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Preface

Understanding Mathematical and Statistical Techniques in Hydrology: An Examples-

Based Approach is primarily intended as a textbook to assist undergraduate and

postgraduate students with courses or modules in hydrology. In higher education,

hydrology as a subject is not usually taught in its entirety as a separate course at

undergraduate level but is generally included as a module of geography, environ-

mental science or earth science courses. It can also be included in civil engineering

courses which deal with river engineering, drainage, water supply and sewage

treatment. More specialized postgraduate courses such as water resources

management focus on hydrology. Such undergraduate and postgraduate courses

do not generally include any supplementary mathematics and in many cases an

advanced school leaving qualification in mathematics is not an essential entry

requirement. However, many of the current hydrology textbooks for undergrad-

uate and postgraduate courses assume a high level of mathematical expertise,

such as that attained when studying for a mathematics degree. For example,

textbooks often present a sequence of differential equations which are impossible

to comprehend without having this high level of mathematical knowledge.

Instead of assisting the students with their studies these texts when full of

mathematical notations are of little interest to the reader. They can also distance

students from using mathematics to the extent that they are discouraged from

attempting any mathematical-based questions in final exams.

It is commonly the case that students would choose to study hydrology

because of their interest in the natural environment, rivers, the hydrological cycle

and the human impact. A major part of this is actually going out into the field to

observe what is happening, taking measurements and with students often getting

their feet wet. Students would not choose to study hydrology because of the

chance to sit at a desk solving equations; this would be reserved for students

wishing to study mathematics, statistics or a particularly theoretical science.

It is never the case that a university would advertise a hydrology course or

module as the opportunity to study complexmathematics. However,mathematics

is becoming a more integral part of hydrology and other environmental sciences,

with the need to explain and quantify many of the basic processes through the

use of equations. This is particularly evident in recent years as advances in

computing have increased the opportunity for the collection, storage and analysis

of data.
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Assignments and exam questions from hydrology modules or similar subjects

will often have some mathematical components, and university professors

particularly from a physical sciences background have a tendency to test students

in this subject to demonstrate their understanding of mathematics. An extreme

example was when students were set some particularly difficult coursework as

part of an engineering geology module. The task was to rearrange a complicated

formula to show how a particular parameter was related to other parameters.

It was purely an exercise in algebra and did not require any knowledge of engi-

neering geology, just competence at mathematics. The majority of the class felt

cheated that they were being assessed on their mathematical ability rather than

their understanding of the subject they were studying. For the academic staff

member who set the coursework, they may have been emphasizing the fact that

not only were they an expert in engineering geology but also highly adept at

mathematics, and there are some students who may well excel in a similar

way, and end up themselves as academics. However, for most students who

are just pleased to leave university with a degree and then look for work in a

related field, we hope that assistance with this rather unfair practice of testing

them purely on their mathematical ability, rather than the subject which they

are studying, can be sought from the content of this book.

Many exams for hydrology courses will have the option for students to attempt

one of two questions, where one is a purely written answer and the other always

includes some form of calculation. This calculation may well be a simple applica-

tion of an equation which is provided, so all the students would need to do would

be to plug the values into the equation and use their calculator to get an answer.

This actual calculation component would only form part of the question, and at

least half of the marks would come from a written discussion about the results

and the application of the equation. However, it is not uncommon for students

to avoid attempting such a question because of their lack of confidence in

mathematics. It should not be a requirement that students of hydrology should

be able to rearrange any equation which is put in front of them but simply be able

to use equations with confidence. The complete avoidance of anything

mathematical in exams is largely the result of no adequate texts from which these

students could gain the selected hints and tips on the mathematical side. This

ability to use mathematics and equations with more confidence would also put

them in a better position with prospective employers.

There is perhaps a perception in the scientific community that students who

have studied hydrology as part of a geography, environmental science or earth

science course are less desirable for employers particularly in the research sector

than students who have studied a more theoretical science or maths. The

perceived mathematical ability is often given more credibility than the overall

understanding of the subject. An example of this was where a candidate for a

position in water quality modelling at a UK research institute, who had a PhD

in hydrology, specializing in water quality modelling, was rejected in favour of
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a candidate, who had a PhD in nuclear physics. The selection was made on the

basis that the latter would have a better understanding of the mathematical

aspects of the research. For employers to take such a position would appear

ridiculous. The fact that a nuclear physicist would have no idea of the rudimentary

issues in water quality did not seem to be an issue. Such a recruitment policy

would rarely be accepted in other fields; would a candidate with a PhD in water

quality gain a position at a nuclear physics research establishment if their level of

maths was deemed to be higher than competitive candidates with PhDs in nuclear

physics? The perception that students who have studied hydrology do not have a

particularly strongmathematical ability would originate from the aforementioned

problems of a lack of introductory maths within hydrology courses and that

students without advanced level maths would perform poorly or look to avoid

mathematical-based tasks. With better teaching of mathematics within

hydrology courses, candidates for hydrology positions would have more

confidence in mathematics and therefore give a better impression to perspective

employers.

Outside of education, professional hydrologists are also faced with

mathematical challenges often relating to new modelling techniques which have

been introduced or new ways of analysing data. Mathematical terminology is

rarely questioned and hydrologists will probably have sat through numerous

presentations at conferences where mathematical terms have been talked about

without any proper definition such as Bayesian, beta distributions and wavelet

analysis. Papers in hydrological journals have become more modelling and

analysis based and less about measurements and observations. The reason though

is quite simple: due to the need to publish, it is cheaper andmore efficient to report

on some aspect of modelling rather than waiting years for the results of a field

experiment. Some papers are now so mathematical, presenting discussions about

parameter optimization, uncertainty and measurements of model performance

that little is written on the hydrological aspects of study. These are all areas where

hydrologists would benefit from a text where mathematical techniques are

explained at a level which can be easily understood for those without university

or even advanced high school level maths.
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How to use this book

A total of six chapters are included in this book, the idea being that they each

consider different but none the less related topics which are found within

hydrology. Any chapter can therefore be used as reference material without

the need for reading any other chapters.

Chapter 1. Fundamentals

The introductory section provides the basic mathematical theory behind the

material which is presented in later chapters. This includes a summary of

mathematical techniques from the simple use of numbers and operations, the

application of algebra and rearranging of equations, the use of functions, a

description of calculus and differential equations and a definition of probability

and the use of statistics. The content of this chapter does not include specific

hydrological examples but is intended to be used as a reference section for the

other chapters.

Chapter 2. Statistical modelling

In this chapter, the concept of return period is defined and explained within the

broader context of probability and extreme value analysis. It is still the case that

often the most common requirement for a practicing hydrologist is to estimate

the return period of a particular quantity such as flow or rainfall or to estimate

themagnitude of that quantity for a particular return period (e.g. the 1 in 100 year

flow). The content includes techniques of statistical modelling, in particular,

extreme value analysis such as Gumbel andWeibull model fitting, flood frequency

curves and the relationship between return period and flow.

Chapter 3. Mathematics of hydrological processes

This chapter will explain widely used equations of various levels of complexity

in physical process hydrology from simple mass-balance equations, the use of

exponents, advanced notation and differential equations. It will also explain

how these equations can be simplified and rearranged as is often presented in

textbooks with a proper written explanation of how the different steps in the

rearranging process are undertaken.

Chapter 4. Techniques based on data fitting

This chapter will consider techniques for establishing equations and relationships

between observed hydrological variables based on data from field experiments or

monitoring such as the work done in the United Kingdom for the Flood Estimation
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Handbook and similar studies. This will cover line and curve fitting, with differing

levels of complexity from simple linear relationships, various non-linear

relationships, multiple regression and cyclical patterns.

Chapter 5. Time series data

The problem of time-dependant data is presented in this chapter. Examples of

such data are provided over different scales and the analysis of such data is

included for identifying trends, smoothing and filtering, and predicting future

outcomes. A section on the problems of such analysis where the conditions have

been changing over time is included through the question of non-stationarity,

and finally the use of modelling based purely on patterns in the data is presented.

Chapter 6. Measures of model performance, uncertainty and stochastic modelling

This chapter includes a particularly important section on how well models can

perform, which is often overlooked in the mathematical analysis of hydrological

data. A selection of mathematical-based performance measures are presented

with examples of performance from hypothetical models. The chapter also

includes a definition and discussion of the idea of uncertainty, again an important

component in relation to modelling. Finally as a related topic, the development of

stochastic modelling is presented which takes many of the ideas of uncertainty

analysis to a more practical level.
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CHAPTER 1

Fundamentals

1.1 Motivation for this book

Hydrology is the study of water, and in the International Glossary of Hydrology

(UNESCO/WMO 1992) it is defined as ‘Science that deals with the waters above

and below the land surfaces of the Earth, their occurrence, circulation and distri-

bution, both in space and time, their biological, chemical and physical properties,

their reaction with their environment, including their relation to living beings’.

The movement and transformation of water within these processes as described

in the definition, as a fluid, will obey the physical rules of fluid mechanics. Fluid

mechanics, being a quantitative topic, requires heavy use of mathematical con-

cepts, and these concepts are therefore naturally found in hydrology. These quite

basic physical principles can be used effectively to model and hence predict and

understand the behaviour of water under many useful circumstances.

Nonetheless, despite the essentially predictable behaviour of water that

justifies the use of mathematical principles, often, the flow of water in practice

is subject to forces that are beyond our ability to measure with any precision:

for example, water in the atmosphere is heated, cooled, mixed with numerous

gasses, and transported across large distances under the action of turbulent winds.

Eventually, water condenses out of the atmosphere in the form of precipitation

but exactly when, where, and how much water falls to the ground under gravity

is often extremely uncertain. This uncertainty usually makes it useless to apply

the basic physical principles of fluid mechanics to the flow of water in these

circumstances. For this reason, hydrologists often turn to statistics, which can

be considered as the application of mathematics to uncertain phenomena.

Quantitative hydrology is, therefore, based on an interesting mix of the two

great branches of applied mathematics: physical laws (mathematical physics)

and probability (mathematical statistics).

Mathematics is, perhaps, the archetypal example of a composite subject. This

means that more complex concepts are built from many simpler ones, and so, in

order to properly understand the more complex topic, it is necessary to under-

stand the simpler ones from which it is constructed. Not all subjects are like this:

it is possible to gain a deep understanding ofmany aspects of plant biologywithout

Understanding Mathematical and Statistical Techniques in Hydrology: An Examples-Based Approach, First Edition.
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having to know anything aboutmammals, for instance. Butmathematics is unfor-

giving: one cannot understand the true meaning of equations of fluid transport

without knowing calculus. Unfortunately, for many reasons, the chance to learn

the basic mathematical concepts is not afforded to every student or practitioner

of hydrology, and many find themselves at a loss when presented with more

complex mathematical concepts as a result.

This book is therefore, intended as a guide to students and practitioners of

hydrology without a formal or substantive background in either mathematical

physics, or mathematical statistics, who need to gain a more thorough grounding

of these mathematical techniques in practical hydrological applications.

1.2 Mathematical preliminaries

This book refers extensively to many essential, but nonetheless quite simple,

mathematical concepts; we introduce them here. It is assumed that readers will

refer back to this section on reading the later material.

1.2.1 Numbers and operations
Usually when one thinks of ‘mathematics’, one thinks of numbers, along with

operations such as adding, subtracting, multiplying (forming the product) and

dividing them. Numbers and operations are intimately related: for example, with

the simplest of numbers, the whole numbers, we can answer questions such as

‘what number, when added to 5, gives 10?’ Symbolically, we wish to find the

x that satisfies the equation x +5=10, the answer being x =5. But some simple

questions involving whole numbers cannot be answered using whole numbers,

for instance, the problem ‘what number, when added to 10, gives 5?’, or

x +10= 5, has no whole number answer. To solve such a problem, we need to

include negative numbers and zero; mathematicians call these whole numbers that

can be negative, zero, or positive, the integers (all the positive whole numbers are

included in the integers). Still, when faced with whole number problems invol-

ving multiplication, integers may not suffice. For example, the problem ‘what

number, when multiplied by 5, equals 1?’, or 5x =1, has no integer solution.

The answer x =1 5 is called a rational number and all the integers are included

in the rationals. Finally, it turns out that there are yet more problems involving

multiplication that cannot be solved using rationals; consider the problem ‘what

number, when multiplied by itself, equals 2?’ The corresponding equation

x × x =2 is solved by the square root of 2, x = 2, which is an example of a real

number. The set of real numbers includes all the rationals and numbers such as

π=3 14159… (which can never be written out to full precision because it has

an infinite number of decimal places).With the set of all real numbers, a very large

set of problems involving numbers and operations that do actually have a solution

can be answered.
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It is surprising that even in apparently simple situations such asmultiplication

and addition with whole numbers, that there are equations that have no solution

in the rationals, let alone the integers and whole numbers. Such equations

baffled mathematicians until the 19th century when a logically consistent foun-

dation for the real number system was devised. But real numbers do not even

suffice for all whole number equations! Consider the equation x × x +2= 0;

because squaring any number is always positive, there does not seem to be any

way to choose a number for x that, when squared, gives a negative number to can-

cel the 2 and satisfy the equation. Nevertheless, it turns that a consistent solution is

possible using complex numbers; although abstract, these can be useful in physical

problems.

These days, because of their practical utility, real numbers tend to be the

lifeblood of quantitative sciences including hydrology. For instance, the average

amount of rainfall occurring in one day in one location is often given as a real

number in millimetres, to a couple of decimal places where such precision is

appropriate. Therefore, most practical problems in hydrology involve solu-

tions that are real numbers given to some limited accuracy appropriate to the

problem.

1.2.2 Algebra: rearranging expressions and equations
An important step in the historical development ofmathematics was the leap from

dealing with specific numbers, to dealing with any number by using an abstract

symbol to stand for that number (this conceptual leap is usually credited to the

great Islamic mathematicians of the medieval period). This is the topic of algebra:

the study of what happens to these symbols as they are manipulated as if they

were numbers. Most quantitative problems in the physical sciences can be

expressed and solved algebraically.

Algebra involves very simple rules. Although the rules themselves are ele-

mentary, the consequences of those rules can be extremely complex; in fact,

much research still goes on today to understand the full, logical consequences

of algebra. For this reason, one should not underestimate how difficult it can

be to correctly derive the consequences of any particular application of algebra

in practice, and it is very much worth the effort to become as familiar as possible

with the basic rules.

Today, one usually writes something like x or ywhen one wants to refer to an

abstract number; these are also called variables (as opposed to specific numbers,

which are constants). Then the notation x + y+1 is an algebraic expression using these

two variables and the constant 1.

Expressions on their own do not ‘do’ anything; to make expressions useful

we need to connect them together into equations, for instance, the equation

x + y+1=0 states that if the variables x and y are added to the constant 1, then

the result must be equal to zero. Alternatively, by manipulating (rearranging) this

equation, we can get the exactly equivalent statement x + y= −1, which is
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obtained by subtracting 1 from both sides. This is an example of a basic rule in

algebra: in order to rearrange an equation, one has to apply the same operation

to both sides of an equation, step by step. This rule ensures that before and after

the manipulation, the equation still has the same mathematical meaning.

These algebraic operations come in pairs – subtraction is the inverse of addition

and division is the inverse of multiplication.What this means, roughly, is that sub-

traction ‘undoes’ addition and division ‘undoes’multiplication. So, actually, what

one is doing when rearranging an equation, is applying a sequence of inverse

operation to both sides of an equation.

Rearranging equations is fundamental to the way in which answers to math-

ematical questions are obtained, often by finding the actual number (value) of

some variable. For the equation x + y= −1, we only know the value of x and y

implicitly (through the relationship created between them by the equality). How-

ever, it is often difficult (if not impossible) to find the value of x from an implicit

equation. In this case, the solution is easy of course: rearrange the equation to find

x alone on one side of the equation, for instance, x = −y−1 (note that it does not

matter on which side x appears). Then, we can usually find a unique value for x,

because the right-hand side of the equation is an explicit formula for solving for the

value of x.

The ‘art’ of rearranging equations to solve for a particular variable, then, is

to find a sequence of steps that can be applied to both sides of the equation

such that we end up with that variable alone on one side of the equation. Unfor-

tunately there is no general procedure for the ‘correct’ sequence of steps to apply

to any equation: efficient equation solving is often a matter of experience and

practice.

The operations of addition and multiplication have the important property

that when applied to two or more variables or constants (terms), the order in

which they are applied does not matter. For instance, for the product

2 × x × y=2× y× x = x ×2× y, etc. The same applies if we replace the product with

addition: 2 + x + y=2+ y+ x = x +2+ y. But when combining different algebraic

operations, the order in which variables, constants and operations appear in an

expression is critical. For example, 2 × x + y is not the same as 2 × x + y . The brack-

ets in the second equation indicate that first, x should be added to y, and then the

result should be multiplied by 2. In fact, by expanding the brackets, the second

expression becomes 2 × x +2× y, which makes it clear that it is not the same as

2 × x + y. A tricky example of this is the expression x−y: this is not equal to y−x.

In fact, x−y= −y+ x. The reason is that actually, the expression −y is shorthand

for −1 × y, and we have to take account of the fact that the multiplication of y

by −1 must happen before the addition to x.

The general advice then about rearranging more complex expressions and

equations is that carefully and systematically, examine the order in which the alge-

braic operations are supposed to be applied to the terms. Modern algebraic nota-

tion has some conventions for this (called precedence rules); unless otherwise
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overridden using brackets, multiplication and division occur before addition and

subtraction. As a case in point, consider the following expression:

x + y

3y
1 1

This could be interpreted as follows: first add x to y, then multiply y by 3, and

then divide the first result by the second result. It does not say, for example,multiply

y by 3, divide y by this, and then add x; the following is an example of such kind:

x +
y

3y
1 2

Another way of explaining the difference is that (1.1) can also be written using

brackets as x + y 3y – then the ordering becomes clear. In (1.1) and (1.2), we

can apply some rearrangements that might be useful, for example, by expanding

out the ‘brackets’ in (1.1), we get that
x + y

3y
=

x

3y
+

y

3y
(applying the rule that divid-

ing by some expression is equivalent to multiplying by 1 divided by that whole

expression). Next, we can apply the rule that dividing an expression by itself

is equal to 1 (unless that expression is equal to zero – see below); so
x + y

3y
=

x

3y
+
1

3
. For (1.2), we get x +

y

3y
= x +

1

3
for the same reason. Slightly more

complex is the situation where the top and bottom expressions both involve addi-

tion, for instance, as follows:

x + y

3x +3y
1 3

To rearrange this expression, we consider factoring the bottom part of the divi-

sion as a rearrangement step. A factor is a number (or variable) that multiplies

another expression, for instance, the expression 6xy has the factors 6, x and y

(actually, since 6 =2× 3, it is also reasonable to argue that there are four factors

2, 3, x and y). The factored bottom expression is then 3x +3y=3 x + y . Effectively,

we have changed the order of themultiplication by 3 and the addition: this is what

factoring achieves. So, factoring undoes expanding out brackets. Now it is clear to

see that if x + y is not zero, (1.3) has the value 1/3, that is the x + y expression can-

cels completely.

The number zero has a special importance in algebra. Firstly, note that adding

zero to some expression leaves that expression unchanged, for example

x +0=0+ x = x (An interesting observation is that 1 plays the same role in multi-

plication as 0 takes in addition, namely, it leaves the expression unchanged:

x ×1=1x = x.) The second property of zero is that multiplying some expression

by zero results in zero, for example 0x = x ×0= 0. Sometimes, we end up with

an equation such as 0 = xy. Using the second property, we can see that one ormore

of x and y must be zero for this equation to be satisfied. Another consequence of

these properties is that dividing anything by zero is undefined (effectively, there is
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no meaningful result). Consider what it means to write x = y 0. For the moment,

treating 0 as a symbol, we could rearrange this equation to 0x = y, and applying the

second property of zero y must be zero. However, then the equation becomes

0x =0, and this is true for any value of x! In other words, the original equation,

even though it is an explicit formula for x, does not tell us what value x should

take. Because of this, (1.1) and (1.2) are meaningless in the special case where

y=0 and (1.3) is meaningless if x + y=0.

Often, we have the situation where there are two or more variables whose

value we need to find in order to solve a practical problem. In general, we need

as many equations as there are variables in order to find a solution that gives the

unique values of all the variables. For instance, to solve the following pair of equa-

tions for x and y,

x + y=0 1 4a

3x + y=1 1 4b

We might want to solve for x in (1.4a), x = −y, and then substitute this expres-

sion for x into (1.4b), 3 −y + y=1. We can then factor out y in this to obtain

−3+1 y=1, and we get an explicit formula y=1 −2 = −1 2. Now, using the

explicit formula for x, it must be that x =1 2, and we have a solution for both vari-

ables. This is a simple example that illustrates how to apply sequential rearrange-

ment and substitution in order to solve a pair of equations; this basic principle can

be attempted for more complex equations but it usually becomes very difficult in

practice to solve equations involving three or more variables. Typically, one then

turns to computer algebra software, or, instead uses numerical methods to obtain

approximate solutions.

Repeated self-multiplication of some term or expression has a special name:

exponentiation (‘raising to the power’) and is written using the superscript notation

as xn, where n is called the power or exponent. If n is awhole number, this justmeans

that wemultiply x by itself n times. So, that means that x1 = x. If we have powers n

andm that are both whole numbers, then it is fairly easy to see that xn × xm = xn+m.

In a sense, we can see that this rule ‘converts’multiplication into addition. When

applied to expressions, there are some simple consequences, for instance when

n=2, the expression x + y 2 = x2 + 2xy+ y2 (which one can check by expanding

out the brackets – there is a general formula called the binomial expansion that

works for any general value of n).

If we allow n=0, then x0 × xm = x0+m = xm =1× xm, so it is reasonable to claim

that x0 = 1 (to be consistent with the role that 1 plays inmultiplication, as discussed

above). Similarly, if we allow that n= −m, then we get x−m × xm = xm−m = x0 = 1, so

we can claim that x−m =1 xm to be consistent with the idea that dividing some

expression by itself is equal to 1. It follows then that x−1 = 1/x. In fact, it can be

shown that this rule converting multiplication into addition works quite gener-

ally: n and m can be any fraction or real number and thus exponentiation is a
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general algebraic operation. Certain rational powers are given special names: x1/2

is called the square root and written x, and more generally, x1/n is the nth root

written xn .

Being a general algebraic operation, exponentiation has an inverse called

the logarithm (a key mathematical discovery credited to John Napier in the

16th century). We write this as logxy, where x is called the base of the logarithm,

which has the meaning that if n= logxy, then xn = y: the logarithm to base x

recovers the power of x (so, for example, logx x =1 2). As we demonstrated

above, since exponentiation ‘converts’ multiplication into addition, we can

explain that the logarithm converts addition back to multiplication. Consider

the power rule xn × xm = xn+m, then taking the logarithm to base x on both sides,

we get logx xn × xm = logx xn+m = n+m= logxx
n + logxx

m. As with exponentia-

tion, this rule actually works for general numbers, not just whole numbers,

and we can derive some consequences worth memorizing: logx1= 0 (which is

the inverse of x0 = 1), logxx =1 (which is the inverse of x1 = x), logxx
n =n, and

the general rule logx an × bm =nlogxa+mlogxb for any numbers a, b, n, m and x,

provided only that neither a nor b is zero. The last rule has a useful special case:

logx a b = logx a× b−1 = logxa− logxb.

In practice, since logarithms in one base can be converted to any other base

using the formula logxa= logya logyx, one tends to work in a standard base such

as 10. The other commonly used base is the natural logarithm which uses the base

e=2 71828… (wewill see later that this has a very important origin),written as ln x.

The inverse to the natural logarithm, ex = exp x , plays a very important role in

much of mathematics: as the inverse it follows that ln exp x = x.

1.2.3 Functions
Expressions are very often ‘packaged up’ into convenient shorthand notation

known as functions, such as f(x) or g(x). Examples of functions include the expo-

nential function exp x = ex and ln(x) above but also familiar functions such as

the trigonometric functions sin(x), cos(x) and tan(x). Use of functions in expres-

sions can improve the readability of equations considerably. Very often there is

an associated inverse function: as we have seen, exp(x) has ln(x) as its inverse.

Sometimes, consideration of the range of acceptable values that a function can

take tells us about the range of output values of its inverse: for example, the

sin(x) function takes all possible real angles as input, but its output is restricted

to the range −1 to 1. So, the inverse function sin−1x can only accept numbers in

the range −1 to 1.

Plotting a function as a graph can be very useful; typically this is done by

drawing a curve on axes where x is on the horizontal and y= f x is on the ver-

tical. Then, since a function only outputs one value per unique input value, the

curve must be a single, non-self-intersecting line. In addition, very often that

line can be drawn without taking the ‘pen’ off the paper, so the function has

no discontinuities. Functions can take more than one number as input, for

Fundamentals 7



example f x,y = x2 + 3y3; this makes it much harder to plot a graph of the function

(which would appear as a surface in 3D with z = f x,y being the height of the

surface).

1.2.4 Calculus
The name given to the theory ofmathematics that deals with the abstract concepts

of area (including length and volume more generally) and gradient (slope) is

called calculus. Although the mathematicians of the ancient world knew how to

calculate these quantities for simple shapes (for example, working out how to

divide up a rectangular field into equal areas for the purpose of probate law), they

did not know how to do this for general geometric objects, particularly if they had

arbitrarily curved boundaries. This had to wait until the 17th century for the

mathematical innovations of Newton and Leibniz, who saw the potential for

applying and extending these concepts to predicting the motion of the planets.

It is probably fair to say that the vast majority of physical applied maths revolves

around the use of concepts from calculus.

Summation plays a central role in calculus: we write
N

i = 0
xi to denote the sum

from 0 to N of the values in the N + 1 variables xi (we use the subscript notation

to index each of these different variables). We can apply this to the problem of

calculating areas – the area of a rectangle is just A=w ×h where w is the width

and h is the height. Now, if a given shape can be approximately broken down into

N + 1 small rectangles, then the area of the complete shape is approximately as

follows:

A≈
N

i =0

wihi 1 5

In words, ‘the sum of the product of the width of each rectangle times the

height of rectangle is approximately the total area of the shape’.

If we can assume that the width of all these rectangles is the same, we can

simplify this to
N

i = 0
whi. Of course, this will only be an approximation to the

area, for example some of the area might not be counted.

Assuming, for the sake of simplicity, that one edge of the object is straight and

lies on the x-axis of graph and the other side is represented by a functionwith arbi-

trary curves (this requirement might seem contrived but it turns out that calculus

can be defined in more flexible ways for different geometric situations, using

essentially the same ideas). Figure 1.1 shows this idea for finding the area (inte-

grating) under the curve f x = x2. In the upper panel, we have a relatively coarse

set of rectangles with equal width w attempting to fill the area; the bottom panel

has a much slimmer set of rectangles, again of fixed width. It is easy to see that the

amount of uncounted area in the bottom panel is smaller than that in the top

panel, so the bottom panel is a better approximation to the area. In calculus,
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the idea is to calculate what happens as the width of the rectangles becomes arbi-

trarily small, following from the intuition that slimmer rectangles give better

approximations: of course, the number of rectangles will become arbitrarily large

as a result. The approach aims to convert the problem of finding the area under the

curve to a problem of finding the ultimate value of a sequence of better and better

approximations.

To do this, we will need the idea of limits, one of the core concepts of calculus.

Mathematicians use the shorthand notation ‘a= limx c f x ’ for the limiting value

of the function a= f x as x takes on values that are always getting closer to c.

This is also written as ‘f x a as x c’. A critical point to understand is that in

most useful cases, the limiting value a cannot be calculated directly. For example,

it makes intuitive sense (and it is logically correct as we will show next) that

limx ∞ 1 x =0. But since infinity does not have a definite value, algebraic expres-

sions such as 1 ∞ do not have a definite result either.

Limits are a (indirect) way of computing definite answers in these situations.

For example, we know that the function f x =1 x is continuous (see above) at all

values of x except 0. Also, the function is decreasing, that is if we pick any two num-

bers x and y such that x < y, then 1/x > 1/y. Additionally, we know that if x is pos-

itive, then 1/x is also positive. These pieces of information allow us to conclude

that 1 x 0 as x ∞ . In other words, we have shown that as we keep increasing

the (positive) value of x, 1/x always gets smaller, and since it cannot be negative,

as x becomes arbitrarily large (infinite), 1/xmust ultimately take on the value zero.

At root, this is typical of limit value arguments: nonetheless, most problems

1
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Figure 1.1 Approximate integration of the area under the curve x2 (black) using rectangles (grey),

over the interval 0–1, with coarse partition (top) and finer partition (bottom).
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encountered in practice are reducible to an algebraic combination of known

results about the limits of basic functions.

We now return to the problem of finding the limit of sequence of approxima-

tions to the area under the curve. We can construct a grid of x-values as xi =wi

and the corresponding height of the rectangles is hi = wi 2. Then the number

of rectangles in the interval 0–1 is N =1 w. So, the area is written as:

A= lim
w 0

N

i =0

w wi 2 1 6

This equation states that first, we sum up all the areas of the rectangles fitting

underneath the curve. Then, we take the limit of these sums, as the width of

these rectangles becomes arbitrarily small. For every rectangle width, there will

be a corresponding number of rectangles N, which therefore must go to infinity

as the width goes to zero.

Here we make the remark that in this specific case (1.6) does have an exact

answer,A = 1/3, that we can compute using well-known, but somewhat complex,

algebraic manipulations.

If we want to compute the area under an arbitrary function f(x) over any

chosen range of values of the x-axis, say, from a to b, we need the definite integral:

b

a

f x dx = lim
N ∞

N

i =0

f a+ iw w 1 7

where we choose N = b−a w (note the w is often written as Δx, because w is a

‘small difference in x’). In Equation (1.7), the left-hand side is just shorthand for

the right-hand side, which states that the area is computed by summing up rec-

tangles of width w, placed at each position on a grid of spacing w covering from a

and b on the x-axis. The particular choice of N means that when i =N, a+ iw = b,

the right-most grid position. Each rectangle has height f a+ iw .

Note this is only a definition: there is no guarantee that we can actually find the

limit of the sequence of approximations to find the exact answer by some straight-

forward algebra. In fact, the somewhat disappointing news is that the number of

functions f(x) that we cannot integrate in this way vastly outnumbers the functions

that can be integrated like (1.6). This usually happens because the kind of algebraic

tricks used to remove the summation in situations such as (1.6) work only in spe-

cial cases. Nonetheless, under certain conditions that are not too restrictive, we can

say that the limit in (1.7) is useful, in that, it has a definite value, and we can

approximate this to any desired accuracy using a computer program, for example.

The inverse operation to integration is differentiation. It is relatively simple to

find the gradient of a straight line. Imagine finding the slope of a straight road run-

ning up a hill with constant angle to the horizontal: it is just the rise over the run
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or the change in vertical height (Δy) you go through as you travel over some

horizontal distance (Δx):

m=
Δy
Δx

1 8

This is how to calculate the gradient of a function if it is a straight line. How can

we do this if the function is not a straight line? One way is to assume that over

small enough distances, the slope of any function at a particular fixed point can

be approximated by the slope of a straight line that goes through that point. This

will be a good assumption if the function is smooth enough. As the distance over

which we make this assumption gets smaller, the approximation to the slope at

that point gets better. For a given function f(x), the change in ‘height’ at x over

the distance Δx is f x +Δx − f x , and therefore, using the idea of limits to define

the derivative, we get:

m x = lim
Δx 0

Δy
Δx

= lim
Δx 0

f x +Δx − f x

Δx
1 9

(Note that the slope of a general function is itself a function of x, the chosen point,

unlike a straight line, which has the same slope at every point.) In this way, dif-

ferentiation solves the problem of how to find the slope of a function which is arbi-

trarily curvy. The derivative is also commonly written as df/dx or also f (x) when it

is clear that we are differentiating with respect to x.

Algebra that arises from differentiating is usually a lot simpler than algebra

that arises as a result of integration. For this reason, many more functions can

be algebraically differentiated than integrated. Aswith integration, under not very

restrictive conditions, the limit in (1.9) is useful and can be calculated approxi-

mately to any desired precision numerically.

There is a theorem in calculus that relates integration and differentiation

(called, appropriately enough, the ‘fundamental theorem of calculus’). This the-

orem can be stated in many different ways, but it is instructive to provide geomet-

ric intuition. Firstly, consider the area under the function f(x) from 0 to x written

as F(x). Now the area under the curve between x and x +Δx can be found as

F x +Δx −F x , which is the area from 0 to x +Δx minus the area from 0 to x.

However, as above, when defining the integral, we could also approximate the

area between x and x +Δx with the small rectangle of area f(x)Δx. It follows that

F x +Δx −F x ≈ f x Δx or

f x ≈
F x +Δx −F x

Δx
1 10

Taking the limit of both sides as Δx 0 gives us f x = F' x , using the defini-

tion of the derivative above. So, this says that the original function f(x) is what we

get by finding the slope of the area under the curve of that function.
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The following is the most common statement of the fundamental theorem:

b

a

f x dx =F b −F a 1 11

This says that the definite integral of the function f(x) is the area under the

function from 0 to b minus the area under the function from 0 to a. This allows

us to introduce the indefinite integral, useful when integrating from 0 to the value

of some variable x:

f x dx =

x

0

f x dx = F x −F 0 =F x + c 1 12

(Note that we had to use a dummy variable x to avoid a conflict between variable

names, because x normally does not appear in the integration range). The replace-

ment of −F 0 with the generic constant c indicates that an arbitrary constant is

always introduced when performing indefinite integration.

Yet another statement of the fundamental theorem is:
b

a

f x dx = f b − f a 1 13

We get this from (1.11) by replacing the function f(x) with the derivative of

the function f (x) instead. This form of the theorem tells us something quite

profound about calculus that has far-reaching consequences in many areas of

mathematics: the definite integral of the slope of the function is just the difference

of the function value at the far end of the range, minus the function value at the

near end.

The derivative and integral have certain important algebraic properties of

their own that are consequences of the way they are defined. The first is the fact

that they are both linear operations:

af x + bg x dx = a f x dx + b g x dx 1 14a

d

dx
af x + bg x = a

df

dx
x + b

dg

dx
x 1 14b

In the above, f(x) and g(x) are arbitrary functions, and a, b are constants, and

the equations state that it is possible to swap the order of scaling, addition and inte-

gration, and the same with differentiation. This means that we can first multiply

two functions by constants, add the results together and then integrate, or we can

first integrate the functions separately, multiply the results by constants and then

add the results together. The same applies to differentiation. It is critical to note

that the above rules only apply if a, b do not change as x changes.
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More algebraic properties apply to differentiation, for example, the product rule

states what happens when differentiating the product of two functions:

d

dx
f x g x = f x

dg

dx
x + g x

df

dx
x 1 15

Similarly, the chain rule explains what happens if we differentiate a function of

a function:

d

dx
f g x =

df

dx
g x

dg

dx
x 1 16

There are further ‘rules’ that occur in more complex combinations. It is impor-

tant to grasp that (1.14a) is the only genuine algebraic property of differentiation

shared by integration – properties (1.15), (1.16) have no direct counterparts in

integration. There are other integration ‘rules’, such as the integration by parts

and integration by substitution, but these are actually obtained by ‘undoing’

the rules of differentiation (1.15) and (1.16).

Differentiating a function twice gives the second derivative (also known as the

curvature of a function):

d

dx

d

dx
f x =

d2

dx2
f x = f x 1 17

Similarly, the nth derivative is written as dn/dxn, for n>0, or sometimes f(n)(x).

It is helpful to list a few specific derivatives and integrals. Perhaps the most

important is the exponential function encountered earlier:

d

dx
exp x = exp x 1 18a

exp x dx = exp x + c 1 18b

This explains one important reason behind the special place of the exponential

function in mathematics as it is the only function that is simultaneously its

own integral and derivative. Other important functions include the powers of x

(polynomials in x):

d

dx
xn = nxn−1 1 19a

xndx =
1

n+1
xn +1 + c 1 19b

Many other functions are explicitly differentiable and integrable in this way,

notably the trigonometric functions (sine, cosine, tangent), but most functions do

not have simple integrals andwe usually turn to numerical algorithms to compute

them for particular ranges in practice.
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1.2.5 Differential equations
Having defined differentiation as the slope of a function with arbitrary ‘curviness’,

since the slope depends on the chosen value of x, the derivative of a function is a

new function of x. So, as with any function, it can usefully appear in an equation

alongside other functions, operations, and constants. The resulting differential

equations have been the cornerstone of modern physical appliedmathematics ever

since Newton’s Principia: the sheer number of physical problems that can be for-

malized using differential equations is truly staggering.

As an example, consider the following differential equation:

d

dx
f x =m 1 20

wherem is just a constant that we know. This states that the equation is satisfied if

f(x), when differentiated, is constant. A moment’s thought will lead to the answer

that f(x) must describe a straight line on the graph of the function: there is no

other function whose slope is always the same constant. We can also prove this

by integrating both sides of (1.20), finding that f x =mx + c, which is indeed an

expression for a line on the graph of x against f(x), called the general solution to

the differential Equation (1.20). We can check that we have the right solution

by differentiating f(x), and testing that this satisfies the equation. One important

point to note is that an arbitrary constant c appears in the solution (because we are

performing indefinite integration) so, without specifying this constant, we cannot

find the value of the solution for a given x. In this case, the constant can be set

by specifying an initial condition: that is what we expect f(x) to be when x =0.

For instance, the initial condition f 0 = −2 leads to the specific solution f x =mx−2.

Perhaps the most famous of all elementary differential equations is the simpli-

fied model of the mass on a spring, ignoring friction:

mf t = −kf t 1 21

wherem is the mass, and k is the spring stiffness, and t represents time. In physics,

the quantities f(t), f (t) and f (t) have special names: position, velocity, and accele-

ration (those with a physics background might recognise (1.21) as an application

of Newton’s second law). So, (1.21) states that the acceleration, multiplied by the

mass, is equal to the negative of the position multiplied by the spring constant.

We will also assume that the position at time zero is some constant A: f 0 =A,

and the initial velocity is zero: f 0 =0. Special algebraic techniques have been

developed to find solutions to equations such as (1.21), when applied, the specific

solution is:

f t =A cos
k

m
t 1 22
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The cosine arises because it can be shown that if f x = cos x , then

f x = −cos x , that is the cosine function is the negative of its’ own second deriv-

ative, which is, essentially, what is required to satisfy (1.21). The character of this

solution is oscillatory: that is, themass vibrates at a rate of k m, with amplitude A.

So, if the mass is increased, the vibration becomes slower, and if the spring stiff-

ness is increased, the vibration speeds up (an intuitive result). Note that the rate

of vibration is not dependent upon the initial position A.

Differential equations used in quantitative hydrology can be a lot more

complex than (1.21), but the principles are the same. Most of the complexity

arises when dealing with functions of more than one variable. For example, a

function Q(x, t) might represent the quantity of water in a channel in both time

and position. Then, we need to introduce partial differential equations that involve

the derivative of the function in one or more variable at a time, for example, the

(one-way) kinematic wave equation in hydrological flow routing is:

c
∂Q

∂x
x, t = −

∂Q

∂t
x, t 1 23

The notation ∂Q ∂x is shorthand for the derivative of the function Q(x, t) with

respect to x alone:

∂Q

∂x
x, t = lim

Δx 0

Q x +Δx, t −Q x, t

Δx
1 24

Equation (1.23) states that the rate of change of the quantity in space, multi-

plied by c is the negative of the rate of change of the quantity in time. Again, tech-

niques have been developed to solve such equations to find an explicit expression

for Q(x, t). This equation has some similarities to (1.21): except that it involves

only first derivatives, and two variables instead of one.

Many of the equations of quantitative hydrology are partial differential equa-

tions such as (1.23). A large number of useful ones (such as the shallow water

wave equation) are, unfortunately, unsolvable using the kind of algebraic tricks

that are available for solving (1.21) and (1.23). For this reason, computational

algorithms involving purely numerical calculations have been devised and are

an important tool in modern quantitative hydrology.

1.2.6 Probability and statistics
Statistical techniques form a critical part of the material in Chapters 2, 6 and 7.

Statistics is based on the mathematics of uncertainty, known as probability. By

comparison to the other areas of mathematics covered above, probability as a

mathematical topic is a relative newcomer, having origins in the 17th century.

As with algebra, the basic rules of probability are elementary and intuitive: but

the logical consequences of these rules, particularly when applied to real-world

data, can be complex and often counter-intuitive. For instance, consider the
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chance of rain falling on the city of Oxford in the UK in any one day. The (exten-

sive) historical data suggests that it is as likely to rain on any day as not, and that

whether it rained yesterday or the day before has almost no influence on

whether it rains today. So it is quite accurate to model this situation as the

flipping of an unbiased coin: the probability of rainfall in one day is 1/2, and

previous coin flips do not influence the current one. When this is explained

to people, most will surmise, correctly (presumably from experience), that

the probability of there being 30 rain days in a row is extremely small. Because

of this, if, in the unlikely event that 30 days of rain did actually occur, many will

assume that the next 30 days will have to be dry in order to maintain the

expected probability of 1/2. But this belief is false: according to the coin-flipping

model, whether it rained yesterday or on any previous day has no bearing on

whether it rains today. We have simply witnessed an extraordinarily unusual

event. Of course, if such an event did occur in the historical record, it would dis-

tort the statistics so much that we might decide that the unbiased coin model is

not actually appropriate.

The mathematical ingredients of probability are easy to state. There is the

set of all possible outcomes relevant to the physical situation. For example, the

cloudiness at any one time in one location can be observed as clear, scattered

clouds (~25%), partly cloudy (50% coverage), mostly cloudy (75% covered)

or overcast; or it can rain or not on any one day at a specific location; or

the rainfall in any one day in one location can be zero or more millimetres,

in steps of one-tenth of a millimetre. From these outcomes, we form events

of interest, the probability of which we want to know. For example, the event

that the rainfall depth is greater than or equal to 10.0 mm, or the event that

there are scattered clouds.

To these basic ingredients are added three rules (known as axioms by

mathematicians):

Rule 1. To each possible event is attached a real number called the probability value

that must not be negative;

Rule 2. Since one of the outcomes is certain to occur, the event that any one of the

outcomes is observed is assigned the probability value 1. From this, and the pre-

vious condition, we can conclude that probabilities of events lie between 0 and 1

inclusive, with 0 meaning impossible, and 1 denoting inevitable;

Rule 3. The probability of any compound event obtained by joining mutually

exclusive (that is, non-overlapping) events together, is just the sum of the prob-

abilities of the individual events.

Some examples are useful. Consider the event that rainfall is at least 10.0mm,

and assume that the probability of this event is known to be 0.01. The complemen-

tary event is that the rainfall is less than 10.0mm. These two events are mutually

exclusive because any outcome (rainfall depth in 0.1mm steps) satisfies one of the
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events, but not both simultaneously. In fact, these two events are also exhaustive

because joined together, they cover any outcome. The probability of the ‘joint’

event, which is just ‘some rainfall depth occurs’ is 1 (from rule 2). This means

that the probability of the complement event (rainfall depth is <10.0) must be

1−0 01= 0 99 (to satisfy rule 3).

As another simple example: if we know that any of the five categories of cloud

cover are equally likely, then the probability of any category is just 1/5. Then,

since it cannot be both clear and overcast at the same time, the probability of

the location being overcast or clear is 1/5 + 1/5 = 2/5 (using rule 3).

Usually, when dealing with random quantities in physical problems, there is

an intuitive numerical label for each possible outcome. If this label is a whole

number or integer, then the randomquantityX can be associatedwith a probability

mass function P (PMF – also known as a distribution), that determines the probability

value assigned to each event, which lies between 0 and 1. From the rules above,

it must be the case that the sum of the distribution of each outcome must be 1.

For example, if the outcomes are labelled as integers from zero and above, then
∞

i =0
P X = i =1 to satisfy rule 2.

When the random quantity is a real number, say, depth of a river, then the

quantity X is associated with a probability density function p (PDF – although it is

common to call this a distribution as well). With real-valued variables, some

subtleties occur. Firstly, the PDF itself does not represent a probability value:

we need to invoke calculus to find the area under the PDF which gives the prob-

ability. For example, the probability that X lies between 2 and 3, for instance, is
3
2 p x dx. From the property of the integral that a

a p x dx =0, we can infer that

the probability that X takes on some single value a is always actually zero. Also,

the probability density function can be larger than 1: this does not violate rule 2,

because the area under the PDF must sum to 1, that is p x dx =1. Therefore,

the area under any smaller range of values than all possible values of X will be

less than 1.

Statistical hydrology is often interested in calculating the probability of

some event based on a probability density model for that variable. Many of the mod-

els have parameters: constants that affect the shape of the density function. Some-

how, these parameters have to estimated for a particular data record. Parameter

estimation is one of the main topics of statistics, which has led to a large range

of techniques. Perhaps the most widely-used technique is maximum likelihood,

which proposes that the optimum parameter values are those that maximize

the probability density given the data record.

Particular quantities of distributions have special significance in probability

and statistics. The mean (often called the average) is the first moment often written

E[X] or x, and the variance, which is the second (central) moment written as

E X −E X 2 or var(X). Note that the standard deviation is the square root of

the variance.
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If we know a model distribution for the random variable X, say, p(x), then

these quantities can be calculated using integration:

x =E X = x p x dx 1 25

var X =E X−E X 2 = x−x 2 p x dx 1 26

We can also estimate these quantities from data. Technically, this is usually

done by constructing a distribution based on the data, which places equal weight

at each of the N data points x1, x2… xN, and having no density anywhere else.

Then, the integrals in Equations (1.25) and (1.26) simplify to:

x =E X =
1

N

N

i =1

xi 1 27

var X =E X−E X 2 =
1

N

N

i =1

xi−x
2 1 28

When calculating these values from data, the accuracy of the estimates is very

much tied to the amount of data available: however, inmost cases it can be shown

that the estimated mean improves as the length of the data record improves.

Finally, another important value is the median, which is the special value a

such that the probability of X being less than a is the same as the probability of it

being larger than a: it can be estimated as the value that lies ‘in the middle’ when

all the data is sorted numerically. Similarly, themaximum is the largest valuewhen

the data is sorted.

Reference

UNESCO/WMO (1992) International Glossary of Hydrology, 413pp. UNESCO/WMO, Paris/Geneva.
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CHAPTER 2

Statistical modelling

This chapter considers the statistical andmathematical techniques which are used

to quantify the probabilities of hydrological variables such as observed rainfall,

flow or drought. Assigning probabilities to such variables invokes distribution

fitting, a very important and ubiquitous kind of statistical modelling activity, in

which an appropriate formula is fitted to observed data (samples in statistical

parlance).

There are very many such formulae and choosing the appropriate one for the

data is a complex and often heavily contested affair beyond the scope of this book,

but things are very much simplified and constrained when quantifying only the

probabilities of extreme events, which are often themain focus of interest in practical

hydrology. For these extremes, such as a period of heavy rainfall that might have

led to flooding, it is most common to refer to the probability of such an event by its

return period, for example a ‘1 in 100 year’ flood. This idea of return period has

often caused confusion amongst those who are not familiar with the term. It does

not mean though that the interval between the events will be 100 years. For

example, the flood in the Seine at Paris in 1910 was reported by hydrologists

as a 1 in 100 year event. This caused great concern in 2010, when the media in

France were questioning the hydrological services about being prepared for the

imminent arrival of the next severe flood as it was now exactly 100 years since

the last one!

The branch of mathematics and associated techniques used to quantify such

extreme events is termed extreme value theory. Before diving into the maths asso-

ciated with extreme events, it is worth discussing an example of such extreme

occurrences from a hydrological perspective.

2.1 The Central European Floods, August 2002

In August 2002, countries in Central Europe were affected by the worst flooding

in living memory. The flooding, in the basins of the Danube and Elbe, affected

large parts of Austria, the Czech Republic and Germany and parts of other

Understanding Mathematical and Statistical Techniques in Hydrology: An Examples-Based Approach, First Edition.

Harvey J. E. Rodda and Max A. Little.

© 2015 Harvey J. E. Rodda and Max A. Little. Published 2015 by John Wiley & Sons, Ltd.
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countries such as Slovakia and Hungary as the flood waves moved downstream.

The flooding was caused by a combination of the antecedent conditions and

extreme rainfall from two intense depressions within 6 days of each other which

followed an almost identical trajectory.

The precedingmonths of June and July were uncharacteristically cool andwet

which meant river levels were higher than normal and soil moisture deficits were

low. The reason for this was that the meteorology over the region was being

driven by the jet stream taking a more southerly route across continental Europe

rather than over the British Isles as a blocking anticyclone had become established

over Scandinavia. This large scale weather pattern, known in meteorological

terms as a Vb circulation, caused the Atlantic depressions to follow the jet stream

over continental Europe. Here the meeting of warm moist air from the Mediter-

ranean with polar maritime air caused uplift, convergence and considerable

precipitation. The rainfall totals were enhanced by the slow moving nature of

these depressions and the presence of mountain ranges where orographic effects

such as funnelling increased convergence and the formation of cap clouds

produced record rainfall totals.

The first depression brought rainfall over Austria, Southern Germany and the

south of the Czech Republic on 6th and 7th of August 2002, with totals of 200mm

and up to 150mm in 24 hours. This event caused some significant flooding in

smaller rivers and flows of 5–10 year return periods in major rivers. The flows

were still high, reservoirs were full to capacity and soils were saturated when

the second depression brought more intense rain 5 days later. This time the

heaviest rain fell on the western side of the Czech Republic and south-eastern

Germany. The Czech–German border region of the Ore Mountains received

the highest totals with over 400mm, a new 24 hour record for Germany

(312mm) was observed at Zinnwald–Georgenfeld and the city of Dresden

received a new record 24 hour fall of 158mm. These values can be put in perspec-

tive in relation to the average annual total rainfall for Dresden which is 680mm.

Extreme flooding ensued following the second rainfall event: initially flash

flooding in steep mountainous streams with much damage and bed load

transport, and then flooding in the main rivers such as the Vltava at Prague,

the Elbe at Dresden and the Danube at Passau. A record flow of 5300 cumecs

was measured at Prague, more than 40% higher than the pre-event estimated

1 in 100 year flow of 3700 cumecs (Figure 2.1). Many flood defences were brea-

ched and huge extents of the flood plain – up to 15 km from the river channel –

were inundated. The flood waves then progressed downstream to areas which

were outside rainfall area such as on the Danube in Slovakia and Hungary and

the Elbe into central and northern Germany. More than 100 lives were lost,

hundreds of thousands of buildings were damaged and the overall economic

losses were estimated at 16 billion Euros.

The state hydrological services produced a range of initial estimates of the

severity of the flooding based on the return periods at gauging stations
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(Table 2.1). It is likely that such coarse estimates were given as an initial reaction,

so that flows far exceeding existing 1 in 100 year return period flow were labelled

as 200, 500 or 1000 year return periods.
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Figure 2.1 Annual maximum flows on the Vltava at Prague, 1827–2006.

Table 2.1 Return period estimates for flows during the August 2002 floods.

Country River Location Date Peak
Level (m)

Peak
Flow
(cumecs)

Estimated
Return
Period (years)

Data
Source

Czech

Republic

Vltava Ceske Budejovice 13/08/2002 10.00 652 500 CHMI

Vltava Praha-Chuchle 14/08/2002 7.85 5300 500 CHMI

Luznice Klenovice 15/08/2002 5.80 530 >1000 CHMI

Otava Pisek 13/08/2002 8.50 1200 1000 CHMI

Berounka Beroun 13/08/2002 7.96 1800 250 CHMI

Labe Decin 16/08/2002 12.30 5100 250 CHMI

Dyje Znojmo 14/08/2002 4.64 379 150 CHMI

Jihlava Dvorce 14/08/2002 2.36 58 50–100 CHMI

Germany Elbe Dresden 17/08/2002 9.40 200–500

(1000)

BAFG,

(IKSE)

Elbe Tangermunde 20/08/2002 7.67 200–500 IKSE

Mulde Dessau 15/08/2002 6.25 1000 BAFG,

IKSE,

SLUG

Danube Passau 13/08/2002 10.80 50 BAFG

Austria Enns Steyr 12/08/2002 4.85 3200 BLFUW

Salzach Salzburg 12/08/2002 6.50 2300 100 BLFUW

Danube Linz 13/08/2002 7.50 50 BLFUW

Danube Krems 15/08/2002 10000 100 BLFUW

BAFG, Germany Federal Institute of Hydrology; BLFUW, Austrian Ministry for Agriculture, Forestry,

Environment and Water; CHMI, Czech Hydrometeorological Institute; IKSE, International Commission

for the Protection of the Elbe; SLUG, Saxony State Office for Environment and Geology.
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The return period values were quoted widely in the media without any

explanation of what they actually meant or how they were derived. On German

television, many channels simply reported the event as the Jahrhundert

Hochwasser (‘the 100 year flood’). Once flow data had been collected following

the event, a more detailed analysis of the return periods was undertaken giving

revised estimates for the Vltava at Prague of 240–800 years (Holicky and Sykora

2003), depending on the extreme value method used.

2.2 Extreme value analysis

With so many return period estimates being put forward during and since this

flood event, it is of key importance to understand how such estimates are calcu-

lated in order to get the best representation of the severity of the event. As stated at

the beginning of this chapter, to assign probabilities and hence return periods to

events, it is necessary to apply some mathematical assumptions, often by making

the mathematical form of the chosen density function (as defined in Chapter 1)

explicit. Unfortunately, there are a vast number of different forms of the

distribution, and sometimes quite subtle differences in assumptions can lead to

very different return period estimates, as we encountered in the aforementioned

anecdote and we will see explained in detail later.

A minor revolution in statistics in the 20th century was the discovery that if

the probability of the largest values of a set of observations that can be considered

random is to be quantified, then there are only three kinds of distribution that can

arise – the Gumbel (Type I), Frechet (Type II) andWeibull (Type III) distributions,

the extreme value distributions. This is remarkable because it fixes the mathematical

form of the distribution for the extremes of the observations, without having to

know the explicit form of the distribution of the observations themselves.

Although extreme value theory applies to an infinite number of observations,

in practice, the maximum of a large number of observations (e.g. the daily

observations of river flow over 1 year) will closely behave as the theory dictates.

Therefore, one practical approach is to use block maxima, that is the maximum of a

hydrological variable spanning a certain time range (block) such as the annual

maximum flow and to fit the extreme value distribution to these maxima. How

this method can be used to estimate return periods of extreme events is illustrated

in the next section.

2.3 Simple methods of return period estimation

In its simplest form, the return period for extreme events can be calculated by

estimating the distribution of the extremes of the observations. By ranking (sort-

ing) the extremes in ascending order, a simple estimate of this distribution can be
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constructed, and the probability at these extreme values is the so-called Weibull

plotting formula:

Pr =
r

N +1
2 1

where r is the rank (order) of the rth extreme observation, numbering from 1

(smallest) to N (largest), and N is the number of extremes. The associated return

period, Rr, is:

Rr = 1 Pr 2 2

If instead, we have the probability of exceedance, Pe, then (2.2) becomes

Rr = 1 1−Pe . The return period unit is the duration of the block.

An example of using this approach is shown in Table 2.1 based on annual block

maxima for the Vltava at Prague, with (i) and without (ii) the 2002 flood peak

flow. The calculated values here show that the method is not particularly robust

in that a flow 4500 cumecs is given a 175 year return period and then a flow that is

750 cumecs (approximately 16%) higher is assigned a 176 year return period.

Despite the name, formula (2.1) is universal; it does not depend on the form of

the extreme value distribution.

As with all mathematics applied to real data, vigilance is required when

making return period predictions. In this context, many variations of (2.1) have

been proposed, including the Gringorten formula (Gringorten 1963):

Pr = r−0 44 N +0 12 2 3

This formula is an attempt to extend the applicability of the formula (2.1) for return

periods that are close to the duration of the record or for return periods close to the

duration of the block; the numbers 0.44 and 0.12 just scale Pr to be closer to 0 than

(2.1) when r =1 and make Pr closer to 1 than the Weibull formula when r =N.

Typically, (2.1) and (2.3) produce very similar estimates of return periods,

except at very high non-exceedance probabilities, in which case, the return period

estimates can differ substantially (Makkonen 2006). Indeed, for the Vltava data in

Tables 2.2 and 2.3, theWeibull formula estimates the return period for flows up to

rank 166 (Qmax = 2503 cumecs) as R166 = 17 6, but (2.3) gives R166 = 18 3 years.

However, for the full 175 years of record (Qmax = 5300 cumecs), Weibull is

R175 = 176 0 years and Gringorten is R175 = 312 7 years.

This disagreement in return period at the largest extreme flowswhen using the

two different formulas will have considerable implications for public perception,

shaped by the media, of the significance of any flooding caused by the event, the

subsequent pricing of insurance premiums, the design of new flood defences and

the eventual costs that those affected will have to bear. Yet, the mathematical

arguments on which formula is the ‘correct’ one are subtle and cannot be decided

by looking at the data or the predicted return periods. Unless other information is

available that can resolve the conflict (e.g. evidence of more extreme observations
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can be obtained from another source), the safest course of action in these

situations is not to trust return periods for the most extreme flows calculated

by either method entirely or else to report both return periods with details of

how they were calculated, so that subsequent decisions are made taking into

account the uncertainty (see chapter 6).

Both formulas are easy to use and simple to convey but onemajor disadvantage

is that the largest returnperiods are determined entirely by theperiodof the record.

Table 2.2 Ten largest return periods for observed flows on the Vltava at Prague, 1827–2002

(including the events of 2002), estimated using the Weibull plotting formula (2.1).

Year Annual Maximum Daily
Flow (cumecs), Qmax

Number of
Maxima, N

Rank, r Non-exceedance
Probability, Pr

Return
Period
(years), Rr

2002 5300 175 175 0.0057 176.00

1845 4500 175 174 0.0114 88.00

1890 3975 175 173 0.0170 58.67

1862 3950 175 172 0.0227 44.00

1872 3330 175 171 0.0284 35.20

1940 3245 175 170 0.0341 29.33

1830 2840 175 169 0.0398 25.14

1900 2770 175 168 0.0455 22.00

1876 2674 175 167 0.0511 19.56

1920 2503 175 166 0.0568 17.60

Table 2.3 Ten largest return periods for observed flows on the Vltava at Prague, 1827–2001

(excluding the events of 2002), estimated using the Weibull plotting formula (2.1).

Year Annual Maximum Daily
Flow (cumecs), Qmax

Number of
Maxima, N

Rank, r Non-exceedance
Probability, Pr

Return
Period
(years), Rr

1845 4500 174 174 0.0057 175.00

1890 3975 174 173 0.0114 87.50

1862 3950 174 172 0.0171 58.33

1872 3330 174 171 0.0229 43.75

1940 3245 174 170 0.0286 35.00

1830 2840 174 169 0.0343 29.17

1900 2770 174 168 0.0400 25.00

1876 2674 174 167 0.0457 21.88

1920 2503 174 166 0.0514 19.44

1847 2470 174 165 0.0571 17.50
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So for a30year record, the largest possible returnperiodwouldbe1 in30years, and

therewould be noway of derivingmaximum flows for a higher return period. The

Weibull formula (2.1) is however widely used in probabilistic modelling when a

large number of flood scenarios are available (e.g. more than 1000 scenarios are

generated representing a very long time period, say 10,000 years).

2.4 Return periods based on distribution fitting

More advanced techniques allow better flexibility in calculating return periods

using more sophisticated mathematics that fit a distribution to the observations

or their maxima. Past investigations have shown that certain distributions are

suited to known hydrological variables, for example, annual rainfall totals are well

fitted by the gamma distribution (see the glossary). Hydrological services try to

ensure that consistent results are obtained for different gauging stations by using

a common distribution for particular hydrological variables.

There are a great many statistical approaches to accomplishing this fitting

problem; widely used examples includemaximum likelihood, themethod of moments

(MOM) and regression. The first approach has widespread use in the statistical

community; a modified example of the MOMs is described in the Flood

Estimation Handbook (Institute of Hydrology 1999) for fitting a distribution to

flood observations and least-squares regression is commonly used in hydrological

practice. As the latter approach is ubiquitous and intuitive, it is described here as

applied to the Gumbel (Type I) extreme value distribution which, for reasons

explored in extreme value theory (beyond the scope of this book), is most often

used in practice.

The Gumbel extreme value distribution has the following distribution function

(the exceedance probability function):

P x;μ,σ = exp −exp −
x−μ

σ
2 4

where x is the observed hydrological variable, μ is the location parameter of

the distribution and σ is the scale parameter of the distribution; the notation

P(x; μ, σ) simply indicates that x is a random variable and μ and σ are parameters

of the distribution; the semicolon separates the variable from the parameters.

Fitting this two parameter distribution requires finding the optimum values of

μ and σ given the observed annual maxima of the hydrological variable.

Regression approaches to fitting extreme value distributions are based on

applying some mathematical transformation to the Weibull plotting position

(2.1) of the observed maxima so that the cumulative distribution function is a

straight line when plotted against the maxima. In the Gumbel distribution case,

the transformation ‘undoes’ the double exponentiation by applying the following
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in order: log, minus, log, minus to both sides of (2.4). This leads to the following

equation:

y= − ln − ln P x;μ,σ =
x−μ

σ
2 5

and both sides equate to a new quantity, which we can label y, which is known as

the reduced variate. With a little further algebra, this reduced variate can be

expressed in terms of x:

x = σy+ μ 2 6

Bear in mind that the term y in (2.6) is identical to the left-hand side of (2.5). The

critical point about (2.6) is that it can be recognized as a straight line where y is

considered as the independent variable. So, by applying this transformation to

the probability (Weibull plotting position) of eachmaximum, we get an associated

value of the reduced variate y, and these points all lie on a straight line when

plotted against the observed maxima. This makes it easy to extend a straight line

through these points, and so use the slope and intercept to determine the Gumbel

scale and location parameter σ and μ.

Given, these facts, we can propose a sequence of operations for Gumbel

extreme value analysis:

1 The annual maximum flows are ranked from lowest to highest, labelling the

rank r so that the lowest flow has rank r =1 and the rank is increasing with

increasing flow.

2 The plotting position probability value Pr is computed for each rank as

Pr = r N +1 (2.1) where N is the total number of flow values.

3 The reduced variate values y are calculated as y= − ln − lnPr .

4 The reduced variate values, y on the y-axis, are plotted against flows x on the

x-axis, with the line of best fit included (see Figure 2.2).

5 From the line of best fit y=mx + c, with slope m and intercept c, we can now

calculate the Gumbel parameters σ =1 m and μ= − c m.

6 Now, we can insert the flow values x back into the Gumbel distribution formula

(2.4) to get the associated exceedance probabilities Pe predicted by the

Gumbel model.

7 Finally, we can use thesemodelled exceedance probabilities to obtain estimated

return periods using the equation Rr = 1 1−Pe .

Note that the equation in step 7 is different from Equation (2.2) which relates

return period to non-exceedance probability. The probability derived from step 6

is the exceedance probability; therefore, this has to first be subtracted from 1 to

derive the return period. Also, as always with such sequences of calculations it

is always good practice for the magnitudes of specific calculated return periods

to be compared with the input data. If for example the 1 in 10 year flow was cal-

culated at 1000 cumecs where the input data over a period of 50 years had a
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highest observed flow of 200 cumecs, an order of magnitude lower, it is obvious

there is something wrong with the calculations and these should be checked.

In Figure 2.2 the Vltava data is used to create such a plot. Here, least-squares

regression is used to find the parameters μ=840, and σ =673. Plugging these

parameter values into (2.4) gives estimates for the exceedance probabilities and

return periods listed in Table 2.4.

This approachobtains another set of estimates for the returnperiods of the flow.

This estimate for Qmax = 5250 cumecs on the Vltava at Prague is 1 in 700 years,

which is much larger than the value reported by the Czech state hydrological serv-

ice in Table 2.1, and the values are calculated using the Weibull and Gringorten

formulas. How reliable is this new estimate? Looking at the plot in Figure 2.2,

it is fairly obvious that only the largest maxima actually lie on a straight line.

6

5

4

3

2

1

0

–1

–2

Re
du

ce
d 

va
ria

te
 (y

)

Qmax (cumecs) (x)

–1000 0 1000 2000 3000 4000 5000 6000

Figure 2.2 Gumbel plot of the annual maximum daily flows on the Vltava at Prague, 1827–2006.

The dotted line is the best straight line obtained by least-squares fitting.

Table 2.4 Return periods to two significant figures for observed flows on the

Vltava at Prague, estimated by fitting the Gumbel extreme value distribution

to the annual maximum daily flow, 1827–2002.

Annual Maximum Daily
Flow (cumecs), Qmax

Reduced
Variate, y

Exceedance
Probability, Pe

Return Period
(years), R

1000 0.2373 0.45441 1.8

2000 1.7228 0.83647 6.1

3000 3.2083 0.96038 25

4000 4.6938 0.99089 110

5000 6.1794 0.99793 480

6000 7.6649 0.99953 2130
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If we exclude a few of the smaller maxima (e.g. the smallest 20), then the best fit

line has a smaller slope and the resulting return period estimates are much closer

to those given in Table 2.1. Is this truncation of the data a reasonable adjustment

to make? Here the answer is most likely yes, because, as discussed earlier, the

theory of extreme values is only a good approximation of the probabilities of

the very largest values. On the other hand, removing too many of the

smaller values risks not leaving enough observations to get a good straight line

fit or systematic error in the recording of very strong flows might come to

dominate.

Sometimes, such plots also show the reduced variate on the x-axis (from

which the return period is calculated) in addition to the return period. In that

case, the slope and intercept of a straight line fit on this plot are simply the Gumbel

parameters σ and μ respectively. This approach is common in many software

packages such as the UK Flood Estimation Handbook WINFAP software

(Institute of Hydrology 1999). The return period is displayed as a secondary x-axis

(Figure 2.3).

In the case of uncertainty relating to the data and model applied, there are

statistical methods that can quantify the appropriateness of the assumption that

the Gumbel distribution applies to this data, which are discussed in Chapter 6,

although purely from an assessment by eye of Figure 2.1, it may be concluded that

there are better statistical models. Other types of distribution are discussed briefly

in the following. The mathematical details of these are beyond the scope of this

book, and the reader should just note that they are all methods for estimating

a specific return period flood (or indeed other hydrological event such as rainfall)
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28 Chapter 2



from a set of observations over a particular time. Many commercial hydrological

modelling software packages, such as the Flood Estimation Handbook (Institute of

Hydrology 1999), have automated routines for fitting such distributions.

Other distributions which could be used are the generalized extreme value

(GEV) II (Fréchet) and GEV III (Weibull), as described by Hosking et al. (1985)

but also other forms which are not extreme value distributions. The generalised

Pareto distribution (GPD – Pickands 1975; Hosking and Wallis 1987) is used when

the values are not blockmaxima (e.g. the highest values for each year over a period

of many years) but are extracted as peaks over a threshold (POT) as shown in

Figure 2.4. In the United Kingdom, the generalised logistic distribution (GL –

Balakrishnan and Leung 1988) is often used in hydrological practice as in certain

situations, and GEV and GPD models are found to be less accurate when fitting

extreme values than the GL distribution. The GL distribution has a particularly

simplemathematical formand is similar in shape to thenormal distribution (i.e. the

bell shaped curvewhere observed values are evenly distributed around themean),

but it attributes more probability to extreme positive and negative values than the

normal distribution and can allow for features such as asymmetry in positive

versus negative values. The log-normal (LN – Limpert et al. 2001) distribution is

also used in some circumstances, in particular where the values of a variable

become very large so by taking the log the relative difference in values becomes

smaller and more manageable. The Log Pearson III distribution (Cohn et al. 1997)

is commonly used in North America, Australia and China; it has three parameters

to describe the reduced variate, as opposed to the two-parameter formula shown

in Equation (2.5). Note that for these models, the reduced variate Equation (2.5)

will take on a different form for each specific distribution.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Fl
ow

 (c
um

ec
s)

Days

Threshold

Figure 2.4 An illustration of selecting peaks over a threshold for a period of observations.
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2.5 Techniques for parameter estimation

Thevalues for theparameters associatedwith thedistributions discussed in thepre-

vious section, such as the location and scale parameters shown in Equation (2.5),

need to be optimised to ensure the best fit for the distribution (as shown in

Figure 2.2). Some standard mathematical approaches are used for this but they

oftenhave terminologieswhichconfusenon-mathematicians.One such technique

is the use of statistical moments (as introduced in Chapter 1). These are simply

summary quantities that can be used to describe the distribution of a random

variable. Example moments are the mean (average), variance, skewness and

kurtosis. The average is commonly understood as the ‘central’ value of a distribu-

tion, the variance is often a meaningful measure of the ‘width’ of the distribution

about an average, the skewness is a measure of the asymmetry of the distribution

and the kurtosis the ‘sharpness’ at the peak of the distribution. These quantities

often depend upon one or more parameters of the distribution. In some special

cases, there is a unique mathematical relationship between each parameter and

a corresponding moment (this is true of the normal distribution, for example).

When this occurs, it is possible to fit the distribution to data using the moments

to calculate the parameters. This is known as the Method of Moments MOM.

Alternative summaries of the data are derived from order statistics introduced at

the end of Chapter 1. These include the median, quartiles and the maximum or

minimum. These quantities can be estimated from the data by sorting and selec-

tion. It turns out that these summary quantities are quite robust to contaminated

data, for example, whereas the mean can be significantly distorted by a large error

in only one data point, themedian is not distorted so easily and thereforemay be a

more meaningful measure of the ‘centre’ of a probability density. Fitting the

distribution to the data by matching order statistics forms the basis of a technique

similar to the MOMs given the name L-moments (to denote linear combinations of

order statistics).

2.6 Bayesian parameter estimation

Another commonly used parameter estimation technique makes extensive use of

Bayes rule, otherwise widely known as Bayesian statistics. Bayes rule is a theorem in

basic probability: if the probability of one random variable, X, which depends

upon another (in the mathematical jargon, conditioned upon), Y, is known, then

the probability of Y conditioned on X can also be found, if the probability of X

and Y alone, and their joint probabilities (that is the probability of both X and Y

co-occurring), are known. Bayes rule is the probability ‘calculus’ by which this

conditioning can be reversed. For the conditional probability, we use the notation

P X Y to denote the probability of X conditioned on Y. Then, Bayes rule can be

written as:
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P Y X =
P X Y P Y

P X
2 7

Perhaps the most essential distinguishing feature between Bayesian and the

other, non-Bayesian approaches discussed in this chapter, is that in non-Bayesian

approaches, themodelparameters tobeestimated(suchas theGumbelσ andμpara-

meters) are not assumed to be random quantities; in principle, they take on a fixed

value, and we typically seek the best estimate of that value given the data for X. By

contrast, in the Bayesian approach, these parameters are assumed to be random

variables. This means that, alongwith the dataX, theymust also have a certain dis-

tribution. In that case, wemight write P x μ,σ instead of P(x; μ, σ) in (2.4) to indi-

cate that the distribution of the data depends upon that of the parameters μ and σ.

If we consider the simple case when we have only a single parameter

distribution P x μ , then a Bayesian approach would also propose a distribution

P(μ). In the Bayesian terminology, P x μ is the ‘likelihood’ of the data given

the parameter value μ, and P(μ) (the ‘prior’) is the distribution of the parameter

wewould expect before (prior to) seeing the data forX. By using Equation (2.7), we

can then attempt to find P μ x , which is known as the ‘posterior’ distribution of

the parameter given the data (note that, in principle at least, we can always find

this posterior distribution if we just know the prior and likelihood distributions,

by ‘integrating out’ the distribution over the data P(x), although in practice, this

integration may be very difficult to perform).

The Bayesian approach makes intuitive sense if we appreciate that the

posterior distribution, that is the distribution of the parameters given the data,

is what we actually care about in practice, not the distribution of the data given

fixed values of the parameters (the likelihood). There are many other reasons

to prefer this approach, particularly when there is only a small amount of data.

In that case, the prior distribution naturally acts to constrain the most probable

values of the parameters to a meaningful range, for example. Another way of

explaining the Bayesian approach is that it makes the estimated parameter values

less sensitive to large fluctuations in the data which may be spurious. It also

provides a distribution over the parameters, fromwhich we can estimate not only

the optimal value given the data but also a confidence interval for this estimate.

Nonetheless, the Bayesian approach is considerably more complex than non-

Bayesian approaches, and there are some thorny questions to address, such as

how to choose the prior distribution, which introduces an additional element

of subjectivity which could have a large impact on the posterior distribution.

2.7 Resampling methods: bootstrapping

Earlier, we described how to estimate a parameter value given some data, for

example the Gumbel parameters μ, σ. Any one draw of a set of data is just a single
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set of draws from a random variable, and every set of data will be effectively

unique. So, having estimated a parameter value, a question naturally arises:

how much might these parameter values vary if we had more data? This is

obviously a difficult problem but a rather elegant and simple solution is provided

by bootstrapping: by sampling with replacement from the given data. We remove a

value from the data uniformly at random, and ‘replace’ this back into the data

set, and repeat this to create a new set of data of any length we choose. Sampling

‘with replacement’ in this way ensures that each new data set is potentially

different from all the rest, and it also means that the same values from the original

data will, most likely, appear more than once in each new data set.

These new, generated sets of data can each be used to provide estimates for the

parameters. Then, we can summarize the spread of the distribution of these

parameter estimates to get an idea about how much this parameter might vary

for unseen data – see Table 2.5.

This bootstrapping procedure is deceptively simple but of enormous general-

ity. Nearly everywhere we have a data set, whether synthetic or natural, we can

use this procedure to generate new data sets of any length which (approximately)

share the same statistical properties as the original data. So, how does this

procedure work? The details are somewhat complex, but essentially, we are using

the data to estimate a ‘bare bones’ probability density for the distribution of the

data, and then sampling by replacement just draws new samples from that

distribution.

Table 2.5 Example bootstrap computations to estimate standard deviation of the average

depth of rainfall from a synthetic time series.

Data point
index i

Original
Data xi

Bootstrap
Data 1

Bootstrap
Data 2

Bootstrap
Data 3

Bootstrap
Data 4

Bootstrap
Data 5

1 0.68 0.47 0.74 0.20 0.19 0.53

2 0.74 0.68 2.50 2.50 0.19 0.19

3 0.20 0.53 0.53 0.74 0.19 2.50

4 0.08 0.53 0.74 0.20 0.47 0.08

5 0.53 0.53 0.08 0.68 0.20 0.19

6 0.12 2.50 0.19 0.12 2.50 0.53

7 0.19 0.08 0.74 0.19 0.20 0.25

8 2.50 2.50 2.50 0.12 0.74 0.25

9 0.25 0.53 0.20 0.53 0.19 0.20

10 0.47 0.68 0.47 0.19 0.53 0.19

Average x 0.58 0.90 0.87 0.55 0.54 0.49

Standard

deviation of

averages

0.18

Data values are in centimetre. Note that sampling with replacement means that data values from the

original set usually appear more than once in each data set.
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Resampling and bootstrapping are essential ingredients in dealing with

uncertainty in process-based hydrology, which is explored in Chapters 3 and 6.
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CHAPTER 3

Mathematics of hydrological
processes

3.1 Introduction

This chapter provides examples of a range of hydrological processes which are

represented by equations of differing degrees of complexity, from simple arithme-

tic equations to the use of partial differential equations and integration. The aim is

to allow readers to feel comfortable with such equations when they are presented

in other textbooks, handbooks, reports or scientific papers. It is often now the

case that papers in hydrological journals make fairly heavy use of such equations.

One of the references in this chapter uses sample equations from a paper in a

hydrological journal of approximately 15 pages containing over 50 numbered

equations!

3.2 Algebraic and difference equation methods

Chapter 1 provided the background for the structure of simple equations where

the value to be computed can be isolated using the operations of addition, subtrac-

tion, multiplication and division, that is making use only of the elementary alge-

braic operations.When some equations are printed in textbooks or scientific papers,

the actual mathematics can sometimes be quite basic, for example mass balance

equations, but a reader with little recent mathematical experience can be put

off from gaining a complete understanding of the model because the equations

use Greek letters and subscripts which cloud the simple underlying form of the

equations used. For example, a simple soil water balance can be in the form:

D=P− ΔS−ET 3 1

where D is the depth of drainage water issuing from the soil, P is the precipita-

tion, ΔS is the change in soil water storage and the symbol ET represents evap-

otranspiration. Note that, unless the separate variables E and T have been

defined and used elsewhere (an example of which we will see later), we would

Understanding Mathematical and Statistical Techniques in Hydrology: An Examples-Based Approach, First Edition.

Harvey J. E. Rodda and Max A. Little.
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expect ET to refer to a unique variable rather than to denote the multiplication

of E by T.

Further termsmay be included to givemore detail to themodel (3.1), although

it still remains a mass balance with quantities being either added together or

subtracted, for example, irrigation I can be included:

D= P + I− ΔS−ET 3 2

Also, some terms can be split into component parts, for example the drainage can

be divided into surface runoff Ds and percolation to groundwater Dp, and evapo-

transpiration can be represented as separate evaporation and transpiration terms

(E and T):

Ds +Dp =P + I− ΔS− E +T 3 3

In some cases, an individual term in the equation above can be represented as a

composite expression if, for example, the irrigation is not given as a depth but

instead as a volume applied over a certain area, where a volume V, given in m3,

is divided by an area A, in m2, giving a depth (m):

Ds +Dp =P +
V

A
− ΔS− E +T 3 4

Further complications arise where the mass balance introduces time because the

unknown quantities involved become functions of time. For example, an equation

for snow water equivalent in the snow pack at time point T (which might be pre-

sumed to take on positive integer values) is given by Bergström (1976) as:

SN T +1 = SN T + PS T + PR T −QN T 3 5

where SN T +1 is the snow pack depth at the next time point, SN(T) is the current

snow pack depth, PS(T) is the precipitation as snow of the current time step, PR(T)

is the precipitation as rain which can freeze and contribute to the snow pack and

QN(T) is the melting of the snow pack over the current time step.

It is important to appreciate that (3.5) is still a mass balance equation, but it

relates values of functions at different time points rather than simple variables.

Therefore, (3.5) actually represents, potentially, an infinite number of algebraic,

non-functional equations, for example SN 2 = SN 1 + PS 1 + PR 1 −QN 1 ,

SN 3 = SN 2 + PS 2 + PR 2 −QN 2 , etc. Such equations like (3.5) are known

as difference equations or recurrence relations, and they have a lot in common with

differential equations introduced in Chapter 1, because solving them requires

finding a function of the time point Twhich holds for all possible values of T. Such

equations are not generally as easy to solve as purely algebraic mass balance

equations like (3.1–3.4).

A combination of terms for different time points and terms which are them-

selves expressions can produce an equation which appears fairly complex, but

is nevertheless still just another kind of mass balance difference equation. For
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example, the UNESCO report on hydraulic structures in the Danube basin

(UNESCO 2004) uses the following equation to compute the natural inflow

function Qa to a reservoir:

Qa T =Qe T + Qe T −1 +
2 W T −W T −1

ΔT
−Qa T −1 3 6

Here, Qe is the outflow function and the functionW is the reservoir volume, func-

tions of the time point T. But to clarify, the overall form of this equation is just the

addition of three terms and the subtraction of one term.

3.3 Methods involving exponentiation

Chapter 1 introduced exponentiation, that is raising a value to a power or self-

multiplication. Terms raised to the power are common in equations used in

hydrology. For example, the Manning’s equation used to calculate the flow in

a river channel of given size and slope requires the raising of two of its terms

to a power:

Q=
AR2 3S1 2

n
3 7

where Q is the flow (cumecs), A is the cross-sectional area (m2), R is the hydraulic

radius (the ratio of cross sectional area to wetted perimeter in m), S is the channel

slope (m/m) and n is the Manning’s roughness coefficient (no units). Since this

equations mixes multiplication with exponentiation, the order of each of the

operations is critical (as indeed, it is critical in Equation (3.4) whichmixes addition

andmultiplication). The values should be raised to the power beforemultiplication

with the preceding value; to be clear R is raised to 2/3, S is raised to 1/2 and the

resulting values are multiplied together and with the value for A. Finally, the

result of the multiplication should be divided by n.

For example, using (3.7) correctly for a rectangular stream channel 3m wide

with 1m high banks with a channel slope of 0.05m/m and Manning’s n of 0.03

gives a flow of 15.9 cumecs. If the area is multiplied by the hydraulic radius and

then the product of these two is raised to the power 2/3, Q comes out as only 10.9

cumecs. This value is considerably less than the correct answer and could have

significant implications if the flow was to be used for design purposes.

3.4 Rearranging model equations

It is often the case in hydrological textbooks, papers and reports that equations are

written in different forms. This is usually when expressions for some of the para-

meters are replacedwith others where the values or data aremore easily obtained,
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or when equations are rearranged to solve for some variables in terms of others.

As discussed in Chapter 1 in detail, although showing each step in the transfor-

mation of an equation is critical to avoid mistakes, it is not of particular interest

to a hydrologist who would ultimately just want to use a formula to calculate a

value for a particular problem. Such sequences of transformations in textbooks

can be tedious and confusing to those who are not so mathematically inclined,

particularly when the actual transformation in each step is not explained and sin-

gle words such as ‘thus’, ‘hence’, and ‘so’ are used suggestively. This does not

make easy reading for those more familiar with written descriptions, but such

transformations must be understood step-by-step if the correctness of the result-

ing formula is to be ensured.

Continuing on the soil–water balance theme, the Penman–Monteith formula

is widely used to calculate evapotranspiration. The equation involves the quantity

Ea which represents the energy required for evapotranspiration as shown in (3.7).

Although this is more a facet of meteorology and thermodynamics, many hydrol-

ogy textbooks detail rearrangement of this equation through a series of steps

which are largely unexplained. The following form is taken from Shaw (1983):

E0 =H−
γE0

Δ
−
γEa

Δ
3 8

In this case, the goal is to rewrite the equation such that E0 is alone on the left-

hand side. The problem requires a few algebraic steps because E0 appears on both

the left- and right-hand sides of the equation. As with all mathematical problems,

this can be broken down step-by-step, taking care not to introduce errors. The

same operation is done to both sides of the equation at each step, keeping in mind

the eventual form of the equation that has to be reached. There are an infinite

number of ways of approaching this problem, but to start, the Δ on the bottom

of the terms in (3.8) can be removed from the right-hand side by multiplying

all terms (on both sides, as always!) by Δ. This leads to:

ΔE0 =ΔH−γE0−γEa 3 9

Now, remembering that the goal is to have E0 alone (on either the left- or right-

hand side, we will aim for the left in this case), all those terms containing that

symbol on the right have to be moved over to the left. This is done by adding

the expression γE0 to both sides, which cancels out the term −γE0 on the right-

hand side:

ΔE0 + γE0 =ΔH−γEa 3 10

Next, those terms that contain E0 can be combined into a single term by factorising

these terms, that is by finding the factors which they have in common (which of

course is just E0), giving:

E0 Δ+ γ =ΔH−γEa 3 11
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Finally, our goal is achieved by dividing through both sides by the expression

Δ+ γ to ensure E0 is all that appears on the left-hand side:

E0 =
ΔH−γEa

Δ+ γ
3 12

This suffices to allow the calculation of E0 given the other variables, but this can

also be rearranged to write it in terms of the ratio Δ γ. If the top and bottom of

both sides are divided by γ, then the left-hand side is not changed, but the form

of the right hand-side is changed:

E0 =
Δ γ H−Ea

Δ γ +1
3 13

Note that the brackets here are critical to ensure that the proper sequence of

algebraic operations is used to calculate E0.

3.5 Equations with iterated summations and products

So far in this chapter, we have encountered only the basic mathematical operators

of addition, subtraction, division, multiplication and exponentiation. What can be

much more confusing to students and practitioners is advanced mathematical

notation using symbols occurring in, for example, iterated summation and pro-

ducts (see Chapter 1, calculus). However, all mathematical notation is, in princi-

ple, rigorously defined in terms of simple processes which when explained in

words are actually quite easy to understand. Performing the repeated sum of a

number of values often looks daunting in mathematical notation but it is simply

the case of adding a sequence of numbers from the starting value in the sequence

to the end value of the sequence. The sum is denoted by the operator Σ (‘S’ in

Greek, short for ‘sum’) and has the counting variable and range of values that

variable takes on as superscript and subscript, for example:

Qm =
31

i =1

Qi 3 14

This equation tells us that the total monthly flow Qm is the sum of the daily flows

for that month, that is flows Qi, where i is the day number, running from 1 to

31 inclusive. The (sample) meanmonthly flow is then obtained simply by dividing

this value by the number of days:

Qm =
1

N

N

i =1

Qi 3 15

Note in this equation, the upper range (the value 31) in (3.14) has been replaced

by the variable N, as the number of days per month varies and the mean monthly

flow is represented by Qm, pronounced ‘q em bar’.
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This iterated summation notation is widely used to describe hydrological

parameters combined over a time period or an area. Other examples include cal-

culatingwater quality loads from concentration and flowmeasurements. The load

is the mass of a particular contaminant, such as sediment or dissolved chemicals,

which is transported with the flow of a river to the catchment outlet. One of the

problems is that whereas the flow can be measured continuously through logging

the water level and using flow-level rating equations (see Chapter 4) or other

means such as ultrasonic gauging, measuring the concentration of the contami-

nant in a continuous manner is not possible without complex monitoring equip-

ment. Instead, spot samples are taken at regular intervals and the concentrations

are measured back in the laboratory. The product of the concentration (mass per

unit volume) and the flow (volume per unit time) will give a load for a specific

time. Various equations have been used to derive a load for a monitoring period

(e.g. 1 year) based on the concentration and flow measurements and taking the

sum of these measurements over time, for example:

LOAD=
K

N

N

i = 1

CiQi 3 16

where Ci is the instantaneous concentration for each sample, Qi is the instantane-

ous flow at the time of the concentration samples, N is the number of samples and

K is a time conversion factor. This summation to compute the load is shown in

Table 3.1 using hypothetical data. Assuming one sample per month, the annual

load can be derived by multiplying the time conversion factor of 31,536,000

for the number of seconds in a year, giving a value of 3 4× 109 g year.

Table 3.1 Load calculation using Equation (3.16) based on concentration and flow data.

Sample
Number i

Instantaneous
Concentration
Ci (g/m

3)

Instantaneous
Flow Qi (cumecs)

Instantaneous
Load CiQi (g/s)

Average
Instantaneous
Load CiQi/N, with
N = 12 (g/s)

1 34.2 4.5 153.90 12.83

2 30.2 4.0 120.80 10.07

3 26.8 4.2 112.56 9.38

4 23.6 3.7 87.32 7.28

5 21.5 3.0 64.50 5.38

6 20.7 2.5 51.75 4.31

7 25.9 1.8 46.62 3.89

8 22.6 1.5 33.90 2.83

9 41.6 2.8 116.48 9.71

10 54.8 3.9 213.72 17.81

11 39.7 4.4 174.68 14.56

12 33.5 4.3 144.05 12.00

Sum 110.02
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Another example of using the sum notation to derive hydrological parameters

is when a catchment average is required from mapped data covering different

proportions of the catchment. In the Flood Estimation Handbook (Institute of

Hydrology 1999), a key parameter used for the estimation of design floods is

the standard percentage runoff (SPRHOST – Boorman et al. 1995). This is calcu-

lated for a catchment from the different soil types each with its own characteristic

percentage runoff (SPR) and covering a portion, a, of the catchment area AREA.

The formula used is:

SPRHOST=
1

AREA

29

n=1

anSPRn 3 17

In this example, the sum is multiplied by 1/AREA but could also be divided

by the AREA which would be equivalent, and the total area is calculated using

AREA=
29

n= 1
an. Equation (3.17) simply represents a weighted average; in this

case, the average of all the component SPR values weighted by their correspond-

ing catchment area. A visual example is shown in Figure 3.1 and the accompany-

ing data shown in Table 3.2.

Table 3.2 SPRHOST values in Equation (3.17) for different soils for the

hypothetical catchment shown in Figure 3.1.

Soil Type Area an (km2) Standard
Percentage Runoff
(SPR), SPRn (%)

Catchment
Area-weighted
SPR, anSPRn

1 3.50 33.8 118.3

2 1.50 25.3 38.0

3 0.12 14.5 1.7

3 0.24 14.5 3.5

4 0.81 44.3 35.9

Sum 6.17 197.4

1

4

2

3 3

Figure 3.1 SPR values for different soil types 1–4 within a hypothetical catchment.
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Using Equation (3.17), the SPRHOST for the hypothetical catchment with a

total area of 6.17 km2 is calculated as 32.0%.

The iterated summation notation often occurs in producing an observed flow

measurement when velocity and depth measurements are made at a number of

sub-divisions across a channel cross-section (Figure 3.2).

In a method described by Shaw (1983), the average velocity over successive

spatial measurements vi,vi−1 and depths di,di−1 taken from each subdivision

boundary is multiplied by the width of the subdivision bi−bi−1, giving the product

of velocity and area ai or the flow qi for this subdivision. The flow Q, for the whole

channel with N subdivisions, is then the sum over all subdivisions:

Q=
N

i =2

qi =
N

i = 2

viai =
n

i =2

vi−1 + vi
2

di−1 + di
2

bi−1−bi 3 18

As with the sum of a series of values, the iterated product of several values is repre-

sented using the big Π operator (the Greek ‘p’ short for ‘product’):

N

i =1

xi = x1 × x2 × x3 × × xN 3 19

This notation is not so common in hydrological studies or models. One example of

the use of this notation is in the Flood Estimation Handbook, Volume 5 (Bayliss 1999),

where the FARL (FloodAttenuation fromReservoirs and Lakes) index is derived for

a basin by taking a product of all of the α parameter valueswhich describe the atten-

uation for each single lake or reservoir based on the surface area of the water:

FARL=
N

i =1

αi 3 20

3.6 Methods involving differential equations

A further level of mathematical sophistication, and a corresponding increase in

complexity, occurs when dealing with differential equations. As with difference

equations introduced earlier, these are used to describe a dynamic process which

is commonly the case in all facets of hydrology as water is continually flowing or

bi–1 bi

di–1

b

d
di

Figure 3.2 Calculation of channel flow by combining subdivision measurements of width, depth

and velocity.
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moving or changing forms throughout the entire hydrological cycle. The notation,

the underlying concepts of the derivative (which expresses the instantaneous rate

of change of one variable with respect to another variable, in this case time) and

the use of the derivative and partial derivative to construct differential equations

have been explained in Chapter 1.

Differential equations are used to model fundamental hydrological processes

so they will be encountered in textbooks, scientific papers and software user man-

uals. However, it can be very difficult to fully grasp these processes without a

proper understanding of what the differential equations represent. Unfortunately,

solving differential equations requires mathematical sophistication which is often

confined to an education in mathematical physics or applied mathematics. The

aim of this section is not to train readers to be able to solve any differential

equation – indeed, most cannot be solved using simple algebraic manipulations –

instead, it aims to provide an alternative explanation so that, at least, the reader

is equipped to understand what the differential equation is telling them about

the behaviour of the underlying process.

Differential equations occur widely in hydrodynamic modelling – that is simu-

lating the flow of water through, for example, a river channel. These can be used

to predict themaximumwater levels at particular points along a river reach during

a design flood event (e.g. 1 in 100 years). Suchmodels provide the essential design

criteria for many hydraulic engineering structures such as bridges and flood

defences and also form the basis of flood risk mapping exercises. Looking at the

user manual or help files associated with these models, the user will be presented

withmuch detail on the theoretical background. For example, the usermanual for

hydraulic modelling software (Halcrow/HR Wallingford 1997) presents the shal-

low water or St. Venant equations which are used to describe the flow of water in

open channels:

∂Q

∂x
x, t +

∂A

∂t
x, t = q t 3 21

This is an example of a continuity equation, where x is the longitudinal channel

distance, t is the time, Q is the flow as a function of time and distance, A is the

cross-sectional area as a function of time and distance and q is the outflow (which

is indicated here as function of time but could also be constant and hence inde-

pendent of time).

The question arises though as to what does this equation actually represent?

It is simply another balance equation: the rate of change of volume over distance,

plus the rate of change of area over time, equates to the outflow (which may or

may not be constant). As a reminder, this is a partial differential equation because

Q and A are functions of both time and position and the continuity equation

involves both time and spatial rates of change.

Equation (3.21) does not provide sufficient information to solve for the

primary variable of interest, that is the flow. The other governing equation in
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the St. Venant model is known as a momentum equation which provides sufficient

constraints to solve:

∂Q

∂t
x, t +

∂

∂x

βQ2

A
x, t + gA

∂H

∂x
x, t −gA x, t Sf x, t =0 3 22

where in addition to the variables for (3.21), H is the water surface elevation

above a datum, β is the momentum correction coefficient, g is the gravitational

acceleration and Sf is the friction slope.

One particularly noteworthy aspect of (3.22) is that the right-hand side is zero.

For students or practitioners who have often used a calculator to input parameter

values to an equation and press the “=” button to get an answer, having an equa-

tion in a form where the “answer” is zero seems nonsensical. But referring back

to Chapter 1, this is an implicit equationwhere not all the terms are known, which

by rearranging, could also be written with one set of components equal to another

set , namely:

∂Q

∂t
x, t +

∂

∂x

βQ2

A
x, t + gA

∂H

∂x
x, t = gA x, t Sf x, t 3 23

Typically, Equations (3.21) and (3.22) will be solved together numerically by

breaking the x- and t-axes up into a set of fine grid points, and replacing the deri-

vatives with their finite difference counterparts, for example Q x +Δx, t −

Q x, t Δx for
∂Q

∂x
x, t . Then, the equations can be solved as Q x +Δx, t in terms

of Q(x, t) on the grid to get explicit formulas to compute an approximate solution

to the differential equations.

3.7 Methods involving integrals

In general, equations involving integrals are not such a regular feature of equa-

tions of hydrological processes sincemost equations are used to describe rates, that

is tracking the flow of amass of water at a particular instant in time. Integration on

the other hand combines separate units of mass and other hydrological quantities

together, over a given time interval, as described in detail in Chapter 1. Nonethe-

less, as described in Chapter 1, these differential and integral ways of representing

the same physical quantities and laws can always be transformed into each other,

but the differential form generally leads to more easily solved equations.

Mansell (2003) used the integral form to describe the method of dilution gau-

ging, where a known quantity of a chemical which can readily dissolve (such as

salt) is added to a stream either directly or as a solution with a known concentra-

tion. The concentration of the salt is then measured downstream at regular inter-

vals, usually at a high-time resolution (e.g. 1minute). Assuming that the stream

flow (Q) is constant over a short length of channel, the mass flow (M) of the salt

(i.e. the flow, Q, multiplied by the concentration, C) is:

M t =QC t 3 24
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Integrating both sides of this equation with respect to t, we get:

M t dt =Q C t dt 3 25

As the aim is to calculate the flow, using algebra, the above equation can be

rearranged to solve for Q:

Q =
M t dt

C t dt
3 26

Further refinements to the equation can be made because there is normally a

background concentration C0 (not changing with time) which means the actual

observed concentration in the river C1(t) > C0 (as a function of time) is higher than

the initial concentration of the solute, C0:

C t = C1 t − C0 3 27

This term can be substituted back into (3.26) and we get:

Q =
M t dt

C1 t −C0 dt
3 28

More often, differential equations have a range of values to which they apply,

similar to the sum of equations described in Section 3.3. Integral equations in this

form are often used in model reports, handbooks or papers.
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CHAPTER 4

Techniques based on data fitting

4.1 Experimental and observed data

As a science, hydrology has always been heavily based on the collection of data

from field experiments. This can be in the form of observations of rainfall, river

flows, groundwater levels or concentrations of pollutants. The processes which

relate these variables are often understood conceptually based on physical reason-

ing but are difficult to represent as an equation like those described in Chapter 3.

Therefore, the more commonmethod to define relationships resulting from these

observations is to simply plot the variables as an ‘x − y’ scatter plot and see what

function will fit the data.

This method, known as regression in statistical circles, is a common approach

for data analysis in many disciplines. For such a procedure to be meaningful,

sufficient data points are required, and we need to choose a function with the

appropriate level of flexibility for fitting this particular data. The problem to solve

is that all datahasmeasurementerror, and if the function is too flexible, forexample

because it has toomany free parameters thatwewant to find by fitting the data, the

function will simply reflect the error in this particular data. If this happens, the

procedure is worthless because we cannot rely on it to make predictions. As an

illustration of this point, for any two ‘x − y’ pairs, there is a unique straight line that

goes exactly through these two points; a line has two free parameters – the slope and

the intercept – and therefore we need many more than two data points to avoid

error in the data from influencing the fitted function so badly that the result is

useless in practice.

Typically then, the number of data points must be much larger than the

number of free parameters. Exactly howmany are required depends upon several

factors, principally the magnitude of the error in the data and the nature of the

function, but this is beyond the scope of this book. For simple functions and typical

data, having at least 10 times the number of free parameters usually suffices.

Therefore, for a straight line, we would need about 20 ‘x − y’ pairs to get good

estimates of the slope and intercept.

When making predictions given new ‘x’ data, it is important that we use the

function appropriately. Usually, this means that it is risky to make predictions

about ‘y’ values if the new ‘x’ data lies far away from the ‘x’ data used to fit the
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function. This is because interpolation is much more reliable than extrapolation. If

we extrapolate from data, we have no nearby ‘y’ values with which to verify that

the function is giving us meaningful answers. Generally, additional knowledge or

insight is required in order to ensure that predictions based on regression are not

just a convenient mathematical fiction. Regression is therefore no substitute for

relevant physical knowledge of the problem.

4.2 Rating curves

Probably themost widely used regression in the field of hydrology is the practice of

deriving flow-level rating curves to provide flow values at gauging stations based

on observations of water levels. The measurement of flow in a river has tradition-

ally been a much more difficult task than measuring the water level, largely

because it involves making observations from within the channel rather than

at the river bank. Observations of water level can be made with relative ease such

as using a float installed on a stilling well connected to a data-logger (Figure 4.1)

which can provide a continuous record of the water levels logged at a high

temporal resolution (e.g. every 15minutes). A simpler approach can be just read-

ing the level from a stage board. With the exception of the recent ultrasonic gau-

ging and acoustic Doppler techniques, flows in a river have involved taking

measurements at different locations across the channel with a flow meter. Such

observations cannot be made continuously so instead flow measurements are

Figure 4.1 An example of water level monitoring.

46 Chapter 4



made over a number of occasions with different water levels. The data points are

plotted as an ‘x − y’ scatter plot and a rating curve is derived from this data as the

curve of best fit through the points. The equation resulting from the curve fitting is

then used to produce a rating table where for each increment of water level,

commonly 10 cm, an associated flow is given. The fitting is nonlinear (e.g. not sim-

ply proportional) as a consequence of the physical assumptions. Also, the channel

is not of a regular shape, and as the slope of the banks gets shallower at high flows,

a small increase in water level canmean a significant increase in flow (Figure 4.2).

The nonlinear rating equations for flow Q and level H take the following

mathematical form:

Q= aHb 4 1

where a and b are constants. On occasions where Q is not zero and whenH is zero,

due to the position of the stage board or level recording apparatus, a correction

factor X is required:

Q= a H +X b 4 2

Mathematically, a is known as a scale factor or coefficient and b is known as an expo-

nent (see Chapter 1 for the definition of exponentation). More than one rating

equation can be usedwhen there is a particular channel geomorphology such that

water is contained within an inner channel at low flows but then expands to cover

the whole channel at higher flows. An example of this is the River Glomma in

Norway where at the Nor gauging station two rating equations are used and

are as follows:

Q=82 8326 H +0 63 1 374 for levels H < 0 75m 4 3

Q=193 5305 H +0 03 1 6264 for levels H ≥0 75 and H <10 5m 4 4

The parameters a, b and X would have been obtained from plotting the flows

against the levels and finding the curve of best fit. Plots of the rating curves

using these equations are shown in Figure 4.3. In this case, the parameters in

Water levelsRiver channel

Figure 4.2 The effects of increasing water levels on the area and flow of water in a natural river

channel.
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(4.2) are a = 82.8326, X = 0.63 and b = 1.374, corresponding to (4.3). The degree

of precision of these parameters (i.e. up to four decimal places) shown in this

example is perhaps too high for the nature of the measurement and is probably

a result of the computer software used to fit the curve.

In this particular example, Equations (4.1) and (4.2) are nonlinear: they are

not straight lines. This makes fitting quite difficult and the mathematics can

become very complex. Standard straight line fitting techniques are far simpler

and easier to use. Fortunately, it turns out that (4.1) can be rearranged to make

them linear by taking the logarithm of both sides:

lnQ= ln aHb 4 5

Using the properties of logarithms, this becomes:

lnQ= lna+ b lnH 4 6

So, this tells us that the logarithm of Q is proportional to the logarithm of H – a

straight line. Then the slope is b. The intercept (the value of logarithm of Q when

the logarithm of H is zero) is the logarithm of a. Therefore, we can use standard

straight line fitting techniques to find the best fit values of the parameters a and b.
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Figure 4.3 Rating curves and equations for the Glomma at Nor for (a) levels below 0.75m
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So far, no discussion of the origin of the particular form of the regression func-

tion (4.1) has been provided. In this physical situation, it is not unreasonable to

start by assuming steady, incompressible flow so that, assuming specific channel

geometry, Bernoulli’s equation can be manipulated to solve for discharge Q in the

channel. The final form forQ is identical to (4.1), but a and b take on specific values

arising from the physical assumptions. Experience shows however that with the

fixed values of a and b thus obtained, predictions of flow rates Q given measured

values ofH in actual channels are often unrealistic. This lack of realism can be due

to very many complex factors: resolving all of these is usually impossible so one

simple response is to introduce some flexibility by allowing a and b to be set by the

measured properties of the particular channel. This is by nomeans the onlyway to

choose the form of the regression function, and in many applications there is no

such additional physical insight that might allow us to choose the form of the

function. In these cases (and they are numerous), the data itself is all we have

to go on in order to choose the form of the regression function.

4.3 Regression with two or more independent variables

A slightlymore complex analysis has to be undertaken when trying to relate more

than two ‘x’ variables to a single ‘y’ value. This is often a problem faced by research

hydrologists when trying to derive standard methods to estimate river flows based

on two or three factors where values can be easily obtained from observational or

mapped data. This type of approach was widely used in the United Kingdom

within the Flood Studies Report (FSR; NERC 1975), a comprehensive publication

describing the methods used to estimate design floods. Although the FSR has now

been replaced by the more up to date Flood Estimation Handbook (FEH; Institute of

Hydrology 1999), many equations produced from the regressions are still taught

in hydrology courses or used by practitioners. One aspect of such equations which

makes them stand out when compared with those described in Chapter 3 is the

use of numerical constants rather than the purely algebraic representations of

formulae such as the Penman–Monteith equation. The selection of numerical

values can be particularly puzzling to students or others when viewing equations

based on regression – and this sometimes encourages the unquestioning use of

‘formulas’” without developing the corresponding understanding of their scope

of validity. For example, an equation widely used in the United Kingdom to

predict median annual flows (i.e. 1 in 2 year) in small catchments is:

Q2 = 1 08
AREA

100

0 89

SAAR1 17 SPR2 17 4 7

where AREA is the area of the catchment in hectares, SAAR is the standard

average annual rainfall in mm and SPR is the soil percentage runoff coefficient

for five soil classes mapped over the United Kingdom as part of the FSR. The
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equation has been derived by fitting observed flows to obtain numerical values of

the three parameters (AREA, SAAR and SPR) for a number of catchments. Note

the parameter SPR here is different from that used in Figure 3.1 and Table 3.2.

As described above for the simpler example (4.1) with one independent var-

iable (H), it is generallymathematically easier to fit straight lines (which are linear)

than general nonlinear curves. In the case of (4.7), the situation is complicated by

the existence of three independent ‘x’ variables. In the case of one independent

variable, it is simple to visualize the relationship between ‘x’ and ‘y’ variables

by plotting them on a graph. This allows us validate the appropriateness of the

fitted function against the measured data points. As shown in (4.5), we can make

the curve linear by using a log–log (scatter) plot, that is, by plotting the logarithm of

H (orH + X) against the logarithm ofQ. An example of a log–log scatter plot (using

example data) is shown in Figure 4.4; the linear fit in this case is not implausible.

When there are two or more ‘x’ variables, it is not so simple to plot the

relationship. In this case, we usually need to rely on purely statistical measures

of the ‘goodness of fit’. This is explained in more detail in Chapter 6, but we

can say that it typically involves calculating the total error of the fitted function

with reference to the data points.

Fortunately, (4.7) can be made linear using the same ‘trick’ as for (4.1), by

taking the logarithm of both sides which brings the exponent terms into multipli-

cation terms:

lnQ2 = ln1 08+ 0 89ln
AREA

100
+1 17ln SAAR+2 17ln SPR 4 8

This is in the form:

y= a+ b1x1 + b2x2 + b3x3 4 9

which shows that this is a purely linear equation in three independent variables.

So, the values 0.89, 1.17 and 2.17 appearing in (4.8) are just the gradients of ywith

respect to x1, x2, x3 accordingly.
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Figure 4.4 A scatter plot of log of Q2 against log of area for example data (not that used to

derive Eq. 4.7).
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4.4 Demonstration of decaying quantities

The processes described in Sections 4.2 and 4.3 generally show a positive relation-

ship where one variable increases (e.g. flow) then the other variable also increases

(e.g. level). Many other hydrological processes show the reverse that when one

variable is increased another variable decreases proportionally. Examples could

be the reduction in flow with time after a flood peak has passed (i.e. the recession

of the hydrograph) or the reduction in effluent concentration with distance

downstream from its source as it becomes more diluted by the ambient water.

Such processes are usually nonlinear in that there is not a constant reduction

in the value of one variable as the other increases. It is more common that there is

an initial rapid reduction and then a slower decay as the reducing variable returns

towards zero or a stable value. An example is presented below from experimental

agricultural plots in the United Kingdom (Tyson et al. 1990) showing the decay of

inorganic nitrogen in the soil as more is flushed out with the soil drainage (Rodda

1993). In agricultural land, during the growing season (spring and summer)

plants will take up water and nutrients such as nitrogen from the soil. At the point

of harvest, there is an excess of inorganic nitrogen in the soil from plant residues,

which is gradually leached out of the soil in the drainage water throughout the

autumn and winter once the soil moisture deficit is replenished.

The rate of decay of the inorganic nitrogen differs for different soil types as

shown below. For a well-drained soil (A), there is a more steady decay over time

and for a poorly drained clay (B), the majority of the inorganic nitrogen is leached

within the first 100mm of drainage (Figure 4.5).

When equationswere derived for the best fit curves from these plots, they took

the following form:

Soil type A y= exp 4 56−0 005x 4 10a

Soil type B y= exp 4 12−0 006x 4 10b

The exponent function is explained in Chapter 1. The first quantity (i.e. 4.56 and

4.12) determines the initial level when x =0 and the second quantity determines

the rate of decay; hence the second plot shows a sharper decay (0.006 > 0.005).

Other examples of exponential decay are the decay of nitrate from soil into

groundwater before its emergence into a stream developed by Cooper (1990)

and expressed in the form:

Cs t = Cdp e
−rt 4 11

where Cs(t) is the concentration of nitrate in the stream, Cdp is the concentration of

nitrate entering the groundwater and r is the attenuation coefficient which is a

negative power, hence the value of rmust be positive otherwise the concentration

would grow larger over time.

Equations (4.10) and (4.11) are both in the same form y x =Y0 exp −r × x ,

remembering from chapter 1 that the exponent can be written as e raised to a
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power or exp. The only slight complication is that in Equation (4.10), the initial

values y 0 =Y0 = exp A0 so that A0 = lnY0. All equations such as this can be

put into linear form (4.9) by the transformation lny x = lnY0−rx which is clearly

the equation of a line with slope −r and intercept ln Y0. In this form, we can use

simple straight line fitting to any given set of data.

4.5 Analysis based on harmonic functions

Many hydrological processes have a cyclical form which is often controlled by

seasonal factors. When the output of a particular parameter is plotted against time

over a year, the parameter can show a growth and then decay such as the plot of

soil moisture deficit shown in Figure 4.6 where monthly values over a 3 year

period are plotted by month. In the United Kingdom, soils are generally saturated

during the winter, and then a soil moisture deficit builds up in the spring as the

uptake from plants increases and peaks towards the end of the summer. Themois-

ture is then replenished when plants die in the autumn.
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Figure 4.5 The decay of inorganic nitrogen (N) in the soil during autumn and winter drainage for

two different soil types.
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This cyclical behaviour can be demonstrated for many other hydrological

variables such as rainfall, stream flow, groundwater recharge, transpiration and

nutrient concentrations; some of these may not have such a clearly defined

cyclical or seasonal form as soil moisture deficit so a better idea of how the data

conforms to a cyclical pattern can be demonstrated by fitting a harmonic function.

An example of a first-order harmonic function is as follows:

Y d = a+ b cos
2 πd

365
+ c sin

2πd

365
4 12

where Y is the hydrological variable, d is the day number (i.e. 1–365) and a, b and c

are constants. This type of equation may appear quite confusing since it includes

sine and cosine terms and π. Those not immediately familiar with mathematics

will know that sine and cosine are used in trigonometry to calculate angles and

lengths of triangle, and π is the ratio of the circumference of a circle to the
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Figure 4.6 Variation of soil moisture deficit over time from January (1) to December (12) for
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diameter. So, why are they used to fit a line to hydrological variables observed

over time? Firstly, the function represents an annual cycle, hence the value of

365 (i.e. the number of days in a year). Representing the year as a full circle, if

degrees are measured in radians, one full cycle goes through 2π radians (which

corresponds to 360 ). Cosine and sine give the magnitudes of the x and y position

around the circle, relative to the origin. The circular nature of this harmonic data is

evident from the plot in Figure 4.7. The data also lies in a plane due to the linear

nature of the function fitting; this occurs because the a, b and c parameters are not

inside any other function. If the period of the data was not known (in this case it is

known to be 365), then the function fitting would be much more complex and

could not be represented as a plane.

If the data are plotted over the full extent of the time period (Figure 4.8), the fit

of the harmonic function clearly shows the seasonal variation in soil moisture def-

icit. Once again, Equation (4.12) is in the linear form y x = a+ bx1 + cx2 where

x1 = cos
2 πd

365
and x2 = sin

2πd

365
, so that simple plane fitting can be used to esti-

mate the variables a, b and c given some data.
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CHAPTER 5

Time series data

5.1 Introduction

This chapter has presented some of the different techniques used in hydrology to

produce relationships based on data fitting. One of the key hydrological variables

however is time, and many hydrological data sets are time based such as the

change in flow of a river over time. The time-based data may be at a relatively

short time scale such as minutes, hours or days to observe the response of a river

catchment to a rainfall event through the event hydrograph or be at a much

longer scale such as years, decades or even centuries to consider longer term

effects such as land use and climate change. The last part of Chapter 4 discussed

some examples of time where a curve could be fitted to define a seasonal distri-

bution of observed values. This chapter considers the nature of time series data,

how it is used and analysed in hydrology including the fitting of mathematical

functions to identify trends and patterns in the data and the application of math-

ematical techniques to time series data in an attempt to predict future magnitudes

of a given parameter such as flow.

5.2 Characteristics of time series data

Time series data is usually defined as an observation taken at a particular interval

over a given range of dates. Figures 5.1, 5.2, 5.3 and 5.4 show examples of such

data at different temporal resolution ranging from 1minute to one decade.

Each figure shows different patterns evident within hydrological times series

data; the simple hydrograph rising from a low value to a peak and receding, the

spikey nature of rainfall where periods of no rain are interspersed with peaks and

general trends over longer periods showing cyclical variations. One of the key

features about time series data by comparison to other hydrological data to

which models are fitted (as illustrated in Chapter 4) is that the ordering of the

observations matters. For example, you could not reverse the data and expect

it to make sense, unlike, for example catchment areas, where the order in which

these are presented does not matter.
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Some time series such as hourly flow data in a river will be controlled by the

history of that data in that the flowwill not suddenly jump from a highmagnitude

to zero within the unit of time but instead would have a correlation with time. So,

the current stream flow is actually dependent on previous stream flows, as long as

measurements are sufficiently close together. Other time series however can

show a lack of correlation in time. Rainfall, for example, when collected over a

longer period, such as 24 hours, in certain places has limited or no correlation

in time. Looking at a higher resolution such as minute by minute is likely to give

a higher correlation in time. These distinguishing features mean that specialized

techniques are very often required for the analysis of time series data.

5.3 Testing for time dependence

If a time series has dependence in time, then a data point collected at time t will

depend (in the sense of conditional probability at least) on the previous data

points t−1, t−2…. So the probability of some measurement xt (e.g. mean daily

flow in a river) at time t is not independent of previous times, for example

P xt xt−1,xt−2… P xt (the vertical bar indicating conditional probability; see

Chapter 1). One simple way of characterizing this dependence is by measuring

correlation in time known as autocovariance. The (unbiased) Pearson autocovariance

(R) can be estimated from data using the following formula:

R d =
1

N−d

N−d

i =1

xi−x xi + d−x 5 1

where d is the time delay (in samples) and x is the estimated mean of the sample

data (typically, this will be just x = 1 N
N

t =1
xt) andN is the number of values in

the data. To explain this, note that if d =0, then R(0) is just the variance (see
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Chapter 1). When d is not zero, this formula measures the extent to which the

time series, and the series shifted by d time steps, are correlated (vary with each

other). In other words, if you were to plot the series xt against the series xt + d and if

the autocovariance R(d) is large and positive, then the plot would be close to a

straight, 45 line.

If we normalize this formula by dividing by the variance, we end up with the

(sample) autocorrelation coefficient:

ρ d =
R d

R 0
5 2

This has the property that ρ 0 =1, and for any other time delay, it lies between −1

and +1. This normalization allows us to compare the time dependence of differ-

ent time series. We can interpret the autocorrelation coefficient as with any cor-

relation: small values (i.e. close to zero, either negative or positive) indicating that

there is little, if any dependence in time. Conversely, large positive or negative

values indicate that there is considerable time dependence. For example, daily

rainfall depth in marked seasonal climates, for example the monsoon, will have

large autocorrelation for d =1 and larger, whereas, humid, temperate zones with

an even spread of rainfall will have ρ(d) small for d =1 and greater.

Autocorrelation is not the only way to measure serial (time) dependence, but

it is the most accessible and easily computed. However, there are many situations

in which it is inappropriate, in particular, when the time series has strong outliers,

that is occasional values, that deviate very systematically from the rest. In these

cases, the autocorrelation can be a severe underestimate of the actual time

dependence. Techniques such as the Spearman rank correlation coefficient

(Wasserman 2003) are less affected by such issues and have formulas that are

as simple as (5.1).

5.4 Testing for trends

The simplest approach to detecting continuous trends is when the change is

expected to be linear (i.e. the change is increasing or decreasing with a constant

amount in each time interval, indicating a linear trend). By plotting the observed

data against time and fitting a line using the techniques presented in Chapter 4, a

clear relationship between the hydrological variable and the time can be detected.

In terms of statistical tests detecting linear trends in the time series, these are often

undertaken by correlation testing such as the Pearson correlation test (Wasserman

2003). Slightly more complex is the situation where the trend is not linear,

but strictly increasing or decreasing; in this case, the Spearman or Kendall tau

correlation test (Wasserman 2003) can be used. More sophisticated tests can

check for a general statistical relationship between time and the trend in the data,

such as by computing the mutual information (Cover and Thomas 2006).
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5.5 Frequency analysis

If a time series, say xt repeatedly comes back to the same value (or very close to

that same value) after a time delay d, we say that it is periodic. An example would

be the tidal depth at the coast, which is tied to a very precise physical oscillation.

This would be represented by the equation:

xt≈xt + d 5 3

for all t. A theoretical example of a time series which has precisely this property is

the sine function:

xt = αsin ϕt 5 4

where α>0 is the amplitude and ϕ is the frequency. Then the period of this time

series is 2π (this originates in trigonometry and the angle returning to the same

value once per revolution) Of course, no real hydrological time series is this

precise. Although it may be periodic, it will not be sinusoidal. However, it turns

out that that any periodic time series can be represented as a sum of harmonic

sinusoidal components found using a decomposition known as the Fourier series:

xt =
∞

k=0

Ak sin kt +Bk cos kt 5 5

To see how this breaks down, we need to look at the individual term Ak sin(kt).

This is a sinusoid as in (5.4), with amplitude Ak and period k. Similarly, the term

Bk cos(kt) is another sinusoid. Fourier analysis is the process by which we take a

periodic time series and find the terms Ak and Bk. Every time series has a unique

(and infinite) set of these values, which tells us that we can identify each time

series by its harmonic amplitude series, Ak and Bk. Of course, given that there

are an infinite number, in practice we can only actually calculate a finite number,

so the sum in (5.5) would not be infinite. A plot of harmonic number k against

amplitudesAk and Bk is known as an example of a frequency domain plot; it contains

most of the same information as the time domain plot of t against xt, but in terms of

the amplitude of the sinusoidal components in (5.4). If we find a very large value

of a particular Ak, this would indicate that the time series is dominated by a period

of k.

Fourier analysis is very closely related to harmonic function fitting as described

in Chapter 4. Yet, the application is very different. In harmonic function fitting, we

choose the dominant period in advance. Fourier analysis is often used in the

situation where we do not know the periodicity of a time series.

Equation (5.5) can be modified for the case of a finite length time series

(of course, every practical data set will be finite). In such case, the discrete Fourier

transform (DFT), which has a finite summation, is usually applied. We should

also point out that the Ak and Bk can be transformed into the so-called polar
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representationwith two numbers, phase ϕk and amplitude αk. A plot of αk against k

is therefore known as an amplitude plot, whereas a plot of ϕk against k is known as

a phase plot. The DFT can be computed very rapidly using an algorithm called the

fast Fourier transform (FFT); this is the algorithm usually encountered in time series

analysis applications. Because the DFT contains all the same information as the

original time series, it has a reverse operation known as the inverse DFT (IDFT)

which takes a frequency domain representation and converts it back into a time

series. There is a corresponding fast inverse transform known as the IFFT.

5.6 Other analysis methods

There are a vast number of different mathematical approaches to analysing time

series, not all of which can be covered in this book. However, one technique that

has enjoyed considerable usage in hydrological applications is wavelet analysis. To

introduce this concept, we need to see that a period time series as defined earlier

(where xt≈xt + d for all time) will rarely be found in reality. It is much more

common that a time series is periodic over a specific interval of time. In which case,

Fourier analysis produces some counterintuitive results. A time series which has

a sinusoidal component with amplitude varying in time, for example a climate-

driven variable which has year-to-year variations in amplitude (we can represent

this as Ak(t)), will not be exactly periodic, and the associated Fourier analysis will

introduce additional non-zero amplitude components, whose only role is to

‘make up’ the discrepancy between a precisely periodic representation, and one

whose amplitude depends upon time. These additional components are not really

meaningful, except in an abstract sense, and so Fourier analysis in these situations

is inadequate.

Wavelet analysis is an approach to circumvent this problem. Instead of

decomposing the time series in terms of completely periodic components, the

components in wavelet analysis are time restricted: they have non-zero amplitude

only over a specific time window. Exactly as in the DFT, we can define the

so-called discrete wavelet transform (DWT). This allows us to do DWT analysis of

a time series, which gives us a representation in terms of both frequency and time.

It gives information not only about the amplitude of any particular periodic

component, but also when, in time, that component dominates.

5.7 Smoothing and filtering

When faced with time series data, one operation might be to reduce noise in the

data. This noise might occur due to the obscuring effect of errors in measurement

equipment, human error, or some other random fluctuation in the observed

parameter. Often, this will result in a smoothing operation applied to the time
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series. On the other hand, a filtering operation will isolate a particular component

of the time series, for example a particular frequency component. These

operations differ fundamentally to those in Section 5.3, since that the data itself

is altered by the process.

Many smoothing or filtering operations have a rigorous statistical interpreta-

tion, that is they are based on a probabilistic model for the noise in the time series,

and the operation leads to a statistically optimal estimate of the actual time series

obscured by noise. Yet, a large number of techniques are inherently non-statistical

and apply mathematical operations which have no unique statistical interpreta-

tion. Usually, the chosen mathematical operations will have some justification

other than statistical.

5.8 Linear smoothing and filtering methods

Linear methods for time series smoothing and filtering are perhaps the largest

group of techniques. They include the running mean (average), exponential

smoothing, low-pass filtering and all other frequency domain filtering methods. The

running mean is perhaps the simplest operation

xt =
1

2W +1

W

i =−W

xt+i 5 6

where xt is the new value of the sample at time t, after applying the smoothing, for

all values of t in the time series. This operation replaces the sample at position t

with the average of all the samples within a window of width 2W +1 centred

around this sample. For example, W =1 gives the three-sample running mean

(Figure 5.5). A slight modification of this formula is if we only incorporate past

history into the smoothing; the formula then becomes:

xt =
1

W

W

i = 1

xt− i 5 7

with window size W. This is sometimes known as lagged (as opposed to centred)

running mean.

Themain property of the runningmean smoothing operation is that small tem-

poral fluctuations are attenuated, and the larger thewindow size, the smoother the

resulting time series. Of course, there is a trade-off here – if the window size is

large, the result is increasingly smoothed, but it incorporates information from

a long history and future of the time series, relative to time t, which will tend to

smooth away any real changes in the underlying time series. On the other hand,

for small window sizes, random fluctuations will not be significantly attenuated.

Time series data 61



A variation on the running mean filter is the weighted running mean

xt =
1

W

j =−W
wj

W

i =−W

wixt+i 5 8

for a series of 2W +1 weights wj >0. These weights can be chosen to place more

emphasis on samples closer to time t in the window and to place less importance

on samples further into the past or future. One classical scheme which has these

properties is Gaussian weighting:

wj = exp − sj2 5 9

The extent of influence of past and future samples is given by the bandwidth

parameter s>0. If this is large, the weights decay quickly with increasing temporal

distance, and they decay more slowly with a small choice of bandwidth. Another

linear technique which has had considerable use in time series analysis is

exponential smoothing:

xt = axt−1 + 1−a xt−1 5 10

with x1 = x1 to start the iteration. This recursive smoothing forms a weighted average

of the past input, and the past output of the smoothing operation, at each time

step. The smoothing constant, 0 < a<1, determines the relative weight placed

on the past input versus the past output. If a is nearly 1, then the input time series

is almost completely passed through and almost no smoothing occurs. If it is close

to zero, the output is based almost entirely on the past outputs, so maximum

smoothing occurs.
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Figure 5.5 A 3-year running mean of maximum annual flows for the Morava River, shown in

solid, with the original data shown as the dashed line. This is the centred running mean (mean of

three values: previous, current and following) as opposed to a lagged running mean taking the

previous 2 years and the current one.
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We can get some further insight into how exponential smoothing works by

rewriting it as lagged, weighted running mean. First, we set up a series of weights

according to the following formula:

wj = a 1−a j 5 11

for 1 < j < t. Then, the exponential smoothing is equivalent to the following

weighted running mean, with a window size that grows with t:

xt =
t−1

i=1

wixt+i 5 12

Linear smoothing methods are special examples of linear filtering operations, the

most common of which are frequency-domain methods. The approach involves

computing the Fourier transform (usually by the FFT) and obtaining a set of N

amplitudes αk and phases ϕk for a time series of length N. The filtering operation

typically involves setting some of the amplitudes to zero and then recomputing

the filtered time series using the IFFT. This has the effect of removing from the

original time series a selected set of frequency components. These components

are said to have been ‘filtered out’. Less radically, it is of course possible to

attenuate or amplify, rather than completely remove, any desired frequency

components.

As remarked earlier, linear smoothing is an example of linear filtering, in the

following way. The effect of all linear smoothing operations can be described in

the frequency domain, that is a linear smoothing operation can be completely

described in terms of the amplifying or attenuating effects it has on certain fre-

quency components. In particular, it can be shown that smoothing methods

always reduce the amplitude of high frequencies, so they are known as low-pass

filters. For example, the running mean filter is a low-pass filter whose attenuation

of higher frequency components becomes more drastic as the length of the win-

dow is increased. Similarly, the exponential smoothing filter is also a low-pass fil-

ter, and the smoothing constant a determines the extent of reduction in amplitude

of high-frequency components. If a is close to zero, the high-frequency compo-

nents are drastically attenuated.

While the discussion of filtering is usually focused on amplitudes, the phasesϕk

should not be entirely ignored. While we can generally ignore phase when

performing frequency domain filtering, by contrast, phase is a crucial considera-

tion in smoothing. We have seen this effect in the choice of centred versus lagged

running mean: a lagged filter will introduce a time delay into the original time

series, proportional to the length of the window. This time delay leads to a change

in phase components. This same effect occurs with the recursive exponential

smoothing filter; indeed recursive filters are in some senses much worse than

non-recursive ones, because the phase changes with frequency can be difficult

to control. Because of this, frequency domain filtering is usually preferred to time
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domain smoothing – the only advantage to time domain smoothing is that it is

usually simpler to perform in practice.

There are a vast number of (considerably more complex) linear smoothing

operations in use, for example the Kalman filter which is also often used to make

predictions about future values of the time series, taking into account the

autocorrelation in time and any noise in the observed data. An entirely different

kind of linear filtering can be performed using wavelet analysis. Using the DWT,

one can amplify or attenuate components of a certain frequency that appear

simultaneously at certain points in time; the inverse DWT then allows reconstruc-

tion of the filtered time series.

In addition to smoothing and filtering of time series data, the same techniques

can also be used for spatial data. One particularly important application in

hydrology is for generating digital terrain models from LiDAR (light detection

and ranging) data. Digital terrain models are routinely used in hydrological

analysis for defining catchment boundaries, calculating slopes, generating stream

networks and mapping flood extents. LiDAR is used chiefly from aircraft to

capture the elevation of the ground surface. The principle is basically that time

differences between the transmission and reception of a beam of light can be con-

verted into a distance and therefore give the elevation of features on the ground.

One problem though is that the beam is reflected from any object such as trees and

buildings; therefore, the raw data does not give a true reflection of the ground

surface. LiDAR data is presented as raster data, an extent of equal-sized square

pixels (e.g. 1 × 1m) each with a value pertaining to the elevation. A range of tech-

niques are used to remove errors from the LiDAR data. Some require combination

of aerial images with the LiDAR data to identify locations where the ground levels

require an adjustment from the raw LiDAR data such as forested areas. Also the

mathematical operations mentioned in this section are applied to remove error.

A technique similar to the running mean is applied where the mean is taken

for all nine cells surrounding a cell where a spurious value has been recorded. This

process is graphically presented in Figure 5.6.

5.9 Nonlinear filtering methods

While linear filtering and smoothing can attenuate or amplify any set of frequency

components, there are many situations in which frequency domain filtering is

either inappropriate or hopelessly inefficient. An example of this is step filtering,

that is removing noise from time series which have step changes. In this situation,

the underlying time series does not change smoothly over time, and no linear

filter or smoothing operation can simultaneously reduce the noise and also

preserve the step changes in the underlying data. Another situation comes from

statistical considerations. Consider the example of the running mean smoothing.

This expects to find the best guess for the underlying time series, by computing the
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mean. Themean is, however, badly skewed by outliers, that is by points which are

unusually far from the rest of the data. Under these circumstances, the running

mean will produce bad results, and nonlinear filters are preferable.

An ubiquitous and simple nonlinear smoothing operation is the running

median:

xt =median xt−W ,xt−W +1,…xt+W 5 13

This operation works by picking the middle value of the values in each running

window. This is superficially similar to the running mean filter, except that it has

very different properties. For example, where the running mean filter is badly

skewed by outliers, up to 50% of the data in each window can be outliers and

the output is still reliable. Another important property is that if the underlying

signal contains a step change, the median filter will pass this through unaltered.

(a)

(b)

Figure 5.6 The application of filtering to produce a digital ground surface model from

LiDAR elevation data, where trees and other spurious elevation values in (a) (dark spots)

have been removed to form the bare earth model in (b). Data from the Environment Agency

geomatics group.
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However, the runningmedian cannot be naturally understood as a low-pass filter;

it is a method for reducing the noise in a time series, which is muchmore effective

than any linear filter when the errors contain outliers.

Here is a useful application for the running median. Consider the extreme

values of daily rainfall, estimated as the maximum over annual blocks. These

blockmaxima can bemodelled as following a Pareto distribution (from peaks over

a threshold – see Chapter 2). For some values of the parameters of this distribu-

tion, it can be shown that the mean does not exist in a formal sense, and any

attempt to use running mean smoothing to get an estimate of long-term trends

in extremes would be misleading. In this application, the running median is ideal

because it always exists for all parameters of the Pareto.

5.10 Time series modelling

Chapter 3 introduced the concept of time within simple hydrological models

where the value of a parameter at a particular time step is calculated using

a value from the preceding time step. This is a common approach to modelling

hydrological processes over time such as the water balance over a year.

Table 5.1 shows how such a water balance model can be applied on a daily basis.

Here the soil moisture deficit (SMD) function at any day (d) is the result of the soil

moisture deficit function from the preceding day plus the actual evapotranspira-

tion (AE) minus the daily rainfall function (P):

SMD d = SMD d−1 +AE d −P d 5 14

The model will assume zero soil moisture deficit for the first day, but as the

crop begins to grow and take up more water, the actual evapotranspiration

increases and if this exceeds rainfall then soil moisture deficit also increases. If

the balance is positive then the soil moisture deficit is given as zero and any excess

water is lost from the system through percolation (assuming a permeable soil).

This is an examplewhere themodel has been used to infer a consistent series of

predicted measurements through time; some of the quantities would have been

calculated from other models (in this case the AE quantity from the Penman–

Monteith model; see Chapter 3). However, it is universally the case that if

someone were to actually attempt to measure these quantities over time and

put the measured quantities into the model, the results would be inconsistent.

Where time series modelling has a real advantage over a pure physically based

model is that it can take into account the uncertainties of observational measure-

ments. These uncertainties mean that Equation (5.14) is only approximate.

Therefore, to undertake proper time series modelling, there should be an explicit

recognition that observational quantities will have a significant random compo-

nent. Unlike deterministic process-based models (see Chapter 3), any realistic

time series model must attempt to deal with uncertainty and, therefore, must
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be partly statistical. For example, a typical time series model for the equation

would include a parameter a, to give an extra degree of freedom (an unknown

quantity), and a randomvariable term ϵ(d). This is an example of a recursive linear

filter:

SMD d = aSMD d−1 +AE d −P d + ϵ d 5 15

The parameter a would need to be estimated using some kind of regression

method (see Chapter 4) and by making some assumptions on the form of the

distribution of the random variable ϵ.

5.11 Hybrid time series/process-based models

Wehave seen in Chapter 3 the typical form of deterministic, process-basedmodels

in hydrology – they are often either algebraic, difference or differential equations.

Such models represent a synthesis of various physical mechanisms such as mass

conservation and empirically derived laws. Although it is entirely transparent

how such models are constructed, when confronted with real hydrological time

Table 5.1 An example of a soil water balance time series, computed using

Equation (5.14), and starting with a day 0 soil moisture deficit of 0mm.

Day Rainfall P(d) (mm) Actual Evapotranspiration
AE(d) (mm)

Soil Moisture Deficit
SMD(d) (mm)

0 0

1 2.1 1.9 −0.2

2 5.1 1.3 −4.0

3 3.2 1.7 −5.5

4 0.6 2.1 −4.0

5 1.7 2.3 −3.4

6 1.3 2.4 −2.3

7 2.8 2.6 −2.5

8 0.6 2.9 −0.2

9 0.8 3.0 2.0

10 0.7 3.1 4.4

11 0.7 3.2 6.9

12 6.8 3.8 3.9

13 4.9 4.3 3.3

14 9.0 2.5 −3.2

15 27.0 1.6 −28.6

16 0.3 5.8 −23.1

17 2.8 6.0 −19.9

18 0.6 6.1 −14.4

19 1.3 6.2 −9.5

20 0.1 6.2 −3.4
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series data, they often do not make very accurate forecasts of hydrological

parameters. By contrast, time series models (such as those based on prediction

or smoothing using, for example, linear or nonlinear filtering) tend to outperform

deterministic, process-based models in terms of predictive accuracy. The problem

is that it is not at all obvious how such time series–based predictions can be related

to underlying mechanistic hydrological principles.

As a very simple example of a time-series model, consider a general rainfall

model which predicts rainfall depth, R, at time t +1 (i.e. the next time step) as

a function of rainfall at time t (the current time):

Rt+1 = f Rt + ϵt 5 16

The function f captures all that can be inferred from the time series of rainfall

depths Rt and this may well be a model based entirely on data fitting (see

Chapter 4). Indeed, the soil moisture deficit time series model (5.15) is a special

case of (5.16). Such time series models have been proven to be as good as rainfall

forecasts derived from deterministic, processed-based numerical weather predic-

tion models which require supercomputing resources to solve (Little et al. 2009).

Data-based mechanistic modelling (DBM) attempts to synthesise the advan-

tages of both mechanistic, process-based modelling, using explicit representations

of mechanistic principles, with the predictive forecasting accuracy of time series

modelling. DBM hydrological forecasting models include the state-dependent

parameter rainfall-runoff-flow routing catchment method (Young 2002). This method

includes a nonlinear component that models the mechanistic principles involved

in catchment storage effects to calculate the effective rainfall (U):

Ut = f Rt ,Qt,Et,Tt 5 17

where the effective rainfall for the current time step t is a factor of rainfall, flow,

evaporation (E) and temperature (T).

The flow is predicted from a linear combination of past sampled values of itself

and past and present sampled values of the effective rainfall, which is a recursive

linear filter that represents the catchment response in terms of the stream flow (Q)

to an effective rainfall impulse:

Qt = −a1Qt−1−a2Qt−2− −aNQt−N

+ b0Ut−d + b1Ut−d−1 + + bMUt−d−M + ϵt
5 18

Here, the parameters d, a1, a2… aN and b0, b1… bM are constants which are to be

determined by some kind of model fitting procedure and ϵt is a noise term to

account for measurement error, the effects of unmeasured inputs and modelling

error.

Data-based mechanistic models (5.17 and 5.18) have had some practical

applications particularly in the role of real-time flood forecasting, that is forecast-

ing flood flows or levels in a river when the flood event is actually happening.
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The disadvantage though is that they require large amounts of observed data and

a high level of mathematical sophistication in order to find ‘good’ nonlinear

functions f and to develop appropriate regression methods to estimate the para-

meters in (5.18). That also can lead to the problem that such models are not often

challenged by the hydrological community due to the complexity and abstract

nature of the mathematics.

There is a further problem that time series approaches are heavily reliant on

past data records, so that any changes to the method of observations, monitoring

equipment or at a more general level within the catchment (e.g. land use change)

would have significant impacts on the model predictions. For example, if a DBM

model was developed based on water level observations over the past 50 years,

but recent engineering works such as a weir enlargement near the monitoring

station had caused an overall drop in water levels, the model predictions would

be completely invalid. The problems of how data records may change over time

is dealt with in the following section on non-stationarity.

5.12 Detecting non-stationarity

A stationary process, by definition, is a process where the probability distribution

of the measured variables at any set of points in time is independent of time

(WMO/UNESCO 1992). The problem of non-stationarity arises in hydrology where

a factor or factors which influence the process have sudden or gradual changes

over time. Sudden changes, as described in the previous section, can be the

modification of a hydraulic structure which would affect flows and water levels

on a river or drastic changes in land use in a catchment such as the development

of a rural area into an urban environment with impermeable surfaces.

Gradual changes may result from a less drastic change in land use or land

management such as the application of new agricultural practices or vegetation

change, but by far the greatest concern in hydrological work over the past few

decades has been the influence of climate change.

Sudden changes, particularly relating tomodifications of the gauging station or

river channel, should be properly documented and understood by the monitoring

authorities. This will allow the necessary adjustment factors to be implemented so

that the observations pre- and post-change can be directly compared. Some

gradual changes can also be implemented reasonably accurately, for example

when looking at water levels in tidal reaches, the known oscillations of the moons

orbit (the 18.6 year lunar cycle) can be factored into historical observations and in

some locations the effect of falling or rising sea levels can also be incorporated.

This last point is particularly relevant to Scandinavia where the crust is still rising

from isostatic readjustment following the melting of the ice sheets (Figure 5.7).

Other gradual changes are more difficult to assess, particularly in relation

to the natural variability of the observed hydrological data such as river flows.
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In such cases, time series tests are used to establish whether a sampled process is

stationary or non-stationary. For example, if the non-stationarity is expected to

appear in the form of trends, one can use the statistical techniques discussed in

Section 5.4.
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Figure 5.7 Mean sea levels for Oslo, 1910–2005. Data from the Norwegian Hydrographic Service.
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CHAPTER 6

Measures of model performance,
uncertainty and stochastic
modelling

6.1 Introduction

Today, most hydrological studies involve modelling to predict some quantity, tim-

ing or magnitude of a given parameter. The result of such modelling needs to

be expressed in a way that demonstrates how well the model has performed.

A so-called ‘goodness of fit’ is often calculated as a measure to assess model per-

formance, such as in the Flood Estimation Handbook software (Institute of

Hydrology 1999). The need to assess model performance is more evident when

studies have used a number of different models for the same problem and the out-

puts are then used to guide policy decisions. For example, climate change studies

often consider scenarios using up to 10 different global circulation models. The

performance of a model is not usually confined to predicting a single output

but more often outputs at a range of study sites, or outputs for a single site for

a number of events, or a combination of spatial and temporal distributions. There-

fore, the question is which set of predictions are better of the two model predic-

tions shown in Figure 6.1.

6.2 Quantitative measures of performance

Commonmeasures ofmodel performance include themean square error (MSE), the

root mean square error (RMSE),mean absolute error (MAE),maximum error (ME), the

correlation coefficient (R2), and the coefficient of residual mass (CRM). Many of these

measures are based around the idea of adding up some function of the difference
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between the observed data xi and the predicted data yi, over the N available data

points, here indexed as i =1,2…N. Below, we list a few example measures:

MSE=
1

N

N

i =1

xi−yi
2 6 1

RMSE=
1

N

N

i = 1

xi−yi
2 6 2

ME= max
i =1,2…N

xi−yi 6 3

MAE=
1

N

N

i =1

xi−yi 6 4

R2 =

N

i =1
xi−x yi−y

2

N

j =1
xj−x

2 N

k=1
yk−y

2
6 5

CRM=
x −y

x
6 6

where the overbar (x) indicates the mean. The equations can be described in

words as follows:

MSE. Thedifferencebetweeneachof thepredictedandobservedvalues squared

to remove the effect of positive and negative values, then summed (giving the sum

of the squared difference) and divided by the number of values to get the average.
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Figure 6.1 Hypothetical model predictions from two different sediment load models compared

with observed sediment load for a catchment.
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RMSE. The difference between each of the predicted and observed values

squared to remove the effect of positive and negative values, then summed (giving

the sum of the squared difference) and divided by the number of values to get

the average and finally given as the square root to remove the effect of squaring

the values.

ME. The maximum absolute difference (as indicated by the straight vertical

bars rather than brackets) between each of the observed and predicted values.

MAE. The absolute difference between each of the predicted and observed

values summed, giving the sum of the difference, and divided by the number

of values to get the average.

Squared correlation coefficient (R2). The square of the covariance divided by the

product of the variance for x and ywhere the variance (as introduced in Chapter 1)

is the average squared difference between each sample and the mean of the sam-

ple set. The covariance is the average product of the difference between the two

variables and their correspondingmeans. This measure is commonly referred to as

the R-squared value.

CRM. The difference between the mean of all the observed values and the

mean of all the predicted values divided by the mean of all the observed values.

It would be understandable for non-mathematicians to get quickly confused by

thenatureof the computations introducedpreviously. Importantquestionsneed to

be answered before selecting one or more of these measures to make model per-

formance comparisons. These include questions such as the following: what value

will themeasure take if the predictions are perfect?What is the numerical range of

themeasure? How does the numerical range of themeasure compare to the range

of the data? How does the measure respond to one very bad prediction amongst

otherwise good ones? These questions are addressed in the following texts.

6.3 Comparing measures

MSE and RMSE. Both measures are based on the concept of taking the square of

the difference between the actual and predicted data. Therefore, MSE and RMSE

cannot be negative. In both cases, the average square difference over all data

points is calculated. Since the MSE takes the square of the data points, it does

not share the same numerical scaling as the data. By contrast, since the RMSE

‘undoes’ the squaring operation, it has the same numerical scaling as the observed

data. For this reason, model errors assessed using RMSE can be interpreted with

respect to the range of the data. If the predictions are perfect, then both MSE and

RMSE are zero. Since both MSE and RMSE use the square difference, one very

large error contributes very significantly to the sum. This means that MSE and

RMSE are not robust to the occasional bad prediction.

ME and MAE. As with MSE and RMSE, these measures calculate the absolute

difference between the observed and predicted data. As such neither measure can

be negative.ME returns themaximumabsolute value of the difference over all the
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data points, whereas MAE returns themean absolute difference. If the predictions

are perfect, then both ME and MAE are zero. ME and MAE differ dramatically

in response to single, large prediction errors: MAE is not adversely affected by

them, whereas ME is entirely determined by the largest prediction error. Of

MAE, RMSE and ME, MAE is the least affected, where ME is the most affected.

Both ME and MAE are on the same scale as the data.

R2 is a correlation measure. It ranges between 0 and 1. When 1, it indicates that

there is a perfect linear relationship between the predictions and the data. That is,

if we plotted the observations on the x-axis, and the predictions on the y-axis, all

the points would lie on a perfect straight line. If the measure is zero, it indicates

that there is no linear relationship between the predictions and the observations.

Unlike the previous measures, this measure does not tell us whether the predic-

tions are unbiased or not – the predictions could be very much larger or smaller

than the observations but still could be highly correlated.

CRM. This measure quantifies the difference inmeans of the predictions versus

the observed data, relative to themean of the observations. If themean of the pre-

dictions is the same as that of the observed data, then CRM is 0. If the mean of

the predictions is 0 on the other hand, then CRM is 1. Note that CRM is undefined

if the mean of the observations is 0.

A list of the results of each of thesemeasures formodels A and B is presented in

Table 6.1. What should be noted is which model comes out best depends on the

choice of performancemeasure. Therefore, unless there are compelling reasons to

use one particular performancemeasure over another, it is always worth comput-

ing several to see whether there is any pattern of agreement or not. In particular,

in this case, model B seems to win out more often than model A when using dif-

ferent performance measures, so it could be argued overall, that model B is more

accurate than model A.

Some interesting observations can be drawn from Tables 6.1 and 6.2. In par-

ticular, we can see that, according to the RMSE and MAE, the average prediction

error is around 25% of the average of the observations, whereas the maximum

error is around 40% of the average of the observations (we would expect the

maximum error to be the largest of similar error measures). Also as expected,

Table 6.1 Comparing results of measures quantifying the accuracy of predictions from

models A and B, for the catchment sediment load data shown in Figure 6.1.

Performance Measure Model A Model B Winner Winning Criteria

MSE 95.00 91.60 Model B Closer to 0 is better

RMSE 9.75 9.57 Model B Closer to 0 is better

ME 18.00 14.00 Model B Closer to 0 is better

MAE 6.80 8.60 Model A Closer to 0 is better

R2 0.66 0.45 Model A Closer to 1 is better

CRM −0.18 0.08 Model B Closer to 0 is better
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the MAE and RMSE are quite close. It is also interesting to note that the correla-

tion coefficient is significantly higher for model A than model B, although there is

not really enough data to distinguish this difference from a chance occurrence.

6.4 The Nash–Sutcliffe method

Another measure of model performance was specifically developed by hydrolo-

gists for assessing estimates of flows. This is the Nash–Sutcliffe method which calcu-

lates a model efficiency E based on the difference between modelled and observed

flows and modelled and mean flows as shown below:

E =1−

N

i = 1
Qi−Qi

2

N

j =1
Qj−Q

2
6 7

whereQi is the observed flow at time i,Qi is themodelled flow at time i andQ is the

mean of the observed values. The right-hand side of this equation is given

the term F, which can be understood as the ratio of the MSE to the variance of

the observed data – how large is the MSE by comparison to the variance of the

observed data. If the MSE was equal to the variance, then F would be 1 but the

MSE could be much larger than the variance and also the MSE cannot be smaller

than zero. Therefore, the quantity F lies between zero and plus infinity. The quan-

tity E is 1 − F, so if Fwas 0 Ewould be 1, alternatively if Fwas infinity Ewould be

negative infinity. If F is equal to 1 then E is 0. In fact, the formula (6.7) is just a

linear rescaling of the MSE, but it is widely used in hydrology.

Values closer to 1 indicate better performance, a value of 0 indicates that the

model predictions are only as good as the mean of the observed data, and values

below zero indicate that the model is poor with the mean of the data being closer

to the observed values than the model predictions. Computations required to cal-

culate E are demonstrated for hypothetical data in Table 6.3.

Table 6.2 Statistical properties of the catchment sediment load data and predictions

shown in Figure 6.1.

Statistical Quantity Observed Data Model A Predictions Model B Predictions

Mean 36.0 42.4 33.0

Maximum 55.0 67.0 52.0

Minimum 25.0 27.0 17.0

Variance 81.1 170.3 168.4

Standard deviation 9.0 13.0 13.0

Median 35.5 43.0 33.5

See Chapter 1 for definitions of these statistical quantities.
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Unfortunately for this example, the model efficiency is poor (<0), and from

looking at the data, it appears that most of the values are underestimates.

6.5 Stochastic modelling

Stochastic modelling approaches typically apply the theory of probability and ran-

dom sampling to deterministic process models by not simply having a single value

for each model parameter but having a range of values.

The International Glossary of Hydrology (WMO/UNESCO 1992) defines sto-

chastic hydrology as ‘hydrological processes and phenomena which are

described and analysed by the methods of probability theory’. The word stochas-

tic is actually derived from a Greek word which means to aim or shoot an arrow

at a target (Koutsoyiannis 2000). In the field of modelling, the term stochastic is

synonymous with ‘random’ or ‘probabilistic’, and for hydrology in particular, it is

one of a variety of descriptions used for different characteristics which the model

may possess. For example, models can be referred to as lumped or distributed if

they consider the catchment as a single homogeneous unit or if different parts

of the catchment are treated differently due to their hydrological characteristics.

Also, models can be described as physically based if they have equations which

simulate the physical processes which are modelled (such as those described

in Chapter 3) or empirical if the equations driving the model are based on the

fitting of relationships to data (Chapter 4). A third tier of classification groups

models as either deterministic if the output is a fixed single value or stochastic if

a range of values with a given probability are generated.

Table 6.3 Example computation of the Nash–Sutcliffe efficiency for a set of observed and

modelled data, using Equation (6.7).

Sample Observed Qi Modelled Qi Qi −Qi (Qi −Qi)
2 Qj −Q (Qi −Q)2

1 55 37 18 324 19 361

2 43 27 16 256 7 49

3 37 35 2 4 1 1

4 25 30 −5 25 −11 121

5 36 29 7 49 0 0

6 35 29 6 36 −1 1

7 26 25 1 1 −10 100

8 30 23 7 49 −6 36

9 31 34 −3 9 −5 25

10 42 25 17 289 6 36

Mean Q= 36

Sums 1042 730

Efficiency E −0.43
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6.6 Monte Carlo simulations

In order for a deterministic process model to generate a range of outputs with a

given probability, there also needs to be a range associated with one or more of

the model input parameters. The easiest way to provide this range is to take an

upper and lower limit of the parameter, often from the knowledge of observed

values, and then to generate a random number uniformly within this range for

each simulation. Uniform random number generation is often a basic component

of computer programs or packages, and when it is repeated a large number of

times (many thousands, typically), the model outputs will fall into an observed

distribution which can then be estimated. This technique is often known as the

Monte Carlo method; the origin of the name is the codename given to the tech-

nique first used in modelling radiation shielding by scientists at the Los Alamos

Scientific Laboratory. The name reflects the use of chance but also the casino in

Monaco where one of the scientists’ relatives was known to gamble.

TheMonte Carlo method is often applied to situations where a combination of

parameters is known to cause a given output. For example, dam design is gov-

erned by the need to find the most severe flood which could take place in a catch-

ment, and the most severe flood would be a combination of extreme rainfall and

the antecedent conditions. For an area where flooding is caused by spring snow-

melt, the two parameters of most concern would be the rainfall for a given dura-

tion (e.g. 2 days) over the spring period and the depth of snow which is ready to

thaw. Historical observations from the selected catchment and neighbouring

within a wider region can be used to define the range of 2 day rainfalls, for exam-

ple 0–250mm, and maximum snow depths, for example 0–200 cm.

Using uniformly generated random numbers from these ranges, combinations

of parameter values can be generated (see Table 6.4, where for a sample of

Table 6.4 Example uniform random number combinations within

known ranges of rainfall and snow depth.

Event Rainfall (mm) Snow Depth (cm)

1 99 58

2 188 16

3 100 59

4 152 90

5 77 139

6 7 127

7 26 158

8 24 101

9 211 145

10 74 169

The most extreme joint combination of these two parameters is highlighted.
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10 random number combinations the worst case is highlighted) and used as

inputs into a hydrological model. For many thousands of simulations, it might

be expected that the worst case combination of maximum rainfall and maximum

snow melt would eventually be sampled. However, it is important to appreciate

that because of the complex nature of the hydrological model there may not be a

simple increasing or decreasing relationship between rainfall, snow depth and

the model output. When more parameters are included with a uniform random

selection from a range of values, where the effect on the overall output is

not known, then the application of the Monte Carlo method becomes more

worthwhile and can provide good understanding of how a particular system will

respond to changing parameter values.

The outputs from a stochastic model, can then be plotted as a histogram and

a probability distribution estimated by normalizing the histogram (i.e. dividing

the histogram counts through by the number of simulations). This would then

give a probability associated with each model prediction, based on the range of

the input parameter values. This provides a more nuanced alternative to a simple

deterministic output which might represent only the worst case (e.g. maximum

rainfall and snow depth) but without any idea of how likely this worst case event

may be.

The stochastic modelling may also suggest a plausible range of outputs which

could be used to inform decisions based on the range of potential output magni-

tudes. For example, a dam design might need to be able to withstand a 1 in

10,000 year flood, to ensure a downstream population was at a minimal risk of

any catastrophic flooding, but for a less vulnerable component such as an access

road, it would be sufficient for it to be safe up to the 1 in 100 year flood level. By

providing designs which cater to the worst case scenario, an unnecessary excess

cost would be required which might not be a desirable trade-off for the degree

of risk.

It should be pointed out that this basic Monte Carlo method has some serious

limitations. For example, it does not take into account any genuine dependence

which might exist between parameters. In the example discussed previously,

snow depth and rainfall may well be related so that a simple simulation that

assesses the probability of the model output and does not respect the joint prob-

ability between these two parameters could be unrealistic. Another limitation

is that as the number of parameters increases, the number of simulations must

grow exponentially with this increase in parameters, in order to sample the range

of possible output parameters with uniform precision. This is necessary in order to

provide a reliable estimate of the probability distribution of the model output. For

example, if, with two parameters, the sufficient number of simulations is 1,000,

then with three parameters, the number of simulations should be on the order of

10,000 and with four parameters it should be around 100,000. This is not a prob-

lem if the model is simple, but for more complex models, the computational

requirements can become prohibitive.
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6.7 Non-uniform Monte Carlo sampling

A refinement to uniform Monte Carlo random sampling is used particularly in

studies which aim to consider the most extreme events, for example in the field

of catastrophe modelling. In the past decade or so, catastrophe models have been

developed for the insurance sector which aim to predict the potential damage

and financial loss associated with natural hazards such as hurricanes (and other

windstorms), earthquakes and floods. Such models are based on a regional or

countrywide scale so that the output is, for example, the 1 in 100 year financial

loss from flooding for the whole of the Czech Republic or the 1 in 100 year finan-

cial loss in California expected from earthquakes.

The objective of such models is to provide a combination of the most extreme

values for the key driving parameters so that the worst case scenario is simulated.

The ranges of parameters are decided using observations from historical events or

knowledge of the physical processes involved. The analysis of historical events as

part of the development of suchmodels can be very useful. For example, the 1953

storm surge which caused considerable damage and loss of life in the United King-

dom, the Netherlands and Germany was the result of an intense depression coin-

ciding with high spring tides. In some locations, however, the storm surge hit the

shore when the tide was receding, so for the purposes of a catastrophe model,

events would need to be generated where the increased water level due to the

storm surge would coincide with the maximum tidal level.

Within the catastrophe model framework, in order to ensure that an event is

generated where the maximum parameter ranges are encountered, a large num-

ber of synthetic events must be produced. This requirement, coupled with the

regional or countrywide scale of the models means that relatively less attention

is given to the details of the scientific processeswhen compared tomodels designed

for a single location. In order to sample events which have the most severe com-

bination of parameters, a non-uniform sampling method is used. Many approaches

could be used, including sampling from extreme value distributions (Chapter 2),

butwewill focus on the simple approach known as stratified samplingwhich has the

virtue of being very easy to describe (we should point out that this name is used to

describe other statistical techniques in different contexts and so should not be con-

fused with the use outside the context of catastrophe modelling).

Instead of using uniform randomnumbers to choose parameters values within

the full possible range (e.g. a 2-day rainfall between 0 and 250mm), a greater

number of samples are taken at the higher end (e.g. 200–250mm) to ensure that

a larger number of the more extreme parameter combinations are sampled. The

same number of samples can be generated but instead of using, for example 1000

values chosen uniformly between 0 and 250, the sampling is broken down into a

number of intervals or slices (e.g. 10), where the same number of samples are

taken from within each slice (100). The slices that can be set up to ensure more
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values are taken from the higher end, as shown in Table 6.5. In this way, there

should be many more values within the top 10% of the distribution (i.e. maxi-

mum of the range of values). Effectively, we define, and sample from, a non-

uniform distribution over the range of values which places higher probability

on the more extreme values of the range.

Stratified sampling is often used to develop stochastic models where the

impact of a combination of different parameters on determining themost extreme

values is not always clear. It would benefit the spring flood example shown earlier,

if further factors which affected the rate of snowmelt such as air temperature and

wind speed were included as model parameters. The combination of the param-

eter values which would bring about the greatest flood should therefore be iden-

tified when enough samples are taken for the uppermost 10% of the values, as an

example. The frequency of the extremes which are generated from this type of

modelling is much greater than from uniform sampling as shown in Figure 6.2.

To compensate, however, catastrophe modellers would assume that the events

generated from the model would be over a much larger time period (e.g.

10,000 years) than the time period used for defining the range of input parameter

values which may be less than 100 years.

Some care must be taken so that parameters are sampled in ways which will

ensure the most severe outputs are based on a physical understanding of the sys-

tem. For example, in the case of a river flood catastrophe model from extreme

rainfall, a more severe scenario would result from the combination of a longer

duration of the rainfall event and a slower translational speed of the weather

system which brings about the rainfall. The sampling of the translational speed

should effectively be reversed so that more samples are taken in the lower

extremes of its values. Some parameters may also be dependent on other para-

meters and hence not included within the sampling. In this case, the dependent

parameter is simply calculated based on the value of the controlling parameter.

Table 6.5 Example slices for 2-day rainfall ranging from 0 to 250mm,

using non-uniform random stratified sampling to emphasize extremes.

Sample Slice Range Percent of Range

1 0–125 50

2 126–150 10

3 151–175 10

4 176–195 8

5 196–210 6

6 211–220 4

7 221–230 4

8 231–240 4

9 241–245 2

10 246–250 2
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This form of non-uniform stochastic modelling can rapidly generate a set of

many thousands of extreme events which would normally be experienced over

a very long time period, for example 10,000 years. The advantage for considering

extreme events is that through this method it is easy to define the return period –

the greatest magnitude flood over the 10,000 year period is simply the 1 in

10,000 year flood, and there is no need to apply the more complicated statistical

methods for extracting extreme values from much shorter records as discussed in

Chapter 2.

Non-uniform sampling helps to alleviate the problem of the exponential rise in

demand for simulations when combined parameters need to be sampled by focus-

ing sampling precision in the ranges of most interest. However, it does not fully

eliminate the need to assess how well the eventual model output range has been

sampled such that it is possible to estimate reliable probabilities for ranges of the

model output variables.

One of the characteristic of stochastic modelling is the use of random numbers

being used to select input parameter values over a range of possible outcomes. The

approach is also applied in some of the methods used to deal with the uncertainty

associated with modelling. Here the aim is not to generate a large number of

potential outputs but instead to consider the sensitivity of the various model para-

meters and optimize the parameter values, as described in the following section.

6.8 Uncertainty in hydrological modelling

The appreciation of uncertainty in deterministic processmodelling (see Chapter 3)

is a fairly recent development in hydrology, only coming to the fore inmainstream

application over the past decade or so but its importance had been identified

in research work in the 1990s. In early hydrological models, the developers
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Figure 6.2 A histogram derived from stochastic stratified sampling using the data ranges and

sampling slices (10 values per slice) as shown in Table 6.5.
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and users were probably just glad to have a workingmodel which gave reasonable

outputs in a readily available format which could be understood by managers

and policy makers, so uncertainty was often overlooked.

Uncertainty is now widely reported in the scientific literature relating to

hydrological modelling and other modelling of natural processes. It can be

thought of as the next step of a study after running a model and using statistical

measures of the model performance. Where the model has not performed partic-

ularly well, the concept of model uncertainty can be used to identify ways to

improve the model. Beyond the fact that uncertainty is probably most easily

expressed using themathematical framework of probability (see Chapter 1), there

is in general no agreement in the hydrological community about what it means in

terms of a single, concrete method which can be used to make calculations.

The uncertainty associated with the use of models to predict and estimate the

magnitude and timing of a future event can arise from a variety of sources. The

most widely identified uncertainties are (i) measurement uncertainties, (ii) data

uncertainties, (iii) modelling uncertainties and (iv) natural variability uncertain-

ties. Out of these, measurement and data uncertainties refer to the techniques

used to measure the parameters which may have error associated with them,

and how the data is handled and formatted. Data uncertainty is typically higher

if the record length is short or incomplete and also whether any additional factors

may change the record over time, such as any non-stationarities (Chapter 5).

Uncertainty related to modelling can be attributed to the choice of statistical tech-

niques, physical processes and simulation methods. In all models, some assump-

tions are made to simplify reality and hence this causes uncertainty. Finally

the uncertainty associated with the natural variability of a system such as the

hydrological cycle is another source, which can be quite often observed in work

which considers trends over time, such as climate change (Chapter 5).

The use of specific methods to provide an assessment of the uncertainty

associated with a modelling study is now quite common within the hydrological

community and such methods are readily encountered in the scientific literature.

6.9 Uncertainty in combined models

The stochastic approach to modelling is explicitly designed to address the problem

of model parameter uncertainty. In a complex model such as a probabilistic flood

catastrophe model, the estimated magnitude of the flood is likely to be the output

of a number of combined models each with their own associated sources of

uncertainty:

1 Rainfall model – used to generate a number of rainfall scenarios

2 Rainfall–runoff model – used to derive river flows resulting from the rainfall

3 Flood routing model – used to calculate flows in downstream rivers outside the

area affected by the rainfall
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4 Hydrodynamic model – used to calculate flood water levels in the river

channel based on the calculated flows and the morphology of the channel

5 Flood extent model – used to propagate the flood water across the floodplain

and define flood depths based on the river flood levels and characteristics of

the land surface

At each step, there is the uncertainty associated with the calculations and that

uncertainty is passed onto the next step. If the model was providing a purely

deterministic output then the uncertainty associated with the ultimate model

prediction could be very high. However, by running large numbers (e.g. many

thousands) of scenarios and giving outputs on a relatively coarse level (e.g. flood

depth to the nearest 0.1m per postcode), a distribution of results is provided as the

output so that users can themselves gauge the overall uncertainty.

6.10 Assessing uncertainty given observed data:
Bayesian methods

We have seen above that stochastic modelling, in the absence of real data, allows

an assessment of uncertainty by random sampling from chosen parameter ranges.

So, there is an implicit assumption that both the model parameters and the model

output are treated as random variables, and this is a central assumption of the

Bayesian approach (see Chapter 2). It is therefore a simple question to ask: if

we do actually have some real data to calibrate the model output, how could

we estimate the posterior distribution of the parameters given this real data?

The obvious statistical solution to this problem involves writing down a full set

of probability distribution functions for the parameters, the data conditioned on

the parameters and the parameters given the data. In the Bayesian terminology:

the prior, the likelihood, and the posterior respectively. This is indeed possible in

simple cases, but themathematical expressions become impractical for any hydro-

logical process model of sufficient complexity. Inmore realistic hydrological appli-

cations, it is not really the prior distributions which are problematic, for example

we can choose this to be very simple (and often do – typical stochastic modelling

approaches assume ‘the prior’ is uniform). It is instead the likelihood that is prob-

lematic and also computing the distribution over the data required to apply Bayes

rule (it is the denominator in Eq. (2.7)).

A special technique, generalized likelihood uncertainty estimation (GLUE), devel-

oped by hydrologists (Beven and Binley 1992) has been proposed and is widely

used to provide distributions of parameter values when data to calibrate themodel

output is available. The approach avoids the need to write down a complex like-

lihood density function for the model and instead using random sampling of

the parameters to generate sets of model outputs which are then compared to

the real data. From this comparison, a set of plausible model parameter values

are obtained, and these plausible parameter values are used to estimate their
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distribution given the real data, that is an estimate of the posterior. The compar-

ison is based on an arbitrarily chosen function which combines the parameters

with the data, called a generalized likelihood function L(a, x), where a is a vector

of parameters and x is a data vector.

Here are the steps in the GLUE procedure as presented by Nott et al. (2012):

1 Pick prior distributions for the parameters (often uniform, i.e., choose ranges

for the parameters) and generate a series of samples a1, a2… aN for these

parameters.

2 For each sampled parameter value ai, compute L(ai, x).

3 Choose an ‘acceptability threshold’ c and throw away all parameters a for

which L ai,x < c, retain the rest, and we will denote the remaining sampled

parameters as ak for k=1,2…K.

4 Compute the weights wk = L ak,x
K

k = 1
L ak .

5 The distribution of any random variable of interest (e.g. the parameter a or

the model output) is the probability vector wk associated with the parameter

value sampled on run k.

The generalized likelihood function L is key to the method. Typically, it is cho-

sen to be non-negative and to be small for model outputs which differ significantly

from the measured data. In particular, RMSE−T where T >0 has this property

(Nott et al. 2012). Because GLUE uses random sampling to simulate possible

model outputs, it has a lot in commonwith stochastic samplingmethods described

earlier, but it is essentially a parameter estimation method. In fact, it has been

demonstrated that GLUE is a special kind of approximate Bayesian computation

(ABC)method (Nott et al. 2012). ABCmethods arewidely used to produce Bayes-

ian posterior parameter distribution estimates where the likelihood function is

complex, as often happens in physical modelling contexts.

An example of practical usage can be found inWang et al. (2006) who applied

themethod to fit subsurface flow parameters using the DRAINMODmodel. In this

case, the following generalized likelihood was used:

L ai,x = exp −
MSEi

min MSE
6 8

which can be shown to be similar to the classical likelihood function arising

assuming Gaussian errors in the data.

The appeal of the GLUE method is the simplicity and freedom to choose the

generalized likelihood in such a way that does not restrict the choice of physical

process models. There are, however, many pitfalls for the unwary; for example,

the likelihood function (6.8) is not concave (that is having a single bump), so that

a unique posterior mode does not actually exist. Stedinger et al. (2008) point

out some of the deficiencies of the method, most crucially that choosing arbitrary

likelihoodswhich donotmatch the real distribution of the error in the data can lead

to results that are statistically invalid. Caution is therefore required in departing

from the classical framework of probabilistic modelling and Bayesian reasoning.
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Glossary

Correlation: A measure of the extent to which a change in one variable tends to

correspond to a change in the other. Linear dependence is given by the corre-

lation coefficient ρ. If variables are uncorrelated random variables, then ρ=0.

Values of +1 and −1 correspond to full positive and negative correlation, respec-

tively. Note: The existence of some correlation need not imply that the link is

one of cause and effect.

Cumec: Abbreviation for cubic metres per second, the standard unit for the flow

of water.

Cumulative distribution function (CDF): The probability of a random varia-

ble taking a value up to and including a certain threshold value.

Dependence: The extent to which the distribution of a random variable depends

upon another.

Extreme value theory: The branch of statistics dealing with the extreme (rare)

values of a probability distribution. It seeks to assess, from sample data from a

given random variable, the probability of events that are more extreme than

any observed value.

Frequency: The expected number of times that a particular event will be

observed within a specific time frame.

Gamma distribution: A two-parameter distribution on the positive real line.

Gaussian: A two-parameter distribution defined on all real values. Usually para-

meterized bymean and standard deviation (or variance), it has onemode and is

symmetric about that mode.

Joint probability: The probability of specific values of two or more variables

occurring simultaneously.

Mean: The expected or average value of a random variable. This is also the first

moment.

Median: The value of a random variable for which 50% of the distribution is

above and below this value.

Mode: The largest probability value of a random variable.

Moment: The expectation of a random variable raised to the power of k. The spe-

cial case k=1 corresponds to the mean.

Normal distribution: Another name for the Gaussian.
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Probability (and probability of exceedance): A dimensionless number that is

always at least 0, and at most 1. A probability of 0 indicates that the event is

impossible and cannot occur, and probability 1 represents an inevitable occur-

rence. Probability can be expressed as a fraction, percentage or a decimal. For

example, the probability of obtaining a six with a shake of a fair dice is 1/6,

16.6% or 0.166. In the context of extreme flows the annual probability of

exceedance is used to express the chance that a particular event will be equaled

or exceeded within a given year.

Probability density function (distribution) (PDF): A function that describes

the distribution of a random variable. Areas under this distribution are proba-

bility values.

Random variable: A function that maps random events to integers or real

values, labeling these events with a specific number. Random variables can

be either discrete (can take one of a countable, but potentially infinite, set of

values) or continuous (can take any real value).

Rank: When a list of numbers is sorted, the rank is the position of any number in

that sorted list.

Standard deviation: The square root of the second central moment of a random

variable, that is, the square root of the second, k=2, moment of the variable

with the mean removed first.

Stationarity and non-stationarity: ‘Stationarity’ refers to the constancy of the

laws and processes that govern a response of interest (e.g. flow). A stationary

stochastic process has the property that its probability distribution does not

change with time. That is, if parameters such as mean and variance exist, they

are constant. In contrast, statistical properties of a non-stationary process vary

over time. For example, abrupt or gradual changes in the mean, variance,

higher moments, or characteristics of extremes may be observed.

Uncertainty: A general concept that reflects a lack of sureness about something,

ranging from just short of complete sureness to an almost complete lack of con-

viction about an outcome. Two forms of uncertainty are often classified

(i) aleatory from natural variability and (ii) epistemic from a lack of knowledge.

Variable: A mathematical quantity that can change.

Variance: The second central moment of a random variable, that is, the second

moment of the variable with the mean removed first.
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acceptability threshold, 84
addition, 4–7, 12, 28, 34, 36, 38
algebra, 3
amplitude, 15, 59–63
approximate Bayesian computation (ABC), 84
August 2002 floods, 21,
Austria, 19, 20, 21
Austrian Ministry for Agriculture, Forestry,

Environment and Water, 21
autocorrelation coefficient, 58
autocovariance, 57–58
axioms, 16

bandwidth parameters, 62
Bayesian, 30–31, 83–84
Bayes rule, 30, 83
Bernoulli’s equation, 49
Berounka River, 21
binomial, 6
block maxima, 22, 23, 29, 66
bootstrapping, 31–33

calculus, 2, 8–12, 17, 30, 38
catastrophe models, 79–82
Central European floods, 19
chain rule, 13
channel cross section, 41
channel slope, 36
coefficient of residual mass (CRM), 71
combining operations, 4, 41
concave, 84
concentration, 39, 43, 44, 45, 51, 53
conditional probability, 30, 57
confidence interval, 31
constants, 3, 4, 12, 14, 17, 47, 49, 53, 68
continuity equation, 42
controlling parameter, 80
correlation, 57–58, 64, 71, 73–75
correlation coefficient, 58, 71, 73, 75
cosine, 13, 15, 53, 54
cross sectional area, 36, 42
cumulative distribution function (CDF), 25
curvature, 13
cyclical pattern, 52–53, 55
Czech hydrometeorological service, 27
Czech Republic, 19–21, 56, 79D

daily rainfall, 56, 66
Danube River, 19–21, 36
data based mechanistic modelling (DBM), 68
decay rate, 51
decomposition, 59
definite integral, 10–12
dependence, 57–58, 78
deterministic model, 66–68, 76–78, 81
difference equations, 35, 41
differential equations, 14–15, 34–35, 41–43
differentiation, 10–14
digital terrain model, 64
dilution gauging, 43
discontinuities, 8
discrete Fourier transform (DFT), 59
discrete wavelet transform (DWT), 60
distributed model, 76
distribution fitting, 19, 25
division, 4–5
DRAINMOD, 84
Dresden, 20–21
dummy variable, 12
Dyje River, 21

Elbe River, 19, 20, 21
empirical model, 67, 76
Enns River, 21
evaporation, 35, 66, 68
evapotranspiration, 34, 35, 37, 66, 67
expanding, 4, 5, 6
explicit formula, 4, 6, 43
exponent, 6, 47, 50, 51
exponential smoothing, 61, 62, 63
exponentiation, 6, 7, 26, 36, 38
extrapolation, 46
extremes, 19, 22, 23, 66, 80
extreme value distribution, 22, 23, 25, 27, 29, 79
extreme value theory (EVT), 19, 22, 25, 28

factor, 5, 6, 37, 39, 47, 68
factoring, 5
factorising, 37
Flood Attenuation from Rivers and Lakes (FARL), 41
flood catastrophe models, 80, 82
Flood Estimation Handbook, 23, 28
floods, 19, 21, 40, 49, 79
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Flood Studies Report (FSR), 49
Flow/level rating, 39, 46
Fourier analysis, 59, 60
Fourier series, 59
Fourier transform, 59, 63
Frechet distribution, 22, 29
frequency, 59–61, 63, 64, 80, 81
frequency analysis, 59
frequency domain, 60, 61, 63, 64
function, 59, 66, 68, 69, 71, 83, 84

gamma distribution, 25
gauging station, 20, 25, 46, 47
Gaussian weighting, 62
generalised linear uncertainty estimate

(GLUE), 83–85
generalised logistic distribution, 29
generalised Pareto distribution, 29
general solution, 16
Germany Federal Institute of Hydrology, 21
Glomma River, 47, 48
goodness of fit, 50, 71
gravitational acceleration, 43
Gringorten formula, 23, 27
groundwater, 35, 45, 51, 52
Gumbel distribution, 22, 25–28, 31

Hancheng, 56
harmonic functions, 52
histogram, 78, 81
Hungary, 20, 44
hydraulic radius, 36
hydrograph, 51, 55, 70
hydrological models, 66, 81

definition of

implicit formula, 4, 43
indefinite integral, 12
infinite, 2, 9, 22, 35, 37, 59
infinity, 9, 10, 75
initial condition, 14
inorganic nitrogen, 51
integral, 10–13, 17, 18, 43, 44
integrating, 8, 12, 14, 31, 44
intercept, 26, 28, 45, 48, 52
International Commission for the Protection of the

Elbe, 21
interpolation, 46
inverse, 4, 7, 10, 60, 64
inverse function, 7
irrigation, 35
isostatic readjustment, 69
iterated summation, 38–39, 41

Jahrhundert Hochwasser, 22
Jihlava River, 21
joint probability, 78

Kalman filter, 64
Kendall tau, 58
kinematic wave equations, 15
kurtosis, 30

Leibniz, 8
LiDAR, 64–65
limits, 9–11
linear filtering, 63–64
linear operations, 12
linear relationship, 74
L-moments, 30
load, 74–75
load estimates, 39
logarithm, 7
log-log scatter plot, 50
log-normal, 29
Log Pearson III distribution, 29
low-pass filtering, 61
Lumped model, 76
Luznice River, 21

Manning’s equation, 36
Manning’s roughness, 36
mass balance model, 34–35
mathematical operations, 2–3,

61, 64
maximum error, 71, 74
maximum likelihood, 17, 25
mean, 17, 18
mean absolute error, 71
mean square error, 71
median, 18, 30, 65, 66, 75
method of moments, 25
mode, 18
model efficiency, 75, 76
model performance, 75
moment, 17, 25, 30
Monte Carlo method, 79
Morava River, 56, 62
Mulde River, 21
multiplication, 2–3
mutual information, 58

Nash–Sutcliffe method, 75–76
natural logarithm, 7
Newton, 8, 14
nitrate leaching, 51, 52
nitrogen, 51, 52
non-linear filtering, 64–68
non-stationarity, 69–70
normal distribution, 29–30
normalizing, 78
North Wyke Research Station, 56

order, 4–5
order statistics, 30
Ore Mountains, 20
orographic effects, 20
Oslo, 70
Otava River, 21
outcomes, 16–17, 81
Oxford, 57

parameter estimation, 17, 30, 84
partial differential equations (PDEs), 15, 34, 42
Passau, 20, 21
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peaks over threshold, 29, 66
Penman–Montieth equation, 37, 49, 66
percolation, 35, 66
periodic, 59–60
physically based model, 66, 76
polar representation, 59–60
polynomials, 13
posterior distribution, 31, 83
power, 6, 7, 13, 36
Prague, 20–24, 27
precedence, 4
precipitation, 1, 20, 34, 35
prior distribution, 31, 83–84
probability, 15–18, 19, 22–27, 29, 30
probability of exceedance, 23
probability density function (PDF), 17
probability density model, 17
probability mass function (PMF), 17
probability vector, 84
product rule, 13
products, 38
propagation of uncertainty, 82–3

quartile, 30

rainfall observed daily, 56
rainfall-runoff, 68, 83
rainfall synthetic time-series, 32
random numbers, 77, 81
random variable, 18, 25, 30–32, 67, 83–84
rank, 23–24, 26, 58
rating curve, 46–48
rearranging equations, 3–4, 36, 43
recession curve, 51
recursive smoothing, 62–63, 67–68
reduced variate, 26–29
regression, 25, 45–46, 49, 67, 69
resampling methods, 31–33
reservoir inflow, 36
return period, 19–27
river flow measurement, 43
root, 7–9
root mean square error, 71
running mean, 61–66
Running median, 65–66

St Venant equations, 42, 43
sample slice, 80
sampling with replacement, 32
Saxony State Office for Environment andGeology, 21
scale factor, 47
Scandinavia, 69
sea levels, 69, 70
secondary x-axis, 28
second derivative, 13, 15
sediment, 72, 74
shallow water wave equation, 15, 42
sine, 13, 53, 59

skewness, 13, 30
Slovakia, 20
smoothing, 61–66
snowmelt, 35, 77–78, 80
soil classes, 49
soil moisture deficit, 20, 51–54, 66–68
soil percentage runoff, 49
Spearman rank correlation, 58
specific solution, 14
squared correlation coefficient, 73
stage board, 46, 47
standard percentage runoff, 40
state dependent method, 68
statistical modelling, 19
step filtering, 64
stochastic model, 78
stochastic process, 76
straight line fitting techniques, 48, 52
stratified sampling, 79–81
substitute, 6, 44, 46
subtraction, 4, 5, 36, 38
summation, 8, 10, 38–42
surface runoff, 35, 56

tangent, 13
tidal depth, 59
tidal level, 79
time series, 32, 55–70
time steps, 58

unbiased, 16, 54, 57, 74
uncertainty, 1, 15, 24, 28, 33, 66, 71,

81–85
uniform distribution, 80
uniform random numbers, 77

variance, 17, 30, 57, 58, 73, 75
Vb circulation, 20
Vltava River, 20–24, 27

water balance, 34, 37, 66–67
water level measurement, 39, 42, 46–48, 69, 79
water quality, 39
water surface elevation, 43
wavelet analysis, 60, 64
Weibull distribution, 22, 29
Weibull formula, 23–27
weighted average, 40, 62
weighted running mean, 62, 63
window size, 61, 63
WINFAP software, 28

X-axis, 8, 10, 26, 28, 74
X-Y scatter plot, 45, 47, 50

yield, 54, 72

Zinnwald–Georgenfeld, 20
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