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Preface

This text book is intended for studies in the theory of structural dynamics, with
focus on civil engineering structures that may be described by line-like beam or
beam-column type of systems, or by a system of rectangular plates. Throughout
this book the mathematical presentation contains a classical analytical description
as well as a description in a discrete finite element format, covering the
mathematical development from basic assumptions to the final equations ready for
practical dynamic response predictions. Solutions are presented in time domain as
well as in frequency domain. It has been my intention to start off at a basic level
and step by step bring the reader up to a level where the necessary safety
considerations to wind or horizontal ground motion induced dynamic design
problems can be performed, i.e. to a level where dynamic displacements and
corresponding cross sectional forces can actually be calculated. However, this is
not a text book in wind or earthquake engineering, and hence, relevant load
descriptions are only included in so far as it has been necessary for the
performance of illustrative examples. For more comprehensive descriptions of
wind and earthquake induced dynamic load and load effects the reader should
consult the literature, e.g. refs. [15] and [16]. Less attention has been given to
other load cases, e.g. to any kind of shock or impact loading. Also, a
comprehensive description of structural damping properties are beyond the scope
of this book, but again, for the sake of completeness, a chapter covering the most
important theories behind structural damping has been included. The special
theory of the tuned mass damper has been given a comprehensive treatment, as
this is a theory not fully covered elsewhere. For the same reason a chapter on the
problem of moving loads on beams has been included.

The reading of this book will require some knowledge of structural
mechanics, i.e. the basic theory of elasticity. Also, readers unfamiliar with the
theory of stochastic processes and time domain simulations should commence
their studies by reading Appendices A and B, or another suitable text book.

The drawings have been prepared by Anne Gaarden. Thanks to her and all
others who have contributed to the writing of this book.

Trondheim, September 2012 Einar N. Strommen



Notation

Matrices and vectors:

Matrices are in general bold upper case Latin or Greek letters, e.g. Kor @ .
Vectors are in general bold lower case Latin or Greek letters, e.g. Qor @ .
diag[-]is a diagonal matrix whose content is written within the bracket.
det(-) is the determinant of the matrix within the bracket.

tr(-) is the trace of a matrix.

Imaginary quantities:
i is the imaginary unit (i.e. i =~/—1).
Re() is the real part of the variable within the brackets.

Im(-) is the imaginary part of the variable within the brackets.

Superscripts and bars above symbols:

Super-script T indicates the transposed of a vector or a matrix.

Super-script * indicates the complex conjugate of a quantity.

Dots above symbols (e.g. F, F) indicates time derivatives, i.e. d/df, d*/dt*.
Prime on a variable (e.g. Ci or ¢') indicates its derivative with respect to a
relevant variable, e.g. @' = d ¢ / dx . Two primes is then the second derivative (e.g.
¢’ = d2¢/dx2 ) and so on.

Bar (—) above a variable (e.g. 7 ) indicates its time invariant average value.

Tilde ( ~ ) above a symbol (e.g. M ,,) indicates a modal quantity.

Hat ( A ) above a symbol (e.g. H ») indicates a normalised quantity.

The use of indices and superscript:
Index x,y or z refers to the corresponding structural axis.

iand j are general indices on variables.



X Notation

nand m are mode shape or element numbers.

pand k are in general used as node numbers.

Abbreviations:

CC and SC are short for the centre of cross-sectional neutral axis and the shear
centre.

tot is short for total.

max, min are short for maximum and minimum.

J.L or IA means integration over the entire length or the area of the system.

Latin letters:

A Area, cross sectional area
A; Coefficient associated with variable j
A —Ag  Aerodynamic derivatives associated with the motion in torsion

A A, A, Connectivity matrix (associated with element m or n)

a Coefficient, Fourier coefficient, amplitude

a; Fourier coefficient vector associated with variable j

B Cross sectional width

b Coefficient, band-width parameter

b, Distance between cable planes is a suspension bridge

b q Buffeting dynamic load coefficient matrix at cross sectional level
c.C Damping coefficient or matrix containing damping coefficient
C,.C, Aerodynamic damping, acrodynamic damping matrix

c, ¢ Coefficient,damping coefficient at cross sectional level

Cy Damping matrix at a cross sectional level

c.c, Damping matrix at element level, aerodynamic damping matrix

Co,Co Co-spectral density, co-spectral density matrix

Cov j Covariance matrix associated with variable j
D, d Cross sectional depth, Coefficient
d, a4 k Element displacement vector, element end displacement component

E Modulus of elasticity
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Exponential number ( = 2.718281828), Cable sag

Element force vector, force

Frequency [Hz], eigen frequency associated with mode 7
Function of variable within brackets

Modulus of elasticity in shear

Function of variable within brackets, gravity constant
Horizontal cable force component

Aerodynamic derivatives associated with the across-wind motion
Frequency response function, frequency response matrix
Modal frequency response functions, matrix containing [:I,]n
Length of suspension bridge hangers, hanger length at mid span
Vertical distance between shear centre and hanger attachment
Height (above girder) of suspension bridge tower

St Venant torsion and warping constants

Turbulence intensity of flow components j=u,vor w
Moment of inertia with respect to bending abouty or z axis
Identity matrix

The imaginary unit (i.e. i = \/TI )

Joint acceptance function, joint acceptance matrix

Index variable

Stiffness, stiffness matrix

Aerodynamic stiffness, aero dynamic stiffness matrix

Index variable, node or sample number

Peak factor

Stiffnessmatrix at element level, aerodynamic stiffness matrix
Lagrange function

Length (of structural system)

Integral length scales (m =y, z or 6, n =u,v or w)

Effective length

Concentrated mass at position x,, , mass matrix containing M ,
Bending moment (m=x, y, z)

Index variable

Mass, mass matrix
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Modally equivalent and evenly distributed mass

Mass matrix at a cross sectional level, Mass matrix at element level

Number, number of elements in a system

Number of degrees of freedom in a system

Normal force (in XOr y directions)

Index variable

Matrix containing time invariant element end forces

Work performed by external forces acting on the system
Aerodynamic derivatives associated with the along-wind motion
Index variable, node or sample number

External load vector component in directions j=x, y Or z
Pressure, distributed load or load vector at cross sectional level
External load, reaction force, external load vector at system level
Modal load, Modal load vector

Cross sectional displacement or rotation, displacement vector
Element cross sectional displacement, displacement vector
Polar radius

Strouhal number

Auto or cross spectral density, cross-spectral density matrix
Cross spectral density matrix associated with variable j
General coordinate (§ =X, YOr 7)

Motion energy of the system body masses

Time, total length of time window

Strain energy stored in the material fibres of the system
Instantaneous wind velocity in the main flow direction
Fluctuating along-wind horizontal velocity component
Volume

Mean wind velocity, resonance mean wind velocity

Shear forces

Fluctuating across wind horizontal velocity component
External, internal work

Fluctuating across wind vertical velocity component

Cartesian structural global axis
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X, V5,2

X1l

Cartesian structural element cross sectional main neutral axis (with

origo in the shear centre, x in span-wise direction and z vertical)

Chosen span-wise position for response calculation

Greek letters:
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Coefficient

Phase angle, coefficient

Matrix, matrix containing mode shape derivatives

Shear strain, shear strain associated with shear forceor torsion
Incremental displacement operator

Derivative operator

Strain, strain vector, strain component ( j =X,y Or 7 )
Damping ratio or damping ratio matrix

Generalised coordinate, vector containing N 4 7] components

Index indicating cross sectional rotation or load (about shear centre)

Coefficient

Poisson’s ratio, coefficient

Coefficient, wave length

Coefficient, friction coefficient

Total energy

Coefficient

Densityof air, density of component associated with j

Standard deviation, variance

Normal stress, Shear stress

Continuous mode shape components in y, z and € directions
Plate mode shape functions

3-N

3 by N,,q matrix containing the content of D at x= X,

mod PY N 0q Mmatrix containing all mode shapes @,
Mode shape number 7

Chosen approximate mode shape function, angle

Chosen approximate mode shape matrix, discrete mode shape

Contains first and second order derivatives of P
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Q Coefficient
[0} Circular frequency (rad/s)
, Eigenfrequency associated with mode shape n
, (V) Resonance frequency assoc. with mode 7 at mean wind velocity V

Symbols with both Latin and Greek letters:

Af,Aw  Frequency segment

A Time step
As

Spatial separation (s = x, y or z)
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Chapter 1
Basic Theory

1.1 Introduction

This text book focuses on the prediction of dynamic response of slender line-like
civil engineering structures. It is a general assumption that structural behaviour is
linear elastic and that any non-linear part of the relationship between load and
structural displacements may be disregarded. It is taken for granted that the load
direction throughout the entire span of the structure is perpendicular to the axis in
the direction of its span.

It is assumed that the mean value (static part) of any load is constant such that
structural response can be predicted as the sum of a mean value and a fluctuating
part, as illustrated in Fig. 1.1.a. As shown in Fig. 1.1 and 1.2 a line-like beam or

a) Axis definition b) Displacement
components

Fig. 1.1 Structural axes and displacement components

E.N. Strgmmen, Structural Dynamics, Springer Series in Solid and Structural Mechanics 2, 1
DOI: 10.1007/978-3-319-01802-7_1, © Springer International Publishing Switzerland 2014
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a) Force components b) Stress resultants

Fig. 1.2 Basic axis and vector definitions

beam-column type of structural element is described in a Cartesian coordinate
system [x, y,z] , with its origin at the shear centre of the cross section, X is in the
span direction and with y and z parallel to the main neutral structural axis CC

(i.e. the neutral axis with respect to cross sectional bending according to Hook’s
law and Navier’s hypothesis), which will coincide with the mass centre if material
density and modulus of elasticity do not change over the area of the cross section).

Response displacements 7, , r,, Iy and load components F y FZ, q,.4; and
gy are referred to the shear centre (SC), while response displacement 7, and load
component F, are referred to the origin of main neutral axis . Similarly, the cross

sectional stress resultants Vy s Vz and M . are referred to the shear centre, while

bending moment and axial stress resultants M vy M z and N are referred to the

origin of main neutral axis. The basic units are as follows:

e displacement:  meter (m)

e time: second (s)

e  mass: kilogram (kg )

e force: Newton (N =kg ~m/s2 , (1, 2]).

1.2 d’Alambert’s Principle of Instantaneous Equilibrium

In statics the equilibrium condition of a system subject to a set of constant
concentrated forces is given by Z F; =0, where F; (with unit N ) are all the
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relevant forces in the direction of ;= x,y or z. It comes from the requirement
that a system in static equilibrium must be at rest or in a situation of constant
speed, i.e. that its acceleration in any direction 7 (with unit m/s’) is equal to zero.

Newton’s second law will then require that ZF, =M -7, =0, where M is the

mass of the body. However, in dynamics any equilibrium consideration will have
to include the motion of the system. This is done by adopting the principle of
d’Alambert (first published by Lagrange [3]) that equilibrium for a system in
motion can be established by considering an instantaneous situation where the
system is frozen at an arbitrary position in space and time, and that the
acceleration of the system can be interpreted as an inertia force in accordance with
Newton’s second law, i.e. as a resistance against being accelerated.

Discrete Systems

Below, examples of discrete systems are illustrated in Figs. 1.3, 1.5-1.9 and 1.11.
For such systems the relevant equilibrium requirements are most conveniently
established in a vector-matrix description. Let a system of a simple mass M and
a linear elastic spring with stiffness K be suspended in a vertical position as
illustrated in Fig. 1.3. To the left the system is shown at its unloaded position. Let

the system then be subject to gravity Mg (where g is the gravity acceleration

constant) and a constant time invariant force F . In this position the system is at
rest in its static position and it has been displaced a distance 7 . As shown in Fig.

1.3.b the equilibrium requirement is then that K -7 =M - g + F , from which 7
may be calculated if all other quantities are known. Let the system then be subject

to an additional dynamic force F' (t ) , which is accompanied by a corresponding
dynamic displacement r(l‘) . The equilibrium condition is then that the external

forces M - g +F+F (t) must be equal to the sum of the elastic spring force

K -r, and a resistance inertia force M -7, in accordance with Newton’s

second law and the principle of d’ Alambert, i.e. that
M-i,+K-r,=M-g+F+F(t) (1.1)
Introducing that 7, =7 + r(l‘ ) then
M-i+K-(F+r)=M-g+F+F(t) (1.2)
Since the static equilibrium condition is that

K-7=M-g+F (1.3)
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Fiot 1
.

Mg + F +F(t)
Kr A Krtot T
Mi
14 rtot T
T
Y
Mg + F _¢
Mg + F + F(t)
a) Unloaded b) System c) System
system subject to subject to
gravity and total load

mean load

Fig. 1.3 Simple spring-mass system

it is seen that Eq. 1.2 may be reduced accordingly into a purely dynamic
equilibrium condition

M-F+K-r=F(t) (1.4)

Thus, it may be concluded that the equilibrium condition for such a linear elastic
system may be split into two, a static time invariant condition and a dynamic
equilibrium condition where only dynamic loads are included and where the
forces due to the instantaneous acceleration of the system itself is represented by a
set of inertia forces acting in the opposite direction of the motion. Hence, by
splitting the load (concentrated or evenly distributed) into a mean time invariant
part and a fluctuating part
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then the mean and fluctuating parts of the response displacements as well as the
corresponding cross sectional stress resultants

RAGIRRACHN
?)(x) ry (Xt ‘ZZ(X) V. (%)
r+r=|7(x)|+|r(x7)| and AfX(x) + M. (x1) (1.6)
- My(x) My(x,t)
p(x) | | (1) i.(0)| | M)
_N(x)_ _N(x,t)_

may be obtained by separately satisfying the relevant static and dynamic
equilibrium requirements of the system.

Let us first assume that F' (t ) =0, but that the system in Fig. 1.3 has been set
into an oscillating motion by imposing an initial displacement r(O) and i‘(()).

The solution to Eq. 1.4 is then given by
r(t)=b-sin(@,r)+c-cos(w,t) (1.7)

where b and C are coefficients which may be determined from the position and
velocity conditions at =0, i.e. that r(O) =c and f(()) =w,b, and where the
frequency of motion @, may be obtained by introducing Eq. 1.7 into Eq. 1.4,

from which it is obtained that

(K -apm)-r(1)=0 (1.8)

A non-trivial solution r(t) #0 can then only be obtained if K —a),fM =0, and
thus, the frequency of a free unloaded and oscillatory motion is given by
o, =K / M . The motion is harmonic because it contains only a single and

stationary frequency. This is what we call the eigenfrequency of the system. It has
the unit rad/s. [In some cases it may be convenient to convert it into

=0, / (27[ ) Hz (1/s), while yet another option is to introduce the period of the

motion 7, = 1/ f,, -] Furthermore, since for two arbitrary angles ¢; and «,

singy, -sino, +cos e, -cosa, =cos(oq — ) (1.9)
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then the solution in Eq. 1.7 may readily be converted into

r(t):a-cos(a)t—,B) where =\b*+e _\/[ O /a)] (1.10)
tan S =b/c=7(0 /[ , ]

Or, and most often more conveniently, 7 (t) may be expressed in a complex
—i « V2
format by defining a=c—i-b= |a|e ih = (a a) ¢ where i is the complex
unit (i = \/—_1 ) and tanﬂ = Im(a)/Re(a) :b/c_ Thus, it is seen that
r(t)= Re(a~em”) = Re[(c—i-b) . ei"”]

= Re(|a|e—iﬂeiwt ) - |a| ) Re[ei(wt—ﬁ)} _ |a| ) Cos((w _ ﬂ) (1.11)

and, as shown above, ¢ = I’(O) and b= I"(O)/a)n . A plot of r(t) is illustrated
in Fig. 1.4.

éi 4 a

‘ T,=1/f, ‘
| 1

~Y

Fig. 1.4 Simple unloaded and undamped motion of single degree of freedom system

Example 1.1

7 r(t)

Fig. 1.5 Single mass with two parallel springs
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A single mass with two parallel springs is shown on the left hand side in Fig.
1.5 above. Next, it has been given an arbitrary harmonic displacement

r(t) = Re[aeia}t] and to the far right is shown the corresponding free body

diagram of forces acting on the mass. Thus, equilibrium will require
Mr+ (Kl + K, ) r=0 and thus, introducing r(t) = Re[aeiwt ] , then
K1+K2—w2M =0 rendering o, = (K1+K2)/M

from which it may be concluded that stiffness contributions in parallel are
additive.

Example 1.2

A single mass with two springs in sequence is shown on the left hand side of Fig.
1.6. Next, it has been given an arbitrary harmonic displacement

) (l‘ ) = Re[azeiw]. During this motion the connection between the two springs
has undergone a corresponding harmonic displacement 1 (t) = Re[alem’t} . The

resisting force in the upper spring is K1, while the resisting force in the lower

spring is F, = K, (r2 —n ) The force throughout the sequence of springs must be
unchanged, and thus

K1K2
:—r2

Fig. 1.6 Single mass with two springs in sequence
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Equilibrium of the mass (see right hand side of Fig. 1.6) will then require

K, K ;
Mi, +—12 5, =0 which with n (t)=Re| ae'”
2K K, 5(1) [ 2 ]
KKy, o0 _ _
= —————w'M =0 andthus @, =K, /M
R
where K, , =| —+—
Kl KZ

It may be concluded that stiffness contributions in sequel are inversely additive.

Example 1.3

A single mass with a spring on either side is shown on the left hand side of
Fig. 1.7 below. The springs have been pre-stretched by a constant (time invariant)

normal force N such that prior to any displacement the system is in a state of
equilibrium. It is taken for granted that the system displacements are never larger
than that which will cause the springs to slacken. Next, it has been given an

arbitrary harmonic displacement r(l‘)=Re[aeiw[], and to the far right is

shown the corresponding free body diagram of forces acting on the mass. Thus,
equilibrium will require

Mi"+(1V+K1r)—(1V—K2r)=O which with r(t):Re[aem”J

= K1+K2—a)2M=O and thus W, = (K1+K2)/M

Jfrom which it may be concluded that stiffness contributions are additive.

% A

G—T e—ﬁr(t) B |

r(t) i ‘
N - K,r
N

Fig. 1.7 Single mass with springs on either side

21

21
<

K,
K,
i
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Example 1.4

L ™S~ m=0

M

Fig. 1.8 Small displacement pendulum

The classic case of a simple pendulum is shown in Fig. 1.8 above. For simplicity,
the mass and bending stiffness of the rod are assumed negligible. At an arbitrary

rotation 49(t) = Re[ageiwq a free body diagram of the system is shown to the

right. In this situation the mass M is subject to the gravity force Mg and

tangential acceleration

F(@L) and corresponding restoring inertia force M ‘F(QL) =MLO
1 1

Instantaneous moment equilibrium about the rotation point p will then require
(MLO)-L+Mg-Lsing=0 = 6+(g/L)-sin@=0

which cannot be analytically solved unless we assume 6 small such that
sin @ = @, in which case

é+(g/L)-9=0 and thus 9=Re[agemJ

rendering & / L-&’ =0 from which w, =g / L is obtained.
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K1 %

W e

|| _|-F, 1-F,
AL /
Kz § ‘l’ K,(ry-ry}
'IMZ—/— & -j Kz(rz - r1) + Mzi;‘
Sy | ‘L F

r,

T K,r, + M, i,

N
-
m
N

Fig. 1.9 Spring mass system with two degrees of freedom

The system in Fig. 1.3, as well as all the examples above, contains only one
unknown displacement component. We say they have one degree of freedom. A
system with two degrees of freedom is illustrated in Fig. 1.9. Le.,

e the number of degrees of freedom in a system is equal to the number of
unknown displacement components that are necessary in order to enable a
complete depiction of the position of the system at all times.

The system in Fig. 1.9 has two degrees of freedom, r; and r, . The equilibrium

requirements (see right hand side free body diagram of M, and M, in Fig. 1.9

above) are then given by

K, -ri+M, i-F—-K,(r,—1r)=0
111 171 1 2 (2 l) } (112)

Ky (n,=n)+M,-#,—F,=0

This may more conveniently be written in a matrix-vector format

M 0| #i K, +K, -K K
1 ”1 I I 2| || (1.13)

which, by defining

Ul M, 0 K +K, -K, F
r= M= K= and F= (1.14)
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may be reduced into a most compact format
M-fr+K-r=F (1.15)

If F=0 then the solution is a harmonic motion which may be described by
r=Re(q@-¢) where @=[q, a] (1.16)

By introducing this into Eq. 1.15 then the following requirement is obtained
(K—a)z«M)«(p=0 (1.17)

Thus, r # 0 can only be obtained if det [(K —w - M)J =0, rendering

(Ki+ K, —’M, )-(K, - 0*M, )~ K3 =0 (1.18)

= o' -[(K,+K,) /M, +K, /M, | +(K,/M,)(K,/M,)=0  (1.19)

which has the following roots

2
U KAK KKK KKK
20 M, Mm,) \4l M, M,) M M,

(1.20)

2\ M, M, ) \al M, M, M, M,

2
) 1[K1+K2+ﬁj+ 1[K1+K2+&j K K,

Eq. 1.17 is an eigenvalue problem whose solution is given by @} and @, . They
are the eigenfrequencies of the system. The number of eigenfrequencies will
always be the same as the number of degrees of freedom in the system. They are
usually presented in ascending order because in almost all practical cases it is a
few of the lowest that are of primary interest. For each eigenfrequency there is a
corresponding eigenvector. Introducing @} back into Eq. 1.17 we obtain

1

K, +K, — M, )/K2 (12D

P, =q (
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If we introduce @, back into Eq. 1.16 we obtain
1

K, +K, —a2M, )/K2 (1:22)

P, =q (
It is seen from Eq. 1.17 that ¢ and @, may be arbitrarily scaled (e.g. by setting

a; =1). Le., they do not represent the actual displacements of the system, only its

shape. We call them the mode shapes of the system. It is only if we have a forcing
action on the system that we can quantify a corresponding displacement response.

Let for instance K;=K,= 210" Nm and M, =M, =10° kg . Then
@ =2.76 rad/s and corresponding mode shape @, =q; [1 1.618]T , while
@, =7.24 rad/s and its corresponding mode shape @, =a; [l —0.618]T .The

motion represented by @} and ¢, is shown in the upper diagram in Fig. 1.10, and

similarly, the motion represented by @, and (p, is shown in the lower diagram

in Fig. 1.10. In both cases 7 (¢ 20) =0.5 and 7 (1 20) =0.5

T T T T
0=0 =276rads  r,(=0)=05 dr,(t=0)/dt=0.5 _
N

17~ N

N
i

Harmonic response

Harmonic response

0 2 4 6 8 10
t(s)

Fig. 1.10 Harmonic motion of two degree of freedom system at eigenfrequencies @}

and @,
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Example 1.5

To illustrate the effects of rotational inertia, a beam on flexible supports K, and
K, is shown in Fig. 1.11. For simplicity, it is assumed infinitely rigid, i.e. its
bending stiffness is large. The free body diagram at arbitrary displacements
14 (t) = Re[aleiw[] and 1, (t) = Re[aZeiw[] is illustrated on the right hand side

of Fig. 1.11. In this case it is necessary to demand vertical as well as moment
equilibrium. First it is seen that

the beam displacement is given by r(x,t) =K+ (r2 —K ) x/L

while the support forces R =K,y and R,=K,r,

r,(t)

Fig. 1.11 Rigid beam on flexible supports
Thus, vertical equilibrium will require
L L x
R+ R, + [ midx = Ky + Kyry + mj.{rl +( - i’i)szx
0 0

=K1r1+K2r2+(ij+if'2)m7L=0

while moment equilibrium about the beam end p will require
f f x B
RyL+ [mitxdx = Kyry L+ mJ.[rl +(i - 7 )ﬂ xdx=K,r,L+ (El + ?]mﬁ =0
0 0
Introducing 1, (t) = Re(aleiwt ) and 1, (l) = Re(azeiwr) then these equations
turn into

L
K,a, + K,a, — 0 (a +a2)m7=0 and K,a, —wz(%-i-a—;)mL:O
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which may more conveniently be written

L L
2 2

_a)zm_L (Kz_wzm_Lj
6

o)

A non-trivial solution can only be obtained if the determinant to the coefficient

3

matrix is zero, i.e. that

det . . 0
2L (Kz_wzm_j
3
= a)4—4( LK) i p KK
m mL mL mL

and thus, the following eigenfrequencies (in ascending order) are obtained
2 2
o= | K Ko T KKK K
mL mL mL mL mL \ mL
2_K;£j @ =y2K](mL)

ml ~ mL @, =J6K/(mL)

Introducing W= @} 21/21(/ (mL) into the second row of the matrix-vector

relationship above

If, for instance K| = K, =K, then @, = 2(

_wlzm_Lal"'(K_wlzm_Ljaz:O = g=q
6 3
implying that the motion is purely translational (in vertical direction). Introducing
w=wm, =,/6K / (mL) into the second row of the matrix-vector relationship
above

_a)zzm?Lal+(K—a)22mTLja2=0 = a, =—a,

implying that the motion is purely rotational (about the mid-span of the beam).
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Continuous Systems

Below, a continuous line-like system is illustrated in Fig 1.12. For such a system
the relevant equilibrium requirements are at this stage most conveniently
established in the form of one or several differential equations.

z 9. m,dx-f,
T _r:x?/f//rz+drz l

R < _ DM +dM
A‘ A /\/\f/%( y y

a) Continuous line - like system b) Incremental element
equilibrium

o+do

K/»' \ dA

o |- dA |
/ | 2
T% o +do \Sx
dz% a/ ke 7 M
zc// /Yy
d

N
.

\

V | o]
_—1 ccC

X

cC

¢) Navier's hypothesis d) Stress component

Fig. 1.12 Line-like continuous beam subject to distributed dynamic load
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The situation of a simple beam subject to a distributed dynamic load g, (x,t )

(i.e. with unit N/m) is illustrated in Fig. 1.12.a. It is taken for granted that the
system is symmetric about the z-axis such that the response motion is exclusively
taking place in the direction of z. Since the system itself is continuous, so is the

displacement 7, (x,l‘ ), and therefore, it will be necessary to determine the

dynamic displacement response at all positions X in order to enable a complete
description of its motion at all times. Thus, in this case it is meaningless to
introduce the concept of degrees of freedom in the system. Rather, as mentioned
above, we resort to calculus to obtain a solution. As shown in Fig. 1.12.b, an
incremental element dx will require moment equilibrium (about the mid-point c)

dM , ~V,dx=0 (1.23)
as well as force equilibrium in the z direction
q,-dx—m,-dx-¥, +dV, =0 (1.24)

where m_ is the mass per unit length of the beam associated with motion in the z

direction. From Eq. 1.23 we obtain V, ZM;, while from Eq. 1.24 we obtain

V,=—q,+m, ¥, Thus

M} =~q, +m, i, (1.25)

Since the dynamic motion exclusively takes place in the direction of z, the cross
section of the beam is subject to pure bending about the y axis (i.e. M y* 0 and

V, #0 while all other cross sectional stress resultants are equal to zero). The

cross sectional neutral axis is defined by the axis through which there is zero
strain. Adopting Navier’s hypothesis [4,5] that a cross section that is perpendicular
to the system neutral axis prior to bending will remain perpendicular to the neutral
axis after bending. This will render a strain distribution (see Fig. 1.12)
x:a z.—(a+da) ZC=—d—a~zc (1.26)
dx dx

where 7. is the distance from the neutral axis (CC) to an arbitrary cross sectional
element dA. Let us assume linear elasticity and take it for granted that
displacements are small such that & = rz' . Then €, = —rz”' Z.., and thus:

N={0c.dA=-rE[ z,dA=0

o.=E-g, = A A (1.27)
M, =z, -0,dA=—rE[ldA=—rEI,
A A
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The requirement that N =0 is used to determine the position of the neutral axis

(i.e. that jodA =0), while I, = j deA is defined as the second area moment of
A A
the cross section. Thus

., .
dx—2(—rzEIy)=—qz +m, -7, (1.28)

which, provided EI y is constant along the span, may be simplified into

m, ¥, +EI, " =q (1.29)

Z Zz

This is the dynamic equilibrium condition for a perfectly elastic and continuous
line-like beam type of system with constant properties (7, and EI y) along its

span, and whose load and cross sectional properties are such that the motion will
only take place in the direction of z. Let us assume that the beam in Fig. 1.12 is

unloaded, i.e. g, =0. The general solution to Eq. 1.29 is then given by a

harmonic motion
r,(xt)= Re[¢Z (x)- eiwz] = El ¢ - a)zmzqﬁy =0 (1.30)

where @, (x) is a shape function whose fourth derivative must be shapewise

congruent to itself, i.e.

9. (x)=q sin(ﬂ%) +a, cos(ﬂ%j +a, sinh(ﬂ%) +ay, cosh[ﬂ%) (1.31)

and where A is a non-dimensional wave length dependent of the system
boundary conditions.

Example 1.6

Let us for simplicity assume that the beam in Fig. 1.12 is simply supported. This
implies that T, (x = O,I) =r, (x = L,t) =0 and that the cross sectional bending

moments My (x = O,t) = My (x = L,t) =0, which will require (see the

expression of My in Eq. 1.27) that rz"(x = O,t) = rz"(x = L,t) =0. Thus,
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=0)=0 +a,=0
¢i(x ) = T = a=a,=0
¢l (x=0)=0 a,—a, =0
and

el )T ey sy =o

It is readily seen that Sinh(/i) =0 will require A =0, which is a non-relevant

solution rendering r, (x,t ) =0, and thus, we must demand ay and sin(/i) equal
to zero, which implies that A = nxt where n =1,2,3,.... Thus

r,(x,1)= sin(nﬂ%) : Re[al : ei“’t}
Introducing this into Eq. 1.30 then the following is obtained:
El, (nn/L)" ~&Pm, =0
Thus, the eigenfrequency and corresponding eigenmode of the system are given by
w, = (nz/L)’ \/W and ¢, (x)=sin(nzx/L)

The three first mode shapes are illustrated in Fig. 1.13.

Fig. 1.13 Mode shapes of simply supported beam
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e) Equilibrium f) Rotation inertia

Fig. 1.14 Line-like continuous thin walled beam subject to torsion
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A system containing the problem of torsion is illustrated in Fig. 1.14.a. For
simplicity a beam with a thin walled tube type of cross section is chosen

(td <R ) . The beam is assumed to have constant physical properties along its

span. It is subject to a distributed torsion load qg(x,t) (i.e. with unit Nm/m). As

shown in Fig. 1.14.b the connection between shear angle y and incremental
change of cross sectional rotation dr, is given by ¥-dx= R- dry,ie. y= Eré.
Assuming that 7, is constant across the tube thickness #; and independent of &

(see Fig. 1.14.d), then the torsion moment

M?:I%Ewhifgﬁﬁﬁazpﬂﬁiﬁwb (1.32)
A 0

Introducing 7y =G -y = Gﬁré , then

M, =Gl,r,

_ where I, =27R% 1.33
T9=MXR/L} t ‘ (-

The dynamic inertia (per unit length, see Fig. 1.14.e and f) is given by

d> =\ 5. = "
My= Jdm~—2(Rr3)~R=r3 jmesz dx = igmgdx (1.34)
M dt A
where p, is the material density and my is the cross section rotational mass

(with unit kgm2 / m). (In this case the cross section is a tube and then

my = 2Rt 4P, - The equilibrium requirement for an incremental element dx

is then given by (see Fig. 1.14.e)
dM  +qedx—My=0 = myiy,—Gl,r,=q, (1.35)

Let us assume that the beam in Fig. 1.14 is unloaded, i.e. gy =0. The general

solution to Eq. 1.35 is then given by a harmonic motion

rg(x,t)=Re[¢g (x)oem] (1.36)
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Example 1.7

Let us also assume that the torsion beam in Fig. 1.14 is simply supported and that
it has fork bearings at its ends, such that the torsion boundary conditions are

Ty (x = 0,1‘) =1y (x = L,l‘) =0. The general solution is then given by
rp(x,t)=sin(Ax/L)- Re[a : ei“’]

where A is the non-dimensional wave length of the mode shape. From the
boundary condition rg(x=L,t) =0 it is seen that Sin(ﬂ) =0, which implies
that A =nrx . Thus

ro(x,t)=sin(nzx/L)- Re[a . e”‘”}
Introducing this into Eq. 1.35 will then render
(nz/L) GI, —a*my =0
Thus, the eigenfrequency and corresponding eigenmode of the system are given by

_nr |G,
oL myg

and  @y(x)=sin(nzx/L)

See further elaboration below.

In the special case of a thin walled tube it was shown that m,y = 27R 3td P,, and

I, = 2Rt ;4 - It should be noted that in a more general case (see Fig. 1.15)

2
My = Idm-d—z(rrg)-R =if'9£jpmr2dA]dx='r'9m9dx
wodt A (1.37)
=my= _[pmrsz
A

while for a closed box type of cross section (see Fig. 1.15)
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M, :J.TgadA:jGaréadA:G(jaszJré =G I(ZA'" jz tds |r,

A A A A § (1.38)

=1, =4A,§/56ds/t

It should also be noted that in general the torsion stiffness will contain
contributions from warping. As illustrated in Fig. 1.16, the phenomenon is caused
by shear forces V that occur in flanges at a distance @ from the shear centre,
rendering a torsion moment contribution

M, :ZV/' a; (1.39)
J
zA  da
/
NN
7{:
re( o
O— >
SC y

Fig. 1.15 Rotation inertia of a box type of cross section
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Fig. 1.16 Torsion due to cross sectional warping

For a simple beam element the connection between the shear force and the
bending moment is shown in Eq. 1.23, while the connection between the bending
moment and the second derivative of the displacement is shown in Eq. 1.27. Thus,
for an arbitrary flange shown in Fig. 1.16.c

d d* ”
4 - —Eljd?(reaj) =—El a;1; (1.40)

Thus, the contribution from warping is given by

Mx=zvj-aj=Z(EIjajr9”)~aj=E~ ZIjajz ry (1.41)
J

J J
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which, by defining the warping constant I, =Zl ja? , renders M, = Elwrg'” .
J

Thus
M, = ~Gl,ry+EI 1y (1.42)

Xto

Returning to the equilibrium requirement in Eq. 1.35 (i.e. that
dM . + qedx —M , =0) will then render the following more general differential

equation for torsion
myiy —Glry+ El )" = q, (1.43)
The calculation of I, and I, may be found in the literature of structural

mechanics. Setting g, =0 and solving Eq. 1.43 rather than the simpler version in

Eq. 1.35 will then provide a more accurate eigenfrequency

2

Gl EI

Wy _nro o 1+ nr w (1.44)
"L\ my L) Gl

than that which has been developed in Example 1.7.

1.3 The Principle of Energy Conservation

As previously mentioned it is in the following taken for granted that material
behaviour with respect to axial and shear strain is linear elastic, as indicated in
Fig. 1.17.a. In addition to this, it is a general requirement that any force,
concentrated or distributed, is conservative, i.e. during a motion from position A
to another position B through any path §, the size and direction of the force will
remain unchanged. See Fig. 1.17.b.

c
E
€
T
G
Y
a) Linear elasticity b) Conservative force

Fig. 1.17 Linear elasticity and conservative forces
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Energy in Line-Like Type of Systems

In general the principle of d’Alambert is adopted such that at all times and
positions the system is in a condition of physical equilibrium, having included
inertia body forces according to Newton’s second law. It is taken for granted that
the system is in a permanent condition of thermal equilibrium, i.e. that thermal
contributions to the energy balance may be disregarded. Thus, the instantaneous
energy variation in the system at any time and position is defined by

o the energy P held by external forces acting on the system,
e the motion (kinetic) energy T of the system body masses, and
e the strain energy U stored in the material fibres of the system.

The relevant energy considerations in a simple mass-spring system are illustrated
in Fig. 1.18. As can be seen a force F (t ) moving a positive displacement r has
lost its ability to perform the work F -r, i.e. it has reduced its energy level by
F - r . The only restriction to F (t ) is that it is independent of the path of motion

(see Fig. 1.17.b above). Thus, if a force and the direction of motion coincide, then
the force is losing ability to perform work, P =—F -r, while if the force and
direction of motion are opposite to each other (the force is ‘lifted’) then the force
has gained energy i.e. it has gained ability to perform work P = F -r . In vector
description a concentrated force vector F moving a displacement F is gaining the
energy

r
Py (r)=[-F'dr=—F'r (1.45)
0

while for a distributed force vector q the gain of energy is given by

r

”_qT (t,x).dx.dr:_qu(t,x)-r-dx (1.46)
L

LO

F,(r)

If a body with mass M , unconstrained and small enough to be mathematically
treated as a single particle is moving with an acceleration F, then its motion
energy is identical to the work that has been performed in order to obtain this
acceleration. Since the force (inertia) resistance to an acceleration is MF , then the
work performed from rest to position I is given by

O —_—

1 t
(M ¥) dr=[M i"Tl"-dt:J'di( M ¥ rjdt ;M FrF (1.47)
0 0
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pr
N r
/‘ ¥ " i
| F,
" I
F
I
a) System b) System
at rest in motion T M
_¢.

. I

A
Krp————~ b) Equilibrium
\ considerations
U
4 K\\\N

d) Spring energy

Fig. 1.18 Energy considerations in a simple mass-spring system
Thus, at any time ¢ and velocity condition F of the system, it has gained a motion
energy defined by
. 1 LT
Ty (r)=5M rr (1.48)

This is called the kinetic energy of the mass M . Similarly, if a continuous line-
like system with distributed mass m(x) is in a plane motion e.g. in the z

direction then its kinetic energy is given by

T, (72) = () [ () (149
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Strain energy is the energy stored in the system because material has been
stretched or compressed. A simple illustration is shown in Fig. 1.18, where a
spring with stiffness K has been stretched a displacement r, rendering a spring

energy K- r / 2 (see Fig. 1.18.d). By adopting linear elasticity
o=Ee¢ (1.50)

o £ E O
where c(r)= * £(r)= * and E= (1.50)
Tyz yyz O G

then the strain energy for an incremental material element dAdx is defined by

4

dUM(r):IoT T(Ea -de= Is ‘E-de

0 ” 7}2 O.i fiz (1.51)
—Eje de, +G _f Y4V, —E7 +G— 5 :E+E
Thus, the total strain energy in the system is given by
£
Uy (r)=]| [| [o"-de |da |ax=— j j 2 dA |dx (1.52)

L| A\O

Let us for instance assume that o, is caused by pure bending about the y axis
(i.e. by My ), and that 7, is caused by torsion (i.e. by M ) on a tube type of

cross section. For such a continuous system it has previously been shown (see Eq.
1.27) that

x = L&y oo (_Erz,’zc)z 2
= [ErdA= [ da=E| [2dA |(r) = EL(r) (153)
AE A E A

E =12

and similarly (see Eq. 1.33) that

— ,\2
. =74=G 2 GRr} _
% 7} = Ir—edA:I( %) dA:GURZdAJ(r;)Z=GI,(r9’)2 (1.54)
¥=Rr, 10 Y %

Thus, the strain energy in a continuous system subject to mono-axial bending and
torsion is given by

1 V4 ’
Um:EI[EI),(FZ)Z+Glt(r9)1dx (1.55)
L
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It should be noted that Eq. 1.55 is applicable for any continuous line-like beam
subject to mono-axial bending and St. Venant torsion, i.e. it is not restricted to a

beam with a tube type of cross section as long as I, is correctly calculated for the

cross section in question. For the case of bi-axial bending it is necessary to add

2
El, (ry” ) into the integration of U, .

Basic Ideas

The basic idea behind all energy methods is that under the conditions mentioned
above (physical and thermal equilibrium) energy can neither be created nor
destroyed; it can only be transformed from one state to another. This idea
manifests itself in three alternative ways. First, the Rayleigh-Ritz method [6] is
based on d’Alambert’s perception of inertia. The observation is that from the point
of view of an observer outside of a system the total energy at any time

N=T+U+P (1.56)

is constant, and therefore the variation ¢ of IT with respect to its variables (¢ ,I

and F ) is equal to zero, i.e. that
Al =0 (1.57)

Secondly, there is the principle of Hamilton & Euler/Lagrange [7]. This is not
based on d’Alambert’s perception of inertia, i.e. the observer is not standing still
considering the energy account at a particular time #. Rather, it is based on the
balance of energy transfer between 7 and (U +P). The observer is himself

sitting on the system and his observation is that the energy in the system is
changing between exclusively kinetic (where ¥ =0) and exclusively the sum of
strain and load energies (where r = 0 ). The transfer of energy between these two
extremes may be described by the Lagrange function

L(r.t)=T(F)-[U(r)+P(r)] (1.58)

Hamilton’s assumption is that in the time interval between # and ¢, the energy

transfer (i.e. the difference between that which comes in and that which goes out
as you travel with the system in time)

)
f(r,f'):jL(r,r‘)dt (1.59)

n
will occur along a functional ridge (there is no waste of energy in any direction)
such that the variation of f (I‘,f‘) with respect to its variables will always be zero,

i.e. that
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of (r,F)=0 (1.60)

Finally, and most importantly, there is the principle of virtual work which is
usually attributed to d’ Alambert and Lagrange. It is like the Rayleigh-Ritz method
based on d’Alambert’s perception of inertia. The observation is that from the point
of view of an observer outside of a system, a free body in physical equilibrium
will not change its energy level for any incremental change Or of its position.
The only restriction imposed on Jr is that it is time invariant. Otherwise, Or is
arbitrary or virtual. Hence, it has been labelled the principle of virtual work.

Example 1.8

Let us for simplicity consider the system in Fig. 1.18. Imposing a time invariant
and non-zero virtual displacement Jr to the mass M of the rigid body diagram

on the right hand side of the illustration, then dT = (Mi")é'r (because Or is
time invariant), dU = F,0r and dP =—F Sr . Since F, = Kr then the change of

N
energy level is given by

dll=(Mi+Kr—F)or=0

rendering the system equilibrium condition: Mr + Kr = F .

While the methods of Rayleigh-Ritz (Chapter 1.4) and Hamilton-Euler-Lagrange
(Chapter 1.5) are usually only used in cases of calculating the eigenfrequency of
special systems, the principle of virtual work is widely used throughout structural
mechanics for development of relevant equilibrium requirements of general
systems, as well as the development of the finite element method. The principle of
virtual work is presented in chapter 1.6 below.

1.4 The Rayleigh-Ritz Method

The Rayleigh-Ritz method is usually used to determine approximate values of
eigenfrequencies. It may be used in a continuous as well as a discrete system. For
the simple single degree of freedom system illustrated in Fig. 1.18, in motion at an
arbitrary position 7, the mass has at this position gained a kinetic energy of

T =Mi’2/ 2, while at the same time the spring has been stretched such that it has

obtained an elastic energy of U = Krz/ 2 (as illustrated in Fig. 1.18.d). The force
F at the arbitrary positive position 7 has gained an energy of P=-—Fr
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(negative because F' and 7 are in the same direction, and thus, it has lost the

ability to perform that work). In this position the system is in equilibrium and the
total energy is given by

H(r,r'):U+T+P:%Kr2+%Mr'2—Fr (1.61)

Obviously, the variation of IT can be performed on any of its variables ¢, r and
7. Let us in this case perform the variation on ¢ . Thus

ol = i(lKr2 Ry Frjdt
dr\ 2 2 (1.62)
=(Kri’+Mﬁ"—Fi’)dt= i’(Mi"+Kr—F)dt=O
which can only be fulfilled at all times if
= Mi+Kr=F (1.63)

again rendering the equilibrium condition of the system Since we are primarily
interested in using the method to calculate eigenfrequencies and associated
eigenmodes we shall in the following take it for granted that the system is
unloaded and undamped. Let

r=[n n 1 - rN]T (1.64)

be the displacement vector that is required for a sufficient description of the
motion of the system. Let

' ' ' i=12,.,N
M= | M | and K= | K; | JZ12..N (1.65)

be the corresponding mass and stiffness matrices. The strain and kinetic energies
are then given by

U=%rTKr and T=%|"TM|‘ (1.66)

and thus

T(r,F) =%(rTKr +£"MF) (1.67)
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For such an unloaded and undamped system the motion will be harmonic, i.e. the
motion is given by the product of a mode shape @ =[¢ @, == ¢ - ¢N]T

and a harmonic function, which here will be described in a complex format, i.e.
r=Re[(p~e’w’] and f=Re[iaxp~ei“”] (1.68)
Thus

2ot 2ot

H((p):Re{e—

((pTch - a)z(pTMcp)} = Re{e o’ (K - a)zM)cp} (1.69)

Since there is no other energy in the system it is seen that any variation
A1(@)=0 isobuinedif (K-’ -M)-¢=0 (1.70)

which implies that for a system in harmonic motion in absence of external forces
the sum of kinetic and strain energy are always zero. It is an eigenvalue problem
identical to that which has previously been obtained by using the equilibrium
requirements, see Eq. 1.17. However, in many cases in structural engineering a
good insight into the particular mass and stiffness distribution in a system may
permit an adequate guess of what the mode shapes will look like. Thus, an
approximate solution may readily be obtained. Let for instance

o~y'a (1.71)
T
where a=[a1 a, - a4 - aN] is a vector of N unknown coefficients
T
and where Y = [lpl Y, - g - llJN] in a discrete format is a matrix

of N conveniently chosen and fully known vectors ;, or in a continuous format

T
l|J=[l//1 W, - W e l//N] is a vector containing fully known

functions ; (e.g. polynomials, or a combination of harmonic sinus, cosine or
hyperbolic type of functions), whichever is most convenient. The only restriction
we shall impose on the content of Y is that none of the vectors Y; or functions

y; violates the physical boundary conditions of the system. Then
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2t
M(a)= Re{e > ((pTch - a)2<pTM<p)}

- Re{eﬂ;)[ [(lpTa)T K(y'a)-o’ (lpTa)T M(lpTa)}} (1.72)

2ot
- Re{e : (a"wKy'a- wzaTtthpTa)}

Imposing such an approximation to the displacement function is a restriction
which is equivalent to adding artificial stiffness to the system, in which case

H(a) ZH((p). Obviously, the closer @ is to the exact solution ¢ the closer
H(a) is to H((p), but H(a) cannot become smaller than H((p). Thus, a

best fit solution will be obtained if IT(a) is minimised, i.e. if

dll(a
( ):0 = i(aTl.pKl.pTa—a)za"erMLpTa):O (1.73)
oa,; oa,

1 1

This will then render N equation for the determination of the content of the
unknown @ vector. It is advantageous that the ; functions are as close to

orthogonal and representing the actual mode shapes as possible.

Example 1.9

Let us for simplicity apply the method to the mass spring system shown in Fig. 1.9,
whose solution is previously obtained from equilibrium considerations in Egs.

1.12 - 1.22. Let us further simplify the mathematics by setting K; = K, =K and
M, =M, =M. Referring to Eq. 1.14, the mass and stiffness matrices of the

system are then given by

1 0 2 -1
M=M and K=K
0 1 -1 1

1 1
Let us assume Y, = [1 1]T and Y, = [l —I]T, i.e. that P =L 1:|
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Then a’ yKy'a= K(al2 +2a,a, + 5a§) and a"yMy” = &’ M (2a12 - 2a22),

and thus:
az (a"wKy"a-w’a"yMy'a) = K (24, +2a,) - @M (4a,) =0
N 1
o —(a"yKy a-w’a"yMy'a) = K (24, +10a,) - &’ M (4a,) =0
2

which may be rewritten into the following matrix format

[ A N

where @= a)/ VK / M . This requirement can only be fulfilled if the determinant
to the coefficient matrix is zero, i.e. if (1 —2&° ) (5 247 ) —-1=0.

3

A 5
The solution is given by & = Einrom which, in ascending order, the
following eigenvalues are obtained

o = %(3—\/§)§z0.618 KM
%(3+x/§)§:1.618 K/M

The corresponding eigenmodes may be obtained by consecutively introducing

either of those back into the eigenvalue equation above. 1. e., if ®= @, then

[1 2(a/JK/M) }al+a2— =  a,~-0236

o S LA 0.764
1 = = =a
and s @=WA= 1 02364, |~ 1236

If @=w, then [1 2(@/1/K/M)}al+a2— = a,~4.236q
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o [l 1] @ 5.236
1 = = =a
e P2 =W A= ] 42364, || -3.236

The method may equally effectively be applied to continuous systems. Let us for
instance consider an undamped and unloaded line-like beam in plane motion e.g.
in the z direction. Then (see Egs. 1.49 and 1.55)

H=Tm+Um=—‘[m dx+ IEI dx (1.74)

It has previously been shown that in this case the motion is given by
r, (x,t)=Re|:¢z (x)~em . Introducing this into Eq. 1.74 the following is
obtained

2o i

2

IT=Re

IEI #) dx—w jm ¢2dx (1.75)

A1 =0 at any value of ¢ and any variation of @, will then require

jEI ) dx— Im ¢dx=0 (1.76)

from which the eigenfrequency

/2

IEI dx/_[m @2dx (1.77)

is obtained. This is called the Rayleigh quotient (in its most simple format).

Example 1.10

From Eq. 1.77 an approximate value of the eigenfrequency may be obtained by

assuming a mode shape Y/, (x) as close to the exact solution as possible.
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Fig. 1.19 Cantilevered beam

The case of a cantilevered beam with constant cross section properties Nl and
Ely is illustrated in Fig. 1.19.

Let us assume @, (x) =y, (x) where Y/, (x) =1-cos [%j . Thus

1 1
L B L 9
7\2 TX
J(WZ) dx 5 J{cos(ﬂ dx
_ ﬂ s _(zj EIy 0 2L
z m L 2 m L4 L 2
J.l/lzzdx ¢ J‘{l—cos(ﬂ dx
0 0
1
5 T \2
U El, 4 ¥
>0, =|— : =3.67
¢ (2) m L' 3 m. L

A more exact solution is @, =3.52, /Ely/(mzﬁ) )

1.5 The Principle of Hamilton and Euler-Lagrange

While Rayleigh-Ritz method is based on variation on the total energy
II=T+U+P in a system at a particular time and position, the method of
Hamilton and Euler-Lagrange is based on variation of the Lagrange function of
instantaneous energy balance (i.e. the difference between that which comes in and
that which goes out) as you travel with the system in time:
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L(r [U r)+P(tr) ] (1.78)

Assuming for simplicity that the displacement is a continuous function r(x,t)

rather than a discrete vector, it is seen that the integral of L( r,i’) over an

arbitrary time interval from f to ¢, :

1
F(r )= L(r.7)dt (1.79)

|

is only dependent on the path along which it has changed during the motion from

f, to 1, . The basic principle of Hamilton [40] is then based on the assumption that

the change of energy balance from # to f, will occur along a path (a functional

ridge) where the variation of f (r, i’) with respect to » and 7 is zero, rendering

%) n . ’
Sf (r.i)=8] L(r.i)dr = j{aLg’F) +aLg;’r)}dt=0 (1.80)

4l n

Let €(t) be a small arbitrary perturbation, independent of the path itself, but such

that £=0 at f; and £, . Then a first order expansion

1) n ;- 2
5J'L(r+g,r'+é)dt = I{gaLér’r) +é‘aLgr.’r)}dt (1.81)
r r

1 n

and integrating the second term by parts, then

trvaesna ] 2] o0l

g on (1.82)
tJZ oL(r,7) d|OL(r,F) dt
- o dt| or
For all £ # 0 this can only become zero if
BL(r,i’)_i dL(r,F) B (183
or dt| or .

This is known as the Euler equation.



1.5 The Principle of Hamilton and Euler-Lagrange 37

Example 1.11

Let us for instance consider an undamped single degree of freedom system with
stiffness K and mass M , subject to a force F (see Fig. 1.3). The Lagrange
function is then given by:

1 1
L==Mi*—| —Kr* —Fr
2 2
Introducing this into Euler’s equation will then render

—(Kr—F)—di(M};)ZF—Kr—Mi"ZO and thus Mr+Kr=F
t

which is identical to the equilibrium condition that was developed in Eq. 1.4, and
which was also derived from variation of 11 (with respect to t ) in Example 1.8.

Euler’s equation (Eq. 1.83) may be further expanded if an approximate series
solution is adopted

r(x,t): r,-(x,t) (1.84)

=

Il
LN

where the variables of 7, (x,l‘ ) are split into a set of shape functions ¥/; (x) and

corresponding time domain functions 77, (t) such that

i (x0) =y (x) (1) (1.85)

It is taken for granted that 7 (x,t) are independent functions and then Hamilton’s

principle can only be fulfilled if Euler’s equation is satisfied independently for all

r;(x,1). Thus
JdL_d[dL =0
o, di| 0 (1.86)

Furthermore, it is observed that

‘ .o dr o, )
I, =—Lm, =y,an, and or; =$877,~ =07}, (1.87)

i i
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Thus, Eq. 1.86 may be replaced by

a_L_i a_L =0 1.88
on dr\ o7, (1.58)

Introducing Eq. 1.58 into Eq. 1.88 (acknowledging that QU /d7) and dP/d7} are

both zero)) will then render

d(aTj oT oU OP
-0 (1.89)

—| = | —t—t+—=
dr aﬁi a77i 8771' aﬂi

Obviously, there will altogether by N such equations. They are called Lagrange’s
equations. It is an obvious requirement to the ¥/; (x) functions that they satisfy

the physical boundary conditions of the system, but it is not a requirement that
they are orthogonal.

Example 1.12

Let us for instance consider the undamped and unloaded cantilevered beam shown
in Fig. 1.19 (Example 1.10). Its mass M and bending stiffness EI are assumed

constants along its entire span L . The following series solution is adopted
i =x
r. (1) =y (x)-m () + 7, (x) -1, (1) where

The two functions Y| = x* and Y, = x> will both satisfy the physical boundary

conditions l//(x = 0) = l//(x = 0) =0. Then

L L 5( 52 ; 2.2
., m 2. 3.\, m L Lpgm, L,
T__([Emzrz dx—TZ-([(x m+x 772) dx=— ( + +

2 5 3 7
Ll m?2 EIyL 2 2 2
U =[S (1) de=2 [ (2 + 6xm, )" dx =2E1,L (1 +3Lnan, + 303
0 0

while P =0. Introducing this into Eq. 1.89, with i consecutively equal to 1 and
2, then the following is obtained:
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5
ML L, Vv 2B L (2, +3L17,) =0
2 (5173 ’
mzLS L .. 2L2 . 6 2 =

which may more conveniently be written
2 S12/5 L/3 j 0
2EI,L ], mL % f e
3L 612 || m, L/3 212/7|7,] |0
. . . . T _ G | i .
Assuming a simple harmonic motion =Re{ e} then the following
2 )

[ZEI L{z 3L}w2mst{2/5 L/3 :|J|:al:|:0
Y13l 612 2 |L/3 212/7])| as

This is a classical eigenvalue problem similar to that which has previously been
seen for two degrees of freedom systems. A non-trivial solution can only be

is obtained

T
obtained if a= [al az] #0, and thus, we must have that

2 3L s[2/5 L3
det| 2E1,L |- o2 2k / i =
3L 6L 2 (L3 2127

rendering the following quadratic equation

2
4 4
(aﬂ%} —1224(502 ";IL J+15120 0

y y

y
Thus, its solution is in ascending order rendering the following eigenfrequencies
of the system

4 1211.5
whose solution is given by = [(02 %J =612++/359424 = { s

and —34 81

—3 54
m L4 m'L4
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More exact values are @, =3.52«[EI/mL4 and @, =22.03«/EI/mL4.

Obviously, the accuracy of the solution is entirely dependent of how well the
approximation r(x,t)=l//1(x)-771(t)+l//2(x)'772(t) is able to describe the
exact shape of the dynamic displacement of the system. Thus, it may be concluded

. 2 3 . . .
that the choice of Y| =X and W, = X" are well suited to describe the first mode

shape, but that they are incapable of describing anything in the vicinity of the
second mode shape.

1.6 The Principle of Virtual Work

The principle of virtual work is usually attributed to d’ Alambert, but it was first
presented in a variation format by Lagrange [8]. It contains d’Alambert’s
perception of instantaneous inertia. The basic assumption is that for an observer at
rest outside of a system that is in a physical condition of equilibrium the total
energy level will not change for any incremental change Or of the position of the
system. The only restriction imposed on OF is that it is time invariant. Otherwise,
Or is arbitrary or virtual. Hence, it has been labelled the principle of
virtual work. The upper left hand side illustration on Fig. 1.20 shows the
free-body-diagram of a line-like continuous type of system. For simplicity,
its displacement is in the z direction alone and with corresponding bending about
the y axis. At arbitrary time ¢ the system has an instantaneous position 7, (x,t)
and corresponding support reaction forces R, ,n=12,...,Np. It is subject to
external loads Fz (t) and q, (x,t). The lower left hand side illustration shows
the same system, but now with an additional time invariant and arbitrary (virtual)
displacement 5rz (x) .

In our case we shall assume that 5rz (x) complies with the geometric

boundary conditions of the system, i.e. that d7,, O rz' , 5}’; or 5}’; are zero at

support positions wherever this may be required of the boundaries of the system
itself. [This is not a general requirement to the application of the method, but in
our case it is merely a convenient choice as it implies that no energy changes will

take place by the support forces R, during the virtual motion §rz (x) .] While

external forces have performed work and thereby had their energy level reduced,
the inertia forces have been lifted to a higher position in the force field of the
system and thereby had their energy level increased. Thus, during the motion from

r, (x,t) to r, ()c,t)+5rZ (x) the energy level of external force F, (t) is
changed by
rz(xF )40z (xF)
OP. =— I F_(t)dr=-0r, (xp) - F.(t) (1.90)

rz(xp.t)
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N

i/m LAXeF +cdxer, o
/Fr (X,t) 7\ rz(xpt)
fi bt
F,(t)

dx

Lu ] U~q,(x,t)

z v i F
- mdx-r,+cdx-r, A
Srz(X) ;P( ar (XF)
<
T// ™\
R ? R
1 F,(t)T ?

T~ e

Fig. 1.20 The principle of virtual work applied to a line-like continuous system

Similarly, the change of energy level for the external force g, (x,t ) is given by

17 (x,1)+8r; (x)
—j [ [a.(xr)dx]dr= j5r g, (x0)dx (191

rz (%)

The sum of energy changes to the distributed mass inertia force
m, (x)dx K, (x,t) and possible concentrated mass contribution M - 7, (xM,t)

are given by
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1y (x.1)+8r; (x)

oP, =I I [m, (x) (x.t)dx |dr =I5rz (x)m, (x)7 (x,t)dx (1.92)

1y (x.t) L
and
rz (xm )07 (g )
5P, = [ [ M -7, (xy.1) [dr =67, (x) ) [ M - E (xy.1) ] (1.93)

rz(xp1 1)

In addition to this we shall now include a resistance force commonly attributed to
internal damping in the system. The origin and effects of structural damping is
discussed in Chapter 9. Here, we shall conveniently assume a viscous type of
damping which will generate an internal cross sectional force component

c, (x)dx I, (x,t) (see Fig. 1.21) whose energy change is given by
17 (x,0)+01,(x)
5P =| [ [e.(x)dxi (1) ]dr (= [ 87, (x) ¢, (x)- 7 (x0)dx (1.94)
L

L rz(x,t)

and where ¢, is a cross sectional viscous damping coefficient associated with

1
|_/czdx-i.
\

s
: I
|

|
|
—_

motion in the vertical direction.

a) Work by damping b) Damping force

Fig. 1.21 Resistant viscous damping force due to vertical motion

During the motion from r, (x,t ) to 7, (x,t) + 5rz (x) the strain in the system

has changed from Ex(x,t) to &, (x,t)+5€x (x) as shown on the upper right

hand side illustration in Fig. 1.20. The corresponding change of strain energy is
given by
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£ (2t )+0e4(x)
SU = j j [ {loc(xr)dA](de.ax)} |= { {é‘ex(x)ax(x,t)dAdx (1.95)

ex(x1)
Since the virtual motion & r, is time invariant then the change of kinetic energy in

the motion from r, (x,t ) to 1, (x,t) + 5rz (x) is zero, and thus, the total change

of energy is given by
d‘lz&PF+5Pq +0P,+ 0P, +0P. +6U (1.96)

The basic idea is that during the motion from r, (x,t) to 7, (x,t) +5rZ (x) the

total energy in the system cannot have changed, i.e. that

Al = —5r j5r qZ xt dx+I§r (x)i" (x,t)dx

Z

+5rz (xM )Mr (xM ’t) + Iarz (x)cz (x)rz (x’t)dx (1.97)
+ j j e, (x)o, (x,1)dAdx =0
Since we have so far restricted ourselves to in-plane motion and corresponding
normal stress and strain components (see Eq. 1.27)
o,=E-&,=E-(-1r]-z,) and O, =01z, (1.98)
then

é'U:_”é}Sx( (x,1)dAdx = _”[ ~61!(x)z, |-[~Er!(x.t)z, |dAdx

LA LA

= IE[I ZCZdAJ or!(x)r!(x,t)dx= J‘Elyﬁrz”(x) r7(x,t )dx

L A

(1.99)

and thus, A1 =0 will require

IJr -q. (x.0)dx =6, (xy )-[ M -7 (xy7.1) |

J ) Do) 4 s[5 e ) 50

=J.EIy -Or](x)-rl(x,1)dx
L



44 1 Basic Theory
Example 1.13

Let us for instance consider the case of an unloaded and undamped case of an
arbitrary continuous system where the response is harmonic, i.e. that

F(1)=0 }

0. (1) =0 c,=0 and r, (x,t)zRe[qﬁz (x)-eiwt]

where ¢z (x) is the mode shape of the system. Let us choose the virtual

displacement
or, (x)=¢.(x)-oa

where Oa is an incremental amplitude variation. Introducing this into Eq. 1.100
will then render

[0 (x)8a] | m. (x)-(0)" 0. (x)e"” Jas= [ 1, [ g7 (x) 3a] [ o (x) " Jax
Le: = @[[o.(0)] -m (x)dr=[E1, [o(x) [ dx

Thus, the eigenfrequency of the system is given by

o, ={J EL-[¢7(x) ] ax / [lo.(x)] -m, <x>dx}2

which is the Rayleigh quotient, identical to that which was obtained by the use of
Rayleigh-Ritz method, see Eq. 1.77.

While we above have been restricted to consider a system with in-plane loads and
motion in the z direction (with corresponding normal stress and strain

components, 0, and £, ), a more general case will comprise displacements

r(xe)=[r, n r rg}T (1.101)

and corresponding stresses

0, (%, .2.1)=0(x,y,2)+0(x,y,2.1) (1.102)
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— — — 1T . .
where O (x, V,Z ) = [G " 2'9] is the mean (static) part of the total stress vector

T
on an arbitrary cross section along the span, and where O (x, V,2,t ) = [O' " Tg]

is the corresponding fluctuating (dynamic) part. (The reason why & need to be
included is that the mean time invariant cross sectional forces will affect the
stiffness properties of the system, as will become more evident later. If desirable,
initial structural displacements may also be included.) Furthermore, the system
may be subject to arbitrary external concentrated and distributed forces

Fi(xF,t)=[Fy F. Fng and qi(x,t)z[qy q. qng (1.103)

and it may contain concentrated masses M g,(xM). Similarly, the virtual
J

displacement and corresponding virtual strain may contain components
T T
5r(x)=[5rx 5r>, or, 5r9] and 5£(x,y,z,t):[5€x 57] (1.104)

Thus, in a more general format Eq. 1.100 may be written

> or(n)] }, *z{f [or(0] atu dx}‘ﬁ{[&(w I MFE0), (1 10s)

—I[&r m F(x,t)dx— ‘[[(Sr )] cof(x)dx:J'J'(St-:Tc,mdAdx
LA

where M ¢ =diag{M . M £z M is a concentrated mass matrix at an

1
gajj

arbitrary position x,, and identified by index j, and where

m 0 0 0
0 m, 0 —mye,
m =\ 0 m me, (1.106)
0 -mype, me, my

is the cross sectional mass matrix (see Figs. 1.1 and 1.2). The damping matrix C,

is defined by
C, =diag [cx ¢, C, Ce} (1.107)

where Cy»Cy5C, and Cy are cross sectional viscous damping coefficients

associated with motion velocities in X, Y, Z,0 directions. As can be seen, the right
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hand side of Eq. 1.105 contains the total change of strain energy during the virtual
displacements OF (x) :

[[o€" 0, dAdx=[ [ 6" (G +0)dAdx=[[ 56" GdAdx+ [ [ 6" @dAdx | 14q)
LA LA LA t

Let us first focus on the second term, i.e. on the dynamic stress contributions to
the change of strain energy. We have previously adopted elastic material
behaviour and Navier’s hypothesis. In addition to bi-axial bending, we shall here
also include strain due to axial elongation (see Fig. 1.22.a) and general shear strain
due to torsion (see Fig. 1.22.b), but for simplicity, shear strain due to shear forces
is assumed negligible.

z A /Te
/ | dA
Az
r, r,+dr, fo]
sC ;
[—=—==17 "1
| |
| | >
| | X
| |
”,’1
z | |
dx | |
| ”_J
rerpt — i\
a) Axial strain (rg + drgr
p
x
dx

b) Shear strain due to torsion

Fig. 1.22 Strain due to axial elongation and shear strain due to torsion

Thus
o,=E-¢, 7, =Tg=G-y
P » and , (1.109)
gx:rx-l_ry'yc T, Z, 7/:rp~r€

where y. =y—e, and z, =z —e, (see Figs. 1.1 and 1.2). Then
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”5:. OdAdx = ”{ 7} LﬂdAdx
E-(r/+

I‘ +ryc c) *yc_rz”zc)

e )

Performing the vector multiplication and cross sectional integration we obtain

(1.110)
dAdx

J' j Se’ -odAdx =
LA

J.{JrE( _[dA+r .[ych—r.[z dA]+§r E[ _[ych+r .[ysz—r.[yCz dAJ

L

_5rZ”E(r; [zda+r[y.zda—r! zfdAJ + 315Gy | rﬁdA} dx
A A A A

(1.111)

The cross sectional neutral axis centre with respect to elastic bending is defined by

A
Ye v I
[| z |aa=0 ana |7 |da (1.112)
A Ze Iy
Yoz 5
rp It

and thus
II5£T0dAdx=I[5r EAY, +5r El 1, T+or] El 1, "+ 0r,Gl, rg]dx (1.113)
L

Let us then turn to the first part of the right hand side of Eq. 1.108, i.e. to the
contribution of the mean (static) part of the total stress vector to the change of

T
strain energy during the virtual displacement Jr (x)= [5rx or, or, 5rgJ
It is in the following focused on the contributions from cross sectional stress

resultants axial load N and bending moments M y and M .- (Le., any shear

force and torsion moment contributions are disregarded.) The effects of N is
illustrated in Figs. 1.23.a and b, and in Fig. 1.24. As shown in Fig. 1.24 an
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xY

xY

b) N contribution in a 8r, motion

Fig. 1.23 The effects of a time invariant axial force N

additional shear stress contribution 79 will occur due to the normal stress

component N / A . It may readily be obtained from simple moment equilibrium of

an infinitesimal element dA-dx, 1ie. from the condition that
(7y ~dA)-dx:[(]\_//A)dA](}gcdrg) where r,. (=r,) is the radial distance

between the infinitesimal element and the shear centre.
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>Z2i

Y
X

Fig. 1.24 The effect of N on torsion shear stresses

Omitting all higher order terms, it is seen that the total change of energy

contribution from N is then given by

J.[ 5r Nr +(§r +d5r) (r +dr :| J.[ §rNr +(Sr,+dér,)N (r +dr. )}

(1.114)

+J.J. Oradx) [ dArg] zj(ﬁr;ﬁr; +§rz'ﬁrz'+5rg'ﬁe§rg')dx
L

%j[(yc tey )2 +(z +€Z)2}dA=ef, +e) +e (1.115)

where eg 2% J rsszA =
A
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M, + dM,
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a) Bending moment My,
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b) Bending moment M,

Fig. 1.25 The effects of time invariant bending moments M y and M z
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and e =%j(y§+zf)dA=%(ly+lz) (1.116)
A

The effects of biaxial bending moments M y and M . are illustrated in
Figs. 1.25.a and b. Omitting all higher order terms, it is seen that the total change

of energy contribution from M y and M, are given by

J.[5ry']\7[yr9 (5r +dor’ )( )(’19 +dr9)
L
+5r'1\71 Ty — 5r +d5r (M +dM ) ry+dry)

+81gM 1}, = (81y +d 51y ) (M, +dM , )(r] +dr}) (1.117)
+81,M 1. (5r9+d5r9)(Mz+dMZ)(rZ+er')]
=~ =[(8,M 1y + 1M iy + SryM ) + SrgM 1! ) dix

L

By the joining of Eqs. 1.113, 1.114 and 1.117, then

J‘J‘ﬁsTcmtdAdx = j|:5r;EAr; +Or El 1y +01/El ;1] + 5réGI,réde +

LA L (1.118)
J‘(é‘ry'ﬁry' +8r/Nr, + dryNeir, —5}’;[\7Iyré — 1M ,ry - 5réll2yry' - 5ré[\7lzrz')dx
L

Thus, in a general format the principle of virtual displacements for continuous
line-like structures is given by

T 1\4»11

{[é'r (x) -F}.+%{j 5rT-qu}i- {[& ()] M F (x, )}

i1 =1
—IJrT-c-fdx—IJr -m, -fdx=

o o (1.119)
J.[é'r;EAr; +0r, (Nr; —Myré) +5rz'(Nr; —M 1)+ 6rJELr]
L

+OrElL 1]+ J1 (Gltre' + Negry —Myr; —Mzrz'ﬂdx

Although by first glance this may seem rather complex, it is in fact a remarkably
powerful toolbox.
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Example 1.14 The Beam Column

z A
N m,, m, m, m, N
<« ——>
A EA, El, El,, Gl, é X

Fig. 1.26 Simply supported beam subject to a time invariant axial force N

Let us for instance consider a simply supported beam with no external dynamic

load F or q as illustrated in Fig. 1.26. It is assumed that e, =e, =0 (i.e. that
the shear centre coincides with the centroid) and that its end supports have fork
bearings, i.e. that Ty (x =0) =7y (x= L) =0. The beam is subject to a time

invariant axial force N . Otherwise, all time invariant moments M o M y and

M , as well as possible concentrated masses M ¢ are equal to zero. Let us also

T
disregard any axial displacement and assume ¥ (x,t) = [0 ry r ’"0] . Thus,

T
5r(x)=[0 or, or, 5rg] .
Le., our investigation is limited to the search of its lowest undamped
eigenfrequencies. Then Eq. 1.119 reduces to

T

5ry m, 0O O i"y
—I or, 0 m, O |F |dx=
L\ or, 0 0 mylliy

j[ﬁ(§ry'ry' + 5rz'rz')+5ry"EIZry"+ OrlEl 1] + 5r§(GI,9 +]Ve§)r'}dx
L
Based on the results in Chapter 1.2 (see Examples 1.6 and 1.7) it seems

reasonable to assume that the mode shapes associated with these eigenfrequencies
are simple sinus functions, i.e. that a harmonic motion is given by
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r a, or, da,
r |=Rell a_ |sin (M_xj e\ and thus we choose | §r |=| Sa. |sin (@]
z L 4 Z L

Ty ag ory oay

Introducing this into the equation above, then the following is obtained
nrw ¢ nrw ¢ nrw : niw : =
§ay (T] Elzay +5Clz (TJ Elyaz +§a9 (TJ Gltag +§ay (Tj Nay +

yay, + oa.m.a, + 5agmgag) =0

2 2
nw — nw =2 2
oa, (Tj Na, +0a, (TJ Nejay —w (5aym

This may more conveniently be written

_ ) }
(ﬂj EI.+N 0 0
L
é'ay 3 2
Sa. ("—j 0 ("—j EI.+N 0
: L L Y
Oay _,
0 0 G, + Ne?
m, 0 a,
—a*| 0 a |=0

T
from which it is seen that the pre-multiplication by [5ay oa, 5(19] is

obsolete, and thus the following eigenvalue problem is obtained

2
(%} EI.+N 0 0
) m, 0 0 a,
0 (ﬂj EI,+N 0 |-&* 0 m 0 |ta |=0
. .
_, 0 0 myl||ag
0 0 GI, + Nej

where @= a)L/ (nﬂ' ) . From this a non-trivial solution can only be obtained if the

determinant to the coefficient matrix is zero, rendering
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2 2
ﬂ%) EI.+N- wzm)}{(%j EI, +N—@m, } (G1, + Neg —@*my) =0

Introducing the Euler buckling forces

(nz)’ EI (nz)’ EI GI
NEy :Ty, NEZ :TZ and NEX=?{

associated with bending about the y and 7 axes and with pure torsion, then the

solution above is reduced to

2 = 2
[ﬂj E1| 1+ | = otm, | (ﬂj Er |1+ |- otm,
L Ny L Ny
z y

-Glt[1+ N J—cbzmg =0

Ex

As can be seen, the solution will contain three independent eigenfrequencies

w= C?)(nﬂ' / L) , one associated with motion in the y direction

2 —_—
A EI
3 — (ﬂj z 1+L =
L) m, N,

one associated with motion in the 7 direction

o =—| —|l+—| =
L) m Ng

Z

y
and one associated with pure torsion

. GI N
i~ r(HL] .
mg Ng,

This solution is identical to that which has been obtained in Chapter 1.2 (see
Examples 1.6 and 1.7), except the additional effect of the time invariant axial

force N. If N is positive, then it has a positive contribution to the sideway or
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torsion stiffness of the system due to element stretching. However, if N is
negative, i.e. compression, then its contribution to system stiffness is negative due
to sideway or torsion buckling.

Let us also consider the special case of a taught string, i.e. the case that

bending and torsion stiffness (71'/L)2 El,, (71'/L)2 El, and Glt/eg are all

insignificant as compared to N, then the solution above reduces to
nrw z nrw z nrw 2
— | N —a)zmy — | N —a)zmZ | Nej—aw*my}+=0
L L L

[from which the following eigenfrequencies are obtained

wr [N nr [N nr [Ned
0, =— |— 0, =—|— and Wy =—,—
L\m, L \m, L\ m,y

1.7 Galerkin’s Method

In Galerkin’s method [9] the equilibrium requirement in the form of a differential
equation (or an interconnected group of differential equations) of an unloaded and
undamped dynamic system in harmonic motion

f(r,F)=0 (1.120)
is converted into a numerical eigenvalue problem

A-a=0 (1.121)

T
with unknown coefficients a=|:a1 e e aNy/:| , by imposing an

approximate solution comprising a linear combination of unknown coefficients ¢;
and a corresponding set of known functions ¥/; (x) , such that
Ny

r=Re> a;-y;(x) (1.122)

i=1

and then applying the method of weighted residuals in its functional space (i.e. its
length L, its surface A or its volume V ). Thus, the approximate solution
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1D aye” (=0 (1.123)

is successively weighed with the same functions ¥/, (x), j=L2,....,N,,, and

integrated over L (or A), rendering the set of numeric equations in Eq. 1.121,
which fully written is then given by

Ay Ay AINV, " a ]
. AiN,/, a =0 (1.124)
_ANa,l ANW ANV/NI//_—GNV/—
where
Ay =[w, f(v;.0)dx or Iz//l (v, .®)dA (1.125)
L

This is a general method which may offer an approximate solution to often
complex systems. It is a requirement to the accuracy of the solution that ¥/; (x)

fulfils (more or less) the geometric boundary conditions of the system. It is
advantageous that they are as close to orthogonal as possible.

To illustrate the use of Galerkin’s method let us consider an undamped and
unloaded continuous beam, whose motion is restricted to displacements in the z
direction. Its differential equation has been developed in Eq. 1.29, i.e.:

f(r,i)=m i, +EI, -17"=0 (1.126)

Let us for simplicity assume that its mass m, and bending stiffness EI y are

constants along its entire span L . The following harmonic solution is adopted

r.(x.t)=Re{[a -y (x)+a, -y, (x)]- €] (1.127)

Introducing this into Eq. 1.126 then the following is obtained:

f(a;yi)=EI(a;-y{" +ay - y3") —a’m, (a -y +ay-,)=0  (1.128)
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Pre-multiplying Eq. 1.128 by ¥; and integrating over the entire length L renders
EI ( . . //”+ . . /”/)d _wZ . 2+ . . d :0 (l 129)
yJ\ag- ¥y +ay Yy, )ax m j\a Y tay Y-y, )ax :

L L

Similarly, pre-multiplying Eq. 1.128 by ¥/, and integrating over the length L :

444

EIyJ.(al Yo Y Hay Yy Yy )dx—a)zmzj.(al VWit ~l//22)dx=0 (1.130)
L L

These two equations may then more conveniently be written

707 2707 2
a 0
j Ely{%%,,,, Wl%,,,,}—afmz 4 ‘//1‘/2/2 dx-{ 1}2{ } (1.131)
L l//2 l/jl l//2 l//2 l//z l//l l//z a 0
It is usually more convenient to express ¥, and ¥/, by the non-dimensional

coordinate £=x/L. Introducing that dy/dx=(dy/d)(d%/dx)=(dy/d%)L"

and defining

1 7 7 1 2
Al Vl% Vv }dﬁ - sz‘{ vi Wl‘/fz}dx .

7”77 7”77 2
0 0

Vv ¥l vy W,

then the following eigenvalue problem is obtained

(A-/B)a=0 (1.133)
where
A=a m,L'[EI, and  a=[q a] (1.134)
Example 1.15
z
m, El
—>
X
L

Fig. 1.27 Continuous beam with fixed end supports
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Shape function, y(x/L)

. 2 ‘N ;
06| — v=lsin(xL)] ]
----- w,=lsin(1.5m /L)L e
-08 T T 1 1
0.2 0.4 0.6 0.8 1

x/L
Fig. 1.28 Shape functions ¥4 and ¥/,

Let us for instance consider the case of a continuous beam with fixed end

supports as shown in Fig. 127 [i.e. I’Z(X=0)=rz(x=L):0 and

rz' (x = 0) = rz’ (x = L) =0], and assume the following shape functions (see
Fig. 1.28)

vi(%)=[sin(z%)]  and v, (2)=[sin(1.528) ] -

whose fourth derivatives are given by
p"(%)=-87"cos(27%) and  yy' (%)= —%(37[)4 cos(37%)

Introducing this into Eq. 1.132 and performing the integration will then render

195 0 0.375 0
A= and B=
0 897 0 0.1858
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It is seen that due to the orthogonality properties between the chosen shape
functions A and B are diagonal. Thus, from Eq. 1.133 the following eigenvalues

are obtained

EI
Thus A=520 = o, =228 'V4 and a =[1 O]T
! m,L
El
and =488 = o =695|—-  ad a,=[0 1]’
2 m_L
More exact values are
EI, El,
o, = 22.4 7 and @, = 61.7 2 (1.191)
m_L m_ L

Le., the error is only about 2% for @, and about 12% for @, . Obviously, the

accuracy of the method will improve with the ability of the shape functions to

represent the correct mode shapes of the system.



Chapter 2
One and Two Degree of Freedom Systems

2.1 Introduction

While we in Chapter 1 focused on the basic mathematical methods of determining
the structural properties of free vibrations, we shall now turn to the more realistic
cases of including the effects of damping and the possibility of an external
fluctuating force. However, in this chapter we limit ourselves to only consider the
cases of single or two degrees of freedom systems, subject to a single harmonic
force. Such a load case is virtually absent in the field of structural dynamics.
Nonetheless, the case of a single harmonic force on simple systems is an
illustrative overture to the ensuing chapters in this book. It is taken for granted that
forces are rectilinear.

The addition of damping stems from the observation that any structural system
which is initially given a displacement or impact and then left to oscillate by itself
will more or less slowly lowering the size of its motion and finally return to a
condition of rest. That which causes this diminishing effect of oscillations is an
internal force attributed to what we call damping. The concept of damping was
first presented in Chapter 1, see Fig. 1.21. Damping in general is further discussed
in Chapter 9. Here we shall only mention that for a full scale structure its cause is
complex and often difficult to identify. It will in general include contributions
from friction in joints and supports, material nonlinearities and submerged flow
resistance (e.g. in air or water). In structural mechanics, damping has usually been
represented by an internal force conveniently assumed proportional to the velocity
of the system. Such a force effect is what we call viscous damping. In general, this
is adhered to throughout this book, except a single case of pure friction damping
included in Chapter 9.

2.2 Unloaded Single Degree of Freedom System

The system of a single mass, spring and viscous damper is shown in Fig. 2.1.a.
The corresponding free body diagram in accordance with Newton’s second law
and the principle of d’Alambert is shown in Fig. 2.1.b. Hence, equilibrium
comprise the contributions from

E.N. Strgmmen, Structural Dynamics, Springer Series in Solid and Structural Mechanics 2, 61
DOI: 10.1007/978-3-319-01802-7_2, © Springer International Publishing Switzerland 2014
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; K FkT % TFC
M |
17 *r
T |
Frorlt) Frot
a) Single degree of b) Free body
freedom system diagram

Fig. 2.1 Single mass, spring and viscous damper system

F

tot I.tot

i
-l

A AN
» Ll

t t

Fig. 2.2 Static and dynamic load and response

e anexternal force Fy, (¢) (with unit N ),

e a spring force proportional to the body displacement Fyx =K -7, (t) , where
K (with unit N / m) is the elastic spring constant,

e adamping force proportional to the body velocity F. =C-7, , (l‘ ) , where C

(with unit Ns/ m ) is the viscous damping constant, and
e an inertia force proportional to and in the opposite direction of the body

acceleration Fy =M -7, , (l‘ ) , where M (with unit kg ) is the mass.

It is seen that equilibrium F; + F- + Fy = F,,, will then require the solution of

the following equation

M'iéot (t)+cli}ot (t)+K";0t (I)ZEOI (t) (2'1)
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As illustrated in Fig. 2.2, it is taken for granted that the fluctuating load is
stationary during the entire time window considered relevant for the calculations
performed throughout this book, i.e. the external force will comprise a time

invariant (static) part F and a fluctuating (dynamic) part F (t ) . It was shown in
Chapter 1.2 that the displacement will then also comprise the sum of a time
invariant part ¥ and a fluctuating part r(t) . Introducing this into Eq. 2.1 will

then render
M-i(t)+C-Ht)+K-[F+r(t)|=F+F (1) (2.2)

and thus, it is seen that response calculations may be split into the solution of a
time invariant equilibrium requirement

F=K'T (2.3)
and the solution of a purely dynamic equilibrium requirement
M -F(t)+C-F(t)+K-r(t)=F(1) 2.4)

Thus, the principle of superposition between time invariant and dynamic load
effects is applicable. The static load cases will in the following not be pursued.

Let us first consider the unloaded case F (t) =0. The general solution of a

freely oscillating but damped system is given by
r(t)=Re(a'em) 2.5)

where a is the amplitude and & is an unknown constant, which, after
introduction of Eq. 2.5 into Eq. 2.4, may be determined from the condition

Ma? +Ca+K=0 (2.6)

Dividing by M and introducing the undamped eigenfrequency @), =+/K / M

and the damping ratio
£ =C/(2Ma,) 2.7)

then
(afw,)’ +2¢, (afw,)+1=0 (2.8)

Thus, the following solution is obtained

ofw,=—¢, £ 1 (2.9)
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It is seen that there are two values of ¢ that will satisfy Eq. 2.6. The solution to

r (l‘ ) will then comprise the sum of these alternatives,
r(t)=rn(og.1)+r(a,.t) (2.10)
and it contains two alternative types of motion, depending on ¢ L =1 or ¢ a <l.

Casel: {,>1

Let us first consider the case that ¢ , > 1. Then the expression under the root sign

in Eq. 2.9 is positive, and thus,

%=%t@+ﬁ§:) and %:%bg—ﬁ?:)@m

The corresponding solution is given by

[#2_ _ [#2_ _
r(t)=r+r=ae™ +a,e™ =(alew”t S 1+a26 i\ i lje ! (5 1)

Introducing the initial conditions that

r(t=0)=a +a,=r
Hi=0)= o, (¢, +22 -1) +aso, (¢, -J2E 1) =iy (2.13)

and solving with respect to @; and a, , then the following solution is obtained

r={[afe, i) 3 | o
Al G 2 el ;}

This solution is illustrated in Fig. 2.3.a, and as can be seen, there are no
oscillations of the system, the response is more or less rapidly dropping towards a
condition where the system is at rest in its original position. Hence, we call it the
over-damped solution.

(2.14)

Case2: {, =1

Let us then consider the case that {, =1. Then ¢, =, =—®,, and hence an

n

obvious solution is that 4 =ale_w”t. Since 7, must contain the same boundary
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conditions as 7 it is a reasonable assumption that 7, = f (l‘ ) -1, where f(l‘ ) is
an unknown function, whose properties must be such that the solution satisfies the
equilibrium condition given in Eq. 2.4 [with F (l‘ ) =01, i.e. that
M-(f-i+2f i+ f-r)+C(f-i+fr)+K-f-r=0 (2.15)
This may be rewritten into
[ (M# +Ch+Kn)+ f(2Mi; +Cry )+ f - Mr, =0 (2.16)

It is seen that the first bracket contains #; inserted into Eq. 2.4. It must therefore

be equal to zero. Since C=2M @,{, (see Eq. 2.7) and ¢, =1, then the second
bracket is also zero because

(2MF + CrR) = -2M w,a1e” " +2M @, ae” " =0 (2.17)
and thus, we must demand that f =0, which implies that r, (t) zazte_w”’.
Hence

r(t)=(a; +ayt)e” ™ (2.18)

Introducing that 7(#=0)=r, and 7(f =0) =1, then the following is obtained
r(t)=[r+ (i + @)t ] (2.19)

This solution is illustrated in Fig. 2.3.a, and as can be seen, there are still no
oscillations of the system, but this is the transition between that which is shown in
Fig. 2.3.a and that which is shown in Fig. 2.3.b, where oscillations actually occur.

Hence, we call it the critically damped solution, and C,, =2M @), is called the

critical damping coefficient.

Case 3: {, <1

Finally, let us consider the case that , <1. Then the expression under the root in

Eqg. 2.9 is negative, and thus, the solution will contain the complex roots

o =, (—(,, +i@) and o, =, (—(n —i@) (2.20)

Dividing throughout the equilibrium condition in Eq. 2.4 by M and introducing
that C/M =2w,¢, (see Eq.2.7) and K/M =a)§ then
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F 20,8+ arr=0 (2.21)

Again, it is assumed that

ar -
n=ae " sinyt
r(1)=r()+n(t)  where i=ae sy (2.22)
ry, = a,e” cosyr
Introducing r; into Eq. 2.21 will then require that
2 2\ _
(a —y2+2a)ng“na+a)n)smyr+2y(a+a)ng“n)cos}/t—0 (2.23)
for all values of ¢, which can only be fulfilled if
a=-0,, and  y=gq, 1_4“,12 (2.24)
Similarly, introducing r, into Eq. 2.21 will then require that
2 2 : _
(a —y2+2a)ng“na+a)n)cosyr—Zy(a+a)ng“n)sm;/t—0 (2.25)

for all values of 7, which will be satisfied for the same solution that was obtained
in Eq. 2.24. Thus

r(t)= [al sin (a)nt\/@) +a, cos (a)nt\/@)} Lt (2.26)

Introducing that 7(¢=0)=r, and 7(f =0) =1, then the following is obtained

t)= roéanltﬁgéa’n_sin(a)ntdl—ﬁ)+rocos(a)nt\/1—§,f) et (2.07)

Using the trigonometric property that cos(x —x,)=sinx, -sinx, +cosx, -cosx,

then this solution may more conveniently be written

r(t)=a-e " cos(wt—f3,) (2.28)

where @, =@,\1-¢ ,12 , and where

a=\/r02+(r'0/wd +ro§n/vl—§3)2 (2.29)
tan 3, = fo/(”owd)"'gn/\ll_;nz




2.3 Single Degree of Freedom System with Harmonic Load 67

This solution (setting 7,7, /ry =1 where T, =27/ ®, ) is illustrated in Fig. 2.3.b,
and as can be seen, the system is oscillating with a frequency of @, , which we

call the damped eigenfrequency, and it decays exponentially with a rate
determined by ¢ .- We call this the under-damped solution. The special case that

1y =0 implies that a = 1y / @, and [, =7/2, rendering
Ty — .
r(t)=—"e Onént sin(@,t) (2.30)
Wy
which is a useful result in connection with impact loading. It is in the following

consistently taken for granted that ¢ . <<l.

a) Cases 1 and 2: Cn21

1 N T T T T T T T
b T
l—o ‘\\ >\A;.\ F o Qn:z
= AN T ] ——— =4 H
S 08\ vt -
\\ e C—’n=
\\'\ T . .
0 R T e e | I
0 1 2 3 4 5 6 7 8

LT

vT
n

Fig. 2.3 Free oscillations of single degree of freedom system

2.3 Single Degree of Freedom System with Harmonic Load

Let us consider the case of a harmonic sinusoidal load with amplitude F, and an

arbitrary frequency @, i.e. the case that F (t ) = I}, -sinax . The solution r (t) to

the equilibrium condition in Eq. 2.4
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M -F(1)+C-F(t)+K-r(t)=F(t) 2.31)
may then be split into the sum of a solution 7, (l‘ ) to the homogeneous equation
M - (1) +C -, (1) + K -1, (1) =0 2.32)

and a particular solution 7, (t) to

M -7, (t)+C-i, (t)+ K -1, (1) = F(t) (2.33)

As mentioned above, it is taken for granted that g“ n <1, and as shown in

Chapter 2.2 above, the homogeneous solution is then given in Eq. 2.28, i.e.

ry (1) = ay, - e - cos(wyt — B, (2.34)

where @; =@,\/1-¢ ,12 , and where a, and [, will be determined from the

conditions that r(t = 0) =0 and i‘(t = 0) =0. A particular solution to Eq. 2.33

is given by
r,(t)=b,sinat +c, cos ar (2.35)
Introducing this into Eq. 2.33 will then imply that
(K - a)zM)(bp sin@x +c, cos a)t) + Ca)(bp cos @t —c,, sin a)t) =Fysinax (2.36)
which may also written

|(K-*M )b, ~Cax, ~F, [sinax+| Cab, +(K-&’M)c, |cosax =0 2.37)

Since this requirement can only be achieved at all times if both terms are
simultaneously equal to zero, it is seen that

(k-a'm)  ~Co HH

co  (K-w'M) 239

rendering
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|:bp:| 1 (K—a)zM) Cw . {F0i|
217\ 2 —Cw -’ 0

(K—a) M) +(Co) ! C (K M) o)

_ F, (K—a)ZM)]

(K—a)zM)2 +(Cw)’| —Co

Introducing a),f =K/M and ¢, = C/(Za)nM) =, 'C/(ZK) , see Eq. 2.7, then

{bp}:&_ 1 'lil—(a)/a)n)z

‘ K [1_((0/60” )2:|2 + (Zé’n a)/a)n )2 _2§n a)/a)n :| (2.40)

p

F (1—(a)/a)n)2)sina)t—(2g"na)/a)n)cosa)t
. 272 2
[1-(0/0,)’ ] +(2¢,0/0,)
Since a-sin(a—f)=a-cosf-sina—a-sin ff-cosar =g, sina—a, coso

where \a] +a; :\/(acosﬂ)2 +(asinﬂ)2 =a, itis seen that

Thus: I3 (t) =

(2.41)

rp(t):ap-sin(a)t—ﬁp) (2.42)
where
. _E [1—(60/60")2}2 (24, 0/a,)’ _ Fy/K (2.43)
-] e 00 1=t00, ] +(2£, 010,
2¢, 0w,
and tan ﬂp = W (2.44)

Thus, the total solution r (t) =r, (t) +7, (t) is given by

sin(a)t—ﬂp)

F(1) = aye ! cos @yt - B, )+ 2L (2.45)

\/[1—(0)/60,, )ZT +(2¢4, 0@,)
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As mentioned above, it is assumed that the system is starting off at rest where
(FO/K)~sin(ﬁp)
1 T2 2
~(@a,)] +(26, w/w,)

r(t=0)=a,cos(B,)- =0 (2.46)

and

(FO/K)~a)~cos(ﬂp)

i’(tzO):ah[a)d sin(ﬂh)—é’a)ncos(ﬂh)}i- = - =0 (2.47)
1] e2)
from which it is obtained that
_F, sin(ﬂp)/cos(ﬁh)
a, =—--
- @a) T 2, 0a,) o
tan(ﬁh)z[—1+2§2 (v/w,) }/(2&/1 ;2) (2.49)
sin(ﬂ ) ol
e e cos(a)dt—ﬂh)+sm(a)t ﬁ)

Thus: r(t) & Cos(ﬂh) (2.50)

K

\/[1—(60/(0,, )ZT +(24, 0@, )2

It is seen that the response may be split into a transient part

R sin (ﬁp ) e bt . cos (,t-5,)

K cos(f 2 (2.51)
B [i-@a, T +t, 00,

and a steady state part

Tirans (t )

R sin(a)t—ﬂp)
@) T+t 0a,)

Due to the decaying exponential function in 7,

’}t(t)z

(2.52)

(t ) it is a transient contribution

to the response because it only lasts for a limited period of time, i.e.
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lim[r,mm (t)] =0 (see also the plot in Fig. 2.4), while r, () is a steady state
t—>o0

contribution because, after a certain period of time, it will constitute the entire
response on its own and then remain unchanged with increasing time. The larger

¢, the quicker 7, (l‘ ) dies out.

Example 2.1
Introducing @, =0.3 rad/s, o=@, and é’ n =0.02 then the reduced response
r(t)/ro (where 1y= FO/K ) according to Eq. 2.50 is shown in Fig. 2.4 below.

40 T T T T T T T
® =0.3 rad/s, o/e =1, £ =0.02
n n n

r,=F K

Reduced displacement, r(t)/r 0
o

Il 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800
t(s)

Fig. 2.4 Forced response of simple single degree of freedom system, F = F,sin (a)t)

Elaboration 2.1: The Phenomenon of Beating

If damping is very low and the forcing frequency @ is very close to the

eigenfrequency @), , then the particular phenomenon of “beating” may occur.
Let for simplicity ¢, =0. Let also ®/®, =1, but @# @,. Then ﬁp =0 (see

Eq.2.44) and @; = @), . Thus



72 2 One and Two Degree of Freedom Systems

r(t)=a, -cos(w,t— E‘—sin(a)t)
(1) =a -cos(@,t = B) + = Cwa)

Imposing the requirements that (t = 0) =0 and 7 (t = 0) =0 will then render

Thus, the following approximate solution is obtained

Fy sin(ar)—sin(a@,r) _2F sin(@,t/2)-cos (a@t)
-(o/0,)" K 1-(0a,)

where @= (6()+ , ) / 2 is the average frequency and @, =@—@, is the
frequency of the “beat”. The special case of @, =0.3 rad/s and a)/ w,=0.9 is
illustrated in Fig. 2.5 below.

15 T T T T T T
C‘n=0_‘ @n=0.3 rad/s, calcon=0,9, r0'=F0/K

10F : ' : i

[3))
T

Reduced response, r(t)/r0
o

A0k b UL I B

15 1 i i i 1 I i
0 100 200 300 400 500 600 700 800

Time, t (s)

Fig. 2.5 Typical “beat” response
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2.4 The Steady State Response in a Complex Format

In some cases of impact or shock load effects it is the transient part of the response
which is of primary interest for structural safety considerations. But, in most cases
the load will render a more or less stationary type of response, in which case it is

the steady state part which is of main concern. Let F (t) be a harmonic function

which in a complex format may be expressed by

F(r)=Re(F, .eia)t): Fy-Re(cosar+i-sinar)=F,-cosar 39

where it has been taken for granted that the amplitude £ is real. [It should be

acknowledged that while we in Chapter 2.3 above adopted a forcing function
F(t) =F,-sinax , rendering a r(t) :a(a))~sin(a)r—,6) type of steady state
response, it is of no consequence that we now adopt F' (t) =F,-cosax, as this

will simply render a r(t) = a(a)) : COS(a)t - ﬁ) type of response.] The

corresponding steady state response function may then be expressed by

(1) =Re[ A(@)- ¢ ] @54

where A(a)) is a complex amplitude A( a)) =b+ic . Thus

r(t) =Re[(b+ic)(cosa)t+isin a)t)] =b-coswxt—c-sinwt (2.55)
a=|A()=VA'A =D+
Introducing . =b _ (2.56)
a C‘Osﬂn }: tanﬂn :—C
a-sin B, =—c b

then

r(t)=b-cosmr +(—c)-sin ot
2.57
=a-(coswr-cos B, +sinar-sin f,)=a-cos(wt - f3,) 237
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Thus, it is seen that

(o) =Re[A(0)- ¢ |- |a(@)]-cos(ar-p,)

In general, the complex amplitude A(a)) and the phase angle ﬂn are determined
by fulfilment of the equilibrium condition. Thus, introducing Eq. 2.54 into

M-F(1)+C-F(t)+K-r(t)=F(t) (2.59)
then the following is obtained

(-M @ + Ciw+ K) A(@) e = Fye™ (2.60)

Dividing throughout the equation by K and introducing that (02 =K/ M and
£, =C/(20,M)=w,-C/(2K), then

A(0) =22 [1-(e/a, ) +2i¢,0/0, I 2.61)

which, by multiplication and division by the complex conjugate of the
denominator, may be expressed by

A(w)= fo/ K '{[1—(w/wn)2}‘i'2§n”/“’n} (2.62)

[1—((0/0),1)2}2 +(2¢,0/0,)

As shown in Egs. 2.56 and 2.57 above, the response r(t) =|A(@)|-cos(et - f3,)
is then defined by its amplitude

1

(@)= a = 2l [1- (0, |+, 000, | 08D

and phase angle tan S, = —“_ 28, w/ wnz
bo1- (w/wn )

Fy/K =1, is the static displacement of the system if load amplitude F, had

(2.64)

acted on its own. Defining the non-dimensional frequency response function

(complex and associated with eigenfrequency @, ) by
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-1 (2.65)

A

A,(0)=|1-(0/a,) +2i¢,0/a, |
it is seen that
”(f):(FO/K)"FI(a))‘-cos(at—ﬂn) (2.66)

Le., the steady state dynamic response of a simple single degree of freedom system

subject to a harmonic load F (t ) = Fy-cosax is also a cosine, but delayed by a

phase [, (determined by Eq. 2.64), and an amplitude which is equal to the static

effect of F, magnified by the absolute value of the frequency response function

H ()

and S, at {, =0.02 are shown in Fig. 2.6.

H (a))‘ . A plot of

18 2
1 T T

0.8 1
& 06f 1
= g4 1
02 1

0 1 L 1 1
02 04 16 18 2

Fig. 2.6 Plots of |H (@)| and B, (at £, =0.02)
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Example 2.2 Single Storey Shear Frame

G N

R(t) M N /,/\‘\'I
—) T ==3 :{ = E IE
| El =oco I ly
| y I’
!
el | Bl /oL ‘ L ‘
/ / T d
// ,/
AR “QQ — R=&Elyr
L
My
D S
R——>
V «<— <V

Fig. 2.7 Single storey shear frame

A single storey shear frame is shown in Fig. 2.7 above. It is called a shear
frame because the bending stiffness of the beam is assumed infinitely large, and,
as illustrated below, its displacement pattern will create a condition of large shear
forces (as well as bending) in the columns. The connection between the shear
force and the sideway column displacement is shown in the upper right hand side

of Fig. 2.7. For simplicity, the distributed mass of the columns (m_ ) is assumed
negligible. At an arbitrary displacement r(t) = Re[aeia»} a free body diagram
of the system is shown in the lower illustration of Fig. 2.7. Since

V(r)= (IZEIy /L3 ) -r(t) horizontal equilibrium is expressed by Mi+ Kr =0,
where M s the total mass of the beam, and K =2 - (IZEIy /LS) = 24EIy /L3 .

Introducing r = Re[aeia»} and thus

24E1, /I - *M =0 =@, = \[24E1, [(MD)
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Let us assume L=24m, M =960 kg, EIy =3.5.10* N/m and ¢, =0.01
then @, =7.96 rad/s. Let us also assume F(t)=FOCOS(at) where
F,=2-10°N.

0.020/w,
1- (a)/a)n )2

0.033-cos(ar—f,)

\/[1 — (0o, )12 +(2¢,0/®,)

Then r(t) = where tanﬂ” =

It is seen that if @@, <1 then f,=0 and r(t)zFO/K=0.033m.

This is what we call a quasi-static type of response. It is the
stiffness  which is  decisive. If a)/a)n =1 then pf,=r/2 and

r(l‘)=(FO/K)-(1/2§”)-Sin(w”t). We call this response resonant. It is the

damping ratio that is decisive. If a)/a)n > 1 then [, =, while the response

r(1)=(Fy/K)cos(ar - B,)/(0/@,) =(Fy M )cos(an~B,), ie. it is

the mass that is decisive.

2.5 Response to a General Periodic Load

A simple single degree of freedom system subject to a fluctuating load F (t) with

period T} is illustrated in Fig. 2.8 below. It is taken for granted that its mean

value is zero, i.e. that

Iro" A
H1 (VU

>

r(t)
F(t)

Fig. 2.8 Single degree of freedom system subject to periodic load
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_ 1
F=— | F(t)dt=0 (2.67)
Tp 3

Let a Fourier transform of the load (in simple harmonic cosine and sinus
functions) be given by

Nj
F(t)=Z(Bj cosw;t+C; sina)jt) (2.68)
j=1
B, | 2% cos w;t
where =— J- F(t)~ ) dt (2.69)
Ci| Tr sin@;t

and where @; = j-27 /Ty = j- @ (and where the obvious formal requirement

that N j —>°° is omitted for the sake of simplicity). By defining

C.=F,sin S

J J F] C.

F, =,|Bi+C? d = tanf, =—L (270
! AR B; = F;cos by, ‘i B @70

J

N.
j
(Bj cos@;t+C;sin a)jt) = Z(F/ cosﬂFj cos®;t+ F; sin ,BFJ, sin a)jt)

Jj=

2.71)

N; .
F; cos(a)jt—/}Fj)zReZ]:Fj ~el(wjt ﬁFJ)
=

We have seen in Chapter 2.4 above that the steady state response of a single

degree of freedom system to a harmonic load F (t) = Re(FO : eiw[) was given by

r(t)=%\ﬁn(a))\cos(ax-ﬁn)=R{%ﬁn(w)efw’}=Re[a(a))eim] 2.72)

Therefore, for the more general case that

N (2.73)
F(t)zReZ]:Fj e (w"t ﬁF])
i=1
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the corresponding response will be given by

Nj i(a)-t—ﬁ ) Nj
r(t):ReZaj(a))~e T =Z‘aj(w)‘005(wjf_ﬁ1vi _:Bn,-) 2.74)
o = A .

where aj(a))zbj +icj,i.e. ‘aj (a))‘=1/b]2 +c]2 and tanﬂnj =cj/bj . Taking

the time domain Fourier transform throughout the dynamic equilibrium condition
M -F(1)+C-i(t)+K-r(t)=F (1) (2.75)
will then require that for every @; setting
N

Re) {[-Ma] +Ciw; +K |a, - Ei}ei(“”'t—ﬂp«" )0 (2.76)
J

.

Il
—_

and thus, from an equilibrium point of view we must have that
-1
a;=F,|-M] +Cio; +K | @.77)

Introducing  that a),%:K/M and g“n:C/(2a)nM):a)n-C/(2K), and

defining the non-dimensional frequency response function
. 2 -1
Hn(a)j)z[l—(a)j/wn) +2i na)j/wn} (2.78)
then the following is obtained

a:(F/K)-I—AI(a).) (2.79)

and thus
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1
2 2

where (2.81)

Fit)

a) Fluctuating load b) Argand representation

Fig. 2.9 Single degree of freedom system subject to fluctuating load

The development above may readily be made applicable to a more general
fluctuating load (see Fig. 2.9.a) by letting Tp =7 become large, formally

T — oo, and transformed into a continuous format where N [ Edal

®=j-27z/T and 27/T — dw). Introducing the Euler equations
l1{ oy -iw; . A ey -iw;
cosw;t :E(elwft +e let) and  sin@;t =—15(elet —e lwfl) (2.82)

into Eq. 2.68 renders

o

Z[Bj (eia)jt + e—iwjt ) _ iCj (eiwjt _ e—iwjt ):|

=1
L (2.83)

=%Z“Q—mﬁﬁwﬂg+wﬂﬁw}

j=

N | —
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which, by defining D; =(B;-iC;) /2 (2.84)

may be expanded into positive and fictitious negative @ domain, such that
imaginary parts in the positive @ domain will consistently cancel out the same
imaginary parts in the negative @ domain (see Fig. 2.9.b), and then

F<r>=zD,--e"“’”=Z(%DJ'€"“’”<M/T> @89

—oco

T T 1 .
- G(@;)=—-D;=5—7(B;=iC;) s
efining T T )
=llg]F(t)(cosw.t—isinw.t)dt =LJF(t)e7"wj’dt
272T ! ! 27

0 0

and letting 7 andj —oo, @=j-27/T and 27/T — d@, then the following is

obtained:

G(w) e”dw

!
—
-~
N—
I
'—.8

. (2.87)
G(w) :—IF(t)~e‘i“”dt
0

[It should be noted that if F (t ) has the unit N , then the Fourier function G(a))

will have the unit Ns/ rad .] Similarly, in a complex format, the dynamic response

may be expressed by
r(t)= J. g(a))~ei“”dw (2.88)

where the Fourier function g (a)) may be determined by demanding fulfilment of

the equilibrium requirement in Eq. 2.75 at every @ setting (which is equivalent to
taking the Fourier transform throughout the equation and demanding fulfilment in
frequency domain). Thus

[-M &’ +Cio+K |¢(0)=G(0) (2.89)
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from which the following is obtained

o ) , (2.90)
r(t)= I$~H,’(a))~e’w’da)

A, (@)=[1-(af,) +2i¢,0a,|

where _ it
G(w)===[F(r)-¢ar o

and a),f =K/M and {, = C/(Za)nM) . This is what constitutes the basis for the

frequency domain dynamic response calculation of structures subject to stochastic
load. It is seen that the necessity of operating on the real values vanish with the
introduction of a double sided @ domain, as all imaginary quantities cancel out
with the fictitious double sided integration (as shown in Fig. 2.8).

2.6 Systems with Two Degrees of Freedom

A simple system with two degrees of freedom is shown in Fig. 2.10.a. The
necessary equilibrium considerations for each of the two bodies are illustrated in
Fig. 2.10.b. Thus

M1ﬁ+cl’ﬁ+K1ﬁ—Cz(fz—’ﬁ)—Kz(rz—”l)—ﬂ20} 2.92)
Mk +Cy (iy = ii)+ Ky (ry =1 ) = F, =0
which may more conveniently be written

Mr+C-r+K-r=F (2.93)

where the displacement and load vectors are defined by r= [r1 ) ]T and
F= [Fl F, ]T , and where the mass, damping and stiffness matrices are given by

M, O - -
M=l C-— (G+G) -G K = (K, +K,) K, (2.94)
0 M, -c, G, -k, K,
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Cih

"
e
? |, ni) v

M2

K2(r2-r1)T Tcz(rz-r1)
[ - M,r,
2 YE
a) System b) Equilibrium

Fig. 2.10 Simple system with two degrees of freedom

The situation of undamped free oscillations (where F=0 and C=0) has
previously been solved in Chapter 1.2, rendering the eigenfrequencies @, and

@, (see Eq. 1.20), as well as the corresponding eigenmodes @, :[¢1 1 ¢21]T

and @, = [¢12 0 ]T given in Egs. 1.21 — 1.22.

Elaboration 2.2: The Dynamic Absorber

Let us for simplicity assume that the damping is insignificant (i.e. that
C,=C, =0) and that the system is subject to a single harmonic load
F = Flo 'Re(em) and F, =0. Thus, the equilibrium requirement (Eq. 2.93)

becomes

M 0 || A K +K -K, || n F .
1 1 n ( 1 2) 211" o Re(eta)t)
0 M,|n -K, K, ||n 0
We have previously seen that the response to such a harmonic excitation is
given by
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n .
r=Re|| ° |

Introduced into the equilibrium equation this will render

(K +K,-a’M,) -K, FO}FO}
-K, (K, -o"M,) (L™ Lo
and thus
af i (K=o
o) (Ki+K,—o™M,)(K,-o’M,)-K; K,

Introducing @, =,/K1/M1 and @y =‘/K2/M2 , then the following is
obtained:

FO}_FM ! (1-(0yy, )|

" _E.[lJFKz/Kl_(w/wlo)2}[1_(0)/@20)2}_1(2/1(1 1

0

which is the basic idea behind the dynamic absorber.

To illustrate its effect let us for simplicity choose @) =@, (i.e. that

fio | _Fg 1 1—(&)/(010)2
L} Ki [1+ﬂ(w/%)2}[l(w/%)z}ﬂ( 1 |

The frequency response function of the main system, Ny » is illustrated in Fig. 2.11

0

below. As can be seen, if the load frequency @ is close to @, » which is the
eigenfrequency of the body subject to the load, then o becomes unduly large if

L1 =0, but, if for instance L =0.01 then Un is reduced to virtually nothing. This

is known as the dynamic absorber effect. It is the basic idea behind the more
useful concept of the tuned mass damper, which is given an extensive presentation
in Chapter 9.4.
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10°

10° |

06 0.7 0.8 09 1 1.1 1.2 1.3 1.4
o/

Fig. 2.11 The dynamic absorber, (qo = @O

Example 2.3  Two Storey Shear Frame

RZ' r, Mz
> \ R
Ely =00 T
r
EIYz Elyz L2 J ,,”’/\\lE
J El, I
R1, I‘1 M1
— [ | |
El, = 00 , L |
El El L
1 i 1 12El
e
<SS TR} B
a) General system

Fig. 2.12 Two storey shear frame
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R R, r
2 27 72
> T -
I I
/ /
\\ \\ / /
R-|l r1 \ \ R1
t 1 —»
1 1
/ /
/ /
/ /

b) Establishing content to the equilibrium equations
Fig. 2.12 (continued)
For an effective development of the equilibrium conditions of systems with
more than one degree of freedom it is convenient to introduce a more robust

approach. We know that in a matrix format the equilibrium requirements to the
two storey shear frame in Fig. 2.12 above may be written

{Mu M12:|{i‘i:|+|:cll C12:||:’.‘1}+|:K11 Klz}{’i}z{&}
M21 M22 r2 C21 C22 ’.‘2 K21 K22 p) R2
Demanding equilibrium in the fictitious setting that n #0 and r, =0 (see
Fig. 2.12.b), then

Ry =M i +Cyyi + Ky

Ry =My iy + Cyyti + Koyt
rendering the first column in the matrices in the equilibrium condition above.
Similarly, if we demand equilibrium in the fictitious setting that v, =0 and r, #0,
then

Ry =M is +Cpahy + Kp1

Ry =Myl +Cphy + Kyt

rendering the second column in the matrices in the equilibrium condition above.
Let us in the following for simplicity assume that damping is exclusively

associated with the motion of masses M| and M ,, and define

K, =24EL, /L] and K, =24EI, L}
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then

R =M,i +Cii +(K, + K, )r
1) 1,20 and r, =0 (see Fig. 2.21.h) = {1 i+ G+ (K + Ko )i

Ry ==K
2 r=0andr,#0 = .. .

Thus, the equilibrium condition of the two storey frame in Fig. 2.12 is given by

My 0|5 N G 07 + (Ki+Ky) =Ky || n|_| R
0 My||i| [0 Gl K, K, ||n| |R
which may be written in the following more compact way

Mr +Cr +Kr=R

where r=[r1 rz]T, R=[R1 RZ]T and

0 M, 0 G -k, K,
The undamped and unloaded eigenvalues and corresponding eigenmodes may as

usual be obtained by setting C and R both equal to zero, and impose the
harmonic motion

r(;):{g }:Re(aeia”) where a=[a, a

Thus, the following eigenvalue problem is obtained

(K—w2M)a=o

which, fully written is

(K +K,-o’M,) -k, {al}_m

-K, (K, -a’M,) L%

Its solution may be obtained by setting the determinant to the coefficient matrix
equal to zero, rendering the following fourth order polynomial solution
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(KK K)o KK
Ml M2 Ml M2

whose roots are given by

) 12 1/2
KA KK K ) KK
2 M, M, ) |4l M, M,] MM,

Let for instance K, =2K, K, =K, M, =2M and M, =M , then the solution

to the eigenvalue problem
(3K—a)22M) -K {al}z{o}
-K (k-o'm) L] 10
o =\K/(2M)

@, =+J2K/M

From the second row of the eigenvalue problem it is seen that
2
oM
—a,+|1- a, =0
K

It is seen from the eigenvalue problem that one is free to scale the content of the

is given by = %i % and thus

. T . . . .
eigenmodes (p:[a1 a2] . Eigenmodes associated with eigenvalues @, and

@, are then obtained by successively introducing @, and @, into the equation

above. Thus:

) w=0 = afaq=2 and thus o=[1 2]T

2) o=, = az/al =—1  and thus Q= [1 —l]T

The numerical eigenvalue problem is more thoroughly presented in Chapter 4.4.



Chapter 3
Eigenvalue Calculations of Continuous Systems

3.1 Eigenvalue Calculations of Simple Beams

A simple beam is defined as a single span beam whose cross section is symmetric
about the y - as well as the z- axis, i.e. its shear centre and its centre of pure

linear bending coincides with its mass centre (e, =e, = 0). It is homogenous and

line-like in the sense that along the entire span it contains only one type of
material, and the cross section is small as compared to the length of the beam such
that it may mathematically be modelled as a single line through its shear centre.

Furthermore, it is assumed that time invariant mean cross sectional forces (N ,

M y and M . ) are zero, and that the motion of the system is restricted such that it
is only r, that is unequal to zero. The more general case of beams with non-
symmetric cross section where 7y, r, and r, are simultaneously unequal to zero

is covered in Chapter 3.2, while the effects of time invariant forces are included in
the cases covered in Chapter 3.3. The most typical four cases of boundary
conditions for simple beams are illustrated in Fig. 3.1.c. As shown in Chapter 1.1
(see Egs. 1.23 — 1.36), an exact solution to the problem of undamped and unloaded
free oscillations

r, (x,t):Re[@ (x)~eia”] (3.1)

of a continuous system can be obtained by solving the differential equation of
dynamic equilibrium
Z

m i, + EI, =0 = E1y¢z”’4 o’ m,¢, =0 (3.2)

which can only be obtained for all values of x if the fourth derivative of ¢, is
shapewise congruent to itself. Thus, the general solution (conveniently expressed
in the non-dimensional coordinate X = x/ L) is given by

¢, (x)=q;sin(AX)+a, cos(Ax)+ aysinh (AX) + a, cosh(A%)  (3.3)

E.N. Strgmmen, Structural Dynamics, Springer Series in Solid and Structural Mechanics 2, 89
DOI: 10.1007/978-3-319-01802-7_3, © Springer International Publishing Switzerland 2014
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¢) Some relevant types of boundary conditions

Fig. 3.1 Typical continuous system and some relevant boundary conditions

where the coefficients a;, j=1,2,3 or4, and the non-dimensional wave length

A are all determined from the relevant boundary conditions at the beam element
ends, i.e. at ¥=0 and X=1. Apart from boundary requirements to ¢, (x) itself,

the boundary conditions may entail requirements to the slope
¢l (x)= (xl/L)[a1 cos(AX)—a, sin(A%) +az cosh(A%) +a, sinh(/ifc)] (3.4)
to the bending moment

z

M, (x,1)=~EI 1" =~EI Re| ¢/ (x)e" | =

~EI, Re{(/l/L)2 [—al sin(A%)—a, cos(A%)+ay sinh(A%) + a, cosh (ftfc)]e’”} (3.5
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or to the shear force

V. (x,t)zM;(x,t)z

(3.6)
~EI, Re{(ﬂ,/L)3 [ —a, cos(A%)+ a, sin(A%) + a; cosh (A%) + a, sinh (/lfc)]e’“”}

In general, there will be four boundary conditions, two at either ends of the beam,
rendering a relative connection between the coefficients a;, j= 1,2,30r4 and a

transcendental equation f (l) =0. Thus, since it is only the relative connection

between the coefficients that can be obtained it is only the shape of ¢, that can be

determined, i.e. one of the coefficients is arbitrary and may conveniently be
chosen equal to unity. Furthermore, the transcendental equation obtained from the
four boundary conditions will have an infinite number of solutions
A=4,,n=1,2,3,..., each representing a possible satisfaction of the relevant

boundary conditions. Thus, there will be an infinite number of possible mode
shapes ¢Zn (ﬂnfc), which, introduced back into the differential equation of

dynamic equilibrium (Eq. 3.2), will render
(E1, (4, /1) ~aPm, -0, (4,3)=0 a7

Thus, a corresponding set of eigenfrequencies are obtained

o, =47\ EL [(m.L') (3.8)

As mentioned above (see also Eq. 3.7), the size of ¢Zn is arbitrary, i.e. they are

merely shapes that may be scaled up or down at will. In the following a; is
conveniently set equal to unity. From a structural safety point of view it is in
general only a few of the lowest values of @, and corresponding set of mode

shapes ¢Zn that are of interest. The reason for this is that higher eigenvalues are

likely to lie beyond the frequency band of possible load excitation.

Beam Type 1, Simple Supports at Either Ends (See Fig. 3.1.c)

For beam type 1 in Fig. 3.1.c the boundary conditions require
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9. (x=0)=0
M, (x=0)=0
¢, (x=L)=0
M,(x=L)=0

_a2 +a4:O
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a,+a, =0

(3.9)

sinA - sinhA=0

a,sin A+ aysinh A =0 ay; =0
=
—a;sin A+ a;sinh A =0

The non-trivial solution to the transcendental equation f (A)=sinAd-sinhA=0 is

that A=A, =nx, n=1,2,3,..., rendering n mode shape functions

¢, (x)=sin(4,%) (3.10)

Introducing Eq. 3.10 back into Eq. 3.1 and 3.2 will then render Eq. 3.8, from
which the eigenfrequencies may be obtained. The four first mode shapes and

corresponding A -values are shown in Fig. 3.2 below.

- 7L1=7I
< 0.5} 1
=
0 1 1 1 1
0 0.2 04 06 0.8 1
1/ T T T
3 0
-1 7¥2=27'E 1 1 1 /
0 02 04 06 0.8 1
1/ T T
3,, 0
-1 ?\'3=3ﬂ: 1 1 1 1
0 0.2 04 06 0.8 1
1 T T T
\3 0
X, =4m /
_1 1 1 1
0 0.2 0.4 06 0.8 1
%L

Fig. 3.2 Beam type 1, beam with simple supports at either ends
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Beam Type 2, Fixed Support on One Side, Free on the Other (See Fig. 3.1.c)

For beam type 2 in Fig. 3.1.c the boundary conditions require

¢Z(x=0 =0
¢.(x=0
My(x
V,(x=L)=0

cos(})-cosh(n)+1

()

a, (sin A+sinh A)+a, (cos A+cosh A)=0 G.11)

a; (cosA+coshA)—a, (sinA—sinhA)=0

a, _ (sinA—sinh A)

—1a (cosA+coshA) (3.12)
cosA-coshAd+1=0

2 4 6 8 10

Non-dimensional wave length, i

Fig. 3.3 The three first zero crossing points of f (ﬂ) =cosA-coshA+1

In Fig. 3.3 are shown the three first zero crossings of the transcendental equation

f(A)=cosA-coshA+1. In general, there are an infinite number of such

crossings. The non-trivial solutions A =4,, n=1,2,3,... to the transcendental

equation f(A)=cosA-coshA+1=0 will then render the relevant mode shapes
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¢71 =Sin(/1,,)2)—sinh(;tn£)+ sin 4, +sinh 4,

2 m[cos(@fc)—cosh(ﬂn&)] (3.13)

The corresponding set of eigenfrequencies are given in Eq. 3.8. The four first
mode shapes and corresponding A -values are shown in Fig. 3.4.

2.,=10.995
2 1 1 1 1

0 0.2 0.4 0.6 0.8 1
x/L

Fig. 3.4 Beam type 2, fixed support on one side and free on the other

Beam Type 3, Fixed Supports at Either Ends (See Fig. 3.1.c)

For beam type 3 in Fig. 3.1.c the boundary conditions require

=0 a, (sin A —sinh ) +a, (cosA—cosh4)=0 3.14)

=0 a;(cosA—cosh A)—a, (sin A+sinh 4)=0
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a (cosA—cosh 4)
=1 q B (sinA+sinh ) (3.15)
cosA-coshAd—1=0

The relevant mode shapes

A, —cosh
¢, =sin(4,%)-sinh(4,%)+ ((Cs:g +<S?ionsh j‘n)) [cos(4,8)~cosh(4,8)]  (3.16)

may then be obtained from the non-trivial solutions A =4,, n=1,2,3,... to the
transcendental equation f(A)=cosA-coshA—1=0, while the corresponding

set of eigenfrequencies given in Eq. 3.8. The four first mode shapes and
corresponding A -values are shown in Fig. 3.5.

Z, 0
©
= 1,=10.995

-2 1 1 1 1

0 0.2 0.4 0.6 0.8 1
2 T T T T
¥ o
d 1, =14.137
2 1 ! 1 1
0 02 0.4 0.6 0.8 1

x/L

Fig. 3.5 Beam type 3, fixed supports at either ends

Beam Type 4, Fixed Support at One End, Simple at the Other (Fig. 3.1.c):

For beam type 4 in Fig. 3.1.c the boundary conditions require
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(3.17)

(x=L)=0 a, (sinA—sinh A)+a, (cos A —cosh 4)=0
a; (sin A +sinh A)+a, (cos A +cosh 1) =0
a, __ (sinA-sinh4)

=1 q (cosA+coshA) (3.18)
cos A-sinhA —sin A-cosh A=0

The non-trivial solutions A=A4,, n=1,2,3,... to the transcendental equation
f(A)=cosA-sinhA—sinAd-coshA=0 will then render the relevant mode
shapes

(sin 4, —sinh A, )
(cos 4, —cosh 4,)

9., =sin(4,%)—sinh(4,%)- [cos(4,%)—cosh(4,%)] (3.19)

and the corresponding set of eigenfrequencies are given in Eq. 3.8. The four first
mode shapes and corresponding A -values are shown in Fig. 3.6.

2 T T T T
~ | »=3926
=
= 1 - 4
=
0 1 Il 1 1
0 0.2 0.4 06 08 1
2 T T T T
0
< %,=7.068
-2 1 L 1 1
0 0.2 0.4 0.6 0.8 1
2 T T T T
Z 0
< 7,=10.21
-2 1 L 1 1
0 0.2 0.4 0.6 0.8 1
2 T T T T
Z 0
< 2,=13.351
-2 I L 1 1
0 0.2 0.4 0.6 0.8 1

/L

Fig. 3.6 Beam type 4, fixed support at one side and simple at the other
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3.2 Beams with Non-symmetric Cross Section

In the previous chapter we dealt with simple unloaded and undamped single span
beams whose cross section was assumed to be symmetric about the y as well as

the z axis, such that e, =e, =0. It was also taken for granted that all time

invariant cross sectional forces (e.g. N, M y and M . ) were zero. In that case

there was no coupling between response components r,,r, and 7y, and

therefore, any eigenvalue or response calculation could be handled separately for
each of these components, and we chose to focus on r, . In this chapter we shall
adopt the same restrictions, except that we shall now consider the possibility of a
non-symmetric cross section, i.e. the situation that e, and e_ are unequal to zero.

This is a more complex case than that which was dealt with in Chapter 3.1 above.
Rather than making an attempt to solve the differential equation, it is more
convenient to turn to the principle of virtual work, which was presented in Chapter
1.6, rendering the general expression in Eq. 1.119. Under the assumptions given
above, Eq. 1.119 is reduced into

—J'5rng'r'dx = J.(é'r;EAr; + 01 El )+ Or/El ;1 + §réEAré)dx
L L
o [EA 0 0 0

I&; 0 EI.L 0 0
Vel |0 0o EL 0

sl o o o a

(3.20)
dx

& e Y e

where r(x,t)z[r r, . rg]T and 5r(x)=[5r or, Or, §rg]T

x Iy Ip x y z
and where
m, 0 0 0
0 m, 0 —-mye,
m, = 0 0 m, me, (32D
0 -me, me, my

Since we are here only considering an unloaded and undamped system, the
solution is a purely harmonic motion, which may be written on the format
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(3.22)

where W = diag ':l//x v, ¢ 1//9J is a four by four matrix containing all the

T

relevant mode shape functions and where a = [ax a, a, agJ is a four by
one vector containing the corresponding amplitudes of motion. The choice of /.,
¥, ¥, and ¥, may be based on the results obtained in Chapter 3.1 above or on

chosen approximations fulfilling the boundary conditions. The virtual
displacement is arbitrary, and therefore, we conveniently choose or=W-da

T
where da = [5% 5ay oa, Jaa] , and thus, Eq. 3.20 becomes

~[(wda)" m, (iw)’ paedx
L
EAy’? 0 0 0
0  ELy” 0 0 , (3.23)
T
= _[5a o ) ac'”dx
L 0 0 ELy? 0
| 0 0 0 GLyg |
rendering
EAy* 0 0 0
0 ELy’” 0 0
5aTa)2'|'qJngquxa . 5aTI o dxa
7 710 0 ELy” 0 (3.24)
0 0 0  GLyp}
which, by defining
-, i}
my> 0 0 0
. 0 my? 0 -m,e_ Y.y,
M= [y'm, pdx = . ) T 505
L L 0 0 my, mzeyl//zl/fﬁ
L 0 —mye YWy meY Wy m&‘/jg
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and
EAY? 0 0 0 |
N 0 ELy” 0 0
K= j o » dx )
AR 0  ELy’ 0 (3.26)
[ 0 0 0 GlLyg |

and acknowledging that the pre-multiplication by da’ is obsolete, then the
following eigenvalue problem is obtained

(K—wZM).a=0 (3.27)

It is readily seen that the r, component is independent of the other three 7, , 7,
and r, components. Thus, itis given a separate treatment below.

Case 1: Along Span Wave Propagation

Along span structural oscillations 7, (x,t) in a line like beam is what we more

generally associate with wave propagation. As mentioned above, the r,

displacements may be handled separately from the other components, and thus,
extracting the first row and column from Eq. 3.27, the following is obtained:

U EAy *dx — wzjmxwfde a,=0 (3.28)
L L

and thus, the eigenfrequency associated with along span wave propagation is
given by

w, = _[ EAy 2 dx / J.mxl//fdx (3.29)
L L

The mode shape function covering most relevant cases may generally be
expressed by

y, =sin(Ax/L)+b-cos(Ax/L) (3.30)
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where the coefficient b and the wave length 4 may be found from the boundary
conditions. For beam types 1, 2 and 4 in Fig. 3.1, the boundary conditions

r,(x=0,)=0 and N(x=L,t)=FEAr;(x=L,t)=0  will require
w,(x=0)=y;(x=L)=0. The first boundary condition ¥, (x=0)=0 will
require b =0, The solution is then ¥, = Sin(/lx/ L). The wave length 4 may
be found from the second boundary condition ¥ (x=L)=(4/L)cosA=0,

rendering the non-trivial solution /1=n7r—7z'/2, n=1,2,3,.... Thus, since

sin (2/1) =sin [71'(271 - 1)] =0, the following is obtained

L
A(A/L 2_[(:os (Ax/L)dx
0

EA 1) | EA
w, = 7 =1 S =7l n—— >
m,L 2\ m > (33D
szm (Ax/L)dx
0

For beam type 3 in Fig. 3.1 the boundary conditions r,(x=0,)=0 and
re(x=L,t)=0 will require ¥, (x=0)=y,(x=L)=0. From the first
boundary condition 5 =0. The second will require sin (/1) =0, and thus,

A=nrm . The solution is then ¥/, =sin (nl[ x/ L) , rendering

A niwx i niwx EA
o, = EA(] Icosz()dx mxjsinz()dx =nr 7 (3.32)
n L 0 L 0 L me

Case 2: Bi-axial Bending and Torsion

After the extraction of the r, component, the mass and stiffness matrices in
Egs. 3.25 and 3.26 are reduced into

myl//§ 0 —mye¥\Ye
~ 2
M =j 0 my: me W Yo |dx (3.33)
eV \Wo me W mﬁl/lg
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ELy?? 0 0
and K=[| o Ey? 0 | (3.34)
10 0 GLy}

and accordingly, the eigenvalue problem in Eq. 3.27 may be written

(Elzl//;2 - a)zmyl/li) 0 wzmyezy/yy/g
” 3.35
J' 0 (EI_VI//Z2 - a)zmzl//f) —a)2mzeyl/lzy/9 dv-a=0 (339
L
& mye.y, Wy —'mewy,  (GLyF -@'mey;)

As can be seen, if the cross section is symmetric about both axis y and z
(i.e. e,=e, = 0), then there are three independent solutions, one associated with

pure motion in the y direction

L L

one associated with pure motion in the z direction

o, :\/IEI},V/Zde/Ile//Zde (3.37)
L L

and one associated with pure cross sectional twisting (torsion)

@, = \/j Gl dx / [mawzax (3.38)
L L

The same will occur if for instance m, and m, are constants along the span of
the beam and ¥, and Y, as well as ¥/, and ¥, are orthogonal. Otherwise, i.e.
in the case of no cross sectional symmetry about neither y nor z axes nor any
mode shape orthogonality, then the motion will contain some coupling between
motion in y and z directions and cross sectional twisting (torsion). By
pre-multiplication of Eq. 3.35 by
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-1

my; 0 0
[l o my? o l|ax (3.39)
“oo 0 meyp

it may be written in the following more convenient format

(a)yz—a)z) 0 a)zezﬂ;lyg/ﬂ;[y
0 (0 -0’)  -wle,M /M, |-a=0 (3.40)
e M, /My, -w’e,M4/M, (a)g—a)z)
My = Imwadx MZ = szwzzdx and M, = Imgwgdx
where L L L (3.41)
Myg = J.myl//yl/lgdx and Mza = Imzwzwadx
L L

As usual, a non-trivial solution requires @ # 0, and therefore the eigenvalues may
be obtained by setting the determinant to the coefficient matrix in Eq. 3.40 equal
to zero, rendering

l-—————— W —
M M, MM,
~ 2 ~ 2
e M e M
o} 1—( 2 ig) + 1—(2; {9) +awy r ot + (3.42)
M_M, MM,

As can be seen, there are three possible eigenvalues which are determined by the
zero crossings of a third order polynomial, each representing an eigenvalue and a
corresponding coupled motion. In general, only a numerical solution can be
obtained. However, analytical solutions may be obtained for the special cases that

either e, or e, are equal to zero. The solution to the case that e, = 0 is dealt

with in Case 3 below.
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Case 3: Mono-axial Bending and Torsion
Let for instance e, = 0. Then Eq. 3.40 is further reduced into

(0} - ) 0 e, M, /M,
0 (a)z2 —a)z) 0 a=0 (3.43)
a)ZeZMyG/ZVIH 0 (wj—a)z)

from which at is readily seen that the first eigenvalue @, = @, , representing pure

motion in the z direction, while the other two, representing a coupled horizontal
and torsion motion, may be determined from

(a)i—wz)(wg—a)z)—a)4(eZMy9)2/(My1\719)=0 (3.44)
y

= [1—(@11\71),9)2/(1\7[ Me)}a)4—(a)y2,+a)£)a)2+a)}2,a)§ =0 (345

~ 2 ~
If o= (ezMyH) /(MyMa ) =1, then there is only one positive root

@, =wa/\/1+(wa/wy)2 (3.46)

~ 2 ~
If o= (eZMyg) /(MyMa ) > 1, there is still only one positive root

_[1+(wy/‘0«9)2}r\/[hr(“’y/“’«sv)z}2 +a4(a-1)(, /o)

2(a-1)

(3.47)

W, =y

The solution to these two cases (i.e. that ¢ =1) is shown in Fig. 3.7 below.

- 2 “ -
If o = (ezMyH ) /(M},Mg) <1, then there are two positive roots

S [t Tt ST

The solution is shown in Fig. 3.8 below.
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Fig. 3.7 Non-sym. cross section, a)z/a)e for or = (ezl\;lya )2/(MyM9) >1
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Fig. 3.8 Non-sym. cross section, a)z/a)g , (03/(06 , o= (e Myg) /(MyMa ) <1
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Example 3.1
Let us for instance consider a simply supported beam (type 1 in Fig. 3.1.c), and
still assume that e, =0. Then Y, =Y. =Yy = Sin(nﬂx/L). Let us also for

simplicity assume constant cross section properties along the entire span of the

beam.

Acknowledging that j()L sin® (nzx/L)dx = j()L cos” (nzx/L)dx=L/2 then:

L
~ L L L 4
= 2 = — » nw EI
M, my_([¢,vdx my 2 a)}2 =EIZ_[¢),2dx/myI¢}2,dx=[Tj m_7
0 0 y
. £, L L L e\t El
Mg =m9_[¢0dx=m95 and § ¢ =Elyj¢;’2dx/mzf¢z2dx=(fj m—>
0 0 0 2
L
. L L k nr\ GI
M= m,v_[¢y¢0dx My @y = Glt.[%zdx/me_[%zdx Z(TJ :
0 0 0 my
1
2

(J.LEIZ¢;2dx/J.Lmy¢y2dx) :(nﬂ')z EI /m L

@y

N =

([, Eryot%as [, mgla? =(nr)” 1, L

and thus = ,
1

([ GLggax/| mogiax)? =na\GI, [my1?

Wy

As shown above, in the special case that o = ez2 my, / my =1, then there is only

2
one positive root: @ = 0)0/1 [T+ (a)a/a)y) .

If o= ez2 my, /mg > 1, then there is still only one positive root

wz=ng{—[1+<wy/wa>2}+J[H(wy/waff+4<a-1><wy/wa>2} /[zw—l)]

However, if o= ezz m, /mg <1, then there are two positive roots

o= 130, ) =1 0] [ a0, ) | 20

Introducing either of these eigenvalue solutions ; back into Eq. 3.43
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(a)i—wf) 0 a)jz.ezl\;[yg/ﬂ;[y a, 0
0 (@ - }) 0 Ja, |=|0
wie. M, /M, 0 (@ - ]) a9 L0

it is seen that a, and a_ are arbitrary and may conveniently be chosen equal to

unity, in which case (from the first row) ag = l:l - (a)y/a)j )2}/(ezmy /mg)

Thus, the unloaded undamped harmonic motion for such a system is given by
1) either purely vertical 1, = Re[a : Sin(nﬂ'x/L) : eiwlt:| where @ = @,

2) or a combined sideway and torsion

nwx o,

r, 1 ot
{rjf“ =@, /) } e, ma) o 2 e 0, =(2,

(i.e. for combined sideway and torsion there are two alternative eigenfrequencies
and corresponding mode shapes).

3.3 The Beam Column

In Chapter 3.1 we dealt with a simple unloaded and undamped single span beam
whose cross section was assumed to be symmetric about the y as well as the z

axis, such that e, = e, = 0. It was also taken for granted that all time invariant
cross sectional forces were zero. In this chapter we shall adopt the same
restrictions, except that we shall now consider the possible presence of time
invariant cross sectional forces N, M , and M .- Again, this is a more complex
case than that which was dealt with in Chapter 3.1, and rather than making an
attempt to solve the differential equation, it is, like we did in Chapter 3.2, more

convenient to turn to the principle of virtual work, which was presented in Chapter
1.6, rendering the general expression in Eq. 1.119. The r, will not be included,

simply because there is no interaction between r, and cross sectional forces NV,
M y and M, and thus, r, may be handled separately as shown in Chapter 3.2.
(Though, it should be noted that stresses due to wave propagation will be
augmented by the presence of initial stresses due to NV, M y and M . -) Under the

assumptions given above Eq. 1.119 is reduced to
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Fig. 3.9 The beam column

—J.Jrngfdx:J[5r; (]Vry’ —Myré) +6r,(Nr, =M _ry)+ 8r)ELr]
L L (3.49)
OrlEL,r" + 61 (Gltré +Negr, —1\7Iyry' —Mzrz')}dx
where r(x,t)z[ry r, rgJT and 5r(x)=|:5ry or, 5r9]T, and where

Z

m, =diag[m, m, m,]| and & =} =(I,+1,)/A (see Eq. 1.115). We

are here only considering the situation of an unloaded and undamped system, and
thus, the solution is purely harmonic, i.e.

ay, (%)
r(x,t)=Re|| a.y, (x)| e :Re(‘-P-a-eiw’) (3.50)
g (x)

where W = diag [‘//y /g8 1//9] is a three by three diagonal matrix containing

T
all the relevant mode shape functions and where a = [a y 4 ae] is a three

by one vector containing the corresponding amplitudes of motion. The virtual
displacement is arbitrary, and therefore, we conveniently choose dr=W-Ja

T
where da = [561), oa, §a9] , and thus, Eq. 3.49 becomes
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ELy}? 0 0
sa' @’ [W'm Waxac =5a"{[| 0  ELy” 0 |dx
L L 7”2
0 0 GLy,
7”2 2 7 ’. 7
l//y 0 0 0 0 Myl”yl/lﬁ
+[NL O w2 0 |- o0 0 Myly,|dilac™

Llo o | |Myw, Myly, 0
which, by defining

|\~/|=.[‘Png‘de=diagDmyl//§dx Imzl/lzzdx Imgl//;dx]
L L L L

Kozdiag{j ELy}dx [ELy7dx | Gltwgzdx}
L L L

7.2 e ’_ 7
Nl//y 0 _Myl//yl/lﬂ
7 7.2 et ’. 7
and Ks :J. 0 Ny, ~M .y .y |dx
L by ’_ s ’.r = 2.7
My, -Myy, Ney,
renders the eigenvalue problem (R - aﬂ\?l) -a=0
where K= Ro + KG
Example 3.2

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

Let us for simplicity consider the simply supported beam (type 1 in Fig. 3.1.c), i.e.
that W, =y =y, =sin(nzx/L) and that EI;, EI., GI,, N, M, and M,

are all constants along the span of the beam. Acknowledging that
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L
[widx=[sin* (nzx/L)dx=1/2
L 0

109

L .
Il//}zdx = jw}w;dx = Icosz (nzx/L)dx= (mz/L)2 L/2 Ii} =y,zor @
L L 0
L
[wPdx=[sin? (nzx/L)dx=(nz/L)* L2
L 0
m, 0 0
. . . oL
then the mass and stiffness matrices are given by M= 5 0 m, O
0 0 my

A
I
D |~
()
7\
|=
3
N—
S~
&
~
+
7 N\
|:
3
N—
(3]
=)

L
nrw : — nrw 2 — nrw : nr 2
-|—| M, —(— M, = GIt+e§(—
L L ' L L

[from which the following eigenvalue problem (see Eq. 3.55) is obtained

) N .
Eappea : {=]s,
L Np, L

L 6
m, 0 0
~@*| 0 m, 0 |p-a=0
0 0 my

where Ng, =(nir/L)2 El, and NEz =(nﬂ'/L)2 EI, are the Euler buckling

load with respect to bending about the y and z axes, and where
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N Eg = Gl, / eg is the Euler buckling load with respect to torsion. Defining as

usual

w, =(n71'/L ) JEL /m, o, (nﬂ/L JEL, [m, @, =(nz/L)\GI,[mg
(rm’/L)zGIl}}_l

and pre-multiplication by {diag [(nﬂ'/ L)4 El. (nnm/ L)4 EI

then the eigenvalue problem is given by

_ ) ) ~ _
M
1+i_ @ 0 -y
NEZ wy (n”/L)
N ’ i
0 1+ —(ﬁJ - s |a=o
Ey a)z (n][/L)
_ _ — 2
M, M, W N (e
GI, GI, Ne, \@p

IfM y= M , =0 then there are three independent eigenvalues:

@ =0,\I+N/N;. o, =0, L+ N/Ng, @, = @1+ N/Ng,

Obviously, for the special situation that N =0 we are back at the simple bending

theory presented in Chapter 3.1 above, where ) = w,, 0,=0, and @ = @,

(not necessarily given in ascending order). It is also seen that if N is equal to

either of _NEy , —NEZ or _NEg then @y, @, or @ is equal to zero.

If M . =0 while M v * O then the relevant eigenvalue problem becomes

—1+]\_//NEZ —(a)/a)y)2 0 —1171},/{(1175/L)2 ElL

0

-M, /GI,

1+N/NE

0

(0w,)’ 0

1+N/N

(af we)

As can be seen, in this case @} =C()Z1l1+N/NEZ while @, and @; are the

solution to the second order equation
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N ’ N ’ i’
1+—— ﬁ . 1+__[£j _+:0
Ng, |\ o, Ng, \@p (nz/L)" EI.GI,

which may more conveniently be written

_ 2
4 N7 2 'V 2 N7 N7 M
a)2_1+N w—2—1+iw—2+1+N PRI N el T
a)ia)g NEz Wp NE9 a)y NEZ NEH ME

where M E, =% EI.GlI, is the lateral torsion buckling load for the beam

(causing bending about the z axis and cross sectional twisting). Thus, the
eigenfrequencies are defined by the two roots (in ascending order)

_ — N\ 2 — — N\ 27 = \2
w; w; o, M,
%’3=& 1+l+ 1+i _>2¢ 1+i_ 1+i _>2 T Iy e
V2 N, Ng, |y Ng, Ng, |y Wy M,

N =

2 _ 2
Y . . Dy w)z’ — wi w, M,
which, if N =0, simplifies into @3 =$ 1+E+ I-—| +|2—
o

Plots of @, and @y are shown in Figs. 3.10 and 3.11.

1 T T
p=01 /o3
0o} ' ~ ~ 1
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£ o5t : 1
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0.4 L ~ ]
03 ~ 1
0.2_ 3 i

01r g b

o
=]
4]
-
N
4]
N
N
4]
w

35

N

o)y/me

Fig. 3.10 wz/a)e in the presence of bending moment ]l7lv , B= My/MEZ ,N=0
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Fig. 3.11 603/609 in the presence of bending moment My ﬂ = MV/ME, ,N=0

It is seen that if M y / M =1, then the total torsion stiffness is zero, and thus,

there is only one solution @, =0.)

3.4 The Shallow Cable Theory

While the stiffness properties of beams or beam-columns mainly relies on cross
sectional bending and torsion ( E y-El, and GI,), a cable relies almost entirely
on its axial elastic stiffness property EA and the presence of an axial force N .
Le., it is in the following assumed that we are dealing with a cable whose bending
and torsion properties EIl y-EI, and Gl, are negligible. Thus, a cable will only
offer stiffness against displacement 7, , r, and r_, while the problem of torsion is
irrelevant.

It is taken for granted that the cable catenary (derived from the Latin word for
chain, commonly used for the geometry of an idealised cable as described above
and suspended in the gravity field) is fairly shallow, i.e. that the sag is less that
about a tenth of its suspended length, such that the theory first presented by Irvine
& Caughey [10] may be adopted. Since the theory below is primarily included as a
prelude to the theory of suspension bridges in Chapter 3.5, it is focused on the
situation that the cable supports are at identical levels, see Fig. 3.12. It is
convenient to choose coordinate axes as shown in Fig. 3.12.a.
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— > x —k

L /2 L /2

a) Suspended cable

9

b) Static equilibrium

Fig. 3.12 The shallow cable in the gravity field

The Catenary

Let us first consider the situation of a shallow cable in the gravity field (see
Fig. 3.12.a) with the aim of determining its static geometry, i.e. the cable position

Z. at an arbitrary coordinate X. It is then at rest and all forces are time invariants.
For a finite element ds at this position subject to the vertical gravity force q-ds

(see Fig. 3.12.b) the force equilibrium requirements are given by
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dH =0
_ (3.57)
dV,+q-ds=0

while moment equilibrium about its midpoint is given by

_dr. _ _d - _ _
i ; —VZ%+(H +dH ) S~ (V. +aV. )d—2"= Hdz, ~V.dx=0 (3.58)
It is seen from Eq. 3.57 that H is constant along the entire cable span, and from

Egs. 3.58 that

7 =% (3.59)
dx
Thus (Eq. 3.57)
2
. d ZZC + q . ﬁ — 0
dx dx (3.60)

defined positive downwards) and

Defining az—ﬁ/q (z, 1is here

acknowledging that ds/dx =4/1+ (dzc /dx)2 , it is seen that
” 7”2
Z=(l/a)1+z 3.61)

dz; _ oo ¥ (see Fig. 3.12.b)

Introducing z, =
dx
1 1
Jl+tan® y=— (3.62)
o cosy

dy _

” 1
= =—|t = —
“ dx( an7) cos’ydx o

from which it is obtained that

dx _ SV gy=—37 4y (3.63)
a cos'y 1—sin“y
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The integral of the left hand side of this equation is

d_rig (3.64)
a o

where C| is an unknown integration constant, while the integral of the right hand

side may be obtained by substituting 7 =siny

cosy 1
dy= dt = Arctanh (7 (3.65)
‘[l—sinzy 4 jl—Tz (7)

X
e X4 C, = Arctanh(7), and thus 7 = tanh (— + Cl) . Furthermore, since
o o

cos’ y=1-sin” y=1-7> =1-tanh* (x/ar+ C,) =1/cosh2 (x/a+Cy)
3.66
= cos y=1/cosh (x/a+C,) (3:60)

i tanh(x+ClJ
siny 7 o

cosy cosy
4 4 {Cosh(x+Clﬂ
o

then the following is obtained

’ . X
and z.=tany= = :s1nh(—+ Clj (3.67)

o

Z.= jsinh(ﬁ+ Cljdx = acosh(i+ clj +C, =ﬁcosh(_—2x+ Clj+ C, (3.68)
o o q H

Thus, since the cosh function is symmetric, then the cable geometry is given by

q H

where C; and C, are integration constant to be determined from the relevant
geometric boundary conditions. If, as we in the following shall take for granted,
the boundary conditions are defined by z, (x = O) =0 and z.(x= L) =0, then

—Ecosh(—C1 )+C, =0

q

7 (3.70)
—Ecosh(%— Clj +C, =0

q H
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H L
which is satisfied if C, =q—£ and C, =—cosh q—_j Thus, the cable
2H q 2H

geometry is given by

Z, :E cosh q—Ej—cosh(q—f—q—]: (3.71)
q 2H H 2H
Itisseenthat 2. =—sinh| & — 9L ) ginn| 4L _ 4 (3.72)
H 2H 2H H

is zero at mid span, i.e. at x = L/ 2 . The cable sag is given by

H gL
— =1L/2)="2 h| =—= |1 3.73
o=z (=12~ 2 com[ 22 )1 67

q

An approximate solution to z, can be obtained by using the series expansion

cosh(n7)=1+ 772 / 24+ 774 / 44+ where it for small arguments of 77 will suffice

to include only the two first terms. Thus

— 2 2 2
. =2 1+1(q—11j - 1+l(q—f—q—lij =£i[1—1j (3.74)
q| 2\2m 2\ H 28 2HLU L

which is the well-known parabola solution. It is worth noting that the
corresponding approximate expression to the sag is given by

e =qL(8H) (3.75)
and that
"(x=0)=¢qL/(2H
z;zq—é(l—zi) = (x=0) q/( )_ (3.76)
2 Z(x=L)=—qL/(2H)
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N(x=0)

| _S_ V,(x=0) 7 (el
’YO\I\ z(x_ ) /—l_/ YL
H(x=0) i X H(x=L)

| L
f

Fig. 3.13 Overall equilibrium

The Tensile Force

The tensile force is given by (see Eqs. 3.58 and 3.72)

H
=H l+s1nh2(q—f—q—6)=1-_1 cosh(q—f—q—EJ
H 2H H 2
rendering
N(x=0)=N(x=L)= ﬁcosh(%j
_ (3.78)
N(x=1/2)=

The Cable Length
Since sinhyp =57 +7° /314 7° 51+

‘Z(sz)z‘Z(sz)z\/{ﬁcosh(zq—li T_ﬁz =ﬁsinh(%j

~d (‘I—EJ+1(‘J_ET _qL 1+L(£j2 (3.79)
2H 3N2H 2 24\ H

- it is seen from Fig. 3.13 that
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and that overall equilibrium will require

2
_ _ 1 (gL
(x=0)+V.(x=L) Q{+24(Hj] [a-ds=q-¢  (3:30)

where ( is the length of the cable. From this it may be deduced that

2
1 (gL
(=L|1+—| =
{+24( j] (3.81)

That this is correct may be shown by integration of ds , i.e

K dz, 2 & .2 gL gx
= dSZIdX 1+ d_ ZJ‘ 1+ sinh ﬁ_ﬁ dx

0 0 X 0
I —
(3.82)
= jcosh (q—li - q—fj dx = {2 sinh (q_l; - q__XH = 2—Hsmh (—ILJ
0 2H H q 2H H)J|, ¢
2H| gL  1(qLY 1 (qLY
and thus RSl . q—_j ~L 1+—£qf (3.83)
q |2H 3\ 2H 24\ H
Since the sag ¢, = qu / ( 8H ) this may alternatively be written
2
(~L- 1+§("—0j (3.84)
3\ L

The Cable Elongation
Assuming that the cable stiffness is constant along its span, then the cable

elongation due to the gravity field is given by

M:jg.ds—j ds = _ds—THVH- e ) J1+(dz, Jdx) d
L L

(3.85)
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Substituting f = gx / H —qL / 2H then the following is obtained

—9 qL/Zﬁ —9 . qL/ZH
Ag:H_ j coshzﬂdﬂ=H—l:M+ﬁ}
gEA Y gEA 4 2 L2

HL| H L (3:50)
= —sinh(qf)+l
2EA| gL A

which may be expanded into

_ _ 3 7 2
v HLJH £+l(£j st 1+i(£ (3.87)
2EA|qL| H 3\ H EA| 12\ H '

and alternatively expressed by the cable sag (see Eq. 3.75)

— 2
ar=HL 16( e (3.88)
EA 3\L
The Differential Equations of Dynamic Equilibrium

We are now ready to establish the relevant equilibrium requirements for an
infinitesimal element ds of the shallow cable in a harmonic type of dynamic
motion, see Fig. 3.14. Basically, the problem is highly non-linear. What is shown
below is a small displacement linearized theory. It is taken for granted that the

cross section axial force comprise a time invariant part N (x) from the gravity
field plus an additional contribution N (x,t) from the cable motion itself, and

thus, the same applies to its horizontal and vertical components H and V_ (see
Fig. 3.15), i.e.

N,

tot

=N (x)+N(x,t) (3.89)

N {Hm,=ﬁ(x)+H(x,t)
(%) +V. (x1)

Ztot z

while the out of plane component Vy is only caused by the dynamic motion.
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W+dW

ds(t) r,+dr,

N+ N+d(N+N)

b) Infinitesimal elements ds

Fig. 3.14 Cable displacements and internal forces
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Thus vV, = V‘ (x,t)

Ytot

We shall assume shallowness, and for the initial cable geometry adopt the

approximate catenary curve given in Eq. 3.74 (see also Eq. 3.75), i.e.

2
LR IE XXy X 1—1j
2HLU L LU L

dx

o —_— >
x
z| m.gds

v Y\_’z+ d\_lz |-1+ drz

(H+H) +d(H+H)

(V,+V) +d(V,+V)

a) z direction motion

dx
H H + dH
< F——>» —>
X
r
Y r,+ dr,
(—‘
H+H J y
v (H+H)+d(H+H)
y .
m_vds
YV +dv,

b) y direction motion

Fig. 3.15 Element equilibrium
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In addition to shallowness we shall in the following adopt the simplification

that the cable motion in the x direction r, is negligible. This is a minor sacrifice
bearing in mind that our main application of the theory is intended for the use in
connection with suspension bridges. It has the advantageous consequence that the

equilibrium requirement in the x direction (see Fig. 3.15)

%(1—7+H)=0 (3.92)

implies that H and H (t) are independent of x. The corresponding equilibrium

requirements in y and z directions are then given by (see Fig. 3.15)

dvy,—m.i,-ds=0
_ (3.93)
d(VZ+VZ)+ng-ds—mC'r'z~ds=0

where m, is the cable mass per unit length (here assumed constant along the span

of the cable). Similarly, moment equilibrium taken about axes through the element
midpoint and parallel to the y and z directions, are given by

(H+H)-d(z.+r,)—(V.+V.)-dx=0

B (3.94)
(H+H)-dr,~V,-dx=0
from which the following is obtained
_ dr
V,=(H+H)—=>
dx (3.95)
_ _ d '
V. +V, =(H+H)E(ZC +1,)
_ dr,
4 (H+H)—=>|=mF
ds dx
and thus il _ (3.96)

Since H and H (t) are independent of x, we see that Eq. 3.96 may be
replaced by
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— dzl", dx
H+ L —m §
(3.97)
_ d? dx .
(H+H)dx2 (Zc+rz)£+mcg:mcrz

from which it is seen that the static case (H , r, , r, are all zero) is defined by

C c

Hz+m,g=0 = Hzl=-m.g and Hz = —%H (3.98)
Taking it for granted that dynamic displacements are small, i.e. that
Hr]<<Hr] and Hr/<<Hr/ (3.99)
and that shallowness justifies ds = dx, then Eq. 3.97 becomes
r—(m,/H)-¥,=0
rz"—(mC/H)-i"Z =(mcg/H)-(H/H)

This is the differential equation for unloaded and undamped motion of a shallow

(3.100)

cable. What remains is to find an expression for H (t) , 1.e. to find the increase of

cable tension during a small dynamic vertical motion 7, (x,t) las r, (x,t) will
not involve any cable stretching, only a sideway skipping rope displacement]. The

cable elongation As (t) may be found by combining ds® = dx* + dzf and

(ds+Ads)’ = dx* + (dz, +dr, )’ (3.101)

from which the following is obtained:

2
s e el (47 ]

ds ds ds ds ds

P 2
_ 1+2dzc,@+(&j o)L zﬁﬂ{&) 1oy
ds ds \ ds 2| ds ds \ds '

dz, dr, 1 (drz 2 dz, dr,
=——C .z 4|2 ~_C . 2
ds ds 2\ ds ds ds
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. H dx Ads _0 _ N Ads H ds
Since —=— and E= then ——=——— and thus
ds ds E EA ds EA dx
H ds_dz dr, (3.103)
EA dx ds ds
which may also be written
3
H dz. d ,
Hpdsy _deedr._ . (3.104)
EA\ dx dx dx

Recalling that 7, (x=0)=r, (x=L) =0, and that (see Egs. 3.74 and 3.75)

z zq—E(l—zﬁj :46—0(1— 21j _8e
2H L L L) 1> (3.105)

Z;'Z—SeC/L2

where e, =m, gL2 / (SEV ) and X =L/2—x, then spanwise integration of the
right hand side of Eq. 3.104 renders

8e, t
L2 jr dx  (3.106)

z
o

L L

L m,
jz;rz'dx: [z0r.], —jzfrzdx: 8 jrzdx:
L 0 H 0

while corresponding integration of the left hand side renders

[ aem () e (5] P
a1

[

L L/2 2]
A {1+ i {HE(&;XJ X o
EA L/2 2\ L | (3.107)
2 Lj2 27T
_H I ximf e x| =g ag[
EA I’ » EA L

L 14

L € L

2
H X 8e. EA S
—-L{1+8(6—‘j ]; Lez‘J'erx = H(t)=— Lezc r,(x,t)dx  (3.108)

where /, =L[1+8(ec/L)2]
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2
Defining A= [8? J %KL (3.109)

e

and recalling that e, = m, ng / (8[-_1 ) then Eq. 3.100 may be replaced by

r_ ﬁ F =0
y” (me/H)-1, (3.110)

r —(mc/ﬁ)'i"z =A% (l/L3)Ierdx

These are the differential equations for unloaded and undamped dynamic motion
in y and z directions of the shallow cable (as presented by Irvine & Caughey

[10]). As can be seen, there is no coupling between ry and 7, motion, and

therefore, they may conveniently be handled separately. In general, the solutions
to such second order differential equations are given by

ry (x,t) = Re[¢y (x) . e’m}
r. (x,1) zRe[gbZ (x)-ei“”]

where ¢y and ¢@_ represent the mode shapes of the motion. The solutions are dealt

(3.111)

with below.

Horizontal Motion
Let us first consider the case of out of plane horizontal motion, i.e. the situation
that r, (x,£)#0 and r,(x,r)=0. Introducing r (x,1)= Re[¢y (x)eiw’} into

the differential equation r; - (mC / H ) #, =0, then
¢y + @’ (m,[H)p, =0 (3.112)

which can only be satisfied for all values of x if the second derivative of ¢y is

congruent to ¢y itself, and simultaneously satisfy the boundary conditions

¢y(x=0)=¢y(x=L)=O, rendering ¢yn =a, sin(nf[x/L), n=1273,....

Thus, the following is obtained:
~(nz/L)’ +@*m [H =0 (3.113)

from which the eigenfrequencies
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o, =nr, /I-_I/(mcﬁ) (3.114)

are obtained. The corresponding two first eigenmodes are shown in Fig. 3.16.

dy. 0,
™~ ~

1

L/4 L/4 L/4 L/4

Fig. 3.16 Mode shapes ¢yn associated with out of plane horizontal motion

Vertical Anti-symmetric Motion

Let us then consider the case of purely vertical motion, i.e. the situation that
ry (x,t) =0 and r, (x,t) #0, and let us also assume that the motion is anti-
symmetric with respect to the midpoint of the span, e.g. as indicated in Fig. 3.17.

Then the integral Irz dx is equal to zero (i.e. no cable stretching), and thus
L

r/—(m./H)-¥. =0 (3.115)

L/2 L/2

f T

Fig. 3.17 Vertical in plane anti-symmetric motion
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Introducing r, (x,) =Re[¢)Z (x)~em] then ¢ + e n;j‘ $.=0 (3.116)
whose anti-symmetric solution is ¢Zn =a, Sin(Znﬂx/L), n=1,2,3,..., and
thus

~(2nz/L) + @*m JH =0 (3.117)

from which the eigenfrequencies

®, :2nﬂ"/1-_1/(mcL2) (3.118)

are obtained. The corresponding two first eigenmodes are shown in Fig. 3.18.

o, 0,
-

L/4 L/4 L/4 L/4

Fig. 3.18 Mode shapes ¢Zn assoc. with vertical anti-sym. in plane motion

Vertical Symmetric Motion

L/2 ‘ L/2

Fig. 3.19 Vertical symmetric motion
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Finally, let us consider the case of purely vertical motion, i.e. the situation that
ry (x,t) =0 and r, (x,t) # 0, and also assume that the motion is symmetric with
respect to the midpoint of the span, e.g. as indicated in Fig. 3.19 above. Then the

integral jrz dx is not zero (i.e. cable stretching will occur), and thus
L

v/ ~(m./H)F. =/12(1/L3)erdx (3.119)
Introducing 7, (x,t) = Re[@ (x) . emJ then

¢!+ 59, :/12(1/L3)L¢>de (3.120)

where ﬂz =’ m, / H . The solution satisfying the boundary conditions as well
as Eq. 3.120 for all values of x is given by

¢Z=aZ{l—cos[ﬂ(x—L/2)]/cos(ﬂL/2)} (3.121)
L —-L/2
Thus J¢de=azj 1—Cos[ﬂ(x 2)] dx (3.122)
. 0 cos(fL/2)
which may more easily be solved by substituting X = x — L/ 2, rendering

M cos[pX]
yzdx:az_Lj/z{l— cos(ﬂL/2)}dX

[ smlpd 17 _a{ _zan@}
) Z[X ﬂ~c<>s(ﬂL/2>L/2_ I (2)

Introducing Eqs. 3.121 and 3.123 into Eq. 3.120
2
cos| f(x—L/2 cos| B(x—1L/2 2
preos Blx-1f )]+,6'2 1——[ﬂ( 2)] =/q‘—3 L—ztan[ﬁj (3.124)
cos(BL/2) cos(BL/2) L B 2
will then render the following transcendental equation

2 3
tan(%) :%—(%j (%j (3.125)

(3.123)

Since ﬂz =0’ m, / H , then any solution = f3, to this equation represents an

eigenfrequency
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w, = fB,\JH/m, (3.126)

and a corresponding eigenmode

. cos[ﬂn (x—L/2):|
cos(f3, L/2)

9., =a,, (3.127)

where a, is arbitrary and may conveniently be set at unity. The solution heavily
n

depends on the stiffness parameter A (defined in Eq. 3.109) as shown in
Fig. 3.20, where either side of Eq. 3.125 have been plotted for various values of
A . The solution, i.e. B,L versus A/7 , is plotted in Fig. 3.21, covering the three
first eigenmodes of the system. The effect of the stiffness parameter to the
modeshapes is illustrated in Fig. 3.22, where the first eigenmode is shown for
various values of the stiffness parameter. As can be seen, increasing the stiffness
parameter will significantly change the shape of the eigenmode. Finally, the three
lowest eigenmodes at /1/ 7 =5 are shown in Fig. 3.23. They are all symmetric
with respect to the mid span.

‘ —‘tlan([}LIZ) | ‘
----- BLI2-(210)*(BLI2)° |

'\\

15 2 25
BLI(2n)

Fig. 3.20 Plots of either side of transcendental Eq. 3.125
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20 . . . :

16H —— 3™ sym. mode shape

—— 15! sym. mode shape
181 5 pn sym. mode shape /_

14r -
121 .
-
== 101 .
8 .
6 .
4 4
2 - -
0 { | | |
1 2 3 4 5 6
Elastic stiffness parameter, i/x
Fig. 3.21 Reduced eigenfrequency ,BnL vs. stiffness parameter /1/ T
1 T T
i,
= 0.5r .
= B, L/(2x)=0.6706
0 | 1 1 1
0 0.2 0.4 0.6 0.8 1

B, -L(2m)=1.27

_1 ! I
0 02 04 06 08 1
1 T T T T

79

L

2 0

= B1~L/(2n)=1 .398
_1 { | 1 1
0 0.2 0.4 0.6 0.8 1

x/L
Fig. 3.22 The first symmetric modeshape at increasing stiffness parameters

A/mr=1,3and5
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o
£ 0
<
= B,-L/(2r)=1.398
_1 L 1 1 1
0 0.2 0.4 0.6 0.8 1
1 T T T T
- \/
£ 0
<
= B,-L/(2n)=2.28
_1 L 1 1 1
0 0.2 0.4 0.6 0.8 1
1 T T T T
o
£ 0
~
P B, L/(2n)=2.698
_1 L 1 1 1
0 0.2 0.4 0.6 0.8 1
/L

Fig. 3.23 The three lowest symmetric modeshapes at ﬂ,/ T=5

If 2%00, which, in the limit, is identical to the case that the cable is

inextensible, then the transcendental expression in Eq. 3.125 becomes

tan(SL/2)=BL/2

rendering the following approximate solution

1 mode % ~143-7
2" mode ﬂT ~246-7
Higher,n>3:

H
= = 8.98
“ m.L2
H
= =15.45
@ m, 1

’BL (+1]ﬂ' = o, 2n+17:
2 2 mL2

(3.128)

(3.129)

If e, / L — 0, which, in the limit, is identical to the case that the cable becomes

what in structural mechanics is called a taut string, then A — 0 and the
transcendental expression in Eq. 3.125 will require that
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tan (SL/2) — —eo (3.130)

rendering the solution that

B.L/2=(n-12)x = o, =12n-1)7x (3.131)

3.5 The Single Span Suspension Bridge

Having battled through the shallow cable theory it is only a short step to include
the problem of eigenvalue calculations for a single span suspension bridge, as, if
its cable planes are identical and vertical, it will simply behave as a combination
of two cables and a beam. The overall geometry of such a bridge is illustrated in
Fig. 3.24. For the sake of simplicity, symmetry is taken for granted and the shear
centre of the main beam is assumed to coincide with its centroid.

Fig. 3.24 The single span suspension bridge



3.5 The Single Span Suspension Bridge 133

The flexibility of hangers as well as backstays and towers are for simplicity
ignored, usually considered minor discrepancies in the calculation of the
eigenvalues of the system. Under these circumstances the main girder and the two
cable planes move in perfect harmony, and consequently, the motion may be split
into three independent components, one out of plane horizontal, one in plane
vertical and one in pure main girder torsion. Below, it has been distinguished
between distributed girder mass m, in motion in the y direction and its
distributed mass m . in motion in the z direction, as it has been taken for granted
that the latter contains half the self-weight of the suspension hangers (while the
other half has been included in the self-weight of the two cables). The relevant
system properties have been defined in Fig. 3.25. The solution strategy is based on
Galerkin’s method (see Chapter 1.7) and the assumption that the displacement
components may be approximately represented by a harmonic series expansion, as
first applied by Sigbjgrnsson & Hjorth-Hansen [11].

VCT Tvc

-« ;l m,, (EA), —>

AR RNy
m,,m,,my,E G,I1,1,I,I, X

|

Lo S A
o]

L Yy Y |

1 1 1

Fig. 3.25 Idealised system properties

Since the stiffness properties of the system heavily depend on the axial force in
the cables, it is necessary to start with considering the static (time invariant or
mean) situation. As shown in Fig. 3.26, it is assumed that the construction
procedure is such that all the weight of the main beam is transferred via the
hangers directly into the two cables, and to earth via the backstays and the towers.
This is the most usual way of suspension bridge construction, and it has the
consequence that the main girder shear forces at its connection to the two towers

are negligible, ie. that V,(x=0)=V,(x=L)=0. (Even at a different

construction procedure this is a reasonable approximation, at least for long span
suspension bridges.)
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~ & &

Fig. 3.26 The construction procedure

¢ m.g ¢ m.g
! !

qs 9qs

! !
< l P

m.g

Fig. 3.27 The hanger force distributed per unit length g, =m_g / 2

Two aspects regarding the time invariant equilibrium condition are worth
noting before we proceed with the problem of dynamics. First, as illustrated in
Fig. 3.27, the distributed hanger force (per unit length) is g, =m_g / 2. Secondly,

as shown in Fig. 3.28, the time invariant vertical cable equilibrium will require

dV:(mcds +%mzdxjg (3.132)
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Thus, the time invariant horizontal cable force component H may be obtained
from the moment equilibrium requirement of half the cable span with respect to its
top point (see Fig. 3.29)

V+dV

Té:www

<I

_Fi

Il

. H
—>—_

v v ¢¢¢\q=mg/2

L/2

Fig. 3.29 The time invariant horizontal cable force component, H
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_ L2 L2e ds
H-e = I( 8 j = J.(—Z+mc—)xdx
0 o\ 2 dx

1
L2 275 L2
dz, L,
gj L { (dz;j } xdx = g J{ +m (1+Ezczﬂxdx

(3.133)

. X X
Introducing (see Egs. 3.74 and 3.75) z,. = 4e, Z(l - zj then

ﬁe L/2 L2 0\ AV
—:— j xdx+m, j 1+8( Cj [1—2—) xdx
g L L
5 (3.134)
_mZL2+mCL2 1+i(e_cj
16 8 3\ L
rendering
_ m_gl? 2m 4(e Y
g=la8 e 2 S (3.135)
16e, m, 3\L

Dynamic Motion in the Horizontal y Direction

Let us first consider the case of dynamic motion in the out of plane horizontal
direction, as illustrated in Fig. 3.30. Then the equilibrium requirement for an
infinitesimal element dx of the main girder is given by (see Fig. 3.30.a and b and
Eqgs. 1.23 -1.29)

. . d4l’y ry _rcy
myr, +c,r, +EI, ; +2q; =q, (3.136)
dx h

c

while the corresponding equilibrium requirement for each of the cables is given by
(see Fig. 3.29.a and c)

mi. +c. F, —H—>—q ~—= =q,y (3.137)
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137

—_—— e e — — ——

a) Cross section wiew

E />MZ+dMZ

Vy + dvy

_____ ™ ry+dry

¢) The cables

Fig. 3.30 Dynamic motion in horizontal direction
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where g, and ¢, are the dynamic loads per unit length on the girder and on each
of the cables, r, and I, are the displacements, cy and c,, are the damping
coefficients, g, =m,g / 2 is the hanger force (per unit length) and A, is the
hanger length. Since we adopt Eq. 3.91, i.e. that z, = 4e, (x/L)(l - x/L) , then

h,=h, +e,—z,=h, +e (1-2x/L) (3.138)

where h,, is defined in Fig. 3.24. Let us consider the unloaded and undamped
case (ie. that ¢, and ¢, as well as g, and g, are all zero), and assume the

following harmonic sinus Fourier series solution (taking it for granted that the
main girder is simply supported at the towers)

N
r,(x.1)=¢ (X)'e’w’ Py (*) :Zay" sin(nrx/L)
Y Y ¢ where ”jvl (3.139)
oy (1) =8,y (x) - By (%) =24y, sin(n7x/L)
n=1
Introducing this into Eq. 3.136
m, (i©)’ ¢, +ELG"+m. g qj’;;')’ =
3.140
ul nr ! ng(ay —dgy ) 2 nrw ( :
Z El, (Tj a, + s =@ a, sin(Tj =0
= h, +ec(1—2x)
L

we adopt a Galerkin approach by consecutive pre-multiplication of Eq. 3.140 with
(2/L)sin(prx/L), p=1,2,3,..., and integrating over the span renders

i[(%n + Y om )ayn — Vpnley, — a)zrhynayn J =0 p=123,..,.N (3.14])

n=1
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4
L nr _

.- (_j 2 Ism( j | (m) o EIZ(TJ forp=n
L L

0 forp#n

if p eve
e

& n odd
_mg E-L[ sin( pzx/L)-sin (nzx/L) i if p odd L, g (3142)
"M e. Lyl+h,/e.—4(x/L)(1-x/L) & n even b
else =7m#0

2% m, forp=n
m, =m, =m,—|sin(pzx/L)-sin(nzx/L)dx=1{ °
Yn Yp ,‘Lzl; (p / ) ( / ) {O forp;tn

Similarly for the cable equation, i.e. introducing Eq. 3.139 into Eq. 3.137

o, (i)' 6, ~26l, ~m g O =

c

N 2 m.gla, —a. 3.143
Z ZH(EJ ey — : ( n V”) —2ma)a sin(%} =0 ( )

i Iy +ec(1—2x
L

and then we consecutively pre-multiply Eq. 3.143 with (2/ L) Sin(pﬂ'x/ L),
p=123,..,N, [ie. first pre-multiplying by (2/L)sin(lzx/L), then by

(2/ L) sin (27zx/ L) , and so on] and integrate over the entire span, then

2~
—wmcnaq,,}o p=123..,N G4

s

M=

[_7pna>’n + ('Bpn 7 pn )acyn

S
1l
JUR



2
2 AL —( nw
pesh () ({2 [ e
0

0 for p#n

L
2m, forp=n
cg_[Sin PEX ) inl TPX ) gy = 1M TOTP
L L L 0 for p#£n
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(3.145)

The sequence index p=1,2,3,...,N and the series summations in Eqgs. 3.141

and 3.144 may conveniently be replaced by

[eq, + 7 N1 Yip ~Np v
i Bitn ~Np Np NN
1 V1 Cpp TV pp ~Vpp Von
_ypl ypl _ypp ﬂpp + ypp _ypN
VNt —Vni Vnp —Vnp Ony + 7NN
| Twm Vn1 —Vnp Vnp —VnN
Ty Gy,
ey ey
0 :
m, a
—&? . 720
., Ay,
0 :
My Ayy
L ey 1) Y |
Thus, defining the displacement amplitude vector
T
a, =[ay1 Ay, ayN}

T
where @, =|a a , and where the stiffness matrix
y Yp Yp

B + 7w |

—NN
NN

- 7pN

ypN

—VnN

(3.146)

(3.147)
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Q, - Yi,, o Y
o _
K, = Y Q, Y (3.148)
oy, :
_VNI YNp QNN_

o, t7, _7/pp 1 -1
where Q = w w and = , and
” { Vo 'BPP Vo Yon =T -1

the mass matrix

My:aliag[myl myp myN} (3.149)
~ ﬁ1yp 0
where m, = . , then Eq. 3.146 may be written
P 0 m,
P
2 —
(K, -o’M,)a, =0 (3.150)

which is a classical eigenvalue problem similar to those encountered before.

Elaboration 3.1

An approximate solution may be obtained for the first two eigenfrequencies by
setting N =2. Then

4
V4
e o =El | —
o :EIZ(TJ 2jsin(p7r;%)-sin(nﬂ2)dy%:> A
’ 0’22:E1z(27”j
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142
1 . A\ - A

", = me sm}Eﬂx)sm(ﬂ'x) 5

€ 01+ —45(1-%)

eC

1 . AN . ~ 1. %) sin (275
7pn=ng2 sm(}[lﬂrx)sm(nﬂ')c)d)%:> 7’22=ng2 sm(hiz'x)sm( ﬂ-x)dfc

€0 1+ —43(1-%) 01+ —45(1-%)

c c

Y2=7,1=0

1 7] =
{myl m,

p=2H (”/L)z

2 1
B, =2H (ﬂj 2[sin(prs)-sin (nzd)di = B i
0  =2H (27/L)

L
1 m,, =2m,
i, =2m, -2[sin( prt)-sin(nzt)ds =
p m., =2m
0 ) c
dy
. . L A 0 | ey
Thus, the eigenvalue problem in Eq. 3.150 is given by =0
0 Ayjay,
[ %er2 |
3 “11+711“02"~1y1 —Ti
1n= -
where ~u B+ hi— @iy,
|Gt T2 (‘)2’7’y2 e
2= -
ey By + 72— wzmcz

Its solution is

vl
2m, 4m,

2m, 4m, 2mym,

2
0511+7/11+ﬁ11+711_ [“11‘*‘711_:311‘*‘711] + %

2 2m dm

y . 2m 4m, 2m,m,

y y

2
“22+722+ﬁ22+722_ £“22+722_ﬁ22+722] + 7222
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Table 3.1 Numeric example

L EI H m,=m,

Z

(m) (Nmz) (N) (m/s ) (kg/m)

m

143

e h

c c m

(kg/m) | (m) | (m)

1250’ 3.5.1012 ‘ 1_12.108‘ 9.81 ’ 9000 ’ 1900 ‘ 120 ’ 2.75‘

Using the values given in Table 3.1 above, renders @,; =0.34 and

@,, =0.68 rad/s..

Example 3.3

By increasing the number of Fourier components to N =4 a more comprehensive

solution may be obtained. Again, adopting the numerical values given in Table 3.1
above, then the solution to the eigenvalue problem in Eq. 3.150 renders the four
first eigenmodes and corresponding eigenfrequencies associated with suspension
bridge horizontal motion as shown in Fig. 3.31 below.

0 0.2 0.4 0.6

®. =1585 rad/s
y4

-

Fig. 3.31 Lowest four eigenvalue solutions for suspension bridge in horizontal motion,
N =4 fully drawn lines: main girder, broken lines: the cables
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Dynamic in Plane Motion in the Vertical 7 Direction

b) Hangers and main girder displacements

2(V+dV)

tot

qztotT T ii&/—/w + d\l!

2(H+dH)

tot

¢) Infinitesimal bridge element dx

Fig. 3.32 Dynamic in plane motion in vertical direction
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Let us then consider the case of dynamic motion in the vertical direction, as
illustrated in Fig. 3.32. Since we neglect the flexibility of the hangers, then the two
cables will act in perfect harmony (as if they are one) and in harmony with the

main girder as illustrated in Fig. 3.32.b, i.e. Te, =1, Therefore, it is not necessary
to distinguish between the motion of the girder and the motion of the cables, as

they are identical. Thus, defining H =H+H (t) then the equilibrium

tot
requirement for an infinitesimal bridge element dx with respect to forces in the x
direction is given by (see Fig. 3.32.c)

-2H,,+2(H,, +dH,,)=0 = dH

fot tot

o =0 (3.151)

Since we know from before that dH =0, then also dH (t)=0. The

corresponding equilibrium requirement with respect to forces in the z direction is
given by (see Fig. 3.32c)

(2m.ds +m_dx)F, +(2m.ds +m_dx) g + c.dxr, —=2dV,, —dV, = g, dx (3.152)

where 9z =4 T chz is the dynamic loads per unit length on the girder and on

the two cables, r, is the vertical displacement, c¢_ is the damping coefficient, and

Vv,

ot = V+V (t) is the total vertical force component in each of the cables and V,

is the vertical shear force in the girder. Thus, the differential equation associated
with vertical motion is given by

(2m6%+mzjfz +c, 5, =2 o _VZ'+(2mC%+mzjg =4, (3.153)

As can be seen from Fig. 3.32.c

:tanl//:i(z+rz):z'+rz'

H+H dx (3.154)
= ‘7+V=I§z'+Hz’+([-_I+H)rZ'

from which it is seen that

’

T

V=
(3.155)
Vv

(t)=Hz'+(I-_I+H)rZ'
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Let us introduce that (see Eqgs. 1.23 and 1.27)

, d 2
V,=M= dx( —El 1!} =~EIr! (3.156)

and the time invariant equilibrium requirement 2dV =2m,_gds + m,gdx (see

Eq. 3.132), and only consider the unloaded and undamped case, then Eq. 3.153
becomes

d 77
(chd—i+mzj —2[H+(H+H)l |+ ELi{” =0 (3.157)

Within the shallow cable theory it is a usual approximation that H (t) <<H ,and

12
that ds/dx = [1 + (dz/dx)q = 1. Furthermore, since (see Eq. 3.91)

X X » 8e,
z:ec+hm—zczec+hm—4ecz(l—zJ = = LZL (3.158)
and (see Eq. 3.108, noting that in Chapter 3.4 we focused on cable vibrations
alone, and then z. and correspondingly also r, was defined positive downwards,
while we here focus on the entire bridge and therefore more conveniently, we
define z and r, positive upwards)

(EA), 8¢, * e\’
H(t):TF'([(_rZ)dx where /,=L 1+8(Ij (3.159)

and where (EA)C is the product of elastic modulus and cross sectional area

assumed identical for each of the cables, then Eq. 3.157 is reduced into

128¢> (EA

(2m, +m, )P, + Iz 3

j dx—2Hr+ EL,i” =0 (3.160)

Again, taking it for granted that the main girder is simply supported at the towers,
and adopting a harmonic Fourier series solution

r.(xt)=¢_(x) where 9. (x):iazn sin(nzx/L)  (3.161)

n=1
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then Eq. 3.160 becomes
128¢ & e A
z s —a, I sm( j +2H (EJ a, sin (_nﬂxj
n=1 L e 0 L L
4
+EI, (%) a, sin En—zx) -’ (2m, +m,)a, sin ( nzxj}e"“” =0

A Galerkin type of approach by consecutive pre-multiplication of Eq. 3.162 with
(2/L)sin(prx/L), p=1,2,3,..., and integrating over the entire span renders

(3.162)

N
2. —
Z[(K'pn +/1pn)azn +Mp,a, —@ mznazn]:O, p=L23,...N (3.163)
n=l
where
4 5L 4 _
KI’n = Ely (Ej 2J.Sil'l (—pﬂ-ijin (@j dx = {EI}V (i’lﬂ'/L) for p=n
LJ Ly L L 0 forp#n (3.164)
2 AL — 2 _
ﬂpn=2ﬁ(ﬂj = sin(l’_’”jsin(”_“jdx: 2H (nz/L)" forp=n
L) Ly L L 0 forp#n
i 2L/ jxr for j=1,3,5,...
while, recalling that J-sm IEXN g = /] J
L 0 forj=2,4,6,...
oL L
128
on = e j ( dejsin(@}lx
L
e 0 0
EA
(%J (BA). 1, P } 1.3.5.. (3.165)
L Lt, pn &n
0 } 2,4,6,.
orn
and where
0, =(2m, + )Z‘L.‘ (pﬂ'xj . (nﬂ'xjd (2m.+m,) forp=n
m, =(2m,.+m, )—|sin| — [sin| — |dx=
2p eI i3 3 0 forp£n (3.166)
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The p=1,2,3,...,N sequence and series summations in Eq. 3.162 may

conveniently be written in the form of a classical eigenvalue problem:

BT
0
Kpp T ’11717 +
0
: K+ A | (3.167)
TR PR /v e ay
S K : . 0 :
/upl lupn lupN _wz ’/th azp =0
. . 0 . :
LANT 0 Hne 0 Han | ’th_ | %2y |
Thus, defining the displacement amplitude vector
T
z :[aq azp azzv} (3.168)
the stiffness matrix
Ky + Ay My o My My
K.= Kpp T ﬁpp | 4p1 Hpn Hpn -
0 . X .
Ky + Ay Hyr o My o Haw
and the mass matrix M. = (2mc +m, )I (3.170)
where | is the identity matrix, then Eq. 3.167 is given by
2
(K, -@’M, )a, =0 (3.171)

As shown in Fig. 3.33 below, the solution for the first four eigenvalues converges
at N=4.
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6 T T T T T T T
mZ
4
51 _e_mzs_
w _e_wz
S 2
g 4t —a— 0,
NQ_ 1
2
o
2
5 3 .
©°
w
[}]
=
g 2 i
c
]
=] EI\ e sz ¥
L
1_ \ o 4
0 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8

Number of Fourier coefficients, p

Fig. 3.33 Convergence of eigenvalue solution

Example 3.4

An approximate solution for the first four eigenfrequencies may be obtained by
setting N =4 . Then Eq. 3.170 becomes

1* 1?
4 4 2 2
2* 0 | 22 0
(f) El +2(£) +
L) o 3 L 0 3
4* 42
_ o
1o -0 . a,
2
EA) |0 0 0 0 0 a
(3266) Q — @ (2m, +m) 21=0
L L, l 0 l 0 01 a,
3 9 1|4
00 0 0] Z“

Defining
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— 5 2 2 EA) 2
cziHL , d:(EJ [e_cj A% and @)= @
n* El, ‘,

3

P El, (z/L)* JEL, [(2m, +m)
then
l+c+d—d* 0 d/3 0 a,
0 16+4c— @ 0 0 % | o
d/3 0 81+9c+d/9—a&* 0 a,
0 0 0 256 +16c—&* || 4z,

and thus, the solution to the eigenvalue problem is defined by the zero crossings of
the polynomial

(16+4c—@2)(256+16c—é)2){(Hcﬂl—@2)(81+9C+i_@2j_(iﬂ:0
9 3

It has four real roots, whose indices are referred to below in ascending order. The
first, which is associated with an anti-symmetric mode shape, is defined by

16+4c-0*=0 = @O =2W4+c = o

4;:2151y +2HI?
=27, | —————
(2m, +m)L

The third, also associated with an anti-symmetric mode shape, is defined by

167°El, +2HL
(2m, +m) r

256+16C—é)2=0 = 0A)3=4~/16+C = a)zg:47[\/

The second and the fourth, both associated with symmetric mode shapes, are
defined by the roots of

2
(1+c+d—é)2)(81+9c+%—(?) j—(gj =0

2 2 2

7El, 5d [ 4dj (dj

rendering =7 |—2 | 41+5c+—7F,[| 40+dc—— | +| =
e (2mc+m)L4 9 \/ 9 3
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Example 3.4

Setting the number of Fourier components at N =12 a sufficiently accurate
solution may be obtained. Adopting the numerical values given in Table 3.2
below, then the solution to the eigenvalue problem in Eq. 3.171 renders the four
first eigenmodes and corresponding eigenfrequencies associated with suspension
bridge vertical motion as shown in Fig. 3.34 below.

Table 3.2 Numeric example

L EI H m m e A E

y b4 c c c c

() 1 () | )| k] Gkspm) | () | (o) | (/)

1250 ’ 0.2-10"2 ’ 1_12.108’ 9000 ‘ 1900 ’ 120 ’ 0.22 ‘ 0_2.1()12‘

1 T T T
/ o, =0.672 rad/s
- 1
= 0 /
-1 I I I

0 0.2 0.4 06 0.8 1
o =0.946 rad/s

-e-N“‘ 0/_\
-1 1 L 1 1
0 0.2 . .
1 T
GN” 0\
1 2 L
0 02
1 T
20
1 I
0 0.2

Fig. 3.34 Lowest four eigenvalue solutions for suspension bridge in vertical motion,

N=12

Dynamic Motion in Pure Torsion

Finally, we shall consider the case of dynamic motion in pure torsion. Since we
assume that the dynamic stretching of hangers is insignificant, then the cables will

act in perfect harmony as illustrated in Fig. 3.35.a, i.e. ., = t1yb. /2, where b,

is the distance between cables. A sideway view is illustrated in Fig. 3.35.b.
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b,
b Tdvtot(rz =rg3)
dvtot(rz = -r(-)T‘) T z

a) Cross sectional view

b<
. (rg + drg) 5

/
y Yy +dy

/ Y/ >

/// / T (H+dH),,,

(V+dV),,,

//
$ Htot

‘—_J__—/ mt
v

vtot

re M, +dM,
< <— —_— > —>
M, r ») >3 >3 >3 r, + dr X
x! "6 ? [} 6
9
dx
1 1
b) Sideways view

Fig. 3.35 Dynamic motion in torsion

As before, H

acting on the main girder in x and z directions

=H+H(t),V,

ot =\7+V(t) , and, as there are no forces

fot

dH, =0 = dH=0 & dH=0 (3.172)

tot
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When the system is at rest then (recalling that the hanger force per unit length
g, =m.g/2)
m,g ds m_g

+m g—=
2 Lgdx 2

AV —qdx—m.gds=0 = V'= +m,g (3.173)

Furthermore, recalling from Eqs. 3.155 that V =Hz'+(l-7 +H )rz' and from
L

Eq.3.159 that H (1) =[(EA), /¢, ](8e./I*)[(~r,)dx, itis seen from Fig. 3.35
0

that the cable at y =—b, /2 is stretched a vertical displacement r, =—(b,/2)r,,

in which case (assuming H (t) << H )

V(y=—%C,tj:Hz'+P_IrZ'=|H|z'—ﬁ%Cré (3.174)
L

where  [H|=[((EA),)/(Lt,)|(8e./L)(B./2)[rpdx.  Similarly,  at
0

y=+b,/2 the cable is relaxed a vertical displacement r, =+(bc / Z)re, in

which case (still assuming H (t) < H )

b ’ i ’ _b ’
V(y:+?c,tszz + Hr, :—|H Z +H?Crg (3.175)

Torsion moment equilibrium for the main girder about its shear centre is

fulfilled by
2
j ds |iy

b b bc bc
o) (o -

where m, is the mass moment of inertia for the main girder, c, is its cross

qodx +dM , — codxiy — {mgdx +2m, (

N |

(3.176)

sectional damping coefficient (if such an effect is necessary to include) and £, is
the vertical distance from the shear centre to the point of suspender attachment
(see Fig. 3.35.a). Thus, assuming ds/ dx =1, then the differential equation for

motion in pure torsion becomes
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2
bV [ b) b b,
{ma +2m, (—LJ }9 +Colp {sz (y =?J_‘/t01 (y = _7ﬂ?

(3.177)

where

Thus

. . ” rr b ” ’
Mg, Ty + Coig +|H b,z —H (2m +m_)ghry =M =gy  (3178)

L
where g, =my+m, b [2 and [H|=[ (EA)_/(Lt,)](8e./L)(b./2) | radlx.

0
Introducing 2" =8¢, /I? and (see Bq. 1.42) M/ =GIr] —EI 1" . then the

following is obtained:

2 L 2
EA _
My, Ty +cColy +32 ecbe ( )C jrgdx—H—bC Iy
“ Loty 2 (3.179)

+(2mc +m, ) gh.ry —Gl,ry +EI ry= q,

In the following we shall only consider the unloaded and undamped situation, i.e.
that g, and ¢, are zero. Again, taking it for granted that the main girder has a

fork type of simple support at the towers, and adopting a harmonic Fourier series
solution

ro(x,1)=@p(x) €  where ¢9(x):§:a9nsin(nﬂx/L) (3.180)

n=l1

then Eq. 3.179 becomes
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N EA L 7712 2
z -’ myg s1n(nﬂxj 32(8 b J( )C Jsin(n—m]dx+ Hb: [Ej sin[n—mj
=i L r) ot L 2 \L L) (3.181)

2
+(2m, +m.) gh, sm(’m j GI, +( EJ El, (ﬂj sin(@j ag 6 =0
L L L L n

A Galerkin type of approach by consecutive pre-multiplication of Eq. 3.181 with
(2/L)sin(prx/L), p=1,2,3,..., and integrating over the entire span renders

N
Z[(QW * Opn +Vpn)a‘9n * Xpn4e, _wzﬁ’@ozn o J =0, p=L2 N GI8)

n=l

where

Q, = [GI, +(nz/L) Ezw](m/Lf [sin( prrx/L)-sin (nx/ L) dx

2
L

(3.183)
J

(n7/L)}| GI, +(nx/L)’ L, | forp=n

0 forp#n

2 2
— 9 2 L _bc nmw _
3, = Hsc (%) %Isin(%mjsin(%}lx= H?( L j forp=n (3.184)
0

0 forp#n

¢ 2 h forp=
Vpn=(2mc+mz)gh,zjsin[p—mjsin[m)dx= (2m, +m. ) gh, forp=n (3.185)
Ly L L 0 forp#n
~ 2% mgy forp=n
tig,, =m,, - [sin(pax/L)-sin(nmx/L)dx=1 (3.186)
P Ly 0 forp#n

while, recalling that J.sm
0

]71'x d 2L/j7l' for j=1,3,5,...
X =
L 0 forj=2,4,6,...
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2 L L
e.b. (EA)C 2¢. ( prmx . [ nrx
an=32( 2 j J L_([sm( 7 ]dx~j51n(Tjdx

e 0
(3.187)
2
EA
16ecbc Qi for p =1,3,5,...
B L Lt, pn &n
0 for ” }=2,4,6,..-
orn

The p=1,2,3,...,N sequence and series summations in Eq. 3.182 may

conveniently be replaced by

Q +d;+v

0
QPP+19PP+VPP +
0
Qun + S +Van (3.188)

e N
Xn o Xin X Gron a;
. . . . . 0 .
Zpl an ZpN —0)2 r;l'gtotp azp =0
. . . 0
ANt Ann T ANN I ﬁl,gth_ | A2y |

Thus, defining the torsion amplitude vector

T
ag :|:agl e aap ce aaN:| (3189)
the mass matrix

Me = mgl()tl (3.190)

where my,_ =my+m.b’ / 2 and | is the identity matrix, the stiffness matrix
tot
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Q)+, +v,
0
Ko = QI’P + zjlmv TVop
0
L Qpyy + 0y +Vay |
u o Xy o XN
+ Zpl pr ZpN

Ant o Anp A |

then Eq. 3.188 is given by (Kg - a)zMg)ag =0

157

(3.191)

(3.192)

which, again is a classical eigenvalue problem similar to those encountered before.
The convergence for the first four eigenvalue solutions will occur already at

N>4.

Elaboration 3.3

An approximate solution for the first four eigenfrequencies may be obtained by

setting N =4 . Then Eq. 3.192 becomes

(Q+8, +v,

>
t— @ ma,O,)

(Qqy + 0y +Vyy
0 ) 0 0
—wmg, . )

(Qs3+ 83 +va;
13 0 2 0
T —Wmg )
(Quu+8y +vy,

0 0 0
_a)2m9tot )

where mg  =my +mcbc2 / 2. It is seen that the solutions for the two anti-
tot

symmetric modes associated with @, and @, may directly be obtained from
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2 2

Thus,

2

2 —b;
w, = Qpy +8h +vy _ (21)2 Gl +(2m/L) EL, +H7 + (2m. +m_)gh,
m, L m m
Grot Grot Grot

2

2 = b;
. Q44+l944+V44 _ (4_7[)2GI[+(47Z'/L) EIW+H7+(2mc+mz)ghr
! myg L myg my
tot tot tot

After elimination of rows and columns two and four, the solutions for the two

symmetric eigenmodes associated with @, and @y are defined by the requirement

that the determinant to the remaining matrix is zero, i.e. that

2 2 2
(Q+8 +vii+n —@ mg, . )'(933 +03+V3ti53 -0 mem,)_}(w =0

T 2 T 4 w 2 _p?
klzlo(—j Gz,m(_j EIWHOH FLa
L L L 2

Defining 5
EA
9\ zL Le,
2 4 2 2 2
—b 16e.b EA
and k, =8| Z| 61 +80[ Z| B +8| % | 7% 3[04l (EA),
L L L 2 9\ zL L,

and ky=— 2L 7,
e

2(16er€ T (EA),
3

then the solutions for @y and @y are givenby: @5 =

Example 3.5

Increasing the number of Fourier components to N =8, and adopting the
numerical values given in Tables 3.3 and 3.4 below, then the solution to the
eigenvalue problem in Eq. 3.192 renders the four first eigenmodes and
corresponding eigenfrequencies associated with suspension bridge torsion motion
as shown in Fig. 3.36 below.
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Table 3.3 Numeric example

L H My m, € A, E,
(m) (N) (kgmz/m) (kg/m) (m) (mz) (N/mz)
1250 [ p12.1¢ 250000 | 1900 | 120 | 022 | g2.107
m, GI, El, b, h, g
(ke/m) | (ww) | (wwt) | ) | (m) | (m/5?)

9000 ‘ 0.2-10"2 ’0_9.1012’ 15 ‘ 1.8 ‘ 9.81

1 T T

o 05F (De =2 .52rad/

= " 1
% 02 04 06 08 1
! o =3-47rad/s . I l

=0 ’ /
o 02 04 06 0.8 1
! o —519rad/s ) '

<0

/

\
A / _

0 0.8 1

Fig. 3.36 Lowest four eigenvalue solutions for suspension bridge in torsion, N =8



Chapter 4
The Finite Element Method in Dynamics

4.1 Introduction

As linearity has been taken for granted, a formal finite element approach to the
problem of structural dynamics will comply with the computational methods
usually applied elsewhere in theory of elasticity. However, in dynamics it is
necessary to add the effects of mass in motion as well as internal damping, which,
for a line like system, will affect the shape of motion into a combination of
harmonic and hyperbolic functions, see Chapter 3, and thus also the overall
physical properties of the system. Nonetheless, it is in the following assumed that
the shape of motion may with sufficient accuracy be described by polynomials.
Thus, from a computer programming point of view, all the well-known stiffness
properties as well as numeric iteration procedures from other fields of structural
mechanics will be applicable. In dynamics it is often the load that needs special
attention, e.g. in the form of a frequency domain stochastic description or in a time
domain simulation of wind, earthquake ground accelerations or other types of
environmental loads. For the special case of wind induced dynamic response
calculations it should be noted that due to the fairly short correlation lengths and
sharply dropping coherence properties of the wind field there will be demanding
requirements for the choice of largest element length. The same applies to the
choice of time stepping increment in a time domain solution. For the case of
earthquake ground acceleration there may be other challenges, e.g. shock type of
excitation effects or the beneficial effects of plasticisation at specially designed
joints or other non-linear effects from structural motion. Having adopted a system
of six degrees of freedom in each node p (see Fig. 4.1), there is a global load
vector

Rmt:|:Rl ... R .. RNPT 4.1)

fot

E.N. Strgmmen, Structural Dynamics, Springer Series in Solid and Structural Mechanics 2, 161
DOI: 10.1007/978-3-319-01802-7_4, © Springer International Publishing Switzerland 2014
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X

Fig. 4.1 Global degrees of freedom and external loads

and a correspondin
Prot p g

T
Prot
displacement vector

T
r,, = [r T T 1 J 4.2)
tot 1 P Np tor
where ¥ = [r n I 1, KT ]T and N is the number of nodes in
Prot [ R ) P p

the system. Thus, the total number of degrees of freedom will in general be 6N D

It is taken for granted that forces as well as displacements at global level comprise
a time-invariant mean value (the static part) and a fluctuating (dynamic) part, i.e.

(4.3)

Similarly, it is taken for granted that this also applies at element level, see Eqs. 4.5
— 4.7. In general, the external nodal force vector may contain contributions from
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forces defined at global level as well as forces defined at element level. Le., R p at

node p may contain contributions from globally defined concentrated forces R;,

i=1,2,...,6, as well as contributions (see Fig. 4.2)

T
{Rl } R, = [R R, Ry R, Ry K]
R, = (4.4)

T
R, Rzn:[R7 Ry Ry Ry Ry Ryl

T
defined at element level by distributed loads (], = [qx g, 4, qg] .

Fig. 4.2 External load ], and load vector R; + R, at element level

For simplicity, it is in the following taken for granted that the structural system
is two-dimensional in global X and Z axis, and that Y is perpendicular to the
system, as shown in Fig. 4.1. The effects of a time invariant mean axial force N, ,
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assumed constant in each element 7, together with primary bending moments
M y (x) and M z (x) are included to account for the possible stiffness changes

associated with axial or lateral torsion buckling. The main focus is on the
establishment of the necessary theory, and to the completion of eigenvalue
solution strategies. Dynamic excitation will be covered by the introduction of
ground motion acceleration in Chapter 7, wind loading in Chapter 8 and spanwise
moving loads in Chapter 11.

4.2 The Analysis at Element Level

A free body diagram of an arbitrary beam (line-like) type element 7, with local
axis X, y and z is illustrated in Fig. 4.3. At position X along its span the cross

sectional displacements and rotation (torsion) are defined by

T _
I‘eltot(x,t)=[rx roT, r9] =1, (x)+r, (x1) (4.5)

elor

where index el indicates quantities within the span of the element. At ends 1
and 2 the element have nodal stress resultants

]
*zz Ty

1 F., d

F3
d3 57 5
N T/F:,dz
d 1

4

Fig. 4.3 Twelve degrees of freedom element
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T

””T (4.6)
:[F7 Fy Ky Fy Fy FIZ]

tot

Fu=| g | =FeF0) were | f B B ORE R
F
tot

2

and corresponding local displacements

T
a1 d._=[d, d, dy d, ds d
d,, {dl} —d+d(r) where { ' l dydydy s 6]’0; @.7)
2 Jior d, , =[d; dy dy dyy dy d12],,,l

It is assumed that the cross sectional displacement vector Vel (x,t) may with

sufficient accuracy be described by the product of a shape function matrix

v, 0 0 0 0 0 w, 0 0 0 0 0

0Oy, 0 0 0 v 0 g O 0 0
W(x)= (4.8)
0 0 v 0 s 0 0 0 w5 0 y,; O

0 0 0 w, 0 0 0 0 0 w, 0 0

and the nodal displacement vector d,, (t ) ,Le.

Fop, (1) =W(x)-dy, (1) 4.9)

where the twelve shape function l//i(x), i=1-12, are given in Fig. 4.4. As

mentioned in the introduction to this chapter, these are identical to the shape
functions commonly used elsewhere in structural mechanics. Since they are
polynomial, it should be noted that they will represent an accurate solution to the
time-invariant (static) part of the response but not to the dynamic part, as they will
not fully satisfy the spanwise differential equation of motion (which, as we have
seen before, will require a solution containing a combination of harmonic and
hyperbolic functions). However, this will usually not render unduly erroneous
results as long as the element length is kept sufficiently short.

Applying the principle of virtual work (see Chapter 1.6) at an arbitrary position

of external and internal equilibrium defined by Felyr (x,t) , the system is subject

to an incremental virtual displacement (see Fig. 4.5)
T
or,, (x)=[5rx or, or, 5r9] (4.10)

compatible with
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1 1
‘V1=1'3\‘ ‘~|[7="2
1 1
Y, =1-3%2+25%3 Y = 3%2 - 2%3
1 1
Y; =V, Yy = Vg
1| ‘1
W4=1')? ‘|’1o=’,E

/1 A
Yo =-x (1-2X + X2) Yoy =X (X - X3)

1

%L_\ 1\y
Ve =-VYs Vi =-Vqy

Fig. 4.4 Shape functions ¥/;, i =1-12

od od =[6d, o6d, 6d, d, od- o&d.|
§d={ 1}where{ (=0 6dy Sdy 5y 5ds Sd] 4.11)

od, 6d, =[6d, &dy &d, 6dy, Sdy, Sdp,|

such that or, (x)=¥(x)-od (4.12)
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Fig. 4.5 Element and element stress resultants subject to virtual displacement
According to Eq. 1.119 the following work balance applies

L
od'F,, —jdr}l (c.k, )dx—jdr}l (m,f, )dx=
0 L

[, (BrLEA, + SrELr( + 817EL "+ SryGlry ) dx + (4.13)

.[L[é'r; (]\_/nry' —Myré)—i-é'rz'(ﬁnrz'—ﬂzré)—i- 5ré(]vneozré —1\7Iyr; —Mzrz')}dx

m, 0 0 0
0 m, 0 -mge,
where m, = (4.14)
8 0 0 m, me,
0 —-mye, mge, my

contains the distributed mass properties of the element, and

cvzdiag[cx ¢y, ¢, cg] (4.15)
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contains the distributed viscous damping properties of the element. Let us now
define the two shape derivative matrices (where primes indicate derivation with
respect to X)

o
=]
]
]
]
o
o
]
o
=]
o
o

- 0 0 0 O 0w, 0 0
@(x)= 2 ) ) Ve Vs ) , V2 (4.16)
0 0 w3 0 ws 0 0 0 wo 0 y

such that

ad [0 67 6 6] =Wed  @1)

o and o1 6K o &;]T:@&d (4.19)

Introducing Eqgs. 4.12, 4.18 and 4.19 into Eq. 4.13, then

6d'F,, - [(Wod)' ¢, (Wd,, )dx - [(W5d) m, (Wd,, )dx=

L L
o o (4.20)
j(wad) k,,(wdm,)dx+j(w5d) n, (¥d,, )dx
L L
where
EA 0 0 0 0 0 0 0
EI 0 N, 0 -M
K = 0 S n = _ _m @21
"“lo 0 EI 0 nTlo 0 N, -M,
0 0 0 aI, 0 -M, -M, N,

This may be further developed into
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od" [(W'm W)dx-d,, +od" [(WeW)dr-d

tot
L L

tot

(4.22)
+od”

J‘(@Tk”@)dx + J‘(@Tnnq’dmt )dx} . dtot = 5dTFmt
T L

It is seen that the pre-multiplication by od” is obsolete and may be discarded.
Introducing

d,=d+d() and F,=F+F(r) (4.23)
- }
m Y'mW
k :T =
and defining 0 :J. T kn? dx (4.24)
ko | 1| 9'n,w
¢l | wew|

then the following equilibrium condition at element level is obtained
md+cd+(k0+kG)(a+d):l_=+F (4.25)

In the case of a time invariant static solution then d(t ) and F(l‘) are zero,

and thus
kd=F (4.26)

where k=K, +Kg; . Le. the static and the dynamic equilibrium requirements may

be handled in separate operation (the superposition principle applies). Thus, the
dynamic equilibrium condition is given by

md+cd+kd=F 4.27)

Elaboration 4.1: Twelve Degrees of Freedom Beam Element

The element stiffness, damping and mass matrices are defined in Eq. 4.24. By
introducing the shape functions in Eq. 4.8 and its derivatives in Eqs. 4.16 and
4.17, then the element mass, damping and stiffness matrices may readily be
obtained by integration over the element length. [It should be noted that the
development of damping properties at element level is not necessarily a rational
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choice. Alternatively, damping properties may be introduced at a structural global
level (i.e. associated directly with the global degrees of freedom), e.g. in the form
of Rayleigh damping or simply a diagonal type of modal damping matrix, see
Chapter 9.] Thus, the element mass matrix is given by:

m m
m= |: i 12:| where m21 IITI{Z
m;, My
and
yim, 0 0 0 0 o |
2
v, m) 0 _l//Zl//étmyez 0 l//2l//6my
2
& Ysm, Ysyumee,  Ysysm, 0
m, ZJ s dx
0 Yymy Vuysme, =Y yeme,
sym. 1/15sz 0
2
L Verty |
m, =
v wam, 0 0 0 0 0
0 Yoygm, 0 —VL¥homnye, 0 Yaliom,
'L[ 0 0 YsWom,  Ya¥igmee,  Yaym, 0 0
of O “YalWgmye, Waomee, Wity WaWime,  —YaYpmye,
0 0 YsWom,  Ysygme,  Ys¥ym, 0
0 WeWsnt, 0 “YeVi0Mye, 0 YeWiomy
im0 0 0 0 o |
l//82my 0 _l/ISy/l()myez 0 l//81//12my
L ‘//92mz Yol 1o e, Yol 1m, 0
my —J. 5 dx
0 VioMg VioWum:e, —VioWi2mye,
sym. ‘//121mz 0
B l//IZZmy
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The element damping matrix is given by: € = {

and
R
e\
L
Ci :J.
0
sym.
R Z
0 Cyl/IZI//8
L
0 0
Cpp= _[
0 0 0
0 0
L 0 Cyl//6l//8
i 0
e\ Vs
L
Cx»n= j
0
sym.

0
0

2
Czl//3

Czl//3l//9

CZI/ISI/IQ

¢, l//9

Cii Cp

Cr C»

171

} where 021=01T2

0 0 0
0 0 Cyl//2l//6
0 0
Y3V d
coVi 0 0
cy;i 0
Vs |
0 0 0 |
0 0 YV
0 c¥s¥n 0 dx
C¥4¥o 0 0
0 C¥s¥i 0
0 0 &Ye¥2 |
0 0 0 |
0 0 S WsVin
02 YoV 0 d
Y10 0 0
Czl//lzl 0
Cyl//122 |

The element stiffness matrix associated with purely material properties is

given by:

k= |:k11
k21

k12:|
k22

where

k21 :lez

and
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EAy> 0 0 0 0 0 |
ELy;? 0 0 0 ELVYS
. - T ELy;? 0  ELyy; 0 "
1n= ,
0 GLy, 0 0
sym. EIyl//g2 0
i ELyg" |
L
ki, :I
0
[ EAyy; 0 0 0 0 0 |
0  ELyyyg 0 0 0 ELy1,
0 0  ELyys 0 EL 3y 0 .
X
0 0 0 GLyw, 0 0
0 0  ELysys 0 ELysy 0
| 0 ELygygs 0 0 0 ELyey, |
EAY? 0 0 0 0 0 |
ELyg 0 0 0 ELyy,
. _ T ELys 0 ELygy,, 0 "
2 GLy? 0 0
t7'10
sym. EIyl/ll”l2 0
i ELy}; |

The element stiffness matrix associated with axial and lateral torsion buckling
effects is given by:

k k
k; = {kG“ kGlz } where kG21 = kglz
Gl G

and
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0 0 0
Ny 0
L = 0
kG]] :J- N,y;
0
sym.
L
kGu:.[
0
0 0 0
0 Nyws 0
o 0 Ny
0 -Myyy —M yy;
o 0 RVATA
0 Ny 0
0 o0 0
Nyg 0
I = 0
kGZZZJ N,y
0
Sym.

-M 3y
-M Yy,

N 2,72

n€0¥4

0
-M yl/lél/ll,o
-M YW
N, eqvii
-M yiy
-M yl//é‘//fo

0
_Myl//él/jl,()
-M WeWio

AT 2.2
N,ea¥

0
0
N,y
~M Wy
Nw¢

0
0
Ny
_Mz‘//:l‘//fl
N,
0

0
0
R4S
_le//llol/jlll
Nyt

Ready-made integrations are given in Appendix C.1.

Elaboration 4.2: Six Degrees of Freedom Beam Element

0
Ny
0
~M s
0
Ny

N5,

-M yl/lﬁ,ll/ll,Z

Ny, |

0
R7ATE
0
-M y‘//1,0‘//1,2
0
Ny

173

dx

dx

For a purely in-plane bending type of problem the six degrees of freedom element
shown in Fig. 4.6 will suffice, in which case the following applies:
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Fig. 4.6 Six degrees of freedom element

wim, 0 0
wim, Wsysm,
L 2
m
m:J’ Vs z
0
sym.
[y, 0 0
‘//320z Yiysc,

2
l//5 ¢

Symi.
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l/ll l//7 m,
0

0

2
l//7 m,

VW,
0

0

2
l//7 Cx

0

W3W9mz

l/lsl//9mz
0

2
1/19 mz

0

l//3l//9cz

l//5 l//‘) ¢
0

2
‘//9 ¢

M
w

0

W3y m,

l/ISl/ll lmz
0

l//9l//1 lmz

2
Yim, |

0

ViWhic,
Ys¥hc,
0
Yol1i¢,

2
l//llcy a

dx

X

dx
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EAY? 0 0  EAY, 0 0 |
ELy:® Elylys 0  ELyys Ely
":T ElLys 0 ELyys ELySy "
0 EAy2? 0 0
sym. ELys®  ELyy
I ELyf! |
0 0 o 0 0 0 ]
Ny Nyws 0 Ny, Ny
« _T Nys 0 Nyws Ny |
G~ X
! 0 0 0
sym. Nys Ny
i Nyt ]

Ready-made integrals are given in Appendix C.2.

Elaboration 4.3: Distributed Forces in the Element Span
T
Consistent load effects of distributed forces, e.g. q(x,t) = [qx 4y 4. qe:l

in the span of an element 7 (see Fig. 4.2) may alternatively be included in the
virtual work balance in Eq. 4.13, in which case

j St qdx = j (w6d) qdx = 5d” [w'qdx=5d'R,
L

where R, = I lqudx should be added to the left hand side of Eq. 4.13. It

may readily be shown that

L T
Rl Rln = E[CIX qy qz QG _qu/6 qu/6:|
R, = where

(4. 4 4. a0 a.L/6 —a,L/6]

=
!
0|~
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The transformation of R, into global load components follow the same
transformation as dn, i.e. the contribution to global loads from distributed forces

on element number 7 is given by A R, , where A is the connectivity matrix
defined in Eq. 4.28 below.

4.3 The Global Analysis

Before proceeding it is necessary to define the six by N p connectivity matrix A,

describing the relationship between element degrees of freedom d”tot and global

degrees of freedom F, . , defined such that:

tot

d_=Ar,= d, =d,+d,=Ar,=AT+Ar, (4.28)

Ny,

Let us apply to the discrete system (the system as reduced to a non-continuous

collection of nodes) a set of virtual displacements JF consistent with r,

5d, =A -or (4.29)

Since the virtual work exerted by the external forces at global level must be
equal to the sum of the virtual work of the internal stress resultants at element
nodes, then

N
or" R, = ZI od; -F, (4.30)

where N is the total number of elements in the system. Introducing

sdl = (A, -6r)" =67 -AT | then
T T S T
o’ R, = or -Z_IA”F% (4.31)

Again, pre-multiplication by or” is obsolete, and thus, it is seen that the
equilibrium condition at a global structural level is given by

N
R, =) A.F,, (4.32)
n=1

Recalling from Eq. 4.25 that
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F,,, =md, +cd, + (k+kg )dnmr (4.33)
and introducing Eq. 4.28
F"tat - mAni; + CAnr" + (k + kG )Anrmt (4.34)

it is seen that Eq. 4.32 becomes

N N
R, =R, + Z_;AZRM =Y {ATmA i+ ATcA F+A] (k+Kg)Ar,} (435

n=1

where R P AT external load contributions added directly in at node p, while

R"zoz are load contributions associated with distributed loads on element 7 (see

Fig. 4.2 and Elaboration 4.3 above). Thus, defining the global structural properties

M ATmA,
C | X| AlcA,
=> (4.36)
Ko | 75| ATKA,
Ko AkGA,

then the following equilibrium condition at global level is obtained
M (1)+Cr(1)+(K, +Kg )[T+r (1) |=R+R(r) (4.37)

Defining K=K + K , this may conveniently be split into a time invariant mean

(static) part

K-r=R (4.38)

and a purely dynamic part
M-F(7)+C-f(r)+K-r(z)=R(r) (4.39)

The solution to this equation is at the core of all structural dynamics. Various
possible strategies will be presented in Chapters 5 and 6, while relevant solutions
to the problems of ground motion and wind induced dynamic forces will be
presented in Chapters 7 and 8. The special problem of structural damping will be
dealt with in Chapter 9.
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It is in the following taken for granted that M, C and K are all symmetric,
quadratic and invertible matrices, and that they are real and positive definite. Their
dimension is N, by N,, where N, is the number of degrees of freedom in the

system (N, =6-N » Where N, is the number of nodes in the system).

Elaboration 4.4: Condensation of Obsolete Degrees of Freedom

Any degree of freedom 7, that due to structural restrictions or boundary
conditions are equal to zero may be discarded simply by deleting the row and
column associated with 7, . If two degrees of freedom r, and 7, ; are linearly

dependent of each other, then the relevant rows and columns associated with 7,

and 7,

»+j may simply be added linearly, or as expressed in a mathematical way

if  Ar=B and r=Dr then (DTAD) r=D'B

In some cases it may also be a convenient solution strategy to reduce the number
of degrees of freedom in a system from N, = N,1 +N,2 to N , simply by not
allocating mass and damping to the N n degrees of freedom that are considered

obsolete. The system reduction may then be obtained by rewriting the original
equilibrium condition

M +CF +Kr =R into | i1 Q|1 | |G O Ky Ky i PR
0 olli,] |0 o]lt] |Ky Kyllr| [R,

from which F, = Kzﬂz —Kg%Kzlrl and thus the reduced equilibrium condition

is given by

M,y +Cyify + (Ku -K KK, )rl =R, -K,K»R,

Example 4.1

A simple bridge type of structural system is illustrated in Fig. 4.7. It has five
elements and two relevant degrees of freedom. For simplicity, the effect of axial
force in the columns is disregarded. Let us assume that m, =m, /3 and
El, = EI / 2. We shall then establish the mass and stiffness matrices of the

system.
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a) m,, El, m,, El, m,, El,

&

m,, El, m,, El, L/4

w 1 @Y ®

Fig. 4.7 Bridge type of structure; a) structural system, b) relevant degrees of freedom, node
and element numbering

F,.d, Fs d, F,.d,
Aot > P ®

_ ..
FZ’ dZ F4’ d4 FZ’ dZ

‘ v,

I:\If1

Vv,

Vs v

Y,

Fig. 4.8 Elements types @ and b

The system contains two types of elements, i.e. elements types a and b as
illustrated in Fig. 4.8. The properties of element type a may be extracted from
the properties of the six degrees of freedom element in Appendix C.2, simply by
omitting the first and the fourth degrees of freedom. Thus:
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12 -6L -12 -6L
« —6L 41> 6L 2I*

156 —22L 54 13L
o _mL|=22L ALY -13L -30°
“T 420 54 —13L 156 22L

“p|-12 6L 12 6L

-6L 2I> 6L 4I° 13L =31} 22L 4I*

The properties of element type b may also be extracted from the six degrees of
freedom element in Appendix C.2. However, for this element type it is more
consistent to use the following shape functions (see right hand side of Fig. 4.8):

yi=1
3(x 2 1( x 3 x:():}{l//=0
v, =1- E(zj + E(Zj whose properties are such that !

=0
R x=0= {Wl, ]
W, =—x 1_§£+l[£j whose properties are such that =
2L 2\L

Defining W= [l//l l//z] and liJ = [l//l” l/f;] then (see Eq. 4.24)

L N N L m?2 4 1 _L
kb — EIJLPTLde:EI.[ (l//l) l//ll//22 dng{ 2:|
0 olwawr (v2) L |-L L
L L 2
C fwrwa () s | mL[ 102 -18L
m, —mJ“IJ ‘de—mj 5 dx—z—lo{_lgL a2
0 ol vav1  (v2)

As mentioned above, the system has two global degrees of freedom r, and r,.
Hence, the stiffness and mass matrices will be two by two

K=|:K11 K12j| and M=|:M11 M12j|
K21 K22

The contribution from element number 1 is then given by
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K - _Eh |3(22) o o mL2[4(1/2)° 0
Yyl oo o Y20 o o

The contribution from element number 2 is given by

o EL/2\a(n/ay o (m/3)L/4 4(L/4)" 0
(el o o 2T 400 o 0

The contribution from element number 3 is given by

K :ﬂlz%z ZLT

mL 417 317
3 3 5 5 and 3
L |27 4L

420|312 4P

The contribution from element number 4 is given by

K, = EL/2 0 0 d M _(m1/3)L/4 0 0
T waylo aayr] " PTTTH0 |0 a(L/e)

The contribution from element number 5 is given by

K. = EL 0 0 and M L L/2 0 0
> (12?0 3(L/2) > 210 |0 4(L2)

S 9 1 5 3[241/48 -3
KZZ:I(szEIl and M:ZMn:mlL /
L |19 420 -3 241/48

n=l1

This is a two degree of freedom system. The solution to its eigenvalue problem

(K—sz)¢=[2ill ﬁ ;}“”2%{24_1{;48 24_1;48}12}{3}

EI
~29 |—
L. ? m1L4 . . . P, = [1 —I]T
is given by with corresponding eigenmodes
a5 | Eh @, =1 1]
o, = . 4

myL
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a) First mode

b) Second mode

Fig. 4.9 Eigenmodes @ and @,

4.4 The Numeric Eigenvalue Problem

Most structural systems have very low damping. Thus, they possess a distinct set
of preference frequencies and associated shapes of motion which largely depend
on the mass and stiffness distribution within the system. We call them
eigenfrequencies and associated normal modes (or simply modeshapes). These
properties play an important role in the evaluation of potential danger of excitation
and to establish consistent solutions that focus on the most relevant aspects of
what can be expected to occur (e.g. the normal mode method as presented in
Chapter 5). In most cases they may be determined by solving the undamped and
unloaded version of Eq. 4.39, rendering a classic eigenvalue problem which is
covered in this chapter. (However, in some cases is it necessary to include
damping, and that case is briefly covered in Chapter 4.5 below.) The solution to an
eigenvalue problem plays a significant part in mathematics, and there are
numerous effective routines for its numerical solution (see e.g. Bell [12]). It is
beyond the scope of this book to cover the subject in great detail. However, in
Chapters 2 and 3, where continuous and no more than two degrees of freedom
systems have been covered, it has been demonstrated that the subject is a
necessary part of the identification of dynamic properties to structural systems.
Thus, for the sake of completeness a brief coverage is given below.
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General Background

The steady state solution to the undamped and unloaded version of Eq. 4.39

M-F(r)+K-r(z)=0 (4.40)

; T
is given by r(t)zRe((p-em), where (p:[gz)1 @ e ¢Nr:| is a
vector with length equal to the number of degrees of freedom (N, ) in the system,

and containing the displacement (or rotation) components associated with the
relevant degrees of freedom at the structural position assigned to node p (see Fig.

4.1). Introducing this into Eq. 4.40, then the following is obtained
(K-w’M)@=0 (441)

The solution to this equation is in mathematics known as the general eigenvalue

problem. By pre-multiplication with M then the special eigenvalue problem is
obtained

(A-U)e=0 (4.42)

where | is the identity matrix, A=@> and A=M"K. Similarly, by pre-

multiplication with —w K" then the inverse version of the special eigenvalue
problem is obtained, i.e.

(B-A)p=0 (4.43)

where 5= @ and B=K™'M. 1t is readily seen that any of Egs. 4.42 and 4.43
may be chosen for the determination of @ and ¢ . In general there will be N,

possible solutions, as a nontrivial ¢ will require that the determinant to A — Al

must be equal to zero, and this may be expressed by expanding det(A - ﬂl) into

an N, dimensional polynomial
f(A)=det(A=A)= (4 =2) (A =A) (A =A) (A, = 4) “a4)

whose roots A, 4. . .,/1Nr (see Fig. 4.9) all represents a possible solution to the

eigenvalue problem.
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f(x)
A

/\/
TTT

}\‘1 }\'2 }\‘3

Fig. 4.10 N, dimensional polynomial f (/1)

It is customary to arrange the eigenvalues in ascending order, i.e.
A S Ay S A< Ay because it s the lowest that requires the least amount of
energy to excite. The corresponding set of eigenmodes @,, i=1,2,...,N,, may

then be obtained by re-introducing any of the solutions A, back into Eq. 4.42
(or 4.43)

(A-4l)e,=0 (4.45)

Thus, it is seen that ¢; is scalable, i.e. that it may be multiplied or divided by any

constant number. It only represents a characteristic shape of structural
displacements. The actual displacements cannot be quantified unless a full version
of Eq. 4.39 is solved. Re-writing Eq. 4.45 into

Ag; =19, (4.46)

it is seen that an eigenmode @; of a matrix A is a non-zero vector which
multiplied by A is the vector itself multiplied by a constant 4, called the

eigenvalue of A . For a two by two matrix

A= {a“ alz} (4.47)

and corresponding eigenmode @; = [(01 (pz] this is illustrated in Fig. 4.11.
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0 A
A, x
7
v
¢, - //\ L@
o
I I > ¢1
9, Ao,

Fig. 4.11 Eigenmode and eigenvalue in two-dimensional vector space

Example 4.2: Polynomial Solution to Simple Two by Two Systems

a a
Let A= { H 12} . Then the solution to the eigenvalue problem
a1 4y

L (R M S e I N

ay =4 ap
. det{ /J:(an = A)(ay = A) = apay,
is given by ay ay —

_ 12 _
=A% —(ay +ay ) A+ a0y — a0y, =0

2
a;;+a a;;+a
rendering Ay 5 =—11 > zzi\/( H > 22) —(ayay —apay,)

% 21,2 —dap
and (all _11,2)401 +ape, =0 = D M2 %
P ap
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0, A
6 _
5] /7‘
/
] /
/
a— /
//

1 ~ [5.4

3| /M b [27}
/
_ /
/
2] /
/
7 /
/
1
~ [0.45

i P = [0.9 ]
0 T | T | T | T | ; q)'l

0 1 2 3 4

Fig. 4.12 Graphic illustration

2 2 =6
Let for instance A= . Then A while @, = 7 and
25 A, =1

| @
¢2_{—05%}'

It is seen that they are orthogonal, i.e. that (P1T(P2 =0. Since they are

. . .. . AT A .
arbitrarily scalable, it is often convenient to scale them such that Q; @; =1, i.e.

P :(Pl/\/(PlT(Pl :{00'%95} and @, :‘Pz/\/@:{ 0.9 }

—0.45

The normalised eigenmode (i)l is illustrated in Fig. 4.12 above. As can be seen
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A, =6 045)_27] . ae _[2 2][045]_[27
= = is identical to = =

@ 09 | |54 P 5| 09754

The same holds for @, .

Eigenmode Orthogonality

Let & and a)]2~, and corresponding @; and @;, be two arbitrary but

[]

independent and non-trivial solutions (different from zero) to the general

eigenvalue problem (K - CUzM) @=0.ie.

(K—sz)(p,. =0 and (K—cof.M)cpj =0 (4.48)

1

Pre-multiplying the first with (p? and the second by (p,.T

¢'Ko, -0’9 Mo, = and @K@, — @M@, =0 (4.49)
transpose throughout the second (recalling that Kand M are symmetric)
<p]K<p, J<p]M<pl = (4.50)

and subtracting the first, then the following is obtained
(@ -} )@ Mg, =0 4.51)
Thus, since @ # a)j we must conclude that
@ Mg, =0 (4.52)
It is seen from the first part of Eq. 4.49, @ K(p, a) [0) J|V|(pl 0, that since @;
is a non-trivial solution different from zero, we must also have that
@ Kg, =0 (4.53)

Thus, the eigenmode solutions to the general eigenvalue problem are M and K

orthonormal. Similarly, let 4, and ﬂj , and corresponding @; and @;, be two
arbitrary but independent and non-trivial solutions different from zero to the

special eigenvalue problem (A - ﬂl) ©®=0.ie.

(A-A)@;=0 and (A-Al)@;=0 (4.54)
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Pre-multiplying the first with (p§ and the second by (p,-T

O AQ, -0 @, =0 and @ AQ,-A,9/@, =0 (455

transpose throughout the second (recalling that because Kand M are symmetric,

sois A)

T
@ AQ, - 2,979, =0 (4.56)
and subtracting the first, then the following is obtained
T
(4-4;)0e, =0 (4.57)

Again, since 4 # ﬂj we must conclude that

T
Thus, the eigenmode solutions to the special eigenvalue problem are orthogonal.

Since (p§¢i =0 and ﬂj #0 itis seen from Eq. 4.56 that as long as i # j also
?; A(p, 0 (4.59)
The Rayleigh Quotient

Pre-multiplying (K— (0,2 M) @, =0 by (pl-T it is seen that

‘P, M(P,

which in structural dynamics is called the Rayleigh quotient. It is also seen that if
the mode shapes are scaled such that

@, =9,/ o Mo, (4.61)

then M@, =1 (4.62)
and thus o =@ K, (4.63)

Similarly, pre-multiplying ( ﬂil) =0 by (p, it is seen that

A= @, A, Atp,
P P

(4.64)



4.4 The Numeric Eigenvalue Problem 189
and if the mode shapes are scaled (by the norm of @, ) such that
A T
P —‘Pi/\/‘Pi P (4.65)
A T A _
then QP =1 (4.66)

and thus A= @iTA(i)i (4.67)

T

Recalling that (A—/M)(P,- =0 where P; =[¢1 @ O, J and
1

that there will be as many eigenmodes as there are degrees of freedom, then this

may be expanded to an overall level by defining

®=[¢, - @ - @ | ad A=diag[h -~ A - Ay | @68)

in which case the equation covering the entire eigenvalue vector space is given by

AD-®A=0 (4.69)
and since O’ D=I (4.70)
then pre-multiplication with @ renders A=0"AD (4.71)

Elaboration 4.5: The Similarity Transformation

Similarly we may define the eigenmode vector space @ = [(p1 @ @ NJ
and correspondingly A = diag [ﬂl A Ay, J , then
AD-OA=0

Pre-multiplication by the inverse of a non-singular N, by N, matrix Y
Y'A®-Y 'OA=0
and defining a new unknown matrix Z =Y '@, then
Y 'AYZ-2ZA=0

from which the following transformed eigenvalue problem is obtained

BZ-ZA=0
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where B=Y'AY . It is seen that A and B have the same eigenvalues A, but
different eigenmodes @ and Z. This is a linear similarity transformation. The

connection between ® and Z is given by Z =Y '@, and thus
o=YZ

Elaboration 4.6: The Cholesky Decomposition

The Cholesky decomposition is presented in appendix B.4. The reason why it has
been included is that apart from being used in the simulation of non-coherent time
series from spectra, it is in some cases convenient to perform a Cholesky
decomposition of the mass matrix M (which in our case is always real) to obtain a
solution to the general eigenvalue problem

(K ~’M)@=0
Thus, it is written as the product of a lower triangular matrix Y and its transposed
M=YY’

Introducing this into the equation above, defining Z = YT<p and pr-multiplying
by Y!
-1 -1
YK(Y') z-a?Y'YYT(YT) z=0
will render the equivalent eigenvalue problem

(B-w1)z=0

-1
where B = Y_IK(YT) . The original eigenmodes may then be retrieved from

Q= (YT )_1 z
The advantage of this transformation becomes particularly apparent if
|V|=diag(M1 e M - MNr)
in which case
Y=Y =Mm"? =diag(M11/2 Ml.l/2 leéf)

- :(YT )_IZM‘l/Z:diag(Mfl/z Mi—l/z M;}l/z)

r
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and thus
B=M "KM "2 and p=M"z

Below, the numeric routines of direct and inverse vector iterations as well as the
Jacobi method are included, not because they are more important than many of the
alternative routines available, but because they represent two main classes of
approaches, namely iterations on A itself and iterations on a transformed version
of A. They all require a opening vector . Obviously, the closer ), is to the

exact solution the faster convergence is obtained.

Direct (Power) Vector Iteration

Starting with sound engineering guess Y, as an initial solution to
(A-A4)y, =0 (4.72)
where A =M™'K, may iteratively be expanded into an improved solution by

A'-I-'k 1

k=12,....N (4.73)
||A‘|’k 1

Wy

where ||Al|1k_1||=\/(Al|.lk_1 )T(Alpk_l) is the norm of the previous solution.

The corresponding eigenvalue may be determined by using the Rayleigh quotient

ﬂ/k lpk Al‘pk
lI-'k L

(4.74)

(Normalisation of @, such that after each step l.iJk =y, / qw{wk is optional.)

The method is not widely in use because the solution converges towards a larger
dominant eigenvalue, provided Y, has a non-zero component in the direction of
the corresponding eigenmode.

Inverse Vector Iteration

The inverse vector iteration method is in principal equivalent to the direct method
presented above, only it operates on the inverse eigenvalue problem (see Eq. 4.43)

(B_ﬂkl)wk =0 (4.75)
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where B=K™'M and B =(q:2. Let @, zwo/xllpglpo be the normalised

vector of an initial guess Y, . Then

Wi

b=
\/lpz—llpk—l

and because Q] (B-4hHy, = P.BY, - S99, =Wy, — B, =0, then

gy, =By, where (4.76)

B =W w, 4.77)

The main advantage with this method is that with a choice of @, that is not
unduly off target it will always converge towards the solution with numerically
lowest eigenfrequency @, and corresponding eigenmode @, , i.e.

_2 A A
Bo———hl = and Y ————@,

(4.78)

The second or any higher eigenvalue may be determined by introducing a shift
(see Fig. 4.13 below) and rewrite the original eigenvalue problem into

[K—,uM—(a)z —,u)MJ(p:O (4.79)
shift

Fig. 4.13 Eigenvalue polynomial f (A) with shift
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-1 3
Defining [ = ((02 - ,u) and pre-multiplication by —/(K— uM) " will then

render the following equivalent eigenvalue problem
(B, -Al)o=0 (4.80)

-1
where B, =(K—4M) M. Thus, iterations may be performed in an equivalent

procedure to that which has been shown above, and the solution will converge

towards the eigenvalue immediately above £/, while @, = /1 + 1/ ﬂk .

Example 4.3: Inverse Vector Iteration

Let us consider the simple shear frame shown in Fig. 4.13.a and let

(1”‘;’) =9-10* N/m (1215;1) =6-10* N/m (121;;1} =3.10" N/m
H” ) H” )5 H™ Js

M, =6-10° kg M, =6-10° kg M, =3-10° kg

The stiffness of a shear beam is shown in Fig. 4.10.b. The necessary mass
and stiffness properties of the system may then be established by successive
unit displacements as illustrated in Fig. 4.10.c, from which the following is
obtained

5 2 0 2.0 0
K=6-10"|—2 3 -1| and M=3-10°|0 2 0
0 -1 1 0 0 1

1/30 1/30 1/60 |
Then B(#=0)=K'M=|1/30 1/12 1/24
1/30 112 11/120 ]

and the successive inverse iterations are shown in Table 4.1 below, starting with

wo=[ 1 1] = & =u/Jwlw,=[05774 05774 05774]
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R3, I’3 M3
S
d
H3
Ry 12 M; F
—_—> — > T
I
/I
H, / H
R1, I’.| M1 I/
e k<
i El
F=12( o
AR ey << T 1
a) System b) Shear beam
stiffness
r;=1
<— —> (
K3, Kss | 7 M, /
\ r.=1 \ / /
>( 2 \\ /
K2 \ \ 22 |, 2 / Kas
>(l"I =1 \\ / /
—>» I <
Kn |/ M, / Kaz
/ /
1 1 1 - - -

¢) Mass and stiffness properties

Fig. 4.14 Three degree of freedom shear frame

The iterative value of @ vs. k is shown in Fig. 4.14. As can be seen the
convergence is approaching its limit value @, =2.5055 rad/s from below. It

represents the first (lowest) eigenvalue of the system. The corresponding
normalised eigenmode is given by

@, =B =W, /\Jwlw, =[02504 0.5478 0.7982]
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Table 4.1 Inverse vector iteration

| k r ]2 [ 3 ]

4|
B(1=0) P, = Wk—l/\] W Wi

0.0333 0.0333 0.0167| 0.5774 | 0.3034 | 0.2597 | 0.2523 | 0.2509 | 0.2506
0.0333 0.0833 0.0417| 0.5774 | 0.5766 | 0.5554 | 0.5495 | 0.5481 | 0.5478
0.0333 0.0833 0.0914| 0.5774 | 0.7586 | 0.7900 | 0.7965 | 0.7979 | 0.7982

5 | 6

0.0481 | 0.0420 | 0.0403 | 0.0400 | 0.0399 | 0.0399
y, =By, 0.0914 | 0.0898 | 0.0879 | 0.0874 | 0.0873 | 0.0873
0.1203 | 0.1277 | 0.1274 | 0.1272 | 0.1272 | 0.1272

~T 0.15 0.1614 | 0.1599 | 0.1594 | 0.1593 | 0.1593
B =@y,

a)=ﬂk_l/2 2.582 | 24891 | 2.5008 | 2.5047 | 2.5055 | 2.5055

To obtain the second eigenvalue trial and error has shown that =24 is a
suitable choice of shift. Then

5303 1.894 —4.735
B, =(K-uM)"'M=107| 1.894 2462 -6.155
947 -1231 5777

Table 4.2 Inverse vector iteration with shift

| k o2 [ 3 ]

4 | 5
2 _ A
10°-B(u=24) Y, :'l’k—1/\/ W Wi

5303 1.894 -4.735| 0.5774 | 0.1511 | 0.5317 | 0.3669 | 0.42299 | 0.4034
1.894 2.462 -6.155| 0.5774 | -0.1104| 0.6146 | 0.3323 | 0.4338 | 0.3995
-9.47 -12.31 5.777| 0.5774 | -0.9823 | -0.5827 | -0.8688 | -0.7956 | -0.8232

0.0142 | 0.0524 | 0.0674 | 0.0689 | 0.06831 | 0.0679
y, =By, -0.0104 | 0.0606 | 0.0611 | 0.0689 | 0.0677 | 0.0681
-0.0924 | -0.0575 | -0.1597 | -1.1258 | -0.1394 | -0.1349

AT 0.0577 | 0.1664 | 0.1567 | 0.1692 | 0.1657
B =y,

1/2 6.4289 | 54781 | 5.5119 5.469 5.480
w:(l/ﬂk+ﬂ)/
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The successive inverse iterations, again starting with

w=[ 1 1] = @ =w/ e, =[05774 05774 05774]

are shown in Table 4.2 above. Thus @, =5.48 rad/s and

@ =W =W,/ Wlw, =[0.4099 04111 —08143]".

The Jacobi Method

(The method is named after the German mathematician Carl Gustav Jacob Jacobi,
[41].) Let the overall eigenvalue problem

(A-AN)®=0 (4.81)
be defined by

—an ay; alN— —/11 1

: 0

: : 0

LAv1 " Ayttt Ann | L /1NJ

__(/’1_ KN o ] |

__¢N_1 LPw J; -(/)N-N_

The Jacobi method is then based on a successive similarity transformation
A =Y_A Y k=1,2,3,....N, (4.83)

where Y isan N by N orthogonal (Y™ = Y7 ) vector rotation matrix
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_ ; j _
1
\2 \2
coso —sino —i
Y= R (4.84)
1
sin o cosx —j
(- 1 =

and where ¢ is determined such that all other off-diagonal terms become zero,

2aij . .
tan2a =——-— for i#j

ie. a; —aj (4.85)

a=r/4 for i=j

It is seen that by successive expansion of A Ni

_vT
ANk - YNk —1ANk —lYNk -1

= Y£k71Y;k72ANk72YNk72YNk71 (4.86)
= YI\T/k -1 ngk —2Y1\T/k —3ANk -3 YNk Yy —2YNk -1
:YI\T/%1 o YT o YIAY, Y, - Yy,

the solution is equivalent to a vector rotation of A, into a position of
T T _ — :
ka Akq’k wq"k Akwk , Where l'pk = Yl . Y2 '“Yk—l Y, = '.pk—l . Yk , 1.e.

a vector rotation which will converge towards A®, and thus
(4.87)

The advantage with the Jacobi method is that all the relevant eigenvalue solutions
are obtained in one go.
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Example 4.4: Jacobi Vector Iterations

5 2 0 2.0 0
Let K=6-10*|—2 3 -1| and M=3-10°|0 2 0
0 -1 1 0 0 1

(i.e. identical to that which has been investigated in Example 4.3 above). As
shown in Elaborations 4.3 and 4.4 it is greatly advantageous if M is
diagonal, in which case an overall solution may be obtained by defining

q)=[‘|’1 @y e (PNrJand)\=diag(/11 e A e ﬂ’Nr)

(K-AM)®=0
Introducing Z = |:Zl e Zp o Zy, J =M’ (ie. ®=M"2Z ) and pre-
multiplying by M2 = M2 (K - )\M)M_I/ZZ =0  then the

following is obtained (A — )\) Z=0 where A=M""?KM™?

50 =20 0
= A=|-20 30 —14.1421
0 -14.1421 20

The development of Y, and corresponding iterations are shown in Table 4.3.

6372 0 O
Thus A=| 0 628 0| = w=A"=diag[7.982 2506 5.477]
0 0 30

As can be seen, the first and the second eigenvalues comes out as the second and
the third entry. Their numerical values comply well with that which was obtained
in Example 4.3 above. The eigenmode matrix is given by

0.0105 0.0039 —0.0065
O ~M"2Z=|-0.0072 0.0086 -0.0065
0.0033 0.0125 0.0129
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Table 4.3 Jacobi vector iteration
i,]
k1 tan2er \ A =Y/A, Y, Z,=2,.,Y,
o
i=1j=2 | 0.851 0526 0]62.36 0 7.43 0.851 0.526 0
1 -2 -0.526 0.851 0| O 17.64 -12.03 -0.526 0.851 0
—0.5536 0 0 1] 743 -12.03 20 0 0 1
i=2,j=31|1 0 0 6236 499 551 0.851 0.389 -0.353
2 10.192 0 0.741 -0.672 499 673 0 -0.526  0.630 -0.571
0.7365 0 0.672 0.741 5.51 0 3092 0 0.672 0.741
i=1,j=3 1098 0 -0.168| 6330 4.92 0 0.779 0.389 -0.491
3 0.3502 0 1 0 492 673 -0.84 | -0.614 0.630 -0.475
0.1684 |0.168 0 0.986 0 -0.84 2997 | 0.124 0.672 0.730
i=1,j=2 1099 -0.861 0| 63.72 0 -0.072| 0.81 0.321 -0.491
4 0.1741 0.861 0.996 0 0 6.31 -0.83 | -0.558 0.681 -0.475
0.0862 0 0 1-0.072 —-0.83 29.97 | 0.182 0.659 0.730
i=2,j=31|1 0 0 63.72 -0.003 -0.072] 0.81 0.303 -0.502
] 0.0705 0 0999 -0.035[-0.003 6.28 0 |-0.558 0.663 -0.499
0.0352 [0 0.035 0.999 [-0.072 0 30 | 0.182 0.684 0.707
i=1j=3 1 0 0002 63.72 -0.003 0 0.811 0.303 -0.500
61 —0.0043 0 I 0 0.003 628 0 —0.556 0.664 —0.500
-0.0021 | -0.002 0 1 0 0 30 0.180 0.684 0.707

It is seen that 'O =107 -diag [0.1719 0.2447 0.2499] and thus, the

normalised version of the mode shape matrix is given by

0.7986  0.2501

—-0.4083

N 12
¢=¢/(¢T¢)/ =|-0.5475 0.5480 -0.4083
0.2507 0.7983 0.8165

As can be seen, also the mode shapes complies well with that which was obtained
in Example 4.3 above. Convergence of eigenvalues as obtained by the inverse

method in Example 4.3 and from the Jacobi method in Example 4.4 are shown in

Fig. 4.15.
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Fig. 4.15 Convergence of inverse and Jacobi iterations (Examples 4.3 and 4.4)

Elaboration 4.7: Damped Eigenvalues

For a damped but unloaded system the solution to Mr+Cr+Kr=0

may be obtained by adding a dummy equation, e.g. If —IF =0 (where | is the
identity matrix), in which case the problem may be re-stated into

o il clil

[r 1 0
Defining a new variable z= } and the matrices B:{O M} and
r

0o - :
A= {K C} , then the equation above is Bz+ Az =0
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Since the damping affected solution is given by r= Re((pe/u ) then

)

Thus, the solution may be obtained from the eigenvalue problem

(A+/1B)®, =0 where ®, =[o /1(p]T

Z

If C=0, then we are back to the ordinary eigenvalue problem previously
described in this chapter, and as we have seen, A is negative and purely
imaginary (i.e. A=i@) while @ only contains real quantities. This means that

the motion is a simple harmonic and its size and shape remains unchanged with
time, and all the degrees of freedom are in phase. If C=+#0, then A will be
complex (and not necessarily purely imaginary) while ¢ may also contain

complex quantities. This means that the motion is not a simple harmonic, it is
decaying with time (as long as all entries in C are positive), while its shape is
time dependent as there is a phase between the motion of the various degrees of
freedom in the system. Let us consider the most simple case of a single degree of
freedom system

Mi+Ci+Kr=0 = B= bo , A= 0 -l andz=|"|=| ¥ |e¥
0 M K C Mg

A -1
Then the eigenvalue problem is given by ¢ =0, from which
K C+AM || Ap

a non-trivial solution is obtained from Z(C +AM ) +K=0, which  may

alternatively be written

[%} +2§0(%j 1=0, where @}, =+/K/M and §0=C/(2Ma)0)

A [ .
Its solution is given by — = -, £+/¢ 02 —1 . There are three possible scenarios:
Wy
_ 2 —apy|C2-1
1 {>1 = r(1)=e 0% {ale%t 0 +ae v 0

2) {,=1 = r(t)y=a-e™
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N I
r(t)=Re e{oa’ot(alem{)t =40 +a,e ! 40]
=q. e S0 cos(a)otwll—é’oz)

In the first case where ¢, >1 then the system is over-critically damped and the

3) 0<{y<l =

motion is consistently decaying without any oscillations, i.e. there is no such thing
as an eigenvalue solution. In the second case where {, =1 the system is critically

damped and the motion is still consistently decaying without any oscillations. In
the third case where 0< ¢, <1 the system is under-critically damped and the

motion is oscillating with a frequency of @; = @y+/1— {02 , but still decaying.

(This is identical to that which was obtained in Chapter 2.2, where the various
types of motions are illustrated in Fig. 2.3 and a more comprehensive solution to
the case that {, =1 is given in Eq. 2.18.)

Let us then consider the more demanding case of a two degree of freedom

system
1 0 1 0 2 -1
M=M cC=C and K=K
01 01 -1 1

It is convenient first to solve the eigenvalue problem (K—/QOM)(P() =0,

rendering
L o35, o
T T K 2 2 0382
K {("1} -0 -
01— e P _|06I8
K @, (1618

@, :0.6181/£ rad/s & @, :[ : } = @, ={0'526}
I M 17 1.618 1710.851

@,, =1.618 K adis & ¢ { ! } = @ :[0'851}
2 \ M %27 0.618 2710526
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Then, by adding C the eigenvalue problem is given by (A + ﬂB) ¢z =0 where

o =[o /1(p]T , and where

0 0O -1 0 1 0 0 O
A{o —I}z 0 0 0 -1 B:{I o}_ 01 0 0
K C 2K -K C O 0OM 00 M O
-K K 0 C 00 0 M
A0 -1 0 0
0 2 0 -1 &,
= > -1 (C/K+AMJK) 0 a0 |0
-1 1 0 (C/K+AM/K) || Ap,

The non-trivial damped eigenvalues may then be determined from the requirement
that the determinant to the coefficient matrix is zero, i.e. that

Rl

C M

d th Al —=+A1— :__+_:_ -
and thus (K+ Kj > 20

where 20 =a)§n, n=1,2, and where 6001 and %2 are the un-damped
eigenfrequencies of the system.

Thus +(C/M) /1+ab =0

:——+ __+
= \} 2M \/wo 2M

Introducing g“on ZC/(ZM(I)On), n=1,2, then i/a)o =—{, iyl- g“o

Thus, the following roots are obtained:

ﬂl/%lz_gol-’_i\'l_é/()zl 23/6002 +l\}1 §02
ﬂz/wol =—§01 _i\ll_g()zl 14/6002 =_§02 —i\ll—foz

It is seen that the eigenvalues come in complex conjugate pairs. The
corresponding eigenmodes may be obtained from the third row of the equation



204 4 The Finite Element Method in Dynamics

cC M 3 5 @, [1.618
20—, + | =+ 12 |p =20, — 2N, 022 =
O~ + (K"‘ Kj(”l @ (02"'[ > 2J¢1 o {—0.618
IR IO 0.526
P=2 7 618 P=P2= 651
Le.
o P 0.851
P3=P4= o618 P37 506

which is identical to that which was obtained for the un-damped case. The reason
for this comes from the choice of damping matrix which contains no coupling
between the two degrees of freedom. In a general case the damped eigenmodes
will also be complex, implying there is a phase (time lag) between the occurrences
of the various degrees of freedom.



Chapter 5
The Normal Mode Method

5.1 Introduction

In Chapter 4 we developed the equilibrium condition

M-F(r)+C-r(t)+K-r(r)=R(r) (5.1)
for a general discrete system with a chosen set of degrees of freedom
T
I’=[I’l A PR I‘Nr] and subject to a corresponding set of external
T
loads RZ[RI - R, -~ R NJ . Because structural systems have very

low damping, we demonstrated that they have distinct sets of preference

frequencies @, and associated shapes of motion ¢, , which, under the

assumption of a general harmonic and stationary motion I = Re((pem’ ) , emerged

from the eigenvalue solution of the undamped and unloaded version of Eq. 5.1
(K-'M)p=0 (5.2)

These are all equations in what we define as being expressed in the physical
degrees of freedom, or alternatively, in what we call the original coordinates.
Frequency @, and associated shape vectors (@, are called the eigenfrequencies

and eiegenmodes of the system. As can be seen, they largely depend on the mass
and stiffness distribution within the system. We have seen (Eqs. 4.48 — 4.59) that
the eigenmodes @, are mass orthogonal, i.e. they are linearly independent vectors

with respect to the mass distribution. If the system is given an arbitrary
perturbation and it is left to oscillate by itself without any further external
influence, then what will occur is an eigenmode oscillation at the corresponding
eigenfrequency, depending on the type of perturbation that was applied. Thus, it

E.N. Strgmmen, Structural Dynamics, Springer Series in Solid and Structural Mechanics 2, 205
DOI: 10.1007/978-3-319-01802-7_5, © Springer International Publishing Switzerland 2014
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has been conceived that if the system is subject to any external load an
approximate solution may be obtained by separation of variables (position and
time) and a linear combination of a limited set of known (or chosen) eigenmodes,
ie.

Nmod

r(n)= >, @,1,(1) (5.3)

i=1

where 77, (t) are the new unknown variables in the system. This is an approach

that in most cases of structural engineering has proved to be reliable and accurate.
It has the advantage that it enables a direct focus on that which is important, and it
should be noted that while N, may be an uncomfortably large number, N 4

may with sufficient accuracy be chosen at a very low number (in some special
cases it may even suffice to set N4 =1). Thus, computational advantage may
be considerable. As indicated above, it should also be noted that in some cases it
may render sufficient accuracy to apply approximate shape functions, i.e. to
replace @, by @, =@, , where §, is based on sound engineering judgement of
what can be expected.

As we have seen in Chapters 1 and 3, in some cases it is convenient to
establish the dynamic equilibrium conditions in a continuous format. For instance,
the differential equilibrium condition for a simple beam whose motion is
exclusively in the Z -direction is given by

m_-¥ +c, F,+El 1" =q, (5.4)

in which case the shape functions are continuous ?., (x) and thus

Nmod

r,(x,1)= Z . (x)-1, (1) (5.5)

n=l1

The concept is known as the normal mode method. The method is intended
for the calculation of dynamic load effects. For low frequency (quasi-static)
type of problems it may be advisable to replace the eigenmodes by static
shape functions, or alternatively to pursue a solution in original degrees of
freedom.

5.2 The Discrete Normal Mode Approach

In a discrete format it is convenient to define the mode shape matrix

®=[0 @ @ - Oy, (56)
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where @, (n=1,2,...,N_ ) contains the mode shape numerical values, each

associated with the corresponding global degree of freedom number
p=12,...,N,

T
®,=[d & -~ 6, - oy ] (5.7)
and a time dependent unknown vector
T
n)={m m - Mo Mg ] (5.8)
(The content of N is often called generalised coordinates.) Thus, Eq. 5.3 may be
written
Nmod
r(t)= 2, @,7,(1)=®-n(1) (59)
i=1

Fig. 5.1 Discrete system
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Introducing Eq. 5.9 into Eq. 5.1 and pre-multiplying the entire equation by o’

will then render
' MPi (1) + D' CON(t) + D' KD (1) =P"R(¢) (5.10)
Defining the modally equivalent structural properties
¢ modal mass matrix: M=o Md
e modal damping matrix: C=®’C® (5.11)
e modal stiffness matrix: K =®"K®
and the modal load vector
R(1)=®"R(r) (5.12)
then the following modal dynamic equilibrium condition is obtained
(5.13)

Due to the orthogonal properties of the mode shapes all the off diagonal terms in

M and K are zeros. Thus

M:diag[MJ M,=¢'Mo,
- where - . (5.14)
K:dlag[Kn} K,=9,Ko,
However, introducing an arbitrary mode shape ¢, and its corresponding
eigenfrequency @, into Eq. 5.2
(K—ij)(pn =0 (5.15)

and pre-multiplying by (pg it is readily seen that kn may more conveniently be

determined from
90.Ko, =@M, = K, =w'M, (5.16)
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Furthermore, the damping properties of a structural system are usually obtained
from unloaded decay motions or ambient more or less resonant recordings, i.e.
damping data are in general associated with a particular mode shape. Therefore, it
is common practice to introduce N, , modal damping ratios ¢, , each associated

with its corresponding mode shape and critical modal damping 2M 2@, - Thus
C=diag| C, | where C,=2M,0,¢, (5.17)

The modal equilibrium condition in Eq. 5.13 together with the basic coordinate
transformation in Eq. 5.9 may then be used to solve complex dynamic load effect
cases. A solution strategy in time or frequency domain is optional. It should be

noted that, apart from loading time series R (t) , it is in a modal format sufficient

to know the content of the mass matrix M, the mode shape matrix

n

(D:[(pl @, Py d:|’ corresponding eigenfrequencies @, and

damping ratios ¢, . (Le., as soon as a necessary set of ¢, and corresponding @,

have been determined then the stiffness matrix K is no longer needed.) Modal
damping properties are further discussed in Chapter 9.
Example 5.1

The three storey shear frame shown in Fig. 5.2 has original degrees of freedom

t(()=[n n n]

Associated with each of these degrees of freedom it is subject to the external load
@, is its second lowest eigenfrequency

R= Re[aR . eiwzt] where T
a, = [1800 1800 900] (with unit N)

The three storey shear frame has previously been dealt with in Example 4.3,
where the two lowest eigenfrequencies and corresponding eigenmodes

@ =~ 2.5 rad/s and @, =[025 055 08]

@, =5.5 rad/s and @,=[041 041 —0.381]
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Ry 1y M, =3-10%kg
H— | —_—
Ely _ N
H, | 12(55) =3+10"N/m
Ry 1, M, =6 -10%kg
=
W, | 12(<5) =6+10*N/m
R, I, M, =6-10°kg
—‘- I — | —_—
El .
H, 12(FJ1=9'1° N/m
o =T —————
L

Fig. 5.2 Three storey shear frame

were obtained by an inverse vector iteration procedure. The mode shapes
(including the third) are illustrated in Fig. 5.3.a. It is assumed that the

corresponding modal damping ratios are given by ¢, =0.02, {, =0.025 and

¢ =0.03. In addition to this we need the mass matrix

M, 0 0 2 00
M=l 0 M, 0 |=3-10°|0 2 0] withunitkg
0 0 M, 00 1

Since the load frequency is exclusively identical to @, it is assumed that a

sufficiently accurate solution may be obtained in a modal approach where only
the two first eigenmodes are included, i.e. that

i oy O 025 041
— — _ 771 _ 771 _ 771
r()=|n|=0n()=[¢, @] |~ Dy P =10.55 041 "
3 ? Pz P ? 0.8 -0.81|-"

Then the modal equilibrium condition is given by |\7|I‘] + él‘] + KI‘] = ﬁ

where
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T

a0 025 0.41 2 0 0][0.25 041
~={01 }:dJTMcD: 055 041 | 3-10°/0 2 0/[055 0.41
2 0.8 -0.81 0 0 1/|08 -081
Y 4110 0
= M= M, 9 =
0 M, 0 3986

& G 01_ 2M, @, 0|40
0 G 0  2M,w(,| | 0 1096

N -
k| & o_|em, 0~ [0 0
0 K, 0 @M, 0 12
- R . Ta .
and RZCDTR:{NI}:[% (pQ]TRe(aR-e’w’)zRe {%T R}""’
R, Pa,
025 0417 1800
= it 2160 | o
= R(1)=|0.55 041 | -Re||1800 ¢ |~Re |
08 —081 900

The solution to the modal equilibrium equation
M, 0 |7 c1 0 771
T
a, anz] ,
which introduced into the equilibrium equation
M, 0 ¢, o] [K 0]« R
Red| -a®| "1 |+io| | Mt =Re| !
0 M, 0 G| [0 K, ay, R,
8 i . R/K
and pre-multiplication by K™ renders a, = E :l = Re{H(a)){ ~I;I€l }}
2 2

. H 0
where H ( a)) = . and
0 H,

is given by n( ) Re( 'w') where

. . _ (@)’ -2 (w/w)
~(@a) +20a) [1- (/)] (2L o/a)
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. ! (@) ~i25, (0 w)
1-(0/@,)’ +2i(0/@,) [1_(w/a)2)2}2+(2§2w/w2)2

The trace of the absolute value of the frequency response matrix is illustrated in
Fig. 5.3.b. Thus

|| _ o\ _ Ifll(w)'kl/[gl iax
n(0)=| | Refa, < )-Reﬂm(w)-éz/kj'e ]

i P Pn ]
and since r(l‘)= 7, =¢I’](t)= Dy Py |: ! then
7 |
r D3 P

¢11H1 (a))Rl/Kl +¢21H2 (a’)Rz/kz
r(t)=Re| | ¢, H, ()R /K, +6,,H,(0)R, /K,
¢13H1(a))R1/K1+¢23H2( )Rz/kz

o|H Ma leiwt/kl +¢21‘ﬁ2(a))‘e_iﬁ2 a;ézem/[gz
=Re| | @, |H P, em’t/lg +¢22‘1T:I2 ‘ —ih2 akzem/lzz
d3|Hi ()¢ ag elw[/K1+¢23‘H2 ‘ e a;ézeiw[/kz
where
. 2 e _ 2 0e
= {[1-(@ay T +26 0/} anf = s
and
e 26,0/ @,
A 27? 2 =529
H, ={[1—(a)/a)2) } +(28, 0/ wy) } tan 4, 1- (/)
Thus

Hl(a))‘(akl/lzl)cos(at B) +¢21‘H2 a)‘ aRz/Kz)cos a—p)

)(a, /K2 ) eos(
rz(t)zqz‘ﬁl a)‘(akl/f(l)cos ar—f) +¢22‘H2 (@ (aR2/I€2)cos(ax—ﬂ2)

)(, /K2 eos(

4

r3(t)=¢131:1 a)‘( /K)cos (ax-p) +(/)23‘H2 (@ aRz/Kz)cos a—p)

A plot of the response displacements are shown in Fig. 5.
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Fig. 5.3 Mode shapes and modal frequency response function
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0 5 10 15 20
t(s)

Fig. 5.4 Response displacements, @ = 5.5 rad/s , B, =-0.023 and B, = 71'/2

5.3 The Normal Mode Approach in a Continuous Format

The main idea behind the normal mode approach is to enable the designer to focus
on the important aspects of the problem and to weed out superfluous
computational efforts. For a continuous line-like system it is favourable to
establish the necessary equilibrium conditions in accordance to the cross sectional
three component load and displacement vectors illustrated in Fig. 5.5. Thus, the

mode shape for such a system will contain three components @, , ¢, and @, as
shown in Fig. 5.6, and correspondingly, for a multi-mode approach it is

convenient to organise the mode shape in cross sectional components as shown in
Fig. 5.7, i.e.

ry x,t) Nmod ¢y(x) Nmod
r(xe)=|rn(xe)|= D | 6.(x)| 7,(6)= D @,-7m,(t)=®(x)-n(t) (5.18)
()| " gp() "

where <l>(x)=[<p1 P, - @, - (meodJ (5.19)
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I‘z\
™~
-$_ r
e, [of g i
> —>>
sC \ y
ry
,Li_
Fig. 5.5 Cross sectional loads and displacements
T
®.(x)=[0, 4. ] (5.20)
T
and n={m m - no Mg ] (5.21)

(Return to a discrete description may readily be performed on final equations.)

Similarly (see Fig. 5.5), the distributed and concentrated load vectors are defined
by

T T

a(xt)=[a, 4. q,] and F;(x,.0)=[F, F. Fg]j (5.22)

Let us for simplicity also assume that the system contains no concentrated mass
set into dynamic motion. The dynamic equilibrium condition may then be
obtained by applying the principle of virtual work as obtained in Eq. 1.119, i.e.

Nf T
> {0 (xp )} F;+[or" qdx=[or"m fdx+ [ 51" e fdx
Jj=1 L L L
+J[§ry' (ﬁry' —Myré)+5rz'( Nil =M 1)+ Sr)ELr] +8r/ELr!  (5.23)
L
+0r, (GI,rg' + Negr, —1\7Iyry' —Mzrz')}dx
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Fig. 5.6 Continuous systems

Mode 1 Mode n Mode N 4

Oy1 \Pz1 |\ Por >¢yn( Ozn [\ Pon <¢yN )¢zu Pon

t Torsion

Vertical
Horizontal

Fig. 5.7 Multiple modes for a continuous system
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5,(0] 4,
where ot(x)=| or.(x) |= D | .(x)| om, =®(x)-6n (5.24)
Srg(x)| " | dp()
T
and é‘n:[é‘m 577” 577Nmodj| (5.25)
m, 0 -mge, c, 0 0
and where m, = m, me, |and Cy= c, O (5.26)
Sym. my Sym Co

see Eqs. 1.106 and 1.107 (excluding contributions from the motion in the x
direction). Defining

4]
7 |=®(x)n(r) where @=[@, - @, - @y [and@, =g’
2 2
(5.27)
b A o
17 |=®(x)n(r) where ®=[@, - @, - @y |and@,=|g
7 | % |
and, similarly
er' ﬁry”
or; :a)(x)é'n(x) and or; :a)(x)é'n(x) (5.28)
or, or,
then Eq. 5.23 may be written
NF T T T ..
2 {®(x;)on} F,+[(®on) qde=[(®sn)" m, (Oi)dx+
= L L (5.29)

[(@on) ¢, (®n)dx+ J(éﬁn)T k, (é)n)dx+ J(&Jﬁn)T kg (®n)dx

L

where
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EIl, 0 0 N 0 -M,
ko=| 0 EI, 0 and K;=| 0 N -M, (5.30)
0 0 &I, -M v

A72
y M, Ne
Performing the transposed operations

N
5nTZF{¢(xF )}T FJ +5nTJ‘¢qux:5nTJ‘¢ng¢dxn+
J=1 7

L

(5.31)
on' [® e ®dx-n+on’ |
L L

@'k, ®dx-n+on’ [®"k®dxn
L

it is seen that pre-multiplication by 5r|T may be omitted, and thus, the dynamic
equilibrium equation in modal coordinates is given by

M-fi(r)+C-n(r)+K-n(r)=R(r)

(5.32)
M= [®'m, ddx
where b (5.33)
C=[@'c,®dx
L
K, = .[ ¢ Tkoadx
K=K, +K;  where o (5.34)
K; = [0k ®dx
L
. NE T
L . Ry :Z{q’(xF)} F,
and R=R;+R, where Y (5.35)
R, = j¢qux
L

T
[If there are concentrated masses Mi =|:MV M, M 9] in motion at
- ’ ' j

positions X, j=L12,3,...,N,, then the modal mass calculation in Eq. 5.33 is

N
expanded into M= I¢ng¢dx+ ZM‘ {(D(xj )}T M, ]
L J



5.3 The Normal Mode Approach in a Continuous Format 219

Elaboration 5.1: Mode Shape Orthogonality in a Continuous Format

The organisation of the mode shapes in Egs. 5.19 and 5.20 is different (but usually
more compact) than that which is obtained from a finite element solution of the
system in original degrees of freedom, defined in Eqs. 5.6 and 5.7. However, the
orthogonal properties of the system still apply. This is readily seen by considering
the undamped and unloaded case to Eq. 5.32, in which case the relevant harmonic
solution is given by

T
where a=[a1 @, oAy d} is a vector containing the amplitude

contributions associated with each of the modes that participates in the motion.

Introduced into Eq. 5.32 (with Cand R at zero) the following is obtained

(R—w2|\7|)a=o

from which a non-trivial solution @+ 0 can only be obtained if K and M are the
solution to the eigenvalue problem of the system, i.e. they are diagonal

RZdiag[IgnJ and I\NII:diag[MJ

while @ = @, is the corresponding eigenvalue of the system.

The orthogonal properties may also be shown by return to the basic differential
equations of unloaded and undamped equilibrium shown for the case of
continuous systems in Chapter 1 (see Eqgs. 1.29 and 1.40)

e y-direction equilibrium m, i, +EI r;/// —0
e  z-direction equilibrium m, ;;Z +E Iy rgm -0
e torsion equilibrium mgiy +Gl,rg =0

Let us for instance consider the differential equation of vertical equilibrium and
introduce two equally valid harmonic eigenvalue solutions

/1 1727 2
|9 @t ELY" =am ¢~ (1)
rZ (x’t) - eiwmt = EI ¢”” — a)zm ¢ (2)
Zm Y m"" 2Pz,
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Let us then pre-multiply equations (1) and (2) by ¢Zm and ¢Zn , respectively, and

integrate over the span of the system
V22 v
(1) j 0. El ¢ dx =] j ¢, m.¢, dx
L L

@ [o, El¢" dx=a), (¢, mg, dx
L L

Taking it for granted that the system has simply supported, fixed or free ends, and
integrating the left hand side of these expressions by parts twice

1 m o |L ’ m
I¢Zn Ely¢1m dx = ¢Zn EI}’¢Zm 0 B .[¢Zn EI}’¢Zm dx
L L

/7 4 L V4 4 4 44
=gl EL¢! | +[00 ELo! dx=[o7 El¢7 dx
L L
it is seen that

(1) [gr Elg! dx=a}[p, m.g, dx
L L

@) [oELg dx=a] [, mo, dx
L L

Subtraction (1) — (2) will then render: (a),f — a),fl )J.¢Zn mz¢zm dx=0
L

and since a),f - a),?1 #0 for n#m then I(Z)Zn m,@, dx=0
L

which proves the mass orthogonal properties of the mode shapes associated with
vertical motion. For the other displacement components an equivalent proof may
readily be developed.

Thus,

M=[®'m, ®dx=diag[M, ]| where M,=[@]m,@,dx (536
L L

K:RO+RG :diag[kn] where K, =M (5.37)

and, similarly to that which was adopted in the discrete modal approach, we define
the modal damping matrix by (see Eq. 5.17)
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C=[0'c®dr=diag[C,]  where C,=2M,0,{, (538)
L

where ¢, is the modal damping ratio associated with mode shape @, .

Case 1: Multi-mode Approach

In case of a multi-mode approach the equilibrium condition in modal degrees of
freedom is given by Eq. 5.32 and the necessary calculation of modal mass may
readily be obtained by combining Eqs. 5.26 and 5.36, rendering

M, =[@)m@,dx
L (5.39)
= J.|:¢)’n my (¢Yn N 2ez¢9n ) + ¢anz (¢Zn + 2e)’¢9n ) + ¢§n mg]dx

L

The modal load R =R rt R 4 1s obtained from Eq. 5.35, rendering
. Nf T - - - T
Ry =Y {®(x)}'F, Z[RFI Ry e RFNmod:|
(5.40)
where R, = Zl(qﬁynij +¢, F +¢9nF9j)

3

and

T
~ _ T 15 ~ -~y
R,=[® qu_[qu o R, RquOJ
L 5.41)
where R, =_[(¢ynqy +9. 4. +¢an%)dx
L

Case 2: Single-Mode Approach

In case of a single-mode approach the equilibrium condition is reduced to

M, ij(t)+C, n(t)+ K, n(t)=R, (1) (5.42)

where Rn = an +1§qn and all other quantities are defined in Eqs. 5.37 — 5.41

above.
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Elaboration 5.2: The Rayleigh Quotient in a Continuous Format

It has been shown above that K W= a)f M n 1.e. that (03 = Ien / M
:T = ~T —
~ ~ -~ J¢nk0‘pndx+ J(pnkG‘pndx
— n __ n — n

Thus: W, =——= =L T
Mn Mn J.(ang(pndx
L

This is the so-called Rayleigh quotient, here expanded to apply to any line-like
system with non-symmetric cross section and the possible presence of time

invariant forces N, M y and M .- Using sound engineering judgement and

setting

T

P, :|:¢yn 9., 9, :|T ~W,= [l//yn Ve l/len]

then the Rayleigh quotient may be used to make approximate calculations of the
eigenfrequency

W = [ [whkow, dx+ qjgkcmndx] / [wim, g, dx
L L L

Introducing Ky, K; and m, from Egs. 5.26 and 5.30 then the following is

obtained
[lwi2Er +v 2Bl +yi GlL+ N(vE +y2 +vie])
L
(02 _ _21//;11 (l//;nMy + l//;nMZ ):|dx

J[z//ynmy (l//yn —2e.yy )+1//anz (l//zn +2e Wy )+z//§nm9}dx
L

It should be noted that for simplicity warping torsion effects have not been
included above. It may readily be inferred from Eqs. 1.39 — 1.42 that the stiffness

contribution from this effect is given by _[ ; l//g ’EI w»dx . It may simply be added to

the numerator above.
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4
q,(x,t)
/

Example 5.2

0,

w LN\
N

Fig. 5.8 Simple symmetric beam subject to distributed load ¢, (x,t )

Let us consider the beam shown in Fig. 5.8. It is subject to a distributed and
dynamic load

q,(x.1) =Re(qoei"’t)= 9 -Re(eiw) =g, - cos(ar)

Its cross section is for simplicity symmetric about y and Z axes, such that its

shear centre coincides with the centroid. It is taken for granted that cross
sectional properties are constant along its span. We know from Chapter 1.2 (see
Example 1.6) that the two first mode shapes of such beams are given by

=sin(7x
? ) ( X)A where )AC=X/L
@, =sin(273)

Using the Rayleigh- quotient (see Elaboration 5.2 above) then the following
eigenfrequencies are obtained:
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L L
_fEIy((pl”)de IEI}[ 7r/L sin lrx/L)]
2_0 0 4 EI,
a)l = i3 = i3 =T 7
2 m_L
jmz(pl dx Imz [sm ﬂx/L] dx
0 0
L L
I , (95 jEIy[ (272/ L) sin( Zzz'x/L)J dx
2_0 0 4 EI,
a)z = = 7 :(27[) 7
m,L
_[m @5 dx _[mz [sm 27x/L ] dx
0

The system has the following modal properties:

L
1, = ‘[mz(plzdx =m,
0

j
0 L 2
L 27X m.,L
2 _ "
and M, —_[m @y dx = mzz‘;sm(—L de— 5
227 o207
. =M, K, =auM,
while " - and - -
G =2M ¢, C, =2M,w,¢,

Similarly, the modal loads associated with mode shapes @, and @, are given by

_L dx=R ,-V,,L. X _ 2Lq, Re (@
[ Re) e sin| %X x| = 2L R

0 0

L L
R, = I(quzdx = R{qoe""” jsin (Z—JLDC) dx} =0
0

0

Thus, the modal equilibrium condition is given by m () + c A1)+ Kn ()= R (1)

M:M19:m_L10
0 M, 201

o o] 9 _ 2M, w6, 3 0 _mL 20,¢; 0
0 G 0 2M,0,¢, 2 0 20,8,

where
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SR o
L0 K 0 wM, 0
ﬁ;ﬂ [ZL%H j
R, r |0
Y LM 2l
The steady state solution to this equation is given by: (s {ZJZRG[{ } imj.
Thus
{6 b Ll et
. refE(ol] - {ﬁjj;l HE }
e E(0)- {i-(a/@) +2i(0/m)¢)]
0 {1—(w/w2>2+2i<w/w2>;2}

is the non-dimensional impedance matrix of the system. The unknown amplitude

T
vector @ = [al az] is then given by

2 B 2 B
A, = 1—(3J +2i[ﬂJ§1 and Flzz{l—[ﬂj +2i(ﬂjg“2}
@ 2} @, @,

H(a)) is what we call the modal non-dimensional frequency response matrix.

Thus,
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772 612
4 A 1, 4 A
=la %IR@{ %z*ﬂw%{}e“}:4@%~R4H¢M}
Tmay 0 Tma;
2
; 1- —i2
Since H, = 1 — (w/wl) L gl(w/@)

1—(a)/a)1)2 +2i(w/ o) [1—((0/&)1)2T +(2§1(0/w1)2

then

‘ﬁn‘:\/ﬁflﬁu = 12
[i-@a) T +@600)

Hll :‘Hll"e_l¢ where

tan ¢ = Im(ﬁ“) _ 2 0/e
Re(ﬁll) 1_(w/a’1)2
4 5 | —io i 4 q
rz(x,t)=%~Re{‘H1‘e ¢e”}=%~‘Hl‘cos(M—¢)
Tma; Tma;
Thus 2 gL sin(7x/L)-cos (ot — @)

KIJ@%MMYT+@QW@V

As can be seen, the 2" mode shape is not excited at all. The reason for this is that
the load is evenly distributed and constant along its span while the spanwise
integration of the 2" mode is zero. In general, a load that is constant along the
span will only excite symmetric modes.

Example 5.3

Let us consider the case of an identical beam to that which was investigated in
Example 5.2, except in this case it is subject to a concentrated dynamic load

F(t)ZRe(FO -e’m) at xp =L/3 as shown in Fig. 5.9. Still @, =sin(7xXx)
and @, =Sin(2ﬂ'fc), fc=x/L and, as shown in Example 5.2, then
o =7'El, Im [} and @ =(2x0)' EI, [mL* while M, =M,=m_L]2,
K =M, K, =M, C,=2M,0\{, and C, =2M, .



5.3 The Normal Mode Approach in a Continuous Format 227

A F(t)

Z
B Vol
_
Ely, m,

&
o

r,(x,t)

2L/3 ‘

|

Fig. 5.9 Simple beam with concentrated dynamic load F' (l‘ ) =Re ( Fy- i )

However, in this case

R =¢(x=1/3)F(1)=sin(z/3)-Re| Fpe | zgRe[FoeW]

and R, =g02(x:L/3)-F(t)=sin(27z’/3)-Re[F0ei“”]=§-Re[F0ei“’]
and thus the modal equilibrium condition I\7|n(t)+6n(t)+Rn(t)=ﬁ(t)

with N = Re([al a, ]T eiw’) given by

o S e RS

Thus n(t):@Re{l:l(a))_l/ “’E}W}

mL _1/6022

where

A

A, o Ay =[1-(0)0) +2i(0f )6, |
H(a)): 0 [:[ and

Thus, (see Example 5.2 above)

fi =[1- (o)) + 20 (/) 8, |

K" |H,, ()|-cos wt— ¢,
HM{MFJ%bf 11(@))-cos(@r—¢)) "
] 2 K

A

Hy, (a))‘-cos(a)t—(pz)
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o[l T rnoar| T =2

The dynamic response at an arbitrary point X is then given by
n (1

s) =00 () =[a() (o] 1) = () o))
2

ﬁ{ F

5 T‘Flll (a))‘sin[%)cos(wt -¢) +I]§_(;‘ﬁ22 (w)‘sin[%}cos(a)t -9, )}

Elaboration 5.3: Determination of Cross Sectional Forces

In the case of a discrete normal mode approach the results of the calculations are
the displacements in original finite element coordinates I (t) = CDr](t) . Thus, the
element end forces may be calculated the way it would be done in a regular finite
element approach, i.e. F, ()= m&n + cdn +kd, where d,(1)=A,r(1), see

Chapter 4.
In the case of a continuous normal mode approach

T,

y b= 0] (pn @ o
r(x,t): r, :(D(x)r](l‘) where [ : N d]

" 0,=[¢, 0. 0]

Since (see Chapter 1) M, = Elzry” , My = —EIyrZ and M, = Gltrg' it is seen
that

M_(xt) ] [EL(x) 0 0 | n(x) .
—M} (x,t) 0 EI} (x) 0 rz”(x,t) =k, (x) CD(x) r](t)
M, (x.1) 0 GI(x)| 75(x1)
=N T2 = = EI, 0 0
where (D(X)_[(pl ¢ (meOd} andko(x)= 0 —EI, 0



Chapter 6

Frequency and Time Domain Response
Calculations

6.1 Introduction

The relevant equilibrium equations that are necessary for the pursuit of a solution
to the problem of dynamic load effects have been developed above, in Chapters 4
with respect to the original degrees of freedom (see Eq. 4.39) and in Chapter 5
with respect to the modal degrees of freedom (see Eq. 5.13 for a discrete system
description and Eq. 5.32 for a continuous system description). In this chapter we
shall present possible solution strategies. Basically, one is free to choose
whichever approach is deemed most suitable solution strategy, e.g. with respect to
efficiency or accuracy. In any case, there are three alternatives:

e a solution in time domain where the load and corresponding response
development is pursued stepwise for a sufficiently long period of time, in
which case time series of the structural response is obtained,

e an incremental stepwise state-space solution in time domain based on the
Duhamel integral and applying the fluctuating load as a consecutive sequence
of short impulses, or

e a solution where a Fourier transform is applied throughout the equilibrium
equation and the problem is transferred into a frequency domain description,
in which case a frequency domain spectral representation of the response is
obtained.

Below, the time domain approach is presented in Chapter 6.3, while the frequency
domain approach is presented in Chapters 6.4 and 6.5. The state-space solution
and the Duhamel integral are presented in Chapter 6.6. For the sake of
completeness the time invariant mean (static) as well as the quasi-static solutions
are presented in Chapter 6.2. The quasi-static solution is only applicable if the
there are no significant dynamic effects in the system, i.e. if the effects of

E.N. Strgmmen, Structural Dynamics, Springer Series in Solid and Structural Mechanics 2, 229
DOI: 10.1007/978-3-319-01802-7_6, © Springer International Publishing Switzerland 2014



230 6 Frequency and Time Domain Response Calculations

Fig. 6.1 Cross sectional force components

F, A
A F -
FoT
F(t) =
< Fmax % I:max
I_= T p(Fmax)
t
s
=)
<
g
a
> —>
t

p(F,)

Fig. 6.2 Necessary cross sectional strength considerations
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structural velocity and accelerations are negligible. This may be assumed to occur
if the load is slowly fluctuating at low frequencies or if the lowest eigenfrequency
of the system is beyond say 5 Hz. (However, it must not be inferred from this that
beyond this limit there are no fluctuating load effects, as the limit is only an
indication of where inertia and damping effects are negligible. Beyond this limit
there may still be considerable quasi-static fluctuating stresses.) Otherwise, the
solution strategy must be based on the methods shown in Chapters 6.3 — 6.5,
whichever is most suitable. In any case, it is taken for granted that the total
displacement response may be obtained as a sum of the time invariant solution
and a fluctuating part I‘(t), ie. I, (t) :F+I‘(t). Having determined the
fluctuating total dynamic displacement response it is in all design cases necessary
to determine the corresponding cross sectional design forces F,, =F + F(t) for
all elements 7 in order to enable a safety assessment of the system. In a time
domain solution extreme values may be taken directly from time series as
illustrated in Fig. 6.2. In a frequency domain solution where it is the spectral
densities of the response that has been determined, Srr (a)) , a similar approach
may be adopted together with a time domain simulation of the relevant response
quantities (see Appendix B), or from a probabilistic approach where the extreme
values are obtained from the standard deviation of the dynamic response

multiplied by a statistically appropriate peak factor (see Appendix A and
Elaborations 6.3 and 6.4).

6.2 The Time Invariant and Quasi-static Solutions

It is generally recommended that the time invariant and quasi-static solutions are
pursued in original degrees of freedom. The reason for this is that a solution in
modal degrees of freedom is associated with displacement functions obtained from
the eigenvalue problem, i.e. with the mode shapes of the system, and these
functions may render a solution whose derivatives deviates considerably from the
more relevant static solution.

The Time Invariant Solution

The time invariant mean (static) solution in original degrees of freedom may be
obtained from Eq. 4.38, i.e.:

r=K'-R (6.1)
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The corresponding cross sectional forces on an arbitrary element # may be
obtained from Eq. 4.26, i.e.

F =kd =k,A,TF (6.2)

where K, =(k, +K;)

0
The Quasi-static Solution

If the lowest eigenfrequency of the structure is high, and the structural behaviour
is quasi-static, then the solution may be obtained as a sum of the time invariant

solution F (given in Eq. 6.1 above) and a fluctuating part
r(r)=K™"-R(r) (6.3)

If R(t ) is known for a sufficiently long period of time, then I'(l‘ ) may be

obtained directly form Eq. 6.3. If only the stochastic properties of the load process
are known quantities, i.e. if only the cross spectral densities of all load
components are known

SRlRl SRlRi SRle SRIRNr
SR,'R] o SR,'R,' o SRl'Rj SRiRNr
Se(@)=| : - : : 6.4)
S, N T
RjRy RjR; RjRj RjRN,
_SRN,,RI SRNrRi SRNer SRN,,RN,,_

where N, =6-N , and N, is the number of nodes in the system, then a time

domain solution may still be pursued, but this will require the time domain
simulations of R, e.g. as shown in Appendix B. Alternatively, a stochastic
solution may be directly obtained by developing the corresponding covariance
properties of the displacement components, i.e.
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S -
On Cov,,. Cov, ' Cov, W,
Cov 2 Cov Cov
in 1 i 1IN,
Cov,, =
2
Cavrj 0 Cavrj ; g Cov i,
) (6.5)
_Coerr n C Vi 1 C OVpy ¥ N, |

=[] )" =k R} o)
_K-! .E[{R(I)}-{R(t)}T](K_I )T =K -Cov . -(K™)

T

where COV g, may be obtained from a frequency domain integration of Eq. 6.4:
CoV g =[Sy () dew (6.6)
0

Assuming Gaussian and stationary stochastic properties, then for design purposes
the extreme response values may be obtained from

=r+r_ =r+k o (6.7)

where kp is a peak factor defined in Eq. A.45 and, and where O, is a vector

containing the square root of all the entries on the diagonal of COV,, in Eq. 6.5.

Elaboration 6.1: The Spectra of the Quasi Static Solution
An alternative approach may be chosen if it is considered necessary or

advantageous to obtain time domain plots of the quasi-static response. It is seen
that by taking the Fourier transform throughout Eq. 6.3

S a()=K" a0
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where @, and @y are vectors containing the Fourier amplitudes of the response

and load, respectively, and thus the cross spectral density matrix of the response
components is given by

Som v Spm Sqrj S’err
Sen v S Srirj SrirN,
S, (0)=| :
Syn 7 Sem 0 Sey 7 Sy,
L S’N, n N, N, NN,
_Th_rfiﬁa (o)} {a, (@)} _}l_r&ﬁ{l( ay (o }{K ay (o }
Z(K_l) Thjnﬁ{aR }{aR(a))}T(K_I) ( )SRR( )( _I)T

where  Spp (@)= Tlim %{aR (a))}* {ag (a))}T . From S, (@) a time

domain simulation (see Appendix B) may be performed to obtain time series of
the instantaneous values of the response. The corresponding response covariance
matrix may readily be obtained by frequency domain integration

Cov,, =TS,, ®)dw

6.3 Response Calculations in Time Domain

In a time domain solution the total displacement response may be obtained as a
sum of the time invariant solution ¥ (given in Eq. 6.1) and a purely dynamic part

I‘(l‘),i.e.

Fy (1)=T+r(7) (6.8)

A solution strategy may be pursued in the original finite element degrees of
freedom (developed in Chapter 4.3) or in modal coordinates (see Chapters 5.2 and
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5.3). If a solution in original degrees of freedom is pursued, then the calculation of

r (l‘ ) will require the solution of the dynamic equation given in Eq. 4.39:
M- f(t) +C -f’(t) +K- I‘(t) = R(t) . If a solution in modal degrees of freedom is
pursued, then the calculation of I‘(t ) will first require the solution of the dynamic
equation given in Eq. 5.13 or 5.32: I\7In(t) + él‘](t) + Kn(t) =R (t) , after which
the response may be obtained from Eq. 5.9 or 5.18: I‘(t) =¢-n(l‘). Since the

size of the relevant matrices in a modal format is generally considerably smaller
than those in original coordinates, it is recommended to think twice before an
approach in original coordinates is chosen. However, for the sake of generality,
the symbolism shown below is that of an approach in original coordinates. There
are a number of iteration procedures available for a time domain solution strategy.
Only a selected few are included below. In any case, as illustrated in Fig. 6.3, a
time domain solution will involve some discrete representation of the load
processes R or R at time steps 7, (k=1,2,...,N, ), followed by a stepwise
calculation of the corresponding response (I or N ). Based on knowledge of the
response at time step f;, and discrete load values, the task at hand is to calculate

the response at time step ;.

RA

Fig. 6.3 Time domain

r 4

/
4/
//
TS 4
7/ N 7/
y; N
N s
/ M -
4 N _//’
/ -
< by - by
=4 £ £ 1 -+
o o o o o o
A . A -
Ll >
t t
by tk tysq tk-1 tk tisq
At At At At
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Such a forward prediction routine is called explicit if it is based on the known
response history alone. It is called implicit if it contains assumptions about the
response development or equilibrium condition in the unknown future of the

system. Le., in an explicit routine I‘(tk + At ) is a function of I, F and F at
t=t,, while an implicit routine contains some assumptions about the

development of the motion in the time step between #, and f, +Af. Obviously,

the shorter time step, the easier it is to obtain a good solution. There are two main
classes of forward iteration strategies, the direct iteration procedures and the
numeric integration methods. Some of these are presented below.

The Second Central Difference Method
Consider the situation at time step #;_;, ; and #; ;. A Taylor series expansion
of I, and F,_; is given by:

. AP
rk+1 :rk +At'rk +Trk + .-

. AP ©9)
rk_l :rk _At'rk +Trk e

Thus, considering only the three first terms of the Taylor series expansion,

I, —¥,_; renders

. 1
abyv (P =Tt (6.10)

while I, +I,_; renders

. 1
F,~——(r., —2r +r,_ 6.11)
LR (k+1 [ 1)

Dynamic equilibrium at #; is given by
M, +Cr, +Kr, =R, (6.12)

Introducing F, , F, and F, from Egs. 6.10 and 6.11

1 1
M—:(r,-2r, +r,_,)+C—-(r,.,-r._, ) +Kr, =R 6.13
AL (Fesr =20 +1) A7 (M1 =Ty ) +Kr =R, (6.13)
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and solving for I
At 1 At
M= (M +7C) |:At2Rk + (2M - At2K)rk —(M —7erk_1j| (6.14)

Thus, it is seen that F,_; may be estimated based on knowledge about the load
and response quantise at f; and f,_;, i.e. this approach belongs among the
explicit routines. For the establishment of initial conditions at # =0 before the
iteration procedure can start it is necessary to define (choose) F, and ';0- From

dynamic equilibrium (Eq. 6.12) at £ =0 the corresponding acceleration
i, =M"-(R,-C¥, —Kr,) (6.15)

is obtained, while eliminating F; from (see Eqs. 6.10 and 6.11)

. 1
fo=——(r-r,)
21” (6.16)
fp~——-(r, —2r,+r_
0572 (n—2r+r)
. AL
renders r,=ry—At-r, +7r0 (6.17)

Then, introducing this back into Eq. 6.15, the following is obtained
Ar Y At
r= (M +7CJ {Aﬁno + (2M —AﬂK)rO —(M —7er1} (6.18)

The stability of the second central difference method may be evaluated by
considering an undamped and unloaded single mode system (se Eqgs. 6.13) with

modal mass M . » stiffness I€n and eigenfrequency a),f = Kn / M nt
- 1 -
Mn_z(rkﬂ =25 +1)+ K, =0
At (6.19)
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which, for a simple harmonic motion r=Re(a-elt) (where a 1is the

amplitude), will render

0

ae ) 4 (Atza)f - 2) ae™k + geMk=)

= (eM’)2 +(AP@; —2)e™ +1=0

(6.20)
() T
e
1 2 2 2 2
=—|2-A T Atw,\ A" @ -4
= (eMt) 2|: 1@, W, A\ At @) }
2
and thus the response at f;_; is given by
Ty = Re{aewk +At)} = Re{aeﬂt" e’w}
(6.21)

- Re{aebk [cl (e/w )1 tq (e/w )2 J}

where ¢; and ¢, are constants dependant on initial conditions. In a second order

equation ax® + PBx+y=0 the product of the roots X" Xy = 7// o . Thus, it is

seen that (eMt) . (e’w) =1, and it may be taken for granted that both roots are
1 2

distinct. A positive radicand in the solution in Eq. 6.20 will render two real roots,
and since the product of the two roots is unity one of them must be larger than
one, and thus, the solution is consistently growing, i.e. it is unstable. A negative
radicand on the other hand will render complex roots, and the product of the two
roots can only be unity if they are complex conjugates and both has an absolute
value equal to one. Thus, the solution is numerically stable if

Aa? —4<0 = A< 2 (6.22)

@,

where (obviously), @, is the largest eigenfrequency expected to play any

significant role in the response behaviour of the system. In any case At should
not be chosen larger than about 1/(2meax) where @p is the largest

frequency contained in the load.
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Numeric Integration Methods

239

The numeric integration methods belong among the implicit routines. They are
based on the assumption that future response quantities may be obtained from the
situation at the onset of the time step and an integration of the approximate higher

order development between time steps, i.e. that

At
Foy =F + _[r(r)dr
fz where 0<7<Af (6.23)
=+ _[ r(z)dr
0
r [ r
//
______ _-
’7 _____ _‘ B
I T > T ’ |/ 1 >
tk tk+1 tk tk+1 tk tk+1
r r r
-~
- -7 - P //
e - g -
I [l T » T >
tk tk+1 tk tk+1 tk tk+1
r r r
/
Vs e 4
Ve / //
e PRe -,
. i P P
I I »~ 1 1 » T T »
tk tk+1 tk tk+1 tk tk+1
a) Constant initial b) Constant average ¢) Linear
acceleration acceleration acceleration

Fig. 6.4 Numeric integration assumptions
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As illustrated in Fig. 6.4 the approximation is that the acceleration variation
within the time step is either assumed constant and equal to its initial value, it is
assumed equal to the average acceleration over the time step, or it is assumed
linear across the time step. If constant initial acceleration is adopted (see
Fig. 6.4.a), then

T
F(7)=r = r(z)=r, +Ifkd1=fk H, T (6.24)
0
At
and thus N 0 (6.25)
e =1 +_[(r'k +7-F,)dT=r +At-F, +At2'r'k/2
0

If the concept of a constant average acceleration is adopted (see Fig. 6.4.b), then

. 1. . ) S . T, .
r(r)=5(rk+rk+l) = r(r)zrk+.|.5(rk+rk+l)dr:rk +E(rk+rk+1) (6.26)

0
and thus
A
A I A
e =N + J-E(rk +F)dT=F, +7(rk +Fii1)
0

At 2
. T . AL (6.27)
e =N + j[rk +E(rk +rk+1)}d1-:rk +AL-§, +T(rk +Fiir)
0

If the concept of a linear acceleration is adopted (see Fig. 6.4.c), then
F(7)=F +(F, —F)7/Ar (6.28)

in which case

. N 4 N
F(z)=F +J‘|:rk + (i "'k)Z}dT:rk +E7+(F _rk)Z

0 ! ! (6.29))

.o L T AU RN

r(z)=r, +I F +E.7+ (P _r")E dr=r, +rkr+r,<7+(rk+1 -y

0 6At
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and thus

. . . At " . A, L
Few =N + A +?(rk+1 —f ) =F, "'7('% +H,)
(6.30)

AL AP . AL AP
o =F +At-F +— +T(rk“ —f ) =1 +ALT, L 0

The concept of integrating an assumed variation of the acceleration between 7,

and f; ., presented above may all be generalised into the following formulation
(first suggested by Newmark [32]):

_ L . (6.31)
e =0 + A1 +(1/2-B)-At" T + - At T,

where ¥ and [ are weighting parameters, each to be chosen according to
prescribed requirements regarding numerical stability and accuracy. From the
second expression in Eq. 6.31 the acceleration at £,

Fea :;(rkﬂ —r)- Lfk +[L_1Ji‘k (6.32)
BAL BAt 2

is obtained, which, combined with the first expression in Eq. 6.31, renders

Fy :ﬁ( " —rk)—(%—lj-rk _[%_ljm'f" (6.33)

For convenience the conditions at ¢, may be defined by

a —;r +Lf' +(i—1j'r'

(6.34)
Pt B 2p

in which case F;,; and F,_, simplifies into

Pt = (Nesr — 8, )/(ﬁAfz)

' (6.35)
Fesr = ¥ (P — by )/(ﬂAI)
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Introducing this into the dynamic equilibrium equation at #;

Mt +Cr, +Kr, =R, (6.36)
will then render
! M+LC+K r.,=R,,,+M-a, +C-b (6.37)
ﬁAt2 ﬂAt k+1 k+1 k k .
1 /4
s = azM+——C+K
Defining - SAt PAt (6.38)

Reﬁk+1 :Rk+1+M'ak +C'bk

and thus N =K Regn (6.39)

It is seen that the response at time step £, is calculated from the load at 7, as
well as the displacement, velocity and acceleration response at f;, . If the system is
entirely linear, then Keﬁ remains constant throughout the iterations.

Hilber, Hughes & Taylor [33] have suggested an extension of Newmark’s
method by the introduction of the numerical dampening coefficient & <0 into the

dynamic equilibrium condition at 7,

and accordingly, evaluate the dynamic load at (l + a) Ly —Ot, =t +OAL . Le.,

if load linearity within the time step is adopted, then
R, =(1+2)R;,, —oR, (6.41)

Combining Eqgs. 6.35, 6.40 and 6.41 and solving for [, will then again render

-1 .
M1 = Keffk 4 'Reﬁck e but now K and R effiy Are extended into

effk+1

1 4
Ky  =—M+(1+a)—-—C+(1+o)K
fk+1 ﬁAZZ ( )ﬁAt ( ) (6.42)

R =(1+a)R,, —oR, +M-a, +C-b, +ac,

effk+1
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where

c, :($C+K]-rk +C%r’k +C(%—1]At-i‘k (6.43)

For all of the numeric integration methods the establishment of initial conditions
at t =0 before the iteration procedure can start requires the choice of F, and F,.

From dynamic equilibrium at # =0 the corresponding acceleration
i, =M"-(R, - Cr, —Kr,) (6.44)

is obtained, and thus, iteration may commence.

Stability may be evaluated from the properties of a single degree of freedom
system (or a modal approach) similar to that which has been shown for the central
difference method above. In general, the Newmark method is unconditionally
stable if

2
72y =1/2 and ﬂ%@ﬁﬂﬁ%} (6.45)

For /3 -values below [, it is only conditionally stable. The stability limit is then
given by

At < At !

o a, \/ﬂo_ﬂ

Positive or negative numeric damping is introduced into the system depending on
Y >, or ¥<Y,. Positive numeric damping may be used as an effective tool to

(6.46)

dampen out undesirable effects of higher modes in the system (which may also be
obtained by adopting Hilber, Hughes & Taylor method with —1/3 < <0). With
¥=1 and =0 Newmark’s method becomes identical to a numeric integration
method based on the assumption of constant initial acceleration which is only
conditionally stable. If =1/2 and f#=1/4 then Newmark’s method becomes
identical to a numerical integration method based on the assumption of a constant
average acceleration, which is unconditionally stable. If ¥=1/2 and S=1/6

then Newmark’s method becomes identical to a numerical integration method
based on the assumption of a linear variation of the acceleration, in which case the
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stability limit is given by Ar, =+/12 / @, . As previously mentioned Az should
never be chosen larger than about 1/ (szmax) where Wg is the largest

frequency contained in the load.

Tangent-Stiffness Approach

For large displacements or heavily non-linear material problems the stiffness may
change considerably throughout the response process, in which case a sufficient
level of accuracy may be obtained by updating the stiffness from one time step to
the next. In such cases a tangent-stiffness approach may be adopted. Assuming a
system of only short elements and sufficiently short time steps (such that linearity
within each time step may be justifiable), then the change of internal forces from

t; to f;,, is given by
ARP" =K. Ar (6.47)

where K,tcan is the updated tangent stiffness at #, and Ar =r,,, —r, . Thus, the

internal force vector at ;. is
=R +K™ (6.48)
The dynamic equilibrium condition at ¢, is then given by (see Eq. 6.36)
M i, +Crf.,, +R™ +K*™Ar=R, (6.49)

By introducing the Newmark iteration scheme given in Eqs. 6.32 and 6.33 (and
that I, —r, = Ar ) into Eq. 6.49, then the following is obtained

(ﬂm ﬂz C+K‘anj-Ar =R,,, -R"

[ e oo

Ar=K,; (R, ~R{ +M -a,; +C-b,; | 6.51)

(6.50)

Thus
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where

1 . 1 ,

o ae{ o

Such a procedure will generally require error control. This may be obtained by

minimising the estimated external load error ARerrrl , defined as the difference

between the actual load at 7, ., and the corresponding load which can be
calculated from the estimated displacements

AR =Ry, - (M P +CFy + Rikm) (6.53)

est
Thus, iterations until AR?"” is less than a specified limit will be required within
k+1 P q

each time step. Initial conditions and stability criteria are identical to those
presented above for the numeric integration methods.

Elaboration 6.2: Determination of Cross Sectional Forces

Having determined a sufficiently long time window of the response vector F; the
corresponding element end forces associated with element number 7

R,

F
Fnk ={ 1} where

may subsequently be obtained by (see Eq. 4.27):

T
:[Fl F, F F, F; F6]nk

T
nkz[F7 F K F, K Flz],,k

F,=md, +cd, +kd,  where d, =Arn
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6.4 The Frequency Domain Solution in Original Coordinates

If the load is given in the form of its stochastic properties (mean values,
covariance and cross spectral densities) a time domain solution may still be
pursued, but this will then require the time domain simulation of the load
components at all nodes (e.g. as suggested in Appendix B.3). However, in many
cases it may be more appropriate to pursue a stochastic solution in frequency
domain. Such a solution may be obtained in original degrees of freedom, or
alternatively, and often far more convenient, in modal degrees of freedom. The
solution strategy in original degrees of freedom is shown below, while the
corresponding solution in modal degrees of freedom is shown in Chapter 6.5.

From a stochastic solution in frequency domain it is the corresponding
statistical properties of the response that will emerge, i.e. the result of the response
calculation is the covariance matrix

2

o] o Covy o Covyy o Covpy,
C 2
Ovil ce O-i e Covl_j
Cov,,:E[rrT]: :
5 (6.54)
Covy - Covy -+ O;
COV cee cee cee cee cee 0'2
| “OVnN,1 Ny |

where N, is the number of degrees of freedom in the system. Assuming

stationary and Gaussian probability density distributions (of load and hence, also
of the response), then extreme values of displacement events are given by

=r+r,, =r+k,0, (6.55)

totmax

where T is given in Eq. 6.1, k p is a peak factor defined in Appendix A and O,

is a vector containing all the standard deviations of the chosen set of displacement
degrees of freedom in the system. O, may be extracted from the square root of
the elements contained on the diagonal of the covariance matrix in Eq. 6.54. Since
it is taken for granted that all load and response quantities are stationary a Fourier
transform will render predictable coefficients throughout the entire time window
of the process. Thus, a response calculation in frequency domain in original



6.4 The Frequency Domain Solution in Original Coordinates 247

coordinates is based on the dynamic equilibrium equation given in Eq. 4.39.
M-f(t)+C-f(t)+K-l’(l‘)ZR(Z‘). Taking the Fourier transform throughout

this equation, i.e. setting

r(t)=Re) a,(w)-¢” and R(t)=Re) ap(w)-e”  (6.56)

where a,((o) and ap ((0) are N, by 1 vectors containing the Fourier

coefficients of the displacement and load processes, then the dynamic equilibrium
equation is satisfied for each @-setting if

(—Ma)2 +Ciw+ K)-a, =a, (6.57)
Thus, a, =H, (o) a, (6.58)
where
2 A -1
H, () =(-M&” +Cio+K) (6.59)

The cross spectral density matrix of the response quantities corresponding to the
chosen degrees of freedom

Sery vt Sep Srlrj e S,
. Sppr e S e S e S
S (a:az) ir iri irj i"N,
)= S P :
(@)= lim — (6.60)
Srjrl .o Srjr,' e Srjrj oo S’j’Nr
_SN rr SN rri SN Ty o S’NrrNr i
may be obtained by

T 1 * T\ _ 1: 1 * T
Srr(a))_}ligoﬂ__,r(ar'ar)_%grgcﬂ_T[(HraR) .(HraR) :| (6 61)

IRTRT 1 # T T _ T
_Hr']ll_r}:oﬁ(aR'aR)'Hr _Hr'sRR'Hr
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1 . . .
where Sz, (a)) = lim —T(a; -a,Tg) is the cross spectral density matrix of the
T—oo JT

load. As illustrated in Figs. 4.1 and 4.2 it is assumed that the load vector comprise
contributions R , from global external forces as well as contributions R, from

distributed element loads (], (x,l‘ ) ,i.e. that
N
t)+> Al-R, (1) (6.62)

where N is the number of elements in the system. Defining the Fourier amplitude

vectors a and @, of R, and R , and assuming that the cross coherence
Rp Ry, p n

between externally added load contributions R p and those defined at element

level R, is zero or negligible, i.e. that S Ry R, (@) =0, then

a2 n=l1

% T
. 1 = T . 1 u T S T
s - S o S,
| ) ) . N ) * N , T
= lim _T(aRlJaRﬂ)+]1‘1m _(ZAnaan [ZA"aRnJ

T—oo T —eo 77T
1 . , (6.63)
z}ﬂﬁ(a’?pa%) ;mZIA Thm—T(aRnaRm)Am
Sk, +ZZATSR &, (@A,
n=lm=1
Sk . (@) liml(a ay )
R,R R R
where rr T*“”lT rr (6.64)
N T
Siun,, (@)= lim —(al, a, )

and where S RyR,, isan N, by N, matrix containing the cross spectral density

of the Rp forces while SRan is an N, by N, matrix containing the cross

spectra between integrated element load forces of elements n and m. The
response covariance matrix may then be obtained simply by integration
throughout the frequency domain, i.e.
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o} Covy; Cov,; Covyy,
Cov; O'i2 Cov; : .
Cov, =| ST L |=[s, (w)do
. 0 (6.65)
Cov Cov;; o
Covy 4 0'1%,
L r r

Elaboration 6.3: Covariance between Element End Forces

For the calculations of the ensuing stochastic properties of cross sectional
response forces at element end points it is necessary also to determine the
covariance between the displacement response and its derivatives. The general
solution to the problem of determining the covariance between a stationary

process x(t) and its derivatives x(t) and x(t) is given in Appendix A (see Eq.

A.96), where it has been shown that for a stationary process
E[xx]=E[xx] =0. Then
2
Cov, Cov,, Cov,| | 1 0 -o
2
Cov, Cov,, Cov, | °|_p* 0 o

Since the displacement response vector associated with element number 7 is
givenby d, =A -r itis seen that

Cov, ;| T[q.4 (A1) (A8 rr’ 0
Cov, . d.d’ _ (AF)-(AF) A B ror’ Ar-|0
Cov, ;. d-d’ (AF)-(AF | R0
Cov | [dd | |(AF)(AF) Fr °
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while

[Cov, . | [qd’] (A,r)(A,r )T I "Cov, |
Covyi, | |ad (Ar)(AF) i’ Cov,,
Cov; ., |=E|dd" | =E|(AF)(Ar) |[=A,E|ir" |A]=A,| Cov, |A]
Covd,,d,, dd” (AF)(A,f )T Py Cov,,
1CoVia, | 1dd" ] (A F)(AF) i | [Covs: ]
Cov, , T
Cov di e

Thus, the following is obtained covg‘ndn =A,- J - |-S,, (w)do |- Al
0

The response force vector

F

n

F =|\FF F, F, F, F. F ’

1 n n

(t) |:F:| here 1 [ 1 2 3 4 5 6]
= W

T
2 anz[F7 Fy K, Ry By Ry,

associated with element number 7 is defined by the local element dynamic
equilibrium condition (see Eq. 4.27)

F-md +cd +kd

and thus:

Cov, , = E[Fn ~F,1T]= E[(mna” +c,d, +k,d,)-(m,d, +c,d, +k,d, )T]
=m, ~E[a” dﬂmﬁ +c,-E|d, dﬂcﬁ +k, ~E[dn ~dﬂ~k£

+kn~E[dn-dﬂ-m£+m E
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from which the following is obtained:

_ ) _
Ox Covgp. Covpp,
Cov =E|F -FI' |=| Cov o .-« Cov
Fnbp — notno |7 FR Fi FiFip
Cov --- Cov o>
L l50241 FoF; 13V

= . e T . . . T . T
=m, Covdndnmn +c, Covdndncn +k, -Cov, , k,

T
n

T
+m, ~Covd-ndnkn +k, ~Covdndnm

where Cov g Cov , COVdndn, Cov dndy and Cov dpd, A€ defined

dndn
above. It should be noted that if damping has been defined at a global level (e.g. in
the form of Rayleigh damping C=aM+ SK), then the damping properties at
element level should comply with the same choices of damping properties (i.e.
c,=om, + [K,). It is also worth noting that if the chosen element length L, is

n
sufficiently small then the mass and damping terms above will be small, and hence

T
coanFn zkn COVdndn 'kn .

Elaboration 6.4: The Variance of Stress Components

Design calculations are intended to cover a certain unfavourable loading
condition, e.g. an extreme wind or earthquake excitation that is characteristic to
the particular place where the structure is located, and whose probability of
occurrence is suitably small. In this situation it is the comparison of structural
strength or capacity to the extreme value of some critical stress or stress resultant
that is of interest. The situation is illustrated in Fig. 6.2. Since structural behaviour
is assumed linear elastic, these quantities may in general be obtained from the
extreme values of the displacements as shown above.

However, in this situation mean values are time invariants, and the response
calculations have inevitably been based on predetermined values taken from
standards or other design specifications. They have been established from
authoritative sources to represent the characteristic values within a certain short
term load condition chosen for the special purpose of design safety considerations.
Therefore, in a particular design situation time invariant quantities may be
considered as deterministic quantities, and thus, the mean values of displacements
or stress resultants may be obtained directly from simple linear static calculations.
Le., it is only the fluctuating part of the response quantities that requires treatment
as stochastic or transient processes. However, in a design situation it is necessary
to consider the combined effects of stresses or stress resultants, and therefore, it is
not only the standard deviation of processes that are of interest but also the
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covariance between fluctuating components. For instance, let a fluctuating
(dynamic) displacement response at arbitrary position X

Ty r(x)| |y ()
ro|=| 7 (x) |+ n(x)
| |T(x)| |re(x1)

be associated with corresponding cross sectional moment and shear force
components

_My_ —My (x)_ _My (x,t)_
M, M_(x)| | M,(x1)
M, |=| i, (x) | +] 1, (x0)
v, Vo(x) | | Vy(xt

Vo [ Ve(x) | Ve(xe)

Then the normal stress O, and shear stress 7, components at cross sectional

position X are given by

M, M M,
|:o-x:|:|:o-x:|+|:o-x(t):|= Iy IZ + Iy IZ
Ty Ty Ty (t) v 4 171 N M v, 4 V, 4 M,

BTSNt S 24z
A, A 24,0 A, A 24,4
where [ y and [ are moments of inertia associated with bending about y and z

axis, Ay and A, are the cross sectional shear areas (rendering averaged values of

shear stresses) and, for simplicity assuming that we are dealing with a closed box type
of cross section, A, is the sector area inscribed by the cross section and #; is the
material thickness at position x . The variance of the normal stress is then given by

2
M, M
O, =E[O'§(t)]=E {I_yZ‘Fl—Z)’J
y

Z
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Z

Whete 03 =E| M} |, o3 =E| M’ | and Cov, ,, =E[M M_]. This

may be further developed into

2 2
O-éx = 7| +2 Yo e Y| Puym, * Mz y
Iy Iy IZ Y IZ

where pMyMz =C0vMyMZ /(O'MyO'MZ) is the covariance coefficient

between M y and M 2 fluctuations. Similarly, the variance of the shear stress is

given by

2

V, v M

2 _ 2 _ y X
O-ryz _E[Tyz (t)]_E {A " AZ i 2A,,JOJ

y Z

2 2 2
=F [V_)J +££j +( Mx J +2{Vy sz_i_z[v)’ Mx J—'—Z(VZ MX J
A, A, 24,1, A, A, A, 24,1 A, 24,1

2 2 2
= —O-Vy + i} 4{ o ] +2 COVVyVZ +2 Covvy Mx L » Covv.m,
Ay Az 2Amt0 AyAz Ay (ZAmIO) Az (2Amt0)
-, ,
%, vy Co Yy, V.V,
where O-‘%z =E VZ2 and Covvy m, |TE|V,M,
2
O']%,,x M, CovvZ M, V.M,
lLe.
2 2 2
T
vz Ay A, 24,1
+2 O-V) o P 2 O'vy O P V-0,
V.V, 7~ N Pvym M
AL VTR A ) M T A (2 )
Poyv. Covy, a / (Gvy Oy, )
where Pyom, |= COVVny /(Gvy Ou, )
pVZMX COVV Mx /(GVZ O-Mx )
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6.5 The Frequency Domain Solution in Modal Coordinates

By defining the mode shape matrix (D:[(pl @, (meod] and
T
modal coordinates n(t)=[771 e M, e ﬂNmod] such that
r()=®-n(r) (6.66)

then it was shown in Chapter 5 that the dynamic equilibrium condition in original
discrete coordinates

M¥(r)+Cr(r)+Kr(r)=R(r) (6.67)

may be transformed into an equivalent equilibrium condition in modal coordinates

Mij(¢)+Cn(z)+Kn(1)=R(r) 6.68)

(see Eqgs. 4.39 and 5.13 or 5.32). Taking the Fourier transform throughout this
equation, i.e. setting

n(t)=ReY a,(w)-¢ and R(t)=Re) a;(w) (6.69)

where an(w) and a R(a)) are N, by 1 vectors containing the Fourier
coefficients of the modal coordinates and the modal load, and pre-multiplying

by k_l, then the modal dynamic equilibrium equation is satisfied for each
@ -setting if

(—f(‘llfll o +K 'Ciw+ I) -a,=K"a, (6.70)
Recalling that
M = diag [A;In] R=diag[l€n] and 6=diag|:én} (6.71)

where Mn =(p£M(pn, kn =(03Mn and én =2ann§n (see Egs. 5.11, 5.14,
5.16 and 5.17), then

Q
1l
=

,=H, (0) K" a, (6.72)
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where

A, () ={1-diag] ()0, )? |+ 2i-diag (¢, 0/, )}_1 = diag| A, |

. (6.73)
where H, = [1 - (0w, )2 +2i g"na)/a)nJ
The cross spectral density matrix of the modal coordinates is defined by
Soim o S, Smmvmod
T
a, -a
- n_%n _
sm] ((0) = ]111}010 2T = Sﬂn’?l S77n77m S’?n”Nmod (6.74)
_S”Nmodn1 S”Nmodnm SUNmoanmod _
Introducing Eq. 6.72, then
S,, (@)= lim L(a aT)= lim L (I:I IN(_1a~)y (I:I R_1a~)T
m Te 7T 1) e g | U R i R 675)

T—oo T—oo 1T

S,, (w)= lim L(ataf)z lim L[(cba,, )* (®a, )T}
X ZL . (6.76)
=®lim —(a,a; |0’ =08, (0)®" =OH,K'S; (K| Hj 0"

T—o0

A Discrete Format

Since ﬁ(t)=¢TR(t) then @j =¢T~aR,andthus
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S (@ )—Thiriﬂ_—lT(a aR)_Thg}c;_T[(q)T aR)*'(q)T'aR)T}
6.77)

~0" - lim ——(a-a})- ®=0" -Sy (0)-®

T—oo 71T

By combination of Egs. 6.75 — 6.77, then the following is obtained:

S, (w)=0S,, (0)®" =<l>(|3|j‘,k—ls,§,é .(k—l)T Flg)qﬂ
= (6.78)

_ cp{ﬂj; (@)K [0S e ()@ |(K™) H, (a))}th

where S RR ((0) is defined in Eq. 6.63.

A Continuous Format

Let us also consider a continuous format (see Chapter 5.3, Egs. 5.18 — 5.22 and
5.32) and for simplicity assume that the entire load is defined by

T
q(x,t)Z[qy q, qu (i.e. Rp =0 and g, =0), then

o Ry ] (6.79)

L
The Fourier transform of ﬁ (t) is then

T
(0)=[0" (x) 2, (r.0)ds where &, (v0)=[a, a, a,] ©50
L

[ { ¢Taqu]T

—JJQDT x) hm—a . (x.0)-a] (x,,0)-®(x,)dxdx, (681)

T—oo JT

—_”¢T x1)-S,, (%, %, @) ®(x,)dxdx,

Thus

*

Toeo 1T RER T —eo

Sﬁé( )= lim — 1 —a.al —hm—(J‘CDTa dxj
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quqy quqz quqa
where S, (x,x,,0)= quqy Se.a. Sauas (6.82)
S 964y Sqaqz S 9646
Thus
Sy S S
S, (xo)=[S., S.. S.l|= 6.83)
S*‘ary S"H"z Srorg

Q)(x){l:lz; (0)K™ {”QT (%)8,, (xl,xz,a))dJ(xz)dxldxz}(IN(_l )T I:I; (a))}QT (x)

As can be seen, if the load is stochastic and non-coherent in space then the
calculations of the dynamic effects will inevitably involve spatial averaging.

6.6 The State-Space Equation and the Duhamel Integral

In elaboration 4.5 the damped eigenvalue problem was solved by the introduction
of an additional dummy equation If -1Ir =0 and a substitute variable

z(r)=[r ] (6.84)

Thus, the equilibrium equation MF (l‘ ) +Cr (l‘ ) +Kr (l‘ ) =R (t ) may be expanded

TR e

1 0
L M‘l} (6.86)

- LM ] e

Pre-multiplying by
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and introducing

0 -1 0
D=- 4 . and Q= . (6.88)
MK MC M R

then 2(1)=D-2(z)+Q(r) (6.89)
This is the state-space equation. Its general solution is given by
t
z(t)=Re{2(1y)- 2% +IeD‘S -Q(7)dr (6.90)
Iy
where s, =t—t, and s=t¢—7, and where the mathematical operation
N
s — 1
e =(eD) Z(ZFDI{] . Let us for simplicity consider a single degree of
k=0""

freedom system, whose starting condition is defined by

z(1, =0)={:EZ :8;}{8} (6.91)

Then Eq. 6.89 is reduced to

z(1)=Dz(r)+Q(z) (6.92)

h z—r D= 0 ! d Q= 0 6.93
EE ST T ek~ | ™ T T RiM (693)

The general solution is given by
t
z(r):Re{jeD“ ~Q(r)dr} (6.94)
0

where eDszf(s)~|+g(s)-D and

_ os : _ o : _
(1 als)e if o=, se™s if o=,

f (S) = aleazs _ azel:qs . A g (S) =9 M5 _ o025 (6.95)
X "5 o ra, T o ra,
o -, 09—
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and where ¢ and &, are the roots in the damped eigenvalue problem

Ma? +Ca+K=0 (6.96)

=K/M
Le.: £=—§Oi\/§§—l where {wo / (6.97)
@y

$o =C/(2Ma)0)

o == +iw,
Assuming ;<1 = { 1= 500 .d where  @; =@, 1—:02
0o, =—Coy —iay

Thus
0{1 — 0!2 = 21a)d
eA5 = gmS0MS IS _ ,=C0MS | (cosawys+isinays) (6.98)

eazs = e_goabs . e_la)ds = e—é’Oa{)S . (COS Wy s — isin a)ds)

rendering

f(s)=e 0 '[cosa)ds+ &o(ay /@, )sin a)ds] ;
(6.99)
g(5)= (1@, )e 0" sin @y, s

from which it is seen that

ot (ot aipla] O ¢(s) 0
<=1/ () 1re(s) DJQ Laﬁg(S) f(S)—Zé”owog(S)MR/M}
A }5;{ (1) -sinas } .10

M| f(s)-200mg(s)| M cos @ys + o (@ /@y )sin @y s

Thus, the following solution is obtained

L-sina)d (t—7)

r(t “R(7) _ _ ,
z(”zuﬂﬂ et ) 47 (6.101)
0 cos @), (t—T)+§0&sina)d (t—7)
@y
The expression
h(1—7)=—— S Gn gy (- 1) (6.102)

Mo,
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is the unit impulse response function, and
r(1)=[R(z)-h(t-7)dz (6.103)

is the Duhamel integral. As illustrated in Fig. 6.5, h(l‘ -7 ) is the linear
relationship between the impulse load R, - At and the corresponding incremental
displacement response r(t) = (ROAt)h(t -7 ) and thus, as illustrated in Fig. 6.6,

the response to an arbitrary load impulse sequence R, At (n=1,2,3,...) may be

perceived as a continuous succession of such impulses, and thus the response may
be obtained by integration, i.e.

N t
r(1)=lim (R-At), h(t=N-At)= [R(z)-h(t-7)dT  (6.104)
n=1 0
R(t)
RO
> t
T LAT
F(t)

> t-7T

Fig. 6.5 Incremental displacement response using the Duhamel integral
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M

R, dr\l Load
history,

T(s)

>

Impulse, R - At
R(t) A
Present time, t
- ( .
§ _
7
s
/

L

Response
due to
R,- At,

Response

\/ U dueto
R, At,

Y

> Response
due to
| e

r(t) N
A r(t) = r,(t)

n=1

Response
T history,

At, A t(s)
N
t=2 At,

n=1

Y

Fig. 6.6 The impulse response method
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Equivalent expressions are obtained in modal coordinates. Let us substitute
(D=|:(pl @, (meod:|
r(1)=®n(r) where ‘Pn:[¢1 e @ e ¢Nr:|

T
(6.105)

n(l‘):[’]l e, e nNmOd]T

into Eq. 6.85
1 0].[q] [0 —7.[n] [0
® .+ o . |= 6.106
o wl clon e e
1
and pre-multiply by 0 T} will render the same in modal coordinates
M=0'MO
I 0 m 0 -l H 0 K=0"Ko
U | I = R | B =) where ~ (6.107)
0 M(n K C|n] (R C=0"Co
R=0'R
P Itiplying b P (6.108)
re-multiplyin ~ .
plying by 0o M

o L ] e

and introducing

(1) {n} b ° - ¢ a-° (6.110)
= .1, =—| _ . . . an = . . .
y n M'K M'C M 'R

then y(1)=D-y()+Q(r) 6.111)

which is equivalent to that which was obtained in original coordinates in Eq. 6.89
above. Thus, the unit impulse response function and the Duhamel integrals for an

arbitrary mode @, with corresponding eigenfrequency @, are given by
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h (t—7)= Lt gy @,, (1-7)

(6.112)

1, (1)=&, (2) F (1-7)dr

where @), g = 1-¢ ,% . A direct solution strategy using the impulse response
method in original degrees of freedom is not often pursued, because it involves the
determination of an N, by N, transfer matrix containing the load effects in all
p nodes (p=1,2,...,N,) due to a unit impulse in any arbitrary node number k
(k=12,...,.N ), which for a real system may be a formidable task. However, in

a modal format, where all matrices in the equilibrium condition are diagonal, the
method is effective and straight forward as long as the load is not unduly

demanding. Defining an N, by 1 vector
R(z)=[R - R, - RNmod]T (6.113)
andan N 4 by N4 diagonal matrix
h= diag[ﬁn (t— r)] (6.114)
;
then n(t):jﬁ(t—z')ﬁ(r)df (6.115)
0

Elaboration 6.5: Impulse Loads

For a single degree of freedom system the impulse response function may be
developed in a more physically direct way by defining a force R (T ) which has a

largest value R, and is acting only during a short time period from 7=0 to

7 =At. It is assumed that during this period any build-up of elastic spring forces
and viscous damping forces within the system may be ignored, such that instantly

Mi(7)=R(7)
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R(t) A
R -

|

|

t |

l r(t) "ty '

Fig. 6.7 The impulse response function

Integration will then render

TMif'(r)dr =M [r'(r)]st = Mi(At) = AfR (7)dt=1 where I =R)At

Le., any motion of the system during the impulse period At is ignored such that at
the end of the impulse F(Al‘) =0 and f’(Al‘) =1/M . Thus, the response of the
system from time ¢ =0 and onwards is given by (see Eq. 2.30)

r(z)za’;—oe_wng”’ sin(@,t) where iy =#(Ar)=1/M
i

Thus, the impulse response function is given by

V(t) = ﬁe_wngnl Sin(a)dt)
d

The link to the Duhamel integral is obvious as the introduction of the limiting
situation that 1 (T ) = R(T ) dt will render
R(r)dr

dr =27 p~non(77) iy @, (t—7)
Mao,
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and thus

Example 6.1: The Step Load Case

R(t) A

Ro

Y

Fig. 6.8 The step load case

A solution to the step load case

t
je‘“’”g’l(’_” sinw, (t-7)dr
0

Ry
Ma,

r(r)=
may be obtained by the substitution s =t — T, rendering

1
r(1) =&J'e_“’”§”s sin(@,s)(-ds)= ]\fz)d E[e_w”g’” sin(@,s)ds

R, e—a)nfns [a)né‘n sin(a)ds) +w, cos(a)ds)] t

Mo, (—a)ng”n)2+a)j

0
Thus
r(t)zﬁ 1— e ! &; sin(@,1)+cos(a,t)
K w, "

The solution is shown in the upper diagram in Fig. 6.10, in the special case that

®,=2 rad/s and {, =0.02.
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Example 6.2: The Half Sinus Impulse Load Case
R(t) A

R, - R(t) = R, sin(®T)

0=7/T

R

| -7
T—)(—

Fig. 6.9 The half sinus impulse load case

An approximate solution to the case of an impulse load in the shape of half a
sine wave with duration T (see Fig. 6.9 above) may be obtained by using the
Duhamel integral. But, since an accurate solution to the problem of a sine load to
a single degree of freedom system has been developed in Chapter 2.3, it is in this

case possible to develop an accurate solution. First, at t <T the solution is given
in Eq. 2.50, i.e.

sin(,b’p)
r(t)  cos(f,)

e Ji-@a T et 00

et cos (@t — fB,) +sin (a)t -5, )

1-202—(w/w,)

2090 Ly an(B,)- e

1—(0)/60”)2

where  tan (ﬂp ) =

and where the artificial load frequency @ = 7Z'/T. Defining

Sin(('%gcos(a)dT —B,) +enén” sin(,b’p)
cos(f3,

-0y ez 00y

1
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and

sin(ﬁp){sin(wdT_ﬁh)Jr {n&COS(WdT—ﬂh )j|+ew’lé,nT ﬂcos(ﬂp)

A - cos(f,) @, @,

\/[1—(60/60,, )ZT +(24, v/, )2

rg)?;) rg)?;) _ Aza)de—wdfnT'

Second, at t >T then the system is free to oscillate without any loading, and thus,

=A el ana

it is seen that

the solution is given in Eq. 2.26, i.e.
r(t)=e bt [al sin(@,t)+a, cos (a)dt):|
The initial conditions to this freely decaying motion is that

r(t=T)=e ~@nénl [al sin(@,T )+ a, cos (a)dT)} = %Ale_wng’lT

F(t=T)=e " ~{al [a)d cos(w,T)-a,¢, sin(a)dT)J
and R
—a, [a)d sin(@,T)+ ®,¢, cos(a)dT)]} = ?OAza)de_w";"T

Thus, defining G, =a1/(R0/K) and a, =a2/(RO/K), it is seen that

sin(a@,T) cos(@,T)

{cos(eyT)=  {sin(a,T)+ P}{Aj
é“n%sin(wﬂ)} gn%cos(wﬂ)} !

d d

Jfrom which the following solution is obtained

&1:A1'{sin(a)d )+, cos(a)d )}+A2-cos(a)dT)

a, = A {cos(a)dT)—{n&

sin(a)ﬂ,T)}—A2 -sin(@,T)
i
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Thus, at t >T

The response will have its largest response [r(t)lnax :1.75-(R0/K) if

T/Td =0.8, where T, =27r/a)d is the eigen-period of the system. This

particular case is illustrated in the lower diagram in Fig. 6.10 below.

2 T T T T T T T
o =2 rad/s, ¢, =0.02
15F : : |
LLO
2 qb :
0.5H ; ; : 1
0 I 1 I 1 i i I
0 5 10 15 20 25 30 35 40
2 T T T T T T T

: T/Td=05,8, T=31s

o] 5 10 15 20 25 30 35 40
t(s)

Fig. 6.10 Upper diagram: the step load case. Lower diagram: the half sinus impulse load
case



Chapter 7
Dynamic Response to Earthquake Excitation

7.1 Introduction

Earthquake excitation of civil engineering structures is in general a complex
process. However, an idealised situation where the structure is subject to
representative single component horizontal ground acceleration will usually
suffice for design purposes. The problem of dynamic response calculations under
such excitation is pursued in the present chapter. For simplicity, the focus of the
theory below is limited to structures with main extension in the vertical direction
(e.g. vertical frames or cantilevered type of tower buildings). A typical time series
of such a ground motion is illustrated in the upper diagram in Fig. 7.1. Its spectral

Acceleration {(m/s 2)

-1 1 L 1 1 1 1 L
0 5 10 15 20 25 30 35 40
Time, t (s)

0.04 T T T T

0.03f . :
0.02 : 1

0.01f ] 1

0 1 A_,JL/\[\/\'\
0 2 4 6 8 10
Frequency, f (Hz)

Spectral density, Sa(f)

Fig. 7.1 Typical horizontal ground acceleration due to earthquake excitation (upper
diagram: time domain, lower diagram: frequency domain)

E.N. Strgmmen, Structural Dynamics, Springer Series in Solid and Structural Mechanics 2, 269
DOI: 10.1007/978-3-319-01802-7_7, © Springer International Publishing Switzerland 2014
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density is shown in the lower diagram. As can be seen, a typical earthquake
excitation is a non-periodic transient process. Hence, the perception of earthquake
excitation as a random base acceleration process may not be suitable for a full
frequency domain approach, as this may require some stationarity in the process.
Thus, the dynamic response calculations for a system subject to earthquake
excitation may often require a solution strategy in time domain. Nonetheless, in
many cases a frequency domain solution may still render sufficiently accurate
results, particularly if the response is close to quasi-static or narrow-banded
resonant, i.e. if the system is either fairly stiff or else very slender.

7.2 Single Degree of Freedom Shear Frame

Let us first consider the simple case of a single storey shear frame, i.e. a single
storey frame with an infinitely stiff beam and columns whose distributed mass is

insignificant. The eigenvalue calculation for this case is shown in Example 2.2.
The system is now subject to horizontal ground acceleration i‘:g (t ) The basic

idea is that the total horizontal acceleration of the system is the ground

acceleration plus the acceleration of the system itself, i.e. that 7, =7, +7, and

thus, the equilibrium condition of the mass in motion is given by:

M(jf:g+}f')+Cf+Kr=0 = My + Ci + Kr = -M¥, (7.1)

where K 22(12EI y / L3), M is the mass of the beam (assuming negligible

column mass contribution) and C is the overall damping coefficient of the
system. Taking the Fourier transform throughout Eq. 7.1, i.e. setting

r(t) —Re ar(a)) S

o o | %, (@)

will then render

(-M&’ +Ciw+K)a, =-Ma;, (7.3)
By pre-multiplication with K ~ and the introduction of
2 _
o, =K/M
{,=C/(2Mw,)=Cw, /(2K) (7.4)

ILAI(a)):[l—(a)/a)n)2 +2ig, w/a)n}
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r(t)
M
| ===3 _—
= 00 I
Il EIy |
El f El, |/
/ /
y | y| L
/ /
/ /
/ /
<<% << -
4)
Fg(t)
Fig. 7.2 Single storey shear frame
then the following is obtained
A M
a,(w)= —H(a))?a-,;g (@) (7.5)

The physical response r(t ) may then be obtained from the first row of Eq. 7.2. If

the initial transient part of the response is disregarded, and the ground acceleration
is narrow banded, i.e. it may be represented by a single harmonic component

P (1) :Re[a-r;g (a)g)-ei“’g’} (7.6)
then
r(t)= Re[a, (a)g ) lwgl} = Re[—H (a)g )%a, (a)g ) elwgt}
o N 1.7)
= —?afg H(a)g )‘cos(a)gt—ﬁ) z—a)—‘z H(a)g )‘cos(a)gt—ﬁ)

n

where tan f = (an , /a),, )/[1 —(C()g /a)n )2} . If, on the other hand, the

ground acceleration may be represented by a stationary stochastic process whose
spectral density is given by
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1
Si, (@ )—Th_lglﬁ“g (w)'a'r'g (@) (7.8)

Then, recalling that K =(0§M , the spectral density of the corresponding

dynamic response is given by

S,, (@)= lim ——d’a, _hmi{—ﬂ( )ﬂafg(w)}*{—ﬁ(w)ﬂafg(w)}

T—e T T—e 7T K K (7.9)
2
{%} Ao im L (0)a (@)=a (0] s, ()
and the corresponding variance of the response r(t ) is given by
T w)do=w, HH ‘2 Si, (w)de (7.10)
0

O’r2 may most often with sufficient accuracy be split into a background part and a

resonant part, i.e.

A (o)

\QN
||
I O'—;g

4
~ I

A(w=0) s, (w)dmﬂﬁ(w)f 5;, (0=0,)do

(7.11)

7o, 0.\ 78, (0=w,)
=w,*| o} +=15; (0=0 )}z gl —E—
4 T

40,8,

n

where O'é is the ground acceleration variance. It is seen that the background

(quasi-static) part of the standard deviation of the response is O: e / a),f while the

resonant part of the standard deviation is given by \/ﬂS ( ) / (46() g, ) (It
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should be noted that the peak factor of the background part is likely to be in the
order of 3.5 — 4.5, see Eq. A.45, while the peak factor for the resonant part is

likely to be slightly above \/5 ).
If structural damping forces are small, then the shear force in the columns may

be obtained by the equilibrium requirement that 2V, (t)+M (i" +1, ) =0, and

since M('r'+i’;g,)+Kr=0,then

2V, (t)=Kr(1) (7.12)

y

Thus, if i”;g, is narrow banded (close to harmonic), then

Ma.
Vy(t)=§ _Zi I—?(wg)|cos(wgt—ﬂ)]=_ zrg I_}(a)g)|cos(a)gt—,8) (7.13)

while, if i’;’, is stochastic and broad banded, then

2
o; 7S; (®,) 7®,S; (o,)
o, zﬁarzf L +#=ﬂ ol +—2 "0 (714
yo2 2\ @ 4006, 2\ " 4¢,

n

7.3 Two Degrees of Freedom Shear Frame

A two storey frame with infinitely stiff beams and columns whose distributed
mass is negligible is shown in Fig. 7.2. This is a two-degree of freedom system,

T . . . . .
r= [r1 r2] , and the eigenvalue calculations for this case is shown in Example

2.3. The system is now subject to a horizontal ground acceleration i"g (t) . Again,

the basic idea is that the total horizontal acceleration is the ground acceleration
plus the acceleration of the system itself, i.e. that

, ntT,
P, = (7.15)

htr,
and thus, the equilibrium condition in original degrees of freedom is given by

Mr,, +Cr+Kr=0 (7.16)
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r; M,
>
El, El, L,
r M,
—>
El, El L,
T} AR aay - 1
rg(t)

Fig. 7.3 Two storey shear frame

where M =diag(Mn) ,n=1lor2,and C and K are defined in Example 2.3.
By defining

T
A =[1 1] (7.17)
this may also be written
Mr +Cr +Kr=-MA 7, (7.18)
By introducing modal coordinates
T
n=[n ]

r=®-n where
oo, M{

25 ¢’12} (7.19)
D1 P

and pre-multiplication by @7, then the modal dynamic equilibrium condition is
given by

Mij+Cn+Kn=R (7.20)

where
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—o'mo| P MO O {Ml 9}
0 ‘Pqu’z 0 M,

C= G 9 and K= K 9
0 G 0 K,

M, =@ M, + o} M G =2M K =a'M
1= Py + @y 2} 1 s } and 1 @ 1} (7.22)

62=21\712a)2§2 162:5022]‘;12

(7.21)
and

~ 2 2
M, =, M, +p;,M,

and where the modal load vector is given by

¢ M, oM, + M,

- N N M M, +pyM
R=-#M, where Mg=¢TMAg={~g1]={(P“ e 2} (7.23)

Introducing this into Eq. 7.20 then the following is obtained:

y y M, 0 M
0o M, 0 2M ,0,¢, 0 oM, M,,

Taking the Fourier transform throughout Eq. 7.24, i.e. setting

i, = ReZa-,;g (w)-e™
[

771 a, ' ' (7.25)
n(t)= =Re)_ e =ReZa,7(a))~e""’
m o | 9m ®
and pre-multiplying by K , then the following is obtained
- s - _
M
1—[ﬂj +2i2¢ 0 -
“ “ ) a, =-a; A (7.26)
M
0 1—[ﬁj +2i% ¢, 52
L @, @ M,

Introducing the modal frequency response matrix
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) -1
A A = 1—(3J +2i2 ¢,
R H 0 @ 2]
H(w)= R where (7.27)
0 H, o) » -
2 2
it is seen that
Mgl [fll (a)) Mgl
2 22
N M M
a, =-a; ()-H(w)- @M =—a; () @M (7.28)
8 Mg 8 . M
2 H2 (0)) 5 82
75 —
M, M,
For instance, if i’;’, is stationary and narrow banded (close to harmonic), i.e.
¥, (z):a.,;g -cos(a)gr)zRe(a.r.geiwg’) (7.29)
. M
H, (wg ) 2 =
Wyt oM, iyt
then r](t)zRe(ane 8 )=Re{—ai:g 7 e 8} (7.30)
H 2 (a)g ) 2 =
M,

Since I'(t) = q)l‘l(t) , it is seen that

A M A M
@ H, (a’g)wlzj;} +¢’12H2((0g) 2

s
T (o) st (0,)
oM, oM,
iy [a i T
o )| 222 L)ﬂcos(wgt_ )+ ()] L)ﬂcos(wgt_ 5)

(7.31)

2
, [0) 1
where tan /3, =(2§n g] 1—{‘5)] , nZ{
, w, 2
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Example 7.1

Let us consider the two storey frame in Fig. 7.3 and assume:

K, =120-10° N/m  M,;=4-10° kg  and £, =0.01
K,=100-10° N/m  M,=2-10° kg and ¢, =0.02

Then (see Example 2.3),

. Y2112
_ 1[M+ﬁHL[M+ﬁ] £K_]

o\ M, M, )4l M, M, MM,
= o =4.1 rad/s and @, =9.4 rad/s
K,-o'M 0.66 —0.76
and G 27O M = b=
a K, 1 1

4 0] - 1 3737 0
M=10° =~ m=o'mo=|"1 % _p ke
0 M, 0 4304

_ M 4636
= M, =0'MA, =| _© =103{ }kg
M, ~1036

Let us assume i, =1 m/ s* and that i’;, has a constant period of T, = 25 (ie.
w, =7 ). Then

‘ﬁl (2, )‘ =237 ind B, =0.036

1A, (o, ) =113 B, =0.015

R (£)=—-0.1137- cos (zt —0.036) — 0.0023- cos 7zt — 0.015)
Th
15 (1) =—0.1725- cos(zt — 0.036) +0.0031 cos (71— 0.015)

The response is shown in Fig. 7.4.
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0.3 T

m1=4.1 rad/s
0.25

m2=9.4 rad/s

a =1 m/s?
g 1

T=2s
g

o
N

o
a
(3]

(=]
a

0.05

Dynamic response r(t) (m)
S

o

&

e

Fig. 7.4 Response to simple harmonic ground acceleration

20

On the other hand, if i‘:g is a broad banded stochastic process defined by its

spectral density § i (a)) , then (see Eq. 7.28)

— lim ——a* .a’
S”(w)_%lfl,ﬂa” a,
Hl(a)) 213
= lim | ~a; (@) A - (@)
T—oo 1T 8 R M 8
HZ(a)) 2g~2
M,
S (o) §
— sn(w)zsrg(w) A7711( ) Aﬂll(
S,m(a)) Sﬂll(

where

(7.32)

(7.33)
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$3 (@) =], () [ 11, /(0f01,)]
S (@)=} (0) Ay (o) [ 11, [(edi) | 4, /(a301,)]
Spns (@)= B (@) iy (0):[ W1, [(200,) [ 31, (a0, ]

A A 21 ~
S (@) =|, (@) [Mgz /
The dynamic response itself is given by ¥ =@ -n, and thus

S, (w )_hmia -a; _hmi(tba ) ~(d>a,7)T

T—eo 1T T—eo 1T

N
=0-lim—a,-a, - ® =0-S, (0) 0

T —eo

_ 1P P2 ﬁﬂll(a)) §,712(a)) 1P P

= () |:¢21 ¢’2j {A,m(a)) ﬁﬂzz(a))} &’12 P2

Sii S §,11(a)) §q2(w)

N s’(“’){sm S}S (“’)me) 3,22@)]

where

) A
'11 a)) 1157711 +(p11(p12[5m +Sﬂ21]+¢125ﬂ22

qu (w)= ¢11¢213n11 + (011(P225n12 + ¢’12¢215n21 + ¢’12(P223n22
Sp (w)= ‘Pn(”zlsm + (P21¢’125n12 + ¢11¢225n21 + ¢’12(P223n22
Sm (@)= ¢21S7711 T 0P [ ma T S;m ] + (Pzzsnzz

The relevant variances and co-variances are given by
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(7.34)

(7.35)

(7.36)

(7.37)

(7.38)
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Elaboration 7.1: Quasi Static Response

In cases where @, << @) then the response is primarily quasi-static, i.e.

~ 2 - - ~ 2
§ o Ma | s g My My o | My
" wlel " olM, oM, b a’zzMz

and

5 ~ ~
o Cov = =S S = S S
n nr ZJSr(w)deJl: ni S’12\|da)=J‘S” (w) A’ll n2 dw
0

ZIS@ (w)dw.{‘/’“ ‘/’12]

(ZS R %%)

_ o2 .|:¢11 (/’12] Sml S7712 |:¢11 (021}
CR 5'721 §,,22 G Pn
Thus
M,V oM, M M, Y
2 2| 2 2
O, =0, | %1 7o | 2 5 §2~ +¢12[ S J
oM, (eXM,)(@3p1,) "~ @3M,
~ 2 - o~ ~ 2
2 ) Mg1 2Mg1Mgz 2 Mgz
On =0k | | 5o | TP\ a5 e
oM, (@Ml)(“’zMz) @AM,
Cov,m:Cov,z,1
- 2 I ~ 2
M M M M
=0 (/711(1’21{2—83J +(¢11¢22+¢12¢21)%+¢12¢22{ 2g~2J
oM, (wlMl @, 2) M,

The shear forces in the columns may be obtained from simple equilibrium
consideration. Thus
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2‘/1)} - 2V2y + Mli.i[()l = 0

.. (7.39)
2V2y + Mzrzt{)t = 0

which may be written

BV, +Mr,, =0 (7.40)

where M and ¥,

T
are defined in Egs. 7.15 and 7.16, V, = [Vly sz J and

2 =2
B= 7.41
N an

Since damping is disregarded, then MF,, + Kr =0, and thus

ot

v, = Y, =B71Kr=l 2 2| Ki+K, -K,|n _1 Kin (7.42)
Vz 4 O 2 _K2 Kz rz 2 K2(r2_r1)

y

If 7, is a broad banded stochastic process, then

o = E{[sz (;)T} - EK%T (-1 )2} - [%)2 E[ 2~ 2, 42043

K
= O, :72\/0',21 —2Cov,,, +0',22 (7.44)
and
2 2 K, ? K, ? 2 K, 2
7, =E{[Vly )] }:5 (7j 0 =(7j £ (t):|=(7j o2 (1.45)
K
= O-Vly =710',1 (7.46)

7.4 The General Case of a Discrete System
The system shown in Fig. 7.5 is intended to represent a more general type of
structural system, which in a finite element format has N, degrees of freedom. As

indicated in Fig. 7.5 it is taken for granted that the ground acceleration i"g (t) is
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close to horizontal. In an arbitrary node p the system may have several degrees

of freedom, of which one r, may be associated with a displacement (more or less)

parallel to the ground. In original degrees of freedom the equilibrium condition for
this system is then given by

Mr (r)+Cr(7)+Kr(r)=R(7) (7.47)
where
R(r)=—MA,7, () (7.48)
and
A =lA A a1 where 4 =it ER
g_[ gt e gNr} where & 10 elsewhere (7.49)

Introducing the modal format

r=0n where (7.50)

mod

Fy(t)

Fig. 7.5 A more general type of system
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and pre-multiplying by @’ , then the modal equilibrium condition is given by
Mn+Cn+Kn=R, (7.51)
M =" M® = diag[ M, | where M, =@ Mg,
where C=0'Ch=diag [C’”] where C, =2M ,m,¢, (7.52)
K =®"K® = diag [kn] where K, =o' M

and

R, (1)=—®"MA i (1) (7.53)

Taking the Fourier transform throughout this equation, i.e. introducing

. T
n(r)=2a,(w) ¢ where a,(w)= [“771 T T U ea }
- (7.54)
i (1) = Za-r-g ()¢
[0)
and pre-multiplying by K™!, then
(-&’K'M+icK™'C+l)a, =K '®'MA o, (7.55)
from which it is seen that
) -]
a,(®)=-H, (0)K"O'MA,q; (o) (7.56)

where

2
I:I,7 (@) =11-diag (ﬁj +2i-diag{§n ﬂ} =diag [I:In] (7.57)
1) 1)

n n

and I:In = |:l - (a)/a)n )2 +2ig, (a)/a)n )} . Thus, the spectral density matrix of

the modal degrees of freedom is given by
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1 4.7
S”( )_Th—l;I:o]z'Ta”an
oo~ T
= lim —(-H,K O MA q, ) (AR O'MA |
T—e iT 87
X . (7.58)
O e-lenT TainlTen(iw-1\ QT
=H K ' MAg(Th_r)riﬂT i inggM oK) Hj

=H; (0)K'O'MA, ATM (K ) H] (a)5; (o)

where S

1
e ( ) = lim —a e a; e is the spectral density of the ground motion

T—e 1T
acceleration. Since r = ®n then a, (a)) = d)a,] (a)) and thus the spectral density

response matrix is given by

.1 1 T .1 T T
S,(a))=T11_1)1°10Ea, —Th_lflﬂ_T(ma ) (®a, ) =¢Th§;ﬂanan¢ 7.59)

=05,0" = OH) (0)K'O'MA, ATM O(K!) 1] (0)0's, (o)

In the special case that the response is quasi-static, then the response covariance
matrix is given by

0'12 o Covyy - Covy;o oo ColeJ
C 2
Ovll e O-l i COVU
Cov,, =
2 :
Cov; -+ Covy - O : (7.60)
Cov 0'2
N1 N,

=[S, (0)dw=OK'®'MA ATW ®(K ') @ -0
0
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Elaboration 7.2: Non-symmetric Two Storey Shear Frame

z
2 Ro: o
CcC
s e
v yy z
L MZ /_)T / )y G
2
SC
rz1
/u/ Rz' rz
e
AN L
L1
:\
4‘/ '}f}.
% ™ §

" f_(t)
rgy(t) 9,
Fig. 7.6 Two storey shear frame with non-matching shear and mass centres

A two storey shear frame with non-matching shear and mass centres is illustrated

on Fig. 7.6. The ground acceleration i‘:g (t ) has been split into a component

i’:gy (t) parallel to the global y -axis and a component i’:gz (t ) parallel to the

global z-axis. The system has six degrees of freedom

r (t) = [rl r, ]T where

and load components R ()= [R, R, ]T where
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| | /M('r'g+'r'gy)

—> o—»o o—A—
R, | 1, I
I I
ajr.+0

L M(F, +Fg,)

b)r,#0

Fig.7.7 Y, z and @ equilibrium, component by component

The content of M, C and K may conveniently be obtained by considering the
equilibrium condition for each component, one after the other, as illustrated in Fig.
7.7. Let for instance damping be associated with corresponding stiffness
contributions, then:

Ry, :Ml(fyl +'r;ey)+(cy1 +Cy1)fy1 +(Ky1 +Ky1)ry1

ry, 20=<R, =0, Ry = Ml(r +7y )eZ

R, ==Cy i, —K,r, R,=0, Ry =0

==Cyh, =K, 1,, R =0, Ry =0

r, #0= Ry Mz(r +7, )+Cy2ry2+Ky2ry2,R2=O

Ry, = Mz(r +7, )e

Z



7.4 The General Case of a Discrete System 287

Ryl =0, RZ1 :Ml(fq +;i€'z)+(C21 +C21)f21 +(K21 +KZl)er

r, #0= 1Ry :Ml(;;1 +;~:§Z)ey

R, =0, R, =-C,i, —K_r . Ry =0

=0, R, =-C_ i, —K_r,. Ry=0, R,=0

R)’l <1 22722 27227

RZ2 =M2(rZ2 +rgz)+CZ2rZ2 +KZ2rZ2, R02 =M2(rZ2 +rgZ )ey

r, 20>

R, =-Mige., R, =Miye,
_ .. . 2 . 2 .
Ty 20= Ry =M1y +Mig ey +Miye; +(C91 +C§,2)1”91 +(K91 +K92)r91

va =O, RZ] =O, Rgl Z_ngi‘gz _ngrez, R

Te, #0= — .. .. . 2 .2 .
R, =Mjige,, Ry =My, iy +Mip ey +Myiy e; +Coigy + Ko 1y

v =~Maige.

Thus Mr+Cr+Kr=R- MAgi;g where

F A, =[1 0010 0
i;g (t): ..yg and A, Z[Ag A, J where {7
" b A,=[0 1001 0
zg o _[
M 0 M; 0 —M je, .
_| W, _ .
M_{O Mz} where M ; = 0 M; Mie, ]—{2
_Mjez Mjey Mg]tor
— 2 2 _ 2 2
My =My +M, (e} +e?) Mg, =M, +M, (e} +e?)
K, 0 0
Kz{ X, K, where K;=| 0 KZJ, 0 j= 5
0 0 ng
Cyj 0 0
C={ _c, c, where Cj =| 0 Czj 0 j= 5
0 0 ¢,
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T

R R, Z[Ry R, R9]1
where

R2=[Ry R, R(,]Z

Since the superposition principle applies, the load effects of R and —MAgi;g

may be handled in separate calculations.

Example 7.2: Single Mode Solution with Torsion and z Direction
Coupling

For the case above, let us for simplicity assume that e, = 0. Then the motion ry in

the 'y direction may be handled separately and identical to that which has been

shown in Example 7.1. Accordingly, the response vector associated with motion r,

T
and ry at levels I and 2 may be reduces into ¥ (t) = [rq To, Ty "02] . The

corresponding mass matrix and load vector are given by

[ Ml eyMl O O l M1

e Ml Mgl 0 0 e M

M= ’ ot and —MAgfg (l‘)=—i"g (t) v
0 0 M, eM, c M,

tot |

Let us for simplicity only include a single mode @, = [¢l o & ¢4]£ and

corresponding eigenfrequency @, . Then the modal mass is given by
y T 2 2 2 2
M, =@IMQ, = (g +2e,016, | M, +(05 +2e,0:0, | My + M 5 +$ M,

Modal stiffness and damping are given by I%n = a),% M , and C= 28 na)nM "
while the modal load is defined by

~ T . ..

R,=—@ MAF, (1)=—F, A, where A, = (61 +e,0, )M, +(y+e,0,)M,

Setting I‘(l‘ ) =@, n, (l‘ ) then, as usual, the modal equilibrium condition

is expressed by
Mnﬁn + C~1117711 + Izn”n = R

n

Taking the Fourier transform throughout this equation and pre multiplying by IE,; ! ,



7.4 The General Case of a Discrete System 289

then |:1—(0)/0)n )2 +2i§n w/wnj|a77n (a)) =%:_%'a‘r‘g2 (a))

n n

where a, (a)) and az, (a)) are the Fourier amplitudes of the modal degree of
Z

freedom and the ground acceleration. Thus

A, A N . -
ay, (@) ==2H (0)a;, (@) where A (0)=]1-(0/a,)’ +2i, o/o, |
n
_ _ An 3 i _ An 2
Sﬂn (60) - Th_rilo (aﬂ D ) Th—IEoJZ_T{{ k_anargz Tanargz
A ? 2
= —_— i s = n 3 e
_[ j 1, ‘ lim — (a a, ) (sz] A, (o) s; (o)
Since I‘(t) =Q,-n, (t) then a, (a)) =Q, “ay (a)) and hence
S'l’l S’I’Z S’1’3 S’1r4
S S S
s, (0)- e L)
sym. Siry Sy | To=aT
Sr4r4
. 1 * T
Srr (w) =}1£lﬁ|i(‘p” .aﬂn) (¢” a’7 ) :l (p”(p” un ( )
= A 2
o o 7 (o)
In the special case that the response is quasi static, then
I 0'3 Cov,,, Cov,,, Cov,, |
o? Cov Cov °
Cov,, = e 2T L[S, (0)d
Sym. 0',23 Cov,3,4 0
_ % |

= Cov,rchncpﬁ[An/(w,an } I Sy,. (@)dw= %%[Ang /(wsMn)JZ

is the standard deviation of the horizontal ground acceleration.
Z

where O
g
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7.5 The Case of Continuous Line-Like Systems

For a continuous line-like system, in Fig. 7.8 arbitrarily represented by a
cantilevered beam, the instantaneous equilibrium condition of an incremental
element dx is shown in the lower illustration of Fig. 7.8. Let, as usual introduce

ry Nmo ¢y(x) Nmo
r(or)=|n = o | 6.(x) zdcp,, )1, (1) =®(x) n(s) (76D
Ty n=l ¢9(x)

¢(x):|:(pl @, (meodi|
where (7.62)

NO=[m - mo ]

T
and where the N 4 mode shapes @, (x)= [¢)y o, %} are assumed to be

continuous functions of X. The solution has been developed in Chapter 6.5 (and
5.3), where it was shown that for a continuous system subject to a distributed

T
stochastic load q(x,t)=|:qy q, qg} then the response at position x, is

given by
Sryry Sryrz Sryrg
Srr ('xr’a)) = Srzry Srzrz Srzrg :q)('xr)'sml (a))q)T (xr) (7'63)
S S S

rgry rgrz rere

where
¢y1 (xr) ¢yn (xr) ¢me0d (X,)
(D(xr): ¢zl (xr) ¢Zn (xr) ¢z

By () 95, (%) PoNpmoa (1) (7.64)

S’?n’?m

and
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Fig. 7.8 Continuous line-like system
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(7.65)
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and

%]

qyqy S(Iyqz quqe

qz4y quqz quqe (7.66)

969y Sqeqz Sqeqe

S

%)

% 5.0) = lim [ &) (x,0)-a" (x.0) =

qq( Teo T L 4

%]

As illustrated in Fig. 7.8, the inertia force due to horizontal ground acceleration is
given by

Byt
—dm-f,, =—m.dx| ¥ |=—(mi+im,A)dx (1.67)
To
m, 0 —mye, 1
where m, = m, me, and A=|0 (7.68)
Sym. my 0

Thus, it is seen that the horizontal ground acceleration is equivalent to an evenly
distributed horizontal load

T ..
q(x,t):[qy q, q9] =—i,m, A (7.69)
whose Fourier transform is defined by
T
aq(x,a))=[aqy a,, a%} :—a.,.gmgA (7.70)

and thus, its cross spectral load effect is given by

N B
S,, (x1,%,, @) = lim E[aq(xl,w).ag(xz,w)}

T —eo

- lim L{[—a.,.g (@)m, (x)A]

T—e 7TT
=m, (x ) AATm (x, )S'r'g (@)

*

[-a, (0)m, (5)A] {070

where S i, ()= Tll_I)ll %(a:g aj, ) is the spectral density of the

horizontal ground acceleration. Thus, the modal cross spectral density S77n77m (a))

in Eq. 6.65 is given by
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ﬂ; (a))ﬁ,] (@) -
Tl o= > =S, || @ (x)m, (x ) AATM, (x,)@,, (x, ) dxydx,
(o, ai,) 1]
H, (0)H, (o) (7.72)
=T, = ) =~ ng (@) my(xl)my(xz) ¢y(x1)¢y(x2)
(o, ai,) (1] :
_ez¢9(xl)¢y(x2)_ez¢y(xl)¢9(XZ)+ezz¢9(xl)¢9(x2):|dxldx2

The relevant variances and co-variances are then given by

2
Orory Covryrz Cov,yrg )
2 —
Covrzry 0., Cov, ., |= J. S, (x,,0)dow
5 0
Covrgry CO"rng Ororg

(7.73)

ryry Sryrz Sryrg

:J.Q(x,)S,m(a))dJT(x,)da)zj. Ser, S S . ldw
0 0

2z Z1e

Srgry Srgrz Srgrg

This will generally be applicable to any continuous system subject to horizontal
ground acceleration. The actual response itself may be obtained by a time domain
simulation from spectra (see Appendix B) or by a frequency domain integration,
as shown in Eq. 7.73.

Elaboration 7.3: Single Mode Single Component Response

If a single mode approach is considered adequate, i.e. N4 =1, and there are no

cross sectional asymmetry in the entire system, i.e. if

78 m, 0
Q,(x)=| 0 and m, (x)= m,
0 Sym. my

then the response calculation simplifies into Sryry (x,, @)= ¢)2n (x,)- S (@)
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Frequency domain integration may in most cases with sufficient accuracy be split
into a background part and a resonant part, and thus

2
¢V ('xr ) L > T,
=|—5= d +—1S =
|:wa11 ‘([¢v”( ) y(X) * O-rg 441 ! (w wn)
where O'Eg = IS iy (w)dw is the variance of the horizontal ground
0
acceleration.

L 1
I¢)’n (x)m, (x)dx o \2 7S, (0=a,) 2
Thus Oy (x.) z‘¢yn ENE g . [ J NPT

,[¢y2n (x)my (x)dx



Chapter 8
Wind Induced Dynamic Response Calculations

8.1 Introduction

It is in the following taken for granted that the main wind direction throughout the
entire span of the structure is perpendicular to the direction of its span. The wind
velocity vector is split into three fluctuating orthogonal components, U in the main
wind direction, and v and W in the across wind horizontal and vertical directions.

Typical full scale recordings of U, v and W are illustrated in Figs. 8.1 and 8.2
above. For a relevant structural design situation it is assumed that U may be split
into a mean value V that only varies with height above ground and a fluctuating

part u, i.e. U=V +u. V is commonly known as the mean wind velocity, and u, v

and w are the turbulence components, created by friction between the terrain and
the flow of the main weather system. It is taken for granted that the instantaneous

wind velocity pressure is given by Bernoulli’s equation q(t) =pU 2 / 2. Within the

relevant time and space of response calculations it is also taken for granted that the
variations of the wind velocity components are stationary and homogeneous.

If an air flow is met by the obstacle of a more or less solid line—like structure,
the flow/structure interaction will give raise to forces acting on the system. Unless
the body is extremely streamlined and the speed of the flow is very low and
smooth, these forces will fluctuate. Firstly, because the oncoming flow in which
the structure is submerged contains turbulence, i.e. it is itself fluctuating in time
and space. Secondly, on the surface of the structure additional flow turbulence and
vortices are created due to friction as well as flow separation, causing vortices to
be shed in the wake of the body. And finally, if the structure is flexible the
fluctuating forces will cause the body to oscillate, and the alternating flow and the
oscillating body will interact and generate further forces. The first of these effects
is known as buffeting, the second as vortex shedding, and the third is aerodynamic
motion induced forces. In literature, the response calculations due to buffeting and
vortex shedding are usually treated separately. The reason for this is that for most
civil engineering structures they occur at their strongest in fairly separate wind
velocity regions, i.e. vortex shedding is at its strongest at fairly low wind
velocities, while buffeting occur at stronger wind velocities. An illustration of
what can be expected is shown in Fig. 8.3. At large wind velocities, in the vicinity
of a certain limiting (critical) wind velocity, the response curve may increase

E.N. Strgmmen, Structural Dynamics, Springer Series in Solid and Structural Mechanics 2, 295
DOI: 10.1007/978-3-319-01802-7_8, © Springer International Publishing Switzerland 2014
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Fig. 8.1 Typical recording of along wind velocity U component
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Fig. 8.2 Typical recording of across wind velocity v and w components



8.2 The Dynamic Buffeting Load 297

A A
(0] (0]
2 2
o (o]
& &
- g
g ]
© £
n 2
>
(]
>V > V
Static flow Flow Vortex Primarily Motion
effects induced shedding turbulence induced
diver- effects load
gence effects

Fig. 8.3 Typical response behaviour of slender civil engineering structures

rapidly and the system will show signs of unstable behaviour in the sense that a
small increase in V implies a large increase of static or dynamic response. It
should be noted that in the vicinity of such a stability limit the problem is
nonlinear. The reason for this is that the unstable behaviour is primarily caused by
motion induced load effects, which contain contributions that will change the
resonance frequency (as well as mode shapes) and the damping properties to the
combined structure and flow system. Thus, the solution may require iterations.

8.2 The Dynamic Buffeting Load

The situation is illustrated in Fig. 8.4. As can be seen, the buffeting load from the
wind is assumed to comprise distributed drag, lift and pitching moment forces

(qp- q, and g, ), whose components in structural axis are denoted ¢, g, and

qg - (It should be noted that in aeronautics as well as in wind engineering it is

customary to define the pitching moment positive in the opposite direction of that
which is shown in Fig. 8.4, see Fig. 8.5.) The theory presented below was first
developed by A.G. Davenport [42, 43].

The basic assumptions are that the load may be calculated from the
instantaneous velocity pressure and appropriate load coefficients that have been
obtained from static tests, and that linearization of any fluctuating parts will render
results with sufficient accuracy. It is a requirement for linearization of load
components that structural displacements and cross sectional rotations are small
and that the turbulence components # , Vv and W are small as compared to V. It

is taken for granted that the local element X axis is either horizontal or vertical

(i.e. parallel to either Z¢ or Y as illustrated in Fig. 8.4).
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Z;

Y //

Fig. 8.4 Line-like structure in a turbulent wind field

Fig. 8.5 Instantaneous flow and displacement quantities
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The situation for a horizontal element is show in Fig. 8.5. (The situation for a
vertical element is identical, except that W should be replaced by V .) The cross
section at an arbitrary position X 1is first given the time invariant (mean)

displacements Fy(x) , T (x) and 79(x) In this position the wind velocity vector is

V+u(x,t) in the along wind horizontal direction and w(x,t) in the vertical across

wind direction. It is about this position that the structure oscillates. Adopting the
principle of d’Alambert, the cross section is given an additional dynamic

displacements ry,(x,t), r, (x,t) and rg(x,t). In this position the instantaneous

cross sectional drag, lift and moment forces in flow axes are given by

w)] | [Pe@
qr (x.1) :Epvril | B-Cp(a) CRY
qu (x.1) B*-Cy (@)

where C,,, C, and C,, are cross sectional characteristic load coefficients from
static tests (see Fig. 8.6), V,,, is the instantaneous relative wind velocity and &

is the angle of flow incidence. Transformation into structural axis is obtained by

dy cosff —sinff 0] qp
Qe (%.2)=|gq, | =|sinf cosf 0| q, (8.2)
qg tot O 0 1 qM
where:
B = arctan [&j (8.3)
V+u—g

The first linearization involves the assumption that the fluctuating flow

components M(x,t) and w(x,t) are small as compared to V, and that structural

displacements (as well as cross sectional rotation) are also small. Then cos § =1

and sinﬂ:tanﬂ:ﬂ:(w—fz)/(VJru—i’y):(w—i’Z)/V, and thus

Vi =(V+u—i’y)2+(W—r'z)2 ~V? +2Vu - 2VF,

(8.4)
aA=Ty+rg+B=Tg+ry+w/V—Fi |V
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The second linearization involves the flow incidence dependent load coefficients.
As illustrated in Fig. 8.6, the nonlinear variation of the load coefficient curves is
replaced by the following linear approximation

Cpla)| | Cp(@) Ch(@)
Co(a) |=| CL(@) |[+a; | Cp(2) (8.5)
Cu(@)] [Cu (@) Cu (@)

where @ and ¢ are the mean value and the fluctuating part of the angle of flow

incidence, and where C'D, Ci and C 1’14 are the slopes of the load coefficient
curves at ¢ . It follows from Eq. 8.4 that & =7, and o =rp+wlV—-r.IV. For

simplicity the following notation is introduced

Cp(@) C:D Cp (@) Cp
Cy(@)| | Cy Cy (@)] [Cy
oA
R
|
L > a
o
c A cu A
/ /
CLo— ) Cy—-— “
| |
A4 >0 A4 > o
/ 5 / a

Fig. 8.6 Load coefficients obtained from static tests
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Combining Eqgs. 8.2 — 8.6

q, v DC) | bCp | -BC,
q. =pV(5+u—i’yJ BC, +[rg+%—:/—fj BC, |+ W‘_/rz DC, (8.7)
|, B*Cy BCy, 0

and discarding higher order terms (i.e. terms containing the square or the product
of quantities that have been assumed small) the following is obtained

q,(x)| |a,(x1)
Qe (0.1)=| @, (x) |+] ¢, (x.1) [=G+b, -v+e, -F+k, T @8
(%) | | a0(x:t)

Where
v(xt)=[u w] and r(xe)=[r r, re]T (8.9)
q D/B)C
B _5 ,OVZB( _) D
q(x)=|7q. |= 5 C, (8.10)
q& BCM
2(D/B)C, ((DIB)CH-C,)
VB —~ , — VB
bq(x):pT 2C, (c;+(D/B)Cp) :pT-bq @.11)
2BC,, BC,,
2(D/B)C, ((D/B)CpH-C,) O
cqae(x)z—ﬁ 2C, (c;+(D/B)Cp) 0 (8.12)
2BC,, BC;, 0
0 0 (D/B)C)
V’B ,
K. (x)zp 0 0 C (8.13)

00 BC},
It is seen that the total load vector comprises a time invariant (mean static) part
_ _ _  _r
a(x)=a, 7. a| (8.14)

and a fluctuating (dynamic) part
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ae

q(x,t)z[qy q. quszq~V+cqae~r"+kq -r (8.15)

where b, v is the dynamic loading associated with turbulence (4 and w ) in the
oncoming flow, while cq .F and kq .r are motion induced loads associated with
ae ae

structural velocity and displacement. The theory is applicable in time domain as well
as in frequency domain. For an element that is vertical in the flow, the local axis
system is maintained and thus, the necessary load equations may simply be obtained
by replacing W by vV in Egs. 8.3 -8.15.

Used in a frequency domain approach Coo and kq in Egs. 8.12 and 8.13 may

be expanded into the more general theory of aerodynamic derivatives, first
developed in the field of aeronautics and later made applicable to line like civil
engineering structures by Scanlan & Tomko [44]. Following their notations, the
frequency domain versions of C.. and kqae are then given by

2 2
Coue :pf "0 (V)'éqae and k, szB '[a)i (V)]z'ﬁqae (8.16)
where
P P BP P, P BP
¢, =| Hs H, BH,|adk, =|H, H, BH, 8.17)
BA; BA B?A, BA, BA, B’A;

. . - v . A N

The non-dimensional coefficients B .H,,A, k=1-6 contained in Co and k,,
are usually called aerodynamic derivatives. Usually, they have been
experimentally determined in wind tunnel aeroelastic section model tests, where
they are given as functions of the reduced mean wind velocity V =V/ (Bw,), where

B is the cross sectional width and @, is the in-wind resonance frequency

associated with the modelled mode shape of the system. For the purpose of full
scale calculations the similarity requirements between model scale and full scale
conditions must be fulfilled, and thus, the aerodynamic derivatives will have to be

extracted as functions of V:V/(Ba)n), which itself is affected by stiffness

contributions from kq . Hence, iterations may be required.
ae
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8.3 Dynamic Response to Wind Buffeting

The buffeting theory in a general finite element format is presented in ref. [15]. In
this chapter the theory is presented in a continuous version. It is tailored for simple
line like bridges (as illustrated in Fig. 8.7) or tower type of structural systems.

Fig. 8.7 Simple bridge type of structural system subject to wind turbulence

u(t) Q(t) r(t)

. [
- Q
> t >t
T

a) Time domain

b) Frequency domain

Fig. 8.8 Frequency domain representation
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The solution is based on a modal frequency domain approach, as previously
developed in Chapter 5.3 and further developed in Chapter 6.5. Thus, the entire
focus is on the calculation of the variances and co-variances of the fluctuating
displacement components see Fig. 8.8. Since the flow is assumed Gaussian,
stationary and homogeneous and the structural system is linear elastic, then the
same stochastic properties will apply to the response, and thus, extreme values of
the response at an arbitrary position x, along the span may be obtained from (see

Appendix A)

_ _  _ _Tr
r=|r, r, r

For oy (%) =T +K,0, where Ll . (8.18)
o, :[O'y o, 0'9}

and where kp is a peak factor defined in Eq. A.45, or else, Vot MY be taken

from a representative number of time domain simulations. In a modal format the

cross sectional displacements r(x,t) = [ r,or, Iy JT may be replaced by the

sum of the products between natural eigenmodes ¢, ( x):[¢v 9 ¢0JT (see

Chapter 5.3) and unknown exclusively time dependent functions 7, (t) ,1.e.

w9 (%)
()= 3 6.(9| 7 (=000 (1) 819
"= gy (x)

where N ., is the number of modes that has been deemed necessary for a

sufficiently accurate or representative solution (see Fig. 5.7). The mode shape
matrix (%) and the generalised coordinate vector ni) are defined by

(I)(x):[cp1 @, <p,\,mod]andn(z):[n1 ..... /R r]Nm]T.Itwas

then shown in Chapter 5.3 that the introduction of Eq. 8.19 into the equilibrium
equations, followed by consecutive weighing with each (orthogonal) modeshape
and span-wise integration will render N, equivalent modal equilibrium

conditions (see Eq. 5.32)

M-A(7)+C-a(r)+K-n(1) =R, (1) (8.20)

where
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|\~I|=dlag[1\2n] Mn=£(¢£ m, (pn)dx
C=diag[C, | fand{C, =2M,m,C, 8.21)
K—dzag[IZJ K,=oM,
and where
R, = I ' qdx (8.22)
L

What remains is to expand this theory to cover the load case of wind buffeting

T .
q(x,t)=[qy q, qu :bqv+cqae'r+kqae'r (see Eq. 8.15) where

V= [u (x,1) w(x,t)]T if the system is horisontal

T (8.23)
V= [u (x,1) v(x,t)} if the system is vertical
The modal load vector is then given by
ﬁq(t)z I (DT(x)-q(x,t)dx
Lexp
T .
= j [q:»l . Q, .. ¢Nm0d] (bqv+cqaer+kqaer)dx
Lexp (8.24)
= [ ®'bvdx+ | ®'c, ®drn+ [ Ok, Odxn
Lexp Lexp Lexp
and thus
_ R,(t)=R(t)+C,n(r)+Kn(z) (8.25)
where:
- ~ ~ ~ T
R(t)z[R R RNmod:|
(8.26)

jcpn )b, v (x,1)dx

is the flow induced (buffeting) part of the modal load, and where
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K T

K,= | o'k, Odx
Lexp

~ T

C.= | ®'c,, ®dx
lexp

(8.27)

are aerodynamic modal stiffness and damping contributions. Moving these effects
to the left hand side of Eq. 8.20 then the equilibrium condition in modal
coordinates is given by

M-ii(r) +(C~C,, ) n(r) +(K-K,, | n(r)=R(1) (8.28)

Single Mode Response Calculations

Fig. 8.9 Single mode shape containing three components

Let us first consider the simple case that a single mode approach may be
adopted, i.e. that there are no significant sources of mechanical or flow induced
coupling between modes and that they may with sufficient accuracy be handled as
a sum of individual contributions. The response covariance between modes will
then be zero, and thus, the variance of the total dynamic displacement response
can be obtained as the sum of contributions from each mode, i.e. the variance of a
displacement component is the sum of all variance contributions from excited
modes
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2 2 27" 2 2 2 7"
[O'y o 0'9:| :Z[O'yn O'Zn O-9n:| (8.29)
n
Given an arbitrary mode shape (see Fig. 8.9)

e, (x)=[8, ¢ 4]

with eigenfrequency @, and modal damping ratio {,. The displacement

T
(8.30)
n

response at a particular position x, associated with this mode is simply

r(x.1)=q,(x,.)-1,(). Since there is only a single mode then Eq. 8.28 is reduced to

M, -ij, (t)+(€n _éaen)'ﬁn (t)+(1€n -K,, )-77,, (1)=R, () (8.31)
where
[ [eim,@,ax]
M, L
C, |=|2M,w,¢, (8.32)
kn wf[\;ln

Ry = | @0k, ®,dx

Lexp
_ . (8.33)
Caen - .[ (p”cqae(p”dx
Lexp
and
R,(1)= L.[ @, (x)q(x,1)dx= L.[ @, (x)b, v (x,1)dx (8.34)
exp exp

Transition into the frequency domain is obtained by taking the Fourier transform
on either side of Eq. 8.31. Thus,

[—Mnaﬂ +(C,-C,,, )io+(K, - K,, )J ay, (0)=a; (o) (8.35)

where @, and aj are the Fourier amplitudes of 77,(f) and R,(1),
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j @, (x)b,a, (x,0)dx 8.36)

Lexp

and

a (x, a)) = [au a,, ]T if the system is horisontal
(8.37)

a,(x,m)=[a a,] if the system is vertical

u

Pre-multiplying Eq. 8.35 by K " I= 1/ (a),fM " ) , then the following is obtained

H, (o)
a, (o) == %, (w) (8.38)
n
where
R 2 é B
A, (0)=|1-=2o | 2| 4ol ——n|. 2 (8.39)
K, , 20,M, | o,
is the non-dimensional modal frequency-response-function. Introducing
K /K and {,, = /Za)M , then
-1
~ (4
Hn(a) ( j +2i g é/ae”)'a)_n (8.40)
The single-sided spectrum of 7, (¢) is given by
A 2
1 - A, (o) 1 (.
= i . =L 1 . lim—-la: -a- (8.41)
Sy (@)= Th_l)rjoﬂT (a ann) 72 Th_rflﬁT (“R,, aRn)
~ 2
_|A, (@) 5o
:>Snn(a’)—T'Skn(a’) :

where the single-sided spectrum of the modal loading is defined by (see Eq. 8.36)
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N R
S (@)= im (e,
T

.1
:Th—IEoE [ .[ (pi(x)bqav(x,a))de [ J. (pz(x)bqav(x,a))dxl
Lexp Lexp (8.43)
N
= _U @, ()b, lim ﬁ{av(xl’w)af(xz’a’)}bg%(xz)dﬁdxz

T 50
lﬁXp

= _U (PZ(xl)quvv(xl’xz’w)bg(pn(XZ)dxlde
Lexp

(lf:xp indicates integration over the wind exposed length of the system). In most

cases cross spectra between turbulence components may be ignored, and thus

S, (x.%,.0) = lim ——{a! (v, @)a’ (x,.0)}

T—e 71T
= S"”" (xl’xz’w) Suw (x1>x27a)) _ Suu (XI,XZ,O)) 0 (8.44)
) SW” (xl’xz’a)) SWW (xl’XZ’w) - O SWW (x1$-x2,a))

if the system is horizontal, and
S, (X.%,0) = lim ——{a (x,0)a (x,,0)} =
v 142> T 7T v 1 v 2

(8.45)
|:Suu (xl’XZ’w) Suv(xl’XZ’w)i|~|:Suu(xl’x2’a)) 0 i|
S i

S (X1, %5, ) (x,%,,0) 0 Sy (X1, %, @)

if the system is vertical. Linearity implies that the Fourier amplitudes of the
displacement components at an arbitrary position x, are given by

The cross spectral density matrix of the three displacement components is then
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S, (x,,0)= lim L(a* -al ):

romAl (8.47)
}I_I&,,T{(‘Pn nn) (®ua, ) } @ }I_IEO,;T( T, )@
from which the following is obtained:
s, (x,.0)=
Sron (x..0) Srr. (x.0) S, (x.0)
Sury (3:0) S, (5.0) S, (5.0)| =0,(x)S, (@)@h(x)
S (5:0) S, (5:0) 5, (5.0) |

s o
where S,]n (a)) = Th_r)r:oﬁ(a”n “ay, ) is given in Eq. 8.42. Thus (see also Egs.

8.42, 8.43 and 8.48)
Sr, (x a)) =0, (xr)snn (a))tpﬁ (xr) =

‘ , , (8.49)
‘pn r J‘J. (Pn xl q vv xl’x2’a))bq‘pn (x2)dxldx2 ‘pn (xr)
lexp

The response covariance matrix is obtained by frequency domain integration of
Sn(xr,a), and thus

Cov,, (x,):js, (x,,@)dw=| Cov, 1y (
0
(

rgr

%) ol(y)  Cov,(x)

xr) Covrgrz (xr) O-rzg (xr)

9 (%) 8,(x)-0.(x) o,(x) da(x)
=9,(x, )0, @,(x,)=0, 2 (x,) . (%) s (x,)
sym. % (x,)

where
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‘2 (8.51)

” @, (1)b,S,, (3,5, )by @, () dxidx, pd o
Lexp

The total response covariance matrix may be obtained by adding up
contributions from all modes deemed necessary for a sufficiently accurate
solution, i.e.

Cov(x,)= 2, Cov,(x,) (8.52)

Elaboration 8.1: Single Mode Single Component Horizontal System
For simplicity, let us consider a single mode single component and perfectly
horizontal system, e.g. the case that the mode shape only contains a single
horizontal y component
0 o]
(pn ~|:¢y ]n

Let us also take it for granted that V', o, , o, and all cross sectional quantities

are constants, then

R 2
53, (@)= OL] 1 07 (10 8 (00t (1)
o (@)= =2 ” P, (x)0,S,, (X, %,0)0,9, (X, )dxdx,
n Lexp
25 A, (o) |
pV°B n
- T~—2 J.J. ¢Yn (xl).¢)’n ()Cz)‘
n Lexp
5 2
_ S = S
{(22%@) S0, (e, -, ), | el
B o, B Oy

where 1,=0, /V and ], 6 =0, /V are the turbulence intensities,

AXZ‘XI —XQ‘ is the spatial (span-wise) separation, and where x, and x, are

two arbitrary positions. Introducing
Ky = CU?My

and the modally equivalent and evenly distributed mass
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- ~ 2 2 2
:Mn/jgbyndx:jmygpyndx/jgpyndx
L L L
then the following expression is obtained for the standard deviation of the
dynamic response in the along wind y direction associated with mode shape n

(xr>{]°sﬂ,l (w)dwF
_|en (=

I¢yndx 2m, [Ba)j '([
L

o

ryn ('xr =

1

2 2
— S (Ax, — S (AX,
[(2DCD ) sz) [(BCE—CL)IWJ M]dxldxz}dw}
o, B o,

The non-dimensional frequency response function is given by

()= 15, (0l +2(6 -, ) 0)]|

where

N
PR | gl

~ Lexp I
2
a?l n m, ¢Vn dx ¢Vn dx l P><
I:Kaen — a)lan — J‘ :,032 Lexp . 2 4
gae,l C m, ¢ dx 1 -«
ae,}~ J‘ ¢y I Yn Z Fi
20,M , Loxp

20,1, j g, dx

Similarly, if @, (x)=[0 ¢, O]Tn then

¢,,(xr)

pB 2= 2

1
2 2
_ 28, (Ax, . D= S, (A,
(2cL1,4)2L2w) +KCL+2CDJIW} deldxz do
o, B o,

where:
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2
g, I e e L
n and |: } 10~ XPZ
R I TR N O Gy T
L
Or,if @, (x)=[0 0 ¢9]nthen
o (x)=|¢‘9(x ot (v TH (@) 1 [] 8, (x1)- 0y, ()
W (g ax 2, (Bo,) 31 o On WD T 12
L

1

_ S (Ax, S, (Ax, 2
{(ZCM I, )ZM} +(Cyy1, ) deldxz}dw]

o, loj
~ m, % .[ ¢‘9 — A
M n J. Kaen ,OB lexp 2 3
where M J- ¢ dx J- ¢ and é, J- ¢ 1.
2 6, aey, 6, Z A2
Example 8.1

Let us consider a typical slender bridge type of system, where the three modes

k,m,n
o.=[¢, 0 0]  @,=[0 o Of  @,=[0 0 g

with corresponding eigenfrequencies @,@,ay have been singled out for a

response calculation. Let us assume that the main girder cross section of the
bridge is close to a flat plate, in which case the following load coefficient

properties may be adopted

Ci ¢O’ EL =0 and %ED <<C£
Cy Cy
In that case
2
8D (V) = s - S, (@)
Sry (w’xr>: ¢y (xr> ﬁly ’ B_a)y CDIu Hy(a)> Jy(a)> 0_5
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5 (@o0)=|0. ()22 () crn | (o) d (w)z-Sw(“’)
4 X )= ¢z Xy 2’7~1Z sz Lw z 4 0-5,
(v Y C 5, ()
pB Vv , A A wl@
sw(w,x,):[%(x,)m-(B%j it [y (0) Jg(w)] 24
Suu (AX,CO)ZSM(C()) Aouu (AX,C()
where it has been assumed that R
S, (Ax, @) =S, (@) Co,,, (Ax,0)
and where
12
7 2
Jy(w):(jjlexp¢y(x1)‘¢y(x2) Co, u (Ax, @) dxdx, /IL¢de

A X 12
J, ((l)) = (J‘J‘Iexp 9, (xl ) 9, (X2 ) -Co,,, (Ax’ a))dxldx2 /IL¢12dx

U j 35 (1) 95 (x2)- Co,,, (Ax, ) dx,dx, " / [ dpax

are the non—dzmenstonal Jjoint acceptance functions. Integrating across the entire
[frequency domain, then the following response standard deviations are obtained:

5 2 B /2
pPB°D [L] ’EDI Dﬁy(a})rsu(w)jz(a))dw

_¢ u
‘ my Bwy 0 O-L% g B
pB (Vv ’ < 2 S, (o) 1"
= — | -c1,-| [|A w2 7. )} (w)d
o, () 22 o] i, M o 212 o)
12

_|¢9

T [BQJ C,I, F‘Hﬁ’(”)r'%a(vsz)'jg(”)dw

Let us focus exclusively on the response in the y (drag) direction, and consider a

suspension bridge with span L=1200m that is elevated at a position % =50m. Let
us for simplicity assume that the relevant mode shape ¢y(x)=sin(7[x/L) and that
X, = L/2, in which case ¢y(xr)=1. Let us also assume that the entire span is

flow exposed, i.e. Lexp =L, and adopt the following wind field properties:
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1) the turbulence intensity I,=0,/V=0.15
2) the integral length scale: o L,=100- (zf /10)0'3 =162m

L
3) the auto spectral density: Su (26()) = 108 "L, /V

B 53
% (1+162:0- 71, V)

4) the normalised co-spectrum: éOW (C@Ax) =eXp(—Cux - Ax/ V)
where C, =Cuyf =9/(27r) =14.

Let us allot the following values to the remaining constants that are necessary

for a numerical calculation of Oy (xr = L/2) :

p (kg/m’) ‘ 513 ’ B (m) ‘ D (m) ’ m,, (kg/m) ’ @, (rad/s) ’ é/y
125 [ o7 | 20 | 4 | 10000 | 0.4 | 0.005

Since m, is constant along the span, then the modally equivalent and evenly
distributed mass ﬁ1y=my. Finally, let us adopt quasi-—static values to the

aerodynamic derivatives, in which case K‘aey =0 and the aerodynamic damping

é/aey is given by

: pBZPl pB2[ s DV jz_pDC_‘DV

e ~ ~ -2 D ~
Yo dm 4 B Ba)y 2mya)y

The standard deviation of the dynamic response at x, = L/2 is then given by
12
A
Jy(B)dw

_ 2 A 2 S, (o)
o, (L/2)=328-107" V" J;Hy(a))‘ =

u

where Su (a)) / 0'3 , j y are defined above, and where

b1t 2, o]

The chosen single point spectral density and corresponding normalised co—
spectrum of the turbulent U component are shown on the top left and right hand
side diagrams in Fig. 8.10. The non-dimensional frequency response function and
the squared normalised joint acceptance functions are shown on the lower left and
right hand side diagrams in Fig. 8.10. The response spectrum of the along wind
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I’y component at x, = L/2 and V=40m/s is shown in Fig. 8.11. As can be

seen, it contains a broad banded background part and a narrow banded resonant
part at ®=04radls. The standard deviation of the dynamic response at

x, =L/2 is plotted versus the mean wind velocity in Fig. 8.12. From the

response spectrum in Fig. 8.11 a time domain simulation (see Appendix B) has

been extracted, see Fig. 8.13.

10
Y =162 m
u
N =
b K
> 10
3
107 = -
10 10 10
XL IV
u
10°
— 10’
&
I> 0
= 10
w0 =0.4, 2 =0.005
10 Y Y
10" 10
o (rad/s)

Fig. 8.10 Top left and right: single point u spectrum and corresponding normalised co-
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spectrum, lower left and right: frequency response function and joint acceptance function
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Fig. 8.11 Response spectrum of 7 Y displacements at x, = L / 2 and V=45m/s
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Fig. 8.12 The standard deviation of the dynamic response at x, = L / 2 versus the mean

wind velocity
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Mean wind velocitif: V= 45 mis

r_(m) at midpoint
o

Y
1
-

2k
3t | . i
Simulated: o = 0.984 m, kp=3.3
-4 ! z 1 1 1 1
0 100 200 300 400 500 600

t(s)
Fig. 8.13 Time domain response simulationat x, = L/2 and V =45 m/s

Elaboration 8.2: Vertical System with Span-Wise Variable Properties
For a vertical tower type of system where cross sectional properties

B(x), D(x), Cp(%), Cp(x) and Gy ()
as well as mean wind velocity V(x) and turbulence intensities 1,(x) and 1,(x) are
variables along the span, then a calculation of its single mode single component

T
P, z[¢y 0 O:I  Tesponse spectral density at position x, is given by

oo

ZJS,M (w)dw

5, (@)=, (x)

where
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A (@)=
" Lexp

‘ _U @, (x)b

319

(xlaxzsw)bg (%2)®, (x )d)ﬁdxz}

lﬁXp

= — S 2 Xy, @
(22%,“] (22%) #+
B XI B o o

(se-e]

1

KBCD CLJI”L

u

2

m
lﬁXp n

[ £z

[ £z

and
K aey,
Kpe, M, |1
é/aen C ae J. ¢)2,” dx
- ~ L
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General Multi-mode Response Calculations

In the final section of this chapter it is assumed that a full multi-mode approach is

required (see also Chapters 5.3 and 6.5), i.e. that

(1) =®x) n(1)

where
r(xni)=[r, r. 5]
cp(x)=[q>1... 0, ...q,,vmod]
M) =M 1y il |

and that the modal equilibrium equation is given by (see Eq. 8.28)

W-4i(1)+(€~€,.)-A(r) + (KK, ) n(1) =R(:)

(8.53)

(8.54)

(8.55)
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where |\7| R é and K are N
8.18, and the modal N

by N

by one flow induced load vectors is given by

diagonal matrices defined in Eq.

mod mod

mod

RO=[R . R, . Ry,]|
where

R, = I ((pZ-q)dx (8.56)
Lexp

and where éae and Rae are N by N, ,q Mmatrices

mod
C.= C K, = K (8.57)

whose elements on row 1 column m are given by

Cae (p£ .c‘Ie (pm
_denm | = j ., dx (8.58)
Kaenm Lexp P, 'kQae P,

where Cq and kq are three by three motion dependent cross sectional load
ae ae

coefficient matrices, e.g. as given in Egs. 8.12 and 8.13 or alternatively as given in
Eq. 8.16, whichever is deemed most appropriate. First, the Fourier transform is
taken throughout Eq. 8.55, i.e.

n(t)=>.a,(o) ¢ and R(t)=> ay(w) e (8.59)
=0 =0
and thus, Eq. 8.55 is satisfied at all frequencies if
[—(IVI -M,, )&’ +(C-C,, )io+(K-K,, )J ‘a,(w)=a;(o)  (8.60)
Pre-multiplication by K-! , recalling that
K = diag [a)fﬂ;ln]
~ - (8.61)
C =diag |:2ann§n:|

and introducing a reduced modal load vector
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T
[ @) (x)-a,(x0)ad
a,@(w)=l~(‘1-aﬁ(a))= gy (8.62)
T
where a (x, a)):[aqy aqz aqe} , then the following is obtained
a,(o)=H, (o) a, (o) (8.63)

where

-1
H, ()= {I— K™K, —diag {%:lwz +[diag {ﬁ} - K‘léaeJiw} (8.64)
wn (l)n

is the non-dimensional frequency-response-matrix, and | is the N, by N 4
identity matrix. It is convenient to define the following N, by N, matrices

K,
(8.65)

diag|w, ] (Ki1 éae)

l\-)l'— xz

Cae =

as well as introducing Z:cflag[é;l] The non-dimensional frequency-response-

matrix is then given by
-1

2
I:In(a))z I—Kae—[a)'diag[wiD +2iw- dlag[w } (T-T,.) (8.66)

n

Recalling that K™ =diag [l/( a)fM n )} , then the content of

(8.67)

ae aeym

K = K and ;ae = gaenm

are given by (see Eq. 8.16)
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J (@rky, @ )dx

acy, LCX
Saem = omnt, " wpm, pI CH RS -
L
~ J (918, @)ax
; _a, Caenm _ 1 Lexp (8.69)
“m o, 2w, [(@lg, )dx

L

Elaboration 8.3: Aerodynamic Stiffness and Damping
Fully expanded versions of Eqs. 8.68 and 8.69 are given by

l 3k * * * *
K“enm = 2 ~ J. (¢)’n ¢.Vm B1 + ¢Zn ¢.Vm H6 + ¢‘9n ¢.Vm BA6 +¢yn ¢Zm P(’ + ¢Zn ¢Zm H4 +

! Lexp
# 5 * 2 4% 2 2, 2
0y, 0., BA, + 0, 0y BP, +0. 8 BH+y g, B*A;)dx / [(03 +02 +43 )ax
L

l * * * * *
(aenm - ) J. (¢)’n ¢ym Pl + ¢Zn ¢.Vm H5 + ¢‘gn ¢.Vm BA5 +¢.Vn ¢Zm P5 + ¢Zn ¢Zm Hl

" Lexp

+y,0., BA +0, 8, BP, +9. ¢, BH+0, g, B*A; )dx / [(02 +02 +45 )ax
L

Returning to Eq. 8.63, the response spectral density matrix ( N by N, .q and

mod
containing single-sided spectra) is obtained from the basic definition of spectra as
expressed from the Fourier amplitudes, and thus, the following development applies
(see general development in Chapter 6.5):

S, (»)= lim %(af] -ay )= lim %[(Hnaﬁ )* (R, )T}

T—>o0 T—o0

_"* . 1 * T AT_A* T
=H, -[Tlgllﬁ(aﬁ-aﬁ)}ﬂﬂ =H,-S;H,

where s% isan N by N, .4 normalised modal load matrix

mod
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S;(w)=lim L(a*ﬂaTh ) =

T—eo 7T R™R
_ 1121 -
! * (8.71)
Th_r};ﬁ akn '[alﬁ akm akNmod} — Sz%,,km(w)
_a;Nmod_
whose elements on row 1 column m are given by
S; o (@)= 1lim i[a; a; }
nRm T—eo T L Bn B
[ o (v)a)(xo)dr [ [o}(x)a,(x0)] d
— lim Lexp _ Lexp i}
e @M, @M, (8.72)

.1 s
[ @ (x)- lim —[a; (x.0)-a] (x,,0) |- @, (x,)dndx,

(@001, )-(@01,)
Thus, the elements of S A (a)) are given by
H @, (%) Sy (3122, @) @, (%) ddy

. _Lew (8.73)
T

where Sqq (xl,xz,a)) is the spectral density matrix of cross sectional loads. Since

[qy q, dg ]T = bq (x)v(x,t) = (pVB/Z)ﬁqv , then its Fourier transform is

g,
a, (x,0)=|a

A

q. |=(pVBI2)-b, (x) a,(x @) (8.74)

Qg
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where a, (x, a)) = [a a, ]T or a, (x, a)) = [au a, ]T depending

u

on whether the system is horizontal or vertical (see Eqs. 8.23). Thus

N
S, (31, %,@) = lim —] & (x,0)-a] (x,,) |

T—o 7rT
2
pVB 6 . 1 |: * T :| ~T
=|—| ‘b, (x) lim—|a, (x,w)-a, (x,0)| b, (x
(2] 6, (x) Jim {8 (.08 (5,00 | B (1) 519
2
pVB ) - T
(2] B, (1) S0 (1,320 8] (1)
where S, (x,x,,@) is defined in Egs. 8.44 or 8.45 depending on whether the
system is horizontal or vertical. Then the content of the N __, by N_ 4
normalised modal load matrix

is given by

s [T @7 (x)fB, (4)[128, (x1.2.0) B (x2)] @, (x,) i,

SI%R =[p‘/223j Lexp ~ _
o (enn, )(er,,) (8.77)
=/)B3./)193.[V]2.[V]2.j2
2m, 2w, \Bw,) | Bo, i
where

|, =diag[1, 1,] o\, =diag[l, 1,]and S, =diag[S,/o} S,./00]

or §, =diag[SW / 0'3 S, / O-sz depending on whether the system is horizontal or

. . . . ~ .
vertical, and where the N, - N .4 joint acceptance functions Jnm, are defined

by

[ @7 a){B, (x)[12-8, (31.5,0) [B ()] @, () vy

g2 _lew
[ | <p§<|>ndx}[ | <p,Tn<pdeJ
L L

(8.78)

nm
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Elaboration 8.4: Joint Acceptance Function for Horizontal System
A fully expanded version of the numerator in Eq. 8.78

Tow=[] @ (x){B, (x)[1 -8, (x1.%,.0) |B] (x,)] @, (x,) v,
lexp

for a horizontal system whose cross sectional properties are constant along its span
is given by

D=Y ,» (D ~ Y ,a
‘]r%m: 'U {¢yn (x1)¢ym (x2)|:(2ECDJ IMZSMMJ'_[EC,D_CLJ Iisww:l

Lexp
— \2 ~ D — 2 ~
+¢. (%), (xz){(zq) 135W+[q+ECD] If,SWW}

— 2 N , ~
+05, (1) 85, (xz)[(ZBCM) 138, +(BCy )’ I»ZVSWW}
"‘[%n ()0, (x2)+0., (0)8,, (xz)]

D~ = G D ’ = , D — A
{4ECDCL135W +[ECD = ch[cL +ECDJI§SWW}
+|:¢yn (%)@, () +05 (x1)8, (%, )J

4%EDBEM ’S,, + [% fori ELJBC;W 125}

+|:¢zn (xl)¢9m (x2)+¢en (x1)¢zm (xz)]

r dx,dx
. , D= , aa 10X
4C,BCy 38, +| Cp+ - Cp |BC 138

u = uu www

and the corresponding reduced version is given by

2
‘Inm

2 =
[(62,+02 +d5,)dx |-\ [(8], +02, + 45, )ax

L L

The reduced cross spectra S and S'WW are defined by

uu
" 2
Suu _Suu (xl’XZ’w)/o-u

SA =Sww(x1’x2’w)/o-v2v

ww
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Since spatial averaging will eliminate any complex parts of the cross spectra, then

) S (x.0) »
S =Re[ S, (1,3, @) ]/ 02 =%~Couu (Ax,0)

u

. S (x.0) -
Sy =Re[ S,,,, (x,, x5, 0) |/ o =M. Co,,, (Ax,®)
O-W
where Ax =[x, — x|, (&

» and éOWW are the reduced u- and w- component
co-spectra (see Eq. A.89).

Extracting from the mode shape matrix (l):[(p1

() (med] a three by
N ,,,q Matrix associated with a chosen span-wise position x,

q>r (xr)z |:(P1 (xr)

@, (%) o Prpog (5]

9, (x,) 8, (x,) 9, (x.) (8.79)
= ¢,(xr) e | O, (x,) P, (x,
¢9(xr) 1 ¢6’(xr) » ¢9(x’

Nmod

then the three by three cross spectral density matrix of the unknown displacements
Ty, I;and rg at x =x,

S ry ry ry e S ry 7]
S, (% @)= S, S.. S, (8.80)
S

rgry Srgrz Srgrg
is given by
S, (x.0)=lim—_{[®,(x)a, ()] [0, (x)a, ()
(8.81)
=0, (x,) lim —_{a (@)a) (@)} @] (x,) =, (1) S, () &/

where S, (@) is given in Eq. 8.70, i.e.:

S, (xr’w) =0, (xr)|:|:lj7 (w) ’ Sl? (w)i:l; (w):|¢T (xr) (8.82)
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where S . (w) is defined in Eqs. 8.76 — 8.78. The corresponding covariance

matrix is simply obtained by frequency domain integration, i.e.

2

o CovryrZ Covryra
Cov,, (x,)=| Cov o’ S =|S,, (x,.0)do 8.83
rr \"'r rzry Iy 719 rr \"r> (8.83)
5 0
Covrgry Covrg,Z o

Example 8.2
Let us again (similar to example 8.1) consider a suspension bridge with a single
span of L=1200m that is elevated at a position zy =50m, but now we set out to

calculate the dynamic response at x, = L/2 associated with two mode shapes

@=[0 ¢, 0] ©,=[0 0 ¢,

with corresponding eigenfrequencies @ =0.7 and @, =2.75 rad | s. As can be
seen, @, contains only the displacement component in the across wind vertical

direction while @, only contains torsion. Thus

0 O
0
O=[¢, @,]= ¢, 0 | which may be simplified into @ = |:¢(z)l , }
0 @, 62
Let us assume that
9. = %[sin (x/L)—sin (37Z'x/L):| and %, =sin( 7/ L)

Thus, the aim of this example is to calculate the corresponding dynamic response
quantities O-rz’z and O-VHVH at x, = L/2 and the covariance COVrng between

them. It is taken for granted that the chosen mean wind velocity will also be set in
the vicinity of the instability limit of the system, such that in-wind changes to
resonance frequencies may not be ignored. Again, it is assumed that the cross
section has the following static load coefficient properties:

C,=0 C; =25 C, =0 Cy =0.8 and

D_ ’
—Cr,xC
B D L

(Quantifying the drag coefficient is obsolete since y direction response is not
excited.)
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It is taken for granted that Lexp =],. Let us adopt the following wind field
properties:

1) the turbulence intensity 1,=0,/V=0.08
2) the integral length scales:

L, =100-(z, /10)" =162m,

I1,="1,/12

3) the normalised auto spectral density:
S, (@) 1svL
- ‘r 5/3
7 (1+22507L,/v)

Co,,, (@,Ax) =exp(~C,, @Ax/V)
Cpuo=C,y, =65/(27) =10

4) the normalised co-spectrum:

where Ax =|x, — x et us allot the following values to the remaining constants
h = x,|) Let llot the foll g values to th g tant.

that are necessary for a numerical calculation of the relevant dynamic response
quantities at x, = L/2 :

£ B D m 1 ®, )
(kg/m’) | (M) | (M) | (kg/m) | (kgm*/m) | (rad/s) | (rad/s)
125 | 20 | 4 | 12500 | 425000 | 0.7 | 2.75 | 0.005 | 0.01

¢ ’:2

Since m, and m, are constant along the span, then the modally equivalent and

evenly distributed masses m, = m, and m, =m, . It should be noted that

L L L
L » L L
£¢qu_Z .([¢92dX—3 _([¢Zl¢92dx—z

Finally, let us for simplicity adopt quasi-static values to the aerodynamic

derivatives, except for A; which is responsible for aerodynamic damping in

torsion. Adopting A;z—ﬂMC;VI (V/Ba)n)2 and f,, =0.2 provides a good

approximation to the flat plate properties. Thus, the aerodynamic derivatives
associated with motion in the across wind vertical direction and torsion are given

by:
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H, % Al -V
Hy|==Ci | 0 |ad | a}|=Cho|-py V| ana
Hy v? A V?

Hy A

H, A |=0

Hg A

where: Vzv/[Bwn(V)] and where @,(V), n=lor2, is the in-wind resonance

frequency. The aerodynamic coefficients associated with changes in stiffness and
damping are then given by:

oo = L2 [ (0,05, BHS +0y, 00, B2A)d / [(02 +03 )ax

2m
T Lexp

_pB*
4m

* * 2 4% 2 2

S aenm = [ (9,0, Hi +05,0., BA +0, 85 B*A;)dx / [(02 +02 )dx
" Lexp L

where N and m are equal to 1 or 2. Introducing the choice of aerodynamic

derivatives given above, then:

Kooy =0,
I ¢21¢023H3dx
2 3 3 2
. pB Lexp :pB ~H*=’DB C . \%4
“2 2, [ 92 dx 2w, 2w, © \ Bo,
Kier, =0,
[ 05, B>Ajdx
2 2 4 4 2
« :pB_Lexp zpB _A*zpB Cl Vv
“n = om j g2, dx 2m, ° 2m, " | Bw,
) J ¢21H1dx 9 9
Lex * ’
g‘am_plf el > :plf .le_plf 'CL'L’
4m, J ¢Z1 dx 4m, 4m, Bw,
L

Saey =0
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330
2 [ 4,0, BAdx 3 3
s _PB L _PB .Ajz_PB .l 14
€N 41, j 05, dx 81t 81, Bw,
L
[ 05,8 Azax ,
_pB® Ly _pB4_A*__pB4_ o [V
gaezz - 4 2 - ~ 2 = ~ ﬁM M
m, J¢02dx 4m, 4m, Bw,
L

The non-dimensional frequency response function is then given by

QDZ +2i~diag{w£](z—zae) _

n

H, (@)= I—Kae—(diag{

n

1 0] [0 x, 20 |
_ { }_{ m}_wz @ A
0 1 0 KaeQQ 0 a)z |

-1

i a0 {Q 0}_ Caery O
0 a); ! 0 52 50921 gaegg |

It is worth noting that since K‘ae11 =0 then ®, will remain unchanged with

increasing mean wind velocities. The absolute value of the determinant of the
non—dimensional frequency response function (at V=0) is shown in Fig. 8.14.
The content of the normalised modal load matrix
s, () jﬁlﬁl jﬁlﬁz
RR TRRp
pB3 p33 Vv ? Vv 2
isgivenby:Séﬁ (a)): — .= [ j [ j 'Jr%m
n 2m, 2m, \ Bw, Bw,

m

where the reduced joint acceptance function J am 18 given in Eq. 8.78.
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10°

| det H(w) |

®,=0.7, ®,52.75 rad/s

2,=0.005, £,=0.01
! 10° 10
o (rad/s)

10

10 ;

Fig. 8.14 The absolute value of the determinant of the frequency response matrix at vV =0

An expanded version of the joint acceptance function itself is given in
Elaboration 8.4 above. Under the present circumstances it simplifies into

N 2
= 1] 0. () 0 () (o, S0 v, /(]2 2 )

Lexp w

7 ’ ’ S " w,Ax L L

1122 = ” 9., (xl)gbgz (x2)CLBCM13vv”(O_2)dxldx2/(j0 ¢z2ldxj0 ¢§2dx)
Lexp w

2 _7
J21 _‘]12

’ Sww ’A 2
I3 = J.J. P, (xl)'¢02 (x2)-(BCy I, )2 '(O_az)X)dxldxz (J.OL¢922dx)
Lexp w

W(a),Ax)sz(a))-CA‘oW(a),Ax) and I,=0,/V , then the content

of the normalised modal load matrix is given by

Introducing S
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2

Sk [PVBC Jz Vi (@) s, (o)

200 iy ¢Zldx

[pVB N J Vi () ()
R1R2 26010)2\/’"1’”2 _[OL¢Z21dxj0L¢922dx "
SR2R1( =5 1Ry

verc, | v (w) 2
and SR2R2 (a)) = [P M J 22 S, (w)

2 ~ L
2wy, Jo ¢922dx
where:

CoLL R q1/2

Y= -[() IO ¢z1 (xl ) ’ ¢z1 (XZ ) ’ Coww (w’Ax)dxldXZ
) q1/2

l//12 = J- J- ¢21 ¢I92 x2) Co ww (a) Ax)dxlde
R —1/2

Vo = j jo Pa, (x1) 09, (x2)- Co,,,, (@, Ax)dx,dx,

The joint acceptance functions y |, , ¥, and y ,, are shown in Fig. 8.15. The

normalised modal load matrix S; () is then given by

Saa S,4
RiRy RiRp
Sz@(a)){& g ]

RyRy RyRy
_ ) )
cp n, | @, ‘//11( ) BC,C, 1//122((0)
| @ (" 62 RN
_ (pVB) S, (@) 0 "4 074 7)o 02
4(6012;731) a)zzrhz) ) (o) 2
, 2 i
Sym. (BCy ) 2 AT
L " wz.[o 0, 9
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10° R : ——
g _______________________________ = b & 3
> --‘--"\.‘.\\ \\'\ N
@ e 1
c DN ~_
RS 3 s
qs \\\ N ~
= oy \'\
2 -1 5 13
g 10 e
c X
m Xy
=3
[
O
(&)
© | , AT
= ¢,,=0.5-[sin(mx/L)-sin(3mx/L)]
o ; ; ;
e
W =g
11 ¢02 SIH(?IX/L).
_____ e C heren (-C oAX\V)
o-coherence: exp(-C_ ®
|7 V2 Hr
10' S / Al 5 . | ; L )
10 10 10 10
®C L N
WX exp

Fig. 8.15 Joint acceptance functions

And thus, the spectral density response matrix at x, = L/2 is given by (see
Eq. 8.82)

S
s, (L/2.0)= L

gt

where: S, () =H,7(a))~SI~e (o)

Introducing the impedance matrix E(a)) :{

2
Ey :1_[%] +2l%(§1 _;“ell)

. @
E21 = _21_40621
%)

4444

9z

070

n

|:|T(a)) and ¢r(L/2) ={

Ell
E21

E12
E22

and

10
0

1 }
:| where

oo } =0, (1/2)-8, () O (L/2)

=K

ae12
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334
. H, H 1 [ E,, -E
then H W)= 11 12 :E—l — 22 12
(@) { detE|-E,, E;,

Hy Hy
rendering the following expression for the spectral density response matrix at

x, =L/2
S, (@) Smi Sma

w 2 ~ ~
Ow S S7722

S, (1/2,0)= 2L LB
2m; 2m, \ Bay Bw,
m1
where:
Sml(w)=7LL'H11H11+2'7LM'H12‘H11+7’M\4‘H12H12

Spp (@)= - Hyy - Hyy + Y1y '(Hlﬁ “Hyy + Hy 'H22)+7MM “HyyHy

o (@)= Ve - HitHo + ¥y '(HQ1H12 +H§2H11>+7MM “Hy, -Hy

S
S (@)= 71 - HyHyy +2- Yipy - HyyHop + Yoy - HypHoy
where

2

VL =C1"2@ &—W,‘M(a))
m | @ J.O ¢221dx
2
, v Vi)
Yim =BC.Cy — 212 L,
jo ¢z1 dx_[o ¢92 dx

2
sy | @ Yo @
and Yum =(BCM) m—l a)_l%
2 zj0¢92dx

The corresponding covariance matrix is then obtained by frequency domain

integration:
= ,2, Cov
Cov,, (x,=L/2) =[S, (L/2.0)dw=| "
0 Covrgr, oy
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The absolute value of the determinant of the non-dimensional frequency
response function at a mean wind velocity of V. =40 m/s is shown in the top left

hand side diagram in Fig. 8.16. The top right hand side diagram shows the cross
spectrum between 1, and r, while the two lower diagrams show the spectral

densities of r, and r,, both at x=L/2 and at a mean wind velocity of

V =40 m/s . As can be seen, there are traces of modal coupling. In this case the
coupling effects are exclusively motion induced. Comparing ‘detl:l(a))‘ shown in

the top left hand side diagram of Fig. 8.14 to that which is shown in Fig. 8.16 it is
seen that the resonance frequency associated with the second mode shape (in
torsion) is no longer precisely at 2.75 rad/s, but slightly below. It is also seen

that the resonance peaks are reduced, and particularly the peak associated with
@1 at @, =0.7 rad/s. A time domain simulation of r, and r, at x=L/2 and
V =40 m/s is shown in Fig. 8.17 (from spectra shown in Fig. 8.16). The
standard deviation of the dynamic responses in the across wind direction (r,) and

in torsion ( r, ) at various mean wind velocities are shown on the two left hand

10 .
ey = 10 g
A . 3 T =0.
= 10" [ B0 2 P,
© Eabw £
T 2
< 10 S
o
_q
10
10" 10° 10' 10'
0 0 =
10 _ 10 Grera 00073 rad
E 2 =011
&, b oz
= 2 £ =-0011
8 B !
0w 107 oo 10°
10" 10° 10 10" 10° 10
 (rad/s) ® (rad/s)

Fig. 8.16 Top left: absolute value of frequency response function. Top right: cross spectrum
between vertical and torsion response components. Lower left and right: spectra of response
components in vertical direction and torsion. V = 40 m / S -
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3
ol V=40 m/s, Resonance frequency »,=0.7 rad/s
1
0

2[" simulated: o, =066 m, k =3.4 1
3 L 22 L L L L
0 20 40 60 80 100 120
T T T T T
0.02 V=40 m/s, Resonance frequency »~2.6 rad/s ]
~. 001 ‘
el
g 0
D
= 0.01F : : ~ .
0021 Simulated: o =0.0071 m, k =3 1
003 1 a8 L P I I 1
0 20 40 60 80 100 120
t (s)

Fig. 8.17 Time domain simulation of dynamic response at x = /2 and V =40 m / s

2 }g 1
15 Al 0.8
- Q
£ 1 / 3 06
o~ =04
" 0s // o i
’ / 0.2
ol 0
0 20 40 60 0 20 40 60
0.05 3
0.04 9 T
i 25 e
< 003 ©
£ 3 Y
== 0.02 s i
° ® 15
0.01 - :
0 1
0 20 40 60 0 20 40 60
V (m/s) V (m/s)

Fig. 8.18 Top and lower left: dynamic response in vertical direction and torsion. Top right:
covariance coefficient. Lower right: resonance frequency associated with 2™ mode.
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side diagrams in Fig. 8.18 As can be seen, the system has a stability limit slightly
below a mean wind velocity of V. =70 m/s . The covariance coefficient between

the dynamic responses r, and r, is shown on the top right hand side diagram,

while the changes of the resonance frequency associated with the second mode
shape (in torsion) at increasing mean wind velocities is shown on the lower right
hand side diagram in Fig. 8.18. Since the instability is associated with coupling

between ¢Z1 and % the covariance coefficient will approach unity as V becomes

closer and closer to the stability limit. At the same time @, — @, .

8.4 Dynamic Response to Vortex Shedding

When the air flow is met by a solid bridge or tower type of structure flow separation
will occur on the surface of the structure causing vortices to be shed alternately on
either side in the wake of the structure. Assuming that along wind load effects may
be disregarded, these vortices give rise to fluctuating across wind forces ¢, and

cross sectional torsion moment g, , accompanied by corresponding dynamic

displacements 7, or r, , as shown in Fig. 8.19. Harmful vortex induced vibrations
may particularly occur in cases of resonance, but, even if no resonance occur, the
possible long term fatigue effect of these fluctuating forces should not be
underestimated. Experimental investigations on stiff models (where r, and r, are
zero) show that the single point (i.e. cross sectional) vortex induced forcing process
is more or less narrow banded centred at a characteristic vortex shedding frequency
f, » as illustrated in Fig. 8.20.a. The shedding frequency is characteristic to the
cross section of the line-like structure. It is proportional to the mean wind velocity
V and inversely proportional to the across wind width D. Thus,

v q

K
\ ‘¥ i
— D ﬁ

B

Fig. 8.19 Relevant displacement components and vortex shedding forces
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1%
=Sr—
Sy D (8.84)

where St is the Strouhal number, which is available for a good number of typical
structural cross sections in the literature.

Two-dimensional investigations also show that the forcing process has a more
or less random distribution in the span-wise direction, as indicated by the decaying
co-spectrum with increasing separation in Fig. 8.20.b.

S Co

N m an

=~

-y
A
{

I
I
I
I
I
I - .
T >
f, AX Vi Vv
a) Single point spectrum b) Co-spectrum ¢) Motion induced load coeff.

Fig. 8.20 Load characteristics associated with vortex shedding

Turning to a flexible structure it is assumed that the properties of f  are

maintained, i.e. that Eq. 8.84 still holds. The situation is illustrated in Fig. 8.21.
Assuming that V is slowly increasing (from zero), then f_ will increase

accordingly, and resonance will first occur when f, becomes equal to the lowest

eigenfrequency with respect to vibrations in the across wind direction or torsion.
Further increase of V will cause resonance to occur when f is equal to the next

eigenfrequency, and so on. Theoretically, resonance will occur when f_ is equal
to any eigenfrequency f, =), /(27[). According to Eq. 8.84, the event that

fs = f, will occur when the mean wind velocity has a value given by

Vi =1,DI St (8.85)

Experiments show that when resonance occurs the flow and the oscillating
structure will interact, and for a certain range of ensuing wind velocity settings
f, will deviate from Eq. 8.84 and stay equal or close to f, , as shown on the

upper right hand side of Fig. 8.21. This is what is usually called lock-in. Such
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vortex shedding induced interaction is accompanied by two important load effects.
At lock-in the fluctuating load becomes better correlated in the span-wise
direction, but what is more important is that a significant motion induced part is
added. As V increase beyond V,, resonant vibrations no longer occur, as

illustrated on the diagram on the lower right hand side in Fig. 8.21.

Increasing V
sq
z
or
Sqe
>
f
H | A o,
z z
or or
| o,
A . .
T L T T ~
f, f Ve v

. 1

Fig. 8.21 Response characteristics associated with vortex shedding

It has been customary to ascribe the motion induced part of the vortex shedding
induced load to the velocity of the system. Extensive research has been carried out
on the phenomenon of vortex shedding induced vibrations. In the following it is
the theory first developed by Vickery & Basu [20, 21] that will be presented, as it
is the only comprehensive stochastic frequency domain theory currently available,
rendering a solution at any setting of the mean wind velocity. In this theory the
shape-wise description of the net motion—independent cross sectional load spectra
and corresponding co-spectra are shown in Fig. 8.19. Mathematically they are
given by

~ \2 2
. ) (B-o'qz) expl— 1-w/w,
pvzj b b

Sy, (@) (2

=" (8.86)
ng(a)) \/;'ws (32.6- )2
) oo _(
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2
Co, (Ax) :cos(gﬁ)exp _[SQXDJ m=zorf  (8.87)

m

- S 2 A _ 2p2
where, @, =27 f,, 0,, —O'qz/(pV B/Z) and 6, —O'qg/(pV B /2) are
the non-dimensional root mean square lift or torsion moment coefficients, b,, is a

non-dimensional load spectrum band width parameter, 4, is a non-dimensional

coherence length scale and AX is span—wise separation, i.e. Ax :‘Xl —xz‘ where

x, and x, are two arbitrary positions along the span of the system.

Elaboration 8.6
By substituting Ax/( AD)=a, a = 1/3 and b =2/3, and using the known integral

cos(ba)~exp[—(a0{)2}da=(\/;/2a)~exp[—(b/2a)2} it may readily be shown

S e— 38

that J'CA'aqm (Ax)d(Ax) = (3\/;/2)‘871 “AD = AD .
0
For the description of the characteristic motion induced load effects at lock-in
Vickery & Basu [20, 21] have suggested that this may be accounted for by a
negative motion dependent aerodynamic modal damping ratio, ; » such that the

total modal damping ratio associated with mode 71 is given by

éotn =G _é/aen (8.88)

This is equivalent to the introduction of motion dependent aerodynamic

derivatives as described in chapter 8.2 above. Let us for consistency adopt the

notation given in Eqs. 8.16 and 8.17, and then it is the aerodynamic derivatives
*

H;k and A2 that are responsible for aerodynamic damping effects in the vertical

( Z) direction or in torsion ( & ). Assuming that in the vicinity of a distinct vortex

shedding type of response all other motion induced effects may be ignored, then in
this mean wind velocity region

, 0 0 0
B
Caeszwn(V) 0 H 0 and K, =0 (8.89)

0 0 B4
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where

2 2
* o * O,
Hy =K, 1—{ 4 j and A, =K, 1—(—9J (8.90)
a,D dg
and where K and K,, are velocity dependent damping coefficients equivalent to
Z

those defined by Vickery & Basu [20, 21]. Since K, =0 it is a reasonable
assumption that @),(V)=a,(V=0), and then the aerodynamic damping term in Eq.
8.88 may be taken from Eq. 8.69, i.e.:

) [ @-C.®,dx [ (¢ +BAE )ax
; - %n  _ Lexp _ sz ) Lexp (8.91)
“r29M, 2wm, j @ @ dx i, I(qgn + 0+ ) e
L L
where
m. = Mn — Mn
L L

is the evenly distributed and modally equivalent mass associated with mode 7 .
Kam (m=zor @) are the coefficients that account for the accelerating part of the

motion induced load when V is close to V,, . Apart from being cross sectional
n

characteristics, they are functions of V and the resonance frequency of the mode
in question (see right hand side diagram in Fig. 8.20). a,D and a, are quantities

associated with the self-limiting nature of vortex shedding, i.e. they represent
upper displacement or rotation limits at which the aerodynamic damping becomes
insignificant. {It should be noted that in Eq. 8.89 the damping coefficients are
defined such that consistency is obtained with the general definition of
aerodynamic derivatives in Eqgs. 8.16 and 8.17 rather than the definition adopted
by Vickery & Basu. Thus, the Kaz values given by Vickery & Basu in references

[20, 21] are applicable in the expressions given above if they are multiplied by

2
4(D/ B ) }. Vortex shedding induced load effects at or in the vicinity of lock-in

is dependent on the dynamic response of the structure, because the total damping
in each mode is unknown prior to any knowledge about the actual structural
displacements. Thus, response calculations will inevitably involve iterations. It
should be acknowledged that the peak factor for vortex shedding response does
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not comply with the theory behind what may be obtained from Eq. A.45. For an
ultra-narrow-banded vortex shedding response the peak factor is close to 1.5
(theoretically 2 ). For broad-banded response Eq. A.45 will most often render
conservative results. A few time domain simulations of response spectra (see
Appendix B) will give a good indication on what peak factor should be chosen.

Multi-mode Response Calculations

The general solution of a multi-mode approach to the problem of calculating
vortex shedding induced dynamic response is identical to that which has been
presented above for buffeting response calculations. IL.e., the general solution to

the calculation of the three by three cross spectra response matrix SW(xr,a)) is
given in Eq. 8.82, while the corresponding covariance matrix is given in Eq. 8.83.
The N by N frequency response matrix I:I,,(a)) is given in Eq. 8.66

mod mod

while the modal load matrix Sk(w) is given in Egs. 8.76 — 8.78, except that for

vortex shedding the motion induced load is assumed exclusively related to
structural velocity, and its effect applies to the actual modal response and not to
the individual Fourier components. As shown in Eq. 8.89, this implies that

K, =0 and C, =(pB’/2)-@,-diag[0 H; BA; ], and thus

H, (0)= {I —(@-diag[1/®,])’ +2iw- diag[l@,] (-, )}_1 (8.93)

where {=diag| | and the content of T, is given by

~ J. (¢£'cae'¢m)dx

; _w, Caenm _ 1 . Lexp
apm o a)jMn - 2w,m, J(¢£ ‘(P,,)dx
L
J. ¢zn¢zmH1*dx+ sz%n%m Aldx (8.94)
_PB v
iy J.(¢>2n +¢z2n +¢§n )a’x
L

where I-f and A;, are given in Eq. 8.90 and where 7, is defined in Eq. 8.92. If I-f

and AZ* are taken as modal constants and independent of span-wise position, then,

due to the orthogonal properties of the mode shapes, g, becomes diagonal, i.e.
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8 =diag[ L, |
where

Hy | @2 dc+B*4; | ¢ dx

2
é,ae :pB ] Lexp - - Zlexp (8.95)
» =
4, [(g2 +42 +43, )
L
This implies that I:I,](a)) isan N 4 by N,,q diagonal matrix. In vortex

shedding induced vibration problems it is usually not essential to include the along
wind load effects. The load vector may then be reduced to

q(x0)=[0 q. g,]' (8.96)

and the corresponding Fourier transform is

r T
= 8.97
aq(x,a)) _0 a, aqe] (8.97)
The cross sectional load spectrum is defined by

(a*aT) | 0 0 0 0 0 0

. 479 . * *

Sqq(Ax,a))zTh_rg T ZTII_IQOE 0 aga, a5, =10 S;q  Seq| (898)
S

|0 agpa,,  ag,a, 99z 4648

The problem is greatly simplified if the cross coupling between ¢ _ and ¢, may

be disregarded (i.e. they occur at distinctly different mean wind velocities), in
which case

0 0 0
S, (Avw)=0 S, . 0 (8.99)
0 0 Sqeqa

where quqz and ngq o Are given by

(8.100)
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The single point spectra S, and Sqe are defined in Eq. 8.86, while the reduced
4
co-spectra éoq and éoqg are defined in Eq. 8.87. Thus, the elements of SR (see

Eq. 8.73) are reduced to

.U (PZ (xl)'sqq (Av,0)- @, (x;) dxdx,

A — LCXp —
J] {¢zn (xl)¢zm (XZ)SquZ +¢€n (x1)¢€m (XZ)SquQ}dxldXZ
Lexp _ (8.101)

() (i,

qu H 9. (xl)@m (xz)CA‘oqzdxldx2 +S,, ” s, (xl)%m ()cZ)CA'oqgclxldx2
Lexp Lexp

(@81, ) (e,

Furthermore, it is a reasonable assumption that the integral length—scale of the
vortices AD is small as compared to the flow exposed length Loy of the structure,

and since g and g, are caused by the same vortices their coherence properties
are likely to be identical, in which case [recalling that j égq ( Ax)d( Ax) =AD

0
(see Elaboration 8.6)] the following is obtained:

2AD| S - (x)dx+S d
qzle{p%(xmm (X)x qgle.[(p¢gn(X)¢6m(X) 102

ol (0201,)- (w1,

Again, due to the orthogonal properties of the mode shapes this implies that
Sk (a)) becomes diagonal, i.e.

S;(®) :diag[SkJ (8.103)

where

2AD
SAn(a)):ﬁ S,. (@) j ¢fndx+Sq9(a)) j ¢§ndx (8.104)
(a)r%Mn) lexp lexp
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While the calculation of the spectral response matrix is given in Eq. 8.82, it
should be noted that if the simplifications above hold then both I:I,7 and Sie are
diagonal, in which case

Nmod

S, (x,0) =0, (x s[5, (0) 0] (5)= 3 @, (50} (x5, (0)
. (%) 0,(x)0.(x) 6,(x)0(x) (8.105)
= o2 (%) 0.(%)8(x)| Sy, (@)
"1 Sym % (x,) )
where
Sy (0) =], (@) -5, () (8.106)
and i, is given by (see Eq. 8.93)
. S
H, ()= 1—(%} +2i.(§n—§aen)-wﬁn (8.107)

and é/aen is given in Eq. 8.95. The corresponding covariance response matrix

Cov,, (x,) for the dynamic response at span-wise position x, is then given by

2

(o2 Cov Cov
- ryry ryrz ryrg
Cov,, (x,)= ISW (x,,.0)do= O'rzzrz Cov,
0
Sym. 0',26,9
, (8.108)
Nood ¢y(xr) ¢y(xr)'¢z(xr) ¢y(xr)'¢€(xr)
= Z ¢12(xr) ¢z (xr)'¢0 (xr) O-;n
n=1
Sym. 9 (x,)
where
o, =IO $,,de (8.109)

is the variance contribution from an arbitrary mode 7 . Usually, vortex shedding
induced dynamic response is largely resonant and narrow-banded. It will then
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suffice to only consider the resonant part of the frequency domain integration in
Eq. 8.109, and discard the background part. Thus,

O'T?n - J-Sﬂndw: ”I:IUn (a))‘z . Sk" (a))dw

0 0

. | . .SAn (@) (8.110)
ZQ\H,,” (o) dors,, (“’"):m

where (see Egs. 8.104 and 8.86)

24D\ S, (,) [ ¢2dx+S,,(a,) [ @5 dx

2
l—a)n/a)sj (8.111)

Z

and @, =27 f;. As mentioned above, the calculations will inevitably demand

k 3
iterations, because I‘f{ and A, are functions of O'rZ r, and O, rorg - The iterations may

be demanding as they will take place on the difference between ¢ , and é’aen , which
in general is a small quantity.

Example 8.3

Let us consider a single span suspension bridge with span L=L,,=1200m and set

out to calculate the vortex shedding induced dynamic response at x, = L/2

which is associated with the three mode shapes

0
0
. X
P = ¢z1 = Sln(?j
0
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0
0 3
. TX
P, = ¢zz = SIH(TJ
0 0
0 0

%3 sin (ﬂj
L L -

with corresponding eigenfrequencies 0.7, 1.6 and 2.75 rad/s. As can be seen,
@, and @, contain only the displacement component in the across wind vertical

direction while @, only contains torsion. Let us adopt the following structural

properties:
£ B D m, Mg @, @, w; | ¢ &3
kg kg kgm? rad rad | rad = %
3 m m — T I 2 %
m m m s s

125 20 | 4 | 12500 | 425000 | 0.7 | 1.6 | 275] 05 | I |

and the following vortex induced wind load properties:

St ‘OA-qZ OA-qe‘ bz ‘ bH a, ag ‘ﬁ'z:ﬂe KCE() ‘Kaa)‘
01 09 ] 03 |oi1s| o1 |04] 01 | 12 | 02 | 002 |

where 6'qz =0'qz/(pV23/2) and 6, =0, (szB/Z). Since m_ and my,

are constant along the span, then the modally equivalent and evenly distributed
masses 1, = ti, = m_ and my=my. Finally, let us adopt the following wind

velocity variation of the relative aerodynamic damping coefficient
-3 -4
K,(V)/K, =26-(V/Vy) 'exp[—(V/VRl. ) }

@ D
where VRi =—t.—

2m St
In this case (see Eq. 8.108)
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o, Cov, ,
o yly Tylz ryrg
Covrr(xr)zjsrr (x,,a))da)z rZZrz COVrZre
0 2
Sym. (o
0 0 0 0 0 0 0 0 0
= ¢Z21 (xr') 0 '0-751 +0 ¢122 (xr) 0 ‘0_,?2 +/0 0 0 -0'7?3
0 0 0 0 0 0 00 ¢£3 (xr)
and thus:
0 O 0 0 0 0
Cov, (x)=|0 o, 0 |=|0 ¢ (x) 0y +85(x) 0y 0
00 oy, [0 0 O (%) Oy

From Egs. 8.110 and 8.111 (and taking it for granted that A, = A4 = A ) the

following variance contributions are obtained

2
D BD 6,V 4 1 Dl ad
2 _ P 4z Lexp 2
o- = . . - . . . V ’V
n [27/2”7/4 i Stzj b. ¢ _gaq ] > 81 ( R )
Jor.dx
L
D BD 6 21 Dl e
2 P 4z Lexp 2
O' = . — . [ . .g2 VR ’V
m (27/2”7/4 1l Stzj b, gz_gaez i 2 ( 2 )
I¢2de
L
) ) D I ¢329dx
2 1 p(BD) 6-119 A 1 Lexp 2
O _[27/2”7/4 ' Tty ' 572 > 83 (VR3’V)

where

by $ Gy
(e
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3/2 (1 / 2
V 'R
&1 (Ve V)= —} exp —5(—1]

VR1 b,
3/2 r 2
v 1(1=Vi, IV
8|\ Vr,,V)=| — | exp ——{— and
( 2 ) Vsz I 2 bz
3/2 2
v 1(1=Vgy IV
&\Vry'V)=| o—| exp ——(—
( 3 ) VR3J 2 bg
1
R = @, D where n=1<2
no 2 St 3

What then remains are the aerodynamic damping contributions given in Eq. 8.95,
[from which the following is obtained:

2
d
2 J. ¢Zl * 2 o (V) 2
é,ae (V):pB: 'Hl*'Lexp zpBi 'Ka (VR ,V) 1- 27z
1 4 [o2ax — am ~=\h D
L
2
d
2 J. ¢22 * 2 o (V)_2
é,ae (V):pé H;Lexp =p? 'Ka (VR aV) 1- 2z
2 iy J'¢Z22dx 4, 2\ R aD |
L
I ¢§3dx ,
(o (V)=LE gy o _PB ey )| G V)
= diy C [ghdx Ay 0N “ |
L

The relevant response diagrams are shown in Fig. 8.22 below.
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Fig. 8.22 Vortex shedding induced across wind and torsion response

Single Mode Single Component Response Calculations
A single mode single component response calculation is obtained by assuming
that any of the following two conditions apply

®,(x)=[0 4. 0
(Pn('x)z[() 0 ¢e]£

Mode shape summation and off diagonal terms in Eq. 8.108 will then vanish,
rendering all covariance quantities obsolete, and S, will simply contain the

(8.112)

response variances of a single mode excitation on its diagonal. Thus, the response
spectrum and the displacement variance associated with the excitation of an
arbitrary mode 71 are given by

(8.113)

where
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o ()| 2] +2(-00, ) 2

n n

o) | & (x)ds @114

n

(r1,)

and where aerodynamic damping properties may be extracted from Eq. 8.95,
rendering

i | grax ) [ glax
L= CanE _ /)19217(1 Lexp _ pB? |1 Lexp
“ 20M, @ 4m, j Pldx  4m, < - laD j @2dx
) L ) (8.115)
) | daax . | dadx
Caegg pB4A2 Lexp pB4 (o} Lexp
é/aeg = == ~ 2 = K“Q 1= — 12,
20,My Ay [grdx 4 I [g3ax
L L

Again, vortex shedding induced dynamic response is largely resonant and narrow-
banded. It will then suffice to only consider the resonant part of the frequency
domain integration in Eq. 8.113, and discard the background part. Thus,

.[S dw= ¢,

”wS ( @,) n={2 (8.116)
4(¢, g:wn)

As mentioned above, it is also a reasonable assumption that the integral length—
scale AD for g_ and g, are identical. Adopting the convenient notation

\dws (,)

O'—.S

<

M, =i, [ ¢} dx n={9 (8.117)
L

and introducing S P from Egs. 8.111, then the following is obtained
n

12

|¢ 2| D _[ ¢Z2dx

A Lex,
D 27/2 7/4 W, S { Z(;Z _é,aez)] ﬁ/ﬁfdx gz(VRZ,V)
L
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12
.. 2| D [ gpdx
o - 195 (x,)| p(BD)" 6, 1 Lexp (Vi V) (8.119)
] 27/2”7/4 ’/hﬁ St2 bg(é/g_;aga) I¢§dx 6\ "Ry
L
where
2 1-V, IVY z
% 1({1=Vg
Ve ,V]=| — -exp| ——| —+— n= 8.120
g"( Ry ) (VR,,J p 2( bn J {9 ( )

and where Vp =Da),/ (27[ . St) .
Elaboration 8.7
For the simple case of a single mode across wind response calculation, the

standard deviation of the dynamic response at x = x, is given by:

2

LD | gldx
A 2
O-rZ (xr)_ |¢z (xr) pPBD O-qZ A Lexp g (V V)
- - %>
D 27/2 7714 i, S2 b, (;Z _é/aez) J‘¢szx 2\"R;
L
where
v Y 1=V, 1V Y
R
V, V)=| — . I . S
gZ( R, ) (VRZ exp 2( bz J
) 2] .[ ¢Z2dx
and gae :,0€ Ka 1_( o, j lexpz
© o dm, F a,D I¢de
L

and where the resonance mean wind velocity Vi, =a)ZD/(27rSt). Under these

circumstances the equation above may be rewritten into the following fourth order
polynomial

N

51 -(1-¢)02 =0

where
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1/2
2
d A
s 4, ( {Q ' amiﬁz\@(&J pD* A | 6,4,
g_mﬂK%.[ﬁw 227 i, [gaxb.K,, | SE a,
L

Lexp
and where é'rz =0, / (aZD). Thus, the reduced standard deviation of the vortex

shedding induced dynamic response is given by

s AN\2
o :ﬁﬁ_ [ﬁj +Bz

212

£ 2 2

Thus, no iterations are required. Similarly, for the simple case of a single mode
torsion response calculation, then

A . 22
s 1= |[1=¢)  »
G, = T+ (Tj + [
where
Gy =0y e
i [d3ax
46:4””9. o L
pB* Ky [ gyax
Lex
and P
1/2
[3=|¢9(x,) D A | % g
25/2 ;7/4 nﬁe.‘-%zdx bQKug 572 a,
L




Chapter 9
Damping

9.1 Introduction

The introduction of small or moderate damping forces into the theory of structural
dynamics is based on the simple observation that any linear elastic system set into
a free unloaded motion will harmonically oscillate in a characteristic modeshape
which gradually decays until the system again is at rest. The preference of a
harmonic modeshape is usually associated with the characteristic largest period
(i.e. the lowest eigenfrequency) of the system, as this is its slowest possible free
motion, and therefore it requires the least amount of energy exchange between
inertia and stress fluctuations. The reason for the decay of the motion (diminishing
of kinetic energy) is ascribed to damping forces within the system or between the
system and its surrounding air or water. There are several possible sources to these
forces within a structural system:

e  there are material stress-strain fluctuations causing yielding and cracking in
structural elements (at micro as well as at macro level),

e there are sliding (and hence, friction) in support connections, in inner joints
and in joints between structural elements and secondary elements such as
cladding, inner walls etc.,

e there are stress-strain fluctuations and radiation in adjacent soil and structure
interaction,
there are resistance from surrounding air or water, and
in earthquake prone areas there may be buildings with inner joints or
supports deliberately designed to dissipate energy during large structural
motions.

The magnitude of these damping forces will in general depend on

e  the relevant static and dynamic stress-strain condition (e.g. bending and
shear vs. pure axial strain),

e the type of motion (e.g. at support connections and inner joints), as well as

e  temperature and humidity (e.g. in concrete and wood).

Even for the simplest types of structural systems the damping sources are by and
large unidentifiable, and for normal buildings it is necessary to rely on overall
behaviour. Thus, the choice of properties that may be ascribed to structural
damping must in general be based on observations or recordings of decaying

E.N. Strgmmen, Structural Dynamics, Springer Series in Solid and Structural Mechanics 2, 355
DOI: 10.1007/978-3-319-01802-7_9, © Springer International Publishing Switzerland 2014
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model experiments or preferably from full scale motion. Since it is very difficult
to set a structural system into motion in anything beyond its first eigenmode the
few observations that are available are almost exclusively associated with this
motion, i.e. most data is strictly spoken only relevant for a motion in the mode
shape associated with the first eigenfrequency of the system. Hence, what can be
found in the literature are usually the modal damping properties associated with
the modal degrees of freedom and not the damping properties associated with the
original degrees of freedom in the system. It is considered a reasonable
assumption that the damping effects are higher at higher modeshapes.

9.2 Damping Models

In structural dynamics there are two main models of damping, i.e. viscous and
friction type of damping forces. The single degree of freedom mathematics of
these models is described below. It is usually assumed that the overall physical
behaviour of the inner forces of a single degree of freedom system may be
replaced by a single material model comprising elastic and damping forces that are
additive. Thus, possible material models may be illustrated as shown in Fig. 9.1.
In both cases, the material model comprise a spring and a damper in parallel
(because they are assumed additive). It is taken for granted that the spring is
linear, i.e. that the spring force is proportional to its elongation. To the left in Fig.
9.1 is shown a viscous type of damper. The characteristic property of this damper
is that the damper force is proportional to the velocity of its elongation. The origin
of this type of material model is usually accredited to William Thomson, 1* Baron
Kelvin (1824 — 1907) and Voldemar Voigt (1850 — 1919). To the right in Fig. 9.1
is shown a friction type of damper. Its characteristic property is that the damper
elongation is zero until the force has exceeded a certain minimum value, after
which the damping force is proportional to a constant friction coefficient, and
hence, independent of any further damper elongation. This type of dry friction
force is usually accredited to Charles-Augustine de Coulomb (1736 - 1806). It is
in the following taken for granted that damping is a small quantity.

C
M
I
F(t) F(t) F(t) F(t)
K K

Fig. 9.1 Viscous and friction damping models

Viscous Damping:

Throughout this book it has been taken for granted that it is a viscous type of
damping that prevails. It was first touched upon in Chapter 1.6 for a continuous
beam (see Fig. 1.21), while a complete solution was developed in Chapter 2.2 for
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a freely oscillating single degree of freedom system (see Figs. 2.2 and 2.3). For a
real continuous system this solution applies to the case of unloaded free

oscillations in any of its mode shapes @, (x) with corresponding modal

properties M I?n and C,. Let us consider a simple system (e.g. a beam)

n°’

whose eigenmodes @ (x) are containing only a single y,z or € component. Let

n
us for simplicity also assume that at the position of maximum displacement, x,. ,

the mode shape has been normalised to unity. At this position the system is given
an initial displacement 7, and a velocity 7,. Then the decaying displacements at

X, is given by r(xr,t) =9, (xr)~77n (t) =7, (t) , where 77, (t) is the solution to

the modal equilibrium condition

M i, (1) +C, (1) + K1, (1) =0 9.1)
which is given by (see Eq. 2.28)
n(t)=a,-e ' cos(wyr - f,) 9.2)

where é/(ZMa)n)z 4

, 1s the damping ratio (in the following it is taken for

granted that {, <<1), I?/M:w,f, w; =, 1—;,% , and where

2

- i
ay = |2 +| g S50 | g an B, =0 +% 9.3)
@y 1-¢7 0 \1-¢;
rix,,t)
A
Yo
r \"~
0 —1 \\ aj
—— Aj+p
AYAvAVaE
AW/ AV A
//
—
~
~
'

Fig. 9.2 Free decaying motion at X,
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The decaying oscillation at x, is illustrated in Fig. 9.2 above. The amplitude of

motion at =7 is given by

a =a,-e i -cos(e,T; - ,) (9.4)

J n

The amplitude of motion p periods later, i.e. at 1=T, + pT, =T, + p(27/w,) is

given by
- i 2
a.  =a, e anénlTyra) -cos| @, | T; + p— |- B,
s @y 9.5)
=a, -e_w"g"Tj e~ P@nénld ~cos(a)de - ﬁn)

Recalling that @, = @,\/1-¢ 3 it is seen that the natural logarithm to the

ratio between @; and @, , is given by

a, 2 2
s

aj+p wd \ll_é/r%

The logarithmic decrement of damping associated with mode shape @

n(x) isa

measure of the decay of the process from one amplitude to the next, i.e. it is

defined by
aj; 27¢
A, =In| —|= = 9.7
[ﬂl] NI o

Since it has been taken for granted that é’ . <<1, then

A, =2nL, 9.8)

The loss of energy during a load cycle due to viscous damping may be
illustrated by considering the single degree of freedom system illustrated in Fig.
9.3. The system is subject to a harmonic and perfectly resonant load

F (t) =Fysina,t, rendering the steady state harmonic response (see Chapter
2.3)

r(t)=rysin(@,t —7/2) =rycos w,t 9.9)
where 7, =F0/(2Kg“n). Introducing K=a)3M and ¢, :C/(ZMa)n) it is
seen that 7 =F0/(Ca)n).
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i r(t) |
F(t) l
F

Fig. 9.3 Single degree of freedom system subject to resonant load

The inner elastic force is Fy = Kr, while the inner damping force is
Fp =Ci=C-(-nw,sina,t) =—Cry@, -\/1-cos* ¢ . Thus, it is seen that the total
inner force F; = Fy + F- in the system is given by

F, = Kr — Crym,/1—cos’ a,t (9.10)
1

which may also be written
2 2
F,—Kr r
+| — =
Crw, Ty

2 2
F,
( ¢ j +[LJ =1= Fo =Cryo1-(r/n)’ 9.12)
Cry@ Ty

n

©.11)

or alternatively

The elliptic function of F; versus r (Eq. 9.11) is illustrated in Fig. 9.4.a.

a) Viscous damping hysteresis b) Material stress-strain hysteresis

Fig. 9.4 Typical viscous damping and material stress-strain hysteresis
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The area W within the curve is the viscous energy dissipation within one

cycle of motion. For a linearly elastic system W, may in general be defined by
W = Fedr ©.13)
N

(where Cj) indicates a single load cycle integration). In the case above

N

n
We = CI) Fodr= 4.[ Crym,\1-(r/1, )Zdr =7Cry o, (9.14)
s 0

The corresponding linear elastic strain energy per cycle of motion is given by
" 1
Wg :_[de”: JKrdr=EKr02 (9.15)
r 0

The energy dissipation coefficient is then defined by
ep =Wc [(27Wy ) 9.16)
which, for the case above, may be further developed into

1 We _ 1| aCw, Caw, Caw, C

W 2 K22 K oM oM

€p 24, 9.17)

Thus
g, =We/(47Wy ) 9.18)

A typical test recording of material stress-strain hysteresis is illustrated in Fig.
9.4.b. The damping energy dissipation is the area W, within the hysteresis, while

the corresponding linear elastic strain energy is given by
&0 1
Wy = JGdé‘ = j Eede =EE€§ (9.19)
£ 0

The equivalent viscous damping ratio as obtained from such a test recording is
then given by

$og =We [(47Wy) (9.20)
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T =2n/w
n n

Fig. 9.5 Decaying unloaded motion after initial displacement #, and velocity 7; =0 top

diagram: viscous damping, lower diagram: friction damping

Setting 7y =0 and ¢, =0.1 then a normalised version of the decaying

unloaded motion in Fig. 9.2 may be quantified, as shown in the upper curve in Fig.
9.5. Reading off the amplitudes at arbitrary positions it may readily be shown that

the rate of decay coincides with ¢, =0.1.

Dry Friction (Coulomb Damping):
A single degree of freedom system with a dry friction type of damper is illustrated

in Fig. 9.6. The basic idea behind such a damper is that the damping force F- is
proportional to a friction coefficient 4 and to the normal force N applied
perpendicular to the friction surfaces, i.e.

+1 if 720

Fi =sign(F)- UN where sign(i")z{ Lif 520 (9.21)
—1if 7

and that it is independent of the displacement r (t ) .
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Fud Fi AF,
K Cu T T T
17 I
v |
F(t) F
a) System with b) Free body
friction damper diagram

Fig. 9.6 Single degree of freedom system with dry friction type of damper

(It should be noted that a real friction damper designed as indicated above will
have a static friction coefficient when the body is at rest which is higher than the
friction coefficient it will exhibit when it is in motion. This effect is disregarded
below. It is also taken for granted that the friction surface is parallel to the motion
of the system.) Thus, the instantaneous equilibrium condition for the system in
free unloaded motion ( F =0) is given by

Mi(t)+Kr(t)=—F, if 720
(9.22)

Mi(t)+Kr(t)=+F. if 7<0

The homogeneous solution ( F, =0) in a resonant motion (@ = @, ) is given
by

r=a-cos(m,t—pf,) (9.23)

where the amplitude a and the phase angle [, will depend on the initial

conditions r(t = 0) =7, and i’(t = 0) =T; . The particular solution is

r=—F./K if 720
L (9.24)
r=+F./K if 7<0
Thus,
r:alcos(a)nt—ﬂnl)—FC/K if 720
(9.25)

r:azcos(a)nt—ﬂnz)+FC/K if 7<0
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Le., it is necessary to follow the process as f”(t) varies between positive and

negative values. Let us for instance assume that the system is initially moved at a
positive distance ry > UN /K and then let loose to oscillate freely and without

any further external forces until it stops all by itself (i.e. 7;; =0). The motion is

then as illustrated in the lower diagram in Fig. 9.5 [with (N / (Kro):().OS]. It

may be determined the following way:

0<t<T,/2=n/w,: F<0
r(t=0)=a,+F./K=1r, = a2=r0—FC/K & f,, =0

= 1r(t)=(ry—Fc/K)cosm,t + Fo [K (9.26)
r(t=T,/2)=-ry +2F./K

T,/2<t<T,=2x/w,: >0
r(tzT/Z)z—a —F./K=-ry+2F. /K = a,=r,-3F;/K
r(t)=(r,—3F;/K)cosw,t — F. /K (9.27)
r(t=T,)=n,—4Fc /K

and so on until the spring force is less than the friction force, after which the
displacement remains constant. (It may readily be shown that the peak to peak

amplitude reduction is in general given by 4F / K .) The hysteresis F; and F{

versus r(t ) is illustrated in Fig. 9.7. It is seen that while the elastic work

performed by the spring is still Wy = Kr02 / 2 , the work performed by the friction
damper is given by

We =4ruN (9.28)
and thus, the equivalent viscous damping ratio is given by

£ = 1 4puN 2 uN

2
"ar kg2 7Ky ©-2%)

Thus it is seen that ( g for a dry friction type of damper is inversely

proportional to the amplitude of motion 7, (i.e., it is likely to be large at small

amplitudes of motion).
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Fig. 9.7 Friction force hysteresis

9.3 Structural Damping

There are several more or less easily identifiable sources to the damping forces
that sums up to resist the oscillating motion of a real structure. Throughout this
book it is taken for granted that the overall properties of these forces are viscous,
i.e. they are linearly proportional to structural velocity. The limited number of
sources makes it difficult to give a simple description of what will be
representative in a mathematical model of the dynamic properties of real systems.
By and large it is necessary to rely on model experiments or full scale
observations, e.g. ambient vibration recordings or deliberate tests where the
structure is set into a more or less freely oscillating motion. As illustrated in Fig.
9.8 the statistical scatter of the data available for concrete, steel or wooden civil
engineering structures is large. The main bulk of available data is related to small
amplitude of motion in the first eigenmode of the system. The obvious reason for
this is that in higher modes the energy input is rapidly increasing, rendering it
unduly demanding to be excited. One of the first major publications regarding
structural damping was presented by Lazan [30], who provided basic data for
several relevant material damping properties. Full scale observations have been
recorded among others by Lagomarsino [31], Celebi [32], Jeary [33] and Satake
etal. [34]. It is generally agreed that the damping ratio is increasing with
increasing eigenfrequency and also with increasing amplitude of motion.
Lagomarsino took his data from fairly small amplitudes of motion, suggesting

é’l = 0{_1(01_1 + 0{1601 Where

(9.30)

o_; =0.045 & a; =0.0011 for Concrete
0, =002 & o4 =0.0012 for Steel

while Satake et.al. had data more relevant for earthquake induced large amplitude
of motion, suggesting
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Fig. 9.8 Bandwidth variation of the damping ratio for typical civil engineering structures

o, ~0.0018

gl =0y tow + ﬂrmax /L 0y =0.0022 ; for Concrete
where

L<2:107 B =470
/ @, ~0.0029 ©.31)

o, =0.0021 ; for Steel
B =400

rmax

and where 1, is the peak displacement at the top of the building and L is the
building height. A similar amplitude dependency was observed by Jeary [33].
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Fig. 9.9 Damping ratio associated with first eigenfrequency (Lagomarsino [31] and Satake
et.al. [34]). Upper diagram: reinforced concrete buildings, lower diagram: steel buildings.

Eqgs. 9.30 and 9.31 have been plotted in Fig. 9.9. Quantification of the relevant
damping ratio should in general be obtained from national or international
standards, keeping in mind that what can usually be obtained is only that which is
associated with the first or the lower mode shapes of the system. As indicated
above, it is usually the lower mode damping properties that are known from
experiments and full scale observations. However, in structural dynamics it is not
enough to establish the damping ratio for the lowest or the lowest few eigenmodes
of the system. In fact, the type of damping coefficients that is required will depend
on the type of solution strategy that has been chosen. If the chosen solution
strategy is in modal degrees of freedom n , then

C=0"CO=diag[C, ]| where C, =2M,0,¢, (9.32)

and thus, it is necessary to quantify all {,, n=1,...,N. where N_ 4 is the

mod *
number of modes deemed necessary to be included in the response prediction. If
the chosen solution strategy is in original degrees of freedom I, then it is the
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entire content of the N, by N, damping matrix C (where N, is the total
number of degrees of freedom) that needs to be filled. Apart from choosing a
diagonal more or less conservative version (e.g. based on ¢, ), there are two main

options:

e to perform a direct inversion from the modal damping matrix and the mass
matrix as suggested by Wilson & Penzien [35], or

e to adopt the so-called theory of Rayleigh damping (as suggested by Lord
Rayleigh [36]).

The direct development suggested by Wilson & Penzien is based on Eq. 9.32 and
that

M =" M® = diag| M, | where M, =@, M@, (9.33)
From Eq. 9.32 it is seen that
T ~
C= (d)’l) co! (9.34)

But, since @ is non-quadratic, its inversion has no meaning, and hence, it is
more convenient to observe from Eq. 9.33 that

I=M'M=M"'0o"MD (9.35)
Thus, since 1= ®~'® and M is symmetric it is seen that

o' =M"'0'M= (<D‘1 )T = MT<l>(I\7I‘l )T =MOM! (9.36)

Introducing this into Eq. 9.34 and observing that M = diag [A;I n] and

C =diag [ZMna)n S, ] , then the following is obtained

C=M®OM'CM'®’M=MODO'M 9.37)
where D=M"'CM™' = diag [20),1{” /MJ . Thus, it is necessary to quantify all

¢, within the frequency domain that is relevant for a sufficiently accurate

solution.
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Rayleigh damping is based on the simple hypothesis that wherever there is a
mass or stiffness contribution to the equilibrium condition in original degrees of
freedom (i.e. a mass in motion or elastic stress fluctuations) then there will also be
energy dissipation due to what may be covered by a viscous damping model
where

C=aM+ BK (9.38)

By using the orthogonality properties of the mode shapes and developing C from
this hypothesis, it is seen that

C=0"CO=a® MO+ SO'KD = oM+ K

— diag[ a9 Mo, + ol Ke, |=diag[ o1, (a+ p)|

Since C = diag [ZMna)n{nJ then 2M,@,¢, =M, (0{+ﬁw§), and thus

¢, = (0w + po, ) 2 (9.40)

Since it is usually only first mode data | associated with @) that may be
found in the literature, it is a common strategy to determine & and J such that

this pair will constitute the minimum point of the curve

¢(w,)= (aa); '+ Bo, ) / 2. This may readily be obtained by setting

aé/n _ 1 —2 _ _
5_5(—0@” +ﬁ)_0 = a=wf (9.41)

n

from which the corresponding / may be obtained from
2 1
¢, = (0 pay +Bo,) 2= p=¢, o, (9.42)
Thus, by choosing o=@, and f={; /@, then
a
- _a A G (9..43)
2\, o

and the coordinates ( {; , @) will always be at the minimum point, as illustrated in
Fig. 9.10 below.
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Fig. 9.10 Rayleigh damping with coordinates g 1> @) atits minimum

In some cases this strategy may render a too steep or too moderate rate of
increase at the upper end of the relevant band of eigenfrequencies. In that case it
may be a better strategy to choose two points on the curve, e.g. the coordinates

(601,;1) and (&)2,52),in which case
_ 200, (0,¢, - 11S))

(o' + po) 2 = ) @ o (9.44)
§2=(05a)2‘1+ﬁw2)/2 IB=2((02§2—601§1) .
e

With this strategy it is to some extent possible to steer the upper tail of the curve
such that the effects of eigenmodes associated with large eigenfrequencies may
either fully contribute or effectively be damped out. Though, care must be taken to
secure an acceptable position of the minimum point of the curve.

A more general type of damping variation may be obtained by setting

Cn = Za,-w,{ (9.45)
J

From this general expression it is seen that the Rayleigh damping model is
obtained by
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j=—L1=¢, =a, @, +a0, (9.46)
while the so called Caughey damping model [37] is obtained by
j==101=¢, =a @, +a,+a, (9.47)

This type of damping may be chosen if there are additional damping
dependencies, e.g. an increase with increasing amplitude of motion.

9.4 The Tuned Mass Damper

The tuned mass damper (see Elaboration 2.2) may be regarded as an effective way
of adding artificial damping into an otherwise lightly damped system. It is in
particular a most effective way of damping out resonant or near resonant
oscillations. It should be noted that a tuned mass damper will only affect the
effective damping properties of the system, it will not affect its stiffness, and thus,
it is not helpful to reduce a problem of p quasi static behaviour.

The Tuned Mass Damper for a Single Degree of Freedom System:

The idea of a tuned mass damper may most easily be understood by considering
a single degree of freedom system with an additional much smaller mass as
illustrated in Fig. 9.11 below.

K1r1T Tc1f1

— _//M1i:1
R,()
K %r’w (1) R
2 C
" /_¢_I ’ Kz(rz-r1)l l C,(r, - 1)
5 I
! 1

r(t) - M, i,

Fig. 9.11 Single degree of freedom system with tuned mass damper
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The equilibrium conditions of the two bodies are then given by

Myi +Cyii = Cy (i — i) + Kyri = Ky (1 — 1) = R, =0
11 111 2(2 1) 11 2(2 1) 1 } (9.48)

Myi +Cy(F —F )+ Ky (1, —7)=0
which may also be written
M 0 || # C+C, —-C, || ¥ K +K, -K R,
1 r1 LT 2 rl LM 2 2| | ™ (9.49)
0 M,|# -C, G |5 -K, K, ||n 0
or
M,r, +C.t, + Ko, =R, (9.50)
T T
where: r,=[r, ]| , Ry=[R, 0] ,and
M 0 ¢ +C, —-C K, +K, —-K
M, = 1 co _| ™ 2 2 and K, = 1 2 2

For simplicity, let us introduce 7 =r , and, rather that operating on the total
displacements 7, of the additional mass, it is convenient to introduce the relative

displacement Ar =r, — 1, i.e. that

WM

which may alternatively be written
10 r
r, =Wr where W= L1 and F = (9.52)

Introducing this into Eq. 9.50 and pre-multiplying by g
WM, Wi+ W' C W+ WK Wr=¥'R, (9.53)

then the following is obtained

Mr +Cr +Kr=R (9.54)

where
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M +M, M K 0
M:tlJTMOtv{ 1M : Mz}, K:llJTKOtlJ{O1 K}
2 2 2

¢ 0
C=tPTCOtIJ={1 } and szTRO{Rl(t)}
0 C 0

2

Basically, this is a two degrees of freedom system identical to that which has
been dealt with in Chapter 2.6 and whose eigenvalue problem in original degrees

of freedom r, = [r1 Ty ]T was solved in Chapter 1.2, see Eqs. 1.20 — 1.22. In the

present case of relative degrees of freedom the eigenvalue problem is obtained

from Eq. 9.54 by setting C=0, R=0 and F =@¢'”, where @ = [0 ¢, ]T,

and after pre-multiplication by K™ then the following is obtained

(I - a)zK_lM)cp -0 (9.55)
where
/K 0O (M, +M, M
KM= / 1 1 2 2 9.56)
0 1/K2 M, M,
Thus
! ! {ﬂ:o (9.57)
_wzﬁ l_wzﬁ ¢2
K, K,
rendering
2
M +M, M, [M1+M2 _,_M2j _aM, My
o = K K, K, K, K, K, (9.58)
My M,
K, K,

(which is identical to that which was obtained in Eq. 1.20). For a tuned mass
damper it may be taken for granted that M, << M, and thus
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7+ - —_ =
K, K, \K Kj =~ JK,/M
o =2 2 1 2 :{wl /M,

wzz\/Kz/Mz

1 A42+[Ml M,

(9.59)

Pre-multiplication by K™ and taking the Fourier transform throughout Eq.
9.54, i.e. setting

I‘(t)=zar(a))-em” and R=ZaR(a))-e’m (960)

where

a,(w)=|a, aAr]TandaR(a)):[aR1 O}T 9.61)

are the Fourier coefficient vectors of ¥ and R, then the following is obtained

a,(w)= H(w)~[aR1 (ao))/Kl} (9.62)

where
2
N D, -
H-1=|+iax-1c—w2K-1M{ ! , u(ofe) (9.63)
_(w/a’z) D,
and
a(w)-l—(lw)(a)/mz+ziaw/wl}
D, (@) =1-(aj@,)’ +2il, oo,
where
H=M,/M,
$=C/(2M ) (9.64)

& :C2/(2M2w2)
Thus
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H(w)= 1 2 2{ ” 2 ﬂ(w/wl)z
DD, - u(@/ay) (0 @) | (0 @) b,

Defining

o= ay

a=wl/wz}

and

a =2({, +ai,) b =208,
a, =1+ pu+o’ +4as,(, b, =0 b= &
a3:20([0(§1+(1+ﬂ)§2] ¢ =26 g;:—/j
a,=a’ Q=lru

then Eq. 9.65 may be written in the following more convenient way

where
. )2
A 1+b, (iw)+b, (i
H, (&)= - I(Az) 2(.A)3 4
1+, (i®)+a, (id)” + a3 (i®)" + a, (i®)
A . Ay2
N . 1+c¢ (iw)+c, (i
Hy, (@)= . I(Az) 2(.A)3 4
1+a,(i®)+a, (id)” +a; (i®)” +a, (i)
)2
o d, (i
Hy (&)= .Azg ) 3 4
1+a,(id)+a, (i®)” + a3 (i®)" +a, (id)
A e, (i)’
Hy, (@)= 2 2
1+a,(i®)+a, (i) +a; (i®)" +a, (id)

9 Damping

(9.65)

(9.66)

(9.67)

(9.68)

(9.69)
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Fig. 9.12 The frequency response function for a single degree of freedom system with a
tuned mass damper

Then the idea behind the tuned mass damper reveals itself by looking at a plot
of the absolute values of the non-dimensional frequency response function

H,, ((?)) , which is directly associated with the dynamic response of the main

system r , see Fig. 9.12 above. As can be seen, the addition of a small damper is
equivalent to adding damping into the main system, and even when the mass ratio
H=M, / M, is only one percent or below its effect is significant. The response

spectral density matrix S,(a)), containing the spectral density of r(t ) and

Ar(t ) on its diagonal and the cross spectral densities between r(t ) and Ar(t )

on its off-diagonal terms, is defined by
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S S . .
S,(a))z{ o T }—hmiaa —limL a:ar a:aA,
SArr SArAr T—e T T—e 7T a.Arar aAraAr
Y Ry [N CRET |
T—w 7T (9.70)
N2 e A
_SRl(a))- H11(a’)‘ H,\(®)-Hy (@)
=0 o o
! Hy (&) H,, (&) H,, (&)
where
1
Sg (@)= lim —ag (@)-ay (@) 9.71)

T—eo tT

is the spectral density of the load acting on the main system. Let us for simplicity
assume a fairly broad banded load and a near to resonant response, in which case

the response variances O'r2 and O'ir are given by (see Newland, [38])

< S LA
strr(w)dszzwl)'j Hy (@
0 K

0
2 2 (9.72)
Sy (@) a3 —aay +ab; +as (bl - 2b2)
and
) 7Z'SR (a)l) a d2
i =[S oo i, o)t
0 K % 2K aa,ay —aia, —a;

where all the constants are defined in Egs. 9.67 — 9.69.

Elaboration 9.1: Optimum Choice of Damper Properties

In general there is no mathematical optimum choice of damper properties. In most
cases it is a matter of how large a damper it is convenient (or possible) to include
into the design of the main system (what can usually be expected is 4 in the

range between 0.005 and 0.05). However,
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Den Hartog [26] recommends , =ﬂ =i and
a l1+u
3u
O= -
8(1+u)
3
while R. Luft [39] recommends @, S N and ¢, = ﬁ( ——'uj
a  J1+3u2 4 4

1
&
S_N 0.99
'% 0.98
g 0.97
Z 096
]
“ 095

0
UN
g 01
o
2
2 005
]
]

0 1 1 1 1

0 0.01 0.02 0.03 0.04 0.05

Mass ratio, ;1=M2/M1

Fig. 9.13 Recommended damper properties

The Tuned Mass Damper in a Continuous Line-Like System:
For a real system it may be necessary to install dampers specially designed to
provide artificial damping to several modes. Let us first consider the case of a

continuous beam or column with dampers M js j=12,..,.N j» at corresponding
positions X;, as shown in Fig. 9.14. The beam itself is subject to a distributed load

q, (x,t) while it is taken for granted that the tuned mass dampers are unloaded.

For simplicity, it is in the following also taken for granted that the motion of the
beam is a single component displacement in the z-direction. It is also taken for
granted that the damper masses are small, and that the motion of the system itself

may modally be described by 7, (x,t) =¢(x)-r|(t) , where @ contains mode
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shapes from an eigenvalue solution in original coordinates (with or without the

dampers, assuming 4 ; = M]/Mn <1).

z
M, M, M,
K, rJ‘Ic, KI% flll ¢ KN% |J-|| Cy

[ = e e e e e —— —»
X

X, |

X;
————— — > X

Fig. 9.14 Beam (or column) with dampers M jat positions X i

At arbitrary position X and time ¢ the system is then in motion 7, (x,t ) , see

Fig. 9.15.a, while at the same time, an arbitrary mass damper M j at position X;

is in motion 1, (t), see Fig. 9.15.b. At this particular time the internal forces in

the beam as well as in the mass damper are illustrated in Fig. 9.16.a and b, and the
instantaneous equilibrium condition of the entire system may then be established
by adopting d’ Alambert’s principle and the principle of virtual displacements, see
Chapter 1.6. lLe., as illustrated in Fig. 9.15 the beam is given a virtual

displacement §rz (x) and the damper is given a virtual displacement 5er .

During this virtual displacement the total energy of the system has not been
changed, and thus, external work must equal internal work, i.e.

I[qz (x,t) —m, (x) it (x,t) -c, (x) i, (x,t)}é‘rZ (x)dx+ZFj (t)5rZ (xj)

) ' (9.74)
=S [M i (0)+ F (1) 67, = [ [0, (x.2.1) G, (x.2.t) dAdx '
J LA

where g, m, and c, are distributed load, mass and viscous damping coefficient
(i.e. per unit length), o', is normal stress associated with r_, O€, is normal strain

associated with 5rZ and

Fi(1)= cj[r'jz (t)- 1 (xj,t):|+Kj[er (t)-r. (xj,z)]

(9.75)
=Cyi; (1)+K;r;_(1) —[Cjiz (x.1)+ K7, (xj,t)]
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zZ A
/T A KA K qu(x)
6"1/\\ -z /,;/5
—==%" or, + d(dr,)
r, | dx r,+dr, x
L
z A

xY

b) Arbitrary mass damper

Fig. 9.15 Beam and mass damper motion and virtual displacement

where C ; and K ; are the damping and stiffness properties of the jlh mass

damper. From Chapter 1.2 (see Eqs. 1.26 — 1.27) we know that

M (x,t —EI r’(x,t
O-xz Y(x )Z: yrz(x )z=—Erz”(x,t)oz
Iy I (9.76)
o€, =-6r/(x) z

and thus
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.”0')((x,z,t)&‘x(x,z,t)dAdxzII[—ErZ(x,t)-Z][—5r;(x)-z]dAdx

9.77)
=J.Er;(x,t) : 5r;(x)J.zszdx=J.Elyr;(x,t) -0r!(x)dx
L A L

Introducing this into Eq. 9.74, then the following is obtained (see Eq. 1.119):
jm )-or.( dx+j )- 7, (x,1)-Or, (x)dx
+f EI, - x)dx— ZF or.(x;) 9.78)

+Z[ 'r'j <(t)]~§rjz :qu (x,t)-0r, (x)dx

Let us first consider the most simple case of a single mode (and single
component) ¢, (x) approach with only one mass damper (M,, C;, K;) at
position x; within the span of the beam. Then (as the motion of the damper alone

will represent a mode shape of its own)

r,(Xx,t)= X)- t
g )@()mw} o
h(1)=1m(1)
and correspondingly, we choose virtual displacements
5rz (x)=¢z (x)'5nz (9.80)
or =1-om,

Introducing this into Eq. 9.78, then the following is obtained

Jme (x)9. ()it (). (x 577de+] (x)71, ()9, (x) on.dx
+[ EL@! (x)n. (1) (x) Oy, dx

_{C1771( )+ Ky (1) [Cl (x)7, (1) + K9, (x) 1, (t)J}@(xl)an (9.81)
+{ My + i (1) + K (1) =[ €9 ()1 (1) + Ko (3 ). (1) Ty o
= [ 4. (x.0)9, (x) . dx

which may more conveniently be written
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ZA
9 Sr,+d(5
S r,+d(or,)
v
’1/—» M, + dM,
or N\ v, +dv,
VZ . o
Qy F = qdx - (mdx)¥, - (cdx)r,
M
y T~ r,+dr,
>
rz/ !_ _______ _T X
a) The beam
zZ A )
Mjrj
SrZI 7
I A
Fj
\
A r.(t)
I F. j
Srz%
r.(x;)
>
Xj X
b) Arbitrary mass damper
Fig. 9.16 Internal beam and mass damper forces
on. [Mzoh'ZO (1)+Cn,, (1) +K N, (t)] = §n§RZO () (9.82)

where

N, :[nz HI]T on, =[dn, om ]T |:~{z0 :[Rz O:IT
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¢ :_éz+¢z2(xl)cl _¢z(x1)cl:|
M =|:Mz 0} 0 L -0, (%)C G
TLooMm K = _kz +¢2 (x)K, 0. (XI)K1:|
o L —9. (xl)Kl K,
M, 92 (x)-m (x) |
and éz =2§na)n ~z :J‘ ¢22 (x)'cz (x) dx
K. =apM, | 1|67 (x) EI,(x)
RZ _¢z (x)'qz(x’t)_

The pre-multiplication by 5!]5 may obviously be omitted, and thus the

equilibrium condition in total modal coordinates is given by
MM, (1) +C o, (1) + Ky, (1) =R (1) (9.83)
Defining the relative damper motion and corresponding modal quantity

Ari (t)=1-Am, (t) =5 (t)—r. (x.t) =1L (1) = ¢, (x1)-71(2) 9.84)

it is readily seen that

TR R ) e
from which the following is obtained:
N, (1)=¥.(x)-n.(z) (9.86)

where n, = [nz Amn, ]T are the new relative degrees of freedom and

LT Haw e

Introducing this into Eq. 9.83 and pre-multiplication by "Pg will then render the

following equilibrium condition in relative modal coordinates:

M.i, (r)+C.n, (r)+K.n, (1)=R_(1) (9.88)

where
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M, =wM_ W {MZJF(D?(XI)'MI ¢Z(x1)'M‘} (9.89)

~ ~ o . . K. 0
cz=w§czow1={cz O} KZ:tPfKZOtPZ:{ : } (9.90)

and
R.=WR, =[k 0] 9.91)

Egs. 9.88 — 9.91 are mathematically identical to that which was developed for
the case of a single degree of freedom system with an additional small mass in
Egs. 9.48 — 9.59, only with the properties of the single degree of freedom system
replaced by the modal properties of the continuous system in a single mode and
single component approach. Thus, the entire developments of a frequency domain
approach in Egs. 9.60 — 9.69 will also apply to the present case, only by replacing
single degree of freedom properties by their equivalent modal quantities. Thus:

. 1 . 11 a,a a,a, Sﬂ " S,7 An
Sn(a)): lim —a;ag = lim — *'7 g *'7 n :{ 2z z
T—oo 1T T—oo 7T Apnply  AapQap SA’?UZ SAT]AI]

1 (a ey @R\ (s - [ag (@)/R.])
= lim — H(w){ : 0/ :U [H(w){ ‘ O/ D (9.92)

where Sz (a)) is the spectral density of the modal load on the main system, and
Z

L 1+b,(id) +b, (i®)’
sz(a))z - /A ~1(A2) ~2(.A)3 ~ [.20N\4
144, (i®)+ a, (i) +a; (id)” +a, (id)
( )2 (9.93)
n . d, (i
le(w): 22 ~ ~ A4
1+a,(i®)+a, (i®d)” +a; (i) +ay (id)
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O=0lo,
a=w,/a where @ =K, /M, (9.94)
ﬂle/Mz
i, =1+ fi+a* +4al ¢ by =’ d,=—-a’
5 . 5 N ~ (9.95)
ay=2aa, +(1+ )¢, | & =2, & =—[1
54:&2 G, =1+4

and where { . and ¢, are the damping ratios of the beam and the mass damper,

respectively. Assuming that the beam is subject to an evenly distributed stochastic

load g, (x,t) with a cross spectral density qu (a),Ax) , where Ax= |xa —xb| is

the absolute value of spatial separation between arbitrary positions x, and X,

then

LL
= []0.(x,) 0. (3)-S, (@A) dx,dx,
LL

The physical response quantities may be obtained by acknowledging that

|:rz (x,t)} = ‘PO{ 7 (I)J where W, = F)Z (x) 0} (9.97)

Ar (1) A (¢ 0 1

from which it follows that
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T
J =¥;S, (0)¥ (9.98)

Again, if S 7 (a)) is sufficiently broad banded, then a near to resonant
Z

response will occur, in which case the response variances are given by (see
Newland [38])

oo

S (@) 2 . @
O-rzz(xr):JSrzrz(a))dw:@z(xr)zlz—zz"l‘sz(a)) do
0 o (9.99)
T 2K? 4,855 — Grdy — a3
and
S S (0)) N 2
O-ir_J-SArAr(w)dw~ RZI<22 J- lz(a)) dw
0 0 (9.100)
Example 9.1:

A suspension bridge is subject to wind induced vortex shedding oscillations in its
second vertical mode
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Pos. of
TMD

e e 289

Fig. 9.17 Vortex shedding excitation of second vertical mode of suspension bridge

Basic structural data are defined by:

p (kgmh)| L@ | B@) | D(m) |m, ke/m)|w, adls)| (., |
| 125 | 1200 | 20 | 35 | 9000 | 09 | 0005 |

The necessary data for the description of the vortex shedding load is the
following:

o floven) | v | S| 2 [k |

| 0.63 | o1 | 016 | 35 | 0294 | 03 |
The modal mass associated with this mode is

L L
M, =[m.¢7 dx=2.808-10° kg while i, =M / [o%dx=m,
0 0

The spectral density of the cross sectional dynamic vortex shedding load has
previously been described in Chapter 8.4
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2 2
o, -0

S (w)=—=L—exp| -| ——

qz ( ) ﬂwaZ p [ b ]

Z

where O'qzz is the variance of the cross sectional vortex shedding load, b, is its

band width and @, = 27Z'VSt/ D is the shedding frequency, V is the mean wind
velocity and St is the relevant Strouhal number. At resonance

=0, =>V=V, =%z31m/s
o B opst T

Assuming that the coherence length AD of the vortices is small as compared

to the length L of the system, then, with sufficient accuracy, the modal load is
defined by

f o7 l-0w 2

2 z _ s

Sz (@) =24DS, () [#, (x)dx:—ﬂl/zb —oxp -[—J
0

where O jS w)dw= 2/1DO' J.¢22

It is taken for grcmted that the vortex sheddmg induced aerodynamic damping is
defined by

2 2 \?
4 =ﬂ K |1- Or,
“zoam, * a;D
z L
where O rzz is the variance of the dynamic response, Kaz is an aerodynamic

damping coefficient and a; is a limiting motion parameter. The spectral density of
the dynamic response at mid-span is then given by
~ PATIN 2
S,. (%, =L/2,0)=[0,, (x, =L/2)[R, | |, (o) S, (@)

-1
where A, (o) :[1 _( v, )2 +2i( o e, )w/wzz} is the frequency response

L
function and K . = a) -m I¢Z2 )dx is the modal stiffness associated with ¢ The

modal load spectrum S 7 (a)) at resonance ( 0, = ., ) and the absolute value of
z

the frequency response function are shown in Fig. 9.18. Due to the motion
dependent aerodynamic damping any response calculations will involve
iterations.
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Fig. 9.18 Modal load spectrum (upper curve) and modal frequency response function at

X = L/2 (lower curve), V = VR2 =3.1m/s
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g | st016 Cae ~0-0039
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i = 2 -
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Fig. 9.19 Response spectrum of displacement 7, at x=L/ 2 (upper curve) and

corresponding time domain version (lower curve) when the system has no additional tuned
mass damper, V :VR2 =3.1m/s
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The response spectrum due to vortex shedding prior to any tuned mass damper
is shown in the upper diagram in Fig. 9.19. A corresponding time domain
simulation is illustrated in the lower diagram. As can be seen, the maximum
dynamic displacements are in the order of about 0.4 m. This is deemed unduly
large. In an attempt to quench the problem it has been decided to install a mass
damper at mid-span (see Fig. 9.17). Choosing

3
1=0.006, @ /@, =1/(1+ ) =0.994 and {; = |—5— =0.047
8(1+ )
then (See Egs. 9.93 and 9.98) the spectral densities of the dynamic response at
mid-span and the corresponding relative displacements of the damper are given

by

2 A
o (x, =L/2) [ 1~ .2 ‘le(a))
Srer:|:ZI€—Z H_ (&) S; (@)and Sy, & Sk, (@)
. 14 b, (i) + b, (i)’
4@ (i0) +a, (i) +a, (id) +a, (id)*
where j (,‘(?))2
A 2
H = e AN~ 1oAaN2 1.3~ a4
1+a,(i®)+a, (i®)” + a; (i) +ay (id)
and
R a=2(¢. +ag) b, = 2d¢, L=t ¢
~:Z/7;1 i, =1+f+a* +4a¢ ¢ b, =&’ e Zaez
G =oalal +(1+ z—pBK
g iy, ST UIAL e
ag=a d,=-a

Plots of SrzrZ (x,=L/2,0) and SA,A,((U) are shown in Fig. 9.20, while

corresponding time domain simulations of T, (x, = L/ 2,t ) and Ar(t ) are shown
in Fig. 9.21.

The variance of the displacement response of the bridge beam and the variance
of the relative displacement of the damper may readily be obtained from the
simulations, or more directly, from integration of spectra, rendering

o, =|[$.. (0)dw=00386m
0

and Oy =

[ Sarar (@)d@=0.3443 m
0
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Fig. 9.20 Reduced response spectral densities of r, atx = L/ 2 (solid line) and of tuned

mass damper Ar relative to r, (broken line)

Fig. 9.21 Time domain simulations of 7, (t ) and Ar (t )
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Under the present conditions this seems manageable. However, it should be
noted that a suspension bridge similar to the one illustrated in Fig. 9.17 will have
an asymmetric vertical eigenmode at a lower eigenfrequency than the symmetric
case which has been dealt with above. Therefore, an extended case study
including both of these eigenmodes is given further consideration in Example 9.2
below.

The case shown above is only adequate if the problem is limited to a case with

only one mass damper (M, C;, K, ) intended to quench unwanted response in a
single mode (and single component) oscillations. Let us therefore also consider the

case of a multi-mode system with tuned mass dampers at positions X;,
j=12,..,.N j» i.e. the case that there are installed N ; dampers defined by the

properties
M, =diag [M J}

C, =diag[cj] j=12,...,N, (9.101)

j
K, =diag|:KjJ

intended to quench oscillations associated with N i (or less) modes. Still, it is

taken for granted that all damper masses are small as compared to the modal mass
of the system itself. The displacement of the main system may then be described
in modal coordinates by

r.(xt)= Nfd ¢, (x)-n, (1)=®,(x)-n,(r) (9.102)

n=1

where

¢z(x):[¢11 B2 ¢1Nmod:|
. (9.103)
n00=[my o m, ]

The mass damper displacements in original coordinates are defined by

T
rd(t)=[r1 eory e rN]} (9.104)

Since the displacement of each damper alone will represent a mode shape on its
own, i.e. I'; = 1-n ;> then I, in original coordinates is equivalent to 1, in modal

coordinates, i.e.:

T
(=10, ()=[m o oy 9.105)

Thus, our real and modal degrees of freedom are defined by
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:{rz (x,t)} . n:{nz (t)} ©.106

ry (1) n, (1)

On these degrees of freedom we impose a corresponding set of time invariant

virtual displacements

or.(x
or = (%) (9.107)
or,
where
T

o, =[5r1 o Br, 5’"1\’]} (9.108)

Introducing this into Eq. 9.78, then the following is obtained
_[m x,t)or, ( dx+j (x,1)0r, ( )dx+IEIyr;(x,t)§r;(x)dx
L

Z[ 1)+ K;r;(t )—Cji’z(xj,t)—Kjrz(xj,t)]ﬁrz(xj)

(9.109)
Z[ 1)+C;i (t )+Kjrj(t)—Cji’Z(xj,t)—Kjrz(xj,t)]5rj
=_[qz (x,t)0r, (x)dx
L
The strategy is then to use the orthogonality properties of the mode shapes

m. (x)@, (¥)¢, (%)
I c,(x)g, (%), (x) |dx=0 (9.110)
HLEL ()67 (x)¢n (%)

and successively introduce

T
1) 51, =, 6r, and 5rd=[5r1 o Sr &NJ

T
n) 5r. =9, 5, andé‘rd:[é'rl RO S 5rNJ (9.111)

*Nmod

T
Nuoa) Or.=6, &, and 5rd=[5r1 S 5rNJ
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Replacing 7, (x,¢) by @, (x)-n () and r;(r) by 7,(r) this will yield

Noog tN i equations, where the equation associated with
T
or,(x)=¢, (x) 6r, and or, = [5;’1 e 01y e 5rNJ is given by

5an{MZn7'7'Zn(t)+€Zn772n( +K, 7., % () (1)

N N; N
K0 (x)m, ()= 26,8, ()71, (1) = 2K 0., (x;)m; (f)}
< = = (9.112)
N
+Z;5r {M 77/( )+Cj77j (t)+Kﬂj (t)_cj¢zn (xj)ﬁzy, (t)_Kj¢zy, (xj)ﬂzn (t)}
J
=5anI§Zn (1)
where
éz,, :_[ c, zz,, dx and ﬁzn (t):j@n (x)q, (x,1)dx (9.113)
g ” :
n E1y¢z,,

Like usual, it is convenient to define the modal property matrices:

M. =diag [Mzn ]

- - - - - T

C.- dzag[CZn ] and R_ (1) = |:RZI Ry Ry } (9.114)
K. =diag [Kzn ]

In addition to this it is convenient to define (see also Eq. 9.101):

o) ] [0 e (v) o dy (w)]

=

P, = ¢Z(x.i) = ¢z1(xj) ¢zn(xj) ¢1Nm0d(xj) (9.115)

and
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K, :¢§Kd¢} 9.116)

C,=0'C,0

The total N,q +N j equations contained in Eq. 9.112 may then conveniently be

ST Mz 0 {nz}r éz+éd -0;C, {nz}
0 M, |n, -C,0, C, n,
KK, 0K, {nz} _ &T{ﬁz}

As can be seen, the pre-multiplication by or’ may be omitted, and thus the
equilibrium condition in total modal coordinates is given by

MZ 0 |:nz:|+ éz +éd _q)gcd {nz:|
+|:I~(Z +K, —¢5Kd}{nz } _ {ﬁz}
It is readily seen that the total degrees of freedom (see Eq. 9.106)

h jz(ct;)} _ {cbz (ernz (t)} _ {wz (fX) ﬂ{n;it)} o119

may alternatively be expressed in relative displacement degrees of freedom

e o0 Mo 0] e

®, 1]An,(r)
Frel {rz (x’tq {(DZ L. (:)} {(DZ ) o}nmz (2) 9.121)

Ar, (1) An, (1) 0 |

where the relative modal coordinate vector is given by

N (1)=[n. Aan,]" (9.122)

written

(9.117)

(9.118)

or
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(and wherel is an N; by N identity matrix, while the size of 0 depend on its
first or second row position, i.e. and 0 isa 1 by N j vector when it is located on

the first row while 0 is a I by N, 4 vector when it is located on the second

row). Thus, by combining Eqgs. 9.119 and 9.120 it is seen that
{w) o}{nzmez(x) o} n. (1) o
0 HiL ng ®, 1)An,(1)
1 0 t
e
n, @, 1]An,()
Defining the transformation matrix

o
Y= (9.125)

rendering

then
n(t) = l.prlrel (t)

Introducing this into Eq. 9.118 and pre-multiplying by W' then the equilibrium
condition in relative modal degrees of freedom is given by

Mﬁrel(t)+6nrel(t)+Knrel (t):ﬁ(t) (9.126)

where

oW {MZ 0 }p _ [l\?lz +OIM,®, ¢§Md}

(9.127)
0 M, M,®, M,
B A T e | A 7
G_yr c.+9,C,0, -0,C, Y - C. o0 ©.128)
_Kd¢d Kd B _0 Kd_

and
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R=Yy’ R.|_|R: (9.130)
0 0

A general solution to the modal equilibrium condition in Eq. 9.126 may be

obtained in a frequency domain approach. It is then convenient first to split M
into

- M v D M D
M=| ° 0 + M.DO, M.D (9.131)
0o M,| IM®, 0

where D = |\~I|;1¢5M 4 » after which the entire equation is pre-multiplied by K.

Since

- [K 0 | oo 0| [ )
K'M=": " M. 0 || Wioa e bo, D (9.132)
0 K/ L0 M || O ly||o® O

J

it is seen that the following is obtained:

INmod ONmode |: nz :|
An,

ONijod INj

-2

W Oy, |[1y,  +D®, D {ﬁz}

—2 (0] | An
ONijod o d Nj Ny

w;l ONmode cZ ONmode |: hz :| kzlﬁz

-1 .
ONijod wd ONijod Zd And

(9.133)

+2
ONJ'I

w_ =diag [a)zn ] {. =diag [62,, J

where and
wdzdzag[a)j] Zd:dzag[g’j}
and where the indices on the identity and zero matrices indicate their size, i.e. the

number of rows and columns (a single index means that the matrix is square).
Taking the Fourier transform

~_1 ~ ~ _1 _
|: . }: A (a)) ¢ and KR, = K aRZ (CU) &
And 2] aAnd (a))

throughout Eq. 9.133 will then require that for every @ -setting

onl @ ONJ'I
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a ()] . Kla, (o
7e (@) =H(w)| ° (@) (9.134)
Apy (@) Oy ;i
where
{lig ~ 02 (g +D®, ) +2i0.3.] ) -
A(w)=| " ™ > ) (9.135)
—Q20, {ty, -0} 20,3,

and where Q. :diag[a)/a)zn] and @, =diag[a)/a)j]. As shown in Eq.
9.121, at a particular position x, where we wish to determine the structural
displacement response 7, (xr,t ) and the corresponding relative displacement

response of all the N; mass dampers AF, (¢ )
St t
rz('xr ) :q’r(xr) nz( )
Ar, (1) An, (1)

Y - 0 | ! (9.136)
N jNmod N

where

A Fourier transform will then render

{arz (xr,w)} —y, (xr)r”z (w)} (9.137)

a,, (0) a,, ()

{wr (x, )Li"; (((2)}} = (9.138)
(

. |Klag (o L Kag (o '
nmi{wxrw(w)[ : )” {wxr)H(w)[ ZN:( )H

T—e 1T

from which the following is obtained
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S, (x,.0)=¥, (1) H (0) 8 (0) H (0) W] (x,)  ©139)

where (recalling that K ; is diagonal and real)

3 ~ \T
A K_I‘S" w)- K_1 0 .
SK’(a))z z Rz( ) ( z ) NmodN (9.140)
onNmod ON]
1
Si (@)= fin 772 ()2, (@)
T
and < where akz (w):[akzl af"z,, aRZNmod:|
and R, (1) :jan (x’w)¢zn (x)dx
L

(see also Eq. 9.113), and where a,. (x, a)) is the Fourier amplitude of the

distributed load ¢, (x,1).

Example 9.2:

0,2 03L 0,3L

RN
Pos. of TMDs: ? ?
/mﬁ‘rmm \

& -~ &

| ,2L

0,

. Jf_’ X /\

~— — ~—_“

Fig. 9.22 Suspension bridge vertical modes susceptible to vortex shedding




9.4 The Tuned Mass Damper 399

The suspension bridge in Example 9.1 has two onerous vertical eigenmodes
and corresponding eigenfrequencies and damping ratios

¢, =sin(27%) x @,=07
A , [ X=— rad/s
@, =0.4sin(7%)-0.6sin(373) L o,=09

&4 =0.005
o

which are vulnerable to wind induced vortex shedding oscillations, see Fig. 9.22
above. Therefore, it has been decided to install three mass dampers (A, B and C)

with the mass properties [, = o =0.0025 and gz =0.005 at positions
x4, =02L, x3=05L and x.=0.8L. Since mass dampers A and C are

primarily intended to quench possible oscillations in the first vertical mode while
the mass damper B is intended to quench oscillations in the second, it is taken for
granted that

R
AT S5C 3
a)Aza)Cza)Zl/(1+,uA) 4 8(1+ )
an
wy =a)Z2/(1+,uB) B 3y
= |—t8
8(1+ﬂ3)3

Basic structural data and load properties are given in Example 9.1 above.
Since there are two modes that may be excited, there will be two critical wind
velocities

Cl)z2
=0, = V= =3.1m/s
27 St
for the onset of resonant vortex shedding induced oscillations. There are two
mode shapes and three mass dampers, and hence, the size of the system is 5 by 5.
It is necessary to establish the following matrices:

D (x,) ?, (%4) ?, (x4)
q’z =|:¢z1 (x) ¢z2 (x):| ¢d = Qz (XB) = ¢Zl (XB) ¢12 (XB)
P, (xc) 0, (xc) 9. (xc)
~ ~ L 2
|\~I|Z = 1 ~O where Ajlzl = jmz {@; dx
0 ) Mzz 0 ¢z2
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M, 0 0 HaM 0 0
Md = O MB O = O /'IBMZZ O
0 0 M, 0 0 'UCle
[ 1
1) 0 0
. @, 0 A 4 1
W =@ | W, =0l 0 @' 0
0 w, S
o
[ 0 0
(QVZI _gaez) 0 $a
;Z - ;d - 0 gB 0
O (é/zz - gaez ) 0 0 éac
ol e ] s e o
K;l— ) ; and SR( ):{ Z TR, z 23:|
0 ((0122 12) 03~2 03%
* T
. A, | | % Stk Skyr
S; = limialg~e ag = limi a a | _ S 218 S 21 Rz
z oo z Nz 0o 5 ~ o o
T—e 7T T—e 1T aRzz aRzz 20 Rz 5 Ry

Assuming that the covariance between vortex shedding forces at VR1 and VR2
are negligible, assuming that the resonance cases VR1 and VR2 are most relevant
cases, i.e. W=, = 27Z'VSt/ D and taking it for granted that the tuned mass

dampers are effective such that r, (x,t ) is small, in which case { ae, =0, then

~ -2
(@2M,) " Sg 7 (@) 0 000
~ -2
R 0 M) S, - 000
S;(w)= (wzz Zz) 2o Re) (@)
0 0 000
0 0 000
I 0 0 00 0]

where
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S & Ll ¢?
R, R
. =2/1DSqZJ ;1 dx where
Iézzkzz 0] ¥z
2 2
w
G pV°B6,, ) 1-—
S exp| — 2
o Nzwp, b,
In this case it will suffice to
¢, (%) ¢,(x) 0 00
0 0
l'pr: z(xr) 13 _ 0 0 1 00 where
0, s 0 0 010
0 0 0 01
X, =
Or Xp

because due to symmetry or asymmetry the response at x. will be equal to or

opposite to the response at x,. What then remains is to calculate

D= MQICDZM 4 and the frequency response function

N R -1

-0, +D®, ) +2i0 g | ~&’D

H(w) =
~Q20, {I, - +2i0,8,}

Vi XA
Thus, introducing V = and X, = and then the spectral
or Vi, or Xp

density of the response components are given by
S S N S

r; rzArg r;Arg rArc
S S S Araar - a
Sr _ Arg ArgArp ArgArc _ ‘pr (X, )H (a)) SR (a))HT (a))‘p{ (Xr)
SArB SArBArC
Sym. SArC

Setting V =VR1, then the spectral densities of the dynamic response of the

main system at x, = x, =0.2L and of the relative dynamic response of the mass
damper A are shown in Fig. 9.23. As could be expected, they are centred on the

resonance frequency @, =0.7 I’ad/ S . Corresponding time domain plots are
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shown in Fig. 9.24. The response is not particularly narrow banded, and hence, a
fairly high peak factor should be adopted. As can be seen, the excitation of the

main system at Xxg and mass damper B are small. Similarly, setting V =VR2,
then the spectral densities of the dynamic response of the main system at
X, =xg =0.5L and of the relative dynamic response of the mass damper B are
shown in Fig. 9.25. This time they are centred on the resonance frequency
@, =09 rad/s. Corresponding time domain plots are shown in Fig. 9.26.
Again the response is not particularly narrow banded, while the excitation of the
main system at x, and mass damper A are small. However, as to whether or not

relative damper displacements in the order of £ 1 m are manageable is a
practical design question.

30 T T r T 30 T T . T
——x/L=0.2 ——MDA (at x /L=0.2)
——x/L=05/ | MD B (at x /L=0.5)
25F i 1 25F ; 1
crz(xr/L—O.Z)—0.029 m GArmd(Xr/L=o_2)=o_34 m
o, (x/L=0.5)=0.005 m o, (x/L=0.5)=0.016 m
20r > o 201 AT T
1,=0.25%, £,=3.1%6 mA/coZ =0.998rad/s
1
NN 1,=0.5%, £,=4.3% NDE w /o, =0.995radls
= 2 z
9 150 1 & 15f 1
b ~L
~ . <
0" 7}
101 : 101 .
/
Jo
51 ] 5t N RS} —
// \l
\
// \\\ \
0 ! 2~ \ \\* 0 ' //. ! \.\\
05 06 07 08 09 05 06 07 08 09

o (rad/s) o (rad/s)

Fig. 9.23 V= VRI , response of main system to the left, response of mass dampers A and B
to the right
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k =2.63
_. 05pp 8
£
0 PR A AR AN
®
= -0.5¢ R
-1 i I i i L
0 100 200 300 400 500 600
1 T T T T
46
0.5 .
E
: |
K
-0.5 R
-1 i i i L
0 100 200 300 400 500 600

Fig. 9.24 V= VRI , response of main system top diagram, response of mass damper A in

lower diagram

30

25}

———x/L=0.2
——x/L=05

5, (x/L=0.2)=0.016 m
o (x/L=05)=0.041 m
z

S

20+ : 4
1,=0.25%, £,=3.1
ol Hp=05%, £,=4.3%
T 15}
x
o
10t
5,
0 1 ~1 !
05 06 07 08 09
o (rad/s)

Fig. 9.25 V= VR2 , response of main system to the left, response of mass dampers A and

B to the right

t(s)

30 T : . T
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25} g 1
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Fig. 9.26 V= VR2 , response of main system top diagram, response of mass damper B in
lower diagram

z A

Fig. 9.27 Arbitrary mass damper number j attached to node p

The Mass Damper in a Finite Element Format:

xY

The theory above may also be formulated in a finite element format. It is in the

following assumed that the system contains N elements, Np nodes and N i
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mass dampers. As illustrated in Fig. 9.27 it is taken for granted that the mass
dampers are all attached to a node, i.e. that an arbitrary mass damper j with

properties M ;, C; and K is attached to node p .

Let the damper properties be defined by the diagonal matrices
M, =diag [MJ
Cd=diag[CJ J=L2,..,N; (9.141)
K, =diag [Kj]

and, at global level, the N, physical degrees of freedom of the system and

corresponding load components are defined by

T
r:|:r1 rp rNr:|

R=[R1 S S RN,]T

(9.142)

At element level the physical degrees of freedom and corresponding force
components are as usual defined by

T
d, d=[d d, dy d, ds d]
d, = d where ;
2.n d,=[d, dy dy dyy dy d,]
r (9.143)
{Fl} F1:[F1 F, F; F, F FG]
F,= where ;
2.1n F.=[F, KR K, F, F, B,

As shown in Chapter 4, the equilibrium condition at element level is given by

F,(1)=m,d,()+c,d,(1)+k,d, () (9.144)

n

where m,, ¢, and K, are defined in Chapter 4.2. The connection between local

and global degrees of freedom is defined by the connectivity matrix A, such that
d =Ar (9.145)

Let the N ;j damper degrees of freedom be defined by

T
rd=[r1 ey rN,} (9.146)
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In addition to this, it is necessary to define a vector F,, with length N j» containing

all the global degrees of freedom associated with a mass damper (i.e. the global
degrees of freedom at a node where there is attached a mass damper and whose
degree of freedom is parallel to that response motion)

T
rpz[--- (rpj:rp at mass damper number j) } (9.147)

Furthermore, it is convenient to define a N, by 1 vector a j

T
a; :[0 (1 at the r, position of mass damper number j) 0} (9.148)
such that an arbitrary rpj associated with mass damper number j is identified by

_aT o . .
rpj =a;r. Thus, the Nj by N, connectivity matrix A p between F), and F is

defined by
T
r,=A,r where AI,=[a1 ceoa; e aNJ (9.149)

Finally, it is convenient to define the vectors

Fd:[Fl B FNJT (9.150)

Qd:[Q1 e Q) e QNJ:|T

ZA

r;(t)

Xy

Fig. 9.28 Internal forces in mass damper number j
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where F ; 1s the sum of internal spring and damper forces associated with mass

damper j and Q ; 1s the corresponding inertia force, see Fig. 9.28, from which it

is seen that
F,=C,(f, -1, )+K, (r,—r,)=C,(f, - A ) +K, (r,—A,r) (.151)
and
Q, =M, (9.152)

To the equilibrium condition of this system there is imposed a set of virtual
displacements

sr=[on - 6r, - bny | 9.153)

p

on the N, degrees of freedom of the system itself, and

T
5rd=[5r1 VR SR 5%} (9.154)

J

on the N; mass damper degrees of freedom. Accordingly dd, =A Jr and
or,=A,0r. Thus

N
St"R-Y"6d,F, +or F, - o) (F,+Q,)=0 (9.155)

n=1

from which the following is obtained

or" (Mi+CP+Kr+ATC,A F+ATK,A r—ATC,i, ~ATK,r,)

(9.156)
+6t] (<C A F—K A r + M, +C it +K r,)=6r"R
where
M N m,
C|=2A.lc, |A, 9.157)
K n=1 k

n

and m,, ¢, and K, are cross sectional mass , damping and stiffness matrices of

element number 7. This may more conveniently be written
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{&T {M o}r}r C+A’C,A, -AlC, {r}
or, 0 M, |r, -C,A, C, r,
KRR A, -ATK, e[ T{R}

-K,/A, K, r, or,| |0

(9.158)

As can be seen, the pre-multiplication by the virtual displacement vectors may
be omitted, and thus the equilibrium condition of a discrete N, by N, system

with a set of Nj mass dampers is given by

[M oM‘r‘}r C+AC,A, -A'C, [r}
0 Md rd _CdAp Cd rd
N K+A'K,A, -A'K, [r}{n}

which may also be transformed into relative coordinates

r r r Iy, O r
r, r,+r, A r+Ar, A, INj Ar, (.160)

where | n, and | N, are N, by N, and N; by N; identity matrices. Thus

(9.159)

ry

“lew, | T where w | 0
r =¥ Ar, where W, = A1, (9.161)

P i
By introducing this into the equilibrium equation above and pre-multiplication

by ‘-P{el then the following equilibrium condition in relative degrees of freedom

is obtained

M+ATM A ATM, ([ F cC o ¢ K or R
b P .|+ e = (9.162)
M,A, M, |LAF, 0 C,| Ar, 0 K, ||Ar, 0



Chapter 10
Rectangular Plates

10.1 Introduction

The development below is limited to cover the theory of rectangular thin and
plane plates. It is often referred to as the Kirchhoff-Love theory, as it was first
presented by A.E.H. Love [45] based on basic assumptions outline by G.R.
Kirchhoff (1824 — 1887). Perpendicular to the plate it is subject to a fluctuating

and distributed load ¢, (x, y,t) (with unit N / m? ). In the plane of the plate it
may be subject to time invariant evenly distributed axial loads N, and N y (with

units N / m). It is taken for granted that the plate is homogeneous and isotropic,

that it is linear elastic, and, although this is not a general requirement, it is most
often assumed that the plate thickness / is constant. Since the plate is thin as

compared to its overall dimension (4 < L, and Ly) it is assumed that stresses

perpendicular to the plate plane may be ignored. For the same reason Navier’s

Fig. 10.1 Rectangular, plane and isotropic plate

E.N. Strgmmen, Structural Dynamics, Springer Series in Solid and Structural Mechanics 2, 409
DOI: 10.1007/978-3-319-01802-7_10, © Springer International Publishing Switzerland 2014



410 10 Rectangular Plates

hypothesis [4] is adopted, implying that a straight section which is normal to the
middle surface before any plate deformations will remain straight after
deformations, i.e. there are no cross sectional distortion. Finally, the theory is

limited to plate deformations 7, (x, y,t) which are small, such that for any cross
sectional rotation ¢ it will be sufficiently accurate to assume that cos& =1 and
that sina=tanor=dr,/dj, j=xory. Finally, in establishing the relevant

equilibrium conditions it is taken for granted that the principle of d’Alambert
applies. Thus, it is seen that the Kirchhoff-Love theory is an extension of the beam
theory first presented in Chapter 1.2.

Fig. 10.2 Definition of stress components

The relevant normal and shear stress components O, , Oy, Ty Ty [ and

7, are shown in Fig. 10.2. Considering an infinitesimal element dx-dy-dz then

the requirements with respect to force equilibrium in the xand y directions

(0, +do,)dydz —0,dydz +(z,, +dt,, )dxdz — 7, dxdz =0
(10.1)
(0, +do,)dxdz -0 dxdz +(z,, +dz,, ) dydz - 7, dydz =0

and moment equilibrium about a vertical axis Z; through the middle of the

element
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dy

d d dy
(7, +drxy)dyd27x+fxydydz7x—(fyx+d1yx)dxdz S~ Tndvdz =0 (10.2)

90, /dx+07,, [dy=0
ill rend d = 10.3
will render aO'y/ay+aTxy/ax=0 and 7, =T, (10.3)

Thus, for the relevant in plane stress components it will suffice to focus on O,

o, and 7.
?"y Txy
Tay
| I | e p—— 7
~F———T 3 1 T 7
| | | | / /
< :—)6 : | T
(6] I I / xy
I e - | ! L !
L——_1 ~——

Fig. 10.3 Superposition of in-plane strain components
The relationship between stresses O,, O,, 7,, and corresponding strain
components £, €, and },, may, as illustrated in Fig. 10.3, be obtained by using

the principle of superposition, i.e. by adding the effects of each strain component
separately:

£, /E

o, alone = _0._ 9
e I
8 =0, E o, loJ

o, alone = % =16, =—=-v-=* (10.4)
£, =-VE, E E

7, alone =y, =7, /G Ty

xy xy = Yxy Yy =?

where E is the elastic normal stress modulus, G is the corresponding shear
stress modulus and ¥ is the Poisson ratio. (For an elastic homogeneous and

isotropic material the shear stress modulus is given by G = E/ [2(1+ U)] , see
e.g. Timoshenko & Goodier [5].) Thus,
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gx E ! —‘UE'_1 0 O-x

_ -1 —1
g |= —VE E 0 o, (10.5)
Ve 0 0 G|z,

from which the following in-plane stress-strain relationship is obtained

o, 1 v 0 £,
E
o, |= S| v 1 0 g, (10.6)
1-v
Ty 0 0 (1—1))/2 Ve

First, it is for simplicity assumed that the displacements 7, (x, y,t) are so small

that they will only cause insignificant stretching, i.e. that

(dx2 +dr? )1/2 ~ dx[l +(or, /8x)2/2} =~dx
(10.7)
(dy2 +dr? )1/2 = dy[l +(or, /ay)z/Z} =dy

and thus, the normal stresses O, and o, that are associated with the deformation

1, will only create pure plate bending, as illustrated in Fig. 10.4. It is seen that for

an infinitesimal element dx-dy - dz

or. 9r or,
I I R S .
[ax " ox? ] o ox ¢ o%r
£, = = z.,
dx ox?
— ai*_azrzdy -z+ai-z 108
A G R TR s
Yy dy - axZ
or. 9*r, or, or. 9*r or,
—| =+ —Fdx |2+ | S —Fdx|z+2z
X dyox ox dy dxdy dy %
Vg = + =2 e
’ dx dx 0xdy
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d d
L* /dx-dz dy-dz\ +/ z
z/—L>———<—> ‘—>___(_£\Z
y X
dy dx

Fig. 10.4 Pure plate bending

€, azrz/ax2
Thus e, |=-z| 9r/[0? (10.9)
Yy 2-82rz/8x8y

from which the following connection between the instantaneous displacement

r, (x, y,t) and the ‘cross sectional’ stress resultants M s M y and M Xy

(moments per unit length), see Fig. 10.5, is obtained:

Mx _Zo-y v 1 0 azr /ax2
M, | hf w0, |t 0 az:/a )
= = y (10.10)
M, | P 0 0 —(1-v) ) ‘
M oz 0 0 (1-v) ) rz/axay

yx xy
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h/2 3
where D= E2 fzzdzzL2 (10.11)
1-v* 5, 12(1-07)

is the plate stiffness (from which it is also seen that M o= -M )

10.2 The Differential Equation of Motion

What then remains is to establish the equilibrium conditions for an infinitesimal
element dx-dy . For such an element the stress resultants (per unit length) are
defined in Fig. 10.5. In addition to these forces, the element is subject to external

forces g.dxdy, N,dy and N ydx (N, and N , assumed constants) as well as
resisting inertia and damping forces (mi"Z )dxdy and (ci’z)dxdy, where m is the

plate mass ( kg / m? ) and c is its damping coefficient (with unit Ns/ m’ ). The
relevant plate deformations and the variation of stress resultants in the y direction

are illustrated in Fig. 10.6. A similar variation will occur in the x direction. The
normal force variation (in both x and y directions) is illustrated in Fig. 10.7.

Thus, the following equilibrium requirements are obtained:

1) Force equilibrium in X -direction:

hy2
(Ve +dVy, )dx =V, dx=0 = dV, =0 =V, = j 7,dz=0 (10.12)
~h/2
2) Force equilibrium in y -direction:
h2
(Vo +aV,, )dy-V,dy=0 = aV, =0=V, = [ 7,dz=0  (10.13)
~h/2

3) Force equilibrium in z -direction:

q.dxdy —(m#, + ci. ) dxdy + (V. +dV,. )dy=V,.dy +(V,. +dV,. )dx -V, dx

2 2
N 2 0 e lay N, Py e v, | 220 gy fax- v, P de=0
ox  ox’ ox oy 9y? Y ox
av, or o°r.
.. . vz _
=  mi, +cr, — a;Z - % -N, axzz =N, (_}yzz =q, (10.14)
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4) Moment equilibrium about an axis through the mid-point p and parallel to x:
(V). +dV,, )dxdy/2+V, dxdy/2+
(M, +dM )dx—M dx+ (M, +dM ,)dy—M ,dy=0

10.15
. dy ox ( )

5) Moment equilibrium about an axis through the mid-point p and parallel to y:
—(V,, +dV,, )dydx/2 -V dydx/2 +
(M, +am )dy—M dy+(M,, +dM )dx—M dx=0
oM, M,

= V. = +— 10.16
T ox dy ( )

6) Moment equilibrium about an axis through the mid-point p and parallel to z:

dx dx d d
(Vi + Ve )y 4 Viydy 5= (Vy +V, )dx%—vyxdx% =0
=N Vi =V, (10.17)
z

q,dxdy - mr dxdy - cr,dxdy

/

N, dy

Fig. 10.5 Definition of stress resultants
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ZA N, z A
N
6‘”‘ y d{;
N // . ar, dy ~ |~
—© e —— > < e — O
y X

Fig. 10.7 The effects of in-plane (membrane) axial forces

Thus, Eq. 10.14 may be further developed into (see Eq. 10.10):

mi"z+ci’z—avxz— =N, >Ny, —
ox  dy 0x dy
M, M, M, M,
=mii, + ci, +——* - " -N, a -N, o,
Ty dxdy  oxdy  ox’ ay’

2 (2 2
=m¥, +cr, +Da— dr Jr, +2D(1-0)
ox? oy? axGy 8x8y

2 2, 2 2 2
w0 [ p0 e Oy Oy O,
dy ox*  dy

(10.18)
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from which the following differential equation is obtained:

~

4 4 4 2 2
mi, +cr, + D a}:f+2 azrzz+a’:1z _Nxa’;z_Nya > =4q. (10.19)
ox ox-dy dy ox dy '

In general eigenvalues may be obtained under the condition that ¢ and g, are
zero, in which case the plate is free oscillate in an unknown eigenfrequency @),

and a corresponding eigenmode ¢, (x, y) , 1.e.

r,= Re[(ﬂn (%) ei“’”’] (10.20)

Thus, Eq. 10.19 is transformed into the following eigenvalue problem:

4 4 4 2 2
ox dx“dy dy ox dy

10.3 Solution to the Eigenvalue Problem

There are three possible solution strategies: to search for an exact solution to the
differential equation throughout the space of the system, to apply an approximate
solution to an energy formulation (e.g. Rayleigh-Ritz) or to apply an approximate
solution to the weighted residuals method of Galerkin.

The choice of an exact solution will render a transcendental equation whose
roots may be obtained numerically. This solution strategy is in general rather
cumbersome. Nonetheless, the method, including a few examples, is briefly
presented below. Many of the classic solutions have been obtained by an energy
formulation. This method is not included below, where the main focus is on the
Galerkin method of weighted residuals, as this approach is far more effective and
well suited for practical applications (and computer programming) than any other
analytical method.

Exact Eigenvalue Solution to the Differential Equation

It is seen from Eq. 10.21 that the second and fourth derivatives of @, (x, y) must

be congruent to @, (x, y) itself, i.e. the solution is given by a sum of harmonic

and hyperbolic functions. Thus, for an isotropic rectangular plate with constant
mass and thickness, the general solution to the eigenvalue problem is given by
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@, (%.y)=0,(x) o (¥) (10.22)

where

=q sm( )+ ¢ sinh(/”t@) +c5 cos(/”tjf) +cy cosh(/ijf)

(10.23)
j=pork, §=x/L ory/L,

The necessary connection between @), and /1j may be obtained by introducing

Egs. 10.22 and 10.23 into the differential equation (Eq. 10.21), while lj may be

determined from the joint solution of the relevant boundary conditions:

r,=0 :>¢j=0

1) At §=0 or §=1 for simply supported edge: <M } 0 82¢j 0

M 052

y

r,=0 :qu:O

Z

2) At §=0 or §=1 for fixed (clamped) edge: arz/ax=0 aq)j 0
or,/dy=0f " 09§
_ 2
M,=0 - °g; _
_0 aA2

3) At §=0 or §=1 for free edge:

where 3"p; /x" = L"-9"p; /05" and similarly 9", /dy" =L," 0", /05"

and

e ]
1 a(p ro. n . n n A
= 9% sin(A; sinh(A.§ cos(A.5) cosh(A.§
;Li % ( j j ( j ) j o
' J j§) sinh(A.§

2 a2 —sin(A.§) sinh
ﬂj ds )

( (45)
1 9%, |= : (( ((’)) 2| (1024
( (45)

1 33% —Cos
13 a3
/1]. ds |
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Four boundary conditions will always render a four by four coefficient matrix

which multiplied by [¢, ¢, ¢; ¢,] is equal to zero, and thus, to obtain a

non-trivial solution the determinant of the coefficient matrix must be equal to
Zero.

Example 10.1 Exact Solution to the Eigenvalue Problem

o

Fig. 10.8 Simply supported rectangular plate

The case of a plate with all four edges simply supported (i.e. the edges are
restrained from any motion in the 7 direction but free to rotate about the X and
y axis) is illustrated in Fig. 10.8 above. In this case the solution is particularly

simple:

p=123,...

o, (x, y) =sin p7Z'i sin| kz—- with any combination of
L L k=1,2,3,...

X y

Introducing this into the differential equation (10.21) will then render

12
2

L

X

m

L, m \ L, m | L

2
4 2 2 2 2 2
N TN,

ﬂD(pJ+k L F X(pJ+ v| k

'y
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b)

c)

10 Rectangular Plates

Pure bending of square plate: if L. = Ly =L and N, = Ny =0 then

o, Z(p2 +k2)(7Z'/L)2\/D/m , rendering

1" eigenmode: p=landk=1 = 0]

2(x/L)* Dfm
S(x/L)* DJm
8(x/L)’ Dfm
w, = 10(7[/L)2 JD/m

2" eigenmode: p=land k=2 W,
w3

=
3" eigenmode: p=2andk=2 =
4" eigenmode: p=landk=3 =

and so on.

Pure bending of rectangular plate: if L, # Ly but N, = Ny =0 then

LY ? D
a)n = [p_}J +k2 (1} P

L, L, m
Eg., ifLy/Lx =2
1" eigenmode: p=land k=1 0] =5(7I/L)2\/D/m
W, = 8(7[/L)2 JD/m
w, =13(z/L)* \/D/m
w, = 17(7r/L)2 JD/m

2" eigenmode: p=land k=2

3" eigenmode: p=land k=3

Y

4™ eigenmode: p=2and k=1

and so on.

The square membrane: if Ly =L, =L, Ny =N, =N and D =0 then

T [N
W, = \/pz +k2 z,/; , rendering

1" eigenmode: p=land k=1 @, =7/L\2N/m
@, =7/L\|5N/m
@; =7/L\J8N/m

@, =/ L\J10N/m

2" eigenmode: p=land k=2
3" eigenmode: p=2and k=2

!

4™ eigenmode: p=land k=3

and so on.
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Galerkin’s Method

By far the most effective solution to the eigenvalue problem is obtained by using
the Galerkin method (of weighted residuals, see Chapter 1.7) as follows. Let us
adopt an approximation in the form of a series solution

N, . .
rz(x,y,t)zzap Y, (x,y)-¢" =W-a- (10.25)
p=1

W)=y v, o ]

where T
a:|:a1 e ap . aij|

(10.26)

and where a, are unknown coefficients while ¥/, are chosen known functions,

whose only requirement is that they satisfy the boundary conditions of the system.
Introducing this into the differential eigenvalue equation (Eq. 10.21)

+2 ~-N —o’'mW¥Wia=0 (1027
ox* ox*9y*  oy* ox? Y oy? } ( )

'V 9w o'W Y oW
{DL -N,
pre-multiply by W’ and integrate over the total plate area A=L, - L, will then

render an eigenvalue problem

(K—a)zM)a=0 (10.28)

M= [mW'WdA=| M,
A .

where (10.29)

M, =[m-y, (x,y)- (x,y)dA
A

and
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4 4 4 2 2 R
K=[y"{D aT+2 82w2+aj’ —NxaT—NVaT dA=| K,
A ox ox“dy” dy ox ) .

4 4 4 2 2
Ky = [, D] S a0V OV |y OV OVl iy (1030)
" ox 0x“dy dy ox © dy

This will then render approximate eigenvalues @), and coefficients a@,, from
which the corresponding approximate eigenmodes are given by @, (x, y) =Wa,.
The accuracy of the solution will entirely depend on the ability of the chosen
shape functions ¥/, (x, y) to portray the real mode shapes of the system. If m

and D are constants (independent of X and y) then it may be convenient to
separate the variables in the shape functions

W, (53) =¥, (X)W, (¥) (10.31)
in which case
Ly Ly
My =m [ Y () Wi (9)d [ Wy (3) ¥y (3)dy (1032
0 0

LX d4wkx Ly
ka =D _[ l//px —4de l//pyl//kydy +
0 dx 0

Ly 2 Ly 2 Ly Ly 4
d*y,, dY, dYy 10.33
2_[ pr dx—zdx_[ Wpy 7dy+_[ l//pxl”kxdxj l//py dx4 d)’ ( )
0 0 0 0

Ly le// Ly Ly Ly dzl//
kx ky
—N, ,[ Y px de,[ VWi =N, ,[ l//pxl//kxdx,[ Vw2
0 0 0 0

where L, and Ly are the plate lengths in the X and y directions. To facilitate a

numeric approach, this may be transformed into a normalised vector-matrix
version by defining



10.3 Solution to the Eigenvalue Problem 423

T
ﬁ:x/Lx ’x:|:_x1 X, e ‘xNL j|
. (10.34)
V=V/Ly,v=[y1 Y, YNLy:|
and Lp:|:lp1xlp{y lppxw;y wprwZI;/py:| (1035)
. . R T
lppx:[l//px(xl) l//px(xn) l//px('xNLx):l
where (10.36)

T
lppy:[‘//py(yl) l//py(j)n) l//py(j)NLy

Acknowledging that izi 0’ da_j_L_a_j, j=1,2 and defining

- rald — an - = -
ox! L, ox’ ay’ Ly 9y’

M=M/(m-AA)
K=K-L}/(D-A4)
AA=AX'Ay=(Lx/NLx)'(Ly/NLy)

@=a\mL! /D

then the following normalised eigenvalue problem is obtained

(10.37)

(k—cﬂ\?l)a:O (10.38)

where the content of |\7| and k are given by

N

M, =(W§xlllkx)-(lll§yl|h@) (10.39)

and
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Table 10.1 Some relevant shape functions

~

v, (8)=q sin(ﬂtpﬂ@) +c, sinh(ftpme) +cy cos( T

AN

>
>
~

)+ Cy cosh( 7T

§=xory, p=123,...

sin(ipn') —smh(ipn') cos(ipﬂ') —cosh(ipﬂ')
= ~ ~ By=—"% -

cos(/ipﬂ)—cosh(/ipﬂ) s1n(/1p7r)—s1nh( pﬂ')

sin(ipﬂ)+s1nh(2pfr) cos(ipﬂ)—cosh(ipﬂ)
Yy = P Py K, = = =

cos(ﬂpﬂ)+cosh(ﬂp7£) s1n(/1p7r)+s1nh(/1p7£)

Coefficients, c; Wave length, lp

NS

el ¢ & Cy A o

p=2

1 0 0 0 1 D

4p+1

U

2p+1

U

—_
|
—_
|
K
K
W AW
~

| W
&}

S
|
(S

3 4p-1
Ll 1w, | -x | 4 4
1 2p—1
1 -1 _ap ap 2 2
5 4p +1
1 L =71 7 4 4
3 2p+1
U e || 2| T2
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d'y (L dy dy
> | .. T kx T kx ky
ka_(w‘”‘ dz* j(ll!p)luk))ﬂ[ J (lpp" ds? J[q"’y d5? J
d'w, | NI, d
T ky x=x T Wix T 10.40
[ J lppx"pkx ("ppy d5)4 J_ D "ppx d)’ez '(lppylpky) ( )

NE(L
- {i ] (whwe)- {w,,y dtpz’“ J

y

In general, sufficient accuracy may be obtained by choosing shape functions that
comply with the corresponding eigenvalue solution of simple beams whose
boundary conditions are identical to that of the relevant plate system. Some useful
cases are listed in Table 10.1.

Example 10.2 Galerkin Solution to the Eigenvalue Problem

Shape func. f
N

T T

1 1

o
a
T
i

-

o

Shape func. g

'
=N

0.2 0.4 0.6 038 1
Non-dimensional position (x/LX or y/Ly)

'
N

o

Fig. 10.9 Shape functions f and g
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To illustrate the efficiency of the Galerkin method let us consider a square plate

with all its edges clamped and no axial forces (i.e. N, =N y= 0). The functions
(chosen from Table 10.1 above)

f(8)=sin(45)—sinh (43 )+ﬂ1[cos (A48)—cosh( ﬂls} } NI
g(8)=sin(4,8) —sinh(4,8)+ B, cos(4,5) —cosh(4,3) ] L. L
_cos(ﬂj)—cosh( ]) {/11:371'/2
b= sin(ﬂj)+s1nh( ]) j=lor2 andwith A =572

are deemed relevant for the description of the first three eigenmodes

vi(x.y)=f(2) f(9). wa(xy)=g(%) f(5)andys(x.y)=g (%) g(9)
of the system. They are illustrated in Fig. 10.9.
Thus, introducing Y = [(lplxlplTy) (l|12xl|.l§y) (l|.l3xl|.l§y ):| where

[ /(%) ] f(:}Ajl) i 8(#) T

Wi = f()%') Wiy = f(,jjj) W, = g(:fcl)
) ) L)
)] e(3) ] g(3) |

W,, = f()A’]) Y, = g(:Ai) s, = g(.j\)j)
_f(j}NLy j_ _g()%NLx )_ _g(f/NLy )_

A

into the normalised eigenvalue problem (K - (?)2|\7|)3 =0 (se Eq. 10.38)

where the content of |\7| and R are given by (see Egs. 10.39 and 10.40)

A

My = (W )- (W), Wy, )
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: d'y r dzw r Wy
Ko=), =25 | (W w, ) +2| = | (g, = | ) —F

pk ( PY J( Py k> P Py dy2
L ! T d "pk N L2 T d2lp T
X y x™x kx
+ Z ("ppxlka) "pm dy’ D ("ppx i J'(lppylpky)

4
NI (L d’y
Yy | Ly T T ky

D (L_yj ("ppxka)("pm dy’

]f} =1,2,3 will then render the normalised mass and stiffness matrices
10074 —-64 0 1294 33 0

M=| —64 10036 —64 | and K=10*| -12 5443 70

0 —-64 9998 0 —-49 11851

a 35.84 | (35.98)
from which the following eigenvalues are obtained | @, |=| 73.64 | (73.41)
0N 108.87 | (108.3)

More exact values are given in brackets. As can be seen, in spite of some minor

unwanted off-diagonal terms in Ml and K, which comes from small inaccuracies
in the chosen shape functions (i.e. they are not perfectly orthogonal), the solution
is remarkable accurate. The corresponding eigenvectors are given by

1 0.0004 0
a, =| -0.0009 a,=| 1 a, =| 0.0009
0 0.0002 1

(again, showing only minor inaccuracies) The mode shapes are illustrated in Figs.
10.10, 10.11 and 10.12.

The effect of axial forces Nx=Ny =N on the eigenvalue solution is

illustrated in Fig. 10.13. The introduction of a positive external force (stretching)
is to increase the plate stiffness, while a negative axial force (compression) will

reduce its stiffness. As can be seen, at NxLi / D =-52.6 then @ is zero,

implying that the total stiffness of the system is zero due to elastic plate buckling
(a more exact value is —49.3 ).
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=
/

o
o
/

o
o
/

First mode ¢ ’
=]
'
y

e
ik, 0 x/L
X

Fig. 10.10 Estimated first mode shape, @ =35.84

I rad/s (N, =Ny =0)
m

o
a
/

Second mode ¢2
o
)

0
y/ Ly 0 X/ LX

Fig. 10.11 Estimated second mode, @), = 73.64

L4 rad/s(Nx =Ny =0)
m
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o
wn
/

Third mode ¢3

yiL 0 o

Fig. 10.12 Estimated third mode, @y =108.87 rad/s (N, = Ny =0)

mI?

140 T T T T T
L =L and N =N
X Y X Y

120F
w
N
Q 100}
=+ %
-
E
‘o
s 8ol
o
0
€
S 60f
(]
£
© 40}
c
(=]
=z

20F

m1z0atN-L2/Dz-52.6
X X
0 1 1 1 1
-60 -40 -20 0 20 40 60

Non-dimensional axial force NX-Li/D

Fig. 10.13 The effects of evenly distributed biaxial external loads, /N » and N y
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10.4 Dynamic Response Calculations

Dynamic response calculations may conveniently be performed by transforming
the differential equation (Eq. 10.19)

4 4 4 2 2
mi, +cr, + D a}:f+2 32i’z2+ai:f _Nxa’;z_Nya’;zqu (10.41)
ox ox-dy dy ox dy '

into a modal format by introducing the assumption that the solution may be
written as a series of known mode shapes ¢, (x, y) multiplied by unknown time

domain variables 77, (t) ,1.e.

Nmod
r(eyn)= 3 0, (xy) m()=0(xy)n() (1042
n=1
where
O(xy)=[a o Py ]
T (10.43)
n(t)=|:771 e, e nNmod:|
rendering

4 4 4 2 2
m®f+c®A+| D 00, ,99, IO, —NXa o, —Nya L n=gq, (1044
ox* ox’ay?  oy* ox? dy?

Pre-multiplication by @’ and integration over the entire X,y domain will then

turn Eq. 10.44 into the following modal equilibrium condition

M#i(7)+Cn()+Kn(r)=R() (10.45)

where, recalling the general property of mode shape orthogonality, the system
modal quantities are given by
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M= J.m(DT(DdA =diag [Mn] where M, = J‘m@%dA
A A

C= IC¢T¢dA =diag [6,,] where C, =2M,®,{,
A

(10.46)
~ 4 4 4 > 2
K:.[(DT D(a q:Z +2 32¢Zz+a Q:ZJ_NXB GZZ —Nva d;z dA
A ox'  ox’dy’  dy ax "y
Zdiag[kn] where K, =M,
and R(1)=[®" (x.y)-q. (x,y.1)dA (10.47)

A

The solution to Eq. 10.45 may be pursued in time domain as well as in frequency
domain. In time domain one quite simply follows one of the time step iteration
methods presented in Chapter 6.3, whichever seems most suitable. In frequency
domain the general method has been presented in Chapter 6.5. A frequency
domain approach in modal degrees of freedom is presented below.

First, the Fourier transform is taken of the modal variable N (t)

n(t):Za”(a))~ei”” where aﬂ(a))=[a1 e, e aNmod]T (10.48)
[}

i.e. (see Eq. 10.42)

r(x,y,t)= (D(x,y)~2an (a))~em” = CD(x,y)-a” (a))~em” (10.49)
[0
and of the load

R(r)=>az(w) ¢ where a;=[®"(x,y)-a, (x.y,0)dA (10.50)
w A

and where a,. is the Fourier amplitude of the distributed load ¢, (x, y,t) Jtisa

frequency domain requirement that Eq. 10.45 is satisfied at every @ setting, i.e.
(—a)zl\~ll+ia)(',‘+l~()a,7 =a, (10.51)

Pre-multiplication with K™
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(1-’K'M+icK'C)a, =K 'a; (10.52)
and, recalling that (see Eq. 10.46)
YH T ~ M, = Im(pfdA
M = diag [Mn ] "
C=diag|C, | { where {C,=2M,0,¢, (10.53)
deiag[[%n] [EnZC(),f ~n
it is seen that a,(w)= I:I,I (@)K -a;(w) (10.54)
. . | .
where H, =(1-’K"'M+iaK™'C) " =diag| A, | (10.55)
. -1
and where H, :[1—(60/(0” )2 +2ig, a)/a)n} (10.56)

is the non-dimensional frequency response function associated with mode
@,. Thus, the problem has been transformed into the problem of

determining @, , from which r, (x,y,r) may be obtained from Eq. 10.49.

As always, the advantage with a modal approach in frequency domain is
that a complex problem may be reduced to one with a manageable number

of degrees of freedom (V4 ) in which case it is possible to focus on what

are the most important characteristics of the system. So far, the
development is only suited to solve the case of stationary and deterministic
loads, see Example 10.3 below.

Example 10.3: Deterministic Dynamic Load

Let us first consider the case of an arbitrary rectangular plate with mode shapes

O(xy)=[g B Py |

and with a single stationary and harmonic concentrated deterministic load

Q(t):Re(ap -eiwpt)
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at a single frequency w, and at position X Its modal frequency response

P’yP'

matrix at @,, and its modal stiffness matrix are then

A ~ . -1
W, (0,)=diag[ Ay, (@,) [where £, (0,)=|1-(@, 0,) +21L, 0, /0, |

K=diag[l€n} where kn :waVIn and Mn Z_[m@%dA
A

Fig. 10.14 Rectangular plate subject to force component Q (x 2 Ypst )

The Fourier amplitude vector of the modal load (see Eq. 10.50) is given by
a; =@’ (xp,yp)'ap, and thus the Fourier amplitude vector of the modal

degrees of freedom is given by

- H (o
oy (0,) PR g0, g )

n n
from which the Fourier amplitude of the stationary dynamic displacement
response at an arbitrary position X.,y, may be obtained by a modal
superposition
Nmod I:I ((0 )
7 p
ar(x,,y,,a)p)=¢(xr,y,)-a,7(a)p)= Z ap-a:z—M'%(xr,yr)‘%(xp,yp)

n=1 n‘""n
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The stationary dynamic displacement response at an arbitrary position X,,Y, is

then given by
Nmod H, (@ _
”Z(Xr,yr,l‘)=Re a,- 3 M iwpt

P 1 a)2M '¢n(xr’yr)'¢n(xp’yp) e
n= ntn

Nmod

I:Iﬂn (wp)‘ ' gon(x,,y,)'(on(xp,yp)
1 o fmgo,f(x,y)dA
A

MB

‘a, cos(a)pt—ﬁn)

n

where

tan 3, :—2§n a)p/a)n2
1_(wp/wn)

In the case of a distributed stationary and stochastic load q, (x, y,t) , whose cross

spectral density is given by

Sy (As,0) =S, (@) Co, (As,®) (10.57)

where As is the distance between two arbitrary points (x1 , }’1) and (xz, V) ) ,i.e.

As:(Ax2+Ay2)

" {Ax:xl o (10.58)

Ay=y,—»

and where S q (a)) is its single point spectral density and éoq (As,a)) is the
corresponding normalised co-spectrum of the ¢, (x, y,t) process (i.e. the real

value of its normalised cross spectral density, see Appendix A.4). Thus, the N4

by N4 spectral density matrix of the modal degrees of freedom (see Eq. 10.54)
is given by
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S, (0)= lim —_[a, (0)-a] (o)
1 Jry 71 T 71 T

- im {8, (0)K "a; (0)] [, (@)K 2z (0)] ] o
—H, (@)K Jim —[ a7, (0)-af () (K') H] (o)
=H, (0)K'S; (@)(K™') H] ()

where

S:(0)=lim —_[a () ()]

131,[—3{{! ¢T<x,y>-aq(x,y,w>dA} {I ¢T<x,y>-aq(x,y,w)dA} } (1060

T ol
= ££¢ (x1, 1) ®(x5, ¥, )Th_r)llﬁ[aq (x.y,@)-a,(x, y,a))JdAldAz

Thus, since

A . 1 *
S, (As,) =S, (0)-Co(As,w) = Th_r)r:o”—T[aq (x,3,0)-a,(x,y,0)] (1061)

it is seen that

S;(®)=5,(w)J,(w) (10.62)

where

Jq (a)) = II‘DT (xl, Y ) . ¢(x2, yz)-éoq (As,a))dAldA2 (10.63)
AA

Then, the spectral density matrix of the modal degrees of freedom is given by

S, (®) :[Flj; (0)-K™"-J, (0)-(K™ )T H] (a))]Sq () (10.64)
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Since (see Eq. 10.49) r, (x, y,t) = CD(x, y) -a, (a)) e then

a, (x.y,0)=0®(x,y)-a, (o) (10.65)

and thus, the spectral density of the dynamic response at an arbitrary position

(xr Y, ) is given by

. 1 #
SrZ (x,y,a)) = lim ﬁ[arz (xr’yr’w).arZ (xr’yr’w):|

T—oo

= im L l[0(5.5,) -2, ()] [0(x. ) 2,0} 1056
~0(s,.,)- lim —_a; (o) -2} (0)]- O (x,.3,)

)
:q)(xr’yr) ( ) (xr’yr)

Le. (see Eq. 10.64)

TA

Srz(xr,y,,w){‘l’(xr,yr)ﬂ( ®)K™, (o) (K] H) (@ )¢T(x,,y,):| (@) (10.67)

Example 10.4: Stochastic Dynamic Load

Let us consider the simple case of a square window pane (L, =L, =L) with

clamped (fixed) edges subject to fluctuating horizontal wind force q( X, y,t) and
located at elevation 40 m above ground where the mean wind velocity is
V=40 m/ S and the intensity of the stationary along-wind turbulence component
u(x,y,t) is 1,=0,/V=02, where O, is its standard deviation. For
simplicity it is assumed that V and I, are approximately constants over the area
of the plate, and that the co-spectrum of the wind turbulence is close to unity, i.e.
that the fluctuating velocity u(x, y,t) is close to perfectly correlated over the

entire area of the pane. Thus

Suu (85.0) =5, (@)

where S, (a)) is the single point spectral density of turbulence, defined by
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Su(a))zaz'SAu (w)  where §u ()= A Lu/V -
w
1+1.5—A L |V

where A, =1.08 and * L, =160 m is the integral length scale of the turbulence.

e

5

V+u(x,y,t) -

\
v

x <

K

Fig. 10.15 Square window pane with clamped edges subject to fluctuating wind force

The necessary dimensions and mechanical properties of the pane are given in
Table 10.2 below:

Table 10.2 Dimensions and mechanical properties

Elastic
Length: Thickness: Density: modulus Poissgn s
Lx ZLy =L (m) h (m) pg (kg/m3) E (N/mz) ra‘t/zo_-
24 | 610° | s80-10° | 26100 | 03

As mentioned above, the window pane is clamped at its edges, and thus, the
eigenfrequencies and corresponding eigenmodes may be obtained from Example
10.2, i.e.
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T
0] 36 p /2 2 "oy f(x): f(y)
w, |=| 73 (WJ and ®(x,y)=| ¢, | =| ¢y, -0, | =|&(x)-f(¥)
o, | |108 o) o, e, L8(x)g(y)

where m=p,h=18.2 kg/m2 and (see Example 10.2)

S =

) .
A,8)—sinh(4,3)+ B, [cos 4 5)—cosh(4, s)] L,
A;)

A =37/2
A =57/2

f(8)=sin(4S5)—sinh (43 +ﬂ1[cos (A48)—cosh( ﬂls} . o Y
( L

j=lor2 andwith {

%)

&

4 1

The damping ratios are assumed at: &= 10732
g3 3

Before proceeding, it is necessary to develop an expression for the dynamic wind
load. Adopting Bernoulli’s equation for the velocity pressure at an instantaneous
interpretation of the relative wind velocity, then

qtot(x’y’t) ,0 rcl

where p=1.25 kg/m3 is the density of air, ¢, is a pressure coefficient

q
dependent on the position and geometry of the building on which the window pane

is sitting (here we assume ¢, = 14)and V,,, =V +u (x, y,t) -7, (x, y,t) . Thus,

it is seen that the total wind pressure

€

= ?pV +c,pVu—c, pVr,

1 .
qmt(x’y’t)chap(V+u—Vz)2

may be split into a mean time invariant (static) part quV2 / 2, a turbulence
induced dynamic part Cy qu(x, y,t) and a motion induced aerodynamic part

Cy pVr, (x, y,t). Thus, the fluctuating (dynamic) pressure is given by (see Eq.
10.42)
q, (x,y,t) = cquu(x,y,t)—cqufz (x, y,t) = cquu(x,y,t)—cquQ(x,y)l‘](t)

Its Fourier transform
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a,. (x,y,0)= c,PVa, (x,y,0) —cquCD(x, y)ia)a,] (o)
will then render (see Eq. 10.50)
az(0)=[0" (x,y)-a, (x.y,0)
A

= JCDT (x.y)c,pVa, (x,y, @)dA~ J¢T (x,y)c,pVOP(x,y)dA-ica, (o)
A A

= J¢T (x,y)cquau (x, y,a))dA—C ‘oA, (a))
A

ae

where (due to mode shape orthogonality)
éae = I¢T (x, y)cqud)(x, y)dA=diag [éaen ]
A
L

Ly y
and Coey =PV [0 (x,3)dA=c,pV [ @2 (x)dx [ @ (y)dy
A 0 0

Introducing this into Eq. 10.51

[— M+ ia)(é+ C. ) + R}an ()= cquI¢T (x.y)-a,(x,y,@)dA
A
and pre-multiplying by K™
[I ~ K 'M+ iw(K‘lé +K'C,, )}a,7 (w)= cquk_l I o (x,y)a, (x,y,0)dA
A

then (recalling that M, K, C and C

obtained

4 are all diagonal) the following is

a,(w)= cquI:In (w)R_1I¢T (x,y)a, (x,y,0)dA
A
where

-1

H, (o) =diag| A, | where A, ()= [1 (@)@, +2i(¢,+ C, )w/a),,}

2
0.6 cqu/J;(pndA

n aen —
2K, 20, [mpldA
A

and  {, =
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PV
2w,m

which, because m is constant, in this case simplifies into ;aen =

Thus

S, (0)= lim —_a; (0)a) ()

*

T
= lim L{c pVH K J.(DTaudA} -l:cquﬂnf(_IJ.(DTaudA}
A

T—eo 7tT
* T

! o) o] ([ [

—HK's;(K) H]
where

* T
Sk(a)):(cqu) Thn}o—[J.(DTa dAJ ‘[J.‘DT%‘ZAJ
A

2 . 1 =«

:(quv) ££¢T(x1’y1)¢(x2’y2)}l_r)rjoﬁau (31,31, @) a, (x5, ,, @) dAdA,
2

:(CqPV) qu)T (%1, 31) @ (53, 5,) S, (A5, ) dAdA,
AA

where As is the distance between two arbitrary points (xl, yl) and (xz, yz),

ie.

As=(Ax +Ay2)1/2 {Ax:xl o

Ay=y;—»
and

Suu(As’ )_ hm%a (xl’yl’w)au(xZ’yZ’w):Su(w).éou(As’w):Su ((0)

T —o0
Thus, Sj,é(a)):(cqu)2 :JqSu (o) where

:Jq :IJQJT (x1, 1) ®(x5, v, ) dAdA, :I¢T (xl,yl)dA1I¢(x2,y2)dA2
A A A
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whose matrix element number nm is given by

LylLy Ly Ly
:I I (1) @y, (y1)dxdy, - _[ _[("xm (x2) @y, (v2)dxdy,
00

K'S;(K™) FL =(c,0v) H (@)K, (K™) H ()-S, (o)

The spectral density to the response at mid-span (xr = L/ 2,y = L/ 2) is then
given by

L L L L L L
S =—, :—’a) :¢ =—, = — S [0} -¢T =—, = —
rz [xr 2 yr 2 J (xr 2 yr 2) 77( ) (xr 2 yr 2)

It is seen from the expression of J , that all its entries beyond the first are zero,

because
. o, (%)dx
?x, (%) . . {
5) n=2 and 3 are all asymmetric, rendering X =0
@y, \Y A
’ J.(Dyn (y)dy
0

Le., mode shapes two and three will not contribute to the response (coming from
the assumption of perfect turbulence correlation over the area of the plate). Thus

5., (@)=

1 1 2
L L ‘I:I (a))‘ J.%‘l(je)dje J.¢YI()A])d§)
V2o = Z .0 .0 .S (@)
CPY L Py > P > ?m L 1 u
n 2 (A A 2 A
[on (R)at [o} (3)d9
0 0

where §M (w)=S, ((0)/0‘3 and 1,=0,/V, and O, is the standard deviation

to the turbulence component. The normalised spectral density of the dynamic
response at mid-span is sown in Fig. 10.16 and a time domain simulation of the
response is shown in Fig. 10.17. As can be seen, the aerodynamic damping is of
significant importance in reducing the dynamic response.
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L,=L,=2.4 m, h=6 mm, E=80-10° N/m?, v=0.3
p,=2600 kg/m®, p=1.25 kg/m®
c;=14,V=40m/s, A =68
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Fig. 10.16 Time domain simulation of dynamic response at mid-span



Chapter 11
Moving Loads on Beams

11.1 Concentrated Single Force

An investigation of the dynamic load effects of moving loads on beams may be
required in cases of heavy vehicles or a train passing a flexible bridge, though the
problem may not necessarily be that of the bridge, it may also involve
uncomfortable vertical oscillations of the vehicle. The problem may also occur on
moving hoisting forces on heavy cranes. Let us first consider the simple case of a

concentrated single load F (xF ,t) , whose magnitude as well as position xp (t)

are time dependent. The problem is illustrated in Fig. 11.1.

F(xg,t)
ZA
or, Or, + dor,
or,(x) . —\XK A/\
/> —— AKX T~=T
[ VA // AN ] —>»
X

rz(xF)/ rz/ \ r,+dr,

xF N dx a
¢ >

L
1

Fig. 11.1 Single concentrated force moving on a beam

The solution may most conveniently be obtained by adopting the principle of
d’Alambert together with the principle of virtual work. This has comprehensively
been developed in Chapter 1.6. As illustrated in Fig. 11.1 it will in this case

involve the energy balance due to an arbitrary (virtual) displacement 5rz (x) to

E.N. Strgmmen, Structural Dynamics, Springer Series in Solid and Structural Mechanics 2, 443
DOI: 10.1007/978-3-319-01802-7_11, © Springer International Publishing Switzerland 2014
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the entire system at an instantaneous time and position r, (x,t). Thus,

considering only pure bending and assuming only insignificant time invariant load
effects, the following applies (see Eq. 1.119)

—0r, (xp)-F —j5rz (m 7. +c, i, )dx= _[é‘r;EIyr;dx (11.1)

where m,, c, and EI y are cross sectional mass, damping coefficient and

bending stiffness. Let us also assume that a single mode approach will suffice, and
for simplicity that this is single component vertical mode shape ¢, (x), with

corresponding eigenfrequency @, and damping ratio ¢ .- Then

r,(xt)=¢.(x)-n(t) and Ir.(x)=¢.(x) (11.2)
and thus, Eq. 11.1 becomes

577ij¢ dxij, (¢ +577Jc ¢2dx77 +5nIEI ¢;2dx777( 1)=-0n¢, (xp ) F (xp.t) (11.3)

from which it is seen that 577 is obsolete, and thus, the following is obtained:
Mzﬁz(t)+ézﬁz(t)+kznz(t):Rz(t) (11.4)

where 37, = [m.¢2dx. C, = [c.g2dv=2M 0., . K, = [El,¢7dx=w2M,
L L L
and Rz (t) =-9, (xF )F (xF ,t) . This is identical to that which was developed in

Chapter 5.3. In general, a numerical solution may be pursued, see Chapter 6.3.
However, under the conditions that the mode shape is a simple harmonic sinus
function and that the magnitude and velocity of the moving force are constants,
then a closed form solution is presented in Example 11.1 below. Under the same
conditions, except that the moving load is a harmonic cosine functions, then a
closed form solution may also be obtained, as shown in Example 11.2.

Elaboration 11.1: The Corresponding Multi-mode Solution
A general multi-mode solution has been developed in Chapter 5.3. Thus, defining

xF, [0 —F xF,t O:IT
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and

with mode shapes

o(x)=[0, @ -~ ©, - Oy ] P
T where @, (X)= ¢z
n=[m m < Mo N %,

and with corresponding eigenfrequencies @, and damping ratios ¢, , then

M-[(r)+C-n(r)+K-n(r)=R(r)
where M=I¢ng¢dx, é=diag[2M(0n§n], R=diag[a),%]\2n] m, is
L

defined in Eq. 5.26, and where R () ={®(xp )}T F(xp.1).

Example 11.1

Let us assume that a single mode single component approach will suffice, and that
the mode shape is a harmonic sinus function with corresponding eigenfrequency

®, and damping ratio {, . Let us also assume that the magnitude and velocity of

the moving force are constants. Le.:

F(xp,t)=F
( F ) 0 where  Xp is the velocity of the

¢, =sin(nzx/L) and {

Xp =Xp-t

force.

Then (see Eq. 11.4): A;Izijz (t) + C’Zﬁz (t) + Igznz (t) =—F{ sin (a)Ft)

where @Op =nrXp / L and L is the length of the span of the beam. The total
period of passage is T = L/XF . The solution to this problem has been shown in

Chapter 2.3 (only with the difference that the load is positive). Thus, the response
at x, is given by

() =02 (5,22 | (0 [ () +7 (0)] 1T =1/

Z
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where
tanﬁp — 2§n wF/a;n
Op
. sinfg, _ 1—(]
M (1) ==&~ cos(ayt - ) @,
Cosﬂh and 5
. 1)
Ay (1) =sin(wpt - B,) —1+2§3+(;j
tan 3, = =

and where @y = W,\1— ;,% LAt t>T = L/XF the response at x,. is simply a

decaying motion in accordance with Eq. 2.28, i.e.:

r(x.,t)=—a,(x,)-e nn(1=T) -cos[ @y (t-T)-, |
t>T=L/xp

an:\/[r(xr,T)]2+ T)] o, +r(x g“/ql {}
tanﬁn=f(x,,r>/[r<xr,r)'wd]m/dl—éf

Similarly, in a multi-mode approach where

where

d Ninod F(xp,t)=F
f ¢Zn f Sin(nﬂ'x/L) and { (xF' ) O Yhere Xp
n=1 .XF ZXF -t

is the constant velocity, then

mod E R . . )
-2 0, (x )|, (0 [ (1) 47 ()] ar 1<T =L/
Zn
Nmod
and r(x,,t)== ), ane_“’";"(t_T)cos[a)d (t-T)-B,] att>T=L/sp
n=l1

A typical response curve due to a concentrated single force F(xF)=Mg

moving along the span of a beam at a constant velocity is illustrated in the upper
diagram in Fig. 11.2 (input data is given in the diagram).
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0 T T T T T T T T
Constant force F=Mg at velocity 20 m/s, ¢Z=sin(m</L)
€ L=180 m, 1=0.002, »_=6 rad/s, {_=0.01, g=9.81 m/s?
= -0.01- Z z :
;.
7
x--0.02r- .
_0.03 1 Il 1 1 1 1 Il 1
0 1 2 3 4 5 6 7 8 9
001 T T T T T T T T
Oscillating force F=I\/Ig-cos(an t) at velocity 20 m/s, o /oaz=1
€ 0.005- : . : 0 .
g o | -
|
m_
>
Tn -0.0051 4 : : : .
-0.01 1 I I I I 1 I 1
0 1 2 3 4 5 6 7 8 9
t(s)

Fig. 11.2 Dynamic response at midspan of simply supported beam with modal mass M ,
due to a single force moving at constant velocity across its span. Upper diagram:

F(XF)=Mg . Lower diagram: F(XF,I) = Mg -COS((OFOI). 1=M/M =0.002

Example 11.2

Let us still consider the case of a single mode single component approach, where
o, = Sin(nﬂ'x/ L) , with corresponding eigenfrequency @, and damping ratio
$, - Let us also assume that the load is moving with a constant velocity X .

However, in this case we assume that the magnitude of the moving force is
Sfluctuating at a constant frequency @F, in the shape of a cosine function. Le.:

F(.XF,t):FocOS(a)FOt) where XFZ.).CF'Z‘

l’lﬂ')‘CF
L

Then R.(t)=—¢,(xp)F(t)=-F, -cos(a)ﬁ)t)-sin(a)ﬂlt) where @ =

Since cose-sin ff= %[Sin(a+ ﬁ) + Sin(Ot— ,B):' then we may rewrite

Rz (t) into
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_ 1
Op =—|\wp +o,
RZ(t):—%[sin(2E)Ft)+sin(Aa)Ft)] where F 2( 5, FO)
Aa)F:a)Fn_a)FO
then (Eq. 11.4): M i, (1)+ C 11, (1) + K 1, (1) = —%[sin(Z(T)Ft) +sin (Awyt) |

Since the principle of superposition applies the dynamic response at spanwise
position x,. is given by (see Example 11.1 above):

r(x,.t)= ¢z(2 1A, (to=2ap)+7, (t.o=Awp)] t<T =L/
where
2 -1
ﬁz(t,w)=ka[n,,m iy (1)) and A, {1 (w—ij +2i§nw—“”l
e [0 5 o=y 0]
Ay (t.0) =sin] ar - B, ()]
_ 26,0 o, ~1+282 + (0@, )

tanﬂp(a))—m and tanﬂh(a)): 2( N

and where @y = Wy,\1— (,12 . Again, At t>T = L/XF the response at x, is

simply a decaying motion in accordance with Eq. 2.28, i.e.:

F(xt) ==y (x,)-¢ ) cos[ @, (1-T) - B, ] 1>T =L

a, —\/[r /Cl)d+” g/\/l {}
tan f, =7 (x,,T /|:r xr,T)'wd]+§n/V1—§3

A typical response curve due to an oscillating single  force

where

F(xF,t)=Mg'COS(a)F0t) moving along the span of a beam at a constant

velocity is illustrated in the lower diagram in Fig. 11.2 (input data is given in the
diagram).
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11.2 Rolling Single Wheel Vehicle

The case of a rolling single wheel passing along the span of a beam at arbitrary
velocity is shown in Fig. 11.3. The wheel is connected to a mass M by an elastic
spring with stiffness K and a damper with damping coefficient C . This is a far
more realistic case than that which was presented in Chapter 11.1 above. (It may
readily be expanded to include a mass carried by several wheels, or a series of
consecutive masses.) The situation at an arbitrary time t (in accordance with the
principle of d’ Alambert) is illustrated in Fig. 11.4. The instantaneous position and
velocity of the wheel is x,, and X, . It is taken for granted that the beam as well

as the mass is restricted to move in the vertical z direction alone. Thus, the

zZA ‘I‘ ru(t)
M—T +—

[ ] ——>
\ X
El, m,
Xy = vt
g
L
1
Fig. 11.3 Rolling single wheel vehicle moving on a beam
z A
/ or, + dor,
L ] —>
X
r + dr,
X dx
¢ " >

Fig. 11.4 Relevant real and virtual displacements
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displacements of the beam and the mass are r, (x,t) is ry (t) . Denoting Ar(t)

the difference between ), (t) and r, (xM ,t) , then

na (1)=Ar(t)+r (xy.t) (11.5)

Since the mass is in motion both horizontally and vertically at the same time it is
necessary to perform a linear expansion at f+ At :

v (E+ A1) =Ar(t+Ar)+r, (xp +Axyy 1+ Ar)

=Ar(t)+ A (1) - At+r, (xpy )+ 7 (xpg 1) - Axpy + 72 (xpp,2) - At (11.6)
and thus
) ny (t+At)—ry (1) ) ) ,
M, (1)= o =Ar(t)+7, (xM,t)+rZ(xM,t)-A—Z;I 117
= AF (1) 47, (xpp 1) + 3y (1) 77 (xpg 1)
Similarly

ity (1 80) = AF(1) + AF(1)- A+, (317.1) + 5 (xy 1) A

gy (1) +5ag (0)- At ][ 7 (opg 1)+ 72 (g o1) - Ay | (11.8)

By (1) =2 (t+AAz3—r'M (1) _ Fog (1) Sigg (1)1 g 1)+ 52 77 (g 1) (11.9)

The contact force between the wheel and the surface of the beam (see Fig. 11.5) is
then given by Fjs, — Fyy , where

Fyy, (1) = CAF (1) + KAr(t) = Ciyy (1) + Kryy (1) =[ CF, (xpg ) + K1, (xp7,1) ] (11.10)

= Fy, (1) +Miy, (1) +Mg
= Ciyy (1) + Kryy (1) =[ Cit, (xpp 1)+ Ky (xp0.1) | (L1

+Miyy (1) + M| Sygr! (xyp 1) + g 72 (g ) |+ Mg



11.2 Rolling Single Wheel Vehicle 451

zZ A
‘fcM\ 5
P
A Fm,
sc beam
ro(x,) X
X

Fig. 11.5 Vehicle forces and virtual displacements

By applying a virtual displacement O r, (x) to the instantaneous motion of the

beam and simultaneously a virtual displacement Jr, to the instantaneous motion

of the mass M (see Figs. 11.4 and 11.5), and demanding work balance (see
Chapter 1.6, Eq. 1.119), then

57’ ( ) FM2§VM
I[m +c i, x,t ]é‘rZ (x)dx:IEIyr;(x,t)§r;(x)dx (11.12)
L

where m,, c, and EI y are mass, damping coefficient and cross sectional

stiffness associated with motion in the z direction (i.e. with bending about the y
axis). Introducing Eqs. 11.10 and 11.11, then

Im x,t §r )dx+jczfz (x,t)§rz (x)dx+JEIyrZ"(x,t)é'rz"(x)dx
L

—[CrM )+ Kny (1)— sz (xp.1)—Kr, (xM,t):|§rZ (xp) (11.13)
+[CrM )+ Kry (t)—Cr, (xp,1) - Kr, (xM,t)}é‘rM

+M['rM (l)+5C'MrZ,(xM,t)+)'C]%,[rZ”(xM 1)+ g]ﬁrM =0

Let us for simplicity assume that a single mode ¢, (x) approach will suffice, then

it is convenient to choose
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R(e)=0.()m ) ad ng()=tog ()]
or, (x,t)=¢,(x)-0n, and Oy =1-0ny (L9

and then Eq. 11.13 may be written

[ 7, T{MZ 0}{7‘72(0} C.+Co2(xy) ~Co. () {ﬁz(t)}

Lom | (L0 Ml ()] | —Co.(xy) c T (1)

K.+ K¢ (xy) ‘K¢z(xM){ﬂz(f)} (11.15)

K. (v )+ M g0 (e )+ () | K |l (1)

{Ajg}}:o

where MZ=ILmZ¢§(x)dx, C,=2M,0.{, and I€Z=w§MZ are modal

mass, damping and stiffness, and where @, is the eigenfrequency and 4 . is the
modal damping ratio. It is readily seen that the pre-multiplication by the virtual
]T

displacement vector o= [577Z 577M may be omitted, and thus

Mi(1)+ C+Cy (xy ) [A(1)+[K+Ky (xy ) In(r) =R (11.16)

where
(7] @ [ 0] & [¢. o] o_[.

L K M S P S I

and
2

&, —c| % Lan) —0:Can) ﬁ{ 0 } (1119)

_¢Z(‘XM) 0 —Mg

3 ¢ () ¢, (xu)

Ky, =K .

S R O CAC IR {0 ] B
M

By pre-multiplication with M~ this may alternatively (and most often more
conveniently) be written on a non-dimensional format
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IA(1) +20,¢. [ $+ 8y (xyr) [(1) + @2 [@+Gy (xy )In()=p (1120

where | is the two by two identity matrix and

4 F 0 } o {0} (11.21)
= ~ w= = .
0 onlu o B B

s oo |10 () 49 ()

Sy =y Cy {_@(XM) ) (11.22)

X 162 (xy1) —419- (xp1 )
N , L (11.23)
T g, (o e () + 510 (o )
‘M

and where ,u=M/MZ, Dy =y |0, , écMng/g,’ w§=I€Z/MZ,
wy =K/M | gzzéz/(ZMzwz) and {; =C/(2M @y, ). A closed form

solution to Eq. 11.20 can in general not be obtained, i.e. it will be necessary to
resort to a numeric solution strategy, e.g. as presented in Chapter 6.3.

Example 11.3

Let us still consider the case of a single mode single component approach, where
o, = Sin(nﬂ'x/L), with corresponding eigenfrequency @, and damping ratio
¢y - Let us assume that the mass has a velocity of V, at the beginning of the
passage, ie. Xy (t=0) =V, and that during the passage it is subject to a

constant acceleration ayy , i.e. that X'M (t) =ay . Then

t t

a

iy (1) =V, +jaMdt =Vy+ayt and xy (1) :jjcM (1)dt :V0t+TMt2
0 0

while the passing period T is obtained from

Yo
I 2
ay Vo

Let us for simplicity adopt the second central difference method (page 255),

2ap/L
+ oM~

L=VyT + GTMTZ rendering T= -1

choosing the iteration sequence k =[1 2 - ko K] and corresponding
time series t=[t1 R FAREE tK], where ty =0 and tg =T, such that
At = T/(K —1), and thus:
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.o a3 a3 . 2 A A
Ny +20,8, [(“‘(Mk Jﬂk +a; [“’“‘ka ]ﬂk =P

. | ug? g,
sz — oy (ka) (ka)

_¢Z(XM/<) 0
5 ﬂ¢22(ka) _'U¢Z(ka)
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and n :{I+Am)zg“Z [Z+ZM (xp :0)]}_l Ar’p

The dynamic response of the mass M and of the beam at an arbitrary position

X, is then given by

r

)| "0 i) e 05| <0 Y]

v (%)

Typical resonant response curves of such an iteration procedure are illustrated in
Fig. 11.6 (input data given in the diagrams).

Elaboration 11.2: The General Multi-mode Solution

In a general multi-mode format Eq. 11.13 still applies. Thus, introducing

Ninod

Z@ x) 11, (1)=@(x)-n(r)  and ry (1)=1-1y (1)
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Fig. 11.6 Response curves of beam and vehicle mass during passage of a simply supported
bridge system. Upper curve: the beam displacement at midspan. Lower curve: The vehicle
mass motion during passage.

¢(x)=[¢zl vy, ¢ZNm0d:|

where T then Eq. 11.13 becomes:
n(,)z[m e, nNmod:|

J.é‘r dx+J.§r e, ®(x)n( dx+J.5r EI ®"(x)n(r)dx

—5rz ) Crigg (1) +K77M( )= CO(xy (1)~ K®(xp, )n(1) ]
+81y [ Cripg (1) + Ky (1) = CO(xyg ) (1) — KDy ) (1) ]

+5VMM[ﬁM (1) + 5y @ (37 )0 (1) + 3@ (xy )N(2) + g |=0

where

]-
ol -t - o]
¢”(x)=[¢21 SR A ¢;Nmod}
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or, (x) :¢zm “ Ol

Then we apply the virtual displacements { m=1,2,...,Npod »

one after the other, rendering N4 +1 equations

5nmjmz¢fmdx-ﬁm (1) + Oy Mjpy (1) + 577mj.cz¢fmdx-7’7m (1)
L L
_577m¢zm (xM )CUM + 577m¢zm (xM )C(D(XM )n + 577M CnM

_577MC¢(XM )ﬁ+5nmIEIy¢;,idx'ﬁm (t)_anm@m (XM )KnM
L
+577m¢zm (a1 ) KP(xpg )N+ 01y K1ty — 11y KO (251 )M

which, by defining the following 1 by N ,,q +1 vectors
w(x)=[® ‘1]:[% by _1}

B:[O e 0 - 0 _1]
lIJ'(X)=[¢' 0]:[¢21 ¢gn ¢;Nm0d 0}
Lp”(x)=[¢” 0]=[¢2'1 ¢;’n ¢£’Nm0d 0}

and Np,oq +1 by N ,q +1 matrices

M=diag| M, - M, - My, 0]
C=diag|C; - C, - Cy., 0]
OJ and ﬁ=MgBT

mod

then the following dynamic equilibrium condition is obtained:
Mﬁ+[6+cqﬂ (xa ) ¥ (21 )]n

R+ KW (3 )W (xy0 )~ MBT [ 53 W (3 )+ 55 ¥ () In =R

Obviously, a numeric approach will in general be required.



Appendix A
Basic Theory of Stochastic Processes

A.1 Introduction

A physical process is called a stochastic process if its numerical outcome at any
time or position in space is random and can only be predicted with a certain
probability of occurrence. Similarly, a data set of observations of a stochastic
process can only be regarded as one particular set of realisations of the process,
none of which can with certainty be repeated even if the conditions are seemingly
the same. In fact, the observed numerical outcome of all physical processes is
more or less random. The outcome of a process is only deterministic in so far as it
represents a mathematical description whose input parameters has all been
predetermined and remains unchanged.

The physical characteristics of a stochastic process are described by its
statistical properties. If it is the cause of another process, this will also be a
stochastic process. L.e. if a physical event may mathematically be described by
certain laws of nature, a stochastic input will provide a stochastic output. Thus,
statistics constitute a mathematical description that provides the necessary
parameters for numerical predictions of the random variables that are the cause
and effects of physical events. The instantaneous wind velocity pressure at a
particular time and position in space is such a stochastic process. The
instantaneous ground motion during the incidence of an earthquake is also random
in its behaviour. This implies that an attempt to predict its value at a certain
position and time can only be performed in a statistical sense. An observed set of
records cannot precisely be repeated, but it will follow a certain pattern that may
only be mathematically represented by statistics. Thus, the key in understanding
the effects of a stochastic load is to acknowledge its random distribution in time
and space, i.e. any load effect calculations, static or dynamic, will require
statistical averaging in both time and space.
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Fig. A.1 Short term stationary random process

It is necessary to distinguish between short and long term statistics, where the
short term random outcome are time domain representatives for the conditions
within a certain physical situation, e.g. in wind engineering a time window of
T =10 minutes,, while the long term conditions are ensemble representatives
extracted from a large set of individual short term conditions. For a meaningful
use in structural engineering it is a requirement that the short term statistics are
stationary and homogeneous. Thus, it represents a certain time—space—window
that is short and small enough to render sufficiently constant statistical properties.
The space window is usually no problem, as the weather or earthquake conditions
surrounding most civil engineering structures may usually be considered
homogeneous enough. Such a typical stochastic process is illustrated in Fig. A.1.
It may for instance be a short term representation of the fluctuating along wind
velocity, or the fluctuating structural displacement response at a certain point
along its span. As can be seen, it is taken for granted that the process may be split
into a constant mean and a stationary fluctuating part. There are two levels of
randomness in this process. Firstly, it is random with respect to the instantaneous
value within the short term period between 0 and 7. lLe., regarding it as a set of
successive individual events rather than a continuous function, the process
observations are stored by two vectors, one containing time coordinates and
another containing the instantaneous recorded values of the process. The
stochastic properties of the process may then be revealed by performing statistical
investigations to the sample vector of recorded values. For the fluctuating part, it
is a general assumption herein that the sample vector of a stochastic process will
render a Gaussian probability distribution
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1 1(x=%Y
p(x)=——exp| —— (A.1)

as illustrated to the right in Fig. A.1. This type of investigation is in the following
labelled time domain statistics. The second level of randomness pertains to the
simple fact that the sample set of observations shown in Fig. A.1 is only one
particular realisation of the process. IL.e. there are an infinite number of other
possible representatives. Each of these may look similar and have nearly the same
statistical properties, but they are random in the sense that they are never precisely
equal to the one singled out in Fig. A.1. From each of a particular set of different
realisations we may for instance only be interested in the mean value and the
maximum value. Collecting a large number of different realisations will render a
sample set of these values, and thus, statistics may also be performed on the mean
value and the maximum value of the process. This is in the following labelled
ensemble statistics.

In structural engineering X, =X, + X;, (t ) may as mentioned above also be a

representative of the displacement response at a certain position in the system. The
time invariant part X, is then the commonly known mean static response. The

fluctuating part X, (t ) represents the dynamic part of the response.

A.2 Time Domain and Ensemble Statistics

For a continuous random variable X, its probability density function p(x) is
defined by

dP(x)
dx

Pr[xSXSx+dx]:P(x+dx)—P(x): dx:p(x)dx (A.2)

where P (x) is the cumulative probability function, from which it follows that
X
Pr[XSx]zP(x)z I p(x)dx (A.3)

and that lim P(x)=1. Similarly, for two random variables X and Y the joint
X—>o0

probability density function is defined by
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dzP(x,y)
y)=— L A4
p(xy) & d (A4)

where P(x, y) = Pr[X <x,Y< y] . The mean value and variance of X are given

f:E[X]:Txp(x)dx and o7 = E| (X —J_c)zJ:T(x—f)Zp(x)dx (A.5)

—oo —oo

Equivalent definitions apply to a discrete random variable X . It is in the
following assumed that each realisation X, of X has the same probability of

occurrence, and thus, the mean value and variance of X may be estimated from a
large data set of N individual realisations:

_ N 1 1 & x _\2
X_Nﬂ_kg and o —nglN;( (—X) (A6)

The square root of the variance, 0, is called the standard deviation. Recalling

that E [X ] =X, the expression for the variance may be further developed into

62=E[(X—f)szE[XZ—2H+)72]=E[X2J—fz (A7)

X

As mentioned in above there are two types of statistics dealt with in structural
engineering: time domain statistics and ensemble statistics. It will in the following
be assumed that any time domain statistics are based on a continuous or discrete
time variable X , which theoretically may attain values between —oo and +oo
and are applicable over a limited time range between 0 and 7, within which the
process is stationary and homogeneous (i.e. have constant statistical properties)
such that

X =x+x(1) (A.8)
Its mean value and variance are then given by

T T
X = lim 1 Xdt and o7 = lim —I[x(t)]z dt (A.9)

T T 0 T—e T
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Ilustrating ensemble statistics, a situation where N different recordings of a
stochastic process within a time window between 0 and 7 are shown in Fig. A.2.
These may for instance represent N simultaneous realisations of the along wind
velocity in space, i.e. they represent the wind velocity variation taken
simultaneously and at a certain distance (horizontal or vertical) between each of
them. Extracting the recorded values at a given time from each of these

realisations will render a set of data X, (t),kZI,....,N. On this data set

ensemble statistics may be performed. This is the type of statistics that provides a
stochastic description of the wind field distribution in space.

Fig. A.2 Ensemble statistics of simultaneous events

Apart from fitting the data from a random variable to a suitable parent
probability distribution and estimating its mean value and variance, it is the
properties of correlation and covariance that are of particular interest. These are
both providing information about possible relationships in the time domain or
ensemble data that have been extracted from the process. [Correlation estimates

are taken on the full value of the process variable, i.e. on X (t ) =x+ x(t ) , while
covariance is estimated from zero mean variables X; (t ) Ny

Given two realisations X (t) =x+tx (t) and X, (t) =X +Xx (t) , either

two of the same process at different time or location, or of two entirely different
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processes. Then the correlation and covariance between these two process
variables are defined by

Rxm:E[Xl( X, (1 —Th_I}}G—_“X t)dt (A.10)
Cov,py =E[x(1) 1, ( ‘Thfl_jxl dt (A.11)

Similarly, given two data sets of N individual and equally probable realisations
that have been extracted from two random variables, X, and X,, then the
ensemble correlation and covariance are defined by:

N
R,., =E[X,- Xz]_ggn Zzl,Xlk'sz (A.12)

N (A.13)
= Jim %Z(Xlk _)_Cl)'(X% _)_62)
=

However, correlation and covariance estimates may also be taken on the process
variable itself. Thus, defining an arbitrary time lag 7, the time domain auto
correlation and auto covariance functions are defined by

R (7)=E[X(1)- X (t+7)]= lim —IX X (t+7)dt (A.14)
T—e T
Cov, (7)=E[x(t) x(t+7)]= _ lim x(t+7)dt (A.15)
T—e T

These are defined as functions because 7 is perceived as a continuous variable.
As long as 7 is considerably smaller than 7’

E[X(t)]=E[ X (t+7)]=% (A.16)
and thus, the relationship between R and Cov, is the following

Cov, (7)=E[{X (t)-%]-{X (1+7)-%}]=R,(7)-X (A.17)
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There is no reason why 7 may not attain negative as well as positive values, and
since

E[x(t)-x(t-7)|=E[x(t-7)-x(t)|=E[x(t-7)-x(t—=7+7)] (A18)
then

Cov, (1) =Cov,(-7) (A.19)

Thus, Cov, is symmetric with respect to its variation with 7. As illustrated in

Fig. A.3 the auto covariance function is the mean value of the time series
multiplied by itself at a time shift equal to 7. Theoretically 7 may vary between 0

and T, but the practical significance of Cov, (T ) seizes to exist long before 7 is
in the vicinity of 7. The reason is that while it in theoretical developments is
convenient to consider x(t ) as a continuous function, it will in practical
calculations only occur as a discrete and finite vector of random values X,

usually taken at regular intervals Ar. If T is large and At is small, then the
number of elements in this vector is N =7 / At , in which case the continuous
integral in Eq. A.15 may be replaced by its discrete counterpart

N—j
Cov, (7= j-At) E[x t+1']:#2xk+j-xk (A.20)
—=J

from which it is seen that j must be considerably smaller than N for a meaningful
outcome of the auto covariance estimate. The same is true for the auto correlation
function in Eq. A.14. Similar to the definitions above, cross correlation and cross
covariance functions may be defined between observations that have been

obtained from two short term realisations Xl(t )2)_61 +x1(t ) and

X, (t ) =X +x, (t ) of the same process or alternatively from realisations of two

different processes:

Ry x, (7)=E[ X, (1) X, (t+7)] —hm—J‘Xl X, (t+7)dt  (A2D)

T T

Cov (Z'):E[x1 (t)-xz(t+1' = lim —jxl - xy (t+7)dt (A.22)

2 T—e T
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Fig. A.3 The auto covariance function

A normalised version of the cross covariance between the fluctuating parts of the
realisations is defined by the cross covariance coefficient

pxm( )= Covxm( )/ (O')qO'xz) (A.23)

where O, and O,, are the standard deviations of the two zero mean time

variables. If such cross covariance estimates are taken from a set of simultaneous
realisations of a process distributed in space, e.g. as illustrated in Fig. A.4 where
the N realisations of the process are assumed to be taken at arbitrary positions y
in the horizontal direction, then a cross covariance function between realisations at
distance Ay may be defined:
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T
Cov,, (Ay,T) :E[x(y,t)x(y+Ay,t+r)] :Tlim %J‘x(y,t)x(y+Ay,t+T)dt (A.24)
0

—o0
Obviously, Cov,, (Ay =0,7= O) = O'f. In wind engineering such covariance

estimates will in general be a decaying function with increasing 7 or spatial
separation As, s=x,y or z, as illustrated in Fig. A.5.

X\(t)

A

Fig. A.4 Cross covariance of time series at positions Y, (k =12,..,.N )

The covariance function may attain negative values at large values of As or 7.
As previously indicated, the statistical properties defined above may also be
applied to functions that are obtained from realisations of two different processes.
Then, by simple arithmetic, the variance of the sum of two zero mean variables,

X (t) and X, (t) , is given by

Var()c1 +x2) =E[()c1 +)c2)()c1 +x2)] =Var(x1)+Var(x2) +2C0v()c1 X/Z) (A.25)
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Cov,,(As,T)

Fig. A.5 Typical spatial separation and time lag covariance function

Similarly, the variance of the sum of N different variables, X; (t ) , is given by

N
Var(inJ=E[(xl + X+t X +...+)CN)'()C1 X+t x; +...+xN)]
i=1

N N N N N

DVar(le} ZZZCOV()Q -xj)zzzlo(xi -xj)-O'l-O'j (A.26)
i=l i=1 j=1 i=1 j=1

If x; (t ) are independent (i.e. uncorrelated) then the variance of the sum of the

processes is the sum of the variances of the individual processes, i.e.

2 . .

o wheni= N N

if Cov(xi -xj): i 7" then Var(inj =ZG§,- (A.27)
Owheni=#j i=1 i=1

A.3 Threshold Crossing, Peaks and Extreme Values

A time series realisation x(t) of a Gaussian stationary and homogeneous process
(for simplicity with zero mean value), taken over a period T is illustrated in Fig.

A.6. First we seek to develop an estimate of the average frequency f, (a)

between the events that x(t ) is crossing the threshold a in its upward direction.

Let a single upward crossing take place in a time interval Af that is small enough
to justify the approximation

x(t+Ar)=x(1)+x(r)- Ar (A.28)
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Fig. A.6 Threshold crossing and peaks

The probability of an up crossing event during At is then given by
P[x(t)<aand x(¢)+(t)-At>a | = f, (a)- At (A.29)

from which it follows that

N : .
fila)= AI}EOEOL_‘!;A, D (x,x)dx} dx (A.30)

where p . (x,)'c) is the probability density function for the joint events x(t) and

)'C(t ) . As At — 0 the following approximation applies

I Dai (x,fc)dxzfc-At-pxk(a,fc) (A31)

a—x-At
For the type of processes covered herein it is a reasonable assumption that the
joint events of x(t ) and )'C(t ) are statistically independent, and thus,

Dyt (x,)'c) =p, (x) “ Di (x) . The average up crossing event that x(t) =a is then
given by
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o oo

fila)=[x-py(ax)di=p,(a) [ p;(¥)di (A32)

For each threshold up-crossing there is a corresponding down-crossing event, i.e.
Iy (+a) =f, (—a) , although there may be several consecutive positive or

negative peaks in the process. Assuming that both x and x are Gaussian, then

2 oo 2
1 1{ a 1 I{ x
a)= exp| ——| — X- exp| ——| — dx
fX() V27[0_x b 2[O-xj Z'). ”27[0-)& P 2(0-5:}

where: i (O) = 2L i (A.34)
T O

is the average zero up—crossing frequency of the process (see Eq. A.96). If x(t)

is also narrow banded, such that a zero up crossing and a peak x, (larger than
zero) are simultaneous events (as shown for the process in Fig. A.6), then the

expected number of peaks X, >a, is fs (a P>~T , while the total number of

peaks is f (0) -T . Thus

filay)
£:(0)

Pr[x <ap]=P(ap)=1— (A.35)

from which it follows that the probability density distribution of a, is given by

_d o d fx(a,,) 1 de(ap)
p(ap)_ap(ap)_dap - £:(0) __fx(o). da,,
2
:p(ap):a—%exp _%[Z__ZJ (4.36)

This is a Rayleigh distribution. The distribution is illustrated on the right hand side
of Fig. A.6.
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Fig. A.7.a shows a collection of N time series, each a short term realisation of
the fluctuating part x(t ) of a stochastic variable X (t ) =X+ x(t ) . It is assumed

that they are all stationary and ergodic, and for the validity of the development
below it is a necessary requirement that they are fairly broad banded. From this
ensemble of realisations it may be of particular interest to develop the statistical
properties of extreme values, as illustrated in Fig. A.7.b. Referring to Eq. A.33 and

Fig. A.6, the extreme peak value @, =X, within each short term realisation
occur when
-1
[fx (a, )] T (A.37)
Let therefore K= fo(%max ) T (A.38)

be an ensemble variable signifying the event that X(O <t ST) exceeds a given

value x .. .
Xi A X A XyA
X (1) Xyt xy(t)
<X < X "
i -] — -
t t t
> > >
t t t
a) N short term independent realisations
XA
max
x(t) A
A
i —
P{Xmax)
>

b)  The distribution of extremes

Fig. A.7 Distribution of extreme values
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The probability that X occurs only once within each realisation is an event that

coincides with the occurrence of X, i.e. they are simultaneous events. They are

max °
rare events at the tail of the peak distribution given in Eq. A.36, and for the
statistics of such events it is a reasonable assumption that they will also comply to
an exponential distribution, i.e. that

Po(LT)=P,_ (xa|T)=exp(-x) (A.39)

*max

Introducing Egs. A.33 (with a = x_,, ) into A.38 and solving for x then the

max

following is obtained
1
X ax:O'X{2ln[fx(O)T]—2an}2z0'ﬂ/2ln[fx(0)T]{1 0 [1;”( ]} (A.40)

where the approximation (l—x)n =]—n-x has been applied, assuming that

ln[ Iy (O)-T:' is large as compared to Ink. Thus, observing that x., =0

corresponds to K'=oo, while X, =o° corresponds to x =0, then the mean

value of X, may be estimated from

J-an‘-exp(—K)dK

= T =0, 12+ In[ £,(0)-T]- Iexp(—x)dK_Ozlln[fx(o).TJ (A.41)

Thus, the mean value of x_ . is given by

-4y2-In[ £, (0 +\/2 = [f K

where ¥ = —I: Inx-exp(—«)dx =0.5772 is the Euler constant. Similarly, it

(A.42)

may be shown that the variance of X,  is given by
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2 n’

— L2
iimax 12¢In[ £,(0)-T] % (A4

Given a stochastic variable X (t) =J_c+x(t), the expected value of its largest

peak during a realisation with length 7' may then be estimated from

Xpx =X +k, 0, (A.44)

where the peak factor k p 1s given by

k,=1/2-In[ £,(0)-T ]+ 2-1n[f}/(0)~T] (A.45)

For fairly broad banded processes this peak factor will render values between 2
and 5. Plots of kp and O, /O'x are shown in Fig. A.8.
max

Peak factor, k

T=600s
02 ' - '
10" 10° 10'

Frequency, fX(O) [Hz]

Fig. A8 Plots of k, and 0, [0,
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It should be acknowledged that when x(t) becomes ultra-narrow banded thn

kp - \/5 , because for a single harmonic component

the variance x(t) =c,- COS(a)xt) ,0<t<T (A.46)
1t 2 T 2w \T . &

o’ = lim _I[CX cos(a)xt)} dt=lim n_[ c,cos| =t || di=—> (A47)
T—eo T 0 n—eop-T, 0 T, 2

and thus, for such a process X, =c¢, =0, \/5 . Therefore, Eq. A.45 is only
applicable for fairly broad banded processes.

A.4 Auto and Cross Spectral Density

The auto spectral density contains the frequency domain properties of the process,
i.e. it is the frequency domain counterpart to the concept of variance. The various
steps in the development of an auto spectral density function are illustrated in Fig.

A.9. Given a zero mean time variable x(t ) with length 7 and performing a
Fourier transformation of x(t ) implies that it may be approximated by a sum of

harmonic components X X (a)k ,t) ,l.e.

N —
. o, =k-Aw
x(t) = Al,lirlo;Xk (a)k,t) where {Aa}: o )T (A.48)

The harmonic components in Eq. A.48 are given by

where the amplitudes ¢, =+/a; +b; and phase angles @, = arctan(b, / a; ),

and where the constants @, and b, are given by

T
{“"}:3 [ x(t){c_oswkt }zt (A50)
b | T sin @, t
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Parent variable x(t): var(x) = 0,2
X(t) = E[x(t)]

T
t = lim ¥ [x*(t)dt
Teco D
5
x(t) = gxk wh:)re X, (t) = c,cos(w,t+6,) 0,2 =22
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S,(0)+4————
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W,

JS,(m)dm = 0,7 = var(x)

Fig. A.9 The definition of auto spectral density from a Fourier decomposition

As shown in Fig. A.9 the auto-spectral density of x(t) is intended to represent its

variance density distribution in the frequency domain. Hence, the definition of the

single-sided auto-spectral density S, associated with the frequency @) is
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E[sz]zﬁ

S (o, )= (A.51)
x( k) Aw Aw
which, when T becomes large, is given by

S, (@)= lim — —j[ck cos (@t + ¢, :| dt (A.52)

TooAw T

Introducing the period of the harmonic component, 7, =27/ @), , and replacing

T with n-T, , and let n—> oo, then the following is obtained

Tk 2 2
Sx(wk):limi- ! nj € COS 2—”~z+gok di =<k (A.53)

In Fig. A9, the arrival at S, (a)k) is shown via the amplitude spectrum (or the

Fourier amplitude diagram) to ease the understanding of the concept of spectral
density representations. It is seen from this illustration that it is not possible to
retrieve the parent time domain variable from the spectral density function alone,
because it does not contain the necessary phase information (unless a
corresponding phase spectrum is also established). The spectrum contains
information about the variance distribution in frequency domain, i.e.

N 2 N
. Ck _ . .
% _ngzaxk ;\lzlflkzzl 2 ;\lzlglkzzlsx(a)k) Ao (A9

In a continuous format, i.e. in the limit of both N and T approaching infinity, the
single-sided auto-spectral density is defined by

S, (@)= lim lim M

(A.55)
T —o00 N—>o0 A®

where X (a),t ) is the Fourier component of x(t ) at @. In the limit Aw —> dw,

and thus, the variance of the process may be calculated from

-
o; —J.O S (w)dw (A.56)



A.4  Auto and Cross Spectral Density 475

The development above may more conveniently be expressed in a complex
format. Adopting a frequency axis spanning the entire range of both positive and
(fictitious) negative values, introducing the Euler formula

e {1 i Mcos a)t}
= Al (A.57)
P 1 —i|| sinax

and defining the complex Fourier amplitude
1 .

then: x(t)ZZXk (a)k,t):de (a)k)~ei'wkt (A.59)

Taking the variance of the complex Fourier components in Eq. A.59 and dividing
by Aw,

E| X, X T(d;e " )(d, e *
[ k k]zlj( k )( k )dtzdkdk (A.60)
Aw Ty Aw Aw
which may be further developed into
jE[Xk~XJ:l(ak+i.bk).(ak—i.bk): ¢ o
Aw 4 Aw 4Aw

It is seen (see Eq. A.53) that this is half the auto spectral value associated with
@, . Thus, a symmetric double-sided auto spectrum associated with —@), as well
as +@, may be defined with a value that is half the corresponding value of the
single sided auto-spectrum. Extending the frequency axis from minus infinity to
plus infinity and using the complex Fourier components X, given in Eq. A.59
above, this double sided auto spectrum is then defined by

E| X, -X * 2
S, (+@, ) = [ k k:lzdkdkz Ci

A.62
* Aw Aw 4A® (A.62)

which, in the limit of 7 and N — oo, becomes the continuous function S, (ia)) ,

from which the variance of the process may be obtained by integration over the
entire positive as well as the fictitious negative frequency range
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400

ol = I S, (tw)do (A.63)
Thus, the connection between double- and single-sided spectra is simply that
S x(a)):2-S x(ia)). Assuming that the process is stationary and of infinite

length, such that the position of the time axis for integration purposes is arbitrary,
then it is in the literature of mathematics usually considered convenient to
introduce a non-normalized amplitude (which may be encountered in connection
with the theory of generalised Fourier series and identified as a Fourier constant)

T
a(0,)=[x(1)-e"*dt=T-d, (A.64)
0

in which case the double-sided auto-spectral density associated with *@, is
defined by

d;:-dk (a;:/T)~(ak/T) 1 .
Aw 2w/ T 27T

S, (xe;)

In the limit of 7 and N — oo this may be written on the following continuous
form

S, (x®)=lim lim

ot . Al
Jim lim a (0)-a(w) (A.66)

and accordingly, the single sided version is given by
S (@)=1lim —-a (0)-a(w) (A.67)

where it is taken for granted that NV is sufficiently large. The auto-spectral density

S x(a)) as defined by the use of circular frequency @ may be replaced by a
corresponding definition S, (f) using frequency f (with unit Hz = s ). Since
S, (a)) “A@ and S, ( f ) -Af both represent the variance of the process at @ and

f, they must give the same contribution to the total variance of the process, and

thus
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Sx(f)'Af:Sx(a))'Aa):Sx(a))'(Zfr-Af)

= 5, (f)=27-S, (@)= lim =-a"(f)-a(f) (A68)

T—o T

The cross spectral density contains not only frequency domain properties but also
the coherence properties between two different processes, i.e. it is the frequency
domain counterpart to the concept of covariance. Given two stationary time

variable functions x(t) and y(t) , both with length T and zero mean value (i.e.
E [x(t)] =F [ y(t)] =0), and performing a Fourier transformation (adopting a
double-sided complex format) implies that x(t) and y (t) may be represented by
sums of harmonic components X, (a)k,t) and Y, (a)k,t) ,i.e.

{x(f)} - lim i{x" (“”"t)} (A.69)

y(1)| Vo= Yi(@.1)

Xi(o.t)| 1 a, (o) o and | ¢ (@) _ lim T2 x(1) ok gy
{wk,t)h{ay(wk)} d[mwk)} riw_r,M ‘

and where @, =k-Aw and Aw=27x/T . The definition of the double-sided

cross-spectral density S xy associated with the frequency @) is then

Sy (fwy)= V. }I_IEO el (A.70)

Since the Fourier components are orthogonal
Sy (@.t)-Aw wheni= j=k

E[Xi(a)i,t)yj(a)j,t)]:{ v (A71)

0 wheni#j

it follows from Eqs. A.69 and A.70 that an estimate of the covariance between

x(t) and y(t) are given by

Cov,, =E[x(t)- y(t)]= lim EHZX j-(gyjﬂ— lim Z( (X, Y])

N—eo

= Cov,, = lim sty @) Aw (A.72)

N—oo ™
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In a continuous format, i.e. in the limit of both N and T approaching infinity, the
double-sided cross-spectral density is defined by

E[x(on)v(0)] 4
S, (to)= v =T11_r>r°1°%ax(a))-ay(a)) (A.73)

The single sided version is then simply

N
Sxy(a)):2-Sxy(iw):Tlgri”—Tax(a))-ay(a)) (A.74)

The corresponding single-sided version using frequency f (Hz), is defined by

Sxy(f)=2fr~5xy(w)=Tlgg%-ai(f)-ay(f) (AT5)

Thus, the covariance between the two processes may be calculated from
Covy, = [ S, (x0)do=[5, (0)do=S, (f)df (A.76)

The cross-spectrum will in general be a complex quantity. With respect to the
frequency argument, its real part is an even function labelled the co—spectral

density COxy (a)) , while its imaginary part is an odd function labelled the quad—

spectrum quy (a)) ,i.e.
Sy (@)=Co,, (®)~i-Qu,, () (A.78)
Alternatively, S Xy (a)) may be expressed by its modulus and phase, i.e.
Sy (@)=]3, (@) (A79)

where the phase spectrum @, (@) = arc tan[quy (o) / Co,, (a))] . Auto-spectra
S N (a)) may also be calculated from the auto covariance function Covx (T ) see

Eq. A.15. Assuming that x(t) is a stationary and zero mean stochastic variable,

then the following applies:
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15 1 :
E|:X*X :| [TJ.X m}tdl‘} [Tj.x(t)e_mdt}
S (0)=——""1 lim 0 0
Aw T —oc0 2rxlT
= lim # [ j E[x(1)-x(1,)]- ¢ Vanr,
T—eo 2T
= S, (@)= lim — j j Cov, (t,—1,)-¢ 2™ Vdnd,  (A80)
tz A < S
PR e T A
T ¥ ¥ T

1 f
1
Al 2
A &
1| P - 0
-{c T t

T4

Fig. A.10 Substitution of variables and corresponding integration limits
Replacing ¢, with # +7, and changing the integration limits accordingly,
implies (as illustrated in Fig. A.10) that

TT-t

j j dtldtz_j j drldr+j j dtdt (A81)
-T-7
and thus
0T ] TT-t ]
S ()= Tli—IEeZn'_TL[T _chva(r)-e-"‘”dtldr+£ { cva(r)-e"“”dtldr}
1 0 ] T
_Th—ﬂg{_j (1+—) Cov, (1) _ledT+J‘(l——jCOV (7) ’mdl}
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Provided the integral under the auto covariance function is finite, it is then seen
that in the limit of T — oo , the following is obtained

Sx(a))zz— I Cov, (7)-e " dr (A.83)

This shows that the auto spectral density is the Fourier transform of the auto
covariance function. Vice versa, it follows that the auto covariance function is the
Fourier constant to the spectral density, i.e.

oo
Cov, (7)= [ 8, (@)-e“"do (A.84)

Similarly, the cross covariance function together with the cross spectral density
will also constitute a pair of Fourier transforms:

27

The coherence function is defined by

‘2

Sy (@)

(=5 ()5, (@)

If x(t) and y(t) are realisations of the same process, then Sx (a)) = Sy (a))

and the cross-spectrum S, (a)) =S5, (a)) is given by

S (@)=S$, (w)-\/Coh, () - (A87)

Coh,, (a)) is the root—coherence function and ¢, is the phase spectrum (see

Eq. A.79) . In the practical use of cross-spectra all imaginary parts will cancel out,
and thus it is only the co-spectrum that is of interest. Therefore, a normalised co-
spectrum is defined by

w)=—=2 1 (A.88)
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Again, if x(t ) and y(t ) are realisations of the same stationary and ergodic

process, then S, (a)) =S y (a)) and the real part of the cross-spectrum is given by

Re[ S, (@)]=S$, (@) Co, (o) (A.89)

It may in some cases be of interest to calculate the spectral density of the time

derivatives [e.g. )'C(t ) and )'C'(t )] of processes. In structural engineering this is

particularly relevant if x(t ) is a response displacement of such a character that it

is necessary to evaluate as to whether or not it is acceptable with respect to human
perception, in which case the design criteria most often will contain acceleration
requirements. Since (see Eq. A.59)

oo

x(t):_i:,j('k (wk’t):_Z:(iwk)z -d, (a)k),eiwkt

00

(A91)

and the double sided spectral density in general is given by the complex Fourier
amplitude multiplied by its conjugated counterpart (see Eq. A.62), then

)= [iwkdk (o ):r[iwkdk (o )] _ 2 did, _
“ Ao

S; (2o Aw

a)lgsx (ia)k )
(A.92)

*

[(iwk ) d, (o, )J [(iwk ) di (o )J ot did, 4

Aw

Similarly, cross spectral densities between a fluctuating displacement and its
corresponding velocity and acceleration are given by

et [md (@) da

k

S (£ ) v =i = =io S, (t@,)  (A93)
[dk (o )]y [(i“)k )2 dy (e )J dd
Sy (f@, )= =} H =S (+@,) (A9

Aw

Aw
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w0 2
iod, (@, iay) di (o .
z[ k( ):| _( ) k( k)_ :lw]z dkdk :ia)]?SX (i%) (A95)
A® Aw

Si(fa)

In the limit of 7 and N — oo this may be written on the following continuous
form

S (+0) S.(tw) S.(tw)] | | 0 -@
S;(x0) S (fw)|= & i@ |-S (o) (A96)
sym. S; (o) sym. o'

Because S, (ia)) is symmetric it is seen that for a stationary stochastic process

Covs —T s (to)dw= 0 (A.97)
Covie | Jlie*| 10 '

—oco

Thus, the spectral density of time derivatives of processes may be obtained
directly from the spectral density of the process itself. The single sided spectrum is

twice the double sided, then Egs. A.93 — A.95 will also hold if S, (*®),
S; (*®) and S;(£w) are replaced by S, (@), S;(®) and Sy (@).

From S x(a)) and S x(a)) a general expression of the average zero crossing
frequency f, (0) of the process x(t) may be found. Referring to Eq. A.34, A.56
and introducing S (a)) =S . (a)) , then the following applies:

1/2

@S, (0)dw
1 o; 1 1
fx(0)=— Gi_ Lo | - & (A.98)
2r o, 2| % 2 \ iy
J. Sy (w)dw
0
where  for  convenience the  so—called n'" spectral ~ moment

U, = Iw" -S, (@)d o has been introduced.
0



Appendix B
Time Domain Simulations

B.1 Introduction

It is in the following taken for granted that the stochastic space and time domain
simulation of a process x(t) implies the extraction of single point or

simultaneous multiple point time series from known frequency domain cross
spectral density information about the process. The process may contain coherent
or non-coherent properties in space and time. Thus, a multiple point representation
is associated with the spatial occurrence of the process. For a non-coherent
process there is no statistical connection between the simulated time series that
occur at various positions in space, and thus, the simulation may be treated as a
representation of independent single point time series. This type of simulation is
shown in chapter B.2. For a coherent process there is a prescribed statistical
connection between each of the spatial representatives within a set of M
simulated time series. E.g., if the simulated time series represent the space and
time distribution of a wind field, there will be a certain statistical connection

between the instantaneous values x,, (t),m =1,2,....,M that matches the spatial

properties of the wind field. Such a simulation is shown in chapter B.3. The
simulation procedure presented below is taken from Shinozuka [23] and Deodatis
[24]. Simulating time series from spectra is particularly useful for two reasons.
First, there are some response calculations that render results which are more or
less narrow banded (or contain beating effects), and thus, they may require
separate time domain simulations to establish an appropriate peak factor for the
calculation of maximum response. Secondly, if the relevant cross spectra of the
wind field or the earthquake properties in frequency domain and space are known,
there is always the possibility of a time domain simulation such that a time domain
step-wise load effect integration may be performed, see Chapter 6.3. Thus, a time
domain simulation may provide an alternative approach to that of a frequency
domain solution shown in Chapters 7 and 8. The main advantage is that such an
approach may contain many of the non-linear effects that will have to be
simplified or discarded in the linear theory that is required for a frequency domain
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solution. The disadvantage is that sufficient information about all the relevant load
effects may not be readily available.

B.2 Simulation of Single Point Time Series

The mathematical development from a single time series to its auto-spectral
density is presented in chapter A.4. In principle, the process is illustrated on Fig.

A9. A time domain simulation is obtained by the reverse process. Let S, (a)) be
the single-sided auto spectral density of an arbitrary stochastic variable x, with
zero mean value. A time domain representative, x(t), can then be obtained by
subdividing S into N segments along the frequency axis, each centred at @, (
k=1,2,...,N) and covering a frequency segment A, , as shown in Fig. B.1. On

a discrete form S x(wk) is the variance of each harmonic component per

frequency segment, as defined in Eq. A.53 (see also Fig. A.9), i.e.

S (@) =ct/2Aw,) (B.1)

= c, cos(myt + )

S, () y\ /\ /
AVARV/

(VA

.|
e | g

gy

0 2n
Fig. B.1 Spectral decomposition
A time series representative of x is then obtained by
N

)= ¢ cos(@t+y) (B.2)
k=1
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where s =[2~Sx(a)k)~Aa)k ]1/2 (B.3)

and where W, are arbitrary phase angles between zero and 27, one for each

harmonic component. Alternatively, Eq. B.2 may be written in an exponential
format (often encountered in the literature)

x(1) =Re{éck -exp[i(a)kt+l//k)]} (B.4)

N 2
The variance of x Z?k , which in the limit of AW — 0 and N — o,
k=1

2
k

NC
=Z;7=

da) (B.5)

O'—-X

Le., if the discretisation is sufficiently fine, then the variance of the simulated
representative, x(t), is equal to or close enough to the variance of the parent

variable. Any number of such representatives may be simulated simply by
changing the choice of phase angles. Obviously, the accuracy of such a simulation
depends on the discretisation fineness, but there is also the unfavourable

possibility of aliasing. Let @, be the upper cut-off frequency, beyond which there

is none or only negligible spectral information about the process. Assuming
constant frequency segments

Aw=w, /N (B.6)
then each simulated time series will be periodic with period
T=2rn!Aw (B.7)

Thus, time series without aliasing will be obtained if they are generated with a
time step

Ar<27/(20,) (B.8)
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Example B.1
S, (®) A

30

20 —

10 —

0 - - T » (D(rad,ls)

0 1.0

k S, () W, A® c, =V/25 Aw

1 16 0.35 0.1 1.8

2 30 0.45 0.1 2.4

3 18 0.55 0.1 1.9

4 10 0.65 0.1 1.4

5 4 0.75 0.1 0.9

X, A

®,=0.35 } SN N\ RN > t(s)
c,=1.8 \/ v \
,= 0.45
c,=2.4 } t(s)
®,= 0.55
c, = 1.9 } t(s)
®,= 0.65
c, =14 } t(s)
5= 0.75
c.=0.9 } t(s)

-2 N

Fig. B.2 Simulation of single point time series
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The top diagram in Fig. B.2 shows the single point single sided spectrum of a
process x of which we wish to portray two representatives in time domain. As
shown, the frequency span of the spectrum is first divided into five equal frequency

segments, and the corresponding values @), and Sx(a)k), k=12,...5, are

read off. Thus the process is represented by five harmonic components whose

amplitudes ¢;, =/2- S, (CQC ) -A@ are given in the far right hand side column in
the table of Fig. B.2. Thus

x(t):gi 28 (@ )Aw-cos(ayt+yy )

What then remains is to choose five arbitrary value of Yy . In Fig. B.2 the five
cosine components are first shown by fully drawn lines, representing a certain

choice of Wy, values. The sum of these components as shown in the lower diagram

in Fig. B.2 is an arbitrary representation of the process x(t). If the second and

the fourth of these components are moved an arbitrary time shift, then together
with the remaining unchanged components they sum up to become another
arbitrary representation of the process shown by the broken line in Fig. B.2. As
can be seen, the two simulated representatives look quite different in time domain,
although they come from the same spectral density. What is important is that they
both have zero mean and the same variance, i.e. they have identical statistical
properties up to and including the variance.

B.3 Simulation of Spatially Non-coherent Time Series

While the procedure presented above may be used to simulate single point time
series representatives of x(t) , it is not applicable if we wish to simulate multiple
point time series whose properties are expected to be distributed according to

certain coherence properties. Let us assume that we wish to simulate the
turbulence components

x(yf,zf,t) X=u,vorw (B.9)

of a stationary and homogeneous wind field at a chosen number of points M in a
plane perpendicular to the main flow direction. For simplicity it is in the following
assumed that cross spectra between #, v and w components are negligible, i.e.
that
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X
=u,v,w
y

where As is the spatial separation in the y ¢ — 2y plane. We will then only need

Sxy(a),As)zO (B.10)

information about the cross spectra of the turbulence components themselves,
S e (a), As) . Let Covxmxn (T) be the covariance and Sxmxn (a)) the
corresponding cross spectral density between two arbitrary points m and n. As

shown in appendix A.4 these quantities constitute a Fourier transform pair. An
M by M cross spectral density matrix

Saw 7 Sax 7 Suay
Sy(@)= Sy = Som 7 Sepuy (B.11)
Sarm 0 S Sapr |

will then contain all the space and frequency domain information that is necessary
for a time domain simulation of M time series with the correct statistical
properties for a proper but arbitrary representation of the process. It follows from
the assumptions of stationary and spatially homogeneous properties that

Cov =Cov

*m¥n *n*m

(B.12)

*

and thus (see Eq, A.85) S =S

*m*n *n¥m

(B.13)

This implies that S (a)) is Hermitian and non—negative definite. A Cholesky
decomposition of S will then render a lower triangular matrix

Gy O 0 0 - 0
Gyuy Gon 0 0
G, (0)= G' 0 (‘) (B.14)
*mX1 XmX2 *mXn *mXm
_GXM X GXM X2 GXM *n XM Xm GXM M|

whose properties are such that
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S, (®)=G, -G (B.15)

Assuming a frequency segmentation of N equidistant points, the simulated

simultaneous time series at m=1,2,....,M are then given by

ZZ‘GW j)"\/ZAa)-cos(a)j 1+y, ) (B16)

n=l j=1

where j is the frequency segment number and ¥,; 1s an arbitrary phase angle

between zero and 277 . In most cases of a homogeneous wind field (see Eq. A.87)

S (0.As)=S ()5, (w,A5) (B.17)

is

—S

where S is the single-point spectral density of the process, As= Sy TSy,

the spatial separation between points x,, and x, , and where

§xx(a),As)=./C0hxx(a),As)-exp[i@m(a))} (B.18)

A

Thus, defining a Cholesky decomposition Sxx(a)) =ém éz , then the time

series at m=1,2,....,M are given by

xm(t):iZ‘Gmn ‘ V25, (@) Aw-cos(w; -t +y,;)  (B.19)

where GAmn is the content of é o (.e. the reduced versions of G,,, in Eq. B.14)

Gy, 0 0 0O - 0 0
Gy Gy 0 0 - 0 - 0
G, (0)=| = N N : (B.20)
Gml Gm2 e Gmn e Gmm 0 0
_GMI GMz GMn GMm GMM ]

and where a Cholesky decomposition (see Appendix B.4 below) will render
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G (@) =[S0 (@.0)]" (B21)
. . m-l 1/2
Gy (@)= {Sﬂ (0,.0)- G (o, )} (B.22)
k=1
A n_l A~ A~
R Sxx(wJ’As)_ZGmk(wJ) G"k(a)j)
G, (@)= gl @) (B.23)
nn J

Example B.2

A process Xx is statistically distributed in time and space. Its cross-spectrum

S (a), As) is defined by the product between the single point spectrum S, (a))

shown in Fig. B.3 and its root-coherence function \|Coh,, (a),AS) shown in Fig.
BA. Le.,

S (@,A5) =S8 ()-/Coh, (@,As)

The phase spectrum exp[i(pxx (a))] is assumed equal to unity for all relevant

values of @ and As. Let us set out to simulate the process at three points in
space, each a distance 10 m apart. Thus,
T T
As=[As, As, As;] =[0 10 20]

Let us for simplicity settle with the three point frequency segmentation shown in
Fig. B.3. Le.

T T
w=[o o o] =[03 07 11| and Aw=04
(It should be noted that this frequency segmentation is only justified by the wish of
obtaining mathematical expressions with reasonable length, such that a complete
solution may be presented. For any practical purposes such a coarse

segmentation will most often render unduly inaccurate results.)
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10

Auto spectral density, Sx(m)
o

1 2

©,=03, [2S (»)Aw]'?=1.79

= 12_
0,207, [2S (0,)A0]"?=2.46

0,=11, [28(»,)A0]"=155

3

c =2.3365
X

Aw=0.4

05

Fig. B.3 Single point spectrum

1

15 2

Frequency, o (rad/s)

25

Root coherence function

©c ©o o o o o

N w N 3] » ~J
T T T T T T

o
=
T

m1=0.3

m2=0.7

< 0.6005

<«.0.3042

&« 01541

o « 0.3606

& ¢ 00926
© « 0.0238

Fig. B.4 Root coherence function at @=0.3, 0.7 and 1.1

10 15
Separation, As (m)
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The single point spectrum at these frequency settings are then (see Fig. B.3)

S, =[S, (@) S,(@) S,(ay)] =[40 7.6 3.0]"

while the corresponding values of the root coherence function are given by (see

Fig. B.4)

As
Coh, . (w,As) :
o XX( ) 0 10 20
0.3 1.0 0.6005 0.3606
w 0.7 1.0 0.3042 0.0926
1.1 1.0 0,1541 0.0238
! sym. |
Thus, S, (®;=03.4s,,)=/06005 1

10.3606 0.6005 1

1 sym.
S, (®;=07.4s,,)=03042 1
100926 03042 1

1 sym.
S, (®;=1.1As,,)=|01541 1
0.0238 0.1541 1

G, O 0
Gxx(a)j)= (}21 ézz 0 isdeﬁnedsuchthatéxx(a)j,Asn)=éxx,éT

A

G3; Gz Ga3

Its content is given by (see Eqs. A.21 —A.23)
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G (“’j):[gxx(“’j’msz =10)=Gy (@;)- Gy (“’j)]/ézz (@)
G () =[ S (074553 =0) - 621 (;) -G ()]

Thus,

G =1 Gy =\1-0.6005> =0.7996

@ =03=1Gy =0.6005 Gs, =(0.6005-0.3606-0.6005)/0.7996 = 0.4802

G31=0.3606 G~ \/1-03606% —0.48022 =0.7996

1 0 0
=G, (0 =03)=]0.6005 0799 0
03606 0.4802 0.7996

Gy =1 Gy =1-0.30422 =0.9526
@, =0.7=1G,, =03042 G5, =(0.3042-0.0926-0.3042)/0.9526 = 0.2898

G31=0.0926 .. —\/1-0.0926% —0.2898> = 0.9526

1 0 0
=G, (0,=07)=/03042 09526 0
0.0926 0.2898 0.9526

Gy =1 Gy =\1-0.1541% =0.9881
@y =1.1=1Gy; =0.1541 Gz, =(0.1541-0.0238-0.1541) /0.9881=0.1522

G31=00238 .. —\[1-0.0238% —0.15222 = 0.9881
1 0 0
=G, (0 =1.1)=[0.1541 09881 0

0.0238 0.1522 0.9881
Denoting

a \/zsx(a’l=0-5)-Aa) J2.4.04 79
ay |=| {28, (0, =0.7)-Aw |=| V27.6-04 | =| 2.46
Bl 28, (0 =1.1)- A0 2304 | |155

then the three time series are given by (see Eq. B.19)
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a)j)‘~1[2Sx(a)j)Aa)-cos(a)th//nj)
)|y cos (@ +y1) +[G

‘“3005(%”'//13)
=1.79-cos (0.3t + ;1 ) +2.46-cos (0.7t + y;, )+ 1.55-cos (1.1t + y3)

a)j)‘-JZSx(a)j)Aa)-cos(a)jternj)

(0’1)‘“1 COS(“’I”’WII)""GZI (a’z)‘az cos(yt +y12)

1 3
=220
n=l1 j=1

Gii(@ ()] az cos @yt +y12)
(s

+‘Gll

xz(t)=i2i‘,ézn

+‘(§21 (0’3)‘ -as - cos (@t +y3) +‘(§22 (wl)‘al cos (@t +ya1)

+‘622 (2 )‘az cos(@yt + ) +‘ézz (0’3)"“3 -cos (@3t +y3)
=1.075-cos (0.3 + ;1) +0.748-cos (0.71 + ¥, ) +0.239 - cos (111 + ;3
+1.431-c0s(0.3t + o1 ) +2.343-cos (0.7t + Y, ) +1.532 - cos (1.1 + y»3)

)= Z‘GM (a)j)‘-,IZSx(a)j)Aa)'cos(a)th//nj)

n=1j=1

é31(“’1)‘“1Cos(a’lf""//n)"“én(wz)‘azcos(a’z”%z)

+‘G31(‘03 ‘ 613'005(603”1/’13)*"@32(a’l)‘mcos(wltﬂ/le)
+‘G32(a)z)‘“zcos(a)zf+‘//22)+‘é32(%)"%'005(603”‘//23)
"“@3( )‘alcos(a’ﬂﬂ/’n)""éﬁ(wz)‘azcos(a’zfﬂ/@z)
+‘GA33(a)3)‘-a3-cos(a)3t+y/33)

=0.646-cos(0.37 +y11) +0.228-cos(0.77 + 7, ) +0.039 - cos (1.1 + y3)

+0.86-c0s (0.3 + 51 ) +0.713-cos (0.7t + ¥, ) +0.236 - cos (1.1 + yp3)
+1.431-cos (0.3t + 31 ) +2.343-cos (0.7t + Y3, ) +1.532 - cos (1. 17 + p33)

What then remains is to ascribe arbitrary values (between 0 and 27t ) to the phase
angles, Whj- The following is chosen:
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The simulated time series are shown in Fig. B.5 (T =600 s and Ar=0.06 s).
The standard deviation of the process as calculated from the parent spectrum is

0, =2.3365. The standard deviations of the three simulated time series are

2.414, 2.328 and 2.3995. The discrepancy (less than about 3 %) is caused by the
unduly coarse frequency segmentation.

B.4 The Cholesky Decomposition

Given a positive definite and symmetric matrix X , the Cholesky decomposition
of X is defined by a lower triangular matrix Y of the same size that satisfies the

following:

X=vY"

(B.24)



496 B Time Domain Simulations

Expanding this equation

Xy Xt Xy Yit 0 0 || v Vii YIN

(B.25)
Yoo X Xy |=| Vi Yii 0 | o0 Yii Yin
N1 ANt ANN YN1 YNi yanv ]l 0 0 YNN

and developing the matrix multiplication column by column, it is seen that the first
column renders

X11 =11 Y1 Y11 =4*11

Xy = . = /
21 y.zl M1 - Y21 x.21 M0 (B.26)
XN1=YNT VI Y1 =xn1/ Y1
while the second column renders
X0 =Yo1° Y21t Y22 Y22 Y22 =/X22 ~ ¥21)21
X = . + . =(x — /
32 = Y31 Y%l Y32 Y22 — Y32 ( 32 ‘Y31Y21) Y22 (B.27)
XN2 = YNL Y21t VN2 Y22 yn2 =(xn2 = yn1y21)/ Yo
and so on. This can be summarized as follows:
172
1= (Xn)
1 12
2
yll:[xll_zylkJ f0r1—2, ..... ,N—l
k=1 (B.28)

j-1
k=1



Appendix C
Element Properties

C.1 Twelve Degree of Freedom Beam Element

The element mass matrix is given by: m= {

[140m, 0
156m,

my=—-

sym.

—63myeZ

0
0

mp=—-+ o
0 0
0

l3myL

My, =——

sym.

0
0

156m,

54m

63mzey

Z

0
22myL
0

} where my; =m1T2

-2 lmZLey -2 lmy Le,

m;; mp
my; My
0 0
—147myeZ 0
147mzey —22m, L
140myg
4mZL2
0 0
—63myeZ 0
63mzey 13m,L
T0myg 14m, Le,

~13m,L -14m.Le, —3m_I

0

0
0

156m,

—l4mVLeZ

0
—147myeZ
147mzey
140my

0

0
0

22m, L
21mZLey

4m, I?

0
4m y I?

0

—l3myL

0

—14myLeZ

—22myL
0
21myLeZ
0
4myL2
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c; C
The element damping matrix is given by: ¢ = { 1 12} where €5 = csz
€ Cx
[140c, 0 0 0 0 0
156c, 0 0 0 22¢,L
156c, 0 —22¢,L 0
Cu=10 140cy 0 0
sym. 4ch2 0
4cyL2
[70c, 0 0 0 0 0 ]
0 5dc, 0 0 0 —13¢, L
L | 0 0 S4c, 0  13c,L 0
C2=75 0 o 0 70 O 0
0 0 —13¢,L 0 -3¢,[* 0
0 13¢,L 0 0 0 -3¢,
[140c, 0 0 0 0 0 |
156c, 0 0 0 -22,L
L 156c, 0 22¢,L 0
€2="10 140cy O 0
sym. 4cZL2 0
4cyL2

The element stiffness matrix associated with purely material properties:

ki k
k= { 1 12} where Kk, =kl and
k21 k22
[EA/L 0 0 0 0 0
3 2
12E1, /L 0 0 0  6EL/L
3 2
K, = 12EL, /PP 0 -6EI,/I* 0
GIL/L 0 0
sym. 0 4EI, /L 0
I AEL /L |
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[—EA/L 0 0 0 0 0
3 2
0  —12E1,/L 0 0 0 6EI, T
3 2
|0 0 ~12E1, /P 0 —6EL/I* 0
270 0 0 ~GI, /L 0 0
2
0 0 6EI,/I*, 0  2EI/L 0
2
| 0 -6EL/L 0 0 0 2EIL L |
[ EA/L 0 0 0 0 0 ]
3 2
12E1_ /L 0 0 0  —6EL /L
3 2
e 12E1, /0 6Kl /L 0
GLJL 0 0
sym. 4EIy/L 0
I 4EIJL |

If the element length is short and the variation of time invariants N, , M o and

M, are approximately constants N, , M i and M Z along the span, then:

ke, ko
ko= M 2 where ks,, :kg and
kG21 szz 2
K 0 0 0 0 0 |
36N, /30L 0 M, 0 N, /10
K, = 36N, /30L -M_, -N,/10 0
N,e} 0 0
sym. 0 2N,L/15 0
i 2N,L/15]
[0 0 0 0 0 0
0 —36N,/30L 0 M, 0 N, /10
c. |0 0 ~36N,/30L M, —N,/10 0
Gip — = = —
Folo M, M,  -Ne& 0 0
0 0 N, /10 0 N,L/30 0
0 -N,/10 0 0 0 -N,L/30
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0 0 0 0 0 0
36N, /30L 0 M, 0 -N, /10
Ko = 36N,/30L -M_, N, /10 0
22 —
N,e 0 0
sym. 0 2N,L/15 0
| 2N,L/15 |

C.2 Six Degree of Freedom Beam Element

[140m, 0 0 70m, 0 0 |
156m, -22m,L 0 54m, 13m,L
L dm, I 0 —13m,L —3m,I?
m=——
420 140m, 0 0
sym. 156m,  22m,L
L 4mZL2 a
[140c, 0 0 70c, 0 0 |
156c, —22c,L 0 54c, 13c,L
e L 4e,* 0 —13c,L -3c I*
420 140c, 0 0
sym. 156c,  22c,L
L 4CZL2 i
[EA/L 0 0 —EA/L 0 0 |
12EI [ —6EI /1> 0  -12E1 /0 -6EI |I?
2
- AEIJL 0  GEI/I*  2EILJL
EA/L 0 0
sym. 12E1 [/ 6EL |1
| 4EIL|L |
0 0o 0 0 0 0]
36 -3L 0 -36 -3L
N, 41> 0 3L I*
kG = .
30L 0 0 0
sym. 36 3L
. 4L2_
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