to the Eigenvalue Problem 

 

 
 

Fig. 10.9 Shape functions f  and g  

 



426 10   Rectangular Plates 

To illustrate the efficiency of the Galerkin method let us consider a square plate 

with all its edges clamped and no axial forces (i.e. 0x yN N= = ). The functions 

(chosen from Table 10.1 above) 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1 1 1

2 2 2 2 2

ˆ ˆ ˆ ˆ ˆsin sinh cos cosh
ˆ  or 

ˆ ˆ ˆ ˆ ˆsin sinh cos cosh x y

f s s s s s x y
s

L Lg s s s s s

λ λ β λ λ

λ λ β λ λ

= − +  −    =
= − +  −  

 

 
( ) ( )
( ) ( )

cos cosh

sin sinh

j j
j

j j

λ λ
β

λ λ

−
=

+
 1 or 2j =  and with 

1

2

3 2

5 2

λ π
λ π

=
 =

 

 

are deemed relevant for the description of the first three eigenmodes 
 

( ) ( ) ( )1 ˆ ˆ,x y f x f yψ = ⋅ , ( ) ( ) ( )2 ˆ ˆ,x y g x f yψ = ⋅ and ( ) ( ) ( )3 ˆ ˆ,x y g x g yψ = ⋅  

 

of the system. They are illustrated in Fig. 10.9. 

Thus, introducing ( ) ( ) ( )1 1 2 2 3 3
T T T

x y x y x y
 =  ψ ψ ψ ψ ψ ψ ψ  where 

 

 

( )

( )

( )

1

1

ˆ

ˆ

ˆ

i
x

NLx

f x

f x

f x

 
 
 
 =  
 
 
  

ψ




 

( )

( )

1

1

ˆ

ˆ

ˆ

j
y

NLy

f y

f y

f y

 
 
 
 

=  
 
 

      

ψ




 

( )

( )

( )

1

1
2

ˆ

ˆ

ˆ

x

NLx

g x

g x

g x

 
 
 
 =  
 
 
  

ψ




 

 

( )

( )

1

2

ˆ

ˆ

ˆ

j
y

NLy

f y

f y

f y

 
 
 
 

=  
 
 

      

ψ




 

( )

( )

( )

1

3

ˆ

ˆ

ˆ

i
x

NLx

g x

g x

g x

 
 
 
 =  
 
 
  

ψ




 

( )

( )

1

3

ˆ

ˆ

ˆ

j
y

NLy

g y

g y

g y

 
 
 
 

=  
 
 

      

ψ




 

 

into the normalised eigenvalue problem ( )2ˆ ˆω̂− =K M a 0  (se Eq. 10.38) 

where the content of M̂  and K̂  are given by (see Eqs. 10.39 and 10.40) 

 ( ) ( )ˆ T T
pk px kx py kyM = ⋅ψ ψ ψ ψ  
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( )

( ) ( )

( )

2 24 2

4 2 2

4 4 2 2

4 2

42 2

ˆ 2 kyT T T Tkx x kx
pk px py ky px py

y

kyT T T Tx x x kx
px kx py px py ky

y

y y T Tx
px kx py

y

dd L d
K

Ldx dx dy

dL N L d

L Ddy dx

N L dL

D L

     
 = ⋅ + ⋅                

    
 + ⋅ − ⋅            

 
− ⋅  

 

ψψ ψψ ψ ψ ψ ψ

ψ ψψ ψ ψ ψ ψ ψ

ψ ψ ψ
2
ky

dy

 
 
 
 

ψ

 

 

1,2,3
p

k


=


 will then render the normalised mass and stiffness matrices 

 

10074 64 0
ˆ 64 10036 64

0 64 9998

− 
 = − − 
 − 

M

  

and    4

1294 33 0
ˆ 10 12 5443 70

0 49 11851

− 
 = − − 
 − 

K  

 

from which the following eigenvalues are obtained 

1

2

3

ˆ 35.84

ˆ 73.64

ˆ 108.87

ω
ω
ω

   
   =   
        

(35.98)

(73.41)

(108.3)

 

More exact values are given in brackets. As can be seen, in spite of some minor 

unwanted off-diagonal terms in M̂  and K̂ , which comes from small inaccuracies 
in the chosen shape functions (i.e. they are not perfectly orthogonal), the solution 
is remarkable accurate. The corresponding eigenvectors are given by 

 

 1

1

0.0009

0

 
 = − 
  

a  2

0.0004

1

0.0002

 
 =  
  

a  1

0

0.0009

1

 
 =  
  

a  

 

(again, showing only minor inaccuracies) The mode shapes are illustrated in Figs. 
10.10, 10.11 and 10.12. 

The effect of axial forces x yN N N= =  on the eigenvalue solution is 

illustrated in Fig. 10.13. The introduction of a positive external force (stretching) 
is to increase the plate stiffness, while a negative axial force (compression) will 

reduce its stiffness. As can be seen, at 2 52.6x xN L D ≈ −  then 1ω  is zero, 

implying that the total stiffness of the system is zero due to elastic plate buckling 
(a more exact value is 49.3− ). 
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Fig. 10.10 Estimated first mode shape, 1 4
35.84

D

mL
ω =  rad/s ( 0x yN N= = ) 

 

Fig. 10.11 Estimated second mode, 2 4
73.64

D

mL
ω = rad/s ( 0x yN N= = ) 
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Fig. 10.12 Estimated third mode, 3 4
108.87

D

mL
ω =  rad/s ( 0x yN N= = ) 

 

Fig. 10.13 The effects of evenly distributed biaxial external loads, xN  and yN
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10.4   Dynamic Response Calculations 

Dynamic response calculations may conveniently be performed by transforming 
the differential equation (Eq. 10.19) 

 
4 4 4 2 2

4 2 2 4 2 2
2z z z z z

z z x y z
r r r r r

mr cr D N N q
x x y y x y

 ∂ ∂ ∂ ∂ ∂+ + + + − − =  ∂ ∂ ∂ ∂ ∂ ∂ 
 

     

(10.41) 

 
into a modal format by introducing the assumption that the solution may be 

written as a series of known mode shapes ( ),n x yϕ  multiplied by unknown time 

domain variables ( )n tη , i.e. 

 

 ( ) ( ) ( ) ( ) ( )
mod

1

, , , ,
N

z n n
n

r x y t x y t x y tϕ η
=

= ⋅ = ⋅ Φ η
         

(10.42) 

where 

 
( )

( )
1 mod

1 mod

, n N

T

n N

x y

t

ϕ ϕ ϕ

η η η

 =  


  =   

Φ

η

 

 
                   

(10.43) 

rendering 

 
4 4 4 2 2

4 2 2 4 2 2
2z z z z z

x y zm c D N N q
x x y y x y

  ∂ ∂ ∂ ∂ ∂+ + + + − − =   ∂ ∂ ∂ ∂ ∂ ∂   

Φ Φ Φ Φ ΦΦη Φη η 

 

(10.44) 

 

Pre-multiplication by TΦ  and integration over the entire ,x y  domain will then 

turn Eq. 10.44 into the following modal equilibrium condition 

 

( ) ( ) ( ) ( )t t t t+ + =Mη Cη Kη R   
                            

(10.45) 

 
where, recalling the general property of mode shape orthogonality, the system 
modal quantities are given by 
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2

4 4 4 2 2

4 2 2 4 2 2

2

  where  

  where  2

2

  where  

T
n n n

A A

T
n n n n n

A

T z z z z z
x y

A

n n n n

m dA diag M M m dA

c dA diag C C M

D N N dA
x x y y x y

diag K K M

ϕ

ω ζ

ω

 = = =  


  = = =  


  ∂ ∂ ∂ ∂ ∂= + + − −   ∂ ∂ ∂ ∂ ∂ ∂   
 = =  

 





M Φ Φ

C Φ Φ

Φ Φ Φ Φ Φ
K Φ

  

   



  





    

(10.46) 

 

and                  ( ) ( ) ( ), , ,T
z

A

t x y q x y t dA= ⋅R Φ                                        (10.47) 

The solution to Eq. 10.45 may be pursued in time domain as well as in frequency 
domain. In time domain one quite simply follows one of the time step iteration 
methods presented in Chapter 6.3, whichever seems most suitable. In frequency 
domain the general method has been presented in Chapter 6.5. A frequency 
domain approach in modal degrees of freedom is presented below. 

First, the Fourier transform is taken of the modal variable ( )tη  

( ) ( ) i tt e ω
η

ω
ω= ⋅η a

   

where  ( ) 1 mod

T

n Na a aη ω  =   a
 
(10.48) 

 
i.e. (see Eq. 10.42) 

 

( ) ( ) ( ) ( ) ( ), , , ,i t i t
z nr x y t x y a e x y eω ω

η
ω

ω ω= ⋅ ⋅ = ⋅ ⋅Φ Φ a
         

(10.49) 

and of the load 
 

( ) ( ) i t
Rt e ω

ω
ω= ⋅R a 


   

where    ( ) ( ), , ,T
qR z

A

x y a x y dAω= ⋅a Φ
      

(10.50) 

 

and where qz
a  is the Fourier amplitude of the distributed load ( ), ,zq x y t . It is a 

frequency domain requirement that Eq. 10.45 is satisfied at every ω  setting, i.e. 
 

( )2
Ri ηω ω− + + =M C K a a  

                              
(10.51) 

 

Pre-multiplication with 1−K  
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 ( )2 1 1 1
Ri ηω ω− − −− + =I K M K C a K a                          (10.52) 

 

and, recalling that (see Eq. 10.46) 

 

2

2

  where  2

n n
n A

n n n n n

n n nn

M m dA
diag M

diag C C M

K Mdiag K

ϕ

ω ζ

ω

 = =     = =  
  = =     

M

C

K

 

   

  

               (10.53) 

it is seen that            ( ) ( ) ( )1ˆ
Rη ηω ω ω−= ⋅ ⋅a H K a 


                           (10.54) 

where            ( ) 12 1 1ˆ ˆ
n

i diag Hη ηω ω
−− −  = − + =  H I K M K C  

              
(10.55) 

and where              ( )
12ˆ 1 2n n nn

H iη ω ω ζ ω ω
−

 = − +                      
(10.56) 

 

is the non-dimensional frequency response function associated with mode 

nϕ . Thus, the problem has been transformed into the problem of 

determining ηa , from which ( ), ,zr x y t  may be obtained from Eq. 10.49. 

As always, the advantage with a modal approach in frequency domain is 
that a complex problem may be reduced to one with a manageable number 
of degrees of freedom ( modN ) in which case it is possible to focus on what 
are the most important characteristics of the system. So far, the 
development is only suited to solve the case of stationary and deterministic 
loads, see Example 10.3 below. 

 
 

Example 10.3: Deterministic Dynamic Load 
 

Let us first consider the case of an arbitrary rectangular plate with mode shapes 

 ( ) 1 mod
, n Nx y ϕ ϕ ϕ =  Φ    

and with a single stationary and harmonic concentrated deterministic load 

 ( ) ( )Re
i tp

pQ t a e
ω= ⋅  
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at a single frequency pω  and at position ,p px y . Its modal frequency response 

matrix at pω  and its modal stiffness matrix are then 

( ) ( )ˆ ˆ
p pn

diag Hη ηω ω =  H where ( ) ( )
12ˆ 1 2p p n n p nn

H iη ω ω ω ζ ω ω
−

 = − +  
 

ndiag K =  K   where 2
n n nK Mω=   and 2

n n
A

M m dAϕ=   

 
 

 
 

Fig. 10.14 Rectangular plate subject to force component ( ), ,p pQ x y t  

The Fourier amplitude vector of the modal load (see Eq. 10.50) is given by 

( ),T
p p pR x y a= ⋅a Φ , and thus the Fourier amplitude vector of the modal 

degrees of freedom is given by 

( ) ( ) ( )1
2

ˆ
ˆ ,

pn
p p n p pR

n n

H
a x y

M

η
η η

ω
ω ϕ

ω
−

 
 = =
  

a H K a 
      

from which the Fourier amplitude of the stationary dynamic displacement 

response at an arbitrary position ,r rx y  may be obtained by a modal 

superposition 
 

( ) ( ) ( ) ( ) ( ) ( )
mod

2
1

ˆ
, , , , ,

N
pn

r r r p r r p p n r r n p p
n n n

H
a x y x y a x y x y

M

η
η

ω
ω ω ϕ ϕ

ω=
= ⋅ = ⋅ ⋅ ⋅Φ a 
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The stationary dynamic displacement response at an arbitrary position ,r rx y  is 

then given by 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

mod

2
1

mod

2 2
1

ˆ
, , Re , ,

ˆ , ,
cos

,

N
p i tn p

z r r p n r r n p p
n n n

N
p n r r n p pn

p p n
n n n

A

H
r x y t a x y x y e

M

H x y x y
a t

m x y dA

η ω

η

ω
ϕ ϕ

ω

ω ϕ ϕ
ω β

ω ϕ

=

=

    = ⋅ ⋅ ⋅ ⋅ 
    

⋅
= ⋅ ⋅ −








 

where 

( )2

2
tan

1

n p n
n

p n

ζ ω ω
β

ω ω
=

−
 

 

 

In the case of a distributed stationary and stochastic load ( ), ,zq x y t , whose cross 

spectral density is given by 
 

( ) ( ) ( )ˆ, ,qq q qS s S Co sω ω ωΔ = ⋅ Δ
                         

(10.57) 

 

where sΔ  is the distance between two arbitrary points ( )1 1,x y  and ( )2 2,x y , i.e. 

 

 ( )1 22 2s x yΔ = Δ + Δ  
1 2

1 2

x x x

y y y

Δ = −
Δ = −

              (10.58) 

 

and where ( )qS ω  is its single point spectral density and ( )ˆ ,qCo s ωΔ  is the 

corresponding normalised co-spectrum of the ( ), ,zq x y t  process (i.e. the real 

value of its normalised cross spectral density, see Appendix A.4). Thus, the modN  

by modN  spectral density matrix of the modal degrees of freedom (see Eq. 10.54) 

is given by 
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( ) ( ) ( )

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

*

*1 1

* 1 * 1

* 1 1

1
lim

1 ˆ ˆlim

1ˆ ˆlim

ˆ ˆ

T

T

T

R RT

TT T
R RT

T T
R

T

T

T

η η η

η η

η η

η η

ω ω ω
π

ω ω ω ω
π

ω ω ω ω
π

ω ω ω

→∞

− −

→∞

− −

→∞

− −

 = ⋅ 

   = ⋅   

 = ⋅ 

=

S a a

H K a H K a

H K a a K H

H K S K H

 

 



 

 

 
     

(10.59) 

 
where 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

*

*

*
1 1 2 2 1 2

1
lim

1
lim , , , , , ,

1
, , lim , , , ,

T
R R RT

T

T T
q q

T
A A

T
q q

T
A A

T

x y a x y dA x y a x y dA
T

x y x y a x y a x y dA dA
T

ω ω ω
π

ω ω
π

ω ω
π

→∞

→∞

→∞

 = ⋅ 

     = ⋅ ⋅    
        

 = ⋅ ⋅ 

 

 

S a a

Φ Φ

Φ Φ

  

  (10.60) 

 
Thus, since 

 

( ) ( ) ( ) ( ) ( )*1ˆ, , lim , , , ,qq q q q
T

S s S Co s a x y a x y
T

ω ω ω ω ω
π→∞

 Δ = ⋅ Δ = ⋅     
(10.61) 

 
it is seen that 

( ) ( ) ( )q qR Sω ω ω= ⋅S J                                      
(10.62) 

where 

 

( ) ( ) ( ) ( )1 1 2 2 1 2
ˆ, , ,T

q q
A A

x y x y Co s dA dAω ω= ⋅ ⋅ Δ J Φ Φ
       

(10.63) 

 
Then, the spectral density matrix of the modal degrees of freedom is given by 

 

( ) ( ) ( ) ( ) ( ) ( )* 1 1ˆ ˆT T
q qSη η ηω ω ω ω ω− − = ⋅ ⋅ ⋅ ⋅ ⋅  

S H K J K H 
           

(10.64) 
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Since (see Eq. 10.49) ( ) ( ) ( ), , , i t
zr x y t x y e ω

η ω= ⋅ ⋅Φ a  then 

 

( ) ( ) ( ), , ,rz
a x y x y ηω ω= ⋅Φ a

                                    
(10.65) 

 
and thus, the spectral density of the dynamic response at an arbitrary position 

( ),r rx y  is given by 

 

( ) ( ) ( )

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

( ) ( ) ( )

*

*

*

1
, , lim , , , ,

1
lim , ,

1
, lim ,

, ,

r r r r r r rz z zT

T

r r r r
T

T T
r r r r

T

T
r r r r

S x y a x y a x y
T

x y x y
T

x y x y
T

x y x y

η η

η η

η

ω ω ω
π

ω ω
π

ω ω
π
ω

→∞

→∞

→∞

 = ⋅ 

   = ⋅ ⋅ ⋅   

 = ⋅ ⋅ ⋅ 

= ⋅ ⋅

Φ a Φ a

Φ a a Φ

Φ S Φ
    

(10.66) 

 
I.e. (see Eq. 10.64) 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )* 1 1ˆ ˆ, , , ,
T T T

r r r r r q r r qz
S x y x y x y Sη ηω ω ω ω ω− − = ⋅  

Φ H K J K H Φ 
 
(10.67) 

 
Example 10.4: Stochastic Dynamic Load 

 

Let us consider the simple case of a square window pane ( x yL L L= = ) with 

clamped (fixed) edges subject to fluctuating horizontal wind force ( ), ,q x y t  and 

located at elevation 40 m above ground where the mean wind velocity is 

40 V m s=  and the intensity of the stationary along-wind turbulence component 

( ), ,u x y t  is 0.2u uI Vσ= = , where uσ  is its standard deviation. For 

simplicity it is assumed that V  and uI  are approximately constants over the area 

of the plate, and that the co-spectrum of the wind turbulence is close to unity, i.e. 

that the fluctuating velocity ( ), ,u x y t  is close to perfectly correlated over the 

entire area of the pane. Thus 
 

 ( ) ( ),uu uS s Sω ωΔ =  

where ( )uS ω  is the single point spectral density of turbulence, defined by 
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 ( ) ( )2 ˆ
u u uS Sω σ ω= ⋅  where ( ) 5 3

ˆ

1 1.5
2

x
u u

u
x

u u

A L V
S

A L V

ω
ω
π

=
 + 
 

 

where 1.08uA =  and 160 x
uL m=  is the integral length scale of the turbulence. 

 

 

Fig. 10.15 Square window pane with clamped edges subject to fluctuating wind force 

The necessary dimensions and mechanical properties of the pane are given in 
Table 10.2 below: 

Table 10.2 Dimensions and mechanical properties 

 
Length: 

( ) x yL L L m= =  

 
Thickness: 

( ) h m  

 
Density: 

( )3 g kg mρ  

Elastic 
modulus 

( )2 E N m  

 
Poisson’s 

ratio: 
ν  

2.4  36 10−⋅  980 10⋅  32.6 10⋅  0.3  

 
As mentioned above, the window pane is clamped at its edges, and thus, the 
eigenfrequencies and corresponding eigenmodes may be obtained from Example 
10.2, i.e. 
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1 1 2

2 4

3

36

73

108

D

mL

ω
ω
ω

   
    =             

and ( )
( ) ( )
( ) ( )
( ) ( )

1 11

2 2 2

3 3 3

,

T TT
x y

x y

x y

f x f y

x y g x f y

g x g y

ϕ ϕϕ
ϕ ϕ ϕ
ϕ ϕ ϕ

 ⋅  ⋅       = = ⋅ ≈ ⋅          ⋅⋅     

Φ  

where 218.2 gm h kg mρ= =  and (see Example 10.2) 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1 1 1

2 2 2 2 2

ˆ ˆ ˆ ˆ ˆsin sinh cos cosh
ˆ  or 

ˆ ˆ ˆ ˆ ˆsin sinh cos cosh x y

f s s s s s x y
s

L Lg s s s s s

λ λ β λ λ

λ λ β λ λ

= − +  −    =
= − +  −  

 

 
( ) ( )
( ) ( )

cos cosh

sin sinh

j j
j

j j

λ λ
β

λ λ

−
=

+
 1 or 2j =  and with 

1

2

3 2

5 2

λ π
λ π

=
 =

 

The damping ratios are assumed at: 
1

3
2

3

1

10 2

3

ζ
ζ
ζ

−
   
   =   
     

 

Before proceeding, it is necessary to develop an expression for the dynamic wind 
load. Adopting Bernoulli’s equation for the velocity pressure at an instantaneous 
interpretation of the relative wind velocity, then 

 ( ) 21
, ,

2tot q relq x y t c Vρ=  

where 31.25 kg mρ =  is the density of air, qc  is a pressure coefficient 

dependent on the position and geometry of the building on which the window pane 

is sitting (here we assume 1.4qc = ) and ( ) ( ), , , ,rel zV V u x y t r x y t= + −  . Thus, 

it is seen that the total wind pressure 

 ( ) ( )21
, ,

2 2
q

tot q z q q z

c
q x y t c V u r V c Vu c Vrρ ρ ρ ρ= + − ≈ + −   

may be split into a mean time invariant (static) part 2 2qc Vρ , a turbulence 

induced dynamic part ( ), ,qc Vu x y tρ  and a motion induced aerodynamic part 

( ), ,q zc Vr x y tρ  . Thus, the fluctuating (dynamic) pressure is given by (see Eq. 

10.42) 

( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , ,z q q z q qq x y t c Vu x y t c Vr x y t c Vu x y t c V x y tρ ρ ρ ρ= − = − Φ η  

 

Its Fourier transform 
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 ( ) ( ) ( ) ( ), , , , ,q q u qz
a x y c Va x y c V x y i ηω ρ ω ρ ω ω= − Φ a  

 

will then render (see Eq. 10.50) 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, , ,

, , , , ,

, , ,

T
qR z

A

T T
q u q

A A

T
q u ae

A

x y a x y

x y c Va x y dA x y c V x y dA i

x y c Va x y dA i

η

η

ω ω

ρ ω ρ ω ω

ρ ω ω ω

= ⋅

= − ⋅

= − ⋅



 







a Φ

Φ Φ Φ a

Φ C a

 

 

where (due to mode shape orthogonality) 
 

 ( ) ( ), ,T
ae q aen

A

x y c V x y dA diag Cρ  = =  C Φ Φ   

and                ( ) ( ) ( )2 2 2

0 0

,
LL yx

ae q n q x yn n n
A

C c V x y dA c V x dx y dyρ ϕ ρ ϕ ϕ= =    

 

Introducing this into Eq. 10.51 
 

( ) ( ) ( ) ( )2 , , ,T
ae q u

A

i c V x y a x y dAηω ω ω ρ ω − + + + = ⋅  M C C K a Φ    

and pre-multiplying by 1−K  

( ) ( ) ( ) ( )2 1 1 1 1 , , ,T
ae q u

A

i c V x y a x y dAηω ω ω ρ ω− − − − − + + =  I K M K C K C a K Φ       

then (recalling that M , K , C  and aeC  are all diagonal) the following is 

obtained 

 ( ) ( ) ( ) ( )1ˆ , , ,T
q u

A

c V x y a x y dAη ηω ρ ω ω−= a H K Φ  

where 
 

( )ˆ ˆ
n

diag Hη ηω  =  H
 
where ( ) ( ) ( ) 12ˆ 1 2n n ae nn n

H iη ω ω ω ζ ζ ω ω
−

 = − + +
 

 

and 

2

22 2

q n
n aen A

aen
n n n

A

c V dA
C

K m dA

ρ ϕ
ω

ζ
ω ϕ

= =





  



440 10   Rectangular Plates 

which, because m  is constant, in this case simplifies into 
2

q
aen

n

c V

m

ρ
ζ

ω
= . 

Thus 
 

( ) ( ) ( )

( ) ( )

( )

*

*

1 1

*
2* 1 1

* 1 1

1
lim

1 ˆ ˆlim

1ˆ ˆlim

ˆ ˆ

T

T

T

T T
q u q u

T
A A

T
TT T T

q u u
T

A A

T T
R

T

c V a dA c V a dA
T

c V a dA a dA
T

η η η

η η

η η

η η

ω ω ω
π

ρ ρ
π

ρ
π

→∞

− −

→∞

− −

→∞

− −

=

   
= ⋅   

      
     = ⋅           

=

 

 

S a a

H K Φ H K Φ

H K Φ Φ K H

H K S K H

 

 

 

 

 

where 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

*
2

2 *
1 1 2 2 1 1 2 2 1 2

2

1 1 2 2 1 2

1
lim

1
, , lim , , , ,

, , ,

T

T T
q u uR T

A A

T
q u u

T
A A

T
q uu

A A

c V a dA a dA
T

c V x y x y a x y a x y dA dA
T

c V x y x y S s dA dA

ω ρ
π

ρ ω ω
π

ρ ω

→∞

→∞

   
= ⋅      

   

=

= Δ

 

 

 

S Φ Φ

Φ Φ

Φ Φ



 

 

where sΔ  is the distance between two arbitrary points ( )1 1,x y  and ( )2 2,x y , 

i.e. 
 

 ( )1 22 2s x yΔ = Δ + Δ  
1 2

1 2

x x x

y y y

Δ = −
Δ = −

 

and 
 

( ) ( ) ( ) ( ) ( ) ( )*
1 1 2 2

1 ˆ, lim , , , , ,uu u u u u u
T

S s a x y a x y S Co s S
T

ω ω ω ω ω ω
π→∞

Δ = = ⋅ Δ ≈  

 

Thus, ( ) ( ) ( )2 ˆ
q q uR c V Sω ρ ω=S J  where 

 

( ) ( ) ( ) ( )1 1 2 2 1 2 1 1 1 2 2 2
ˆ , , , ,T T

q
A A A A

x y x y dA dA x y dA x y dA= =   J Φ Φ Φ Φ  

 



10.4   Dynamic Response Calculations 441 

whose matrix element number nm  is given by 
 

 ( ) ( ) ( ) ( )1 1 1 1 2 2 2 2
0 0 0 0

ˆ
L LL Ly yx x

q x y x ynm n n m m
J x y dx dy x y dx dyϕ ϕ ϕ ϕ= ⋅     

Thus, 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )2* 1 1 * 1 1ˆ ˆ ˆ ˆ ˆT TT T
q q uR c V Sη η η η ηω ρ ω ω ω− − − −= = ⋅S H K S K H H K J K H

     

 

The spectral density to the response at mid-span ( )2, 2r rx L y L= =  is then 

given by 
 

( ), , , ,
2 2 2 2 2 2

T
r r r r r r rz

L L L L L L
S x y x y x yηω ω     = = = = = ⋅ ⋅ = =     

     
Φ S Φ  

 

It is seen from the expression of ˆ
qJ  that all its entries beyond the first are zero, 

because 

( )
( )

ˆ

ˆ

xn

yn

x

y

ϕ

ϕ



  

2 and 3n =  are all asymmetric, rendering 

( )

( )

1

0

1

0

ˆ ˆ

0

ˆ ˆ

xn

yn

x dx

y dy

ϕ

ϕ





=







 

I.e., mode shapes two and three will not contribute to the response (coming from 
the assumption of perfect turbulence correlation over the area of the plate). Thus 

( )

( ) ( )

( )

( )

( )
( )

21 1

1 1
12 0 0
2 1 11 1

2 2
1 1

0 0

ˆ ˆ ˆ ˆˆ
ˆ

2 2
ˆ ˆ ˆ ˆ

rz

x y

q u x y u
n

x y

S

x dx y dy
HL L

c V I S
m

x dx y dy

η

ω

ϕ ϕω
ρ ϕ ϕ ω

ω
ϕ ϕ

=

 
 

    ⋅ ⋅ ⋅ ⋅ ⋅ ⋅        
  

 

 

 

where ( ) ( ) 2ˆ
u u uS Sω ω σ=  and u uI Vσ= , and uσ  is the standard deviation 

to the turbulence component. The normalised spectral density of the dynamic 
response at mid-span is sown in Fig. 10.16 and a time domain simulation of the 
response is shown in Fig. 10.17. As can be seen, the aerodynamic damping is of 
significant importance in reducing the dynamic response. 
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Fig. 10.16 Time domain simulation of dynamic response at mid-span 
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Chapter 11 

Moving Loads on Beams 

11.1   Concentrated Single Force 

An investigation of the dynamic load effects of moving loads on beams may be 
required in cases of heavy vehicles or a train passing a flexible bridge, though the 
problem may not necessarily be that of the bridge, it may also involve 
uncomfortable vertical oscillations of the vehicle. The problem may also occur on 
moving hoisting forces on heavy cranes. Let us first consider the simple case of a 

concentrated single load ( ),FF x t , whose magnitude as well as position ( )Fx t  

are time dependent. The problem is illustrated in Fig. 11.1. 

 

Fig. 11.1 Single concentrated force moving on a beam 

The solution may most conveniently be obtained by adopting the principle of 
d’Alambert together with the principle of virtual work. This has comprehensively 
been developed in Chapter 1.6. As illustrated in Fig. 11.1 it will in this case 

involve the energy balance due to an arbitrary (virtual) displacement ( )zr xδ  to 
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the entire system at an instantaneous time and position ( ),zr x t . Thus, 

considering only pure bending and assuming only insignificant time invariant load 
effects, the following applies (see Eq. 1.119) 

 ( ) ( )z F z z r z z z y z
L L

r x F r m r c r dx r EI r dxδ δ δ ′′ ′′− ⋅ − + =    (11.1) 

where zm , zc  and yEI  are cross sectional mass, damping coefficient and 

bending stiffness. Let us also assume that a single mode approach will suffice, and 

for simplicity that this is single component vertical mode shape ( )z xφ , with 

corresponding eigenfrequency zω  and damping ratio zζ . Then 

( ) ( ) ( ),z zr x t x tφ η= ⋅
       

and      ( ) ( )z zr x xδ φ δη= ⋅
               

(11.2) 

and thus, Eq. 11.1 becomes 

( ) ( ) ( ) ( ) ( )2 2 2 ,z z z z z z y z z z F F
L L L

m dx t c dx t EI dx t x F x tδη φ η δη φ η δη φ η δηφ′′+ + = −   

   

(11.3) 

from which it is seen that δη  is obsolete, and thus, the following is obtained: 

 ( ) ( ) ( ) ( )z z z z z z zM t C t K t R tη η η+ + =     (11.4) 

where 2
z z z

L

M m dxφ=  , 2 2z z z z z z
L

C c dx Mφ ω ζ= =  , 2 2
z y z z z

L

K EI dx Mφ ω′′= =   

and ( ) ( ) ( ),z z F FR t x F x tφ= − . This is identical to that which was developed in 

Chapter 5.3. In general, a numerical solution may be pursued, see Chapter 6.3. 
However, under the conditions that the mode shape is a simple harmonic sinus 
function and that the magnitude and velocity of the moving force are constants, 
then a closed form solution is presented in Example 11.1 below. Under the same 
conditions, except that the moving load is a harmonic cosine functions, then a 
closed form solution may also be obtained, as shown in Example 11.2. 

 
 

Elaboration 11.1: The Corresponding Multi-mode Solution 
 

A general multi-mode solution has been developed in Chapter 5.3. Thus, defining 

 ( ) ( ), 0 , 0
T

F z Fx t F x t=  −  F  
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and 

( )
( )
( )
( )

( )
( )
( )

( ) ( ) ( ) ( )
mod mod

1 1

,

, ,

,

y yN N

z z n n n
n n

n

r x t x

x t r x t x t t x t

r x t xθ θ

φ
φ η η
φ= =

   
   

= = = ⋅ = ⋅   
   
   

 r φ Φ η  

with mode shapes 

( )

( )
1 2 mod

1 2 mod

n N

T

n N

x

t η η η η

 =  


  =   

Φ φ φ φ φ

η

 

 
     

where     ( )
y

n zx

θ

φ
φ
φ

 
 =  
 
 

φ  

and with corresponding eigenfrequencies nω  and damping ratios nζ , then 

 ( ) ( ) ( ) ( )t t t t⋅ + ⋅ + ⋅ =M η C η K η R     

where T
g

L

dx= M Φ m Φ , 2 n ndiag Mω ζ =  C  , 2
n ndiag Mω =  K  , gm  is 

defined in Eq. 5.26, and where ( ) ( ){ } ( ),
T

F Ft x x t= ⋅R Φ F . 

 
 

Example 11.1 
 

Let us assume that a single mode single component approach will suffice, and that 
the mode shape is a harmonic sinus function with corresponding eigenfrequency 

nω  and damping ratio nζ . Let us also assume that the magnitude and velocity of 

the moving force are constants. I.e.: 

( )sinz n x Lφ π=  and 
( ) 0,F

F F

F x t F

x x t

 =


= ⋅ 
 where Fx  is the velocity of the 

force.  

Then (see Eq. 11.4): ( ) ( ) ( ) ( )0 sinz z z z z z FM t C t K t F tη η η ω+ + = −    

where F Fn x Lω π=   and L  is the length of the span of the beam. The total 

period of passage is FT L x=  . The solution to this problem has been shown in 

Chapter 2.3 (only with the difference that the load is positive). Thus, the response 

at rx  is given by 

 ( ) ( ) ( ) ( ) ( )0 ˆ ˆ ˆ,r z r z F tr st
z

F
r x t x H t t

K
φ ω η η= −  +    Ft T L x≤ =   



446 11   Moving Loads on Beams 

where 

( ) ( )

( ) ( )

sin
ˆ cos

cos

ˆ sin

n np t
tr d h

h

st F p

t e t

t t

ω ζβ
η ω β

β

η ω β

−
= −


 = −  

and  

2

2
2

2

2
tan

1

1 2

tan
2 1

n F n
p

F

n

F
n

n
h

n n

ζ ω ωβ
ω
ω

ωζ
ω

β
ζ ζ

 =
  −    


  − + +     =

 −

 

and where 21d n nω ω ζ= − . At Ft T L x> =   the response at rx  is simply a 

decaying motion in accordance with Eq. 2.28, i.e.: 
 

 ( ) ( ) ( ) ( ), cosn n t T
r n r d nr x t a x e t Tω ζ ω β− −= − ⋅ ⋅  − −  

 Ft T L x> =   

 

where 
( ) ( ) ( )

( ) ( )

22 2

2

, , , 1

tan , , 1

n r r d r n n

n r r d n n

a r x T r x T r x T

r x T r x T

ω ζ ζ

β ω ζ ζ

  =   + + ⋅ −     
 =  ⋅  + −  




 

 
Similarly, in a multi-mode approach where 

 

( )
mod mod

1 1

sin
n

N N

z z
n n

n x Lφ φ π
= =

= =    and 
( ) 0,F

F F

F x t F

x x t

 =


= ⋅ 
 where Fx  

is the constant velocity, then 

( ) ( ) ( ) ( ) ( )
mod

0

1

ˆ ˆ ˆ,
n n

n

N

r z z F tr st
zn

F
r x t x H t t

K
φ ω η η

=
= −  +   

  

at   Ft T L x≤ =   

and   ( ) ( ) ( )
mod

1

, cosn n
N

t T
r n d n

n

r x t a e t Tω ζ ω β− −

=
= −  − −  

  

at Ft T L x> =   

A typical response curve due to a concentrated single force ( )FF x Mg=  

moving along the span of a beam at a constant velocity is illustrated in the upper 
diagram in Fig. 11.2 (input data is given in the diagram). 
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Fig. 11.2 Dynamic response at midspan of simply supported beam with modal  mass M , 
due to a single force moving at constant velocity  across its span. Upper diagram: 

( )FF x Mg= . Lower  diagram: ( ) ( )0
, cosF FF x t Mg tω= ⋅ . 0.002M Mμ = =  

 
Example 11.2 

 

Let us still consider the case of a single mode single component approach, where 

( )sinz n x Lφ π= , with corresponding eigenfrequency nω  and damping ratio 

nζ . Let us also assume that the load is moving with a constant velocity Fx . 

However, in this case we assume that the magnitude of the moving force is 
fluctuating at a constant frequency 

0Fω  in the shape of a cosine function. I.e.: 

 ( ) ( )00, cosF FF x t F tω=  where F Fx x t= ⋅  

Then  ( ) ( ) ( ) ( ) ( )00 cos sin
nz z F F FR t x F t F t tφ ω ω= − = − ⋅ ⋅

 
where

n
F

F
n x

L

πω =


 

Since ( ) ( )1
cos sin sin sin

2
α β α β α β⋅ =  + + −    then we may rewrite 

( )zR t  into 
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( ) ( ) ( )0 sin 2 sin
2z F F
F

R t t tω ω= −  + Δ  
   

where     
( )0

0

1

2 n

n

F F F

F F F

ω ω ω

ω ω ω

 = +

Δ = −

 

then (Eq. 11.4): ( ) ( ) ( ) ( ) ( )0 sin 2 sin
2z z z z z z F F

F
M t C t K t t tη η η ω ω+ + = −  + Δ  

    

Since the principle of superposition applies the dynamic response at spanwise 

position rx  is given by (see Example 11.1 above): 

( ) ( ) ( ) ( )ˆ ˆ, , 2 ,
2

z r
r z F z F

x
r x t t t

φ
η ω ω η ω ω= − ⋅  = + = Δ  

     
Ft T L x≤ =   

where 

( )
( )

( ) ( )0
ˆ

ˆ ˆ ˆ, , ,
z

z tr st
z

F H
t t t

K

ω
η ω η ω η ω=  +  

 and 

12
ˆ 1 2z n

n n
H i

ω ωζ
ω ω

−
   = − +    

 

and where 
( ) ( )

( ) ( )

( ) ( )

sin
ˆ , cos

cos

ˆ , sin

n np t
tr d h

h

st p

t e t

t t

ω ζβ ω
η ω ω β ω

β ω

η ω ω β ω

−
=  −   


  = −  

 

( )
( )2

2
tan

1

n n
p

n

ζ ω ωβ ω
ω ω

=
−

     

and     ( ) ( )22

2

1 2
tan

2 1

n n
h

n n

ζ ω ω
β ω

ζ ζ

− + +
=

−
 

and where 21d n nω ω ζ= − . Again, At Ft T L x> =   the response at rx  is 

simply a decaying motion in accordance with Eq. 2.28, i.e.: 
 

( ) ( ) ( ) ( ), cosn n t T
r n r d nr x t a x e t Tω ζ ω β− −= − ⋅ ⋅  − −    Ft T L x> =   

where 
( ) ( ) ( )

( ) ( )

22 2

2

, , , 1

tan , , 1

n r r d r n n

n r r d n n

a r x T r x T r x T

r x T r x T

ω ζ ζ

β ω ζ ζ

  =   + + ⋅ −     
 =  ⋅  + −  




 

A typical response curve due to an oscillating single force 

( ) ( )0
, cosF FF x t Mg tω= ⋅  moving along the span of a beam at a constant 

velocity is illustrated in the lower diagram in Fig. 11.2 (input data is given in the 
diagram). 
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11.2   Rolling Single Wheel Vehicle 

The case of a rolling single wheel passing along the span of a beam at arbitrary 
velocity is shown in Fig. 11.3. The wheel is connected to a mass M  by an elastic 
spring with stiffness K  and a damper with damping coefficient C . This is a far 
more realistic case than that which was presented in Chapter 11.1 above. (It may 
readily be expanded to include a mass carried by several wheels, or a series of 
consecutive masses.) The situation at an arbitrary time t (in accordance with the 
principle of d’Alambert) is illustrated in Fig. 11.4. The instantaneous position and 
velocity of the wheel is Mx  and Mx . It is taken for granted that the beam as well 

as the mass is restricted to move in the vertical z  direction alone. Thus, the 
 

 

Fig. 11.3 Rolling single wheel vehicle moving on a beam 

 

Fig. 11.4 Relevant real and virtual displacements 
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displacements of the beam and the mass are ( ),zr x t  is ( )Mr t . Denoting ( )r tΔ  

the difference between ( )Mr t  and ( ),z Mr x t , then 

 ( ) ( ) ( ),M z Mr t r t r x t= Δ +  (11.5) 

Since the mass is in motion both horizontally and vertically at the same time it is 
necessary to perform a linear expansion at t t+ Δ : 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
,

, ,

M z M M

z M z M M z M

r t t r t t r x x t t

r t r t t r x r x t x r x t t

+ Δ = Δ + Δ + + Δ + Δ
′= Δ + Δ ⋅ Δ + + ⋅ Δ + ⋅ Δ   (11.6) 

and thus 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

, ,

tot
M M M

M z M z M

z M M z M

r t t r t x
r t r t r x t r x t

t t
r t r x t x t r x t

+ Δ − Δ′= = Δ + + ⋅
Δ Δ

′= Δ + + ⋅

  

  
 (11.7) 

Similarly 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
, ,

, ,

totM z M z M

M M z M z M M

r t t r t r t t r x t r x t t

x t x t t r x t r x t x

+ Δ = Δ + Δ ⋅ Δ + + ⋅ Δ

′ ′′+  + ⋅ Δ  ⋅  + ⋅ Δ    

    

 
 (11.8) 

Thus 

( ) ( ) ( ) ( ) ( ) ( ) ( )2, ,
tot

M M
M M M z M M z M

r t t r t
r t r t x t r x t x r x t

t

+ Δ −
′ ′′= = + +

Δ
 

     (11.9) 

The contact force between the wheel and the surface of the beam (see Fig. 11.5) is 
then given by 

2 1M MF F− , where 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

, ,M M M z M z MF t C r t K r t Cr t Kr t Cr x t Kr x t= Δ + Δ = + −  +    
 
(11.10) 

 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

2 1

2

, ,

, ,

totM M M

M M z M z M

M M z M M z M

F F t Mr t Mg

Cr t Kr t Cr x t Kr x t

Mr t M x r x t x r x t Mg

= + +

= + −  +  
 ′ ′′+ + + + 



 

  

 (11.11) 
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Fig. 11.5 Vehicle forces and

By applying a virtual d

beam and simultaneously 

of the mass M  (see Fi
Chapter 1.6, Eq. 1.119), th

( )
( )

1 2

,

M z M M

z z z z
L

F r x F

m r x t c r

δ −

−  +  

where zm , zc  and EI

stiffness associated with m

axis). Introducing Eqs. 11
 

( ) ( )

( ) ( )
( ) ( )
( ) (

,z z z
L

M M

M M

M M z M

m r x t r x dx

Cr t Kr t C

Cr t Kr t C

M r t x r x

δ +

−  + −
+  + −

 ′+ +

 





 

 

Let us for simplicity assum

it is convenient to choose 
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d virtual displacements 

displacement ( )zr xδ  to the instantaneous motion of th

a virtual displacement Mrδ  to the instantaneous motio

igs. 11.4 and 11.5), and demanding work balance (se
hen 

( ) ( ) ( ) ( )
2

, ,

M

z z y z z
L

r

x t r x dx EI r x t r x dx

δ

δ δ′′ ′′ = 
      

(11.12

yI  are mass, damping coefficient and cross section

motion in the z  direction (i.e. with bending about the 

1.10 and 11.11, then 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

) ( )2

, ,

, ,

, ,

, , 0

z z z y z z
L L

z M z M z M

z M z M M

M M z M M

c r x t r x dx EI r x t r x dx

Cr x t Kr x t r x

Cr x t Kr x t r

t x r x t g r

δ δ

δ

δ

δ

′′ ′′+

− 
− 

′′+ + =

 






   

(11.13

me that a single mode ( )z xφ  approach will suffice, the
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( ) ( ) ( ) ( ) ( )

( ) ( )
,     and    1

,     and    1

z z z M M

z z z M M

r x t x t r t t

r x t x r

φ η η
δ φ δη δ δη

= ⋅ = ⋅ 


= ⋅ = ⋅ 
 (11.14) 

and then Eq. 11.13 may be written 

( )
( )

( ) ( )
( )

( )
( )

( ) ( )
( ) ( ) ( )

( )
( )

2

2

2

0

0

0

T
z z zz z z M z M

M M Mz M

z z M z M z

Mz M M z M M z M

t tM C C x C x

t tM C x C

K K x K x t

tK x M x x x x K

Mg

δη η ηφ φ
δη η ηφ

φ φ η
ηφ φ φ

        + − +         −          
 + −       ′ ′′− + +    

 + = 
 

0

  
 



 

 

(11.15) 

where ( )2
z z zL

M m x dxφ=  , 2z z z zC M ω ζ=   and 2
z z zK Mω=   are modal 

mass, damping and stiffness, and where zω  is the eigenfrequency and zζ  is the 

modal damping ratio. It is readily seen that the pre-multiplication by the virtual 

displacement vector [ ]Tz Mδ δη δη=η  may be omitted, and thus 

 ( ) ( ) ( ) ( ) ( )M M M Mt x t x t   + + + + =  Mη C C η K K η R       (11.16) 

where 

( ) z

M
t

η
η
 

=  
 

η
    

0

0
zM

M

 
=  
 

M


    

0

0
zC

C

 
=  
 

C


    

0

0
zK

K

 
=  
 

K


   

(11.17) 

and 

( ) ( )
( )

2

0
z M z M

M
z M

x x
C

x

φ φ
φ

 −=  
−  

C

    

0

Mg

 
=  − 

R                  (11.18) 

( ) ( )

( ) ( ) ( )

2

2
2

1
0

z M z M

M
z M M z M M z M

M

x x

K
x x x x x

φ φ

φ φ φ
ω

 −
 =   ′ ′′− + +  
 

K
 

  

(11.19) 

By pre-multiplication with 1−M  this may alternatively (and most often more 
conveniently) be written on a non-dimensional format 
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( ) ( ) ( ) ( ) ( )2ˆ ˆ ˆ ˆ2 z z M M z M Mt x t x tω ζ ω + + +  +  =  Iη ζ ζ η ω ω η ρ   (11.20) 

where I  is the two by two identity matrix and 

1 0ˆ
ˆˆ0 M Mω ζ

 
=  
  

ζ
        

2

1 0
ˆ

ˆ0 Mω
 

=  
  

ω
        

0

g

 
=  − 

ρ
                     

(11.21) 

 
( ) ( )
( )

2
ˆ ˆˆ

0
z M z M

M M M
z M

x x

x

μφ μφω ζ
φ

 −=  
−  

ζ  (11.22) 

( ) ( )
( ) ( ) ( )

2

2
2

2

ˆ 1
0

z M z M

M M
z M M z M M z M

M

x x

x x x x x

μφ μφ
ω

φ φ φ
ω

 −
 

=   ′ ′′− + +  
 

ω
 

(11.23) 

and where zM Mμ =  , ˆM M zω ω ω= , ˆ
M M zζ ζ ζ= , 2

z z zK Mω =   , 

2
M K Mω = , ( )2z z z zC Mζ ω=    and ( )2M MC Mζ ω= . A closed form 

solution to Eq. 11.20 can in general not be obtained, i.e. it will be necessary to 
resort to a numeric solution strategy, e.g. as presented in Chapter 6.3. 

 
 

Example 11.3 
 

Let us still consider the case of a single mode single component approach, where 

( )sinz n x Lφ π= , with corresponding eigenfrequency nω  and damping ratio 

nζ . Let us assume that the mass has a velocity of 0V  at the beginning of the 

passage, i.e. ( ) 00Mx t V= = , and that during the passage it is subject to a 

constant acceleration Ma , i.e. that ( )M Mx t a= . Then 

( ) 0 0
0

t

M M Mx t V a dt V a t= + = +
  

and    ( ) ( ) 2
0

0
2

t
M

M M
a

x t x t dt V t t= = +   

while the passing period T  is obtained from 

 2
0 2

Ma
L V T T= +  rendering 0

2
0

2
1 1M

M

V a L
T

a V

 
 = + −
 
 

 

Let us for simplicity adopt the second central difference method (page 255), 

choosing the iteration sequence [ ]1 2k k K=    and corresponding 

time series [ ]1 k Kt t t t=   , where 1 0t =  and Kt T= , such that 

( )1t T KΔ = − , and thus: 
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 2
1

ˆ ˆ ˆ ˆ2
k kk z z M k z M kω ζ ω+    + + + + =  Iη ζ ζ η ω ω η ρ   

 
( ) ( )
( )

2

ˆ ˆˆ
0

k k

k

k

z M z M
M M M

z M

x x

x

μφ μφ
ω ζ

φ

 −
 =
 −  

ζ  

( ) ( )
( ) ( ) ( )

2

2
2

2

ˆ 1
0

k k

k
k k k k

z M z M

M M
z M M z M M z M

M

x x

x a x x x

μφ μφ
ω

φ φ φ
ω

 −
 

=   ′ ′′− + +    

ω


 

                0kM M kx V a t= +  and 2
0 2k

M
M k k

a
x V t t= +  

Thus 

( ) ( )

( ) }

21 2 2
1

1

ˆ ˆ ˆ ˆ2
2

ˆ ˆ

k k

k

k z z M z M k

z z M k

t
t t

t

ω ζ ω

ω ζ

−
+

−

  Δ = + Δ + ⋅ Δ + − +      

 − − Δ + 

η I ζ ζ ρ I ω ω η

I ζ ζ η

 

and ( ){ } 1 2
1

ˆ ˆ 0z z M Mt x tω ζ
−

 = + Δ + = Δ η I ζ ζ ρ  

The dynamic response of the mass M  and of the beam at an arbitrary position 

rx  is then given by 

 

( ) ( )
( ) ( ) ( ),

, z r t
r k r k

M k

r x t
x t x t

r t

 
= = ⋅ 
 

r Φ η
   

where      ( ) ( ) 0

0 1
z r

r
x

x
φ 

=  
 

Φ  

 
Typical resonant response curves of such an iteration procedure are illustrated in 
Fig. 11.6 (input data given in the diagrams). 
 

 
Elaboration 11.2: The General Multi-mode Solution 

 

In a general multi-mode format Eq. 11.13 still applies. Thus, introducing 

( ) ( ) ( ) ( ) ( )
mod

1

,
n n

N

z z z
n

r x t x t x tφ η
=

= ⋅ = ⋅ Φ η  and ( ) ( )1M Mr t tη= ⋅  
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Fig. 11.6  Response curves of beam and vehicle mass during passage of a simply supported 
bridge system. Upper curve: the beam displacement at midspan. Lower curve: The vehicle 
mass motion during passage. 

where   
( )

( )

1 mod

mod1

n Nz z z

T
n N

x

t

φ φ φ

η η η

  =    

  =  

 

 

Φ

η
   

then Eq. 11.13 becomes: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )2 0

z z z z z y
L L L

z M M M M M

M M M M M

M M M M M M

r x m x t dx r x c x t dx r x EI x t dx

r x C t K t C x t K x t

r C t K t C x t K x t

r M t x x t x x t g

δ δ δ

δ η η

δ η η

δ η

′′ ′′+ +

−  + − −  
+  + − −  

 ′ ′′+ + + + = 

  Φ η Φ η Φ η

Φ η Φ η

Φ η Φ η

Φ η Φ η

 





  

 

where 
( )

( )
1 mod

1 mod

n N

n N

z z z

z z z

x

x

φ φ φ

φ φ φ

  ′ ′ ′ ′=    


  ′′ ′′ ′′ ′′=   

 

 

Φ

Φ
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Then we apply the virtual displacements 
( )

1
mz z m

M M

r x

r

δ φ δη

δ δη

 = ⋅


= ⋅  
mod1,2, ,m N=  , 

one after the other, rendering mod 1N +  equations 

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

2 2

2

2 0

m m

m m

m m

m

m z z m M M m z z m
L L

m z M M m z M M M M

M M m y z m m z M M
L

m z M M M M M M

M M M M M M M

m dx t M t c dx t

x C x C x C

C x EI dx t x K

x K x K K x

Mx x Mx x Mg

δη φ η δη η δη φ η

δη φ η δη φ δη η

δη δη φ η δη φ η

δη φ δη η δη

δη δη δη

⋅ + + ⋅

− + +

′′− + ⋅ −

+ + −

′ ′′+ + + =

 



Φ η

Φ η

Φ η Φ η

Φ η Φ η

  

 

 

 

 

which, by defining the following 1 by mod 1N +  vectors 

( ) [ ] 1 mod
1 1

n Nz z zx φ φ φ = − = −  
Ψ Φ    

[ ]0 0 0 1= −β    

( ) [ ] 1 mod
0 0

n Nz z zx φ φ φ ′ ′ ′ ′ ′= =   
Ψ Φ    

( ) [ ] 1 mod
0 0

n Nz z zx φ φ φ ′′ ′′ ′′ ′′ ′′= =   
Ψ Φ    

and mod 1N +  by mod 1N +  matrices 

mod1 0n Ndiag M M M =  M      

mod1 0n Ndiag C C C =  C      

mod1 0n Ndiag K K K =  K      and TMg=R β  

then the following dynamic equilibrium condition is obtained: 

( ) ( )

( ) ( ) ( ) ( ){ }2

T
M M

T T
M M M M M M

C x x

K x x M x x x x

 + + 

 ′ ′′+ + − + = 

Mη C Ψ Ψ η

K Ψ Ψ β Ψ Ψ η R

  

  
 

 
Obviously, a numeric approach will in general be required. 
 



 

 

Appendix A 
Basic Theory of Stochastic Processes 

A.1   Introduction 

A physical process is called a stochastic process if its numerical outcome at any 
time or position in space is random and can only be predicted with a certain 
probability of occurrence. Similarly, a data set of observations of a stochastic 
process can only be regarded as one particular set of realisations of the process, 
none of which can with certainty be repeated even if the conditions are seemingly 
the same. In fact, the observed numerical outcome of all physical processes is 
more or less random. The outcome of a process is only deterministic in so far as it 
represents a mathematical description whose input parameters has all been 
predetermined and remains unchanged. 

The physical characteristics of a stochastic process are described by its 
statistical properties. If it is the cause of another process, this will also be a 
stochastic process. I.e. if a physical event may mathematically be described by 
certain laws of nature, a stochastic input will provide a stochastic output. Thus, 
statistics constitute a mathematical description that provides the necessary 
parameters for numerical predictions of the random variables that are the cause 
and effects of physical events. The instantaneous wind velocity pressure at a 
particular time and position in space is such a stochastic process. The 
instantaneous ground motion during the incidence of an earthquake is also random 
in its behaviour. This implies that an attempt to predict its value at a certain 
position and time can only be performed in a statistical sense. An observed set of 
records cannot precisely be repeated, but it will follow a certain pattern that may 
only be mathematically represented by statistics. Thus, the key in understanding 
the effects of a stochastic load is to acknowledge its random distribution in time 
and space, i.e. any load effect calculations, static or dynamic, will require 
statistical averaging in both time and space. 
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( )
2

1 1
exp

22 xx

x x
p x

σπσ

  − = −  
                                       

(A.1) 

 
as illustrated to the right in Fig. A.1. This type of investigation is in the following 
labelled time domain statistics. The second level of randomness pertains to the 
simple fact that the sample set of observations shown in Fig. A.1 is only one 
particular realisation of the process. I.e. there are an infinite number of other 
possible representatives. Each of these may look similar and have nearly the same 
statistical properties, but they are random in the sense that they are never precisely 
equal to the one singled out in Fig. A.1. From each of a particular set of different 
realisations we may for instance only be interested in the mean value and the 
maximum value. Collecting a large number of different realisations will render a 
sample set of these values, and thus, statistics may also be performed on the mean 
value and the maximum value of the process. This is in the following labelled 
ensemble statistics. 

In structural engineering ( )k k kX x x t= +  may as mentioned above also be a 

representative of the displacement response at a certain position in the system. The 
time invariant part kx  is then the commonly known mean static response. The 

fluctuating part ( )kx t  represents the dynamic part of the response.  

A.2   Time Domain and Ensemble Statistics 

For a continuous random variable X, its probability density function ( )p x  is 

defined by 

[ ] ( ) ( ) ( ) ( )Pr
dP x

x X x dx P x dx P x dx p x dx
dx

≤ ≤ + = + − = =
        

(A.2) 

where ( )P x  is the cumulative probability function, from which it follows that 

[ ] ( ) ( )Pr
x

X x P x p x dx
−∞

≤ = = 
                               

(A.3) 

and that ( )lim 1
x

P x
→∞

= . Similarly, for two random variables X and Y the joint 

probability density function is defined by 
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( ) ( )2 ,
,

 

d P x y
p x y

dx dy
=

                                          

(A.4) 

where ( ) [ ], Pr ,P x y X x Y y= ≤ ≤ . The mean value and variance of X are given 

by 

[ ] ( )x E X xp x dx
+∞

−∞

= = 
 

and ( ) ( ) ( )2 22
x E X x x x p x dxσ

+∞

−∞

 = − = −  
    

(A.5) 

Equivalent definitions apply to a discrete random variable X . It is in the 

following assumed that each realisation kX  of X  has the same probability of 

occurrence, and thus, the mean value and variance of X  may be estimated from a 
large data set of N individual realisations: 

 

1

1
lim

N

k
N k

x X
N→∞ =

= 
             

and           ( )22

1

1
lim

N

x k
N k

X x
N

σ
→∞ =

= −
      

(A.6) 

 

The square root of the variance, xσ , is called the standard deviation. Recalling 

that [ ]E X x= , the expression for the variance may be further developed into 

 

( )22 2 2 2 22x E X x E X xX x E X xσ      = − = − + = −               
(A.7) 

 
As mentioned in above there are two types of statistics dealt with in structural 
engineering: time domain statistics and ensemble statistics. It will in the following 
be assumed that any time domain statistics are based on a continuous or discrete 
time variable X , which theoretically may attain values between −∞  and +∞  
and are applicable over a limited time range between 0 and T, within which the 
process is stationary and homogeneous (i.e. have constant statistical properties) 
such that 

( )X x x t= +
                                                    

(A.8) 

Its mean value and variance are then given by 
 

0

1
lim

T

T
x Xdt

T→∞
= 

 

and  ( ) 22

0
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x
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=                           (A.9) 
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processes. Then the correlation and covariance between these two process 
variables are defined by 

( ) ( ) ( ) ( )1 2 1 21 2
0

1
lim

T

x x
T

R E X t X t X t X t dt
T→∞

=  ⋅  = ⋅                  (A.10) 

( ) ( ) ( ) ( )1 2 1 21 2
0

1
lim

T

x x
T

Cov E x t x t x t x t dt
T→∞

=  ⋅  = ⋅                      (A.11) 

Similarly, given two data sets of N individual and equally probable realisations 
that have been extracted from two random variables, 1X  and 2X , then the 

ensemble correlation and covariance are defined by: 

[ ]1 2 1 21 2
1

1
lim

N

x x k kN k

R E X X X X
N→∞ =

= ⋅ = ⋅
                    

(A.12) 

( ) ( )

( ) ( )
1 1 2 21 2

1 1 2 2
1

1
lim

x x

N

k kN k

Cov E X x X x

X x X x
N→∞ =

=  − ⋅ −  

= − ⋅ −
                    

(A.13) 

However, correlation and covariance estimates may also be taken on the process 
variable itself. Thus, defining an arbitrary time lag τ , the time domain auto 
correlation and auto covariance functions are defined by 

( ) ( ) ( ) ( ) ( )
0

1
lim

T

x
T

R E X t X t X t X t dt
T

τ τ τ
→∞

=  ⋅ +  = ⋅ +  
           

(A.14) 

( ) ( ) ( ) ( ) ( )
0

1
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T

x
T

Cov E x t x t x t x t dt
T

τ τ τ
→∞

=  ⋅ +  = ⋅ +  
                  

(A.15) 

These are defined as functions because τ  is perceived as a continuous variable. 
As long as τ  is considerably smaller than T 

 

( ) ( )E X t E X t xτ  =  +  =                                    
(A.16) 

 

and thus, the relationship between xR  and xCov  is the following 
 

( ) ( ){ } ( ){ } ( ) 2
x xCov E X t x X t x R xτ τ τ = − ⋅ + − = −                 

(A.17) 
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There is no reason why τ  may not attain negative as well as positive values, and 
since 

( ) ( ) ( ) ( ) ( ) ( )E x t x t E x t x t E x t x tτ τ τ τ τ ⋅ −  =  − ⋅  =  − ⋅ − +            
(A.18) 

then 

( ) ( )x xCov Covτ τ= −
                                          

(A.19) 

Thus, xCov  is symmetric with respect to its variation with τ . As illustrated in 

Fig. A.3 the auto covariance function is the mean value of the time series 
multiplied by itself at a time shift equal to τ . Theoretically τ  may vary between 0 

and T, but the practical significance of ( )xCov τ  seizes to exist long before τ  is 

in the vicinity of T. The reason is that while it in theoretical developments is 

convenient to consider ( )x t  as a continuous function, it will in practical 

calculations only occur as a discrete and finite vector of random values kx , 

usually taken at regular intervals tΔ . If T is large and tΔ  is small, then the 
number of elements in this vector is /N T t≈ Δ , in which case the continuous 
integral in Eq. A.15 may be replaced by its discrete counterpart 
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1 N j

x k j k
k

Cov j t E x t x t x x
N j

τ τ
−

+
=

= ⋅ Δ =  ⋅ +  = ⋅  − 
               

(A.20) 

 
from which it is seen that j must be considerably smaller than N for a meaningful 
outcome of the auto covariance estimate. The same is true for the auto correlation 
function in Eq. A.14. Similar to the definitions above, cross correlation and cross 
covariance functions may be defined between observations that have been 

obtained from two short term realisations ( ) ( )1 1 1X t x x t= +  and 

( ) ( )2 2 2X t x x t= +  of the same process or alternatively from realisations of two 

different processes: 
 

( ) ( ) ( ) ( ) ( )1 2 1 21 2
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X X
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R E X t X t X t X t dt
T

τ τ τ
→∞
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   (A.21) 
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τ τ τ
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(A.22) 
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( ) ( ) ( )
0

1
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T

T
x y y t x y t x y y t dt

T
τ τ

→∞
+ Δ +  = + Δ + 

  

(A.24
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(A.25
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Fig. A.5 Typical spatial sepa
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aration and time lag covariance function 
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and peaks 
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probability density function for the joint events ( )x t  an
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( ) ( ) ( ) ( )
0 0

,x xx x xf a x p a x dx p a x p x dx
∞ ∞

= ⋅ = ⋅ ⋅       
                  

(A.32) 

 

For each threshold up-crossing there is a corresponding down-crossing event, i.e. 

( ) ( )x xf a f a+ = − , although there may be several consecutive positive or 

negative peaks in the process. Assuming that both x  and x  are Gaussian, then 
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(A.33) 

 

where:           ( ) 1
0

2
x

x
x

f
σ

π σ
= ⋅ 

                                                 

(A.34) 

  

is the average zero up–crossing frequency of the process (see Eq. A.96). If ( )x t  

is also narrow banded, such that a zero up crossing and a peak px  (larger than 

zero) are simultaneous events (as shown for the process in Fig. A.6), then the 

expected number of peaks p px a>  is ( )x pf a T⋅ , while the total number of 

peaks is ( )0xf T⋅ . Thus 
 

( ) ( )
( )Pr 1
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x p
p p p

x

f a
x a P a

f
 ≤ = = − 

                            

(A.35) 

 

from which it follows that the probability density distribution of pa  is given by 
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                                     

(A.36) 

 

This is a Rayleigh distribution. The distribution is illustrated on the right hand side 
of Fig. A.6. 



A.3   Threshold Crossing, Pe 

 

Fig. A.7.a shows a col

the fluctuating part ( )x t  

that they are all stationar
below it is a necessary re
ensemble of realisations 
properties of extreme valu

Fig. A.6, the extreme pe

occur when 

Let therefore                     

be an ensemble variable 

value maxx . 

 
 

a) 

Fig. A.7 Distribution of extre

eaks and Extreme Values 46

llection of N time series, each a short term realisation o

of a stochastic variable ( ) ( )X t x x t= + . It is assume

ry and ergodic, and for the validity of the developmen
equirement that they are fairly broad banded. From th
it may be of particular interest to develop the statistic
ues, as illustrated in Fig. A.7.b. Referring to Eq. A.33 an

eak value maxpa x=  within each short term realisatio

( ) 1

x pf a T
−

  →                                         
(A.37

        ( )maxxf x Tκ = ⋅
                                          

(A.38

signifying the event that ( )0x t T≤ ≤  exceeds a give

 
N short term independent realisations 

 
b) The distribution of extremes 

eme values 

69

of 

ed 

nt 
his 
cal 
nd 

on 

7) 

8) 

en 



470 A   Basic Theory of Stochastic Processes 

 

The probability that κ  occurs only once within each realisation is an event that 

coincides with the occurrence of maxx , i.e. they are simultaneous events. They are 

rare events at the tail of the peak distribution given in Eq. A.36, and for the 
statistics of such events it is a reasonable assumption that they will also comply to 
an exponential distribution, i.e. that 

 

( ) ( ) ( )maxmax
1, expxP T P x Tκ κ= = −

                         
(A.39) 

 

Introducing Eqs. A.33 (with maxa x= ) into A.38 and solving for maxx , then the 

following is obtained 

( ){ } ( ) ( )
1
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2ln 0 2ln 2ln 0 1

2ln 0x x x x
x

x f T f T
f T

κσ κ σ
  =   − ≈   −              

(A.40) 

where the approximation ( )1 1
n

x n x− ≈ − ⋅  has been applied, assuming that 

( )ln 0xf T ⋅    is large as compared to lnκ . Thus, observing that max 0x =  

corresponds to κ = ∞ , while maxx = ∞  corresponds to 0κ = , then the mean 

value of maxx  may be estimated from 
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(A.41) 

 

Thus, the mean value of maxx  is given by 
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( )max 2 ln 0

2 ln 0
x x

x

x f T
f T

γσ
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(A.42) 

where ( )
0

ln exp 0.5772dγ κ κ κ
∞

= − ⋅ − ≈  is the Euler constant. Similarly, it 

may be shown that the variance of maxx  is given by 
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( )
2

2 2
max 12 ln 0x x

xf T

πσ σ= ⋅
⋅  ⋅                                   

(A.43) 

Given a stochastic variable ( ) ( )X t x x t= + , the expected value of its largest 

peak during a realisation with length T may then be estimated from 

max p xX x k σ= + ⋅  

 

(A.44) 
 

where the peak factor pk  is given by 

( )
( )

2 ln 0
2 ln 0

p x

x

k f T
f T

γ= ⋅  ⋅  + 
⋅  ⋅  

 

 

 
(A.45) 

For fairly broad banded processes this peak factor will render values between 2 

and 5. Plots of pk  and 
maxx xσ σ  are shown in Fig. A.8. 

 
 

Fig. A.8 Plots of pk  and 
maxx xσ σ  
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It should be acknowledged that when ( )x t  becomes ultra-narrow banded thn 

2pk → , because for a single harmonic component 

 

the variance ( ) ( )cosx xx t c tω= ⋅ , 0 t T< <                                 (A.46) 
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 

   

(A.47) 

 

and thus, for such a process max 2x xx c σ= = ⋅ . Therefore, Eq. A.45 is only 

applicable for fairly broad banded processes. 

A.4   Auto and Cross Spectral Density 

The auto spectral density contains the frequency domain properties of the process, 
i.e. it is the frequency domain counterpart to the concept of variance. The various 
steps in the development of an auto spectral density function are illustrated in Fig. 

A.9. Given a zero mean time variable ( )x t  with length T and performing a 

Fourier transformation of ( )x t  implies that it may be approximated by a sum of 

harmonic components ( ),k kX tω , i.e. 
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k k
N k

x t X tω
→∞ =
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2 /

k k
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ω ω
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(A.48) 

 
The harmonic components in Eq. A.48 are given by 

 

( ) ( ), cosk k k k kX t c tω ω ϕ= ⋅ +
                                    

(A.49) 

 

where the amplitudes 2 2
k k kc a b= +  and phase angles ( )arc tan /k k kb aϕ = , 

and where the constants ka  and kb  are given by 
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(A.50) 
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( )
2 2
k Xk

x k

E X
S

σ
ω

ω ω

 
 = =
Δ Δ                                 

(A.51) 

 

which, when T becomes large, is given by 
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ω ω ϕ
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(A.52) 

 

Introducing the period of the harmonic component, 2 /k kT π ω= , and replacing 

T  with kn T⋅ , and let n → ∞ , then the following is obtained 
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(A.53) 

 

In Fig. A.9, the arrival at ( )x kS ω  is shown via the amplitude spectrum (or the 

Fourier amplitude diagram) to ease the understanding of the concept of spectral 
density representations. It is seen from this illustration that it is not possible to 
retrieve the parent time domain variable from the spectral density function alone, 
because it does not contain the necessary phase information (unless a 
corresponding phase spectrum is also established). The spectrum contains 
information about the variance distribution in frequency domain, i.e. 

 

( )
2

2 2

1 1 1

lim lim lim
2

N N N
k

x X x kkN N Nk k k

c
Sσ σ ω ω

→∞ →∞ →∞= = =
= = = ⋅ Δ  

             

(A.54) 

 

In a continuous format, i.e. in the limit of both N and T approaching infinity, the 
single-sided auto-spectral density is defined by 

 

( )
( )2 ,

lim limx
T N

E X t
S

ω
ω

ω→∞ →∞

 
 =

Δ                                  
(A.55) 

 

where ( ),X tω  is the Fourier component of ( )x t  at ω . In the limit dω ωΔ → , 

and thus, the variance of the process may be calculated from 
 

( )2

0x xS dσ ω ω
∞

=                                                
(A.56)  
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The development above may more conveniently be expressed in a complex 
format. Adopting a frequency axis spanning the entire range of both positive and 
(fictitious) negative values, introducing the Euler formula 

 

1 cos

1 sin

i t

i t

e i t

i te

ω

ω

ω
ω−

     
=     −                                         

(A.57) 

 

and defining the complex Fourier amplitude 
 

( )1

2k k kd a i b= − ⋅
                                          

(A.58) 

then:     ( ) ( ) ( ), i tk
k k k kx t X t d e ωω ω

∞ ∞
⋅

−∞ −∞
= = ⋅ 

                                        

(A.59) 

Taking the variance of the complex Fourier components in Eq. A.59 and dividing 
by ωΔ , 

( )( )** *

0

1
i t i tk kT

k kk k k k
d e d eE X X d d

dt
T

ω ω

ω ω ω

− ⋅  = =
Δ Δ Δ

               

(A.60) 

 

which may be further developed into 
 

( ) ( )* 21

4 4

k k k k k k k
E X X a i b a i b c

ω ω ω

 ⋅ + ⋅ ⋅ − ⋅  = =
Δ Δ Δ                 

(A.61) 

 

It is seen (see Eq. A.53) that this is half the auto spectral value associated with  

kω . Thus, a symmetric double-sided auto spectrum associated with kω−  as well 

as kω+  may be defined with a value that is half the corresponding value of the 

single sided auto-spectrum. Extending the frequency axis from minus infinity to 
plus infinity and using the complex Fourier components kX  given in Eq. A.59 

above, this double sided auto spectrum is then defined by 
 

( )
* * 2

4

k k k k k
x k

E X X d d c
S ω

ω ω ω

 ⋅ ± = = =
Δ Δ Δ                           

(A.62) 

 

which, in the limit of  and T N → ∞ , becomes the continuous function ( )xS ω± , 

from which the variance of the process may be obtained by integration over the 
entire positive as well as the fictitious negative frequency range 
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( )2
x xS dσ ω ω

+∞

−∞

= ±
                                            

(A.63)  

 

Thus, the connection between double- and single-sided spectra is simply that 

( ) ( )2x xS Sω ω= ⋅ ± . Assuming that the process is stationary and of infinite 

length, such that the position of the time axis for integration purposes is arbitrary, 
then it is in the literature of mathematics usually considered convenient to 
introduce a non-normalized amplitude (which may be encountered in connection 
with the theory of generalised Fourier series and identified as a Fourier constant) 

( ) ( )
0

T
i tk

k k ka x t e dt T dωω − ⋅= ⋅ = ⋅
                           

(A.64) 

in which case the double-sided auto-spectral density associated with kω±  is 

defined by 

( ) ( ) ( )**
*

/ / 1

2 / 2

k kk k
x k k k

a T a Td d
S a a

T T
ω

ω π π

⋅⋅
± = = = ⋅

Δ                
(A.65) 

 

In the limit of  and T N → ∞  this may be written on the following continuous 
form 

( ) ( ) ( )*1
lim lim

2x
T N

S a a
T

ω ω ω
π→∞ →∞

± = ⋅ ⋅
                   

(A.66) 

 

and accordingly, the single sided version is given by 
 

( ) ( ) ( )*1
limx

T
S a a

T
ω ω ω

π→∞
= ⋅ ⋅  

 

 
 

(A.67) 

 

where it is taken for granted that N is sufficiently large. The auto-spectral density 

( )xS ω  as defined by the use of circular frequency ω  may be replaced by a 

corresponding definition ( )xS f  using frequency f  (with unit 1Hz s−= ). Since 

( )xS ω ω⋅Δ  and ( )xS f f⋅Δ  both represent the variance of the process at ω  and 

f , they must give the same contribution to the total variance of the process, and 

thus 
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( ) ( ) ( ) ( )2x x xS f f S S fω ω ω π⋅ Δ = ⋅ Δ = ⋅ ⋅ Δ  
 

 ( ) ( ) ( ) ( )*2
2 limx x

T
S f S a f a f

T
π ω

→∞
 = ⋅ = ⋅ ⋅

                
(A.68) 

The cross spectral density contains not only frequency domain properties but also 
the coherence properties between two different processes, i.e. it is the frequency 
domain counterpart to the concept of covariance. Given two stationary time 

variable functions ( )x t  and ( )y t , both with length T  and zero mean value (i.e. 

( ) ( ) 0E x t E y t  =   =    ), and performing a Fourier transformation (adopting a 

double-sided complex format) implies that ( )x t  and ( )y t  may be represented by 

sums of harmonic components ( ),k kX tω  and ( ),k kY tω , i.e. 
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(A.69) 

where: 
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and where k kω ω= ⋅ Δ  and 2 / Tω πΔ = . The definition of the double-sided 

cross-spectral density xyS  associated with the frequency kω  is then 
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lim

2

k k
xy k X Yk kT

E X Y
S a a

T
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(A.70) 

 

Since the Fourier components are orthogonal 

( ) ( ) ( ),  when 
, ,

0 when 

xy k
i i j j
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i j

ω ω
ω ω
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(A.71) 

it follows from Eqs. A.69 and A.70 that an estimate of the covariance between 

( )x t  and ( )y t  are given by 

( ) ( ) [ ]( )lim lim
N N N

xy i j k k
N NN N N
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(A.72) 
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In a continuous format, i.e. in the limit of both N and T approaching infinity, the 
double-sided cross-spectral density is defined by 
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( ) ( )
*
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2xy x y
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ω ω
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(A.73) 

The single sided version is then simply 

( ) ( ) ( ) ( )*1
2 limxy xy x y
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(A.74) 

The corresponding single-sided version using frequency f  (Hz), is defined by 

( ) ( ) ( ) ( )*2
2 limxy xy x y
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π ω
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(A.75) 

Thus, the covariance between the two processes may be calculated from 

( ) ( ) ( )
0 0

xy xy xy xyCov S d S d S f dfω ω ω ω
+∞ ∞ ∞

−∞

= ± = =  
            

(A.76) 

The cross-spectrum will in general be a complex quantity. With respect to the 
frequency argument, its real part is an even function labelled the co–spectral 

density ( )xyCo ω , while its imaginary part is an odd function labelled the quad–

spectrum ( )xyQu ω , i.e. 

( ) ( ) ( )xy xy xyS Co i Quω ω ω= − ⋅
                              

(A.78) 

Alternatively, ( )xyS ω  may be expressed by its modulus and phase, i.e. 

( ) ( ) ( )i xy
xy xyS S e

ϕ ωω ω ⋅= ⋅
                                    

(A.79) 

where the phase spectrum ( ) ( ) ( )arc tanxy xy xyQu Coϕ ω ω ω =   . Auto-spectra 

( )xS ω  may also be calculated from the auto covariance function ( )xCov τ , see 

Eq. A.15. Assuming that ( )x t  is a stationary and zero mean stochastic variable, 

then the following applies: 
 



A.4   Auto and Cross Spectra 

 

 
( )

*

0

1
lim

2

k k
x

T

T

E X X
S

T

ω
ω

π→∞

 
 =

Δ

= 

 

( )xS ω =

Fig. A.10 Substitution of var

Replacing 2t  with 1t +
implies (as illustrated in F

1
0 0

T T

dt 
and thus 

( )
0

0

1
lim

2

1
lim 1

2

x
T

T

T
T

S
T

ω
π

π

→∞
− −

→∞
−


= 


 =  







( )xS ω =

al Density 47

( ) ( )

( ) ( ) ( )

0 0

2 1
1 2 1 2

0 0

1 1

lim
2 /

T T
i t i t

T

T T
i t t

E x t e dt x t e dt
T T

T

E x t x t e dt dt

ω ω

ω

π

−

→∞

− −

    
⋅              =

 ⋅  ⋅ 

 

 

 

( ) ( )2 1
2 1 1 2

0 0

1
lim

2

T T
i t t

x
T

Cov t t e dt dt
T

ω

π
− −

→∞
− ⋅         (A.80

 
riables and corresponding integration limits 

τ+ , and changing the integration limits accordingl

Fig. A.10) that 

0

1 2 1 1
0 0

T T T

T

dt dt d dt d
τ

τ
τ τ

−

− −

= +   
                                

(A.8

( ) ( )

( ) ( )

1 1
0 0

0

1 1

T T T
i i

x x

T
i i

x x

Cov e dt d Cov e dt d

Cov e d Cov e d
T T

τ
ωτ ωτ

τ

ωτ ωτ

τ τ τ τ

τ ττ τ τ τ

−
− −

−

− −


⋅ + ⋅ 


  + ⋅ ⋅ + − ⋅   

   

  



 

( )1
lim 1

2

T
i

x
T

T

Cov e d
T

ωττ
τ τ

π
−

→∞
−

 
= − ⋅ 

 


               

(A.82

79

0) 

y, 

1) 

2) 



480 A   Basic Theory of Stochastic Processes 

 

Provided the integral under the auto covariance function is finite, it is then seen 
that in the limit of T → ∞ , the following is obtained 

( ) ( )1

2
i

x xS Cov e dωτω τ τ
π

+∞
−

−∞
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(A.83) 

This shows that the auto spectral density is the Fourier transform of the auto 
covariance function. Vice versa, it follows that the auto covariance function is the 
Fourier constant to the spectral density, i.e. 

 

( ) ( ) i
x xCov S e dωττ ω ω
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(A.84) 

 

Similarly, the cross covariance function together with the cross spectral density 
will also constitute a pair of Fourier transforms: 
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The coherence function is defined by 
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If ( )x t  and ( )y t  are realisations of the same process, then ( ) ( )x yS Sω ω=  

and the cross-spectrum ( ) ( )xy xxS Sω ω=  is given by 
 

( ) ( ) ( ) ( )i xx
xx x xxS S Coh e ϕ ωω ω ω= ⋅ ⋅

                    
(A.87) 

 

( )xxCoh ω  is the root–coherence function and xxϕ  is the phase spectrum (see 

Eq. A.79) . In the practical use of cross-spectra all imaginary parts will cancel out, 
and thus it is only the co-spectrum that is of interest. Therefore, a normalised co-
spectrum is defined by 
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Again, if ( )x t  and ( )y t  are realisations of the same stationary and ergodic 

process, then ( ) ( )x yS Sω ω=  and the real part of the cross-spectrum is given by 
 

( ) ( ) ( )ˆRe xx x xxS S Coω ω ω  = ⋅                                    
(A.89) 

 

It may in some cases be of interest to calculate the spectral density of the time 

derivatives [e.g. ( )x t  and ( )x t ] of processes. In structural engineering this is 

particularly relevant if ( )x t  is a response displacement of such a character that it 

is necessary to evaluate as to whether or not it is acceptable with respect to human 
perception, in which case the design criteria most often will contain acceleration 
requirements. Since (see Eq. A.59) 
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and the double sided spectral density in general is given by the complex Fourier 
amplitude multiplied by its conjugated counterpart (see Eq. A.62), then 

 

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )

* *
2 2

*2 2
*

4 4

k k k k k k k k
k k k x k

k k k k k k
k k

k k k x k

x

x

i d i d d d
S S

i d i d d d
S S

ω ω ω ω
ω ω ω ω

ω ω

ω ω ω ω
ω ω ω ω

ω ω


       ± = = = ± Δ Δ 




    
    ± = = = ±

Δ Δ 





(A.92) 

 

Similarly, cross spectral densities between a fluctuating displacement and its 
corresponding velocity and acceleration are given by 
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In the limit of  and T N → ∞  this may be written on the following continuous 
form 
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Because ( )xS ω±  is symmetric it is seen that for a stationary stochastic process 
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Thus, the spectral density of time derivatives of processes may be obtained 
directly from the spectral density of the process itself. The single sided spectrum is 

twice the double sided, then Eqs. A.93 – A.95 will also hold if ( )xS ω± , 

( )xS ω±  and ( )xS ω±  are replaced by ( )xS ω , ( )xS ω  and ( )xS ω . 

From ( )xS ω  and ( )xS ω  a general expression of the average zero crossing 

frequency ( )0xf  of the process ( )x t  may be found. Referring to Eq. A.34, A.56 

and introducing ( ) ( )2
x xS Sω ω ω= , then the following applies: 
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where for convenience the so–called thn  spectral moment 

( )
0

n
n xS dμ ω ω ω

∞
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has been introduced. 



 

 

Appendix B 
Time Domain Simulations 

B.1   Introduction 

It is in the following taken for granted that the stochastic space and time domain 

simulation of a process ( )x t  implies the extraction of single point or 

simultaneous multiple point time series from known frequency domain cross 
spectral density information about the process. The process may contain coherent 
or non-coherent properties in space and time. Thus, a multiple point representation 
is associated with the spatial occurrence of the process. For a non-coherent 
process there is no statistical connection between the simulated time series that 
occur at various positions in space, and thus, the simulation may be treated as a 
representation of independent single point time series. This type of simulation is 
shown in chapter B.2. For a coherent process there is a prescribed statistical 
connection between each of the spatial representatives within a set of M  
simulated time series. E.g., if the simulated time series represent the space and 
time distribution of a wind field, there will be a certain statistical connection 

between the instantaneous values ( ) , 1,2,....,mx t m M=  that matches the spatial 

properties of the wind field. Such a simulation is shown in chapter B.3. The 
simulation procedure presented below is taken from Shinozuka [23] and Deodatis 
[24]. Simulating time series from spectra is particularly useful for two reasons. 
First, there are some response calculations that render results which are more or 
less narrow banded (or contain beating effects), and thus, they may require 
separate time domain simulations to establish an appropriate peak factor for the 
calculation of maximum response. Secondly, if the relevant cross spectra of the 
wind field or the earthquake properties in frequency domain and space are known, 
there is always the possibility of a time domain simulation such that a time domain 
step-wise load effect integration may be performed, see Chapter 6.3. Thus, a time 
domain simulation may provide an alternative approach to that of a frequency 
domain solution shown in Chapters 7 and 8. The main advantage is that such an 
approach may contain many of the non-linear effects that will have to be 
simplified or discarded in the linear theory that is required for a frequency domain 
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where ( ) 1/2
2k x k kc S ω ω = ⋅ ⋅ Δ                                   

(B.3) 

 

and where kψ  are arbitrary phase angles between zero and 2π , one for each 

harmonic component. Alternatively, Eq. B.2 may be written in an exponential 
format (often encountered in the literature) 

 ( ) ( )
1

Re exp
N

k k k
k

x t c i tω ψ
=

   = ⋅ +    


                             

(B.4) 

The variance of ( )x t  is 
2

1 2

N
k

k

c

=
 , which in the limit of 0ωΔ →  and N → ∞ , 

 ( )
2

2

1 0
2

N
k

x x
k

c
S dσ ω ω

∞

=
= = 

                                        

(B.5) 

I.e., if the discretisation is sufficiently fine, then the variance of the simulated 

representative, ( )x t , is equal to or close enough to the variance of the parent 

variable. Any number of such representatives may be simulated simply by 
changing the choice of phase angles. Obviously, the accuracy of such a simulation 
depends on the discretisation fineness, but there is also the unfavourable 

possibility of aliasing. Let cω  be the upper cut-off frequency, beyond which there 

is none or only negligible spectral information about the process. Assuming 
constant frequency segments 

 

/c Nω ωΔ =                                                      (B.6) 

 
then each simulated time series will be periodic with period 

 
2 /T π ω= Δ                                                    (B.7) 

 
Thus, time series without aliasing will be obtained if they are generated with a 
time step 

( )2 / 2 ct π ωΔ ≤
                                                

(B.8) 
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The top diagram in Fig. B.2 shows the single point single sided spectrum of a 
process x of which we wish to portray two representatives in time domain. As 
shown, the frequency span of the spectrum is first divided into five equal frequency 

segments, and the corresponding values kω  and ( )x kS ω , 1,2,...,5k = , are 

read off. Thus the process is represented by five harmonic components whose 

amplitudes ( )2k x kc S ω ω= ⋅ ⋅ Δ  are given in the far right hand side column in 

the table of Fig. B.2. Thus 
 

 ( ) ( ) ( )
5

1

2 cosx k k k
k

x t S tω ω ω ψ
=

= Δ ⋅ +  

 

What then remains is to choose five arbitrary value of kψ . In Fig. B.2 the five 

cosine components are first shown by fully drawn lines, representing a certain 

choice of kψ  values. The sum of these components as shown in the lower diagram 

in Fig. B.2 is an arbitrary representation of the process ( )x t . If the second and 

the fourth of these components are moved an arbitrary time shift, then together 
with the remaining unchanged components they sum up to become another 
arbitrary representation of the process shown by the broken line in Fig. B.2. As 
can be seen, the two simulated representatives look quite different in time domain, 
although they come from the same spectral density. What is important is that they 
both have zero mean and the same variance, i.e. they have identical statistical 
properties up to and including the variance. 

 
 

B.3   Simulation of Spatially Non-coherent Time Series 

While the procedure presented above may be used to simulate single point time 

series representatives of ( )x t , it is not applicable if we wish to simulate multiple 

point time series whose properties are expected to be distributed according to 
certain coherence properties. Let us assume that we wish to simulate the 
turbulence components 

( ), ,f fx y z t  ,  or x u v w=                             (B.9) 

of a stationary and homogeneous wind field at a chosen number of points M  in a 
plane perpendicular to the main flow direction. For simplicity it is in the following 
assumed that cross spectra between u , v  and w  components are negligible, i.e. 
that 
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( ), 0xyS sω Δ ≈  , ,
x

u v w
y


=

                                 

(B.10) 

 

where sΔ  is the spatial separation in the f fy z−  plane. We will then only need 

information about the cross spectra of the turbulence components themselves, 

( ),xxS sω Δ . Let ( )x xm n
Cov τ  be the covariance and ( )x xm n

S ω  the 

corresponding cross spectral density between two arbitrary points m  and n . As 
shown in appendix A.4 these quantities constitute a Fourier transform pair. An 
M  by M  cross spectral density matrix 

 

( )

1 1 1 1

1

1

x x x x x xn M

x x x x x xxx m m n m M

x x x x x xM M n M M

S S S

S S S

S S S

ω

 
 
 
 =  
 
 
  

S

 

    
 

    
 

                

(B.11) 

 

will then contain all the space and frequency domain information that is necessary 
for a time domain simulation of M  time series with the correct statistical 
properties for a proper but arbitrary representation of the process. It follows from 
the assumptions of stationary and spatially homogeneous properties that 

x x x xm n n m
Cov Cov=

                                    
(B.12)  

and thus (see Eq, A.85)          *
x x x xm n n m

S S=
                                       

(B.13) 

 

This implies that ( )xx ωS  is Hermitian and non–negative definite. A Cholesky 

decomposition of xxS  will then render a lower triangular matrix 
 

( )

1 1

2 1 2 2

1 2

1 2

0 0 0 0 0

0 0 0 0

0 0

x x

x x x x

xx
x x x x x x x xm m m n m m

x x x x x x x x x xM M M n M m M M

G

G G

G G G G

G G G G G

ω

 
 
 
 
 =
 
 
 
 
 

G

 

 

    
 

    
  

 

(B.14) 

 

whose properties are such that 
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( ) *T
xx xx xxω = ⋅S G G

                                          
(B.15) 

 

Assuming a frequency segmentation of N  equidistant points, the simulated 

simultaneous time series at 1,2,....,m M=  are then given by 

 

( ) ( ) ( )
1 1

2 cos
m N

m mn j j nj
n j

x t G tω ω ω ψ
= =

= ⋅ Δ ⋅ ⋅ +
         

(B.16) 

 

where j  is the frequency segment number and njψ  is an arbitrary phase angle 

between zero and 2π . In most cases of a homogeneous wind field (see Eq. A.87) 

( ) ( ) ( )ˆ, ,xx x xxS s S S sω ω ωΔ = ⋅ Δ
                               

(B.17) 

where xS  is the single-point spectral density of the process, x xm n
s s sΔ = −  is 

the spatial separation between points mx  and nx , and where 

( ) ( ) ( )ˆ , , expxx xx xxS s Coh s iω ω ϕ ωΔ = Δ ⋅                              
(B.18) 

Thus, defining a Cholesky decomposition ( ) *ˆ ˆ ˆ T
xx xx xxω = ⋅S G G , then the time 

series at 1,2,....,m M=  are given by 

( ) ( ) ( ) ( )
1 1

ˆ 2 cos
m N

m mn j x j j nj
n j

x t G S tω ω ω ω ψ
= =

= ⋅ ⋅ Δ ⋅ ⋅ +
       

(B.19) 

where ˆ
mnG  is the content of ˆ

xxG  (i.e. the reduced versions of mnG  in Eq. B.14) 

( )

11

21 22

1 2

1 2

ˆ 0 0 0 0 0

ˆ ˆ 0 0 0 0

ˆ
ˆ ˆ ˆ ˆ 0 0

ˆ ˆ ˆ ˆ ˆ

xx

m m mn mm

M M Mn Mm MM

G

G G

G G G G

G G G G G

ω

 
 
 
 
 =
 
 
 
 
 

G

 

 
    

 
    

  
      

(B.20) 

and where a Cholesky decomposition (see Appendix B.4 below) will render 
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( ) ( ) 1/2

11
ˆ ˆ ,0j xx jG Sω ω =                                      

(B.21) 

 

( ) ( ) ( )
1/21

2

1

ˆ ˆ ˆ,0
m

mm j xx j mk j
k

G S Gω ω ω
−

=

 
= − 
 


                 

(B.22) 

 

( )
( ) ( ) ( )

( )

1

1

ˆ ˆ ˆ,
ˆ

ˆ

n

xx j mk j nk j
k

mn j
nn j

S s G G

G
G

ω ω ω
ω

ω

−

=
Δ − ⋅

=


               

(B.23) 

 

Example B.2 
 

A process x  is statistically distributed in time and space. Its cross-spectrum 

( ),xxS sω Δ  is defined by the product between the single point spectrum ( )xS ω  

shown in Fig. B.3 and its root-coherence function ( ),xxCoh sω Δ  shown in Fig. 

B.4. I.e., 

 ( ) ( ) ( ), ,xx x xxS s S Coh sω ω ωΔ = ⋅ Δ  

The phase spectrum ( )exp xxiϕ ω    is assumed equal to unity for all relevant 

values of ω  and sΔ . Let us set out to simulate the process at three points in 
space, each a distance 10 m apart. Thus, 

 [ ] [ ]1 2 3 0 10 20
T T

s s s s= Δ Δ Δ =Δ  

Let us for simplicity settle with the three point frequency segmentation shown in 
Fig. B.3. I.e. 

 [ ] [ ]1 2 3 0.3 0.7 1.1
T Tω ω ω= =ω  and 0.4ωΔ =  

(It should be noted that this frequency segmentation is only justified by the wish of 
obtaining mathematical expressions with reasonable length, such that a complete 
solution may be presented. For any practical purposes such a coarse 
segmentation will most often render unduly inaccurate results.) 
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Fig. B.3 Single point spectrum 

 

Fig. B.4 Root coherence function at 0.3,  0.7 and 1.1ω =  
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The single point spectrum at these frequency settings are then (see Fig. B.3) 

( ) ( ) ( ) [ ]1 2 3 4.0 7.6 3.0
T T

x x x xS S Sω ω ω = = S  

while the corresponding values of the root coherence function are given by (see 
Fig. B.4) 

 

( ),xxCoh sω Δ : 
sΔ  

0 10 20 

ω  
0.3 1.0 0.6005 0.3606 
0.7 1.0 0.3042 0.0926 
1.1 1.0 0,1541 0.0238 

 

Thus, ( )
1 .

ˆ 0.3, 0.6005 1

0.3606 0.6005 1
xx j mn

sym

sω
 
 = Δ =  
  

S  

 ( )
1 .

ˆ 0.7, 0.3042 1

0.0926 0.3042 1
xx j mn

sym

sω
 
 = Δ =  
  

S  

 ( )
1 .

ˆ 1.1, 0.1541 1

0.0238 0.1541 1
xx j mn

sym

sω
 
 = Δ =  
  

S

 
 

( )
11

21 22

31 32 33

ˆ 0 0
ˆ ˆ ˆ 0

ˆ ˆ ˆ
xx j

G

G G

G G G

ω

 
 

=  
 
  

G  is defined such that ( )ˆ ˆ ˆ, T
xx j n xx xxsω Δ = ⋅S G G  

Its content is given by (see Eqs. A.21 – A.23) 

 ( ) ( ) 1 2
11 11

ˆ ˆ , 0j xx jG S sω ω = Δ =   

 ( ) ( ) ( )21 21 11
ˆ ˆ ˆ, 10j xx j jG S s Gω ω ω= Δ = , 

 ( ) ( ) ( ) 1 22
22 22 21

ˆ ˆ ˆ, 0j xx j jG S s Gω ω ω = Δ = −   

 ( ) ( ) ( )31 31 11
ˆ ˆ ˆ, 20j xx j jG S s Gω ω ω= Δ =  



B.3   Simulation of Spatially Non-coherent Time Series 493 

 

         
( ) ( ) ( ) ( ) ( )32 32 31 21 22

ˆ ˆ ˆ ˆ ˆ, 10j xx j j j jG S s G G Gω ω ω ω ω = Δ = − ⋅   

           
( ) ( ) ( ) ( ) 1 22 2

33 33 31 32
ˆ ˆ ˆ ˆ, 0j xx j j jG S s G Gω ω ω ω = Δ = − −   

 
Thus, 

( )

2
11 22

1 21 32

2 231 33

ˆ ˆ1 1 0.6005 0.7996

ˆ ˆ0.3 0.6005 0.6005 0.3606 0.6005 0.7996 0.4802

ˆ 0.3606 ˆ 1 0.3606 0.4802 0.7996

G G

G G

G G

ω

 = = − =  =  = = − ⋅ = 
 = = − − =  

 

                     

( )1

1 0 0
ˆ 0.3 0.6005 0.7996 0

0.3606 0.4802 0.7996
xx ω

 
  = =  
  

G  

 

( )

2
11 22

2 21 32

2 231 33

ˆ ˆ1 1 0.3042 0.9526

ˆ ˆ0.7 0.3042 0.3042 0.0926 0.3042 0.9526 0.2898

ˆ 0.0926 ˆ 1 0.0926 0.2898 0.9526

G G

G G

G G

ω

 = = − =  =  = = − ⋅ = 
 = = − − =  

 

                     

( )2

1 0 0
ˆ 0.7 0.3042 0.9526 0

0.0926 0.2898 0.9526
xx ω

 
  = =  
  

G  

 

( )

2
11 22

3 21 32

2 231 33

ˆ ˆ1 1 0.1541 0.9881

ˆ ˆ1.1 0.1541 0.1541 0.0238 0.1541 0.9881 0.1522

ˆ 0.0238 ˆ 1 0.0238 0.1522 0.9881

G G

G G

G G

ω

 = = − =  =  = = − ⋅ = 
 = = − − =  

 

 ( )1

1 0 0
ˆ 1.1 0.1541 0.9881 0

0.0238 0.1522 0.9881
xx ω

 
  = =  
  

G  

Denoting 

 

( )
( )
( )

1
1

2 2

3
3

2 0.5 2 4 0.4 1.79

2 0.7 2 7.6 0.4 2.46

1.552 3 0.42 1.1

x

x

x

Sa

a S

a S

ω ω

ω ω

ω ω

 = ⋅ Δ  ⋅ ⋅          = = ⋅ Δ = ⋅ ⋅ ≈            ⋅ ⋅     = ⋅ Δ   

 

then the three time series are given by (see Eq. B.19) 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

1 3

1 1
1 1

11 1 1 1 11 11 2 2 2 12

11 3 3 3 13

11 12 13

ˆ 2 cos

ˆ ˆcos cos

ˆ cos

1.79 cos 0.3 2.46 cos 0.7 1.55 cos 1.1

n j x j j nj
n j

x t G S t

G a t G a t

G a t

t t t

ω ω ω ω ψ

ω ω ψ ω ω ψ

ω ω ψ

ψ ψ ψ

= =
= ⋅ Δ ⋅ +

= + + +

+ +

= ⋅ + + ⋅ + + ⋅ +



 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2 3

2 2
1 1

21 1 1 1 11 21 2 2 2 12

21 3 3 3 13 22 1 1 1 21

22 2 2 2 22 22 3 3 3 23

11 12

ˆ 2 cos

ˆ ˆcos cos

ˆ ˆcos cos

ˆ ˆcos cos

1.075 cos 0.3 0.748 cos 0.7 0.239

n j x j j nj
n j

x t G S t

G a t G a t

G a t G a t

G a t G a t

t t

ω ω ω ω ψ

ω ω ψ ω ω ψ

ω ω ψ ω ω ψ

ω ω ψ ω ω ψ

ψ ψ

= =
= ⋅ Δ ⋅ +

= + + +

+ ⋅ ⋅ + + +

+ + + ⋅ ⋅ +

= ⋅ + + ⋅ + + ⋅



( )
( ) ( ) ( )

13

21 22 23

cos 1.1

1.431 cos 0.3 2.343 cos 0.7 1.532 cos 1.1

t

t t t

ψ
ψ ψ ψ

+

+ ⋅ + + ⋅ + + ⋅ +

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 3

3 3
1 1

31 1 1 1 11 31 2 2 2 12

31 3 3 3 13 32 1 1 1 21

32 2 2 2 22 32 3 3 3 23

33 1 1 1 31 33 2 2 2 32

33

ˆ 2 cos

ˆ ˆcos cos

ˆ ˆcos cos

ˆ ˆcos cos

ˆ ˆcos cos

ˆ

n j x j j nj
n j

x t G S t

G a t G a t

G a t G a t

G a t G a t

G a t G a t

G

ω ω ω ω ψ

ω ω ψ ω ω ψ

ω ω ψ ω ω ψ

ω ω ψ ω ω ψ

ω ω ψ ω ω ψ

= =
= ⋅ Δ ⋅ +

= + + +

+ ⋅ ⋅ + + +

+ + + ⋅ ⋅ +

+ + + +

+



( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

3 3 3 33

11 12 13

21 22 23

31 32 33

cos

0.646 cos 0.3 0.228 cos 0.7 0.039 cos 1.1

0.86 cos 0.3 0.713 cos 0.7 0.236 cos 1.1

1.431 cos 0.3 2.343 cos 0.7 1.532 cos 1.1

a t

t t t

t t t

t t t

ω ω ψ

ψ ψ ψ
ψ ψ ψ
ψ ψ ψ

⋅ ⋅ +

= ⋅ + + ⋅ + + ⋅ +

+ ⋅ + + ⋅ + + ⋅ +

+ ⋅ + + ⋅ + + ⋅ +
 

What then remains is to ascribe arbitrary values (between 0 and 2π ) to the phase 

angles, njψ . The following is chosen: 
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0.7 0.6 0.3

2 0.1 0.4 0.2

0.1 0.7 0.8

π
 
 = ⋅  
  

ψ  

 

Fig. B.5 Simulated time series 

The simulated time series are shown in Fig. B.5 ( 600 T s=  and 0.06tΔ =  s). 
The standard deviation of the process as calculated from the parent spectrum is 

2.3365xσ = . The standard deviations of the three simulated time series are 

2.414, 2.328 and 2.3995. The discrepancy (less than about 3 %) is caused by the 
unduly coarse frequency segmentation. 

 
 

B.4   The Cholesky Decomposition 

Given a positive definite and symmetric matrix X , the Cholesky decomposition 
of X  is defined by a lower triangular matrix Y  of the same size that satisfies the 
following: 

 

T=X YY                                                     (B.24) 
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Expanding this equation 
 

11 1 1 11 11 1 1

1 1

1 1

0 0

0 0

0 0

i N i N

i ii iN i ii ii iN

N Ni NN N Ni NN NN

x x x y y y y

x x x y y y y

x x x y y y y

     
     
     
     =
     
     
          

 
  

 
  

   

(B.25) 

 
and developing the matrix multiplication column by column, it is seen that the first 
column renders 

 

11 11 11 11 11

21 21 11 21 21 11

1 1 11 1 1 11

/

/N N N N

x y y y x

x y y y x y

x y y y x y

= ⋅  =
 = ⋅ =    

  
  = ⋅ =  

 

                           

(B.26) 

 
while the second column renders 

 

( )

( )

22 21 21 22 22 22 22 21 21

32 31 21 32 22 32 32 31 21 22

2 1 21 2 22 2 2 1 21 22

/

/N N N N N N

x y y y y y x y y

x y y y y y x y y y

x y y y y y x y y y

= ⋅ + ⋅ = − 
 = ⋅ + ⋅ = −    

  
  = ⋅ + ⋅ = −  

 

      

(B.27) 

 
and so on. This can be summarized as follows: 

 

( )1/2
11 11

1/21
2

1

1

1

for 2,....., 1

/  for all 

i

ii ii ik
k

j

ij ij ik kj jj
k

y x

y x y i N

y x y y y i j

−

=
−

=

=

 
= − = −  
 
 

= − >  
 





                               

(B.28) 



 

 

Appendix C 
Element Properties 

C.1   Twelve Degree of Freedom Beam Element 

The element mass matrix is given by:  11 12

21 22

 
=  
 

m m
m

m m   
where  21 12

T=m m  

 

11

2

2

140 0 0 0 0 0

156 0 147 0 22

156 147 22 0
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The element damping matrix is given by:  11 12
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The element stiffness matrix associated with purely material properties: 
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If the element length is short and the variation of time invariants nN , 
nyM  and 

nzM are approximately constants nN , 
nyM  and 

nzM  along the span, then: 
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C.2   Six Degree of Freedom Beam Element 
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