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Preface

A curious reader probably scans this Preface trying to find out what the “Personal
Insights” actually means. We wish to explain this term here.

All three authors are involved in the field of environmental interfaces some more
formally, some less, for a very long time. During this period, we gained an insight
into the field, which is definitely personal, since there are parts we like more than
the others, and we do not hide it. When preparing to write this book, it was the gen-
eral idea to collect our previous work and see what will come out of it. It turned out
that in the meantime we have matured, and more importantly, our understanding of
certain aspects of the field has matured, so we now look at the same material in a
different manner. Computing techniques progressed a lot, so certain simulations
became possible now. The effect is that previous research has become just a founda-
tion for completely new constructions, and the choice of the direction follows much
more personal preferences than strict research logic.

Even more importantly, we have noticed interconnections between various sub-
jects treated separately in our previous work. This has caused a complicated struc-
ture of the book. Although we follow a certain reasonable line in presenting the
material, almost everywhere where are shortcuts connecting chapters from various
parts of the book. We were tempted to plot a diagram showing it, but it turned out
to be a figure of large complexity, so we gave up. Actually, we think now that we
had a subconscious idea about these relations, when we were choosing the next sub-
ject of research in the old days.

To illustrate this, we offer here the attitudes of three authors, which will better
explain our standpoints and inspirations in writing the book.

Attitude of the first author. Seventeen years ago, I received a report from a
reviewer of the Journal of Applied Meteorology, who ended her/his short negative
report with the words . “so little science and so much imagination .” At that
point, I was frustrated by the “shortsightness” that accompanied the report so
I did not pay attention to the order of closing arguments and words. However, the
sound emitted by those words settled deeply in my subconscious, not as an echo
of criticism of my work, but rather as a message from a person who is involved
in science. Finally, my brain was making a reduction of this message to the statement
“imagination is behind the science,” i.e., metaphorically said the science can be un-
derstood as “a train dispatcher of strictly controlled trains.” It means that it is not
allowed to imagination to be a locomotive of the science. This purely technological
understanding of the science typical for nowadays was anticipated by many philos-
ophers, scientists, poets, and writers. Apparently, at this moment, science is under
control of “religion of the metrics,” which requires rather measurable results techno-
logically colored instead of the results that come from the world of the imagination
and which push forward the frontline of science. This reasoning is metaphorically
and nicely memorized by Johannes Jensen in Madam d’Ora: “Our little life is
rounded by the sleep.” Final words for describing the motive, which initiated this
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book I found in a short story The Landscape of Mountain (Meifu sansuizu) by Shu-
mon Miura. The main character of the story Chen was trying needlessly to paint the
mountain landscape better than it had done by the nature, and finally he said, “Ul-
timately, we are all apprentices of time. If it wishes, a worthless paper will be left
to future generations as a masterpiece while an original masterpiece will be dis-
placed aside. I do not want to be an apprentice. From that reason, I am ready to
become an artist who does not take brush in hand. Like the Time itself. It is paradox-
ically, but.”

My own attitude about science and its role is based on a clear distinction between
discovery (science) and invention (technology and technique). The discovery could
be defined as a final step in finding “something that is not still discovered but it exists
as a truth,” while invention means “something that has been found in the field of the
scientifically established discoveries” (Darko Kapor, personal communication). In
fact, this intuitive understanding of discovery and mission of science is one possible
reading of the Gödel’s first incompleteness theorem (and the second incompleteness
theorem as an extension of the first), which is important both in mathematical logic
and in the philosophy of mathematics. The formal theorem is written in highly tech-
nical language. It may be paraphrased in English as, “Any effectively generated the-
ory capable of expressing elementary arithmetic cannot be both consistent and
complete. In particular, for any consistent, effectively generated formal theory
that proves certain basic arithmetic truths, there is an arithmetical statement that
is true, but not provable in the theory” (Kleene, S.C. 1967 Mathematical Logic.
John Wiley, pp 250.). There exists always synchronization between science and
technology either on the lower or higher levels. Undoubtedly, the science provides
the “field of truth” pushing forward the technology, while in return the technology
provides advanced products for challenge of science (Darko Kapor, personal
communication).

To make step forward, of any size, in science we must have (1) a dream and (2) a
deep belief in that dream. (1) The dream including imagination about something is a
condition sine qua non of science. It provides voyaging through the field of the hid-
den truths waiting to be seen. The power of that dream is warmly and lyrically
described in the poetical movie Do You Remember Dolly Bell by Emir Kusturica.
A metaphysical philanthropist father Fahro is passing away, while his son Dino is
reading aloud to him a newspaper article and says, “ If the Earth’s axis could be
moved just a little and Indian Ocean dried, it would be so much wheat that all
raya (‘people’ in Bosnian slang) in the world would not be hungry.” He is finishing
his life with the words, “I will not join to raya but my dream came true.” (2) The
dream without belief would be incomplete. The belief leads the dream toward the
discovery. The strength of the belief in its epical beauty I found at the funeral cer-
emony in case one of the local bohemians from my hometown �Ca�cak (Serbia)
when his friend, in farewell speech, said, “You are the only one who believed that
all the rivers, seas, and oceans were originating from the Morava River.” Such deep-
ness and strength of the belief in something is almost metaphysical. That is my un-
derstanding of the scientific work. In that sense, all my reflections including
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potential misapprehension in the last 15 years are incorporated in this book (Dragu-
tin T. Mihailovi�c).

Attitude of the second author. The concept of environmental interfaces shares
some similarities with the concept of complexity. For both of them, it can be
argued that there are more notions used to describe a particular subset of natural
phenomena than precisely defined concepts shared among the majority of scientist.
Some may say that they are too general to have much content. Wide breadth of
topics covered in this book accompanied by a diverse set of mathematical tools
could support that view. Here, I will not argue against it. Instead, I will offer an
alternative reading.

So-called systems thinking was born almost 70 years ago as a search for common
properties shared by all organized systems. Initial enthusiasm was supported by
some of the finest scientific minds of that time. Two strong disciplines emerged
from that wave: cybernetics and general systems theory (GST). They helped estab-
lishing precise understanding of the role of feedbacks in organizing systems and
introduced self-organization and emergence into modern science. Over time, their
grandiose approach was toned down, and the whole discipline seemingly disap-
peared from the scene. From today’s perspective, it is debatable to what extent
GST and cybernetics changed scientific landscape, but it was a fertile movement
that left a deep mark in several thriving disciplines such as control theory, systems
biology (with genomics and other omics), and systems engineering. In numerous
other fields, systemic approach became a norm. It demonstrates how changing
perspective of scientific inquiry can open up a vast field of new insights. The
main topic of this book, environmental interfaces, arises as an offspring of that,
so-called, systems thinking. In that light, I hope that some of the ideas presented
here could be inspiring enough to open up new avenues in our striving to understand
organization of environment (Igor Bala�z).

Attitude of the third author. After many years spent working on environmental
problems (among other things), I started to believe that most of the concepts could
be transferred to the humanities too. So, the human society or, in particular, the circle
of people around us can be treated as an environment. However, each person within
this environment is a microcosm of its own, so its contact with the everyone else can
be treated as being realized through an environmental interface. This interface has
two aspects: there is a physical one, bordering our body and consisting of skin
and senses and a psychological one, probably a real or virtual aura encapsulating
us. While we know a lot about the events happening on the physical environmental
interface, it is the psychological one that determines our behavior. Actually, to a per-
son who decides to reflect a lot about its environment, most of the events happen on
this, other environmental interface. Many events, occurring in the interaction with
Prof. Mihailovi�c and Dr Bala�z resulted in joining the forces to prepare this manu-
script through which we tried to present our ideas about many things invading in
this way, auras of people who would care to read it (Darko Kapor).

To visualize our attitudes, we choose for the cover page of the book, the photo of
the architecture of Antonio Gaudi inside the Park Güell (Barcelona, Spain), which is
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a public park system composed of gardens. This ingenious Catalan artist gave birth
to this park in such a way that no one before him did do it, nor will do it so after him,
since “his works acquire a structural richness of forms and volumes, free of the
rational rigidity or any sort of classic premises.” (“Park Güell”, Wikipedia, The
Free Encyclopedia) Selected landscape can be seen as a sort of interface that relies
on another space, while the corridor symbolizes the space of solution, which is
almost at hand distance, but still unapproachable.

This book has three formal authors, yet, it is based on the research performed in
collaboration with many people, all of them also dear friends. It is essential to
mention them here and thank them for a long and fruitful cooperation. Department
of Mathematics and Informatics of the Faculty of Sciences, University of Novi Sad,
was the source of information and help. Prof. Mirko Budin�cevi�c shared with us his
knowledge on nonlinear dynamics and difference equation, while Prof. Sini�sa
Crvenkovi�c introduced us to the category theory and the formal concept analysis.
They were of great help, even though permanently wondering why people of our
profile need such knowledge. Prof. Vladimir Kosti�c helped us learn about the new
fields of spectra and pseudospectra, i.e., the behavior of nonnormal matrices and
operators.

Teaching process was a permanent source of inspiration for research. The inter-
action with studentsdundergraduates and graduates, as well as with fellow teachers,
was a fountain of new ideas and different approaches. It is here that we wish to thank
all the students and colleagues we have met during many years of teaching at the
Faculty of Agriculture, Department of Physics, Faculty of Sciences, and the Center
for Meteorology and Environmental Modelling, all at the University of Novi Sad.
Many names come to our minds, but in this way, we also recognize the merits of
the very institutions, not just the particular people.

This highly interdisciplinary book deals with mathematical methods in model-
ling of environmental interfaces from nanotubes and cell to planetary scale. On
the other hand, the exposition is accompanied by personal insights of the authors
based on their long-lasting activity in the fields covered by the book. In this way,
the reader is provoked to establish his own standpoint which might or might not
agree with the one of the authors. Many numerical simulations offered, and exten-
sive list of cited literature will provide solid basis for this. Finally, let us mention
that we used various synonyms equivalently, exploiting the rich structure of English
language. The book is divided into 7 parts containing 26 chapters.

Part I contains an introductory material and starts with a chapter where we give a
definition of the environmental interface, which broadly covers the unavoidable
multidisciplinary approach in environmental sciences and also includes the tradi-
tional approaches in environmental modelling. The interface between two different
environments itself is considered as a complex system itself, in the sense that “a
complex system cannot be decomposed nontrivially into a set of part for which it
is the logical sum.” (Rosen R. 1991 Life itself. Columbia University Press) In
Chapter 2, we review advanced theoretician’s tools in the modelling of the environ-
mental interface systems. An extensive discussion of various aspects of modelling is

xviii Preface



offered in Chapter 3 with an illustration through the solution of the energy balance
equation for the ground surface, which is often used in environmental modelling. We
state our opinion about dilemma whether the environmental interface systems
models should be built in the form of differential or difference equations, i.e.,
whether we should either deal with the continuous-time or discrete-time, where
time is considered as a continuous or discrete variable, respectively. We end this
part with a chapter on the use of formal complex analysis in solving the environ-
mental problems.

Part II is devoted to the role of time in environmental interface modelling since
with the progress in this field, the question of the concept of time becomes more
authentic. We first elaborate understanding the time in physics and philosophy in
Chapter 5, going over to Chapter 6 dealing with time in biology. It is formalized
in Chapter 7 by the introduction of functional time in generalized functional sys-
tems. By the notion of the functional system, we cover all systems where processes
unfold following a set of known rules and which exhibit repetitive pattern. Using
mathematical formalism, we show on several examples how the functional time
is formed as a result of consistent change of concrete material object states. Exam-
ples are: (1) the response of the functional system on a stimulus (mollusk time
reflex formation); (2) the response of the functional system on a cognitive level
(prisoner time formation in the cell), and (3) the process of substance exchange
on the cellular level (time formation in process of biochemical substance exchange
between cells).

Part III is an very important one since it introduces the material necessary for un-
derstanding the rest of the book. It considers the use of different logistic maps in the
coupling in the environmental interfaces. In Chapter 8, we consider coupled logistic
maps, through their diffusive, linear, and combined coupling. We give an example of
diffusive coupling through interaction of two environmental interfaces on the Earth’s
surface. We analyze the stability of this dynamical system using the Lyapunov expo-
nent. Chapter 9 is devoted to the logistic difference equation on the extended
domain. We extend the domain [0,4] in which the logistic parameter of the classical
logistic equation is defined to the domain [�2,4], and we discuss and analyze prop-
erties of the parameter of difference equation, which is ranged in this domain, using
bifurcation diagram, Lyapunov exponent, sample and permutation entropies. As the
next step, in Chapter 10, we introduce the logistic equation with affinity, and then,
we demonstrate its use in modelling turbulent fluxes over the heterogeneous envi-
ronmental interfaces. First, we give a mathematical background of a map with
cell affinity in the form of a generalized logistic map. Second, analyzing the model
outputs and observed data, we summarize uncertainties that occur in modelling the
turbulent energy exchange over the heterogeneous environmental interfaces, with
setting an accent on the Schmidt’s paradox.

Chapter 11 deals with the maps serving the different coupling in the environ-
mental interfaces modelling. First, we consider behavior of a logistic map driven
by fluctuations. We give an overview of literature about logistic map driven by pe-
riodic signal, quasi-periodic signal or noise. Second, we analyze the behavior of the
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coupled maps serving the combined coupling in the presence of dynamical noise. In
the case of uncoupled nonlinear oscillators, we demonstrate that the addition of para-
metric fluctuations has a pronounced effect on the dynamics of such systems.
Finally, we consider the behavior of the coupled maps serving the combined
coupling when we introduce a parametric noise in their all parameters.

Part IV is devoted to the concepts of heterarchy and observational heterarchy and
their relation to the exchange processes between the environmental interfaces. The
concept of heterarchy in environmental modelling is introduced and some ecological
examples are given in Chapter 12. This concept is then applied to biochemical sub-
stance exchange in a diffusively coupled ring of cells in Chapter 13. We first
consider the observational heterarchy consisting of two sets of intralayer maps,
called Intent and Extent perspectives, and interlayer operations using the formalism
of the category theory. Looking from the intent and extent perspective in a cell, we
address the synchronization of the passive and active coupling for two cells using the
generalized logistic equation with the affinity. We perform simulations of active
coupling in a multicell system. Finally, in Chapter 14, we study the heterarchical
aspect of the albedo over heterogeneous environmental interfaces.

Many results in environmental studies are presented in the form of measured or
modeled time series for certain important quantities, since it is essential to know how
to study the complexity of the environmental system, based on this series. This is the
subject of Part V. We first introduce the concept of Kolmogorov complexity and
other complexity measures based on it in Chapter 15. Number of example follows.
In Chapter 16, we first perform a complexity analysis of 222Rn concentration varia-
tion in a cave. Second, we use complexity analysis in analyzing the dependence of
222Rn concentration time series on indoor air temperature and humidity. Finally, we
apply the Kolmogorov complexity and use its spectrum in analysis of the UV-B ra-
diation time series. In Chapter 17, we deal with complexity analysis of the environ-
mental flow time series. First, we use it to quantify the randomness degree in river
flow time series of two mountain rivers in Bosnia and Herzegovina, representing the
turbulent environmental fluid. Next, we analyze the experimental data from a turbu-
lent flow collected in a laboratory channel with bed roughness elements of different
densities and variable bed slope. Finally, we use the Kolmogorov complexities and
the Kolmogorov complexity spectrum to quantify the randomness degree in river
flow time series of seven rivers with different regimes in Bosnia and Herzegovina,
representing their different type of courses. Since climate is a typical example of
the complex system, we discuss various approaches to its complexity in Chapter
18. Thus, we use complexity measures to analyze spatial and temporal distribution
of air temperature and the observed precipitation time series. Finally, we give an
example of comparison between complexities of a global and regional model.

In Part VI, we address the problem of the chaotic phenomena in computing the
environmental interface variables. Such a study must begin (Chapter 19) with the
analysis of the relations between mathematics and environmental sciences. In that
sense, we consider: (1) the role of mathematics in environmental sciences and (2)
difference equations and occurrence of chaos in modelling of phenomena in the
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environmental world. First, in Chapter 20, we consider the climate predictability and
climate models through: (1) giving the short survey on the predictability and (2)
gathering current issues in modelling the global climate system. Second, we give
an example of the application of the regional climate models with an overview of
its outputs. The outputs were obtained by dynamic downscaling of climate simula-
tions conducted with the ECHAM5 GCM (General Circulation Model) coupled with
the Max Planck Institute Ocean Model. The downscaling of the GCM climate
simulations was performed with the coupled regional climate model EBU-POM
(Eta Belgrade University - Princeton Ocean Model). In Chapter 21, we deal with
occurrence of chaos in exchange of vertical turbulent fluxes over environmental in-
terfaces in climate models, concentrating on the occurrence of the chaos in
computing the environmental interface temperature. We have derived criterion for
choice of the time step used in environmental models for numerical solving of the
energy balance equation to avoid situation when the environmental interface cannot
oppose an enormous amount of energy suddenly entering system. We also perform a
dynamic analysis of solutions for the environmental interface and deeper soil layer
temperatures represented by the coupled difference equations to find regions where
solutions show chaotic behavior. We consider synchronization and stability of hor-
izontal energy exchange between environmental interfaces in climate models in
Chapter 22, by considering it as a diffusion-like process described by the dynamics
of driven coupled oscillators enhancing the conditions when the process of exchange
is synchronized. Then, we consider asymptotic stability of horizontal energy ex-
change between environmental interfaces introducing a dynamical system approach
that provides more realistic results in modelling of energy exchange over the hetero-
geneous grid-box than the flux aggregation methods.

The last part of the book (VII) includes the following topics: environmental in-
terfaces and their stability in biological systems, synchronization of the biochemical
substance exchange between cells, complexity, and asymptotic stability in the pro-
cess of biochemical substance exchange in multicell systems and use of pseudospec-
tra in analyzing the influence of intercellular nanotubes on cell-to-cell
communication integrity. Chapter 23 is devoted to the biological environmental in-
terfaces and their ability to perceive the changes in the environment. Going further,
in Chapter 24, we consider synchronization of the biochemical substance exchange
between cells mathematically modeled as a system of difference equations of
coupled logistic equations. Then, we add the fluctuations of environmental param-
eters to the model. In Chapter 25, we deal with the issue of complexity and asymp-
totic stability in the process of the biochemical substance exchange in multicell
system, using the model described in the previous chapter. After calculating the Kol-
mogorov complexity measures, we focus on the asymptotic stability of the intercel-
lular biochemical substance exchange. In Chapter 26, we examine how the
biochemical substance exchange through tunneling nanotubes (TNT) (besides com-
mon exchange through gap junctions (GJ)) affects the functional stability of the
multicellular system. We answer whether TNT can destabilize the intercellular
communication through GJ and how to determine the threshold at which the
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destabilization occurs. One way to answer is the application of the concept of
pseudospectra.

This Preface might look too long, but we find it important to state our positions in
advance and, in this way, prepare the reader for an adventure that expects him/her.
We felt the writing of this book as a great adventure and we do hope that the readers
will feel at least some of the excitement we did.
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Environmental interface:
definition and
introductory comments 1
Complex systems science has contributed to our understanding of environmental
issues in many areas from small to large temporal and spatial scales (from the
cell behavior to global climate and its change). Environmental systems by
themselves are both complicated and complex. Complicated, in that many agents
act upon them; complex, in that there are feedback loops connecting the state of
the system back to the agents, and connecting the actions of the agents to one
another. Complex systems have complex dynamics usually characterized by the
so-called tipping points, abrupt changes in the state of the system caused by
seemingly gradual change in its drivers (Gladwell, 2000). For example, a climate
tipping point is a somewhat ill-defined concept of a point when global climate
changes from one stable state to another stable state. After the tipping point has
been passed, a transition to a new state occurs. Many scientists now use the power
of computer models to advance their subjects. But there is a choice: to simplify com-
plex systems or to include more details (Paola and Leeder, 2011). Further advances
in these areas will be necessary before complex systems science can be widely
applied to understand the dynamics of environmental systems. In this book we
will consider environmental interfaces as complex systems through their main fea-
tures. There are many contemporary researches that deal with specific aspects of the
environmental interface. However, in this book we will consider the temporal aspect,
various recent approaches to it and complexity in environmental interfaces
modelling through our personal insights.

Definition of environmental interface: Technically speaking, the interface is a
space at which independent systems or components meet and act or communicate
with each other. Interfaces can appear between system elements and they can also
exist between a system element and the system’s environment. In the latter case
we speak about environmental interface. It can be specifically defined depending
on the science where it is used (ecology (Sizykh, 2007), ecological economy
(Lehtonen, 2004), social sciences (Rasmussen and Arler, 2010), programming lan-
guages, and simulations support systems (Banks et al., 2009), etc.). We define the
environmental interface as an interface between two abiotic or biotic environments
that may be in relative motion and exchange energy, matter (substance), or informa-
tion through physical, biological, or chemical processes, fluctuating temporally and
spatially regardless of the space and time scale. It is slightly different from its formu-
lation in Mihailovic and Bala�z (2007) and Mihailovi�c et al. (2012). This definition
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broadly covers the unavoidable multidisciplinary approach in environmental
sciences and also includes the traditional approaches in environmental modelling.
For example, such interfaces can be (1) placed in between different environments
and (2) extended from micro to planetary scales. Through these interfaces environ-
ments exchange energy, matter, and information (Fig. 1.1). For example, those
processes are (a) ions exchange in metals (Krot et al., 2001), (b) intercellular
exchange of biochemical substances (Mihailovi�c et al., 2011a), (c) exchange of
air volumes in a macroscale of urban conditions (Neofytou et al., 2006),
(d) periodic migrations between populations (Lloyd, 1995), (e) heat exchange in
Earth’s interior consisting of central core, a mantle surrounding the core and litho-
sphere, (f) energy exchange between solid matter and gas in natural conditions
(Mihailovi�c et al., 2011b), and (g) information exchange in a specific environment
model combined with the environment interface describing their interactions
(Behrens, 2009).

The interface between two media is a complex system itself. We use the term
complex system in Rosen’s sense (1991) as it was explicated in the comment by
Collier (2003) as follows: “In Rosen’s sense a complex system cannot be decom-
posed nontrivially into a set of part [sic!] for which it is the logical sum. Rosen’s
modelling relation requires this. Other notions of modelling would allow complete
models of Rosen style complex systems, but the models would have to be what
Rosen calls analytic, that is, they would have to be a logical product. Autonomous
systems must be complex. Other types of systems may be complex, and some may
go in and out of complex phases.” Also, we will explain in which sense the term
complexity will be used in further text. Usually, that is an ambiguous term, some-
times used to refer to systems that cannot be modeled precisely in all respects

Examples of environmental interfaces: (a) ions exchange in metals. The space highlighted by

a dashed red line (dark gray in print versions) indicates an interface; (b) intercellular

exchange of biochemical substances (Mihailovi�c et al., 2011a); (c) exchange of air volumes

in urban conditions; (d) migration of insects (Lloyd, 1995); (e) heat exchange in Earth’s

interior consisting of central core, a mantle surrounding the core and lithosphere; (f) energy

exchange between solid matter and gas in natural conditions (Mihailovi�c et al., 2011b);

(g) information exchange in a specific environment model combined with the environment

interface describing their interactions (Behrens et al., 2009) Intercellular TNTs between

neighboring cells, and (h) a field of cells exchanging the substance with a cluster of smaller

tunneling nanotube TNTs (highlighted by a dashed circle) and a more pronounced larger

tube (indicated by an arrow).

(a) Reprinted with permission from Krot, A.N., Meibom, A., Russell, S.S., Conel, M.A., Jeffries, T.E., Keil, K.,

2001. A new astrophysical setting for chondrule formation. Science 291, 1776e1779. (c) Reprinted with

permission from Neofytou, P., Venetsanos, A.G., Vlachogiannis, D., Bartzis, J.G., Scaperdas, A., 2006. CFD

simulations of the wind environment around an airport terminal building. Environ. Model. Softw. 21, 520e524.

(h) Reprinted with permission from Dubey, G., Ben-Yehuda, S., 2011. Intercellular nanotubes mediate bacterial

communication. Cell 144, 590e600.
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(Rosen, 1991). However, following Arshinov and Fuchs (2003) the term
“complexity” has three levels of meaning. (1) There is self-organization and
emergence in complex systems (Edmonds, 1999). (2) Complex systems are not orga-
nized centrally but in a distributed manner; there are many connections between the
system’s parts (Edmonds, 1999; Kauffman, 1993). (3) It is difficult to model com-
plex systems and to predict their behavior even if one knows to a large extent the
parts of such systems and the connections between the parts (Edmonds, 1999;
Heylighen, 1997). The complexity of a system depends on the number of its ele-
ments and connections between the elements (the system’s structure). According
to this assumption, Kauffman (1993) defines complexity as the “number of
conflicting constraints” in a system; Heylighen (1996) says that complexity can
be characterized by a lack of symmetry (symmetry breaking) which means that
“no part or aspect of a complex entity can provide sufficient information to actually
or statistically predict the properties of the others parts.” Edmonds (1996) defines
complexity as “that property of a language expression which makes it difficult to
formulate its overall behavior, even when given almost complete information about
its atomic components and their inter-relations.” Aspects of complexity are things,
people, number of elements, number of relations, nonlinearity, broken symmetry,
nonholonic constraints, hierarchy, and emergence (Flood and Carson, 1993).
Note, that the interactions between parts of the complex environmental interface sys-
tems are nonlinear, while their interactions with the surrounding environments are
noisy that is mathematically well elaborated in Liu and Ma (2005), Serletis and
Shahmoradi (2006), Savi (2007), Serletis et al. (2007a), (2007b), Mihailovi�c et al.
(2012), among others.

In this introductory part we cannot avoid a short overview of some epistemolog-
ical points from the 20th century onward. Until recently, discussions about scientific
truth were filled with numerous metaphysical assumptions. They usually converged
to one question (more or less explicitly stated): “How can we reach objective truth
about natural processes?” However, during the 20th century, this question first
became less important and then gradually disappeared from the epistemological
scene as a relic from the age of naive realism. Now, in contemporary epistemology
of science, it is well established that there is a fundamental difference between phe-
nomenon and noumenon. Therefore, the object of scientific analysis cannot be the
nature by itself, but only highly constructivistic products, i.e., conceptually
embedded sets of observer’s experiences. Accordingly, scientific theories are now
understood as logical instruments of organization of human thought, through which
we can interpret and organize experimental laws (Nagel, 1961). Also, since they
have constructivistic character, their relation to nature should not be considered
through the vocabulary of logic; they are not truth statements and they are not logical
derivatives of observed facts but only sets of rules and guiding principles for analysis
of empirical facts (Nagel, 1961). Therefore, in the development of a scientific theory,
it is not a problem to make approximations that can never reach reality. It is inevi-
table. But believing that relations of abstractions are exactly the same as relations in
nature can be very problematic. Firstly, it can usually become a source of unfruitful
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debates about the “true” nature of nature. Secondly, from such a perspective it is
impossible to see and analyze the consequences of the interface perspective, where
the observer is within the universe he observes. A clear example of both mentioned
problems can be found in the development of the contemporary physics. At the very
beginning of the 20th century, Pierre Duhem (1906) asserted that physical theories
are not simple reflexions of natural processes, but rigorous logical systems, which
operate with abstract symbols and which are connected with nature through system
of measurements and scales. Such approaches put forward the process of encoding
of natural processes into the domain of formal systems, as the first and crucial step in
the development of a physical theory. However, in his opinion, a pattern of encoding
depends almost entirely on the previously accepted theories. Therefore, empirical
observations cannot be separated from the current state of affairs in a given scientific
discipline, since theoretical assumptions determine what will be observed, how it
will be observed, and how results will be interpreted. Although Duhem’s approach
can be characterized as conventionalism, his contribution to the general trend of
development of thought in theoretical physics remains immense.

Few decades later, the explosive growth of quantum mechanics raised some
fundamental questions about the status of observation in physics, and how our mea-
surement procedures can affect the observed physical properties (“measurement
problem”). In short, Einstein, opposing the Copenhagen interpretation of physical
properties of quantum systems, claimed that under ideal conditions, observations
reflect the objective physical reality. On the other hand, Bohr asserts that in quantum
mechanics the measured quantum system and the measuring macroscopic apparatus
cannot be considered as separate within a scope of scientific consideration. In other
words, the physical properties of quantum systems are essentially dependent on the
applied experimental apparatus. One of the most famous moments of the debate is
now well known as EinsteinePodolskyeRosen paradox (EPR) (Einstein et al.,
1935). In the short paper they showed, that if the quantum mechanics description
of reality is complete, then the noncommutable operators corresponding to two
physical quantities can have simultaneous reality. In other words, quantum me-
chanics is inconsistent with the reduction of the wave-packet postulate. Later,
Bell (1964) revealed that the EPR paradox stands only under the set of supplemen-
tary assumptions, among which there is the assumption of locality. Moreover, within
quantum mechanics there is no need to accept them all. Although it can look like a
closing chapter in the debate on “measurement problem,” this question evolved from
the limited scope of quantum mechanics and took a more general form: “how the
observations are affected by the fact that the observer is within the universe he
observes?” This is certainly not a new question in the history of human thought,
but (until recent partial attempts) in the natural sciences it never gets a formal expla-
nation. In developmental psychology, Piaget (1973a,b) clearly demonstrated that
elementary categories of human thought are construed during one’s development,
and how externality of cognitive entities is restructured in accordance with its func-
tional purposes through the process of assimilation of external changes with the
operative schematism of that entity, and finally, in the world of logic and formal
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systems, Gödel shook the scientific community with his proof of incompleteness of
formal systems (for extensive discussion see Rosen, 1991 and Nagel and Newman,
1958). Now, in the natural sciences, this problem is finally recognized and dispersed
attempts of its formal treatment fall under the umbrella of discipline called endophy-
sics. This term was originally suggested by David Finkelstein in personal commu-
nication with Otto Rössler. Later, it was comprehensively elaborated in detail by
Otto Rössler (1998).

Finally, although the question of time in the modelling relation is the theme of
the next part, here we will make some comments about time in the context of tele-
ological as well as causal dynamics (the term, “causal” is used in the broader sense
of “governed by influences from the past”). A usual approach in physics is that the
present state is strictly a result of its evolution from the past. However, it has been
shown that some phenomena in the real world can be explained, if we accept that the
present state of a system is defined by its past, in the sense that the past determines
the possible states that are to be considered, and by its future, in the sense that the
selection of a possible future state determines the effective present state. Namely,
past and future measurements, taken together, provide complete information about
a quantum system. Pioneering step about this subject has been done by Watanabe
(1955) whose work was later experienced again by Aharonov et al. (1964), who later
renamed it the Two-State Vector Formalism (Aharonov et al., 1964; Aharonov and
Vaidman, 1997, 2008). This, a time-symmetrized approach in quantum theory is
particularly helpful for the analysis of experiments performed on preselected and
postselected ensembles (Aharonov and Vaidman 2008; Brodutch, 2014). The two-
state quantum dynamics is used for designing the phenomenological model of the
reionization process, when this dynamics is adopted for the vicinity of the potential
barrier top (Aharonov et al., 1964). This is just a short reminder for the environ-
mental modelling community that, in the modelling of complex environmental inter-
face processes, we should bear in mind a possibility of using two-state formalism in
the modelling procedure (Nedeljkovic and Nedeljkovic, 2003).
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Advanced theoretician’s
tools in the modelling of
the environmental
interface systems

2
The environmental interfaces are formed in a space that is rich with complex sys-
tems. Each such system, as an open one, interacts with other systems in a coherent
way, producing new structures and building cohesion and new structural boundaries.
It undergoes emergence and self-organization. Thus, in the modelling of the environ-
mental interfaces, it is necessary to consider the following points: (1) the need for
new modelling architecture and (2) usage of new mathematical tools like Category
Theory (whose first use for research in ecology was originally proposed by Rosen
(1985, 1991)), Mathematical Theory of General Systems (Mesarovic and Takahara,
1975), Formal Concept Analysis (FCA) (Wille, 1982; Ganter and Wille, 1997), and
Nonlinear Dynamics and Chaos (Mihailovic and Bala�z, 2007).

2.1 MODELLING ARCHITECTURE
Modelers of environmental interface systems in numerically oriented studies base
their calculations on mathematical models for the simulation and prediction of
different processes, which are exclusively nonlinear in describing relevant environ-
mental quantities (Rosen, 1991). A theoretical description of any environmental
interface system includes at least two important aspects. First, one should construct
a concrete mathematical model of both the admissible states of the system and the
transitions between these states. Second, one should establish the rules of selecting
among many theoretically admissible states of the system only those states that are
realized in nature under the given external conditions (Flood and Carson, 1993).

In the modelling community dealing with complex systems, Rosen’s diagram
(1991) is a recognizable guide. Fig. 2.1 is a slightly modified Rosen’s diagram
and schematically depicts a modelling relation when a natural system (N) and a
formal system (F) are given. As above, two arrows represent the respective entail-
ment structures: inference in formalism (F) and causality in a natural system (N).
Now, the two established dictionaries provide encoding the phenomena of N into
the propositions of F and another for decoding the propositions of F back to the phe-
nomena in N. As mentioned above, there are two paths in diagram (1) and
(2) þ (3) þ (4). According to Rosen (1991), the first of them (path (1)) represents
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the causal entailment within N (what an observer will see by simply sitting and
watching what is happening). Arrow (2) encodes the phenomena in N into the prop-
ositions in F. In this route, we must use these propositions as hypotheses based on
which the inferential machinery of the formal system F may operate (denoted by ar-
row (3)); it generates theorems in F, entailed precisely by the encoded hypotheses.
Finally, we have to decode these theorems back into the phenomena of N, via arrow
(4). At this point, the theorems become predictions about N. Then the formal system
F is called a model of the natural system N if we always get the same answer regard-
less of the fact whether we follow path (1) or path (2) þ (3) þ (4). The process of
modelling complex systems is a very comprehensive one. A system is to be treated
as a complex structure, as for instance in Peter Checkland’s definition: “A system is a
model of a whole entity; when applied to human, the model is characterized funda-
mentally in terms of hierarchical structure, emergent properties, communication and
control”(Levich and Solovyov, 1999, p. 318). The major components of complexity
are openness and freeness, but the distinctive characteristic is “natural activity” like
self-organization, and still of great importance as intraactivity but now joined by the
phenomena of anticipation (Checkland, 1981) and interactivity between systems to
be found in global interoperability. The transition from connectivity to activity in-
volves a type change and therefore requires a formal system with an inbuilt facility
to cross between the levels. Thus, intraconnectivity between the components cannot
give rise to interactivity between those components without some nonlocal integrity
coming into play (Klir, 2002). The nonlocality is a principle that is, among some

FIGURE 2.1

Schematic diagram representing both (i) the comparison of two formalisms F1 and F2 and (ii)

modelling relation when we have given a natural system (N) and a formal system (F) (Rosen,

1991). Here, 1 represents causal entailment within the natural system (N); 2 represents

encoding, where the observer’s propositions about N are used as hypotheses in constructing

formal system (F); 3 is the generation of theorems in F, which function as a model of N; and 4

is decoding, where the theorems of F are applied back to N in the form of predictions

(Mihailovic et al., 2012).
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others, specific for a certain object area such as the inorganic, living, or human
realm. This principle means certain interaction between the elements of the system
that is treated as the transmission of information at infinite speed (see, for instance,
Bell (1964)).

2.2 BASICS OF CATEGORY THEORY
Category Theory, a discipline developed by Mac Lane (1971) and recommended by
Rosen (1991) as a modern tool for complex (and living) systems, is found to have
a formal expressive power for exploring the fundamental nonlocal concept of adjoint-
ness needed to understand complex systems. The arrow of Category Theory does not
have just a formal meaning. According to Rossiter and Heather (2005), it formalizes
the principle of constancy (originally introduced by Heraclites and Parmenides) that is
provided by a common source and target. Such an arrow refers to the situation in
which a source and target are indistinguishable. In a defined system, the collection
of entities can be identified as objects, while operations between them are defined
by arrows. Fig. 2.2 shows that there may exist many possible arrows between objects.
However, Category Theory holds that a unique limiting arrow may exist for all of
these possible arrows that represent the resulting intraconnectivity of a local system.
There is an order between the two entities established by the directions of arrows
(Manes and Arbib, 1975). This means that the arrow limit between two entities is
also a limit of all possible paths. Because of the existence of limits and all possible
connectivity, this is classified by axiomatic categories as a Cartesian closed category.
Moving up one level, there is a grand limiting arrow for all of the aforementioned
limits, existing as an identity functor characterizing the type and therefore the system
as a category (Fig. 2.3). A system as a category may then be drawn as a circular arrow,
which is the identity functor that identifies the type of a system (Manes and Arbib,
1975; Rossiter and Heather, 2005). Therefore, the system can be represented as an ar-
row, i.e., a process in which the internal arrows are simply the components of one
arrow. This then leads to interconnectivity between the systems. Also, the functor be-
tween two categories is conceptually the same as internal arrows between the arrows

(a) (b) (c) (d)
A A

IDA

B f ff g g h

g f

h◦

◦◦◦
◦g f◦

◦

g

(h g) f h (g f)=

FIGURE 2.2

Schematic diagram representing the Category Theory essentials: (a) morphism (arrows),

objects, domain, and codomain, (b) identity morphism, (c) composite morphism, and

(d) identity composition and associativity (Mihailovic et al., 2012).
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above. Within the framework of this theory, it is possible to repeat the abstraction to
one level higher, to the so-called natural transformations. This level is the level of
interactivity. It is important to note that the self-organization of a Category Theory
system (intraactivity) arises when the category-system pair is indistinguishable.
Finally, Category Theory is a very useful tool when we meet difficult problems in
some areas of mathematics, ecology, physics, computer sciences, biological nano-
engineering, and the self-organization of cell function in living systems (Wolkenhauer
and Hofmeyr, 2007), among many others. They can be translated into (easier) prob-
lems in other areas (e.g., by using functors, which map one category to another).

Let us briefly expose essentials of Category Theory in a condensed form. A cate-
gory is a quadruple A ðO; hom; id;+Þ, where
1. O is a class of A -objects,
2. for each pair (A, B) of A -objects, a set hom(A, B) is the set of A -morphisms,

from A to B [f ˛ hom(A, B) is expressed as f: A / B or A/
f
B],

3. for each A -object A, a morphism A!id A is called the A -identity of A,

4. a composition law associating each A -morphism A/
f
B and each A -morphism

B/
g
C is an A -morphism A!g+f C, called the composite of f and g,

Impose the following conditions:

1. composition is associative, i.e., for morphism A/
f
B, B/

g
C, and C/

h
D, the

equation h+ðg+f Þ ¼ ðh+gÞ+f holds,
2. A -identities act as identities with respect to composition, i.e., for A -morphism

A/
f
B, we have idB+f ¼ f and f+idA ¼ f ,

3. the sets hom(A, B) are pairwise disjoint.

If A ¼ ðO; hom; id;+Þ is a category, then
1. the class O of A -objects is denoted by ObðA Þ.
2. the class of all A -morphisms is denoted by MorðA Þ (or HomðA Þ) is defined to

be the union of all the sets hom(A, B) in A .
3. if A/

f
B is an A -morphism, we call A the domain of f [A ¼ dom(f)] and call B the

codomain of f [A ¼ cod( f )].

C category D category

F functor

FIGURE 2.3

Schematic diagram representing the functor “action” (dashed line) (Mihailovic et al., 2012).
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4. the composition +, is a partial binary operation on the class MorðA Þ. For a pair
(f, g) of morphisms, f+g is defined if and only if the domain of f and codomain
of g coincide.

If we have h ¼ g+f , then sometimes it is denoted by A/
f
B/

g
C or by saying that

the following triangle commutes

Similarly, the statement that the square commutes means that g+f ¼ k+h. A mor-

phism A/
f
B in a category is called an isomorphism provided that there exists a

morphism g: A / B with g+f ¼ idA and f+g ¼ idB. Objects A and B in category
are said to be isomorphic provided that there is an isomorphism f: A / B. If A
and B are categories, then a functor from A to B is a function that assigns to

each A -object A a B -object F(A) and to each A -morphism A/
f
B a B -morphism

FðAÞ !Fðf ÞFðBÞ such that

1. F preserves composition, i.e., F ðf+gÞ ¼ F ðf Þ+F ðgÞ whenever f+g is defined;
2. F preserves identity morphisms, i.e., F(idA) ¼ idF(A) for each A -object A.

A functor F : A /B is called an isomorphism provided that there is a functor
G : B/A such that G+F ¼ idA and F+G ¼ idB . The categories A and B are
said to be isomorphic if there is an isomorphism F : A /B .

2.3 BASICS OF MATHEMATICAL THEORY OF GENERAL
SYSTEMS

Following Mesarovic’s Mathematical Theory of General Systems (Mesarovic and
Takahara, 1972), if we observe interactions of agents with their surrounding environ-
ment, such a system can be defined as a set of interacting objects
S4O1 � O2 � O3 �.� On. If we denote the population of agents under consid-
eration as p ¼ fp1; p2; p3;.; png and a set of external influences as
E ¼ fe1; e2; e3;.eng (these influences can be either other agents or extra-
systemic influences), then the state of such formed systems at any particular moment
in time can be defined as the Cartesian product s4P� E. Because our system is a
dynamical network of interactions where at each moment the hierarchical status of
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network elements can vary significantly, we have to define state of the population P
as a mapping u : e/p; e ˛ E; p ˛ P. Both e and p are defined as temporal
sequences of events such that E ¼ fe: T/Ig and P ¼ fe: T/Rg, where T is a
set of time points t, I is a set of external stimuli on a particular agent such that at
each time system receives stimulus i(t) and R is a set of responses, r(t). Furthermore,
both P and E are formal systems. Therefore, the occurrence of p and the occurrence
of e at some particular time point t are governed not only by mapping u but also by
the internal rules of these systems, which are partially independent. Thus, it is
obvious that changes in an environment induce appropriate responses in agents
through the model of coupled input/output pairs. In real systems, the reverse situa-
tion is also possible such that some external changes can be influenced by the activ-
ity of organisms. It is clear that a critical factor in building an evolvable model as
described above is choosing the appropriate structure for the mapping I/R.
When dealing with models usually developed as prediction tools, it is sufficient to
assume the attitude of analyzing a “black box.” Therefore, we can propose a function
that should summarize all available experimental data and obtain a set of more or
less accurate predictions for various initial conditions. However, in such a case
we will neglect the real meaning of the nature of mappings within E and P. Taking
a slightly closer look at these relations, we can see that a somewhat hidden problem
is that of how I is generated from the wholeness of external changes and what is the
connection between generating I with a constitution of the corresponding R.
Although this connection can be efficiently represented using the FCA (Ganter
and Wille, 1997), its evolvability demands a more advanced formal treatment to
be fully comprehended.

2.4 FORMAL CONCEPT ANALYSIS IN MODELLING THE
INTERACTION OF LIVING SYSTEMS AND THEIR
ENVIRONMENTS

To establish a more accurate estimation of the pattern of interactions of biological
systems with their environment, as well as interactions among living systems, it is
necessary to take into account the manner in which they “observe” the environ-
ment, separate it into different functional patches, and associate the patches with
an internal functional schematism. The formal representation of such processes
can be elegantly and efficiently performed by using the FCA, which is a branch
of the applied lattice theory. FCA was introduced by Wille (1982) and defines a
concept as a unit of two parts: extension and intension. The extension covers all
objects belonging to a particular concept, and the intension comprises all attributes
valid for all of those objects. Both attributes and objects are united by a triple (G,
M, I), which is called a formal context if G and M are sets and I 4 G � M is a
binary relation between G and M. Also, between these two closure systems (G
and M), a dual isomorphism is established. The ordered set of all formal concepts
of (G, M, I) forms the concept lattice of (G, M, I), which is always complete. The
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FCA has been academically and commercially applied over a wide range of do-
mains, such as medicine, biology, psychology, musicology, archeology, law, civil
and industrial engineering, library and information science, computer science,
and mathematics. In these applications, the main achievements of concept lattices
are due to the support of general tasks such as exploring, searching, recognizing,
identifying, analyzing, investigating, and deciding (Ganter and Wille, 1997).
The mathematization of concepts may be understood as a first step in mathematiz-
ing the traditional philosophical logic, understood as a doctrine of the forms and
functions of thinking based on concepts, judgments, and conclusions, which leads
to contextual logic (Wille, 2000; Crvenkovi�c et al., 2009, 2012). However, one of
the most important characteristics of interaction with the environment in organ-
isms is versatility. Therefore, an FCA-based formalism can be used within a
much broader framework that allows for the comparison of substantially different
structures. Here, we consider concept lattices and we give a description of the
fundamental theorem on concept lattices.

Concept lattices. An order (or partial order) on a set P is a binary relation� on P
such that, for all x, y, x ˛ P,

1. x � x,
2. x � y and y � x imply x ¼ y,
3. x � y and y � z imply x � z.

A set P equipped with an order relation � is said to be an ordered set.
Let P be an ordered set and let S 4 P. An element x ˛ P is an upper bound of S if

s � x for all s ˛ S. A lower bound is dually defined. The set of all upper bounds of S
is denoted by Su and the set of lower bounds by Sl

Su: ¼ fx˛Pjðcs˛ SÞ s � xg
Sl: ¼ fx˛Pjðcs˛ SÞ s � xg:

If Su has a least element, x, then x is called the least upper bound of S. Equiva-
lently, x is the least upper bound of S if

1. x is an upper bound of S and
2. x � y for all upper bounds y of S.

Dually, if Sl has the largest element x, then x is called the greatest lower bound of
S. Least elements and greatest elements are unique, so least upper bounds and great-
est lower bounds are unique when they exist. The least upper bound of S is also
called the supremum of S and is denoted by sup S; the greatest lower bound of S
is also called the infimum of S and is denoted by inf S.

We write xny in place of sup {x, y} when it exists and x ^ y in place of inf {x, y}
when it exists. Similarly we writenS instead of sup S and ^S instead of inf S when
these exist. Let P be a nonempty ordered set.

1. If xny and x^y exist for all x, y ˛ P, then P is called a lattice.
2. If nS and ^S exists for all S 4 P, then P is called a complete lattice.
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The theory of ordered sets and lattices provides a natural setting in which we can
discuss and analyze hierarchies occurring within mathematics and in the “real”
world.

A concept is considered to be determined by its extent and intent: the extent con-
sists of all objects belonging to the concept, while the intent is the collection of all
attributes shared by the objects. It is often difficult to list all the objects belonging to
a concept and usually impossible to list all its attributes; therefore, it is natural to
work with a specific context in which the objects and attributes are fixed. A context
is a triple (G,M, I) in whichG andM are sets and I 4 G �M. The elements ofG and
M are called objects and attributes, respectively. (g, m) ˛ I means “the object g has
attribute m.”

For A 4 G and B 4 M, we define

A0 ¼ fm˛Mjðcg˛AÞðg;mÞ˛ Ig;
B0 ¼ fg˛Gjðcm˛BÞðg;mÞ˛ Ig:

Therefore, Aʹ is the set of attributes common to all objects in A, and Bʹ is the set of
objects possessing the attributes of B. The concept of the context (G, M, I) is a pair
(A, B), in which A 4 G, B 4 M, Aʹ ¼ B, and Bʹ ¼ A. The extent of the concept (A,
B) is A, while the intent is B. A subset A 4 G is the extent of some concept if and
only if Aʺ ¼ (Aʹ)ʹ ¼ A, in which case the unique concept of which A is an extent is
(A, Aʹ). The corresponding statement applies to these subsets B of M, which are the
intents of some concept.

The set of all concepts of the context (G, M, I) is denoted in the literature by
B (G, M, I). For concepts (A1, B1) and (A2, B2) in B (G, M, I), we write
(A1, B1) � (A2, B2) and state that (A1, B1) is a subconcept of (A2, B2) or that (A2,
B2) is a superconcept of (A1, B1) if A1 4 A2 (which is equivalent to B1 J B2). As-
sume that (G, M, I) is a context, and let A, Aj 4 G and B, Bj 4 M, for j ˛ J. Then

(i) A4A00; (i)ʹ B4B00;
(ii) A14A20A0

1JA0
2; (i)ʹ B14B20B0

1JB0
2;

(iii) A04A000; (iii)ʹ B04B000;
(iv) ðW

j˛J
AjÞ0 ¼ X

j˛J
A0
j (iv)ʹ ðW

j˛J
BjÞ0 ¼ X

j˛J
B0
j

Let Q be an ordered set, and P 4 Q. Then, P is join-dense in Q if for every
element s ˛ Q there is a subset A of P such that s is the supremum of A in Q, i.e.,
s ¼ VQA. The dual of join-dense is meet-dense.

The fundamental theorem of concept lattices. Let (G, M, I) be a context. Then,
(B(G, M, I); �) is a complete lattice in which join and meet are given by

n
j˛J

ðAj;BjÞ ¼
��

W
j˛J

Aj

�00
; X
j˛J

Bj

�

^
j˛J

ðAj;BjÞ ¼
�
X
j˛J

Aj;

�
W
j˛J

Bj

�00�
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Conversely, if L is a complete lattice, then L is isomorphic to B (G, M, I) if and
only if there are mappings g: G/ L and m: M/ L such that g(G) is join-dense in
L, m(M) is meet-dense in L, and (g, m) ˛ I is equivalent to g(g) � m(m) for each
g ˛ G and m ˛ M. In particular, L is isomorphic to BðL; L; � Þ for every complete
lattice L. The proofs of the previous assertion can be found in Davey and Priestley
(1990). Therefore, the class of complete lattices coincides with the class of concept
lattices.

If we are interested in algebraic laws satisfied by complete lattices, it is obvious that
the class of all complete lattices could not be defined by a finite set of lattice identities.
This is a consequence of the fact that inf and sup are basically infinitary operations. A
lattice L ðL;^;nÞ is said to be distributive if the following law holds for L :

x^ðynzÞ ¼ ðx^yÞnðx^zÞ:
An empirical experience seems to show that contexts arising from concrete prob-

lems in real life rarely happen to have distributive concept lattices. The followingmay
be found in Erne (1993). Define for any A 4 G the conditional incidence relation AI

jAIm if every consequence of m that holds for all objects in A is valid for j.
Dually, for any set B 4 M we define
jIBm if every specialization of j possessing all attributes in B has property m.
We call the pair (A, B) discriminating if

I ¼ AIXIB:

A concept lattice (B (G,M, I);�) is distributive if and only if each concept of the
context (G,M, I) or, equivalently, each pair (A, B) with A � B 4 I is discriminating.

The arrow relations of context (G,M, I) are defined as follows: for h ˛ G,m ˛ M
let

gcm : 5

� ðg;mÞ ; I;

if g04h0
and

and g0sh0; then ðh;mÞ˛I

gbm : 5

� ðg;mÞ;I;

if m04n0
and

and m0sn0; then ðg; nÞ˛I
g4m : 5gcm and gbm:

All the lattices in our examples are finite. We have the following: a finite lattice
with standard context (G, M, I) is distributive if and only if

g4m; gbn0m ¼ n:

A subrelation J4 I is closed if every concept of (G,M, I) is also a concept of (G,
M, I). S is a complete sublattice of (B (G,M, I);�) if and only if S ¼ (B (G,M, I);�)
for some closed subrelation J4 I (Davey and Priestley, 1990).

A classK of lattices is a variety ifK is defined by a set of lattice identities. It is
well known, from universal algebra, that a classK is closed under H (homomorphic
images), S (sublattices), and P (direct product).

VarðK Þ ¼ HSPðK Þ:
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A variety is finitely based if it can be defined by a finite set of identities. The
following result is provided by McKenzie (1970): for any finite lattice L, the variety
Var(L) is finitely based.

Also, becausewe are dealingwith finite lattices and every finite lattice is a complete
lattice, it is good to know the following. The varietyL of all lattices is generated by its
finite numbers. Therefore, the class of finite concept lattices generates the whole va-
riety of lattices. What is the meaning of this assertion? Think of any nontrivial lattice
identity. There is a finite concept (G,M, I) such that (B (G,M, I);�) does not satisfy
this identity. The theory of lattices and techniques of universal algebra provide a
powerful tool for the identification of the lattice identities of a given lattice.

2.5 BASIC CONCEPTS OF THE CHAOS THEORY
As it was said, the environmental interfaces are formed between complex systems
which are per definitionem nonlinear ones. Dynamics of those systems can be
described by the sets of differential equations, which cannot be solved analytically,
even in the case if a complex system is described by system of equations that
“completely” captures the whole system. Often, when working with such systems, sci-
entists rely on tools developed for simpler, linear systems. Their idea about solving
this problem is quite similar to one attributed to King Christian IV of Denmark
from 17th century, who standing face to face with the “unsolvable problem,” always
asked his own advisor what hewould to do. “YourMajesty, the same as you always do
in these situations. Make a simplification of the complex problem to the simplest one.
It always works!” (Tremain, 2001). He, as many others, didn’t make a clear distinc-
tion between problems that can be successfully divided into parts, and those where
such an approach is not advisable. Similarly, in physics, only linear systems can be
broken into parts (Strogatz, 2007). Pursuing this way then without many obstacles
we get the answer. First we solve each part separately and secondly, by their recom-
bination, we reach that a linear system is accurately equal to the sum of its parts. This
idea offers to scientists a great simplification of complex problems transferred for the
world of nonlinear physics to the linear one. However, things and processes in nature
definitely do not follow this way. For example, when somebody at the same time lis-
tens to two favorite piano concerts (what is a complex event in any sense), then the
listener does not get double pleasure since the principle of superposition fails dramat-
ically in “nonlinear” life. The “linear sight” on the “nonlinear” world works well up to
some level of accuracy and some range for the input values, but some interesting phe-
nomena such as chaos and singularities (Frisch and Morf, 1981) are hidden by
linearization. It follows that some aspects of the behavior of a nonlinear system appear
commonly to be chaotic, unpredictable, or counterintuitive.

Chaos theory is a field of study in mathematics that has applications in several
disciplines including meteorology, physics, technique, economics, and environ-
mental sciences. It studies the behavior of dynamical systems that are highly
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sensitive to initial conditions. In layperson language, when we talk about “chaos” we
mean “a state of disorder.” However, in deterministic chaos theory, this term is
defined more precisely. Although there is no universally accepted mathematical defi-
nition of chaos, a commonly used definition says that, for a dynamical system to be
classified as chaotic, it must have the following properties (Hasselblatt and Katok,
2003): (1) it must be sensitive to initial conditions; (2) it must be topologically mix-
ing; and (3) its periodic orbits must be dense. Apart from the chaotic, there exist
other types of nonlinear behaviors which are (1) multistabilitydthat alternates
between two or more exclusive states; (2) aperiodic oscillationsdfunctions that
do not repeat values after some period (otherwise known as chaotic oscillations or
chaos); and (3) solitonsdself-reinforcing solitary waves (Khalil, 2001). Since
most chapters in this book deal with different aspects of nonlinear dynamics, here
we will not go into details of mathematical formalisms. They will be explained sepa-
rately for each specific example.
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Approaches and meaning
of time in the modelling of
the environmental
interface systems

3
Designing the models and their use in computer simulation in the environmental sci-
ences has opened many epistemological questions (Heymann, 2010; Tolk, 2013).
Although, practical considerations often overruled the problems of epistemology
(Heymann, 2010) sometimes it is necessary to make basic epistemological choices,
especially in modelling. In the previous chapter, we highlighted the importance of
being nonlinear. If we decide to linearize “the object of modelling” then we use
linear equations where the variables and their derivatives must always appear as a
simple first power. The theory for solving linear equations is very well developed
because linear equations are simple enough to be solvable. The shortcoming of
this approach is the fact that many things and phenomena, even important ones,
remain hidden. However, if we decide to follow as much as possible the existing
nonlinearities in the object that we model, we have to consider the following key
points: (1) model choice; (2) continuous time versus discrete time in building the
model; and (3) time in building the model.

3.1 MODEL CHOICE
Ceteris paribus is a Latin phrase meaning “if all other relevant things, factors, or
elements remain unaltered” or “all or other things being equal or held constant”.
Ceteris paribus laws are defined as natural laws that are accurate in expected condi-
tions but can have exceptions. Whereas physics has a tendency to state universal
laws that hold true in “normal conditions,” in other sciences, like biology, psychol-
ogy, or economics, laws usually have exceptions, the so-called ceteris paribus laws
(Reutlinger, 2014). The laws of nature involve more formal hidden assumptions,
about which we have no awareness. Those laws are expressed through mathematical
equations or formulae that include mathematical premises, which were unknown at
the time when the law was formulated. For example, physics for a long time func-
tioned on an assumption that the equation of motion in classical mechanics is a
strictly deterministic equation which provides a complete prediction of the future.
What is ceteris paribus condition in this case? The answer to that can vary greatly
(Earman et al., 2002). One line of thought is that all physical laws are true and
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universal claims. So, the Newton’s Second Law of Motion is always true. The other
opinion is that even the basic laws of physics contain (perhaps implicit) ceteris
paribus clauses. So, to the basic equation, we would need to add a special constrain-
ing condition that the equation holds so long as everything that can affect the
targeted effect is describable in the theory (Cartwright, 2002). An illustration for
the ceteris paribus is the energy balance equation for the ground surface, which is
often used in boundary layer and numerical weather modelling (Bhumralkar,
1975). This is a typical example of an environmental interface in nature, where exist
all three mechanisms of energy transfer: incoming and outgoing radiation, convec-
tion of heat and moisture into the atmosphere, and conduction of heat into deeper
soil layers of ground. This partial differential equation can be easily solved numer-
ically by stepping either forward or backward in time from a known initial condition
after it is written in the form of a difference equation. Under some conditions and
expected conditions in atmosphere the energy balance equation can be written in
the form (Mihailovic and Mimic, 2012)

Xnþ1 ¼ AnXn � BnX
2
n (3.1)

where X is the dimensionless environmental interface temperature, while dimension-
less coefficients An and Bn include an inverse form of resistance in calculating the
turbulent fluxes, which change periodically during a day (Pielke, 2002). This equa-
tion is a nonlinear autonomous difference equation that represents time changes of
the dimensionless environmental interface temperature response to the radiative
forcing (Stull, 1988). Its solution can exhibit chaotic fluctuations in the considered
system because the environmental interface cannot oppose an enormous radiative
forcing, suddenly reaching the interface. Therefore, it raises the question whether
we can find either domain or domains where physically meaningful solutions exist.
Fig. 3.1 depicts (a) chaotic fluctuations of solution in Eq. (3.1) and regions of stable
and (b) unstable solutions of this equation determined by the values of Lyapunov
exponent as a function the coefficients A˛ð0; 2Þ and B˛ð0; 0:5Þ.

In choosing the model, scientists often apply a heuristic technique that could be
defined as any approach to problem solving that makes use of a practical method not
guaranteed to be optimal or perfect but sufficient either for the immediate goals or
until a better approach is reached. We meet this approach in many sciences, in partic-
ular technical and environmental, when some phenomena cannot be expressed
through time-dependent equations, whereas they have to be parameterized. This
approach in modelling the turbulence inside the canopy turbulent is plastically
described by Sellers et al. (1986). He said: “We have mentioned before that use
of ‘K-theory’ within the canopy may be physically unrealistic, but because it yields
reasonable results we shall use this method until suitable second-order closure can
be applied to the problem.”

To illustrate this situation we use as example the differential equation describing
the wind profile within such a canopy architecture where the canopy is considered to
be a block of constant-density porous material “sandwiched” between two heights,
canopy height H and canopy bottom height h (Mihailovic and Kallos, 1997;
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Mihailovic et al., 2004). Within this architecture the equation can be written in
the form

d

dz

�
d

dz
Ks

�
¼ CdLdðH � hÞ

H
u2 (3.2)
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FIGURE 3.1

(a) Chaotic fluctuations of environmental interface temperature (X) in Eq. (3.1); (b) Regions

of stable and unstable solutions of Eq. (3.1) determined by the values of Lyapunov exponent

(l) in dependence of the coefficients A˛ð0; 2Þ and B˛ð0; 0:5Þ (Mihailovic and Mimi�c, 2012).
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where Ks is the turbulent transfer coefficient within the canopy, Cd is the leaf drag
coefficient, Ld is the canopy density, and u is the wind speed within the canopy.
To solve this equation, we have to know how Ks depends on parameters that repre-
sent the canopy’s aerodynamic and morphological features. Mihailovic et al. (2004)
used an approach in which Ks is proportional to wind speed u, i.e., Ks ¼ su were the
scaling length s is an arbitrary, unknown constant. With this assumption we solve
Eq. (3.2) to get the wind speed profile. Although this approach is not physically
unrealistic, from Fig. 3.2 it is seen that the profile obtained from Eq. (3.2) suitably
agrees with observed data.

3.2 CONTINUOUS TIME VERSUS DISCRETE TIME IN
BUILDING THE MODEL

Many mathematical models, more or less sophisticated, of environmental interface
systems have been built and will be built in the form of differential or difference

FIGURE 3.2

Profiles of (a) wind speed and (b) shear stress inside a maize crop. The black circles are

observations (Wilson et al., 1982) and the solid lines are plotted using calculated values. The

wind speed u and shear stress s are normalized by their values u(H) and s(H) at the canopy

top height (Mihailovic et al., 2004).
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equations or systems of such equations. It means that we confront the choice
whether we will deal either with the continuous-time or discrete-time environmental
interface systems, where time is considered as a continuous or discrete variable,
respectively. The dilemma about this choice is yet to be solved. For example, the
qualitative models (describing qualitative relations between the observed variables),
which seem heuristically close to the continuous-time models, exhibit drastically
different behaviors when they are designed in the discrete-time interpretation.
Therefore, it “could be naively to believe that continuous-time and discrete-time
models have the same qualitative characteristics” (Istas, 2005).

Many modelers in this area use mathematical techniques with an idea to replace
the given differential equations by apposite difference equations. It opens the
question “How to choose suitable difference equations whose solutions are ‘good’
approximations to the solutions of the given differential equation?” (van der Vaart,
1973). So a huge effort has been invested into choice of appropriate difference
equations. This question includes a requirement for better understanding of the
fundamental problem: interrelations between classical continuum mathematics
and reality in different sciences. For many environmental interface phenomena
the “continuum” type of thinking, that is, at the basis of any differential equation,
is not natural to the phenomenon but rather constitutes an approximation to a basi-
cally discrete situation. In many papers dealing with this approach, the “infinitesimal
step lengths” handled in the reasoning which lead us to the differential equation are
not really thought of as infinitesimally small but as finite. However, in the last stage
of such reasoning, where the differential equation rises from the differentials, these
“infinitesimal” step lengths go to zero, that is, where the above-mentioned approx-
imation comes in. Under this kind of circumstances, it seems more natural to build
the model as a discrete difference equation from the start, without going through the
painful, doubly approximative process of first, during the modelling stage, finding a
differential equation to approximate a basically discrete situation and then, for
numerical computing purposes, approximating that differential equation by a differ-
ence scheme. In modelling procedure we meet three problems (Mihailovic et al.,
2012). The first problem is this: (1) environmental scientists (also physicists and bi-
ologists among them) come to us with a theory in the form of differential equation
including the mathematical concept of the first derivative; (2) this is done in spite of
the fact that this concept is not a fairly suitable reflection of many environmental
phenomena as a difference equation would be. The second problem is the possible
way for a given differential equation to construct a difference equation with exactly
the “same” collection of solutions. The third problem is defined conversely to the
second one: whether we in any way for a given difference equation can construct
a differential equation with exactly the same solutions? In this book we will give
the advantage to discrete-time approach in building the models describing the
environmental interface phenomena.

It is worth mentioning that the traditional mathematical analysis of physical and
other dynamical systems tacitly assumes that integers and all real numbers, no mat-
ter how large or how small, are physically possible and all mathematically possible
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trajectories are physically admissible (Kreinovich, 2003). Traditionally, this
approach has worked well in physics, biology, and in engineering, but it does not
lead to a very good understanding of chaotic systems, which, as it is now known,
are extremely important in the study of real-world phenomena ranging from weather
to biological and environmental interface systems (Mihailovic, 2012).

3.3 TIME IN MODEL BUILDING
In classical physics, the time is an objective continuous function. Traditionally, time
has been modeled as a basic variable taking its values from an interval on a real axis.
The pervasiveness of this concept was largely due to the success of the models it sup-
ported, in particular to the expression of physical laws by differential equations
which ultimately relied on the limiting process, inherent in the notion of a (total
or partial) derivative. Despite this success at the computational level, it has long
been clear that the truly ramified nature of time cannot be captured by what amounts
to a mathematical convention (Smith, 2003), although, all of the fundamental the-
ories of physics are symmetric with respect to time reversal. The only fundamental
theory that picks out a preferred direction of time is the second law of thermody-
namics, which asserts that the entropy of the Universe increases as time flows toward
the future, providing an orientation, or arrow of time, and it is generally believed that
all other time asymmetries, such as our sense that future and past are different, are a
direct consequence of this thermodynamic arrow (Eddington, 1928; Feng and
Crooks, 2008).

In contrast with classical physics in biology, the concept of “time’s cycle” is
commonly applied as a metaphor (Günther and Morgado, 2004). These two and
other notions of time often present in environmental complex systems, we will
consider in Part II.
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Examples of use of the
formal complex analysis 4
In this chapter, we present two simplified but illustrative examples of formal com-
plex analysis (FCA): (1) making of the conceptual hierarchy of animals based on
their attributes and (2) construction of the subjective interface between biological
systems and their environments. These examples are based on reasoning from
Crvenkovic et al. (2009, 2012) and Wolff (1994).

4.1 USE OF FORMAL COMPLEX ANALYSIS IN THE CONTEXT
OF ANIMALS: AN EXAMPLE

The following example is adapted from Wolff (1994). Table 4.1 describes which of
the mentioned attributes some animals have. This is indicated by crosses. An empty
cell indicates that the corresponding animal does not have the corresponding
attribute. To explain the notion of a formal concept of a context, we look at the
attributes of the FINCH and look for all other animals, within the same context
that share the same set of attributes. Hence, we obtain sets A ¼ {FINCH, EAGLE}
and B ¼ {flying, bird}. A is the set of all objects having all of the attributes of B, and
B is the set of all attributes that are valid for all of the objects of A. Each such pair
(A, B) is called a formal concept. Between the concepts of a given context there is a
natural hierarchical order, the “subconceptesuperconcept” relation. For example,
the preying, flying birds describe a subconcept of the concept of the flying birds.
The extent of this subconcept consists only of the EAGLE, and the intent consists

CHAPTER

Table 4.1 Object Versus Attributes in the Context of Animals

Attribute
Animals Preying Flying Bird Mammal

Lion X X

Finch X X

Eagle X X X

Hare X

Ostrich X

Reprinted from Crvenkovi�c, S., Mihailovi�c, D.T., Bala�z, I., 2012. Formal concept analysis and category
theory in modeling interaction of living systems and their environments. In: Essays of Fundamental and
Applied Environmental Topics. Nova Publishers, Nova Science Publisher Inc., New York, pp. 23e44;
with permission from Nova Science Publishers, Inc.
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of the three attributes preying, flying, and bird. In the example we started with, the
extent is the set A, while the intent is the set B. In the following line diagram, we
represent the conceptual hierarchy of all concepts of the context ANIMAL
(Fig. 4.1).

Following the reading rule for conceptual hierarchy, we can recognize from the
line diagram that the lion has the attributes preying and mammal. Using the reading
rule, we can easily understand from the line diagram the extent and the intent of each
concept by collecting all of the objects below each respective attribute above the cir-
cle of the given concept. Hence the object concept “finch” has the extent finch and
eagle and the intent flying and bird. For this example, the extent of the top concept is
the set of all objects, while the intent of it does not contain any attribute. However, in
other contexts, the intent of the top concept may not be empty, e.g., if we add to the
given context the attribute “animal” with crosses in each row, then the top concept
would be the attribute concept of “animal” and the intent of the top concept would
contain only the attribute “animal.”

If we extend the set of objects, we must change the lattice of conceptual hierar-
chy. For example, the new object bee has an attribute “flying” but it is not a bird.
Thus, we have to separate “flying” and “bird” to meet finch.

FIGURE 4.1

Conceptual hierarchy of all concepts of the context animal according to Table 4.1. A line

diagram consists of circles, lines, objects (written in capital letters), and attributes (small

letters). The relation between concepts and attributes can be read from the line diagram by

the following simple reading rule: an object g has an attribute m if and only if there is an

upward leading path from the “g” circle to the “m” circle.

Reprinted from Crvenkovi�c, S., Mihailovi�c, D.T., Bala�z, I., 2012. Formal concept analysis and category theory in

modeling interaction of living systems and their environments. In: Essays of Fundamental and Applied Envi-

ronmental Topics. Nova Publishers, Nova Science Publisher Inc., New York, pp. 23e44; with permission from

Nova Science Publishers, Inc.
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According to the second diagram (Fig. 4.2), “mammals” and “flying” imply
“preying” and “bird”, i.e., they meet at the bottom of the lattice, and “preying”
and “bird” are above. However, it does not correspond well with our world, since
bats are flying mammals and not birds. Thus, we have to extend the lattice by adding
a new vertex bat. This is shown in the third diagram (Fig. 4.3).

4.2 USE OF FORMAL COMPLEX ANALYSIS IN CONSTRUCTING
THE SUBJECTIVE INTERFACE BETWEEN BIOLOGICAL
SYSTEMS AND THEIR ENVIRONMENTS

In this example, we present a simplified but illustrative example of an abstract living
system’s interaction with the environment. Our goal is to represent how subjective
processing of the environment is achieved, what are the functional consequences
and how this process influences the dynamics of the organization of living systems.
This example is based on reasoning from Crvenkovic et al. (2009, 2012), with addi-
tional explanations and clarifications.

Let us define a set of environmental objects O ¼ fo1; o2; o3;.;mng. From the
perspective of living systems, only objects that have some recognizable attributes
could be perceived. Therefore, we can define a set of attributes
M ¼ fm1;m2;m3;.;mng. Within FCA, objects and attributes are mutually defined,

FIGURE 4.2

Modification of conceptual hierarchy to incorporate flying animals that are not birds.

Reprinted from Crvenkovi�c, S., Mihailovi�c, D.T., Bala�z, I., 2012. Formal concept analysis and category theory in

modeling interaction of living systems and their environments. In: Essays of Fundamental and Applied Envi-

ronmental Topics. Nova Publishers, Nova Science Publisher Inc., New York, pp. 23e44; with permission from

Nova Science Publishers, Inc.
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so we automatically obtain set G4O : fcg˛Gjðg;mÞ˛Ig, where I is a binary
relation between M and G. In other words, every object that does not form a binary
relation with a corresponding attribute and vice versa, simply does not exist from the
perspective of a particular formal context. Thus, the concept of the “whole”
environment changes its epistemological status and is reduced to an observable
environment, i.e., to a set of objects characterized by defined attributes. After
recognizing an object, the living system categorizes it into functional subsets. So,
the supposed object can be categorized, for example, as a source of food, place
for shelter, or threat. In terms of the FCA, the environment is separated into a set
of concepts within a context defined by the triple (G, M, I). In simple organisms,
the attributes used in separating environmental factors from one another can be
divided into two main categories: physical influences (various types of radiation
or temperature) and chemical influences (various types of molecules or ions).
However, these attributes are further divided into a set of subattributes, which can
be represented as a scale of values within a given attribute. In this way, a segment
of the environment is encircled by a certain attribute and is further divided according
to the given scale within that attribute, thus establishing a many-valued context (G,
M,W, I) where G is a set of objects,M is a set of many-valued attributes,W is a set of
attribute values, and I is a ternary relation I4G�M �W .

To illustrate that, we will use the very simple model of a typical photosynthetic
organism. Organisms interact with their environment using evolved receptors.

FIGURE 4.3

Further modification of conceptual hierarchy to separate flying birds from flying mammals.

Reprinted from Crvenkovi�c, S., Mihailovi�c, D.T., Bala�z, I., 2012. Formal concept analysis and category theory in

modeling interaction of living systems and their environments. In: Essays of Fundamental and Applied

Environmental Topics. Nova Publishers, Nova Science Publisher Inc., New York, pp. 23e44; with permission

from Nova Science Publishers, Inc.

34 CHAPTER 4 Examples of use of the formal complex analysis



At any given time, the set of active receptors reflects metabolic state of the organism.
In our example, we can divide receptors into two groups: into photoreceptors and
receptors for various types of external molecules. Therefore, in our conceptual
scheme we postulate the existence of two main attributes: radiation and molecule
(Table 4.2). The attribute “molecule” is further divided into two subclasses based
on their size, denoted as L and S. All molecules that can spontaneously enter or leave
cells without interacting with receptors are in the S group. These can be water
molecules or small water-soluble ions. Consequently, all other molecules are in
the L group. This group is further divided into several types of recognizable
molecular structures (Table 4.2). Similarly, “Radiation” attribute is divided into
several subattributes. Finally, we introduce one more attribute, defined as a global
regulator. To preserve the simplicity of the model, this attribute does not have any
subattributes. In living organisms, the role of global regulators is to coordinate meta-
bolic response of the cell as a response to change of external conditions. As has
already been mentioned, each attribute defined here corresponds to the receptive
ability of an organism to perform the following chain of actions: (1) recognition
of some stimulus (to form concept), (2) assimilation of stimulus and/or changing
its own configuration, and (3) activation (indirectly or directly) of some other
molecules to process the received information.

Because FCA is strictly lattice based, it is unable to depict the sequential
dynamics of some process. Therefore, we will construct several different formal
contexts and corresponding lattices, which will demonstrate how the internal
network responds to external stimuli.

We will first define formal context that shows the interaction of the generic
photosynthetic organism with the environment. According to the previously
described process, the organism has a limited set of active receptors, and through
them, it determines which kind of external influences it can observe and react to
them. In this example (Table 4.3), the organism can initially sense water and small
ions (denoted as Mol. smaller than(1)), three kinds of organic molecular structures
(denoted as X, Y, and Z), and three kinds of radiation sources (denoted as
700 nm, 450 nm, and UV radiation).

Table 4.2 List of All Attributes Used in the Model. In Further Text, the Term
Structure (X.Q) Will Be Denoted by the Strings Str(X.Q)

Attribute Subattributes

Molecule L S Structure

X

Structure

Y

Structure

Z

Structure

W

Structure

Q

Radiation 700 nm 450 nm UV

Reprinted from Crvenkovi�c, S., Mihailovi�c, D.T., Bala�z, I., 2012. Formal concept analysis and category
theory in modeling interaction of living systems and their environments. In: Essays of Fundamental and
Applied Environmental Topics. Nova Publishers, Nova Science Publisher Inc., New York, pp. 23e44;
with permission from Nova Science Publishers, Inc.
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Table 4.3 Formal Context Which Represents Initial Steps in Interaction With the Environment

Molecule Radiation

Mol.

Larger

Than(1)

Mol.

Smaller

Than(2) Mol. StrX Mol. StrY Mol. StrZ Rad. 700 nm Rad. 450 nm Rad. UV

Object 0 X X

Object 1 X X

Object 2 X X

Object 3 X X

Object 4 X X

Object 5 X X

Object 6 X X X

Object 7 X X X

Object 8 X X X

Reprinted from Crvenkovi�c, S., Mihailovi�c, D.T., Bala�z, I., 2012. Formal concept analysis and category theory in modeling interaction of living systems and their
environments. In: Essays of Fundamental and Applied Environmental Topics. Nova Publishers, Nova Science Publisher Inc., New York, pp. 23e44; with permission
from Nova Science Publishers, Inc.
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Fig. 4.4a shows that the complete environment is divided into two main concepts,
which further diverge into several more specific concepts. Because each formed
concept in this model is connected with a previously defined chain of events,
Fig. 4.4b shows how a simple feedback-governed metabolic chain would look like
from an FCA perspective. The association of molecules with structures Z (MolstrZ)
and corresponding receptors (concept <10>) activates the production of the next
molecule (<12>), which in turn generates the product (<13>). Generation of the
final product inhibits the production of strZ receptors, the intermediate product
spontaneously degrades, and some other metabolic chain utilizes this final product
(<13>). Because (<13>) is no longer available, the production of strZ receptors
can start again.

In the second formal context, we introduced the activation of the supposed global
regulator (Fig. 4.5). Since the global regulator is able to coordinate different meta-
bolic processes, their hierarchical configuration is now different. Hierarchy is not
formed only as a result of direct relations between metabolic processes but also as
a result of global regulations. It is very important to emphasize that the activation
of global regulators in organisms is the inevitable consequence of the assimilation
of almost any external stimulus. More generally, an interaction with the environment

<1>

<2><3>

<4>

<5>

<6> <7>

<7>

<8>

<9>

<10>

<10>

<11>

<12>

<12>

<7> <7> <7> <7>

<10> <10><12> <13> <12> <13> <13>

I=(Radiation)

E=(Object 0, Object 1, Object 2)

I=(Rad UV, Radiation)

E=(Object 2)

I=(Radiation, Rad 450nm)

E=(Object 1)

I=(Rad 700nm, Radiation)

E=(Object 0)

I=(Mol larger than(1), Mol strX, Molecule)

E=(Object 6)

I=(Mol larger than(1), Mol strY, Molecule)

E=(Object 7)

I=(Mol larger than(1), Mol strZ, Molecule)

E=(Object 8)

I=(Mol larger than(1), Molecule)

E=(Object 6, Object 7, Object 8)
I=(Molecule, Mol smaller than (2))

E=(Object 5, Object 3, Object 4)

I=(Molecule)

E=(Object 5, Object 6, Object 7, Object 3, Object 4)

(a)

(b)

FIGURE 4.4

Lattice of the formal context given in Table 4.2 (a) Branching of the complete environment

into two concepts and (b) Example of a simple metabolic-governed metabolic change. (lattice

generation was performed using open-source software package “Galicia (2001)”).

Reprinted from Crvenkovi�c, S., Mihailovi�c, D.T., Bala�z, I., 2012. Formal concept analysis and category theory in

modeling interaction of living systems and their environments. In: Essays of Fundamental and Applied

Environmental Topics. Nova Publishers, Nova Science Publisher Inc., New York, pp. 23e44; with permission

from Nova Science Publishers, Inc.

4.2 Use of formal complex analysis 37



through the construction of a subjective perspective for living organisms is
connected with the temporality of the internal conceptual lattice. This means that
finalizing the formation of one configuration simultaneously causes its degradation
and reconfiguration.

This model is an oversimplified example of a generic photosynthetic organism,
but it can still reveal some important characteristics of functioning of living systems.
First, because they are able to form a subjective perspective, living systems operate
only within a limited scope of an entire environment. Moreover, they shape the
environment according to their ability to functionally process some external
segments, thus forming the subjective environment. This subjective construction
is highly variable because it is defined not as a reflection of the complete ability
of a living system to sense its environment but only as a reflection of currently active
receptors. Second, the formation of an internal conceptual lattice is inevitably
connected with the destruction of the previous one. At the molecular level, formation
of each conceptual lattice corresponds with the activation of different molecules,
receptors, and/or regulators. Each of them has strictly defined scope of action:
what could be its input and what are possible outputs. Therefore, change of compo-
sition of activated receptors or regulators change the current functional context and
lead to reconfiguration of the conceptual lattice.

<8><5>

<9>

<10>

<2>

<1>

<4> <3>

<6> <7>

<11>

<12>

<15>

<14>

<16>

I=(Global Regulator)

E=(Object 10, Object 0, Object 8, Object 1, Object 9)

I=(Radiation)

E=(Object 0, Object 1, Object 2)

I=(Molecule)

E=(Object 10, Object 5, Object 6, Object 7, Object 8, Object 3, Object 4, Object 9)

I=(Mol larger than(1), Molecule)

E=(Object 10, Object 6, Object 7, Object 8, Object 9)
I=(Molecule, Mol smaller than(2))

E=(Object 5, Object 3, Object 4)

I=(Rad UV, Radiation)

E=(Object 2)

I=(Mol larger than(1), Mol strY, Molecule)

E=(Object 7)

I=(Global Regulator, Radiation, Rad 450nm)

E=(Object 6)

<13>

I=(Global Regulator, Radiation)

E=(Object 0, Object 1)

I=(Mol strQ, Mol larger than(1), Global Regulator, Molecule)

E=(Object 10)

I=(Mol larger than(1), Mol strZ, Global Regulator, Molecule)

E=(Object 8)

I=(Mol larger than(1), Global Regulator, Molecule)

E=(Object 10, Object 8, Object 9)

I=(Rad 700nm, Global Regulator, Radiation)

E=(Object 0)

I=(Mol larger than(1), Mol strW, Global Regulator, Molecule)

E=(Object 9)

FIGURE 4.5

Lattice of the formal context for the same living system when global regulator is active.

Reprinted from Crvenkovi�c, S., Mihailovi�c, D.T., Bala�z, I., 2012. Formal concept analysis and category theory in
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Time in philosophy and
physics 5
Let us suppose that we ask a community of scientists dealing with the problems of
environmental modelling, the following question: “How do you understand the
time?” Our anticipation is that the most common answer could be synthesized by
the following sentences: (1) “That is clear!”; (2) “The time flows from the past to
the future”; and (3) “The time quite well ‘pursues’ equations, which we use in
our models.” Are these simple answers even close to be satisfactory? Certainly
not. We accept, continuous, linear notions of the time almost instinctively since it
looks natural. However, of all of the theories of the Universe, the one of time is
the most enigmatic and enchanting. Because of the multitude of usages of the
concept of time in various disciplines, the often evoked question is “What is the
meaning of time?”. Our idea of time we can possibly have in mind is essentially con-
nected to the events. Therefore, time makes sense only when it is in relation with
something. If not, in emptiness we cannot have time because there would be nothing
to relate it to. In psychology and neuroscience, time perception is a well-developed
field dealing with subjective experience of time. Although origins of perception of
time are not completely understood, it would not be a surprise that our sense of time
entirely is influenced by the nature of events themselves, since we measure time by
the events that mark it. With the progress in modelling of environmental interfaces,
the question of the concept of time becomes more authentic. In this chapter we
shortly outline understanding of the time in philosophy and physics.

5.1 TIME IN PHILOSOPHY
Scientists in some scientific communities, especially technical and technological,
have the perception that many problems can be solved by using “common sense”
(sound and prudent judgment based on a simple perception of the situation or facts).
However, this concept is not the prevailing one in all scientific disciplines, especially
fundamental ones. Thus, if the problem requires logic or language that is not “under
the control of common sense,” they usually naively but honestly say: “It is a matter
for philosophy!” By this statement they imply that philosophy is a discipline in
which “we can ask any question.” Insights originated from philosophy can became
an integral part of a scientific discourse, as it was the case with Mach’s principle
(Gürsey, 1963) or the problem of defining species (Boas, 1951). These new insights
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became integrated into the body of scientific knowledge and, as such, the basis for
further development of science. One of the key philosophical issues is the question
of time. In everyday life, the time is duration measured by clock. Despite a long
investigation of the nature of time, many issues about it are unresolved. Dowden
(2015) summarized some of the most important issues that are under discussion
in philosophical community regarding time as follows: (1) What should a philosoph-
ical theory of time do? (2) How is time related to mind? (3) What is time? (the va-
riety of answers, time vs. “time,” linear and circular time) Does time has a beginning
or end? Does time emerge from something more basic? (4) What does science
require of time? (5) What kinds of time travel are possible? (6) Does time require
change? Does time flow? (McTaggart’s A series and B seriesdsubjective flow
and objective flow (McTaggart, 1908)) (7) What are the differences among the
past, present, and future? (presentism, the growing-past, eternalism, and the
block-universe; Is the present, the now, objectively real?) (8) Are there essentially
tensed facts (using a tensed verb is a grammatical way of locating an event in
time)? (9) What gives time its direction or arrow? (time without an arrow? What
needs to be explained? Explanations or theories of the arrow, multiple arrows)
and (10) What is temporal logic? Here, we will consider just one issue upon which
philosophers are deeply divided: What is the ontological difference between, the
present, the past, and the future? Our analysis will largely follow the one laid out
previously (Dowden, 2015), but we will keep it as concise as possible. For more
elaborated analysis, the interested reader should check Dowden’s article (2015).

Philosophers of time could be divided into two broad groups in relation to this
question. Philosophers from the “A group” see time through the following points:
(1) events are always changing; (2) the now is objectively real and so is time’s
flow; (3) ontologically we should accept either presentism or the growing-past the-
ory (the philosophical doctrine that only events and entitiesdand, in some versions
of presentism, timeless objects or ideas like numbers and setsdthat occur in the pre-
sent exist); (4) predictions are not true or false at the time they are expressed; (5)
tenses are semantically basic; and (6) the ontologically fundamental entities are
three-dimensional objects. In contrast to them, members from the “B group” say
that: (1) events are never changing; (2) the now is not objectively real and neither
is time’s flow; (3) ontologically we should accept eternalism and the block-time
or block-universe theory (this would mean that time is just another dimension,
that future events are “already there” and that there is no objective flow of time);
(4) predictions are true or false at the time they are uttered; (5) tenses are not seman-
tically basic; and (6) the fundamental entities are four-dimensional events or pro-
cesses (space and time are merged into a space-time unchanging four-dimensional
“block”) (Dainton, 2010). This separation into groups is done following the basic
idea dating back at least to philosopher McTaggart’s B Theory of time (first pub-
lished in 1908, only three years after the first paper on relativity) (McTaggart,
1908), who proposed two ways of linearly ordering all events in time by placing
them into a series according to the times at which they occur, where this ordering
can be created in two ways, an A way and a B way.
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Here, we shortly describe McTaggart’s A and B series: Let us consider two past
events a and b, in which b is the most recent of the two (Fig. 5.1). In McTaggart’s B
series, event a happens before event b in the series because the time of occurrence
of event a is less than the time of occurrence of event b. But when ordering the
same events into McTaggart’s A series, event a happens before event b for a
different reason, because event a is more in the past than event b. Both series pro-
duce exactly the same ordering of events. Fig. 5.1 graphically depicts the ordering
where c is an event that happens after a and b. Obviously, there are many other
events that are placed within the series at the location of event a, namely all events
simultaneous with event a. If we were to consider an instant of time to be a set of
simultaneous events, then instants of time are also linearly ordered into an A series
and a B series. However, McTaggart (1908) himself believed the A series is para-
doxical, but he also believed the A properties such as being past are essential to our
current concept of time, so for this reason he believed our current concept of time is
not coherent. Now, let us include event c to occur in our present after events a and
b. The information that c occurs in the present is not contained within either the A
series or the B series. However, the information that c is in the present is used to
create the A-series; it is what tells us to place c to the right of b. In contrast to that,
this information is not used to create the B series. In metaphysic community, phi-
losophers dispute whether the A theory or, the B theory is the correct theory of
reality. The A theory includes two theses, each of which is contrary to the B theory:
(1) time is constituted by an A series in which any event’s being in the past (or in
the present or in the future) is an intrinsic, objective, monadic property of the event
itself. It is not merely a subjective relation between the event and us who exist. (2)
The second thesis of the A theory is that events change, as explained by McTaggart
(1908): “Take any eventdthe death of Queen Anne, for exampledand consider
what change can take place in its characteristics. That it is a death, that it is the
death of Anne Stuart, that it has such causes, that it has such effectsdevery char-
acteristic of this sort never changes. [.] But in one respect it does change. It began
by being a future event. It became every moment an event in the nearer future. At
last it was present. Then it became past, and will always remain so, though every
moment it becomes further and further past.” Here, we will not deal with the ques-
tion of time in biology and physics, as seen through the optics of the philosophy.
Instead of that, in the rest of this chapter we will shortly describe understanding the
time in physics, while in the next two chapters we will be devoted to time in
biology and functional time.

FIGURE 5.1

McTaggart’s A series and B series (McTaggart, 1908).
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5.2 TIME IN PHYSICS
In physics, the concept of time was changing and it was closely related to qualitative
leaps in physical science. However, regardless of this fact the concept of a single un-
derlying time dimension parameterized by a real interval remained. In our opinion
there are two reasons why this concept is preserved. One is our intuitive sense of
time, which flows from the past to the future, while the second one is the practical
success of models based on such notions. Namely, the expression defining the
physical laws is given by differential equations which, ultimately rely on the limiting
process inherent in the notion of a derivative that can be either total or partial
(van der Vaart, 1973). In our statement, we use the word “intuitive” in the sense
that during early cognitive development, all children develop temporal concepts
such as “before” and “after” (Hoerl and Savitt, 2011). According to Immanuel
Kant, time and space are just forms that the mind projects upon the external
things-in-themselves (Gardner, 1999). Further, he claimed that our mind structures
our perceptions in a way that space always has an Euclidean geometry, while time is
like the structure of the mathematical line. This Kant’s idea of time as a form of
apprehending phenomena suggests that we have the ability to experience things
and events in time, i.e., we have no direct perception of time. Let us make now a
short walk through the history of the physical concept of time.

To measure time, people recorded the number of events of some periodic
phenomenon. The regular repetition, of the seasons and the motions of the celestial
objects, were noted and recorded for millennia, before the physical laws were formu-
lated. The Sun, the Moon, and the Stars were main natural timekeepers, while oil
lamps, candle clocks, and water clocks were earliest man-made inventions for
measuring time. In the 14th century, a mechanical clock was built, and then it
became miniaturized enough for personal, standard, and scientific use.

In 1583, Galileo Galilei discovered, by observing the oscillation of a votive lamp
at the cathedral of Pisa, that a pendulum’s harmonic motion has a constant period.
Half century later (1638) in his “Two New Sciences” (Galileo, 1954) he described
an experiment with a water clock, which was used to measure the time by which
a bronze ball rolls a known distance down an elevated plane. It was engineered to
preserve laminar flow of the water during the experiments, thus providing a constant
flow of water for the durations of the experiments. In this experiment, literally said
Galileo measured the flow of time to describe the motion of a ball. Note that the
Galilean transformations assume that time is the same for all reference frames.

Isaac Newton (1999) in his “Philosophiae Naturalis Principia Mathematica”
introduced the concepts of absolute time and space providing a theoretical basis
for the Newtonian mechanics. According to Newton, absolute time and space are in-
dependent parts of objective reality: “Absolute, true and mathematical time, of itself,
and from its own nature flows evenly regardless of anything external, remains al-
ways similar and immovable.” Namely, absolute time exists independently of any
observer and goes alone at a constant pace throughout the Universe. According to
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Newton, humans are only capable of observing relative time, which is a measure of
observable objects in motion which is commonly used instead of true time. Newton
believed that absolute time, in contrast to relative time, was imperceptible and could
only be understandable through mathematics. Since Newton spoke about linear flow
of time (what he called mathematical time), time could be considered to be a param-
eter, which linearly varies. In Newtonian mechanics and in corresponding form in
quantum mechanics, Lagrangian’s (and their Legendre transformation, i.e., Hamil-
ton’s equations) bespeak a conception of reversible time (Lagrange, 1796).

The beginning and almost the entire 19th century were distinguished by thermo-
dynamics. The nature of the phenomena that have been studied and their encoding in
the laws of physics have set new requirements regarding the concept of time. This
issue is open through the Loschmidt’s paradox also known as the reversibility
paradox, irreversibility paradox, or Umkehreinwand, first published in 1874 by
William Thomson (Lord Kelvin). The paradox claims that from time-symmetric
dynamics, it should not be possible to deduce an irreversible process. Therefore,
there is a conflict between time symmetry of fundamental physical processes and
broken time symmetry of macroscopic systems governed by the second law of
thermodynamics. Correspondingly it opened a question of the arrow of time. It refers
to processes going in a particular direction in such a way that any state in that pro-
gressing cannot spontaneously be reformed in any point that has passed. For
example, eggs may break, but they never spontaneously reform. In 1927, British
astronomer and physicist Arthur Eddington introduced the term “arrow of time”
in his book “The Nature of the Physical World,” connecting it to the one-way direc-
tion of increasing entropy required by the second law of thermodynamics. This
arrow is also now known as the “thermodynamic arrow.” Note that the arrow of
time cannot be identified by time itself. Symbolically speaking arrow of time looks
like a vector having a direction and undefined magnitude indicating to the way how
the Universe and its contents evolve. Besides the thermodynamic arrow of time,
which is distinguished by the growth of entropy, Stephen Hawking (1996) assumed
two more arrows of time: (1) psychological as our perception of an inevitable flow
and (2) cosmological introduced because of the universe expansion in a single direc-
tion from the initial state of Big Bang. Time in biological and other complex systems
is often represented using logarithmic scale, to better deal with large fluctuations in
their internal parameters. Another example is the thermodynamic time defined by
Ilya Prigogine (1961) as the time scale with respect to which the rate of entropy
production in the system was constant.

Modern conception of time in physics started to emerge in 1864, when James
Maxwell presented a combined theory of electricity and magnetism combining all
known laws related to these two phenomena into four equations (Maxwell, 1865).
These equations are known as Maxwell’s equations for electromagnetism, which
allow the solutions in the form of electromagnetic waves, propagating at the frequency
of the electric charge which generates those fields. However, they came into conflict
with Galilean transformations. According to Maxwell’s equations, the light is inde-
pendent of inertial reference frame and has constant speed, which is in stark contrast
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with Galilean relativity. There were three possible solutions to this situation: (1) that
Maxwell’s equations are not correct, (2) to introduce the concept of the luminiferous
aether and then the propagation of waves in a vacuum would become the propaga-
tion of the acoustic waves in the air, and (3) existence of a third principle of relativ-
ity, which is valid for the mechanics and electrodynamics but not based on Galileo’s
principles.

Some physicists were inclined either to the first or second solution, while
Einstein was slanted to the third solution. From his thinking has been created one
of the greatest theory in science, i.e., the special relativity, which is based on two
postulates: (1) the laws of physics are the same in all inertial frames of reference
(principle of relativity) and (2) the speed of light in free space has the same value
c in all inertial frames of reference (invariance of c). To fulfill the first postulate,
transformations for transition from one to the other inertial system had to be modi-
fied. At that time there were known transformations which left Maxwell’s equations
invariant (the Lorentz transformations discovered by Hendrik Lorenz in 1875), and a
consequence of the spatial part of these transformations (Fitz-Gerald Lorentz
contraction) were also known. However, the interpretation of these terms remained
in the domain of electrodynamics, or just moving within imaginary luminiferous
aether, while the temporal part of these transformations nobody understood,
although the Lorentz transformations, except space contraction, predicted time dila-
tation. Albert Einstein directly in 1905 interpreted the Lorentz transformations from
his postulates and, in fact, set them to the level of postulates, i.e., all laws of physics
must be invariant with respect to the Lorentz transformations.

According to the Lorentz transformations, the time does not remain invariant and
this makes a crucial difference to the Galilean transformations. Each observer has its
own time and its own spatial coordinates but space and time of another observer in
another inertial frame are linear combinations of time and the coordinates of the first
frame. It is clear that the Lorentz transformation put an end to the gap between the
temporal and spatial dimensions.

In Chapter 1, we briefly mentioned that some quantum phenomena in the real
world can be explained, if we accept that the present state of a system is defined
by its past, in the sense that the past determines the possible states that are to be
considered, and by its future, in the sense that the selection of a possible future state
determines the effective present state. Here, we will describe that in more detail.
Namely, “[t]he concept of a quantum state is time-asymmetric: it is defined by the
results of measurements in the past. This fact by itself is not enough for the asym-
metry: in classical physics, the state of a system at time defined by the results of the
complete set of measurements in the past is not different from the state defined by
the complete measurements in the future. [.] In quantum mechanics this is not so:
the results of measurements in the future are only partially constrained by the results
of measurements in the past. Thus, the concept of a quantum state is genuinely time-
asymmetric” (Aharonov and Vaidman, 2008). This asymmetry is removed by intro-
ducing the two-state vector formalism of quantum mechanics (TSVF) originated in a
seminal work of Aharonov et al. (1964) which later was extended in (Aharonov and
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Vaidman, 1997, 2008), providing a time-symmetric formulation of quantum me-
chanics. Shortly, a system at a given time t is described completely by a two-state
vector hJjjFi, which consists of a quantum state hJj defined by the results of mea-
surements performed on the system in the past relative to the time t and of a back-
ward evolving quantum state jFi defined by the results of measurements performed
on this system after the time t. Note, that the status of the two-state vector might be
interpreted differently but a noncontroversial fact is that it yields maximal informa-
tion about how this system can affect other systems interacting with it at time t
(Aharonov and Vaidman, 2008).
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Time in biology 6
The problem of understanding the time flow in biological systems has a long tradi-
tion and is often connected with inextricable problems derived from undeveloped
conceptual differentiations. In the beginning of our analysis we should therefore
clearly distinguish duration as an objective property of matter and time flow (chro-
nology) as the subjective construction of an observer which cannot be equated with
duration or changes in duration (for example, see Deleuze, 1990; Husserl, 1964;
Merleau-Ponty, 1945) Therefore, time in biological systems cannot be considered
as an independent flow, inert to changes in itself nor as a simple line of successive
infinitesimal quantities, but as duration filtered through perception (Balaz, 2005).
Therefore, changes in duration are only a basis upon which every perceptive entity
can construct its own time flow. The structure of that flow is not at issue in this chap-
ter), but rather how constructions of subjective structure(s) influence the organiza-
tion and functioning of living systems. First, systemic time flow cannot be
established by perceptivity itself, since the prerequisite for establishing systemic
time relations is the ability to compare different systemic states. As long as percep-
tivity is not incorporated into the network of systemic relations, the system will
remain in a state of independent linear flows. Only by developing such relations,
the simple succession of states can be manipulated and arranged. In other
words, systemic time can be established. Therefore, as a first step toward further
analysis, we should take a brief look at the generation of processes.

According to Luhmann (2012), we can define a process as a mutually connected
succession of events where the scope of selections is reestablished at each stage.
A specific characteristic of processes understood in that manner is their anticipatory
structuredbecause such a succession of events is also inherently an accumulation
toward less and less probable states (less probable from the perspective of the begin-
ning of the process) which are a necessary (structurally but not logically) conse-
quence of previous stages. But, there is a very important difference between
elementary processes (e.g., separate enzymatic transformations) and processes
developed from them (e.g., metabolic pathways). The first ones can be identified
as (temporally) irreversible transformations toward a determined state (in an ideal
case) or a group of very similar states. However, in living systems, that kind of
almost indispensable flow enclosed in a rigid structure is only a basis for the further
development of functionality. These irreversible sequences can be rearranged into
higher order structures (so-called metabolic pathways) thus gradually relativizing
indispensability of stages within the process, with every superposed level of
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constructed functionality. In such a structure, individual events are no longer neces-
sary for continuing the line of transformations (which is the case with elementary
processes), but become “one of” the possible realizations of functionality. In spite
of such relativization, what remains inherently connected for processes is their
necessary differentiation along the former/latter axis. In elementary processes, the
structurally (materially) defined flow of transformations from a currently actual state
into a necessary prospective state is the primary form of temporal differentiation.
However, that primacy is erased at the systemic level and is transformed into sets
of probable states by which intrasystemic time is relieved from the uniformity of uni-
lateral flow.

Through this relativization of necessities, the system becomes able to construct
anticipatory structures which in one available now (or more precisely: in a percep-
tively constructed present) choose indicators that are in correlation with changes in
the future, associating them with adequate systems of transformations and therefore
preparing themselves for the following events. From such a perspective, it is obvious
that mutual interactions of anticipatory structures are not only based on the possibil-
ity of perceiving signals, but also on the possibility of anticipating future states (e.g.,
establishment of regulations based on feedbacks). Such anticipations are inherently
connected with systemic expectations in which realization or nonrealization be-
comes a powerful intrasystemic regulative factor. Therefore, it is not only important
to accomplish some function but equally important is temporal compatibility with
other, parallel processes. And only a combination of these two factors, the possibility
of anticipation and regulation by anticipation, can create a basis for the construction
of an autonomous, systemic time flow, as a generalization of the validity of partial
intrasystemic time horizons across functional elements and (organizational) struc-
tures within certain subsystems. In other words, during interactionsdalong with
perceptive normativitydsubsystems also impute time (their own construction of
time) to each other. The organizational dynamics of mutual influences results purely
from such imputations. However, to functionalize the intersubjective temporal field
which has been formed, all interacting elements must share the same normative
rules, because simultaneity of (functionally meaningful) interactions cannot be
achieved in two different times with no points of contact. In this way, intersubjec-
tivity is achieved only within purposeful situations.

Although such relativizations make organizational manipulations available, still
we cannot talk about systemic comparisons (since an abstract measuring of empty
intervals is not possible in such systems) and hence, about systemic time. The final
precondition is to establish composite repetitions and the successive process of
transformations. In other words, by parallel and multiple repetitions of transforma-
tions which are successively superpositioned, the system enters a state of former/
latter processes which may be equivalent or different, where the consequences of
such transformations are transferred to the cycles of successive processes. In this
way, the dynamics of cycles is not self-sustained but is always constituted with refer-
ence to previous operations; i.e., it is constituted by a rudimentary “comparison” of
intervals. Only then do processes became autonomous axes for establishing systemic
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time relations and the following construction of organizational regulations and con-
trols. Before proceeding further, it should be emphasized that there is no such thing
as a universality of time intervals within living systems in the first place, because no
internal meta-systemic observer exists which would be able to grasp the systemic
wholeness and impose a perspective of uniform relations. Therefore, in living
systems we cannot talk about the objective metrics of time relations but only about
partial relations where the norms are defined in accordance with the actual context.

One of the most important ways in which living systems are able to manipulate
within the temporal dimension are regulations of physical duration of constitutive
elements (i.e., temporalized reproduction of elements). That idea is certainly not
new. It is very well known in empirical investigations (e.g., Eden et al., 2011), but
its theoretical treatment is surprisingly ignored. Although the theory of autopoietic
systems made obvious that systemic elements should always be self-reproduced
(Zeleny, 1981), models of global regulations in organisms mainly neglect this fact
and its consequences. Therefore, it is necessary to pay particular attention to the
development of functionality based on cyclic degradations and reconstructions of
intrasystemic material structures. Before that, it should be borne in mind that tempo-
ralized reproduction is not a mere repetitive circle producing sameness, but rather
produces with variations whose roots are in the foregoing but also deviate from it.
And deviation is not only change in the sense of small structural alterations or
achievement of higher or lesser efficiency (compared with previous state) but is
always potential transformation into some other framework. It is production based
on one’s own needs, which are being constantly surveyed, and constantly changed.

The continuous decomposition of segments of processes compels them to be in
constant reconstruction, thus making space available in the organizational structure
for different insertions, divergences, and reroutings without the need to construct
specific mechanisms (in the form of localized regulators) for each specific case.
Also, through temporalization, the system purposefully eliminates groups of
elements, concordantly eliminating them from the possibility of direct reaction
(regarding other elements, subsystems, etc.). In this way the system’s internal
structure perpetually reconstitutes the causal basis for its own processes and the
past is not merely a fixed set of preceding events which linearly vanished but is
rather a dynamic accumulation where, according to its relevancy to the current state
(a relevancy constantly updated with causal reconstitution), some elements and
structures can be summoned while others disappear without any further functional
influences. Thus, the primacy of successive stepwise regulation is greatly diminished
and the structure itself becomes a major determinant in the regulation of reproduc-
tive periodicity. In this manner, after introducing the idea of temporality, the orga-
nizational model of living systems becomes clearly different from the (first-order)
cybernetic perspective which is usually applied. It is legitimate to use such models
when dealing with short-time segments of processes. In that case, analysis is focused
only on those elements whose life span exceeds the duration of process itself. How-
ever, by this approach we get only a naive sketch of living systems. To move forward
from this rudimentary understanding, we need to change the paradigm and postulate
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a continuous instability of mere elements by which fundamentally new types for
achieving functional flexibility are established. As a universal consequence, the
system is obliged to continuously self-adapt. Since each subsystem has different
dynamics of degradation with each cycle of reconstitution, the structure and organi-
zation of subsystems are in continuous adaptation to the (internal) environment:
starting from differences in protein folding (static disorder), through continuous
changes in protein composition (qualitatively and quantitatively), and on to hierar-
chical and communicative variations caused by reproductive cycles. Through such
cycles, the system is forced not to be self-adapted but rather in self-adaptation,
because material realizations based on previous informational context are constantly
decomposed and, to maintain functionality, the system must constantly deal with
external signals.

Finally, since time in biological systems (as a perceptive construct) is only a
reflection of some aspects of duration, it is obviously liable to different strategies
of manipulation. By perceptive deconstruction of the continuity of external changes,
alteration of a previous state is not only a variation but appears as a functional
noveltydand is processed as such. It allows functionally meaningful time manipu-
lations, since the dynamic of perceived changes (faster/slower) is least connected
with objective changes of duration. What really generates the rapidity of time flow
are perceptive scopes, i.e., the distribution of boundaries between different absolutes
of perception. These boundaries may be distributed homogeneously, thus generating
the illusion of general acceleration or deceleration of external changes, or they can
build a heterogeneous construction displaying acceleration/deceleration of external-
ity in accordance with functional context. By such strategies, systemic time can be
distributed in accordance with needs and coordinated with external pressures which
are not liable to direct manipulations.

Before closing this chapter, it is necessary to answer one more question: What is
the main precondition for temporalization of elements without destroying systemic
functionality? Since an organism’s survival is inherently connected with undisturbed
metabolism run, temporalization should not influence the continuity of metabolic
processes. Is it justified then to assume the existence of elementary functional units
which cannot be, and should not be, perturbed? If we analyze metabolism as a
whole, at each situation we can identify some segments which are essential for sur-
vival of the organism and which will be safeguarded from the possibility of internal
violations (e.g., by excessive synthesis of groups of enzymes coupled with a
decrease in the level of specific chaperone). However, here we should bear in
mind that the determination of such “elementary units” is highly dependent on
context: both materially (e.g., availability of certain nutrients, the constellation of
environmental factor), as well as functionally (e.g., hierarchical variations regarding
actual distribution of subsystems). Therefore, what is usually considered as a main
quality of units, namely their perseverance through different contexts, is lost. How-
ever, if we transfer our focus down to the level of concrete, material transformations,
we can see that every single step in the processes of metabolic transformations is
performed by enzymes whose actions are not liable to cutting or dividing into
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independent phases. In this manner, single enzymatic transformation can be consid-
ered as an elementary event, an atom of functionality. Only through the enclosure of
single occurrences in a web of functionally meaningful events does it become
possible for systems to base their functionality on recursive, reflexive reproduction
of elements. The rise of elementary events from the level of discrete, meaningless
occurrences to the level of finished processes, lays the groundwork for a situation
where any kind of interruption (in the sense of physical elimination of functional
elements) or rearrangement cannot violate the fundamentality of such units. Without
that kind of organization, temporalizing constitutive elements into systems would be
destructive for them.
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Functional time: definition
and examples 7
Inthe previous chapters we covered several notions of time. First, we started with the
nature of time in philosophy and physics, and then we continued with the phenom-
enology of time in biological organisms (previous chapter). In this chapter we will
keep our focus on the phenomenology of time, but from the perspective of functional
systems. By the notion of the functional system we will cover all systems where pro-
cesses unfold following a set of known rules and which exhibit repetitive pattern. In
such systems, we can measure time in several ways. Most obvious would be external
clock-time. In that way, as a result of observing systemic events we will obtain a
sequence of intervals, where each interval has its own duration. On the other
hand, we can shift our perspective and move from the position of the external objec-
tive observer, to the process itself. How is time formed from the perspective of the
functional system? And what is the structure of time flow from that perspective?
These questions have a long history (Whitehead, 1978; Luhmann, 2012; Lolaev,
1995, 1996, 1998; Mihailovi�c and Bala�z, 2012b). Despite numerous differences in
existing approaches, common denominator is the view that the structure of time
in functional systems ( functional time) should be considered as different from the
universal, abstract time. Instead of being always synchronized with the global
timekeeper, functional time is derived from the concrete, material systems and their
processes. Therefore, functional time ultimately depends on the quality changes
within systems and processes forming them. As a result, in contrast to the notion
of time in classical physics, functional time is not always linear but takes a shape
of interaction of processes that constitute the functional system.

In complex biological systems, the formation of functional time strongly
depends on the state of the system. For the sake of further consideration in this
section, we will introduce definitions of some terms.

Definition 1: For the sake of simplicity, we can define functional system R as the
system which has the following properties: (1) partial decomposability to subsys-
tems, and processes r1, r2,. depending on each other, (2) strong hierarchical
ordering, and (3) complexity. We call a set R ¼ {r1, r2,., rN}, where N is number
of elements in the set R a complex functional system (hereafter, functional system).

Definition 2: Set S¼ {S1, S2,.} represents the states during time evolution of the
functional system R which passes through those states.

Comment: The term state is differently described in physics, mathematics,
biology, chemistry, computing, sociology, etc. In further text we use its meaning
in the common sense, i.e., that it refers to the present condition of a system or entity.
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Definition 3: To each element of the set S we assign value 0 or 1. If the system is
unstable or unsynchronized then m ¼ 0, otherwise m ¼ 1. The set of all values of m
we call the measureM¼ {m1, m2,.} of the set of states S that indicates the status of
functional system R.

Comment: The status of the functional system R is described: (1) as either stable
or unstable, where the term stable we use in the sense of the structural stability, i.e.,
that small perturbations to the system do not determine emergence of the qualita-
tively new features (Jen, 2003) and (3) as either synchronized or unsynchronized.
Let us note that all elements from the set R¼ {r1, r2,., rN} have particular measures
corresponding to elements from that set. The status of the functional system R is
measurable either through the observation or computationally. Thus, the stability
or synchronization in the functional system can be established by measurements
or by some methods from the archive of nonlinear dynamics, as, for example
Lyapunov exponent (Pikovsky et al., 2001).

Definition 4: Subsystems, phenomena and processes of the functional system R,
emit the set of signals I ¼ {i1, i,., iI} either directly or indirectly indicating that the
system remains functional until any signal reaches the location of an observer, where
I is the maximal number of signals that the system emits.

Definition 5: Subsystems, and processes of the functional system R, we call
cardinal ones, when they lose their functionality determining the termination of
that system.

Definition 6: If the functional system R emits a noncardinal signal (i.e., a signal
which does not come from the cardinal subsystem), it means (1) that the system is in
function sending other signals but without signal from that subsystem or (2) that
subsystem waits to be synchronized with other subsystems in order to send the
signal.

The fact that the functional time is formed as a result of consistent change of
concrete material object states we illustrate using the following examples: (1)
response of the functional system on a stimulus (mollusk time reflex formation);
(2) response of the functional system on a cognitive level (prisoner time formation);
and (3) process of substance exchange on the cellular level (time formation in
process of biochemical substance exchange between cells).

7.1 MOLLUSK TIME REFLEX FORMATION
Here, as an example of formation of the functional time we will analyze the mollusk
reflex formation. Loalev described the experiments as follows: “[T]he mollusk
receives shocks with low-power current every 5 min. After shock it hides in a shell
for a short while and then continues its motion. After the shocks stop the mollusk
continues to hide in a shell every 5 min. It proves the availability of time system.
In this connection we remark first of all that this example is not a proof of the
mollusk’s astronomic time counting system, as there is no such time in nature.
The mollusk hides in a shell every 5 min, not due to the availability of counting
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systems of postulated nonexistent time in nature but because every 5 min consistent
change of definite, strictly identical number of states takes place in the mollusk’s
organism. As a result the own time of mollusk is formed in which it lives, exists.”
(Lolaev, 1996).

We formalize this example of functional time formation in the following way.
Here, the functional system is a mollusk (Fig. 7.1(a)), which receives external, elec-
trical shocks every 5 min forming the reflex to hide in a shell upon receiving the
shock. Symbolically, we have R ¼ {r1, r2} where r1 ¼ molluskdthe mollusk as
the one element of the set R and r2 ¼ reflex the phenomenon as the second one.
The mollusk is passing through states S ¼ {s1,., s20, s21,., s30, s31, ., s50, .}
where s1, s2,., s20 ¼ out of the shell corresponding to stable states (the mollusk
does normal life routines, having a communication with the surrounding environ-
ment), and s21, s22,., s30 ¼ in the shell including unstable ones (the mollusk is
hiding within the shell, having no communication with surrounding environment),
and so forth. The measure of the state in this example is
M ¼ f 1;.; 1;.; 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

1�20

; 0;.; 0;.; 0;|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
21�30

1;.; 1;.; 1;|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
31�50

.g, where 0 and 1 correspond

to unstable and stable states, respectively. Thus, an observer can receive signals
I ¼ {i1, i2,.}, for example visualized on a display, like bars as in Fig. 7.1(b). In
this example, functional time forms at the level of reflexes, without any cognitive
influences. We would like to emphasize that this example is not a proof of the mol-
lusk’s clock-time counting system, as there is no such time in nature. Here, a mollusk
does not react on passed 5 min of astronomical time but on strictly definite number
of states that consistently changed in its organism during these symbolic 5 min.

FIGURE 7.1

Mollusk time reflex formation: (a) states changed consistently in its organism as stable

[S1 � S(1)] and unstable [S2 � U(0)], (b) symbolic diagram of its functional time.
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7.2 PRISONER TIME FORMATION IN THE CELL
This example describes prisoner time formation in the cellda small room in which a
prisoner is locked up. He is trapped in the cell with two bedsdone next to the left
wall (LW), while another one next to the right wall (RW). In the well-isolated cell,
the prison guard has the control of prisoner position, through the light signal that is
visualized on the oscilloscope. Once a day prisoner has to follow strictly defined
routine in accordance to “Prison Rules.” They are: (1) start from the floor to lower
bed next to the RW; (2) get on the upper bed floor; (3) get off from the upper bed to
the lower bed; (4) get off from the lower bed to the floor; (5) move to the LW; (6)
start from the floor to the lower bed next to LW and then repeat the same procedure
with the bed next to this wall. Prisoner cannot go back until he does not finish the
cycle as depicted in Fig. 7.2(a). Prison guard sees the lighting point on the oscillo-
scope marking out the shape as in Fig. 7.2(b).

In this example the functional system is a prisoner (Fig. 7.2(a)), which repeats a
daily routine for a certain time. Here, we have symbolically R ¼ {r1, r2} where
r1 ¼ prisoner is the prisoner as the one element of the set R and r2 ¼ repetition of
the remembered routine the phenomenon as the second one. The prisoner is passing
through states S ¼ {s1,., s40, s41,., s60, s61,., s100, .} where s1, s2,., s40 ¼ on

Prisoner time formation in the cell

M
ea

su
re

 o
f t

he
 s

ta
te 1

0 U

S

LW RW

7
8

6

9

5

4

1

3
2(a)

(b)

FIGURE 7.2

Prisoner time formation in the cell: (a) states of the prisoner routine, (b) symbolic diagram

of his functional time. The numbers indicate the pathway of the routine with states from

which is passing through, while LW and RW are the left wall and the right wall, respectively.

Letters U and S indicate unstable and stable states, respectively.
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cell floor and s41, s42,., s60 ¼ on bed, representing stable and unstable states,
respectively, and so forth. The measure of the state in this example is
M ¼ f 1;.; 1;.; 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

1�40

; 0;.; 0;.; 0;|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
41�60

1;.; 1;.; 1;|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
61�100

.g where 0 and 1 correspond

to unstable (on bed) and stable (on cell floor) states, respectively. Thus, the guard
can receive signals I ¼ {i1, i2,.}, on oscilloscope, like bars depicted in Fig. 7.2(b).

Unlike the previous example in this one, prisoner creates his own time in the cell
by consciously knowing the rules. Again, this example is not a proof of the
prisoner’s astronomic time counting system since there is no such time in nature.
Prisoner is moving in a “stairways” rhythm not due to the availability of counting
systems of some universal time, but by following available rules.

7.3 FUNCTIONAL TIME FORMATION IN PROCESS OF
BIOCHEMICAL SUBSTANCE EXCHANGE IN RING OF
CELLS

Here we illustrate the formation of the functional time in the process of biochem-
ical substance exchange between cells modeled by the system of coupled differ-
ence equations (Mihailovi�c et al., 2011). This model comprises the following
parameters: (1) ci that represents coupling of two factors: concentration of mole-
cules in intracellular environment and intensity of response they can provoke;
(2) affinity pi to uptake molecules, where this term is used as a measure of the
degree of the cell capability to uptake the biochemical substance molecules,
with condition

P
i
pi ¼ 1 where pi is the affinity of the single cell (p ˛ [0,1]);

and (3) parameter r that includes collective influence of environment factors which
can interfere with the process of communication. Here, we consider a ring of
coupled cells. Each cell is coupled to its neighbor through the mapping given in
Mihailovi�c et al. (2011) as it was similarly done in Suguna and Sinha (2005). In
these approaches, cell moves locally in its environment without making long path-
ways, while the cell movement is considered in the p-cell coordinate system
defined as

p ¼ 1� z

1� z0
(7.1)

where z is the dimensionless radius of the cell within which it interacts with another
cell, defined as z ¼ R/Rmax while R is the radius and Rmax and Rmin are its maximal
and minimal values, respectively. Finally, z0 ¼ Rmin/Rmax. The values of p-cell
coordinate lie in the range 0 (R ¼ Rmax) and 1 (R ¼ Rmin). According to Mihailovi�c
and Bala�z (2012a) the system of coupled difference equations for N cells exchanging
the biochemical substance can be written in the form of matrix equation,

A ¼ ðBþ CÞ,D (7.2)
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where

A ¼

2
66666666664

x1;nþ1
x2;nþ1
:
xk�1;nþ1
xk;nþ1
:
xN�1;nþ1
xN;nþ1

3
77777777775
; D ¼

2
66666666664

x1;n
x2;n
:
xk�1;n
xk;n
:
xN�1;n
xN;n

3
77777777775
C ¼

2
66666666664

0 c1x
p1�1
2;n 0 0 : 0 0 0

0 0 c2x
p2�1
3;n 0 : 0 0 0

: : : : : : : :
: : : : : : : :
0 0 0 0 0 ckx

pk�1
kþ1;n : 0

: : : : : : : :
0 0 0 0 : 0 0 cN�1x

pN�1�1
N;n

cNx
pN�1
1;n 0 0 0 : 0 0 0

3
77777777775
;

B ¼2
66666666666664

ð1� c1Þ r
�
1� x1;n

�
0 0 0 : 0 0 0

0 ð1� c2Þ r
�
1� x2;n

�
0 0 : 0 0 0

: : : : : : :

: : : : : : : :

0 0 0 0 ð1� ckÞ r
�
1� xk;n

�
0 : 0

: : : : : : : :

0 0 0 0 : 0 ð1� cN�1Þ r
�
1� xN�1;n

�
0

0 0 0 0 : 0 0 ð1� cN Þ r
�
1� xN;n

�

3
77777777777775

(7.3)

with condition
P

ci ¼ c with 0 � c � 1 and r is the logistic parameter (0 �r �4),
while xi represents concentration of molecules in cells. Solution of the system Eq.
(7.3) gives the concentrations in all cells in time and space in p-cell coordinate
system.

To demonstrate that each part of a functional system has its own intrinsic space
time (Mihailovi�c and Bala�z, 2012a,b), i.e., functional time, we consider a functional
system represented by a model consisting of three cells coupled in a ring, that
exchange the biochemical substance, which is schematically shown in Fig. 7.3.
Here, we have symbolically R ¼ {r1, r2} where r1 ¼ ring of coupled cellsd
the ring of coupled cells (as a part of a tissue), as the one element of the set R
anddr2 ¼ process of exchange substance exchange between cells on diffusion-
like manner. The system of the ring of coupled cells can pass through states
S ¼ {s1, s2,.} where the process of substance exchange states can be either syn-
chronized or unsynchronized, corresponding to stable and unstable states, respec-
tively, and so forth. The measure of the state in this example is M ¼ {m1, m2,.}
where m can take values 0 or 1 that correspond to unstable and stable states, respec-
tively. Let us consider the signaling of this system. In Fig. 7.3 cells compose a multi-
cellular system that is a complex one consisting of three components, i.e. (cell 1 vs.
cell 2), (cell 2 vs. cell 3), and (cell 3 vs. cell 1). They exchange biochemical sub-
stances sending (1) single (L12, L23, and L31), (2) double [(L12, L23), (L23, L31),
and (L31,L12)] and triple (L12,L23,L31) signals. Signals that come from the system
indicate that system remains functional until any signal reaches the location of an
observer. In the model this condition is satisfied when there is synchronization in
biochemical substance exchange between any two or three cells sending single,
double, or triple signal (Table 7.1). Let it be noted here that in functional systems
there exist components such that the system is terminated when they lose their func-
tionality. Those components we will call cardinal components of the system. If the
functional system does not send to an observer any signal that does not come from
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the cardinal component (noncardinal), it means that system is either (1) in function
sending other signals but without signal from that component or (2) that component
waits to be synchronized with other ones in order to send the signal (Mihailovi�c and
Bala�z, 2012a). In a general case when a multicellular system has N cells, then the
number of signals sent to an observer is i ¼ n(n � 1) þ 1 emitted by j ¼ CN

2 com-
ponents. Thus I¼ {(i1),., (iN), (i1, i2),., (iN � 1, iN),., (i1,., iN),} signals will be
send by the system. In our case when N ¼ 3 then the number of signals is seven
which can be sent through three groups of signals (Table 7.1).

We suppose that the strength of the single signal emitted from the considered sys-
tem toward the cell is given by the functional form L ¼ L(l, p), which is propor-
tional to lij/Dxij (i and j are the neighboring cells), where (1) lij is the largest
Lyapunov exponent obtained for exchange between two cells (Mihailovi�c and Bala�z,
2012a) and (2) Dxij expresses dependence of the signal strength on the distances

Table 7.1 Signals Sent by the Three Cells System in Fig. 7.3

Single Double Triple

L12 (L12, L23) (L12, L23, L31)

L23 (L23, L31)

L31 (L12, L31)

FIGURE 7.3

Schematic representation of a simple model of the ring of the three coupled cells exchanging

the biochemical substance with the corresponding signaling.

Reprinted with permission from Mihailovi�c, D.T., Bala�z, I., 2012a. Forming the functional time in process of

biochemical substance exchange between cells in a multicellular system. Mod. Phys. Lett. B 26, 1250175.
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between cells in the p-cell coordinate system. For three cell system strength signals
having a logarithmic form we have

L12 ¼
����l12 ln 1

jp2ð1� z02Þ � p1ð1� z01Þj
���� (7.4a)

L23 ¼
����l23 ln 1

jp3ð1� z03Þ � p2ð1� z02Þj
���� (7.4b)

L31 ¼
����l31 ln 1

jp1ð1� z01Þ � p3ð1� z03Þj
����: (7.4c)

Lyapunov exponent, in Eq. (7.4aec), is calculated for the biochemical substance
exchange between each two cells in a multicellular system (Mihailovi�c et al., 2011).
For any l� 0, in these equations, the biochemical substance exchange between cells
is considered to be unsynchronized (Mihailovi�c and Bala�z, 2012a) and correspond-
ing signal strength from that component is equal to zero.

According to Definition 3, the status of the functional system is also measurable
through the computations. We consider the functional time of biochemical substance
exchange in three cells system through the synchronization signal (0 and 1, repre-
senting either nonsynchronized state or synchronized one) that represents binary
information about that exchange. The stability or synchronization in the functional
system can be established, for example, over the Lyapunov exponent. Synchroniza-
tion is a well-known collective phenomenon in various multicomponent functional
systems (Pikovsky et al., 2001). The exchange of information (coupling) among
the subsystems can be either global or local on multicell system (Mihailovi�c and
Bala�z, 2012a; Ghosh et al., 2010). Here, the system is considered to be synchronized
globally only when the largest Lyapunov exponent of the driven system is negative
(Guireya et al., 2007). We study the stability of the fixed point by linearizing n � 2
component coupled system and obtain Zn þ 1¼ znZn where zn is the Jacobian of this
system evaluated in (0,0,0,.,0) and Zn ¼ (x1,n, x2,n,., xN,n). By iterating we obtain

Znþ1 ¼
 Yn

s¼0

zs

!
Z0 (7.5)

and thus we get the Lyapunov exponent

l ¼ lim
n/N

 
ln

�����
�����Y

n

s¼0

xs

�����
�����
,

n

!
: (7.6)

Lyapunov exponent is calculated for the biochemical substance exchange
between all cells in a multicell system (three cells in our case). For any l � 0, in
these equations, the biochemical substance exchange between cells is considered
to be unsynchronized and the corresponding signal has the measure of the state
zero (m ¼ 0).

Having in mind coding with two numbers 0 and 1, representing either non-
synchronized state or synchronized one, we can establish a barcode of functional
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time in the process of biochemical substance exchange in a multicellular system. We
call this code a functional time barcode which is a representation of system states
through chronological time, which shows data about the process of biochemical
substance exchange to which it is attached. It represents states by varying width
of parallel lines and spaces between them, indicating whether system is synchro-
nized or not, and may be referred to as linear.

As mentioned above, we deal with the system of three interacting cells that
exchange the biochemical substance described by the mapping given by Eq. (7.2).
So we have three cells in the system and one process (process of biochemical
substance exchange), sending 3$2 þ 1 signals (Table 7.1). This system has no
cardinal components. Accordingly it cannot be terminated. The signal strengths
are calculated by Eq. (7.4aec) for each two interacting cells, while their p-cell
coordinates were randomly chosen in the interval (0, 1). Since the functional time
is related to the system state (Mihailovi�c and Bala�z, 2012a,b), we define the state
in the following way: (1) the state is described with the set of parameters (c, p, r),
which are randomly chosen; (2) in any state the system can be either synchronized
or unsynchronized; (3) the system is synchronized if the cross-sample entropy of
each system component is below the chosen threshold, i.e., when Lyapunov
exponent is negative or close to zero (Mihailovi�c and Bala�z, 2012a); (4) if the system
is in the state when it is synchronized then it sends the signal; and (5) transition from
one state to another one is pursued by changes of state parameters and entropy
threshold. In Fig. 7.4, functional time barcode is depicted for biochemical substance
exchange for three cells, after 10,000 iterations. For each system component, (1) the
largest Lyapunov exponent is calculated and (2) it checked whether the cross-sample
entropy is below the entropy threshold following the procedure defined in
Mihailovi�c and Bala�z (2012a). Then the corresponding value, either 0 (synchronized)
or 1 (nonsynchronized), is associated to the state. This barcode shows a “history” of

FIGURE 7.4

Functional time barcode of biochemical substance exchange in three cells system.

Reprinted with permission from Mihailovi�c, D.T., Bala�z, I., 2012a. Forming the functional time in process of

biochemical substance exchange between cells in a multicellular system. Mod. Phys. Lett. B 26, 1250175.
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functional time of the considered process as a part of hierarchically established
system of multicellular system consisting of three cells. Through the barcode, the
proposed model of biochemical substance exchange between cells and correspond-
ing mathematical tools give information of the evolution of the system during a
given range of the functional time. It can be a useful tool in our attempts to know
how the biological complex system will evolve, depending on either parameter
values or initial conditions, if those attempts are directed rather toward its relative
chance than predictability (Arshinov and Fuchs, 2003).
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Coupled logistic maps in
the environmental
interfaces modelling 8
8.1 COUPLING OF TWO LOGISTIC MAPS
There is a number of interesting environmental interface problems which can be
described by the dynamics of coupled maps. Some of them are convection in con-
ducting fluids (Hogg and Huberman, 1984), calculating the surface temperature in
climate models (Mihailovi�c et al., 2014), substance exchange between cells
(Mihailovi�c et al., 2011a), or effects of spatial heterogeneity on population dynamics
(Kot, 1989; Lloyd, 1995). A coupled map is an ensemble of elements of a given
discrete-time dynamics (“map”) that interact (“couple”) with other elements from
a suitably chosen set. The dynamics of each element is given by a map. As a conse-
quence, the coupled map is a discrete-time multidimensional dynamical system, in
which usually all elements have identical map dynamics. However, coupled maps
can also contain heterogeneous elements. In the aforementioned fields, it is of a great
importance to understand the global dynamics of coupled systems as a function of
both nonlinearity and coupling strength. We consider several types of coupling.

Let us consider two uncoupled maps. The system like this could describe two
cells by maps

xnþ1 ¼ f ðxnÞ; ynþ1 ¼ f ðynÞ; (8.1)

where

f ðxÞ ¼ rxð1� xÞ (8.2)

is the logistic equation and r the logistic parameter. Another example, could be two
biological populations (let us say insects as in Fig. 1.1d), in which the number of
individuals evolves from year to year according to Eq. (8.1) that is graphically
depicted in Fig. 8.1.

One way to introduce the coupling is to consider the simplest spatially extended
biologically realistic model using two coupled logistic maps (Hastings, 1993;
Gyllenberg et al., 1993; Lloyd, 1995). In terms of dimensionless variables, this
has the form

xnþ1 ¼ f ðxnÞ þ c1ðf ðynÞ � f ðxnÞÞ (8.3a)

ynþ1 ¼ f ðynÞ þ c1ðf ðxnÞ � f ðynÞÞ: (8.3b)
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This model supposes that the environment consists of two patches between
which the entities diffuse (Fig. 8.2a). Such coupling tends to equalize the instanta-
neous states of the entities (diffusive coupling). Let us assume that there is a density-
dependent phase followed by a dispersal phase. The density-dependent phases are
modeled by the logistic map, and the dispersal phase by a simple exchange of a fixed
proportion of the populations. The parameter c1 is a measure of the diffusion of
individuals between the two patches, with 0 � c1 �1. In Eqs. (8.3a) and (8.3b), it
is assumed that the environment is homogeneous; hence the parameter r is the
same for both patches. This model is designed similarly in spirit to that of Hassell
et al. (1991) whose hosteparasitoid model consists of a pair of variables at each
site of at least 900 lattice sites. However, r does not need to be constant. Following
Mihailovi�c et al. (2012, 2011b), the parameter r is used to be different in Eqs. (8.3a)
and (8.3b) that serves coupled maps representing energy exchange processes
between two heterogeneous environmental interfaces regarded as biophysical com-
plex systems. So, the dynamics of this simpler two-dimensional, two-parameter

x1

x2

x3 y3

y2

y1

FIGURE 8.1

Two uncoupled logistic maps.

FIGURE 8.2

Schematic diagram of the diffusive (a), linear (b), and (c) combined coupling in

environmental interfaces modelling.
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system will be much easier to understand and the insights gained by studying it
should shed light on the more complex systems.

There are mathematically simpler ways to couple two logistic maps. For
example, we could have linear coupling (Fig. 8.2b)

xnþ1 ¼ f ðxnÞ þ c2ðyn � xnÞ; (8.4a)

ynþ1 ¼ f ðynÞ þ c2ðxn � ynÞ: (8.4b)

Another popular form of coupling is a bilinear coupling, with the linear terms in
(8.4) replaced by c2xnyn terms (Lloyd, 1995). These forms of the coupled logistic
maps have been studied previously using both numerical (Kaneko, 1983; Ferretti
and Rahman, 1988; Satoh and Aihara, 1990) and analytic techniques (Sakaguchi
and Tomita, 1990).

Finally, it is possible that both types of coupling are present, and then it will be
the combined coupling (Fig. 8.2c), that can be written in the form

xnþ1 ¼ f ðxnÞ þ c1ð f ðynÞ � f ðxnÞÞ þ c2ðyn � xnÞ; (8.5a)

ynþ1 ¼ f ðynÞ þ c1ð f ðxnÞ � f ðynÞÞ þ c2ðxn � ynÞ: (8.5b)

It appears that there is no necessity to invent some other types of coupling, in the
same sense that this equation serves as a universal model of weakly coupled systems
(Ivanova and Kuznetsova, 2002; Mihailovi�c et al., 2012) that can be broadly used in
environmental interfaces modelling.

8.2 AN EXAMPLE OF DIFFUSIVE COUPLING: INTERACTION OF
TWO ENVIRONMENTAL INTERFACES ON THE EARTH’S
SURFACE

As an example of diffusive coupling, here we consider the Earth’s surface as an envi-
ronmental interface. For this interface, visible radiation provides almost all of the
received energy. Some of the radiant energy is reflected back to the space. The inter-
face also radiates some of the energy received from the Sun. The quantity of the
radiant energy remaining on the environmental interface is the net radiation, which
drives physical processes important to our further considerations. Since all of the
energy transfer processes occur in the finite time interval, the energy balance equa-
tion at any environmental interface can be written in terms of finite differences of
ground and air temperatures and then, under some conditions, further transformed
into the logistic equation (Mihailovi�c et al., 2001; Mihailovi�c, 2010).

We start with a simplified case of one bare soileatmosphere interface (see Figure
1(f)). Our basic equation is the energy balance equation. Since all of the energy
transfer processes occur in the finite time interval we shall immediately write this
equation in terms of finite differences, i.e., in the form of difference equation

DTi ¼ Fn; (8.6)
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where D is the finite difference operator defined asDTi ¼ ðTi;nþ1 � Ti;nÞ=Dt, Ti is the
environmental interface temperature, n is the time level, Dt is the time step,
Fn ¼ (Rn � Hn � En � Sn)/ci is defined at the nth time level, R is the net radiation,
H and E are the sensible and latent heat, respectively, transferred by convection and
S is the heat transferred by conduction into deeper layers of underlying matter while
ci is the environmental interface soil heat capacity per unit area. In Eq. (8.6) the
sensible heat flux is calculated as CH(Ti � Ta), where CH is the sensible heat transfer
coefficient and Ta(t) is the gas temperature given as the upper boundary condition. The
heat transferred into underlying matter is calculated as CD(Ti � Td) where CD is the
heat conduction coefficient while Td(t) is the temperature of deeper layer of the under-
lying matter that is given as the lower boundary condition. Following Bhumralkar
(1975) the net radiation term can be represented as CR(Ti � Ta) where CR is the radi-
ation transfer coefficient. According to Mihailovi�c et al. (2001) for small differences
of Ta and Td, the expression for the latent heat flux can be written in the form CLf(Ta)
[b(Ti � Ta) þ b2(Ti � Ta)

2/2], where CL is the latent heat transfer coefficient, f(Ta) is
the gas vapor pressure at saturation, and b is a constant characteristic for a particular
gas. Calculation of time-dependent coefficients CR, CL, and CD can be found in
Monteith and Unswort (1990). After collecting the terms in Eq. (8.6) we get

DTi ¼ A1

�
Ti;n � Ta;n

�� A2

�
Ti;n � Ta;n

�2 � A3

�
Ti;n � Td;n

�
; (8.7)

Where A1 ¼ [CR � CH � bCL f(Ta)]/ci, A2 ¼ CLb
2f(Ta)/(2ci), and A3 ¼ CD/ci are

coefficients also depending on Dt. With Dtp ¼ 1=ðA1 � CD=ciÞ, we indicate the
scaling time range of energy exchange at the environmental interface including
coefficients that express all kinds of energy reaching the environmental interface.
For any chosen time interval, for solving Eq. (8.7), there always exists
Dtp;l ¼ min½Dtpðci;CR;CH ;CLÞ� when energy at the environmental interface which
is exchanged in the fastest way by radiation, convection, and conduction. If we
define dimensionless time s ¼ Dtp=Dtp;l and if we use for lower boundary condition
Td,n ¼ Ta,n � (ci/CD)DTa then Eq. (8.7) after some transformations take the form of a
logistic equation, i.e.,

xnþ1 ¼ rxnð1� xnÞ; (8.8)

where the symbols introduced have the following meaning: x is the dimensionless
temperature (Mihailovi�c, 2010), while the logistic parameter r ¼ 1 þ s takes values
from the interval 1 < r < 4.

Under the aforementioned conditions Eq. (8.8) represents vertical energy
exchange over the uniform environmental interface. However, in the nature usually
we encounter mixture of two or more environmental interface, for example grid-box
surface covered by different land covers. They will interact horizontally exchanging
the energy between them. We consider the case for two interacting environmental
interfaces represented by two logistic maps having the form

xnþ1 ¼ ð1� cÞr1xnð1� xnÞ þ cr2ynð1� ynÞ (8.9a)

ynþ1 ¼ ð1� cÞr2ynð1� ynÞ þ cr1xnð1� xnÞ; (8.9b)
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where xn and yn are dimensionless temperatures of surfaces covered, for example by
the vegetation fractional covers c and 1 � c, respectively.

We calculate the Lyapunov exponent l to examine the behavior of the coupled
maps given by Eqs. (8.9a) and (8.9b) in dependence on the coupling parameter c
(Fig. 8.3). Each point in this graph is obtained by iterating many times from the
initial condition to eliminate transient behavior and then averaging over another
50,000 iterations starting from the initial conditions x0 ¼ 0.2 and y0 ¼ 0.25 with
500c values. This simple analysis, where we consider only Lyapunov exponent,
shows a very interesting feature of two coupled logistic maps representing interac-
tion of two environmental interfaces through energy exchange between them. Thus,
when the coupling parameter c is smaller and the logistic parameter r2 is greater
(closer to r1), then the coupled maps are in the chaotic regime. Physically it means
that strong vertical exchange over both environmental interfaces does not allow hor-
izontal exchange (line r2 = 0.5r1 and line r2 ¼ 0.75r1 in Fig. 8.3). Moreover, when
the logistic parameter r2 has the same value as r1, the Lyapunov exponent is always
positive expressing the fact that the considered dynamic system is in the chaotic
regime for any value of c.

8.3 THE LINEAR COUPLING
For most of the biological populations, linear coupling is not the applicable model
because it involves mixing of generations. However, in human populations for
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FIGURE 8.3

Lyapunov exponent of the coupled maps representing the interaction between two

environmental interfaces, as a function of the coupling parameter c (ranging from 0 to 1) for

different values of logistic parameters. The logistic equation with the logistic parameter

r1 ¼ 3.99 is coupled with the logistic equation having the following logistic parameters:

r2 ¼ 0.5r1 and r2 ¼ 0.75r1.
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example, it can be used in representing dynamics of populations with permanent
mixed flow of its members, especially in cases when inflow and outflow are of
similar scale. The behavior of the Lyapunov exponent for two different initial con-
ditions is shown in Fig. 8.4 for: (1) c in the range 0e0.4 and r ¼ 3.0 (Fig. 8.4a) and
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FIGURE 8.4

Lyapunov exponent for the coupled maps as a function of: (a) c ranging from 0 to 0.4 and

with r ¼ 3.0 and (b) r ranging from 3.0 to 3.7 and with c ¼ 0.06. Each point was obtained by

iterating many times from the initial condition to eliminate transient behavior and then

averaging over another 50,000 iterations. Initial conditions x0 ¼ 0.2,y0 ¼ 0.4, with 5000c

values for Fig. 8.4a and 200r values for Fig. 8.4b.
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Plot of the iterates of the map (xn, yn) for initial point x0 ¼ 0.2, y0 ¼ 0.4; (a) quasiperiodic

motion for r ¼ 3.378, c ¼ 0.058; (b) chaotic motion for r ¼ 3.613, c ¼ 0.058.
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(2) r in the range 3.0e3.7 and c ¼ 0.06 (Fig. 8.4b). From these figures is seen that for
linear coupling chaotic behavior of the coupled maps occur for the higher values of c
and r.

Plot of the iterates of the map (xn,yn) is depicted in Fig. 8.5. As it is seen from this
figure, the coupled map displays quasiperiodic motion (Fig. 8.5a) and the chaotic
one (Fig. 8.5b).
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Logistic difference
equation on extended
domain 9
9.1 LOGISTIC EQUATION ON EXTENDED DOMAIN:

MATHEMATICAL BACKGROUND
With increased model complexity we need to introduce enough complexity to real-
istically model a process, but not so much that we cannot handle it. Various measures
of complexity were developed to compare time series and distinguish regular (e.g.,
periodic), chaotic, and random behavior. The main types of complexity measures
are Lyapunov exponent and entropies, among others. They are all defined for typical
orbits of presumably ergodic dynamical systems, and there are profound relations
between these quantities (Arshinov and Fuchs, 2003). For example, let us consider
a dynamical system

Xnþ1 ¼ SðXnÞ (9.1)

and make transformation T:T(X)¼Y, where X and Yare vectors. If the Jacobi matrix
is regular, either locally or globally, then for a transformed system

Ynþ1 ¼ GðYnÞ (9.2)

information about the dynamics of this system can be obtained from the dynamics of
the system (9.1) and vice versa. We deal with the difference equation

xnþ1 ¼ rxnð1� xnÞ; r < 0; (9.3)

whose dynamics can be completely described by the dynamics of the standard logis-
tic difference equation

xnþ1 ¼ mxnð1� xnÞ; 0 < m: (9.4)

Namely, making successive transformations T1 (symmetry), T2 (homotety), and
T3 (translation) in Eq. (9.3), where T1(x) ¼ �x, T2(x) ¼ (1 � 2/r)x, and T3(x)¼
x þ 1 � 1/r, we get Eq. (9.4). Jacobian for all transformations is globally different
from zero while m and r are related by the equation m ¼ 2 � r. Finally, for Eq. (9.3)
we have the following properties: (1) x ¼ 0 is the attractive fixed point
for �1 < r < 0; (2) bifurcations start for r < �1 (Fig. 9.1a); (3) function f(x) ¼
rx(1 � x) maps interval [1/r, 1 � 1/r] on itself for �2 � r < 0; (4) occurrence of

CHAPTER

Developments in Environmental Modelling, Volume 29, ISSN 0167-8892, http://dx.doi.org/10.1016/B978-0-444-63918-9.00009-0

© 2016 Elsevier B.V. All rights reserved.
77

http://dx.doi.org/10.1016/B978-0-444-63918-9.00009-0


the chaotic behavior for �2 � r <rN where rN ¼ 2 � mN [mN z 3.56994], and
finally (5) orbits tend to infinity for r < �2. In Fig. 9.1a is depicted the bifurcation
diagram of Eq. (9.3) on the whole domain [�2, 4].

We now analyze the occurrence of the chaos in solution of Eq. (9.3). Since a
quantitative measure for identification of the chaos is the Lyapunov exponent l,
we will calculate its spectrum for Eq. (9.3) as a function of the parameter r ranging
from �2 to 4. Their values are seen in Fig. 9.1b. This figure depicts two features of
the Lyapunov exponent spectrum of Eq. (9.3): (1) its symmetry due the point logistic
parameter having value 1 with the exact characteristics of the logistic equation
spectrum going left and right toward to values �2 and 4, respectively, and (2) it is
positive in the intervals r˛½�2; 2� mN� and r˛½mN; 4� indicating chaotic fluctua-
tions of x. However, inside r˛½�2:0; 2:0� mN� and [mN, 4] intervals, there are a lot
of opened periodical “windows” where l < 0. Note, that if the logistic parameter be-
longs to the interval [�1, 1], then 0 is the attractive point, while if it belongs to the
interval [1, 3] then the attractive point is 1 � 1/m.

To measure the complexity and uncertainties of quantity time series described by
Eq. (9.3), we use the sample entropy (SampEn) and the permutation entropy
(PermEn). Sample Entropy, as a measure quantifying regularity and complexity, is
believed to be an effective analyzing method of diverse settings that include both
deterministic chaotic and stochastic processes. It can be very useful in the analysis
of physiological, sound, climate, and environmental interface signals that involve
relatively small amount of data (Kennel et al., 1992; Richman and Moorman,
2000; Lake et al., 2002). SampEn(m, r, N) is the negative natural log of the condi-
tional probability that two sequences similar within a tolerance r for m points remain
similar at the next point, where N is the total number of points and self matches are
not included, i.e., SampEn(m, r, N) ¼ �ln (Am/Bm) where
AmðrÞ ¼ PN�m

i¼1 Am
i ðrÞ=ðN � mÞ and BmðrÞ ¼ PN�m

i¼1 Bm
i ðrÞ=ðN � mÞ. A low value

of SampEn is interpreted as one showing increased regularity or order in the data
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FIGURE 9.1

Bifurcation diagram (a) and Lyapunov exponent (b) of the difference Eqs. (9.3) and (9.4) as a

function of the parameter of difference equation ranging in interval [�2, 4].

Reprinted with permission from Mihailovi�c, D.T., Budin�cevi�c, M., Peri�si�c, D., Bala�z, I., 2012. Maps serving the

combined coupling for use in environmental models and their behaviour in the presence of dynamical noise.

Chaos Solitons Fractals 45, 156e165..
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series. The threshold factor or filter r is an important parameter. In principle, with an
infinite amount of data, it should approach zero. With finite amounts of data, or with
measurement noise, r value typically varies between 10% and 20% of the time series
standard deviation (Pincus, 1991).

Permutation Entropy (PermEn) of order n � 2 is defined as
PermEn ¼ P

pðpÞln pðpÞ where the sum runs over all n! permutations p of order
n. This is the information contained in comparing n consecutive values of the
time series. Consider a time series {xt}t¼1,.T. We consider all n! permutations p

of order n which are considered here as possible order types of n different numbers.
For each p we determine the relative frequency pðpÞ ¼ #ftj0 � t �
T � n; ðxtþ1;.; xtþnÞ has type pg=ðT � nþ 1Þ. This estimates the frequency of p
as good as possible for a finite series of values. To determine p(p) exactly, we
have to assume an infinite time series {x1, x2,.} and take the limit for T /N in
the above formula. This limit exists with probability 1 when the underlying stochas-
tic process fulfills a very weak stationary condition: for k � n, the probability for
xt < xtþk should not depend on t. Permutation entropy as a natural complexity mea-
sure for time series behaves similar as Lyapunov exponents and is particularly useful
in the presence of dynamical or observational noise (Brandt and Pompe, 2002).

Fig. 9.2 depicts SampEn of a single time series obtained from Eq. (9.3) as a func-
tion of the parameter r ranging from �2 to �1.4 (Fig. 9.2a) and from 3.4 to 4
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FIGURE 9.2

Sample (a and b) and permutation entropy (c and d) of the difference Eqs. (9.3) and (9.4) as

a function of the parameter r ranged in intervals [2.0, 1.4] and [3.4, 4.0].

Reprinted with permission from Mihailovi�c D.T., Budin�cevi�c, M., Kapor, D., Bala�z, I., Peri�si�c, D., 2011. A

numerical study of coupled maps representing energy exchange processes between two environmental interfaces

regarded as biophysical complex systems. Nat. Sci. 1, 75e84..

9.1 Logistic equation on extended domain 79



(Fig. 9.2b). Those two figures show output for this equation over a range of growth
values, for sample length m ¼ 2. It is clearly seen that there are some regions of
stability around �1.83 and 3.83, respectively. We also computed permutation
entropy. The test case used was, again, Eq. (9.3). Fig. 9.2c and d plot the computed
PermEn versus the growth rate of parameter r, which is periodic for some regions
and chaotic for others and some regions of stability around �1.83 and 3.83, respec-
tively. Let us note that PermEn is very similar to the positive Lyapunov exponent
(Figs. 9.2a vs 9.2c and 9.2b vs 9.2d).

9.2 LOGISTIC EQUATION ON EXTENDED DOMAIN
IN COUPLED MAPS SERVING THE COMBINED COUPLING:
A DYNAMICAL ANALYSIS

We consider the logistic equation on extended domain in coupled maps serving the
combined coupling (8.5), i.e.,

xnþ1 ¼ ð1� c1Þmxnð1� xnÞ þ c1mynð1� ynÞ þ c2ðyn � xnÞ (9.5a)

ynþ1 ¼ ð1� c1Þmynð1� ynÞ þ c1mxnð1� xnÞ þ c2ðxn � ynÞ: (9.5b)

We use Lyapunov exponent and cross-sample entropy (Cross-SampEn), included
in the archive of dynamical analysis, to analyze the system (9.5). We calculate the
Lyapunov exponent l to see the behavior of the coupled maps given by Eqs.
(9.5a) and (9.5b) depending on different values of the coupling parameters c1 and
c2. Fig. 9.3 depicts Lyapunov exponent for the coupled maps as a function of these
parameters ranging from 0 to 0.9, with the increment of 0.001, and the parameter m
ranging from 1.95 to�1.4 and from 3.4 to 3.9 with the increment of 0.01. Each point
was obtained by iterating 1000 times from the initial condition to eliminate transient
behavior and then averaging over another 600 iterations starting from initial condi-
tion x0 ¼ 0.20 and y0 ¼ 0.25. This simple analysis, where we consider Lyapunov
exponent, shows a very interesting feature of these two coupled maps. From this
figure is seen that there exist two distinguished regions with positive as well as nega-
tive values of lwhere for c2 below 0.5 the Lyapunov exponent of the coupled maps is
always negative.

Cross-SampEn measure of asynchrony is a recently introduced technique for
comparing two different time series to assess their degree of asynchrony or
dissimilarity (Pincus and Singer, 1995; Pincus et al., 1996). Let u ¼ [u(1),
u(2),.u(N)] and v ¼ [v(1),v(2),.v(N)] fix input parameters m and r. Vector
sequences: x(i) ¼ [u(i), u(i þ 1),.u(i þ m � 1)] and y(j) ¼ [v(j),
v(j þ 1),.v(j þ m � 1)] and N is the number of data points of time series, i,
j ¼ N � m þ 1. For each i � N � m set Bm

i ðrÞðvkuÞ ¼ ðnumber of j �
N � m such that d½xmðiÞ; ymðjÞ� � rÞ=ðN � mÞ, where j ranges from 1 to N � m.

And then BmðrÞðvkuÞ ¼ PN�m
i¼1 Bm

i ðrÞðvkuÞ=ðN � mÞ which is the average value
of Bm

i ðvkuÞ. Similarly we define Am and Am
i as Am

i ðrÞðvkuÞ ¼ ðnumber of
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j � N � m such that d½xmðiÞ; ymðjÞ� � rÞ=ðN � mÞ and AmðrÞðvkuÞ ¼
PN�m

i¼1 Am
i ðrÞðvkuÞ=ðN � mÞ which is the average value of Am

i ðvkuÞ. Finally, we have
Cross-SampEn ¼ �ln fAmðrÞðvkuÞ=BmðrÞðvkuÞg (9.6)

We applied Cross-SampEn with m ¼ 5 and r ¼ 0.05 for x and y time series.
Fig. 9.4 depicts that (c1, c2) phase space is covered with values of Cross-SampEn
equal or very close to zero, corresponding to the region in Fig. 9.3, where l is nega-
tive. It points out on a high synchronization between the coupled maps in that region.
In the rest of the (c1, c2) phase space, the entropy is greater than zero corresponding
to positive values of l.

For analysis of influence of the dynamical noise in system (9.5a) and (9.5b) we
chose system with the same values of coupling parameters c1 ¼ c2 ¼ 0.5. The Lya-
punov exponent and Cross-SampEn for this choice of the parameters as a function
of logistic parameter m are depicted in Fig. 9.5.
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Lyapunov exponent and Cross-SampEn for the combined coupling given by

Eq. (9.5a) and (9.5b) for c1 ¼ c2 ¼ 0.5 and logistic parameter m taken in intervals

[�1.66, �1.56] and [3.57, 3.69].

Reprinted with permission from Mihailovi�c, D.T., Budin�cevi�c, M., Peri�si�c, D., Bala�z, I., 2012. Maps serving the

combined coupling for use in environmental models and their behaviour in the presence of dynamical noise.

Chaos Solitons Fractals 45, 156e165.

82 CHAPTER 9 Logistic difference equation on extended domain



REFERENCES
Arshinov, V., Fuchs, C., 2003. Preface. In: Arshinov, V., Fuchs, C. (Eds.), Causality, Emer-

gence, Self-organisation. NIAPriroda, Moscow, Russia, pp. 1e18.
Bandt, C., Pompe, B., 2002. Permutation entropy: a natural complexity measure for time

series. Phys. Rev. Lett. 88, 174102.
Kennel, M.B., Brown, R., Abarbanel, H.D.I., 1992. Determining embedding dimension for

phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403e3411.
Lake, D.E., Richman, J.S., Griffin, M.P., Moorman, J.R., 2002. Sample entropy analysis of

neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283,
R789eR797.

Mihailovi�c, D.T., Budin�cevi�c, M., Kapor, D., Bala�z, I., Peri�si�c, D., 2011. A numerical study of
coupled maps representing energy exchange processes between two environmental inter-
faces regarded as biophysical complex systems. Nat. Sci. 1, 75e84.

Mihailovi�c, D.T., Budin�cevi�c, M., Peri�si�c, D., Bala�z, I., 2012. Maps serving the combined
coupling for use in environmental models and their behaviour in the presence of dynam-
ical noise. Chaos Solitons Fractals 45, 156e165.

Pincus, S.M., 1991. Approximate entropy as a measure of system complexity. Proc. Natl.
Acad. Sci. U.S.A. 88, 2297e2301.

Pincus, S., Singer, B.H., 1995. Randomness and degrees of irregularity. Proc. Natl. Acad. Sci.
U.S.A. 93, 2083e2088.

Pincus, S.M., Mulligan, T., Iranmanesh, A., Gheorghiu, S., Godschalk, M., Veldhuis, J.D.,
1996. Older males secrete luteinizing hormone and testosterone more irregularly, and
jointly more asynchronously, than younger males. Proc. Natl. Acad. Sci. U.S.A. 93,
14100e14105.

Richman, J.S., Moorman, J.R., 2000. Physiological time-series analysis using approximate
entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278, H2039eH2049.

References 83



Generalized logistic
equation with affinity: its
use in modelling
heterogeneous
environmental interfaces

10

10.1 GENERALIZED LOGISTIC MAP WITH AFFINITY:
MATHEMATICAL BACKGROUND

As mentioned previously, the exchange of biochemical substance is defined in a
diffusion-like manner. The dynamics of intracellular behavior is expressed as a
logistic map f(x)¼ rx(1� x), where x is the concentration of a given substance in
a cell, while r is a logistic parameter, 0< r� 4 (Devaney, 2003; Gunji and Kamiura,
2004; Mihailovi�c et al., 2013). However, instead of this map we use another form,
which includes a parameter p that represents the cell affinity. By introducing this
parameter we formalize an intrinsic property of the cell that includes (1) affinity
of genetic regulators toward arriving signals which determine intensity of cellular
response and (2) affinity for uptake of signaling molecules as it is shown in
Fig. 7.3 according to Mihailovi�c et al. (2011). Namely, from the logistic equation
follows that the level of intracell dynamics is the most intensive for the concentration
xmax,p ¼ 1¼ 0.5 that comes from df(x)/dx¼ r(1� 2x)h 0 and p¼ 1. If we wish to
generalize this condition one possible way of introducing the parameter p is to postu-
late the condition df(x, p)/dx¼ rpx p � 1(1� 2x p). It means that the level of concen-
tration xmax,p when the intracellular dynamics is the most intensive depends on the
cell affinity p, i.e., xmax,p¼ 1/21/p. Calculating the integral f(x, p)¼
!rpx p � 1(1� 2x p)dx we get f(x)¼ rx p(1� x p). We will call this map: the map

with the cell affinity, where 0< x� 1 and 0< p� 1. Fig. 10.1 depicts that the inten-
sity of the intracellular dynamics starts to grow when the cell affinity p is around 0.1.
Note, that this map can be employed in modelling other environmental interface sys-
tems, in which parameter p formalizes some of their intrinsic properties (hereafter
referred to as affinity parameter).

To avoid double approximation (see Section 3.2) the cell dynamics is expressed
here as a difference equation, i.e.,
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f
�
xi;n
� ¼ rxpi;n

�
1� x p

i;n

�
: (10.1)

The dynamics of this map (Eq. 10.1) is governed by two parameters, p and r,
which express cell affinity and influence of environment, respectively. We analyze
this map using Lyapunov exponent, l, and sample entropy (SampEn). Fig. 10.2
shows the variations of l and SampEn against cell affinity p, with: (1) r randomly
chosen in the interval (3,4), (2) initial condition x0¼ 0.25, and (3) m¼ 5 and
rs¼ 0.05. For each x, 104 iterations of the map (Eq. 10.1) are applied, and the first
103 steps are abandoned. Fig. 10.2(a) indicates that for p< 0.2, l takes negative
values while for higher values of p there is a frequent occurrence of regions with
instability (l> 0). As it is seen from Fig. 10.2(a) the SampEn entropy with a biased
statistics is closer to 1 for larger values of p. From this figure it is also seen that
SampEn (Fig. 10.2(b)) follows the Lyapunov coefficient (Fig. 10.2(a)), i.e., takes
values nearly zero when l< 0. Above analysis indicates that for the lower levels
of affinity, the generalized logistic map with the cell affinity (Eq. 10.2) can better
simulate the biochemical substance exchange in cell than it is possible by the ordi-
nary logistic equation. This is particularly pronounced for p< 0.2.

10.2 UNCERTAINTIES IN MODELLING THE TURBULENT
ENERGY EXCHANGE OVER THE HETEROGENEOUS
ENVIRONMENTAL INTERFACES d SCHMIDT’S
PARADOX

The Earth’s climate system, joining the physical and chemical components of the at-
mosphere, ocean, land surface, and cryosphere is the target of global climate models
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FIGURE 10.1

Dependence of concentration xmax,p on the cell affinity p (Mihailovi�c et al., 2013).
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whose objective is to correctly simulate the spatial variation of climate in some
average sense. The main current issues in modelling the global climate system can
be summarized as follows. (1) Chaos. This is a deterministic chaos whose sources
are nonlinearities in the NaviereStokes equations and their sensitivity to initial con-
ditions. However, in addition, in climate models, coupling of a nonlinear model over
one environmental interface to a nonlinear model over another environmental inter-
face (for example, land and ocean), gives rise to something much more complex
than the deterministic chaos of the weather model, leading to bifurcation, instability,
and chaos (Annan and Connolley, 2005). (2) Confidence in climate models. This issue
is how well the climate model reproduces reality, that is, whether the model works and
is it fit for its intended purpose (Curry, 2011). (3) Climate model imperfection. The
meaning of this issue can be addressed to the fact that our understanding of, and ability
to simulate, the Earth’s climate is rather limited. The climate model imperfection is
divided into two types: uncertainty and inadequacy. The term model uncertainty
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FIGURE 10.2

The dependence on the cell affinity p of (a) the Lyapunov exponent, l, and (b) the sample

entropy (SampEn) of intracell dynamics, simulated by Eq. (10.1) (Mihailovi�c et al., 2013).
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means that we cannot reliably choose parameters, which will give the most informa-
tive results; the term inadequacy means that before we run any simulation of the
future, we know in advance that models are not realistic representations of many
key aspects of the real system (Stainforth et al., 2007). (4) Subgrid scale parameter-
ization. Except uncertainty in model parameters and initial conditions, the model un-
certainty is associated with subgrid scale parameterizations (e.g., boundary layer
turbulence, cloud microphysics) generating systematic errors in meteorological fields
which are obtained by the downscaling procedure (Mihailovi�c et al., 2015).

The approaches for calculating the turbulent transfer of momentum, heat, and
moisture from a grid-box composed of heterogeneous surfaces to the atmosphere
can be classified as follows (Fig. 10.3). (1) Main land-use. In this approach surface
fluxes are calculated based on the characteristics of the largest fraction of the grid-
box. This method is computationally very economical but in pronouncedly hetero-
geneous areas it should not be applied. (2) Parameter averaging, where grid-box
mean radiation, aerodynamic, physiological, morphological, and soil parameters
are averaged for all patches in the grid-box. Note that this approach, which is the
favorable one concerning time-consuming, can produce even worse results than

FIGURE 10.3

Schematic diagram illustrating how the subgrid scale surface patch-use classes are treated

within the different parameterization schemes for subgrid scale surface fluxes in climate and

other models of different scales (Mihailovi�c et al., 2015).
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the main land-use approach, especially for very coarse resolutions. (3) Flux
aggregation is the method where the fluxes are averaged over the grid-box. (4) Pixel
flux aggregation. This mosaic flux aggregation method is optimal for future pixel-
based patch-use data sets, although it is computationally relatively expensive
(Bohnenstengel, 2012). (5) Combined method is a combination of (2) and (3)
methods (Hess and McAvaney, 1998).

To take into account the effects of heterogeneity of the underlying surface using
the method of parameter averaging we shortly describe (1) an expression for a gen-
eral equation for the wind speed profile in a roughness sublayer under neutral con-
ditions and (2) method for calculating the aggregated values of the aerodynamic
characteristics that is elaborated in Mihailovi�c et al. (1999). As suggested by
Mihailovi�c et al. (1999), who introduced an expression for the mixing length over
a grid-box consisting of vegetated and nonvegetated surfaces, the aggregated mixing
length lam at level z above a grid-box consisting of the heterogeneous surface defined
above, might be represented by some combination of their single mixing lengths. If,
as a hypothesis, we assume a linear combination weighted by fractional cover,
according to mixing length theory we can define lam as

lam ¼ k

"XK
i¼1

siaiðz� diÞ þ
XL
i¼1

dizþ
XM
i¼1

niz

#
; (10.2)

where k is the von Karman’s constant taken to be 0.41; si, di, and ni are partial frac-
tional covers for vegetation, bare/water surface, and urban part, respectively, while
di is zero displacement height for the ith vegetative part in the grid-box (Mihailovi�c
et al., 2002). The nonuniformity of the vegetative part is expressed with the surface
vegetation fractional cover si representing the i type of vegetation cover that fills the
grid-box. Their sum takes values from 0 (when only solid surface or water are pre-
sent) to 1 (when the ground surface is totally covered by plants). The nonuniformity
of bare soil and water portion (bare soil, sea, river, lake, water catchments) of the
grid-box will be denoted by symbols di while ni represents the urban fractional
cover; the total sum of all these fractional covers must be equal to 1. Parameter ai
is the dimensionless constant that depends on morphological and aerodynamic char-
acteristics of the vegetative cover whose values vary according to the type of vege-
tative cover (Mihailovi�c et al., 1999).

Starting from the expression for the momentum transfer coefficient Km for
nonuniform surface in the grid-box, i.e., Km ¼ lamu

a�, where ua� is the friction velocity,
Mihailovi�c et al. (2002) derived a wind profile u(z) in the roughness sublayer above
the heterogeneously built grid-box under neutral conditions, which can be written in
the form

uðzÞ ¼ ua�
kL

ln
z� D

Z0
(10.3)

where, Z0 and D are roughness length and displacement height above nonhomoge-
neously covered grid-box, and L is a parameter describing the departure of a real
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wind profile in roughness sublayer from the classical logarithmic relationship. If we
consider a nonuniform underlying surface, particularly over the urban area, whose
nonuniformity is expressed with the surface fractional covers si (for vegetation),
di (for bare soil or water surface) and ni (for urbanized surface), and K, L, and M
are total numbers of homogeneous patches with vegetation, bare soil, and urban
land, respectively, then aggregated values for Z0, D, and L can be calculated from
the following expressions:

Z0 ¼ 1

L

 XK
i¼1

sia
2
i

siðai � 1Þ þ 1
z0n;i þ

XL
i¼1

diz0u;i þ
XM
i¼1

niz0w;i

!
(10.4)

D ¼ 1

L

XK
i¼1

siaidi (10.5)

L ¼
XK
i¼1

siaiþ
XL
i¼1

diþ
XM
i¼1

ni; (10.6)

where z0n,i, z0u,i, and z0w,i are roughness lengths for vegetation, solid, and water and
urban part, respectively.

When using either method (3) or (5) then we encounter the occurrence of
Schmidt’s paradox (Lettau, 1979; Mihailovi�c and Kapor, 2012). It describes situ-
ation when small regions of evident surface heterogeneity, with intense upward-
directed turbulent-sensible heat fluxes can take over the grid-area averaged value
of these fluxes, while the mean gradient of potential temperature still indicates
an overall stable stratification between the surface and the lowest climate model
level. Further, this situation causes arising of counter-gradient heat transfer.
Thus, the subgrid scale surface flux parameterization has to capture this phenom-
enon to derive a representative grid-box averaged flux and further yield the correct
mean temperature gradient by allowing a transport of heat in the direction opposite
to the mean gradient. To avoid this situation many attempts have been made (Lamb
and Durran, 1978; Hess and McAvaney, 1998). However, regardless of which
approach is applied, the physics of the countergradient relationship must still be
accounted for.

In this section we describe a combined method that combines the parameter aver-
aging (2) and the flux aggregation (3) approaches in calculating the surface
temperature of the grid-box (Mihailovi�c et al., 2005). In the further text we use
angular brackets to indicate an average of certain physical quantity A over the
grid-box, i.e.,

hAi ¼
XNP
i¼1

xiAi (10.7)

where NP is the number of patches within a grid-box and xi is the fractional cover for
the ith surface type. In parameter aggregation approach the mean sensible heat flux
hH0i and latent heat flux hlE0i, calculated over the grid-box, where l is the latent
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heat of vaporization, are found by assuming, for example, the aerodynamic resis-
tance representation, i.e.,

hH0i ¼ rcp
hT0i � Ta

hrai (10.8)

and

lhE0i ¼ rcp
g

he0i � ea
hrai ; (10.9)

where r is the air density, cp is the specific heat of air at constant pressure, g the psy-
chrometric constant, ra the resistance between canopy air or ground surface and the
atmospheric lowest model level, Ta the air temperature, and ea the water vapor pres-
sure. The subscript a indicates the atmospheric lowest model level and the subscript
0 indicates the surface or environment inside the canopy. The hrai is defined as

hrai ¼ hrsidmþ 1

khu�i ln
za � hdið1� dÞ
zb � hdið1� dÞ (10.10)

where hrsi is the bare soil surface resistance, d (d¼ 1 for the bare soil, water and
urban fraction; d¼ 0 for vegetative surface) and m (m¼ 1 for the bare soil fraction;
m¼ 0 for vegetative surface, water and urban fraction) the parameters, u* the friction
velocity, za is the height of the lowest atmospheric model level, zb a height taking
values z0 and H (canopy height) for the barren/urban/water and vegetative part,
respectively. We parameterize hrsi following Sun (1982) and Mihailovi�c and Kallos
(1997). If the surface fluxes aggregation approach is applied then the mean surface
fluxes are given by

hH0i ¼ rcp
XNP
i¼1

xi
Tm;i � Ta

ra;i
(10.11)

lhE0i ¼ rcp
g

XNP
i¼1

xi
em;i � ea

ra;i
; (10.12)

where the subscript m refers to the single patch in the grid-box (vegetation, bare soil,
water and urbanized area) whose temperature is calculated by the surface scheme.
However, according to Hess and McAvaney (1998), it seems that averaging temper-
atures over different patches in the grid-box, rather than the sensible heat flux, can be
the source of problems. There is an alternative method for calculation of temperature
and water vapor pressure diagnostically from Eqs. (10.8) and (10.9), when the grid-
averaged fluxes are known from Eqs. (10.11) and (10.12). Since we have three un-
knowns, it is necessary to introduce the associated parameter and flux aggregation
equations for momentum

�
u2�
� ¼

2
4 kL

ln za�hDi
hZ0i

3
52hFðhRibi; ua; hT0i; TaÞiu2a (10.13)
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�
u2�
� ¼XNP

i¼1

xi

2
4 kLi

ln
za�Di

Z0;i

3
52Fi

�
Rib;i; ua; Tm;i; Ta

	
u2a (10.14)

where Z0, D, and L are given by Eqs. (10.4)e(10.6), F represents the nonneutral
modification, Rib the bulk Richardson number, while ua and Ta are the wind speed
and air temperature, respectively, at the lowest model level. Now, the mean aver-
aged momentum flux is calculated from Eq. (10.14). If this value is substituted into
Eq. (10.13), the resulting equation can be solved for hFi. The aggregation param-
eter version of the aerodynamic resistance ra can be now determined (since hFi,
hZ0i, hDi, and hHi are all known). Thus,

hrai ¼ rsdmþ
kL

ln za�hDi
hZ0i(PNP

i¼1 xi

"
kLi

ln
za�Di
Z0;i

#2
Fi

�
Rib;i; ua; Tm;i; Ta

	)1=2
ln
za � hDið1� dÞ
zb � hDið1� dÞ : (10.15)

Hence, the grid-averaged surface values of temperature and water vapor pressure
can be found from Eqs. (10.8) and (10.9), i.e.,

hT0i ¼ hraihH0i
rcp

þ Ta (10.16)

he0i ¼ hraiglhE0i
rcp

þ ea: (10.17)

Fig. 10.4 depicts comparison differences in surface temperatures obtained by two
different land surface schemes incorporated in the 1-D model (Mihailovi�c et al.,
2005). The first one was a simulation with the MM5 land-surface parameterization
(Dudhia, 1993) while the second simulation was with the LAPS land surface scheme
(Mihailovi�c, 1996) according to Eq. (10.16). In this equation the average total heat
flux over the grid-box hH0i is calculated using a simple linear average of partial sen-
sible heat fluxes (Fig. 10.4(a)), while the aggregated values of the corresponding
aerodynamic characteristics over the grid-box are calculated by Eqs. (10.4)e
(10.6). The simulated values of the surface sensible heat fluxes and surface temper-
ature are presented in Fig. 10.4(a) and (b), respectively. Fig. 10.4 depicts the tempo-
ral variation of the surface temperature obtained by the LAPS and MM5 schemes of
1-D model that are compared with the observations. The observations are derived
from the temperature profile measured over the Baxter site. From this figure is
seen that no significant differences occur between compared cover types during
the period between midnight and 0800 UTC. The minimum of the surface temper-
ature, for both parameterizations, occurs approximately at the same time, i.e.,
around 0500 UTC. Also, is seen that there is no huge difference in their values,
although the minimum obtained by the LAPS scheme is slightly lower than mini-
mum calculated by MM5 scheme. However, during the 0800e1400 UTC time inter-
val the surface temperature, for both parameterizations, overestimates the observed
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values although the LAPS scheme gives values that are much closer to them. After
1600 UTC, both schemes underestimate the surface temperature in comparison with
the observations.

10.3 USE OF THE GENERALIZED LOGISTIC EQUATION WITH
AFFINITY IN MODELLING THE TURBULENT ENERGY
EXCHANGE OVER THE HETEROGENEOUS
ENVIRONMENTAL INTERFACES

The main difficulties arising from the inclusion of subgrid scale heterogeneities into
surface flux parameterizations come from the nonlinear dependence of the surface
fluxes on the surface layer characteristic. It means: (1) that turbulent flux spatially
averaged over the grid-box can significantly differ from the flux determined from
the “mean” surface characteristics and then applying the flux function to the artificial
but homogeneous surface characteristic value and (2) that unique effect of several
different fluxes on the main flow is not the result of simple averaging of spatial fluxes
which represent the individual effects in the grid-box (Giorgi and Avissar, 1997;
Bohnenstengel, 2012; Mihailovi�c et al., 2015). These two deficiencies are known
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FIGURE 10.4

(a) The diurnal variation of sensible heat fluxes, obtained by the LAPS land surface scheme

(Mihailovi�c, 1996) and (b) the surface temperatures over the grid-box (85% urban part, 15%

forest, and 5% agricultural field) representing the Baxter site, Philadelphia, PA (USA), for

July 17, 1999. The calculations of surface temperatures are performed using the MM5

surface parameterization (main land use, Dudhia, 1993) and LAPS land surface scheme

(combined method, Mihailovi�c et al., 2005) in 1-D model.

Reprinted with permission from (Mihailov�c, D.T., Rao, S.T., Alapaty, K., Ku, J.Y., Arsenic, I., Lalic, B., 2005. A

study on the effects of subgrid-scale representation of land use on the boundary layer evolution using a 1-D

model. Environ. Model. Softw. 20, 705e714.).
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as the aggregation effect. The inaccuracies can arise due to heterogeneity induced
subgrid scale circulations, which are not explicitly resolved on the grid scale
(dynamical effect). This effect needs to be accounted for by parameterizations for
horizontal resolutions used for global and regional climate or weather forecast
models.

In this chapter we demonstrate a use of the generalized logistic equation with af-
finity in analysis of the flux subgrid parameterization and its stability, which will be
done in Section 22.2. For that purpose, here we add one more effect to these already
mentioned. We call it patch size effect [environmental interface (EI) size effect] or
shortly EI size effect, which comes from the size of a single EI in the grid-box
(Fig. 10.5). Although this effect is implicitly included into two other ones we will
consider it explicitly.

In nature, there are three mechanisms of energy transfer: radiation, conduction,
and convection. For our purposes we will need: incoming and outgoing shortwave
and longwave radiation, convection of heat and moisture into the atmosphere, and

FIGURE 10.5

The grid-box over the Prospect Park, NY, USA, illustrating the heterogeneous grid-box used

in environmental model simulations. It consists from the following environmental interface

surfaces (patches): (1) urban part (surrounding buildings), (2) vegetative part (mixture of

trees and grass), and (3) water surface (lake).

Taken from the Google Maps (Mihailovi�c, D.T., Kosti�c, V., Mimi�c, G., Cvetkovi�c, L., 2015. Stability analysis of

turbulent heat exchange over the heterogeneous environmental interface in climate models. Appl. Math. Com-

put. 265, 79e90.).
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conduction of heat into deeper soil layers of ground. The dynamics of energy ex-
change, by the above-described mechanisms, under the energy balance equation
can be expressed as a logistic map fr(x)¼ rx(1� x), where x is the dimensionless
temperature and r is a logistic parameter, r ˛ (0, 4.0], (see Mihailovi�c et al.,
2012; Mimi�c et al., 2013). Here, r is the parameter representing a diversity of the
aggregated energy flux intensities over the grid-box and, thus, it represents aggrega-
tion effect.

As a measure of diffusion of the energy exchange between jth and ith EI is the
coupling parameter cij (ci, j˛ [0.0, 1.0]) which drives the dynamics between different
EI in the grid-box (dynamical effect). Here, a natural requirement of such a model is
that

P
j˛N

ci; j ¼ 1, for all i˛N : f1; 2; :::; ng where n is the total number of EI patches

in the grid-box. Therefore, the coupling parameter in ith EI can be written as

ci;i ¼ 1�
X
jsi

ci; j: (10.18)

To complete the model we have to consider the EI size effect, i.e., contribution of
the EI size to the energy exchange given by the logistic equation fr(x)¼ rx(1� x).
For that purpose we use the generalized form of this map

fr;pðxÞ ¼ rx pð1� x pÞ; (10.19)

which includes a parameter p that represents the total turbulent energy exchange be-
tween a single EI and the surrounding environment. Since we take p ˛ [0.0, 1.0], we
have fr,p: [0.0, 1.0] / [0.0, 1.0].

Given a p ˛ [0.0, 1.0], a measure of this exchange is an integral of Eq. (10.19)
taken over all dimensionless energies p

IðpÞ
r

¼
Z 1

0

Fr;pðxÞ
r

¼ p

ðpþ 1Þð2pþ 1Þ: (10.20)

Note that from this point the notation fr,p (Eq. 10.19) will be replaced by Fr,p.
From Fig. 10.6 it is seen that the energy exchange rate grows up with increase of
the parameter p, i.e., when the size of a single EI becomes larger. The energy of ex-
change dynamics uncoupled EI is expressed here as a difference equation (de Vaart,
1973; Kreinovich and Kunin, 2003), i.e.,

xðkþ1Þ ¼ Fr;p

�
xðkÞ
�
; for k˛N: (10.21)

Therefore, we are interested in the evolution of n ˛ N, n� 2 (generally), coupled
EIs, in other words, in the following discrete dynamical system

xðkþ1Þ ¼ CFr;p

�
xðkÞ
�
; (10.22)

where xðkÞ ¼ ½xðkÞ1 x
ðkÞ
2 .x

ðkÞ
n �T˛½0; 1�n is a state vector at time step k ˛ N, C¼

[ci,j] ˛ Rn,n is diffusive coupling matrix, and is a global logistic map given by

10.3 Use of the generalized logistic equation with affinity 95



F(x)¼ [fr1,p1fr2,p2. frn,pn]
T. The parameters of the discrete dynamical system

Eq. (10.22) are: (1) ri ˛ [0.1,1.0]dlogistic parameter for ith EI, (2)
pi ˛ [0.1,1.0]daffinity parameter for ith EI, and ci,j ˛ [0.1,1.0]dmeasure of diffu-
sion of energy from jth EI to ith EI.

FIGURE 10.6

The dependence on the parameter p of (a) total energy exchange between a single EI and the

surrounding environment, I(p)/r, and (b) the plot of the function y¼ fr,p for r¼ 3 and

p¼ 0.1, 0.2,., 0.9, 1 with the bolded line y¼ x.
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Maps serving the different
coupling in the
environmental interfaces
modelling in the presence
of noise

11

11.1 BEHAVIOR OF A LOGISTIC MAP DRIVEN BY
FLUCTUATIONS

In this chapter we investigate the behavior of the coupled maps in the presence of the
fluctuations or other noise. Note that in statistical mechanics, the term fluctuations is
often a synonym for thermal fluctuations, which are random deviations of a system
from its average state, that occur in a system at equilibrium. It has been shown in the
case of uncoupled nonlinear oscillators that the introduction of external or para-
metric fluctuations has a pronounced effect on the dynamics of such systems
(Hogg and Huberman, 1984). First, we consider behavior of a logistic map driven
by fluctuations. A detailed overview of literature about logistic map driven by peri-
odic signal, quasiperiodic signal, or noise is given in Zheng-Ling et al. (2009).

Because there is always noise in the real world, we consider effects of fluctua-
tions on a simple nonlinear dynamical system, i.e., the logistic equation

xnþ1 ¼ rxnð1� xnÞ; (11.1)

which we model by adding random noise Dxn. The effect of additive noise Dxn we
model by adding uniformly distributed random numbers to the map of Eq. (11.1), i.e.

xnþ1 ¼ rxnð1� xnÞ þ Dxn: (11.2)

Here Dxn ¼ Ddn measures the noise intensity while dn are random numbers
uniformly distributed in the interval [0,1] and D is the amplitude of the noise.

We deal with the nondivergent interval and chaos excited by fluctuations of
system (11.2). In that sense, the Lyapunov exponent l in the presence of noise
according to the necessary and sufficient condition of convergence of a function
series, the system (11.2), will be nondivergent if

lim
n/N

xnþ1

xn
< 1: (11.3)

CHAPTER

Developments in Environmental Modelling, Volume 29, ISSN 0167-8892, http://dx.doi.org/10.1016/B978-0-444-63918-9.00011-9

© 2016 Elsevier B.V. All rights reserved.
99

http://dx.doi.org/10.1016/B978-0-444-63918-9.00011-9


The condition (11.3) says that the difference boundary condition is

lim
n/N

����
rxn � rx2n þ Dxn

xn

���� ¼ 1: (11.4)

Its solution is

xn ¼
�rH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � 1Þ2 þ 4rDxn

q

2r
: (11.5)

If xn is a real number, then

r2 � 2r þ 1þ 4rDxn � 0 (11.6)

is necessary and sufficient.
The plots of the Lyapunov exponent of system (11.2) are shown in Fig. 11.1. We

calculate xn 10,000 times from the initial value x0 ¼ 0.6 for each step of change of r,

FIGURE 11.1

Comparison of Lyapunov exponents between systems (11.1) and (11.2) with Dl being the

difference of l between system (11.2) and system (11.1): D ¼ 0.001(black), D ¼ 0.01(red),

D ¼ 0.05 (blue), and D ¼ 0.1.
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which was 0.005. The latter 3000 points are used to draw the figures of the Lyapunov
exponent.

From Fig. 11.1 is seen that if the logistic parameter r is in the intervals (1,75;
2,75) and (3.3,4) the additive noise significantly affects stability of the system
(11.2) making it more unstable.

11.2 BEHAVIOR OF THE COUPLED MAPS SERVING THE
COMBINED COUPLING IN THE PRESENCE OF
DYNAMICAL NOISE

As it said, the dynamical noise can dramatically change the dynamics of the coupled
maps. We use the term dynamical noise for a situation where the output of a dynam-
ical system corrupted with noise is used as an input during the next iteration. Conse-
quential analyses of real systems in environment in terms of chaos theory should
take into account the effect of dynamical noise on the system’s dynamics. In fact,
as Ruelle (1994, p. 27) set it, real systems can in general be described as determin-
istic systems with some added noise. This descriptive approach is sufficiently
indistinctive that it appears to cover everything. In economics, for example, such
a description is familiar and the noise is called “shocks.” A first remark concerning
the above picture is that the separation between noise and the deterministic part of
the evolution is indeterminate, because one can always interpret “noise” as a deter-
ministic time evolution in infinite dimension (Serletis et al., 2007a). Serletis et al.
(2007b) argue that dynamical noise (noise that acts as a driving term in the equations
of motion) can noticeably change the dynamics of nonlinear dynamical systems. In
reality, dynamical noise can make the recognition of chaotic dynamics very difficult.
Additionally the dynamical noise can shift bifurcation points and produce noise-
induced transitions, making the determination of bifurcation boundaries very
difficult (Serletis and Shahmoradi, 2006).

In this section we examine how dynamical noise can affect the structure of the
bifurcation diagram of the coupled maps. Many authors, dealing with spatial
heterogeneity in population dynamics, are considering different coupling forms
for logistic maps, what is well elaborated by Savi (2007). This noise enters in two
specific ways: it disturbs either the parameter r (parametric excitation) or the deter-
ministic law by an additive “shock” (external excitation). Specifically, we deal with
coupled maps given by Eqs. (8.5a) and (8.5b), where c1 ¼ c2 ¼ 0.5, now written in
the form

xnþ1 ¼ ð1� c1Þrxnð1� xnÞ þ c1rynð1� ynÞ þ c2ðyn � xnÞ þ Dx; (11.7a)

ynþ1 ¼ ð1� c1Þrynð1� ynÞ þ c1rxnð1� xnÞ þ c2ðxn � ynÞ þ Dh: (11.7b)

We analyze first the randomness influence on the above-coupled maps by adding
random noise. Here Dxn ¼ Ddð1Þn and Dhn ¼ Ddð2Þn measure the noise intensity while
dð1Þn and dð2Þn are random number uniformly distributed in the interval [0,1] and D is
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the amplitude of the noise. To illustrate their dynamics we plot their bifurcation
diagrams in the absence of noise (Fig. 11.2). We focus now on the influence of noise
in Dxn and Dhn. Bearing in mind that D ¼ 0.1 and D ¼ 0.2, we analyze results from
bifurcation diagrams depicted in Fig. 11.3, which may be compared with Fig. 11.2. It
is perceptible that noise destroys some periodic windows, changing some expected
behavior, already when D ¼ 0.1 corresponding to low amplitude of the additive
noise (Serletis et al., 2007b), as it is seen on the first four upper panels in
Fig. 11.3. Further, for the doubled amplitude, i.e., D ¼ 0.2, the noise (the last four
lower panels in Fig. 11.3), exceedingly destroyed the pictures of bifurcation
diagrams in Fig. 11.3.

In the case of uncoupled nonlinear oscillators, it has been shown that the addition
of parametric fluctuations has a pronounced effect on the dynamics of such systems
(Hogg and Huberman, 1984; Liu and Ma, 2005; Thattai and van Oudenaarden,
2001).

It is therefore of interest to investigate the effect of noise on either environmental
processes or events represented by the system of two maps serving the combined
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FIGURE 11.2

Bifurcation diagrams of the coupled maps given by Eqs. (11.7a) and (11.7b) for

c1 ¼ c2 ¼ 0.5 in the absence of noise D ¼ 0.

Reprinted with permission from Mihailovi�c, D.T., Budin�cevi�c, M., Peri�si�c, D., Bala�z, I., 2012. Maps serving the

combined coupling for use in environmental models and their behaviour in the presence of dynamical noise.

Chaos Solitons Fractals 45, 156e165.

102 CHAPTER 11 Maps serving the different coupling in the environmental



FIGURE 11.3

Bifurcation diagrams of the coupled maps given by Eqs. (11.7a) and (11.7b) for c1 ¼ c2 ¼
0:5 ‘shocked’ by added noise. The four upper panels are for D ¼ 0.1, while the last four ones

are for D ¼ 0.2.

Reprinted with permission from Mihailovi�c, D.T., Budin�cevi�c, M., Peri�si�c, D., Bala�z, I., 2012. Maps serving the

combined coupling for use in environmental models and their behaviour in the presence of dynamical noise.

Chaos Solitons Fractals 45, 156e165.
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FIGURE 11.4

Bifurcation diagrams of the coupled maps given by Eqs. (11.8a) and (11.8b) for

c1 ¼ c2 ¼ 0.5 when forcing is done by the parametric noise. The first four panels are for

D ¼ 0.01, while the last four lower ones are for D ¼ 0.025.

Reprinted with permission from Mihailovi�c, D.T., Budin�cevi�c, M., Peri�si�c, D., Bala�z, I., 2012. Maps serving the

combined coupling for use in environmental models and their behaviour in the presence of dynamical noise.

Chaos Solitons Fractals 45, 156e165.
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coupling. In modelling environmental interfaces especially interesting cases are
those where, due to either internal or external noise, parameters of the oscillators
have small, random variations. These so-called parametric fluctuations can be simu-
lated by modulating the values of the nonlinearity parameters by uniform random
numbers in a small interval. Specifically, in our case, when coupling parameters
c1 and c2 are fixed, it gives the following map:

xnþ1 ¼ ð1� c1Þrð1Þn xnð1� xnÞ þ c1r
ð2Þ
n ynð1� ynÞ þ c2ðyn � xnÞ; (11.8a)

ynþ1 ¼ ð1� c1Þrð2Þn ynð1� ynÞ þ c1r
ð1Þ
n xnð1� xnÞ þ c2ðxn � ynÞ; (11.8b)

where r
ð1Þ
n ¼ rð1þ DxnÞ and r

ð2Þ
n ¼ rð1þ DhnÞ. Bifurcation diagrams in Fig. 11.4

depicts the change in their structure comparing to Fig. 11.2, when the parametric
noise is introduced with amplitudes D ¼ 0.01 and D ¼ 0.025, corresponding to
the low intensity of additive noise. It seems that the parametric forcing produces
larger changes in the bifurcation diagrams than in the case of the added noise.
Namely, looking at Fig. 11.3 (the first four upper panels when D ¼ 0.1) and
Fig. 11.4 (the last four lower panels when D ¼ 0.025) we can see similar changes
in bifurcation diagrams.
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FIGURE 11.5

RMSE of the Lyapunov exponent for the coupled maps given by Eqs. (11.9a) and (11.9b) as a

function of the amplitude D of the noise that is introduced by the parametric forcing. Values of

c1 and c2 and r are the same as in Fig. 3.8.

Reprinted with permission from Mihailovi�c, D.T., Budin�cevi�c, M., Peri�si�c, D., Bala�z, I., 2012. Maps serving the

combined coupling for use in environmental models and their behaviour in the presence of dynamical noise.

Chaos Solitons Fractals 45, 156e165.
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Finally, we consider its behavior when the parametric noise is introduced in all
parameters in Eqs. (8.5a) and (8.5b). Hence,

xnþ1 ¼
�
1� c1;n

�
rð1Þn xnð1� xnÞ þ c1;nr

ð2Þ
n ynð1� ynÞ þ c2;nðyn � xnÞ; (11.9a)

ynþ1 ¼
�
1� c1;n

�
rð2Þn ynð1� ynÞ þ c1;nr

ð1Þ
n xnð1� xnÞ þ c1;nðxn � ynÞ; (11.9b)

where c1;n ¼ c1ð1þ DanÞ and c2;n ¼ c2ð1þ DbnÞ, Dan ¼ Ddð3Þn and Dbn ¼ Ddð4Þn
measure the noise intensity while dð3Þn and dð4Þn are random numbers uniformly
distributed in the interval [�1,1]. Now, we set center of attention on the changes
of the Lyapunov exponent depending on the amplitude of the noise introduced
(Liu and Ma, 2005). We calculated the RMSE ¼ PN

i¼1
f½lcðc1;n; c2;n; rð1Þn ; r

ð2Þ
n Þ � l0ðc1; c2;n; rÞ�=Ng1=2 of the Lyapunov exponent, for

the coupled maps Eqs. (11.9a) and (11.9b), where lc and l0 are values calculated
in the presence and absence of the noise, respectively. In calculations of the para-
metric noise, the amplitude D is ranged from 0.0001 to 0.05 while the other param-
eters are used as in Section 9.2. The results of calculations are shown in Fig. 11.5.
This figure clearly shows that the increase of RMSE is growing up with the ampli-
tude, like a power function. Similar result, but for RMSE of the Cross-SampEn, for
the maps representing biochemical substances exchange between cells, was
obtained by Mihailovi�c and Bala�z (2011).
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Heterarchy as a concept
in environmental
interfaces modelling 12
12.1 HIERARCHY AND HETERARCHY
Hierarchy, as a necessary precondition in forming organized, functional systems,
came under the focus of natural sciences relatively recently. Since it refers to a
very broad spectrum of phenomena it is hard to make one, uniform, definition which
is at the same time applicable to social, ecological, living, or any other organized
systems. Even within mentioned groups, there is a large number of different kinds
of systems, with different organization and different hierarchical schemes (for an
overview see Pattee, 1973; Allen and Starr, 1982; Salthe, 1989; Ahl and Allen,
1996). More particularly, in the domain of modelling living systems, the problem
of creating dynamical hierarchies have been postulated as one of open and very chal-
lenging tasks for the future development of artificial life modelling (Bedau et al.,
2000). For a general case, it has been stated that the ordering of hierarchical levels
is ruled by several criteria: (1) being the context of, (2) offering constraint to, (3)
behaving more slowly or at a lower frequency than, (4) being populated by entities
with greater integrity and higher bond strength than, and (5) containing and being
made of lower levels (Ahl and Allen, 1996). In some relatively stable and fixed sys-
tem, we can make straightforward characterization by enumerating important prop-
erties of elements and classifying them according to their role in the hierarchy. For
example, if we consider metabolism from the perspective of its constituent elements
(i.e., enzymes), we can accurately characterize it by giving amino acid constitution
of each enzyme, its spatial structure, and its mechanism of action. In short, we can
use fixed set of relations to represent the system. However, if we want to consider
metabolism as a dynamical, self-organized system, where processes are not in the
form of predefined procedures but are generated during the process itself and deci-
sions about the next step are always local and context dependent, characterization by
the set of fixed properties is questionable. In that case, local interpretation of a given
situation is the key factor in the process of establishing hierarchy (e.g., existence of
some enzyme at a particular place determines in which way substrate will be trans-
formed and which metabolic pathway will take primacy in a given moment, at the
given place). Also, at the cellular level, most obvious hierarchical order is estab-
lished between the so-called information storage domain and metabolic domain,
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which is usually represented in the form of the following chain: DNA / RNA /
Proteins. Such ordering fulfills almost all of above-mentioned criteria for ordering of
hierarchical levels. However, closer examination reveals several facts which disturb
such straightforward scheme. First, some classes of proteins and some classes of
RNAs are able to influence the pattern of expression of genes in DNA. Also, all three
domains themselves contain internal hierarchical relations so the chain is trans-
formed into a web of feed-forward and feedback loops. From these simple examples
is obvious that establishing one satisfactory hierarchical division of functional com-
partments in dynamical complex systems where hierarchies can interact with each
other and reinterpret their current role could be a very challenging task. Therefore,
to cope more efficiently with the problem of modelling hierarchies, we believe that
the very idea of “proper” hierarchies should be relativized by acknowledging that
hierarchical systems themselves are often composed of embedded internal
observers, who are able to reinterpret hierarchical levels in accordance to the current
context (Salthe, 1989). This notion lead us to the concept of heterarchy that may be
defined as the relation of elements to one another when they are unranked or
when they possess the potential for being ranked in a number of different ways
(Crumley, 1995).

The concept of the heterarchy may be illustratively presented by either analyzing
interrelationships of small groups or the society as a whole. In that way the hierar-
chyeheterarchy relation offers a new approach to the study of agency, conflict, and
cooperation (Crumley, 1995). As an example we consider a heterarchy of relation-
ship between environmental modelling group (GROUP) and environmental protec-
tion institute (INSTITUTE) to which the GROUP members are employed
(Fig. 12.1a). The GROUP has a leader (LEADER). Her/his action, therefore, affects
both the GROUP and the INSTITUTE, simultaneously. Let us suppose that, pressed
by the INSTITUTE, the LEADER accepted to finish the design of the model before
the already fixed deadline. Reason for accelerating the work on completion of the
model was faster spending of the financial support than it was expected. Although
the LEADER’s acceptance of such condition is good for the INSTITUTE, it is
bad for her/his GROUP. If someone listens to this topic she/he might think that it
satisfies the condition of heterarchy, i.e., simultaneous interaction among levels
(Gunji and Kamiura, 2003). On the other hand, someone who listens to this topic
has to discern that such a simultaneous interaction outcomes just from a hidden spe-
cific operation such that bad (or good, respectively) for the GROUP is mapped to
good (bad, respectively) for the INSTITUTE. To recognize “simultaneousness” in
interaction, one has to grasp both independency of two levels (GROUP and INSTI-
TUTE) and simultaneous interaction. Because of independency of those levels, one
must have in mind all possible operations between them but with the focus on the
method of choice of one operation. If we define a set of values for the GROUP
and the INSTITUTE as S ¼ {(0 ,bad),(1,good)} (Fig. 12.1a) then all possible oper-
ations from the GROUP to the INSTITUTE we express through corresponding in-
terpretations (Int_0, Int_1, Int_2, and Int_3), which are depicted on the body of
the upper arrow in 12.1b.
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FIGURE 12.1

Images showing heterarchy consisting of GROUP and INSTITUTE. (a) Set of values for the GROUP and the INSTITUTE as S¼{(0,bad), (1, good)};

(b) Operation from the GROUP to the INSTITUTE expressed through corresponding interpretations (Int_0, Int_1, Int_2 and Int_3);

(c) appearance of new value “support against frustration” within S; (d) new state of the GROUP “support against frustration”.
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At one moment, the LEADER gathers the people from the group to announce
that she/he intends to accept the INSTITUTE’s demand to shorten the deadline
for finishing the model, while the GROUP members working on the model design
are angry and frustrated after they had heard about her/his intention. The LEADER,
hesitating to accept INSTITUTE’s suggestion, is thinking that acceptance is bad for
the GROUP but is good for the INSTITUTE. The thinking (i.e., choicedInt_3) is
going on in a finite time. Therefore, such a process itself can have the value in S,
in the GROUP. Now, we have the following situation. The GROUP members begin
to feel that their LEADER is under the huge pressure to accept INSTITUTE’s
demand, and they think that their own attitudes gives her/him too much feeling of
guiltiness. Therefore, they decide to support their LEADER. As a final result, they
gave him green lightdwith a support against their frustration. The prolonged hesita-
tion of the LEADER drives the process of choosing an interpretation in the GROUP
and that activates appearance of new value, “support against frustration” within S. As
a final result, the value in the GROUP changes from S ¼ {0 ,1} to S ¼ {0 ,1, 2(support
against frustration)}. Now we will demonstrate what choice of an interpretation,
having a sense in a particular level (GROUP), changes the structure of the level.

An observer has to describe a LEADER’s decision and corresponding actiondto
finish design of the model before the already fixed deadlinedas a simultaneous pro-
cess of choosing one interpretation. Evidently, it makes sense if a chosen interpre-
tation has a value of S. This situation can be described in the following way.

The definition of heterarchy given by Crumley (1995) can be concisely written as
simultaneous interaction among some levels. However, now we have simultaneous
choice between two dynamics, i.e., intralevel dynamics and interlevel dynamics. In
our example, the intralevel dynamics is just a choice of a value of S (0 or 1 represent-
ing a value of a particular level) and the interlevel dynamics is a choice of an inter-
pretation (Int_0eInt_3). The simultaneous choice is defined by two properties: (1) a
map-property and (2) simultaneous making value (Gunji and Kamiura, 2003). The
map-property is defined as: for all elements of S, there exists an interpretation
(one-to-one). For example, for 0 in a GROUP, the LEADER chooses Int_3, and
for 1 she/he chooses Int_1 (indicated by thin arrows in Fig. 12.1c). It makes a
map. On the contrary, if for 0 she/he chooses both Int_3 and Int_1, a map is set to
be one-to-many and the map-property fails. The property (2) is defined as follows.
Each possible chosen interpretation has to have a value in a level (GROUP). The
map-property looks natural but it needs all possible correspondences between an
element of S and all interpretations. Even if somebody observes only one correspon-
dence between 0 and Int_1, an observer has to decide the correspondence for 1
because of the map-property. The simultaneous making value is defined so as to
expand such a standpoint.

Let us imagine that a map is defined in the following way: 0 / Int_3,
1 / Int_1. Simultaneous choice means that each interpretation has a value of S
in this choice. For this choice, somebody can recognize that Int_1 has a value 1
and Int_3 has a value 0, once each interpretation is chosen. On the other hand, the
property of simultaneously making value demands that it should be performed for
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all interpretations. While Int_0 and Int_2 (indicated by thick arrows in Fig. 12.1c)
are not chosen, they also have to have values of S. Suppose that Int_0 has a value
0. If so, then the map-property failed because a value 0 is mapped both to Int_0
and Int_3. As a result, the map-property and simultaneous making value constitutes
a tradeoff relationship (a situation that involves losing one quality or aspect of some-
thing for gaining another quality or aspect).

To formalize this story algebraically, let us suppose that each level is defined by a
set, S, while a set of the interlevel operations are defined by Hom (S,S) that is a set of
functions from S to S. The map-property of simultaneous choice is defined by
f:S / Hom (S,S) that is a map. Additionally, the property of making value is defined
by f that covers all elements of Hom (S,S). As a result, simultaneous choice requires
that a map f is surjective (i.e., every element y in Y has a corresponding element x in
X such that cy˛ Y;dx˛X; f ðxÞ ¼ y). Such a requirement is hopeless, in principle
since the number of elements of Hom (S,S) is NN where N is the number elements of
S. Thus, the map cannot cover all elements of Hom (S,S).

Now we have a situation that simultaneous choice is collapsed while heterarchy
proceeds as a real system. In this state of affairs, somebody has to focus on the
concept of heterarchy as a real system against the collapse of observer’s frame.
In our example the collapse can explain the appearance of emergent state of “sup-
port against frustration,” instead of perpetual change of frames. Change of
competing interpretations in the GROUP is expressed as an assumption of a surjec-
tive map from S to Hom (S,S) (Fig. 12.1d). If somebody wants to make a system
that avoids collapse and keeps simultaneous choice, she/he has to find new source
that is mapped to possible elements of Hom (S,S) out of S. In Fig. 12.1d, a map
called choice from S to Hom (S,S) is indicated by a thin arrow, and emergent arrows
required by simultaneous choice are indicated by thick arrows. To avoid one-to-
many mapping, a new source of an arrow is constructed out of {good, bad}. In
our example it is represented as a new state of the GROUP, “support against
frustration.” The collapse-assumption, named simultaneous choice makes
re-organization of the system possible (Gunji and Kamiura, 2003). This example
shows how the engine of heterarchy works.

12.2 OBSERVATIONAL HETERARCHY AND FORMALIZATION
OF HETERARCHICAL LEVELS

The engine of heterarchy works due to the fact that components of the system
possess the potential for being ranked in a number of different ways. For example,
if in a system consisting of two different subsystems (intrasubsystem operations and
intersubsystems operations) both intraoperations and interoperations are allowed,
then the system is called heterarchy. In a hierarchical system, one layer depends
on the other layer in a strictly defined order, while a heterarchical system can switch
the dependence relations of each layer. Seen through the optics of modelling the
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complex systems, heterarchy reveals that in some systems it is impossible to deter-
mine to which subsystems an element appertains (Gunji and Kamiura, 2004).

At this place, we will make one comment on the history of the notion of heter-
archy. According to Gunji and Kamiura (2004) two Santa Fe scientists dealing with
the complex system problems, in about same days have launched two notions
regarding to the heterarchy: (1) that the most important problem in complex systems
is to describe the agent who can adjust the way of measurement by result of measure-
ment (Kauffman, 2002) and (2) its significance with respect to the difference
between stability and robustness (Jen, 2003).

The idea for (1) results from Maxwell’s demon, and in 1980s it was described as
the notion of internal measurement (Matsuno, 1989) and endo-physics (Rössler,
1989). Namely, in Maxwell’s thought experiment, the demon creates a temperature
difference simply from information about the gas molecule temperatures and
without transferring any energy directly to them and thus violating the second law
of thermodynamics (a partition with a small trapdoor is placed in the box, and the
trapdoor is guarded by the demon who, without expending energy, selects which
molecules go through to the other side). Note that long after the paper on Maxwell’s
demon, Szilard (1929) showed that the thought experiment does not actually violate
the laws of physics because the demon must exert some energy in determining
whether molecules were hot or cold. In (2) the robustness and stability are used in
the following context: “Robustness is an approach to feature persistence in systems
that compels us to focus on perturbations, and assemblages of perturbations, to the
system different from those considered in the design of the system, or from those
encountered in its prior history. To address feature persistence under these sorts of
perturbations, we are naturally led to study the coupling of dynamics with organiza-
tional architecture; implicit rather than explicit assumptions about the environment”
(Jen, 2003). Finally, having in mind previous text and example from the Section
12.1, in this book we use the following definition of heterarchy: “If a system consists
of two different subsystems, intra subsystem operations and inter-subsystems oper-
ations, and if the mixture between intra- and inter-operations is permitted, the sys-
tem is called heterarchy” (Gunji and Kamiura, 2003, 2004).

Communication between two environmental interfaces (for example, forest and
grove) satisfies the definition of heterarchy. Given two environmental forest inter-
faces of different ecological types, each interface is expressed as a map by which
birds are classified in a term of their attributes (flying, hunting). These maps repre-
sent intrasubsystem operations (blue arrow in Fig. 12.2). There is a communication
(exchange) between two maps and that represents intersubsystem operation (violet
arrow in the same figure). In this communication, i.e., migration of birds leads to the
mixing between interlevel operation and intralevel operation. That is why the system
is heterarchy.

The next question is how often heterarchy arises in the actual experience.
Although hierarchical structures are universally found, most of them are not heter-
archies. Their hierarchical levels are clearly separated, and interlayer and intralayer
reinterpretation does not occur. Heterarchies, on the other hand, have more dynamic
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structure which emerges from the existence of internal observers. In other words, the
internal measurement is introduced by an internal object that can perform reinterpre-
tation, and such heterarchy has been defined as observational heterarchy (Gunji and
Kamiura, 2004). Although such structures are not as universal as ordinary hierar-
chies, they are ubiquitous in nature.

FIGURE 12.2

Example of heterarchy illustrating interenvironmental interfaces (forest and grove)

communication with the mixture of interlayer operation and intralayer operation. It consists of

intralayer operation such as a mapping a bird to forest or grove, interlayer operation such as

the migration, and the mixture such that the migration needs a new property. The mixture

demands to infinite regression of redefinition of a system and makes known impossibility to

describe a heterarchy. List of forest birds: hawk (H), turtledove (T), cuckoo (C), and tawny owl

(To). List of grove birds: sparrow hawk (Sh), finch (F), skylark (S), and buzzard (B).
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In our consideration, first let us define two perspectives, intent-perspective and
extent-perspective. Given a system (phenomenon, concept), the extent-perspective
consists of all objects belonging to the concept, while the intent-perspective is the
collection of all attributes shared by the objects (Gunji and Kamiura, 2004). For
example, intent of odd number (concept) is expressed as 2n þ 1, and extent of it
is expressed as (1, 3, 5 .), or another one. Thus, at the forest level (or similarly
at the grove level) hunting, flying birds describe a subconcept of the concept of
the flying birds (Fig. 12.2). The extent of this subconcept consists only of the
hawk, and the intent consists of the three attributes hunting, flying, and bird. It is
often difficult to list all the objects belonging to a concept and usually impossible
to list all its attributes; therefore, it is natural to work with a specific context in which
the objects and attributes are fixed. A context is a triple (G,M,I) in whichG andM are
sets and I4G�M. The elements of G and M are called objects and attributes,
respectively. ðg;mÞ˛ I means “the object g has attribute m.”

In Section 2.4 we have elaborated in detail the meaning of the formal concept.
Therefore, here we will shortly repeat some definitions to define two perspectives,
intent-perspective and extent-perspective using Fig. 12.2. A concept is considered
to be determined by its extent and intent: the Extent consists of all objects belonging
to the concept, while the Intent is the collection of all attributes shared by the ob-
jects. It is often difficult to list all the objects belonging to a concept and usually
impossible to list all its attributes; therefore, it is natural to work with a specific
context in which the objects and attributes are fixed. A triplet (G,M,I) we call a
context in which G and M are sets and I4G�M. The elements of G and M are
called objects and attributes, respectively. ðg;mÞ˛ I means “the object g has attri-
bute m.” For X4G and Y4M, we define X0 ¼ fm˛M j ðcg˛XÞ ðg;mÞ˛ Ig
and Y 0 ¼ fg˛G j ðcm˛ YÞ ðg;mÞ˛ Ig Therefore, Xʹ is the set of attributes com-
mon to all objects in X, and Yʹ is the set of objects possessing the attributes of Y.
The concept of the context (G,M,I) is a pair (X,Y), in which X4G, Y4M, Xʹ ¼ Y
and Y ʹ ¼ X. The Extent of the concept (X,Y) is X, while the Intent is Y. A subset
X4G is the extent of some concept if and only if Xʺ ¼ (Xʹ)ʹ ¼ X, in which case
the unique concept of which X is an extent is (X,Xʹ). The corresponding statement
applies to these subsets B of M, which are the intents of some concept.

For a general system, however, two perspectives are inconsistent with each other.
As we said, in general, Intent-perspective is assumed to be equivalent to Extent-
perspective, as well as a concept in a set theory or formal concept in a concept
lattice. However, in the modelling procedure it is usual practice that the equivalence
between Intent-perspective and Extent-perspectives results just from an approxima-
tion and/or and hypothesis (Gunji, Kamiura, 2004). In summary, for the observa-
tional heterarchy we can say that it is a two-level entity which includes interlevel
operations. It also encompasses simultaneous communication among levels through
simultaneous choice that is stated as surjective map from a set of one level to a set of
interlevel operations. This choice is a source of the collapse of the logical back-
ground thus the heterarchy is regarded as a system which inherits logical collapse.
For the sake of the logical collapse, heterarchy gives leap to reorganization of the
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structure. Thus, the engine of heterarchy provides the dynamics of the system.
Nevertheless, the heterarchy results from the interaction on the relation objecte
observer with two essential levels, i.e., intent-perspective and extent-perspective.
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Heterarchy and
biochemical substance
exchange in a diffusively
coupled ring of cells

13

13.1 OBSERVATIONAL HETERARCHY AND BIOCHEMICAL
SUBSTANCE EXCHANGE BETWEEN TWO CELLS

Understanding how local intracellular biochemical exchange processes and global
features, like environment and system size, influence the robustness, adaptability
and evolution of the collective behavior of multicell systems is one of the most chal-
lenging topics in the biology of complex systems today (Levin, 2006; Pikovsky
et al., 2001; Arenas et al., 2008; Chen et al., 2003; Ghosh et al., 2010; Mihailovi�c
et al., 2013). Information coupling and the exchange of biophysical substances
among the components of multicell systems are both driven by a range of intrinsic
and extrinsic factors. Several authors have made significant contributions to the
understanding of multicell system dynamics through studies of the stability of the
synchronized state, which is required for robust functioning of the multicell system
in the face of noise and perturbation (Pikovsky et al., 2001; Arenas et al., 2008; Chen
et al., 2003; Ghosh et al., 2010; Rajesh et al., 2007; Rajesh and Sinha, 2008). How-
ever, these authors considered cells as completely uniform particles, without internal
structure and without the ability to change their behavior. It is well known that in
actuality, in natural conditions, bacterial cells spend most of the time in the station-
ary phase which is (in contrast to the exponential phase) characterized by a decrease
in growth rate, slowdown of all metabolic processes, and increase in resistance to
several stress conditions (Jones, 1985; de Groot and Littauer, 1989; Kolter at al.,
1993; Spector and Kenyon, 2012).

In considering these problems, we have to include observational heterarchy, a
challenging topic when dealing with complex systems. For the topic of this
chapter, let us briefly summarize the points of the Section 12.2. In essence, obser-
vational heterarchy discloses that it is impossible to explicitly determine to which
subsystems an element belongs (Gunji and Kamiura, 2003, 2004; Mihailovi�c et al.,
2013). It is based on the notion of an agent carrying the adjustment of measurement
(Kauffman, 2002; Jen, 2003). Therefore, the dynamics of the complex system are
articulated in terms of two kinds of dynamics, Intent and Extent dynamics, and
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the communication between them, where Intent corresponds to an attribute of a
given phenomenon and Extent corresponds to a collection of objects satisfying
that phenomenon (Gunji and Kamiura, 2004). Gunji and Kamiura (2003) have intro-
duced the concept of observational heterarchy, pointing up that the process of mea-
surement and description cannot be disjointed from what is observed and measured.
In other words, the epistemology cannot be separated from ontology, resulting in a
dynamical description and a dynamical ontology as noticed by Bickhard and
Terveen (1996).

Observational heterarchy consists of two sets of intralayer maps, called Intent-
perspective and Extent-perspective, and interlayer operations satisfying the
following conditions: (1) the interlayer operations inherit the mixture of intralayer
and interlayer operations and (2) there is a procedure by which the interlayer oper-
ation can be regarded as an adjoint functor. If the interlayer operation satisfies the
conditions (1) and (2), it is called a prefunctor. According to Gunji and Kamiura
(2004), preserving the above composition occurs as follows: A prefunctor, hFi:
Int / Ext is mapping a set X to a set hFiX, and a map F to a map f *Ff, where
f *f(x) ¼ x for all x in f(X) with f(X): hFiX / X. In this sense we call f * the
pseudo-inverse of f. Because applying a prefunctor to a map is expressed as compo-
sition of maps, it satisfies the conditions (1) and (2). The approximation is defined by
the assumption that f is a one-to-one map. If one accepts that the approximation
f* ¼ f�1 holds, then a prefunctor can become a functor. Given two maps F, J:
X / X,

hFiðFÞhFiðJÞ ¼ ðf �Ff Þðf �Jf Þ ¼ f �Fðff �ÞJf ¼ f �F
�
ff�1

�
Jf ¼ f �FJf hFiðFf Þ:

(13.1)

It implies that F preserves the composition of maps, F andJ. However, there is
inconsistency between Intent and Extent (Gunji and Kamiura, 2004), illustrated, for
example, in adaptive mutation in the Lactose operon (Cairns and Foster, 1991;
Shapiro, 1992, 1995). Thus, in the phenomenon of the protein population, the Intent,
given by an ordinary differential equation, ignores its differences, while Extent, con-
sisting of individual proteins, focuses on differences. Their equivalence comes from
the approximation alone, and otherwise cannot happen.

Since these and many other processes in a cell are defined as diffusion-like
manner (Devaney, 2003; Gunji and (Kamiura, 2004), looking from the Intent-
perspective and Extent-perspective in a cell we address the synchronization of the
passive coupling for two cells given by Eqs. (13.1) and (10.1), i.e., the generalized
logistic equation by the affinity. The time development of the intracellular dynamics
for two cells, is expressed as

xi;nþ1 ¼ ð1� cÞF�xi;n
�þ f

�
F
�
xi;n

��
; (13.2)

where n is the time iteration, i,j ¼ 1,2, xi,n ˛ [0,1], c is the coupling parameter (con-
centration of the substrate), f is the map representing the flow of the material from
cell to cell, f(x) is defined by a map that can be approximated by a linear map, and F
is one of the maps in the pair (F,J) whose composition is preserved by a prefunctor
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hFi (Gunji and Kamiura, 2004). If f(x) ¼ cx, the interaction is expressed as a linear
coupling between two cells. Here, we apply the framework of an observational
heterarchy to the two cell system. If Intent and Extent are denoted by F and J,
respectively, the time development of the concentration is expressed as
xi,nþ1 ¼ (1 � c)F(xi,n) þJ(xi,n). For J(X) ¼ f(F(X)), this expression is reduced
to Eq. (13.2).

Synchronization is a well-known collective phenomenon in various multicom-
ponent biological systems (Pikovsky et al., 2001; Mihailovi�c et al., 2013). The
exchange of information (coupling) among the components can be either global
or local. This is also considered on the cell level, for example, in mechanisms of
(1) cell cycle synchronization (Guireya et al., 2007) or (2) intercellular biochem-
ical substance exchange with intracellular dynamics described by a logistic
equation (Bala�z and Mihailovi�c, 2010a,b, 2011; Mihailovi�c and Bala�z, 2011a;
Mihailovi�c et al., 2011; Mihailovi�c and Bala�z, 2012; Mihailovi�c et al., 2014).

In connection with the synchronization, an interesting question is whether a
coupled map system called active coupling can achieve synchronization surrounded
by perturbations, or whether perturbation enhances robust synchronization of many
cells. Rosen (1985, 1991) and Varela (1979) pointed out that perturbation influences
not only state but also function, because the disjointing between state and function
results just from the framework of a set theory (Gunji and Kamiura, 2004). There-
fore, the question mentioned is replaced by: how can the influence of perturbation be
formalized in a term of function? According to Gunji and Kamiura (2003) the
answer to this question is yielded by observational heterarchy.

First, we address the synchronization of the simplest passive coupling which
follows Eqs. (13.2) and (3.16) and f(x) ¼ cx. Following analysis by Fujisaka and
Yamada (1983) we obtain bifurcation diagram with respect to the deviation of syn-
chronized state over the coupling in the range 0 < c < 0.5 (Fig. 13.1). Fig. 13.1a
shows the diagram of bifurcation for x0 � x1 against the coupling c, where logistic
parameter is 4. For each c, 104 iterations of the map are applied for a random initial
state, and the first 103 steps are abandoned. It is seen that synchronization is stable
in the range that 0.25 <c < 0.5. Fig. 13.1b shows enlarged bifurcation diagram in
the region, 0 < c < 0.25. There are some windows in a chaotic region.

Further, we will consider the influence of perturbation in passive coupling. It is
implemented by nonmonotonous (and/or nonlinear) flow (i.e., coupling parameter),
f:[0,1] / [0,1], simply expressed as (Gunji and Kamiura, 2004)

f
�
xi;n

� ¼

8>>>>><
>>>>>:

cxi;n 0 < xi;n < a

ðac� bdÞ�xi;n � a
�

a� b
þ ac a < xi;n < b

ðbd � cÞ�xi;n � 1
�

b� 1
þ c b < xi;n < 1

: (13.3)

It discloses the simple fluctuated flow, whereas it is nonmonotonous. The first
and second crooked point is laid on the line f(x) ¼ cx and f(x) ¼ dx, respectively.
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Eq. (13.3) can be approximated to f(x) ¼ cx. In this sense, we can utilize c as the
coupling parameter and call it apparent coupling parameter. Due to the fluctuated
coupling parameter, the coupled map system is replaced by

x0;nþ1 ¼ ð1� cÞF�x0;n
�þ f

�
F
�
x1;n

��
(13.4a)

x1;nþ1 ¼ ð1� cÞF�x1;n
�þ f

�
F
�
x0;n

��
: (13.4b)

Fig. 13.2 shows the diagram of bifurcation solution for x0 � x1 against the
apparent coupling parameter, c. For each c, 104 iterations of the map, given by
Eqs. (13.4a) and (13.4b), is applied for a random initial state, and the first 103 steps
are abandoned. Fig. 13.2 is calculated for a ¼ 0.733, b ¼ 0.8, and d ¼ 0.75c. Due to
the nonmonotonous function of f, efficient coupling parameter is widely distributed
beyond the apparent coupling parameter. That is a reason why stability of synchro-
nization is lost, even if the apparent coupling parameter is in the stable region of syn-
chronization, 0.25 < c < 0.5. Therefore, within the framework of passive coupling,
stormy perturbations disturb synchronization.

Here, we deal with synchronization of two passively coupled cells (Eqs. (13.2)
and (10.1)) as it is shown in Fig. 7.3 (using any two in the ring of coupled cells),
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FIGURE 13.1

(a) Diagram of bifurcation with respect to the deviation of synchronized state over the

coupling parameter in the range 0 < c < 0.5, as for the passive coupling. Horizontal axis

represents coupling parameter. (b) Enlarged diagram of (a), focusing on the range,

0 < c < 0.25. The parameters have the following values: r ¼ 4 and p ¼ 0.5.
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which will be considered as synchronized only when the largest Lyapunov exponent
is negative (Zhou and Lai, 1998; Guireya et al., 2007). We calculate this exponent
using Eqs. (7.5) and (7.6).

Fig. 13.3 depicts the normalized frequency of synchronization Fp(l < 0) for a
system of two passively coupled cells (Eqs. (10.1) and (13.2)), as a function of
cell affinity p, averaged over all values of the coupling parameter c and logistic
parameter r. The value of the normalized frequency of synchronization Fp is calcu-
lated as

Fp ¼
P

Nnðl < 0ÞP
Nnðl < 0Þ þP

Npðl > 0Þ ; (13.5)

where
P

Nnðl < 0Þ and
P

Npðl > 0Þ are the numbers of negative and positive
values of the Lyapunov exponent l, respectively. These numbers were calculated
for fixed values of p, with c and r changing in the intervals (0,1) and (1,4), respec-
tively, with a step of 0.05. From this figure it is seen that for p > 0.2, Fp starts to
decline, indicating a decrease of number of states which are synchronized.

1

0

-1
0.0

1

0

-1
0.00 0.05 0.10 0.15 0.20 0.25

0.1 0.2 0.3 0.4 0.5

Χ
0 

- Χ
1

Χ
0 

- Χ
1

(a)

(b)

FIGURE 13.2

(a) Diagram of bifurcation for x0 � x1 against the apparent coupling parameter, c, as for

the fluctuated passive coupling defined by Eqs. (13.4a) and (13.4b). Horizontal axis

represents coupling parameter. (b) Enlarged diagram of (a), focusing on the range,

0 < c < 0.25. The parameters have the following values: r ¼ 4 and p ¼ 0.5.
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13.2 SIMULATIONS OF ACTIVE COUPLING IN A MULTICELL
SYSTEM

As we mentioned in Section 13.1, in nature, microscopic biochemical substrates are
perpetually influenced by stormy perturbations, and these perturbations affect not
only the state but also the function of cells. Therefore, we address the behavior of
active coupling and estimate whether the coupled map system described above
can achieve synchronization in a multicell system under the influence of perturba-
tions (Mihailovi�c et al., 2013). The active coupling dynamics of the two-cell system
used in the simulations are defined by the following equations:

xi;nþ1 ¼ ð1� cÞFn

�
xi;n

�þJn

�
xi;n

�
(13.6a)

Fnþ1 ¼ fJnff
� (13.6b)

Jnþ1 ¼ f �Fnþ1 (13.6c)

F0
�
xi;n

� ¼ rx p
i;n

�
1� x p

i;n

�
: (13.6d)

We note that the dynamical system defined by Eqs. (3.16) and (13.2) is called the
passive coupling and that is the usual coupled map system. The active coupling can
be approximated to passive coupling, where the approximation is defined by adjunc-
tion or the equivalence between Intent and Extent. Compared with passive coupling,
the behavior of active coupling is much more complex (Gunji and Kamiura, 2004;
Mihailovi�c et al., 2013). In Eqs. (13.6a)e(13.6d), because of a pseudo-inverse map,
f *, all calculations are defined to be approximations. In simulations, the Intent map
was a discontinuous map, expressed by Jnþ1 ¼ f *Fnþ1. In order to see how

FIGURE 13.3

Normalized frequency of synchronization, Fp(l < 0) for system of two cells passively coupled

as a function of cell affinity p. An averaging was done over all values of coupling

parameter c and logistic parameter r (Mihailovi�c et al., 2013).
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perturbation enhances robust behavior in the framework of observational heterarchy
in a multicell system represented by a ring of coupled cells (Fig. 7.3), we consider
the following model.

In our approach, a cell moves locally in its environment without making long
pathways. According to Mihailovi�c and Bala�z (2012), the system of coupled differ-
ence equations for a set of N cells exchanging biochemical substance, can be written
in the form of a matrix equation

XN1 ¼ ðADBÞ,XN: (13.7)

The elements in the matrices in Eqs. (13.6a)e(13.6d) are

XN1i;nþ1 ¼ xi:nþ1; XNi;n ¼ xi;n;

Ai;k ¼ ð1� cÞF�xi;n
�
di;k

(13.8)

and

Bi;k ¼

8>>><
>>>:

Jn

�
xk;n

�
k ¼ iþ 1; i < N

0 ksiþ 1; i < N

Jn

�
xk;n

�
k ¼ 1; i ¼ N

0 ks1; i ¼ N

(13.9)

where i ¼ 1, 2, ., N and is the Kronecker delta.
We perform simulations with active coupling in the ring of N ¼ 100 cells,

defined by Eqs. (13.6a)e(13.6d), with and without the perturbation given in
Fig. 13.4. The results of the simulations are shown in Fig. 13.5. In this figure the

FIGURE 13.4

A pair of Intent and Extent maps in fluctuated active coupling expressed as Eqs. (13.6a)e

(13.6d). The left diagram represents the Intent map, F1(xi,n) with i ¼ 0, 1, and the right

diagram represents the Extent map, J1(xi,n) with i¼ 0, 1. The Intent map is replaced by a

discontinuous map f * (Mihailovi�c et al., 2013).
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Lyapunov exponent l is plotted against the coupling parameter c for active coupling
with perturbation (black line) compared to the passive coupling (gray line), for
different values of the cell affinity p and logistic parameter r. We calculated the
Lyapunov exponent using Eqs. (7.5) and (7.6).

In calculating l, for each c from 0.0 to 1.0 with step 0.005, we apply 104 itera-
tions for an initial state, and then the first 103 steps are discarded. To see how the
active coupling modifies the synchronization property of the model, we perform
two kinds of simulations. Firstly, we use r ¼ 4.0 and a fixed value of the cell affinity
p (Fig. 13.5aec); secondly, we use a randomly chosen c and a logistic parameter r
with values of 4, 3.82, and 3.6, respectively (Fig. 13.5def). Fig. 13.5aec shows that
in the chaotic regime (r ¼ 4.0), regardless of the value of p, the Lyapunov exponent
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FIGURE 13.5

Diagram of Lyapunov exponent, l, against coupling parameter c for the fluctuated active

coupling defined by Eqs. (13.6a)e(13.6d)dP (black line) compared to passive couplingdN

(gray line) for different values of cell affinity p and logistic parameter r. In (aec) p takes the

fixed values (1, 0.5, 0, 2), while r ¼ 4. In (def) p is randomly chosen, while r takes values 4,

3.82, and 3.6, respectively. Simulations are performed with the ring of N ¼ 100 cells

(Mihailovi�c et al., 2013).
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is always positive (l > 0) and therefore the process of biochemical substance ex-
change in a multicell system is always unsynchronized. However, the stormy pertur-
bation disturbs this state (Fig. 13.5aec). Although the logistic parameter is settled at
r¼ 4 for chaotic behavior, the coupling parameter c tunes the interaction and leads
to synchronization in some intervals, particularly for p ¼ 1 and p ¼ 0.5. This
behavior is most pronounced in Fig. 13.5def where p is randomly chosen; here
the process of biochemical substance exchange in a multicell system exhibits a

FIGURE 13.6

The Lyapunov exponent against number of cells N in the ring, for three values of r: 3.0 (a),

3.7 (b), 4.0 (c); c takes values in the interval (0,1) while p is randomly chosen for each c

(Mihailovi�c et al., 2013).
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strong tendency toward synchronization, even though the logistic parameter r is in
the chaotic region (r ¼ 4, 3.82, and 3.6).

The dynamics of the coupled multicell system (Eqs. (13.6a)e(13.6d) are governed
by four main parameters: the number of cells N (ring size), the coupling parameter c,
the logistic parameter r, and the cell affinity p. Here we present the collective dy-
namics of the multicell system by varying the number of cells from N ¼ 1 to 100
for (1) c taking values in the interval (0,1) and (2) p randomly chosen for each c.
We perform simulations for three values of r: 3.0, 3.7, and 4.0. We calculate Lyapunov
exponent as in previous experiments. Fig. 13.6aec depicts the Lyapunov exponent
against number of cells N in the ring for three values of r. From this figure it is
seen that, regardless of the number of cells, the process of biochemical substance
exchange in a multicell system is much more synchronized for lower values of the
logistic parameter r. A similar simulation with the dynamics of the coupled multicell
system was done in Ghosh et al. (2010), but for just two parameters (N and c).
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Heterarchy and albedo
of the heterogeneous
environmental interfaces
in environmental
modelling

14

14.1 HETERARCHY AND AGGREGATION OF ALBEDO OVER
HETEROGENEOUS ENVIRONMENTAL INTERFACES

The shortwave radiation albedo is an important boundary condition for environ-
mental models comprising the atmospheric solar radiative transfer module. It is
defined as the ratio of diffuse upward and global (i.e., direct plus diffuse) downward
shortwave radiation at the Earth’s surface. Among the tasks in the grid-based
environmental models, the basic one is the determination of albedo over the
heterogeneous environmental interface with height difference between the patches
(Mihailovic and Bala�z, 2007; Kapor et al., 2002, 2010a,b, 2012; Mihailovi�c et al.,
2004; �Ciri�san et al., 2010; Kreuter et al., 2014). The structure of the grid-box on
the environmental interface can remarkably vary both spatially and temporally,
consisting of the patches covered with the surfaces of different origin. Here, we
concentrate ourselves on environmental interface between the atmosphere and the
land. Land part is composed of the patches of plant communities, bare soil, rocky
ground, or all water surfaces and other natural ones, providing us with a very hetero-
geneous picture in the grid-box. It is essential to stress that our main interest is the
situation when these patches differ in height, so that there appears a geometrical
effect influencing the value of the shortwave radiation leaving the surface, directly
affecting the value of the albedo seen by the instruments above the surface.

The most common approach for calculation of the albedo, in the case of patches
of equal height, is to make a simple averaging to determine the albedo as the
grid-box average albedo (in the further text referred as the SA). However, a
physics-based analysis indicates that there is a significant deviation of the albedo
above varying height heterogeneous surface from that calculated by simple
averaging (McComiskey et al., 2006), seriously affecting the calculated values of
quantities describing surface biophysical processes like land surface energy budgets,
canopy photosynthesis and transpiration, urban surface physics and snow melt,
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among others (Hu et al., 1999; Jacobson, 1999; Kapor et al., 2002; Schwerdtfeger,
2002; Wendisch et al., 2004). It is, therefore, important to understand the general
behavior and limitations of the approaches used for aggregating the albedo over a
heterogeneous grid-box in current environmental models. The assumptions for
aggregating the albedo over a very heterogeneous surface where various surfaces
occur at different heights were theoretically considered in the paper by Mihailovic
et al. (2004), and later by Kapor et al. (2010a,b) and Mihailovi�c et al. (2012).

As mentioned above, the airborne measurements of the surface albedo indicated
that the values obtained are lower than the ones parameterized in environmental
models (Wendisch et al., 2004). Now, we consider the heterarchy in the context of
surface albedo parameterization over heterogeneous environmental interfaces.
Fig. 14.1 schematically depicts two hierarchical lines HA and HB in the

FIGURE 14.1

Example of heterarchy illustrating intersurface albedo parameterization methods over grid-

box (two-dimensional and three-dimensional geometry) communication with the mixture of

interlayer operation and intralayer operation. List of patch abbreviations: green area (G),

buildings (B), water surface (W), area covered by snow (S), and bare soil and short grass area

(L). At the bottom squares are symbols for surface albedos of patches.
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parameterization of surface albedo over a heterogeneous grid-box consisting of
patches [green area (G), buildings (B), water surface (W), area covered by snow
(S), and bare soil and short grass area (L)]. Boxes on the hierarchical line HA are
depicted two-dimensionally, while on the HB hierarchical line, they are drawn
with a relief structure indicating the presence of the third dimension. The HA and
HB lines correspond to methods of parameterization, which could be either the sim-
ple SA approach, or it could take into account the geometrical effect (in the further
text referred as the PA), respectively. Both gird-boxes are represented as the sets of
patches (objects)dupper squares and albedos (attributes)dbottom squares. Here we
have intersurface albedo parameterization methods (two-dimensional and three-
dimensional geometry) communication with the mixture of interlayer operation
and intralayer operation. It consists of intralayer operation such as mapping a patch
to two-dimensional or three-dimensional images, interlayer operation such as the ag-
gregation, and the mixture such that the aggregation needs a new property.

Here we briefly summarize the main theoretical features of the method for aggre-
gating the albedo over a very heterogeneous surface where various surfaces occur at
different heights, suggested in Mihailovic et al. (2004). The basic idea of the
approach relies on the fact that a part of the radiation reflected from the lower sur-
face is absorbed by the lateral sides S3 of the surface lying on a higher level
(Fig. 14.2). The albedo is measured at a level above all the surfaces so the absorbed
radiation is not being registered by the instruments, although it would appear in any
simple averaging of the total albedo. The amount (ratio) of the reflected energy lost
is obtained by taking into account the solid angle within which these lateral sides are
seen from each point of the lower surface.

There are several basic assumptions for this calculation. First, it is assumed that
the radiation reflected from a given surface is diffuse and homogeneous, neglecting
the multiple scattering effects and the dependence of the albedo on the zenithal
angle. This is based on the assumption that the reflecting surface is sufficiently rough
so that the reflected radiation is isotropic and amount of energy reflected within any
solid angle is proportional only to the solid angle itself. In this way we can neglect
the orientation of the radiation falling to that surface.

To define the flux that is lost due to the absorption, we define a loss coefficient kl,
determined by the radiant energy flux ratio. Following Liou (2002), the basic expres-
sion to calculate the radiant energy flux (dE/dt) is

ðdE=dtÞ ¼ IdS cos qdU (14.1)

where I is the total intensity of radiation obtained from the monochromatic intensity
by integrating it over the entire range of the spectrum, dS ¼ dxdy is the infinitesimal
element of surface from which radiation is reflected, cos q gives the direction of the
radiation stream and dU is the element of solid angle within which the infinitesimal
amount of radiant flux emitted from the infinitesimal surface element dxdy is
confined to. The amount of flux emitted from the lower horizontal surface into
the upper space is (dE/dt)h ¼ IS1p, where S1 is the area from which the radiation
is reflected. The total energy coming from the lower horizontal surface toward the
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lateral surface is (dE/dt)l and is derived using the following expression where the
boundaries of the integration for a given point are determined over the local
azimuthal (Fl,Fu) and zenithal (ql,qu) angles in terms of the x,y coordinates
(Figs. 1 and 2 in Kapor et al. (2010a), or in more detail Figs. 3, 4, 6, and 7 in
Mihailovic et al. (2004)). Thus, we have

ðdE=dtÞl ¼ I

ZZ
S
dxdy

Z Fuð r!Þ

Flð r!Þ
dF

Z quð r!;4Þ

q1ð r!;4Þ
cos q sin q; (14.2)

where subscript l denotes the lower bound of integration, while subscript u its upper
one. The ratio of the expression (14.2) and (dE/dt)h ¼ IS1p gives the loss coefficient
kl (0 < kl � 1)

kl ¼ ðdE=dtÞ=IS1p: (14.3)

If we assume that the grid-box of the area S is divided into two parts having the
areas S1 and S2 with corresponding albedos a1 and a2, respectively, the average

FIGURE 14.2

Schematic representation of an arbitrary grid-box geometry consisting of two surfaces

differing for the height h.

Reprinted with permission from Mihailovi�c, D.T., Kapor, D., �Ciri�san, A., Firanj, A., 2012. Parametrization of the

albedo over the heterogeneous surfaces for different geometries in a land surface scheme by the Monte Carlo ray-

tracing method. Atmos. Res. 107, 51e68. Notation follows the text (Mihailovic et al., 2004; Kapor et al.,

2010a).
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albedo over the grid-box following the standard approach, commonly used in
environmental models, is

ac ¼ a1s1 þ a2s2 (14.4)

where si is the fractional cover, calculated as a ratio of patch’s area Si and the total
grid-box area S(si ¼ Si/S, i ¼ 1, 2). Taking into account the geometry expressed
through the loss coefficient, the average albedo is then calculated as

an ¼ ð1� klÞa1s1 þ a2s2: (14.5)

The loss coefficient definition is conceptually analogous to the idea of the sky-
view factor introduced by Oke (1987). Detailed overview of the recently proposed
evaluations of kl needed for calculating the average albedo, for different geometries
is available, in Mihailovic et al. (2004) and Kapor et al. (2010a). It is important to
notice that for simple geometries one can derive kl completely analytically, and we
shall outline one such calculation later.

However, with more complex geometries, a different approach is needed. In the
Monte Carlo approach to different simulations in environment, individual quanta or
particles are subjected to the same physical and chemical processes and events in the
computer as in the physical world. It can be thought of as a direct simulation of
environmental processes not requiring explicit equations and their solution as the
basis for the simulation. The use of the Monte Carlo method in atmospheric optics
is summarized in the pioneering work by Marchuk et al. (1980). It is broadly used in
both theoretical and applied environmental sciences. So far, quite a few researchers
have applied the Monte Carlo method into the evaluation of the surface albedo when
the land surface is characterized by complex geometry in land surface models. How-
ever, Mayer et al. (2010) used similar logic in MYSTIC three-dimensional radiative
transfer model.

In the case of very complicated grid-box geometry, when the analytical solution
for the loss coefficient is not accessible, the Monte Carlo Ray Tracing (MCRT)
method is reliable and most efficient method for calculating the loss coefficient.
Note that the simple Monte Carlo method is not too efficient (Sanchez, 1998)
compared to the MCRT method which reproduces analytical results up to a high pre-
cision, as shown by our studies. Let us first explain the general idea of the calculation
procedure. The main idea of the MCRT method is to follow the path of the appro-
priately chosen ray of light, after it had undergone diffuse, single scattering from
the lower surface S1 of the grid-box. We are interested in the possibility that the
ray may be absorbed by the vertical boundary, that is the lateral side of surface lying
on a higher level, if it reaches it in accordance with our single scattering assumption.
Averaging in this way, the observed behavior over a large number (N ¼ 106) of the
followed light paths, we can conclude about the value of loss coefficient kl as the
origin of radiative flux loss, within a given grid-box geometry. The details of a
particular Monte Carlo procedure strongly depend on the geometry of the grid-
box, so we will illustrate the particular procedure related to the simplest grid-box
geometry shown in Fig. 14.3.
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The point A(x,y), which belongs to the lower surface and represents a point of the
intercept of this surface and the incoming beam, is randomly sampled by generating
two random numbers r1 and r2 uniformly distributed in the interval (0,1). The area of
the lower surface is S1 ¼ L � l. So we write that x ¼ r1 � L and y ¼ r2 � l. In agree-
ment with our basic assumptionddiffusive and single ray scattering, we choose a
random direction (q,4) in the upper half-space [with q ˛ (0,p/2); 4 ˛ (0,2p)] to
simulate the trace of scattered beam. Using the uniform random numbers r3 and
r4 from the range (0,1) gives us the way to choose this random direction as
4 ¼ r3 � 2p and q ¼ r4 � p/2. Further approach was based on the idea of line-
plane intersection, where the reflected beam was treated as a straight line while
the vertical area had the role of a plane. The intersection of the line and the plane
can be derived using general expression of the analytical geometry (McCrea,
1960). Now, if the point B(x,y,z) lies within the borders of vertical area, then diffu-
sively scattered beam will be absorbed (in the single scattering approximation) and
this case is positive for absorption. This procedure was repeated N ¼ 106 times and
the loss coefficient was estimated as

kl ¼Naðnumber of cases which were positive for absorptionÞ=
Nðnumber of conducted numerical experimentsÞ: (14.6)

Cases treated in this chapter can be decomposed into sets of planes which might
have different orientation with respect to the reference frame, which is taken into
account in the equation of the plane, i.e., its normal.

FIGURE 14.3

Schematic diagram of the procedure for application of the MCRT method for calculating the

aggregated albedo.

Reprinted with permission from Mihailovi�c, D.T., Kapor, D., �Ciri�san, A., Firanj, A., 2012. Parametrization of the

albedo over the heterogeneous surfaces for different geometries in a land surface scheme by the Monte Carlo ray-

tracing method. Atmos. Res. 107, 51e68.
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14.2 INFLUENCE OF THE ALBEDO CALCULATION ON THE
EFFECTIVE TEMPERATURE OF THE HETEROGENEOUS
GRID-BOX CONSISTING OF DIFFERENT COVERS

Our first example is the geometry which allows the analytical solution. It is the case
of a “rectangular prism” (“propagating building”) geometry consisting of a rectan-
gular prism with quadratic basis (side l) placed in the center of the grid-box (side L)
(Fig. 14.4a and e), having different albedo and height from the surrounding area.
Changing the relative dimensions of this prism influences significantly the value
of the reflected energy lost, leading to the various aggregated albedo results.

The detailed procedure of loss coefficient calculation in case of this geometry is
given in Appendix A of Mihailovic et al. (2012). The final analytical result for the
loss coefficient kl as a function of the dimensionless quantities is: reduced relative
height bh ¼ h=L and the reduced relative length bl ¼ l=L (in the further text will be
indicated as reduced height and length, respectively) is

kl

�bl; bh� ¼
�
4kl1

�bl; bh�þ 4kl2

�bl; bh�.�
1� bl 2

�
p
�
; (14.7)

where subscripts 1 and 2 indicate corresponding surfaces, l is the length of the “prop-
agating building” edge, while L is the size of the grid-box. kl1 denotes the contribu-
tion coming from the points on the lower surface from which the radiation can “hit”
only one side of the building, while kl2 describes the contribution of the points from
which the radiation can reach two sides of the building.

The comparison of the results for the loss coefficient obtained from the analytical
expression and by the MCRT method is given in (Fig. 14.5), which depicts the
dependence of the loss coefficient on different values of the reduced length (0.0,
0.1, 0.25, 0.5, 0.707, 0.866, 1.0) and height of the “propagating building.” It can
be seen from this figure that the values of the loss coefficient obtained by the
MCRT method are highly close to the ones calculated by the analytical expression.
We have also used a particular form of the numerical integration for the fourfold
integration and these results give lower values for the loss coefficient compared to
the analytical ones, and also longer CPU time for the calculation, thus justifying
the use of MCTR as a reliable method for our calculations.

The loss coefficient evaluated by the MCRT method is used to evaluate the ratio
of the albedos calculated with geometrical effect included (Eq.(14.5)) and by the
standard method (Eq. (14.4)). Then, for the further analysis, we have calculated
the ratio G defined as

G ¼ an=ac: (14.8)

Here, we plot a series of values of G for the “propagating building” made of
concrete and surrounded by different underlying surfaces (water, forest, garden,
concrete, agricultural land, and snow, that are commonly met in the environmental
modelling) as a function of the reduced side length of “propagating building” for
various heights. The results can be summarized in the set of plots in Fig. 14.6.
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FIGURE 14.4

Schematic representation of natural and artificial solid surfaces (aed) and their approximate

geometries in parameterization of the albedo over the heterogeneous surfaces (e)

“rectangular prism,” (f) “trilateral prism,” (g) “slope,” and (h) “canyon” geometry.

Reprinted with permission from Mihailovi�c, D.T., Kapor, D., �Ciri�san, A., Firanj, A., 2012. Parametrization of the

albedo over the heterogeneous surfaces for different geometries in a land surface scheme by the Monte Carlo ray-

tracing method. Atmos. Res. 107, 51e68.



We notice here a fascinating fact: the existence of a minimum of the ratio G,
which lies at the value between 0.87 and 0.73 of the value of the standard albedo.
Although it is rather difficult to examine this phenomenon analytically, let us try
to reason out the general features. We are aware of the fact that for bl ¼ 0, there exists
a single surface with albedo a1, and an increase of the dimension of higher surface
obviously leads to a decrease of the albedo. However, for bl ¼ 1, there again exists a
single surface with albedo a2 and just before this final limit we should have a smaller
albedo. Obviously, in both limiting cases we have G ¼ 1, while albedo is lower
between them so there must exist a minimum. These are the first, qualitative results,
and one has to examine further the behavior of this minimum, its variation with
albedo and height.

Now, we continue by analyzing first the geometry with an elevated corner area
having triangular base, the so-called trilateral prism geometry (Fig. 14.4b and f).
In a square grid-box, in the top left corner, there is an elevated surface at the height
h with respect to the rest of the grid-box. This area of triangle shape has the dimen-
sions a � b, where a is the fixed arm, exactly half of the length of the grid-box
length, while the arm b takes different values depending on the angle of the triangle.
This choice of dimensions was just for convenience, to simplify the analytical
expression.

In our studies (Mihailovic et al., 2012) we also included the so-called slope
(Fig. 14.4c and g) and canyon geometry (Fig. 14.4d and h) which are relevant for

FIGURE 14.5

Dependence of the loss coefficient on the reduced length bl for different values of the reduced
height bh of the “propagating building” geometry obtained by an analytical expression (A6) in

Appendix A (Mihailovic et al., 2012) and by the MCRT method.

Reprinted with permission from Mihailovi�c, D.T., Kapor, D., �Ciri�san, A., Firanj, A., 2012. Parametrization of the

albedo over the heterogeneous surfaces for different geometries in a land surface scheme by the Monte Carlo ray-

tracing method. Atmos. Res. 107, 51e68.
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FIGURE 14.6

Dependence of G (the ratio of the albedo calculated by the PA method to the SA albedo

calculation method) on the reduced length bl for the grid-box consisting of the “propagating

building.” The reduced height bh in all plots corresponds to the values: bh ¼ 0.001 (1); 0.01

(2); 0.2 (3); 0.5 (4); 1 (5). The plots correspond to the following values of the lower surface

albedo a1: (a) 0.1 (water); (b) 0.15 (forest); (c) 0.20 (garden); (d) 0.3 (concrete); (e) 0.4

(agricultural land); (f) 0.95 (snow) which are taken from Oke (1987). All calculations of the

albedo using the PA method were performed by the MCRT.

Reprinted with permission from Mihailovi�c, D.T., Kapor, D., �Ciri�san, A., Firanj, A., 2012. Parametrization of the

albedo over the heterogeneous surfaces for different geometries in a land surface scheme by the Monte Carlo ray-

tracing method. Atmos. Res. 107, 51e68.



practice. The analytical solution to these complex geometries was too complicated
to be found, so a direct system simulation was done by the MCRT method.

In Fig. 14.7, the ratio of the loss coefficient calculated by the MCRT method is
presented for different values of the reduced lengths bb and bl1 (0.0, 0.1, 0.25, 0.5,
0.75, 0.99) and height of the surface lying on a higher level. The reduced dimension-
less quantities bb ¼ b=L and bh were introduced for the simplicity of the loss coeffi-
cient calculation, where L � L is already the mentioned area of the grid-box.

It seems obvious that the changes in the aggregated albedo value with respect to
the conventional approach may lead to the differences in the effective surface
temperature calculated over the grid-box. To illustrate these differences, we have
performed a set of experiments based on both approaches in calculating the albedo.
In these experiments, we computed the effective surface temperature over the grid-
box using the land surface scheme LAPS (Land Air Parameterization Scheme)
designed to be run either as a standalone model or as the part of an atmospheric
model (Mihailovic et al., 2010). The numerical tests over the grid-box with different
geometries have been performed with the forcing meteorological data for July 17,
1999, in Philadelphia, PA. The grid-box used in these simulations, represents the
Baxter site, with the prevailed synoptic conditions described in Zhang et al.
(2001). The forcing data were used from the lowest level of MM5 model (Dudhia,
1993). The initial conditions for prognostic variables were the same as in Zhang
et al. (2001), number of vertical layers was 32, with the lowest level set at 10 m,
while the time step was 600 s. For the sake of the simplicity, the experiments
were performed with two surfaces of different albedos with the use of the above-
mentioned geometries. The idea of experiments was to establish changes in daily
course of the effective surface temperature over the heterogenous grid-box caused
by the difference in calculation of the albedo by the standard approach and the
one taking into account the geometrical effect. The runs of the effective surface tem-
perature were done using the time step of 600 s. We must repeat here that we assume
isotropic diffuse reflection so that the reflected light is isotropic and does not depend
on the zenithal angle of incoming light. Of course in a more detailed study, one
should take care also of daily variation of zenithal angle when one follows the daily
changes of temperature.

We start with an example of the “rectangular prism” geometry (“propagating
building”) with the dimensions of the grid-box 100 m � 100 m. The simulations
were done for several patch areas, with different surface types. Accordingly, each
of the subregions had different and corresponding albedo. We analyzed three situa-
tions. In all of them, the central solid area consisted of the concrete having the
albedo value of 0.30 (Jacobson, 1999). The other patch, surrounding the “propa-
gating building,” of the grid-box, in these three simulations, was covered with the
grass (G), the forest (F), and the concrete (C) with the values of the albedo 0.20,
0.15, and 0.30, respectively. The albedo was calculated taking the following values
of the reduced lengths (bl) 0.50, 0.707, and 0.866 providing a central square, that
takes 25%, 50%, and 75% of the grid-box area. We wanted to analyze the daily
effective surface temperature course differences obtained by both the methods in
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FIGURE 14.7

Dependence of the loss coefficient on the reduced lengths bb and bl 1, for different values of
the reduced height bh , obtained by the standard numerical integration (SNI) approach and by

the MCRT method: (a) the “trilateral prism” geometry and (b) the “slope” geometry.

Reprinted with permission from Mihailovi�c, D.T., Kapor, D., �Ciri�san, A., Firanj, A., 2012. Parametrization of the

albedo over the heterogeneous surfaces for different geometries in a land surface scheme by the Monte Carlo ray-

tracing method. Atmos. Res. 107, 51e68.
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a case of the grid-box covered with each type of the surfaces, i.e., G, F, and C (as the
fraction of the grid-box in amounts of 25%, 50%, or 75%, each of them) surrounding
the “propagating building” taking 75%, 50%, or 25% area of the grid-box, respec-
tively. The altitude of a central patch was case sensible. In the GeC simulations,
the building was 2 m high, while the grass was 0.5 m. For the case of FeC simula-
tions, the forest height is taken to be 2.5 m, while the building was 10 m. The same
height of a central area concrete building (10m) is used when both patches in the
grid-box were consisting from the concrete (CeC simulations).

To define more precisely the difference between the daily effective surface
temperature course obtained by two methods, the root mean square error (RMSE)
is calculated. In Fig. 14.8 are depicted the averaged values of the RMSE for the
GeC, FeC, and CeC for 24 h simulations. It can be seen from the figure that
maximal increase in the effective surface temperature and decrease in albedo is
for 50e50% area coverage when both patch areas are covered with the concrete.
In FeC simulations we also obtained a significant RMSE, especially for case
when the central area occupies 25% of grid-box. The lowest values of the RMSE
were obtained for the GeC simulations.

We now deal with the “trilateral prism” geometry with the same dimensions of
the grid-box as the previous one. We considered the prism having a triangular shape
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Dependence of RMSE of the effective surface temperature, obtained by using the PA

(performed by the MCRT) and SA albedo calculation methods, on the reduced length bl ¼ 1.
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with the area of ba � bb=2 and the reduced height bh. The reduced value ba ¼ 0:5 was
fixed on the half size of the grid-box while the reduced length bb ¼ b=L was taking
values 0.25, 0.5, 0.75, and 1. The fractional covers of the elevated surface and the
rest of the grid-box were s2 ¼ ba � bb=2 and s1 ¼ 1� ba � bb=2, respectively.
The simulations were done similar to the ones for rectangular prism, i.e., with the
same surface types (G and F), while instead of C we used R surface type.
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The maximum of the effective surface temperatures, obtained by the PA (performed by the

MCRT) (left panels, aec) and RMSE (right panel, def) on the reduced height bh, for different
values of the fractional covers, for the “trilateral prism” geometry. The RMSE is calculated on

the basis of differences between the PA and SA albedo calculation methods for all points in

the simulated daily courses.
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We also analyzed the daily effective surface temperature course differences
obtained by both methods in the case of the grid-box covered with each type of
the surfaces, i.e., G, F, and R, that fills the surface next to the “trilateral prism” which
consists of the concrete and taking the following fractions of s1 and s2: 0.9375
(s1)d0.6250 (s2), 0.8750 (s1)d0.1250 (s2), 0.8125 (s1)d0.1875 (s2), and
0.7500 (s1)d0.2500 (s2). The simulations for which the LAPS model was run were
GeR, FeR, and ReRwith same values for the albedo as in the previous simulations.
The altitude of the trilateral prism patch was case sensible with changes in the
reduced heights (bh) as 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1.0. In the GeR simula-
tions, the grass was 0.5 m tall, while in the FeR simulations the forest had height
of 14 m. However, in these simulations the values of the reduced height bh were
only 0.2, 0.5, and 1.0, respectively.

Fig. 14.9 show the difference in the maximum of the surface effective tempera-
ture obtained by the MCRTmethod for different values of the reduced height and the
fractional cover of each patch in a case of “trilateral prism” geometry. When the
grid-box is covered with the grass and the rock or if whole grid-box is covered
with the rock, the increase in the maximum temperature is from about 1.5e2.5K
(Fig. 14.9a and c). In the FeR simulations (Fig. 14.9b), there is an increase of 1K
when the grid-box is more covered with forest till 2K when the larger part of the
grid-box is covered with the rock. Considering the RMSE (Fig. 14.9def), that is
calculated on the basis of differences between two albedo calculation methods for
all points in the simulated daily courses, the case when the whole grid-box area is
covered by the rock gives the largest difference between the temperature obtained
by two methods of calculating the albedo. As the area of the surface lying on a
higher level is larger, it increases the RMSE value for the observed case.
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Kolmogorov complexity
and the measures based
on this complexity 15
15.1 INTRODUCTORY COMMENTS ABOUT COMPLEXITY OF

ENVIRONMENTAL INTERFACE SYSTEMS
The systems which we face in modelling the processes on environmental interfaces
can be grouped into three categories, i.e., simple, complicated, and complex ones.
As a metaphorical illustration of structures of these problems, we will give three
examples originating from Brenda Zimmermane (2014), an expert in the strategic
management. Her examples, in a simple but essential way, illustrate the structure
of the above problems.

Looking at the panels in Fig. 15.1 (left panel), we can see that for making soup
we need just the right recipe that is enough to get the same results every time; there-
fore, they are entitled as simple. In complicated problems, like sending a rocket to
the Moon (Fig. 15.1, middle panel), we have to invest much more effort for solving
that problem (although the comparison with making soup may be grotesque, it must
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FIGURE 15.1

Types of problems which we face in modelling the processes on environmental interfaces

(Zimmerman, 2014).
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be admitted that it is deeply obvious). Despite the fact that we have all tools, it does
not guarantee that we will be successful in our efforts. To reach the target, we have to
build our experience over time and then it can be repeated with success. Finally, let
us consider the complex problem through the analysis of raising a child (Fig. 15.1,
right panel). Firstly, we have no “right” recipes or protocols, i.e., a set of instructions
for recognizing a particular direction we have to follow, including a list of the steps
required. Secondly, we have no experience (every child is a special experience
regardless of whether the first or succeeding); thus only outside factors influence
our experience. It helps but it does not guarantee “solving the problem,” i.e., success
in this case.

Whereas this book is intended for a wide audience of engineers and scientists,
who start from different attitudes and approaches in their work, right now at the
beginning of this part of the book and having in mind examples in Fig. 15.1, we
will make a distinction between the notion “complicated” and “complex.” When
we say that something is “complicated,” it obviously means that there exists a spec-
trum of complications but we understand what context that would describe. Compli-
cated matter cannot be broken down into simple parts, for it is made of complicated
parts. It is an evincive of something that is problematic, long-winded, difficult, and
inconsistent. Complicated usually has to execute with taking time, subsistence hard,
or has a lot of limitary factors. Therefore, sending the rocket to the Moon is a good
example of a complicated problem. On the other hand, complex problems and sys-
tems result from networks of multiple interacting causes that cannot be individually
distinguished; must be addressed as entire systems, that is they cannot be addressed
in a piecemeal way (Poli, 2013). That kind of problems and systems cannot be
controlled like complicated ones, since we know in advance that there is no warranty
for success. The best one can do is to have an effect on them, learn to “dance with
them,” as Donella Meadows ably said (Meadows, 2008). At the end of the story
about the types of problems and systems in environmental modelling, let us add
the following comments. This question is closely related to the question whether
the information we are receiving about the system obeys the same evolution through
randomness and determinism, independently of context. “So can a combination of
randomness and determinism produce all information and everything else we see
around us? It seems that randomness and determinism together can be seen to under-
lie every aspect of reality” (Verdal, 2010).

The issue of complexity has been touching the scientific community intensively
during the last three decades. This is happening on the epistemological as well as the
methodological level. The complexity is one of the aspects of self-organization
whose fundamental quality is an emergence. Self-organizing systems are complex
systems. The term complexity has three levels of meaning as concisely elaborated
by Arshinov and Fuchs (2003). In the review paper, Crutchfield (2012) has under-
lined: “Spontaneous organization, as a common phenomenon, reminds us of a
more basic, nagging puzzle. If, as Poincaré found, chaos is endemic to dynamics,
why is the world not a mass of randomness? The world is, in fact, quite structured,
and we now know several of the mechanisms that shape microscopic fluctuations as
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they are amplified to macroscopic patterns. Critical phenomena in statistical
mechanics (Binney et al., 1992) and pattern formation in dynamics (Cross and
Hohenberg, 1993; Manneville, 1990) are two arenas that explain in predictive detail
how spontaneous organization works. Moreover, everyday experience shows us that
nature inherently organizes; it generates pattern. Pattern is as much the fabric of life
as life’s unpredictability.” These sentences are also related to the phenomenon of the
complexity of systems in many disciplines, ranging from philosophy and cognitive
science to evolutionary and developmental biology and particle astrophysics
(Crutchfied, 2012; Wheeler, 1990 and references herein).

There exist a lot of complexity measures in complex system behavior and time
series analysis. In particular, in the focus is analysis of time series since the only
available evidences about the nature of complex system come through a time series.
According to Zunino et al. (2012) and references herein, the recorded signals from
experimental measurements give us useful information to establish the deterministic
or stochastic character of the system under analysis, but the task to discern between
regular, chaotic, and stochastic dynamics from complex time series is a critical issue.
In the study of complex system behavior and time series analysis, an important part
is played by symbolic sequences, since it is believed that most systems whose
complexity we intent to estimate can be reduced to them (Adami and Cerf, 2000).
Thus, in searching for an adequate measure for the complexity of sequences, it is
difficult to do that consistently. In particular, measures of complexity that are based
on the Kolmogorov complexity (Cover and Thomas, 1991), useful in signal analysis,
are measures of randomness rather than complexity (Grassberger, 2012). This
approach is not capable of discerning between signals with different amplitude
variations and similar random components. Note, that the Kolmogorov complexity
has some advantages comparing to measures from the theory of nonlinear dynamic
systems like the Lyapunov exponent, the correlation dimension, and correlation
entropy. This measure does not involve embedding the time series onto a high
dimensional, which is necessary for applying measures from the theory of nonlinear
dynamic systems (Sen, 2009). Actually, it is easier to use this complexity since it is
easily calculated for any type of time series and it does not include any assumption
of the probability law of the process generating the time series.

The purpose of this chapter is to elaborate novel complexity measures based on
the Kolmogorov complexity to be used in complex systems behavior and time series
analysis, offering deeper insights into these issues. Note that in this chapter we will
deal specifically with the physical complexity. However, without losing the general-
ity, the methods proposed can be applied as complexity measures for other kind of
complexity. We do that through the following steps. In Section 15.2 we consider in
what extent Kolmogorov complexity enlightens the physical complexity? We
describe in Section 15.3 the measures based on the Kolmogorov complexity [the
Kolmogorov complexity spectrum, the Kolmogorov complexity spectrum highest
value, and the overall Kolmogorov complexity introduced by Mihailovi�c et al.
(2015)]. Finally, in Section 15.4 we apply the Kolmogorov complexities to two
different dynamical systems.
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15.2 IN WHAT EXTENT KOLMOGOROV COMPLEXITY
ENLIGHTENS THE PHYSICAL COMPLEXITY?

In this section, through several steps, we consider the Kolmogorov complexity,
which is seen through its applicability in illuminating the physical complexity.

Kolmogorov complexity. The Kolmogorov complexity K(x) of an objectx is the
length, in bits, of the smallest program (in bits) that when run on a Universal Turing
Machine (U ) outputs K(x) and then stops with the execution. This complexity is
maximized for random strings. Thus, KðxÞ ¼ jPrintðxÞj. That is, the shortest
program to get a U to produce is to just hand the computer a copy and say “print
this” (Feldman and Crutchfield, 1998). This measure was developed by Andrey N.
Kolmogorov in the late 1960s (Kolmogorov, 1968). A good introduction to the
Kolmogorov complexity (in further text KLL) can be found in Cover and Thomas
(1991) and with a comprehensive description by Li and Vitanyi (1977). On the basis
of Kolmogorov’s idea, Lempel and Ziv (1976) developed an algorithm (LZA), which
is often used in assessing the randomness of finite sequences as a measure of its
disorder.

The Kolmogorov complexity of a time series {xi}, i ¼ 1,2,3,4,...,N by the LZA
algorithm can be summarized as follows. Step A: Encode the time series by con-
structing a sequence S consisting of the characters 0 and 1 written as {s(i)},
i ¼ 1,2,3,4,.,N, according to the rule

sðiÞ ¼
�
0 xi < xt

1 xi � xt
: (15.1)

Here xt is a threshold that should be properly chosen. The mean value of the time
series has often been used as the threshold (Zhang et al., 2001). Depending on the
application, other encoding schemes are also available (Radhakrishnan et al.,
2000). Step B: Calculate the complexity counter C(N), which is defined as the min-
imum number of distinct patterns contained in a given character sequence (Ferenets
et al., 2006); c(N) is a function of the length of the sequence N. The value of c(N) is
approaching an ultimate value b(N) as N approaching infinite, i.e.,

cðNÞ ¼ OðbðNÞÞ; bðNÞ ¼ N

log2 N
: (15.2)

Step C: Calculate the normalized complexity measure Ck(N), which is defined as

CkðNÞ ¼ cðNÞ
bðNÞ ¼ cðNÞ log2 N

N
: (15.3)

The Ck(N) is a parameter to represent the information quantity contained in a
time series, and it is to be a 0 for a periodic or regular time series and a 1 for a
random time series, if N is large enough. For a nonlinear time series, Ck(N) is to
be between 0 and 1. Let us note that Hu and Gao (2006) derived analytic expression
for Ck in the Kolmogorov complexity, for regular and random sequences. In addition

154 CHAPTER 15 Kolmogorov complexity



they showed that for the shorter length of the time series, the larger Ck value and
correspondingly the complexity for a random sequence can be larger than 1.

The above steps are incorporated in codes of different programming languages to
estimate the lower version of the Kolmogorov complexity (KLL). This version is
commonly used by researchers. However, there exists the upper version of the
Kolmogorov complexity (KLU), which is described by Lempel and Ziv (1976).
Note, that in both cases, an extension to a sequence is considered “innovative” in
some way, but differently. We describe both of them. The LZA is an algorithm,
which calculates the KLL measure of binary sequence complexity. As inputs, it
uses a vector S consisting of a binary sequence whose complexity we want to analyze
and calculate converting the numeric values to logical values depending on whether
(0) or not (1). In this algorithm we can evaluate as a string two types of complexities.
One is “exhaustive,” i.e., when complexity measurement is based on decomposing S
into an exhaustive production process. On the other hand, the so-called “primitive”
complexity measurement is based on decomposing S into a primitive production pro-
cess. Exhaustive complexity can be considered a lower limit of the complexity mea-
surement approach (KLL) and primitive complexity an upper limit (KLU). Let us
note that the “exhaustive” is considered as the KLL measure and frequently used
in complexity analysis. The KLL calculation is based on finding extensions to a
sequence, which are not reproducible from that sequence, using a recursive
symbol-copying procedure. The KLU calculation uses the eigenfunction of a
sequence. The sequence decomposition occurs at points where the eigenfunction
increases in value from the previous one (Mihailovi�c et al., 2014a).

First, we have to find an array consisting of the history components O that were
found in the sequence S, while calculating the KLL or KLU (Ck in Eq. (15.3)). Each
element in O consists of a vector of logical values (true, false) and represents a his-
tory component. Histories are composed by decomposing the sequence S into the
following sequence of words

OðSÞ ¼ Sð1; h1ÞSðh1 þ 1; h2ÞSðh2 þ 1; h3Þ.Sðhm�1 þ 1; hmÞ; (15.4)

where the indices {h1,h2,h3...hm�1,hm) characterize a history making up the set of
“terminals”. We do not know how long the histories will be or in other words,
how many terminals we need. As a result, we will allocate an array of length equal
to the eigenfunction vector length Es(h) (Mihailovi�c et al., 2014a).

For an exhaustive history (i.e., when we calculate the KLL), from Theorem 8 in
Lempel and Ziv (1976) the terminal points hi, 1 � i � m � 1 are defined by

h1 ¼ minfhjEsðhÞ > Esðhm � 1Þg: (15.5)

From the same theorem, for a primitive history (i.e., when we calculate the
KLU), the terminal points hi, 1 � i � m�1 are defined by

h1 ¼ minfhjEsðhÞ > Esðhi � 1Þg; (15.6)

where the eigenfunction, Es(n), is monotonically nondecreasing (Lemma 4 in
Lempel and Ziv (1976)). Finally, we use the terminal points to calculate cpr
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(primitive, KLU) or cex (exhaustive, KLL), as the length of the production histories
Opr(S) or Oex(S), which are the so-called unnormalized complexities (Eq. 15.2). To
get normalized ones we use Eq. (15.3). In this chapter we have designed our own
code in FORTRAN90, which partly relies on the MATLAB code by Thai (2012).

Kolmogorov complexity of dynamical systems corrupted with noise. We will
make some comments about the KLL complexity: (1) for purely periodic time series
and, on the other side, for purely stochastic ones and (2) for dynamical systems
corrupted with noise. Since the KLL complexity is a measure of the degree of
disorder or irregularity of time series, its value is low for a regular time series
like periodic time series with constant periodicity (Hu and Gao, 2006). Therefore,
we set focus on the question: How the noise, included in the system, influences
the measurement results? The term dynamical noise refers to situations where the
output of a dynamical system corrupted with noise is used as an input to the next
iteration. The dynamical noise can dramatically change the dynamics of low dimen-
sional chaotic systems. Meaningful analyses of real systems in terms of chaos theory
should consider the effect of dynamical noise on the system’s dynamics. In fact as
Ruelle (1994) put it, real systems can in general be described as deterministic sys-
tems with some added noise. This description is sufficiently vague that it appears to
cover everything. In economics, for example, such a description is familiar and the
noise is called “shocks.” A first remark concerning the above picture is that the sep-
aration between noise and the deterministic part of the evolution is ambiguous,
because one can always interpret “noise” as a deterministic time evolution in infinite
dimension (Serletis et al., 2007a). In addition Serletis et al. (2007b) argue that
dynamical noise (noise that acts as a driving term in the equations of motion) can
dramatically change the dynamics of nonlinear dynamical systems. In fact, dynam-
ical noise can make the detection of chaotic dynamics very difficult as it is possible
to lead to rejection of the null hypothesis of chaos.

Now, we will see how noise included in the system can affect the complexity of
the system. We consider the effect of noise on complexity of: (1) deterministically
generated time series which is contaminated by the adding noise and (2) time series
of including measured values of the physical quantity. In many models, there is an
interest in cases which occur when parameters of the oscillators have small, random
variations due to either internal or external noise. These so-called parametric fluctu-
ations can be simulated by modulating the values of the nonlinearity parameters by
uniform random numbers in a small interval. However, in our consideration in both
cases this noise enters by an additive “shock,” i.e., by the external excitation. The
cases we will deal with are (1) logistic map xnþ1 ¼ rxnð1� xnÞ, where r ¼ 3.7
and (2) time series of the measured indoor radon concentration described
(Mihailovi�c et al., 2014b). The randomness influence on the logistic equation was
analyzed by adding random noise in the logistic equation, i.e.,
xnþ1 ¼ rxn(1 � xn) þ Dxn. Here Dxn ¼ Ddn measures the noise intensity while dn
is random number uniformly distributed in the interval [�1,1] andD is the amplitude
of the noise as it was done in Chapter 11. Similarly, it was done by adding Dxn on the
values of the radon time series normalized on its highest value. For generating the
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random numbers we use the intrinsic subroutine CALL RANDOM NUMBER (arg)
from the Microsoft FORTRAN Developer Studio library. To explore the dependence
of the Kolmogorov complexity on the amplitude of the noise, we have calculated the
KL for each D from 0.0001 to 0.05 with step 0.0001, 1500 iterations are applied for
an initial state (x0 ¼ 0.2), and the first 500 steps were ignored. The r was taken to
have a value of 3.7. The graph representing the KLL of the logistic map as a function
of the amplitude D of the noise that is introduced by the added noise is depicted in
Fig. 15.2. From this figure, it is seen that the KLL complexity is sensitive to the noise
introduced to the system in both cases, i.e., when the logistic equation as well as the
radon time series are “shocked” by the added noise. However, while the logistic time
series, contaminated by the noise, has a trend of an increase of the KLL complexity,
the influence of noise on the radon time series is noticeable only after a certain value
of amplitude of noise D (around D ¼ 0.03 in Fig. 15.2).

To demonstrate how dynamical noise changes the dynamics and complexity of
chaotic systems, we perform two additional experiments. In the first experiment
we explore changes to the KL of a time series which is affected by the size of the
number of time iterations N, in the logistic map time simulations. In simulations,
for each D from 0.0001 to 0.05 with step 0.0001, 2000, 3000, 4000, 5000, 6000,
11,000, and 21,000 iterations were applied for an initial state (x0 ¼ 0.2), and then
the first 1000 steps were ignored (the number of iterations included was therefore
N ¼ 1000, 2000, 3000, 4000, 5000, 10,000, and 20,000). The r has a value of 3.7
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FIGURE 15.2

Kolmogorov complexity of the logistic map xnþ1 ¼ rxn(1 � xn) with r ¼ 3.7 (red) and the

measured radon time series (blue) (Mihailovi�c et al., 2014b; Mihailovi�c et al., 2015) as a

function of the amplitude D of the noise that is introduced by the added noise.

Reprinted with permission from Mihailovi�c, D.T., Mimi�c, G., Nikoli�c-Ðori�c, E., Arseni�c, I., 2015. Novel mea-

sures based on the Kolmogorov complexity for use in complex system behavior studies and time series analysis.
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(Mihailovi�c et al., 2015). The graph representing the Kolmogorov complexity of the
logistic map as a function of the amplitude D of the noise that is introduced in the
logistic equation, for different number of time iterations, is depicted in Fig. 15.3a.
From this figure, it is seen that the range of changes in the KLL is about 0.1 for
all step sizes. The only differences which occur are in the KLL values which

FIGURE 15.3

Kolmogorov complexity (KLL) of the logistic map xnþ1 ¼ rxn(1 � xn) in dependence: (a) of the

amplitude D of the noise that is introduced in the logistic equation time series, for different

number of time iterations N, and (b) of r according to Pomeau-Manneville scenario

(3.56995 < < 3.82843).

Reprinted with permission from Mihailovi�c, D.T., Mimi�c, G., Nikoli�c-Ðori�c, E., Arseni�c, I., 2015. Novel mea-

sures based on the Kolmogorov complexity for use in complex system behavior studies and time series analysis.

Open Phys. 13, 1e14.
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decrease when N increases. Note that oscillations in the KLL values are more
pronounced for N ¼ 1000 while they are less present for N ¼ 20,000. In the second
experiment we consider how the logistic map is “shocked” around r ¼ 3.7 with a
chosen D. For this experiment we have used: (1) a Pomeau-Manneville scenario
(3.56995 < r < 3.82843) (Pomeau and Manneville, 1980) and (2) D ¼ 0.025,
x0 ¼ 0.2 and N ¼ 5000. Values of r were changed for an increment of 0.00001.
Results of simulations are depicted in Fig. 15.3b. This figure indicates a sharp
increase in the KLL of about 0.5 when r is changed in the chosen interval.

Physical complexity. When we use the term complexity in physical systems, we
explicitly think that it is a measure of the probability of the state vector of the system.
It is a mathematical measure, one in which two distinct states are never combined
into a composite whole and considered equal, as is done for the notion of entropy
in statistical mechanics. Therefore, this term differs from the entropy in statistical
mechanics. Note, that here we make a distinction between terms “randomness”
and “complexity” in the following sense. The term randomness refers the dissimilar-
ities between amplitudes in a time series whose simplest measure is, for example, the
Shannon’s entropy. On the other hand, the complexity refers to the sequence appear-
ance disorder of some amplitudes in a time series which will be in the focus of our
interest. According to Adami (2002), the physical complexity of a sequence “refers
to the amount of information that is stored in that sequence about a particular envi-
ronment.” This should not be confused with mathematical (Kolmogorov)
complexity; it is a distinct mathematical complexity, which only deals either with
the intrinsic regularity or irregularity of a sequence in this case. Namely, for any
two strings x; y˛P� (P* is the set of all finite binary strings), the Kolmogorov
complexity of given x is KðxjyÞ ¼ minpfjpj : Uð p; yÞ ¼ xg where U(p,y) is the
output of the program p with auxiliary input y when it is run in the machine U.
For any time constructible t, the t-time-bounded Kolmogorov complexity of x given
y is, KtðxjyÞ ¼ minpfjpj : Uð p; yÞ ¼ x in at mostðtjpjÞstepsg.

Let us note that the regularity of a sequence we are talking about is just a reflec-
tion of the unchanging laws of mathematics. It is not a reflection of the physical
world where such a sequence may mean something. The Kolmogorov complexity
does not measure pattern or structure or correlation or organization. Structure or
pattern is maximized for neither high nor low randomness. If we follow Grassberger
(1989), it can be intuitively accepted as something that is placed between uniformity
and total randomness (Fig. 15.4). Let us note that the structural complexity versus
randomness relation is just one of the many possible behaviors. Different systems
have different structural complexity versus randomness plots (Grassberger, 2012).
There is no “universal” complexity relationship, which is clearly established in
the scientific literature.

Adami and Cerf (2000), proposing a measure of physical complexity, cleverly
observed that it should closely correspond to our intuition. In addition they stressed
that it can consistently be defined within information theory. In studying the com-
plex systems, an important step in using this measure is connected with symbolic
sequences. Namely, it is believed that most systems whose complexity we would
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like to estimate can be reduced to them. Contrary to the idea that the regularity of a
string is in any way connected to its complexity (as in Kolmogorov theory), it seems
that such a classification is, in the absence of an environment within which the string
is to be interpreted, thoroughly meaningless. There is no doubt that it is possible to
establish a coding system, for example, such that all of Grass’ “Tin Drum” (1962) is
represented in terms of a uniform (and thus “regular”) string of the vanishing
Kolmogorov complexity. For example, one possible coding system could be
invented in the following way: 1 (one) is assigned to an event when it is described
explicitly that Oskar Makowski strikes the drum. Otherwise, it is 0 (zero). Although,
this event is presented metaphorically, evidently, in such a case the literature
complexity of the string is hidden in the coding rules which relate the string to its
environment: the ensemble of books (as mentioned in Adami and Cerf (2000)).
Thus, the complexity of a string representing the physical (or any other) complexity
can be determined only by analyzing its correlation with a physical or corresponding
environment.

15.3 NOVEL MEASURES BASED ON THE KOLMOGOROV
COMPLEXITY

The quantification of the complexity of a system is one of the aims of nonlinear time
series analysis. Complexity of the system is hidden in the dynamics of the system.
However, if there is no recognizable structure in the system, it is considered to be
stochastic. Due to noise, spurious experimental results, and artifacts in various
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FIGURE 15.4

Complexity versus randomness plotted following the physical intuition (Grassberger, 2012,

1989).
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forms, it is often not easy to get reliable information from a series of measurements.
The time series of some physical quantity is the only information about its physical
state, which can be obtained either by measurement or modelling. The time series is
the only source for establishing the level of complexity of the physical system. The
exact states of an observed physical system are translated into a sequence of symbols
via a measurement channel. This process is described by a parameterized partition
M

ε
of the state space, consisting of cells of size ε that are sampled every s time units.

A measurement sequence consists of the successive elements of M
ε
, visited over

time by the system’s state. Using the instrument {Mε,s} we get information as a
sequence of states {xi}. Here, we consider a possible way of calculating the physical
complexity of the system, i.e., complexity of time series which represents the system
passing through different states.

Let us consider Kolmogorov complexity spectrum introduced by Mihailovi�c et al.
(2015).

Definition 1: The time series {xi}, i ¼ 1,2,3,4,.,N we call normalized one (or
time series with normalized amplitude) after transformation xi ¼ (Xi � Xmin)/
(Xmax � Xmin), where {Xi} is a time series obtained either by a measuring procedure
or as an output from a physical model, while Xmax ¼ max{Xi} and Xmin ¼ min{Xi}.

Remark: It follows from Def. 1 that all elements in time series {Xi} belong to the
interval [0,1].

Definition 2: We call the Kolmogorov complexity spectrum of time series {xi} the
sequence {ci}, i ¼ 1,2,3,4,.,N obtained by the LZA algorithm which is applied N
times on time series, where thresholds {xt,i} are all elements in {xi}.

Remark: We transform the time series obtained either by a measuring procedure
or as an output from a physical model, into a finite symbol string by comparison with
a series of thresholds {xt,i}, i ¼ 1,2,3,4,.,N, where each element is equal to the
corresponding element in the considered time series {xi}, i ¼ 1,2,3,4,.,N, applying
the LZA algorithm. The original time series samples are converted into a set of 0e1

sequences fSðkÞi g; i ¼ 1; 2; 3; 4;.;N; k ¼ 1; 2; 3; 4;.;N defined by compari-

son with a threshold xt,k,

S
ðkÞ
i ¼

�
0 xi < xt;k

1 xi � xt;k
: (15.7)

Applying the LZA algorithm on each element of series fSðkÞi g we get the KL
complexity spectrum {ci}, i ¼ 1,2,3,4,.,N. We introduce this spectrum to explore
the range of amplitudes in a time series representing a process, for which it has high-
ly enhanced stochastic components, i.e., highest complexity.

Definition 3: The highest value KC
max in this series, i.e., KC

max ¼ maxfcig, we call
the Kolmogorov complexity spectrum highest value.

The following examples will help us to demonstrate the meaning of measures we
have just introduced: (1) spectrum of the complexity {ci} and (2) Kolmogorov
complexity spectrum highest value the spectrum KC

max (in further text KLM), using
a time series {xi}.
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Example 1: In this example we illustrate the meaning of the complexity spectrum
{ci}. Here we obtain the time series {xi} by the instrument {Mε,s} with Mε ¼ e�ws,
where s is the random number uniformly distributed in the interval [0,1] while w is
the amplitude, which takes values in the interval [0,1]; {xi} is sampled every s ¼ 1
time unit.

Fig. 15.5 shows the KLL complexity spectra for different values of w: w ¼ 1.0,
0.75, 0.50, and 0.25, respectively. They are all similar to the curve in Fig. 15.4,
which represents just one of the many possible behaviors since different systems
have different complexity vs. randomness plots, because there is no “universal”
complexityeentropy relationship (Feldman and Crutchfield, 1998).

Example 2. To illustrate the justification for introducing the complexity measure
KC
max we deal with a time series {xi}, i ¼ 1,2,3,4,.,500, which is generated by a

generalized logistic map (see Section 10.1). Mathematically, that map has the form

FðxÞ ¼ rx pð1� x pÞ (15.8)

where r is a logistic parameter, 0 < r < 4. This map expresses the exchange of
biochemical substance between cells that is defined by a diffusion-like manner,
where the parameter p is the cell affinity. This kind of map is convenient to illustrate
the meaning of KC

max. We have calculated KC
max and K

C complexities (KC, calculated
with threshold xt ¼

PN
i¼1xi=N) for p ¼ 0.5 and p ¼ 1 (0 < p � 1). In those compu-

tations, for each r from 3.5 to 4.0 and p with step 0.01, 1000 iterations were applied
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FIGURE 15.5

The Kolmogorov complexity spectra {ci} of time series {xi} obtained by the instrument {M
ε
,s}

with M
ε
¼ e�ws, where w is the amplitude factor, s is the random number uniformly

distributed in the interval [0,1], and sampling s ¼ 1 time unit.

Reprinted with permission from Mihailovi�c, D.T., Mimi�c, G., Nikoli�c-Ðori�c, E., Arseni�c, I., 2015. Novel mea-

sures based on the Kolmogorov complexity for use in complex system behavior studies and time series analysis.
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for an initial state, and then the first 100 steps were abandoned. The results of com-
putations are given in Fig. 15.6.

From this figure it can be seen that in both cases, KC carries less information
about the complexity of the time series than KC

max does. Moreover, for p ¼ 0.5,
the KC is recognized only after r > 3.9 since it gives us average information about
the complexity of the time series. In contrast to that, KC

max carries the information
about the highest complexity among all complexities in the spectrum. Therefore,
this measure should be included when developing an understanding of a system’s
randomness and organization (Crutchfield, 2012) and also in the complexity analysis
of the time series that an instrument provides. To explore the dependence of (a) the
KLL and (b) the KLM on the logistic parameter r and cell affinity p, we have simu-
lated the generalized logistic map defined by Eq. (15.8). In those computations, for
each r from 0.0 to 4.0 and pwith step 0.01, 1000 iterations were applied for an initial
state, and then the first 100 steps were abandoned. Looking at Fig. 15.7a and b,
which depicts the KLL and KLM complexities, respectively, we can see regions
with different levels of complexity. Further inspection of figures points out that in
the region of the KLM (Fig. 15.7b), its values are higher than for the KLL ones
(Fig. 15.7a). Apparently, that the KLM is a better indicator about the complexity
time series than the commonly used KLL one. This is because the KLL carries
average information about a time series. In contrast to that, the KLM carries infor-
mation about the highest complexity among all complexities in the Kolmogorov
complexity spectrum.
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FIGURE 15.6

The dependence on the logistic parameter r of Kolmogorov complexity (KL, red (gray in the

print version)) and the KLM (black) of time series generated by the generalized logistic

equation xnþ1 ¼ rxpn ð1� xpn Þ for (a) p ¼ 1 and (b) p ¼ 0.5.

Reprinted with permission from Mihailovi�c, D.T., Mimi�c, G., Nikoli�c-Ðori�c, E., Arseni�c, I., 2015. Novel

measures based on the Kolmogorov complexity for use in complex system behavior studies and time series

analysis. Open Phys. 13, 1e14.
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The overall Kolmogorov complexity measure. Now, we elaborate a new measure
based on the Kolmogorov complexity suggested by Mihailovi�c et al. (2015), which
can be used for better understanding of physical complexity as well as the
complexity of other systems, i.e. their time evolution and predictability. We first
briefly consider the term complexity as the possibility for a growth of structural
complexity. Many papers regarding this issue have been offered during the last
two decades. Among them we underline two contributions about complexity: (1)
a comprehensive elaboration from different aspects (epistemological, mathematical
as well as physical), summarized in Arshinov and Fuchs (2003) and (2) a recent
overview given by Crutchfield (2012), who emphasize the difficulties in perception,
which become more problematic when the phenomena of interest arise in systems
that spontaneously organize. When a complex system is under observation, only
an active subject (a scientist, agent) that creates new communicative parameters
of order allows the realization of more complex information about a system that
is connected with the idea of constructive chaos and chaos as a space of information.
The only available evidence about the nature of a complex physical system is the
agent’s report written down in the form we call time series. A key question therefore
is how we may gather information about complexity expressed through some mea-
sure, particularly when the phenomena of interest arise in systems that spontane-
ously organize. As mentioned above, according to Adami and Cerf (2000), the
main aim is to search for a measure of physical complexity that closely corresponds
to our intuition but that may also consistently be defined within information theory.

FIGURE 15.7

The dependence on the logistic parameter r and cell affinity p of (a) Kolmogorov complexity

(KLL) and (b) Kolmogorov complexity spectrum highest value (KLM), simulated by the

generalized logistic equation F(x) ¼ rxp(1 � xp).

Reprinted with permission from Mihailovi�c, D.T., Mimi�c, G., Nikoli�c-Ðori�c, E., Arseni�c, I., 2015. Novel mea-

sures based on the Kolmogorov complexity for use in complex system behavior studies and time series analysis.

Open Phys. 13, 1e14).
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Van der Pol and van der Mark (1927) also noted that much of our positive reception
depends on the question of whether or not our minds are “ready” to confront with
these intricacies. Further to the psychological observation they concluded that
“When confronted by a phenomenon for which we are ill-prepared, we often simply
fail to see it, although we may be looking directly at it.” With this in mind we
consider two points. First, for any complex physical system at any moment, we
can establish its entropy either through a measuring procedure or computation.
That is only matter that can be written down in the agent’s report at the fixed time
(we refer to the “white window”). Second, between two successive agent’s registra-
tion in the record, there exits no information about complexity (except “that it should
closely correspond to our intuition” (Adami and Cerf, 2000)dnothing more and
nothing less)dthis period is behind the window we refer as the “black window.”
Note that the complexity tells us how the pathway between two states is complex
and which corresponding entropies we can measure or compute: the only thing
we can do is to anticipate a measure of complexity, which will carry more informa-
tion. The KLL complexity as a measure is not able to distinguish between time series
with different amplitude variations and similar random components. On the other
hand, the same feature could also be attached to the suggested KLM measure,
although it gives more information about complexity, in a broader context, than
the KLL one does. Thus, when we convert a time series into a string, then its
complexity is hidden in the coding rules. For example, in the procedure of establish-
ing a threshold for a criterion for coding some information about the structure of the
time series can be lost. However, from the spectrum of the KLL complexity {ci} of
time series {xi} obtained by the instrument {M

ε
,s}, we do not lose any information

since we get N fixed thresholds, each of them contributing to the dynamics of the
system, and N calculated complexities, i.e., corresponding spectrum (Fig. 15.5).
The shape of this complexity curve depends on variability of time series amplitudes
that cannot be captured by the KLL and KLM. From that point of view, the spectrum
can be considered as a novel method in quantifying amplitude and complexity var-
iations in the time series. In introducing the way how the spectrum of complexity is
computed, we increase the amount of information “that is stored in a sequence about
a particular environment,” what is according to Adami (2002) a definition of phys-
ical complexity of a sequence. The increase of information gives us an opportunity
to have better access to insights of the system complexity since the physical or other
complexities can be determined only by analyzing its correlation with the corre-
sponding environment. The increase in information gives us opportunity to better
understand the system complexity, since the physical or other complexities can be
determined only by analyzing its correlation with the corresponding environment.
Fig. 15.8 depicts the dependence of the Kolmogorov-based complexities of time
series obtained by the instrument {M

ε
,s} as in Fig. 15.5 in dependence on the ampli-

tude factor. From this figure, it is seen that the KLL values as well as the KLM values
are very close for all amplitude factors. Apparently, neither the KLL nor the KLM
complexity is able to discern between time series with different Kolmogorov spectra
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of complexity. From this reason we introduce an overall Kolmogorov complexity
measure KC

O (KLO in further text) defined as

KC
O ¼

Z
X

KC
s dx (15.9)

where KC
s is the spectrum of the Kolmogorov complexity, dx is the differential of the

normalized amplitude, while X is a domain of all normalized amplitudes, over which
this integral takes values. Since KC

s is given as the sequence {ci}, i ¼ 1,2,3,4,.,N
(see Def. 2), it is calculated numerically as

KC
O ¼ c1ðx2 � x1Þ þ 1

2

XN�1

i¼1

ciðxiþ1 � xi�1Þ þ cNðxN � xN�1Þ: (15.10)

The KC
O takes value on the interval (0,Ku), where according to Hu and Gao

(2006), Ku can take the value up to 1.2. This measure can provide a distinction
between different time series having close values of the KL and KLM. It is clearly
seen in Fig. 15.8 which shows the descending KLO curve for different values of the
amplitude factor w. Thus, if information about the KLO is available we can arrive at
a more robust conclusion regarding the Kolmogorov complexity of time series.
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The dependence on the amplitude factor w of the Kolmogorov complexities (KLL, KLM, and

KLO) of the time series obtained by the instrument {M
ε
,s} as in Fig. 15.5 (Mihailovi�c et al.,

2015).
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To see the differences between the KLL and the suggested KLM and KLO mea-
sures with respect to the parameter p, we have calculated the KLL, for each p from
0.01 to 1 with step 0.01, 6000 iterations were applied for an initial state (x0 ¼ 0.2),
and then the first 1000 steps were ignored (N ¼ 5000). The r was taken to have a
value of 3.7. Fig. 15.9 depicts all three Kolmogorov complexities of the logistic
map as a function of the parameter p. In the region (0.6 < p < 0.83), the KLM
and KLO are higher than the KLL, which has a negligible value. This means that
the KLM and KLO are better indicators of complexity of the time series than the
commonly used KLL one. This is because the KLL carries average information
about a time series. In contrast to that, the KLM carries the information about the
highest complexity among all complexities in the Kolmogorov complexity spec-
trum, while the KLO gives integral information about complexity for the whole
spectrum of complexities.

15.4 APPLICATION TO DIFFERENT DYNAMICAL SYSTEMS
We illustrate the practical performance of the Kolmogorov-based complexity mea-
sures for two dynamical systems. Application of the Kolmogorov-based complexity
measures to various modeled and natural records of the environmental interface
complex systems will be analyzed in the following chapters.
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The dependence on the parameter p of Kolmogorov complexity (KLL, red), the Kolmogorov

complexity highest value (KLM, black), and the overall complexity (KLO, blue) of the time

series generated by the generalized logistic equation (3.16) for r ¼ 3.7.
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Intracellular concentration dynamics in a multicell system. In the first applica-
tion we choose to analyze the intracellular concentration dynamics in a multicell
system represented by a ring of coupled cells (Fig. 7.3). In our approach, a cell
moves locally in its environment without making long pathways. As a generalization
of the two-cell system, according to Mihailovi�c and Bala�z (2012) and Mihailovi�c
et al. (2013), the dynamics of biochemical substance exchange in such a multicell
system of cells can be represented by the discrete nonlinear time-invariant dynam-
ical system (Krabs and Pickl, 2010):

xðnþ1Þ ¼ F
�
xðnÞ

�
:¼ CF

�
xðnÞ

�
þ ðI � CÞZJ

�
xðnÞ

�
; (15.11)

where: x
ðnÞ
k is the concentration of the substance in k-th cell in a discrete time step n,

k ¼ 1,2,.,K, n¼0,1,2.,N, and xðnÞ :¼ ½xðnÞ1 x
ðnÞ
2 . x

ðnÞ
K �T is the appropriate vector;

C :¼ diagðc1; c2;!; cNÞ is the diagonal matrix of the coupling coefficients for

each cell; FðxðnÞÞ :¼ diagð4ðxðnÞ1 Þ;4ðxðnÞ2 Þ;.;4ðxðnÞK ÞÞ is the diagonal matrix of

intracellular behavior modeled by logistic map 4:(0,1)/ (0,1), 4(x) : ¼ r x(1 � x);

JðxðnÞÞ :¼ diagððxðnÞ2 Þp1 ; ðxðnÞ3 Þp2 ;.; ðxðnÞN ÞpK�1 ; ðxðnÞ1 ÞpK Þ is the diagonal matrix of

the flow of the substance to each cell, where all the cell’s affinities fulfill the constraint

p1 þ p2 þ .pK ¼ 1; Z ˛f0; 1gK�K is the upper cyclic permutation matrix, i.e., Z :

¼ [eK e1,e2,. eK�1], where e1,e2,.,eK are the standard basis vectors of RN .
Simulations of biochemical substance exchange in the system represented by a

ring of coupled K ¼ 3 cells, given by Eq. (15.11), were performed with the values
of parameters r ¼ 4, p1 ¼ p2 ¼ p3 ¼ 1/3. The coupling parameter c cover a broad
range of coupling, ranged from weak to strong (0.02, 0.15, 0.19, and 0.50), while
the number of iterations was N ¼ 1000. The results of simulations are depicted in
Fig. 15.10. The curves, describing the Kolmogorov complexity spectrum of time se-
ries of concentration, for different values of c, show significant difference in the
complexities. Those deference are strongly correlated with the value of c, i.e., the
complexity of the concentration dynamics is highest for the weakest coupling
(c ¼ 0.02) and it takes the lowest values for the strongest one (c ¼ 0.5).

The results of the KLL, KLM, and KLO calculations are given in Table 15.1. The
order of the KLL complexities (0.957, 0.678, 0.119, 0.109) for c1, c2, c3, and c4 is
pursued by the KLM complexities (0.987, 0.807, 0.478, 0.149) as well as by the
KLO complexities (0.711, 0.570, 0.230, 0.105). Here, for these time series the hier-
archy of all complexities is clearly enhanced. Therefore, in this case the KLL mea-
sure carries enough information about the complexity of this process.

Stock price dynamics. Here we demonstrate the use of Kolmogorov complexities
in econophysics and financial econometrics where it is of great importance to mea-
sure market efficiency in terms of the patterns contained in price changes relative to
the patterns in random sequences. The market is efficient when price changes are
unpredictable and random walk hypothesis is satisfied. This means that information
is incorporated in prices quickly, eliminating the possibility of market participants
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Table 15.1 Kolmogorov Complexities (Kolmogorov Complexity, KLL;
Kolmogorov Complexity Spectrum Highest Value, KLM; Overall Kolmogorov
Complexity Measure, KLO) Calculated for Time Series of Different Origin (the
Modeled Intracellular Concentration in a Multicell System for Deferent
Coupling Parameters and the Stock Prices) (Mihailovi�c et al., 2015)

KLL KLM KLO
Origin of
Time Series Time Series

0.957 0.987 0.711 Modeled
intracellular
concentration
in a multicell
system

c ¼ 0.02 (c1)

0.678 0.807 0.570 c ¼ 0.15 (c2)

0.119 0.478 0.230 c ¼ 0.19 (c3)

0.109 0.149 0.105 c ¼ 0.50 (c4)

0.978 1.013 0.218 Stock Imlek (IMLK)

1.048 1.062 0.137 Prices Dean Food
(DF)
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FIGURE 15.10

The Kolmogorov complexity spectrum for the normalized amplitude of the intracellular

concentration obtained by the model of biochemical substance exchange in a system

represented by a ring of coupled cells for four values of c.
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profiting from their information (Mihailovi�c et al., 2015). In addition to the statisti-
cal approach to studying market efficiency, information theory can also be applied.
Gulko (1999) first applied the concept of entropy to the analysis of financial series.
Pincus and Kalman (2004) used approximation entropy to study market stability and
Alvarez-Ramirez et al. (2012) applied a multiscale entropy for measuring a time
varying structure of market efficiency. Giglio et al. (2008) applied the KLL to
rank stock exchanges and exchange rates. To compare the efficiency of stocks
from developed and less-developed markets, we have chosen two time series. The
first time series is the daily closing stock price of company Imlek (IMLK) from
the Belgrade Stock Exchange. The company Imlek is a regional leader of dairy in-
dustry. The second time series is related to the daily closing stock price 10 of Dean
Foods (DF) from the NewYork Stock Exchange (NYSE), which is the largest proces-
sor and distributor of milk and other dairy products in the United States. The sample
period covers N ¼ 1511 trading days from January 3, 2011 to December 30, 2015.

Both time series are nonstationary, the impact of which is reduced by converting
the original series to returns, taking the logarithm of the ratio of consecutive values
of the series ri ¼ log(pi/pi�1), where pi are daily closing stock prices. The values of
the KLM for both series of returns, given in the corresponding rows of Table 15.1,
are greater than 1. That indicates their random behavior. As expected, the value of
the KLM is lower for the stock from the less developed market. On the other
hand, there is a larger deference between values of KLO, i.e., between areas below
the curves describing the Kolmogorov complexity spectrum (Fig. 15.11). The curves
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FIGURE 15.11

The Kolmogorov complexity spectrum for normalized daily returns of the companies Imlek

from the Belgrade Stock Exchange and Dean Foods from the New York Stock Exchange.
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may be compared with empirical density functions of normalized returns
riS ¼ (ri � min(ri))/(max(ri) � min(ri)) (Fig. 15.11), estimated using a Gaussian
kernel (Härdle and Simar, 2007). Both density curves are approximately symmetri-
cal and have maximum values if normalized returns are close to medians of corre-
sponding distributions M1

e ¼ 0.49 and M2
e ¼ 0.70. It should be noted that each

complexity curve reaches a maximum value exactly for the median value of normal-
ized amplitude. The distributions of normalized returns (amplitudes) also differ in
variability. The calculated values of standard deviations and coefficients of variation
are sd(r1S) ¼ 0.08411851, V(r1S) ¼ 17, 8% for the IMLK time series and sd(r2S) ¼
0.05572103, V(r2S) ¼ 7, 94% for the DF time series. The difference in variability af-
fects the shape of the spectrum of the Kolmogorov complexity curves (Fig. 15.12).
So it may be concluded that the spectrum of complexity gives the additional infor-
mation about differences in amplitudes of time series that was not contained in the
KLL and KLM. The deference in spectrum curves is reflected in the values of the
KLO. The value of the KLO ¼ 0.218 for IMLK normalized returns is greater than
the KLO ¼ 0.137 for DF.
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Empirical density functions for normalized daily returns of the companies Imlek from the

Belgrade Stock Exchange and Dean Foods from the New York Stock Exchange.
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Complexity analysis of the
ionizing and nonionizing
radiation time series 16
16.1 A COMPLEXITY ANALYSIS OF 222Rn CONCENTRATION

VARIATION IN A CAVE
Radon is an odorless and colorless radioactive noble gas. It emanates from soil, rock,
sediments, and water and creates decay products in air. It is the greatest source of
natural radioactivity, which after prolonged exposure onto humans may cause a
negative effect on their health. 222Rn has the most significant impact on the environ-
ment due to its relatively long half-life, enabling it to migrate quite significant
distances within the geological environment before decaying. It circulates in the
external environment. Build-up of radon and elevated radiation exposure levels in
the underground places have been observed by researchers worldwide, mostly to
assess the radiological hazards to occupational workers and occasional visitors
and tourists in mines (Veiga et al., 2004; Lindsay et al., 2004), tunnels (Lam
et al., 1988; Abdel-Monem et al., 1996), show caves (Jovanovi�c, 1996; Chen and
Li, 1995; Luo et al., 1996; Lu, 2002; Papastefanou et al., 2003; Lario et al., 2005;
Dueñas et al., 2005; Aytekin et al., 2006; Lu et al., 2009; Koltai et al., 2010; Gregori�c
et al., 2011; Grant et al., 2012; Sánchez et al., 2013), boreholes (Choubey et al.,
2011), and underground monuments (Hafez and Hussein, 2001). In these papers,
the authors mostly considered the effective doses to visitors comparing them with
the recommended one. On the other hand, radon is used as a natural radioactive
tracer of air movement in caves to enable better understanding of their microclimate
(Fernandez-Cortes et al., 2009). Radon activity concentration in underground envi-
ronments is usually characterized by the large temporal variations (Eff-Darwich
et al., 2002; Perrier et al., 2007; Barbosa et al., 2010). However, no attention has
been devoted to analysis of radon concentration time series depending on meteoro-
logical factors inside/outside of underground environments, although it is an impor-
tant step in deriving conclusions about the behavior of 222Rn in a cave environment.
Analyses which have been done about this issue do not pursue the number of well-
documented measurements, but some of them exist. We have mentioned several of
them, which are recently offered. Thus, on the basis of computations, Gregori�c et al.
(2011) have shown that the effect of the difference between outside and cave air tem-
peratures on 222Rn concentration can be delayed for four days because of the
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distance between measurement point and cave entrance. Koltai et al. (2010) have
considered 222Rn concentration dependence on the temperature and atmospheric
pressure data in a cave using correlation and regression analysis, but those methods
did not give significant results. Choubey et al. (2011) have found that the high fluc-
tuation in 222Rn concentration is mainly caused by the temperature contrast between
the air column inside the borehole and the atmosphere above the Earth’s surface.

In this section we analyze 222Rn concentration variation in Domica cave
(Slovakia) for the period June 2010eJune 2011. For that purpose we have employed
a complexity analysis based method which is helpful to get more insight into the
complexity of 222Rn concentration time series that cannot be done by traditional
mathematical statistics. Our intention is (1) to investigate possible existence of a pe-
riodical component in the variation of 222Rn concentration and some environmental
parameters, as well as possible correlation in their periodicities, (2) to use
complexity measures based on the Kolmogorov complexity (KLL) for establishing
the dependence of 222Rn concentration on cave environmental parameters, and (3) to
see whether influence of some parameters makes the distribution of measured quan-
tity less or more stochastic (Mihailovi�c et al., 2015).

Monitoring site and methods of measurements. The Domica cave is situated on
the south-western edge of the Silická plateau in the Slovak Karst National Park,
Southern Slovakia (48�2804000 N, 20�2801300 E). The cave is formed in the Middle
Triassic lagoon Wetterstein limestone of the Silica Nappe along the tectonic faults
by corrosive and erosive activities of Styx River and Domica Brook and smaller un-
derground tributaries draining water mainly from the nonkarst part of the catchment.
Limestone is strongly disrupted into blocks by the cracks and mylonite zones
(Droppa, 1972; Mello, 2004; Gaal and Vl�cek, 2011). The cave is mainly horizontal,
connected to the �Certova diera cave and they together reach a length of 5358 m.
They also form one genetic unit with the Baradla cave in Hungary with a total length
of about 25 km, from which almost one-quarter is in the Slovak territory. The cave
entrance/exit is on the southern foothill of Domica Hill, at an altitude of 339 m.
Three stable monitoring stations equipped with an automatic measuring and regis-
tration instruments for continual microclimatic, hydrological, and hydrochemical
monitoring are installed in the Domica cave and operated by Microstep-MIS com-
pany (Ga�zı́k et al., 2009). Radon activity concentration was monitored from June
2010 to July 2011, at the station Virgin passage, situated away from the tourist route
(Smetanová et al., 2011). Continual high-resolution monitoring of 222Rn counts was
carried out using Barasol probe (Algade, France). Measurement is provided by a
passive silicon semiconductor which records alpha particle emissions of the radon
by diffusion through a fiber filter, which also eliminates 220Rn. The count sensitivity
is 0.02 pulses per hour for 1 Bq m�3. The saturation volumetric activity is
3 MBq m�3. The background count rate is below one event every 24 h. The detec-
tion limit for radon is 50 Bq m�3 (Papastefanou et al., 2003). Accumulated pulses
are recorded automatically at an interval of 10 min and stored in data logger.

Computation of complexity measures and periodograms. For complexity anal-
ysis, we use time series of (1) 222Rn concentration and (2) wind speed inside the
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cave. The length of all the time series used was N ¼ 51,840. Using the LZA algo-
rithm and procedures outlined in Sections 15.2 and 15.3, we compute all complexity
measures. To establish the periodicity in behavior of these quantities, we compute
periodogram (Box et al., 2008).

A time series yt(t ¼ 1, ., N) is observed at equal intervals of time and may be
expressed as: Yt ¼ bY t þ εt, where bY t is unobserved fixed value at time t and fεtg is a
sequence of random errors identically and independently distributed with expecta-
tion 0 and variance s2. To determine whether the variability of the time series has
periodic components, the series is approximated by finite Fourier series of the
following form: if the number of data is even, N ¼ 2n,

bY t ¼ A0 þ 2
Xn�1

m¼1

ðAm cos 2 pmf1t þ Bm sin 2 pmf1tÞ þ An cos 2 pnf1t; or

bY t ¼ A0 þ 2
Xn�1

m¼1

ðAm cos 2 pmf1t þ Bm sin 2 pmf1tÞ;

if the number of data is odd: N ¼ 2n � 1.

Here Rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
m þ B2

m

q
is the amplitude and fm ¼ arctgðBm=AmÞ is the phase of

the i-th component. Periodogram is defined as the sum of squared amplitudes of
fundamental frequencies fm ¼ m/N, ( j ¼ 0, 1, ., n�1).

The function bY t is a linear combination of sine and cosine functions with
frequencies proportional to fundamental frequencies f1 ¼ 1/N, so it is linear

multiple regression with sine and cosine functions as repressors. Since 1
N

PN
t¼1Y

2
t ¼

R2
0 þ 2

Pn�1
m¼1R

2
m þ R2

n; a contribution of i-th harmonical component to the mean of

the total sum of squares of time series is equal to R2
i . By decomposing the mean of

the total sum of squares, it is possible to single out harmonical components which
describe the series well.

Analysis of 222Rn concentration periodicity. The distribution of frequencies of
measured 222Rn data collected in Domica cave is depicted in Fig. 16.1. From this
figure, it can be seen that concentrations of 222Rn are measured in relatively broad
range, up to 6348 Bq m�3. The shape of distribution of measured values is compa-
rable with a number of other 222Rn measurements.

The concentration of 222Rn in some caves is a result of dynamical steady-state of
a number of parameters. It can be expected that stronger than usual influence
of some of them or absence of others can result either in higher or lower values
of 222Rn concentration in the monitored area.

Parameters which can influence 222Rn concentration (air pressure, temperature,
wind speed inside and outside of cave, humidity, etc.) mostly have defined daily
and annual course. Thus, their periodicities can cause possible periodicity of
collected 222Rn data. We compute periodogram based on time series of 51,840
measurements of 222Rn concentrations. Results obtained are depicted in
Fig. 16.2. It is apparent that a dominant periodical component of 27.5 weeks
(around half of the year) can describe some periodicity of measured data. Another
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prominent periodical component which corresponds to the duration of the full one
year time series illustrates existence of the periodicity of 27.5 weeks, seen in
Fig. 16.3, where the original 222Rn concentration time series and 27.5 weeks peri-
odic component are presented. Measurements were gathered starting from June
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FIGURE 16.1

Distribution of frequencies of measured 222Rn concentrations.

Reprinted with permission from Mihailovi�c, D.T., Krmar, M., Mimic, G., Nikolic-Djoric, E., Smetanova, I., Holy,

K., Zelinka, J., Omelka, J., 2015. A complexity analysis of 222Rn concentration variations: a case study for

Domica cave, Slovakia for the period June 2010eJune 2011. Radiat. Phys. Chem. 106, 88e94.
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FIGURE 16.2

Periodogram of 222Rn concentration time series.

Reprinted with permission from Mihailovi�c, D.T., Krmar, M., Mimic, G., Nikolic-Djoric, E., Smetanova, I., Holy,

K., Zelinka, J., Omelka, J., 2015. A complexity analysis of 222Rn concentration variations: a case study for

Domica cave, Slovakia for the period June 2010eJune 2011. Radiat. Phys. Chem. 106, 88e94.
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2010, where a slight minimum periodic trend is observed in June and December,
and maximum in April and October.

Seasonal changes in natural ventilation often cause large temporal variation in
222Rn levels, mostly characterized by high summer and low winter concentrations
(Perrier et al., 2007; Lu et al., 2009; Kowalczk and Froelich, 2010). Because of
different structure of caves, there are other atypical patterns which have also been
documented, such as maximum concentrations during autumn and minimum during
summer in Mammoth Cave, Kentucky (Eheman et al., 1991) or in Moestroff Cave
(Luxembourg), where the lowest concentrations are measured in the summer
(Kies and Massen, 1997). The present study is likely the first analysis of 222Rn con-
centration periodicity in a cave (Mihailovi�c et al., 2015).

Dependence of 222Rn concentration on measured environmental parameters.
Underground 222Rn concentration level, in particular in karstic systems, depends
on a complex interrelationship between different external and internal factors like:
outsideeinside temperature differences, wind speed outside and inside of the
cave, atmospheric pressure, humidity, geomorphology, etc. (Kies et al., 1997; Lario
et al., 2005). Thus, it is difficult to establish relationships between underground
222Rn concentration level and the mentioned parameters. For this reason we have
analyzed other data sets, measured simultaneously with 222Rn concentration (CO2

concentration, temperature inside the cave, external temperature, wind speed in
the cave, and external wind speed), to establish a possible correlation of the 222Rn
activity and those parameters.
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FIGURE 16.3

Time series of 222Rn data fitted by running average method and periodic component in

10 min unit.

Reprinted with permission from Mihailovi�c, D.T., Krmar, M., Mimic, G., Nikolic-Djoric, E., Smetanova, I., Holy,

K., Zelinka, J., Omelka, J., 2015. A complexity analysis of 222Rn concentration variations: a case study for

Domica cave, Slovakia for the period June 2010eJune 2011. Radiat. Phys. Chem. 106, 88e94.
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Smetanová et al. (2011) reported that external parameters (atmospheric pressure,
external temperature, temperature gradient, rainfall events, etc.) have not affected
short-term changes of the observed 222Rn activity. Thus, we have focused on mostly
internal parameters. The simplest behavior had the time series of data representing
the temperature inside the cave. It was almost constant, oscillating around value of
10�C with variation of 1�C during the considered period but not significantly
altering 222Rn activity. Although the time series of the measured CO2 concentration
was much more changeable in time, it did not show any significant correlation with
the measured 222Rn concentration time series. However, analysis of the wind speed
inside the cave shows very interesting results.

To investigate and compare the lag effect of wind speed inside the cave and
external wind speed on 222Rn concentration, a cross-correlation function was
used. It was established that there is a negative cross-correlation between 222Rn ac-
tivity and wind speed inside the cave series for lags 1e20 and that those values are
larger than the cross-correlation series of 222Rn activity and external wind speed.
According to the Granger test of causality (Asteriou and Hall, 2007), wind speed in-
side the cave affects a time series of 222Rn concentration significantly, while external
wind speed does not.

Additional evidence about possible correlation between 222Rn activity and air
circulation inside the cave gives periodogram of the wind speed inside the cave.
Fig. 16.4 depicts periodogram based on measured time series of speed of air move-
ment inside the cave, with the values ranging in the interval (0.0e0.7 m s�1). From
this figure, it is seen that the time series of wind speed inside the cave has prominent
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FIGURE 16.4

Periodogram of the time series of the wind speed inside the cave.

Reprinted with permission from Mihailovi�c, D.T., Krmar, M., Mimic, G., Nikolic-Djoric, E., Smetanova, I., Holy,

K., Zelinka, J., Omelka, J., 2015. A complexity analysis of 222Rn concentration variations: a case study for

Domica cave, Slovakia for the period June 2010eJune 2011. Radiat. Phys. Chem. 106, 88e94.
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periodic component with a periodicity of 27.5 weeks (half of the year). This period-
icity is practically the same as one for the 222Rn concentration time series indicating
that both time series has similar dynamics in their annual courses.

A complexity analysis of 222Rn concentration and wind speed inside the cave.
Analysis of 222Rn concentration time series in a cave is an important step in estab-
lishing interrelationship between radon and cave environment. As it is discussed
above, these analyses are given either phenomenologically or in the form following
relatively simple statistical methods, which just in some segments give us insight of
this interaction. However, to get more insight we should apply complexity analysis
of time series. Thus, for example, Mihailovi�c et al. (2014) analyzed the dependence
of measured 222Rn concentration time series on indoor air temperature and humidity
using the product of their KLL complexities (see section 15.2). Here, we consider
relationship between 222Rn concentration and wind speed inside the cave, using
measures suggested in Section 15.3.

To take into account the KLL variations during the year, we have divided the
original time series of the measured 222Rn concentration into 120 three-day time se-
ries having the same size, i.e., 432 samples. To compute complexity of each of three-
day time series the LZ algorithm has been applied. Identical procedure was used on
wind speed inside the cave time series. Then we have computed distributions of fre-
quencies of complexities of the time series for 222Rn concentration and wind speed
inside the cave, for the 0.02 interval. Those distributions are given in Fig. 16.5.

From the distribution of frequencies in Fig. 16.5, it is seen that frequencies of
222Rn concentration as well as the wind speed inside the cave are mostly grouped
around the highest value of the KLL. It means that changes of both quantities are
random and the 222Rn concentration (Fig. 16.5a) and the wind speed inside the
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FIGURE 16.5

Distribution of frequencies of the Kolmogorov complexity (KLL) calculated by the LZA

algorithm for (a) 222Rn concentration and (b) wind speed inside the cave time series.

Reprinted with permission from Mihailovi�c, D.T., Krmar, M., Mimic, G., Nikolic-Djoric, E., Smetanova, I., Holy,

K., Zelinka, J., Omelka, J., 2015. A complexity analysis of 222Rn concentration variations: a case study for

Domica cave, Slovakia for the period June 2010eJune 2011. Radiat. Phys. Chem. 106, 88e94.
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cave time series (Fig. 16.5b) both have high values of complexity (greater than 0.7).
The mean complexity of 120 three-day series of 222Rn concentration and the wind
speed inside the cave is 1.06 � 0.04 and 0.99 � 0.08, respectively. 222Rn concentra-
tion complexities are distributed in a narrower region than complexities of the wind
speed inside the cave. It can be also seen that the number of cases when time series
of the wind speed inside the cave are less complex, in the sense of the KL
complexity, is greater than for 222Rn concentration time series. Finally, 30 time se-
ries of wind speed inside the cave have lower complexity than 0.95 (25% of number
of all analyzed time series), while just 3% of 222Rn concentration time series have
complexity less than 0.95.

Now, we analyze 120 three-day time series for both 222Rn concentration and wind
speed inside the cave, using the overall Kolmogorov complexity (KLO) given by the
expression (15.10). Note that using the KLL as a measure, we are not able to distin-
guish between time series with different amplitude variations and similar random
components while with the KLO complexity we can make that distinction, particu-
larly, when they have close values of KLL and KLM, i.e., the Kolmogorov complexity
spectrum highest value (see Section 15.2). Computed distributions of frequencies of
the KLO complexities of the time series for 222Rn concentration and wind speed in-
side the cave, for the 0.02 interval are given in Fig. 16.6. From distribution of fre-
quencies of the KLO complexity in Fig. 16.6a, it is seen that frequencies of 222Rn
concentration are concentrated in relatively narrow region of the KLO complexities,
where the highest obtained value of complexity is just 60% higher than the lowest
computed one. The maximal computed overall complexity of the wind speed inside
the cave is three times higher than the smallest one (Fig. 16.6b). 222Rn overall
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Distribution of frequencies of the overall Kolmogorov complexity (KLO) computed by the LZA

algorithm for (a) 222Rn concentration and (b) wind speed inside the cave time series.
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complexities are grouped around highest values while complexities of wind speed in-
side the cave have opposite tendency, i.e., they are mostly grouped in the region of low
values.

Since the KLO depends on (1) the shape of the Kolmogorov complexity spec-
trum, (2) the Kolmogorov complexity spectrum highest value (KLM), and (3) the
width of the domain of amplitudes of measured quantity in a time series, it is inter-
esting to make a comparison between Figs. 16.5 and 16.6. Before that let us note the
following fact: if two time series have very close KLM values and similar shape of
the Kolmogorov complexity spectrum then the time series with measured values,
which are distributed in a broader domain of amplitudes, will have higher value
of the KLO. Otherwise, a time series where measured values vary in relatively nar-
row interval of amplitudes will have lower value of the KLO. Let us compare results
presented in Figs. 16.5a and 16.6a. Apparently, 222Rn three-day time series have
high randomness and thus complexity, because all computed values of Kolmogorov
complexities have value higher than 0.95 (Fig. 16.5a). Fig. 16.6a shows that the
computed KLO values are grouped around high ones. Broadness of distribution
depicted in Fig. 16.6a can be considered as a measure of the amplitude growth of
the measured 222Rn concentrations in analyzed time series having very similar
and very high complexity, as it can be also seen in Fig. 16.5a. Time series of the
wind speed inside the cave have high complexity, although some lower values of
KL are observed as it is seen in Fig. 16.5b where even 25% of time series have
complexity lower than 0.95. However, the KLO of time series of the wind speed in-
side the cave is distributed in relatively broad region. It is seen from Fig. 16.6b that
KLO values are grouped in the region of low values (around 0.5) with distribution
showing a decreasing trend. The lowest number of time series has the KLO values
around 0.9 and higher. Considering the wind speed inside the cave time series have
relatively high values of KLL (Fig. 16.6b), distribution of the KLO depicted in
Fig. 16.6b indicates that low values of amplitude in the wind speed inside the
cave time series dominate over time series where measured values are spread in
the broad region of amplitudes.

To check annual variation of overall complexity of both time series, we have
divided the original time series into 12 monthly groups, thus one-month time series
had 4320 samples for both quantities. The annual distributions of their KLO com-
plexities are given in Fig. 16.7. Fig. 16.7a indicates that the one month KLO overall
complexity of 222Rn concentration is not a constant quantity. The highest complexity
is observed in the period from middle of September until middle of October, while
lowest complexity is observed in period FebruaryeMarch. The complexity of the
wind speed is higher in the period DecembereMarch. Data presented in
Fig. 16.7b indicate that complexity of 222Rn concentrations could indicate a weak
inverse dependence of wind speed (r ¼ �0.4018). However, in complexities ob-
tained using three-day intervals, no dependence between complexities of 222Rn con-
centrations and wind speed data was observed.
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16.2 USE OF COMPLEXITY ANALYSIS IN ANALYZING THE
DEPENDENCE OF 222Rn CONCENTRATION TIME SERIES
ON INDOOR AIR TEMPERATURE AND HUMIDITY

Radon (222Rn) is the decay product of radium (226Ra), and both elements are mem-
bers of the uranium series (228U). After generation from the radioactive decay of
(226Ra), mostly in the earth crust, can be transported to the large distances and accu-
mulated indoor due to the fact that radon is a noble gas having no affinity to chemical
reactions and relative long half-life of 3.82 days. It is believed that, after smoking,
radon is the next most significant source of the lung cancer. The soil and the building
materials are the most important source of indoor radon in dwellings. Indoor radon
concentrations exceeding the level prescribed can cause possible health hazard of
dwelling people (Jelle et al., 2010). Besides in the dwelling control, possible reduc-
tion of 226Ra presence is crucial in the area of low-background laboratories. Namely,
radioactive gas radon, with its progenies, which emanates from the soil and con-
struction materials, contributes significantly to the background radiation. In a num-
ber of experiments where some measurable effects of low-probability process were
followed, reduction of background radiation is often the most significant way to
improve sensitivity (Antanasijevi�c et al., 1999; Dragi�c et al., 2011; Udovi�ci�c
et al., 2009; Garcia et al., 1998; Jovan�cevi�c and Krmar, 2011). Measured value of
222Rn concentration in some room is a final outcome of plenty of processes including
its generation, transport, accumulation, and decay. Therefore, sometimes it is not
possible to follow influence of different parameters, through the aforementioned
processes, on the final result of radon measurement. Recently, problem is considered
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Annual distribution of the overall complexity (KLO) of (a) 222Rn concentration and (b) wind

speed inside the cave time series.
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through: (1) studies of the dynamic of radon changes in a room with the idea to find
correlation with measurable parameters, mostly indoor environmental ones and (2)
development of models for predicting the radon concentration and dynamics in
dwellings. Let us note that those designed models, even in the cases when affecting
processes are treated on a simplified manner, operate with large number of quantities
(Collignan et al., 2012; Girault and Perrier, 2012). Analysis of 222Rn concentration
time series is an important step in deriving conclusions about interaction between
radon and environment. These analyses are mostly based on relatively simple statis-
tical methods, which in some segments give a clear picture about this interaction.
However, if we want to get more insight we have to apply the comprehensive math-
ematical procedures in analysis of those time series. Thus, illustrative examples for
that kind of approach are papers by Negarestani et al. (2003) and Seftelis et al.
(2008). Negarestani et al. (2003) have proposed a new method based on adaptive
linear neuron to estimate the radon concentration in soil associated with the environ-
mental parameters. Seftelis et al. (2008) have developed a mathematical function to
describe the diurnal variation of radon progeny. Our intention is to offer a
complexity measure-based method for establishing the dependence of 222Rn concen-
tration time series on indoor environmental parameters. A possible field of applica-
tion of this method is not restricted only on either indoor or outdoor radon time
series. Moreover, this mathematical procedure is applicable in analysis of time
series, obtained by the measurements, for which we should establish whether influ-
ence of some parameter makes the distribution of measured quantity less or more
stochastic. In this section we consider the dependence of 222Rn concentration on in-
door parameters, in particular on air temperature and humidity, through dynamics of
a complex system, which can be analyzed from the signal sent in the form of time
series of measured values. In that sense we apply a complexity measure-based
method that help us to get an insight into the complexity of the 222Rn concentration
time series in dependence on indoor air temperature and humidity.

In this chapter we apply the KLL complexity and KLM complexity (see Section
15.2) for studying the dependence of 222Rn concentration time series on indoor
parameters (in particular, air temperature and humidity). For that purpose we use in-
door 222Rn concentration time series measured during 2009 in the Low-Background
Laboratory for Nuclear Physics at the Institute of Physics in Belgrade. Comparing
complexities of 222Rn concentration (Rn), indoor air temperature (T) and humidity
(H) time series we establish the dependence of Rn on T and H on indoor air temper-
ature and humidity (Mihailovi�c et al., 2014).

Kolmogorov complexity of the product of two time series. As mentioned above,
the complexity of a time series can be lost due to reduction in functioning the system
or process represented by that time series. It means that there exists a source, which
causes that time series becomes more uniform than random. For example, let us sup-
pose that one physical process (in our case that is detection of indoor 222Rn concen-
tration) is under influence of some parameters (in our case they are indoor air
temperature and humidity). We can establish which of these parameters contributes
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to reducing the complexity of detection indoor 222Rn concentration, by computing
the complexity of the product of two or more time series obtained by measurements.
Let us suppose that we have two independent and positive definite time series {xi}
and {yi}, i ¼ 1, 2, 3, 4, ., N, which are generated either computationally or by a
measuring procedure. We define product {zi} of two {xi} and {yi} as {zi} ¼
{xiyi} ¼ (x1y1, x2y2, x3y3...., xNyN), where amplitudes in each time series are normal-
ized on its highest value and thus taking the values in the interval (0, 1). Further, with
KC(xi), K

C( yi), and KC(zi) we define the KLL complexities for corresponding time

series {xi}, {yi}, and {zi}, respectively, while KC
mðxiÞ, KC

mðyiÞ, and KC
mðziÞ denote

their KLM (see section 15.2). It is of interest to explore the KLL and KLM complex-
ities of the product of time series in dependence on the complexity of single ones.

Data and computations. Data we needed for the nonlinear dynamics in this chap-
ter we have obtained from the abovementioned underground low-level laboratory.
The special designed system for radon reduction, used in laboratory consists of three
stages: (1) The active area of the laboratory is completely lined up with aluminum
foil of 1 mm thickness, which is hermetically sealed with a silicon sealant to mini-
mize the diffusion of radon from surrounding soil and concrete used for construc-
tion, (2) the laboratory is continuously ventilated with fresh air, filtered through
one rough filter for dust elimination followed by the battery of coarse and fine char-
coal active filters, and (3) the parameters of the ventilation system are adjusted to
give an overpressure of about 2 mbar over the atmospheric pressure. The radon
monitor is used to investigate the temporal variations in the radon concentrations.
For this type of short-term measurements, the SN1029 radon monitor was used
(manufactured by the Sun Nuclear Corporation). The radon monitor device records
radon and atmospheric parameter readings every 2 h in the underground laboratory.
The data are stored in the internal memory of the device and then transferred to the
personal computer. The data obtained from the radon monitor for the temporal var-
iations of the radon concentrations over a long period of time enable the study of the
short-term periodical variations (Udovi�ci�c et al., 2011). The distribution of fre-
quencies of measured 222Rn concentration values is depicted in Fig. 16.8. It can
be seen that the peak of distribution is about 10 Bq m�3. The presence of indoor
radon depends on a large number of factors and Maxwell-like distribution of fre-
quencies of measured values indicates probabilistic character of radon appearance
in some room. Some authors presented results of similar measurements as log-
normal distribution (Bossew, 2010).

For complexity analysis, we use three time series of indoor: (1) 222Rn concentra-
tion, (2) air temperature, and (3) air humidity (Fig. 16.9). Using the computation
procedure outlined in Sections 15.2 and 15.3, we have computed (1) complexity
spectra of 222Rn concentration (Rn); product of

222Rn concentration and indoor air
temperature time series (Rn � T); indoor air humidity (Rn � H), and product of
222Rn concentration, indoor air temperature, and air humidity time series
(Rn � T � H) and (2) the KLL and KLM for these series. Before computation pro-
cedure the time series were normalized on their highest values. The length of all time

186 CHAPTER 16 Ionizing and nonIonizing radiation time series



series used was N ¼ 4173. The computations are carried out for the period 1
Januarye31 December 2009 using the LZA algorithm.

The concentration of 222Rn in some room is a result of dynamical steady-state of
a number of parameters. It can be expected that stronger than usual influence of
some of them or absence of another one might result either in higher or lower values
of 222Rn concentration in the monitored area. Thus, 222Rn concentration strongly de-
pends on parameters of underground environment (Viñas et al., 2007). According to
Udovi�ci�c et al. (2011) in the long term there exists a clear influence of indoor air
temperature and relative humidity on 222Rn concentration. Further, in the same pa-
per it is underlined that concerning the radon daughters, the relative humidity in-
doors contributes to the aerosol density and keeps the radon daughters in the
indoor air. Although in the last decade a vast number of experimental evidence
has been offered about this issue (Choubey et al., 2011; Barbosa et al., 2010; Kamra
et al., 2013), we still have no enough knowledge about insights of the influence of
the indoor air parameters on the 222Rn concentration variability. One of the reasons
for that is nonlinearity of these dependences, which cannot be elaborated by the
traditional mathematical methods (Seftelis et al., 2008). Thus, it seems that the
complexity analysis offers more quantitative measures in explanation of this
phenomenon.
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Distribution of frequencies of measured 222Rn concentrations.

Reprinted with permission from Mihailovi�c, D.T., Udovi�ci�c, V., Krmar, M., Arseni�c, I., 2014. A complexity

measure based method for studying the dependence of 222Rn concentration time series on indoor air temper-

ature and humidity. Appl. Radiat. Isot. 84, 27e32.
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The results of complexity analysis are given in Fig. 16.10. This figure depicts the
KLL spectra of the following time series: (1) 222Rn concentration (Rn), (2) product
of 222Rn concentration and indoor air temperature (Rn � T), (3) indoor air humidity
(Rn � H), and (4) product of 222Rn concentration, indoor air temperature, and indoor
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Time series for (a) 222Rn concentration, (b) indoor air temperature, and (c) indoor air

humidity, created from data obtained from the Low-Background Laboratory for Nuclear

Physics at the Institute of Physics in Belgrade (Serbia) for the period 1 Januarye31

December 2009.
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air humidity (Rn � T � H ), where all time series are normalized on their highest
value. The peaks in spectra show the KLM. This parameter could be considered
as a better indicator of the complexity comparing to the KL, which is not always
a suitable measure of the complexity. In particular, this is enhanced in the case of
asymmetrical distributions (Nikoli�c-Ðori�c, personal communication). Looking at
panels it is seen that for the Rn � T sequence its KLM (Fig. 16.10b) is just slightly
different comparing to the Rn one (Fig. 16.10a). Practically, there are no differences
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The Kolmogorov complexity (KLL) sequences of the following time series: (a) 222Rn

concentration (Rn), (b) product of
222Rn concentration and indoor air temperature (Rn � T),

(c) indoor air humidity (Rn � H), and (d) product of 222Rn concentration, indoor air

temperature, and indoor air humidity (Rn � T � H ). All time series are normalized on their

highest value.
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in their maximal Kolmogorov complexities. However, in the Rn � H spectrum
(Fig. 16.10c) and the Rn � T � H one (Fig. 16.10d), the KLM values are lower
than for the Rn spectrum. Note that a process that is least complex has a Kolmogorov
complexity value near to zero, whereas a process with highest complexity will have
KLL close to one. This measure can be also considered as a measure of randomness.
Thus, a value of the KLL near zero is associated with a simple deterministic process
like a periodic motion, whereas a value close to one is associated with a stochastic
process (Ferreira et al., 2003). Accordingly the KLM values, which are large for the
Rn � T spectrum (0.937), points out the presence of stochastic component in influ-
ence of indoor air temperature on 222Rn concentration. The other two computed
KLM complexities [Rn � H (0.865) and Rn � T � H (0.850) spectra] indicate that
there exists a source of influence, which reduces the complexity of 222Rn concentra-
tion. To our opinion it could be attributed to (1) the fact that relative humidity
indoors contributes to the aerosol density and keeps the radon daughters in the
indoor air and (2) nonlinearities in relation between 222Rn concentration and indoor
air humidity (Nikoli�c-Ðori�c, personal communication).

Finally, we have plotted the diagram KLL complexity versus Sample Entropy
(SempEn) to see behavior of time series. The KLL measure has been often used
for evaluation of the randomness present in time series, while entropy is also used
to characterize the complexity of a time series. From Fig. 16.11, a strong correlation
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Kolmogorov complexity (KLL) versus sample entropy (SempEn) for time series used in

Fig. 16.9.
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between these two measures indicating degree of influence of indoor air temperature
and relative humidity on 222Rn concentration is clearly seen.

16.3 USE OF THE KOLMOGOROV COMPLEXITY AND ITS
SPECTRUM IN ANALYSIS OF THE UV-B RADIATION
TIME SERIES

Complexity of the UV-B radiation time series. Influenced by climate, vegetation, ge-
ography, and human factors, many meteorological elements including the UV-B
radiation in a specific geographic region may range from being relatively simple
to complex, which exhibits significant variability in both time and space. Recently,
the human factor becomes the most important issue regarding the complexity of the
meteorological elements. Namely, actions in the form of different human activities
in environment (air, soil, and water) can be either constructive or destructive. They
(1) can have positive or negative impact on the human economy and (2) can leave
landscape features that are present for a long time. Thus, it is of interest to determine
the nature of complexity in the UV-B radiation processes. This approach requires the
use of various measures of the complexity of the UV-B radiation, which may provide
us: (1) more comprehensive investigation of possible change in UV-B radiation due
to human activities and response to climate change and (2) improving the applica-
tion of the stochastic process concept in radiation its modelling, forecasting,
measuring, and other ancillary purposes (Adami, 2002; Boschetti, 2008; Junker-
mann, 2005; Malinovi�c et al., 2006; Bhattarai et al., 2007; Paulescu et al., 2010;
Malinovi�c-Mili�cevi�c and Mihailovi�c, 2011; Malinovi�c-Mili�cevi�c et al., 2013). As
we mentioned in Section 15.2, the KLL complexity is a measure of the disorder
or irregularity in a sequence, while the traditional entropies like approximate en-
tropy and sample entropy (SampEn) (see Section 9.1) quantify only the regularity
of time series. Note that these measures have some disadvantages. Therefore, it is
of interest to see how these measures can be employed in complexity analysis of
the UV-B radiation dose time series for different purposes. Thus, here we investigate
the complexity of the UV-B radiation dose time series for places spatially distributed
over some area, using the KL and SampEn measures. To reinforce this analysis, we
also use the Kolmogorov complexity spectrum and the KLM, i.e. the Kolmogorov
spectrum highest value.

For our analysis we use the Vojvodina region (Serbia). UV-B radiation records
in the Vojvodina region (Serbia) are of relatively short size. To create the UV ra-
diation time series for seven representative places we include: (1) values
measured in Novi Sad using the broadband Yankee UVB-1 biometer, (2) values
computed by a parametric numerical model, and (3) values computed by an
empirical formula derived on the basis of the linear correlation between the daily
sum of the UV-B radiation and the daily sum of the global solar radiation. In the
further development we analyze the complexity of the UV-B radiation dose time
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series from the seven representative places in the Vojvodina region (Serbia) for
the period 1990e2007, using the KLL, KLM, and SempEn measures. We also
investigate the effect of different human activities, events, and climate change
on the UV-B radiation dose complexity by dividing the period 1990e2007 into
two equal subintervals: (1) 1990e98 and (2) 1999e2007. Namely, according to
Krmar et al. (2012) there was an evident increase in human activity in the Vojvo-
dina region after 1998 (postecivil war period, NATO military activities in air,
intensification of economic activity, more intensive traffic, traditional home
heating). It has caused high air pollution and further changes in the UV-B radiation
dose complexity in the Vojvodina region. We compute the KLL and SempEn values
for the various time series in each of the above subintervals to see whether, during
the period 1999e2007, there is a decrease in complexity in most of the places in
comparison to the period 1990e98. If that is true then the complexity loss may
be attributed to (1) human intervention in the post civil war period that caused
larger air pollution and (2) increased cloudiness due to climate changes.

Short description of the UV radiation parametric numerical model. We have
partly generated time series of the UV-B radiation by a parametric numerical model
NEOPLANTA (Malinovi�c et al., 2006). This model computes the solar direct and
diffuse UV irradiances on a horizontal surface under cloud-free conditions for the
wavelength range 280e400 nm with 1-nm resolution as well as the UV index
(UVI). Model simulates the effects of the absorption of the UV radiation by ozone
(O3), sulfur dioxide (SO2), and nitrogen dioxide (NO2) and absorption and scattering
by aerosol and air molecules in the atmosphere. Atmosphere in model is divided in
40 parallel layers with constant values of meteorological parameters. Its vertical res-
olution of the model is 1 km for altitudes less than 25 km and above this height 5 km
layers were used. The required input parameters are the local geographic coordinates
and time or solar zenith angle, altitude, spectral albedo, and the total amount of
gases. The NEOPLANTA model includes its own vertical gas profiles (Ruggaber
et al., 1994) and extinction cross-sections (Burrows et al., 1999; Bogumil et al.,
2000), extraterrestrial solar irradiance shifted to terrestrial wavelength (Koepke
et al., 1998), aerosol optical properties for 10 different aerosol types (Hess et al.,
1998), and spectral albedo for nine different ground surface types (Ruggaber
et al., 1994). The model uses standard atmosphere meteorological profiles although
it allows the use of real time meteorological data assimilated from the high-level res-
olution atmospheric mesoscale models. Output data are spectral direct, diffuse, and
global irradiance divided into the UV-A (320e400 nm) and UV-B (280e320 nm)
part of the spectrum, erythemally weighted UV irradiance computed using the eryth-
emal action spectrum by McKinley and Diffey (1987), the UVI, spectral optical
depth, and spectral transmittance for each atmospheric component. All outputs
are computed at the lower boundary of each layer.

The UV irradiance is computed as the sum of the direct and the diffuse compo-
nents. Computation of the direct part of radiation is carried out by the Beere
Lambert law. The direct irradiance Idir(l) at wavelength l received at ground level
by unit area is given by
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IdirðlÞ ¼ I0ðlÞTðlÞ (16.1)

where I0(l) is the extraterrestrial irradiance corrected for the actual SuneEarth
distance and T(l) is the total transmittance that includes O3, SO2, NO2, aerosol,
and air transmittances. Each of the individual transmittances is computed using
optical depth sðlÞ that is the product of extinction coefficient b(l) and ray path
through the atmosphere s

TðlÞ ¼ expð�sðlÞÞ ¼ expð�bðlÞsÞ: (16.2)

Extinction coefficient of the UV radiation b is computed by the product of the
cross-sectional area s and layer particle concentration N

bðlÞ ¼ sðlÞN: (16.3)

The starting point for computation of diffuse part of radiation is the set of equa-
tions from Bird and Riordan spectral model (Bird and Riordan, 1986), which repre-
sents equations from previous parametric models (Leckner, 1978; Justus and Paris,
1985), improved after comparisons with rigorous radiative transfer model and with
measured spectra. The diffuse irradiance Idif (l) is divided into three components: (1)
the Rayleigh scattering component Iray (l), (2) the aerosol scattering component
Iaer(l), and (3) the component that accounts for multiple reflection of irradiance
between the ground and the air Irf(l)

Idif ðlÞ ¼ IrayðlÞ þ IaerðlÞ þ Irf ðlÞ: (16.4)

The Rayleigh scattered component Iray(l) of diffuse part of UV irradiance is
computed as

IrayðlÞ ¼ I0ðlÞTO3
ðlÞTSO2

ðlÞTNO2
ðlÞTaaðlÞ

�
1� T0:95

ray ðlÞ
�.

2: (16.5)

TO3
, TSO2

, TNO2
, Taer, and Tray are O3, SO2, NO2, aerosol, and air transmittances

that have been defined previously. Transmittance of the aerosol absorption process,
Taa(l), is defined in Justus and Paris (1985) as

TaaðlÞ ¼ exp½ � ð1� uðlÞÞsaðlÞ�; (16.6)

where u(l) is the single-scattering albedo and sa(l) is aerosol optical thickness.
The aerosol-scattered irradiance is computed as

IaerðlÞ ¼ I0ðlÞTO3
ðlÞTSO2

ðlÞTNO2
ðlÞTaaðlÞT1:5

rayðlÞ½1� TasðlÞ�DsðlÞ; (16.7)

where Tas(l) is the transmittance for aerosol scattering, such that

TasðlÞ ¼ exp½ � uðlÞsaðlÞ� (16.8)

and Ds(l) is the fraction of the scattered flux that is transmitted downward. The
function Ds(l) is dependent on the aerosol asymmetry factor d and solar zenith angle
q, according to (Bird and Riordan, 1986) and Justus and Paris (1985) as

Ds ¼ FsCs; (16.9)
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Fs ¼ 1� 0:5exp½ðB1 þ B2cosqÞcosq�; (16.10)

B1 ¼ B3½1:459þ B3ð0:1595þ B3 � 0:4129Þ�; (16.11)

B2 ¼ B3½0:0783þ B3ð�0:3824� B3 � 0:5874Þ�; (16.12)

B3 ¼ lnð1� dÞ (16.13)

and

CsðlÞ ¼ ðlþ 0:55Þ1:8: (16.14)

The asymmetry factor is a key optical characteristic of aerosols and it is used
from OPAC database (Hess et al., 1998) for each wavelength and humidity.

Backscattered component of multiple reflections between air and ground is
computed following Bird and Riordan (1986) as

Irf ðlÞ ¼ ½IdirðlÞ þ IrayðlÞ þ IaerðlÞ�rsðlÞrgðlÞCsðlÞ
1� rsðlÞrgðlÞ ; (16.15)

where rg(l) is ground albedo and rs(l) is sky reflectivity. Ground albedo is used from
Ruggaber et al. (1994) while sky reflectivity is computed by

rsðlÞ ¼ T 0
O3
ðlÞT 0

aaðlÞ
h
0:5

�
1� T 0

rayðlÞ
�
þ �

1� F0
sðlÞ

�
T 0
rayðlÞ

�
1� T 0

asðlÞ
�i
; (16.16)

where the primed transmittance terms are the regular atmospheric transmittance
evaluated at optical mass of 1.8. More details about this model are elaborated in
Malinovi�c et al. (2006).

Time series and computations. The Vojvodina region (Serbia) is situated in the
northern part of Serbia and the southern part of the Pannonian lowland (18�510e
21�330E, 44�370e46�110N and 75e641 m a.s.l.) (Fig. 16.12a). For the complexity
analysis of the UV-B radiation dose time series in this section we select the
following places: Sombor (SO), Subotica (SU), Novi Sad (NS), Kikinda (KI),
Zrenjanin (ZR), Banatski Karlovac (BK), and Sremska Mitrovica (SM) as shown
in Fig. 16.12b. The UV-B radiation has a pronounced impact on the human health
and some plants in agricultural activities in this region that is the most important
food production area in Serbia with surface area of 21,500 km2 and a population
of about 2 million people. Monitoring details of the UV-B radiation in the Vojvodina
region are given in Malinovi�c-Mili�cevi�c and Mihailovi�c (2011).

We have formed the corresponding time series combining three sources because
of the lack of measurement places for the UV radiation in the Vojvodina region. We
have included (1) values measured in Novi Sad (45.33�N, 19.85�E, 84 m a.s.l.) by
the broadband Yankee UVB-1 biometer, (2) values computed by a parametric
numerical model, and (3) values computed by an empirical formula based on linear
correlation between the daily dose of the UV-B (UVBd) and the daily sum of the
global solar radiation (Gd) in MJ m�2 (Malinovi�c-Milicevi�c et al., 2013) The empir-
ical formula, which is derived on the basis of relationship between daily values of
UVBd (measured UV-B data and corresponding calibration factors) and Gd
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(computed via an empirical formulae) for the period April 2003eDecember 2009 in
Novi Sad.

Using the computation procedure described in the Sections 15.2, 15.3, and
9.1, we have computed the KLL, KLM, and SampEn values, respectively, for
the seven UV-B radiation dose time series (Fig. 16.13). The computations are
carried out for the entire time interval 1990e2007 and for two subintervals
covering this period: (a) 1990e98 and (b) 1999e2007. All these complexity mea-
sures are sensitive to the length of time series, N. For the SampEn, there exists a
recommendation for use N that is larger than 200 (Yentes et al., 2012). For the
time interval 1990e2007 and two subintervals (1990e98 and 1999e2007), the
length of time series was N ¼ 6574, 3287, and 3287, respectively. The SampEn
is sensitive on input parameters: embedding dimension (m), tolerance (r), and
time delay (s). In this section, it was computed for UV-B radiation dose time series
with the following values of parameters: m ¼ 2, r ¼ 0.2, and s ¼ 1.

The results of calculations are given in Table 16.1. It is seen from this table that
for five places (Sombor, Subotica, Novi Sad, Kikinda, and Zrenjanin) their KL
values are close to each other (0.492, 0.498, 0.492, 0.496, and 0.498). However,
in contrast to these places for Sremska Mitrovica and Banatski Karlovac have higher
values of the KL (0.523 and 0.515). Since Sremska Mitrovica is close to Fru�ska Gora
Mountain while Banatski Karlovac is located in a hilly region (Fig. 16.12), the in-
crease of the complexity in those places can be attributed to enhanced UV-B radia-
tion dose caused by the multiple scattering effects (Kylling et al., 2000; Pfeifer et al.,
2006). Following this reason it could be expected that Novi Sad, which is also in the

(a) (b)

<   500 m

>  1.000 m
500 - 1.000m

FIGURE 16.12

Location of the Vojvodina region (Serbia) in Europe (a) and places used in study (b); the

places are Sombor (SO), Subotica (SU), Novi Sad (NS), Kikinda (KI), Zrenjanin (ZR),

Banatski Karlovac (BK), and Sremska Mitrovica (SM).

Reprinted with permission from Mihailovi�c, D.T., Malinovi�c-Mili�cevi�c, S., Arseni�c, I., Dre�skovi�c, N., Bukosa, B.,

2013. Kolmogorov complexity spectrum for use in analysis of UV-B radiation time series. Mod. Phys. Lett. B 27,

1350194.
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FIGURE 16.13

The UV-B radiation dose time series (1990e2007, 1990e98, 1999e2007 year) for three

places in the Vojvodina region (Serbia) analyzed for this section.

Reprinted with permission from Mihailovi�c, D.T., Malinovi�c-Mili�cevi�c, S., Arseni�c, I., Dre�skovi�c, N., Bukosa, B.,

2013. Kolmogorov complexity spectrum for use in analysis of UV-B radiation time series. Mod. Phys. Lett. B 27,

1350194.
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vicinity of the Fru�ska Gora mountain, has the higher level of the complexity. How-
ever, this place is highly urbanized with more emission sources in comparison with
Sremska Mitrovica; thus the urban air pollution reduces the amount of UV-B radi-
ation reaching the ground. Namely, according to Bais et al. (2006) the surface
UV-B radiation at locations near the emission sources of O3, SO2, or NO2 in the
lower troposphere is attenuated by up to 20%. In result, the complexity of the
UV-B radiation dose decreases. Note, if a process is less complex then it has a
KLL value close to zero, whereas a process with highest complexity will have the
KLL close to one. If we look at the KLM values we reach the same conclusions.
To our knowledge, the KLL and KLM measures has not been used for analyzing
the complexity of the UV-B radiation dose time series.

In our analysis we have used another complexity measure, i.e., the SampEn. Un-
like approximate entropy, SampEn is not often used in the analysis of the complexity
of geophysical time series (He et al., 2012). Such analysis was done by Shuangcheng
et al. (2006) in measurement of climate complexity using daily temperature time se-
ries. The computed values of the SampEn are also listed in Table 16.1 Those values,
which are close to each other, indicate a similar behavior of UV-B radiation dose
time series for the entire time interval 1990e2007 and all places, i.e., their lower
irregularity.

We have also divided the period 1990e2007 into two subintervals: (a) 1990e98
and (b) 1999e2007, and computed the KLL and SampEn values for the various time
series in each of these subintervals. These intervals were chosen because we ex-
pected a change in the complexity of the UV-B radiation dose after 1999 in the Voj-
vodina region because of (1) a large increase of air and soil pollution (Krmar et al.,
2012) and (2) an increase of cloudiness due to climate change (Rajkovi�c et al., 2012)
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FIGURE 16.13 cont’d.
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and corresponding influence on UV radiation dose (Calbo et al., 2005; Rieder et al.,
2010). Let us note that the KLL complexity of different kind of biomedical, hydro-
logical, and physical time series may be lost due to different reasons that come from
reducing the functionality of some system segments represented by those series. For
example, Gómez and Hornero (2010) using entropy and complexity analyses of Alz-
heimer’s disease (AD) have shown that the complexity reduction seems to be asso-
ciated with the deficiencies in information processing suffered by AD patients. And
another example from the river flow time series analysis by Orr and Carling (2006)
point out that the complexity loss may be attributed to the extent of human interven-
tion involving land and crop use, urbanization, commercial navigation, and other

Table 16.1 KolmogorovComplexity (KLL), Kolmogorov Complexity Spectrum
Highest Value (KLM) and Sample Entropy (SampEn) Values for the UV-B
Radiation Dose Time Series of Seven Places in the Vojvodina Region (Serbia) for
the Period 1990e2007, and the Subintervals: (a) 1990e98 and (b)
1999e2007. In Computing the Entropy We Have Used the Following Sets of
Parameters (m ¼ 2, r ¼ 0.2, and s ¼ 1)

Place Measure 1990e2007 1990e98 1999e2007

SO (45�470N,
19�050E)

KL 0.492 0.519 0.505

KLM 0.511 0.526 0.522

SampEn 1.206 1.203 1.176

SU (46�060N,
19�460E)

KL 0.498 0.498 0.489

KLM 0.512 0.522 0.522

SampEn 1.245 1.217 1.202

NS (45�150N,
19�510E)

KL 0.492 0.530 0.498

KLM 0.513 0.547 0.512

SampEn 1.223 1.262 1.174

KI (45�510N,
20�280E)

KL 0.496 0.526 0.501

KLM 0.509 0.533 0.522

SampEn 1.238 1.216 1.146

ZR (45�240N,
20�210E)

KL 0.498 0.544 0.487

KLM 0.527 0.565 0.526

SampEn 1.238 1.252 1.233

SM (44�580N,
19�380E)

KL 0.523 0.551 0.508

KLM 0.536 0.572 0.533

SampEn 1.252 1.234 1.178

BK (45�030N,
21�020E)

KL 0.515 0.530 0.530

KLM 0.532 0.558 0.530

SampEn 1.191 1.246 1.243

Reprinted with permission from Mihailovi�c, D.T., Malinovi�c-Mili�cevi�c, S., Arseni�c, I., Dre�skovi�c, N.,
Bukosa, B., 2013. Kolmogorov complexity spectrum for use in analysis of UV-B radiation time series.
Mod. Phys. Lett. B 27, 1350194.
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activity. Thus, decrease of the KLL complexity of some process represented by a
time series is an indicator of a simplification of that process caused by some crucial
agent.

It is found that during 1999e2007, there was a decrease in complexity in all
places (Sombord0.505; Suboticad0.489; Novi Sadd0.498; Kikindad0.501;
Zrenjanind0.487; Sremska Mitrovicad0.508 and Banatski Karlovacd0.530) in
comparison to the period 1990e1998 (Sombord0.519; Suboticad0.498; Novi
Sadd0.530; Kikindad0.526; Zrenjanind0.544; Sremska Mitrovicad0.551, and
Banatski Karlovacd0.539) as it presented in Table 16.1. These differences are
seen in Fig. 16.14. It shows relative change of the KLL (Fig. 16.14a) and KLM
(Fig. 16.14b) from the period 1990e98 comparing to the period 1999e2007 for
the seven places. From Fig. 16.14 it is seen that the central and south western parts
of the Vojvodina region have the largest decline of the KLL (Fig. 16.14a) and KLM
(Fig. 16.14b) complexities. In other parts, that decline is much lower. Among
places with the large decline of both complexities, Zrenjanin stands out with the
largest one. It is a result of a very large concentration of SO2 and particles in
this place that come from the mentioned human activities. Namely, SO2 absorbs
radiation in the UV-B part of the spectrum, remarkably affecting the reduction
of the UV-B radiation through sulfate aerosols. It is estimated that in the industri-
alized countries on the northern hemisphere sulfate aerosols can reduce the UV-B
radiation for 5e18% (Liu et al., 1991). Fig. 16.15 depicts the KLL complexity
spectrum of the normalized UV-B radiation dose for three places (Zrenjanin,
Novi Sad, and Sremska Mitrovica). From this it is seen that, for all places, the high-
est differences in spectra of complexity (period 1990e98 versus period 1999e
2007) are in the interval (0.3, 0.5) of the normalized UV-B radiation doses.

FIGURE 16.14

Relative change of the KLL (a) and KLM (b) from the period 1990e98 comparing to the

period 1999e2007 for places in the Vojvodina region (Serbia). Abbreviations are the same as

in Fig. 16.12.

Reprinted with permission from Mihailovi�c, D.T., Malinovi�c-Mili�cevi�c, S., Arseni�c, I., Dre�skovi�c, N., Bukosa, B.,

2013. Kolmogorov complexity spectrum for use in analysis of UV-B radiation time series. Mod. Phys. Lett. B 27,

1350194.
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FIGURE 16.15

The Kolmogorov complexity spectrum of the UV-B radiation dose time series for three places

in the Vojvodina region (Serbia). On x axis are depicted the values of the time series

normalized as xi ¼ (Xi � Xmin)/(Xmax � Xmin), where {Xi} is the time series of the UV-B

radiation dose obtained by procedures described in Section 15.3 and Xmax ¼ max{Xi} and

Xmin ¼ min{Xi}.

Reprinted with permission from Mihailovi�c, D.T., Malinovi�c-Mili�cevi�c, S., Arseni�c, I., Dre�skovi�c, N., Bukosa, B.,

2013. Kolmogorov complexity spectrum for use in analysis of UV-B radiation time series. Mod. Phys. Lett. B 27,

1350194.
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�Ceskoslovenský kras, Praha, pp. 65e72 (In Slovak).
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Complexity analysis of the
environmental fluid flow
time series 17
17.1 COMPLEXITY ANALYSIS OF THE MOUNTAIN RIVER

FLOW TIME SERIES
Scientists in different fields (physicists, meteorologists, geologists, hydrologists, en-
gineers etc., among others) study environmental fluid motion. Behavior of these
fluids are significantly influenced by (1) human activities, (2) climatic change,
and (2) increasing water pollution, changing mass and energy balance of the fluid.
Understanding their complexity can help us to learn how to improve our systems
by understanding how complexity underlies and affects the environments and the
systems. Influenced by the aforementioned factors, the river flow in different
geographic regions may range from being simple to complex, varying in both
time and space. For turbulent environmental fluids, like mountain rivers, the speed
of the water flow can vary within a system and is subject to chaotic turbulence. This
turbulence results in divergences of flow from the mean downslope flow vector as
typified by eddy currents. The mean flow rate vector is based on variability of fric-
tion with the bottom or lateral sides of the channel, sinuosity, obstructions, and the
incline gradient (Allan, 1995). Over the last decade, controversial results have been
obtained about the hypothetical chaotic nature of river flow dynamics (Schertzer
et al., 2002; Salas et al., 2005 Zunino et al., 2012; Sivakumar and Singh, 2012;
Mihailovi�c et al., 2014). For example, Zunino et al. (2012) analyzed the streamflow
data corresponding to the Grand River at Lansing (Michigan) trying to provide new
insights regarding this issue, while Hajian and Sadegh Movahed (2010) have used
the detrended cross-correlation analysis to investigate the influence of sun activity
represented by sunspot numbers on river flow fluctuation as one of the climate indi-
cators. The river flow fluctuations have been also analyzed using the formalism of
the fractal analysis by Sadegh Movahed and Hermanis (2008). Therefore, it is of
interest to determine the nature of complexity in mountain river flow processes,
which requires the use of different measures of complexity, which cannot be done
by commonly used mathematical statistics. These measures help us to get an insight
into the complexity of the environmental fluid flow; i.e., the mountain river flow in
this section. Using them, we can more comprehensively investigate possible changes
in (1) river flow due to human activities, (2) response to climate changes, and (3)
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nonlinear dynamic concepts for a catchments classification framework. Also, we
shall be able to improve application of the stochastic process concept in hydrology
for its modelling, forecasting, and other ancillary purposes (Porporato and Ridolfi,
2001; Schertzer et al., 2002; Stoop et al., 2004; Otache et al., 2011).

In this section we consider the complexity of the river flow dynamics of two
mountain rivers in Bosnia and Herzegovina for the period 1926e90, using the lower
Kolmogorov complexity (KLL), upper Kolmogorov complexity (KLU), sample
entropy (SampEn), and permutation entropy (PermEn) measures, which are
described in Section 15.2 (KLL and KLU) and Section 9.1 (SampEn and PermEn).
We will do that through (1) sensitivity tests for all considered measures which is
dependent on data length and (2) their application on two mountain river flow
time series.

Description of river locations and time series. The River Bosnia and the River
Miljacka flow through the Sarajevo Valley, which is located between mountain
depressions and between the massive Bjelasnica and Igman mountains on the south-
west as well as the low mountains and middle mountains on the northeast. The valley
generally stretches in the NWeSE direction and there are low mountains and middle
mountain areas on the southeastern slopes of the Trebevic Mountain and on the
northwestern slopes between valley peaks (Fig. 17.1).

FIGURE 17.1

Topological location of the Sarajevo Valley with hydrological stations Reljevo (the Bosnia

River) and Sarajevo (the Miljacka River) used in this study (designed by N. Dre�skovi�c).

Reprinted with permission from Mihailovi�c, D.T., Nikoli�c-Ðori�c, E., Dre�skovi�c, N., Mimi�c, G., 2014. Complexity

analysis of the turbulent environmental fluid flow time series. Physica A 395, 96e104.
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The mean altitude of the bottom of the valley is approximately 515 m. The valley
is a hydrological input for the source area of the Bosnia River with seven tributaries
including the Miljacka River. In this part of their flow both of them fully represent
mountain rivers. In this study for time series we used the monthly mean values
(Fig. 17.2) from hydrological stations Reljevo (the Bosnia River) and Sarajevo
(the Miljacka River) since they have representative and reliable instruments for
hydrological monitoring since 1926 (Had�zi�c and Dre�skovi�c, 2012; Mihailovi�c
et al., 2014).

The Bosnia River has the mean annual river flow about 8.0 m3 s�1, except during
the precipitation season when it takes a value of 24.0 m3 s�1. The hydrological
station Reljevo is located 11.6 km away from its source. Usually the mean annual
river flow of this river is 28.7 m3 s�1, with a maximum of 44.9 m3 s�1 (in 1937)
and a minimum value of 17.9 m3 s�1 (in 1990) during the period 1926e90. The
entire Miljacka River system upstream has a very steep and wavy longitudinal
profile. Downstream from this site, it flows through the alluvial plateau with a
very small drop (3e5%) passing the highly urbanized Sarajevo Valley with over
400,000 inhabitants. The hydrological station Sarajevo is located on the bridge in
the central part of Sarajevo. Usually the mean annual river flow of the Miljacka
River is 5.5 m3 s�1, with a maximum of 9.1 m3 s�1 (in 1937) and a minimum value
of 3.0 m3 s�1 (in 1990) during the period indicated. The river flow time series for the
Miljacka River and the Bosnia River for the period 1926e90 are depicted in
Fig. 17.2 (Mihailovi�c et al., 2014).

An example of changes in complexity of the mountain river flow fluid time series.
The mountain river is a typical example of the turbulent environmental fluid for
which the changes in complexity of its flow rate primarily depends on human activ-
ities and climate change. These process and phenomena can contribute to the loss of
the complexity, which leads to reducing the stochastic component in the river
flow. However, the nature of its complexity may be investigated by the complexity
measures that give more insights into the complexity of its flow rate. In an example
that follows, we shall illustrate the impact of the mentioned factors on mountain
river flow complexity. In these experiments we use the time series for the Bosnia
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FIGURE 17.2

River flow time series for the Miljacka River and the Bosnia River for the period 1926e90.

Reprinted with permission from Mihailovi�c, D.T., Nikoli�c-Ðori�c, E., Dre�skovi�c, N., Mimi�c, G., 2014. Complexity

analysis of the turbulent environmental fluid flow time series. Physica A 395, 96e104.
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River (the right panel in Fig. 17.2) to simulate loss of flow complexity of this river as
a result of the anticipated (1) human activities and (2) projected climate changes in
the region from Fig. 17.1.

We simulate the influence of the human activity (for example, urbanization and
building capacities for the water consumption, etc.) on the mountain river flow
complexity. Namely, when a value of the KLL is close to zero then it is associated
with a simple deterministic process like a periodic motion, whereas a value close to
one is associated with a stochastic process (Mihailovi�c et al., 2014). Thus, by human
activities, many stochastic components can disappear from the flow of the mountain
river depending on the level and intensity of those activities (Mihailovi�c et al., 2014;
Gordon et al., 2004; Orr and Carling, 2006). We illustrate the influence of the human
activity on the mountain river flow complexity in the following way. First, depend-
ing on the intensity of activity (symbolically depicted in percentage on x axis in
Fig. 17.3): (1) we have removed amplitudes in the time series setting them to be
zero and (2) we have kept those samples in the time series always having the size
N (N ¼ 780 in this experiment). Then, using the procedure described in Section
15.2 we have calculated the KLL for each created time series. Changes in the
KLL complexity of a mountain river flow rate which is dependent on simulated
human activity are depicted in Fig. 17.3. From this figure is seen a descending trend
of this curve, which is finished by a straight line on the lowest level of complexity
depicting the absence of turbulent eddies as a result of regularization of the river
flow. The descending curve is rather wavy than linear because of the nonlinearity
of the river flow.

In the context of climate change, significant perturbations can be expected in
natural systems in different regions including mountain ones. Because mountains
are the source region for over 50% global rivers, the impact of climate change on
hydrology is likely to have significant repercussions. Expected changes in mountain
river energy exchange processes under a changing climate can be listed in the
following declining order: short-wave radiation, long-wave radiation, latent heat
flux, and sensible heat flux. Therefore, some expectations about flow under a
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FIGURE 17.3

Changes in the KLL complexity of a mountain river flow which is dependent on the level of

human activity.

Reprinted with permission from Mihailovi�c, D.T., Nikoli�c-Ðori�c, E., Dre�skovi�c, N., Mimi�c, G., 2014. Complexity

analysis of the turbulent environmental fluid flow time series. Physica A 395, 96e104.

210 CHAPTER 17 Complexity analysis



changing climate can be summarized as follows: more variable and severe precipi-
tations, higher evapotranspiration, difficulties in forecast of how annual and seasonal
balance between precipitation and evapotranspiration will change, more frequent
floods, more frequent droughts, changing flow regimes from snowmelt to winter
rainy, etc (Caissie, 2006). We simulate the climate change impact on the mountain
river flow complexity in the following way. The time series of the flow rate was
divided into three subintervals: (1) 1e280th, (2) 280e520th, and (3) 580e780th
month. The impact of climate change on the river flow complexity was introduced
during the period (2) of simulation following the results of regional climate simula-
tions by Djurdjevic and Rajkovic (2008) that include the area depicted in Fig. 17.1.
According to them, projections for the year 2030 indicate an evident increase of air
temperature and evaporation (about 20%) as well as the decrease of precipitation.
For the periods (1) and (3) we have calculated the KLL. For the period (2), first
we have recalculated the monthly river flow rates by changing their values, accord-
ing to values of evaporation and precipitation obtained by the regional climate model
(Djurdjevic and Rajkovic, 2008), and then we have applied the same procedure for
the KLL calculations as in the previous experiment. As a consequence, an evident
decrease of the complexity of the river flow time series is seen from Fig. 17.4, which
is visualized through the fitting curve.

Complexity analysis of two mountain river flow time series. Using the calculation
procedure outlined in Sections 15.2 and 9.1, we have computed the KLL, KLU,
SampEn, and PermEn values for the two mountain river flow time series. The calcu-
lations are carried out for the entire time interval 1926e90 and for three subintervals
covering this period: (a) 1926e45, (b) 1946e65, and (c) 1966e90 obtained by
sensitivity tests which is dependent on length of time series. Since all measures
are sensitive to the length of time series, N we perform some sensitivity tests. For
PermEn, the length of the time series must be larger than the factorial of the embed-
ding dimension (Frank et al., 2006).

To explore the sensitivity of these measures which is dependent on the length of
time series we calculated the KLL, KLU, SampEn, and PermEn values for N ¼ 200
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Changes in the KLL complexity of a mountain river flow rate which is dependent on simulated

climate changes. Heavy solid line is a fitting curve, which depicts the trend of the complexity

change.

Reprinted with permission from Mihailovi�c, D.T., Nikoli�c-Ðori�c, E., Dre�skovi�c, N., Mimi�c, G., 2014. Complexity
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up to N ¼ 780 (Fig. 17.5). In these experiments we have had in mind the following
facts. In this section the SampEn was calculated for the mountain river flow time
series with the following values of parameters: m ¼ 2, r ¼ 0.2, and s ¼ 1 (see Sec-
tion 16.3). Besides N, the embedding dimension (m), also called the permutation
order, is an input parameter for PermEn. Therefore we have considered its sensi-
tivity on the PermEn outputs. Due to the length of time series (N ¼ 780) we chose
the embedding dimension to be less than 6 (Fig. 17.6). Our results indicate that the
KLL and SampEn decrease and the KLU and PermEn slightly increase when the
number of observations increases. All considered measures are sensitive to random
component and may be considered as indicators of randomness, but they do not
give information about amplitude variations. In particular, we have calculated
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FIGURE 17.5

Sensitivity of the KLL (lower), KLU (upper), SampEn (middle), and PermEn (lower) panel

which is dependent on the length of the mountain river flow time series for the Miljacka River

and the Bosnia River.

Reprinted with permission from Mihailovi�c, D.T., Nikoli�c-Ðori�c, E., Dre�skovi�c, N., Mimi�c, G., 2014. Complexity

analysis of the turbulent environmental fluid flow time series. Physica A 395, 96e104.
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the frequencies of the mountain river flow time series. They have the same domi-
nant frequencies (1/12 and 1/6 for the Miljacka River and the Bosnia River, respec-
tively) as well as the similar distribution of the random component. Thus the values
of complexities, calculated for the whole time series and subintervals for both
rivers, are close to each other.

The results of computations are given in the corresponding rows of Table 17.1. It
is seen from this table that the KLL values in both rivers are close while the KLU
ones are practically the same. Note that a process that is the least complex has a
KLL value near to zero, whereas a process with the highest complexity will have
KLL close to one. As we said the KLL measure can be also considered as a measure
of randomness. Thus, a value of the KLL near zero is associated with a simple deter-
ministic process like a periodic motion, whereas a value close to one is associated
with a stochastic process (Ferreira et al., 2003; Mihailovi�c et al., 2014). Accordingly,
the KLL values, which are large for both rivers (0.936), point out the presence of
stochastic influence in these typically mountain rivers. The other two calculated
measures indicate on a similar behavior of time series for both rivers, i.e., their
increased irregularity. The SampEn values are slightly different (1.240 for Mil
and 1.357 for Bos) while the PermEn values are very close to each other (0.914
for Mil and 0.891 for Bos).
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Permutation entropy as a function of embedding dimension for river flow time series for the

Miljacka River and the Bosnia River for the period 1926e90.

Reprinted with permission from Mihailovi�c, D.T., Nikoli�c-Ðori�c, E., Dre�skovi�c, N., Mimi�c, G., 2014. Complexity
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We have chosen the above time intervals for two reasons. Firstly, a change in the
complexity of both rivers in the period 1945 (end of the Second World War)e65
(end of the most intensive human intervention, in particular, urbanization and
building capacities for the water consumption) was expected. Secondly, we have
performed the sensitivity tests to check the reliability of the chosen time series
of subintervals. On the basis of those tests, in the computing procedure we have
used the following parameters: (1) embedding dimension (m ¼ 2), tolerance
(r ¼ 0.2) and time delay (s ¼ 1) for the SampEn and (2) embedding dimension
(m ¼ 5) for the PermEn. As a result the time series for periods (a), (b), and
(c) were 240, 240, and 300, respectively. It is found that during 1946e65, there
is a decrease in complexity in Mil and Bos rivers (0.955 and 0.977, respectively)
in comparison to the other subintervals. This complexity loss may be interpreted
as results of intensive different human activities on those rivers after the Second
World War. The same result is found for the KLU complexity, i.e., 3.944 for Mil
and 4.031 for Bos, which are the lowest of their values in comparison to the other
subintervals. Lower values of both entropies for both rivers: (1) the SampEn (Mild
0.903; Bosd1.214) and (2) the PermEn (Mild0.832), support the conclusion
about more regular river flow time series in this period. Only in the case of PermEn,
there is minor decrement of the regularity for the period 1946e65. In the case of
PermEn, the same conclusion holds for other considered values of embedding
dimension.

Table 17.1 Kolmogorov Complexities (LowerdKLL and UpperdKLU),
Sample Entropy (SampEn), and Permutation Entropy (PermEn) Values for the
River Flow Time Series of Two Mountain Rivers for the Period 1926e90, and
the Subintervals: (a) 1926e45, (b) 1946e65, (c) 1966e90. In Computing the
Entropies We Have Used the Following Sets of Parameters (m ¼ 2, r ¼ 0.2, and
s ¼ 1) and (m ¼ 5) for the SampEn and PermEn, Respectively.

River Measure 1926e90 1926e45 1946e65 1966e90

Miljacka (Mil) KLL 0.936 0.988 0.955 0.988

KLU 5.002 4.210 3.944 4.557

SampEn 1.240 1.438 0.903 1.478

PermEn 0.914 0.879 0.832 0.903

Bosnia (Bos) KLL 0.936 1.054 0.977 0.988

KLU 5.024 4.103 4.031 4.471

SampEn 1.357 1.526 1.214 1.367

PermEn 0.891 0.843 0.847 0.869

Reprinted with permission from Mihailovi�c, D.T., Nikoli�c-Ðori�c, E., Dre�skovi�c, N., Mimi�c, G., 2014.
Complexity analysis of the turbulent environmental fluid flow time series. Physica A 395, 96e104.
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17.2 RANDOMNESS REPRESENTATION IN TURBULENT
FLOWS WITH BED ROUGHNESS ELEMENTS USING THE
KOLMOGOROV COMPLEXITY SPECTRUM

The influence of bed roughness elements on turbulent flow is a crucial topic in many
different fields, for instance, modelling the transport of pollutants carried by a tur-
bulent flow in the atmosphere, the study of the hydraulic effects of fully/partially
submerged vegetation in experimental flumes or in natural rivers, or the parameter-
izing of the deposition velocity over vegetative or urban area in chemical transport
models (Raupach et a., 1996; Jimenez, 2004; Poggi et al., 2004; Flack et al., 2005;
Gioia and Chakraborty, 2006; Allen et al., 2007; Nezu and Sanjou, 2008; Mihailovi�c
et al., 2009; Gualtieri, 2010; Cushman-Roisin et al., 2012). It is recognized that
aquatic plants in rivers have considerable effects on the velocity distributions, turbu-
lence structure, and also on the mass and momentum exchanges between the zones
with and without vegetation (Raupach et a., 1996; Nezu and Sanjou, 2008). In the
presence of submerged bed roughness elements of height k (e.g., canopy, submerged
aquatic vegetation, cylindrical obstacles in laboratory channels) a roughness
sublayer (RSL) is formed (Raupach et a., 1996; Poggi et al., 2004; Hussain, 1983;
Nepf, 2012; Thoraval et al., 2012). Within the RSL there exist three distinct zones
(Fig. 17.7a): (1) the deep zone (RS1 when z <k) which is mainly driven by von
Kármán vortex streets (Thoraval et al., 2012), but from time to time disrupted by
strong sweep episodes with features which are influenced by bed roughness elements
density (Poggi et al., 2004); the second zone (RS2), extending upward from z ¼ k to
(typically) about 2k, is a superposition of attached eddies and KelvineHelmholtz
waves produced around the inflection point on the mean velocity profile
(Fig. 17.7a), which develops between two coflowing streams having different veloc-
ities (Raupach et a., 1996; Poggi et al., 2004; Attili and Bisetti, 2013; Goncharov and
Pavlov, 2015). In this turbulent mixing region are formed coherent turbulent
structures caused by KelvineHelmholtz instability that travel downstream in the
environmental fluids, which are often used to identify the extent of the mixing layer
thickness (Raupach et a., 1996; Brown and Roshko, 1974; Rogers and Moser, 1994).
The RS2 zone is a superposition of all three constituents, while the RS3 zone is
shifted rough wall boundary layer.

For a long time, there was an interest in the environmental fluid science for a
better understanding of the physical processes involved in flow-roughness element
space interaction, which includes interaction between zones described above, e.g.,
the turbulent boundary layer and outer laminar region, wall- and free-shear turbulent
flows exhibiting coherent structure (Ichimiya and Nakamura, 2013; Tsuji and
Nakamura, 1974). However, to our opinion regarding the turbulent flow, some prob-
lems remain unanswered because a more complete definition of turbulence is not yet
proposed as it is emphasized by Ichimiya and Nakamura (2013).

Namely, one of the fundamental properties in the definition of the turbulence is
not clearly included and it is usually expressed verbally by sentences written in
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terms of irregular or random fluid flows but without its quantification (Reynolds,
1883; Prandtl, 1965; Batchelor, 1956; Hinze, 1975; Frish, 1995). An overview of
such definitions is offered by Ichimiya and Nakamura (2013). Only exception is
Pope’s definition of randomness related to turbulence (Pope, 2000). On the other
hand, this definition cannot be used as a measure of the randomness as it is in
measure developed by Kolmogorov, on the basis of which is developed the LZA
algorithm for calculating the measure of the randomness (see Section 15.2). This
algorithm we use for evaluation of the randomness present in time series.

The goal of this section is to quantify randomness of turbulent flows that develop
from passing over bed roughness elements, using the Kolmogorov complexity spec-
trum. For that purpose, we use the results from an experimental study carried out in a
laboratory channel with variable bed slope at the University of Naples Federico II
(Naples, Italy). First, we describe the experimental setup, channel, and

FIGURE 17.7

(a) A schematic diagram of eddies structure over and within the rough elements: (1) RS1

zone (z/k < 1) where the flow field is primarily dominated by small eddies associated with the

von Kármán streets; (2) RS2 zone straddles the top portion of the bed roughness element

space, and is dominated by a mixing layer; and (3) RS3 zone (z/k > 2) is the classical

boundary-layer region dominated by eddies with length scales proportional to (z � d), where

d is the displacement height. (b) The mean velocity profile within the bed roughness space

uðzÞ ¼ uðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b1e�b3z þ b2eb3z

p
is obtained from the solution of the partial differential

equation vu2=vz ¼ ½ð2Cdldk
2Þ=ðssPsÞ�u2 where u(k) is the velocity at the height k; b1, b2

are parameters depending on the morphological and aerodynamic characteristics of the bed

roughness element space and b3 ¼ ½ð2Cdldk
2Þ=ðssPsÞ�; Cd, the drag coefficient; ss, the

parameter of proportionality between the turbulent transport coefficient and velocity within

the bed roughness element space; ld, the roughness density; and Ps, shelter factor (Rogers

and Moser, 1994; Sellers et al., 1986; Mihailovi�c et al., 2016).
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instrumentation. Second, we use the complexity measures based on the Kolmogorov
complexity (the Kolmogorov complexity spectrum and the Kolmogorov complexity
spectrum highest value), KLM in the analysis of the turbulence randomness. Then,
we perform analysis based on a classical turbulence statistics including a simple
empirical model for the estimation of the relative sizes of mixing lengths represent-
ing the typical scale of an eddy in the corresponding part of the surface layer, to
nearly quantify the randomness of the turbulence, for velocity profiles and for tur-
bulence intensity. Finally, we discuss the suggested measures of the randomness
of turbulent flow in the surface layer.

Experimental setup. Chanel and instrumentation. The experiments were
performed in a laboratory channel with variable bed slope at the University of
Naples Federico II (Naples, Italy). The channel was 8 m long and 0.4 m wide
with a variable bed slope (Fig. 17.8a). Vegetation covered the bed of the channel
and consisted of rigid cylinder rods of the same height and diameter
(k ¼ 0.015 m, dc ¼ 0.004 mdFig. 17.8b), set in different aligned arrangements
(rectangles or squares), with three different densities, ld,1 ¼ 0.024 m2 m�3,
ld,2 ¼ 0.048 m2 m�3, and ld,3 ¼ 0.096 m2 m�3, corresponding, respectively, to
400, 800, and 1600 cylinders per unit area. Vegetation density was evaluated as
the total roughness frontal area per unit area. The vegetation was always fully
submerged with submergence hu/k, of about 4, where hu is the uniform flow depth.

The experimental conditions are listed in Table 17.2, where ub is the bulk veloc-
ity or depth-averaged velocity, u* is the shear velocity, and uk is the velocity at the
top of the bed roughness element. Instantaneous values of streamwise velocities
were recorded in uniform flow in a vertical cross-section located at the mid-
length of a square or rectangular array. The velocity measurements were carried
out in about 25 vertical locations using a laser Doppler velocimeter (LDV) equipped
with a frequency shifter and a frequency tracker. The sampling rate was 2000 Hz for
135 s. The turbulent data were postprocessed using the LabView software to derive
the distribution of time-averaged velocity and standard deviation related to turbu-
lence intensity.

FIGURE 17.8

(a) Channel and (b) vegetated bed (Mihailovi�c et al., 2016).
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Table 17.2 Experimental Conditions (described in Mihailovi�c et al., 2016)

Test
ld
(m2 mL3) Slope (�) Q (l sL1) hu (cm)

Cylinders
per Unit
Area ub (m sL1) u* (m sL1) uk (m sL1)

D1 0.024 0.03 33 6.35 400 1.128 0.119 1.192

D2 0.048 0.02 22 6.44 800 0.735 0.098 0.763

D3 0.096 0.03 22 6.29 1600 0.715 0.119 0.726
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Classical turbulence statistics. Fig. 17.9aec shows the lateral distributions of the
streamwise component of time-averaged mean velocity U (u ¼ U þ u0, where u and
u0 are instantaneous streamwise measured velocity and velocity fluctuation, respec-
tively) at several relative heights z/k within and above the bed with bed roughness
elements space for all the density cases (D1, D2, and D3).

From these figures, it is seen that vertical velocity profiles over a bed with bed
roughness elements of different densities do not follow standard logarithmic profile.
For z/k ¼ 1 and densities D1 and D3, it is seen that the inflection points and shape of
velocity profiles follow the theoretical curve in Fig. 17.9b. According to the vertical
velocity distribution, the flow could be separated into two zones: (1) a lower zone
within the bed roughness elements space (z/k < 1) and (2) upper zone (z/k > 1).
However, these comments can be just partly addressed to the velocity profile for
the density D2 (Fig. 17.9b). Let us point out that the most essential difference
between surfaces with bed roughness elements of different densities is the magni-
tude of the inflection in the mean velocity profile, which is a necessary condition
for the occurrence of KelvineHelmholtz instabilities. However, according to Poggi
et al. (2004), its magnitude assigns a framework of the relative importance of that
mechanism on the whole turbulence structure.

The turbulence statistics applied on measured values of velocity quantify how the
flow within and just above the bed roughness elements space behaves as a perturbed
mixing layer. According to Ruelle (1978), the average properties of a turbulent flow
can be described by a measure, which is invariant under time evolution. Here, we

quantify the turbulence intensity as u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1u
2
i =N

q
normalized by the friction

velocity u*, i.e., su ¼ u=u�. Fig. 17.10a depicts the measured profiles of su for all
three densities D1, D2, and D3. From this figure it is seen that with increasing ld,
turbulence intensity su is remarkably damped for z/k < 1. It is seen that su changes
from 1.69 (D1), for sparse density, which is typical for rough wall layers, to about
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FIGURE 17.9

Time-averaged mean vertical velocity profiles for all the density cases normalized by the

velocity at the canopy top (uk) (Mihailovi�c et al., 2016).
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1.49 (D3) for dense canopies, which is typical for mixing layers. Those values are
close to the ones reported by Raupach et al. (1996). Further inspection of this figure
shows that for all densities, su increases from the bed to the level near the top of the
canopy (z/k < 1). Above this, su weakly decreases in the RS2 zone and toward the
free surface (i.e., in the RS3 zone). These measures of the traditional turbulence
statistics provide us an insight in the structure of turbulence within the bed roughness
elements space and coherent motions near the top of that space. To explain the
behavior of su, we calculate empirically the three basic length scales lv, lml, and
lbl for zones RS1, RS2, and RS3, respectively, partly following parameterization
by Poggi et al. (2004). In RS1, where the flow field is primarily dominated by small
vortices associated with the von Kármán streets, the mixing length is evaluated as
lv ¼ dr/0.21. The mixing length lml in the RS2, i.e., the mixing layer, is parameter-
ized as lml ¼ uk=ðdu=dzÞz¼k. Finally, the region RS3 is a classical boundary-layer

region dominated by eddies with length scales lbl ¼ k(z � d), where k is the von
Kármán constant. The relative mixing lengths lv, lml, and lbl normalized by k, calcu-
lated for all the density cases, with zero plane displacement d taken to be 2/3k, are
depicted in Fig. 17.10b. The calculated values of the relative sizes of mixing lengths
have the following values: (1) lv/k ¼ 0.85 and lbl/k ¼ 0.82 in the zones RS1 and RS3,
respectively, for all the density cases and (2) lml/k ¼ 2.20 (D2), 1.47 (D1, D3) in the
zone RS2, respectively. Here, the relative sizes of mixing lengths lv/k, lml/k, and lbl/k
represent the typical scale of an eddy in the corresponding layer. The eddies in all the
three zones are seen in Fig. 17.10b. In the RS1 zone, von Kármán eddies are smaller
with sizes, which are proportional to dr and independent of ld and local velocity
Poggi et al. (2004). In the RS2 zone the eddies are larger, organized in a coherent
structure, carrying the highest amount of energy, while in the RS3 zone they are
again of smaller size. This simple consideration empirically explains the behavior
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FIGURE 17.10

Turbulence intensity u normalized by u* (a) and mixing lengths lv, lml, and lbl normalized by k

(b) against relative depth ratio of vertical distance frombed z to bed roughness elements k for all

the density cases. The relative sizes of mixing lengths lv /k, lml /k, and lbl /k which are calculated

represent the typical scale of an eddy in the corresponding layer (Mihailovi�c et al., 2016).
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of su in Fig. 17.10a. However, we still have no available measure of randomness,
which is a crucial property of the turbulence as we already mentioned.

When stable laminar flows evolve toward the turbulence, they become high order
and complex, exhibiting irregular-like motions with organized dissipative arrange-
ments. To precisely specify their fields (velocity and displacement), more parame-
ters are required than for description of laminar flows, i.e., topological measures
that quantify the order or disorder of the flow. One such measure is the Shannon
entropy, which has been already used in the analyses of geophysical fluids
(Wijesekera and Dillion, 1997; Wesson et al., 2003). The Shannon entropy (SH)
is defined as SH ¼ �P

pi ln pi (Shannon, 1948), where pi is a discrete probability
distribution satisfying the following conditions: pi � 0;

P
pi ¼ 1 and

piWjW::: ¼ pi þ pj þ :::. In our calculations, pi is defined as a probability that velocity
amplitude occurs within the interval ui þ du, where du is obtained when the entire
interval of velocity amplitudes is divided into N intervals. From Fig. 17.11a, it is
seen that the SH is the highest in the mixing layer (1 < z=k < 2) where the turbu-
lence intensity su is the highest. However, it decreases going to top of the water
jet. This behavior of the SH coincides with the conclusion in Wijesekera and Dillion
(1997). A decrease of the SH going to the rough wall can be addressed to the occur-
rence of smaller eddies carrying smaller amount of the energy.

The randomness of turbulent flow in the surface layer. To avoid confusion in the
following discussion we will make some comments. Namely, the term complexity
in physical systems has the connotation of an explicit measure of the probability of
the state of the system. It is a mathematical measure which should not be equalized
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FIGURE 17.11

Shannon entropy SH (a) and Kolmogorov complexity KLL (b) against relative depth ratio of

vertical distance from bed z to bed roughness elements k for all the density cases.
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with entropy in statistical mechanics (Mihailovi�c et al., 2015). Thus, by the Shan-
non entropy, we can describe dissimilarities between amplitudes in a time series,
while the Kolmogorov complexity refers to the apparent sequence disorder of
some amplitudes in a time series. This complexity is of interest in this section,
which we intuitively understand as a measure that is ranged between uniformity
and total randomness (Grassberger, 1989; Mihailovi�c et al., 2015) as we noted
in Section 15.2. Comparing Fig. 17.11a and b, they seem to have overall symmet-
rical trends. In Fig. 17.11a, the randomness weakly increases in the RS1 zone, it
has a constant value in the RS2 zone, and then decreases in the RS3 zone. This
trend is clearer for sparse bed roughness elements (D1) but, anyway, the density
of the bed roughness elements seems to affect randomness, in fact lower random-
ness corresponds to sparse density (D1). In Fig. 17.11b it is seen that the value of
the KL complexity decreases with height from the rough wall to the mixing layer
(1 <z/k <2). This can be explained by the fact that in the RS1 zone, flow is domi-
nated by smaller eddies (see Fig. 17.10b) contributing to the higher randomness
which becomes lower in the mixing layer having a constant value in this zone.
This is because the eddies in this zone are larger and coherently organized, without
the possibility of introducing more randomness in the flow. Above the mixing
layer, the KL slightly increases since the eddies become smaller providing condi-
tions for higher complexity in flow.

Using the LZA algorithm we have calculated the Kolmogorov spectra for all the
density cases and selected relative depth ratio z/k, which are depicted in Fig. 17.12.
From these figures, it is seen that the KLM values (when the randomness is the high-
est) are very close to the KLL at the corresponding relative heights (Fig. 17.11b).
Moreover, as the density increases, Kolmogorov spectra in the mixing layer, where
complexity is constant, tend to be very close. However, the Kolmogorov complexity
spectrum provides us additional information. Namely, the area below this spectrum
(overall complexity in Mihailovi�c et al. (2015), which is not considered in this
section) gives integral information about the complexity for the whole spectrum
of complexities, i.e., it comprises both the (1) dissimilarities between amplitudes
(SH) and (2) disorder of some amplitudes (KLL). Thus, the Kolmogorov-based com-
plexities measures allow the quantification of the degree of turbulence in relation to
the randomness rather than it being expressed verbally in terms of irregular or
random.

17.3 APPLICATION OF THE COMPLEXITY MEASURES BASED
ON THE KOLMOGOROV COMPLEXITY ON THE ANALYSIS
OF DIFFERENT RIVER FLOW REGIMES

Influenced by the factors mentioned in Section 17.1, the river flow may range from
being simple to complex, fluctuating in both time and space. In the last decade, many
authors have devoted their attention to the chaotic nature of river flow dynamics by
analyzing their daily, monthly and annual time series (Lange et al., 2013; Mihailovi�c
et al., 2014; Serinaldi et al., 2014). Here, we quantify the randomness of the
river flow dynamics of seven rivers, in Bosnia and Herzegovina for the period
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FIGURE 17.12

Kolmogorov spectra for all the density cases and selected relative depth ratio of vertical

distance from bed z to bed roughness elements k.
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1965e86, using the KLL, KLU, KLM, and KLO complexity measures and the Kol-
mogorov complexity spectrum.

Datasets and computations. River flow records in the Bosnia and Herzegovina
are, in general, of relatively short duration. Except for several rivers (Mihailovi�c
et al., 2014) many measurements began in the late 1950s. For this study we have
selected seven rivers placed in the territory of Bosnia and Herzegovina, which is
located in the western Balkans, surrounded by Croatia to the north and southwest,
Serbia to the east, and Montenegro to the southeast. It lies between latitudes 42�
and 46�N, and longitudes 15� and 20�E. The country is mostly mountainous, encom-
passing the central Dinaric Alps. The northeastern parts reach into the Pannonian
basin, while in the south it borders the Adriatic Sea. Dinaric Alps generally run in
the east-west direction and get higher toward the south. The highest point of the
country is peak Magli�c at 2386 m, at the Montenegrin border, while the major moun-
tains include Kozara, Grme�c, Vla�si�c, �Cvrsnica, Prenj, Romanija, Jahorina, Bjela�sn-
ica, and Treskavica (Fig. 17.13).

Since we want to quantify the randomness degree in the river flow time series of
rivers in Bosnia and Herzegovina, in different parts of their courses, we have made a
selection of hydrological stations on the basis of classification of typology for moun-
tains and other relief classes according to Meybeck et al. (2001). This classification
can be summarized in the following way: (1) lowlands (0e200 m mean altitudedin
further text L type), (2) platforms and hills (200e500 mdH type), and (3) moun-
tains with mean elevations between 500 and 6000 m (M type). Thus, we have
analyzed: the lower and upper course (the rivers Neretva, Drina and Bosnia), the
upper course (the rivers Una and Miljacka), and the lower course (the river Vrbas
and Ukrina). These catchments are listed in Table 17.3. They are spread across
the country and are representative for catchments in these regions. Datasets of
monthly river flow rates for the period 1965e86 were taken from the Annual Report
of the Hydrometeorological Institute of Bosnia and Herzegovina, consisting of 252
data points in each time series.

Computation of complexity measures for seven river flow time series and anal-
ysis. Using the calculation procedure outlined in Section 15.3, we have computed
the KLL, KLU, the Kolmogorov complexity spectrum, and the KLO values for
the 10 river flow time series of seven rivers (Fig. 17.14) in Bosnia and Herzegovina.
The calculations are carried out for the entire time interval 1965e86.

Results for Kolmogorov complexities (lowerdKLL, upperdKLU, Kolmogorov
complexity spectrum highest valuedKLM) and overall Kolmogorov complexity
measure (KLO) are given in the corresponding rows of Table 17.4. From this table
it is seen that the KLL values for seven rivers can be classified into two intervals, i.e.,
(0.948, 1.076) and (0.791, 0.918), which corresponds to the upper (H and M
regimes) and the lower river course (L regime), respectively.

As we said, the process that is less complex has a KLL value near to zero,
whereas a process with highest randomness will have the KLL close to one. Accord-
ingly, the KLL values, which are large for rivers from the first interval, i.e., (0.948,
1.076), indicate the presence of stochastic influence in their upper courses, where
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these rivers show behavior that is typical for mountain rivers. Inversely, the KLL
complexities are smaller for the lower river courses (0.791, 0.918). The only excep-
tion is the Ukrina River (UKR_D) having greater randomness which is closer to the
KLL of mountain rivers (0.981), which could be attributed to the fact that the KLL
measure neglects variability in time series amplitudes. Similar results are observed
in analysis of the KLU measure. However, now except besides the Ukrina River
(UKR_D) and also the Vrbas River (VRB_S) has the KLU closer to the H and M
regimes (4.324). Fig. 17.15 depicts the changes in the KLL and KLM complexities
of river flow rate for 10 time series of seven rivers in Bosnia and Herzegovina for the
period 1965e86, depending on the altitude of hydrological station. There is a pos-
itive trend in changes of the KLL and KLM with coefficients of correlation r, which
are close to each other 0.649 and 0.602, respectively (Mihalovi�c et al., 2015).

We analyze the monthly river flow time series of the seven rivers in Bosnia and
Herzegovina for the period 1965e86, with N ¼ 252 data points. The curves

FIGURE 17.13

Relief of Bosnia and Herzegovina with location of 10 hydrological stations on seven rivers

used in the study (their abbreviations for rivers and letters indicating the river regime are

given in Table 17.3) (Mihailovic et al., 2015).
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Table 17.3 Rivers in Bosnia and Herzegovina Used in the Study With the Corresponding Flow Rates (FRdMean; FRmaxdMaximal;
FRmindMinimal for the Period 1965e86) and Their Classification Following a Classification of Typology for Mountains and Other Relief
Classes by (Meybeck et al., 2001): Lowland (alt < 200 m)d(L Regime), Platforms and Hills (200 < alt < 500 m)d(H Regime), and
Mountains (500 < alt < 6000 m)d(M Regime) (Mihailovic et al., 2015)

Catchment Number Abb. Long (�E) Lat (�N) Alt (m) FR (m3/s)
FRmax

(m3/s)
FRmin (m3/
s) Regime

River Neretva

to Zitomisli�c

1 NER_Z 17�470 43�120 16 252.0 734.0 53.0 L

River Neretva

to Ulog

2 NER_U 18�140 43�250 641 8.0 35.3 0.5 M

River Bosna to

Doboj

3 BOS_D 18�160 43�490 137 172.0 650.0 30.0 L

River Bosna to

Reljevo

4 BOS_R 18�060 44�440 500 29.0 99.5 4.8 M

River Drina to

Kozluk

5 DRI_K 19�070 44�300 121 380.0 1160.0 66.0 L

River Drina to

Bastasi

6 DRI_B 18�460 43�270 425 155.0 497.0 32.7 H

River Miljacka

to Sarajevo

7 MIL_S 18�210 43�120 530 5.0 21.9 0.6 M

River Una to

Martin Brod

8 UNA_B 16�070 43�300 310 54.0 188.0 9.2 H

River Ukrina to

Derventa

9 UKR_D 17�550 44�500 105 17.0 92.3 1.1 L

River Vrbas to

Deliba�sino

Selo

10 VRB_S 18�160 43�490 141 111.0 358.0 38.2 L
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FIGURE 17.14

Ten river flow time series of seven rivers in Bosnia and Herzegovina for the period 1965e86

(Mihailovic et al., 2015).
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Table 17.4 Kolmogorov Complexities (LowerdKLL, UpperdKLU, Kolmogorov Complexity Spectrum Highest Valued
KLM) and Overall Kolmogorov Complexity Measure (KLO) Values of the Flow Rate for Ten Time Series of Seven Rivers in
Bosnia and Herzegovina for the Period 1965e86 (Mihailovic et al., 2015)

Catchment Number Regime Abb. KLL KLU KLM KLO

River Neretva
to Zitomisli�c

1 L NER_Z 0.918 3.799 0.948 0.506

River Neretva
to Ulog

2 M NER_U 1.013 3.309 1.013 0.529

River Bosna to
Doboj

3 L BOS_D 0.791 3.277 0.886 0.470

River Bosna to
Reljevo

4 M BOS_R 0.948 4.092 0.981 0.538

River Drina to
Kozluk

5 L DRI_K 0.823 3.213 0.981 0.502

River Drina to
Bastasi

6 H DRI_B 0.948 3.605 1.045 0.529

River Miljacka
to Sarajevo

7 M MIL_S 1.076 4.194 1.077 0.558

River Una to
Martin Brod

8 H UNA_B 0.948 4.227 1.045 0.540

River Ukrina to
Derventa

9 L UKR_D 0.981 4.294 1.013 0.479

River Vrbas to
Deliba�sino
Selo

10 L VRB_S 0.918 4.324 0.918 0.486
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describing the Kolmogorov complexity spectra for the time series of flow rate of
seven rivers and 10 stations are depicted in Fig. 17.16. From this figure, it is seen
that flow dynamics of rivers are different in sense of the position and value of the
maximum of the Kolmogorov complexity spectrum highest value (KLM). A simple
inspection of this figure indicates the following facts for the same river: (1) when the
river is in the M regime, i.e., with a pronounced presence of stochastic components
in the river flow, then the KLM is greater in comparison with its KLM in the L
regime; (2) the position of the maximum in the M regime is shifted toward the
smaller normalized amplitudes (Fig. 17.16a and b); (3) when the river is in the H
regime, i.e., when presence of stochastic components in the river flow is less pro-
nounced than in M regime, then the KLM is slightly greater in comparison with
its KLM in the L regime, while the position of the maximum in the H regime is still
shifted toward the smaller values in the spectrum (Fig. 17.16c). Note that these con-
clusions could not be obtained if we compare the regimes of different rivers. From
Fig. 17.16deg, it is seen that the maximum of the Kolmogorov complexity spectrum
highest value of the river flow time series is more shifted to the smaller values for the
regimes where river flow has the higher randomness.

Analysis of Table 17.4 indicates that the KLM values in seven rivers are classi-
fied into two intervals, i.e., (1.013, 1.077) and (0.886, 0.948) corresponding to H and
M river regimes and L river regime, respectively, while the UKR_D river is an
exception with the KLM value of 1.013.

The KLL as a measure does not “see” a difference between time series which
have different amplitude variations but similar random components. This could
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FIGURE 17.15

The dependence of KLL and KLM complexities of river flow rate on altitude, for 10 time series

of the seven rivers in Bosnia and Herzegovina for the period 1965e86. Closed contours

indicate the river regime: L (blue (dark gray in print versions)), H (green (light gray in print

versions)), and M (red (gray in print versions)) (Mihailovic et al., 2015).
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also be said for the KLM measure, although it gives more information about
complexity, in a broader context, than the KLL one does. It is seen from the above
analysis of KLL and KLM values. However, it seems that the KLO measure better
takes into account both, i.e., the amplitude and the place of the components in a time
series. A detailed inspection of column KLO in Table 17.4 and left panel of
Fig. 17.17 shows that there exist two intervals of this measure, which are clearly
separated: (1) (0.470, 0.506) and (2) (0.529, 0.558). The first interval includes
KLO of the flow rate of rivers in the L regime while another one refers to the H
and M regimes. Now, the complexities of the UKR_D and VRB_S rivers, described
by the KLO measure, correspond to the less stochastic time series. It seems that this
is a more realistic measure than when their time series are described by the KLL,
KLU, and KLM measures.

The right panel of Fig. 17.17 depicts a spatial distribution of the KLO measure of
flow rate for 10 stations of seven rivers for the period 1965e86. This map enhances
two regions: (1) with higher KLO, which is strongly influenced by the high mountain
relief in the northwestern and eastern part of Bosnia and Herzegovina including the H
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FIGURE 17.16

The Kolmogorov complexity spectra for the normalized amplitude of the monthly flow rate

time series of the seven rivers in Bosnia and Herzegovina for the period 1965e86. The circles

indicate the regime of river course: (blue (dark gray in print versions)), H (green (light gray in

print versions)), and M (red (gray in print versions)) (Mihailovic et al., 2015).
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(three stations) and M (two stations) river regimes and (2) with lower KLO, which
corresponds to the lowland regions (the northern, northeastern, western and south-
eastern parts with L river regimes (five stations). In the central part of Bosnia and Her-
zegovina there exists a transition belt with the KLO values indicating the mixed
influences of the relief.
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How to face the
complexity of climate
models? 18
18.1 COMPLEXITY OF THE OBSERVED CLIMATE TIME SERIES
In the study of the climate system, an important role plays the complexity of the
observed time series as well as the complexity of the climate models used to get
projection of the climate in the future. In this chapter we shall deal with the
complexity of the observed time series while the next chapter will be devoted to
the complexity of climate models. The huge diversity and complexity of climate
elements, including their intensity, and temporal and spatial distribution, do not
allow easy descriptions. However, as we already emphasized, the traditional statis-
tical models and methods may not be appropriate for some climate elements, which
exhibit odd behaviors. This challenged the development of some of the finest
nonlinear dynamics methodologies to describe these behaviors.

In Section 16.3 we have already applied some of those methods. Namely, we
have used the Kolmogorov complexity (KLL) and the Kolmogorov complexity
spectrum highest value (KLM) of the UV-B radiation time series relying on the
paper by Mihailovi�c et al. (2013). It was found that the complexity loss of the
observed UV-B radiation time series may be attributed to (1) the increased human
intervention in the postecivil war period causing increase of the air pollution after
1999 and (2) the increased cloudiness due to climate changes.

First, we demonstrate the complexity of the spatial distribution of the monthly air
temperature for 46 places in Bosnia and Herzegovina for the period 1960e90, using
the overall Kolmogorov complexity (KLO) (see Section 15.3), which is a measure
of disorder in a time series. Fig. 18.1 depicts a spatial distribution of the monthly
air temperature for selected places in Bosnia and Herzegovina for the period indi-
cated. This map depicts two regions: (1) with higher KLO values which is strongly
influenced by the vicinity of the Pannonian Basin (northern and partially central area)
and (2) with lower KLO values, i.e., lower disorder in time series, which correspond
with the vicinity of the Adriatic Sea (southern and south-western area). Between
them is a transition belt (belt between them) with the KLO values indicating on
the mixed influences of the above-mentioned geographical factors and relief.

The study of precipitation up till now continues to be an exciting research area,
since quite a few aspects of precipitation generation and evolution have not been
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understood, clarified, and described satisfactorily. There are still several problems
related to the perception and modelling of precipitation. It is difficult to describe
easily precipitation because of its huge complexity, comprising its forms, extent,
intermittency, intensity, and temporal and spatial distribution (Koutsoyiannis,
2005). As an example, we analyze the long-term precipitation dynamics for two
locations with different geographies in Bosnia and Herzegovina. The pluviographic
regime of one location is influenced by the vicinity of the Adriatic Sea (Mostard
Mo), while the other is surrounded by mountain and flat areas (BihacdBi). The
time series were updated for the time interval 1960e84 having the length of
N ¼ 300 (Dre�skovi�c and Djug, 2012). The curves in Fig. 18.2 that describe the
Kolmogorov complexity spectrum for time series of both places suggest that their
long-term precipitation dynamics differs. The values of the KLM are slightly
different (1.152dBi and 1.097dMo), while the difference in the calculated KLO
values is more pronounced (0.511 for Bi and 0.558 for Mo). The differences in
the KLL (1.152dBi and 1.097dMo) are negligible, but the differences in the
KLM are larger. This is additional information about complexity that is not con-
tained in KL and KLM. This allows us to conclude that the Mo time series is

FIGURE 18.1

Spatial distribution of the overall Kolmogorov complexity (KLO) of the monthly air temperature

time series in Bosnia and Herzegovina for the period 1960e90.
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more complex than Bi time series having larger variability of amplitudes as it is seen
from the shape of its spectrum in Fig. 18.2.

Here, we demonstrate the complexity of the spatial distribution of the monthly
precipitation amount time series for 23 places in Bosnia and Herzegovina for the
period 1960e84, using the Precipitation Complexity Index (PCI) introduced by
Mihailovi�c et al. (2015a) that is practically the KLO measure (Mihailovi�c et al.,
2015b). Fig. 18.3 depicts a spatial distribution of the PCI index of the selected
places. This map depicts two regions: (1) with higher PCI index which is strongly
influenced by the presence of the Adriatic Sea and (2) with lower PCI index, which
corresponds with the vicinity of the Pannonian Basin (northern and partially central
area). Between them is a transition belt (southern and south-western area, up to cen-
tral part) with the PCI values indicating the mixed influences of the above-
mentioned geographical factors and relief. This index quantitatively indicates that
the difference in complexity of spatial distribution of precipitation in Bosnia and
Herzegovina is caused by the influence of (1) Adriatic Sea (close to the Mediterra-
nean Sea), (2) relief, and (3) the Pannonian Basin (Fig. 18.2) on its climatic regime
and accordingly to spatial and temporal distribution of precipitation.

In extension of this chapter we will analyze the time series of daily values for
three meteorological elements, two continuous and a discontinuous one, i.e., the
maximum and minimum air temperature and the amount of precipitation. The
analysis is based on the observations from seven weather stations in Serbia in
the period 1951e2010 (Fig. 18.4 and Table 18.1), to quantify the complexity of
the annual values for the above time series and to calculate the rate of its change.
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The Kolmogorov complexity spectrum for the normalized amplitude of the monthly

precipitation time series for two locations, Mostar and Bihac (Bosnia and Herzegovina) for

the period 1960e84.

Reprinted with permission from Mihailovi�c, D.T., Mimi�c, G., Nikoli�c-Ðori�c, E., Arseni�c, I., 2015b. Novel

measures based on the Kolmogorov complexity for use in complex system behavior studies and time series
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For that purpose, we have used the sample entropy (SampEn) and the Kolmogorov
complexity (KLL) as the measures which can indicate the variability and irregularity
of a given time series.

Many scientists try to estimate the effects of climate changes in various regions
of the world. In those efforts they often use various statistical methods to analyze
spatial and temporal variability of the precipitations. For example, Serbia, which
is a very interesting region in climate projections of precipitation (Mihailovi�c
et al., 2015c), was a subject of the study of the precipitation trend resulting with
several papers in which are used methods of classical statistics. Thus, in analysis
of the variability of the summer and winter precipitations To�si�c (2004) used the
empirical orthogonal function. Unka�sevi�c and To�si�c (2011) performed the statistical
analysis of daily precipitations over Serbia calculating the trends and indices such as
the number of days exceeding different threshold values, the fraction of the total
annual rainfall due to events above the 95th percentile, or the number of very wet
days. Goci�c and Trajkovi�c (2014) analyzed the spatial and temporal patterns of pre-
cipitation in Serbia with the precipitation concentration index and performed the
principal component analysis for the same time series. The spatial analysis of annual

FIGURE 18.3

Spatial distribution of the overall Kolmogorov complexity (KLO) of the monthly precipitation

amount time series in Bosnia and Herzegovina for the period 1960e84.

Reprinted with permission from Mihailovi�c, D.T., Dre�skovi�c, N., Mimi�c, G., 2015a. Complexity analysis of

spatial distribution of precipitation: an application to Bosnia and Herzegovina. Atmos. Sci. Lett. 16, 324e330.
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and seasonal air temperature trends in Serbia was also in the focus. Thus, Bajat et al.
(2015) have analyzed the magnitude of the trends, which were derived from the
slopes of linear trends using the least square method based on the mean monthly
data for the period 1961e2010. These methods give just a partial insight into the
behavior of the climate since the Earth’s atmosphere has evolved into a complex
system in which life and climate are intricately interwoven. The interface between

Negotin
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Novi Sad

Nis

Beograd

Vrsac

Vranje

FIGURE 18.4

The location of the weather stations in Serbia used in the complexity analysis.

Reprinted with permission from Mimi�c, G., Mihailovi�c, D.T., Kapor, D., 2015. Complexity analysis of the air

temperature and the precipitation time series in Serbia. Theor. Appl. Climatol. http://dx.doi.org/10.1007/

s00704-015-1677-6.

Table 18.1 The List of the Stations With Name, Abbreviation, Latitude,
Longitude, and Altitude

Station Abbreviation Latitude Longitude Altitude (m)

Sombor SO 45�470 19�050 87

Novi Sad NS 45�200 19�510 86

Belgrade BG 44�480 20�280 132

Vr�sac VS 45�060 21�180 94

Negotin NE 44�140 22�330 42

Ni�s NI 43�200 21�540 204

Vranje VR 42�330 21�550 432

Reprinted with permission from Mimi�c, G., Mihailovi�c, D.T., Kapor, D., 2015. Complexity analysis of the
air temperature and the precipitation time series in Serbia. Theor. Appl. Climatol. http://dx.doi.org/10.
1007/s00704-015-1677-6.
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Earth and atmosphere as a “pulsating biophysical organism” is a complex system
itself (Mihailovi�c et al., 2014). Thus, discovering the complexity of climate change
process direct us toward the complexity measures of the climate time series, which
can indicate to the irregularity and randomness of these time series. This is an essen-
tial step since this quantification is the crucial step in understanding complexity of
the climate, which has no single universal definition.

Here, we partially review the results of the complexity analysis of the maximum
and minimum air temperature and the precipitation time series based on the obser-
vations from seven stations in Serbia, during the period 1951e2010, which is per-
formed by Mimi�c et al. (2015). For that purpose they used the sample entropy
(SampEn) and the KLL complexity, calculating the annual values of the measures
estimating the trends during the considered period.

The Kolmogorov complexity of the maximum temperature has statistically
significant increasing trend for all of the seven stations. That trend is seen in
Fig. 18.5b for station Sombor. Higher KLL complexity means lower predictability
of the time series owing to the increase of randomness and irregularity of time series
that could be a potential problem in climate modelling in the future. The sample
entropy of the maximum temperature has also increasing but statistically insignifi-
cant trends (Fig. 18.5a for the station Sombor). The trends of the complexity mea-
sures of the minimum temperature are nonsignificant (Fig. 18.5c and d for the station
Sombor); also some of the trends are negative while the rest are positive, depending
on the station. On the other hand, the precipitation time series have decreasing trends
of both the sample entropy and the Kolmogorov complexity for all of the seven
stations (Figs. 18.5e and f for the station Sombor).

18.2 COMPLEXITY OF THE MODELED CLIMATE TIME SERIES
The question of the weather and climate modelling and predictability has been initi-
ated in the early sixties of the 20th century, which was elaborated in pioneering
works by Lorenz (1960, 1963a, 1963b, 1964). He was the first person in the scientific
world who explicitly pointed out importance of the following points in the nonlinear
dynamics in atmospheric motion: (1) question of prediction and predictability, (2)
importance of understanding the nonlinearity in modelling procedure, (3) demand
for discovery of chaos, and (4) careful consideration of sensitivity of differential
equations in modelling system on initial conditions. Here, we will not consider
them more comprehensively, since their detailed elaboration can be found in several
papers, for example in Mihailovi�c et al. (2014). Undoubtedly, the complex ocean/at-
mosphere/land dynamical system, called weather and its long time average climate,
can be considered as a complex one. This system is modeled by climate models hav-
ing different levels of sophistication.

An important concept in climate system modelling is that of a spectrum of
models of differing levels of complexity, each being optimum for answering specific
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questions. It is not meaningful to judge one level as being better or worse than
another independently of the context of analysis (Mihailovi�c et al., 2014). What is
important is that each model be appropriately questioned for its level of complexity
and quality of its simulation as emphasized by Randall et al. (2007). In that paper
they comprehensively considered the following points: (1) Earth system models
of intermediate complexity, that is, reduced-resolution models that incorporate
most of the processes represented by AOGCMs (Atmosphere-Ocean General Circu-
lation Models) and models of reduced complexity. However, in this section we
consider the model complexity on the basis of calculation of the maximum
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FIGURE 18.5

The trends of the complexity measures for the station Sombor compared for two periods

1951e2010 and 1961e2010, for the maximum temperature (a and b); the minimum

temperature (c and d) and the precipitation (e and f).
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complexity that can be generated by a model as it was done by Mihailovi�c et al.
(2014). Given a time series and the problem of choosing among a number of climate
models to study it, we suggest that models whose maximum complexity is lower
than the time series complexity should be disregarded because of being unable to
reconstruct some of the structures contained in the data. The increasing complexity
of those models is a growing concern in the modelling community. They are used to
integrate and process knowledge from different parts of the system and in doing so
allow us to test system understanding and create hypotheses about how the system
will respond to the virtual numerical experiments. However, if we strive to design
our models to be more “realistic,” we have to include more and more parameters
and processes. Then, within this approach the model complexity increases, and
thus we are less able to manage and understand the model behavior (Mihailovi�c
et al., 2014). Obviously, the question about model complexity could be considered
from the standpoint of a practitioner who sees it as a compromise between
complexity and manageability. His/her question is basically very simple: “How
can I check if this model is appropriate to study this problem with this data set?”
According to Boschetti (2008): “As a result, the ability of a model to simulate
complex dynamics is no more an absolute value in itself, rather a relative one: we
need enough complexity to realistically model a process, but not so much that we
ourselves cannot handle.”

Clearly, an answer to the above question requires (1) a definition and a measure
of complexity and (2) that this measure is equally applicable to the model and to the
data, because some sort of comparison is necessary. It is a hard task to find that
measure even approximately. However, intuitively we can put an accent on a view
of complexity which is more related to a model’s dynamical properties rather than
its architecture. Thus, we can say that, in developing tools, an advantage will be
given to a tool which gives answers to the following questions: (1) what is the
maximal dynamical complexity a given model can generate? and (2) what kind of
different dynamical behaviors can a given model generate? as it is underlined by
Boschetti (2008). For our consideration we will rely on Boschetti (2008) who
defined the complexity of an ecological model as the statistical complexity of the
output it produces that allows a direct comparison between data and model
complexity. Among the many different measures of complexity available in the
literature, for that purpose, he adopted the statistical complexity defined by Lempel
and Ziv (1976).

An example of comparison between complexities of a global and regional model.
In this section we will illustrate an example of comparison between complexities of
global and regional model. Here, we do not deal with statistical complexity of the
global and regional models. Our intention is just to show possible differences in
complexities of time series of precipitation as well as air temperature for
both models, applying the algorithm for calculating the KLL complexity
(Mihailovi�c et al., 2014).

In order to calculate complexities of model time series we use (1) air temperature
and (2) precipitation time series which are outputs from climate simulations for
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Belgrade and Novi Sad in Serbia (Djurdjevi�c and Rajkovi�c, 2008; Arseni�c et al.,
2013). The Belgrade data set, for the period 2071e2100, was derived from (1)
the SINTEX-G which is a coupled Atmosphere-Ocean General Circulation Model
(Gualdi et al., 2003) and (2) the Eta-POM regional model (Djurdjevic and Rajkovic,
2008). The Novi Sad data set, for the period 2021e50, was derived from (1) the
ECHAM5 which is the fifth generation of the ECHAM5 general circulation model
(Liu et al., 2013) and (2) the RegCM regional model (Giorgi, 2011).

We have calculated the KLL for each time series obtained when each sample, in
the original time series, is used as a threshold (N ¼ 10,800 for Belgrade and
N ¼ 11,323 for Novi Sad). The results are depicted in Fig. 18.6. We also have calcu-
lated Kolmogorov complexity (KLL) and its maximal value KLM of time series
from Fig. 18.6. Results of those calculations are given in Table 18.2. Hereinafter,
we will rely on the analysis from Mihailovi�c et al. (2014).
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FIGURE 18.6

The Kolmogorov complexity spectrum of the (a) precipitation and (b) air temperature time

series for Belgrade and (c) precipitation and (d) temperature for Novi Sad, in Serbia, obtained

from climate simulations using different models. On x axis are depicted the values of the time

series normalized as in Fig. 16.15.

Reprinted with permission from Mihailovic, D.T., Mimic, G., Arsenic, I., April 2014. Climate predictions: the

chaos and complexity in climate models. Adv. Meteorol. 1e14, 878249.
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From Fig. 18.6a it is seen that there is no difference between complexities of the
precipitation time series for Belgrade obtained by both models (global SINTEX-G
and regional Eta-POM) over all amplitudes in time series.

Moreover, the SINTEX-G model has slightly higher complexity. In contrast to
that, 18.6b depicts that the Eta-POM model mostly has the higher complexity
than the SINTEX-G model for the air temperature time series. From Table 18.2
we can see that for air temperature time series the KLL for the Eta-POM model
(0.207) is higher than for the SINTEX-G model (0.176), while the KLM values
are practically the same (0.331 and 0.326). Note that all of these complexities are
pronouncedly low. Further inspection of this table clearly shows that the precipita-
tion time series obtained by the SINTEX-G model has higher complexities (KLL:
0.705 and KLM: 0.834) than those obtained by the Eta-POM model (KLL: 0.671
and KLM: 0.793). This analysis indicates that the SINTEX-G and Eta-POMmodels,
in particular for precipitation, have approximately the same level of complexity.
Now, we analyze the air temperature and precipitation time series for Novi Sad ob-
tained by the global ECHAM5 and regional RegCM models. From Fig. 18.6c it is
seen that there is a large difference between complexities of the precipitation time
series over all amplitudes in time series. Moreover, the RegCM model has pro-
nouncedly higher complexity. Fig. 18.6d depicts that the RegCM and ECHAM5
models mostly have very similar complexities for the air temperature time series.
From Table 18.2 we can see that for air temperature time series the KLL for the
RegCM model (0.251) is higher than for the ECHAM5 model (0.241) and also
for the KLM values, 0.354 and 0.318, respectively. Similarly, as for the above-
analyzed models, these values of complexity are still low. Further inspection of
this table clearly shows that the precipitation time series obtained by the ECHAM5

Table 18.2 Kolmogorov Complexities (KLL and Its MaximumdKLM) Values for
the Precipitation and Air Temperature Time Series for Belgrade and Novi Sad, in
Serbia, Obtained From Climate Simulations Using Different Models.

Model

Global Regional

Quantity Measure SINTEX-G ECHAM5 ETA-POM RegCM

Temperature
(Belgrade)

KLL 0.176 0.207

KLM 0.326 0.331

Temperature
(Novi Sad)

KLL 0.241 0.251

KLM 0.318 0.354

Precipitation
(Belgrade)

KLL 0.705 0.671

KLM 0.834 0.793

Precipitation
(Novi Sad)

KLL 0.265 0.871

KLM 0.289 0.935

Reprinted with permission from Mihailovic, D.T., Mimic, G., Arsenic, I., April 2014. Climate predictions: the
chaos and complexity in climate models. Adv. Meteorol. 1e14, 878249.
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model has lower complexities (KLL: 0.265 and KLM: 0.289) than those obtained by
the RegCM model (KLL: 0.871 and KLM: 0.935). This analysis indicates the
ECHAM5 and RegCM models have approximately the same level of complexity
in simulation of the air temperature. In contrast to that, there is a large difference
in capabilities of these models to simulate the precipitation. Note that a higher value
of the KLL points out the presence of stochastic influence of different factors on a
time series. In this paper (Mihailovic et al., 2014) we suggest that climate models
whose maximum complexity is lower than the time series complexity should be dis-
regarded because of being unable to reconstruct some of the structures contained in
the data. To our knowledge this complexity analysis has not been used for analyzing
the complexity of climate models. However, for more reliable conclusion that could
be reached we need to test outputs of many different GCM and RegCM models.

An example of comparison between complexities of a regional climate model and
observed time series. In the previous example we have considered complexity
through the optics of the relationship between global and climate regional model.
The fact is that the increasing complexity of climate models is a growing concern
in the modelling community. However, with increasing model complexity, we are
less able to manage and understand the model behavior (Mihailovi�c et al., 2015c).

We consider the complexity of the EBU-POM model using the observed and
modeled time series of temperature and precipitation. Therefore, we have computed
the KLL spectrum, KLL, KLM, and SampEn values for temperature and precipita-
tion. The calculations are performed for the time interval 1961e1990: (1) on a daily
basis with a size of NN¼ 10,958 samples for temperature and (2) on a monthly basis
with a size NN¼ 360 for the precipitation. The simulated time series of temperature
and precipitation were obtained by the EBU-POM model for the given period. The
observed time series of temperature and precipitations for two stations in Serbia,
Zlatibor (ZL) (1028 m) and Sombor (SO) (88 m), taken from daily meteorological
reports of the Republic Hydrometeorological Service of Serbia. The results for both
sites are given and seen in Figs. 18.7 and 18.8. Based on Fig. 18.7, the KLL and
KLM values for ZL are higher than for SO in both the observed and modeled tem-
peratures (0.361 vs. 0.273 for the KL and 0.391 vs. 0.347 for the KLM values). Thus,
for both sites, the modeled (M) complexity is lower than the observed (O) one. This
finding means that the models with a KLL (and KLM) complexity lower than the
measured time series complexity are unable to reconstruct some of the structures
contained in the observed data. This difference is more pronounced for the ZL
site than for SO. As we noted, the KLL measure is also used as a measure of random-
ness taking values between 0 (for deterministic process such as, for example, a pe-
riodic motion) and 1 indicating processes that can be considered as the stochastic
ones. However, for both sites, the KLL complexity is lower, and its value for ZL in-
dicates the presence of stochastic influences that are not present at the SO site.

We have calculated the following parameters: embedding dimension (m ¼ 2),
tolerance (r ¼ 0.2), and time delay (s¼ 1) following Mihailovi�c et al. (2013). Lower
values of the SE for both sites (ZL: observedd1.060, modeledd1.007; SO:
observedd0.910, modeledd0.849) support the conclusion regarding a more regular
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mean daily temperature time series in this period. As might be expected, the SampEn
values (observed and modeled) for SO are lower than for ZL. This is because the
complexities of SO’s mean daily temperature time series are lower than those of
ZL. Note that a similar use of the SampEn values as a measure in studying the
climate complexity was used by Shuangcheng et al. (2006).
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FIGURE 18.7

The Kolmogorov complexity spectrum of the observed (O) and modeled (M) mean daily

temperatures for the sites (a) ZL and (b) SO for the period 1961e90. Modeled values are

obtained from the EBU-POM model for the same period.

Reprinted with permission from Mihailovi�c, D.T., Lali�c, B., Dre�skovi�c, N., Mimi�c, G., Djurdjevi�c, V., Jan�ci�c, M.,

2015c. Climate change effects on crop yields in Serbia and related shifts of Köppen climate zones under the

SRES-A1B and SRES-A2. Int. J. Clim. 35, 3320e3334.
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Based on Fig. 18.8, the complexities of the mean monthly precipitation amount
time series are higher than that of temperature because of the greater stochastic
nature of the former’s time series. Furthermore, the KLL value of the observed
values for ZL is higher than for the SO (1.109 vs. 1.085), whereas for modeled
values, the complexities are the same (1.061). The KLM value of the observed
time series for ZL is lower than for SO. In contrast, the KLM value of the modeled
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FIGURE 18.8

The Kolmogorov complexity spectrum of the observed (O) and modeled (M) mean monthly

precipitation amounts for the sites (a) ZL and (b) SO for the period 1961e90. Modeled values

are obtained from the EBU-POM model for the same period.

Reprinted with permission from Mihailovi�c, D.T., Lali�c, B., Dre�skovi�c, N., Mimi�c, G., Djurdjevi�c, V., Jan�ci�c, M.,

2015c. Climate change effects on crop yields in Serbia and related shifts of Köppen climate zones under the

SRES-A1B and SRES-A2. Int. J. Clim. 35, 3320e3334.
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FIGURE 18.9

(a) Serbia in Europe and (b) the 10 sites used in calculating the Kolmogorov complexity

spectrum highest value (KLM) and sample entropy (SampEn) values in Table 18.3dCU,
�Cuprija; DI, Dimitrovgrad; KS, Kru�sevac; KV, Kraljevo; NI, Ni�s; NS, Novi Sad; PO, Po�zega; SO,

Sombor; VR, Vranje; ZA, Zaje�car.

Reprinted with permission from Mihailovi�c, D.T., Lali�c, B., Dre�skovi�c, N., Mimi�c, G., Djurdjevi�c, V., Jan�ci�c, M.,

2015c. Climate change effects on crop yields in Serbia and related shifts of Köppen climate zones under the

SRES-A1B and SRES-A2. Int. J. Clim. 35, 3320e3334.

Table 18.3 Kolmogorov Complexity Spectrum Highest Value (KLM) and
Sample Entropy (SampEn) Values for the Precipitation Amount Time Series
Obtained by the EBU-POM Regional Climate Model Under the A1B Scenario,
for the Periods: (a) 2001e30 and (b) 2071e2100. In computing the SampEn
we have used the following sets of parameters (m ¼ 2, r ¼ 0.2, and s ¼ 1).

Site

A1B (2001
e2030)

A1B (2071
e2100) A2 (2001e2030) A2 (2071e2100)

KCM SE KCM SE KCM SE KCM SE

SO 1.109 1.920 1.109 1.839 1.156 2.030 1.203 1.911

NS 1.156 1.950 1.109 1.913 1.156 1.983 1.156 2.011

PO 1.203 2.005 1.156 1.944 1.156 1.844 1.132 1.889

CU 1.156 2.059 1.132 1.895 1.109 1.907 1.132 1.892

KR 1.156 2.006 1.132 1.966 1.109 1.901 1.132 1.776

KS 1.132 2.039 1.179 1.907 1.179 1.907 1.155 1.729

ZA 1.132 1.914 1.132 1.780 1.156 1.885 1.156 1.709

NI 1.132 2.050 1.156 1.971 1.156 2.034 1.179 1.841

DI 1.156 2.034 1.132 2.086 1.132 2.008 1.132 1.881

VR 1.109 2.032 1.156 1.981 1.156 1.893 1.156 1.914

Reprinted with permission from Mihailovi�c, D.T., Lali�c, B., Dre�skovi�c, N., Mimi�c, G., Djurdjevi�c, V.,
Jan�ci�c, M., 2015c. Climate change effects on crop yields in Serbia and related shifts of Köppen climate
zones under the SRES-A1B and SRES-A2. Int. J. Clim. 35, 3320e3334.
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time series for ZL (1.179) is higher in comparison with that of SO (1.132). In com-
parison with temperature, slightly higher values of the SE of the precipitation
amount time series for both sites (ZL: observedd2.094, modeledd2.077; SO:
observedd1.969; modeledd1.966) indicate the presence of a more stochastic
component in the mean monthly precipitation amount time series.

Additionally, we have computed the KLM and SampEn values, for 10 sites in
Serbia (Fig. 18.9), for the precipitation amount time series, which have a high level
of stochastic behavior. This time series was obtained from the EBU-POM regional
climate model under the A1B and A2 scenarios for the periods: (1) 2001e30 and (2)
2071e2100. In computing the SE values, we used m ¼ 2, r ¼ 0.2, and s ¼ 1. The
results are given in the corresponding rows of Table 18.3. Based on this table, the
values of both scenarios and periods are in the following ranges: (1) the KLM:
1.109e1.203 and (2) the SampEn: 1.709e2.086. These ranges indicate that the
EBU-POM model has a level of complexity that can provide reliable climate time
series, i.e., precipitation amount in this case.
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under the SRES-A1B and SRES-A2. Int. J. Clim. 35, 3320e3334.

Mihailovi�c, D.T., Malinovi�c-Mili�cevi�c, S., Arseni�c, I., Dre�skovi�c, N., Bukosa, B., 2013. Kol-
mogorov complexity spectrum for use in analysis of UV-B radiation time series. Mod.
Phys. Lett. B 27, 1350194.

Mimi�c, G., Mihailovi�c, D.T., Kapor, D., 2015. Complexity analysis of the air temperature and
the precipitation time series in Serbia. Theor. Appl. Climatol. http://dx.doi.org/10.1007/
s00704-015-1677-6.

Randall, D.A., Wood, R.A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V.,
Pitman, A., Shukla, A., Srinivasan, J., Stouffer, R.J., Sumi, A., Taylor, K.E., 2007. Climate
models and their evaluation. In: Solomon, S., Qin, D., Manning, M., Chen, Z.,
Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Climate Change 2007: The
Physical Science Basis. Contribution ofWorking Group I to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cam-
bridge, United Kingdom and New York, NY, USA.

Shuangcheng, L., Qiaofu, Z., Shaohong, W., Erfu, D., 2006. Measurement of climate
complexity using sample entropy. Int. J. Climatol. 26, 2131e2139.

To�si�c, I., 2004. Spatial and temporal variability of winter and summer precipitation over
Serbia and Montenegro. Theor. Appl. Climatol. 77, 47e56.

Unka�sevi�c, M., To�si�c, I., 2011. A statistical analysis of the daily precipitation over Serbia:
trends and indices. Theor. Appl. Climatol. 106, 69e78.

250 CHAPTER 18 How to face the complexity of climate models?

http://dx.doi.org/10.1007/s00704-015-1677-6
http://dx.doi.org/10.1007/s00704-015-1677-6


Interrelations between
mathematics and
environmental sciences 19
19.1 THE ROLE OF MATHEMATICS IN ENVIRONMENTAL

SCIENCES
In this chapter we will consider several issues related to the interrelations between
mathematics and environmental sciences. They mainly emerge as a result of
dealing with different mathematical formalisms in representing various environ-
mental phenomena. It turned out that the mathematical as well as the physical path-
ways have converged to one point discovering many inconsistencies in the use of
mathematical formalisms and physical (also biological, chemical, etc.) approaches
in modelling the environmental interfaces. In both cases, problems have emerged
either on an epistemological level or due to the lack of careful treatment of nonlin-
earity and complexity of the real world. Even in the case when the physical picture
was quite clear, the mathematical formalization used has not always pursued that
picture. In summary, we can say that during our work, two issues have always been
present explicitly or latently: (1) nonlinearities in the real world and (2) relation-
ship between mathematics and environmental sciences. Regarding the first issue,
our experience can be summarized as that “the nonlinearity can uncover a lot
but it does not allow much to be discovered” (D.M.). The second issue seen
through physicistemathematician’s optics has been interestingly elaborated in pa-
per by Wigner (1960), in which he was talking about “unreasonable effectiveness
of mathematics in the natural sciences,” deeply touching the interrelation between
mathematics and environmental sciences but mainly physics. In this section, we
will shortly make several comments about this interrelationship as well as about
our personal experience.

Probably the right person who was able to see the both sides of this interrelation-
ship is Eugene Wigner a Hungarian American theoretical physicist and mathemati-
cian. He shared the Nobel Prize in Physics in 1963 “for his contributions to the
theory of the atomic nucleus and the elementary particles, particularly through the
discovery and application of fundamental symmetry principles” (Nobel Media
AB, 2014). Wigner and Hermann Weyl introduced the group theory into physics,
particularly the theory of symmetry in physics. He performed ground-breaking
work in pure mathematics, in which he was the author of a number of mathematical
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theorems. In particular, Wigner’s theorem is a cornerstone in the mathematical
formulation of quantummechanics. He also left a trail in the research of the structure
of the atomic nucleus. In the above-mentioned paper he reviewed his huge scientific
experience about the role of mathematics in physical theories. We briefly elaborate
his reasoning.

The mathematics is used in physics for evaluating the results of the laws of na-
ture. In order to make it possible, the laws of nature must previously be formulated in
mathematical language. However, this is not the most important role of mathematics
in physics since it is just evaluating the consequences of already established theories.
In this situation mathematics (rather, applied mathematics as noted by E.W.), is
merely a serving tool for physics. Certainly, mathematics also plays a more para-
mount role in physics. This fact is already implied in the statement (attributed to
Galileo Galilei) that the laws of nature must have been formulated in the mathemat-
ical language which means that each of them is an object for the use of applied math-
ematics. The importance which mathematical concepts possess in the formulation of
the laws of physics can be illustratively seen, for example, through the axioms of
quantum mechanics as formulated, explicitly, by Paul Dirac. In quantum mechanics
there are two basic concepts: states and observables. The states are vectors in Hilbert
space, the observables self-adjoint operators acting on these vectors. The possible
values of the observations are the characteristic values of the operators. Now, the
question is how physics chooses certain mathematical concepts for the formulation
of the laws of nature, which are certainly only a fraction of all those concepts used in
physics. One way we can follow to reach an answer is that the concepts which were
chosen were not selected arbitrarily from a list of mathematical terms. Namely, in
many if not most cases, those terms were developed independently by the physicists
(E.W.) and then they have been conceived by the mathematicians. According to
Wigner (1960), “The concepts of mathematics are not chosen for their conceptual
simplicity even sequences of pairs of numbers are far from being the simplest con-
cepts but for their amenability to clever manipulations and to striking, brilliant argu-
ments. The Hilbert space of quantum mechanics is the complex Hilbert space, with a
Hermitean scalar product. Surely, complex numbers are far from natural or simple
and they cannot be suggested by physical observations. The use of complex numbers
in this case is not a trick of applied mathematics, but comes from a necessity in the
formulation of the laws of quantum mechanics.” Now, we will make some personal
reminiscences.

At the beginning of this century, one of us, D.M. started to cooperate with the
second author (I.B.) who has expressed his intention to be his Ph.D. student. Such
an idea, of connection between a physicist and a biologist, came from the third
author (D.K.), who is also a physicist. The original idea was to initiate the work
on a problem that could be subsumed under the most general topicdmodelling of
living systems. There was a risk of being lost in a field unknown for us since
none of us does have the necessary experience, especially mathematical, in such a
field. The first author intuitively perceived the fact that for physicists (and other sci-
entists from the environmental sciences), it is hard to get used to the level of
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mathematical abstraction from which sometimes they should start to solve a problem
they deal with. In other words when they are closer to the point when the interrela-
tion between mathematics and environmental sciences is not quite “clear,” then this
issue becomes more pronounced. Having in mind this anticipation, the first author
asked his fellow professor S. Crvenkovi�c whether he could present him and his
PhD student (the second author), a course in set theory, selected chapters of algebra
and Category Theory. This was the first time at the University of Novi Sad that
somebody gave such a course, which includes a comprehensive elaboration of the
Category Theory. The course was very interesting. The situation was similar to
the situation when three persons, mathematician, biologist, and physicist, find them-
selves in one room where each of them is not entirely sure how he can cooperate with
the other two. Occasionally, professor Crvenkovi�c was asking: “I do not understand
for what you need this abstract mathematics?” The first author always was
answering: “Don’t worry about that, just teach us as much as possible consistent!”
He was a good teacher, in particular, in elaboration of the proofs of Gödel’s incom-
pleteness theorems and scientific and educational explanation of the Category The-
ory. From this course the first author carries two impressions: (1) about the level of
abstraction in mathematics, that is much higher than in environmental sciences and
(2) the power of the Category Theory as the most general theory of modelling.

After a short view as well as personal insights about the interrelations between
mathematics and physics we are going to deal with another aspect of that relation-
ship. This aspect appears when mathematical concept has already been established
covering the environmental phenomenon and also including its evolution in time.
The part of that aspect has already been touched upon in Chapter 3, where we stated
our opinion about dilemma whether environmental interface systems’ models should
be built in the form of differential or difference equations, i.e., whether we should
deal either with the continuous-time or discrete-time, where time is considered as
a continuous or discrete variable, respectively. This choice is a dilemma that occurs
in interrelations between classical continuum mathematics and reality. Here, the
aforementioned aspect, seen from our point of view, we complement with two
more elements: complexity and chaos.

Traditional mathematical analysis of physical systems tacitly assumes that inte-
gers and all real numbers, no matter how large or how small, are physically possible
and all mathematically possible trajectories are physically possible (Kreinovich and
Kunin, 2003). Traditionally, this approach has worked well in physics, engineering,
and environmental sciences, but it does not lead to a very good understanding of
chaotic systems, which, as is now known, are extremely important in the study of
real-world phenomena ranging from weather to biological systems. In this chapter,
we deal with some issues in modelling pathways in environmental sciences in their
broadest context (in particular, in autonomous dynamical systems, which are com-
mon subject under consideration in modern environmental sciences (Mihailovi�c and
Mimic, 2012). They are (1) already mentioned issue of how to replace given differ-
ential equations by appropriate difference equations in the modelling of phenomena
in the environmental world; (2) whether a mathematically correct solution to the
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corresponding differential equation or system of equations are always physically
possible (Kreinovich and Kunin, 2003); and (3) phenomenon of chaos in autono-
mous dynamical systems, in particular in computing the environmental variables
from the corresponding equations that describe processes at the environmental inter-
faces (Mihailovi�c and Mimic, 2012).

19.2 DIFFERENCE EQUATIONS AND OCCURRENCE
OF CHAOS IN MODELLING OF PHENOMENA
IN THE ENVIRONMENTAL WORLD

In Chapter 3, we shortly elaborated two issues: (1) the choice of the model and (2)
continuous-time versus discrete-time in building the model. In this chapter we will
return to these issues, setting them into the context of the interrelations between
mathematics and environmental sciences through some examples and our
experience.

How to replace given differential equations by appropriate difference equations
in the modelling of phenomena in the environmental world? Dilemma whether we
should use either continuous-time or discrete-time in building the environmental
model includes a lot of questions. This dilemma is neither simple nor it could be
resolved unambiguously. Maybe the text that follows, which is derived from the
paper by Zeilberger (2001) and different scientific internet forums (http://
mathoverflow.net), picturesquely describes the fundamentality of this dilemma.

Although small discrete systems are unproblematic to work with, continuum
models are easier to deal with than large discrete systems. Whether or not nature is
fundamentally discrete, the most useful models are often continuous because the
discreteness can only occur in very small scales. Discreteness is useful to include
in the model if it occurs in the situation we are interested in. Thus, this is to a large
extent a question of scales of interest in the procedure of modelling (Ilmavirta, 2014).
In many cases (maybe most), approximate solutions are actually not simpler than
exact solutions. For example, when we want to find the planar curve of a given length
which encloses the largest area (the isoperimetric problem), then the problem can be
reduced to solving a system of ordinary differential equations. If we want to do that
analytically wewill get a circle; if we choose to do it discretely wewill get a sequence
of curves which give better and better approximations of a circle. Now the question
arises: How is the latter simpler? This is a serious issue in physics: continuous models
often have lots of symmetry that you lose when you discretize them (Siegel, 2014).
Also, physicists permanently use lattice approximations. Lattice models will typically
break part of the symmetry of the system, which is a disadvantage both from a theo-
retical point of view and from a practical point of view. For instance, it is not possible
to make a finite lattice model rotationally invariant although most laws of physics are
rotationally invariant (Henriques, 2014). The presence or absence of symmetries in a
physical system is model significant since each symmetry or its absence has physical
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meaning. Hence, symmetries that either exist or if they are absent just because of
“metaphysical preferences about notational syntax” (Jorg, 2014) are not desirable
wanted. Otherwise, this would correspond to a different physical system without a
physical reason for the difference. Finally, one interesting fact about discreteness in
environmental modelling noted in a scientific forum: “Discrete models are probably
useful if nature has genuinely discrete structure and we are interested in phenomena at
the scale where discreteness is visible. But on larger scales a discrete model would
contain something that we cannot measure and might not even be interested in. Some-
thing that cannot be measured and does not have a significant impact on the behavior
of the system should be left out of the model. This is related to the observation that
continuum models often work well for large discrete systems” (Ilmavirta, 2014).
Note, that there are a number of standard ways to replace an ordinary differential
equation with a difference equation in environmental modelling. The corresponding
techniques for solving them as well as partial differential equations are extremely
challenging and are the basis for a lot of current research in applied mathematics.
At this point, we shall leave the subject because our intention is not to delve deeply
into the above issues. Our intention is just to explicate our experience in research
work partly touching these issues.

Let us now consider an approach via difference equation, relying on the work by
der Vaart (1973), using as an example disintegration of the nuclei of the radioactive
atoms. The probability that any given nucleus disintegrates during a finite time in-
terval (possibly short) of length Dt is lDt, where l is the decay constant. It expresses
the proportionality between the size of the population of nuclei and the rate at which
the population decreases due to radioactive decay. It is expected that among large
number of nuclei, N(t) the number of disintegrated ones during the time interval
ðt; t þ DtÞ can be expressed as NðtÞlDt. Thus, we have the equation

Nðt þ DtÞ � NðtÞ ¼ �NðtÞlDt; (19.1)

which can be written in the form

Nðt þ DtÞ � NðtÞ
Dt

¼ �NðtÞl; (19.2a)

whose right-hand side does not depend on Dt. Note, that this is in the spirit of Feyn-
man’s reasoning (der Vaart, 1973) that (Eq. (19.2a)) may be replaced by

dNðtÞ
dðtÞ ¼ lim

Dt/0

Nðt þ DtÞ � NðtÞ
Dt

¼ �NðtÞl; (19.2b)

thus we get a genuine differential equation with the well-known solution having the
form

NðtÞ ¼ N0e
�lt; (19.3)

where N0 is the number of nuclei at time zero. This is the solution obtained by Joos
(1939) who derived the differential equation for radioactive decay. Having in mind
two assumptions: (1) the probability that any given nucleus disintegrates during the
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time element Dt is lDt (this fact he just elucidated by the fact that experience shows
l to be constant) and (2) among a large number, N, of nuclei it will be then found,
according to statistics, that during dt the number of Nldt will be practically disinte-
grated (der Vaart, 1973). However, in derivation of the differential equation for
radioactive decay, Joos (1939) treated differentials as infinitesimals that are not
too small. Note, that in derivation Eq. (19.2b) we had in mind Feynman’s motivation,
i.e., that for introduction of the mathematical concept of derivative as a model for the
physical concept of speed.

The question now arises whether a difference equation can be found which does
have the ‘same’ solutions as the differential equation (19.3). In that sense we have a
look at the function defined by Eq. (19.3), which solves differential Eq. (19.2b)
which originally comes from difference Eq. (19.2a). First we consider whether
N(t) ¼ N0e

�lt, constitutes a solution to difference Eq. (19.2a). After substitution
of this solution in this difference equation, it becomes obvious that the answer is
negative, since �lDtse�lDt � 1. We can conclude only that this solution is an
approximate solution of the difference Eq. (19.2a). Let us solve difference equation

Nðt þ DtÞ ¼ NðtÞð1� lDtÞ for t ¼ 0;Dt; 2Dt;.; (19.4)

that can be also written in the form

NðsDtÞ ¼ N0ð1� lDtÞs for s ¼ 0; 1; 2;. (19.5)

Solution of Eq. (19.5) obviously depends on the lDt. Thus, if 0 < lDt < 1, then
the qualitative behavior of that solution is physically correct since NðsDtÞ is a
decreasing function of s, with lims/N equal to 0 (black line in Fig. 19.1). If
1 < lDt < 2, then NðsDtÞ is positive for even s, negative for odd s, but the curve still
has lims/N equal to 0 (red line in Fig. 19.1). Finally, if lDt < 2, then NðsDtÞ shows
oscillations between positive and negative values (blue line in Fig. 19.1), while ampli-
tude increasing when s/ N. From this examplewe see that depending on the size of
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FIGURE 19.1

Solution of difference Eq. (19.4) as a function of dimensionless time (s) for different values of
lDt : (0.5)dblack line; (1.9)dred line and (2.001)dblue line.
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the time step Dt relative to the parameter l, the solutions of the difference Eq. (19.2a)
and differential Eq. (19.2b) may be qualitatively different. Let us suppose hypotheti-
cally that in this example the value of the parameter l is unknown. Then the exact so-
lutions of Eq. (19.2a) which are not different from the solutions of Eq. (19.2b) are
those solutions having no negative values. This is a real assumption since the negative
values of the solutions are physically impossible in the context in which Eqs. (19.2a)
and (19.2b) are derived, where N(t) is the number of nondisintegrated nuclei. Howev-
er, in the situation when the value of the parameter l is unknown (often for either orig-
inal research or development work), we usually have a huge problem since then there
is no guidance for the choice of the time step Dt.

Now, let us set ourselves the next task. Whether we can find a difference equation
which has the “same” solutions as the differential Eq. (19.3). It seems that this task
does not look difficult. Namely, if we use analytic expression for these solutions
we get

NðtÞ ¼ N0e
�lt; Nðt þ DtÞ ¼ N0e

�lðtþDtÞ; Nðt þ DtÞ ¼ NðtÞe�lDt: (19.6)

The third equation in (19.6) is the equation we are looking for. Certainly, its pre-
cise form could not be found without integrating the differential Eq. (19.2b). There is
no problem that we convince ourselves that the difference Eqs. (19.2a) and (19.6)
lead to the same differential equation, if one determines N(t) from them according
to the first equality in (19.2b), i.e., when Dt/0. Both of them (19.2a) and (19.6)
represent the same physical property, i.e.,

Nðt þ DtÞ � NðtÞ ¼ �lNðtÞ
Nðt þ DtÞ ¼ �

e�lDt � 1
�
NðtÞ: (19.7)

Both the equations indicate that a certain number of nuclei present at Dt disinte-
grate in the interval t and t þ Dt and that the number is independent of the number of
nuclei present at t but depending on Dt. Note that number of nuclei is indeed propor-
tional to Dt. In the above reasoning with respect to the phenomenon of radioactive
decay we know, although with a hindsight, that the function described by (19.3) is a
good description of the observations. In contrast to that if the scientists want to study
this phenomenon computationally then they might have chosen the conceivable dif-
ference Eq. (19.2a) that mathematically represents their assumptions. Following this
approach they can expect to meet a “wrong” step length (Dt > l�1), in which case
they would have found physically unrealistic curves corresponding to Dt > l�1.
This is not the reason to conclude that their assumptions are wrong. In fact, unreal-
istic curves are artifacts of the computational simulation, so the best way to solve
this equation is to analytically integrate Eq. (19.2a), in particular, when the phenom-
ena under consideration are such that is more realistic to maintain the step length Dt
away from zero (der Vaart, 1973).

Phenomenon of chaos in autonomous dynamical systems in environmental
modelling. Since the issue (1) i.e., how to replace given differential equations by
appropriate difference equations, has been already considered in Section 19.1,
we will just add one comment arising from our environmental modelling
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experience. It seems more natural to build the model as a discrete difference equa-
tion from the start, without going through the painful, doubly approximate process
of first, during the modelling stage, finding a differential equation to approximate a
basically discrete situation, and then, for numerical computing purposes, approx-
imating that differential equation by a difference scheme (der Vaart, 1973;
Mihailovi�c and Mimic, 2012). The issue (1) closely touches the issue (2). Namely,
for some phenomena, described by equation(s), we already know the correspond-
ing laws that can be deduced from symmetry conditions. However, in many other
cases, we must determine equations from the general theoretical ideas and exper-
imental data. Therefore, we can ask ourselves whether we can guarantee that these
are the right equations. Even though we “know” equation(s), but we still are not
sure about the values of parameters of these equations, since there are many gen-
eralizations we derived or designed for a very wide interval (Kreinovich and
Kunin, 2003). Kolmogorov (1968) was the first who started in 1960s to analyze
this issue. He pointed out two main reasons why a mathematically correct solution
to the corresponding system of differential or difference equation cannot be phys-
ically possible: (1) there is difference in understanding the term “random” in
mathematics and physics (also in environmental sciences) and (2) solutions of
the corresponding systems of differential equations which lead to some numbers
may be mathematically correct, but they are physically meaningless (Kolmogorov,
1968; Kreinovich, 2003). Finally, irregularities and chaotic fluctuations in solution
of difference equation, describing autonomous dynamical systems (issue (3)), can
come from two main reasons: (1) numerical, i.e., because we try to choose appro-
priate difference equation whose solution is “good” approximation to the solution
of the given partial differential equation and (2) physical, i.e., occurrence of
chaotic fluctuations in the considered system because, for example, the system
cannot oppose an enormous amount of radiation, suddenly entering the system
(Mihailovi�c and Mimi�c, 2012).

The theory of dynamical systems is a well-developed and successful mathematical
framework to describe time-varying phenomena. Its wide area of applications includes
complex systems in different spatial and time scales. In particular, this broad scope of
applications has provided a significant impact on the theory of dynamical systems it-
self and is one of the main reasons for its popularity over the last decades (Kloeden
and Pötzsche, 2011). As a general principle, before abstract mathematical tools can
be applied to real-world phenomena from the above areas, one needs corresponding
models. At the conceptional level, in developing such models, one distinguishes an
actual dynamical system from its surrounding environment. The system is given in
terms of physical or internal feedback laws yielding an evolutionary equation. The pa-
rameters in this equation describe the current state of the environment that may change
with time in autonomous dynamical systems. Hence we are led to autonomous differ-
ence equation of the form xnþ1 ¼ f ðxnÞn˛Zþ.
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A difference equation of the form

xnþ1 ¼ f ðxnÞ; (19.8)

where f : Rd/Rd, is called a first-order autonomous difference equation on the

state space Rd. There is no loss of generality in the restriction to first-order differ-
ence Eq. (19.8), since higher-order difference equations can be reformulated as
Eq. (19.8) by the use of an appropriate higher dimensional state space. Successive
iteration of an autonomous difference Eq. (19.8) generates the forward solution

mapping p : Zþ � Rd/Rd defined by xn ¼ pðn; x0Þ ¼ f nðx0Þ ¼ f+f+/+f ðx0Þ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

n times

,

which satisfies the initial condition p(x0) ¼ x0 and the semigroup property

xn ¼ pðn;pðm; x0ÞÞ ¼ f nðpðm; x0ÞÞ ¼ f n+f m ¼ f nþmðx0Þ ¼ pðmþ n; x0Þ; (19.9)

for all m; n˛Zþ; x0˛Rd. Here, and later, Zþ denotes the nonnegative integers.
For example, the difference Eq. (19.8) may represent a variable time-step discre-

tization method for a differential equation _x ¼ f ðxÞ that can be solved numerically
by stepping either forward

xnþ1 ¼ xn þ Dsf ðxnÞ (19.10)

or backward in time from the known initial condition

xnþ1 ¼ xn þ Ds

1� Ds vf
vx ðxnÞ

f ðxnÞ; (19.11)

where Ds is the time step while n denotes the time iteration.
An example of occurrence of the chaos when solving either Eqs. (19.10) or

(19.11) that represent time changes of the dimensionless environmental interface
temperature response to the radiative forcing (Mihailovi�c and Mimic, 2012) will
be analyzed in more detail in Chapters 20 and 21. This equation, in which stepping
forward in time is used, has a general form

znþ1 ¼ Anzn � Bnz
2
n (19.12)

where An and Bn are the coefficients, while zn is the dimensionless environmental
interface temperature (Mihailovi�c and Mimic, 2012). Irregularities in solution of dif-
ference Eq. (19.12) can come from two reasons: numerical and physical, as
explained a few paragraphs above.

Fig. 19.2 shows the bifurcation diagram of Eq. (19.12). It is plotted with incre-
ments of 0.01 and 0.05 for A and B (taking the values 0.2, 0.4, 0.6, 0.8, and 1), respec-
tively. From this figure are seen chaotic regions indicating chaotic fluctuations of z.
However, inside the chaotic interval there exist open periodical “windows.” It means
that the dynamical system considered, i.e., temperature fluctuations on the environ-
mental interface, is synchronized in some regions where the chaotic regime prevails.

References 261



REFERENCES
der Vaart, H.R., 1973. A comparative investigation of certain difference equations and related

differential equations: implications for model building. Bull. Math. Biol. 35, 195e211.
Henriques, A. (http://mathoverflow.net/users/5690/andr%c3%a9-henriques), 2014. Why

Have Mathematicians Used Differential Equations to Model Nature Instead of Difference
Equations, http://mathoverflow.net/q/182155.

Ilmavirta, J. (http://mathoverflow.net/users/55893/joonas-ilmavirta), 2014. Why Have Math-
ematicians Used Differential Equations to Model Nature Instead of Difference Equations,
http://mathoverflow.net/q/182082.

Jorg, G. (http://mathoverflow.net/users/58777/guido-jorg), 2014. Why Have Mathematicians
Used Differential Equations to Model Nature Instead of Difference Equations, http://
mathoverflow.net/q/182155.

Joos, G., 1939. Lehrbuch der theoretischen Physik. Leipzig Akademische Verlagsgesellschaft.
3. Auflage.
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Chaos in modelling the
global climate system 20
20.1 CLIMATE PREDICTABILITY AND CLIMATE MODELS
A short survey on the predictability.Among the most interesting and fascinating phe-
nomena that are predictable is the chaotic ocean/atmosphere/land system called
weather and its longtime average, climate. While weather is not predictable beyond
a few days, aspects of the climate may be predictable for years, decades, and perhaps
longer (Keller, 1999). These two statements clearly summarize the current opinion
and state in climate modelling community that deals with one of the aspects of the
aforementioned subjects. However, the question of the weather and climate model-
ling and predictability has been initiated in the early sixties of the 20th century, when
it was elaborated in the pioneering works by Lorenz (1960, 1963a, 1963b, 1964). He
was the first person in the scientific world who explicitly pointed out the following
points related to the nonlinear dynamics in atmospheric motion: (1) question of pre-
diction and predictability, (2) importance of understanding the nonlinearity in
modelling procedure, (3) demand for discovery of chaos, and (4) careful consider-
ation of sensitivity of differential equations in modelling system on initial conditions
(Mihailovi�c et al., 2014). Subsequent three decades after appearance of these papers
have been characterized by the strong interest for predictability of weather and
climate on both theoretical and practical levels. The following topics have been
set in the focus: (1) dynamics of error growth; (2) linear and nonlinear systems
(normal modes, optimal modes, nonlinear geophysical systems, and scale selection
in error growth); (3) predictability of systems with many scales; (4) limit of predict-
ability; (5) weather predictability (growth of errors in General Circulation Models
(GCMs) based on Lorenz’s analysis); (6) predictability from analogs (targeted ob-
servations); (7) climate predictability (predictability of time-mean quantities, pre-
dictability of the second kind) and potential predictability; (8) seasonal mean
predictability; and (9) El NiñoeSouthern Oscillation (ENSO) chaos, predictability
of coupled models, and decadal modulation of predictability (Krishnamurthy,
1993; Lorenz, 1969, 1975, 1982; Hartmann et al., 1995; Shukla, 1981, 1985; Sim-
mons and Hollingsworth, 2002; Lorenz and Kerry, 1998; Shukla et al., 2000; Zwiers
and Kharin, 1998; Jin et al., 1994; Kirtman and Schopf, 1998). Because the focus of
this chapter is complexity and predictability in climate modelling, we will not go
deeper into any of these issues.
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Earth’s atmosphere has evolved into a complex system in which life and climate
are intricately interwoven. The interface between Earth and atmosphere as a “pulsat-
ing biophysical organism” is a complex system itself. Note that we use the term
complex system in Rosen’s sense as it was explicated in Chapter 1. Generally,
predictability refers to the degree that a correct forecast of a system’s state can be
made either qualitatively or quantitatively. For example, while the second law of
thermodynamics can tell us about the equilibrium that a system will evolve to and
steady states in dissipative systems can sometimes be predicted, there exists no
general rule to predict the time evolution of systems far from equilibrium, that is,
chaotic systems, if they do not approach some kind of equilibrium. Their predictabil-
ity usually deteriorates with time.

Lorenz (1984) discussed several issues in the predictability of weather systems.
According to him, predictability is defined as the degree of accuracy with which it is
possible to predict the state of weather system in the near and also the distant future
(predictability in Lorenz’s sense). In this paper it is assumed that weather predictions
are made on the basis of imperfect knowledge of weather system’s present and past
states. This rather general statement is comprehensively elaborated by Hunt (1999).
He described the fundamental assumptions and current methodologies of the two
main kinds of environmental forecast (i.e., weather forecast). The first one is valid
for a limited period of time into the future and over a limited space-time “target”
and is largely determined by the initial and preceding state of the environment,
such as the weather or pollution levels, up to the time when the forecast is issued
and by its state at the edges of the region being considered. The second kind provides
statistical information over long periods of time and/or over large space-time targets
so that they only depend on the statistical averages of the initial and “edge” condi-
tions. Environmental forecasts depend on the various ways in which models are
constructed. These range from those based on the “reductionist” methodology
(i.e., the combination of separate, scientifically based models for the relevant pro-
cesses) to those based on statistical methodologies, using mixture of data and scien-
tifically based empirical modelling. For example, limitations of the predictability in
the world of atmospheric motions are concisely discussed in paper by James (2002).
In this paper the predictability of a forced nonlinear system is numerically consid-
ered, proposed by Lorenz, as a compelling heuristic model of the midlatitude global
circulation. In summary, as stated by Orell (2003) “Prediction problems have been
described by Lorenz as falling into two categories. Problems that depend on the
initial condition, such as short-to medium-range weather forecasting, are described
as predictions of the first kind, while problems that depend on boundary rather than
initial conditions, such as, in many cases, the longer-term climatology, are referred
to as predictions of the second kind. Both kinds of prediction will be affected by
error in the model equations used to approximate the true system” (Hunt, 1999;
Collins, 2002; Orell, 2003).

The above insight of the predictability is underlined in the context of the “envi-
ronmental predictability” (primarily linked to the climate change issues). We finish
with the following question: can we significantly improve the weather/climate
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predictions compared to the level they currently reached? Since models that are in
use give more or less different outputs and are based on somewhat different
underlying assumptions, it is obvious that they can be improved. We can achieve
that using two strategies. One could be based on common practice of analyzing
obtained results and introducing local improvements and optimizations where
necessary. The second strategy could rely on substantial changes of the very struc-
ture of the models. Such approach will rely on theoretical reconsiderations of the
basics of modelling approach. As Hunt (1999) emphasized: “We concluded that
philosophical studies of how scientific models develop and of the concept of
determinism in science are helpful in considering these complex issues.” What
we should keep in mind is that there exists limitation of the modelling attempts
on an epistemological level. To show that, we will use Gödel’s incompleteness
theorem about Number Theory (Gödel, 1931). Basically it says that no matter
how one tries to formalize a particular part of mathematics, syntactic truth in the
formalization does not coincide with the set of truths about numbers. In other
words Gödel’s theorem shows that formalizations are part of mathematics but
not all of mathematics. There are many ways to look and “read” Gödel’s theorem.
One possible way is offered by Rosen (1985). According to him the first thing to
bear in mind is that both Number Theory and any formalization of it are systems
of entailment. It is the relation between them, or more specifically the extent to
which these schemes of entailment can be brought into congruence, that is of
primary interest. The establishment of such congruencies, through the positing
of referents in one of them for elements of the other, is the essence of the modelling
relation. In a precise sense, this theorem asserts that a formalization in which all
entailment is syntactic entailment is too impoverished in entailment to be
congruent to Number Theory, no matter how we try to establish such congruence.
This kind of situation is termed complexity by Rosen (1977). Namely, in this light,
Gödel’s theorem says that Number Theory is more complex than any of its formal-
izations or, equivalently, that formalizations, governed by syntactic inference
alone, are simpler than Number Theory. To reach Number Theory from its formal-
izations or, more generally, to reach a complex system from a simpler one requires
some kind of limiting processes.

Let us return to the question we were asking ourselves after we had shortly
considered climate modelling and predictability beyond the complexity. Our opinion
is that there is a significant space for improvement of models and their capabilities to
provide good forecasts. It can be done only if the modelling attempts are directed
toward the following steps: from structures and states to processes and functions;
from self-correcting to self-organizing systems; from hierarchical steering to partic-
ipation; from conditions of equilibrium to dynamic balances of no equilibrium; from
single trajectories to bundles of trajectories; from linear causality to circular causal-
ity; from predictability to relative chance; from order and stability to instability,
chaos, and dynamics; from certainty and determination to a larger degree of risk,
ambiguity, and uncertainty; from reductionism to emergentism; from being to
becoming (Arshinov and Fuchs, 2003).

20.1 Climate predictability and climate models 267



The current issues in modelling the global climate system. The target of global
climate models is the Earth’s climate system, consisting of the physical and chem-
ical components of the atmosphere, ocean, land surface, and cryosphere. In climate
simulations, the objective is to correctly simulate the spatial variation of climate
conditions in some average sense. There exists a hierarchy of different
climate models, ranging from simple energy balance models to the very complex
global circulation models. These models attempt to account for as many processes
as possible to simulate the detailed evolution of the atmosphere, ocean, cryosphere,
and land system, at a horizontal resolution that is typically of order hundreds of ki-
lometers. Climate model complexity is a result of the nonlinearity of the equations,
high dimensionality, and the linking of multiple subsystems. However, the secret of
understanding of climate model complexity lies in the nonlinear dynamics of the at-
mosphere and oceans, which is described by the NaviereStokes equations whose so-
lution is one of the most vexing problems in all of mathematics.

To better prepare the reader for the following section we will briefly go through
the main current issues related to the modelling of the global climate system (Curry,
2011). (1) Chaos. Weather can be considered as being in the state of deterministic
chaos, owing to its sensitivity to initial conditions. The source of the chaos is non-
linearities in the NaviereStokes equations. Therefore, a consequence of sensitivity
to initial conditions is that beyond a certain time (no more than seven days) the sys-
tem will no longer be predictable. Climate models are also sensitive to initial con-
ditions. However, in addition, in these models, coupling of a nonlinear, chaotic
atmospheric model to a nonlinear, chaotic ocean model gives rise to something
much more complex than the deterministic chaos of the weather model. Those
coupled models give rise to bifurcation, instability, and chaos. The situation is
further complicated because the coupled atmosphere/ocean system cannot be clas-
sified by the current theories of nonlinear dynamical systems, where definitions of
chaos and attractor cannot be invoked in situations involving transient changes of
parameter values (Stainforth et al., 2007a; Curry, 2011; Annan and Connolley,
2005). We will elaborate this issue in the Section 20.3 through examples originating
from our modelling experience. (2) Confidence in Climate Models. The relevant
issue is how well the climate model reproduces reality, that is, whether the model
“works” and is fit for its intended purpose. In the absence of model verification or
falsification, Stainforth et al. (2007b) describe the challenges of building confidence
in predictions using current models and consider the implications for experimental
design and the balance of resources in climate modelling research. (3) We are aware
that our understanding of, and ability to simulate, the Earth’s climate is rather
limited. That fact causes the climate model imperfection (Stainforth et al., 2007b),
which is divided into two types: uncertainty and inadequacy. The term “model un-
certainty” means that we cannot reliably choose parameter values (or ensembles of
parameter values), which will provide the most informative results. In addition,
further complications arise from the choice of parameterization. Finally, model un-
certainty is associated with uncertainty in model parameters, subgrid parameteriza-
tions, and also initial conditions. It is a well-known problem that numerical models
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of natural systems cannot be identical to the structure of those systems; that is, they
cannot be isomorphic to the real system (Stainforth et al., 2007b). In other words,
they are inadequate; that is, before we run any simulation of the future, we know
in advance that models are unrealistic representations of many relevant aspects of
the real-world system (Stainforth et al., 2007b; Beven, 2002; Smith, 2002). And,
finally, atmospheric science has played a leading role in the development and use
of computer simulation in scientific endeavors. Climate simulations of future states
of weather and climate have important societal applications. Thus, we should have in
mind this following statement by Heymann (2010): “Computer simulation in the at-
mospheric sciences has caused a host of epistemic problems, which scientists
acknowledge and with which philosophers and historians are grappling with [sic].
But historically practice overruled the problems of epistemology. Atmospheric sci-
entists found and created their proper audiences, which furnished them with legiti-
macy and authority. Whatever these scientists do, it does not only tell us something
about science, it tells us something about the politics and culture within which they
thrive.”.

20.2 AN EXAMPLE OF THE REGIONAL CLIMATE MODEL
APPLICATION

In this section we will present an example of the application of one the regional
climate models (RCMs) with an overview of its outputs. The nested RCM technique
consists of using initial conditions, time-dependent lateral meteorological conditions
and surface boundary conditions to drive high-resolution RCMs. The driving data is
derived from GCMs (or analyses of observations) and can include GHG and aerosol
forcing. The basic strategy is, thus, to use the global model to simulate the response
of the global circulation to large-scale forcings and the RCM to (1) account for sub-
GCM grid scale forcings like complex topographical features and land cover inho-
mogeneity with the idea that it should be done in a physically based way and (2)
enhance the simulation of atmospheric circulations and climatic variables at fine
spatial scales. The nested regional modelling technique essentially originated
from numerical weather prediction RCMs are now used in a wide range of climate
applications, from palaeoclimate to anthropogenic climate change studies. They can
provide high-resolution (up to 10e20 km or less) and multidecadal simulations and
are capable of describing climate feedback mechanisms acting at the regional scale.
A number of widely used limited area modelling systems have been adapted to, or
developed for, climate application and recently for coupling atmospheric models
with other climate process models, such as hydrology, ocean, sea-ice, chemistry/
aerosol a time series and land-biosphere models (IPPC, 2007).

Here, we obtained the time series by dynamic downscaling of climate simula-
tions conducted with the ECHAM5 GCM coupled with the Max Planck Institute
Ocean Model (MPI-OM) (Jungclaus et al., 2006). The horizontal resolution of the
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GCM was T63 (approximately 140 � 210 km for the mid-latitudes) with 31 vertical
levels. The downscaling of the GCM climate simulations was performed with the
coupled regional climate model EBU-POM (Djurdjevic and Rajkovi�c, 2012). The
atmospheric part of the EBU-POM is the Eta/National Centers for Environmental
Prediction (NCEP) model, and the oceanic part uses the POM. Eta/NCEP model
is a grid point limited-area model. Numerical schemes in the model’s dynamic
core conserve energy and entropy together with other important basic and derived
quantities (Janji�c, 1977, 1984, 2001, 2003; Mesinger et al., 1988). The model’s
physics includes turbulence, convection, and large-scale precipitation (Janji�c,
1990, 1994). For convection, the model uses the Betts-Miller-Janji�c convective
adjustment scheme (Janji�c, 1994). The radiation and land-surface processes model
used in the Eta model are described in Djurdjevic and Rajkovi�c, (2012). The ocean
component, POM, is a primitive-equation grid-point model. This model has a free
surface and a split time step, with a two-dimensional external mode and a three-
dimensional internal mode with a complete thermodynamics scheme (Blumberg
and Mellor, 1987). The two models are joined into a single model with an indepen-
dently developed coupler that enables physically correct and efficient exchange of
energy and mass fluxes at the interface between the atmosphere and the ocean
(Djurdjevic and Rajkovi�c, 2008, 2012). Specifically, for this integration, the center
of the atmospheric Eta model was at 41.5�N, 15�E, with�19.9� boundaries in easte
west direction, �13.0� boundaries in northesouth direction (Fig. 20.1), 0.25� hori-
zontal resolution and 32 vertical levels (with the first level at 20 m and the top level
at 10 hPa). The ocean model featured 0.2 � 0.2� of horizontal resolution and 21 ver-
tical levels. The POM model was set over the Mediterranean Sea without the Black
Sea; for other open seas, the sea surface temperature from the GCM was used as a
bottom boundary condition. The coupling frequency was 6 min. To reduce system-
atic model error (model bias) in the key climate variables, the statistical method of
bias correction (Piani et al., 2010) was applied to surface air temperatures and daily
precipitation using modeled and observed daily time series of variables over the
period 1961e90. The method assumes the construction of the correction functions
based on the difference between the cumulative density function (cdf) of two data
sets. The same correction functions are then applied for the whole scenario integra-
tion period up to 2100.

The projection of future climate at the regional and local scale is important for
the development of local, national, and international policies to mitigate and adapt
to the threat of climate change. Here, we show an example of the regional climate
model projections of air temperature and precipitation, which are then used to
establish shifts in the Köppen climate zones by comparing the results of downscaling
with the EBU-POM model for the A1B and A2 scenarios over 2001e30 and 2071e
2100 and the present climate simulations for the period 1961e90 (Mihailovi�c et al.,
2015).

The Köppen climate classification is a widely used climate classification system.
Shifts of climate zones based on the Köppen climate classification were considered
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on the basis of either global or regional climate model simulations (Hanf et al., 2012;
Shi et al., 2012; Mahlstein et al., 2013; Mihailovi�c et al., 2015). We derived the
climate zones in Serbia, using climate simulations by the EBU-POM model
(Fig. 20.2) for the period 1961e90 and according to the Köppen classification
(Kottek et al., 2006), are as follows: Cfwaxʺ, Cfwbxʺ, Dfwbxʺ, and ET. The dominant
climate zone is Cfwbxʺ, where C ¼ mild temperate/mesothermal climate;
f ¼ significant precipitation during all seasons; w ¼ dry winters (in which the driest
winter month average precipitation is less than one 10th the wettest summer month
average precipitation); b ¼ warmest month averaging below 22�C (but with at least
4 months averaging above 10�C); a ¼ warmest month averaging above 22�C;
xʺ ¼ the second precipitation maximum occurs in autumn; D ¼ continental/micro-
thermal climate (a mean temperature above 10�C in the warmest months and a cold-
est month average below �3�C) and ET ¼ polar and alpine climate with average
temperatures below 10�C for all 12 months of the year (Kottek et al., 2006).
Thus, the climate of Serbia can be described as moderate-continental. However,
the climate of Serbia is influenced by the Alps, the Mediterranean Sea, the Genoa
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Model domains. Area bounded by outer line is the Eta Model Domain; the inner rectangle

represents the domain boundary of the Princeton Ocean Model (POM).

Reprinted with permission from Kr�zi�c, A., To�si�c, I., Djurdjevi�c, V., Veljovi�c, K., Rajkovi�c, B., 2011. Changes in

climate indices for Serbia according to the SRES-A1B and SRES-A2 scenarios. Clim. Res. 49, 73e86.
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Gulf, the Pannonian basin, the Moravian valley, the Carpathian and Rhodope moun-
tains, the hilly mountainous part with ravines and the highland plains, as well as the
deep southward penetration of polar air masses, which leads to high spatial vari-
ability (Radinovi�c, 1979). The comparison of Fig. 20.3a and 20.2 indicates that there
are no changes in the Dfwbxʺ (18.2%) and ET (0.3%) climate zones for the period
2001e30 (the A1B scenario).

In contrast, there is an evident expansion of the Cfwaxʺ climate type (10.4%), in
particular in North Serbia (Vojvodina), i.e., the region with the highest crop produc-
tion. As indicated in Fig. 20.3b, which depicts changes for the period 2071e2100,
the ET climate type vanishes, and Dfwbxʺ is reduced on 1.1% of the total territory.
The most evident change is seen in the expansion of the Cfwaxʺ climate type
(81.5%), which replaces the formerly dominant Cfwbxʺ type (17.4%). The future
climate of Serbia will be warmer and drier according to the A1B scenario
(Mihailovi�c et al., 2015).

FIGURE 20.2

Climate zones over Serbia according to the Köppen classification obtained from the

simulations by EBU-POM model (Djurdjevic and Rajkovi�c, 2012) for the period 1961e90.

Reprinted with permission from Mihailovi�c, D.T., Lali�c, B., Dre�skovi�c, N., Mimi�c, G., ÐurCevi�c, V., Jan�ci�c, M.,

2015. Climate change effects on crop yields in Serbia and related shifts of Köppen climate zones under the

SRES-A1B and SRES-A2. Int. J. Clim. 35, 3320e3334.
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As indicated in Fig. 20.4a, for the period 2001e30 (the A2 scenario), there is a
decrease of 4.2 percentage points in the Dfwbxʺ climate type (14.0%), whereas the
territory covered by ET (0.1%) climate type remains practically the same. As in the
A1B scenario, there is an evident expansion of the Cfwaxʺ climate type, but in this
scenario, the expansion covers a wider area (17.6%). This is also more pronounced
in North Serbia (Vojvodina). As indicated in Fig. 20.4b, which depicts changes for
the period 2071e2100, the ET climate type vanishes, and Dfwbxʺ is reduced to 0.4%
of the total territory. At this point, the expansion of Cfwaxʺ climate type is 85.4%,
replacing the dominance of Cfwbxʺ (14.2%). The future climate in Serbia will
become warmer and drier, similar to the A1B scenario, but these changes are
more pronounced in the A2 scenario (Mihailovi�c et al., 2015).

It is interesting to see which is the level of impact of climate change on the ther-
mal and moisture regimes of soils using the climate projections for soil temperature
and moisture. Here, we will analyze the thermal and moisture regimes of Serbian
RSGs (Reference Soil Groups) using regional climate simulation data based on
the A1B scenario (Mihailovi�c et al., 2016).
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FIGURE 20.3

Köppen climate zones over Serbia for the period (a) 2001e30 and (b) 2071e2100 obtained

from the EBU-POM model simulation under the A1B scenario.

Reprinted with permission from Mihailovi�c, D.T., Lali�c, B., Dre�skovi�c, N., Mimi�c, G., ÐurCevi�c, V., Jan�ci�c, M.,

2015. Climate change effects on crop yields in Serbia and related shifts of Köppen climate zones under the

SRES-A1B and SRES-A2. Int. J. Clim. 35, 3320e3334.
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The areas (Fig. 20.5a) containing the dominant RSGs in Serbia, according to the
IUSS Working Group WRB classification (2014), are depicted in Fig. 20.5b, while a
detailed description of soil types in Fig. 20.5b can be found inMihailovi�c et al. (2016).

Here, we consider the spatial distribution of the mean annual soil temperature
and moisture. The mean annual soil temperature spatial distributions are due to
the combined effects of land cover, RSG, and expected climate changes (Kang
et al., 2000). The mean annual soil temperature in the top soil layers (0e40 cm)
is given in Fig. 20.6 for different RSGs in Serbia. The mean annual soil temperature
variations in this layer vary between approximately 1.9�C in southwestern Serbia to
2.4�C in northwestern and northern Serbia (Fig. 20.6a) (for the 2021e50 period).
However, the changes obtained for the 2071e2100 period (Fig. 20.6b) vary between
2.8�C (southwest region) to 3.5�C (northwestern and northern regions). The areas
with Chernozems, Eutric Cambisols, and Planosols (1, 5, and 6) display the highest
soil temperatures for both periods (Fig. 20.6). As indicated in Mihailovi�c (2016), the
parts of the northern, northwestern, southern lowland, and western regions
(altitude < 500 m, as illustrated in Fig. 20.5a) consist of nonirrigated arable land,
permanently irrigated land, pastures, complex cultivation patterns, land principally
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FIGURE 20.4

Köppen climate zones over Serbia for the period (a) 2001e30 and (b) 2071e2100 obtained

from the EBU-POM model simulation under the A2 scenario.

Reprinted with permission from Mihailovi�c, D.T., Lali�c, B., Dre�skovi�c, N., Mimi�c, G., ÐurCevi�c, V., Jan�ci�c, M.,

2015. Climate change effects on crop yields in Serbia and related shifts of Köppen climate zones under the

SRES-A1B and SRES-A2. Int. J. Clim. 35, 3320e3334.
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occupied by agriculture, natural vegetation, and sparse forest land cover classes. As
previously stated, these soils possess lower water contents and larger thermal diffu-
sivities, resulting in higher mean annual soil temperatures.

The areas with Umbrisols and Dystric Cambisols (3 and 4) are predominantly
located beneath natural vegetation (broad-leaved forests, coniferous mixed forests,
or pastures) and located in mostly mountainous regions (altitude > 500 m). Vertisols
and Umbrisols (2 and 3) are dark soils with high water-retention capacities. They
retain water throughout the year and possess smaller thermal diffusivities, resulting
in smaller soil temperature variations. Note that the soil temperature changes
strongly influence soil respiration, which impacts the CO2 release soil organic matter
decomposition (Conant et al., 2008), microbial processes (Rankinen et al., 2004),
soil processes (Paul et al., 2004), agricultural production, biodiversity, and
ecosystem functioning.
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FIGURE 20.5

(a) The 150 sites in Serbia used in the example, with altitudes classified into five intervals,

and (b) the dominant soil types in Serbia according to the IUSS Working Group WRB

classification (2014). (1) Haplic Chernozems and Gleyic Chernozems (34 sites); (2) Vertisols,

Gleysols, and Fluvisols (18 sites); (3) Umbrisols and Rendzic Leptosols (16); (4) Dystric

Cambisols (52); (5) Eutric Cambisols (19); and (6) Planosols and Luvisols (11). The numbers

in parentheses after the RSGs represent the numbers of sites with regional simulation data for

each RSG.

Reprinted with permission from Mihailovi�c, D.T., Dre�skovi�c, N., Arseni�c, I., �Ciri�c, V., Djurdjevi�c, V., Mimi�c, G.,

Pap, I., Bala�z, I., 2016 Impact of climate change on the thermal and moisture regimes of RSGs in Serbia: an

analysis with data from regional climate simulations under SRES-A1B. Sci. Total Environ. 571, 398-409.
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FIGURE 20.6

The mean annual soil temperature in the top soil layer (0e40 cm) of different RSGs in Serbia

for 2021e50 (a) and for 2071e2100 (b) periods under the A1B scenario, against the 1961e

90 period (c). This and all maps in further text are obtained from data sets of 150 sites using

the GIS technique as in (Ninyerola et al., 2000).

Reprinted with permission from Mihailovi�c, D.T., Dre�skovi�c, N., Arseni�c, I., �Ciri�c, V., Djurdjevi�c, V., Mimi�c, G.,

Pap, I., Bala�z, I., 2016 Impact of climate change on the thermal and moisture regimes of RSGs in Serbia: an

analysis with data from regional climate simulations under SRES-A1B. Sci. Total Environ. 571, 398-409.
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The relative mean annual soil moisture variations across Serbia fluctuate
between approximately 4.0% in parts of the southwestern, central, and northeastern
regions to 9.6% in parts of the western, central, and eastern regions (Fig. 20.7a)
(2021e50 period). The relative changes obtained for the 2071e2100 period
(Fig. 20.7b) are slightly higher, varying between 5.4% and 11.9%. Fig. 20.7a and
b illustrate that areas with Chernozems, Eutric Cambisols, and Planosols (1, 5,
and 6) display the highest relative soil moisture changes during both periods
(2021e50 and 2071e2100) (Mihailovi�c et al., 2016). This soil water loss is likely
due to thermal diffusivity differences based on RSG. Namely, these soils possess
larger bulk densities, which result in larger thermal diffusivities (Nofziger, 2000),
more intensive heating and substantial soil drying. Lower relative changes are
expected in the areas with Vertisols, Umbrisols, and Dystric Cambisols (2, 3, and 4).
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FIGURE 20.7

Relative mean annual soil moisture decrease in the top soil layers (0e40 cm) of different

RSGs in Serbia for the 2021e50 (a) and 2071e2100 (b) periods under the A1B scenario, as

compared to the 1961e90 period.

Reprinted with permission from Mihailovi�c, D.T., Dre�skovi�c, N., Arseni�c, I., �Ciri�c, V., Djurdjevi�c, V., Mimi�c, G.,

Pap, I., Bala�z, I., 2016 Impact of climate change on the thermal and moisture regimes of RSGs in Serbia: an

analysis with data from regional climate simulations under SRES-A1B. Sci. Total Environ. 571, 398-409.
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20.3 OCCURRENCE OF CHAOS AT ENVIRONMENTAL
INTERFACES IN CLIMATE MODELS

The discovery of deterministic chaos attracted the attention of environmental mod-
elers (Mihailovi�c and Mimic, 2012). Many of models are very simple, yet even this
simplicity can generate chaotic behavior, which resulted in publication of numerous
papers and books, including those about chaos in environmental problems (Popova
et al., 1997). Note that it is not instantaneously understandable how much an inves-
tigation of chaos says us about the real world. However, there is a situation when we
have quite a clear case about the usefulness of considering the chaos in the real
world, i.e., when it occurs unexpectedly in parts of the parameter space in some
models. Then a full understanding of the dynamics of oscillating systems allows
one, if necessary, to stabilize the periodic oscillations, thereby avoiding chaos
(Ruelle, 1994). It is well known that the existence of chaotic behavior in sets of
ordinary differential equations or difference ones is very sensitive to changes of
parameters. Chaos often exists only in a very narrow range of parameters space
and depends on the magnitude of their changes in the case of periodically forced
systems (Moon, 1987). Therefore, the question whether chaotic behavior could be
expected when we model the real environmental interfaces is: Surely, but intention-
ally fixing the parameters that describe the environmental interface, in order to avoid
chaotic behavior is not the best way in designing the model usually because the basic
variable (representing some important environmental quantity) changes with time
under the influence of some field which is nonlinearly coupled to the variable. As
we said, the mathematical formalism corresponding to this situation is either a dif-
ference or differential nonlinear equation with the parameters mentioned above actu-
ally describing this field. From this point of view the chaos can arise even after the
change of some of the parameters. Also, we can consider the situation when the
basic quantity is fixed, and the problem lies in the parameter space. Now, the change
of one or more of the system parameters in time in a nonlinear manner, in fact causes
the chaotic behavior of the parameter. This parameter is related to the original var-
iable by a feedback and we again face the chaotic behavior of the system.

Here, we consider the issue addressed above in the sense whether we can find
either domain or domains where physically meaningful solutions exist. We do
that by considering the stability of physical solution of Eq. (3.1). Coefficients An

and Bn in this equation change periodically during a day (see Section 3.1). There-
fore, in the further analysis their changes can be given in a form An ¼ Asin(p2n)
and Bn ¼ Bsin(p2n) (Mihailovi�c and Mimic, 2012). Stability, in mathematics, is a
condition in which a slight disturbance in a system does not produce too disrupting
an effect on that system. In terms of the solution of a differential equation, a function
f(z) is said to be stable if any other solution of the equation that starts out sufficiently
close to it when z ¼ 0, remains close to it for succeeding values of z. If the difference
between the solutions approaches zero as z increases, the solution is called asymp-
totically stable. If a solution does not have either of these properties, it is called
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unstable. Stability of solutions is important in physical problems because if slight
deviations from the mathematical model caused by unavoidable errors in measure-
ment do not have a correspondingly slight effect on the solution, the mathematical
equations describing the problem will not accurately predict the future outcome. We
consider the stability of physical solution of Eq. (3.1) in sense of the Lyapunov expo-
nent. Generally, the stability of a time-dependent system vz/vt ¼ f(t) at the equilib-
rium z0 with vz0/vt ¼ 0 ¼ f(t0) can be evaluated by assuming a small perturbation

and linearizing vðz0 þ zÞ=vt ¼ f ðz0Þ þ ðvf=vzÞx0z0 or vz
0
/vt ¼ lz

0
, where l ¼ (vf/

vz)(z0) (Lyapunov exponent) with exponential solution z
0 ¼ z

0
(t ¼ 0)elt. The system

is stable if l < 0, and unstable if l > 0. Eq. (3.1) is typically autonomous. However,
since the ranges of coefficients An and Bn are known, we will analyze the behavior of
the Lyapunov exponent for the corresponding autonomous equation which uni-
formly changes in intervals of An and Bn.

We calculate the Lyapunov exponent for the trajectory starting at z0

l ¼ lim
n/N

1

n

Xn�1

i¼0

lnj f 0ðziÞj: (20.1)

The sign of l is characteristic of the attractor type. For stable fixed point (steady
state) and (limit) cycles, l is negative; for chaotic attractors, l is positive. For the
map given by Eq. (3.1) we have, by definition

l ¼ lim
n/N

1

n

Xn�1

i¼0

ln
���Azi � Bz2i

�
p cosðpziÞ þ ðA� 2BziÞsinðpziÞ

��: (20.2)
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FIGURE 20.8

Lyapunov exponent (a) and sample entropy (b) for Eq. (3.1) given as a function of different

values of coefficient A ˛ (0,2) and of two values of coefficient B. The increment for A was

0.005.

Reprinted with permission from Mihailovi�c, D.T., Mimic, G., 2012 Kolmogorov complexity and chaotic phe-

nomenon in computing the environmental interface temperature. Mod. Phys. Lett. B 26, 1250175.
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We also computed the sample entropy (SampEn) (see Section 9.1). The calcu-
lated Lyapunov exponent of Eq. (3.1) (SampEn), as a function of the coefficients
A and B are depicted in Fig. 20.8. Each point in the above graphs was obtained
by iterating 2000 times from the initial condition to eliminate transient behavior
and then averaging over another 500 iterations. Initial condition: z ¼ 0.25. Looking
at Fig. 20.8a we can see that for B ¼ 0.01 the solution of Eq. (3.1) is stable (l < 0)
for intervals A ˛ [0,1.44] and A ˛ [1.72,2.0]. Between them, the solution is unstable
with chaotic fluctuations (l > 0) but with sporadic windows of stability (l > 0)
occurring in irregular intervals. However, for B ¼ 0.5 solution of Eq. (3.1) is
always unstable l > 0. Fig. 3.1 shows regions of stable and unstable solutions of
Eq. (3.1) determined by the values of the Lyapunov exponent as a function the
coefficients A ˛ (0,2) and B ˛ (0,0.5). The increment for changing values of A
and B was 0.005. Calculated values of (SampEn) are shown in Fig. 20.8b
(r < 0.05 and m ¼ 5). From this figure it is seen that (SampEn) follows the shape
of the Lyapunov exponent, i.e., it is equal to zero for l < 0 or when the values of
l are close to zero. Otherwise, it has a value up to 0.6.
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Gödel, K., 1931. On formally undecidable propositions of Principia Mathematica and related
systems I (Translated by Martin Hirzel). Monatsh. Math. 38, 173e198.

Hanf, F., Korper, J., Spangehl, T., Cubasch, U., 2012. Shifts of climate zones in multi-model
climate change experiments using the Koppen climate classification. Meteorol. Z 21,
111e123.

280 CHAPTER 20 Chaos in modelling the global climate system

http://www.realclimate.org/index.php/archives/2005/11/chaos-and-climate/
http://www.realclimate.org/index.php/archives/2005/11/chaos-and-climate/


Hartmann, D.L., Buizza, R., Palmer, T.N., 1995. Singular vectors: the effect of spatial scale on
linear growth of disturbances. J. Atmos. Sci. 52, 3885e3894.

Heymann, M., 2010. The evolution of climate ideas and knowledge. Wiley Interdiscip. Rev.
Clim. Change 1, 581e597.

Hunt, J., 1999. Environmental forecasting and turbulence modeling. Phys. D 133, 270e295.
IPPC, 2007. Regional Climate Models (RCMs). https://www.ipcc.ch/ipccreports/tar/wg1/380.

htm.
IUSS Working Group WRB, 2014. World Reference Base for Soil Resources 2014. Interna-

tional Soil Classification System for Naming Soils and Creating Legends for Soil Maps.
World Soil Resources Reports No. 106. FAO, Rome.

James, N., 2002. Models of the predictability of a simple nonlinear dynamical system. Atmos.
Sci. Lett. 3, 42e51.

Janji�c, Z.I., 1977. Pressure gradient force and advection scheme used for forecasting with
steep and small scale topography. Contrib. Atmos. Phys. 50, 186e199.

Janji�c, Z.I., 1984. Nonlinear advection schemes and energy cascade on semi-staggered grids.
Mon. Weather Rev. 112, 1234e1245.

Janji�c, Z.I., 1990. The step-mountain coordinate: physical package. Mon. Weather Rev. 118,
1429e1443.

Janji�c, Z.I., 1994. The step-mountain eta coordinate model: further developments of the
convection, viscous sublayer and turbulence closure schemes. Mon. Weather Rev. 122,
927e945.

Janji�c, Z.I., 2001. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the
NCEP Meso Model. NOAA/NWS/NCEP. Office Note No. 437, 61 pp.

Janji�c, Z.I., 2003. A nonhydrostatic model based on a new approach. Meteorol. Atmos. Phys.
82, 271e285.

Jin, F.-F., Neelin, J.D., Ghil, M., 1994. El Niño on the devil’s staircase: annual subharmonic
steps to chaos. Science 264, 70e72.

Jungclaus, J.H., Botzet, M., Haak, H., Keenlyside, N., Luo, J.J., Latif, M., Marotzke, J.,
Mikolajewicz, U., Roeckner, E., 2006. Ocean circulation and tropical variability in the
coupled model ECHAM5/MPI-OM. J. Clim. 19, 3952e3972.

Kang, S., Kim, S., Oh, S., Lee, D., 2000. Predicting spatial and temporal patterns of soil tem-
perature based on topography, surface cover and air temperature. For. Ecol. Manage. 136,
173e184.

Keller, C.F., 1999. Climate, modeling, and predictability. Phys. D 133, 296e308.
Kirtman, B.P., Schopf, P.S., 1998. Decadal variability in ENSO predictability and prediction.

J. Clim. 11, 2804e2822.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Koppen-

Geiger climate classification updated. Meteorol. Z 15, 259e263.
Krishnamurthy, V., 1993. A predictability study of Lorenz’s 28-variable model as a dynamical

system. J. Atmos. Sci. 50, 2215e2229.
Kr�zi�c, A., To�si�c, I., Djurdjevi�c, V., Veljovi�c, K., Rajkovi�c, B., 2011. Changes in climate

indices for Serbia according to the SRES-A1B and SRES-A2 scenarios. Clim. Res. 49,
73e86.

Lorenz, E.N., 1960. The statistical prediction of solutions of dynamic equations. In: Proceed-
ings of the International Symposium on Numerical Weather Prediction, pp. 629e635,
Tokyo, Japan.

Lorenz, E.N., 1963a. The predictability of hydrodynamic flows. Trans. N.Y. Acad. Sci. Ser. 2
25, 409e423.

References 281

https://www.ipcc.ch/ipccreports/tar/wg1/380.htm
https://www.ipcc.ch/ipccreports/tar/wg1/380.htm


Lorenz, E.N., 1963b. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130e141.
Lorenz, E.N., 1964. The problem of deducing the climate from the governing equations.

Tellus 16, 1e11.
Lorenz, E.N., 1969. The predictability of a flow which contains many scales of motion. Tellus

21, 289e307.
Lorenz, E.N., 1975. Climate predictability. In: The Physical Basis of Climate Modeling.

GARP Publication Series, vol. 16. WMO, Geneva, Switzerland, pp. 132e136.
Lorenz, E.N., 1982. Atmospheric predictability experiments with a large numerical model.

Tellus 34, 505e513.
Lorenz, E.N., 1984. Some aspects of atmospheric predictability. In: Burridge, D.M., Killn, E.

(Eds.), Problems and Prospects in Long and Medium Range Weather Forecasting.
Springer, Berlin, Germany, pp. 1e20.

Lorenz, E.N., Kerry, E.A., 1998. Optimal sites for supplementary weather observations: simu-
lation with a small model. J. Atmos. Sci. 55, 399e414.

Mahlstein, I., Daniel, J.S., Solomon, S., 2013. Peace of shifts in climate regions increases with
global temperature. Nat. Clim. Change 3, 739e743.

Mesinger, F., Janji�c, Z.I., Nickovi�c, S., Gavrilov, D., Deaven, D.G., 1988. The step-mountain
coordinate: model description and performance for cases of Alpine lee cyclogenesis and
for a case of an Appalachian redevelopment. Mon. Weather Rev. 116, 1493e1518.

Mihailovi�c, D.T., Dre�skovi�c, N., Arseni�c, I., �Ciri�c, V., Djurdjevi�c, V., Mimi�c, G., Pap, I.,
Bala�z, I., 2016. Impact of climate change on the thermal and moisture regimes of
RSGs in Serbia: an analysis with data from regional climate simulations under
SRES-A1B. Sci. Total Environ. 571, 398e409.

Mihailovi�c, D.T., Lali�c, B., Dre�skovi�c, N., Mimi�c, G., ÐurCevi�c, V., Jan�ci�c, M., 2015. Climate
change effects on crop yields in Serbia and related shifts of Köppen climate zones under
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Chaos in exchange of
vertical turbulent energy
fluxes over environmental
interfaces in climate
models

21

21.1 CHAOS IN COMPUTING THE ENVIRONMENTAL
INTERFACE TEMPERATURE

The environmental interface energy balance is usually defined with respect to an
active layer of infinitesimal small thickness (Fig. 21.1). In this case the storage of
energy in the layer can be neglected and the energy balance equation takes the form:

GYð1� aÞ þ LY� L[þ H þ E þ S ¼ 0 (21.1)

or, summarizing the radiation fluxes

Rþ H þ E þ S ¼ 0; (21.2)

where R is the net radiation, GY is the global radiation, a is the albedo, LY is the
atmospheric counterradiation, L[ is the terrestrial emission, H is the sensible heat
flux, E is the latent heat flux, and S is the soil heat flux. R and S are available energy
terms while H and E represent turbulent fluxes. Regarding the sign convention, we
use the following one: fluxes are considered positive when directed toward the sur-
face (energy sources) and negative when directed away from the surface (energy
sinks). Exceptions are L[ and a R[ (outgoing radiation fluxes), for which a minus
sign is explicitly used in the energy balance equation. Note that this equation is
mentioned as an example of diffusive coupling in the interaction of two environ-
mental interfaces on the Earth’s surface in Section 8.2.

In other situations, however, the active layer has a measurable thickness
(Fig. 21.2). In this case the rate of change of energy stored in the layer, CgvTg/vt,
must be included in the equation

Cg
vTg
vt

¼ Rþ H þ E þ S; (21.3)
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FIGURE 21.2

Energy balance equation terms at the environmental interface when the active layer has a

measurable thickness.

FIGURE 21.1

Energy balance equation terms at the environmental interface (Mihailovi�c et al., 2014).
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where Tg is the environmental interface temperature. In many instances we also need
to take the lateral fluxes (advection) into account. This situation is encountered for
instance with vegetation or snow.

In atmospheric models of all scales (e.g., climate, regional, mesoscale, and
small-scale models) the environmental interface temperature or shortly surface
temperature is computed from either the energy balance equation at the
atmosphereesurface interface in diagnostic form or the balance equation of a
thin soil layer in prognostic form. In the diagnostic case, the soil heat flux param-
eterization is done very crudely. One possibility is to consider it as a constant part
of the net radiation while the second is that the heat capacity of the earth is sup-
posed to be zero with the ground heat flux also zero. On the other hand, Mahrer
and Pielke (1977) have calculated the soil heat flux using a full treatment of soil
heat diffusion in a multilevel soil model. Bhumralkar (1975) studied the applica-
tion of procedures for calculating the surface temperature in the context of a gen-
eral circulation model. He showed that the foregoing assumption of zero soil heat
capacity results in an excessive diurnal range of temperature at the soil surface. He
also showed that the heat flux into the soil could be represented by the sum of a
temperature-derivative term and the difference between surface and deep soil tem-
perature (Mihailovi�c et al., 1999). Blackadar (1976) also introduced such an
expression with slightly modified coefficients for use in a mesoscale model. Basi-
cally, he has established one of the most effective procedures for calculating the
surface temperature using a prognostic equation based on the “force-restore”
method. This “force-restore” method and its later use (Lin, 1980; Stull, 1988)
and generalization (Dickinson, 1988) are still powerful tools in calculating the sur-
face temperature whose variations in a diurnal range are less extreme than when the
assumption of zero heat capacity is made.

An example of “force-restore” method application by solving Eq. (21.3) by the
land surface scheme LAPS (Mihailovi�c et al., 2010) is given in Fig. 21.3. This
figure shows the calculated and observed temporal variations of soil surface tem-
perature, Tg, beneath the soybean canopy at the experimental site in Marchfeld
(Austria), while Fig. 21.3b depicts a comparison between the calculated and
observed diurnal variations of soil surface temperature beneath the soybean can-
opy at Rimski �San�cevi (Serbia). In both cases the soil surface temperature was
measured using platinum resistance thermometers set in the top layer. Since soil
temperature in the surface layer fluctuates much more than in the deeper soil
layers, numerical models usually give values that can differ from the observed
soil surface temperatures. This model feature is particularly pronounced under a
sparse canopy. Although both soybean fields had a significant fraction of bare
soil (soybean fractional cover was 0.65 and 0.60, respectively), the simulated
values of the soil surface temperature compared well with the measurements for
both datasets, suggesting that the model is well able to simulate accurately diurnal
variation of the top soil temperature beneath the crop (Mihailovi�c and Eitzinger,
2007).
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An environmental interface that is peculiarly interesting in the calculation of
environmental interface temperature in geophysical models is the rocky surface.
This surface is often the dominant type of ground on the interface between the
celestial objects and space or the atmosphere if it exists. That is the reason why,
in the atmospheric and other numerical models, the calculation of rock surface
temperature should be made with considerable attention. Calculation of the surface
temperature, using the energy balance equation at the interface, is more complicated
for rocks than for other solid materials, due to their particular thermal and physical
properties (Arseni�c et al., 2000).

FIGURE 21.3

Two-day variation of the soil surface temperature, Tg simulated by the model proposed

and observed beneath a soybean canopy for (a) 6e7 July 1995 (Marchfeld, Austria) and (b)

6 July 1982 (Rimski �San�cevi, Serbia).

Reprinted with permission from Mihailovi�c, D.T., Eitzinger, J., 2007. Modelling temperatures of crop environ-

ment. Ecol. Model. 202, 465e475.
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To solve this problem, Arseni�c et al. (2000) have modified the “force-restore”
method into a self-consistent procedure for simultaneous determination of both sur-
face and the deep ground temperature. Their modification is verified by calculating
the lunar surface temperature (Fig. 21.4). There is a physical reason for this choice
since the Moon has no exchange of heat by the latent and sensible heat fluxes due to

FIGURE 21.4

The calculated diurnal variation of the lunar surface temperature (solid line) and the deep

ground temperature (dashed line) reached through five iterations, compared to observations

(Arseni�c et al., 2000). For verification of the method suggested, three available data sets with

the Earth-based observations concerning the lunar surface temperature obtained in the

infrared spectral area were used. They are indicated by DS1 (Stimpson and Lucas, 1972),

DS2 (Jones et al., 1975), and DS3 (Jones et al., 1975).

Reprinted with permission from Arsenic, I., Mihailovic, D.T., Kapor, D.V., Kallos, G., Lalic, B., Papadopoulos, A.,

2000. Calculating the surface temperature of the solid underlying surface by modified “Force Restore” method.

Theor. Appl. Climatol. 67, 109e113.
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absence of the atmosphere. Thus, on the right-hand side of the force-restore Eq.
(21.3) remain only two terms, one due to radiation and other due to the ground
heat flux whose imbalance, determined by the errors in estimation of the deep
ground temperature, will be more emphasized than in the presence of the
atmosphere.

When calculating the environmental interface temperature in environmental nu-
merical models, we often encounter surfaces that have such thermal characteristics
that the coefficients in the energy balance Eq. (21.3) may vary significantly. There-
fore, it causes an unexpected behavior of the parameter that can lead to the appear-
ance of the chaos (see Section 20.3). One example for environmental interface is
depicted in Fig. 21.2. For this interface, visible radiation provides almost all of
the received energy. Some of the radiant energy is reflected back to the space.
The interface also radiates some of the energy received from the Sun. The quantity
of the radiant energy remaining on the environmental interface is the net radiation,
which drives physical processes important to our further considerations. Since all of
the energy transfer processes occur in the finite time interval, the energy balance
equation at any environmental interface can be written in terms of finite differences
of ground and air temperatures as seen from Eq. (8.7). Under some conditions, this
equation can be transformed into the logistic Eq. (8.8) in which x is the dimension-
less temperature (Mihailovi�c, 2010), i.e.,

xnþ1 ¼ rxnð1� xnÞ; (21.4)

where r ¼ 1þs, s ¼ Dt=Dtp is the dimensionless time, Dt is the time step, and Dtp is
the scaling time of energy exchange at the environmental interface. With this time we
indicate the time which is needed for establishing the balance between all kinds of en-
ergy (by radiation, convection, and conduction as seen from Eq. (21.3)) reaching the
environmental interface (expressed through quantity S ¼ CR � CL � CH � CD,
where the right-hand side coefficients are defined in Section 8.2) and thermal capacity
of that interface expressed through the environmental interface soil heat capacity per
unit area Cg. Thus, the scaling time Dtp can be written as

Dtp ¼ Cg

S
: (21.5)

Fig. 21.5 depicts the scaling time Dtp as a function of energy exchange ε at the
environmental interface. We have calculated the scaling time Dtp curves for two
different surfaces, one for the lunar surface and the second one for the soil Vertisols
using thermal properties from Arseni�c et al. (2000) and Mihailovi�c et al. (1992),
respectively. For both surfaces the soil heat capacity per unit area Cg was calculated
as Cg¼ctCv

ffiffiffiffi
kt

p
, where ct¼ 78.7926 s1/2, Cv is the volumetric heat capacity of the

environmental interface (in this case soil Vertisols and lunar ground) while kt is
its thermal diffusivity (Zhang and Anthes, 1982; Mihailovi�c, 1991). The range of
S values was taken to be as it is commonly used in environmental models. From
Fig. 21.5, it is seen that because of thermal properties, Dtp has higher values for
the lunar ground than for the soil Vertisols.
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Now it raises the question whether we can find either domain or domains where
physically meaningful solutions of Eq. (21.4) exist. We do that by analyzing Eq.
(21.4). It can be written in the form

xnþ1 ¼
�
1þ Dt

Dtp

�
xnð1� xnÞ: (21.6)

In this equation the solutions are not in the chaotic region if the following con-
dition is satisfied

1þ Dt

Dtp
< 3:57; (21.7)

since when 1þ Dt=Dtp is increased beyond the accumulation point (3.56994.),
chaos onsets. The condition (Eq. (21.7)) can be written as

Dt

Dtp
< 2:57 (21.8)

or, after using relation (Eq. (21.5)) in the form

Dt < 2:57
Cg

S
: (21.9)

Since S ¼ CR � CL � CH � CD then, finally we get

Dt < 2:57
Cg

CR � CL � CH � CD
: (21.10)

The last relation can be understood as a criterion for choice of the time step
used in environmental models for numerical solving of the energy balance equa-
tion to avoid situations when the environmental interface cannot oppose an enor-
mous amount of energy (including radiation, convection, and conduction),
suddenly entering system. Note that this criterion depends only on energy reaching

125 250 375 500 625 750 875 1000
(W/K)

0

100

200

300

400

500

S
ca

lin
g 

tim
e 

  t
p(

s)
 

Δ

Σ

Lunar surface

 Vertisols soil surface

FIGURE 21.5

The scaling time Dtp in dependence on energy exchange S at the environmental interface. S

includes coefficients expressing all kinds of energy reaching that interface.
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the environmental interface and its thermal property. One way of looking at the
above inequality is to consider Dtp as the relaxation time often accoutered in the
theory of nonequilibrium processes. In this case, inequality (Eq. (21.10)) means
that by choosing time step Dt to be smaller than the relaxation time, we can observe
then the energy exchange at a smaller time scale thus avoiding the trap of the
chaos.

Fig. 21.6 depicts the dimensionless time s ¼ Dt=Dtp as a function of energy ex-
change S at the environmental interface for different soil types used in environ-
mental modelling. In s ¼ Dt=Dtp, during the simulations, the time step Dt was
ranged in the interval between 20 and 100 s. The black triangles indicate the regions
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in which Eq. (21.4) exhibits chaotic behavior, i.e., when the environmental interface
cannot respond to an enormous amount of energy reaching that one.

21.2 A DYNAMIC ANALYSIS OF SOLUTIONS FOR THE
ENVIRONMENTAL INTERFACE AND DEEPER SOIL LAYER
TEMPERATURES REPRESENTED BY THE COUPLED
DIFFERENCE EQUATIONS

Now we consider an environmental interface for which difference equations for
calculating the environmental interface temperature and deeper soil layer tempera-
ture are represented by the coupled difference equations, i.e., maps. First equation
has its background in the energy balance equation while the second one in the prog-
nostic equation for deeper soil layer temperature (Mihailovi�c et al., 1999). In
Mihailovi�c and Mimi�c (2012), it is shown that the ground surface is treated as a com-
plex system in which chaotic fluctuations occur while we compute its temperature.
This system, as a dynamic system, is very sensitive to initial conditions and arbi-
trarily small perturbation of the current trajectory that may lead to its unpredictable
behavior. In this paper the lower boundary condition, i.e., the deeper soil layer tem-
perature was constant, but it can also vary in time making with the energy balance
equation a coupled system of equations. That system, often used in environmental
models, is of interest to be analyzed by the methods of nonlinear dynamics (Mimi�c
et al., 2013). Following idea by Mimi�c et al. (2013), our analysis will include (1)
examination of period one fixed point and (2) bifurcation analysis. Focusing part
of analysis is calculation of the Lyapunov exponent for a specific range of values
of system parameters and discussion about the domain of stability for this coupled
system. To end, we calculate Kolmogorov complexity of time series generated from
the coupled system.

Using Eq. (21.3) and prognostic equation for the deeper soil layer temperature Td
(Mihailovi�c et al., 1999)

vTd
vt

¼ 1

sd
ðTg � TdÞ; (21.11)

where sd ¼ 86,400 s Mimi�c et al. (2013) have shown that this system of partial dif-
ferential equations, under some conditions, can be written in the form of two coupled
difference equations

znþ1 ¼ Azn � Bz2n þ Cyn (21.12a)

ynþ1 ¼ Dzn þ ð1� DÞyn; (21.12b)

where z ¼ (Tg�Ta)/T0 is the dimensionless environmental interface temperature,
y ¼ (Td�Ta)/T0 is the dimensionless deeper soil layer temperature, Ta is the temper-
ature at some reference level, T0 ¼ 288K, A ¼ 1þ Dt

Cg
ðCR � CH � CLbd � CDÞ,

B ¼ CLdT0
b2Dt
2Cg

, C ¼ Dt CD

Cg
, and D ¼ Dt

s , while the meaning and values of the
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constants b and d are available in Mimi�c et al. (2013) and Section 8.2. Introducing
the replacement zn ¼ Axn/B, where x is modified dimensionless environmental inter-
face temperature and following Mimi�c et al. (2013) can write

xnþ1 ¼ Axnð1� xnÞ þ CB

A
yn (21.13a)

ynþ1 ¼ DA

B
xn þ ð1� DÞyn: (21.13b)

Analysis of values of parameters A, B, C, and D, based on a large number of en-
ergy flux outputs from the land surface scheme runs, indicates that their values are
ranged in the following intervals: (1) A ˛ [0,4] and (2) B, C, andD are ranged in the
interval [0,1]. Thus, A is the logistic parameter, which from now on will be denoted
by r. All other groups of parameters in the system (Eqs. (21.13a) and (21.13b)) have
the values in the same interval [0, 1]. Let us underline that under some circumstances
those parameters can be equal. Correspondingly, we replaced all of them by intro-
ducing the coupling parameter ε. Finally, the system (Eqs. (21.13a) and (21.13b))
can be written in the form of coupled maps, i.e.,

xnþ1 ¼ rxnð1� xnÞ þ εyn (21.14a)

ynþ1 ¼ εðxn þ ynÞ: (21.14b)

We now examine the effect of coupling two nonlinear maps given by Eqs.
(21.14a) and (21.14b), with the logistic parameter r ˛ [0,4] and the coupling param-
eter ε ˛ [0,1]. This map displays a wide range of behavior as the parameters r and ε
change. We consider a system of difference equations of the form Xnþ1 ¼ F(Xn)
with the notation F(Xn) ¼ (rxn(1�xn) þ εyn,ε(xn þ yn)), where Xn ¼ (xn,yn) is a
vector representing the dimensionless environmental interface temperature and
the deeper soil layer temperature, respectively. We look for the fixed point of
mapping given by (Eqs. (21.14a) and (21.14b)) using the criterion X ¼ F(X).
Thus, we get (0, 0) and ((rþε

2/(1�ε)�1)/r,ε/(1�ε)[(rþε
2/(1�ε)�1)/r]) as two

fixed points. Now, for the fixed point (0, 0) we have two eigenvalues

l1;2 ¼ ðr þ ε�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2rεþ 5ε2

p
Þ=2. Using the one with the plus sign, which

has higher absolute value, and the criterion that a fixed point is attractive if
jlj < 1 and it is repulsive if jlj > 1, we localize regions in the (ε, r) plane, which
tell us for what pair of parameter values the fixed point (0,0) would be either
attractive or repulsive. Applying the same procedure for the other
fixed point given by ((rþε

2/(1�ε)�1)/r,ε/(1�ε)[(rþε
2/(1�ε)�1)/r]) and with the

eigenvalues l3;4 ¼ 1
2ðε�1Þ ð�2þ εþ 3ε2 þ r � εrÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� ε� 3ε2 � r þ εrÞ2

q
�4ðε� 1Þð�2εþ 3ε2 þ ε

3 þ εr � ε
2rÞ, we get exactly the same regions of attrac-

tion and repulsion in the (ε, r) plane as depicted in Fig. 21.7.
Bifurcation diagrams for x and y are given in Fig. 21.8 as a function of the logistic

parameter r and for this coupled maps were plotted with r ranging from 0 to 4 and for
ε ¼ 0.1. For each value of r, we used the final point of the previous r value and then
500 iterations are plotted. We noticed that maximum values of y strongly depend on
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FIGURE 21.7

Graphical interpretation of fixed points for the coupled maps (Eqs. (21.14a) and (21.14b)) as

a function of logistic parameter r and coupling parameter ε. Both fixed points are in the

following regions: (1) attractive (white) and (2) repulsive (light blue (gray in print versions)).

Reprinted with permission from Mimi�c, G., Mihailovi�c, D.T., Budin�cevi�c, M., 2013. Chaos in computing the

environmental interface temperature: nonlinear dynamic and complexity analysis of solutions. Mod. Phys. Lett.

B. 27, 1350190e1350200, 10.1142/S021798491350190X.

FIGURE 21.8

Bifurcation diagrams for the coupled maps (Eqs. (21.14a) and (21.14b)) with r ranging from

0 to 4 and ε ¼ 0.1. Initial conditions were x0 ¼ 0.2 and y0 ¼ 0.4.

Reprinted with permission from Mimi�c, G., Mihailovi�c, D.T., Budin�cevi�c, M., 2013. Chaos in computing the

environmental interface temperature: nonlinear dynamic and complexity analysis of solutions. Mod. Phys. Lett.

B. 27, 1350190e1350200, 10.1142/S021798491350190X.
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the coupling parameter ε. Let us note that value of the coupling parameter is small.
Thus, the bifurcation diagram of x is close the logistic map. Bifurcations start after
the parameter r reaches value 3 and chaotic regime exists after r ¼ 3.5 on both the
diagrams.

We have also plotted the phase diagram for x and y, which is depicted in
Fig. 21.9. This plot was obtained by iterating x (from 0 to 1) and y (from 0 to
0.15). In those calculations, 1000 iterations were applied for the initial state
(x0 ¼ 0.2, y0 ¼ 0.4) after 200 steps of stabilization of the (x,y) pair. From this figure,
it is seen that this plot is similar to the Henon’s attractor (Henon, 1976). It was ex-
pected, because for D ¼ 1 dynamical system given with Eqs. (21.14a) and (21.14b)
is similar to the Henon map.

Irregularities in the solution of the system (Eqs. (21.14a) and (21.14b)) can
come from two reasons. They are (1) numerical, i.e., because we try to choose
appropriate difference equation whose solution is “good” approximation to the
solution of the given differential equation and (2) physical, i.e., occurrence of
chaotic fluctuations in the considered system because the environmental interface
cannot oppose an enormous radiative forcing, suddenly reaching the interface
(Fig. 21.10).

Let us note that the assumption Tg, Td � Ta is violated in dependence on atmo-
spheric conditions. However, there exist conditions for which this criterion is satis-
fied since the ground surface (“skin”) temperature can be even for 10�C higher than
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FIGURE 21.9

Phase diagram of the map (15)e(16) for r ¼ 3.7, ε ¼ 0.1, and initial point x0 ¼ 0.2, y0 ¼ 0.4.

Reprinted with permission from Mimi�c, G., Mihailovi�c, D.T., Budin�cevi�c, M., 2013. Chaos in computing the

environmental interface temperature: nonlinear dynamic and complexity analysis of solutions. Mod. Phys. Lett.

B. 27, 1350190e1350200, 10.1142/S021798491350190X.
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air temperature at 2 m height (Stull, 1988). We wanted to point out that in these
kinds of situations, there is a possibility for occurrence of chaotic phenomena, which
can cause uncertainties in calculations of the ground surface temperature. This is
because of drawback of currently designed environmental models to calculate the
ground surface temperature under these conditions.

Looking at the system (Eqs. (21.13a) and (21.13b)), we have to keep in mind
some a priori mathematical limitations. As we take the range of x, y between
0 and 1, it is seen from Eq. (21.14b) that parameter ε has to be less or equal to
0.5. Further, from Eq. (21.14a), where the maximum value for x is 0.5 and for y
is 1, we get a new condition that r/4 þ ε � 1. Since Eq. (21.14a) has the form of
a logistic map, we know that chaos is present in a case when the logistic parameter
r is in interval (3, 4) so parameter of coupling ε should be very small, i.e., beyond
0.1. Thus, selection of initial conditions is also very important in the evolution of
the system. Therefore, it raises the question whether we can find either domain or
domains where physically meaningful solutions exist. We do that by considering
the stability of physical solutions, using the Lyapunov exponent, which is a measure
of convergence or divergence of near trajectories in phase space. The sign of the
Lyapunov exponent is characteristic of the attractor type: for a stable fixed point
it is negative, and for a chaotic attractor it is positive.
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Diurnal cycle of energy balance equation components. Second peak in net radiation term can

be noticed in all other fluxes. Simulation was done using LAPS land surface scheme

(Mihailovi�c, 1996).
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We analyze the behavior of the Lyapunov exponent for the corresponding auton-
omous equation which uniformly changes in intervals of r and ε. For our system

Xnþ1¼F(Xn), Xn ¼
�
xn

yn

�
and for any initial point (x0,y0) from attracting region,

characterization of asymptotic behavior of the orbit is given by the largest Lyapunov
exponent (Furstenberg and Kesten, 1960) as in Eqs. 7.5 and 7.6 in Section 7.3. In our
case the Jacobian matrix xs is given by

xs ¼
�
rð1� 2xsÞ ε

ε ε

�
: (21.15)

Calculating the Lyapunov exponent for the coupled system Eqs. (21.14a) and
(21.14b) with values of parameters ε ˛ (0.05,0.1) and r ˛ (3.6,3.8) we got the results
depicted in Fig. 21.11. It is shown that the Lyapunov exponent mostly has positive
values which approve presence of chaos in this system, but there are still some strait
regions where the Lyapunov exponent is negative and where the solutions of the
coupled system are stable, i.e., domains of stability.

For nonlinear time series analysis, we use Kolmogorov complexity with an idea
to calculate Kolmogorov complexity of time series produced for chaotic states of
coupled system with a range of parameters ε ˛ (0.05,0.1) and r ˛ (3.6,3.8).

It is seen from Fig. 21.12 that the complexity of the system strongly depends on
parameter r. Higher value of Kolmogorov complexity implies highly developed
chaos. Although, there are still regions, colored with purple, which are related to do-
mains of stability with a stable solution and no chaotic behavior of system.
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FIGURE 21.11

Lyapunov exponent of the coupled system (Eqs. (21.13a) and (21.13b)), which shows

presence of straight regions of stability in highly developed chaos.

Reprinted with permission from Mimi�c, G., Mihailovi�c, D.T., Budin�cevi�c, M., 2013. Chaos in computing the

environmental interface temperature: nonlinear dynamic and complexity analysis of solutions. Mod. Phys. Lett.

B. 27, 1350190e1350200, 10.1142/S021798491350190X.
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Synchronization and
stability of the horizontal
energy exchange between
environmental interfaces
in climate models

22

22.1 SYNCHRONIZATION IN HORIZONTAL ENERGY
EXCHANGE BETWEEN ENVIRONMENTAL INTERFACES

There are three major sets of processes that must be considered when constructing a
climate model: (1) radiative (the transfer of radiation through the climate system,
e.g., absorption and reflection); (2) dynamic (the horizontal and vertical transfer
of energy, e.g., advection, diffusion and convection); and (3) surface process (inclu-
sion of processes involving land/ocean/ice and the effects of albedo, emissivity, and
surfaceeatmosphere energy exchanges). If the nonlinearities in these processes are
treated improperly, then while designing the model, the complexity and thus its reli-
ability will not be retained in the highest degree. In Section 21.1 we have considered
surfaceeatmosphere energy exchanges with emphasis on the possible occurrence of
the chaos in solving the energy balance equation for calculating the environmental
interface temperature in climate models. Here, following Mihailovi�c et al. (2012) we
analyze the horizontal energy exchange between environmental interfaces which is
described by the dynamics of driven coupled oscillators (Mihailovi�c et al., 2012). To
study their behavior, when changes are introduced in the coupling parameter, the
logistic parameter, and the horizontal energy exchange intensity (parameter of
exchange, in further text), we considered the dynamics of two maps serving the
diffusive coupling (Mihailovi�c et al., 2012).

The horizontal exchange of energy between environmental interfaces is a
diffusion-like process. The dynamics of energy exchange behavior on environmental
interface is typically expressed as a logistic map F(x) ¼ rx(1�x), where x is the
dimensionless temperature of environmental interface and r is a logistic parameter
representing vertical turbulent energy flux intensities over an environmental inter-
face (Mihailovi�c et al., 2012, 2014a; Mimi�c et al., 2013). However, we use an alter-
native form of this map, which includes a parameter p that represents the total
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turbulent energy exchange between a single environmental interface and the sur-
rounding environment (see Section 10.3), i.e.,

Fr;pðxÞ ¼ rx pð1� xpÞ: (22.1)

The dynamics of map (Eq. (22.1)) is governed by two parameters, p and r, which
express the intrinsic property of the environmental interfaces and the influence of the
environment, respectively. Since these and many other processes on environmental
interface are defined as diffusion-like, it is interesting to see: (1) how these processes
can be better represented in climate models by introducing parameter of exchange p
in the diffusive coupling associated with the horizontal energy exchange (Fig. 22.1);
and (2) how the horizontal energy exchange intensity dynamics are affected by the
changes of parameters that represent influence of the environment, environmental
interface coupling, and horizontal energy exchange intensity. In considering these
problems (Mihailovi�c et al., 2014a), we have included observational heterarchy,
which is considered in Chapters 12 and 13.

The time development of the environmental surface dynamics xi,n, for two inter-
faces, is expressed as

xi;nþ1 ¼ ð1� cÞFr;p

�
xi;n
�þ f

�
Fr;p

�
xj;n
��
; (22.2)

where n is the time iteration, i, j ¼ 1,2, xi,n ˛ [0,1], c ˛ [0.0, 1.0] the coupling
parameter as a measure of diffusion of the energy exchange between environmental
interfaces, f the map representing the horizontal energy exchange between environ-
mental interfaces, Fr,p is one of maps in the pair (Jr,p,Fr,p) whose composition is

reference level

r,p

r,p

environmental interface 1 environmental interface 2

xr

x1 x2

FIGURE 22.1

Schematic diagram of horizontal energy exchange between two environmental interfaces.

Parameters p and r express intrinsic property of the environmental interfaces and the

influence of the environment, respectively

Reprinted with permission from Mihailovi�c, D.T., Mimic, G., Arsenic, I., April 2014a. Climate predictions: the

chaos and complexity in climate models. Adv. Meteorol. Article ID 878249, 1e14.
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preserved by a prefunctor hFi. Here, we apply the framework of an observational
heterarchy to the two environmental interface systems. If Intent and Extent are
denoted by Fr,p and Jr,p, respectively, the time development of the concentration
is expressed as xi,nþ1 ¼ (1�c)F(xi,n)þJ(xj,n) (Gunji and Kamiura, 2004). In this
expression, if Jr,p(X) ¼ f(Fr,p(x)) then it can be reduced to Eq. (22.2).

We perform our analysis following the procedure described in Gunji and
Kamiura (2004) and Chapter 13. First, we address the synchronization of the
coupling for two environmental interfaces given by Eqs. (22.1) and (22.2), and
then we will show that changes in the above-mentioned parameters can modify
the dynamics and enhance robust behavior in a multienvironmental interface system.
Synchronization is a collective phenomenon in various multicomponent physical as
well as the climate systems (Pikovsky et al., 2001; Arenas et al., 2008; Chen et al.,
2003), where the exchange of information (coupling) among the components can be
either global or local. Here, we consider that chaotic systems are synchronized only
when the largest Lyapunov exponent of the driven system is negative (Zhou and Lai,
1998). We calculated this exponent using Eqs. (7.5) and (7.6).

Fig. 22.2 depicts the normalized frequency of synchronization Fp (l < 0) for a
system of two passively coupled environmental interfaces (Eqs. (22.1) and (22.2)),
as a function of coupling parameter c, averaged over all values of the parameter of
exchange p and logistic parameter r. The value of the normalized frequency of syn-
chronization Fp is calculated as in expression (13.5) where

P
Nn(l < 0) andP

Np(l > 0) are the numbers of negative and positive values of the Lyapunov expo-
nent l, respectively. These numbers were calculated for fixed values of c, with p and
r changing in the intervals (0,1) and (1, 4), respectively, with a step of 0.05. From
this figure it is seen that for c < 0.8, Fp is nearly constant. After that value it starts
to decline, indicating a decrease of number of states which are synchronized.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Coupling parameter, c

0.50

0.75

1.00

Fr
eq

ue
nc

y 
of

 sy
nc

hr
on

iz
at

io
n,

 F
p

1.0 < r < 4.0

0.0 < p < 1.0

FIGURE 22.2

Normalized frequency of synchronization, Fp(l < 0) for a system of two environmental

interfaces coupled as a function of coupling parameter c. An averaging was done over all

values of logistic parameter r and parameter of exchange p.
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Now we deal with simulations of active coupling in a multienvironmental inter-
face system. Here, we estimate whether a coupled map system described above can
achieve synchronization under influence of changes in parameters. The dynamics of
two-environmental interface system is expressed via a system of Eqs. (22.1) and
(22.2). We note that the dynamical system defined by these equations is called the
passive coupling. To see how perturbation enhances robust behavior in the frame-
work of observational heterarchy we considered a multienvironmental interface sys-
tem represented by closed contour of coupled environmental interfaces exchanging
the energy horizontally. Then the system of coupled difference equations for N envi-
ronmental interfaces exchanging the energy can be written in the form of matrix
equation (Mihailovi�c et al., 2014a, 2014b). Simulations with the passive coupling,
defined by Eqs. (22.1) and (22.2), were performed following Mihailovi�c et al.
(2014b). The results of simulations are shown in Fig. 22.2. In this figure Lyapunov
exponent l is plotted against coupling parameter c for passive coupling, for different
values of the parameter of exchange p and the logistic parameter r. Simulations were
performed with the closed contour of N ¼ 100 interfaces. The Lyapunov exponent
was calculated using Eqs. (7.5) and (7.6).

In calculating l, for each c from 0.0 to 1.0 with step 0.005, 104 iterations were
applied for an initial state, and then the first 103 steps were abandoned. To see
how the passive coupling modifies the synchronization of horizontal energy
exchange between environmental interfaces, we used a randomly chosen p and a lo-
gistic r parameter with the values of 4.0, 3.82, and 3.6, respectively (Fig. 22.3).
Fig. 22.3a depicts that in close to chaotic regime (r ¼ 3.6), regardless of the value
p, the Lyapunov exponent is practically always negative (l < 0) and therefore the
process of the horizontal energy exchange in a multienvironmental interface system
is always synchronized. Otherwise, as seen from Fig. 22.3c, in the chaotic regime
(r ¼ 4.0) the Lyapunov exponent is always positive (l > 0), regardless of the value
p, and therefore the process of the horizontal energy exchange in a multienvironmen-
tal interface system is always unsynchronized. Finally, in the region when r ¼ 3.82
(Fig. 22.3b) there is continuity of regions with negative and positive values of the
Lyapunov exponent.

22.2 STABILITY OF HORIZONTAL ENERGY EXCHANGE
BETWEEN ENVIRONMENTAL INTERFACES

In Section 10.3 we have introduced a dynamical system approach (Eq. 10.22) that
provides more realistic results in modelling of energy exchange over the heteroge-
neous grid-box than the flux aggregation methods that suffer from Schmidt’s
paradox, which is an effect occurring in the subgrid scale parameterization. This
dynamical system approach can be also successfully applied in the modelling of hor-
izontal energy exchange between the either small or large scale of heterogeneous
environmental interfaces. In that approach the horizontal energy exchange is taken
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into account and it is represented by a matrix of coupling parameters. Since it is, in
general, very difficult to specify the quantities in that matrix, we derived a sufficient
condition for the asymptotic stability that can be applied for any coupling matrix.
We have proved two theorems that consider the flux aggregation effect over a het-
erogeneous grid-box (Mihailovi�c et al., 2015).
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FIGURE 22.3

Diagram of Lyapunov exponent l against coupling parameter c for the so-called passive

coupling (Gunji and Kamiura, 2004) for different values of parameter of exchange p and

logistic parameter r. p is randomly chosen, while r takes values 4.0, 3.82, and 3.6 respectively.

Simulations were performed with the closed contour of N ¼ 100 environmental interfaces.
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As mentioned in Section 10.3, the requirement of such a modelP
j˛N

ci,j ¼ 1, for all i ˛ N implies that the matrix C has to be nonnegative stochastic

matrix, see Berman and Plemmons (1994). Since the class of nonnegative stochas-
tic matrices plays a fundamental role in probability theory, theory of Markov pro-
cesses, and in many different applications of matrix theory, a lot of its important
properties have been discovered over the years. Here we will use the well-
known fact that the spectral radius of such a matrix is always one, i.e., r(C) ¼ 1.
First step in the understanding of the dynamical behavior of (Eq. 10.22) is
to examine its equilibrium states, and then to determine the stability of the
evolution process around these states. Therefore, we begin with the analysis of
the existence of equilibrium points. We will follow with the analysis by Mihailovi�c
et al. (2015).

An equivalent condition for state vector ex to be an equilibrium point of
(Eq. 10.22) is that CFðexÞ ¼ ex, which obviously holds for ex ¼ 0 ¼ ½0 0 . 0�T.
Therefore, 0 is a trivial equilibrium point. In the following, we are interested in
the existence and stability of nontrivial equilibrium points of (Eq. 10.22).

First, we analyze the properties of logistic functions Fri,pi, for i ˛ N. As seen in
Fig. 10.6, logistic functions Fr,p have exactly one nontrivial fixed-point for every
choice of parameters r and p.

To prove that the nontrivial equilibrium point of the coupled system of EIs exists,
we will analyze Jacobian of the right-hand side of (Eq. 10.22) and identify the sub-
space of [0,1]n where CF is a contraction, and then use the Banach fixed-point the-
orem. Here, the abbreviation EI is used as an acronym for environmental interfaces
as in Section 10.3.

Given a state x ˛ (0,1]n, Jacobian of the right-hand side of (Eq. 10.22) at x is

VCFðxÞ ¼ CVFðxÞ ¼ CFðxÞ;
where FðxÞ ¼ diagðf0

r1;p1ðx1Þf0
r2;p2ðx2Þ.f0

rn;pnðxnÞÞ and

f0
r;pðxÞ ¼ rp

1� 2x p

x1�p
:

We start with the following lemma which identifies a set where the modified lo-
gistic function fr,p is a contraction.

Lemma 1 Given p ˛ (0,1] and r ˛ [1,4],

1. then there exists a unique solution a(r,p) of the problem

2x p þ 1

rp
x1�p ¼ 1; x˛

�
0;

�
1

2

�1
p
�
;

2. if r � 1
p, there exists a unique solution b(r,p) of the problem

2x p � 1

rp
x1�p ¼ 1; x˛

��
1

2

�1
p

; 1

�
; and
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3. if r �
�

1�p
2ð1�2pÞ

�1�p
p
1�2p
p2 , there exists a unique solution b(r,p) of the problem

2x p � 1

rp
x1�p ¼ 1; x˛

��
1

2

�1
p

;

�
1� p

2ð1� 2pÞ
�1

p
�
;

and there exists a unique solution g(r,p) of the problem

2x p � 1

rp
x1�p ¼ 1; x˛

��
1� p

2ð1� 2pÞ
�1

p

; 1

�
:

Moreover, denoting

f ðpÞ :¼

8>>>>><>>>>>:
�

1� p

2ð1� 2pÞ
�1� p

p 1� 2p

p2
; p <

1

3
;

1

p
; p � 1

3
;

it follows that
��fr;p0 ðxÞ

�� < 1 if and only if either of the following cases hold:

• x ˛ (a(r,p),1) and r < f(p), or
• x ˛ (a(r,p),b(r,p))W(g(r,p),1], r � f(p), and p < 1

3, or
• x ˛ (a(r,p),b(r,p)), r � f(p), and p � 1

3.

Proof. To prove this lemma we analyze the inequality rp j1�2xpj
x1�p < 1, for

x ˛ (0,1]. First, denote

4þðxÞ :¼ rp
1� 2x p

x1�p
� 1; and 4�ðxÞ :¼ rp

2x p � 1

x1�p
� 1; (22.3)

and observe that 4þ(x) and 4�(x) are continuous functions for x ˛ (0,1].
Now, since 4þ(ε) > 0, for sufficiently small ε > 0, and 4þ��1

2

�1p�
<0, there exists

a(r,p) such that 4þ(a(r,p)) ¼ 0. Since it is easy to see that 4þ always has exactly one

zero on the interval
�
0;

�
1
2

�1
pi
, value a(r,p) is uniquely defined and it can be effi-

ciently computed by Newton’s method. Therefore, we have obtained that

4þðxÞ < 0 for all x˛
�
aðr; pÞ;

�
1

2

�1
p
�
: (22.4)

Next, we analyze 4� on the interval
��

1
2

�1p
; 1
i
and compute its derivative:	

4�ðxÞ
0 ¼ rp
1� p� 2ð1� 2pÞxp

x2�p
:

Observe that if p � 1
3; ½4�ðxÞ�0 > 0 for all x˛

��
1
2

�1p
; 1
i
, implying that 4� is

an increasing function on the given interval. On the other hand, if p < 1
3, 4

� has a
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local maximum in xst ¼
�

1�p
2ð1�2pÞ

�1
p

. In the following, the sign of the 4� in xstwill be

of special interest, so, observe that 4�(xst) < 0 if r <

�
1�p

2ð1�2pÞ

�1�p
p
1�2p
p2 , and

4�(xst) � 0, otherwise.
Therefore, we distinguish the following three cases:

• First, if r < f(p), then we have that the maximal value (obtained in either x ¼ xst
or in x ¼ 1) of 4� on the interval is negative, and, thus, we obtain that

4�ðxÞ < 0 for all x˛
��

1

2

�1
p

; 1

�
: (22.5)

• Second, if r � f(p) and p � 1
3, we have that the function 4� is increasing on the

interval with 4�(1) > 0. So, the equation

2x p � 1

rp
x1�p ¼ 1

has a unique solution b(r,p) such that
�
1
2

�1p
< bðr; pÞ < 1, which can be efficiently

computed using Newton’s method. Furthermore, we obtain

4�ðxÞ < 0 for all x˛
��

1

2

�1
p

; bðr; pÞ
�
: (22.6)

• Finally, if r � f(p) and p < 1
3, then 4�(xst) � 0 and, therefore, there exist values

b(r,p) < g(r,p) such that 4�(x) � 0 for all x ˛ (b(r,p),g(r,p)). These two values
can be obtained solving the equation 4�(x) ¼ 0, i.e., the equation

2x p � 1

rp
x1�p ¼ 1

has exactly two solutions b(r,p) and g(r,p) such that�
1

2

�1
p

< bðr; pÞ <
�

1� p

2ð1� 2pÞ
�1

p

< gðr; pÞ � 1;

which can, again, be computed using Newton’s method. So, in this case, we obtain
that

4�ðxÞ < 0 for all x˛
��

1

2

�1
p

; bðr; pÞ
�
Wðgðr; pÞ; 1Þ: (22.7)

Now, collecting Eqs. (22.4)e(22.7), the proof is completed.
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In the following, observe that if the spectral radius of the Jacobian VCF is
strictly less than one on a certain subspace S of (0,1]n, then the map CF will be a
contraction on S. On the other hand, due to the constraints of the model we have
r(C) ¼ jjCjjN ¼ 1 and will use infinity norm of VCF(x) instead of its spectral radius
to obtain reasonably good results. Namely, in the following theorem we identify sub-
space S ¼ S1 � S2 � . � Sn of (0,1]n such that for x ˛ S we have that
jjVCF(x)jjN < 1.

Before we proceed, to simplify the notation, for i ˛ N, denote ai :¼ a(ri,pi), bi:
¼ b(ri,pi), and gi: ¼ g(ri,pi). Moreover, let us recall the standard definition: an equi-
librium state bx of a (discrete) dynamical system (Eq. 10.22) is called locally asymp-
totically stable if all the eigenvalues of the Jacobian matrix of (Eq. 10.22) computed
in bx are inside an open unit disc in the complex plane.

Theorem 1. Given a system of coupled EIs whose evolution is described by (Eq.
10.22), denote the following three set of indices

N1 :¼ fi˛N : ri < f ðpiÞg;

N2 :¼
�
i˛N : ri � f ðpiÞ and pi < 1

3

�
; (22.8)

N3 :¼
�
i˛N : ri � f ðpiÞ and pi � 1

3

�
and for i ˛ N define sets Si by

Si :¼
8<:

ðai; 1�;
ðai; biÞ
ðai; biÞ

Wðgi; 1Þ
i˛N1;

i˛N2;

i˛N3:

(22.9)

If discrete dynamical system (Eq. 10.22) has an equilibrium point bx such thatbx ˛ S ¼ S1 � S2 �.� Sn, then bx is an asymptotically stable equilibrium state
of (Eq. 10.22).

Proof. Having an equilibrium point bx such that bx ˛ S, previous lemma implies
that for every i ˛ N

kFðxÞkN ¼ maxi˛N

 
ripi

��1� 2x pi
i

��
x1�pi
i

!
< 1:

On the other hand, r(VCF(x)) ¼ r(CF(x)) � jjCF(x)jjN and, consequently,

rðVCFðxÞÞ � kCkNkFðxÞkN ¼ maxi˛N

���fri;p0i
ðxiÞ
��� < 1:

Therefore according to Theorem in Appendix B inMihailovi�c et al. (2014b), bx is
asymptotically stable equilibrium of (Eq. 10.22).

According to the previous theorem, the set S can be considered as a space of
states which are the potential asymptotically stable equilibrium points.

To better visualize the subspace S where map CF is a contraction, we have
plotted Figs. 22.4 and 22.5. Fig. 22.5 illustrates different forms of Si depending of
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parameter values ri and pi, while in Fig. 22.4 we have computed values of ai, bi, and
gi as surfaces over the region (ri,pi) ˛ [1,4]�[0,1]. Therefore, gaps between these
surfaces for each fixed pair (ri,pi) represent set Si (following their form given in
Fig. 22.5).

Moreover, if we are able to show that there exists a closed subset A4S invariant
under the map CF, i.e., CF : A/A, then, due to the Banach fixed-point theorem,
map CF has a unique fixed point ex˛A such that for the states of (Eq. 10.22)
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FIGURE 22.4

From left to right, plots of the values of a(r,p), b(r,p), and g(r,p) for r ˛ [1,4] and p ˛ (0,1],

respectively

Reprinted with permission fromMihailovi�c, D.T., Kosti�c, V., Mimi�c, G., Cvetkovi�c, L.j. 2015. Stability analysis of

turbulent heat exchange over the heterogeneous environmental interface in climate models. App. Math. Comp.

265, 79e90.
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lim
k/N

xðkÞ ¼ x;

for any xð0Þ ˛A4S. In other words, such an equilibrium point is the asymptotically
stable one.

Here, we note that for i ˛ N2WN3 we have small lengths of the stability intervals,
and, therefore, if we have that N2WN3sB, it is hard to construct invariant subset A
such that CF : A/A in order to obtain the existence of nontrivial asymptotically
stable equilibrium state.

On the other hand, for the values of the logistic and the affinity parameters such
that N2WN3 ¼B, we now show existence of the nontrivial asymptotically stable
equilibrium of the system of arbitrarily coupled EIs.

Theorem 2. Given a system of coupled EIs whose evolution is described by (Eq.
10.22), denote s ¼ maxi˛N1

ri
4. If N ¼ N1 and

maxi˛Nai < mini˛Nris
pið1� spiÞ; (22.10)

then, for arbitrary coupling matrix C, there exists a unique nontrivial asymptotically
stable equilibrium state of the dynamical system given by (Eq. 10.22).

Proof. Let us denote a ¼ maxi ˛ Nai. Then, according to Eq. (22.10), there exists
ε > 0 such that aþ ε < mini˛Nrispið1� spiÞ. First we show that for arbitrary i ˛ N,
fri,pi:[a þ ε,s]/[a þ ε,s]. Since the maximum of fri,pi equals

ri
4, it follows that

fri,pi(xi) � s, for all xi ˛ [0,1]. So, it remains to check only the lower bound of
fri,pi(xi) for xi ˛ [a þ ε,s]. But, due to the choice of ε, we have that for
a þ ε � fri,pi(s), which, together with monotone properties of the function fri,pi

(see Fig. 22.4), implies that fri,pi(xi) � a þ ε for all xi ˛ [aþε,s].
Therefore, denoting A :¼ ½aþ ε; s�n, we have obtained that FðxÞ˛A, for all

x˛A. In other words, for x˛A, we have that (aþε)1 � F(x) � s1, where 1: ¼
[1 1.1]T, and � is understood component-wise. But then, since C is the stochastic
matrix, C1 ¼ 1 and C, being nonnegative, implies that (aþε)1 ¼ (aþε)C1�CF(x)�
sC1 ¼ s1. Thus, we have obtained that CF : A/A.

Since N ¼ N1, according to Eq. (22.9), S ¼ (a1,1) � (a2,1) �. � (an,1) so it
follows that A4S, which implies that CF is a contraction on A. Therefore, we
can apply Banach fixed-point theorem to CF : A/A, and the statement of the the-
orem follows.

Here, we note that the last theorem gives only sufficient condition for the exis-
tence of a nontrivial asymptotic stable equilibrium point of (Eq. 10.22) where the
horizontal energy exchange given by matrix C can be arbitrary. Additionally, the
spectral radius is replaced by the infinity norm and the restrictive assumption
N ¼ N1 is used. Consequently, we have obtained a relatively demanding condition
on parameters ri and pi, i ˛ N.

Here, we will illustrate, by application of the above theorems, how Schmidt’s
paradox can be overcome. It will be done by considering the aggregation effect
over a heterogeneous grid-box, through a numerical example following Mihailovi�c
et al. (2015). Namely, we will use a heterogeneous grid-box over the Prospect Park,
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New York, USA, shown in Fig. 10.5. This grid-box consists of three patches: urban
part (surrounding buildings), vegetative part (mixture of trees and grass), and water
surface (lake). Here parameter p, that represents the total turbulent energy exchanges
between a single EI and the surrounding environment, is expressed through its cover
percentage in the grid-box, i.e., p1 of the grid-box is covered by concrete, p2 by
grass, and p3 by water. The values of the parameter p are p1 ¼ 0.28, p2 ¼ 0.46,
and p3 ¼ 0.26, see Fig. 10.5. Each of these EI surfaces has different response to
the forcing by the solar radiation. Regarding the coupling parameter C we can say
that its quantification is very difficult. In this example we first consider vertical
energy exchange for each patch and then we will show how horizontal energy
exchange can have a stabilizing role in the dynamics of the energy exchange in
and over the heterogeneous grid-box. If we use logistic map to describe the process
of energy exchange (Mimi�c et al., 2013), then the response of the EI surface is
represented with logistic parameter r

xnþ1
i ¼ rix

n
i

�
1� xni

�
; i ¼ 1; 2; 3 (22.11)

Now we calculate dimensionless temperature expressing the energy exchange for
each patch, starting from some initial state. As it is known, concrete is a good
absorber of solar radiation and also is emitting the long wave radiation intensively,
so r1 has high value, e.g. r1 ¼ 3.33. In the case of water, there is a strong flux of
latent heat above, so we could set r3 ¼ 3.10. Situation over the grass is less turbulent
and a suitable value for r2 would be below 3, e.g. r2 ¼ 2.15.

We will start with the set of initial conditions x01 ¼ 0:8, x02 ¼ 0:75, and x03 ¼ 0:7
which corresponds to an interesting case of initially high energy exchange. After 104

iterations, we have the bifurcation of the logistic map over the patches for concrete
(1) and water (3), as indicated in Fig. 10.5 to the following values of dimensionless
temperature: x

f1
1 ¼ 0:8296 and x

f2
1 ¼ 0:4707, and x

f1
3 ¼ 0:7646 and x

f2
3 ¼ 0:5580,

respectively. Dimensionless temperature of the grass stabilizes numerically at
xf2 ¼ 0:5349. Here, superscript f indicates the final state(s) of the iterations in Eq.
(22.11). The iterative procedure in these calculations is illustrated at the left panels
of Fig. 22.6.

Now, if we want to derive, from this data, representative value of the dimension-
less temperature over the whole grid-box, we have to make an averaging of their
values. Thus, we get the four different representative values:

xa1 :¼ p1x
f1
1 þ p2x

f
2 þ p3x

f1
3 ¼ 0:6771; xa2 :¼ p1x

f1
1 þ p2x

f
2 þ p3x

f2
3 ¼ 0:6234;

xa3 :¼ p1x
f2
1 þ p2x

f
2 þ p3x

f1
3 ¼ 0:5766 and xa4 :¼ p1x

f2
1 þ p2x

f
2 þ p3x

f2
3 ¼ 0:5229;

and, consequently the aggregated logistic parameters rai :¼ (1�xai)
�1, i ¼ 1, 2, 3, 4,

are:

ra1 ¼ 3:0973; ra2 ¼ 2:6555; ra3 ¼ 2:3621; and ra4 ¼ 2:0961: (22.12)

These values would indicate that there exists a bifurcation in this heterogeneous
grid-box due to bifurcation in the patches consisting of concrete and water leading to
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the case when the occurrence of the Schmidt’s paradox in numerical treatment of
sensible heat fluxes is expected.

Here, we note that the Schmidt’s paradox occurs because of neglecting the hor-
izontal energy exchange between different environmental interfaces when either flux
aggregation method is used or the methods of parameter aggregation and flux aggre-
gation are combined. However, these methods are still in use in climate modelling
community. A reason for that lies in the fact that horizontal energy exchange inside
a heterogeneous grid-box is very difficult to describe or at least parameterize. There-
fore, this paradox has a source in the subgrid scale surface flux parameterization in
atmospheric as well as in climate models. To investigate this phenomenon, we have
introduced the dynamical system approach, where the horizontal energy exchange is
represented by the matrix C of coupling parameters.

As we have illustrated, in the dynamical systems approach, the (logistic) param-
eter aggregation has no mathematical sense whenever the bifurcation (r > 3) or
chaos (r � 3.45) happens in one of the patches. Therefore, in our model, the asymp-
totic stability is the proper and realistic indicator that corresponds to the notion of a
physical indicator (the overall r in this example) of the nature of energy exchange
over the heterogeneous grid-box. Since it is difficult to specify the elements of
the matrix C we have derived the sufficient conditions for the asymptotic stability
that can be applied for any coupling matrices C.

In this example we obtain that N ¼ N1 ¼ {1,2,3}, and

S1 ¼ ð0:0518; 1�; S2 ¼ ð0:1032; 1�; and S3 ¼ ð0:0425; 1�:

FIGURE 22.6

Evolution of the decoupled logistic Eq. (22.11), left panels, and coupled logistic Eq. (10.22),

right panels, for the grid-box described in Fig. 3.15, whose coupling matrix C is given by Eq.

(22.13). In plots, k is the number of iterations.

Reprinted with permission fromMihailovi�c, D.T., Kosti�c, V., Mimi�c, G., Cvetkovi�c, L.j. 2015. Stability analysis of

turbulent heat exchange over the heterogeneous environmental interface in climate models. App. Math. Comp.

265, 79e90.
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Furthermore, since s ¼ 0.8325 and

maxi¼1;2;3ai ¼ 0:1032 < 0:1376 ¼ mini¼1;2;3ris
pið1� spiÞ;

we can apply Theorem 1 and conclude that the whole grid-box stabilizes in the
unique equilibrium state.

Therefore, we can conclude that, independently of the rates of the horizontal
exchange, this heterogeneous grid-box exhibits stable energy exchange despite
expected bifurcations in isolated patches.

Now, let us consider an idealized example when the rate of energetic influence of
the grass EI to the concrete EI is estimated as 20%, while rates of influence of the
concrete and the water to the grass is estimated to be 10% each, and the influence
of the water EI to the grass EI by 10%, i.e.,

C ¼
24 0:8 0:2 0

0:1 0:8 0:1

0 0:1 0:9

35: (22.13)

The evolution of dimensionless temperatures for the corresponding coupled sys-
tem (Eq. 10.22) is given at the right panels of Fig. (22.6). As we can see, in this case,
the system stabilizes in the first 50 iterations. In our numerical experiments the rate
of convergence (corresponding to the stabilization time scale) highly depends on the
structure of the coupling matrix. It is noted that for matrices that exhibit strict diag-
onal dominance property (Kosti�c, 2014), the stabilization occurs faster. To prove this
theoretically would be an interesting challenge, since it could explain, at least in a
certain sense, the role of the horizontal exchange in the heterogeneous grid-boxes.
Therefore, Schmidt’s paradox related to numerical treatment to real fluxes can be
avoided using a new approach of discrete dynamical system of coupled logistic
equations. Moreover, this explains that the horizontal energy exchange can have a
stabilizing role in the dynamics of the energy exchange in and over the heteroge-
neous grid-box.

In the next example, we consider the situation discussed in Raddatza et al.
(2013), i.e., when the sensible heat flux comes from an unconsolidated sea-ice sur-
face. To that end, consider the idealized example of the heterogeneous 2�2 km2

grid-box consisting of two environmental interfaces. The first EI is the consolidated
ice that covers 75% of the grid-box, while the second EI is the area of open water
(covering 25%). From the reason of the simplicity, but without loosing generality,
we will define the two-component system (ice and water EIs). Note that one possible
model could be a model with many water openings making a higher resolution sys-
tem. This would be especially interesting in estimating the influence of the horizon-
tal exchange rates in the case of functionally different water openings.

Let us suppose that the logistic parameters for ice are r1 ¼ 2.6 stable exchange
with small fluxes), while for water is r2 ¼ 3.5 (larger fluxes leading to higher sensi-
tivity of the system’s behavior in terms of chaotic logistic behavior). Now, we are
interested in estimating the stability of such heterogeneous grid-box. Note that,
based on Raddatza et al. (2013), one would not expect to consider such system as
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a stable one, since water openings can produce the sensible heat fluxes contributing
to an instability over them.

As expected, after computing the stability sets of Theorem 2, in this case, we
obtain

S1 ¼ ð0:2224; 0:6585Þ and S2 ¼ ð0:0404; 0:2119ÞWð0:5123; 1�:
Therefore, Theorem 2 could not be applied to conclude the stable behavior inde-

pendently of the horizontal exchange rates inside the grid-box. But, to discuss this
situation more thoroughly, we start with the initial dimensionless temperatures for
ice and water x01 ¼ 0:3 and x02 ¼ 0:9, respectively. Then, in Figs. 22.7 and 22.8
we depict the behavior of the uncoupled EIs (left panels) and the coupled ones (right
panels). Namely, the right panels of Fig. 22.7 show the chaotic behavior of air over
the water openings generated by their heat fluxes (left lower panel) that can desta-
bilize the ice flux (left upper panel). On the other hand, we see in the right panels
of Fig. 22.7 that the system is not stable. Namely, the ice EI component (upper panel)
and the water EI component (lower panel) both exhibit bifurcation. This solution
corresponds to the situation when both EIs’ influence rates to one another are esti-
mated by 20%. Contrary to that, assuming that the water openings are relatively
small so that their energy is mostly communicated to ice (c21 ¼ 50%), we obtain
a completely different picture, as shown in Fig. 22.8. In this situation, the ice EI
could overcome the flux disturbances and maintain the stable behavior of the
grid-box.

FIGURE 22.7

Evolution of the decoupled logistic Eq. (22.11), left panels, and coupled logistic Eq. (10.22)

right panels, for the ice-and-water grid-box example, where the coupling matrix parameters

are c11 ¼ c22 ¼ 0.8.

Reprinted with permission fromMihailovi�c, D.T., Kosti�c, V., Mimi�c, G., Cvetkovi�c, L.j. 2015. Stability analysis of

turbulent heat exchange over the heterogeneous environmental interface in climate models. App. Math. Comp.

265, 79e90.
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Environmental interfaces
and their stability in
biological systems 23
23.1 BUILDING BLOCKS OF ENVIRONMENTAL INTERFACES
Iconic example of environmental interfaces in the biological world are membranes.
They compartmentalize living systems into cells and organelles allowing them to
evolve different modes of functioning. Membrane-associated proteins act as the
main intermediaries for receiving and filtering external signals. They determine a
set of small molecules that are allowed to enter the cells or they can block or facil-
itate extraction of some molecules. All this defines how cells respond to changes of
environmental conditions by altering gene expression and dynamics of metabolic
pathways. In the biological world, there are myriad differences between different
mechanisms and corresponding functions of membrane-related signal transits, but
one of the fundamental abilities that allow very existence of signal transit is percep-
tion by receptors. Physiology of signal perception and transduction is a wide field
that covers types of receptors, mechanisms of their actions, biochemical processes,
and topology of their distribution (Mayne et al., 2016; Schenk and Snaar-Jaglaska,
1999; Soyer et al., 2006). While these research fields offer essential information on
each specific case, they cannot be readily converted to a broader understanding of
the role of interfaces in biological systems. Therefore, we will offer a short overview
of several important issues that should not be neglected in both theoretical and
modelling treatment of environmental interfaces.

We will start with a rather straightforward remark that each perceptive entity can
observe or register only those changes in its vicinity which activate its functional op-
erations. In other words, receptors imprint the forms of their actions on the structures
with which they interact. In that manner, each identification is a functional identifi-
cation, i.e., potential action. More generally, the externality of any such entity is pre-
structured in accordance with its functional purposes and objectives, through a
process of assimilating external changes within the operative pattern of that entity.
Therefore, it is incorrect to talk about objective structures (different molecules, sig-
nals, etc.) in the vicinity of any living system. The mere fact that something can be
perceived means that it becomes connected to the needs of the living system. And
conversely, since each organism constructs its environment as a field of interests,
only functionally relevant changes can appear in it. As an inherent consequence
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of such assimilation of reality, the external medium of living systems is transformed
into a functionally treatable environment where external, arbitrary events can be
conveyed into the internal pattern of reactions. In this way, the system displaces it-
self from direct contact with the environment and can afford to be indifferent to a
subset of external changes, thereby opening possibilities for developing different
functional strategies.

We will focus our attention to protein receptors as rudiments of perceptivity that
are able to detect and successively assimilate segments of external changes by their
own functioning. Usually applied scheme, where the folded protein, with a static
spatial structure, passes through a cyclic series of conformational changes after
interaction with other structures (small molecules, DNA, or other proteins), begin-
ning and ending with an elementary stable state, is quite inaccurate and oversimpli-
fied. During the last few decades, several important aspects of protein’s functioning
have been discovered, which has necessarily led to a revision of the previous picture.

First is protein’s structural instability. In proteins we can distinguish two dynam-
ically very different regions: liquid-like and solid-like. The second group is repre-
sented by domains (a helices and b sheets) as the fundamental, unchangeable
structural units of proteins, while the first consists of residues and represents a matrix
surrounding solid-like fragments (Hinsen et al., 2002; Kneller and Smith, 1994;
Kurzynski, 1998). Domain movements are slow with high amplitudes, while move-
ments in liquid-like regions have much higher frequencies and smaller amplitudes
(Hinsen, 2000). Owing to the existence of “energy walls” that stem from local de-
formations, these low-energy movements are restricted only to the local region
and are not influenced by movements within other regions. Functionally speaking,
their continuous movements “lubricate” large-scale structural changes by providing
low-energy pathways between conformational states (Thune and Badger, 1995).

Second one is the proteinesolvent integration. Movements of protein domains
and its overall functionality in general can only be achieved if the protein is hydrated
(Bellissent-Funel, 2000). During hydration, a sort of micelle is formed around the
protein where H2O molecules are immobilized and oriented in a complex multilay-
ered structure. Within such micelles, the translational and rotational degrees of
freedom of isolated water molecules are transformed into vibrational modes of
the proteinewater complex (Smith et al., 2002). Along with hydration, an essential
influence for achieving the functionality of the protein is the high viscosity of intra-
cellular solvent, thus making biological reactions indescribable by the transition
state theory (Sumi, 2001). More precisely, since all fluctuations and molecular trans-
locations are slowed down, activation energy decrease and solvent fluctuations are
able to produce conformational fluctuations in proteins. Such motions of segments,
often mutually independent, indicate that the fluidity of a protein’s structure has an
important role in providing the energy for enzymatic transformations. As empha-
sized by Ferdinand (1976), that energy can only be provided from the translational
energy of solute molecules colliding with the enzymeesubstrate complex, since the
substrate itself has become tied down in the active site and cannot provide transla-
tional energy for participating in the reaction. Today we have several models which
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describe that process of vector translation of collision-obtained energy to particular
domains within the enzyme, but common to all of them is the perspective originating
in Lumry’s work (Lumry, 1971, 1980). According to him, the enzyme is a structure
which transforms the free energy of a medium’s fluid movements into chemical pro-
cesses. Which of the existent models is closest to the real situation is not at issue
here. What is of essential importance, and what should be again emphasized is
the fact that all of them view the enzyme as a transducer of energy which is able
to transform thermal fluctuations of environment into vector movements and use
them for catalytic transformations.

Third important factor is the so-called static disorder. Until recently, it was
considered that each population of genetically identical proteins consists of identical
copies with identical functional properties. However, it has been shown that the final
configuration of the protein is not completely a result of settling into the ideal
optimum of energetic states, but the conformational variations of folded proteins
are a reflection of the medium’s current state in which folding takes place, as a com-
bination of funneling and independent formation of domains (Dill et al., 1993;
Finkelstein and Shakhnovic, 1989; Karplus and Shakhnovich, 1992; Onuchic
et al., 1997; Veitshans et al., 1997). Therefore, each population of proteins is
composed of a great number of conformationally different units (conformers)
each having its own specific energetic minimum, anddmore importantlydthey
each display broad and asymmetrical distribution of activity within a population,
a so-called static disorder (Xie and Lu, 1999; Xie, 2002).

At the end of this short overview, we can return to the initial question: what is
unique in protein functioning which distances them from the machine-like
paradigm? The first reason for insisting on such a distinction is the fact that the pro-
tein and its vicinity operate as an integrated unit where the actual function or func-
tional state of the protein is very closely connected to the state of the surrounding
medium. Second, the spatial organization of a protein is in constant move, causing
continuous alterations of its functioning. This mode of action widely exceeds the
explanatory capacity of the usual models applied for autonomous program-driven
machines.

Dealing with such structures raises many difficulties if someone tries to simply
extrapolate the problem into a common input/output framework. First, regulation is
usually perceived as dependent on specific devices for specific types of stimuli. Here
the situation is fundamentally different. Proteins possess active sites which can be
considered equivalent to functional receptors; their activation initiates a defined
sequence of configuration changes which is also in accordance with common
thinking about regulation. But on the other hand, their spatial fluctuations (with
all the functional consequences) do not have any connection to their perceptivity.
In other words, we cannot straightforwardly talk about specific parameters of the
medium which influence a protein’s dynamics, or about a separate causal factor.
The protein physically immobilizes part of its environment, constructing a func-
tional unity with it; but its dynamics does not include receptors as mediators. Which
external changes will induce a protein’s fluctuationdand howdis not predefined by
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a scope of receptors or by any processing of signals; it is fully dependent on a con-
tinuity of actual context. Here we cannot talk about intracellular space as an indif-
ferent scheme which can be arbitrarily filled without functional consequences (as it
is a case with “objective” space) because through such fusion of movement/state, the
entire intrasystemic medium (nonperceptive and nonschematized) is transformed
into a regulative factor which can (re)route functional processes. Proteins thus avoid
the hazard of overlooking changes but, by possessing active sites, they are not mere
passive fluctuating structures. Being such transitional forms, they can functionally
structuralize their environment but at the same time are not completely connected
to such structuralization; they partially remain in an unmediated contact with the
surrounding medium which provides energy for a segment of the protein’s activity
by which, on the other hand, they withstand the medium’s fluctuations. Therefore,
generation and regulation of processes in living systems cannot be treated in full
accordance with the classic paradigm of an input/output model with localized
well-defined regulators. Proteins are the first step in transforming meaningless
external variations into a schematized and functionally treatable construction.

23.2 EMERGENCE OF FUNCTIONALITY
All interfaces in the biological world are characterized by an inherent relation be-
tween perceptivity and assimilation. Accordingly, if something is extracted from
the continuity of external changes through perceptivity, it is necessarily associated
with operative patterns. Also, since we are dealing with material systems, the neces-
sity of action/reaction is inherent to them and there is no possibility for infinite re-
cursions, as is the case with formal systems. Therefore, association escapes its
solipsistic character and has bimodal consequences: it becomes an act of prescribing
the forms of operations to others, and on the other hand it is a process of functional
self-labeling. Only such assimilation can be considered functionally meaningful
because passive association becomes liable to interpretations by other elements of
the system, which form a set of possible transformations for that system. Therefore,
when analyzing living systems, it is not completely accurate to apply only the frame-
work of causalitydwhere elements are causes of systemic conditionsdbut is also
necessary to deal with the element’s interpretations of systemic states. It is very
important to note this difference, since interpretations can only happen in a situation
where the system is able to impute meanings and where subsequent reactions are
based on the structure of that imputation. In that way, arbitrary ‘distance’, in the
form of mutual interpretations along biological interfaces, weakens the requirements
of physical and chemical relations, rendering different strategies of organization
possible. It has several fundamental consequences.

First, the division established by perceptivity is division into perceptive realities
and those beyond perception. And for simple noncognitive living systems, what is
beyond perception is nonexistent. Inserting such distance relieves the system of
the pressure of continuous environment changes, since only some aspects or indirect
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consequences of environmental changes can be registered. In that way, the system as
an integrated whole achieves more space for building its own processes since it is no
longer under pressure to respond immediately to each environmental change (the ex-
istence of a physical barrier is a necessary precondition). In this way, what is beyond
immediate perception is not a systemic, but merely local category, where rules
cannot be uniformly transferred among different perceptive domains. Therefore,
within a system, significant parts of processes are enclosed in their own domains,
beyond the supervision of other parts. Since interactions are localized within bound-
ary regions and are dependent on the pattern of mutual representation of subsystems,
it is an excellent basis for developing a wide spectrum of ad hoc, local solutions.
Moreover, not only are changes beyond the scope of perceptivity invisible, but fluc-
tuations within particular perceptive boundaries are also erased. Everything that is
inside perceptively defined operative units, all differences, varieties, internal dy-
namics are erased and are unobservable for elementary perceptive elementsdi.e.,
proteins. In this way, the internal systemic environment becomes the subject of
radical transformations.

Second, by establishing perceptive boundaries for every aspect of interactions,
external changes are no longer simply contiguous values obtainable by homoge-
neous succession within a scale of changes. On the contrary, if they are perceived
as changes on different sides of the boundary, following the chain of transformations
(which is a consequence of their appearance), diametrically opposite results can be
obtained, no matter how close (according to absolute measures) they can be. As an
inherent consequence of such configuration, a more or less undistinguishable contin-
uum of changes is transformed into a set of separated operative unities with defined
focuses of transformations. In this way the external world is transformed into an as-
sembly of operational absolutes where each absolute is connected to a predefined
reaction which is purposeful within the system. Despite being a basis for systemic
organization, this situation also makes intrasystemic environment a highly conflict-
ing place. What is usually presented as a harmonious flow of metabolic pathways is
actually achieved only by the use of power; i.e., by using the possibility of influ-
encing behavior and transformations of others by combination of transformations
(i.e., physical transformations of shape or structure), transpositions (displacement
of other elements into different contexts, which is also a process of assigning
different meanings to elements), and assimilations.

Since the actual modalities of each of these categories can be very organism-
specific, further evaluation will be focused on the general properties of conflict
resolution. In metabolic space we can distinguish few phases: (1) entrance into
observable space, (2) establishment of local power constellation and reconstruction
of boundaries, and (3) normative encirclement and transformation of the object. First
phase is actually a first step which leads to generation of conflict. Here, some change
of environment becomes perceptively visible either by physical approaching toward
some functional element or subsystem (e.g., translocation of molecules in cyto-
plasm), or by increased frequency of occurrence of some set of changes (e.g.,
increased level of damaged proteins can lead to activation of cell’s heat shock
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response). After that, establishment of local power constellation is a necessary
consequence because a subsystem whose perceptive threshold has been traversed,
by the mere “recognition” of some external change, enters into indirect interaction
with subsystem(s) which already perceived that change. “Already perceived” does
not mean only a struggle for assimilation of some change with same functional
context, but what is more important (because first situation is resolved only at the
level of local conflicts with no influence on organizational rearrangement), it can
also be a situation where different subsystems try to assimilate same external change
with their own different operative patterns. In the second case, resolution of conflicts
overgrown significance of local competitions because it means activation of new
operative patterns, changes in perceptive focuses, and treatment of environment,
thus inducing activation of global organizational rearrangements. Although local po-
wer constellation is always the main determinant of conflict resolving, if systems
amplify expression of certain groups of proteins or regulators (activating number
of positive or negative feedbacks), global balance of interactions (which is essen-
tially stochastic) will necessary be forced toward desirable state. Last phase, which
chronologically is last but its possibility of appearance is precondition for all previ-
ous phases, is normative encirclement of elements (objects) and their transforma-
tion. Only at this stage we can talk about implementation of power in the sense of
its definition because just here subsystems effectuate control over actions (transfor-
mations) of external elements. In other words, only when assimilation is conjoined
with transformation of assimilated elements in accordance with norms of “observer”
we can talk about functional assimilation and whole process of conflict raising and
resolving gain sense.

In short, in a system which is basically stochastic, establishment of control, and
arrangement of particular processes into organized metabolic pathways is achieved
only through continual conflict resolving between subsystems with their own ten-
dencies of assimilations which are established and changed (in establishment and
in changing) during these interactions. In contrast from usual representation of meta-
bolism as a predefined set of algorithmic processes, flow of transformations in living
systems is generated during that process itself and decisions about the next step is
always realized only for the particular case. Although assimilation of some nutrient
by the cell usually results in a well-known catabolic pathway, it is not an issue here.
In a living system, during a process, at each temporal moment t we can define only a
limited set of possible states at the moment t þ 1. After actualization of some of
these states, a new set of states will be generated as a function of actual system
configuration. Owing to such pattern of process generation, determinants of the
next stage are not only usual control mechanisms as a feedback, attachment of inhib-
itor/activator, and so on. In addition, a very important role is reserved for factors
described here: reproductive cycles and assimilative conflicts. These aspects can
be completely omitted from analysis if we apply algorithm-like reasoning as only
valid paradigm.

Although perceptive assimilation plays a significant role in organizing a system, it
is far from the final stage in building a functional autonomous system. Besides direct
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physical and chemical interactions, there are also upper-level organizational differen-
tiations which are based only on segments of material dynamics. If we mark relations
in some material process as relations1 (first-level relations), then relations based on
segments of that processes are relations2 (second-level relations), relations among re-
lations2 are relations3 (third-level relations) and so on. It is very important to note that
in living systems there is no exclusive primacy of such linear stratification of hierar-
chies, but establishment of direct branching to higher or lower levels is very common
(e.g. global regulators as H-NS or Hsp in bacteria). It is obvious that such a network of
relations cannot be established without the existence of material elements, but from
the mere fact that it is based only on segments of material dynamics, a certain distance
entails. In other words, upper-level organization is always partially indifferent to ma-
terial fluctuations and its structure can withstand different perturbations without being
changed by them. As long as processes are performed in the usual manner and with
the usual dynamics, organization remains unaffected by material changes and has the
status of an a priori given controller for them. It does not imply view of organization as
a set of nonmaterial principles which regulate material structure. A reason why “or-
ganization” transcends in time material structures and to some extent influences its
shaping and behavior is a fact that it is not based on monitoring actual configuration
of certain proteins or their precise actual relations, but on a flow of processes which
are only a segment of totality of material dynamics. Also, it should be emphasized that
construction of each organizational level does not mean mere incorporation of previ-
ous levels into subsequent ones but is based on a gradual restructuration of relations
within new contexts.

Since the process of such organizational differentiations is formed in accor-
dance with actual context, instead of strict determination by formal, centralized
rules, there is a wide spectrum of possible formation matrices. It certainly does
not imply unlimited freedom of differentiations, because within relatively closed
and stable systems there is always a finite field of structural possibilities deter-
mined by the system. However, owing to the continuous reconstruction of a living
system, only the formation of functionally meaningful subsystems can be estab-
lished during a prolonged period of time because it is in just such a case that
they build and became embedded in a network of positive feedbacks which main-
tain them during and through intrasystemic reproductive cycles. All other subsys-
tems can be freely formed, but the temporal intervals of their existence are
negligible because they are not accompanied by maintenance mechanisms. In
any case, through internal differentiations, the system reconstitutes itself into a
number of subsystems, where system and environment distinction repeat sepa-
rately for each microdomain.

When stable functional subsystems are established (or more precisely: are in
establishment), a wide spectrum of new possibilities for further organizational build-
ing is formed. First, the formation of subsystems, partially provided by reflexive
reproduction, restrains the horizons of that same reproduction, stabilizing it through
the formation of different domains of protocommunication. In other words, differen-
tiation into subsystems generates relatively stable, partially separated groups of
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mutual coordination (protocommunication), which are nonunderstandable for
others. Therefore they are forced to generate “public” output signals, i.e., commu-
nication channels visible to other subsystems. The subject matter of protocommuni-
cation (but not of physical/chemical interactions, which are unaffected) within a
particular subsystem narrows greatly and is restricted only to a small, functionally
meaningful domain of total possibilities. Therefore, during assimilation of func-
tional elements, the otherwise open spectrum of possible transformations is reduced
and gradual structuration of processes takes place. It is not completely correct to
define it as a binding of some elements to a particular subsystem (e.g., x protein
is a member of xy metabolic pathway) because its association is always only actual,
determined by actual context and never predefined (however, the pattern of associ-
ation is usual, but this is not the issue here). Therefore, subsystemic protocommuni-
cative space can be best described as a discontinuous classification where relations
are established through continuous overlapping and impositions. Establishing such
an enclosure has a number of consequences for building up a living system’s
organization.

First, the set of elements which constitute a subsystem is treated by other subsys-
tems as a unity. Since particular groups are functionally conjoined and are mutually
identified as unities using defined output signals for interactions, local problems are
allocated to separated levels of time, priorities, and functioning.

The same factor enables much more freedom for intrasubsystemic dynamics
because the formation of input/output relations fixates external control only of
output signals while the richness of internal dynamics remains invisible for a partic-
ular set of observers. It should be emphasized that each phase of internal dynamics
can be observed or controlled at some instance, but it is not in conflict with this
model because possibility of observation is always relative and therefore separated
into different levels of subsystemic protocommunicative domains determined by
actual pattern of subsystemic overlapping.

The next consequence is a proliferation of internal environments. In accordance
with the perceptivity of constitutive elements and constructed models of interactions
with other subsystems, each functional subsystem develops its own reductive pattern
of its environment. In that manner, one more or less homogenous intrasystemic me-
dium is transformed into a vast number of separate, local, meaningful environments.
With the development of such differentiation, the internality of a system becomes
more thoroughly encompassed by functional meanings, while the subsystems them-
selves are relieved from pressure for excess processing.

At the same time, enclosure in protocommunicative domains leads to the possi-
bility of autonomously determining the intensity and normativity of reproductive cy-
cles; in other words, it leads to the development of subsystemic self-referential
autonomy. In this way, each subsystem encloses itself according to its own modes
of differentiation, its own construction of reality, and its own functional matrix.
Of course, they cannot develop absolute autonomy, but it is very important to
emphasize that each subsystem’s mode of functioning is generated as a result of
self-organization based on local conditions. Through it, in an environment which
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might seem homogeneous, chaotic or full of noise to an external observer, subsys-
tems generate a causative basis for their own activity (operations).

Finally, it is essential to bear in mind that direct interactions of two or more sub-
systems should not be analyzed in accordance with geometrical analogies (as touch,
intersection, and so on). The main reason is a fact that during their direct interaction,
boundaries of one subsystem can be transferred into operative space of other subsys-
tem(s) thus enabling manipulations of each other’s complexity. It does not imply
violation of input/output model because scope of that model is development of pro-
tocommunication through exchange of signals, while accent here is on building of
local power relations without participation of indirect mediation by signals. Also,
manipulation of other’s complexity does not mean opening of boundaries (because
it is in principle impossible), but overlapping of competences. Then, subsystemic de-
terminants, constraints imposed on process formations, contextual dependent fluctu-
ations of identities, and modes of assimilations of environment are reconsidered by
other subsystem(s). Final result can be only full success or failure of assimilation,
but we should take a closer look at transient formation of new (sub-) subsystems,
induced by such situations. Here, two or more subsystems partially penetrate into
each other and for their own constructions use complexity of the other by interpret-
ing their elements in accordance with own operative pattern. They do not exchange
information/signals in a manner of emission and receiving of public available out-
puts. On the contrary they interact through allocation of different operative horizons
to the same set of material structures. It is very important to emphasize that aspect of
conflicts, because relations which will result in a certain final condition are consti-
tuted through it. It is clear that such situations cannot be preserved during prolonged
period of time (and thereby cannot be established as a stable subsystemic construc-
tion with all consequences: successive construction of regulations, functional
relations.) because the system is always under pressure to operationalize its states,
but, and it should be clearly underlined, it is a specific mode of interactions for living
systems.

Most of the mechanisms explained above are formed and function only at the
local level. Until now this was only implied, but here it is explicitly postulated as
one of the genuine properties of living systems which ultimately leads to the internal
incoherence of their organization. Of course, it is not only spatial locality which de-
termines the proliferation of separated operative frameworks. As has already been
said, perceptivity is not indifferent toward its objects; assimilation is an inseparable
unity composed of association-prescription-transformation. Therefore, unlike
logical relations which are indifferent toward their objects (for example, the logical
relation A < B does not deform their values just because it compares them), percep-
tive relations by rule perform this kind of deformations (Piaget, 1973). In this
manner, relations between two or more observed objects will always be relations
of overestimation or underestimation, thus making a comparison impossible based
on uniform logical rules. Instead, the context-based formation of local operative
fields emerges as a main determinant of their functional composition. On the other
hand, attending to the relations between systems (subsystems, functional elements)
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in general, we can see that by assimilating only a segment of the environment, each
perceptive entity or functional subsystem places operative focus on that part of re-
ality. Its construction of an operative pattern is under continuous pressure from
the insecurity of such noninclusion. It is clear that local operations generated
through these processes are not forced to be consistent with other operations gener-
ated at different spatial and temporal points within the same system. Certainly, or-
ganisms are highly integrated systems, due to long internal coevolution, where
externally visible segments of subsystemic internal dynamics have developed in
accordance with perception of them by observers, which themselves evolved in
accordance with their perception of externalitydbut the basis for all functional stra-
tegies developed during that process is the actual (and inherent) condition of incom-
pleteness and the insecurity of perceptive inclusion. Here we should bear in mind
that complete transparency would lead to destruction of any operative focus for
further construction of a functional system. Moreover, inability of full penetration
into actions of others is a triggering factor for development of strategies of indirect
communication. Also, only through continuous reproduction of conflict situations
(i.e., nonpredefined process flow) can the system achieve sufficiently high fluidity
in transformations from one operative pattern to another without needing to
construct specific regulative pathways for each situation. In this way, at each tempo-
ral moment, local contextual fragments are determinants for the pattern and consti-
tution of functional elements, routing flow of processing paths to itself and finally
establishing systemic incoherency. Of course, the nonexistence of overall logical
coherence does not mean that generation of systemic events without systemic causa-
tion is allowed, but only that mutual coordination of local events and straightforward
generation of hierarchies is not necessary. Each attained level of local settlement is
related only to a particular part of the system, i.e., it is genuinely incomplete, neces-
sarily leading to new imbalances and initiating cycles of new reconstructions.
Although seemingly a paradox, only through this kind of organization can a living
system establish itself as an autonomous entity which is flexible enough to allow
instantaneous establishment of a wide spectrum of autonomous, local structures
of organization.

Finally, if the incoherency of living systems is their essential property, the ques-
tion of their unification remains open. How they are encircled into a functional
unity with clear demarcation between the external and internal environment?
Without presuming to give a final answer, two basic mechanisms could be named.
First, the external environment is constituted exclusively through perceptive assim-
ilation, which means that the living system repeats the same types of endogenous
differentiations and imprints its own organization onto the external environment. In
this way environment is so arranged that it can be manipulated. Further, as a result
of the specific integration of proteins and surrounding medium, the internal envi-
ronment is not characterized by such exclusive primacy of schematization. Each
event, therefore, at each level of organizationdeven beyond perceptive assimila-
tiondcan be effective, importing a significant moment of indeterminacy into the
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organization of living systems. Here, the determination of functional states does
not overlap with perceptive boundaries, thus enabling the internal medium to
merge into a united system of interactions with simultaneously different operative
focuses (i.e., a united set of internal environments). The second mechanism is the
formation of relatively closed system of mutual impositions. As has already been
said, a route toward any intrasystemic conflict settlement is always relative to the
actual context. However, the development of functional subsystems enables modi-
fication of local balances by shifting the temporal patterns of reproductive cycles.
Local assignments of values thus become infused into a more or less stable config-
uration of functional estimations which determine the routes of tendencies in pro-
cess generation.

23.3 FUNCTIONAL STABILITY
The usual view tends to reduce the functioning of living systems to a network of
linear channels of signals flowing between well-defined convergence points. By
changing several paradigms, the multiple refractions of these channels and points
emerge at the forefront of the analysis. The construction and reconstruction of ma-
terial structures, changes in observed identification of elements, assimilation of
external changes into operative signals, their divergence into different possibilities
of process development and convergence into local normative closures, continuous
reorganization of operative horizons, all constitute a dynamics which is trapped in
multileveled (material, temporal, and organizational) reconstructive cycles. Owing
to such organizational patterns, maintaining such structures is the same as their ex-
istence: They cannot at any moment passively exist, from the mere fact that they are
already formed. Since a living system is not a finished system, but rather a system in
continuous self-construction, the maintenance of such structures is fully dependent
on their functioning, which in turn lasts only because of the continuous formation of
preservation mechanisms materialized by the temporalized reconstitution of ele-
ments. Therefore, functioning is not reduced merely to a set of internal transforma-
tions, but it is inseparably composed of elements and their transformations. By
constantly producing itself (by reflexive reproduction) the local nonparametric state
of the system (i.e., the context) emerges as a new regulatory force. Also, each decon-
structed functional element (protein/subsystem) indicates not only the loss of one
functional unit, but at the same time the loss of one object of interaction with the
environment, along with the spatial and temporal patterns imposed by it, thus chang-
ing the balance of power between different subsystems. Therefore, when talking
about living cells, we cannot talk about the mere allocation of material structures,
but rather of internal spatial and temporal perceptions which undergo reconfigura-
tions with each external change. In this sense, we can identify the permanent mutual
dependence of dyadic modifications: changes in “objective” material composition
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(i.e., uptake of nutrients, catabolic or anabolic transformation), and changes in the
perception of such “objective” changes, each of them regulating the other. On the
other hand, the mere fact that each living system is composed of perceptive ele-
mentsdand consequently by parametric differentiationdleads to the constitution
of well-known regulatory models. There is, however, an important difference
regarding the usual perspective. Strictly speaking, in contrast to the classical model
which supposes the ultimate primacy of uniform and unambiguous parameters pene-
trating the whole system and constituting its eternal organization, in organisms we
can speak of classical input/output regulations only in short, separate segments. Un-
ambiguous parameters are certainly also achieved in living systems, and this should
be clearly stressed, but this happens only in temporarily short segments which are
crystallized within (and in accordance with) a much broader situation. The entire
intrasystemic environment constitutes one comprehensive controlling form which
is not centralized (but rather segmented) and is not linked with (pre)defined
signaling pathways. Internality, through temporalization, determines the dynamics
of reproductive cycles and, through contextualization, determines the actual modes
of identifying elements, therefore being able to continuously change the status of pa-
rameters. In this way, it comprises all processes, which are then reduced from the
eternal level to a transitory formation of nonambiguity, during continuous process
of reconstruction.

There may be a tendency to identify such systems as unstable. Not wanting to
open a discussion about the roots of such thinking or its correctness, we will empha-
size only two factors. From the perspective of the system itself, it is much more
appropriate to state the diametrically opposite situation, far from the constant threat
of self-destruction. On the one hand, by developing an operative patterns in dealing
with the environment, the system actually stabilizes itdbecause the receptive reduc-
tion of environment is not only its reduction in the sense of depletion, but at the same
time is an enhancement of it, in the sense of being able to ascribe “nonobjective”
relations to elements in the environment, thus laying a basis for further development
of their functional treatment. And stabilization of the environment allows further
construction of intrasystemic functional strategies. On the other hand, with the tem-
poralization of elements, an increase in local perturbations does not need to be fol-
lowed by expansion throughout the whole system, because it can always be
compensated by new self-constructions. It is correct that such an organized system
is not grounded on the steadiness of material structures or nonambiguity of rules, but
we should ask if these are the only factors of systemic perseverance and functioning.

Another issue is how to model such systems. Usual approach is to consider func-
tioning of living systems in terms of machine analogy where all aspects are well
defined. Alternative approach would be to model them as systems where neither
compartments nor signals are completely predefined. Issues that we will consider
in this Part are stability of communication between cells under the influence of other
environmental and intracellular processes.
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Synchronization of the
biochemical substance
exchange between cells 24
24.1 A MODEL REPRESENTING BIOCHEMICAL SUBSTANCE

EXCHANGE BETWEEN CELLS: MODEL FORMALIZATION
Communication between cells is ubiquitous in the biological world. From single cell
bacteria to complex eukaryotic organisms, cellular communication is a way for
creating more complex structures through integration and coordination of func-
tioning. Organisms evolved various ways for ensuring that transfer of signals can
be performed timely and efficiently, both between organisms and within single
organism. However, at the molecular level, basic scheme of signals exchange
remains in the same form: signaling molecules should reach cellular receptor, which
in turn activates regulatory response, modulating production of targeted molecular
species. These species then either directly or indirectly influence production of
arriving signals. In this general scenario, several points should be noted. Since
communication is established by exchange of biochemical substances (substances
in the further text) through surrounding environment, this process is heavily influ-
enced by the state of environmental factors. In single cell organisms, environmental
fluctuations are even more prominent since substances have to be released into the
external environment, which is not included in the homeostasis created by the
organism. Additionally, even in clonal population, and under heavily controlled
environment, significant level of fluctuations of constituting parameters will remain,
due to protein disorder (Dunker et al., 2001, 2002) and the so-called intrinsic noise
(Elowitz et al., 2002; Swain et al., 2002). Finally, due to thermal and conformational
fluctuations, biochemical processes are inherently random (Longo and Hasty, 2006).
Although the biological “noise” is not strictly defined, in this section we will use it in
the context of variations in the functioning of a biological system that results from
the presence of random internal as well as the external fluctuations.

If we consider the described process of substances’ exchange between cells that
creates a complex system which should maintain its functionality under strong influ-
ence of both internal and external fluctuations, we are approaching the problem of
robustness (Barkai and Shilo, 2007; Kitano, 2004, 2007). Although the robustness
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and stability are not the main focus of consideration, in Mihailovi�c and Bala�z (2011)
we touched on the problem of how the system can avoid functional collapse by
switching between several stable states. Some elaborated formal treatments of this
problem are still in infancy. One of the main reasons for that is the fact that its focus
is beyond already developed tools of dynamical systems theory. It indicates that a
new, more general approach for describing such systems has to be developed.

In this section, our focus is only a segment of the problem, for the specific group
of cases. Our question is: how the system, which is basically stochastic, and is inher-
ently influenced by noise, can maintain its functioning? First, we give a short over-
view of general mechanism for substances exchange between two cells, representing
cooperative communication process. Then, we identify the main parameters of the
process and derive a system of two coupled logistic equations as an appropriate
model of the given process. In Mihailovi�c and Bala�z (2011) we investigate synchro-
nization of the model and its sensitivity to fluctuations of environmental parameters.
It should be emphasized that our goal is not development of an accurate quantitative
model of substances exchange between cells. Rather, we are interested in the formal-
ization of the basic shape of the process, and creating the appropriate strategy, that
allows further investigation of robustness and influence of noise induced by external
fluctuations of environmental parameters.

Empirical background. Communication between cells is one of the main prereq-
uisites for assembling them into the higher organized structures. It is ubiquitous in
the living world, from bacteria where quorum sensing (Waters and Bassler, 2005)
and colony formation (Stoodley et al., 2002) are efficient mechanisms for rapid
switching between different phenotypes to sophisticated humoral control in verte-
brates which ensures proper functioning of the organism as an integrated system.
Despite great variety of specific mechanisms and even greater number of molecules
included, the general scheme remains fairly universal (see for example, Purves et al.,
2004) as is seen in Fig. 24.1.

Signaling molecules are ones which are deliberately extracted by the cell into
extracellular environment, and which can affect behavior of other cells of the
same or different type (species or phenotype) by means of active uptake and subse-
quent changes in genetic regulations. They can be excreted as either a side product of
other metabolic processes, or as purposefully synthesized and transported from the
cell. Once present in the extracellular environment, they can be transported to other
cells that can be affected. Since active uptake is one of the milestones of the process,
a very important factor is a current set of receptors and transporters in cellular mem-
brane, during the communication process. At the same time they constitute the back-
bone of the whole process while simultaneously being a very important source of
perturbations of the process due to protein disorder and intrinsic noise. As a result,
the process of exchange is constantly under inherent fluctuations of the aforemen-
tioned parameters. Another important factor is surrounding environment which
could interfere with the process of exchange. It includes distance between cells, me-
chanical and dynamical properties of the fluid which serves as a channel for
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exchange, and various abiotic and biotic factors which influence physiology of the
involved cells. Final requisite phase is induction of change in the receiving cell. As a
result, metabolic state of the cell changes, which can be detected by measuring con-
centration of specific molecules. Therefore, their concentration inside the cell can
serve as an indicator of dynamics of the whole process of communication. These
signaling molecules can be either the same for all involved cells or they can be
different, acting directly or indirectly on production of arriving signals. Additionally,
the influence of affinities in functioning of living systems is also an important issue.
It can be divided into the following aspects: (a1) affinity of genetic regulators toward
arriving signals which determine intensity of cellular response and (a2) affinity for
uptake of signaling molecules. First aspect is genetically determined and therefore
species specific. Second aspect is more complex and is influenced by affinity of
receptors to binding specific signaling molecule, number of active receptors, and
their conformational fluctuations (protein disorder).

receptors

gene
regulation

c,r

p

xn /yn ,c

FIGURE 24.1

Schematic representation of cellular communication. Here, c represents concentration of

signaling molecule in extracellular environment coupled with intensity of response they

can provoke while r includes collective influence of environmental factors which can

interfere with the process of communication. xn /yn represents concentration of signaling

molecules in intracellular environment, while p denotes cellular affinity to uptake the

substance.

Reprinted with permission from Balaz, I., Mihailovic, D.T., 2010. Modeling the intercellular exchange of

signaling molecules depending on intra- and inter-cellular environmental parameters. Arch. Biol. Sci. Belgrade

62 (4), 947e956.
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Model description. As it is obvious from the empirical description, we can infer
the successfulness of the communication process by monitoring: (1) number of
signaling molecules, both inside and outside of the cell and (2) their mutual influ-
ence. Concentration of signaling molecules in the extracellular environment is sub-
ject to various environmental influences and taken alone often can indicate more
about state of the environment than about the communication itself. Therefore,
we choose to follow concentration of signaling molecules inside the cell as the
main indicator of the process. In that case, parameters of the system are (1) affinity
by which cells perform uptake of signaling molecules (a2), that depends on number
and state of appropriate receptors, (2) concentration of signaling molecules in extra-
cellular environment within the radius of interaction, (3) intensity of cellular
response (a1), and (4) influence of other environmental factors which can interfere
with the process of communication. In this case we postulate that the third parameter
can be taken collectively, within the one variable, indicating overall disposition of
the environment to the communication process.

Since concentration of signaling molecules can be regarded as their population
for fixed volume, and since we are focused on mutual influence of these populations,
it points out to the use of the coupled logistic equations. In that case investigation of
conditions under which two equations are synchronized and how this synchroniza-
tion behaves under continuous noise can give some answers on the question of main-
taining functionality in the system which is inherently influenced by noise and where
elementary events are basically stochastic. Therefore, having in mind that cellular
events are discrete (Barkai and Shilo, 2007), we consider a system of difference
equations of the form

Xnþ1 ¼ FðXnÞhLðXnÞ þ PðXnÞ; (24.1)

with notation

LðXnÞ ¼ ðð1� cÞrxnð1� xnÞ; ð1� cÞrynð1� ynÞÞ; PðXnÞ ¼
�
cypn; cx

1�p
n

�
; (24.2)

where Xn ¼ (xn,yn) is a vector representing concentration of signaling molecules in-
side the cell, while P(Xn) denotes simulative coupling influence of members of the
system which is here restricted only to positive numbers in the interval (0,1). The
starting point X0 is determined so that 0 < x0, y0 < 1. Parameter r is in this case
the logistic parameter, which in logistic difference equation determines an overall
disposition of the environment to the given population of signaling molecules and
exchange processes. Affinity to uptake signaling molecules is indicated by p. Since
fixed point is F(0) ¼ 0, in order to ensure that zero is not at the same time the point of
attraction we defined p ˛ (0,1) as an exponent. Finally, c represents coupling of two
factors: concentration of signaling molecules in extracellular environment and inten-
sity of response they can provoke. This form is taken because the effect of the same
intracellular concentration of signaling molecules can vary greatly with variation of
affinity of genetic regulators for that signal, which is further reflected on the ability
to synchronize with other cells. Therefore, c influence both, rate of intracellular
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synthesis of signaling molecules, as well as synchronization of signaling processes
between two cells so the parameter c is taken to be a part of both L(Xn) and P(Xn).
However, relative ratio of these two influences depends on current empirical setting.
For example, if for both cellsXn is strongly influenced by extracellular concentration
of signals, while they can provoke relatively smaller responses, then the form of
equation will be

xnþ1 ¼ ð1� cÞrxnð1� xnÞ þ cy p
n (24.3a)

ynþ1 ¼ ð1� cÞrynð1� ynÞ þ cx1�p
n ; (24.3b)

where 0 < c < 1, 0 < p < 1, and r > 0. Using the fact that for 0 � x � 1 and
1 > p > 0 we have x � xp � 1, then it is possible to consider system Eqs. (24.3a)
and (24.3b) in a simpler form. After its majorization and minorization, respectively,
we reach the systems

xnþ1 ¼ ð1� cÞrxnð1� xnÞ þ c (24.4a)

ynþ1 ¼ ð1� cÞrynð1� ynÞ þ c (24.4b)

and

xnþ1 ¼ ð1� cÞrxnð1� xnÞ þ cyn (24.5a)

ynþ1 ¼ ð1� cÞrynð1� ynÞ þ cxn: (24.5b)

System (Eqs. 24.4a and 24.4b) is an uncoupled system of logistic difference
equations defined on domain D ¼ (I � I) where I ¼ (�d,1 þ d), and d < 0 is the
smallest solution of the equation x ¼ (1 � c)rx(1 � x) þ c. In this system, all infor-
mation about bifurcations and chaotic behavior we get by its comparison with the
standard form xnþ1 ¼ rxn(1 � xn) where r ¼ (r(1 � c) þ 4c)/(1 � 2d). A compre-
hensive analysis of the system (Eqs. 24.5a and 24.5b) in more detail can be found
in Mihailovi�c et al. (2010).

At the end we summarize the above consideration. Modelling of cellular
processes usually takes the form of explicit kinetic or stoichiometric models.
Due to their specificity, they fail to treat some phenomena common for the
whole class of different empirical cases. Analyzing the general scheme of
communication between cells, we focused on persistence of the process under
constant and significant presence of parameter fluctuations. Following discrete-
ness of cellular processes, we developed a model based on coupled difference
equations to further investigate stability of their synchronization. Additionally,
we had in mind that the described class of problems is now considered under
the notion of robustness. We expect that in the future more abstract mathemat-
ical tools will be developed to treat that problem. However, they should be
incorporated with already existing formulations from dynamical systems theory
to connect more abstract notion of functionality preserving with its underlying
dynamics. We believe that the approach offered here could serve as one of the
connecting links.
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24.2 SYNCHRONIZATION OF THE BIOCHEMICAL SUBSTANCE
EXCHANGE BETWEEN CELLS: EFFECT OF
FLUCTUATIONS OF ENVIRONMENTAL PARAMETERS
TO BEHAVIOR OF THE MODEL

A continuing interesting problem in nonlinear science is the interplay between chaos
and perturbation. It comes from the fact that complex systems are often under
fluctuations of different magnitude, and it is important to assess how the dynamics
of deterministic chaotic system is affected by the noise. Some pioneering works on
this problem comprise physics, biology, and biophysics (Schaffer et al., 1993;
Billings and Schwartz, 2002; Schwartz et al., 2004; Liui and Ma, 2005). It is well
known that chaos, in general, is robust under stochastic fluctuations, which can
induce chaos for parameters just before a bifurcation to chaos. Namely, stochastic
perturbations can induce chaotic dynamics where there is no naturally occurring
chaos, far away from any bifurcation leading to chaos. This is possible due to the
complex topology associated with two nearby unstable orbits (Schaffer et al.,
1993). Intention of this section is to study the sensitivity of the proposed model rep-
resenting biochemical substance exchange between cells (Bala�z and Mihailovi�c,
2010, 2011) to fluctuations of environment parameters of different order of magni-
tude using maximal Lyapunov exponent and cross-sample entropy.

The effort toward formalizing a model of process of substance exchange between
cells is still in its infancy and much remains to be completed to build a mature
theory. For a model to be useful, it must be able to predict characteristics and
behavior of the system. This means that the model has to be framed to explicitly
describe constraints that bind the system. That effort is still going up over stairways
that have not a complete structure. One of the hard tasks in building those stairways
is the issue related to stability and robustness. Exploring the difference between
“stable” and “robust” is related to almost every aspect of what we instinctively
find interesting about robustness, not only in natural, but also in engineering, and
social systems. It is argued here that robustness is a measure of feature persistence
in a system that compels us to focus on fluctuations, and often assemblages of
perturbations, qualitatively different in nature from those addressed by stability
theory. Moreover, to address feature persistence under these sorts of perturbations,
we are naturally led to study issues including: (1) the coupling of dynamics with
organizational architecture, (2) implicit assumptions of the environment, (3) the
role of a system’s evolutionary history in determining its current state and thereby
its future states, (4) the sense in which robustness characterizes the fitness of the
set of “strategic options” open to the system, and (5) the capability of the system
to switch among multiple functionalities (Jen, 2003; Kitano, 2007). Defining any
scientific term is a nontrivial issue, but in this section, the following definition
will be used: “robustness” is a property that allows a system to maintain its functions
against internal and external perturbations. It is important to realize that robustness
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is concerned with maintaining functions of a system rather than system states, which
distinguishes robustness from stability or homeostasis (Kitano, 2004).

Following the model introduced by Bala�z and Mihailovi�c (2011), we investi-
gate behavior of two cells, exchanging biochemical substances, using methods
of nonlinear dynamicsdcalculating maximal Lyapunov exponent and cross-
sample entropy. In the above paper, we derived the two-dimensional mapping
given by Eqs. (24.3a) and (24.3b) that describes communicative interaction
between two cells.

According to the assumption in model design, the dynamical behavior of the
substance concentrations xn and yn depends on three factors: (1) its own concentra-
tion c within the radius of interaction in the surrounding environment (Bala�z and
Mihailovi�c, 2011), (2) parameter r, and (3) affinity p for binding on cellular recep-
tors. The first factor is determined by underlying feedback mechanism of intracel-
lular regulations, while the second one represents level of the suitability of the
environment to the communication between two cells (Mihailovi�c et al., 2010).

FIGURE 24.2

Lyapunov exponent of coupled maps with no fluctuations (Eq. 24.3) as a function of

concentration c ranging from 0 to 1. Ellipsis indicates the region used for analyzing the effect

of fluctuations.

Reprinted with permission from Mihailovic, D.T., Balaz, I., 2011. A model representing biochemical substances

exchange between cells. Part II: effect of fluctuations of environment parameters to behavior of the model. J.

App. Funct. Anal. 6, 77e84.
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The third factor depends on protein disorder (Dunker et al., 2001, 2002) which is
used to be constant in this model. The map displays a wide range of behavior as
the parameters are varied including periodic, quasiperiodic, and chaotic motion.
The variation of the Lyapunov exponent as a function of concentration c is depicted
in Fig. 24.2 for p ¼ 0.2 and r ¼ 3.95. The part of this curve in elliptic area is chosen
for analysis of the effect of fluctuations on synchronization of the system.

To characterize the asymptotic behavior of the orbits, we need to calculate the
largest Lyapunov exponent l, which is given for the initial point X0 in the attracting
region by

l ¼ lim
n/N

ðlnjjJnðX0Þjj=nÞ (24.6)

where J is the Jacobi matrix. With this exponent, we measure how rapidly two
nearby orbits in an attracting region converge or diverge. In practice, using
Jk(Xk) ¼ Jk(X0) ¼ J(Xk�1). J(X1)J(X0), we compute the approximate value of l
by substituting in (Eq. 24.6) successive values from Xn0 to Xn1, for n0, n1 large
enough to eliminate transient behaviors and provide good approximation. If X0 is
part of a stable periodic orbit of period k, then

����JkðX0Þ
���� < 1 and the exponent l

is negative, which characterizes the rate at which small perturbations from the fixed
cycle decay, and we can call such a system synchronized.

Effect of fluctuations. Here we will investigate the behavior of the coupled maps
given by Eqs. (24.3a) and (24.3b) in the presence of fluctuations of environmental
parameters or other noise. As has been shown in the case of uncoupled nonlinear

FIGURE 24.3

Lyapunov exponent (a) and cross-sample entropy (Cross-SampEn) (b) for coupled maps with

no fluctuations (Eq. 24.3) as a function of concentration c ranging from 0.375 to 0.395.

Reprinted with permission from Mihailovic, D.T., Balaz, I., 2011 A model representing biochemical substances

exchange between cells. Part II: effect of fluctuations of environment parameters to behavior of the model. J.

App. Funct. Anal. 6, 77e84.
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FIGURE 24.4

Lyapunov exponent (a)e(c) and Cross-SampEn (d)e(f) for coupled maps (Eq. 24.3) for

fluctuation with amplitude D ¼ 0.01 as a function of concentration c ranging from 0.375 to

0.395.

Reprinted with permission from Mihailovic, D.T., Balaz, I., 2011 A model representing biochemical substances

exchange between cells. Part II: effect of fluctuations of environment parameters to behavior of the model. J.

App. Funct. Anal. 6, 77e84.
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oscillators, the addition of parametric fluctuations has a pronounced effect on the
dynamics of such systems (Hogg and Huberman, 1984). In particular, the presence
of noise introduces a gap in the bifurcation sequence of period-doubling systems and
renormalizes the threshold of the appearance of chaotic behavior in the model
considered. It is therefore of interest to investigate the effect of noise on the
exchange substances between two cells. This is because cells are intrinsically noisy
biochemical reactors: low reactant numbers can lead to significant statistical fluctu-
ations in molecule numbers and reaction rates (Thattai and Oudenaarden, 2001).

The effect of fluctuations was modeled by adding uniformly distributed random
numbers to the map of Eq. (24.1). Specifically, we considered the map

xnþ1 ¼ ð1� cÞr
�
1þ sdð1Þn

�
xnð1� xnÞ þ cy1�p

n þ xDdð1Þn (24.7a)

ynþ1 ¼ ð1� cÞr
�
1þ sdð2Þn

�
ynð1� ynÞ þ cx1�p

n þ xDdð2Þn ; (24.7b)

where s and x take value 0 or 1 while dð1Þn and dð2Þn are random numbers uniformly
distributed in the interval [�1, 1] and D is the amplitude of the fluctuations. In
numerical simulations we used three kind of fluctuations: (1) (s ¼ 0, x ¼ 1)d
fluctuations of c; (2) (s ¼ 1, x ¼ 0) dfluctuations of r, and (3) fluctuations in
both c and r. The case (s ¼ 1, x ¼ 1) corresponds to one with no fluctuations (Eq.
24.3). These fluctuations can destroy the fine-scale detail of the transitions and
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RMSE of the Cross-SampEn for coupled maps (Eq. 24.3) for fluctuation as a function of the

amplitude D of fluctuations ranging from 0.00001 to 0.01. The letters next to curves

indicate fluctuations in: (c) concentration, (r) logistic parameter, and both (r,c).
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the quasiperiodic regions. Fig. 24.3a shows the Lyapunov exponent for coupled
maps with no fluctuations (Eq. 24.3) and cross-sample entropy (Cross-SampEn)
(Fig. 24.3b) as a function of concentration. c ranging from 0.375 to 0.395, while
Fig. 24.4aec depicts this exponent for the largest amplitude of the fluctuation
D ¼ 0.01 and the same ranging interval for c. Obviously, those fluctuations
remarkably change the Lyapunov exponent if they occur in both c and r. That
disturbance is highly emphasized for the case when fluctuations occur in both the
parameters r and c. We calculated the Cross-SampEn with m ¼ 5 and r ¼ 0.05 for
xn and yn time series. Fig. 24.4def shows high disorder between them, particularly
when fluctuations occur in the logistic parameter r and in both r and c. Apparently,
the disorder in the entropy is increases when the amplitude of the fluctuations
increases.

We calculated the RMSE (root mean square error) of the Cross-SampEn with the
state without fluctuations as a referent one. The cross-sample entropy for coupled
maps (Eq. 24.3) for fluctuation as a function of the amplitude D of fluctuations
ranging from 0.00001 to 0.01 is shown in Fig. 24.5. From this figure, it is seen
that the highest increase of RMSE of the Cross-SampEn is obtained when the fluc-
tuations occur in both the environment parameters, r and c.
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Complexity and
asymptotic stability in the
process of biochemical
substance exchange in
multicell system

25

25.1 COMPLEXITY OF THE INTERCELLULAR BIOCHEMICAL
SUBSTANCE EXCHANGE

Brief model description. To explore complexity and asymptotic stability in the
model of dynamics of biochemical substance exchange in a multicell system, we
first briefly summarize the main features of the intercellular exchange model
(Fig. 24.1), which is described in detail in Section 24.1. Thus, the system (Eq.
(24.1)) of coupled difference equations for Nc cells exchanging the biochemical sub-
stance can be written in the form of matrix equation

A ¼ ðBþ CÞ$D (25.1a)

where

A ¼

266666666666664

x1;nþ1

x2;nþ1

:

xk�1;nþ1

xk;nþ1

:

xN�1;nþ1

xN;nþ1

377777777777775
;D ¼

266666666666664

x1;n

x2;n

:

xk�1;n

xk;n

:

xN�1;n

xN;n

377777777777775
C ¼

266666666666666664

0 c1x
p1�1
2;n 0 0 : 0 0 0

0 0 c2x
p2�1
3;n 0 : 0 0 0

: : : : : : : :

: : : : : : : :

0 0 0 0 0 ckx
pk�1
kþ1;n : 0

: : : : : : : :

0 0 0 0 : 0 0 cN�1x
pN�1�1
N;n

cNx
pN�1
1;n 0 0 0 : 0 0 0

377777777777777775
;

(25.1b)
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B ¼

266666666666664

ð1� c1Þ r
�
1� x1;n

�
0 0 0 : 0 0 0

0 ð1� c2Þ r
�
1� x2;n

�
0 0 : 0 0 0

: : : : : : :

: : : : : : : :

0 0 0 0 ð1� ckÞ r
�
1� xk;n

�
0 : 0

: : : : : : : :

0 0 0 0 : 0 ð1� cN�1Þ r
�
1� xN�1;n

�
0

1 0 0 0 : 0 0 ð1� cN Þ r
�
1� xN;n

�

377777777777775

with condition
P

ci ¼ c with 0 � c � 1, while xi represents the concentration of
molecules in cells.

In Section 13.1 we discussed the issue of synchronization of substance exchange
between cells. However, an unresolved question is how the complexity and stability
of the substance exchange processes are affected by the changes in parameters that
represent the influence of the environment, cell coupling, and cell affinity.

Complexity of the biochemical substance exchange between cells. In this section,
we will first apply model (Eqs. (25.1a) and (25.1b)) for two cells and the case where
both cells are strongly influenced by intracellular concentration of signals, while
they can provoke a relatively smaller response.

The issue of system complexity in many disciplines, ranging from cognitive
science to evolutionary and developmental biology and particle astrophysics
(Crutchfield, 2012; Binney eat al., 1992; Cross and Hohenberg, 1993; Manneville,
1990; Wheeler, 1990 and references herein), has been an increasingly discussed
topic during the last three decades. An important part in studying complex systems
is the analysis of symbolic sequences. Namely, it is believed that most systems
whose complexity we would like to estimate can be reduced to them. However, as
we already said, according to Adami and Cerf (2000), the idea that the regularity
of the string alone is connected to its complexity is meaningless if this analysis is
done in the absence of an environment within which the string is to be interpreted.
Thus, the complexity of a string representing the complexity of the mentioned sys-
tems can be determined only by analyzing its correlation with a system environment
(Adami and Cerf, 2000). In this section it will be a sequence of a system’s process, as
an indication of its complexity. To provide a better insight in these problems, we will
model the process of the biochemical substance exchange using the above-described
model.

We analyze the complexity of the map (Eqs. (25.1a) and (25.1b)), using Kolmo-
gorov complexity spectrum highest value, KC

m of the concentration time series {xi},
i ¼ 1, 2, 3, 4, ..., N (see Section 15.2), because in this model concentration of
signaling molecules can serve as an indicator of dynamics of the whole process of
communication (Mihailovi�c et al., 2011). Fig. 25.1 depicts the change of KC

m against
cell affinity p and logistic parameter r, with: (1) r and p taking values in the interval
(3.6e4.0) and (0e1.0), respectively, with an increment of 0.005, (2) initial condition
(x0,y0) ¼ (0.3,0.5), and (3) Nc ¼ 100 cells assembling in a ring. The numerical sim-
ulations were done for values of the coupling parameter c of 0.02 and 0.2, respec-
tively. For each x, 5000 iterations of the map (Eqs. (25.1a) and (25.1b)) are
applied, and the first 1000 steps are abandoned. The values of KC

m were calculated
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for each cell in the ring and then by their averaging, the Kolmogorov complexity
spectrum highest value KC

m of the combined dynamics of cells was obtained.
From Fig. 25.1a, it is seen that for c ¼ 0.02 (weak coupling), r > 3.7, and whole
range of the cell affinity p, KC

m takes high values corresponding to the high
complexity in the simulation of process of the biochemical substance exchange be-
tween cells in the ring. The only exception is the “island” around the point (3.95, 0.5)
in the (r, p) phase space, which can be attributed to the nonlinear features of the map
(Eqs. (25.1a) and (25.1b)). In this case, the high complexity indicates the presence of
randomness in time series of concentration in the cell. In contrast to this, for higher
values of coupling (starting from c ¼ 0.2) the process of the biochemical substance
exchange (Fig. 25.1a) is much less complex indicating the absence of stochastic pro-
cesses in comparison with the weak coupling (Fig. 25.1b).

To illustrate complexity of the process of the biochemical substance exchange
between cells, we have calculated the Kolmogorov complexity spectra (KC) for
the substance exchange between two cells. Fig. 25.2 depicts KC of the process of
the biochemical substance exchange between two cells (Eqs. (25.1a) and (25.1b))
as a function of normalized concentration in cell, Xi for two values of the coupling
parameter c (0.02 and 0.2). We have obtained the normalized values of this series by
the transformation Xi ¼ (xi�xmin)/(xmax�xmin), where {xi} is a time series of concen-
tration in the cell, and xmin and xmax are the lowest and highest value of concentra-
tion, respectively. From this figure it is seen that the process of the biochemical
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FIGURE 25.1

The dependence of the Kolmogorov complexity spectrum highest value, KC
m on the cell

affinity p and logistic parameter r for the coupling parameter c: (a) 0.02 and (b) 0.2. The

calculations were performed for a ring of Nc ¼ 100 cells.

Reprinted with permission from Mihailovi�c, D.T., Kosti�c, V., Balaz, I., Cvetkovi�c, L., 2014. Complexity and

asymptotic stability in the process of biochemical substance exchange in a coupled ring of cells. Chaos Solitons

Fractals 65, 30e43.
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substance exchanges, for weak coupling c ¼ 0.02, happens for any concentration in
the cells. However, for c ¼ 0.2 substance exchange is located in the regions of Xid
(0.4, 0.6) and (0.9, 1.0). In the next section, we will test stability of these regions and
investigate how they behave in the case of even stronger coupling. So, we will intro-
duce very strong coupling c ¼ 0.6.

25.2 ASYMPTOTIC STABILITY OF THE INTERCELLULAR
BIOCHEMICAL SUBSTANCE EXCHANGE

The stability of the complex systems is also an important issue that has drawn
considerable attention in the analysis of biological and infection-related systems
(Adimya et al., 2010; Wang et al., 2012; Yan and Kou, 2012; and herein references).
Here, we will analyze asymptotic stability of the dynamical system. Namely, if
solutions that are sufficiently close to the equilibrium point remain sufficiently close
to that point forever, then the system is said to be Lyapunov stable. If the system is
Lyapunov stable and solutions that start sufficiently close to the equilibrium point
eventually converge to the equilibrium, then the system is said to be asymptotically

FIGURE 25.2

Kolmogorov complexity spectrum of the process of the biochemical substance exchange

between two cells (Eqs. (25.1a) and (25.1b)) as a function of normalized concentration in

cell, Xi for the coupling parameter c: 0.02 and 0.2.

Reprinted with permission from Mihailovi�c, D.T., Kosti�c, V., Balaz, I., Cvetkovi�c, L., 2014. Complexity and

asymptotic stability in the process of biochemical substance exchange in a coupled ring of cells. Chaos Solitons

Fractals 65, 30e43.
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stable. The stability analysis for dynamics of different complex systems (Zheng and
Wang, 2012; Skryabin, 2000; Choi et al., 2012; Aguiar et al., 2011; among others)
can be carried out by using different methods, but the eigenvalue-based methods are
commonly used for the asymptotic stability. In this section, for the multicell system
presented by a ring of coupled cells, we will provide a set of conditions that describe
how stability of the equilibrium of the biochemical substance exchange in time is
influenced by the parameters of the model described in the previous section.

Here, following the paper by Mihailovi�c et al. (2014) we address the behavior of the
system (Eqs. (25.1a) and (25.1b)) and estimate whether this dynamical system can

achieve the asymptotic stability at the possibly existing equilibrium point eX ¼ FðeXÞ
for two cells in dependence of coupling parameter c and different values of system pa-
rameters r and p. First, let us observe that the parameter constraints of the model assure
that F: ½0; 1� � ½0; 1�/½0; 1� � ½0; 1�. Therefore, since F is a continuous function on

the convex compact subset of Euclidian space R2, the Brouwer fixed point theorem im-
plies that there exists an equilibrium point. But, since 0 ¼ F(0), 0 is an equilibrium
point. Since we are not interested in the system without the substance, we need to inves-
tigate existence of other (nontrivial) equilibrium points. To that end, notice that

lim
ε/0þ

ð1�cÞ4ðεÞþcjðεÞ
ε

¼ þN holds for all admissible values of parameters c, r, and p.

But, this implies that there exists a sufficiently small ε, such that
F: ½ε; 1� � ½ε; 1�/½ε; 1� � ½ε; 1�. Therefore, again from the Brouwer fixed point the-
orem, we conclude the existence of a nontrivial equilibrium pointeX ¼ FðeXÞ ˛ð0; 1� � ð0; 1�. Since, in general, our map F: ð0; 1Þ � ð0; 1Þ/ð0; 1Þ �
ð0; 1Þ is nonlinear; wewill discuss the asymptotic stability behavior of the system (Eqs.
(25.1a) and (25.1b)) at the given equilibrium by the linearization technique. Namely, it is
well known that the asymptotic stability of a dynamical system at the equilibrium point
is described by the spectral behavior of its linearization around that equilibrium (Krabs

and Pickl, 2010). Therefore, wewill compute the Jacobian of the mapF at the point eX ¼
ðexn; eynÞ as

JF
�eX� :¼ DFj

X¼eX ¼
�
ð1� cÞrð1� 2exÞ cpðeyÞp�1

cð1� pÞðexÞ�p ð1� cÞrð1� 2eyÞ
�
; (25.2)

with eigenvalues

l1 ¼ ð1� cÞrð1� aðex; eyÞÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cÞ2r2ð1� aðex; eyÞÞ2 þ c2ð1� cÞ2gðex; eyÞ

bðex; eyÞ
s

; (25.3a)

l2 ¼ ð1� cÞrð1� aðex; eyÞÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cÞ2r2ð1� aðex; eyÞÞ2 þ c2ð1� cÞ2gðex; eyÞ

bðex; eyÞ ;
s

(25.3b)

where a ðex; eyÞ :¼ exþ ey is the total concentration in both cells (ex and ey) at equilib-
rium state, b ðex; eyÞ :¼ ðex pey1�pÞ=ðp ð1� pÞÞ is the weighted generalized geometric
mean of concentrations of substance between two cells and
g ðex; eyÞ :¼ ð1� 2exÞð1� 2eyÞ whose sign indicates in which two quadrants, of the
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domain corresponding to the axis through the point (0.5, 0.5), the provided equilib-
rium state belongs to.

Since the matrix in (Eq. (25.2)) has only two eigenvalues, using the Theorem
from the Appendix, then the discrete nonlinear dynamical system (Eq. (24.1)) at
the equilibrium point eX ¼ ðexn; eynÞ is
• asymptotically stable for

maxfjl1j; jl2jg < 1; (25.4a)

and

• not asymptotically stable if

minfjl1j; jl2jg > 1; (25.4b)

while otherwise we cannot get the answer through analysis of eigenvalues of the Ja-
cobian. Therefore, Eqs. (25.4a) and (25.4b) completely express the stability and
instability that is obtained through the linearization. If these conditions are not satis-
fied, stability purely depends on nonlinearity of the map F given by (Eq. (24.1)),
around the point of equilibrium eX. In this case the regions of stability and instability
can be further explored by eigenvalues of Hessian, i.e., using second order of
derivatives.

When for a given set of parameters expressions (Eqs. (25.3a) and (25.3b)) are
computed, then regions of the domain, for which equilibrium state of the system
(Eq. (24.1)) is asymptotically either stable or unstable, can be plotted. To better
grasp the meaning of stability/instability conditions given by Eqs. (25.4a) and
(25.4b) in Fig. 25.3 (weak coupling c ¼ 0.02) and Fig. 25.4 (very strong coupling
c ¼ 0.6), we have plotted regions of the asymptotic stability and instability in the
domain of the map F for the following values of parameters: p ¼ 0.25, 0.5, 0.75
and r ¼ 1,2,3,4. In each plot of these figures, the values of the equilibrium concen-
tration of substance in the first cell (ex) are given on the horizontal axis, while the
values of the second one (ey) are given on the vertical axis. The dark gray areas of
the state domain (0,1) � (0,1) represent asymptotic stability, while light gray areas
indicate regions of the instability. Note that the white area corresponds to the region
where stability/instability is due to purely nonlinear effects of the map F given by
Eq. (24.1). More precisely, if the equilibrium state which we have obtained belongs
to the dark gray region of the domain, that equilibrium state is asymptotically a sta-
ble one. On the other hand, belonging to a light gray region of the domain implies
that the observed state is asymptotically unstable one.

In Fig. 25.3 for logistic parameter r we use the broad range of its values from 1 to
4, although chaotic fluctuations in this equation occur after r ¼ 3.57. From this
figure, it is seen that the asymptotic instability occurs over the whole domain (i.e.,
dark gray color completely covers the square section) for r ¼ 1 and all values of
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FIGURE 25.3

Regions of the asymptotic stability for the equilibrium points (Eqs. (25.4a) and (25.4b)), in

the domain of the map F given by (Eq. (24.1)), for weak coupling c ¼ 0.02. The values of

the equilibrium concentration of substance in the first cell (ex) and second one (ey ) are given

on the horizontal and vertical axes, respectively. Domains of asymptotic stability and

instability are indicated by dark and light gray areas, respectively. White area indicates that

stability purely depends on nonlinearity of the map F around the point of equilibrium en.
Reprinted with permission from Mihailovi�c, D.T., Kosti�c, V., Balaz, I., Cvetkovi�c, L., 2014. Complexity and

asymptotic stability in the process of biochemical substance exchange in a coupled ring of cells. Chaos Solitons

Fractals 65, 30e43.
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The same as Fig. 25.3 but for very strong coupling c ¼ 0.6.
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p (0.25, 0.50, 0.75). With an increase of r, there exist three sections corresponding to
asymptotic stability (dark gray), instability (light gray), and stability purely depend-
ing on nonlinearity of the map F (white). Note that the stability square section be-
comes smaller with increase of r. This is expected for the weak coupling since we
approach to region with the chaotic fluctuations. Now we can explain the occurrence
of an “island” around the point (3.95, 0.5) in the (r,p) phase space in Fig. 25.1, which
depicts the dependence of the Kolmogorov complexity spectrum, KC

m , on the cell af-
finity p and logistic parameter r for the coupling parameter c ¼ 0.02. This “island”
has nearly the same shape and position as the dark shadow square section in
Fig. 25.3 (r ¼ 4 and p ¼ 0.5), which indicates the asymptotic stability of the system
(Eq. (24.1)). Namely, all around this section the process of the biochemical sub-
stance exchange is highly stochastic because it is not synchronized (Bala�z and
Mihailovi�c, 2010). In contrast to this, inside of this section the process of the
biochemical substance exchange is much less complex indicating the absence of sto-
chastic processes and its synchronization.

From panels in Fig. 25.4, it is seen that for r ¼ 1 there exists a large dark gray
section that indicates the asymptotic stability, which is expected for the very strong
coupling. Namely, in that case the dynamical system (Eq. (24.1)) is not in the chaotic
regime and it shows small values of the complexity, since the Kolmogorov
complexity (KLL) is low already for c ¼ 0.2 (Fig. 25.2). When value of r increases,
the dark shadow section becomes smaller with larger sections of the asymptotic
instability and stability purely depending on nonlinearity of the map F, particularly
when approaching to the chaotic regime.

Since the complexity of the processes of exchange of biophysical substances be-
tween cells is chaotic (r ¼ 4), in Fig. 25.5 we have plotted the stability regions for
different values of c ¼ 0.1, 0.3, 0.5, 0.7, 0.9 and p ¼ 0.25, 0.5, 0.75, where the mean-
ing of axes is the same as in Figs. 25.3 and 25.4. We note that the section with the
asymptotic stability takes much more place in (ex,ey) space for higher values of r.
Finally, from all figures, it is seen that parameter r influences a much more asymp-
totic instability than the coupling parameter c does.

Here we consider regions of the asymptotic stability for the equilibrium points in
the domain of the map F given by (Eq. (24.1)), through analysis of extreme eigen-
values of the Jacobian, i.e., max fjl1j; jl2jg and min fjl1j; jl2jg defined by Eqs.
(25.4a) and (25.4b), in dependence of the equilibrium concentration of substance
in the cells (ex, ey) in a setting that r ¼ 4, p ¼ 0.5, c ¼ 0.02 (weak coupling) and
c ¼ 0.6 (very strong coupling). The results of computations are depicted in
Fig. 25.6. From Fig. 25.6a it is seen that for the weak coupling (c ¼ 0.02), the min-
imal values of the max fjl1j; jl2jg are reached in the vicinity of the point (0.5, 0.5).
Therefore, for such equilibrium points, there exists a strongly pronounced asymp-
totic stability (the green rectangular section). As expected, for the very strong
coupling (c ¼ 0.6), this section of the asymptotic instability is larger (Fig. 25.6c).
Further inspection of Fig. 25.6, i.e., Fig. 25.6b and d give us information about
the asymptotic instability. Namely, for the equilibrium point with cell concentrations
close to either higher (toward 1) or lower values (toward 0), values of the
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Regions of the asymptotic stability for the equilibrium points (Eqs. (25.4a) and (25.4b)), in

the domain of the map F given by (Eq. (24.1)), for r ¼ 4 and different values of coupling

parameter c.
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min fjl1j; jl2jg indicate the existence of a strong instability (green rectangular sec-
tions in corners of Fig. 25.6b). Those sections are smaller in case of very strong
coupling (Fig. 25.6d).

25.3 BIOCHEMICAL SUBSTANCE EXCHANGE
IN A MULTICELL SYSTEM

Stability at an equilibrium state. In this section we consider substance exchange in a
multicell system represented by a ring of coupled cells schematically shown in
Fig. 25.7.

FIGURE 25.6

3D diagram of the extreme eigenvalues of the Jacobian, max fjl1j; jl2jg ((a) and (c))

min fjl1j; jl2jg; ((b) and (d)), against equilibrium concentration of substance in the cells (ex ,ey ) in setting: r ¼ 4, p ¼ 0.5, c ¼ 0.02 (weak coupling in (a) and (b)) and c ¼ 0.6 (strong

coupling in (c) and (d)). Sections in (ex ,ey ) plane are due to the regions with stability and

instability.

Reprinted with permission from Mihailovi�c, D.T., Kosti�c, V., Balaz, I., Cvetkovi�c, L., 2014. Complexity and

asymptotic stability in the process of biochemical substance exchange in a coupled ring of cells. Chaos Solitons

Fractals 65, 30e43.
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In our approach, a cell moves locally in its environment without making long
pathways. As a generalization of the two-cell system, according to Mihailovi�c
and Bala�z (2012) and Mihailovi�c et al. (2013), the dynamics of substance exchange
in such a multicell system of Nc cells exchanging biochemical substance can be rep-
resented by the discrete nonlinear time-invariant dynamical system

Xðnþ1Þ ¼ F
�
XðnÞ

�
:¼ C F

�
XðnÞ

�
þ ðI � CÞ Z J

�
XðnÞ

�
; (25.5)

where

• x
ðnÞ
k is the concentration of the substance in k-th cell in a discrete time step n,
k ¼ 1, 2, ..., N, n ¼ 0, 1, 2, ... and X(n) ¼ (x1

(n), x2
(n), ..., xN

(n)) is the appropriate
vector,

• C ¼ diag(c1, c2, ..., cN) is the diagonal matrix of the coupling coefficients for
each cell,

• FðxðnÞÞ :¼ diag ð4ðxðnÞ1 Þ; 4ðxðnÞ2 Þ;.;4ðxðnÞN ÞÞ is the diagonal matrix of intra-
cellular behavior modeled by the logistic map 4:(0,1)/(0,1)4(x) :¼ rx(1�x),

• J ðxðnÞÞ :¼ diag ððxðnÞ2 Þp1 ; ðxðnÞ3 Þp2 ;.; ðxðnÞN ÞpN�1 ; ðxðnÞ1 ÞpN Þ is the diagonal ma-
trix of the flow of the substance to each cell, where the cell’s affinities fulfill the
constraint p1 þ p2 þ.pN ¼ 1, and

• Z ˛ f0; 1gN�N is the upper cyclic permutation matrix, i.e.,
Z ¼ ðeN; e1; e2 ;.; eN�1Þ, where e1; e2 ;.; eN�1 are the standard basis vec-
tors of ℝN .

FIGURE 25.7

Schematic diagram of a model of substance exchange in a system represented by a ring of

coupled cells.

Reprinted with permission from Mihailovi�c, D.T., Kosti�c, V., Balaz, I., Cvetkovi�c, L., 2014. Complexity and

asymptotic stability in the process of biochemical substance exchange in a coupled ring of cells. Chaos Solitons

Fractals 65, 30e43.
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It is interesting to note that in this model of a multicell system for Nc cells in a
ring (Nc ¼ 100 in our simulations), we permit that coupling coefficients can differ
from cell to cell. Therefore, the two-cell model that we have discussed in the previ-
ous section is a special case for Nc ¼ 2 and c1 ¼ c2 ¼ c.

As in the Section 25.1, we are interested in the asymptotic stability of the dynam-

ical system (Eq. (25.5)) at the provided equilibrium point eX ¼ FðeXÞ. Again, since
lim
X/0

kFðXÞkN
kXkN ¼ þN holds for all admissible values of parameters r, c1,.,cN, and

p1,.,pN, there exists a sufficiently small ε, such that F: ½ε; 1�N/½ε; 1�N , and conse-
quently, there exists a nontrivial equilibrium point eX ¼ FðeXÞ˛ ð0; 1� � ð0; 1�. As
before, we determine the asymptotic stability behavior of nonlinear system (Eq.

(25.2)) at equilibrium eX by linearization. The Jacobian of the map F at the point eX is

JF
�eX� :¼ DFj

X¼eX ¼ C bF �eX�þ ðI � CÞ Z bJ �eX�; (25.6)

where bFðexÞ :¼ diagð40ðex1Þ; 40ðex2Þ;.;40ðexNÞÞ;
40ðxÞ ¼ r ð1� 2xÞ and

bJðexÞ :¼ diag
�
p1ðex2Þp1�1; p2ðex3Þp2�1 ;.; pN�1ðexNÞpN�1�1; pNðex1ÞpN�1

�
:

In this case, if we use the Theorem from the Appendix, then we obtain that the
stability of the discrete dynamical system (Eq. (25.5)) at the point eX, which is deter-
mined by the spectral radius r of the matrix JFðeXÞ, i.e., rðJFðeXÞÞ. Thus, the stability
of this system is given by

• asymptotically stable if rðJFðeXÞÞ < 1
• not asymptotically stable if rððJFðeXÞÞ�1Þ > 1 and
• can be stable or unstable otherwise, due to purely nonlinear effects.

For the specific choice of parameters, the above criterion gives quite a good
answer on the question of the stability through computation of the spectra of the Ja-
cobian. Otherwise, finding an analytic expression for the spectral radius r ðJFðeXÞÞ in
dependence on the values of the system parameters is generally impossible. There-
fore, to have a better insight into the dependence of stability on the parameter
changes, we will return to the matrix infinity norm. Namely, it is well known that

r
�
JF
�eX�� � 		JF�eX�		N ¼ max

i¼1;2;.;N

XN
j¼1




�JF�eX��i; j


: (25.7)

Having this in mind, we obtain only the necessary conditions for the asymptotic
stability of the system (Eq. (25.2)) by computing the infinity norm and analyzing the
following inequality:		JF�eX�		N ¼ max

i¼1;2;.;N

�
ð1� ciÞ rð1� 2exiÞ þ cipiðexiþ1Þpi�1

�
< 1: (25.8)
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At this point, let us note that the specific choice of infinity norm, to bound the
spectral radius of a matrix, is not generally the best possible choice. In fact, this
is equivalent to approximations of matrix eigenvalues by Ger�sgorin’s circles (Varga,
2004). But, due to its analytic simplicity, it is a good choice in many cases, as a start-
ing point. The better estimations of stability region could be done by the use of other
matrix norms or localization areas (Cvetkovi�c et al., 2004, 2011; Cvetkovi�c and
Kosti�c, 2006; Varga et al., 2008), which will be in the focus of our future work
regarding this subject.

Domains for equilibrium points that permit stability for every coupling. We start
by observing that inequality (Eq. (25.8)) holds if and only if for every
i ˛f1; 2;.; Ncg

ð1� ciÞ r j1� 2exij þ cipi ðexiþ1Þpi�1 < 1: (25.9)

But, since the left-hand side of (Eq. (25.9)) is a convex combination of
r j1� 2exij and pi ðexiþ1Þpi�1 with parameter 0 < ci < 1, we conclude that
r j1� 2exij < 1 and pi ðexiþ1Þpi�1 < 1 together imply (Eq. (25.8)) independently of
the values of 0 < ci < 1, i ˛f1; 2; ::: ; Ncg.

Thus, since r j1� 2exij < 1 and pi ðexiþ1Þpi�1 < 1 is equivalent to

exi ˛
r � 1

2r
;
r þ 1

2r

�
and ðpi�1Þ

1
1�pi�1 < exi; (25.10)

we obtain the region in the Nc-dimensional space of substance concentrations in the
coupled ring of cells

S: ¼
�eX˛ð0; 1ÞN : max

�
r � 1

2r
; ðpi�1Þ

1
1�pi�1

�
< exi < r þ 1

2r

�
; (25.11)

such that for every coupling (0 < ci < 1, i ˛ f1; 2; . ; Ncg), if an equilibrium
point eX ˛ S, then this equilibrium point is asymptotically stable. In other words,
independently of the coupling parameters of the individual cells in the multicell sys-
tem, region S, which is always included in a hypercube around the central point the
domain (0.5, 0.5, ..., 0.5) with the edge of the length 0.5r�1 is the place where
asymptotic stability of the point of equilibrium is always assured. Looking at
Fig. 25.5, we can see the effect of the same behavior in the two-cell system, i.e.,
while the coupling parameter was changing the square region (0.375,
0.625) � (0.375, 0.625) somehow remains included in the stability region. Now, us-
ing an infinity norm bound, in fact, we can explain the existence of this region even
for the system of Nc cells coupled in a ring formation. Namely, if we assume that the
values of the logistic parameter r are ranged from 3.785 to 4, then, after a closer look
at (Eq. (25.11)), it is seen that, independent of the coupling parameters and the cell
affinities, the following inclusions hold

ð0:375; 0:625ÞN 4 S 4 ð0:3679; 0:6321ÞN : (25.12)
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Namely, if an equilibrium concentration in each cell is between 0.375 and 0.625
then asymptotic stability of (Eq. (25.5)) is assured without any additional constraints
on the parameters (ci, r, pi), i.e., for each c1; c2; :::; cN ˛ð0; 1Þ, p1; p2; :::; pN ˛ ð0; 1Þ,
and r ˛ð3:785; 4Þ. In addition, we consider a case when pi � 0:8; i ˛ f1; 2; :::;Ng.
Similarly, as in the above analysis of (Eq. (25.11)) we conclude that this constraint
extends the stability interval for individual cell’s equilibrium concentration to

ð0:375; 0:625ÞN 4 S 4 ð0:3333; 0:6667ÞN : (25.13)

Here, the constraint pi � 0:8; i ˛ f1; 2 ; :::; Ncg encounters practically in the
majority of the cases of the multicell systems since pi þ p2 þ . þ pN ¼ 1.

Finally, we underline a conclusion, which can be derived from the above discus-
sion. Namely, the asymptotic stability of the dynamic system represented by a ring
of coupled cells given by (Eq. (25.5)) is assured without any additional constraints
for r ˛ ð3:785; 4Þ, i.e., the interval, which includes the size of the r interval for the
“island” of the low complexity for a two-cell system exchanging the biochemical
substance (Fig. 25.1a). This is interesting since in this interval, the coupled maps
(Eqs. (25.1a) and (25.1b)) show a chaotic behavior. It means that in those conditions,
there exists a space of parameters (ci, r, pi), for which the process of biochemical
substance exchange in a coupled ring of cells is stable.

Appendix (Stability of the discrete nonlinear dynamical system through lineari-
zation). Linearization technique is generally used in obtaining asymptotic stability
of discrete dynamical systems. Here we provide one version of this well-known
result in the form of the following Theorem and its proof to better clarify the analysis
in this section (Mihailovi�c et al., 2014). Slight difference from this result can be
found, among others in Krabs and Pickl (2010) and Michel et al. (2008).

Theorem. Given a nonlinear continuously Fréchet differentiable map
F: ð0; 1ÞN/ð0; 1ÞN and the fixed point eX ¼ FðeXÞ of the discrete nonlinear dynam-
ical system

Xðnþ1Þ ¼ F
�
XðnÞ

�
; n ¼ 0; 1; 2; .; (A1)

Let JFðeXÞ :¼ DFj
X¼eX denote the Jacobian matrix at the point eX. Then, the

following two implications hold:

1. if r ðJFðeXÞÞ < 1, then the system (Eq. (A1)) is asymptotically stable at the
point eX,

2. if all eigenvalues of JFðeXÞ are larger in absolute value than one, i.e., JF ðeXÞ is
invertible and r ððJFðeXÞÞ�1Þ > 1, then the system (Eq. (A1)) is not asymptot-
ically stable at the point eX.
Proof. First, supposing that the map F is continuously Fréchet differentiable on

the domain, we obtain that the Jacobian matrix exists at each point of the domain,
that it is a continuous map, and that the Fréchet derivative is given by:

F’xðhÞ ¼ JFðXÞh; h˛ ð0; 1ÞN :
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Now, assume that r ðJFðeXÞÞ < 1, then, see Varga (2004), there exists a
matrix norm k k on the space ð0; 1ÞN; N3ℝN; N induced by some vector norm
k kv, such that r ðJFðeXÞÞ < 		JFðeXÞ		 < 1. Therefore, we obtain
kF’exk ¼ 		JFðeXÞ		 ¼ sup f		JFðeXÞh		v: khkv ¼ 1gh1.

Now, since every norm is continuous, we have that the map X/kF’Xk is a
continuous map, too. Therefore, there exists ε > 0 and M˛½0; 1Þ such that

kF’Xk < M; for all X ˛ B
�eX; ε� :¼ n

y ˛ð0; 1ÞN : 		eX� Y
		 < ε

o
:

Further, using the mean value theorem we have that kFðXÞ � FðYÞkv �
kF’ZkkX� Ykv, for allX; Y ˛ BðeX; εÞ, and some zwhich is a convex combination
of X and Y, and, therefore z ˛ B ðex; εÞ. But, this implies that		FðXÞ � eX		

v
¼ 		FðXÞ � F

�eX�		
v
� M

		X� eX		
v
< ε for all X ˛ B

�eX; ε� ; i:e:;

F
�
B
�eX; ε��4 B

�eX; ε�:
Therefore, if the starting pointX(0) of the discrete dynamical system (Eq. (A1)) is

in the ε-neighborhood of the fixed point eX, then for X(n), the state of (Eq. (A1)) at the
nth discrete time step, we have that			XðnÞ � eX			

v
¼

			F�Xðn�1Þ
�
� eX			

v
� M

			Xðn�1Þ � eX			
v
¼ . � Mn

			Xð0Þ � eX			
v
< Mn

ε:

and, as a consequence, when n/N, XðnÞ/eX, and the asymptotic stability is
obtained.

To prove item (b), we observe that if r ð½JFðeXÞ��1Þ < 1, according to the same
results of Cvetkovi�c and Kosti�c (2006), then there exists vector norm k kv and its

induced matrix norm k k, such that r ð½JF ðeXÞ��1Þ <
			½JF ðeXÞ��1

			 ¼			½F’eX��1
			 < 1. Thus, we have obtained that

			½F’eX��1
			�1

> 1.

But, then, for every X; Y ˛ BðeX; εÞ,
kX� Ykv ¼

			�F’eX��1�
F’eXðXÞ�� �

F’eX��1�
F’eXðYÞ�			v � 			�F’eX��1

					F’eX ðX� YÞ		
v
;

which implies that kF’exðX� YÞkv � qkX� Ykv, for q ¼
			½F’eX��1

			�1
> 1.

Since the map F is Fréchet differentiable, we have that

FðXÞ � F
�eX� ¼ F’eX�X� eX�þ q

�		X� eX		
v

�
for all X˛ð0; 1ÞN ;

and, thus, we can choose d > 0 such that bq ¼ q� d > 1, and ε > 0 such that for
every X ˛BðeX; εÞ=feXg, q ð		 		X� eX		

v
Þ

v

			 � d
		X� eX		

v
, and obtain that		FðXÞ � eX		

v
¼ 		FðXÞ � F

�eX�		
v
� 		F’ex�X� eX�		

v
� q

�		X� eX		
v

�
v
�

						
bq		X� eX		

v
� d

		X� eX		
v
¼ q

		X� eX		
v
;

for all x ˛B ðeX; εÞ=feXg.
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Now, let Xð0Þ be an arbitrary starting point of the discrete dynamical system (Eq.
(A1)) in the ε-neighborhood of the fixed point eX, such that all the states of (Eq. (A1))
up to the n� 1th discrete time step belong to that ε-neighborhood of eX. Then, we
have that			XðnÞ � eX			

v
¼

			F�Xðn�1Þ
�
� eX			

v
� q

			Xðn�1Þ � eX			
v
� . � qn

			Xð0Þ � eX			
v
;

which implies that there must exist (sufficiently large) discrete time steps n such that
XðnÞ ; B ðeX; εÞ. Therefore, in the chosen ε-neighborhood of the fixed point eX,
there cannot exist a sequence of states of (Eq. (A1)) that will converge to eX, i.e.,
(Eq. (A1)) cannot be asymptotically stable at the point eX.
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Use of pseudospectra in
analyzing the influence of
intercellular nanotubes on
cell-to-cell communication
integrity

26

26.1 BIOLOGICAL IMPORTANCE OF TUNNELING NANOTUBES
Communication between cells is highly important for their survival. Using
communication, cells can coordinate their collective actions, modify metabolism,
and adapt to environmental changes (Levin, 2006; Pikovsky et al., 2001; Arenas
et al., 2008; Chen et al., 2003). Cells can communicate by exchanging signaling
molecules using several strategies. They can utilize the direct interaction between
cell-surface molecules, they can synthetize and release specialized signaling
molecules into the environment, or they can directly transport molecules through
gap junctions (GJs). As specialized structures whose purpose is to put cells into
tight contact, GJs are of special importance. From the perspective of functional
role, GJs have evolved independently three times, if one includes plasmodesmata
in plants, which are structurally very distinct from GJs but mediate similar
functions (Nicholson, 2003). In the vertebrates and invertebrates, GJs are similar
in both structure and function. The only major difference is that in vertebrates
GJs are composed of proteins from the connexin family (Eiberger et al., 2001;
Willecke et al., 2002) while in the invertebrates composing proteins are innexins,
which is an unrelated but similar family to connexins (Phelan and Starrich, 2001).
In mammals, GJ channels are composed of two hemi-channels, connexons, each
composed of six subunits, connexins. Connexins are trans-membrane
proteins, encoded by a large gene family that in humans have at least 20 isoforms.
In the pair, each connexon is provided by one of the two neighboring cells. They
are tightly connected to each other in the extracellular space, to form a double-
membrane intercellular channel (Unger et al., 1999). Sometimes, the channels
can form aggregates (termed plaques) that are highly dynamic, both spatially
and temporally. Since connexins are coded by such a large gene family, it is clear
that their synthesis and degradation are very precisely regulated, to secure proper
functioning of GJs. The GJ-mediated intercellular communication is crucial for
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coordination of development, tissue function, and cell homeostasis. Opening and
closing of the GJ channels is a main way of regulating GJ-mediated communica-
tion. However, on a longer time-scale, all processes involved into the formation of
GJ channels (delivery, assembly, removal) are additional independent mechanism
to control GJ-mediated communication (Segretain and Falk, 2004).

In addition to stable communication, recent findings show that GJs may play a
significant role in unstable, transient cellecell contacts and that GJ hemi-channels
by themselves may function in intracellular/extracellular signaling (Segretain and
Falk, 2004). However, recent discoveries demonstrate that additional structures
can play an important role in transient, dynamically more adaptable communica-
tiondtunneling nanotubes (TNTs).

TNTs were first reported as highly sensitive structures that are formed de novo
between cells, connecting them into a complex network (Rustom et al., 2004).
Later research demonstrated that they are highly dynamic and highly variable
structures with heterogeneous molecular composition. The average length of
TNTs can vary from 6 mm between PC12 cells, up to 44 mm between retinal
pigment epithelial (ARPE-19) cells, while maximal observed length is in the range
of 120 mm (Austefjord et al., 2014). Even within the same cell line, length can
dynamically adapt as cells migrate. Exact mechanism of how length change is
regulated is unknown. Diameter of TNTs is also highly variable: typically in range
of 50e200 nm.

TNTs are sensitive to light leading to visible vibrations and rupture. They are
also sensitive to shearing stress and chemical fixation. Most of them contain
F-actin through the whole length of the TNTs. In some cell lines, microtubules
are also detected, but how their presence is regulated is yet to be investigated.
TNTs have no contact to the substrate and they hang in the medium. They are prob-
ably formed as membrane continuation because (1) in transmission electron micro-
graphs, their membrane appeared to be continuous with the membranes of connected
cells, (2) in scanning electron micrographs, they exhibit seamless transition to the
surface of both connected cells, and (3) they permit a lateral diffusion of fluorescent
membrane proteins between the plasma membranes of both connected cells (Rustom
et al., 2004). Due to limited characterization so far, and their ability to perform
numerous functions, proper classification of TNTs is still incomplete.

Formation of TNTs is rapid, usually within a few minutes. Two distinct
mechanisms have been proposed (Gerdes and Carvalho, 2008). According to the
first, filopodia-like protrusions grow by actin polymerization, directly toward a
neighboring cell. Such a process implies existence of chemotactic signaling that
guides the formation of TNTs. Some indirect results indicate that such a process
indeed exists (Ramirez-Weber and Kornberg, 1999; Sherer et al., 2007). The second
proposed mechanism proposes that TNTs emerge when previously attached cells
depart from one another (Gerdes et al., 2007; Önfelt et al., 2004). This mechanism
is based on observation that formation of membrane bridges between T-cells
requires cell interaction before dislodging (Sowinski et al., 2008). Average lifetime
of TNTs ranges from several minutes up to 1 h.
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In the original finding, TNTs were proposed as a novel way for long-range cell-
to-cell interaction primarily used for intercellular transfer of organelles (Rustom
et al., 2004). Later research showed that the role of TNTs is much broader. Similar
to GJs, these nanotubes can transfer diverse signals between the cells. Also they are
detected in prokaryotes where they enable interspecies communication and share of
antibiotic resistance (Dubey and Ben-Yehuda, 2011; Ficht, 2011). It has been shown
that in both cases, these TNTs can facilitate cell-to-cell communication and
intercellular transfer of cytoplasmic molecules, organelles, and viruses (Belting
and Wittrup, 2008; Davis and Sowinski, 2008; Bukoreshtliev et al., 2009). Existence
of clusters of TNTs enables formation of complex cellular networks with both
local and long-distance interactions based on membrane continuity between
TNT-connected cells (Fig. 26.1). Empirical evidence indicate that they can have
an important role in many pathophysiological processes, like in activation of natural
killer cells, regulation of osteoclastogenesis, or in the tumor formation and growth
(Chauveau et al., 2010; Takahashi et al., 2013; Lou et al., 2012). In prokaryotes
they can play the important part in transferring virulence from pathogenic to
nonpathogenic bacteria (Dubey and Ben-Yehuda, 2011). These findings indicate
that TNTs significantly contribute in a multitude of physiological processes, in
both prokaryotic and eukaryotic cells.

It has been shown that TNTs have an important role in the migration and
differentiation of neurons. Astrocytes are crucial for the maintenance of the
microenvironment of mature neurons by clearing neurotransmitters from the

FIGURE 26.1

Example of intercellular TNTs between neighboring, prokaryotic cells. A field of cells with a

cluster of smaller TNTs (highlighted by a dashed circle) and a more pronounced larger tube

(indicated by an arrow).

Reprinted with permission from Dubey, G., Ben-Yehuda, S., 2011. Intercellular nanotubes mediate bacterial

communication. Cell 144, 590e600.
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synapses (Bergles et al., 1999). Also, astrocytes can modify the formation and
function of synapses (Allman et al., 2011; Volterra and Meldolesi, 2005). However,
little is known about how these interactions are initiated. Wang et al. (2012)
demonstrated that immature hippocampal neurons generated short protrusions
toward astrocytes resulting in TNTs formation, with an average lifetime of
15 min. Their findings suggest that within a limited maturation period developing
neurons establish electrical coupling and exchange of calcium signals with
astrocytes via TNTs. This novel cellecell communication pathway between cells
of the central nervous system provides new concepts in our understanding of
neuronal migration and differentiation.

In addition to exchange of molecules, TNTs also convey electrical signals
between distant cells (Wang et al., 2010). Such long-distance electrical coupling
is assisted by GJs, while strength of electrical coupling depended on the length
and number of TNT connections. Additionally, their results suggest that there are
at least two different types of TNTs: those that interpose connexins and thus partic-
ipate in electrical coupling, and those that lack connexins and do not display
electrical coupling. More important is that the electrical signals transferred from
one cell to another are sufficient to induce a transient calcium elevation in the recip-
ient cell by activating low voltage-gated Ca2þ channels. Together with other
research that demonstrated TNT-dependent intercellular calcium signaling via
calcium diffusion through TNTs (Watkins and Salter, 2005; Hase et al., 2009), these
findings suggest that different mechanisms of intercellular calcium signaling exist. It
opens up the possibility that TNTs participate in physiologically relevant cell func-
tions. In particular, the collective behavior of solitary or loosely attached migratory
cells that follow the same tracks during diverse developmental processes could be
coordinated by a long-distance signaling network (Wang et al., 2010). In experi-
ments with the rat kidney cellsw80% of the TNTs between those cells mediate elec-
trical coupling (Wang et al., 2010), but w50% of TNTs between the cells from the
same line are involved in organelle transfer (Gurke et al., 2008). This finding
suggests that a number of TNTs are likely to be involved in both processes and raises
the question as to the mechanism by which organelle transfer occurs between
TNT-connected cells. Suggested mechanisms involve exocytic and endocytic events
at the membrane interface or a transient fusion of the TNT membrane with the
target-cell membrane.

Besides the activation of Ca2þ channels, TNT-mediated electrical coupling
may affect other processes in the network of cells. They can modulate
activity of small-molecule transporters (Levin, 2007) and the activity of different
enzymes (Levin, 2007; Murata et al., 2005; Zhang et al., 2004). Also, it has been
shown that during the wound healing, synthesis of TNTs increase, probably to
synchronize the observed F-actin remodelling by activation of downstream
signaling cascades (Wang et al., 2010). These results indicate that the transfer of
electrical signals via TNTs and the subsequent activation of physiologically
relevant biophysical signals may provide a unique mechanism for long-distance
cellular signaling.
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As a result of the heterogeneous structure, TNTs can exhibit different functional
roles. For example, nanotubes connecting human macrophages can be divided in two
groups with different functional properties: thick nanotubes containing both F-actin
and microtubules, where intracellular vesicles are transferred through the nanotubes,
and thin nanotubes, containing only F-actin, that facilitate transport of bacteria along
their surface (Önfelt et al., 2006). Within thick nanotubes vesicles move in a step-
wise manner, and the presence of microtubules is necessary for their transport. Ves-
icles move through the full length of nanotubes, from the connection with one cell
into the cytoplasm of the other connected cell. It has been observed that in addition
to endosomes and lysosomes, mitochondria can also enter thick nanotubes. On the
other hand, bacteria move along the surface of thin TNTs. This process is termed
surfing because they use a constitutive flow of the nanotube surface for movement.
Surface transport along thin nanotubes is dependent on ATP but independent of mi-
crotubules. In addition to the role in transfer of bacteria, both viruses (Sherer et al.,
2007; Sowinski et al., 2008) and prions (Gousset et al., 2009) also can exploit TNTs
for invading eukaryotic cells.

Since TNTs are relatively newly discovered structures, whose regulation and
dynamics is still largely unknown, there have not been many attempts to model
their behavior. To our knowledge, only one model has been published so far
(Suhail et al., 2013). They propose a mathematical model to explain passive
protein transfer between cells via formation of TNTs. The model makes a critical
assumption about distinct characteristics of transport of membrane versus cyto-
solic components through TNTs. It is assumed that there is a difference in transfer
speed depending on the size of the molecules that diffuse through TNTs. Large
cytosolic components, as intracellular proteins, can diffuse much slower that the
membrane components. Therefore, there are two rate-limiting steps. For large
components, it is their diffusion speed through TNTs, while for the smaller com-
ponents, it is the rate of their access to TNTs on the side of the donor cell. As a
consequence and due to the transient nature of TNTs, only smaller components
would reach a steady state distribution over the length of TNT. Larger, cytosolic
components will form a diffusion-based gradient.

First-order approximation in the model is that the abundance of the TNT lengths
falls linearly with length. Therefore, it is assumed that the length r of TNTs follows a
distribution:

pðrÞf
�
l� r; if r < l;

0; otherwise:
(26.1)

where l is the maximum length based on experimental observations. According to
the model, greater mean diffusion length increases the observed levels of the trans-
ferred molecules adjacent to the donor cells and it also sharpens the fall in the con-
centration of the molecule as we move farther from the donor cells. The model
explains that while transfer of cytoplasmic proteins may occur between cells, it
would be in relatively smaller amounts in comparison to membrane proteins or
smaller biochemical components present in the cytosol. Simulations of protein
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transfer for membrane proteins show that the membrane proteins can be transferred
into the acceptor cells within the distance up to the maximum length of the TNTs,
while the decline of the protein levels is approximately linear with the distance from
the boundary of the donor cells. Also, the amount of transferred molecules depends
on the mean diffusion length.

Despite their functional multitude, several recent results point toward a close
functional link between TNTs, GJs, and stress response. First, their formation is
induced by stress (Wang et al., 2011) but direction of their formation depends on
cell types. For example, in neurons, cells that undergo stress will generate more
TNTs, while in endothelial cells, stressed cells will synthesize signals that will
induce formation of TNTs in nonstressed cells (Marzo et al., 2012). Second,
TNTs can extend through GJs (Wang et al., 2010) modifying GJ functionality.
Finally, TNTs are dynamic structures whose formation and decomposition is very
sensitive to both intracellular and extracellular factors, with lifetimes ranging
from several minutes up to 4e5 h (Bukoreshtliev et al., 2009; Lou et al., 2012). Their
short lifetime suggests that they can promote unstable, transient cell-to-cell commu-
nication, in contrast to more stable communication mediated by GJs (Goodenough
and Paul, 2009). Moreover, this transient influence on communication is promoted
by stress, when integrity of intercellular communication is of special interest.
Therefore, we believe that it is of importance to systematically explore how the per-
turbations in communication, induced by the existence of clusters of TNTs, can in-
fluence stability of intercellular communication.

26.2 COMPUTING THE THRESHOLD OF THE INFLUENCE OF
INTERCELLULAR NANOTUBES ON CELL-TO-CELL
COMMUNICATION INTEGRITY

In this section we explore how the substance exchange through TNTs affects the
functional stability of a multicellular system, following the paper by Mihailovi�c
et al. (2016). We suppose that GJs form the main communication line, while for-
mation of TNTs can modify dynamics of communication, keeping GJs intact. Also,
in the model, we will consider only TNTs as transient structures. We are aware that
both GJs and TNTs are dynamic structures. Formation of GJs is tightly regulated
and their number can significantly change over time. However, in this section we
are only interested in how TNTs can influence the already established stable
communication. Therefore, the time scale in our model is shorter than the time
needed for GJs to be synthesized or degraded. From these starting points we focus
on two issues: (1) whether transient clusters of TNTs can either stabilize or
destabilize intercellular communication governed by GJs? and (2) how to
determine the threshold at which influence of TNTs destabilize GJ-mediated
communication? Therefore, we introduce a model of the substance exchange in
a multicellular system, represented by ordinary differential equations, where
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cell-to-cell communication is mediated by both the GJs and TNTs while metabolic
processes in the cell follow MichaeliseMenten dynamics. In this model, the GJ
function governs the time evolution of the intercellular network while the TNTs
function simulates the exchange mediated by the TNTs including a scaling param-
eter for that mediation. So, we consider the influence of TNTs as a functional
perturbation of the main communication mediated by GJs. To determine the
threshold for which the multicellular system remains stable, despite TNTs
influence, we compute the distance to instability (Higham, 1989), using nonconvex
optimization algorithm from Kostic et al. (2015), and we derive numerically cheap
lower bounds based on pseudospectral localizations (Kostic et al., 2016).

General model dynamics and pseudospectra. To investigate how TNTs affect
the stability of the intercellular communication network, we model the network
dynamics as

_xðtÞ ¼ JðxðtÞÞ :¼ FðxðtÞÞ þ xQðxðtÞÞ; (26.2)

where x ¼ (x1, x2, ., xn). Here xiðtÞ ˛½0; 1� is the relative concentration of mole-
cules and ions in the cell i ˛N :¼ ½1; 2;.; n�, F : Rn/Rn is a GJ function that gov-
erns time evolution of the intercellular network, while Q : Rn/Rn models the
exchange mediated by TNTs and x > 0 is a scaling parameter for that mediation.
Since many questions remain unanswered about how cargo is transported through
TNTs, we consider their effect on the model dynamics as an uncertainty described
by Q. The system (26.2) is generally a nonlinear one whose stability is typically

investigated at the equilibrium state x+˛Rn as the local asymptotic stability, where

x+ is a state vector such that Jðx+Þ ¼ 0. An equilibrium state x+ is locally asymp-
totically stable if there exists ε > 0 such that for every x(0) that is in ε neighborhood

of the equilibrium x+ (i.e., kx+ � xð0Þk < m), it holds that lim
t/N

kxðtÞ � x+k ¼ 0.

This local stability property is characterized by the spectra of the Jacobian

matrix A ¼
h
vJi

vxj
ðx+Þ

i
of (26.2) in the state x ¼ x+, which can be written as

A ¼ bA þ xD, where bA ¼
h
vFi

vxj
ðx+Þ

i
corresponds to the exchange through GJs that

will be named the measurable communication. The term bD ¼
h
vQi

vxj
ðx+Þ

i
is

determined by the transport through TNTs that is generally unknown. Thus, we
call it the unmeasurable communication. Furthermore, in order that x > 0 to reflect
the scale of TNT mediation, we assume that uncertainty parameters are unit scaled in

the chosen matrix norm, i.e., kbDk ¼ 1.
To investigate how TNTs can influence stability of communication, we will

analyze the sensitivity of the spectrum of the measurable communication matrixbA upon perturbation xD. More precisely, we are interested, in general, in which scale
of TNTs influence (x > 0) is capable of changing the asymptotic stability/instability
of the network dynamics (26.2) from what would be expected if TNTs were not pre-
sent (x ¼ 0). Computing the spectra Lð bAÞ of the measurable part of the Jacobian,
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corresponding to GJs interactions and intracellular metabolic processes, we can
determine the expected stability Lð bAÞ4ℂ� or instability Lð bAÞ?ℂ� of the sub-
stance fluxes. However, the unmeasurable part of cellular communication can
change this spectral property and lead to the different dynamics of the network.
Thus, in general, we distinguish two cases.

First, if GJ network dynamics is stable, i.e., Lð bAÞ4ℂ�, then we are
interested in computing the critical value of x > 0 such that the full network

(GJ and TNTs) becomes unstable, i.e., LðAÞ?ℂ�. If we denote n�bA :¼ maxfx > 0 :

Lð bA þ xDÞ4ℂ�;D˛ℂn;n; kDk ¼ 1g; this threshold value n�bA is known as the dis-

tance to instability (Higham, 1989), whose computation requires solving a noncon-
vex optimization problem, and, thus, the use of numerical algorithms; for details
see (Trefethen and Embre, 2005; Byers, 1988; He and Watson, 1999; Freitag
and Spence, 2011; Gugliemi et al., 2015). The main tool often used in determining
the distance to instability, and thus the threshold value of TNTs scale x > 0, is the
concept of matrix pseudospectra (Trefethen and Embre, 2005).

Given a matrix bA˛ℂn;n and ε > 0, the ε-pseudospectrum of a matrix bA, denoted
by Lεð bAÞ, is composed of all eigenvalues of matrices which are “ε�close}” to bA:
l ˛Lεð bAÞ if and only if there exists x ˛ℂn\0 and bD ˛ℂn;n such that kbDk � ε and

ð bA þ bDÞx ¼ lx, i.e., Lεð bAÞ ¼ W
kbDk�ε

Lð bA þ bDÞ. Consequently, as noted above, we

use ε-pseudospectrum to establish spectral properties that are robust under matrix
perturbations bounded in a given norm k$k by the parameter ε > 0. To conclude,

LðAÞ3Lxð bAÞ4ℂ� if and only if x < n�bA , and, therefore, if the TNTs influence is

dominated by the distance to instability of the measurable matrix bA, we can safely
conclude that the mediation of TNTs does not change the stability of (26.2) from
what would be expected by observing GJ processes, while, for the values x � n�bA ,we cannot do that.

Second, if GJ network dynamics is unstable, i.e., Lð bAÞ?ℂ�, then we are inter-
ested in computing the critical value of x > 0 such that the full network (GJ and
TNTs) can become stable, i.e., LðAÞ4ℂ�. So, if we denote

nþbA :¼ min fx > 0 : Lð bA þ xDÞ4ℂ�;D ˛ ℂn;n; kDk ¼ 1g; this threshold value nþbA
is known as the distance to stability of the measurable matrix bA (Higham, 1989)
and it is the critical value of the TNTs influence for which the system (26.2) can
have the stable behavior despite the expected unstable one deduced from the obser-
vations of GJs. Contrary to the previous case, pseudospectra methods cannot be used

to compute such nþbA , which makes it a much harder computational problem: for

detail treatment see Orbandexivry et al. (2013).
Therefore, the integrity of intercellular communication (either stable or unstable

one) under the influence of TNTs is not only dependant on GJ network’s resilience,
i.e., real part of the least negative eigenvalue of the measurable Jacobian matrix, as
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often assumed in the literature, but also, highly, on the GJ network structure which
can, due to nonnormality (Trefethen and Empre, 2005), amplify the importance of
TNT mediation.

26.3 ANALYSIS OF A SIMPLE DETERMINISTIC MODEL OF
INTERCELLULAR COMMUNICATION

Mathematical background. We introduce a simple deterministic model for substance
exchange in a multicellular system which is mediated by GJs and TNTs. Both, GJs
and TNTs, allow various molecules and ions to pass freely between cells through the
channels by the diffusion-like process. However, diffusion in cells and between
them, known as the anomalous diffusion, can differ from the “classical” one due
to spatial inhomogeneity (Cherstvy and Metzler, 2013; Mullineaux et al., 2008).
In a situation like this, it is suitable to consider the kinetics of substance exchange
between cells in terms of an exchange coefficient gij with a dimensional unit of in-
verse time. In the simplest case, communication from the cell i to cell j is propor-
tional to the concentrations between the cells. Therefore, we can define the
substance exchange between cell j to cell i as gij(xj(t) � xi(t)) þ xdijxj(t), where
x > 0 is a small value that determines the strength of influence of TNTs on commu-
nication modeled by the uncertainty parameter dij. Since exchanged substances play
a role in the metabolic processes inside the cell and are released into the environ-
ment, we introduce the parameters ai > 0 that describe the rate by which the sub-
stance is metabolized by the cell i ˛N in time t. Since most of the metabolic
processes follow MichaeliseMenten dynamics, we introduce bi > 0 as the half-
time saturation coefficient for the cell i. Accordingly, we express the intercellular
communication as:

_xiðtÞ ¼ � aixiðtÞ
bi þ xiðtÞ þ

X
jsi

gijðxjðtÞ � xiðtÞÞ þ x
X
j˛N

dijxjðtÞ; ði˛NÞ: (26.3)

While this model is rather restrictive in terms of the real dynamics of a multicel-
lular system, and more complex dynamical systems can be used instead, we will use
it to emphasize the use of the pseudospectra in understanding influence of TNTs
which is the main focus of this section, which could become otherwise more vague
due to the technical complexity of mathematical analysis.

In order to show how the pseudospectra can be used to determine the threshold of
TNT mediation that can affect stability of GJ network, we use the model given by

(26.3) and restrict to the case of zero equilibrium x+ ¼ 0, when the initial state
x(0) s 0 reflects starting distribution of the substance in the network. Consequently,

bD ¼ ½dij� with kbDk ¼ 1, while bA ¼
h
vFi

vxj
ð0Þ

i
¼ ½baij� where for i; j ˛N

baij ¼ �
�
ai

bi
þ P

jsi
gij

�
if i ¼ j or baij ¼ gij if is j.

Depending on the system’s property, we wish to examine the norm in which dis-
tances measured is chosen. Here we discus three such cases:
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• using the 1-norm kxk1 ¼ maxi˛N
��xi�� and kAk1 ¼ maxj˛N

P
i˛N

jaijj measures the
total substance concentration in the network,

• using the Euclidean norm kxk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i˛N

jxij2
r

and kAk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxi˛N jliðA�AÞjp

measures the network’s total squared deviation from the equilibrium,

• using the infinity norm kxkN ¼ maxi˛N
��xi�� and kAkN ¼ maxi˛N

P
j˛N

jaijj mea-
sures the network’s maximal per cell substance concentration.

In that setting, for the communication mediated exclusively by GJs, i.e., x ¼ 0,
using pseudospectral localization (Kosti�c et al., 2015), we can conclude that zero
equilibrium point of (26.3) is exponentially stable one. Moreover, the following
holds:

Theorem 1. Let x(t) be the flow of (26.3) for an arbitrary, sufficiently small,
initial condition x(0). Then, there exists M > 0 such that kxðtÞkp �
Me�ðupþxÞtkxð0Þkp; for t � 0; holds for every x � 0 and every p ˛f1; 2;Ng, where

up ¼ mini˛N

8<
:ai

bi
þ 1

p

X
jsi

�
gij � gji

�9=;:

Proof. Let xðtÞ be the flow of (26.3) for the sufficiently small initial value x(0).
Then, it is well known that there exists M > 0 such that kxðtÞkN � Memtkxð0ÞkN,
for all t � 0, where m ¼ maxfl : l˛LðAÞg (Hinrichsen and Pritchard, 2005). But,

then, m˛Lð bA þ xDÞ4Lxð bAÞ. On the other hand, Theorem 1 of Kostic et al.

(2016) states that Lxð bAÞ4Gxð bAÞ, where Gxð$Þ denotes the x-pseudo Ger�sgorin
set, i.e.,

Gx
� bA� ¼ W

i˛N

8<
:z˛ℂ : jz� baiij � X

jsi

��baij��þ x

9=
;:

But, then, there exists an index i ˛N such that
��m� baii�� � P

jsi

��baij��þ x,

and, therefore, m � baii þ P
jsi

��baij��þ x, i.e., m �

maxi˛N

�
� ai

bi
� P

jsi
gij þ

P
jsi

gij þ x

	
¼ �uN þ x; which completes the proof for

the case p ¼ N.
When p ¼ 1, we can do the similar reasoning applied to the AT, since

LðATÞ ¼ LðAÞ. In such a way we conclude that m ˛Gxð bATÞ, i.e.,

m � maxi˛N

�
� ai

bi
�
X
jsi

gij þ
X
jsi

gji þ x

	
¼ �u1 þ x:

Finally, to analyze the Euclidean norm case, p ¼ 2, observe that (Kosti�c et al.,
2016)
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m ˛Lx

� bA� if and only if smin

� bA � mI
�
¼ k

� bA � mI
��1k�1

2 � x:

Thus, applying the bound of the minimal singular value obtained in Johnson
(1989) we have that

mini˛N

8<
:jbaii � mj � 1

2

X
jsi

�baij þ baji�
9=
; � smin

� bA � mI
�
� x;

and, having that m � 0, consequently,

mini˛N

8<
:mþ ai

bi
þ
X
jsi

gij � 1

2

X
jsi

�
gij þ gji

�9=; � x:

Finally, last inequality yields m � �u2 þ x, which completes the proof.
The previous result provides computationally cheap lower bounds of the distance to

instability of bA in norm k$kp. Since for the multicellular system (26.3) we always have
that uN > 0, this means that its communication integrity is maintained when the
TNTs influence is scaled bellow uN. Contrary to that, constants u1 and u2 can be,
independently, positive or negative, depending of the structure of the GJ network,
and, therefore, we may not always have this conclusion in cases p ¼ 1 and p ¼ 2
and more computations are needed. As noted above, determining the precise threshold
value n�bA is a computationally demanding task, and all of the existing algorithms treat

a case when p ¼ 2. The basis for such numerical computations is based on the
following fact (here formulated in the setting of GJ and TNT multicellular networks).

Theorem 2. Let bA be the measurable part of the Jacobian matrix of the multicel-

lular system (26.3). Then, Lxð bAÞ3\ℂ� if and only if

x < n�bA ¼ mint˛ℝsminðA� itIÞ, where smin denotes minimal singular value of a ma-

trix and i is an imaginary unit.
Furthermore, the worst-case TNT configuration matrix bD for the critical case

xcrit ¼ n�bA is then given by bD ¼ bubv�, where bu and bv are, respectively, left and right

singular vector corresponding to the singular value xcrit.
For the proof, see Kosti�c et al. (2016) and Trefethen and Embre (2005).
Numerical simulation. To illustrate the use of the introduced concepts, we

consider a few realistic scenarios based on the simple deterministic model of a
100-cell network, as could be the case in highly packed clusters of cells in prokary-
otic biofilms or in eukaryotic tissues. In all the test cases, we compute the lower
bound of threshold of TNTs influence in infinity norm (uN), the exact value in
Euclidean norm (n�bA ), and construct pseudospectral portrait with transient plot.

For GJ communication we use (1) the spatially distributed Newman-Gastner
network with weight parameter set to 0.001 (Gastner and Newman, 2006) and (2)
the Erdös-Rényi modular network (Erdös and Rényi, 1959) with 10 clusters con-
nected with 0.03 overall probability of the attachment and proportion of links within
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(a) (b) (c)

FIGURE 26.2

Distance to instability computed for 100-cell GJ network constructed as the Newman-

Gastner spatial network. (a) Graphical image of that network; (b) pseudospectral portrait of its

Jacobian matrix bA (asterisks mark eigenvalues of bAðx ¼ 0Þ, while the shadowed area

represents all the possible locations of eigenvalues for the full network Jacobian A, when GJs

and TNTs are included (x ¼ xcrit where xcrit ¼ n�bA is a threshold value)); (c) transient growth of

substance concentration within cells from the initial state measured in the Euclidian norm

ketAk2, due to nonnormality of the GJs Jacobian matrix (McCoy, 2013) for the following

cases: x ¼ 0 (solid black), x ¼ xcrit (solid gray), x ¼ 0.8xcrit (solid dashed-dotted), and

x ¼ 1.2xcrit (solid dashed). Note that peak of concentration and duration of concentration

decay depends on the scenario used as seen in Figs. 26.2ce26.4c. The computed values

are xcrit ¼ 2.38$10�3 and uN¼ 4.47$10�5 (Mihailovi�c et al., 2016).

(a) (b) (c)

FIGURE 26.3

The same as in Fig. 26.2 but for Erdös-Rényi modular network. The computed values are

xcrit ¼ 3.15$10�3 and uN ¼ 6.30$10�5.
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modules set to 90%, graphically depicted in Figs. 26.2a, 26.3a, and 26.4a. In the
spatially distributed network, proximity of cells is not explicitly defined but is a
function of their communication range. Therefore, small changes of distances due
to cell motility converge into one network configuration. For values of physiological
parameters in simulations, we assume that all cells in the population are of the same
type and therefore have the same time scales for metabolizing the substance. There-
fore, for each i ¼ 1, ., 100, we take bi randomly on a uniformly distributed interval
[0.9, 1.1]. On the other hand, the saturation constants {ai} (having the same order of
value as the exchange coefficients), that are of the same order as the exchange co-
efficients, can differ more significantly, and are chosen randomly from [0, 0.01]
with the uniform distribution. Finally, following Mullineaux et al. (2008), for ex-
change coefficients gij, we use random values from the interval [0, 0.05] with the
uniform distribution.

We compute the critical pseudospectra of the GJs Jacobian matrix bA of the
network (Figs. 26.2b, 26.3b, and 26.4b). Here, the term critical pseudospectra stand
for the fact that ε ¼ n�bA which is the computed threshold of TNTs influence. The

shadowed area indicates how the system is sensitive to changes in cell communica-
tion determined by TNTs. To demonstrate how formation of TNTs can affect
network dynamics, we compute the first-order approximated behavior of (26.3),

measured in Euclidean norm, i.e., ketAk2 (Figs. 26.2c, 26.3c, and 26.4c), for the
following cases.

1. (idealized case) when cell-to-cell communication takes place only through GJs
(x ¼ 0). Then the system, after passing through short transient interval, is
reaching the stability either faster (Figs. 26.2c and 26.3c) or slower (Fig. 26.4c).
The corresponding curves are depicted by the solid black lines.

(a) (b) (c)

FIGURE 26.4

The same as in Fig. 26.2 but for Erdös-Rényi modular network simulating a pathological state

of the system (colored circles (gray in print versions) show nodes with altered capacity to

receive signals). The computed values are xcrit ¼ 6.55 � 10�4 and uN ¼ 6.30 � 10�5.
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2. (critical case), when x ¼ xcrit and bD is the worst arrangement of TNTs that move
eigenvalues of A to the imaginary line (marginal instability). Such bD is con-
structed via suitable singular vectors (Kosti�c et al., 2016). From Figs. 26.2c,
26.3c, and 26.4c (solid gray line), it is seen that the substance exchange in the
system is in the state of an oscillating mode, waiting to start toward either
stability or instability.

3. (case of stability) when x < xcrit (here x ¼ 0.8xcrit). In this case the system
maintains the communication integrity (gray dashed-dotted line in Figs. 26.2c,
26.3c, and 26.4c).

4. (case of instability), when x > xcrit (here x ¼ 1.2xcrit). Correspondingly, the
system is communicationally disintegrated (gray dashed line in Figs. 26.2c,
26.3c, and 26.4c).

The situation of the disrupted cell-to-cell communication can cause numerous
diseases. For example, inborn cardiac diseases are among the most frequent congen-
ital anomalies and are caused by mutations in genes that form GJs (Salameh et al.,
2013). Therefore, it is crucial to investigate stability of intercellular communication
and determine possible thresholds for disruption of cell-to-cell communication
integrity. To investigate a possible influence of TNTs in the case of disrupted
communication, we simulate pathological situations by modifying the Erdös-Rényi
modular network as follows. In this network arrangement, only one module (colored
circles (gray in printed version) in Fig. 26.4a) exhibits a cascade degradation of their
capacity to receive the substance under exchange, while their capacity to send it in
the fixed network flux direction (corresponding to the node enumeration) remains
the same. More precisely, in the original realization of Erdös-Rényi modular
network we take 0.1gij, instead of gij for i ¼ 1, ., 100 and j ¼ 1, ., 10. In the
example we create, when only one module is disrupted, pseudospectral portrait
(Fig. 26.4b) shows that sensitivity of the whole network to communication changes
is significantly increased, compared to the nonpathological state (Fig. 26.3b).
Also, critical level of oscillations in the Euclidian norm deviates more from the
equilibrium state indicating that formation of TNTs can disrupt the system more
easily.

As a summary, an overview of what has been in this section is presented.
The main novelty in considering the subject, we were talking about, lies in the
fact that the uncertainty of TNTs influence to the overall cellular communication
can be treated as the matrix nearness problems, i.e., either as distance to insta-
bility (treated in this section) or distance to stability (reverse problem that will
be treated in the further researches). We have presented how this concept can pro-
vide meaningful insights using the simple deterministic model of cellular net-
works with asymptotically stable GJs cell-to-cell communication, where TNTs
can destabilize the system. The problem is analyzed in terms of maximal individ-
ual deviation (k$kN) and total square deviation (Euclidian norm) of the cells sub-
stance concentration. In the simulations, the threshold of such TNTs influence is
computed using recently developed pseudospectra methods for two standard
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structures of cellular networks (spatial Newman-Gastner and modular Erdös-
Rényi) modelling healthy and pathological states of the system. The reasoning
presented here is a first step toward understanding of the influence of TNTs as un-
certainty of the system using matrix analysis and computational methods. There-
fore, many open questions remain, on both mathematical and experimental
sides. For example, analyzing the tie between matrix perturbations as stochastic
processes, where the pseudospectra combined with the Bregman divergences
(Dhillon and Tropp, 2007) can help to reliably estimate the mathematical expecta-
tion of the threshold of destabilizing/stabilizing intercellular communication. On
the empirical side, this model implies that the pattern of cellular arrangement
influences the stability of intercellular communication. This insight has the poten-
tial to enhance understanding of the role of cellular architecture on basic intracel-
lular processes via communication. Thus, the model should be extended with
experimentally verified data which requires the experimental studies of biochem-
ical mechanisms of dynamics of TNTs in different environments. Also, it could be
successfully applied in the FRAP technique (fluorescence recovering after photo-
bleaching) to observe and quantify rapid diffusion of calcein or other molecules
between the cytoplasm of the cells.
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