Particle Acceleration and Detection

Levi Schachter

Beam-Wave
Interaction in
Periodic and
Quasi-Periodic
Structures

Second Edition

@ Springer



Beam-Wave Interaction in Periodic
and Quasi-Periodic Structures



Particle Acceleration and Detection

springer.com

The series Particle Acceleration and Detection is devoted to monograph texts dealing
with all aspects of particle acceleration and detection research and advanced teaching.
The scope also includes topics such as beam physics and instrumentation as well as
applications. Presentations should strongly emphasize the underlying physical and
engineering sciences. Of particular interest are

e contributions which relate fundamental research to new applications beyond
the immediate realm of the original field of research

e contributions which connect fundamental research in the aforementioned fields
to fundamental research in related physical or engineering sciences

e concise accounts of newly emerging important topics that are embedded in a
broader framework in order to provide quick but readable access of very new
material to a larger audience

The books forming this collection will be of importance for graduate students and
active researchers alike.

Series Editors

Alexander Chao
SLAC

2575 Sand Hill Road
Menlo Park, CA 94025
USA

Christian W. Fabjan
CERN

PPE Division

1211 Genéve 23
Switzerland

Frank Zimmermann
CERN

SL-Division

AP Group

1211 Geneve 23
Switzerland

For further volumes:
http://www.springer.com/series/5267



Levi Schiachter

Beam-Wave Interaction
in Periodic and Quasi-
Periodic Structures

Second Edition

@ Springer



Professor Levi Schichter

Israel Institute of Technology
Department of Electrical Engineering
Haifa 32000, Israel
levi@ee.technion.ac.il

ISSN 1611-1052

ISBN 978-3-642-19847-2 e-ISBN 978-3-642-19848-9
DOI 10.1007/978-3-642-19848-9

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011930817

@© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: SPi Publisher Services
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To my parents, wife and children






Preface

In the second edition of the monograph published originally in 1997, I preserved the
spirit of the first edition whereby the focus was on analytic and detailed analysis the
fundamental concepts associated with beam—wave interaction in various radiation
sources and accelerators. While the general framework of the material remained the
same, each chapter has been improved and expanded. In the following paragraphs,
I present the updated structure of the various chapters, skipping the introductory
chapter — Chap. 1.

Chapter 2 is dedicated to the basic electromagnetic theory. After discussing
Maxwell equations in general, 1 present simple homogeneous solutions
corresponding to the TEM, TM, TE, and hybrid modes. When the current density
is present, it is useful to employ Green’s function method for solution of the
electromagnetic field. Its formal description is accompanied by two examples
which illustrate the Cerenkov radiation in free space and in a waveguide. The
coherent process is also examined. Several finite length effects are considered, as
well as edge effects. Scattered waves phenomena are also discussed.

Chapter 3: All topics considered throughout the text rely on classical mechanics
and the basics are briefly discussed. Some of the methods of electrons generation
are considered followed by some principles of beam transport — including limiting
laws. Basic measures of beam quality are introduced. Space—charge waves are
investigated, as well as a few instabilities that may develop when these waves are
excited. Various radiation phenomena associated with accelerated charges con-
clude this chapter.

Chapter 4: In this chapter, I consider the fundamentals of beam—wave interaction
in a distributed slow-wave structure. A dielectric loaded waveguide was chosen as
the basic model in the first sections because it enables to illustrate the essence of the
interaction without the complications associated with complex boundary condi-
tions. Pierce’s theory for the traveling wave amplifier extended to the relativistic
regime is formulated and I present the operation of an oscillator in the context of
finite length effects. While the dynamics of the beam in all these topics was
considered in the framework of the hydrodynamic approximation, I gradually
elevate the level of description of particles dynamics by using the macroparticle
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approach, namely, by representing the ensemble by a large number of clusters of
electrons. This formalism enables to examine the interaction in phase-space either
in the linear regime of operation or close to saturation. It also facilitates investiga-
tion of tapered structures and analysis of the interaction of prebunched beams in
tapered structures. Further extension of the macroparticle approach to include the
effect of reflections enables to describe the operation of an amplifier and an
oscillator and obviously the transition from the former to the latter. A discussion
on the interaction with hybrid modes concludes this chapter.

Chapter 5: In this chapter I present various characteristics of periodic structures
with emphasis on those aspects relevant to interaction with electrons. Both closed
and open periodic structures are considered. Smith—Purcell effect is analyzed as a
particular case of a Green’s function calculation for an open structure and a simple
scattering problem is also considered. Planar and cylindrical Bragg waveguides are
analyzed, paving the way to optical acceleration structures. Two dimensional
periodic structures and some applications are considered. This chapter concludes
with three examples of a transient solution in periodic structures.

Chapter 6: Quasi-periodic structures are the focus of this chapter. They are
essential whenever it is required to maintain an interacting bunch in resonance with
the wave if high efficiency is a must. Nonadiabatic change of geometry dictates a
wide spatial spectrum, in which case the formulation of the interaction in terms of a
single wave with a varying amplitude and phase is inadequate and I present an
alternative approach. This is applicable to extraction sections in TWTs, klystron, or
gyrotrons, or for evaluating roughness effect on beam quality in the case of
advanced light sources. The chapter concludes with a discussion on a photoinjector.

Chapter 7: This chapter deals with the principles of free electron laser. Starting
with the spontaneous emission as an electron traverses an ideal wiggler, I investi-
gate coherent interaction in the low-gain and high-gain Compton regime. As in the
TWT case, the macroparticle approach is introduced and I conclude the chapter
with a brief overview of the various alternative schemes of free electron lasers and a
special section dedicated to X-ray sources.

Chapter 8: One of the important systems where beam—wave interaction in
periodic structures plays a crucial role is the particle accelerator. In the first part
of this chapter I discuss some basics of linear acceleration. In the second part, I
discuss various advanced acceleration concepts including, for example, accelera-
tion in plasma by either laser or electrons wake, as well as acceleration at optical
wavelengths.

Whenever possible I have referred the reader to experimental results although
this was definitely not my main goal because of two reasons: first, as stated initially,
my focus was to describe fundamental concepts and the models that can be
represented by analytic or quasi-analytic expressions to readers. Second, the prog-
ress in the advanced acceleration physics is so rapid that by the time the monograph
would be actually printed, some of the experimental results would become history.
Nevertheless, I have definitely addressed the reader to the relevant reference
whenever conceptually new ideas are supported by experiments.
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Many new exercises were added in all chapters and a small fraction of the new
material was formulated as exercises relying on the formulation in the specific
chapter. Most of the exercises are not trivial and they fit to an advanced graduate
course.

Now, to a few words of gratitude. Two mentors have influenced my research
activity as reflected in this monograph: Professor John A. Nation of Cornell
University during more than a decade of collaboration and Professor David Schieber
of the Technion during almost three decades of discussions and deliberations. They
both deserve my deepest gratitude. Three other individuals have impacted my
decisions at some key junctions: the late Professor Norman M. Kroll of UCSD to
whom I owe the encouragement to pursue the PASER concept at its early stages. To
Professor Ilan Ben Zvi I am in debt for diffusing my hesitations as a theoretician to
actually making an experiment and eventually performing the PASER experiment
at Brookhaven National Laboratory. Last but definitely not least, Professor Maury
Tigner of Cornell University. During a few discussions, he brought me to think
seriously about energy recovery in optical accelerators which I believe will be an
essential concept in the future.

Based on the first edition of the book, several mini-courses have been delivered
out of which I wish to express my gratitude for the opportunity to Professor Koji
Takata who organized the mini-course at KEK (Japan). To Mr. Guobin Fan the
Director of the Institute of Applied Electronics, China Academy of Engineering
Physics, Mianyang, Sichuan (China), and Dr. Zhuo Xu his deputy. They gathered a
bunch of researchers from all over the country to this 1 week mini-course.

A couple of years ago after the first edition of this monograph was already out-
of-print and even the copies available at Amazon were sold out, people from all
over the world started to contact me directly for available exemplars. At this point I
forwarded Dr. Chris Caron, the Topical Editor of Springer-Verlag, part of these
letters with the suggestion to print out a few hundreds of exemplars. After a while,
he had written to me with the suggestion to write a new edition. I was quite
embarrassed because, on the one hand, when I finished the first edition I promised
myself never to repeat the mistake of writing another book. On the other hand, it is
difficult to ignore the readers. Naturally, after almost 15 years I had only the LaTeX
version of the manuscript while the drawings were gone. To make a long story
short, the commitment of Mrs Lesley Price and Mrs Hanna Bismut to assist had
convinced me to commit to the laborious project. The first has agreed to convert the
LaTeX to MS Word while the second agreed to redo all the drawings, as well as to
make the new ones — about two hundreds overall. They both deserve my sincere
appreciation, without their help, I would have never completed the project. Obvi-
ously, Dr. Caron deserves the credit for his initiative, without him, this edition
would have never materialized.

Throughout the years, many students took courses that rely on the original text
and their valuable questions lead to this revised version. In fact, part of these
students, those whom I directly supervised during their graduate studies, had an
important impact on several topics added in this edition. Four of them I wish
to mention in the chronological order of their contributions: Dr. Samer Banna,
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Dr. Assaf Lahav, Dr. Amit Mizrahi, and Mr. Vadim Karagodsky. To all I thank for
the dedication and diligence manifested during our collaboration that is only
partially reflected in this edition.

Once the draft was completed, I have asked two colleagues to review the book
and spell out their criticism. Dr. Eric Colby (SLAC) and Dr. Wayne D. Kimura
(STI) did a wonderful job and their numerous suggestions have improved signifi-
cantly the monograph. Their willingness to help, as well as the precious time
they dedicated to the laborious task, is highly appreciated. Last but not least there
are the members of the editorial board of the series “Particle Acceleration and
Detection”, in which this book is published: their input and suggestions were
greatly appreciated.

Throughout the past 20 years and more, several agencies have directly supported
my research activity as reflected in this manuscript. I am listing them in chronologic
order: Rothschild Foundation, United States Department of Energy, United States
Air Force, Bi-National United States — Israel Foundation, Israel Science Founda-
tion, and the Kidron Foundation. Among these, four individuals from the US DoE
deserve personal appreciation for their support throughout the years: Dr. David
Sutter, Dr. Gerald Peters, Dr. Bruce Strauss, and Dr. L.K. Lin.

Finally, I wish to express my deepest gratitude for the support I was fortunate to
get from my parents Genia and Izu, my wife Tal, and my three children Michal,
Roy, and Yuval.

Haifa/Israel, June 2011 Levi Schichter
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Chapter 1
Introduction

This monograph aims to provide the reader with the foundation of rigorous analysis
of microwave and other radiation sources based on free electrons as well as some
basic electrons acceleration concepts. While for communication solid-state sources
provide all needs of mobile communication, in case of satellite, radar and a few
other applications vacuum tubes are virtually the only option.

Two major scientific programs rely on microwave or millimeter waves as part of
their operation. Millimeter waves heat up electrons that in turn raise the temperature
of the hydrogen-based plasma in order to facilitate fusion for future power plants.
Modern particle accelerators rely on the acceleration experienced by a relativistic
particle as it moves in the presence of a wave which propagates at the speed of light.
In fact, the analysis presented in this book relies on the experience gained from a
research program whose goal is to develop high power microwave radiation using
distributed interaction in quasi-periodic structures for particles accelerators.

Future plans may present great new challenges for the designer of radiation
sources. High-power radiation sources may contribute to repairing the ozone layer
which is so vital to life on earth. Another possible future application is to launch,
in low orbit, loads which would then be used to construct the international space
station. The latter approach may have a substantial advantage over chemical rockets
in which the weight of the load is a small fraction of the total rocket since in the case
of electromagnetic propulsion the load is the majority of the weight.

The heart of all the applications mentioned above and many others, is the
radiation source which can be of many kinds and a few of which are briefly over-
viewed in Sect 1.2. In all cases, the radiation is generated by converting kinetic
energy from electrons. These electrons form a beam which propagates in vacuum
where it interacts with electromagnetic waves in the presence of an auxiliary
structure. The development of these sources started at the beginning of the twenti-
eth century with the magnetron, followed by the klystron in the thirties, the
traveling wave tube in the late 1940s, the gyrotron in the early 1960s and the free
electron laser in the mid 1970s. These are a small fraction of the devices which
have been developed during the years and have played a crucial role in defense,
communication and research. Over the years, with the better understanding of their
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operation principles, their performance improved and with it, the demand of the
systems’ designers. Consequently, the regime these tubes operate has broadened.
For example, the first traveling wave tubes operated in a continuous mode with
currents of the order of mA’s and beam voltages of kV’s whereas today, in
addition to these kind of tubes, one can find high-power devices which are driven
by kA’s beams (and sometime tens of kA’s) with voltages on the order of IMV —
in a pulse mode. The six order of magnitude increase in current and three in the
voltage, correspond to an increase of nine orders of magnitude in the power level.
Consequently, entire new varieties of conceptual and technological problems
evolved. Obviously, power is not the only design parameter. Frequency, band-
width, tunability, stability and repetition rate are only a few of the considerations,
which should be taken into account while designing a radio frequency generator
or amplifier.

In this text we present a detailed description and analysis of the concepts
involved in the interaction of electromagnetic waves and electrons. Since we intend
to present a rigorous analysis, within the limits of a reasonably sized volume, we
chose a small fraction of the existing devices. Special attention is paid to various
aspects of the interaction in periodic or quasi-periodic structures. We start with
some basic concepts of electron-wave interaction.

1.1 Single-Particle Interaction

On its own, an electron cannot transfer energy via a linear process to a mono-
chromatic electromagnetic wave in vacuum if the interaction extends over a very
long region. In this introductory chapter we limit the discussion to single-particle
schemes. Collective effects, where the current is sufficiently high to affect the
electromagnetic field, are discussed in Chaps. 4, 6 and 7.

1.1.1 Infinite Length of Interaction

Far away from its source, in vacuum, an electromagnetic wave forms a plane wave
which is characterized by a wave-number whose magnitude equals the angular
frequency, w, of the source divided by ¢ = 299,792, 458m/s, the phase velocity of
the plane wave in vacuum, and its direction of propagation is perpendicular to both
the electric and magnetic field. For the sake of simplicity let us assume that such a
wave propagates in the z direction and the component of the electric field is parallel
to the x axis i.e.,

Ey(z,1) :Eocos{w(t—z)}. (1.1.1)

C
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If a charged particle moves at a uniform velocity v parallel to z axis, then the
electric field this charge experiences (neglecting the effect of the charge on the
wave) is given by

E\[z(1),1] oncos{w{t—@} } (1.1.2)

c

A crude estimate for the particle’s trajectory may be assumed to be z(f) ~ vt,
therefore, if the charge moves in the presence of this wave from t — —ocotot — oo
then the average electric field it experiences is zero,

Joo dreos[wr(1-2)] =0, (1.1.3)

oo c

even if the particle is highly relativistic (Pantell 1981). The lack of interaction can
be illustrated in a clearer way by superimposing the dispersion relation of the wave
and the particle on the same diagram — see Fig. 1.1. Explicitly, the relation between

energy and momentum for an electron, E = ¢1/p? + (mc)*, where m = 9.1094 x
103! Kg is the rest mass of the electron and the corresponding relation for a photon
in free space E = cp are plotted on the same diagram. For the interaction to take
place the electron has to change its initial state, subscript i, denoted by (Ej, p;) along
the dispersion relation to the final, subscript f, denoted by (E, pr) in such a way that
the resulting photon in case of emission or absorbed photon for absorption, has
exactly the same difference of energy and momentum i.e.,

E; = Et + Epp, (1.1.4)
and
Pi = Pt + Pph- (1.1.5)
E Ve
E; 72l
E=c /p2+m2c2//’
E ’ 7N
T A4 E=cp
Pr pi p

Fig. 1.1 The dispersion relation of a free electron, E = 1/ (pc)® + (mc2)?, and an electromag-
netic plane wave in vacuum, £ = pc, are described on the same diagram. The dispersion relation
of the wave is also the asymptote of the dispersion relation of the electron. Consequently, it cannot
change its state along a line parallel to the asymptote. In other words, the energy and momentum
laws cannot be satisfied simultaneously



4 1 Introduction

In the case of vacuum this is impossible. Figure 1.1 reveals this fact graphically.
The expression, E = c¢p, which describes the photon’s dispersion relation, is
parallel to the asymptote of the electron’s dispersion relation. Thus, if we start
from one point on the latter, a line parallel to £ = cp will never intersect the
particle’s line again. In other words, energy and momentum can not be conserved
simultaneously in vacuum.

1.1.2 Finite Length of Interaction

If we go back to (1.1.3) we observe that if the electron spends only a finite time in
the interaction region then it can experience a net electric field. Let us denote by — T
the time the electron enters the interaction region and by T the exit time. The
average electric field experienced by the electron (subject to the same assumptions
indicated above) is

(E) :Eo% JT dt cos [wz(l —g)} :Eosinc[wT(l —%)} (1.1.6)
-T

here sinc(x) = sin(x)/x. This is to say that if the time the electron spends in the
interaction region, as measured in its frame of reference, is small on the scale of the
radiation period Ty = 27/w then the net electric field it experiences is not zero.
From the perspective of the conservation laws, the interaction is possible since
although the energy conservation remains unchanged i.e.,

Ei = E; + ho, (1.1.7)
the constraint on momentum conservation was released somewhat and it reads

w|l h

pi—pr— i<, (1.1.8)

which clearly is less stringent than in (1.1.5) as also illustrated in Fig. 1.2; 1 =
1.05457 x 10734] - sec is the Planck constant. The operation of the klystron relies

Fig. 1.2 The dispersion E p

relation of a free electron, E; 4

E= (pc)2 + (mcz)z, and E=cyp? +m202///

an electromagnetic plane 4
wave in vacuum, E = pc, are Ef il
described on the same E=col”
diagram. The constraint on \v’/
the momentum conservation g

is less stringent because the
interaction occurs in a finite Pt
length
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on the interaction of an electron with a wave in a region which is shorter than the
radiation wavelength.

1.1.3 Cerenkov Interaction

It was previously indicated that since the dispersion curve of the photon is parallel
to the asymptote of the electron’s dispersion relation, the interaction is not possible
in an infinite domain. However, it is possible to change the slope of the photon,
namely to change its phase velocity — see Fig. 1.3. The easiest way to do so is by
“loading” the medium where the wave propagates with a material whose dielectric
coefficient is larger than one. Denoting the refraction coefficient by n, the disper-
sion relation of the photon is given by

¢
Eph :;ppha (119)

while the dispersion relation of the electron remains unchanged. Substituting in
the expressions for the energy and the momentum conservation laws we find that
the condition for the interaction to occur is

, (1.1.10)

where it was assumed that the electron’s recoil is relatively small i.e., i/ mc* < 1.
The result in (1.1.10) indicates that for the interaction to occur, the phase-velocity in
the medium has to equal the velocity of the particle. This is the so-called Cerenkov
condition in the 1D case. Although dielectric loading is conceptually simple, it is
not always practical because of electric charges that accumulate on the surface and
of a relatively low breakdown threshold, which is critical in high-power devices.
For these reasons, the phase velocity is typically slowed down using metallic
structures with periodic boundaries. The operation of traveling wave tubes

Fig. 1.3 The interaction of E .
an electron with an E 7
electromagnetic wave whose ! 7
- E =c+| p2 +m2c27”."
phase velocity is smaller than g -
¢ is possible / o
Ef // ///
P
s Pid
z -
E=cp. -
e
P E=(c/n)p
7
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(or backward wave oscillators) relies on this concept and it will be discussed
extensively in Chaps. 4, 5 and 6.

1.1.4 Compton Scattering: Static Fields

Not only a structure with periodic boundaries facilitates the interaction between
electrons and electromagnetic waves, but also periodic fields. For example, if a
magneto-static field of periodicity L is applied on the electron in the interaction
region, then this field serves as a momentum “reservoir” which can supply momen-
tum quanta of nfi(2n/L) where n = 0,41, £2, ...; see Fig. 1.4. The energy conser-
vation law remains unchanged i.e.,

Ei = E; + Epn, (1.1.11)

but the momentum is balanced by the applied static field

2n
PiZPf+Pph+hfn- (1.1.12)

For a relativistic particle ( ~ 1) and when the electron’s recoil is assumed to be
small, these two expressions determine the so-called resonance condition which
reads

w22y2<2mn), (1.1.13)

where y = [1 — (v/ c)z]_l/ 2. Note that the frequency of the emitted photon depends
on the velocity of the electron, which means that by varying the velocity we can
change the operating frequency. A radiation source that possesses this feature is a
tunable source. Identical result is achievable if we assume a periodic electrostatic
field and both field configurations are employed in free electron lasers discussed
in Chap. 7.

E=c\p?+ mzcz///
Et I \//\

Fig. 1.4 The interaction of L E=cp
an electron with an 7 nh/L
electromagnetic wave in a .
periodic static field whose

periodicity is L Ps pi p
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1.1.5 Compton Scattering: Dynamic Fields

Static electric or magnetic field can be conceived as limiting cases of a dynamic
field of zero or vanishingly small frequency and we indicated above that they
facilitate the interaction between an electron and a wave. Consequently, we may
expect that the interaction of an electron with a wave will occur in the presence of
another wave. Indeed, if we have an initial wave of frequency w; and the emitted
wave is at a frequency w; the conservation laws read

Ei + hwy = E¢ 4 hawy, (1.1.14)

and
[(0)] (0)]
pizpf—FhT]—f—hTz. (1.1.15)

Following the same procedure as above, the ratio between the frequencies of
the two waves is

D2 L 42, (1.1.16)
()]

which is by a factor of 2 larger than in the static case. Figure 1.5 illustrates this
process and it will be elaborated in more detail in Chap. 8.

Fig. 1.5 The interaction of Ey .’
an electron with an E; 2
electromagnetic wave in the E, o’
presence of another %
electromagnetic wave /\
E //
f X E=cp
//
//
NE =¢| p? +m?c?
//
Pr pi P

1.1.6 Uniform Magnetic Field

A periodic magnetic field can provide quanta of momentum necessary to satisfy
the conservation law. It does not affect the average energy of the particle. The
opposite happens when the electron moves in a uniform magnetic field (B): there
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Fig. 1.6 The interaction of E
an electron with an e
electromagnetic wave in the E; e
presence of a uniform e
magnetic field n e

E = ¢\/p* + m2c? — 2neBh E; \/

Pt pi p

is no change in the momentum of the particle whereas its energy may vary
according to

E,= C\/pz + (mc)* — 2nheB, (1.1.17)

where e = 1.6022 x 10~'°Cb is the charge of the electron and n = 0, 1, +2....
For most practical purposes the energy associated with the magnetic field is
much smaller than the energy of the electron therefore we can approximate

’B ’B
Ei—nlhec ZEf—I’lzheC
E; E¢

+ Epn, (1.1.18)

and the momentum conservation remains unchanged i.e.,
Di :pf—l-pph. (1119)

From these two equations we find that the frequency of the emitted photon is

B B
w:2ye—:2y2<e—). (1.1.20)
m ny

The last term is known as the relativistic cyclotron angular frequency, e =
eB/my. Figure 1.6 illustrates schematically this type of interaction. It indicates that
the dispersion line of the electron is split by the magnetic field in many lines (index n)
and the interaction is possible since the electron can move from one line to
another. Gyrotron’s operation relies on this mechanism and it is discussed briefly
in the next section.

1.2 Radiation Sources: Brief Overview

There are numerous types of radiation sources driven by electron beams. Our
purpose in this section is to continue the qualitative discussion from the previous
section and briefly describe the operation principles of one “member” of each class
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of what we consider the main classes of radiation sources. A few comments on
experimental work will be made but for further details, the reader is referred to
recent review studies. The discussion continues with the classification of the major
radiation sources according to several criteria which we found to be instructive.

1.2.1 The Klystron

The klystron was one of the first radiation sources to be developed (Varian and
Varian 1939). It is a device in which the interaction between the particle and the
wave is localized to the close vicinity of a gap of a cavity, as illustrated in Fig. 1.7.
Electrons move along a drift tube whose geometry is chosen such that at the
frequency of interest it does not allow the electromagnetic wave to propagate.
The latter is confined to cavities attached to the drift tube. The wave which feeds
the first cavity modulates the velocity of the otherwise uniform beam. This means
that after the cavity, half of the electrons have a velocity slightly larger than the
average beam velocity whereas the second half has a smaller velocity. According to
the change in the velocity of the electrons the beam becomes bunched down the
stream since accelerated electrons from one period of the electromagnetic wave
catch up with the decelerated electrons from the previous period. When this bunch
enters the gap of another cavity, it may generate radiation very efficiently.

The operation of a klystron driven by a relativistic electron beam is different
from that described above for a non-relativistic beam. If we were to use the same
implementation in the case of a relativistic beam, then the distance the beam has to
propagate in order to become density modulated is prohibitively long since the
change in velocity is relatively small. What comes to our aid in the relativistic case
is the fact that the current is much higher comparing to the non-relativistic case and
when bunching the beam, we generate the, so-called, space-charge waves (Nation
1970). Fortunately, the velocity modulation from the input cavity translates in a
density modulation in a quarter period of the plasma wave number (defined in
Chap. 3) which is inversely-proportional to the square root of the current. Conse-
quently, if the current is sufficiently high, then the distance between two cavities
again becomes reasonable.

For efficient modulation of the beam, the quality factor of the cavities has to be
high and therefore in general the klystron is not a tunable device. In high power

Cathode
E 1 ]
Ii, Collector

Output

Input

Fig. 1.7 The basic configuration of a klystron: the first cavity bunches the beam, the second
amplifies the modulation and the third extracts power from the beam and converts it into radiation
power
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devices the choice of geometry is a trade-off between a small cavity gap required
for good modulation and a large gap required to sustain the large electric field in the
gap associated with high power levels. The most recent generation of high power
klystron operates at 11.4 GHz it is driven by 440 kV, 500 A beam (Caryotakis 1994)
and the goal is to generate power levels of the order of 100 MW in a 1.5 ps pulse for
the Next Linear Collider (NLC) developed at SLAC National Accelerator Labora-
tory. Another class of high power klystrons was developed during the 1980s and
1990s by Friedman and Serlin (1985). Operating at relatively low frequencies
(~1 GHz) the transverse geometry was chosen to be sufficiently large such that
large amounts of current can be injected before reaching the limiting current (to be
discussed in Chap. 3). In this case (Lau 1989), annular beams were shown to have
significant advantages in generating multi-gigawatt pulses (Serlin and Friedman
1994).

1.2.2 The Traveling Wave Tube

The traveling wave tube (TWT) is a Cerenkov device, namely the phase velocity of
the interacting wave is smaller than ¢ and contrary to the klystron where the
interaction occurs in the close vicinity of the cavity’s gap, the interaction is
distributed along many wavelengths. Generally speaking, as the beam and the
wave advance, the beam gets modulated by the electric field of the wave and in
turn, the modulated beam increases the amplitude of the electric field. In this
process, both the beam modulation and the radiation field grow exponentially in
space. The coupling between the wave and the beam is determined by the interac-
tion impedance, which is a measure of the electric field acting on the electrons (E)
for a given total electromagnetic power (P) flowing in the system

E2
Zint = 50p’ 1.2.1)
where £ is the wave-number. This definition introduced first by Pierce (1950) is the
basis of his theory of the TWT, which is in very good agreement with experiments
in uniform and low power devices. Nation (1970) first introduced the concept of
using space-charge waves in order to generate high power microwave radiation
with traveling wave structures.

The TWT can be designed to be a broad-band device and it can occur in various
configurations: helix, disk-loaded waveguide (coupled cavities), dielectric loaded
waveguide, gratings, dielectrically coated metal and others. Several of these
configurations are illustrated in Fig. 1.8a—e. Whenever the electromagnetic wave
can propagate parallel to the beam, it means that a wave can also propagate in the
opposite direction. Therefore the input is not isolated from the output, and in
amplifiers, this problem can be detrimental. At the same time this is the basis for
the design of an oscillator.
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Fig. 1.8 (a—e) The basic a
configurtion of a traveling Cathode Collector
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In the interaction process the electron oscillates primarily along the major axis
(z-direction) and the interaction is with the parallel component of the electric field.
Correspondingly, the interaction occurs here with the transverse magnetic (TM)
mode. This device will be extensively treated due to its relative simplicity and
relevance to a wide range of other devices (gyrotrons, free electron lasers).

1.2.3 The Gyrotron

The gyrotron relies on the interaction between an annular beam, gyrating around
the axis of symmetry due to an applied magnetic field, and a transverse electric (TE)
mode. The concept of generating coherent radiation from electrons gyrating in a
magnetic field was proposed independently by three different researchers in the late
1950s, Twiss (1958), Schneider (1959) and Gaponov (1959), and it has attracted
substantial attention due to its potential to generate millimeter and sub-millimeter
radiation.

Electrons move azimuthally and they get bunched by the corresponding azi-
muthal electric field. As in the case of the TWT the bunches act back on the field
and amplify it. In contrast to traveling wave tubes or klystrons in which the beam
typically interacts with the lowest mode, in the gyrotron the interaction is with high
modes therefore various suppression techniques are employed in order to obtain
coherent operation with a single mode.
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The operation frequency is determined by the applied magnetic field, the energy
of the electrons and, in cases of high mode operation, also by the radius of the
waveguide:

© = wcy + 9P/ 0 + 0, (1.2.2)

where ff =v/c, w. = eB/m and ., is the cutoff frequency of the mode. The
operating frequency in this case can reach very high values: for a magnetic field
of 1T and y ~ 2.5 the operation frequency is of the order of 150 GHz or higher
according to the mode with which the electrons interact.

Since the interaction of the electrons is with an azimuthal electric field, it is
necessary to provide the electrons with maximum momentum in this direction. The
parameter which is used as a measure of the injected momentum is the ratio of the
transverse to longitudinal momentum o = v, /v.. This transverse motion is
acquired by the electrons in the gun region as can be deduced from the schematics
illustrated in Fig. 1.9. In relativistic devices this ratio is typically smaller than unity
whereas in non-relativistic devices it can be somewhat larger than one.

Beam location is also very important. In the TWT case the interaction is with the
lowest symmetric TM mode. Specifically, the electrons usually form a pencil beam
and they interact with the longitudinal electric field, which has a maximum on axis.
We indicated that gyrotrons operate with high TE modes and the higher the mode,
the higher the number of nulls the azimuthal electric field has along the radial
direction. Between each two nulls there is a peak value of this field. It is crucial to
have the annular beam on one of these peaks for an efficient interaction to take
place.

Reviews of gyrotrons have been given by Flaygin et al. (1977) and Hirshfield
and Granatstein (1977). An instructive overview of gyrotron theory was published
by Baird (1987) and the experimental results were reviewed by Granatstein
(1987). Two updated textbooks on gyrotrons were s published in the past few
years: one (Kartikeyan et al. 2004) that has a more experimental flavor and the
second, Nusinovich (2004), which is more theory oriented. Two important exper-
imental results were reported recently. Sakamoto reported (Sakamoto et al. 2007)
generation of 1 MW, cw operation at 170 GHz, for gyrotron plasma heating and
current drive for ITER (International Thermonuclear Experimental Reactor).

Circuit Coil
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More recently 1.5 kW of 1 THz radiation were generated with a pulsed magnetic
field magnetron were generated at the Institute of Applied Physics, Nizhny
Novgorod (Glyavin et al. 2008).

1.2.4 The Free Electron Laser

The free electron laser (FEL) will be discussed in detail in Chap. 7. As the gyrotron,
it is a fast-wave device in the sense that the interacting electromagnetic wave has a
phase velocity larger or equal to ¢ but instead of a uniform magnetic field it has a
periodic magnetic field. The “conventional” free electron laser has a magnetic field
perpendicular to the main component of the beam velocity. As a result, the electrons
undergo a transverse oscillatory motion, which is suitable for interaction with either
a TE or a TEM mode. The oscillation of electrons is in the transverse direction but
the bunching is longitudinal and in this last regard the process is similar to the one
in the traveling wave tube. However, its major advantage is the fact that it does not
require a metallic structure for the interaction to take place. Consequently, it has the
potential to either generate very high power at which the contact of radiation with
metallic walls would create very serious problems, or produce radiation at UV,
XUV or X-ray where there are no other coherent radiation sources. Figure 1.10
illustrates the basic configuration.

1.2.5 The Magnetron

The magnetron was invented at the beginning of the twentieth century (Hull 1921a, b)
and it played a pivotal role in the radar development in WWII due to its relative
high efficiency. Because of its complexity there is no analytical model which can
describe its operation adequately as a whole. In recent years, great progress has
been made in the understanding of the various processes with the aid of particle in
cell (PIC) codes. Its operation combines potential and kinetic energy conversion.
Figure 1.11 illustrates the basic configuration. Electrons are generated on the
cathode (inner surface) and since a perpendicular magnetic field is applied, they
form a flow which rotates azimuthally. The magnetic field and the voltage applied
on the anode are chosen in such a way that, in equilibrium, the average velocity of
the electrons equals the phase velocity of the wave supported by the periodic
structure at the frequency of interest.
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Fig. 1.11 The schematic of a

magnetron
Fig. 1.12 The schematic of a 7 : 4 Virtual
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A simplistic picture of the interaction can be conceived in the following way:
electrons which lose energy to the wave via the Cerenkov type interaction, move in
upward trajectories — closer to the anode. Consequently, two processes occur.
Firstly, the closer the electron is to the periodic surface the stronger the radiation
field and therefore the deceleration is larger, causing a further motion upwards.
Secondly, as it moves upwards its (dc) potential energy varies. Again, this is
converted into electromagnetic energy.

Two major differences between the magnetron and other radiation sources
mentioned above, are evident: (1) in the magnetron, the beam generation, accelera-
tion and collection occur all in the same region where the interaction takes place.
(2) The potential energy associated with the presence of the charge in the gap plays
an important role in the interaction; the other device where this is important is the
vircator briefly discussed in the next sub-section. High power magnetrons are
primarily used as drivers for medical accelerators and recently deposition of thin
layers of various materials (sputtering) — see (Sarakinos et al. 2010).

1.2.6 The Vircator

The vircator takes advantage of the fact that the amount of current generated by a
given voltage that can be injected into a grounded metallic waveguide is limited.
Any current injected above this limit is reflected, but on average there is a finite
amount of charge in the waveguide — see Fig. 1.12. This charge forms what is called
a virtual cathode (i.e. negative potential) which can be conceived as the reason for
the reflection of the electrons. These oscillate between the real and the virtual
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cathode at a frequency which is directly related to the electrons’ density (plasma
frequency). A review of the vircator’s theory has been given by Sullivan et al.
(1987) and later Alyokhin et al. (1994) presented a review of the various studies.

1.2.7 Classification Criteria

The variety of operation principles and consequently of devices does not allow to
define a single criterion for their classification. We start our discussion with the
trivial observation that any radiation source consists of at least two components:
electron beam and electromagnetic wave. From the wave perspective the first
question we should ask is whether it is guided or confined by metallic walls as is
the case in most sources, or if it can propagate in free space as is the case in a few of
the free electron laser schemes. If it is guided, then the next question is whether its
phase velocity is smaller or greater than c. The first category is that of slow-wave
devices and its main members are the traveling wave tube and the backward wave
oscillator (BWO). The second category that of fast-wave devices, consists of the
gyrotron, cyclotron auto-resonance maser (CARM) and the free electron laser.
Among the slow-wave structures, there is room for an additional subdivision
since there are closed or open slow-wave structures. Although the great majority
of today’s systems rely on closed structures, the continuous demand for high
frequency sources will continuously enhance the number of devices that have
open structures as their main component; primarily because of the relatively limited
number of modes that may develop.

Still in the context of the electromagnetic wave, the various sources can be
classified according to the interacting mode. In TWTs the interaction is always with
the transverse magnetic (TM) mode whereas in gyrotrons the interaction is always
with the transverse electric (TE) mode. FELs, on the other hand, may interact with
either TE or TEM mode. Combinations of TE and TM modes (hybrid) are, in
general destructive — as happens in acceleration sections where the hybrid mode
(HE;,) causes beam-breakup. However, this effect can be utilized for constructive
purposes in particular when a highly relativistic beam has to be dumped to the wall.
Beam break-up is discussed in Chap. 8.

Even in two devices in which the interaction is with the same mode, say TM
mode such as in the case of TWT and klystron, there is room for additional sub-
division regarding the character of the interaction. In the TWT (as in FEL, gyrotron
and magnetron) the interaction is distributed and it occurs over many wavelengths.
On the other hand, in a klystron, the interaction is localized and it is limited to the
close vicinity of the cavity’s gap — which is typically a fraction of the wavelength.

The electromagnetic structure determines whether there are reflections in the
system and, as we shall see in Chaps. 4 and 6, these determine if the system
operates as an amplifier or an oscillator. In the case of metallic periodic structures,
the feedback can be designed to be part of the electromagnetic characteristics of
the structure as happens in the case of the backward wave oscillator. Furthermore,
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the transverse dimension of the structure determines the number of electromag-
netic modes in the structure. In most cases, the geometry is chosen such that a single
mode is supported at a given frequency but there are cases where frequency or power
impose large geometry therefore the system becomes a multi-mode device. This is
the case for gyrotrons and also a few Cerenkov devices, e.g., Bugaev et al. (1990).

If we examine the sources from the point of view of the electron beam there are
also many possible classifications. High-power devices utilize typically relativistic
beams and devices like the free electron laser have meaningful operations primarily
in this regime. Others like the TWT, gyrotron and klystron can operate either with
relativistic or non-relativistic electrons. Relativistic beams in many cases are
associated not only with high voltages (>200 kV) but also high currents
(>250 A) which implies high power levels (>50 MW). These can be sustained
for relatively short periods of time; typically of the order of 1 ps or shorter. In many
of the cases of interest, several such pulses are fired per second and this is referred
to as the repetition rate. For example, in case of the SLAC X-band klystron
mentioned above, the tube is driven by 1.5 ps long electron pulses at a repetition
rate of 180 Hz. At the other extreme, there are continuous wave (CW) sources such
as magnetrons, gyrotrons and TWTs, which operate at high average power
(>1 kW). Repetitive pulse sources, such as the one driven by the 50 MW beam
mentioned above, may provide a maximum average power (assuming 50% rf
efficiency conversion) of 2.5 W if the pulse duration is 100 ns and the repetition
rate is 1 Hz. At 1 ps and 10 Hz the average power goes up to 250 W.

Without exception the beam has to be guided, otherwise the electrons blow apart
and they are of no use for energy exchange. In most cases, the beam is guided by a
uniform magnetic field and in a small fraction by a permanent periodic magnetic
field. In the gyrotron or the free electron laser this field plays a crucial role in the
interaction process itself. Furthermore, in cross-field devices the uniform magnetic
field is accompanied by a perpendicular electric field that also contributes to the
interaction.

Beam quality, which is associated with fluctuations in the energy around the
average value, is another classification criterion. This topic is addressed in
Sect. 3.4.4 and it is of particular interest in accelerators and in free electron lasers.
In the former because the electrons have to travel very long distances and ultimately
have to be focused with great precision, therefore both the transverse and longitu-
dinal momentum are important. In free electron lasers, this parameter is important
as we go up in frequency and in fact beam quality is one of the major limitations of
today’s free electron lasers — at least with regard to optical or shorter wavelengths.

Energy conversion efficiency brings us to another possible way of classification,
based on whether the initial beam is uniform or pre-bunched. In the latter case, the
efficiency of energy extraction can be very high. There are basically two ways to
pre-bunch a beam: either in a two (or more) stage system as in a klystron or to form
the bunches at the same place where the electrons are generated, namely to produce
bunches in which all electrons have the same velocity. In this regard the way the
electrons are generated is critical and may have a dramatic impact on the perfor-
mance of the device.



1.3 Accelerators 17

Finally, the amount of current injected into the system can also be used for
classification of sources. SLAC klystrons, for example, operate well below the
limiting current whereas the relativistic klystron amplifier (RKA) developed at
NRL by Friedman and Serlin (1985) operates close to the limiting current. At the
extreme, the vircator operates well above the limiting current.

1.3 Accelerators

It is virtually impossible to cover in depth the variety of topics involved in the
operation of modern accelerators in a single monograph therefore, the compro-
mise we adopt is to focus on a few basic phenomena which are directly related to
beam-wave interaction in periodic or quasi-periodic structures. Motivated by the
essentials of beam-wave interaction, as in the previous section, we focus on several
aspects of particle acceleration. Specifically, in this sub-section, we discuss super-
ficially several topics: rf photo-injectors and linear accelerators, circular machines
and damping ring and some essentials of advanced acceleration concepts. If the
reader is interested in topics that are not covered by this text, there is a large variety
of books that cover different aspects of accelerator physics. Starting from the
handbook by Chao and Tigner (1998), to milestone articles edited by Pellegrini
and Sessler (1995) and didactic volumes of Wiedemann (1999a, b) or Lee (2004)
and others that I omitted and I owe them my apology.

1.3.1 RF Photo Injector

A linear collider or an FEL based light source require very good quality electron
beam in particular for generating short wavelengths moreover, a high peak current
is necessary for a reasonable gain. After the demonstration of infra-red (IR) radia-
tion amplification by electrons in a wiggler by Elias et al. (1976), these require-
ments were already met by the best conventional injectors (dc gun + buncher).
Westenskow and Madey (1984) proposed to put a thermionic cathode in an rf
cavity. This new gun named “rf gun” or “microwave gun” was used as a bright
electron source for the Mark III FEL. Meanwhile, it was found that very high
current densities could be obtained from semiconductor photo-cathodes and in the
late 1980s the first demonstration of a FEL driven by electrons from a laser
irradiated photocathode was reported at Stanford by Curtin et al. (1990). Since
then, rf photo-injectors became the standard in any linear accelerator design.
Conceptually, an rf-photo-injector consists of a photocathode placed in an rf
cavity illuminated by a laser which, in turn, delivers short pulses and since their
duration is much shorter than the rf period, as they leave the cathode, the emerging
electrons are already bunched. Comparing to the normal thermionic cathodes that
for extended life-time are limited to about 10 A cm ™2, photo-cathodes may deliver
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Fig. 1.13 The schematic of
an rf photo-injector
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very high current densities (hundreds of A cm™?) but the actual current density is
determined by the required life-time and the beam quality necessary for the specific
application. A high-power (SLAC’s 2,856 MHz) klystron feeds a relatively short
(1.5 cell) acceleration structure and the rf field accelerates the electrons —
McDonald et al. (1988). Typically 5-10 ps pulses of 1 nC are available and the
outgoing electrons have an energy of less than 10 MeV. Schematic of the Brookhaven
National Laboratory (BNL) design is illustrated in Fig. 1.13 and a review of the state
of the art was compiled by Russell (2003).

1.3.2 Damping Ring

One or more acceleration modules according to the specifications of the required
system follow a photo-injector. Such a module consists of either a series of
coupled cavity structure or disk-loaded waveguide. A wave that has a longitudinal
electric field and moves at the speed of light in vacuum is supported by this kind
of structure. As a result, a relativistic electron experiences a constant electric
field. A detail of the processes associated with this acceleration process is
discussed in more detail in Chap. 8. In this section we adopt a system-oriented
approach and consider the next central component of a linear collider, this is the
damping ring. It was pointed out above that an electron moving at a constant
velocity in vacuum does not radiate however, if it accelerates then it may radiate.
In fact, if the acceleration is perpendicular to the trajectory, the power emitted
(synchrotron radiation) is proportional to y* thus the electron is decelerated. This
effect plays a crucial role in damping rings which, in turn, is vital for reducing
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the “temperature” of relativistic electrons. Low “temperature” is essential when
nanometer size bunches need to collide after being accelerated along many
kilometers in a linear collider. In order to assess the difficulty in the latter case
we need to remember that charged particles tend to repel each other therefore, if
no action is taken, the bunch will spread out leading to fewer collisions (events)
than a narrowly focused one. To avoid this spread-out, the electron and positron
bunches are injected into damping rings (DR). Here the particles’ trajectory is
bended by vertical magnetic fields and they are decelerated according to their
energy. Along the circumference of the ring, acceleration modules recuperate the
deficit in the momentum but this is provided only in the longitudinal direction. In
other words, as the bunches circulate in the damping ring, they lose energy by
synchrotron radiation and are re-accelerated each time they pass through a cavity.
The synchrotron radiation reduces the motion in a/l direction, while the cavity
re-accelerates only those in the desired direction. Thus, the bunch of electrons or
positrons becomes more and more parallel in motion as the radiation “damps out”
motion in the undesired directions. As this monograph is being written significant
efforts are dedicated by the accelerator physics community to the design of the
damping rings of the International Linear Collider (ILC). Although this is remote
from the focus of this monograph, it should be also mentioned that circular
machines are employed for the acceleration of ions since the synchrotron radia-
tion by heavy particle is negligible comparing to that emitted by electrons. As a
result, ions can be accelerated when following a circular trajectory without a
significant energy loss.

Beyond the injector, the damping ring and the main accelerator body, a linear
collider consists of a set of magnet(s) that focus the electrons and positrons to the
interaction point. The dynamics of the particles in this region is not in our scope in
the framework of this monograph.

1.3.3 Advanced Acceleration Concepts

Charged particles are accelerated in either a cavity or slow-wave structure by an
electromagnetic wave. The latter’s frequency varies between 500 MHz to 30 GHz
and the power levels scale, as a rough estimate for a given gradient, as P oc f >
therefore it is just natural to aim for higher frequencies since the necessary power is
reduced accordingly. Moreover, the threshold for breakdown at higher frequencies
is elevated facilitating higher gradients thus shorter structures. Beyond 30 GHz the
availability of high-power radiation sources is limited until we get into the optical
range 10-0.5 um. Reducing the operating wavelength by four orders of magnitude
entails a reduction of about 2 orders of magnitude in the longitudinal dimension —
assuming that all the other components (optics, cryogenics and vacuum systems)
can be scaled like the acceleration structure. As a result, the 30 km long ILC may be
accommodated within the 2-miles long tunnel at SLAC if the operating wavelength
is 1 um. Obviously nature is not as generous with us and many obstacles ought to be
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removed before this wishful thinking will become a feasible alternative and in this
text we shall discuss a few.

Laser acceleration is very appealing since the technology is already being
developed by the communication industry and the drastic change in the operating
frequency leads to a few revolutionary alternatives. For example, in this frequency
range metals have much higher loss comparing to dielectrics therefore, the acceler-
ation structure should be of dielectric material which for ages was a taboo in the
accelerators community. An even more revolutionary concept is the use of plasma.
From the first days of vacuum tubes, it was clear that in order to have a reasonable
control of the charged particles they must move in vacuum in order to avoid
decoherence due to scattering with surrounding atoms/molecules (hydrogen). The
powerful laser available today facilitate to generate intense plasma waves
(gradients of 200 GV/m!!) which may be employed to accelerate electrons. In
this text we briefly consider acceleration in plasma but we will consider laser
acceleration in dielectric structures. Readers interested in laser driven acceleration
in plasma can consider a recent review article by Esarey et al. (2009).

1.4 Choice and Organization of the Material

With such a variety of concepts and paradigms we owe the reader an explanation of
how the material was selected, and why we chose to present one topic, whereas
another, which might be as important, was left out. The principle that directed me
was to have a coherent and thorough presentation of the beam-wave interaction in a
few modern devices with most mathematical details that enable a simple descrip-
tion of their operation.

From the very beginning, it was clear that it is virtually impossible to meet the
requirement of detailed presentation and encompass the whole variety of sources
and interaction schemes, discussed above, in one reasonably-sized volume. During
the nineties, I was actively involved in the development of high-power, high-
efficiency traveling wave amplifiers whereas during the last decade my focus has
shifted to advanced acceleration concepts. These facts have biased the choice of
presentation towards the interaction in periodic and quasi-periodic structures.

The book can be divided into three parts. The first includes Chaps. 2 and 3
which present some of the elementary concepts in the electromagnetic theory and
electrons’ dynamics which are relevant to beam-wave interaction. The second part
includes Chaps. 4, 5 and 6. It addresses the interaction in periodic (and quasi-
periodic) metallic structures. The third part (Chaps. 7 and 8) focuses on free
electron laser and an introduction the linear acceleration. Let us now briefly review
the content of the various chapters.

Chapter 2. After we discuss Maxwell equations in general we present simple
homogeneous solutions corresponding to the TEM, TM, TE and hybrid modes.
When the current-density is present it is useful to use Green’s function method for
solution of the electromagnetic field. Its formal description is accompanied by two
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examples which illustrate the Cerenkov radiation in free space and in a waveguide.
Several finite length effects are considered as well as edge effects. Scattered waves
phenomena are also discussed.

Chapter 3. All topics considered throughout the text rely on classical mechanics
and the basics are briefly discussed. Some of the methods of electrons generation
are considered followed by some principle of beam transport — including limiting
laws (e.g. Child-Langmuir). In this context, some of the basic measures (emittance
and brightness) are introduced. Space-charge waves are introduced and some of the
fundamental instabilities that may develop when these waves are excited. Various
radiation phenomena conclude this chapter.

Chapter 4. In this chapter we investigate the fundamentals of beam-wave
interaction in a distributed slow-wave structure. A dielectric loaded waveguide
was chosen as the basic model in the first sections because it enables us to illustrate
the essence of the interaction without the complications associated with complex
boundary conditions. In the first section, we present part of Pierce’s theory for the
traveling wave amplifier applied to dielectric loaded structure and extended to the
relativistic regime. Finite length effects are considered and the operation of an
oscillator is described. While the dynamics of the beam in all these topics was
considered in the framework of the hydrodynamic approximation, we elevate the
level of description of particles dynamics by employing the macro-particle
approach namely, by representing the ensemble by a large number of clusters of
electrons. This formalism enables us to examine the interaction in phase-space
either in the linear regime of operation or close to saturation. It also facilitates
investigation of tapered structures and analysis of the interaction of pre-bunched
beams in tapered structures. Further extension of the macro-particle approach
to include the effect of reflections enables us to describe the operation of an ampli-
fier and an oscillator and obviously the transition from the former to the latter.
A discussion on the interaction with hybrid modes concludes this chapter.

Chapter 5. This chapter presents various characteristics of periodic structures
with emphasis on those aspects relevant to interaction with electrons. First we
present the basic theorem of periodic structures, namely the Floquet theorem.
Following this theorem we bring an investigation of closed and open periodic
structures. Smith-Purcell effect is considered as a particular case of a Green’s
function calculation for an open structure and a simple scattering problem is also
considered. Planar and cylindrical Bragg waveguides are being analyzed, paving
the way to optical acceleration structures. Two dimensional periodic structures are
being considered and some applications are considered. The chapter concludes with
three examples of a transient solution in periodic structures.

Chapter 6. This chapter deals with metallic quasi-periodic structures which,
among others, are required in order to maintain an interacting bunch in resonance
with the wave when high efficiency is required. Non-adiabatic change of geometry
dictates a wide spatial spectrum, in which case the formulation of the interaction in
terms of a single wave with a varying amplitude and phase is inadequate. In fact,
the electromagnetic field cannot be expressed in a simple (analytic) form if sub-
stantial geometric variations occur from one cell to another. To be more specific: in
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uniform or weakly tapered structures the beam-wave interaction is analyzed assum-
ing that the general functional form of the electromagnetic wave is known i.e., A X
(z) cos[wt — kz — ¢(z)] and the beam affects the amplitude A(z) and the phase,
¢(z). Furthermore, it is assumed that the variation due to the interaction is small on
the scale of one wavelength of the radiation. Both assumptions are not acceptable in
the case of a structure designed for high efficiency interaction. In order to overcome
this difficulty and others, we present an analytic technique which has been devel-
oped in order to design and analyze quasi-periodic metallic structures of the type
discussed in Chap. 5. The method relies on a model which consists of a cylindrical
waveguide to which a number of pill-box cavities and radial arms are attached. In
principle, the number of cavities and arms is arbitrary. Surface roughness effect
may be described using this model and the Chapter concludes with a discussion on a
photo-injector.

In the third part of this book we consider the beam-wave interaction in periodic
and quasi-periodic structures different from that in the second part, namely free
electron lasers and particle accelerators. These two topics have been extensively
discussed in literature and they are the subject of many articles, books and
conferences. Therefore, our approach in this part combines our approach of detailed
analysis used in the previous chapters with a general discussion of alternative
concepts and configurations.

Chapter 7. This chapter deals with the principles of free electron laser. In the
first section we consider the spontaneous emission as an electron traverses an ideal
wiggler. It is followed by the investigation of coherent interaction in the low-gain
Compton regime and subsequently we present the high-gain Compton regime
which includes cold and warm beam operations. The macro-particle approach is
introduced and we conclude the chapter with a brief overview of the various
alternative schemes of free electron lasers and a special section dedicated to
X-ray sources.

Chapter 8. One of the important systems where beam-wave interaction in
periodic structures plays a crucial role is the particle accelerator. In the first part
of this chapter we discuss some basics of linear acceleration. In the second part we
discuss various advanced acceleration concepts including two-beam acceleration,
acceleration in plasma by either laser or electrons wake as well as acceleration at
optical wavelengths.



Chapter 2
Elementary Electromagnetic Phenomena

All the effects discussed in this text rely on the presence of electric, magnetic or
electro-magnetic fields in the system. It is therefore natural to discuss first the
governing equations and some basic electromagnetic phenomena. With this regard,
“elementary” in the title of this chapter refers to subjects related to beam-wave
interaction and not necessarily to undergraduate-level topics, though we discuss a
few elementary concepts in the first two subsections.

2.1 Maxwell’s Equations

At the foundations for the analysis of all electro-magnetic phenomena are
Maxwell’s equations that relate the electric (E) and magnetic (H) field, the electric
(D) and magnetic (B) inductions with the current (J) and charge (p) densities:

V><E(r,t)—|—QB(r,t)=07 (2.1.1)
ot
0
V x H(r,1) — &D(r,t) = J(r,1), (2.1.2)
V- D(r,1) = p(r,1), (2.1.3)
V -B(r,1) = 0. (2.1.4)

This set of equations determines the electromagnetic field at any point in space
and in time provided that the source terms (p and J), are known. In addition, the
initial and boundary conditions have to be determined together with the constitutive
relations of the medium, i.e., the relation between the inductions (B and D) and the
field components (H and E).

L. Schachter, Beam-Wave Interaction in Periodic and Quasi-Periodic Structures, 23
Particle Acceleration and Detection, DOI 10.1007/978-3-642-19848-9_2,
© Springer-Verlag Berlin Heidelberg 2011
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2.1.1 Constitutive Relations

Matter reacts to the presence of an electromagnetic field and the constitutive
relations characterize this reaction. In general, these relations are non-linear and
they couple all the components of the electromagnetic field. In many of the cases of
interest, the constitutive relations are linear and scalar

B(r,t) = popH(r, 1), (2.1.5)
D(r,t) = go&E(r, 1), (2.1.6)

and in case of a metal Ohm law’s reads
J(r, 1) = oE(r,1); (2.1.7)

here g = 8.85 x 10~!? farad/m and p, = 4n x 10~" henry/m are the vacuum per-
mittivity and permeability respectively. The relative dielectric coefficient ¢, and its
permeability counterpart p, characterize the material. In vacuum, & =1, y, =1
and ¢ = 0, i.e.,

V x E(r,?) +%uOH(r,z) =0, (2.1.8)
V x H(r, 1) — gsoE(r, 1) = J(r, 1), (2.1.9)
V - gE(r,t) = p(r,1), (2.1.10)

V - uoH(r, 1) = 0. (2.1.11)

Assuming that we know the source terms (p and J) it is sufficient to use the first
two equations (2.1.7)—(2.1.8) in conjunction with the charge conservation,

V-J(r,t)+%p(r,t) =0, (2.1.12)

in order to solve the electromagnetic field. This statement can be examined by
applying V - on both (2.1.7) and (2.1.8). Since any vector function V satisfies
V - (V x V) =0, one obtains (2.1.10) from (2.1.7) and (2.1.9) from (2.1.8).

2.1.2 Boundary Conditions

At sharp discontinuities the differential operators are not defined therefore an
integral approach has to be adopted. Alternatively, Maxwell’s equations can be
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solved in each region separately, away of the discontinuity, and the question that
needs to be addressed is the relation between the various field components from
both sides of a discontinuity. Consider two regions (subscripts 1 and 2) separated by
a surface which is locally characterized by its local normal n. The boundary
condition associated with (2.1.1) is deduced from its integral form as

nx (E; —E;)=0. (2.1.13)
Similarly, from the integral form of (2.1.1) we conclude that
nx (H; — Hy) = Js, (2.1.14)
from (2.1.2)
n- (D; —D,) = p,, (2.1.15)
and finally, from the integral form of (2.1.3) we can deduce that
n- (B, —B,)=0. (2.1.16)

Here J; is the surface current density and p; is the surface charge density.

Equation (2.1.12) indicates that the tangential component of the electric field,
at any time, has to be continuous at the transition between two discontinuities.
In a similar way, the tangential component of the magnetic field can be discontinu-
ous only if there is a surface current density (Js) — see (2.1.13). The other two
expressions indicate that any discontinuity in the normal component of the electric
induction is due to surface charge density (p,) and the normal component of the
magnetic induction is always continuous.

Comment 2.1. As in the case of Maxwell’s equations, it is sufficient to use the first
two sets of boundary conditions since the latter two are then automatically satisfied.

Comment 2.2. One outcome of the boundary conditions as formulated above is
that at the surface of an ideal metal (¢ — o) the tangential electric field vanishes.
This is because the electric field is zero in the metal and the tangential electric field
has to be continuous.

2.1.3 Poynting’s Theorem

The energy conservation associated with the electromagnetic field can be deduced
from Maxwell’s equations by multiplying (scalarly) (2.1.1) by H, (2.1.1) by E and
subtracting the latter from the former. In a linear medium, the result reads
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a1 1
V-S+o |seuE E+uuH -H| = -J-E, (2.1.17)
where
S(r,t) = E(r,t) x H(r,?) (2.1.18)

is the instantaneous Poynting vector which represents the energy flux (power per
unit surface) in the vector direction. The second term,

1

1
w(r, 1) = Esoer(r,t) -E(r, 1) + EﬂoﬂrH(l’a 1) - H(r,1), (2.1.19)

represents the instantaneous energy density stored in the electric and magnetic field
respectively. And the right-hand side term in (2.1.16) represents the coupling
between the electromagnetic field and the sources (or sinks) in the system.
Gauss’s theorem can be used to formulate Poynting’s theorem in its integral
form. We integrate over a volume V whose boundary is denoted by a; the result is

d%W(t) — fPaa.s- J V] -E, (2.1.20)

where for a linear medium

W(t) EJ dv BaoarE-E—f—%uou,H-H], (2.1.21)
14

is the total energy stored in the volume V. Explicitly (2.1.19) reveals that the change

in the energy stored in the volume is either due to energy flux flowing through the

surrounding envelope or due to sources in the volume (or both).

One important aspect to emphasize at this stage is that the electromagnetic
power is carried by the field and not by the metallic boundaries; the latter only
guide the energy flow. This is an important observation since subsequently, we
discuss the propagation of electromagnetic waves of hundreds of megawatts and all
this power propagates in vacuum. To illustrate the process let us consider an
elementary electric circuit consisting of a battery, two parallel lossless wires, and
a resistor at the end as illustrated in Fig. 2.1.

u ' -
Fig. 2.1 Energy flowina 2 Hecl lEOCVb SVl R
simple circuit. The power T s ~——
flows in the air and is guided T
= 1=V,/R

by the wires
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Firstly, we examine the Poynting vector term of (2.1.19): the voltage Vy is
determined by the battery whereas the current is determined by the resistor (R)
namely, I = V},/R. Since the distance between the two wires is d, the typical
electric field between the two wires is Vi, /d moreover, the azimuthal magnetic
field generated by one wire at the location of the other is proportional to the current
1. Consequently, the Poynting vector is parallel to the wires and it is proportional
to the product of the two field components S  IV},. The power which propagates
from the battery towards the resistor is proportional to Poynting vector thus as
expected, the power is proportional to IV} or Vﬁ /R. Since there are no time
variations the energy term in Poynting theorem vanishes whereas the second term
in the right-hand side of (2.1.19) can be readily calculated to show that the power
dissipated in the resistor is VZ/R. For further discussion see Chap. 11 in the text
book of Haus and Melcher (1989).

2.1.4 Steady-State Regime

In many cases of interest all the components of the electromagnetic field oscillates
at a single angular frequency (w) thus all components have the following functional
form

F(r,t) =f(r)cos[wt + y(r)]. (2.1.22)
It is convenient to omit the time dependence and represent the function F(r, r)

using a complex notation, namely we introduce the imaginary number j = v/ —1
and utilize the fact that exp(j¢) = cos(¢) + jsin(€) the function F

F(r,1) = 3 (FJexpl i (Fexplion) + F(Fjexpljb(P)lexp(—jon)}.  (2123)

With this notation, it is convenient to define
F(r,m) = f(r)e?™), (2.1.24)
which permits us to use this function instead of F(r,¢) and consequently,
F(r,1) = Re[F(r,w)e"]; (2.1.25)

F(r,) is called the phasor associated with the function F(r,¢). To illustrate the
use of this notation, Maxwell’s equations read
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V x E + joB = 0, (2.1.26)
VxH-joD=1], (2.1.27)
V-D=p, (2.1.28)
V-B=0 (2.1.29)

The main advantage of this notation is now evident since the differential operator
0/ 0t was replaced by a simple algebraic operator jo.

2.1.5 Complex Poynting’s Theorem

The phasor notation, as introduced above, cannot be directly applied to Poynting’s
theorem since all quantities are quadratic in the electromagnetic field. In principle,
we have two options: (1) transform the field components to the time domain and
then substitute in Poynting’s theorem as defined in (2.1.16) — abandoning in the
process the phasor notation. (2) Limit the information to the average energy and
average power — but preserving the phasor notation. Since in the former case there
is no real advantage to the new notation, we next pursue the latter option.
When we consider the product of two oscillating quantities, we have

Ay cos(wt + r,)Az cos(wt + yr,)

= % [A} exp(jwr) + A} exp(—jot)| [ Az exp(jwr) + A} exp(—jor)]  (2.1.30)

the average of the product of these two oscillating functions corresponds to the
non-oscillating term in the expression above i.e.,

oo o 1
1 [A1A5 + A[A;] :§A1A2 cos(Y, — ). (2.1.31)

We use this fact in order to formulate the complex Poynting’s theorem. First
(2.1.25) is multiplied scalarly by the complex conjugate of the magnetic field
phasor (H'). From the product we subtract the complex conjugate of (2.1.26)
multiplied by the electric field; the result reads

~ 1o =
V-8 +2jo[wy —We] = —E- T, (2.1.32)

wherein S = E x H72 is the complex Poynting vector, Wy = ﬁo,urﬁ . H74 is the
average (in time) magnetic energy density and Wg = go&E - E*/4 is the electric
counterpart.
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Energy conversion is associated with the real part of the Poynting vector whereas
the imaginary component is associated with electro-magnetic energy stored in the
system. Throughout the text we omit the bar from the phasor quantities, except if
ambiguities may occur.

2.1.6 Potentials

It is convenient, instead of solving a couple of first order differential equations, to
solve a single second-order differential equation. For this purpose we benefit from
the fact that the divergence of the magnetic induction is zero (V - B = 0) and
introduce the magnetic vector potential A which determines the magnetic induction
through

B=VxA (2.1.33)

By virtue of this definition, the equation V -B =0 becomes an identity.
Substituting this definition in Faraday’s law (2.1.25) we obtain

V x (E +jwA) =0. (2.1.34)
Further using the fact that V x (V®) = 0 we conclude that

E =—jwA - VO, (2.1.35)
wherein @ is the scalar electric potential. Both potentials satisfy, in a Cartesian

coordinate system and in a linear medium (¢, = 1 and ¢, > 1), the non-homogeneous
wave equation:

w2
[Vz + & 6—2} A=—pl, (2.1.36)
and
2
1
[vz +8rw—2]d) ———p, (2.137)
c £0&r

provided that the divergence of the vector function A is chosen to be
V-A+jotd=0. (2.1.38)
c

This is the so-called Lorentz gauge; ¢ = 1/,/ny€o is the phase velocity of a plane
electromagnetic wave in vacuum.
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2.1.7 Edge Effect

In addition to the boundary conditions discussed above in the context of sharp
discontinuity, we need to consider the field and the energy near an edge. It is
demonstrated in what follows that while near an edge, the electric field diverges, the
energy stored is finite.

With this purpose in mind, consider a simple configuration where the radius of
curvature of a realistic edge is much smaller than the characteristic wavelength of
the electromagnetic field in its vicinity (4 >> R). Based on this assumption, the
electric field in the vicinity of an ideal edge (R = 0) as the one schematically
illustrated in Fig. 2.2, is a solution of the Laplace’s equation and further assuming
that the system is infinite in the z-direction, then

2
[l 0,0,19 } 0 (2.1.39)

o or T 2agl” T

is the equation to be solved subject to the zero potential condition on the metallic
walls

d)(r,qb:%) —0 and d)(i',(b:Zn—%) —0. (2.1.40)

Its solution has the form ® ~ Ae"®r" + Be/*%;"_ thus imposing the boundary
conditions namely, ®(r,¢ = «/2) =0 and ®(r,¢p = 2n — o/2) = 0 we conclude
that a non-trivial solution is possible if sin[v(2z — a)] = 0, implying that the radius
of curvature of the field (v) is given by

T

y = n=1,2,3... (2.1.41)

2n — o

and consequently,

() (r,

< ¢ < 2nf%> i A, sin [Zn”fa (qﬁf%)] S (21.42)

N R

Fig. 2.2 In the vicinity of an
ideal edge the curvature of the
electric field is determined by
its angle o
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Fig. 2.3 Contours of
constant potential (n = 1) in
the vicinity of an ideal edge

In order to demonstrate the previous statement, let us consider the first harmonic
(n = 1) illustrated in Fig. 2.3 for o = n/6. The corresponding field components are

00, T . v o x|
E = o _2n—ocA1 Sm{2n—oc (QS_E)} "

1 0@, b b o x
ot el (6]
¢ r d¢ 2n — o 1005271—0{ ¢ 21"

revealing that at the limit » — 0, if & < &, then the electric field diverges. Neverthe-
less, the energy, stored in a volume of radius R and length A,, is finite as can be
deduced from the explicit expression for the stored energy

(2.1.43)

2n—o/2 R
1 1 2n
Wg = A, J do Jdrr [EgOE,? + anEfb] x Ame. (2.1.44)
/2 0

Comment 2.3. A similar approach may be followed to investigate the field distri-
bution in the vicinity of a dielectric edge. In this case the curvature of the field (v) is
determined by both the angle of the edge (o) as well as the dielectric coefficient (,)
and it is a solution of

&-tan (v %) + tan [v (n — %)} =0. (2.1.45)

2.1.8 Reciprocity Theorem

The Lorentz reciprocity theorem is a useful theorem for solution of electromagnetic
problems, since it may be used to deduce a number of fundamental properties of
practical devices. It provides the basis for demonstrating the reciprocal properties of
electronic microwave circuits and for showing that the receiving and transmitting
characteristics of antennas are the same. To derive the theorem, consider a volume
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V bounded by a closed surface A. Let a current source ﬂ in V produce a field E 1 H 1
while a second source J, produces a field E,, H,. Expanding the relation V - (E} X

ﬁz — EZ x H 1) and using Maxwell’s equation it can be shown that

V(E] Xﬁz—égXﬁ]):(VXE])-ﬁQ—(VXﬁZ)'EI
- (V Xﬁz)~ﬁ1 +(V Xﬁ]) 'Ez (2146)
=, -E\+J, - E,.

Integrating both sides over the volume V and using Gauss’ theorem

JV (E] Xﬁz—Ez Xﬁl)dV: ﬁA(El Xﬁz—ﬁz Xﬁl) - 1dA
Y (2.1.47)
ZJ(Ez'f1 —E;-D)av,

Vv

where 77 is the unit outward normal to A.

There are at least two important cases where the surface integral vanishes: in the
first case of radiating fields (to be discussed subsequently) and in the case of quasi-
state fields when E o 72 and H oc 2. Since the surface of integration is propor-
tional to r? at the limit » — oo the surface integral clearly vanishes, therefore
(2.1.46) reduces to

JEI hdV = J 2 - hdv. (2.1.48)
\% |4

If J; and J, are infinitesimal current elements this is to say that the variations of the
electric field of the other source are negligible in the region of the source, then

— - — -

El(l"z) 'Jz(l"z) = Ez(l"]) ']1 (l"]), (2149)

which states that the field E produced by J) has a component along J, that is equal
to the component along J1 of the field generated by J> when J; and J> have unit
magnitude. The form (2.1.48) is essentially the reciprocity principle used in circuit
analysis except that E and J are replaced by the voltage V and current /.

2.2 Simple Wave Phenomena

In this section, we present solutions of the wave equation for several simple cases.
A few of the examples presented here will be used subsequently to develop models
which in turn enable the investigation of complex structures.
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2.2.1 Simple Propagating Waves

With the source terms, constitutive relations and boundary conditions determined,
one could proceed towards solution of a few simple wave phenomena. For simplic-
ity we consider a scalar function /(r) which oscillates at an angular frequency w
(i.e., we assume a steady-state regime of the form exp jo f) and which is a solution of

[vz + Cﬂ Y(r) =0. (2.2.1)

As a first stage, we examine waves propagating in one dimension. In a Cartesian
system (x, y,z) we consider a system in which all variations are only in the z direc-
tion (0/0x ~ 0 and 0/Jy ~ 0), and the homogeneous wave equation reads

2
[d + ‘”2] Y(z) = 0. 2.2.2)

dz2 2

A second order differential equation, has two solutions:
Y(z) =Aiexp (—192) +A_exp (j 82) ; (2.2.3)
c c

these represent plane waves since the phase is constant, in the plane defined by
z = const. The first term describes a wave propagating in the z-direction whereas
the second represents a wave propagating in the opposite direction.

In a cylindrical coordinate system (7, ¢, z), ignoring azimuthal and longitudinal
variations (9?/9¢* ~ 0 and 9?/dz* ~ 0), the wave equation reads

1d d o?
Faratau=o 29
Its solution is
N @ (@ (1 (@
W(r) = A HS (c;)+A,HO (C r), (2.2.5)

where Hél) (¢) and Héz) (&) are the zero order Hankel function of the first and second

kind; they are related to Bessel functions of the first and second kind by H(()l) (x) =

Jo(x) +jYo(x) and HE)Z) (x) = Jo(x) — jYo(x). As in the previous case, the first term
represents a wave propagating from the axis outwards and the second term
describes a wave propagating inwards. For completeness, we also present the
solution in a spherical coordinate system (r, ¢, 0). Ignoring all angular variations
the wave equation is given by
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1 d° w?
|:; ﬁr ?} lﬁ(l’) =0, (2.2.6)
and its solution is
Y(r)=Ay (9 r) exp (—j 2 r) +A_ (9 r) exp (jg r) , (2.2.7)
c c c c

where the first term represents a spherical wave propagating outwards (from the
center out) whereas the second represents an inward flow.

2.2.2 The Radiation Condition

From the pure mathematical point of view, the two waves in each one of the
solutions of above are a direct result of the fact that the wave equation is a second
order differential equation. However, in absence of obstacles, our daily experience
dictates a wave which propagates from the source outwards; this implies that in
all three cases there are no “advanced” waves i.e., A_ = 0. This is one possible
interpretation of the so-called the radiation condition and it can be considered an
additional boundary condition which is a byproduct of the causality constraint
imposed on the solutions of the wave equation.

This formulation relies on the simple solutions presented above; however, the
general trend is valid for solutions that are more complex. In the case of cylindrical
azimuthally non-symmetric waves, the radiation condition implies for a solution
V(r, ¢,z), that the limit

[l/l(r, (;S,Z)exp(jwr/c)rl/z} N (2.2.8)

F—00

is finite and it is  independent. In a similar way, for spherical waves described by a
function Y (r, ¢, 0), the limit

[tﬁ(n ¢, 0)e/ "”r} : (2.2.9)

r—00

is finite and r independent. While this condition looks straightforward in the
analytic examples presented above, it is not as trivial to impose it in numerical
solvers in particular in a broad frequency range and/or when the mode configuration
cannot be explicitly specified.

Wheeler and Feynman (1945) have used advanced solutions of the wave equation
in order to explain the source of the so-called radiation reaction force. It
is well known that electromagnetic power is emitted by a particle when it is
accelerated. This power is emitted from the particle outwards and comes at the
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expense of its kinetic energy. Since this change in the kinetic energy of the particle
can be conceived as an effective force this is also referred to as the radiation reaction
force.

2.2.3 Evanescent Waves

So far we have presented only waves which vary and propagate in one dimension
(1D), namely solutions of the wave equation either in a Cartesian, cylindrical or
spherical system of coordinate. At this point, the level of complexity is slightly
elevated to include waves that vary in two dimensions. First, consider a Cartesian
coordinate system in which we ignore variations in the y direction. The wave
equation in this case reads

* P o
[8}(2 oz2

— 4 _|_?:| [ﬂ(_x7z’ (U) = 0’ (2210)

and its formal solution, assuming a propagating behavior in the z-direction, is given

by
W(x,z,w) = exp(—jkz) [wap (—\ [ k2 — cco_;x> + A_exp (\ [ k2 — Cg—;)] .

(2.2.11)

However in the half-plane defined by x > 0 the solution is

2
W(x,z,w) = A, exp(—jkz)exp (— K — Cca—zx> , (2.2.12)

since otherwise the solution diverges at x — oo. For |k|c > the wave decays
exponentially in the x direction. This is an evanescent wave: it propagates in one
direction and decays exponentially in another. In the opposite case, for |k|c < w, the
wave propagates at an angle 0 = cos™! (kc/w) relative to the z axis.

It is instructive to examine (2.2.12) in the time domain. Assuming zero phase for
A, then

Y(x>0,z,1) = A, cos(wt — kz)exp l— K — (?) 2x] . (2.2.13)

Based on this expression it is convenient to introduce the concept of phase velocity:
this is the velocity at which an imaginary observer has to move, in order to measure
a constant phase (wt — kz = const); explicitly, this reads
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Vo = (2.2.14)

=g

With this definition, we observe that in a two dimensional case, an evanescent wave
is characterized by a phase velocity smaller than c.

2.2.4 Waves of a Moving Charge

Evanescent waves play an important role in the interaction process of particles and
waves. The simplest manifestation of their role is the representation of the spectrum
of a moving charge in the laboratory frame of reference. For this purpose, we
examine now the waves associated with a point charge (e) moving in the z direction
at a constant velocity vy in vacuum; no boundaries are involved and the system is
azimuthally symmetric (9/0¢ = 0). The current distribution in this case is given by

1
J(r,t) = fevoﬁé(r)é(z —vot)l;, (2.2.15)

where 1, is a unit vector in the z direction. This current distribution excites the z
component of the magnetic vector potential that in turn satisfies

1o o & 1 &
|:; arl 5-’—@ _C_2 W:|AZ(I,Z, t) = —ﬂOJZ(I7Z, l), (2216)

its solution is assumed to have the form

o] o0
A (ryz,1) = J dwexp(jwt)J dkexp(—jkz)a,(r, k, w), (2.2.17)
where a,(r, k,®) satisfies
1d d evoll
. _T?%a = — 2.
L FeLem ]ah(r,k, ) (Zn)zré(r)é(a) kvop), (2.2.18)

and I'? = k2 — »?/c?. Off-axis the solution of this equation is
a.(ryk,w) = Ay (k, )Ko(T'r), (2.2.19)

where Ko (&) is the zero order modified Bessel function of the second kind. In order
to determine the amplitude A, there are two ways to proceed: (1) calculate the
azimuthal magnetic field and then impose the boundary conditions at » = 0. An
alternative way is to (2) integrate (2.2.18) from r = O tor = é — 0. At this point we
prefer the latter primarily because this approach will be utilized extensively
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subsequently. For small arguments the modified Bessel function behaves as
Ko (&) ~ —In(¢) (see Abramowitz and Stegun 1968, p. 375) and consequently,

evolly

(2n)*

Substituting this result in (2.2.17), (2.2.19) we obtain

A(ryz,t) = — (ZZ(;Z Jio dwexp [jw (t - Vio)] Ko (% r #) , (2.2.21)

where f = vo/cand y =[1 — ﬁz]fl/ 2, Using the Lorentz gauge one can determine
the scalar electric potential

e 11(*® z o 1
O(r,z,t) = —— — — d jo(t—— || Kol —7r—). 2.2.22
(r,z,1) dmeg VORJ—M wexp{jw( V0>] 0<Cr“/ﬁ> ( )

This expression indicates that the field associated with a moving charge is
a superposition of cylindrical evanescent waves (for large arguments the modi-
fied Bessel function decays exponentially following Ko(&) ~ exp(—¢&)+/m/2¢
Abramowitz and Stegun 1968, p. 378). There is no electromagnetic average
power emitted by this particle in the radial direction however, this average power
is non-zero in the direction parallel to the particle’s motion — see Exercise 2.2.
When scattered by periodic structures, the evanescent waves can be “converted”
into propagating waves as we shall see when the Smith-Purcell effect will be
discussed in Chap. 5.

Ay (k) = —

8(w — kvp). (2.2.20)

2.3 Guided Waves

In all the solutions presented above, no boundaries were involved, while in many of
the topics to be considered, the electromagnetic wave is guided by either a metallic
or dielectric structure. In addition to the injection of electromagnetic power into the
system, metallic/dielectric structures facilitate the storage, the interaction process
itself and ultimately, they allow extraction of the power out of the system.

2.3.1 Transverse Electromagnetic Mode

The simplest mode, which may develop when two metallic surfaces are present, is
the transverse electro-magnetic (TEM) mode. In the first part of this subsection we
consider the way this mode is excited. In conjunction with the electromagnetic field
generated by a moving charge let us consider a radial transmission line consisting
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of two parallel lossless plates; the distance between the plates is denoted by d and it
is much smaller than the (vacuum) wavelength i.e., A(= 2nc/®) > d. Subject to
this condition, we ignore the longitudinal variations (9% /9z> ~ 0 ) therefore, for an
azimuthally symmetric system the wave equation reads
1d d o ) )
L Clr’(l}"+62:|AZ(’7w) = —upJ.(r, w). (2.3.1)

An infinitely thin “wire” located on axis carries an oscillatory (w) current, excites
the magnetic vector potential; the corresponding current density is

J.(r,w) = ILé(r). (2.3.2)

2nr

Figure 2.4a illustrates schematically the system under consideration. A solution
of the homogeneous wave equation, which satisfies the radiation condition, is
given by

A(r,0) = A, HY (9 r) , (2.3.3)
Cc

and A, is determined by the discontinuity at r = 0. Integrating (2.3.1) in the close
vicinity of r = 0,

d Ho
-—A, =—-= 234
{’ dr oA, w)] ot 2n’ 234)
and using the expression for Hankel function for small arguments i.e., Hff) (x) ~
—jIn(x)2/n (Abramowitz and Stegun 1968, p. 360), we obtain A, = —jlu,/4.

Fig. 2.4 (a) Propagation of transverse electro-magnetic (TEM) mode in a radial transmission
lineA > d. (b) Propagation of a transverse magnetic (TM) mode in a circular waveguide — see
Sect. 2.3.2. (¢) Propagation of transverse electric (TE) mode in rectangular waveguide —
Sect. 2.3.4; the curled arrows represent the direction of propagation of the waves
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The corresponding longitudinal component of the electric field and the azimuthal
counterpart of the magnetic field are

E.(r,o) = —joA.(r,o) = —ij+H(()2) (81*),
c

1 d 1 o (2) w
Hy(r,0) = — “A(r,0)=- 2A.H (—r). (2.3.5)
¢>( ) 1o dr ( ) Ly +1 c

With these two components, the radial component of the Poynting vector is
1 *
S, (r)=- EEZ(r)Hd)(r), (2.3.6)
and consequently, the total power radiated is

P = Re[2nrdS, (r)] = é (% d) Mol 2.3.7)
In the last expression, we used the asymptotic approximation for large arguments
of Hankel function i.e., H(()z) (x) ~ exp(—jx)4/2/7mx (see Abramowitz and Stegun
1968, p. 364). Bearing mind that in steady state the average power dissipated on a
resistor carrying a current / is P = RI*/2, the impedance associated with the
radiation process is

Reag:ten = % = %770 (Za): (2.3.8)
in this expression 1y = \//eo is the vacuum impedance of a plane wave. At
9 GHz and for d = 5mm the impedance is 90[Q] which is 5 times larger (for
the same parameters) than the radiation impedance in free-space defined as
Reaa = no(wd/c)* /6 ~ 18]Q). The radiation impedance is a measure, extensively
used in antenna theory, which represents the effect of the surroundings on the
radiation emitted by a source.

2.3.2 Transverse Magnetic Mode

Transverse magnetic (TM) modes can develop in the radial system discussed
previously and their characteristics will be further investigated in Chap. 4, in the
context of periodic structures. Here we review the characteristics of these modes for
a circular cylindrical waveguide of radius R filled with a dielectric material of
relative permittivity &;; the relative permeability is taken to unity (1, = 1). We
assume that the walls of the waveguide are made of an ideal conducting material
(6 — o0) therefore, the tangential electric field at the walls vanishes. To this
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configuration, a cylindrical system of coordinates (r, ¢, z) is attached — see Fig. 2.4b
and the waves are assumed to be excited by an azimuthally symmetric source
therefore we may take 9/9¢ = 0.

The electromagnetic field in the waveguide has two contributions. One is from
the z component of the magnetic vector potential

(r, 2, @) ZA Jo( ) ) , (2.3.9)

where

1—2 p.\ wz

= e (2.3.10)

Jo(&) is the zero order Bessel function of the first kind and p; are the zeros of
this function (p; = 2.4048,p, = 5.52...). The second, is from the scalar electric
potential ©

O(r, 2, ) ZCDJO( ) . 23.11)

Lorentz gauge (2.1.38) correlates the two amplitudes, namely

=—A;. (2.3.12)

JE;
In this solution, the waves are assumed to propagate from the source without
obstacles thus no reflected waves were included.

The three non-trivial components of the electromagnetic field are: the azimuthal
magnetic field

1 0A, 1 &K, ps A
Hy—— Z=__ AS—Jl( s—)e % (2.3.13)
O o 2R PR
the radial electric field
oD & T py _
E=——=Y A, =y ( ) sz, 23.14
or ; jwe R Psg)¢ ( )

L iAX < ( S>2J ( YR) T (2.3.15)
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With the electromagnetic field determined, the average magnetic and electric
energy per unit length can be calculated. These are given by

1 R

Wwm :Z,uOZﬂ:JO drr|H¢\2 E |As 2173 { Jz(ps)] (Tt )z,
1 R

Wg = ZeoerRJ drr[

2 2
_T c « | Py R 2 —(Te+I5)z
= 5 toér § A, [wz > Rz} { 5Ty +1§] [le(Ps)}e ’

In these expressions the orthogonality of the Bessel functions was used i.e.,

2] (2.3.16)

JR drrJo( ) )J(, (pvr —) - %Rzlf(p‘?)éw. (2.3.17)

In a similar way, we can determine the total average power that flows in the
waveguide:

P =Re dn EH¢]

=,
Z:: P2 [— (ps)}Re{ ~(Ttr3)e 2 F} (2.3.18)

Jowe,

T
Uo

According to this expression, we observe that power is carried along the waveguide
only by the propagating modes namely those which satisfy

2

r2 = ’1;52 oy <0, (2.3.19)

The remainders are below cut-off and they do not carry any (real) power. The
situation is different when reflections are present.

2.3.3 Velocities and Impedances

Energy Velocity. In the context of power-flow presented above it is convenient to
define several parameters that help to characterize the interaction of waves and
electron beams in various configurations. For a relatively narrow band signal, the
energy velocity is a measure of the power flow in the system relative to the total
energy stored per unit length namely,
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_ P
WM+ WE

Ven

(2.3.20)

In a circular cylindrical waveguide with a single propagating mode (s = 1), the
energy velocity reads

1 2
Veg = C—4] & — (’E) . (2.3.21)
& )

From the definition of the energy velocity (2.3.20) it is evident that whenever
more than one mode propagates in the waveguide the energy velocity is dependent
on the relative amplitudes of the various modes. Another point which should be
emphasized since it will be encountered again later in this text is the fact that even if
only one mode propagates and there is a substantial amount of energy stored in
the higher non-propagating modes, the energy velocity will be much slower than
indicated by the expression in (2.3.21).

Phase Velocity. A general definition of this quantity was introduced in Sect. 2.2.3
(2.2.14). In a cylindrical waveguide with no dielectric, the phase velocity is always
larger than ¢. However if & > 1 + (pic/wR)?* the phase velocity is smaller than c. In
fact, for high frequencies (wR/c >> p;) the phase velocity is determined entirely by
the medium: vpn ~ ¢/ /.

Group Velocity. This is a kinematical quantity indicative of the propagation of
a relatively smooth spectrum of waves. To envision the meaning of the group
velocity, imagine that a system is fed by two waves oscillating at adjacent
frequencies w; = o + Aw, w, = w — Aw having the form

f(z,1) = cos(wit — K;z) + cos(wat — K»z), (2.3.22)

where the wave-numbers K| = k + Ak, K, = k — Ak are the corresponding wave-

numbers with k = \/ (w/c)* = (p1/R)*. Explicitly we can now write the expression
in (2.3.22) as

f(z,1) = 2 cos(Awt — Akz) cos(wt — kz). (2.3.23)

Assuming that |Aw| < @, we can consider the first trigonometric function as a
slow varying amplitude. As such, we can ask what has to be the velocity of an
observer in order to experience a constant amplitude i.e., Awot — Akdz = 0; in this

case, the answer will be vy, = %—‘;{’ or at the limit of Aw — O,

ow

Ve = (2.3.24)

If the dielectric coefficient is not frequency dependent, the group velocity of a
propagating TM mode is vg = c*k/we, and it satisfies
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C2

VorVph = P (2.3.25)

o

Although this relation is valid only for uniformly filled waveguide it provides
information about the general trend in the variation of the group velocity as the
(effective) dielectric coefficient changes in partially loaded systems.

Characteristic Impedance. There are several kinds of impedances that can be
defined. Two of which will be defined here and a third one, will be defined in
Chap. 8. The first is basically oriented towards the propagation of the electromag-
netic mode in the structure and this is the characteristic impedance which is the ratio
between the two transverse components of the field, £, and Hy, it reads

E, cl's

Zeh =— = 2.3.26
ch Hqﬁ Ul ( )

0 jwe,”

Interaction Impedance. The second impedance is indicative of the electric field
which a thin pencil or annular beam experiences as it traverses the waveguide. For
this purpose, we define the effective longitudinal electric field in the region where
the electron beam will be injected. For a pencil beam (0 < r < Ry,) this is given by

2 (R
E(2)|* = = L drr|E.(r,z,0)[, (2.3.27)
b

whereas for an annular beam (R, — A/2<r<Ry + A/2) it reads

1 Ry+A/2
2 J drr

EG)P =

E.(r,z, o). (2.3.28)

Ry—A/2

For either one of the cases we define the interaction impedance as

1 2 o 1
Zin == |E Re——. 2.3.2
int 2| (Z)| T P(Z) (2.3.29)

Note that although we are motivated by the presence of a beam of electrons, all
the quantities in the definition of the interaction impedance are “cold” quantities
namely, they do not account for the presence of the beam. It should be pointed out
that the definition introduced here differs from Pierce’s [Pierce (1947)] definition,
Zm = |E |2 /2k*P by the factor k> which was replaced by the inverse of the area
where the wave propagates, 1/nR?. This definition is in particular useful in tapered
structures where the internal radius of the system is kept constant but the other
geometric parameters may vary in space such that the phase velocity varies.

For our particular system the interaction impedance reads

{Pl LTJ?)(Ple/R) + 1 (piR/R) 1

Zint =1 |~ ;
" 0 &r C!)R J%(pl) ﬁen

(2.3.30)
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here fl,, = Ven/c is the normalized energy velocity which in many cases is equal or
close to the group velocity (in this particular case it is equal). One may expect to
achieve maximum efficiency when the longitudinal electric field [E(z)] experienced
by the electron is maximum. Therefore, according to the definition in (2.3.29), from
the point of view of the beam-wave interaction, the purpose should be to design
a structure with the highest interaction impedance. According to (2.3.30) there
are three possibilities: (1) operate at low frequency, which in many cases is not
desirable, (2) have a structure with small radius which might be acceptable or (3)
design a structure with low energy (group) velocity. It should be pointed out that
these three possibilities are interdependent since for example, the energy velocity
depends on both frequency and radius. One possibility to design a low group
velocity structure is to have a small radius.

Interaction Dielectric Coefficient. This quantity is indicative of the total average
electromagnetic energy stored per unit length in terms of the longitudinal compo-
nent of the electric field experienced by a thin annular/pencil beam:

-1
e = W(2) E 80|E(z)2nR2} . (2.3.31)

In our particular case it reads

e w 1° Jz(Pl)
o= |2 PR 1 . 2332
‘ L : ] R(Ro/R) + F(prRofR) (2332

Note that according to the definitions of the interaction impedance (2.3.29) and
the effective dielectric coefficient (2.3.31) their product is inversely proportional to
the energy velocity:

1
Zimgim =T ﬁ_ . (2333)
en

Since the definitions above (2.3.29) and (2.3.31) are general, as long as there is
only one dominant mode in the system, the result in the last expression is also
general.

2.3.4 Transverse Electric Mode

In many cases, electromagnetic power is transferred along a waveguide in the
transverse electric (TE) mode due to its low loss (Ramo et al. 1965, p. 424). In
many devices, power is extracted using rectangular waveguides, therefore we
consider next the characteristics of such a waveguide. In Sect. 2.3.1 we examined
the radiation emitted from a dipole oscillating in azimuthally symmetric radial



2.3 Guided Waves 45

transmission line. In this geometry, the main mode generated was the transverse
electro-magnetic (TEM) mode. In this section, we consider the same problem in a
rectangular waveguide whose wide dimension is @ and the narrow one is b — see
Fig. 2.4c. Variations along the narrow dimension are neglected (0/dy ~ 0). An
infinitesimally thin “wire” (dipole) is located in the center of the waveguide and it
prescribes a current density given by

T, z,0) = 15( - g) 3(2). (2.3.34)

It excites the transverse electric field E, (x, z, ) that satisfies

&’ 9 o .
{@+@+?:|Ey(xyzv w) = jougly(x, z, ), (2.3.35)

subject to the boundary conditions: Ey(x = 0,z,w) =0 and E,(x = a,z,w) = 0.
The solution can be represented as a superposition of trigonometric functions i.e.,

Ey(x,z,0) = Y E,(z,0)sin (%x) : (2.3.36)
n=1
where E,(z, ) satisfies
d 2 o? 2
[@ - (%) n ‘;’—2} Ey(z,0) = joul sin (g n) “5(z) = 10(z). 23.37)
For z > 0 the solution of this equation is
E (z>0)=A,e (2.3.38)
and for z <0

E (z<0)=A_e", (2.3.39)

where I'2 = (nn/a)* — (w/c)*. The transverse electric field has to be continuous at
z = 0 thus

A=A, (2.3.40)

whereas its derivative is discontinuous. The discontinuity is determined by the
Dirac delta function in (2.3.37) therefore by integrating the latter we obtain

d d
LiZE,L(z)L_0+ - |:dZE,,(Z)] =1, (2.3.41)
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hence
-TI,A -T,A_=1,. (2.3.42)

From (2.3.40), (2.3.42) we conclude that the transverse electric field reads

<] n
E,(x,z,0) = — n_o—Tuld sin(—x). (2.3.43)
y(x,2,0) ; T a

As in Sect. 2.3.1 we next calculate the power generated by the current distribution
in (2.3.34). For this purpose the transverse magnetic field is calculated since it
is the only component which contributes to the longitudinal component of the
Poynting vector; H, for z > 0 reads

=TI, I nn
Hy(x,z>0,0) = — t e sin (T, 2.3.44
(x, 2 ) ; o 2rne sin{—-x ( )
Before proceeding note that similar to the transverse magnetic mode, the phase
velocity (for @ > mnc/a and ¢ = 1) is always larger than c. Nevertheless, the
characteristic impedance (in vacuum) of the nth propagating mode,

7 _E, _jwuo
¢hTE = 1 =
X n

(2.3.45)

is always larger than the vacuum impedance (7)), in contrast to the TM mode,
where the characteristic impedance is always smaller than 7.

Now we can focus our attention to the power flow: the average power which
flows in the positive z direction, assuming a single mode above cut-off, is given by

h 211 Lob. (2.3.46)
2\/(@/c)* = (n/a)* “H0

1
P, =—
L) 2

The radiation impedance is determined by the power emitted in both directions
divided by 1|/|* and it reads

P, +P_ wb/c b
Riag TE = +1 =1 / = —Zch,TE- (2.3.47)
L (afc) — 2

At 9 GHz, and for ¢ = 2.5cm, b = 0.5 cm, this impedance is 100 Q which is close
to that calculated in the case of the radial transmission line as calculated in
Sect. 2.3.1.
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2.3.5 TE, TM and Hybrid Modes in a Dielectric Waveguide

Pure TM or TE modes are possible only in a limited set of geometries. In most cases
these modes are coupled and in this section we present a well-known configuration
that supports either TE, TM or hybrid modes — this is the dielectric waveguide. In
its simplest configuration it consists of a dielectric (¢;) fiber of radius R. For
small-diameter rods, the field extends for a considerable distance beyond the
surface, and the axial propagation constant k, is only slightly larger than w/c.
At the limit of an infinite radius k, = w\/_ ¢/c. The field components, omitting
the term exp(—jnqS jpz), are determined in Table 2.1; A? = g,w?/c? — k?* and
= 2 — w?/c?; the prime indicates differentiation with respect to the arguments
of the corresponding Bessel functions.
Imposing of the boundary conditions at » = R leads to the dispersion relation

(2.3.48)

el'u(@)  Ka(b)][Tnl@)  K'u(b) ck. (B +a*)]
_ — |p2 T2

aly,(a) bK,(b)| |aJ,(a) bK,(b) o  a*b?
where a = AR, b = I'R. When n = 0, the right-hand side vanishes, and each factor
on the left-hand side must equal zero. These two terms determine the dispersion of
the axially symmetric TM and TE modes:

) gr]/()(a) - K/O(b)
TM modes : alo(a)  bKo(b) (2.3.49)
TE modes : J'o(a) _ K'o(b) h
" alola) bKo(D)

Based on their definitions, a and b are related by a® 4+ b* = (& — 1)(wR/c)*.
Clearly, pure TM or TE modes are possible only if the field is independent of the
azimuthal coordinate ¢ namely, n = 0. As the radius of the rod increases, the
number of TM and TE modes also increases. All modes with angular dependence
are a combination of a TM and a TE mode, and are classified as hybrid modes.

Table 2.1 Field components in a cylindrical dielectric waveguide

r<R r>R
E. = AJ,(Ar) E. = C,K,(Tr)

jkz / ”U)Ho jk: 4 nopy
E, =—22A,J0", B,J, E. =—C,K', DuK,

A A% T e,

nk, Jouy nk, Joug
Ey = Az 5 Andn + A B,J', Ey = T CoKy — T D,K',
H, = B,J,(Ar) H. = D,K,(Tr)
ik, ik,

H, = nwaA 7, - J Ly H = _nweoc X, —]—D,,K/
A%r A I’r r
j(,l)é, / k: ng() , nk
H( = AnJ Bn]n H C K + = DHK”

' A AN *TT 2
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Comment 2.4. Contrary to metallic waveguide the HE|; mode, for example, has
no low-frequency cutoff.

2.4 Green’s Scalar Theorem

Green’s function is a useful tool for calculation of electromagnetic field generated
by a distributed source (particles) subject to the boundary conditions imposed by
the structure. The logic behind the method presented below is the following: instead
of solving for an arbitrary source we solve for a point source and by virtue of the
linearity of Maxwell’s equations, the field at a given location is a superposition of
all the point sources that constitute the real source.

Let us assume that we have to solve the non-homogeneous wave equation:

[Vz + ?—22] Y(r) = —s(r), (2.4.1)

where s(r) is an arbitrary source which is assumed to be known. Instead of solving
this equation let us assume for the moment that we know how to solve a simpler
problem namely,

2 wz / /
Vv +c—2 G(r|r') = —o(r — 1), (2.4.2)

where the coefficient of the Dirac delta function on the right-hand side was chosen
such that the result of the integration over the entire space is unity. We can then
multiply (2.4.1) by G(r|r’) and (2.4.2) by (r’), subtract the two results to obtain

Gr[r )Wy (r') =y (X )V2G(r|r') = =G(r|r)s(r)) + Y (r)o(r —1').  (2.4.3)

Integrating over the entire and using Gauss’ theorem, we get
W(r) = J AV'Grlr)s(r') + $Paa’ - (Gl )Ty () — (VG 2.4.4)
14

b is a surface integral which encloses the volume V. This is the scalar Green’s
theorem. In free space Green'’s theorem reads

Y(r) = L dV'G(r|r")s(r"). (24.5)

Next, we employ Green’s theorem for the calculation of the Cerenkov effect in
two cases: firstly, in a boundless system and secondly in a waveguide.
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2.4.1 Cerenkov Radiation in the Boundless Case

Let us examine the electromagnetic field generated by a charge (e) as it moves in
gas a medium which is characterized by a dielectric coefficient larger than unity,
& > 1; its velocity is v. For simplicity sake, it will be assumed that the dielectric
coefficient is frequency-independent.

A current density described by the same expression as in (2.2.15) drives the
system and for an azimuthally symmetric medium the wave equation is

1o o 0 1 o?
; 5] 5—’—@ — 8rc—2 w:|AZ(I7Z, l) = —M()JZ(V,Z, f), (246)

the other two components of the magnetic vector potential are zero and the electric

scalar potential can be determined using Lorentz gauge. The time Fourier transform
of the magnetic vector potential is defined by
00 .

A(r,z,t) = J dwe™A,(r,z,®), 2.4.7)

—00

where A, (r, z, ) satisfies

10 0 * o
ror o o T 2]Az(”z’w) = — ol (r, 2, 0), (2.4.8)

and the time Fourier transform of the current density in (2.2.15) is

J(r,z,0) = —ﬁé(i‘)@xp(—j%z). (2.4.9)

Green’s function associated with this problem is a solution of

10 6 0* »? -1
9 o 3 a5t e 2} G(r,z|r',Z) = %(5(1‘ —1)o(z—7) (2.4.10)
which can be represented by
G(r,zlr',Z) = J dkgi (r|r') exp|—jk(z — 2], (24.11)
—00
and g, (r|r') satisfies
1d d 1
e N o N —— 5(r — 71 2.4.12
{ dr’di ]gk( ) (2n)2r (r=r), ( )



50 2 Elementary Electromagnetic Phenomena

where
w2
=k —&—. (2.4.13)
c
The solution of this equation for r >’ >0 is
g(rlr <r)=F1(rKo(Tr), (2.4.14)
and for 7/ > r > 0 it reads
gr(r<r'lr) = Fo(r)Ip(Tr). (2.4.15)
The function g;(r|') has to be continuous at r = 1’ i.e.,
F1 (l‘/)Ko(rl‘/) = Fz(l‘/)Io(FI‘/), (2416)

whereas its derivative is discontinuous at the same location. To determine the
discontinuity we integrate (2.4.12)

d . d 1
[rag(rl )]r_r% - [rag(z | )L_ﬂ_o =G (2.4.17)
hence
— r/Fl (}‘/)rKl (Fr’) — I‘/Fz(l’/)rll (l"r’) = — ! 5. (2418)
(2m)

From (2.4.16), (2.4.18) and using the fact that Ko(&)I; (&) + K (&)Io(&) = 1/¢
(see Abramowitz and Stegun 1968, p. 375) we finally obtain

(2.4.19)

() = 1 {IO(Fr)KO(Fr') for 0<r<r <oo,

(27r)2 Ko(Tr)Ip(Tr') for 0<r <r<oo.

This expression together with (2.4.11) determine Green’s function in a boundless
space.

With this function, Green’s theorem (2.4.5) and the current density as given in
(2.4.9), we can determine the magnetic vector potential. It reads

e w _ .
Ay z,0) = — (2Z())2 Ko (Cr B2 - nZ) exp(ﬁ;z), (2.4.20)

where n = /e, is the refractive index of the medium. If we examine this solution
far away from the source and use the asymptotic value for large arguments
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{(w/c)rh/ B —n? > 1} of the modified Bessel function, the magnetic vector

potential reads

A, (r,z,m) o exp <—9r g2 — nz)exp(—jgz). (2.4.21)
c v

If n is smaller than 1/ the field decays exponentially in the radial direction since,
as in vacuum, this is an evanescent wave.

When the velocity of the particle, v = fic, is larger than the phase velocity of a
plane wave in the medium (c/n) i.e., f>1/n, the expression above represents
a propagating wave — this is called Cerenkov radiation. The emitted wave is not
parallel to the electron’s trajectory but it propagates at an angle 6 relative to this
direction (z axis) given by

1
ke = Zncos) =L = (2.4.22)
¢ cp

This determines what it is known as the Cerenkov radiation angle, 6,

0, = cos™! <%) (2.4.23)

Since the phase velocity of the wave is smaller than that of the particle, clearly,
the radiation lags behind the particle. This fact will become evident in the next
subsection. However, before proceeding, it is important to make a comment
regarding Cerenkov radiation emitted by a single particle and an ensemble of N
electrons: by virtue of the linearity of Maxwell’s equation the total field is a
superposition of the contributions of all electrons. For wavelengths significantly
longer than the bunch-length, the various contributions add up coherently and since
the power is proportional to the square of the field, the emitted power is propor-
tional to the square of the number of electrons (P o< N 2) _ this is also referred to as
coherent radiation. For wavelengths shorter than the bunch, the average field
vanishes therefore, the total power is a product of the power emitted by a single
electron and the number of electrons. The proof is left to the reader and the details
are phrased as an Exercise 2.7 at the end of this chapter.

2.4.2 Cerenkov Radiation in a Cylindrical Waveguide

In this subsection we consider the electromagnetic field associated with the sym-
metric transverse magnetic (TM) mode in a dielectric filled waveguide. As in the
previous subsection, the source of this field is a particle moving at a velocity v,
however, the main difference is that the solution has a constraint since on the
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waveguide’s wall (r = R) the tangential electric field vanishes. Therefore, we
calculate Green’s function subject to the condition G(r =R,z|r',Z) =0. We
assume a solution of the form

o0

G(r,z|t',Z) = Z Gs(z|r',2) o (ps I%)’ (2.4.24)

s=1

substitute in (2.4.10) and use the orthogonality of the Bessel functions we find that

r! 1
GS(Z|’J’ Z/) =1l (Ps E) Tgs(2|2,), (2.4.25)
ER Jl(ps)
where g(z|7') satisfies
d_2_1_2 (I’)——ié( -7 (2.4.26)
A CA L e a

and I'? = p?/R? — ¢, /c?. For z> 7' the solution of (2.4.26) is
gs(z7) = Ae ), (2.4.27)
and for z < 7’ the solution is
gs(z7) = A_ehs 7). (2.4.28)
Green’s function is continuous at z = 7’ i.e.,
A, =A_, (2.4.29)

and its first derivative is discontinuous. The discontinuity is determined by
integrating (2.4.26) fromz =7 —0toz =27 +0i.e,

el

Substituting the two solutions introduced above, and using (2.4.29) we obtain

d , L L
- {&gs(zlz )L_Z/_O =5 (2.4.30)

z=7/+0

1
gs(z|7) = T, exp(—T|z — 7). (24.31)

Finally, the explicit expression for the Green’s function corresponding to azimuth-
ally symmetric TM modes in a circular waveguide is given by
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i Jo(psr/R)Io(ps’ /R) 1

1
= SRRe)

G(r,zlr',Z) = exp(—Tlz —7)). (2.4.32)

In this expression, we tacitly assumed that & >0 and Iy is non-zero.
With Green’s function established, we can calculate the magnetic vector poten-
tial generated by the current distribution described in (2.4.9); the result is

R o0
A(r,z,0) = ZRMOJ dr/r'J dZG(r, 2|, 2).(¥, )
0 o
_ el ) Jo(psi'/R) 2 e—j(m/v)z- (2433)

82 1 2 2792
T SRR T T

It will be instructive to examine this expression in the time domain; the Fourier
transform is

2 otz
JO(Ps”/R J e](u(t z/v)
A (r,z,t do——, 2.4.34
(r,z,0) = 2713280R2 n2ﬁ2 Z Bps) - w? + Q2 ¢ )
where
o2 B
Q= (’E) 572 (2.4.35)
R/ 1-n2p

Equivalently, this result may be interpreted as the interception of the disper-
sion relation — k2 — (ps/R)* + &(w/c)* = 0 and the “beam-line” k. = w/v. With
this definition, the problem has been now simplified to the evaluation of the
integral

00 e/wr
FS(T:I—Z/V)EJ d(Um, (2.4.36)
—0 .

which in turn is equivalent to the solution of the following differential equation

2
[;2 QZ} (1) = —2718(1). (2.4.37)

Case I: If the particle’s velocity is slower than the phase velocity of a plane wave in
the medium (nf8 < 1) then Q2 > 0 and the solution for 7 > 0 is

Fy(t>0)=A, e ™7, (2.4.38)
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or
Fy(t<0) =A_e%", (2.4.39)

As previously, in the case of Green’s function, F(t) has to be continuous at T = 0
and its derivative is discontinuous:

d d
<aFS(r))TO+ - <5Fs(r)>fo = 2. (2.4.40)

When the velocity of the particle is smaller than ¢/n (i.e., nff < 1) the character-
istic frequency €); is real, therefore

Fy(t) = = e 0, (2.4.41)
and consequently,
2 o0
Jo(pst/R) _q i
A.(r,z,1) = ¢ b Z o(psr/ )e Qle=z/v], (2.4.42)

_27T8()R2 1— ﬁ2n2 s—1 J%(ps)gs

This expression represents a discrete superposition of evanescent modes
attached to the particle.

Case II: If the particle’s velocity is faster than the phase velocity of a plane wave
in the medium (nf> 1) then Q> <0. In this case the waves are slower than the
particle and there is no electromagnetic field in front of the particle i.e.,

Fi(1<0)=0. (2.4.43)
By virtue of the continuity at 1 = 0 we have for T >0
Fs(1>0) = A, sin(|Qq]1). (2.4.44)
Substituting these two expressions in (2.4.40) we obtain

21

Fs(1) = oy

sin(|Qy]0)h(c), (2.4.45)

and the magnetic vector potential reads

PP I Y )

(2.4.46)
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where h(¢) is the Heaviside step function. This expression indicates that when
the velocity of the particle is larger than ¢/n, there is a discrete superposition of
propagating waves traveling behind the particle. Furthermore, all the waves have
the same phase velocity which is identical with the velocity of the particle, v. It is
important to bear in mind that this result was obtained after tacitly assuming that &,
is frequency independent which generally is not the case, therefore the summation
is limited to a finite number of modes. The modes which contribute are determined
by the Cerenkov condition n(w = Q) > 1.

After we established the magnetic vector potential, let us now calculate the
average power which trails behind the particle. Firstly, the azimuthal magnetic field
is given by

Hy(r,z,t) = i)g/‘z(’% )
1 Psy (7Y si 2 , (2.4.47)
R (rr ) sinfl2ui (v =) (=)
where
; A : (2.4.48)

T ek 27— 1 B ()]

Secondly, the radial electric field is determined by the electric scalar potential,
which in turn is calculated using the Lorentz gauge, and it reads

E,.(F,Z,f) = _gq)(rvz I)
2

¢ Ps r . z z
v 2 g1 \Pog) sin[ (=0 v

s=1

(2.4.49)

With these expressions, we can calculate the average electromagnetic power
trailing the particle. It is given by

e?fec 1 1
P = . 2.4.50
S off 1 2 Fip) 2450

Note that for ultra relativistic particle (f — 1) the power is independent of the
particle’s energy. In order to have a measure of the radiation emitted consider a very
small bunch of N ~ 10'! electrons injected in a waveguide whose radius is 9.2 mm.
The waveguide is filled with a material whose dielectric coefficient is ¢, = 2.6 and
all electrons have the same energy 450 keV. If we were able to keep their velocity
constant, then 23 MW of power at 11.4 GHz (first mode, s = 1) will trail the bunch.
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Further examining this expression we note that the average power is quadratic with
the frequency i.e.,

2 2
P=Y P = (Ve) I (2.451)
s=1 27'[808rﬁ6 s=1 D’SJI (ps)]

In addition, based on the definition of the Fourier transform of the current
density in (2.4.9), we conclude that the current which this macro-particle excites
in the s'th mode is I; = eNQ,/2n. With this expression, the radiation impedance of
the first mode (s = 1) is

P1 4n

Rci = =" :
Snp eGP

(2.4.52)

For a relativistic particle, § ~ 1, a dielectric medium ¢ = 2.6 the radiation
impedance corresponding to the first mode is ~ 1,200 Q which is one order of
magnitude larger than that of a dipole in free space or between two plates. Note
that this impedance is independent of the geometry of the waveguide and for an
ultra-relativistic particle it is independent of the particle’s energy.

2.4.3 Coherent Cerenkov Radiation

Once we established the radiation from a single bunch, it is possible to proceed and
investigate a distribution of electrons rather than a point-charge. For an ensemble of
electrons the field components are

1 Ps r iy . z—z; z—z;
Ho =, LA o) Qo) sim 201 (=) [ =7))
¢ #o;‘Rlp‘R OP‘RSIH|‘\ v v ;

c? Ds r T zZ—z z—z;
b= 3 o) o sl

srv; ‘R psR <0 pSR sin €] v v >>z

_eN P 1
T megR? n2p* —1 1 (py)|Q]

(2.4.53)

wherein (....) represents the ensemble average; Nis the total number of electrons in
the bunch. For simplicity sake, we assume that the electrons are uniformly
distributed in the radial direction (0 <r <R},) and the transverse and longitudinal
distributions are independent thus
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o=, A o )52 -5 )
£ yoatnog) [l - 5),

T

2
A—_ N B I 2h(psRo/R) (2.4.54)

meoR? 22 — 1 1 (po)|Q|  (PsR»/R)

Defining { = vt — z, the power emitted is given by

B (eN)2 v 2J1(psR»/R) 2 €] , ’
PO = neoeR? n2f* — 1 Z: [(PsRh/R)Jl (Ps)] <S [ @+ Zl)}h(c - Zl)>,~
(2.4.55)
In case of a single bunch of length A, the trailing power is
2
Py /& 2J1(psRp/R) . s A/R
_ A 2.4.56
Ny af -1 Z l(pxRb/R)Jm) e (2 o 1> (2430

2neR?

Figure 2.5 illustrates the normalized spectrum as expressed above as a function
of s; note that it decreases rapidly thus the convergence is expected to be quick.
Analysis of the maximum average power trailing behind the bunch reveals that

2/e
Pav Srﬁz —1
> 5 3 (2.4.57)
(eN) v Rb Rb A 1
o ()T
meoR R R J\R) ¢p —1
10’
g=2,y>>1

10°F R./R=0.1,4/R=0.5

2N
- .
e \

107+ /k

i
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Fig. 2.6 Normalized average 102
power of Cerenkov radiation
emitted by a finite size ;
azimuthally symmetric bunch N 10
in a dielectric filled g Approx.
waveguide of radius R as a e 10° R,/R=0.17
function of the length of the 3
bunch. For the exact N . &=2
expression the first 100 modes g 107+ p=1
have been used. The S
als < .
expression developed reveals 102 L
an excellent upper value
approximation
10° =
107 10° 10

Aa/R

is an excellent approximation. In this expression c¢; ~ 0.0048, ¢, ~ 1.747,
¢3 >~ 0.259 and ¢4 ~ 1.271; 0.005 <R, /R < 0.2 and 0.1 < A/R < 10. For a quanti-
tative comparison, Fig. 2.6 shows the exact and the approximate average power
generated by a finite size bunch. Some other interesting features are formulated as
an Exercise 2.8 at the end of this chapter. In particular, one may investigate ways to
suppress the coherent radiation.

Taking the same number of electrons (N) but splitting them into a train of
bunches (M) the discrete spectrum excited in the waveguide undergoes an addi-
tional selection associated with the bunches spacing. As in the single bunch case,
the bunches are identical in size (radius R, and length A) their spacing is L.
A similar approach as above, results into the following expression for the average
power trailing behind the train

Ry sinc [ 2Lt L/2R M
Pa 1/e; h (ps R) _( pAJ2R Vel —1
- Z Sic

(eN)v  ef>—1
2megR?

Ry AT
Pl ANV G (LR
Vep —1

(2.4.58)

The last term, sinc?(uM) /sinc?(u), is responsible to the selection associated with
the train configuration. If u is not an integer number of 7 (off resonance condition),
then the term is proportional to M2 implying that the total power is reduced by this
factor and there is no advantage in splitting the bunch into a train of bunches.
However, if we can ensure resonance namely, for a given s the bunch spacing is
chosen such that u = Q,L/2v = 7n, it is possible to generate a total average power
that is of the same order of magnitude as if all the electrons were forming a single
bunch. In order to reveal this selection associated with the train’s configuration it is
convenient to normalize the average power to the case of a single bunch (M = 1) —
this is illustrated in Fig. 2.7.
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Fig. 2.7 The power 10°
normalized to the M = [ case
as a function of the number of
bunches in the train. Off
resonance (L/R = 0.5,1.4),
the average power is roughly
proportional to M2, At
resonance (L/R = 1.6) the
power becomes virtually
independent of the number of 3
bunches and for large M, this 107
normalized power is of order L/R=0.5
of unity
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When scanning the normalized power there are many possible values of Lthat
facilitate power levels of the order of that generated when all the electrons form a
single bunch. In the example illustrated in Fig. 2.7, the spacing choice has taken
into consideration the fact that for s > 1, p,.1 — ps ~ m. This fact facilitates:
Us—g = 3T, U9 =T, us—14 = 11z .... which is reflected in the following plot
(Fig. 2.8) of the spectrum of the first 20 modes.

It is evident that at resonance the spectrum is identical to that of a single
bunch and in parallel, the spectrum of the off resonance frequencies is significantly
suppressed. Note that there is no significant difference between the case M = 10
and M = 100. For a different choice of bunch-spacing, at resonance, it is pos-
sible to have one or at least a few resonant peaks and still to get a substantial
fraction of the power generated by a single bunch. The reader is referred to
Exercise 2.9 in order to examine additional options associated with the choice of
parameters.
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2.44 Cerenkov Force

In the previous subsection we examined the radiation trailing one or more bunches
moving in a dielectric medium with a velocity larger than the phase velocity of a
plane wave in the material. Obviously, this emitted energy comes at the expense of
its kinetic energy. In other words, the particle is decelerated. It is the goal of this
subsection to examine this decelerating force in detail. With this purpose in mind
we consider a simple model consisting of a charge (—e) moving at a constant
velocity (v) in a vacuum channel of radius R surrounded by a dielectric medium &;.
The evanescent waves attached to the charged particle impinge upon the disconti-
nuity at 7 = R and they are partially reflected and partially transmitted. It is the
reflected wave which acts back on the electron decelerating it; the corresponding
current density is described by (2.2.15) whereas its time Fourier transform by
(2.4.9). Correspondingly, this current density generates a magnetic vector potential
determined by

00 R
A.(r<R,z,w) = Znuoj dz/J dr'r'G(r,z|r', 2 ).(F 2, o)

—00 0
+ J dkp(k)e 7 1y(Tr), (2.4.59)
and
A.(r>R,z,0) = J dkt(k)e Ko (Ar), (2.4.60)

where T2 =42 — (w/c)?, A*> =k —&(w/c)®, G(7,7|r,z) is the boundless
Green’s function as defined in (2.4.11), (2.4.19) but for vacuum i.e.,
(> ey | (THKo(TH) r<iv’

ro _ jk(z=2') ) 10 0 ’ 2.4.61

G(r',Z|r, 2) ) J_oc dke {KO(FI')IO(FF’) Y (2.4.61)

The amplitudes p and 7 represent the reflected and transmitted waves corre-
spondingly. In order to determine these amplitudes we have to impose the boundary
conditions at r = R. For this purpose, it is convenient to write the solution of the
magnetic vector potential off-axis as

A0<r<R,z0) = ro dke % [p(k)To (Tr) + (k) Ko (7)), (2.4.62)
where
__ _@
(k) = o 5<k V). (2.4.63)
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From the continuity of the longitudinal electric field (E,) we conclude that

2 [0? 2 o,
— |5 —k k)Io(TR k)Ko(IT'R)] = r— — k7| T(k)Ko(AR).
| e pwn s awrarr = £ o % - 2 |wimatar)
(2.4.64)
In a similar way the continuity of the azimuthal magnetic field implies
Ip(k)[;(TR) — a(k)K{(T'R)] = —At(k)K;(I'R). (2.4.65)
At this stage, we introduce the (normalized) impedances ratio
1 A Ko(AR)
=__ V7 2.4.66
C el K] (AR) ’ ( )
by whose means the amplitudes of the reflected waves are given by
Ki(T'R) — Ko(I'R

= 0o .
{1 (TR) + 1o(I'R)

On axis, the only non-zero field is the longitudinal electric field and only the waves
“reflected” from the radial discontinuity contribute to the force that acts on the
particle, therefore

2 [w? A
dordk - [— — kﬂ p(w, k)@, (2.4.68)
J

00

Ez(r:O,z:vot,t):J 5
c

—00

Substituting the explicit expression for p and using the integral over the Dirac
delta function [see (2.4.63)] and defining x = wR/cfy, we obtain

E.(r=0,z =vwt, 1) =

—Je J"O COOK () — Ko([x])

_ . 4.6
ek o P L () () - Y

At this point, it is convenient to define the normalized field that acts on the
particle as

-1
= Ez(r = O,Z = VI, t) (ﬁ)
0.

22 [ e} £~ Kol

0

(2.4.70)

T J SO (fxl) + To(lx])

Clearly, from this representation we observe that, for a non-zero force to act on
the particle, the impedance ratio { has to be complex since the argument of the
modified Bessel functions is real.
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We can make one step further and simplify this expression by defining
L) = L), 2.4.71)
and using Ko (x)I; (x) + K; (x)Ip(x) = 1/x, we obtain

g:%dex : i - C(x)|smlﬁ(X) .
o T50x) + LT (x) + 2[L () [To ()1 (x) cos ¥ (x)

(2.4.72)

In order to evaluate this integral for a dielectric medium and a particle whose
velocity fic is larger than ¢/ /&, we go back to (2.4.66) which now reads

oy Ko(jxy e’ — 1)
{(x) =i af? — 1K1 (jxy e 1), (2.4.73)

and it can be further simplified if we assume that the main contribution occurs for
large arguments of the Bessel function (i.e., y > 1) thus

{(x) ~ jgr\/erﬁz 1 (2.4.74)

Since subject to this approximation yy = 7/2 and |{| is constant we can evaluate &,

2 (* I{]
g2 a1 2475
T Jo I(Z)(x) + |C|ZI%(x) ( )

for two regimes: firstly when |{| > 1 i.e., y >> 1, the contribution to the integral is
primarily from small values of x thus

N 4 (> 1
g:-J de‘zg—J du—— ~2 (2.476)
T)o 1+[{x/4 m)o l+u

At the other extreme (|| < 1) the normalized impedance has to be re-calculated
and the result is

W20 B2 _ 00 2(e B2 _
eV ef = 1) J Y el D (2.4.77)

dy———
&r o B &r

and we can summarize

0 for B<1/\/e,
£~ 12632\ e > — /e, for 3 < e/ ep® — 1, (2.4.78)
2 for p> e/\ep> — 1.
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It is interesting to note that for ultra-relativistic electrons the decelerating Cerenkov
force reaches an asymptotic value which is independent of y and the dielectric
coefficient; it is given by E = —e/2meoR%. In addition, we observe that the
normalized impedance ({) determines the force.

2.4.5 Ohm Force

If in the Cerenkov case the charged particle has to exceed a certain velocity in order
to generate radiation and therefore to experience a decelerating force, in the case of
a lossy medium, the moving electron experiences a decelerating force starting from
a vanishingly low speed. This is because it excites currents in the surrounding walls
and as a result, power is dissipated — which is equivalent to the emitted power in the
Cerenkov case. The source of this power is the J - E [see (2.1.16)] term which infers
the existence of a decelerating force acting on the electron. In order to evaluate this
force we use the same formulation as in the previous subsection only that in this
case, the dielectric coefficient is complex and it is given by
o

G=1—j—, (2.4.79)
Eo

where ¢ is the (finite) conductivity of the surrounding medium. It is convenient to
use the same notation as above, therefore the normalized impedance { from (2.4.74)
is replaced by

¢ 1+j(B)? g (2.4.80)

=1 —jo/x

In this expression ¢ = onyR /7 which for typical metals and R ~ 1 cm is of the
order of 10%/yf thus for any practical purpose & > 1 hence

3
{ ~ yﬁ\/é exp (]T”). (2.4.81)

Note that the phase of the normalized impedance is ¥ = 3m/4. Substituting
this expression in (2.4.72) and defining the characteristic angular frequency
wo = 2¢/R(yP)’ as well as the skin-depth & = /2/oywo, we obtain

Tel -

£ = dx (2.4.82)

SEEN

0

2
"R ) - VI ()

which can be evaluated analytically for two extreme regimes: in the first case
the (normalized) momentum of the particle is much smaller than the normalized
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conductivity term i.e., the skin-depth is much smaller than the radius of the tunnel
8% < R? in which case

Vi 5
dx ~ 0.54—. 2.4.83
2w 'k (2483

The second case corresponds to a highly relativistic particle i.e., (yﬁ)3 > angR
or &> > R? implying that the main contribution to the integral is from the small
values of x which justifies the expansion of the modified Bessel functions in Taylor
series. Redefining y* = (x7f)’ /401,R we have

E~=
T

2 2o
2 R,

442 (* 1
E~ V2 J dy ~ 2. (2.4.84)
3n Jo T14y2—yV/2
In fact a best fit to the exact expression in (2.4.82) reveals that
58 2\
E~1054—-+2—]]1 — 2.4.85
< R R2> + (R2> ( )

is an excellent approximation — the integrated (0 < J/R < 20) relative error is less
than 0.02% . Clearly, as in the Cerenkov case, for ultra-relativistic particles (y* >
aneR oro > R) the decelerating force is independent of y and of the material’s
characteristics. However, the critical y for operating in this regime is much higher
comparing to the Cerenkov case.

The characteristic angular frequency (wo) is low for relativistic electrons and
consequently, the skin-depth is much larger than the radius and all the bulk material
“participates” in the deceleration process. On the other hand, if the frequency is
high, then the skin-depth is small (comparing to the radius) and only a thin layer
dissipates power, therefore the loss is proportional to 9.

Finally, imagine an interesting situation whereby the conductivity of the mate-
rial is negative, this is to say that the medium is active, then the phase in (2.4.81) is
W = 57n/4 and the force is accelerating which means that energy can be transferred
from the medium to the electron. We will further elaborate this topic in Chap. 8 in
the context of advanced acceleration concepts.

2.5 Finite Length Effects

In all the effects discussed so far, we assumed an infinite system with no reflected
waves. In this section, we consider several systems and phenomena associated with
reflected waves. When both forward and backward propagating waves coexist,
there is a frequency selection associated with the interference of the two. Another
byproduct of reflections is tunneling of the field in a region where the wave is below
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cutoff. We also examine the radiation generated by a particle as it traverses a
geometric discontinuity in a waveguide. We conclude with the evaluation of a
wake field generated by a particle in a cavity.

2.5.1 Impedance Discontinuities

In most cases of interest, the waveguide is not uniform and as a result, more than
one wave occurs. In order to illustrate the effect of discontinuities we consider next
the following problem: a cylindrical waveguide of radius R but, instead of being
uniformly filled with one dielectric material, there are three different dielectrics in
three different regions

g for —o0<z<O,
&(z) =4 & for 0<:z<d, 2.5.1)
g for d<z<oo,

as illustrated in Fig. 2.9.

A wave is launched from z — —oo towards the discontinuity at z = 0. For
simplicity we assume that this wave is composed of a single mode (TMy, i.e.,
s = 1). The z component of the magnetic vector in the first region ( — oo <z < 0) is
given by

A(r, —00<z<0,0) = [Ame—Fﬁ"z n Apefﬁ”ﬂ T (pl ]%) (2.5.2)

where Aj, is the amplitude of the incoming wave and A, is the amplitude of the

reflected wave; F<11> = \/(pl/R)2 — & (w/c)*. Between the two discontinuities at

0 < z < d the solution has a similar form

A(r0<z<d,w)= [A+e’r(|2)z +A_er(12)"} To (p1 1%) (2.5.3)

where 1"52) = \/ (p1/R)* — &x(w/c)* In the third region, there is no reflected wave
therefore

. -
A(rd <z<o00,0) = Ae 11 ), <p1 1%) (2.5.4)
. . 1 A, T
Fig. 2.9 Schematics of the VW~ MW\~ NN~
system used to examine the & & &
reflected waves resulting pﬁl\/\f\f‘ Aﬁ]\l\l\f‘
from characteristic =

impedance discontinuities z=0 z=d
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and as above l“f) = \/ (p1/R)* — e3(w/c)*; A, is the amplitude of the transmitted
wave. The four as yet unknown amplitudes A,, A;, A, and A_ are determined by
imposing the boundary conditions at z = 0, d. Continuity of E, at z = 0 implies

Zi(Ain — Ay) =Z5(Ay — AL); (2.5.5)

Z, and Z, are the characteristic impedances (2.3.26) in the first and second
regions respectively. In a similar way the continuity of H implies

An+A,=A, +A_. (2.5.6)

An additional set of equations is found imposing the continuity of the same
components at z = d:

ZAe™V —A eV = Z3A,, (2.5.7)
and
Ae™V +A el =A4A,, (2.5.8)

where = ng)d. From (2.5.5)-(2.5.8) the reflection (p) and transmission (t)
coefficients are determined base on the radial electric field and are given by

Z1A,  sinh()(Z1Z3 — Z3) + cosh(Y)(Z1Z, — Z,Z3)
Z\Ain  sinh()(Z,Z3 + Z3) + cosh(Y)(Z1Z, + Z273)’

_ LA, 73 27,7,

"= ZiAn  Zi sinh(V)(Z1Zs + 22) + cosh(Y) (Z1Za + Z22Z3)

p
(2.5.9)

After we have established the amplitudes of the magnetic vector potential it is
possible to determine the electromagnetic field in each one of the regions, thus we
can investigate the power flow in the system. Using Poynting’s theorem the power
conservation implies that

Re(Z)) [|Am|2 - |Ap|2} — Re(Z3)[A. - (2.5.10)

This expression relates the power in the first region to that in the third. It does not
depend explicitly on the second region; if, for example, in the third region the wave
is below cutoff, the characteristic impedance is imaginary and the right-hand side is
zero. Consequently, the absolute value of the reflection coefficient is unity, regard-
less of what happens in the second region. On the other hand, if in regions 1 and 3
the wave is above cutoff, and in region 2 the wave is below cutoff, we still expect
power to be transferred. However, the transmission coefficient decays exponen-
tially with = T'P'd
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T~ 42522 e V. (2.5.11)
(Z1Z3 + Z3) + Z2(Z1 + Z3)

In spite of the discontinuities there can be frequencies at which the reflection
coefficient (p) is zero if we design the structure such that

712y =27 and  =jn/2, (2.5.12)

as one can conclude by examining the numerator of p. The expression in (2.5.12)
defines the conditions for the so-called quarter-/. transformer. Figure 2.10 shows a
typical picture of the transmission coefficient. Note that the peaks in the transmis-
sion correspond to constructive interference of the two waves in the central section;
the valleys correspond to destructive interference of the same waves. Zero
reflections also occur when

Zy =273 and  =jm. (2.5.13)

If in the first and third region the wave’s frequency is below cutoff but in
the middle region a wave can propagate, then the system will determine a set of
discrete frequencies at which the wave can bounce between the two sections. These
eigen-frequencies are determined by the geometric parameters and the dielectric
coefficients. We can calculate these frequencies from the poles of the transmission
or reflection coefficient, namely from the condition that its denominator is zero:

sinh()(Z1Zs + Z2) + Z, cosh()(Z, + Z3) = 0. (2.5.14)

Equivalently, one can write equations (2.5.5)—(2.5.8) in a matrix form, set the
input term to zero (Aj, = 0) and look for the non-trivial solution by requiring that

| 7| (@B)

f (GHz)

Fig. 2.10 Transmission coefficient as a function of the frequency for two cases: the upper trace
represents a situation in which the dielectric coefficient in the third region equals that in the first,
therefore at certain frequencies all the power is transferred — see (2.5.13). In the lower trace the two
are different and the relation in (2.5.12) is not satisfied, therefore always a fraction of the energy is
reflected
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the determinant of the matrix is zero — the result is identical with (2.5.14). The
reader is encouraged to determine Green’s function of the configuration described
in this section — see Exercise 2.10.

2.5.2 Geometric Discontinuity

Another source of reflected waves is a geometric discontinuity. In a sense these
can be conceived as impedance discontinuities but of a more complex character
since geometric variations couple between the different modes in the waveguide.
The simplest configuration which can be considered quasi-analytically consists of
a waveguide of radius R; and another of radius R, < R;; the discontinuity occurs
at z = 0 as illustrated in Fig. 2.11. A detailed analysis when a single mode impinges
upon a discontinuity was reported in the literature e.g., Mittra and Lee (1971) or
Lewin (1975).

Step I: We examine first the case when the source term is in the left-hand side
(z < 0), therefore Green’s function in the left-hand side has two components

o~ Jo(ps F/RI)JO(PJ JR1) exp(—T{"|z = 7))
SR T 4l

+ Zpb 2 <0)Jp (pSR > exp(l"gl)z), (2.5.15)

G(z<0,r|Z <0,/) =

the non-homogeneous solution, which corresponds to an infinite waveguide
and the homogeneous solution which is due to the discontinuity; T'{D =

\/(ps/Rl (w/c)?. In the right-hand side (z > 0),

G(z>0,r|Z <0,/") = Zré .7 <0) JO<pAR )exp(—r§2>z), (2.5.16)

Fig. 2.11 Green’s function
calculation for one

discontinuity in the geometry 3
. W\
of a waveguide. In the upper R s
P HZ
figure the source is in the left AAF-@ARfY

and in the lower it is in the

right o ew
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where T2 \/ (ps/R2)* — (w/c¢)*. Continuity of the radial electric field at z = 0
entails

2

2 RPN
aaAG(’/,7ZZ()—|’,/’Z/<O): %G(}’,Z—O ‘I ,Z <0) for OSF<R2,
= 0 for Rlzrsz
(2.5.17)

In order to determine the amplitudes p, and 7, the last equation is multiplied
by Ji(psr/R1), the product is integrated from O to R; and using the orthogonality
of the Bessel function [similar to (2.3.17) but for first order Bessel function] we
obtain

g (", 2) = p(r',7) ZZMra r,2) (2.5.18)
where
Jo(ps' /R iy
¢, 2) i)(p ' /Ry) exz(rv(l) )7 (2.5.19)
ERZJ%(PS) s
and
r' p, Ry 1 2 JRZ ( ) ( )
Zig=—"2-— — 5 — drrly ( ps i po . (2.5.20)
7T ps R R(py) RY Pk )\ R

Continuity of the azimuthal magnetic field in the domain 0 < r <R, implies

0
—G(r,z =07/, <0)

3 = ﬁG(r, z=07],7<0). (2.5.21)
1

or

As above, we use the fact that in the domain of interest, J;(psr/R,) form a
complete orthogonal set of functions hence

Z Yo [gs )+ (' )} ; (2.5.22)

where

2 Ry r
Yos =— drrly ( ps Jil po—=— ). 2.5.23
Rlzj n1<pR)1(p R2> ( )

The integral in both expressions for Z and Y can be calculated analytically
(Abramowitz and Stegun 1968, p. 484) and it is given by
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1 3 f -
JO dcdy (pné)jl (Pmlfif) =<2 1(]711) Or  pn = Pml

pmtt[p2 — p2u?] -1, (Pu)Jo(pmut)  otherwise.
(2.5.24)

From (2.5.18), (2.5.22) one can determine the amplitudes of the reflected
and transmitted waves. Adopting a vector notation, i.e., p,(r',z <0) — R(7,

7,(r', 7 <0) — T and gﬁ“(r’,z’ <0) — g, these amplitudes can be formally
written as

RO = (1+2v) (1 — zv)gV (2.5.25)
and
TO =y [14 (1 +20) 7 (1 - 21)|g". (2.5.26)

Step II: In a similar way, if the source is in the right-hand side (Z >0) then
Green’s function in the left-hand side can be written as

00
G(z<0,r|Z>0,/) = g pv(r’,z’>O)J0<pXL>exp(F£1)z), (2.5.27)
‘ R

s=1

and

> /R>)] ' IR —T@; -
G(Z>O,r|z’>0,r'):z o(psr/R2)Yo(ps”/ z)exp( sz Z|)

T SRRe) 4T
2 ‘ (2.5.28)
+ Z Ts(r/7 7> O)JO (pA RL> exp (_FEZ)Z) )
s=1 2
Continuity of E, at z = 0 implies
p ()= Zs [géz) (r.2) = 1o(r, z/)} : (2.5.29)
o=1
where
Jo(par’ /Ry) exp(—T )7
87 (",7) = f(p /Ry) oL 2) : (2.5.30)

O
2 s

and the continuity of Hy can be simplified to read
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() + gD, 7) = Z Yos0,(r', 7). (2.5.31)
s=1

Again, adopting a vector notation 7,(r’,z > 0) — T, g§2> (r',7 <0) — g? and

p,(¥',7>0) — R we can write for the reflected and transmitted waves the
following expressions

T = —(1+v2) ' (1 — YZ)g?, (25.32)

and
RY =zZ|1+ U +Yv2) ' (1 -12)|g?. (2.5.33)

With Green’s function established, we calculate now the energy emitted by a
particle with a charge e as it traverses the discontinuity. Assuming a constant
velocity vy, the current distribution is given by (2.4.9) and the electric field which
acts on the particle due to the discontinuity is given by

2 2 00
E.(r,z,m) = Yo [w_ + 0 ] J dZG(r, z|0,7 )exp (—jgz’) (2.5.34)
Vo

T e | 2 2
Jjowey | 2 0722 ) _o

With this field component we can examine the total power transferred by the
particle i.e.,

00 R(z)
P(t) = —ZnJ dzJ driJ,(ryz,0)E.(r,z,1), (2.5.35)
0

—00

and also the total energy defined by

W = rc diP(t), (2.5.36)

—00

which explicitly reads

vy [© 1 & 0 w
W=— do— 2 dz/ —j—27")p, (0,7
Dol LO o= ZPJ ZeXp( JVOZ>pS( ,7)

2 00 [ee] o0
eV 1 2 , RONS ,
— dw— d —j— (0,
ZESOR% Jiw wja) E p‘YJ zexp< jvoz)r( 7')

x J:O drexp [r (ja) n rg”vo)} (2.5.37)
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According to (2.5.25), (2.5.32) and the definitions of g(") and g®, we can write

(0,7 <0) Zoc”/exp< D7) (2.5.38)
and

40,2 >0) Zmexp< ry ) (2.5.39)

Consequently, the expression for the total energy reads

vy [ IS~ o oy 1
= e R? s Ds M r®
TTE. 1 J s,5'=1 Jw — VOFS’ Jw + Vo s
A A 1 (2.5.40)
v J 1 7 Lss
2meoR3 Jjo &2 jo + vl jo —voI'?)

The matrices « and y are frequency dependent, therefore numerical methods
have to be invoked in order to have a quantitative answer regarding the energy
transfer. Nevertheless, the spectrum can be readily derived from these two
expressions. The first term represents the energy emitted when the particle moves
in the left-hand side and the second corresponds to the energy emitted when it
moves in the right one. It should be pointed out that each one of the terms has two
contributions: a fraction of the energy propagates to the left and the remainder to the
right. In the next subsection we present a simpler configuration which allows one to
trace analytically the way the electromagnetic field develops in time in the case of
reflections. We recommend the reader to solve Exercise 2.11 at the end of the
chapter in order to assess the emitted spectrum.

Before concluding, one question needs to be addressed. In principle, the number
of modes required to represent the field exactly is infinite, but practically only a
finite number of terms is taken into consideration because of the need to invert the
matrices numerically. The question is what should be the number of Bessel
harmonics necessary for the representation of a discontinuity as the one presented
above and what is the error associated with the truncation. In order to answer this
question, let us consider a simple function

1 for 0<r<R,,
f(r)={ <r<ks

0 for R, <r <Ry, (2.5.41)

as illustrated in Fig. 2.12.
This function can also be represented by a superposition of Bessel functions:

) = vaJo( ) RL> (2.5.42)
s=1 1
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Fig. 2.12 Step function used f(r)
to model the effect of
truncation in a Bessel series 1
representation
A, R, r
where
Ry Ji(psR2/R
fi=222 l(pézz/ ), (2.5.43)
R, DsJ1 (ps)
here we used the fact that the integral
"X
RESACESE) (2.5.44)
0

can be evaluated analytically (Abramowitz and Stegun 1968, p. 484). We now
define the relative error made when representing the function only with a finite
number of Bessel harmonics as the

N 2
15 drr [f(r) - szlmow/m}
o drif?(r)

Error(N) = (2.5.45)

Using (2.5.43), (2.5.44) the last relation can be simplified to read

Error(N) = 1 — 4 Z [Jl @SR(;/];I)} (2.5.46)

Figure 2.13 illustrates this error. Taking a single mode the normalized error is 36%
for Ry /Ry = 0.5 and it drops to 2% for 20 modes. However, even with 20 modes the
error can be significantly higher if the radii ratio is small and it is more than 15% for

40
0 R./R,= 0.5
__30f
Q\‘i
s 201
S
=
oy %
10F o,
%000
Fig. 2.13 Numerical error as 0 700090000
a function of the number of 0 5 10 15 20

terms N
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Fig. 2.14 Truncation error as 20
a function of the radius ratio N=20
for a constant number of
Bessel harmonics

10|

Error (%)

0
00 02 04 06 08 1.0
R./R,

N =20 and R, /Ry ~ 0.1 — see Fig. 2.14. These facts become crucial when an
accurate solution with multiple discontinuities is necessary.

2.5.3 Wake-Field in a Cavity

In order to examine transient phenomena associated with reflected waves we
calculate the electromagnetic energy in a cavity as a single point-charge traverses
the structure. Consider a /ossless cylindrical cavity of radius R and length d.
A charged particle (¢) moves along the axis at a constant velocity vo. Conse-
quently, the longitudinal component of the current density is the only non-zero
term, thus

{1, 1) = —evo 36115z — vo). (2.5.47)

It excites the longitudinal magnetic vector potential A, (r, ¢), which for an azimuth-
ally symmetric system, satisfies

1o 1 & 108
;EraJr@fc—zw A, (r,z,t) = —poJ.(r, z,1). (2.5.48)

In this section, we consider only the internal problem, ignoring the electromag-
netic phenomena outside the cavity. The boundary conditions on the internal walls
of the cavity impose E.(r =R, z,t) =0, E,(r,z=0,t) =0and E,(r,z =d,1) =0
therefore, the magnetic vector potential reads

A,z 1) = i As_,n(t)Jo(pS;—é) cos<@z). (2.5.49)

Using the orthogonality of the trigonometric and Bessel functions, we find that the
amplitude A; ,(¢) satisfies



2.5 Finite Length Effects 75

d2 evo 1 1 m v
ar Q2 Ant:——i_ ™ N —nli— Yo
[dtz + S,n} sa(f) 2rzo 1R2J2 ond cos( Vo ) [ (1) ( d)},
2 1(ps)
(2.5.50)
where
1 for n=0,
n = {0.5 otherwise, (2.5.51)
and

Q,, = cy/ (%)2 v (%)2, (25.52)

are the eigen-frequencies of the cavity. Before the particle enters the cavity (1 < 0),
no field exists, therefore

Agn(1<0) =0. (2.5.53)

For the time the particle is in the cavity namely, 0 <t < d/vy, the solution of
(2.5.50) consists of the homogeneous and the excitation term:

d
Agn (0 <t< ;0> = By cos(Q ut) + By sin(Q; 1) + 015 cOs(wpt), (2.5.54)

where
hyp = — 26;;’0 i 12 g% o 1_w2, (2.5.55)
ST (p) &1 = ]
and
On = %vo. (2.5.56)

Since both the magnetic and the electric field are zero at t = 0, the function
A (1) and its first derivative are zero at t = 0 hence

By +a,, = O, (2.5.57)

and

|
e

B, (2.5.58)
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Consequently, the amplitude of the magnetic vector potential [A;,(f)] reads
Agn(t) = o5 [cos(a}nt) — COS(QS‘nt)]. (2.5.59)

Beyond ¢ = d/v, the particle is out of the structure thus the source term in
(2.5.50) is zero and the solution reads

Agn (t > i) = (Cjcos {QM <t — i)} + C, sin [Qm (l — i)} . (2.5.60)
Vo Vo ’ Vo

As in the previous case, at t = d /vy both A;,(t >d/vo) and its derivative, have to
be continuous:

d
(XSJ! |:(_1)ﬂ — Cos (Qs,n_ >:| - Cl, (2561)
Vo
and
. d
ax.an.n sSin Qs.n_ - CzQ_w,. (2562)
' ’ Vo

For this time-period, the explicit expression for the magnetic vector potential is

Aspn (t > d) = Us.n |:(_1)n — COs (Qs,n d>:| Cos |:Qs,n <t - d>:|
' Vo Vo Vo
0L, Sin (Qm i) sin [QM (t — i)] , (2.5.63)
' Vo ) Vo

The expressions in (2.5.53), (2.5.59), (2.5.63) describe the magnetic vector
potential in the cavity at all times. Figure 2.15 illustrates schematically this
solution.

During the period the electron spends in the cavity, there are two frequencies
which are excited: the eigen-frequency of the cavity €, and the “resonances”
associated with the motion of the particle, ®,. The latter set corresponds to the case
when the phase velocity, vpn = w/k, equals the velocity L/R. Since the boundary
conditions impose k = nn/d and the resonance implies

Vo = Vpn = c<9 i), (2.5.64)

c n

thus we can immediately deduce the resonance frequencies w,, as given in (2.5.56).

Now that the magnetic vector potential has been determined, we consider the
effect of the field generated in the cavity on the moving particle. The relevant
component is the longitudinal one
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Fig. 2.15 Schematics of the o d ——

field distribution generated by Vo R

a particle as it traverse a g I

cavity. Prior to its entrance, - r L

no field exists in the cavity. 7

When in the cavity the field

has two contributions: d

directly from the source (non- R I Yo <Ny

homogeneous) and reflections A Q:"u"u“* ;

from the walls JW-> L,

(homogeneous). After the z

particle leaves the cavity only o d ———

the homogeneous R v,

contribution remains I <y :’O
S rLE

A, (r,z7 0<r< j;) = Z ocs,nJ()( S%) cos (% z) [cos(w,,t) — cos(th)].

s=1,n=0
(2.5.65)

Note that we omitted the upper limit in the double summation since in practice,
the actual dimensions of the particle, which so far was considered infinitesimally
small, determines this limit. In order to quantify this statement we realize that the
summation is over all eigenmodes which have a wavenumber much longer than
the particle’s dimension i.e., Q;,A./c < 1 and psRy,/R < 1wherein A, is the bunch
length whereas R, represents its radius.

According to Maxwell’s equations, the longitudinal electric field is

o 10
0.5 E=(,0) = =J.(v,0) -~ = rHy(r. 1), (2.5.66)

Furthermore, the field that acts on the particle does not include the self-field,
therefore we omit the current density term. Using the expression for the magnetic
vector potential (2.1.32), we have

E.(r,1) = Jdr}— g”gf‘z(”% (2.5.67)

or explicitly,

E, (r,z,0< l<%]0) = S:;:Oaw (CP ) Jo( - ) cos (7%12> {sinc(oa:nt) B Singj:n[) '
(2.5.68)
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In a lossless and closed cavity the total power flow is zero, therefore Poynting’s
theorem in its integral form reads

dW R d
— = —27‘EJ drrJ dzE.(r,z,0)).(r, z,1). (2.5.69)
dr 0 0

Thus substituting the current density (2.5.47) we obtain

d/Vo
W= €V0J dtE.(r,z = vot, 1), (2.5.70)
0

which has the following explicit form

2
W = evy Z s (%) J

s=1,n=0 0

d/vo

sin(wy?) 3 sin(Q 41)

2.5.71
Wy Qs,n ( 37 )

dtcos(wy,t) [

We can evaluate analytically the time integral in this expression. As can be
readily deduced, the first term represents the non-homogeneous part of the solution
and its contribution is identically zero whereas the second’s reads

cps\e 1 — (—1)" cos(Q,,d /o)
W= —evo %o n (—) , : . (2.5.72)
s:lth::O R Qs,n - CO%

Substituting the explicit expression for oy, we have

&2 >_1 ( 2ps )2 1
w = —
(47[8061 s:lz,n::o Jl (P;) 8n

x m [1 — (=1)"cos (gio d)} (2.5.73)

Figure 2.16 illustrates the normalized energy excited by a 10 MeV in the first
frequencies w < 10Q; . In this range the spectrum is virtually independent of the
particles energy (y > 1)

w

X/ 2 g 1 n Qs,n
Wea(y > 1) = (]1 (px)ps) o (1 — (=1 cos7d>. (2.5.74)

The impact of the homogeneous solution (reflections) on the interaction with
electrons will be discussed in detail in Chap. 4 in the context of high power
traveling wave tubes. Recently, Sotnikov et al. (2009) recognized that the homoge-
neous solution (quenching wave) may be of the same order of magnitude as the
wake generated in high-gradient dielectric wakefield accelerator.
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Fig. 2.16 Normalized energy 107
deposited by a 10 MeV point R/d=0.5
charge in the first modes o E=10Mev
(a) <10Q;) of a cylindrical > 1000 o o
cavity o o o o
lfl o @o o] o Q
o o)
g 0 T o
IS fo) (e}
g o]
] 2
< 107 o)
(o]
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2.6 Scattered Waves Phenomena

As an electromagnetic wave impinges upon an obstacle, it is scattered. This
reflected energy can be harnessed for interaction with charged particles or for
measurement purposes. In this section, we consider several cases chosen due to
their relative simplicity.

2.6.1 Plane Wave Scattered by a Dielectric Cylinder

As a starting point, let us consider a plane wave that propagates in the x direction
and it impinges upon a dielectric (&) cylinder of radius R whose axis is parallel to
the magnetic field component of the incident wave

H_Einc) (x) =Hp exp(—j% sng>; (2.6.1)

tacitly assuming a steady state regime exp(jot) and the background medium is
characterized by a dielectric coefficient &ps — see Fig. 2.17. Based on the generating
Bessel function (Abramowitz and Stegun 1968, p. 361)

exp Eu (v — %)} = Z V', (u) (2.6.2)

n=-—00

this incident component may be written in cylindrical coordinates (x = r cos ¢) as
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Fig. 2.17 A plane wave y
scattered by a dielectric
cylinder

————————

o,

w, 1]
°

Hﬁinc) (r,¢) =Hp exp(fj9 \/Ebgl" COS (j))
c
00 (2.6.3)

=Hy ,,:Zx exp {jn ((]5 — g)} T, (? sbgr) .

The presence of the cylinder alters the electromagnetic field thus the secondary field
is given by

00 - Todn (9 scylr) r<R
HE(r,¢) =Hy > exp {,n(¢> — —)} ¢ (2.6.4)
= 2 H? (9 : ) >R
n=-00 Pn c bbgr rz

n

For imposing the boundary conditions, it is necessary to specify the azimuthal
electric field

inc - . T ] - /)
£ i 3 oln(9 )] (2
T, Ljn (% ecylr) r<R

B =i Y- ewin(e-3)]3 VP
H

w
n=—0o0 — o . R
ol () >
(2.6.5)
Continuity of the two components facilitate to determine the amplitudes
) - bl (b)i,(a) — al,(b)T,(a)
" al, (b)HP () — bY, (b)) (a) 66
-, @ (@ ~3(@H,” () -
al, () (@) - b1,(0)1, (@)

where a = /gy WR Jc and b =, /eyt OR /c. With the amplitudes established, two
measures need to be considered. The first is the extent the cylinder scatters the wave
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namely, the scattering cross-section. For this purpose we determine the total power
scattered in the cylindrical envelope of radius » > R and height A,

21 *
Pscall = AZI’ JO CZ¢RG{%EE;€C)(F7 ¢) |:I_I§sec)(r7 ¢)} }
. 3 77 * . (2) w
= A2m O ,,Z_:OQ‘ 0, Re{ [ ( sbgr)] Hn (z sbgr)}
— A2n 7702|Z° = Z 10,2 (2.6.7)

The scattering cross section is defined by the ratio of the scattered power and the

impinging energy flux, S, =1 =
bg

P?Cﬂtt _
S«

(2RA.) Z 1.l (2.6.8)

n=—00

Oscatt =

Figure 2.18 illustrates the normalized cross-section (6 = 6cae/2RA,;) as a function
of the frequency.

It reveals the evident resonant character of the cross-section: for a dielectric
coefficient &y = 3.3 and using N = 100 azimuthal harmonics, the cross section is
almost 4 for R ~ 0.4/ and close to unity if the radius is R ~ 0.72/¢. Moreover, if
due to dielectric loss, part of the reflected power is absorbed, the effective cross-
section is systematically smaller than the lossless case.

The opposite is the case if the medium is active, as illustrated in Fig. 2.19. Since
multiple reflections in the cylinder may enhance significantly the scattered power,
the cross-section may be larger. In the figure the range between 0.9 <R/1y < 1.2
has been magnified, and for the specific parameters, the normalized cross section at

Jossless ™

\ N=100

Fig. 2.18 Normalized cross
section as a function of the
radius normalized to the
wavelength in vacuum.
Comparing to the lossless
case, the cross section in case
of a lossy cylinder is
systematically smaller since
part of the power is absorbed. | |
:As a rough estimate Gjogy ~ 0 0 1 P) 3
Olossless exp[—Zn (R/}O)

/%yl tan 0] R

o

tan5=0.01

Normalized Cross Section
N
T
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Fig. 2.19 Normalized cross 15
section as a function of the £,=3.3
radius normalized to the N=100
wavelength in vacuum —

focusing in the range

0.9 <R/l <1.2.1f the
medium is active, the cross
section can be significantly
larger comparing to the
lossless case

10+~
"tans"=-0.01

lossless

Normalized Cross Section

tan5=0.0 1/

0 1 1
0.9 1.0 1.1 1.2
R2,
Fig. 2.20 Screening factor as 15
a function of the radius &y =3.3
pormalized to the wavglength "tans"=-0.01 N=100
in vacuum. If the medium is 5
active, the cross section can ?(é 10+
be significantly larger w
. o))
comparing to the lossless case RS
c
S e
S °r lossless  tans=0.01
0 | 1 1
0.0 0.5 1.0 1.5 2.0
R2,

R ~ 1.14¢ has dropped from 3.1 to 2.5 due to the dielectric loss but it has increased
by almost a factor of four ¢ ~ 12 in case of an active medium — corresponding to
about 11 internal reflections.

The second measure of interest is the screening factor, which is indicative of the
extent the cylinder reduces/magnifies the electromagnetic energy in its center. This
factor may be defined as the ratio of the electromagnetic energy densities at the
point of interest with and without the cylinder namely,

(tr) -0 (tr) -0
S =10log vz/iﬁc)(r )+ Wl(‘fncgr )
wp (r=0)+wy, (r=0)

- 1010g(|fo|2 + \rl|2) 2.6.9)

For the parameters mentioned above, the screening factor is illustrated in
Fig. 2.20 and evidently, the fiber tends to focus the electromagnetic energy.
As may be expected, this focusing is suppressed by lossy material and it is amplified
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by active medium. In addition, we observe that lossy or gain medium do not alter
the resonant pattern (peaks) associated with azimuthally propagating modes.

2.6.2 Evanescent Waves Scattered by a Dielectric Cylinder

In many cases of interest, waves attached to moving charges are scattered by
various obstacles and these radiating modes may be used for the characterization
of bunches of electrons as well as of the obstacle. We now exploit the relatively
simple configuration of the dielectric cylinder in order to examine the scattering of
evanescent waves attached to a charged line (Q/A;) moving with a velocity v at a
height 7 > R — see Fig. 2.21. Near the cylinder the incident field is given by

(inc) __ 9 wofe—Sy el _
H" (x,y <h,t) ey J dwexp [j(y(t V) -~ (h—y)
= A J dw exp(jor) n;w Ju(r,m,v)exp(jng)
. 1 R o |
Tn(ryo,v) = . J d¢ exp [—]nqb —j?rcosqb — V_V(h — rsmqﬁ)}
(2.6.10)
Similar to the approach from the above,
HE (r, 1) = — Q J dw exp(jor)
: T 47A,
- " 2.6.11)
00 ()], (; SCyll) 7
X Z exp(jn¢) o
n=—o0 pp(w)H? (— sbgr) r>R
¢

Fig. 2.21 Evanescent waves
attached to a moving charged-
line are scattered by a
cylinder
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and
0 | N

(inc) H 3
Ed) = _47IAZ J dw eXP(]wl ]wbobbg HZOO 8) Jn r,w V) exp(]n¢)

(sec) 0 J —1
E~ =——— | doexp(jot

4nA, (J )Jﬂ)go (2.6.12)
—00

1 .

—Tn (9 vV 8cyl)Jn (9 Scylr) r<R
00 . Ecyl C &
3 exptins)]

()

w . w

— —\/ H, (7 ) >R
Ebg P (C 8bg> c Sbe h=

Thus imposing the boundary conditions we obtain the reflection and transmis-
sion coefficients

- bJ,(b)3, — al,(b)3,
"l (HP (@) - b, () (@)
o (2.6.13)
o bH®? (a)J, — bH,” (a)J,
"l (b)H (@) - b3, (a)

wherein jn(R,a),v) = [RO,J,(r,,V)|,_p/a, a=w/egR/c, b= /ecuR/c.
With the field established, it is possible to determine the emitted energy during
the passage of the charged-line near the cylinder

—00

W:J~oo dtp(t) Jd¢J th(SeC)< b, ) Z(qec)( (b’)
-r (2.6.14)

Q2
:27r80A J a— Z \,0,,

which enables us to write the following expression for the normalized spectrum
aw 1
= = E 2.6.15
da — Q* da a lpal’ ( )

2mepA;

it should be pointed out that it has been assumed that the charged-line moves in
vacuum thus, &, = 1. If the single line charge is replaced by train of M micro-
bunches of length A and thickness A ; with a spacing L between each two micro-
bunches then the normalized spectrum is
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1 alL
. 2 _M__
A) o (2 ﬁR> ) hcz<1aM>

— sin
sinc? Lal 278 R
28R

R
Note that the total amount of charge remains Q. For simplicity sake, we assume
for what follows that 8cy1 — oo namely, the field does not penetrate in the cylinder
therefore p, = —J,/H? (a) and also that the bunch is ultra-relativistic (y — oo) or
if to be more accurate, ¢4- 4% « 1. Since the last two transverse geometric

> y R ’v R
parameters % ,% are expected to be at the most of the order of unity, the previous
condition limits the spectrum of our approximation to a < a., = 0.01y. Another

implication is a significantly simpler expression for

Z 1.7 sm(:2(1

n=—00

’Q\Q

(2.6.16)

s

. 1 .
I, = 20 | 5m J dopexp(—jngp — jacos p)| = J,(a) exp(—jng) (2.6.17)

which finally implies
sinc? %Ea

: 2(1 A )

nc —a | ——

aw 2 & i2(a)
da l‘ 2 @)

n=—oo " n

sinc? (M a)
1A 2R
~ 1.345[1 — exp(—2.5a)]sinc? <2 Ra) 2?5
sinc?( = —a
2R

Evidently, the first term represents the contribution of the ideal line-charge whereas
the two trailing terms represent the single bunch size effect and the multiple
bunches impact respectively.

Before concluding this subsection, two comments are in place. First, the config-
uration considered above illustrates the coupling between the evanescent waves
attached to the moving charged-line and the propagating waves scattered by
cylinder. Due to the resemblance to regular diffraction, the emerging waves are
also referred to as diffraction radiation. Second, we need to provide an alternative
interpretation of the emitted spectral density as manifested in (2.6.16). From the
way it has been developed, it obviously characterizes the radiative contribution far
away from the charged-line. Based on Poynting theorem, the source of this radia-
tion is the effect of the secondary field on the charged-line
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W= J dtP(t) = J dtA, J dx J dyE™) (x,y, 0)J . (x,y,1)

0 o0 (2.6.19)
R}
=-0 J dx J dwexp(;;x) Eisec)(x, h; )
—00 —00
Using the normalization employed above we get
aw m |1
- i w
> _z = d ('— )E““) i 2.6.20
da 4= "R | o)A J eexp (/- x )X (x, b ) (2.6.20)

which clearly reveals that the spectral density of the emitted energy is proportional
to the spatial Fourier transform of the electric field as experienced by the charged-
line. It can be readily checked that the square brackets have units of ohm-meter and
consequently, the normalized spectral density equals the, so called, (normalized)
longitudinal impedance experienced in this case by the charged-line.

2.6.3 Evanescent Waves Scattered by a Metallic Wedge

Diffraction radiation is commonly employed by the particle accelerator community
for characterizing the location and to some extent the shape of a charged bunch.
This is generally done with thin metallic foils. A model for describing the system, as
in the cylinder case, consists of a charged-line (Q/A;) moving at a constant velocity
v at a height / above the tip of an ideal wedge (2m — o < ¢ <2m — oy) — see
Fig. 2.22. In the frequency domain, the magnetic field is a solution of

19 0 1 9 o? oJ,

oot ?&+CT:| H.(r, ¢, ) = [a_y] P rsing (2.6.21)
X=rcos¢
vt
- NAS\SJ

,
a7 Z ’1%
Fig. 2.22 Evanescent waves }\S‘Sy

attached to a moving charged-
line are scattered by a wedge




2.6 Scattered Waves Phenomena 87

Obviously the radial electric field is zero on both sides of the wedge therefore
it is natural to employ the orthogonality of the corresponding azimuthal eigen-
functions namely,

o0

H.(r,¢,0) = ZHn(r) cos[nm(¢p +o1) /(21 — op + o11)], (2.6.22)
n=0
to get
1d d vV o oo
;Era_r_z—’_c_JHn(r) S(’)_;m J dd’ [v(¢ +01)]
“x
| (2.6.23)
with v = nn/(2n — o 4 o1). The source term may be simplified
X X 2n—a
Salr) = ZnQAZ ; 2n —(;:)—l— o r ¢ exp( v eos ¢)
o
x sin[v(¢p + 1) cos ¢ 6(y — h) (2.6.24)

Next, we define ¢, = arcsin(h/r) and take advantage of the Dirac delta function

oy 1) = =2

Wherein u(x) denotes the Heaviside step function thus

[0(¢ = ¢o) + (¢ — 7+ ¢o)] (2.6.25)

Sa(r) = 2;;% gvn Znuiroc_z jl_)a 112 { Xp( V2 — hz) sin[v(pg + o1)]

- exp(—j;\/r — h2) sin[v(m — ¢ + ocl)]}. (2.6.26)

For a solution of (2.6.23) we employ the corresponding Green’s function

1, (9 r') H$2> (9 r) r>r
T c c

G,(r,/)=j= (2.6.27)
) 2 H‘(,z) (9 r') 1, (9 r) r<r
¢ ¢
and can formally determine the magnetic field
H,(r,¢,t) = Jda) Z cos[v(¢ + )] 2ReX exp(jowr) Jdr' ¥ Gy (r,r")S, (")
n=0
0

(2.6.28)
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With this field component established we may proceed and evaluate the radiated
energy at r — 00

2m—0lp
W= Ar J er dEy(r, &, OH.(r, §.1)

—o
—00

2

- T ar'r'J, (% r') Sa(r')

0

=ny2n (g) (2m — o + o1)A2 J dw f:g,,

0 n=0

N

(2.6.29)

Defining Q= wh/c, W =W[Q?/2(2r — oy + al)eoAz]_] and ¢=r/h the
normalized spectral density is given by

Q . .
ﬂ:gm TdéVJv(Qf) exp(;E 62—1>s1n[v(arcsm(1/f)+fx1)]

Q@ a&|) e _exp(_j%\/gz?)sm[v<n_arcsin<1/«:>+m>]
(2.6.30)

2

or finally, after defining & = 1/ siny/ we obtain

Q Q
_ o |2 v, (> exp (j— cot lﬁ) sin[v(y 4 o1)]
fl‘:)/ - é Z J dy taily ’ Q

=10 —exp (_J? cot x//) sin[v(m — W + o))

(2.6.31)

2

Several observations are in place now that we have an explicit expression for the
energy’s spectral density. First, note that if the velocity is reversed v.— —v, this is
equivalent to taking the complex conjugate of the term in the curled brackets, the
spectral density is invariant. At the limit of very low frequencies, the spectral
density emitted by a relativistic bunch (ff ~ 1) is inversely proportional to the
frequency as can be concluded from Fig. 2.23 where we plot this quantity as a
function of the normalized frequency(Q2). It should be pointed out that the first
twenty harmonics were considered and for fast convergence, the integration was
performed in the range ¢ <y < /2 — ¢ where ¢ = 0.00057. As reference, we also
present the first two harmonics (n = 1,2).

Examining the same quantity as a function of the normalized momentum of the
bunch we conclude that — see Fig. 2.24 — for yf <1 the spectral density is
proportional to f* (for Q = 1) however, this dependence is strongly dependent on
the normalized frequency. For example, for Q = 0.2 the spectral density is propor-

tional to y8 [1 + (yﬁ/15)4] i
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Fig. 2.23 Contribution of the
first 20 harmonics to the
normalized spectral density as
a function of the normalized
frequency; o = 7/6,

op =7/4 and § = 1. The
dashed line clearly reveals
that this quantity is inversely
proportionnal to the
frequency for Q < 1. As
reference the first two
harmonics are also presented
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Fig. 2.24 Contribution of the first 20 harmonics to the normalized spectral density as a function of
the normalized momentum; oy = 72/6, ap = 7/4 and Q = 1. For a relativistic bunch each har-
monic reaches it asymptotic value at a different momentum. As reference, the first two harmonics
are also plotted. For Q = 1 the dashed line clearly reveals that the spectral density is proportional
to f*; this dependence may be quite different at other frequencies

Although only the » = 1 and n = 2 harmonics are illustrated, we found that all
harmonics reach an asymptotic value. In fact, this conclusion can be readily deduced
from the fact that the energy spectral density depends on /5 and the latter approaches
unity at high kinetic energy. The bending point depends both on the normalized
frequency the geometry of the wedge as well as on the harmonic’s index.

Exercises
2.1 Determine the boundary condition associated with charge conservation.
How it relates to (2.1.12)—(2.1.15)?
2.2 In the context of Sect. 2.2.4, calculate the electromagnetic field

associated with the moving charge (2.2.21)—(2.2.22). Calculate the
(continued)
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Poynting vector associated with this field. With this result, calculate the
total power. Is there a force acting on the moving particle?

Show that the power radiated in free space by the current distribution in
(2.3.2) is given by P = nyl*(wd/c)* /127

By virtue of the superposition principle, show that in case of multiple
“wires” carrying currents /, located at (x,, y,) between the two plates of
a radial transmission line the magnetic vector potential is given by

_ 1 o|@ 2 2
4= 30, bt |25+ -3

Calculate the energy velocity (Sect. 2.3.3) assuming two modes TMg;
and TM,, above cut-off. Plot the energy velocity as a function of the
ratio of the two modes 0.3 < p = |A¢; /Apz| < 3.0.

Calculate the radiation impedance of the TMy; in a circular waveguide
of radius R. Assume a current distribution

J(r,z,0) = IAJ (p1r/R)o(2)p1 /2nrR.

The expression that determines the magnetic vector potential of N
electrons moving in a dielectric medium ¢; at a velocity v

N
el o [c? R}
A(r,z,0) = — (271(;2 Ko <:l‘ = 8r> ZGXP [—J;(Z - Zi)}
=1

Assuming that the electrons are uniformly distributed |z;|<A/2, calcu-
late the power emitted by this bunch. Show that the power emitted in the
range A > A is proportional to N2. What happens in the range 4 < A?
Repeat the exercise for a Gaussian distribution.

In Sect. 2.4 we have demonstrated that

25, (psRy/R) . (ps A/R )]2

Py /e
(eN)zv_erBZ—IZ PRs /R \2 a1

N

2megR?

Determine the condition(s) necessary to suppress the radiation excited
in specific mode(s). Can you ensure zero power in many modes? Hint:
for large values of s, ps11 — ps ~ 7.

Draw the normalized average power (2.4.58) for M = 100 normalized
to M = 1 as a function of L/R as in Fig. 2.7. Show that for specific
values of L/R, this quantity is of order of unity. Analyze the spectrum in

a few of these cases.
(continued)
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2.10 Calculate Green’s function associated with the system described in

2.11

Sect. 2.5.1. Begin with case when the source is located to the left of
the discontinuity and continue by solving the problem when the source
is between the discontinuities. Can you deduce the Green’s function for
the third case, when the source is after the third discontinuity, from the
first one. For the second case (point-source between the discontinuities)
can you design the system such that the source emits zero power?
Based on (2.5.40), analyze the spectrum of the emitted radiation as a
point-charge traverses a geometric discontinuity. Keep the ratio of the
number of modes in each region proportional to the radii ratio.

2.12 Based on the formulation of the wake generated by a point charge in a

loss-less cavity (Sect. 2.5.3), determine the spectrum of train of N point
charges generated in the same cavity. Assume that the spacing between
two adjacent charges is L.

2.13 Repeat the steps in Sect. 2.6.1 for the orthogonal polarization,

E. =F, exp(—j% sng).

2.14 Analyze the normalized spectrum density in (2.6.16) as a function of the

various parameters.

2.15 Plot the contour of constant far-field emitted energy density from a

wedge (Sect. 2.6.3) for several values of the kinetic energy; oy = 1/6,
op =74, Q=1and y =2, 11, 21, 31.

2.16 Extend (2.6.31) to the case of a train of M micro-bunches of spacing L

and the length of each one is A, whereas the thickness is A,.

91



Chapter 3
Elementary Electron Dynamics

There are numerous topics regarding electron’s dynamics, which can and probably
should be discussed as background to the investigation of distributed electron-wave
interaction. Among these, a fraction will be presented here with emphasis on basic
concepts that are of relevance to the principles to be elaborated in the next chapters.
All topics considered throughout the text rely on classical mechanics (Sect. 3.1) and
without exception they are consistent with the special theory of relativity
(Sect. 3.2), therefore the fundamentals of these two theories are summarized.

Beyond reviewing the fundamental concepts of relativistic classical dynamics,
we consider in Sect. 3.3 some of the methods of electron generation and discuss the
Child-Langmuir law which draws a limit on the maximum current achievable when
applying a voltage on a cathode. After electrons are generated, they are typically
guided by magnetic fields and waveguides to the interaction region. In Sect. 3.4 we
present some basics of beam propagation in free space with uniform or periodic
magnetic field. The section concludes with the basic measures of beam quality:
emittance and brightness.

Section 3.5 is dedicated to space-charge waves. After introducing the basic
concepts of fast and slow space-charge waves, we consider two instabilities that
can develop when these waves are present. One is the resistive wall instability and
the other is the two-beam instability. Interference of two space-charge waves is
shown to play the crucial role in relativistic klystrons. Chapter 3 concludes with a
brief discussion on radiation from moving charges (Sect. 3.6).

3.1 Classical Dynamics

In a substantial fraction of the interaction schemes, it is sufficient to describe the
electron-wave interaction in the framework of classical mechanics and for this
reason, we shall not discuss here quantum mechanic effects. The classical approach
includes either the Newtonian equation of motion, or Lagrangian or Hamiltonian
formalism. In all cases, the relativistic framework is considered. Furthermore, in all

L. Schachter, Beam-Wave Interaction in Periodic and Quasi-Periodic Structures, 93
Particle Acceleration and Detection, DOI 10.1007/978-3-642-19848-9 3,
© Springer-Verlag Berlin Heidelberg 2011
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cases of interest, many particles are involved and consequently, statistical methods
are invoked and for this purpose, we present very briefly the kinetic and the fluid
approximations, which are used throughout the text.

3.1.1 Newtonian Equations of Motion

The elementary equations, which describe the dynamics of a particle at the classical
level, are given by

= [y (0)v(0)] = F(), G.L.1)

where F(¢) is the force acting on the particle and if an electromagnetic field is
present then the force is given by the Lorentz force which reads

F(t) = —e{E[r(t), 1] + v(t) x B[r(1),1}; (3.1.2)

e and m represent the charge and the rest mass of the electron respectively, v(¢) is its
velocity vector at any point in time and

1
L—v(0) - v(0) /2

The electromagnetic field, E(r(¢),¢) and B(r(¢),¢) is the field at the particle’s
location.

A full description of the particle’s dynamics requires to determine also the
location of the particle at each point in time; this is given by

(1) =

(3.1.3)

—r(t) = v(r). (3.1.4)

The state-vector of such a particle is a 6D vector and it consists of the relative
location of the particle r(¢) and its momentum i.e. [r(¢), my(¢)v(7)].

As in the case of Maxwell’s equations, the energy conservation can be deduced
from these equations. For this purpose (3.1.1) is multiplied scalarly by v(z). After
substituting (3.1.2) in the right-hand side, we can find that the second term contri-
bution is identically zero since the product v x B is orthogonal to both the velocity
vector and the magnetic induction. In the left-hand side we have

d

mv(t) T b(O)v()] (3.1.5)
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which can be simplified if we now use the definition of y(¢) in (3.1.3) to express v - v
as ¢?[1 — y~2(¢)] which yields

mc2d%y(t) = —ev(t) - E[r(7), 1. (3.1.6)

This is the expression for single particle energy conservation.

3.1.2 Lagrangian Formalism

It is convenient in many cases to use a different approach when formulating the
dynamics of a single particle. The basic idea is to introduce a scalar function L,
called Lagrangian, from which the vector equation of motion can be derived. This
function depends on the velocity and location of the particle and in general, it may
also depend on time. Without loss of generality, we can define the action as

15)
I= J diL(v,r; 1), (3.1.7)

141

and require that the motion of the particle from time #; to time #, is such that the line
integral is an extremum for the path of motion. To formulate this statement
mathematically it implies to require that this action is at an extremum with respect
to a virtual change Jr, hence

(5]

ol = 5J dtL(v,r;t) =0,
t

%) ]

= | deL(v,r;t) =0,

n

0 ToL oL d 3.1.8)
= . dfl:gér—f—m&ér] :O7

f OL d JOL
= tldtér[g—Eg:l— s

In this context by “virtual” we mean an infinitesimal change in the configuration
space due to an infinitesimal change of the coordinates system, or, consistent with
the forces imposed on the particle at the given time. In the last line of the expression
from the above, we used the fact that after the integration by parts, the variation at #;
and ¢, is identically zero. Thus, in order to satisfy 6/ = 0, the Lagrangian has to be a
solution of the following differential equation

d /oL OL
&<5> _a:()_ (3.1.9)
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This is called Lagrange’s equation and it is identical with the (relativistic) equations
of motion, provided that L is chosen to be

L=mc*\/1—-v-v/c+e(®—v-A), (3.1.10)

where @ is the scalar electric potential and A is the magnetic vector potential.

At this point, we are in position to define in a systematic way the momentum of a
particle in the presence of an electromagnetic field. This will be referred to as the
canonical momentum associated with the coordinate r and it is defined by

OL v

gzmy/l—v'v/c2

With this definition in mind and Lagrange equation, we can already point out one of
the advantages of the Lagrangian formalism. If L is not an explicit function of one
of the coordinates (say x) then the second term in (3.1.9) vanishes. This, in
conjunction with the last definition, implies that the corresponding component of
the canonical momentum (in this case p,) is a constant of motion. Therefore, the
constants of motion can be deduced from the symmetry of the system.

p= — eA = myv — eA. (3.1.11)

3.1.3 Hamiltonian Formalism

In particular, if L does not depend explicitly on time then by its differentiation by
parts and using Lagrange’s equation we obtain

dL _JL dr+8L dv_d <8L> V+8L dv
dt or dr ov dt dt\ov) T ov dr
t Or dr Ov dr dr\ov ov dt E(L—V-%>:O. (3.1.12)

%_S % :>dt ov
a @\’ oy

Subject to this condition, the expression in brackets is a constant and is propor-
tional to the total energy in the system. Based on this last result it is convenient to
define the so-called Hamiltonian of the system as

H=v-p-L. (3.1.13)

For a relativistic particle it reads

H=v-(myv—eA —[—mc2 l—v-v/i2+e(®—-v-A
(V ) / ( ) (3.1.14)
:mczy—e(D.
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According to the last expression and comparing it to the free particle case,
the energy, in the presence of an electromagnetic field, is given by £ = H + e®.
Bearing in mind that, according to the special theory of relativity, the energy and
the momentum are related by E> = p?c? + m*c*, we conclude that the Hamiltonian
of a relativistic particle expressed in terms of momentum p [using (3.1.11)] is
given by

H= \/(p + eA)’ 2 + (mc?)* — . (3.1.15)

This is also a scalar function and as in the case of the Lagrange’s function, there are
a set of equations, which describe the motion of the system. These read

dr_8H

— = 1.1

@ ap (3.1.16)
and

dp OH

—_—=——. 3.1.17

dt or ( )

Neither the Lagrangian nor the Hamiltonian formalisms include more informa-
tion about the system than that provided by the Newtonian equations of motion;
however as indicated in the case of the Lagrange function, the constants of motion
can be determined in an easier and more systematic way. In addition, the formula-
tion of the dynamics of more complex variables can be “naturally” formulated.
Consider, for example, a dynamic variable p(p,r,?) and suppose it is required to
determine its equation of motion. At first glance the vector equations of motion
[(3.1.1)—(3.1.2)] give us a limited hint as of how to proceed however, the Hamilto-
nian formalism is very helpful since firstly we can write

dp _0p Op0r Opop _0p Opdr 0pdp

_ _ 9p 1
a o Toror Tapor or Tordrop dr (3.1.18)

and secondly substitute Hamilton’s equations. The result is

dp Op OpOH OpdH 0Op
STz, r- T =— H}. 1.1
dt ot * Or Op Op Or — Ot +ipH} G119

The latter definition is also known as the Poisson brackets. Hamiltonian formu-
lation and a generalization of Poisson brackets provide the basis for the quantum
formulation of microscopic electron’s dynamic. A more detailed discussion on
classical mechanics can be found in textbooks by Goldstein (1950) and Landau
and Lifshitz (1960).
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3.1.4 Kinetic Approximation: Liouville’s Theorem

The formulation presented above relies on a single particle interacting with the
electromagnetic field and no direct interaction is considered other than through this
field. Even in the absence of an external electromagnetic field there are numerous
electrons in any system and it is not possible to solve instantaneously the equations
of motion for all electrons, therefore statistical methods are invoked. Instead of
information regarding each particle, we consider the probability density, f(r, p, ?),
to find a particle at a given time ¢ in the 6-dimensional phase-space element
rp — (r + or)(p + Jp); this probability density satisfies

Jm erOO dpf(r,p,t) = 1. (3.1.20)

—00 —00

Although the notation is the same, it is important to realize the difference
between (r,p) in this sub-section and the previous one: previously, (r,p) were
the coordinates of a given particle in a 6D phase-space whereas here, we do not
know the location of any of the particles. In (3.1.20), (r, p) are the variables of the
probability density. Assuming that we know this probability density function, the
charge density is

o}

p(r,t) = —en(r,t) = —enoj dpf(r,p,1), (3.1.21)

—00
where ng is the average particle density and the current density is

o]

J(r, 1) = —enoJ dpvf(r,p,?). (3.1.22)

—00

These two expressions indicate that, in principle, if we know this function we
should be able to calculate the electromagnetic field. Motivated by this fact, we
proceed and determine next the dynamics of this probability density function.
According to Liouville’s theorem, the distribution function is a constant along
any trajectory in the phase-space. This is valid, for non-interacting particles and
closed system; however the formulation can be generalized to include collisions
and external effects. For a collisionless ensemble, the Liouville theorem can be
mathematically formulated as

d
/TP =0. (3.1.23)

Using the Hamiltonian dynamics in terms of Poisson brackets as formulated in
(3.1.19) we have
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d
_ 1) =
dtf(r,p, ) =0

= TERD | (e p.0), )
_Of(r,p,t)  dr Of(r,p,t) dp Of(r,p,?)
e e TRy e %o (3.1.24)
of (r,p,1) of (r,p,1)
= + Vv -
ot or
of (r,p,1)

— e[E(r,) +v x B(r,1)] - =0.

op

Let us now present a very simple solution of this equation, which also reflects on
the character of the interaction of charges in plasma. In contrast to the case of a gas
where each individual atom interacts only with its nearest neighbor due to the short
range character of a neutral atom, in the case of charged particles the range of the
Coulomb force is long and consequently many particles, in its vicinity, might be
affected. We consider a static electric field (E = —V®) which develops in a neutral
system due to a local perturbation in the neutrality of the system. The Hamiltonian
in this case reads

2

H=P _ .0, (3.1.25)

2m

and the solution of (3.1.24) can be checked to read
f(r,p.t) = foexp(—H/ksT), (3.1.26)

where kg = 1.38066 x 10~23JK~! is the Boltzman constant and T is the absolute
temperature of the particles; f; is determined using (3.1.20). Integration over the
momentum can be performed analytically thus the density of the particles,
according to (3.1.21), reads

eq)(r)} . (3.1.27)

n(r) = noexp[ taT
A potential, which develops in the distribution, causes a change n(r) — ng in the
particle density; n is the average density of the particles. The latter affects in turn
the electric scalar potential ® hence

o
V20 = éno [exp (:B—T) - 1]. (3.1.28)



100 3 Elementary Electron Dynamics

Assuming e|®|/kgT < 1, we can expand the right-hand side in Taylor series of
which we keep only the first term. If we further assume spherical symmetry, we can
readily solve (3.1.28) and the electrostatic potential is given by

o) = ——Lexp (— )’—D) (3.1.29)

dmeg 1
where Ap is the Debye length, defined by

SokBT

=
D }’l0€2

(3.1.30)

The solution in (3.1.29) indicates that the potential generated by this perturba-
tion is screened on a scale of the Debye length and beyond this radius its effect is
vanishingly small. With this characteristic length parameter we can define the
typical (Debye) sphere whose volume is 471)»31) /3. In this range, the charge has a
non-negligible effect on adjacent particles. The number of the particles affected by
the perturbation mentioned above, is proportional to the product of the averaged
particles’ density, ng, and the volume of the Debye sphere. In order to avoid effects
of such fluctuations it will be reasonable to require that no particles (other than the
source) will be in this sphere i.e.,

1
n0<4n3x§))<1, (3.1.31)
which also means that the density has to be smaller than a critical value n. given by

4 2 T 3
Ho < ne = ({) (SOkB > . (3.1.32)
e

Whenever the kinetic approximation will be employed, it will be assumed that this
condition is locally satisfied.

3.1.5 Hydrodynamic Approximation

In the framework of the kinetic approximation presented above, at a given location
there is a finite probability to find particles of different velocities. This is to say that
in an infinitesimal volume the energy spread of the electrons (represented by the
temperature) is significant. In many cases of interest, this spread is virtually zero
and as a result, we can attribute to all particles in an infinitesimal volume, a certain
velocity and density. For determining the dynamics of the velocity, it is assumed
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that the reaction of the particles to an external force is identical to that of a single
particle which satisfies

d%[my(r, NHv(r,t)] = —e[E(r, 1) + v(r,t) x B(r,1)]. (3.1.33)

and y satisfies

% [mc*y(r,1)] = —ev(r, ) - E(r,1). (3.1.34)

The particles’ density in the infinitesimal volume at the given time, n(r,?),
satisfies the continuity equation

V- [n(r,0)v(r,1)] + %n(r, 1) =0, (3.1.35)

which is equivalent to the charge conservation introduced in context of Maxwell’s
equation (see Sect. 2.1.1). In the context of the equations above, the derivative d/d¢
is given by

d o
T=5 VTV (3.1.36)

Assuming that the velocity and density fields were established, the charge and
current densities read

p(r, 1) = —en(r,1), (3.1.37)

and
J(r,t) = —en(r,t)v(r,1) (3.1.38)

thus the connection to Maxwell’s equations is completed. The three equations,
(3.1.33)—(3.1.35) together with Maxwell’s equations consist a self-consistent set of
electrodynamic equations in the framework of the hydrodynamic approximation.
Note that contrary to Sect. 3.1.1, the velocity v(r, f)represents a field rather than a
coordinate of a particle in the phase-space.

In order to quantify this approximation, we can state that any variations of the
velocity (or density) field on the scale of an infinitesimal volume are negligible on
the scale of the distance between any two particles in this volume. If the density in
the mentioned volume is n then the characteristic distance between each two
particles is [ ~ n~'/3 thus

IV-v| 1

< -. (3.1.39)
Iv| !
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If, for example, the largest spatial variation is determined by the radiation field
i.e. 4, then the condition above implies that A x n'/? < 1; for a relativistic beam of
radius 3 mm carrying a current of 1 kA, the density is 7 X 10''m3, the character-
istic length /is / ~ 110 um therefore as long as the radiation wavelength is larger
than 1,000 um the approximation is fully justified. However, for a strongly
bunched beam there will be regions in space where the density is orders of
magnitude smaller than the (initial) average density and consequently the validity
of the fluid approximation has to be properly re-examined. An additional perspec-
tive relies on the energy spread (temperature) which was assumed to be negligibly
low. In terms of Debye critical density, defined in (3.1.32), low temperature entails
low critical density n,. therefore, the hydrodynamic approximation is valid as long
as n > ne.

3.1.6 Global Energy Conservation

In Chap. 2 we developed the Poynting’s theorem from Maxwell’s equations and it
was indicated that it is associated with the power and energy conservation of the
electromagnetic field. It was formulated as

0|1 1

where S = E x H is the Poynting vector and J was assumed to be given. At this
stage we can release this constraint since the current density was determined
(3.1.38) in terms of the density and velocity fields. Our goal now is to formulate
the global energy conservation of the electromagnetic, velocity and density fields as
one conservation law e.g., charge conservation in (2.1.12). For this purpose, we
substitute the current density definition in (3.1.40). In addition, we use the definition
of the total electromagnetic energy density W from (2.1.19) to write

V-S+gW:enV~E. (3.1.41)

The scalar product on the right-hand side is identical to that in (3.1.34), therefore
the last equation yields

0 d
S+ W =—-mc’n—y; 3.1.42
\Y% +8t mc ndty, ( )

using the definition in (3.1.36) we have
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V~S+gW: —mcz{n%y—&—nv-V)}},
(3.1.43)

B B
" 4 . T AN
= —mc {&(w) Vgt TV (avy) =9V - (nv)).

The continuity equation in (3.1.35) further simplifies this expression since the
sum of the second and the fourth terms on the right-hand side is zero, hence

V- [S+ mcnyv] +% W+ mc*ny] = 0. (3.1.44)

This expression is the global energy conservation of the electromagnetic, velocity
and density fields. The total energy flux is given by the first term and it is the sum of
the electromagnetic Poynting vector and the kinetic energy flux: S + mc?n(y — 1)v.
The total energy density stored in the system is the sum of the electromagnetic
energy density W and the kinetic energy density W + mc?n(y — 1). For these
interpretations we have subtracted from (3.1.44) the continuity equation

V- [S+mc*n(y —1)v] +% (W +mc*n(y — 1)] =0, (3.1.45)

multiplied by the rest energy of the electron i.e., mc?.

3.2 Special Theory of Relativity

Modern high power radiation sources and accelerators rely on the interaction of
electromagnetic waves with electrons whose velocity is very close to c¢. In these
conditions, one has to invoke relativistic dynamics.

3.2.1 Basic Principles

The dynamics of the electrons as formulated so far is consistent with what is known
as the Special Theory of Relativity as formulated by Albert Einstein in 1905. For an
adequate formulation of its principles, we have to introduce the concept of the
system of reference also referred to as frame of reference. It consists of a set of
rulers to measure the distance and enabling us to determine the location of an
event in space and in addition, a series of clocks which monitor the time. An inertial
frame of reference can be conceived as being attached to a free particle i.e.,
a particle which no forces act on, thus it moves with a constant velocity. Another
frame of reference moving at a different but constant velocity is also inertial.
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The first principle of the theory states that: (1) The laws of nature are form-
invariant with respect to the transformation from one frame of reference to another.
In other words, the laws of nature can be written in the same form in all inertial
systems of reference. As an example, let us consider a motionless frame of
reference R(x, y, z, ct) and the law of nature to be examined is Maxwell’s equations

VxE+QB:Q

ot
VxH—QD:J (3.2.1)
ot ’ -
V-D=p,
V-B=0.

Now, in another frame of reference, R'(x',y', 7', ct'), Maxwell’s equations have
an identical form. “Primed” notation indicates that the numbers which indicate the
location and the time of the event under consideration are different than these
measured in laboratory frame. Similarly, primed field components or the source
terms are those measured by an observer in the moving frame and according to (1)
they satisfy

o
V' xE +—B =0,

or
v/XH/_gD/_J/

a2 = (3.2.2)
v/'Dl:pl
V' -B =0.

The two observers, one in the laboratory and the other in the moving frame of
reference, intend to “compare notes” regarding data each one has measured. In this
process they have to take into consideration the finite time it takes information to
traverse the distance between two points. This brings us to the second principle of
the special theory of relativity which states that (2) The phase velocity of a plane
electromagnetic wave in vacuum is the same in all inertial frames of reference.

3.2.2 Lorentz Transformation

In contrast with Newtonian mechanics, where the spatial coordinates are variables
and the time is a parameter, according to special theory of relativity the time a
coordinate as the other three spatial coordinates. Therefore, in order to describe the
motion of a wave in vacuum, we denote by dr the space interval it traverses in a
time-interval d¢ hence, dr = cdt. The last expression can also be written as

ds* = dr* — *d? = dx® + dy* 4 dz* — 2d* = 0, (3.2.3)
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which is a generalization of the concept of distance in a regular three dimensional
space. As clearly indicated, in the particular case of a plane wave, the distance it
traverses in the four dimensional space (space-time) is zero. By virtue of the invari-
ance of the phase-velocity, the moving observer can write the same statement as

(ds')? = (d')* + (dy')* + (d')* — (cdr')* = 0. (3.2.4)

Without loss of generality, we can assume that the relative motion of the two
frames of reference is along the z axis and that at a certain point in space-time the

two frames overlap; thus, we assume the following general transformation
dy’ = dx,
dy = dy,
Y (32.5)
dz' = ay1dz — apcdt,

cdf = arcdt — ardz.

Substituting these relations in (3.2.3)—(3.2.4) and comparing coefficients we find
the following relations

a%l - a%l =1,
a%z — a%z =1, (3.2.6)

anap — anaz = 0.

At the origin (z' = 0), we must have z = vyt where v is the relative velocity
between the two frames, therefore a1,/a;; = ff = vo/c. With this observation we
can now determine the coefficients of (3.2.5). Firstly, we substitute a1, = fay; in
the second and third equation. Secondly, we substitute a,; from one of the resulting
equations. The equation obtained for a;; can be solved and the result is ay; = yf
where y = [1 — [32]_1/ 2. The other two coefficients can be readily determined and
they are given by ajp = yf3, axs = 7 and a;; = y. These coefficients define the so-
called Lorentz transformation which for the 4-vector of the coordinates (r, cf) can
be formulated as

/

X' =ux,
y =y,
Y e — o), (3.2.7)

ct = y(ct — B2).

The transformation from the laboratory frame of reference to the moving one is
determined by reversing the sign of f and replacing the prime and unprimed
variables namely,

x=x,
o
Y= (3.2.8)

z=7(Z + pct),
ct = y(ct' + p7').
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The same transformation relates the components of any 4-vector in the moving
frame and the laboratory.

3.2.3 Kinetic and Dynamic Quantities

The phase velocity of a plane wave was defined as the velocity an observer has to
move in order to measure the same phase — e.g. to be on the crest of the wave. If
according to the special theory of relativity this velocity is the same in all frames of
reference, then we may expect that the phase itself is also invariant otherwise, the
observer will measure a phase which varies. Hence,

ot—k-r=o'f =k -r = const., (3.2.9)

where o is the angular frequency and K is the wave-number vector. Substituting
Lorentz transformations, we obtain the following transformation for the frequency
and wave-numbers:

k/x = k,n
Ky =ky,
K. = y(kz _ ﬂ?) (3.2.10)

As in the space-time transformation, the inverse is obtained by reversing the sign
of § and replacing the prime and unprimed variables i.e.,

kx = kﬁm

ky = ki,
/

kz:y<k;+ﬁ2)7 (3.2.11)
c

/
Lo ().
C c

Similar to the 4-vector of the coordinates (r,ct) which describes an event in an
inertial frame of reference, the set (k, w/c) also forms a 4-vector which describes
the propagation of an electromagnetic wave in vacuum.

Another 4-vector is that of the source densities (J, cp) as can be concluded after
applying invariance principle on the charge conservation law as expressed in
(2.1.12). The detailed proof is left as an exercise to the reader. In addition, the
potentials (A, ®/c) form a 4-vector provided that the Lorentz gauge is imposed.
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In order to prove the last statement one can check, by analogy to (3.2.3), that the
wave equation operator

* 9 1P
—S+t—=+t—=—"== 3.2.12
ox? + 0y? + 02 2 o’ ( )
is relativistically invariant. Subject to the Lorentz gauge, we can write the wave
equations for the potentials

o o0 P 1o )
ax2+ay2+az2_c20r2} (A,C> = to(J, cp)- (3.2.13)

Since the right-hand side is relativistically invariant, as is the wave-equation
operator, we conclude that the three components of A and @, i.e. (A, ®/c), form a
relativistically invariant 4-vector.

Comment 3.1. While all the quantities specified so far form a 4-vector and the
transverse components are relativistically invariant, in the case of the electromag-
netic field components, the longitudinal components are invariant (E', = E,,
B’, = B.). The transverse components satisfy

Elx = V(EA - ﬁCBy) CB/X = V(CBX —+ BE},)
E'y = y(Ey+pcB,) cB'y = y(cBy — BE,)

and all six components form an anti-symmetric 2" rank field-strength tensor

0 ¢B. —cB, -E,

—cB, 0 ¢B, —E,

¢B, —cB; 0 —F,

E, E, E. 0

It is instructive to examine a few of the principles presented above in a free
electron laser — see Sect. 1.2.4. This consists of a static periodic magnetic field
(wiggler) and an electron beam, which is injected in this field with a velocity vg
from z — —o0 to oo as illustrated in Fig. 3.1. If the period of the wiggler is L then
the magneto-static (w = 0) “wave-number” associated with this field is k,, = 2n/L
i.e., B, = By cos(kyz). This magneto-static field is seen by the moving electron as a
wave since if we substitute the third equation of (3.2.8) we obtain
coslkyy(z' + Pet’)]. In the frame of reference attached to the electron this wave
propagates from z — oo to — oo. Based on the argument of the trigonometric
function we can readily identify the characteristic frequency the electron oscillates
as ' = ckyyp and the wave number as k. = —k,7. The same result is achieved by
employing the transformations in (3.2.10): firstly, we observe that the wiggler’s
wave-number in the laboratory frame of reference is k, = —ky, and as indicated
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Fig. 3.1 Radiation emitted
by an electron moving in a 3 3 S 3 NIS|INI|S
periodic magnetic field as

measured in the laboratory
frame of reference
ﬂc
A, =L(1+p)/p A, =L(1- pVB
S S S ﬁﬁ S Q

previously, the field is static, therefore w = 0. Secondly, we substitute these two
quantities in (3.2.10) and obtain:

k/z = V[(_kw) - 0] = —ka,

o' (3.2.14)
o 7[0 — B(—kw)] = vBkw.
Again, this corresponds to a backward propagating wave since
1 /
[ (3.2.15)
z ﬁ c

Under the influence of this wiggler the electron oscillates around its initial
location (z' =0) thus, the force in its frame is expected to have the form
cos(kyyPct’). As it oscillates, it emits radiation in all direction however, for
simplicity sake we consider only the waves emitted along the z’ axis. In the positive
direction it emits a wave which oscillates at «’ and its wave-number is k&, = o'/c.
Substituting in (3.2.11) we translate the parameters of this wave into the laboratory
frame of reference, the result being

w o' o'
—:“/<—+,3—) = kwy?B(1 + B). (3.2.16)
¢ ¢ ¢

For relativistic particles (f — 1) the radiation wavelength is

Z:Z#, (3.2.17)

and if L = 4cm, the radiation wavelength for a 100 MeV electron is 0.5 pm,
therefore this scheme has the potential of generating tunable radiation at
frequencies which are not achievable with atomic or molecular lasers.



3.3 Electron Generation 109

The wave emitted in the negative direction of the z’ axis has a wave number
k. = —'/c and in the laboratory frame of reference its frequency is

B N SR A R
Cy{chﬁ( c)}kwwﬁ. (3.2.18)

Clearly in this direction (anti-parallel to the electron) the frequency is much lower
and even for a relativistic particle it reaches the @ ~ cky /2 level. The reader is
encouraged to calculate the frequency emitted at an arbitrary angle 6.

Many other analytic examples employing the concepts of Einstein’s Special Theory
of Relativity can be found in books by Pauli (1958), Van Bladel (1984) and
Schieber (1986).

3.3 Electron Generation

In all interaction mechanisms to be discussed in this text, the electrons are free. But
in nature electrons are attached to atoms or molecules, therefore they have to be
extracted from the material in order to utilize them for conversion of energy. In this
section, we consider a few topics associated with free electrons’ generation. There
are several ways to free electrons from the bulk material: they can be extracted from
metals by applying an electric field perpendicular to the metal-vacuum interface —
this is called field-emission. This concept gained a renewed interest due to the
possibility of building small tips (of sub-microns scale) using micro-electronics
technology. With this technique, each tip emits small currents but since many such
tips can be made on one centimeter square, the current density can become quite
significant. The applied voltage is also low comparing to usual field-emitters.
A second method to extract electrons is the thermionic emission. In this case, the
emitting surface (cathode) is heated and a fraction of the electrons in the material
can overcome the work function and they become free. A third mechanism relies on
photo-emission. In this case, a laser beam illuminates the cathode its photons
providing the electrons with sufficient energy to overcome the work function.
A fourth mechanism relies on the emission of electrons from metallic tips adjacent
to dielectric materials. A fifth possible mechanism relies on what is called secondary
emission in which case one electron hits a surface and releases more electrons. In the
subsections that follow, we consider several topics related to electrons generation.

3.3.1 Field Emission from a Rough Surface

In the framework of a crude model, the electrons in a metal can be conceived
to behave as an ideal gas confined by a potential well — of characteristic height
determined by the work-function. If an external field is applied, a fraction of these
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electrons tunnel through this potential well. While in vacuum, these electrons are
pushed away by the extracting field and pulled back by the corresponding image-
charges. In 1928 Fowler and Nordheim (1928) have employed these concepts to
demonstrate that the current density emitted is proportional to E?exp[—(...)/E].
A revised version of the original formula is accepted to have the form (Miller 1982)

1.54-107°F? 3/2 E
J[A/em?) = Tp O [—6.83 : 107‘pT v(3.79 1074 —)}
0P (3.79 1074 —) 4
©
(3.3.1)

where E[V/cm]| denotes the electric field, the work function is denoted by ¢[eV]
and the two other functions can be approximated by v(u) =~ 1— u'67,
t(u) ~ 1 +0.1107u'-33*3, This represents an ideal situation whereby the emitting
surface is of zero roughness. In practice, the surface has a finite roughness and as
aresult the local field is enhanced by a geometric representing the micro-protrusion
therefore locally, we may expect current density enhancement. At the macroscopic
level, namely after averaging over all microscopic deviations from ideal flatness,
the emission may be corrected by replacing the local electric field (E) by an
enhancement factor f3 or explicitly, E — SE.

In this subsection, we consider an idealized model to describe the random micro-
protrusions in terms of a corrugated surface for establishing the effect of such
a geometry on the global character of the emission. Several researchers (Miller
1967, 1984; Lewis 1955; Chatterton 1966) have considered the effect of various
geometric configurations on the emission of electrons with the main emphasis on
evaluating the geometric enhancement factor f§ of a single emitter. Even when
multiple emitters are involved, as is the case of arrays of field emitters, each tip
is isolated and controlled individually thus, in zero order, the coupling effect
between adjacent tips is neglected. When the coupling is considered, some grating
parameters facilitate generation of maximum current and others lead to maximum
current density. In order to envision the reason for such a maximum to occur we
have to bear in mind that once the tips are apart, the electric field may be large and
consequently, the current density at its peak is high but the total current generated in
a unit length of the structure is small since the emitting area is miniscule. At the
other extreme, if the tips are very close to each other, they affect each other, the
electric field (at the tip) is relatively small, and again the total current generated in
a unit length is small although the emitting area is considerably larger. Between
these two low values, the current is expected to achieve a maximum value.

In order to examine in detail this effect let us consider a two-dimensional system
as illustrated in the top frame of Fig. 3.2. It consists of a uniform anode and
a corrugated cathode with rectangular grooves and teeth. The period of the system
is denoted by L, the anode-cathode gap is denoted by g, the tooth’s width is d, its
height is # and a voltage V| is applied to the anode. For this relatively simple
geometry, we can calculate the electrostatic potential distribution in the entire
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Fig. 3.2 Schematic of the
system is presented in the top-
frame. In the lower frame
typical potential-contours are
illustrated (for L = 1 mm,
h=1mm, d=0.5mm and
g = 1mm)

#0.9V,

=04V,

S
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x[rrﬁ]

volume. The boundary conditions on the anode (z = g) and on the grooves specify
the following solution of Laplace’s equation:

z > ) sinh[k,(z — 0<x<L
243 Ayexp(—jky) Sz~ 8]

g = sinh(k,g) 0<z<g
O(x,z) = Vog 3.3.2)
Z B sin( nmx) sinh{ m (z—i—h)} O<x<L-—-d
L TNL—d L—d ~h<z<0
where k, = 2zn/L. It is convenient to define,
1 L—d
Cnm = Iﬁ / dx eXp(—jan) sin [Lni/lxd} ’
1 L—d
= 1—(=1)"
"= am [1—(=D)"], (3.3.3)
2 (L—d\* mh | < .

With these definitions we may express the relations obtained when imposing the

boundary conditions, at z = 0, in terms of E = [g + g} U thus the two sets of

amplitudes read

. 2
B,, = B,

7m cosh (

d o0
- E B sinh o
L —

m=1

(3.3.4)

T
|7
N
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the identity matrix is denoted here by (). This quasi-analytic formulation enables
good estimate of the numerical error, defined by

D (x, 2= 07) = D(x,z= 07)dx + [ [®(x, 2= 0")dx

—Jo
B (ffd [@(x,z=0")]%dx

Error 3.3.5)

and throughout the simulations to be presented this error was kept below 0.1%.
Typical normalized potential-contours are illustrated in the lower frame of Fig. 3.2
(for L = 1mm, g = 1lmm, d = 0.5mm and 4 = 1 mm). The total current (/) due to
field emission was calculated by integrating (3.3.1) over all four surfaces of one
period of the structure; the integration was performed numerically. Based on the
calculation of / we may establish the average current density J,, = I /LA, where A,
represents the typical length in the y direction.

Let us now examine the current (/) and the average current density (J,y) as
a function of the various parameters taking A, = 1cm, ¢ =2eV and V, = 200kV.
When choosing the last parameter it has been tacitly assumed that the surface of the
material that forms the grating is smooth (ff = 1).

Figure 3.3 illustrates the average current density J,, as a function of the fraction
d/L for various values of //g. The plot reveals the existence of an optimal value
close to d/L = 0.008. According to this plot this optimal value is virtually inde-
pendent of the ratio //g; in this case L = g = 1 mm. Furthermore, bearing in mind
that the anode-cathode spacing (g) is constant, this plot indicates that the current
increases as the groove’s height increases. This increase continues as long as
h < L — d; beyond this value there is no further increase in the peak current density.
No optimal value (d/L) exists if we examine the current rather than the average
current density. However, if we do plot the current in one period (I) as a function of
L (with d/L is a parameter) we find that there is an optimal period L as clearly
revealed in Fig. 3.4.

12

h/g=0.9

Jay [mA/ecm?]
(o))

4L
Fig. 3.3 The variation of the
average current density J,, as 2+f
a function of the ratio d/L, for
various values of g/h. The 0 ;
0 0.01 0.02 0.03

other parameters are
L=1mmand g =1mm aL
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Fig. 3.4 The current emitted 10
in one period as a function of

the period length L

(logarithmic scale), where 8L
d/L is a parameter;
h=0.5mmand g = 1 mm

d/L =0.008

~ 6r
IS /L = 0.003
—
4
P d/L =0.020
d/L =0.025
0
107 10°
L[m]
Fig. 3.5 The variation of the 10
current emitted in one period
as a function of the period
length L for various values of 8¢
h/g. The other parameters are
g = 1mm and d/L = 0.008
6
—
<
S
4 L
2L
0

L [m]

In this particular case the maximum occurs for L = 0.25 mm where the other
parameters are: 7 = 0.5mm and g = 1 mm. Note that the location of the peak is
almost independent of the ratio d/L. Finally, if we keep the ratio d/L constant and
allow h to vary (¢ = 1 mm and d/L = 0.008), the peak of the current is strongly
dependent on / — see Fig. 3.5. At high % values (h > L — d) the current peak value
reaches a constant value. No maximum occurs when the current in one period is
plotted as a function of d/L.

In conclusion, for an efficient field emitter it is necessary to determine the
optimization criterion: either we choose a grating geometry for generation of
maximum current in one period or maximum average current-density. A different
geometry meets the specification in either case. In case of a grating of a given
period, we may expect to obtain maximum average current-density as a function of
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d/L. On the other hand, if manufacturing constraints impose the ratio d/L, it is
reasonable to expect an optimal grating’s period in order to achieve maximum
current. This approach may be employed for establishing the effective 5 of the
surface, for example, the average current density illustrated in Fig. 3.3 at the given
voltage, determines the effective f§ for a given grating configuration.

3.3.2 Enhanced Field Emission by a Dielectric Medium

Fowler-Nordeheim expression was developed subject to the assumption that the
metallic half-space is flat and it faces vacuum. In many cases of interest, dielectric
substances (oxides) are deposited on the metals either intentionally or not. Such
a dielectric material may insulate the emitting surface and suppress the emission,
or enhances locally the emission because of effective “focusing” of the electric
field — as is the case of light rays and a lens. While this effect may be devastating
in certain cases when the surface needs to sustain intense electric fields, it might
be of great benefit in cases when controlled field emission is required e.g. elec-
tron emission using ferro-electric based cathodes. In this sub-section we present
a crude model revealing the effect of a dielectric material on the field-emission
from a metallic edge.

Consider a sharp edge of angle o attached to a dielectric (&) half-space as
illustrated in Fig. 3.6. It is assumed that the radius of curvature of the edge is
much smaller than the longitudinal dimension (A,) of the edge such that the system
may be assumed to be infinite in the z direction. Furthermore, on the edge the
electrostatic potential is assumed to be zero therefore, we may write the following
solution for the Laplace equation

Apsiny(¢p —n+ o)l 0<¢p<m —a
O(r, ¢) = (3.3.6)
Ay sinv(p + m)]r —n<p<0.

This solution satisfies the boundary conditions at ¢ =7 — o and ¢ = —7.
The curvature (v) of the field is determined by imposing the boundary conditions

Fig. 3.6 Schematic of the
triple-point system and the
associated constant potential
lines
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for ® and Dy at ¢ = 0. From the two resulting equations we can establish the
expression which determines the variation of curvature parameter,v, as a function of
o and ¢, it reads

& tan[v(n — o)] = — tan(nv). (3.3.7)

Solution of this expression determines the general behavior of the potential near the
edge. A typical distribution is illustrated in Fig. 3.6 for o = 7/6 and &, = 300.

At the limit of very high dielectric coefficient (¢, — oco) the curvature
approaches the value of v — 0.5. For the other extreme (¢, = 1), the solution of
(2) has an analytic form which reads

v:%(l 7%>71' (3.3.8)

Figure 3.7 illustrates the variation of the curvature (v) as a function of the
dielectric coefficient (&) between the two limits mentioned above.

The curvature parameter determines the electric field, which in turn controls
the surface charge distribution on the metallic edge. Let us now calculate the charge
stored on both sides of the edge on a strip which is A, long and its width is R.
The choice of radius (R) is arbitrary but it is tacitly assumed that it is much larger
than the radius of curvature of the edge and much smaller than the distance to
the anode. On the top strip of the edge the total charge is given by Qip = —A;
f(f drDy(r,¢ = m — o) = A,69A 1R’ whereas on the bottom strip Qpoom = —A;
e0e:A2R". The electrostatic potential also enables us to calculate the total electro-
static energy (Wg) stored in a partial (m — a>¢> — 7) cylinder of radius R and
length A,. This energy enables us to define the capacitance of the system according
to C = Q2,.,/2W or explicitly

0.55 1.6

0.54

0.53

Cle,

Fig. 3.7 The “dispersion” 0.52

relation between the

curvature parameter v and the 0.51
dielectric coefficient ¢;. The

second curve illustrates the

correlation between the 0.50
nonlinear characteristic of the

capacitance and v; o = 7/6 &
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2{sin(vzt) + & sin[v(m — a)]}*
(m — o) sin? (vit) + 7, sin® [v(m — o))

C = gA. , (3.3.9)

where we used the definition of the total charge on both sides of the edge namely,
Ototal = Otop + Obottom- In zero order this capacitance is linear in ¢ however if we
plot the ratio C' = C/e,e0A. (see Fig. 3.7) we find that the curvature parameter (v)
determines also the deviation from linearity of the capacitance. With the capaci-
tance established we further define an effective voltage as Vegr = Qyora/C hence

‘2 . qin2

Vi — lAle (n.— o) sin’ (vt) + me, sin [v(m — a)] (33.10)
2 sin(vr){sin(vr) + & sin[v(n — a)]}

We next examine the current emitted from the top strip of the edge assuming
either a constant voltage (Veg) or a constant charge (Quop). For simplicity sake we
adopt here a simple version of the Fowler-Nordheim expression, J ~ k| E?¢~%/E
wherein k; = 1.54 x 1079 /W[A/V?], k; = 6.83 x 10’W'*[V/m] and W is the
work function of the metal. Using the analytic expressions for the electric field
derived based on (3.3.6), we can determine the current emitted from the top surface

2

[=1p—
o 02v—1

1
[eao/V + o J dyy(ZV*l)/(I*V)efaoy/" (3.3.11)
V-Jo

where Iy = A,Rk\E%;, and ag = ka/Ectr, Eetr = Quop/€0RA.. This expression
indicates that the emitted current is inversely proportional to 2v — 1 and bearing
in mind that the curvature parameter (v) approaches 0.5 as ¢, tends to infinity, we
may expect the current to increase as ¢ increases. This result is confirmed in
Fig. 3.8 where we plot the average current density defined as I/A.R. In fact
(3.3.11) reveals that within a reasonable approximation (agp < 1) the current is
linear in ;.

A closer look at the variation of the current is revealed in Fig. 3.9 where we
plot the same average current density but divided by ¢, and, as in the case of the

200
=
17
<
[
Q ~
S Qp=const.
S 100
SE
Fig. 3.8 Average current SIS
density as a function of the g
dielectric coefficient ¢, for I V., =const.
constant charge on the top of

the metallic edge Qy,p and 0 I 1
constant voltage Veg; 0 300 600 900

a=m/6 £
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Fig. 3.9 Average current 0.20
density divided by ¢, as a
function of the dielectric
coefficient &, for constant
charge on the top of the
metallic edge Qy,, and
constant voltage Veg;
a=m/6
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capacitance, we observe that the curvature parameter (v) affects the total current
emitted by the metal; the parameters are as follows: A, = 1cm, R = 1 mm,
o =mn/6, W =4.5eV (Tungsten) and O\, = 0.5 x 10 °A.R.

A similar behavior is observed when V¢ is assumed to be constant; the current
in this case is given by

_ . 2 bo bo ' G-y [ bo)’}}
I(v) =1, 71 {exp [— m} +m Jo dyy exp —m (3.3.12)

where 11 = AZRkl (Veff/R)z, b() = kz/(veff/R) and

o 2vsin(vr){sin(v) + & sin[v(n — o)]}
u) = (m— o) sin? (v) + me, sin? v(r — )] . (3.3.13)

Figures 3.8 and 3.9 illustrate the same aspects discussed previously for the case
when Veff =80V.

In either one of the cases, if the electric field is sufficiently high (k, <<FE) such
that e */F x 1, then the expression for the current has a simple form

2

v
IQ = IQmp:consl.(V) = ]0 v_1’
! (3.3.14)
IV E[V =const (V) :Il L (V) .
ef O 2v—1

At the two extremes (& =1 and & > 1) and assuming o < 2m, these
expressions can be further simplified to read

T 2
= 1] :1(—), =12
¢ ¢~ 02 v (noc)

; (3.3.15)
T & &
& > 1IQ ’;’Io(ﬂ) (5)7 IV 211 (H)Er
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thus the field-emission enhancement factor for ¢, > 1 is given by
B[O (3.3.16)
~\/5 3.

The result presented above is subject to at least one tacit assumption: we have
used the Fowler-Nordheim formula near the edge although it has been developed
for a planar geometry. This clearly sets limits on the radius of curvature of the tip —
it should be much larger than a quantum level radius of curvature ( ~ 1 — 5nm)
and much smaller than macroscopic curvature ~ 1 — 5 um.

3.3.3 Child-Langmuir Limiting Current: Planar Diode

The microscopic details of the field emission from metal were considered in
literature and a short review can be found in Miller’s (1982) book. It is beyond
the scope of our presentation to investigate the dynamics of electrons at the
microscopic level in the metal and in what follows we assume that whatever field
is applied normal to the metallic cathode, electrons are being emitted. In fact, the
discussion to follow is independent of the mechanism electrons are extracted from
the cathode and the question to be addressed is: what is the limiting current one can
extract from a cathode by applying a voltage on the anode? The logic behind this
question is simple: As a voltage is applied, electrons leave the cathode and move
towards the anode. Since they traverse the anode-cathode gap in a finite time, the
cathode is screened by these electrons and the field it experiences is weaker — the
situation is illustrated in Fig. 3.10. We expect to reach the maximum current limit as
the electric field on the anode is zero that is to say, the cathode is screened.

A typical voltage pulse on the anode is 100 ns or longer and for comparison,
the time an electron moving at 0.5 ¢ traverses a 3 cm gap is on the order of 0.2 ns.
The three orders of magnitude difference between these two time scales justifies the
static approximation used next. In a one-dimension system, the electric scalar
potential is a solution of the Poisson equation

o e
= 3.1
dz2 80}1(2), (3317
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where n(z) is the particle’s density in the anode-cathode gap and it is yet to be
determined; e is the charge of one electron. The dynamics of the particles’ density is
determined, within the framework of the hydro-dynamic approximation, by the
continuity equation which in the case of a static problem reads

d

&[n(z)v(z)] =0. (3.3.18)

The velocity v(z), is governed by the equations of motion but in this particular
case it is more convenient to use the single particle energy conservation (3.1.34)
which in conjunction with (3.1.36) and the static case considered here (9/dt = 0)
reads

dz mc?

d [y(z) B e<1>(2)} _o. (3.3.19)

At the cathode, the potential is zero and the initial kinetic energy of the electrons is
mc*(y(0) — 1) implying,

(3.3.20)

Expression (3.3.18) indicates that the current density J is constant in space and it
reads

J = —en(z)v(z) = const. (3.3.21)

Equations (3.3.17)—(3.3.19) govern the dynamics of the electron in a static poten-
tial. In order to proceed to a solution of these equations it is convenient to substitute
(3.3.20) in (3.3.17); in the resulting expression, we substitute the density from
(3.3.21) and obtain

d? el Y

a2’ = me? V2=1

where we also used the fact that 1, = 1/ceo. The coefficient on the right-hand side
has units of 1/length?, therefore we firstly define

(3.3.22)

o eJ 770
mc?’

K? (3.3.23)

and secondly, employ this definition to normalize coordinate { = Kz. Assuming
that the electric field is not zero over the entire domain, the next step is to multiply
(3.3.22) by dy/d{ and get

1d/dyV d
E_(_/) L (3.3.24)
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which implies that

1 /dy\?
(V) — /72 — 1 = const. (3.3.25)

2 \d¢

As indicated above, we consider the limit when the cathode is completely
screened by the space-charge in the gap, therefore at { = 0 the electric field
vanishes and according to (3.3.19) dy/d{ = 0. However, for the sake of generality,
let us assume that the electrons enter the diode gap with virtually zero kinetic
energy i.e., 7({ = 0) = 1 implying

1 dy 2 1/4
— Lt =(y" =1 . 3.3.26
a0 (3.3:20)

The last expression can be integrated and the formal result is

_%‘_1 (eVAN)Z eVan

2 <1
Keov/3 — J’/’AN dy B 3 \ mc? mc?
N V) eV,
—1.6+2<e Af) CAV s
mc mc

(3.3.27)

27%i eVAN %
3 \ mc?
3
8 eVAN 4
1 =

+ (81 mcz)
where y,y = 1 + eVan/mc?, Vay is the voltage applied on the anode and g is the
anode-cathode gap; the last term is an approximation within less than 3% of the

exact expression. With the result in (3.3.27) it is possible to determine the explicit
expression for the Child-Langmuir limiting current

3

(eVAN>%
16 mc? 1 2
_ E_z me . (3.3.28)
18v2 eny ¢ g v i]d
1+ S eVan
[ (81 mc2>
or more conveniently
2.33 VI2IMV
JkA/em®] = — an [MV] (3.3.29)
g*[cm]

23"
140291 x v,i{;‘[MV]}
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Although this expression was developed for a planar diode, the scaling of the
current with the voltage remains the same in cylindrical and spherical geometries,
therefore in analogy to the conductance in a metallic resistor, one can define the
perveance as,p =1/ V3/ 2, where [ is the total current which flows in the diode.

In order to have a feeling about this relation (3.3.29) we can calculate the
limiting current for 1 MV voltage applied on a 3 cm gap. The result is
260 A/cm?. It is important to realize that this is a supremum. For example, if the
applied voltage is only 100 kV, then the limiting current is 8.2 A/cm? but a field
E ~Vay/g ~3MV/m is not sufficient to extract virtually any current, via field
emission. In the case of thermionic emission, the current J emitted when a metallic
cathode whose work function @y, is heated to an absolute temperature 7 is given by

@,
J[kA/em?] ~ 0.12 T%exp ( e—> : (3.3.30)
ksT

for T = 1,400°K and ®,, = 2V the current density is 15 A/cm?. If we go back to
the example above, we realize that for the first case (Vay = 1 MV) we can not reach
the space-charge limiting current since the thermionic cathode can generate only
one third of this limit. On the other hand, applying Vay = 100 kV the system is
space-charge limited and we do not utilize the entire potential of the thermionic
emission. A similar situation occurs in the case of photo-emission.

3.3.4 Child-Langmuir Limiting Current: Emitting Edge

In Sect. 3.3.2 we have examined emission from a metallic edge in the vicinity of
a dielectric half-space and we have shown that for sufficiently large dielectric
coefficient the emitted current is proportional to the dielectric coefficient. In the
framework of this analysis, we have ignored space-charge effects. In the present
sub-section, the space-charge will be shown to “smooth” the edge effect.
Consider a dielectric (¢) medium occupying the space n<¢<2n+ f and
a metallic edge of an angle o that may emit electrons at any electric field; see
Fig. 3.11. Assuming a uniform system in the z direction, the potential (®) satisfies
the 2D Poisson equation and it is assumed to be driven by a density of electrons
denoted by n. No time variations occur in this system and the motion of the
charges is described by a velocity field v. Consequently, the current density,
defined as J = —env, satisfies the continuity equation that in the stationary case
reads, V - (nv) = 0. Furthermore, the two relevant equations of motion, (v - V)v =

(e/m)V®, are equivalent to energy conservation mv2/2 = e® and V x v = 0; the
last two relations will be used in what follows. Bearing in mind that the boundary
conditions are conveniently expressed in a cylindrical coordinate system, we may
summarize the governing equations as follows
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Fig. 3.11 The schematics of Vacuum
metallic () and dielectric

(m 4 p) edges. At an arbitrary
radius R at the interface
between the vacuum and the
dielectric, the potential is
assumed to be known and is
denoted by V)

15‘8 182] e

61 Jrr2 o¢* 7%’7’

g(rnv,) 6¢(nv¢) 0,

(3.3.31)
vi4v2 = %(D
r ¢ m
0 0
—(r ——v,=0.
o (rve) 8(,1.'>V

The last expression corresponds to the z component of Vxv=0 and it is
satisfied by choosing v to be the gradient of a scalar flow function ¥ ie. v =
VWY. In the dielectric region, where no free electrons are present, the solution of the
potential satisfies Laplace’s equation and it may be written as

O(r, 1 < ¢ < B) :A(%)v sin[v( + 7)] (33.32)

where the radial curvature parameter v is yet to be determined and, as can be readily
checked, this solution satisfies the boundary condition on the metal ¢ = —n. Now,
since the potential has to be continuous at ¢) = f§ we may assume that in the space-
charge region the potential may be assumed to have the form

O(r,f < ¢ <m—a) =Dy() (1%) (3.3.33)

With this type of solution in mind we conclude, based on Poisson equation and
energy conservation, that

(3.3.34)
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Substituting these expressions in the Poisson equation, the continuity equation and
energy conservation equation, we obtain

d? eR?
&0

d¢

d [ d¥, 1\ /3v

— IN==2 1+= ——1|N¥y = 3.

d¢{Nd¢]+<+2v><2 )No 0, (3.3.35)
1\? d¥,]°  2eR?

l+=v] P2+ |—2| = @,.

<+2V) 0*[@ o

These equations describe the dynamics of the electrons and the field in the vacuum
region.

Associated with these equations there is a set of boundary conditions that will be
formulated next. Specifically, the potential at ¢ = f§ is continuous Asin[v(n+ )] =
®o(¢p=p) and so is Dy therefore, veAcos[v(n + )] = [dDo/d¢p] ,_g; from these two

conditions we find that

cot[v(n + )] = vier [d— ln(d)o)] by (3.3.36)

If we assume that ®y(¢p) is known, then this relation enables us to evaluate the
radial curvature parameter v. In addition to the conditions above, the potential
vanishes on the edge, it equals V at the interface with the dielectric [r = R and
¢ = ] and the electric field normal to the edge at a radius R is zero since the
electrons emitted in the diode gap screen the cathode [Child-Langmuir condition,
Ey(¢ = n — o) = 0] or explicitly,

dd,

Qo(p=m—2a)=0,  Do(¢p=p)=Vo, and [@

] =0. (3.3.37)
¢p=n—a

It is important to emphasize that in principle V) is determined in conjunction with
the configuration away from the edge and in the framework of this analysis, it is
assumed to be known.

In addition to the boundary conditions associated with the potential, there are
three other conditions to be imposed on the velocity field: (1) its radial component
has to vanish on the edge v,(r,¢p = n — o) = 0. (2) Its azimuthal velocity at the
interface with the dielectric has to be zero vy (r, ¢ = ) = 0 and (3) the byproduct
of the last two relations, in conjunction with energy conservation, implies that
vy (¢ = m —a) = 0. Explicitly these three conditions read

\PO(¢:TE_OC):O7

dw, d¥,
=0 d =0. (3.3.38
|:d¢ :l o=p o |:d¢ :| ¢p=n—a ( )
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As already stated, our goal is to determine the limiting current emitted from the
metallic edge. The current density from the edge is given by J4(r,¢ = — o) =
—e[n(r,d)vy(r, d)]y—,_, therefore the current in a unit area A, x R reads

reaalvogt] [ @@

B d¥, v\
B eAZ |:N(¢) dqs :| p=n—ua (3 - 1)

where it was tacitly assumed that v >2/3. According to this result it is necessary to
evaluate all the quantities of interest near ¢» ~ © — . In particular, note that based
on the continuity equation in (3.3.35) we have to determine N and ¥y since

(3.3.39)

d% " (3 S / /
{ W} P _(1 +§) (E‘ 1) L d¢'N(¢")¥o(e"). (3.3.40)

The starting point is the electrostatic potential. From the three boundary
conditions in (3.3.38), we may “construct” a simple solution for the potential that
has the following form

Do(p ~ 7 —a) =V (u)p; (3.3.41)

n—o—pf

where p is the azimuthal curvature parameter and it is yet to be determined.
However, from the boundary conditions we may conclude that it has to be larger
than unity (p > 1). Based on Poisson’s equation and assuming that p < 2, then in the
vicinity of ¢p ~ 7 — o

- —a—\"?
N(p=m—a) = 8:;/20 (npfpa _1/)3)2 (7; - Z - q;) , (3.3.42)

In the framework of the approximation associated with (3.3.41) and relying on
the expression for energy conservation, the flow function ¥y is given by

N B 2R 1 (m—oa— )P
Polp = m—2) = | [Vo = e e (3.3.43)

Since the current density has to be finite at ¢) = © — « we conclude that p — 2 +
p/2 = 0 implying p = 4/3; this is exactly the characteristic spatial variation of the
potential in a planar diode at the limiting current [® = Vj(z/ g)4/ 3 where g is the
diode gap].
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Substituting (3.3.42) and (3.3.43) in (3.3.40) and (3.3.39) the average limiting

current density is given by
I 3 w14 eV
Jo= 1 _(1 _) ooy 20| 33.44
“ = AR [10 32 } 9\ m R (3.344)

It is evident that the right term in the brackets has the form of Child-Langmuir
(CL) law. Moreover, it is important to point out that at the denominator the length
parameter, R, is not the same as in regular planar CL where it represents the diode
gap. Here this parameter represents the typical height of a micro-protrusion on the
cathode. Consequently, the limiting current may exceed the “regular” CL current
determined based on the anode-cathode spacing, by many orders of magnitude. The
right term indicates that the average limiting current density is linear with the radial
curvature parameter, v, which according to (3.3.36) and subject to the approxima-
tion in (3.3.41) is a solution of

1
cot[v(m + B)] ~ —V% Pt (3.3.45)

According to this last expression the radial curvature parameter, v, depends on
the geometry of the system (o and f§) and on the electrical property (&) of the
medium. Its dependence is particularly simple at the limit of very large dielectric
coefficient, & >> 1, in which case v(n + f8) = n(1/2 4 i) where i = 0,+1,+2.....
Subject to this condition, the average current density is not explicitly dependent on
the angle of the metallic edge («) since v = (3/2)(1 + f/m)"". For a given geome-
try (o and f) the average current density decreases as a function of ¢, until it reaches
the asymptotic level mentioned above; a typical behavior is illustrated in Fig. 3.12.

Another interesting aspect is revealed when comparing the radial curvature of
the field in vacuum (vy) with that in a space-charge dominated region (v¢y). The
former is a solution of & = — tan[vy(n + f)] cot[vy(m — o — )] and it can be
checked that for ¢, = 1, vw = n/(2n — o) thus for & = /6 the vacuum curvature

25
a =30°
=-45°
20F p
=0°
1.5¢ p
> B=45°
1.0 7
Fig. 3.12 For a given B=90° /
geometry (« and f3) the 0.5 B =120"
average current density
decreases as a function of ¢, 0.0 ‘ ‘
25 50 75

until it reaches the asymptotic
level £
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Fig. 3.13 Comparison of the 2.5
radial curvature of the field in _O'E) 0. =30° L =-60°
vacuum (vy) and a space- S —
charge dominated region & 20
(ver). Tt is evident that in 5 B=-30°
many cases the space-charge 'g) -
leads to elimination of S 151 B=0° B=1200
singularity i.e. v rather than %‘ ﬁzgoo\
being smaller than unity, = B=60° ]
becomes larger than unity O 100 \ £=-90°
< .

under the effect of the space- ; m
charge v=r/(2r-c)

0.5 ! ! / I

0.3 04 0.5 0.6 0.7 0.8
v in Vacuum

is vy = 6/11. This point and the dependence of vy and vc; are illustrated in
Fig. 3.13. It is evident that there are cases whereby the space-charge leads to
elimination of singularity i.e. v rather than being smaller than unity, it becomes
larger than unity.

3.4 Beam Propagation

Once the electron beam has been generated, it has to be confined to a small region in
space and guided towards the interaction region. Naturally, beams tend to diverge
under the repelling effect of the electrostatic force and while this divergence is
somewhat reduced by the inherent magnetic force there is still need for external
means in order to preserve the beam shape. The most common way to guide
electron beams is to apply a static magnetic field, which can be either uniform or
periodic. In this section, we consider the propagation of a cylindrical beam i.e.,
assuming an azimuthally symmetric system.

3.4.1 Beam Propagation in Free Space: Uniform B-Field

In the absence of a guiding magnetic field, a non-neutral beam will diverge under
the influence of the repelling electrostatic force. If the applied magnetic field is too
low, the beam will also diverge but after a longer distance. As the guiding field
exceeds a certain value, to be determined next, the trajectories are stable. In order to
investigate the electron motion let us consider the two transverse components of the
equations of motion. The radial component reads

d 1dy 1, el
—v,+-—Lv,——v:=———(E, B, —Vv.By), 34.1
A +thv ~Vo my( + vy v-By) (34.1)
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whereas the azimuthal component is given by

1d e

——(yrvgy) = —— (Ey — v,B, + v.B,). 34.2

— 3 Vo) = ——(Es —viB. +v:B)) (34.2)
Before we actually proceed to the stability analysis, it will be instructive to

examine the last equation more thoroughly. For this purpose, we define the mag-

netic flux encompassed by an electron moving at a distance » from the axis by

W(r,z) = J dr'2nr'B. (¥, ). (3.4.3)
0

The absolute time variation of this quantity is given by

dvY oY dr 9OY dz
— = —+——— 3.4.4
dt  Or dt + 9z dt’ ( )
and it can be simplified by using the definition of the magnetic flux and also the fact
that the divergence of the magnetic inductance B vanishes i.e., V- B = 0:

d¥
a =2nrB.v, — 2nrB,v,. (3.4.5)
If we now compare the right-hand side of the last equation with the right-hand
side of (3.4.2) we observe that in the absence of azimuthal electric field, they are
virtually identical and therefore, by substituting (3.4.2) in (3.4.5) we obtain

d 2n

& {‘P B I(m/V¢):| =0. (3.4.6)
This expression indicates that for a particle “born” with zero azimuthal motion in a
magnetic field, the azimuthal motion is determined entirely by the local flux, its
radial location and the energy. A different interpretation of the same result can be
achieved by noting that we can represent the magnetic field in terms of the
azimuthal magnetic vector potential as B. = [0(rAy)/0r]/r therefore substituting
in the definition of the flux we obtain

r(myvg — eAy) = rpy = const., (3.4.7)

which is the longitudinal component of the canonical angular momentum.

With this last result we can now investigate the radial component of the equation
of motion. For this purpose, it is assumed that the guiding magnetic field is uniform
(Bo), thus the azimuthal component of the magnetic vector potential is Ay = rBo/2.
Consequently, the conservation of the canonical angular momentum implies

1 1
Py = r(myv¢ — eA¢) = r(myvd, — €§VBO) =rm (yvd, — EQJ). (3.4.8)
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where € is the (non-relativistic) cyclotron angular frequency defined by

Qc

B
0 (3.4.9)
m

We can use the last expression in (3.4.8) and substitute v, in (3.4.1); the result is

& 95 2 22 10 22 e
@I‘—W(F —ro) +§r—;(l‘ —ro):—m—y<E,-—VZB¢). (3410)

In this expression, we neglected the energy variation and ry is the radius where the
electron was “born” — it is tacitly assumed that at this location the azimuthal
velocity vanishes (v = 0).

For further simplification of the equation which describes the radial motion
we next evaluate the two field components in the right-hand side of (3.4.10). The
radial component of the electric field represents the field generated by electrons
located at radii smaller than that of the particle therefore, using (2.1.3) which in our
case reads

d e
a"Er(”) = — n(r), (34.11)

1
r &0

and assuming uniform distribution of particles, we find that

E(r)=— 26—;"- (3.4.12)

In a similar way, we consider (2.1.2) to calculate the azimuthal component of the
magnetic field; the relevant component reads

%% [rH ()] = —en(r)v(r). (3.4.13)

As in the previous case, we assume that both the density and the velocity are
uniform in space hence

Hy(r) = ———r. (3.4.14)

These two expressions (3.4.12), (3.4.14) can be substituted in the right-hand side
of the radial component of the equation of motion (3.4.10) which then reads

@ Q5 a0 19, o 1
@r_4y2r3 (r —ro) +§E(’ _rO) :Emﬁo“/3 " G415
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In equilibrium, there are no time variations, therefore the beam radius (R}) is a
solution of
2
J— QC
2 PR3
4y?R;}

1 Q2
2 Ryy

1
(Rt —15) = 55 W3Ry, (3.4.16)

2
(R12) - r(z)) + 2,)}3

which is

,.2
R =—r"0 (3.4.17)

/1 —2w§/Q§y

in these expressions w), is the non-relativistic plasma frequency
w, =—-. (3.4.18)
From the expression in (3.4.17) we conclude that a stable solution exists only if
2 21
Q. > 20, - (3.4.19)
Y

Note that from (3.4.15) we can have a clear measure of the way the beam diverges
in the absence of a guiding magnetic field. When Q. = 0 it is convenient to define

7 =r(f)/ro and T = tw,/y3/*+/2. With this notation (3.4.15) reads
3
[@ - 1} F=0. (3.4.20)

A general solution of this equation is a superposition of sinh(z) and cosh(z). If, for
simplicity, we assume that the radial velocity at T = 0 is zero then 7 = cosh(t)
which clearly indicates that the beam diverges.

Note that there are two characteristic length parameters which determine the
beam radius: the first () is trivial and denotes the radius where the particle was
“born”. In order to establish the second, we use the definition of the total current
I = envonR? and substitute it in the expression for the plasma frequency, to rewrite
(3.4.17) as

,,2
RP=—0____ (3.4.21)

b T-L13/R?’
where

5 21 enyl mc?

O™ 7 9B ecBy ecBy

(3.4.22)
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and finally the beam radius is determined by

1
R = 5 <L§ + /Ly + 4rg). (3.4.23)

From this expression, we conclude that the beam radius increases monotonically
with Ly, therefore for a given r, the beam is compressed when the guiding field or
the kinetic energy is increased. The radius increases when the current is raised. In
addition, it is possible to deduce the equilibrium radius of the beam corresponding
to electrons “born” in a zero magnetic field and on axis (ro ~ 0), its value (R}, ~
Lo) is determined entirely by the guiding field, current and kinetic energy.

3.4.2 Beam Propagation in Free Space: Periodic B-Field

Generation of a uniform magnetic field for guiding an intense relativistic beam may
require a substantial amount of energy. This magnetic field is generated by
discharging a large bank of capacitors in solenoids and it can become quite energy
consuming when a high repetition rate is required. In the latter case the main
alternative is to consider the use of permanent periodic magnets (PPM) for guiding
the beam. The magnetic field configuration is

B.(r,z) =By c.()s(sz)lo(kwr)7 (3.424)
B, (r,z) = B sin(kwz)1; (kwr),
where k,, = 27/L and L is the period of the permanent magnetic field. In order to
present the stability condition, the analysis will be limited to a narrow pencil beam
of maximum radius Ry, which is much smaller than the periodicity of the field
namely, kyRp < 1 hence

B.,(r,z) = Bgcos(kyz),

1 (3.4.25)
B, (r,z) = Bg sin(kyz) Ekwr.

This field can be derived from the azimuthal component of the magnetic vector
potential:

r. (3.4.26)

| =

Ay = Bjcos(kyz)

For simplicity we further assume that the electrons are “born” in a region of zero
magnetic field and their initial azimuthal motion is zero; therefore according to the
conservation of the canonical angular momentum (3.4.7) we conclude that
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1
Vo = Z_yrQC cos(kyz). (3.4.27)

Neglecting energy variations and substituting the last expression in the radial
component of the equation of motion (3.4.1), we obtain

& 1 ? e
@r +r |:2y QC Cos(sz):l = — m—y |:E, — VZB‘M . (3428)

Using the expressions for the electric and magnetic field developed in the previous
section (3.4.12), (3.4.14) and assuming that the longitudinal motion is dominant
ie., [v:| > |vi|, [vg| we find

a2 Q. S|
Tt { [2y cos(sz)} — ng};» =0, (3.4.29)

where Q,, = ky,v¢ and vy is the velocity of the electron. For a zero order stability
estimate, one can average the square brackets over time, thus the resulting coeffi-
cient of r(z) has to be positive for the electrons to follow confined trajectories i.e.,

4
Q> > —}. (3.4.30)

~2

Comparing this expression with the condition for a uniform field (3.4.19) it is
evident that in the periodic case, on axis, the amplitude has to be by a factor of V2
larger. In Sect. 7.6.2 we further elaborate on the self-focusing of an electron beam in
a wiggler field.

3.4.3 Beam Propagation in a Waveguide

In the previous sub-section we determined the necessary condition for the propaga-
tion of an electron beam in free-space when guided by a static magnetic field. The
effect of the vacuum chamber was ignored. In this sub-section, we investigate the
propagation of the beam in a waveguide assuming that an infinite magnetic field is
applied such that only longitudinal motion is permitted — the basic configuration is
illustrated schematically in Fig. 3.14. The region under investigation is far away

2R

Fig. 3.14 Electron beam in a
circular waveguide
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from the entrance to the waveguide, therefore longitudinal variations are neglected
and only radial variations are of interest. The presence of the metallic boundary at
r = R changes the potential experienced by the beam and consequently since
the total energy is the sum of kinetic and potential energy, the former varies across
the beam.

In order to envision the effect, consider a beam which at the input (free space)
has a uniform spatial distribution and, more important, all the electrons have the
same kinetic energy mc?(y, — 1). Since the potential varies in the waveguide’s
space, electrons, which are at a different distance from the wall, experience
different potential and therefore, their kinetic energy differs. Obviously, the poten-
tial energy comes at the expense of the kinetic energy. That is to say, that if
electrons injected into a waveguide have at the input the same kinetic energy,
then by increasing their number (N) the potential is elevated and while their
velocity (v) is reduced. In terms of the injected current, which is proportional to
the product Nv, it reaches a maximum value and beyond it, even if we increase the
number of electrons injected, the current remains unchanged since electrons bounce
back. Let us now investigate this phenomenon in a systematic way. In the wave-
guide the electrostatic potential satisfies the Poisson equation:

- —r—®(r) = en(r). (3.4.31)

1d d_, 1
Sl Gy = ——(r— 1 4.32
r drrer(rP) 2nr (r=r), (3.4.32)
and it reads
1 [In(r/R) for 0<r <r<R
I SIS s
Grlr') = 2n { In(/'/R) for O0<r <r <R. (3.4.33)

Based on Green'’s scalar theorem the potential reads

D(r) = _860 U &7 In (R) n(r') + JR &7 In (%) n(r’)] , (3.4.34)

and in particular at the edge of the beam (r = R),) it reads

Ry,
o) =< () [ @), (3.435)

&0

Using energy conservation

d
Y — 6—2 = const., = Y, (3.4.36)
mc
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and charge conservation
J = —env = const., (3.4.37)
we can write

R N\ =2 -1/2
J drl‘[l—(y0+&(;)> 1 L (3438)
0 mc

The expression mc?(y, — 1) represents the kinetic energy before the particles
entered the waveguide. For a narrow pencil beam, the potential is not expected to
vary significantly on the beam cross-section, therefore we can replace ®(r) with

®(Ry) thus
®(R ®(R D(Ry)\
é(—e m(czb)> (e m(czb)) \/ - (vo +2 m(czb)> ,
(3.4.39)
1 eln, | R
T2 me " \Rv)

In Fig. 3.15 the function &(x) is plotted for y, = 3 and it clearly shows that it
has a minimum. This minimum occurs for xg = —y, + y(l)/ 3 implying that &(xg) =

3/2
— (yg/ 3 1) and therefore, the maximum current which can flow in the wave-

guide is given by

2
mc 2n 2/3 3/2
I :—4( —1) . 3.4.40
™ eny In(R/Ry) Yo ( )
0.0
7o=3.0
-0.5
~
N
hvy
1.0k
Fig. 3.15 ¢as defined in
(3.4.39) is plotted as a
function of the normalized -1.5 I I I
potential (x = e®(Ry,/mc?)) 20 -1.5 -1.0 -05 0.0

on the beam envelope X
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Fig. 3.16 (a) Normalized kinetic energy of the electrons in the waveguide as a function of the
injected current. The initial energy is always the same. (b) Maximum potential efficiency as a
function of the perveance

As already mentioned, any attempt to inject a higher current in the waveguide will
cause electrons to bounce back to the diode and a virtual cathode may develop.

Another implication of this phenomenon refers to the remnant kinetic energy of
the beam. For a given initial energy at the entrance to the waveguide, the kinetic
energy decreases with the increasing current due to the potential energy associated
with the space-charge effect. Figure 3.16a illustrates the effective kinetic energy of
the electrons as a function of the current, for R = 2 cm, R, = 3 mm and y, = 3. For
this particular set of parameters the effective kinetic energy drops to y = 2.0 when
3.9 kA are injected; the limiting current in this case is 5 kA in which case y = 1.56.
In other words, consider a situation whereby in the diode the electrons are
accelerated to the 1 MeV level. For the electrons to propagate in the waveguide,
the electrons give up part of their kinetic energy to “build” the potential associated
with the space-charge — this potential barrier is almost 500 ke V. This effect inflicts
limitations on the maximum efficiency of a device. If, for example, the diode had
generated a 1 MeV x 3.9 kA ~ 3.9 GW beam, in the waveguide, the maximum
power available for radiation generation is 0.5 MeV x 3.9kA ~ 2 GW and the
maximum radiation conversion efficiency is 50% since what counts is the available
kinetic energy in the waveguide. Figure 3.16b illustrates the maximum theoretical
efficiency, defined as (y — 1)/(y, — 1), as a function of the perveance.

The limiting current which can propagate in the waveguide is directly related to
the Child-Langmuir limiting current in a diode as it becomes evident in particular at
low voltages (eVay/mc? < 1) since 75 = 1 + eVay/mc* and

mc? 27 2 3/2
T = 26 (Zy , 3.4.41
"= e (R/R) (3 AN) G44D
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which has an identical form to (3.3.28). For this reason, a high efficiency device has
always to be designed based on a low perveance diode.

It was indicated that space-charge effects cause a transverse spatial variation
of the electron’s kinetic energy, which clearly may alter the interaction with
electromagnetic waves. However, in the analysis above, it was assumed that the
beam is sufficiently narrow such that variations across its section could be
neglected. A parameter of importance is the location of the beam relative to
the waveguide’s wall as it becomes evident from (3.4.40). Roughly, by increas-
ing the distance between the external wall and the beam, the limiting current
becomes smaller. In order to examine this effect more accurately, one can
examine the limiting current of an annular beam of radius Ry, and Jr thickness
(much smaller than Ry). The approach is similar to the above and the result is
similar except for the different meaning R}, has in this case. The closer the beam
is to the waveguide’s wall, the higher the limiting current and therefore the lower
the potential depression. To emphasize this effect even further, one can consider
two thin annular beams of two different radii but at the entrance of the pipe,
they have the same kinetic energy. It can be shown that the kinetic energy of
the electrons in the outer beam is actually larger than that of the electrons in the
inner beam.

For a corrugated wall, as the one illustrated in Fig. 3.17, the limiting current is
given by

3/2
23 1) , (3.4.42)

Imax

1 mc? 2n (
= T 5 o \7
Fy, eny In(Rin/Ry)

where F), is boundary form factor illustrated in Fig. 3.18. It shows the depen-
dence of this factor on the external radius Ry, disk width d and periodicity of
the structure for R, = 3mm and Rj,; = 9 mm. In the left frame we observe that,
for L = 7.7mm and d = 1 mm, F}, reaches a maximum value of 1.1 when Rey =
1.5R;,; and any further increase in this ratio does not change the boundary factor.
In the central frame, this factor is plotted as a function of the disk thickness and
we observe that it decreases with the increasing d. Finally, the right frame

indicates that the boundary factor increases with the increasing periodicity
(d=L/2).

Fig. 3.17 Beam propagation
in a corrugated waveguide
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Fig. 3.18 Boundary factor, Fy, as a function of the (a) external radius, (b) disk thickness and
(¢) period

3.4.4 Beam Emittance and Brightness

So far, we considered in this Section a few equilibrium phenomena associated with
beam propagation. Before concluding, it is important to introduce two important
notions that quantify the transverse fluctuations of the beam around a specified
equilibrium. It is explicitly assumed that these fluctuations (Jx;) are stable and they
represent small deviations from the stable trajectory, which in the present context is
assumed to be co-linear. This is the case for virtually all radiation sources and in
acceleration structures. Further assuming that the longitudinal motion is predomi-
nant such that v. > |v,/|, |v,], the transverse motion is approximated to be harmonic

d? X
i ox; + K3ox; = 0, (3.4.43)

wherein K represents the attracting transverse force associated with the lattice in
the case of an accelerator or with the guiding of the beam in a radiation source.
Consequently, assuming the transverse force is z independent then the trajectory is
described by

5x,-(z) =A; COS(K()Z + d)i)v (3.4.44)
and its first derivative, denoted by Jx;(z), is given by
(3)-61‘(2) = —AiK() Sin(K()Z + ¢l) (3445)

In the phase-space the locus of each trajectory is an ellipse

o \2 5 V2
(%) + (K;J — 1. (3.4.46)
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If we denote by a = max(4;) the largest amplitude among all particles, then the
area of the ellipse is

ne = na(aKy) = nKoa®, (3.4.47)

and it defines the emittance (¢) of an ideal beam. This corresponds to the area in the
dx, 0x space occupied by the entire ensemble. It is natural to define the emittance in
the “normal” phase-space i.e., x, p,. For this purpose the dx is multiplied by yf since
px = mcyfox. Consequently, the normalized emittance, ¢, is defined as

P (3.4.48)

omitting the (constant) mc term from the momentum definition. Note that occasion-
ally, the emittance is defined with the m included. In this text, we prefer the
definition from the above.

An ideal periodic motion is only a convenient model which provides us with an
intuitive interpretation of the emittance. In all practical cases the system is not
uniform and we now extend the model to include space dependent, Ky (z), effects

d2
e ox; + K (2)dx; = 0. (3.4.49)
The solution in this case has the form

0xi(z) = Ai(z) cos[r(z) + ¢,(2)], (3.4.50)

where for a constant Ky we have y(z) = [dzK(z). Substituting in (3.4.49) and
using the orthogonality of the trigonometric functions, we obtain two equations

d?A, ay\*
cos[..J: + K2 (2)A; — A; AN 0,
dz? dz
R (3.4.51)
. dA; dy dy
L2 —+A—=0.
sin[- ] dz dz dz?
The second equation can be multiplied by A; and written as
d| dy| 2dy

In particular, a particle, which oscillates with maximum amplitude, a satisfies

2

—=C. (3.4.53)
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For a constant Ky and comparing with (3.4.47) we have
C=s. (3.4.54)

With this relation we can determine the equation for the envelope a by substituting
(3.4.53) in the first equation of (3.4.51); the result is

d? 1
2 +Kj(z)a— & — = 0. (3.4.55)
z

Next stage is to introduce a general definition of the emittance, which is not
dependent on the solutions presented above but rather as a way to characterize the
transverse phase-space. Lapostolle (1971) used an alternative definition,

£ = 4| (6x2)((6x)%) — (0x0x)? " (3.4.56)

This definition can be tested against the trivial solution in (3.4.44)—(3.4.45).
Assuming that the phases ¢; and the amplitudes A; are (statistically) independent,
it can be readily shown that the second term is identically zero for a uniform
distribution of phases and

1 , 1
((007) =541, ((027) = 3K3(AD), (3.4.57)

therefore
& = 2Ky (A?). (3.4.58)

If the quantity (A?) corresponds to the mean square value of the amplitudes (A7) =
a*/2 the emittance obtained is identical with that determined in (3.4.47).

In the discussion, so far we have considered only one out of the two transverse
dimensions; in order to attribute the emittance to a specific dimension we denote the
emittance associated with the motion in the x direction by ¢, and in a similar way,
we define &, as the emittance associated with the motion in the y direction. With
these two definitions, it is convenient to introduce another quantity, which provides
a figure of merit regarding the beam quality. This is the brightness:

I

B = e ()

Fr. (3.4.59)

Fy is a geometrical form factor on the order of unity. Similar to the emittance,
the normalized brightness can be defined as B, = B/ [32"/2. Both brightness and
emittance provide information regarding the beam quality. However, while the
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emittance addresses primarily the transverse geometrical characteristics of a beam,
the brightness accounts also for the beam intensity. Lawson (1988) provides the
reader a detailed discussion on emittance.

3.5 Space-Charge Waves

All the effects considered so far were either static or quasi-static. In this section, we
introduce some elementary concepts of waves, which propagate along electron
beams. For this purpose consider a beam whose unperturbed beam density is ng
and its zero order velocity is vy (the effect of potential depression is already
included); the beam is guided by a very strong magnetic field and as a result, the
motion is confined to the longitudinal direction. Consider an electric field E. excited
in the system and its form being

E, = Eexp(—jkz). 3.5.1)

The z component of the linearized equation of motion implies that the linear
perturbation in the velocity field denoted by v is

my’j(w — vok)ov = —eE.; (3.5.2)

here m and e are the mass and the charge of an electron respectively; y =1/

1 — (vo/c)*. Next, we can determine the perturbation in density (6n) using the

continuity equation, the result is

k ov. (3.5.3)
 — vok

on = ny
The current density defined in (3.1.38) is linearized in the perturbation terms i.e.,
J. = —e(dnvy + npdv) and it reads

2
COP

J, = —jwey E., 3.54)

(o — vok)

where wj, is the plasma frequency as defined in (3.4.18). Next, we use (2.1.38) and
substitute the result in the wave equation for the magnetic vector potential (2.1.36)
which then reads
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In an infinite system 0/0r = 0, there are two sets of solutions
(3.5.6)

The first set corresponds to a pure electromagnetic wave and the second
represents the dispersion relation of the so-called space-charge waves. There are
two such waves, both propagating parallel to the beam with a phase velocity close
to the average velocity of the beam

Q:%iﬁ (35.7)
with K; = a)g /73v3. In contrast to regular electromagnetic waves, in the 1D case
considered momentarily, the space-charge wave has only an electric field and its
magnetic component, is identically zero even if the time variations are very rapid.

For a 2D case, we consider a beam in a radial waveguide of radius R. The
boundary condition [E,(r = R) = 0] imposes the following dispersion relation

2 w2 2
O R e | =B (3.5.8)
c? P(w—vok)?| R

and as above there are two groups of solutions: the electromagnetic modes group
whose asymptotic behavior can be determined from the limit when no beam is
present (wf’ = 0) namely, (w/c)* — k% = (p;/R)*. We discussed this group in the
context of electromagnetic TM modes in Chap. 2. The second group represents
waves that propagate along the beam and they can be approximated by

K o 2y sk (3.5.9)
Vo

ok? = Kgéf, E2 =1+ (yBpsc/ a)R)z} provided that the plasma wave-number,
K, is much smaller than ®/vo. Note that the factor & is always smaller than
unity such that each mode sees a reduced plasma frequency. An extensive discus-
sion on space-charge wave can be found in a book by Beck (1958). In the remainder
of this section we review only a few instructive topics. Note that in case of finite
transverse extent, the magnetic field associated with this wave is not zero.

3.5.1 Slow and Fast Space-Charge Waves

The waves that correspond to k§+) have a phase velocity

(0] Vo

=0 T vodka = (35.10)
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which is slower than the beam average velocity (vp) therefore they are called slow
space-charge waves. The waves that correspond to kff) have a phase velocity

(0] \'A)

—_—=— 3.5.11
O T veokja 35.11)

Vfast =

which is greater than the average velocity of the beam and these are referred to as
fast space-charge waves.

3.5.2 “Negative” and “Positive” Energy

The contribution of the space-charge wave to the average kinetic energy density is
determined based on the global energy conservation in (3.1.45) which is given by

OE = mc? }L [0ndy* + on*dy). (3.5.12)

We can now express &y in terms of 6v namely &y = y>fdv/c and then use the
expression in (3.5.3) to write

1 1
OE = —mc?|on|*y> p— (g—vo). (3.5.13)
2 noc \k
This result indicates that the slow space-charge waves have a total kinetic energy
density which is smaller than the average kinetic energy of the beam i.e.,

1 1
OEqow = =mc?|0n*y* f— (Veiow — Vo) < 0. (3.5.14)
2 noc

For this reason, these waves are also referred to as “negative” energy waves. Fast
space-charge waves have “positive” energy since

1 1
SEfu = Emcz|5n\27}3ﬁ@ (Viast — Vo) > 0. (3.5.15)

When distributed interaction between electrons and electromagnetic waves is
possible we will see that, the slow space-charge waves play an important role in
the process. Both fast and slow space-charge waves play a very important role
in klystrons where the interaction is limited to the close vicinity of a cavity gap.

If we examine the average power carried by each one of the modes we may
readily conclude that this is identically zero as is readily seen by examining the
current density term in (3.5.4) and
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R (1E1*> Relj % ! E.|?
e|=E.J] | =Re|jweg————— = |E;
2 zv 7 J 0 ’))3 ((,U o V()k)z 2

Since all the k’s are real then clearly the right hand side is zero. However, in a
superposition of two space-charge waves the real power may be non-zero. This is
the basis for the operation of relativistic klystrons.

(3.5.16)

3.5.3 Resistive Wall Instability

When electro-magnetic waves propagate in a lossy wall waveguide, a fraction of
the power is absorbed in the wall. Since the process is linear, namely the power
absorbed per unit length is proportional to the local power flow, the wave
decays exponentially in space. In the case of space-charge waves, the situation is
different — it is shown next that the slow space-charge wave can actually be
amplified due to the complex impedance at the metallic surface.

Before examining a realistic case, it is instructive to investigate a simplified
model. For this purpose, we assume that the beam propagates in a lossy medium
that is characterized by & = 1 4 g/jwey — where ¢ is the conductivity of the
medium. It can be shown that the dispersion relation of the space-charge waves
as formulated in (3.5.6) should be updated by replacing ¢y — ¢&oé¢;. This implies that

2

W, — wg /& In the right-hand side the expression is complex and since the solution

for k has the form ks = w/vo = Kp/\/& we clearly see that slow space-charge
wave grows in space since Im (k) = K,/ weo/20 > 0.

Let us now examine this process in a more realistic system. Consider a wave-
guide of radius R made of a material of finite conductivity (o > weg). The beam
which propagates is electromagnetically characterized by (3.5.4) and for simplicity,
we assume that it fills the entire waveguide. The magnetic vector potential for,
r <R, is a solution of (3.5.5) and its solution reads

A.(r, k; ) = Alg(Ar), (3.5.17)

where

? o
A2 = (kz _ c2> ll _ W] . (3.5.18)

E.(r=R) . (w/c)’—k I(AR)
Hyr=R) ' Awjc  T(AR)

(3.5.19)
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In the metallic wall, the magnetic vector potential satisfies
1d d
P K — jouye |AL(r ko) = 0, (3.5.20)
and the solution for » > R reads
A, (r,k;w) = BKy(EBr), (3.5.21)
where Z* = k? + jou,o. The impedance at the discontinuity is
E.(r=R) _ (w/c)* — k* Ko(ER)
Zall = = — 3.5.22
W=, =R ' Ew/c K(ER) (3.5.22)

Imposing the boundary condition, as we have done before, is equivalent to the
requirement that the two impedances match i.e

Zyal = Zpeam )

(3.5.23)
and this determines the dispersion relation in a lossy waveguide. In order to

illustrate the effect of the lossy material on the propagation of a space-charge
wave, we consider a solution which has the form

k=21 ok, (3.5.24)
Vo
and /vy > |0k|. Furthermore, for sufficiently high conductivity we have o > we

and for simplicity we consider the limit wR/c > 1. Consequently, the dispersion
relation can be simplified to read

(()2 g
p _
R

(3.5.25)
wép

According to the last term on the right, for a relativistic beam the right-hand side
is much larger than unity, therefore on the left-hand side the second term has to
satisfy |0k|* < w;/v%ﬁ, hence

/ 2
yvzékz Nﬁ \/](UHOU

(3.5.26)
The expression for the dispersion relation can be simplified by defining

LeJny wey 1
=,lz— — 3.5.27
qo 2 e i ( )
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therefore, the solution of interest: 6k = (1 + j)qo represents a slow space-charge
wave which grows exponentially in space

lexp(—jkyz)| = exp(qoz), (3.5.28)

whose imaginary part determines the spatial growth rate of what is called the
resistive wall instability. Note that the “negative” energy wave is the one which
grows. This is the case in all the schemes of collective beam-wave interaction. The
second solution, 0k = —(1 + j)qo, describes a fast space-charge wave which decays
exponentially in space. The similarity to the simple model presented at the begin-
ning of this sub-section is evident.

Four characteristics of the growth warrant special attention: (1) the spatial
growth ¢ is proportional to the square root of the current ¢ oc VI, (2) it is
inversely proportional to the normalized momentum gy o (y8) >/%, (3) it is pro-
portional to the square root of the frequency go o< v/ and (4) it is inversely
proportional to the square root of the conductivity g o< 1/+/a.

Resistive wall instability occurs as space-charge waves propagate in vacuum but
in the vicinity of a metallic wall of finite conductivity. A similar phenomenon
occurs if the space-charge wave traverses a lossy plasma or neutral gas
characterized by a series of resonances o, of width w; ,; the density of atoms
that have these resonances is denoted by n,,. Consequently, it is convenient to define
the electronic plasma frequency associated with each resonance by wé 0= e’n, /meg
and the dielectric coefficient of this system is

2

— 14 3.5.29
zu:a)(,u—wz—i—jwwlﬂ ¢ )

This configuration combines two well known effects: resistive wall instability
and resonant absorption, in order to amplify radiation at selected frequencies.
In other words, we use microscopic cavities i.e. atoms or molecules, for the gene-
ration of an instability that causes space-charge waves to grow in space. For
simplicity we ignore the scattering process of these electrons with the constituents
of the resonant medium and the possible ionization of the medium by beam’s front.
The dispersion relation of the electromagnetic and space-charge waves ignoring
any transverse variations

2 0)2 1
{s(w) - k2] | =, (3.5.30)
c (0 — kvo)® &(w)

Clearly the first term, k = (w/c)+/&(w), represents the TEM mode therefore the
spatial decay is Im(kpm) = (w/c)Im[y/¢(w)] and in a similar way the spatial
growth of the space-charge wave is given by

1
m(ksc) = cﬁc;l;/z Im[ g(w)] : (3.5.31)
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this result indicates that the imaginary part of the dielectric function is responsible
to the spatial growth of the space-charge wave. In other words, the same term that
causes the opaqueness of the medium, is responsible to the spatial growth of the
space-charge wave. There are three distinct differences between the last result and
the regular resistive wall instability: (1) the “conductivity” in this case is narrow-
band. (2) The beam propagates through the medium rather than near the medium
and (3) this mechanism has particular appeal in the millimeter, sub-millimeter or
even in the optical range where resonant absorption is a significant effect.

For a given current, the spatial growth in (3.5.31) is inversely proportional to the
momentum to the power of 3/2 [i.e. (yﬁ)%/ o implying that there must be an
optimal momentum since at very low momentum (corresponding to a few hundreds
eV) the process will diminish due to ionization of the medium.

In order to envision the potential of this mechanism let us consider the analysis
by Gorgy et al. (1966) that indicates that peak absorption coefficient [0, =
2Im(kgy)] of a pure rotational line at room temperature is omq, =~ 55 x 10712
12f? /Af. The peak frequency (in GHz) is denoted by f, Af represents the linewidth
in GHz and p is the dipole moment of the atom or molecule expressed in Debye;
the typical values of u vary between 1-4 Debye (e.2. fammonia = 1-44 Debye,
Uwaer = 1.84 Debye). The line-width depends on the characteristics of the mole-
cule as well as the mechanism of energy loss such as collisions between molecules.
Typically, the higher the pressure, the shorter the mean free path and therefore the
larger the line-width. In fact, for sufficiently high pressure, the line-width is
proportional to the pressure. Accordingly, the line-width may vary quite dramati-
cally from a few kHz in the case of the 24 GHz resonance of Ammonia to MHz and
higher. In the example to follow we assume Af = 100 MHz and x4 = 2.5 Debye and
operation at 125 GHz thus o4ya = 6.72cm ™! [Im(kgy) = 3.36cm ™!

A relativistic beam (y > 1) is injected in this gas and for a beam plasma
frequency of 2 GHz, the growth rate of the system is 0.054 cm ™. This corresponds
to 0.47 dB/cm thus, we may expect a 50 dB gain in about 120 cm of interaction
length. Consequently, assuming an initial modulation that corresponds to 1 kW at
the input-end, after 120 cm a total power of 100 MW can be expected. This gain
calculation assumes an equal excitation of both space-charge waves. Moreover, we
ignored the possibility of ionization of the medium by the intense microwave
radiation and non-linear effects.

3.5.4 Two-Beam Instability

The phase velocity of space-charge waves is close to the average velocity of the
beam. If two beams move close to each other at two different but close velocities,
the space-charge waves that may develop along these beams can convert energy
to rf. In order to investigate the effect of two different velocities we examine
two beams which have two different velocities v and v,; for simplicity sake, it is
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assumed that both occupy the same volume and the electrons density is #; and n;
respectively. By virtue of the linearity we may readily conclude that the contribu-
tion of the two current density to the magnetic vector potential implies

1 2 ? ?
_iri+(°"—2_k2> o 2 My k) =0,
rdr dr c 7w —vik)”  p3(w —vak)

(3.5.32)

As before, for simplicity sake we ignore the transverse radiation thus the dispersion
of the space-charge waves is

2 (1)2

D(k) = pl P2 _1=0. (3.5.33)
OB Vlk)2 73 (0 — vzk)2

Figure 3.19 illustrates this dispersion function. It clearly reveals two regimes: in
one case all four solutions are real (dashed line) whereas in the other case, two of
the solutions are real and two others are complex. For a rough estimate regarding
the necessary condition for the latter to occur, we can expand the dispersion
function in Taylor series in the vicinity of k ~ ky = w(1/2v; 4+ 1/2v,). Defining,

1 1
k=9<—+—) + ok,
2 Vi \'%%)
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the dispersion function is given by

2
12(K%+x§)<5v%> —4(x7 —Kz)(avé—)—1+x§+x§=0 (3.5.35)

and the condition for complex solutions to occur may be readily deduced from the
two relevant solutions

51&23/&{ —K2:|:\/ —Kz —3(k? +13) (k3 + 13— 1)

(3.5.36)

(2 = 12)* =303 + 13) (13 + 13 — 1) <0. (3.5.37)

Assuming that both x’s are of the same order of magnitude, the last condition
simplifies to k2 > 1/2 or

)1
s>y .3 (3.5.38)

2
1327

8 oy
implying that there is a minimal velocity difference that must be met for the two-

beam instability to occur.
Subject to the condition in (3.5.37), the spatial growth is

w

m(ok ———+
Im(ok) = 1ov] 6(K1+K2

[\/3 K24 13) (kK + 03— 1) — (I—Kz) (3.5.39)

Case 1: Motionless Background Plasma. The simplest manifestation of the two
beam instability is the case when one of the beams is actually motionless say v, = 0
and the operating frequency is below the plasma frequency w < w;>. The disper-
sion relation needs no approximation and its solution is

ke =— g/ (3.5.40)

indicating that the imaginary part is non-zero and it is proportional to the square-
32
root of the current and 1/(y,f5;)
Case 2: Ultra-Relativistic Beam. Another regime of interest is when both beams
are relativistic but one is ultra-relativistic (y, > 7, > 1) thus

w;ﬂﬁ n wg,ﬂf
[ — ke + w/2yﬂ2 [0 — ke + w/Zy%}z

=1 (3.5.41)
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Defining Aw = @ — kc, assuming that w/2y3 > |Aw| > /2y we get a second
order polynomial

(1)2 V_3 (02
p,1/1 P2 _
Ao 4y, i 1 (3.5.42)

which has complex solutions, subject to the assumption 4y2w12)’2>(u2. They are
given by

1 o} 2
O Y e L (3.5.43)
w? — 4y2wp72

These three expressions, [(3.5.39), (3.5.40) and (3.5.43)], are the simplest
manifestations of the two-beam instability.

Case 3: Two Thin Annular Beams. In practice, the two beams occupy different
volumes and in what follows we consider two annular beams of radius Ry, ; and R}, ».
Their thickness is much smaller than the wavelength and it is equal in both cases
(A < A). The inner beam (subscript 1) carries a current /1, and I, is the current
carried by the outer beam — subscript 2. Both beams propagate along a very strong
magnetic field, in a metallic cylindrical (lossless) waveguide of radius R — see
Fig. 3.20.

For formulating the dispersion relation of the space-charge and the electromag-
netic waves we define: a, = I'Ry,, 2=k - wz/cz,

2

- Ti(on) Wp'y
61 710(0(1)7 3( k )2 )
w — kv

" : , (3.5.44)

0, — I, (02)Ko(I'R) + In(T'R)K (o2) Wp5 -

Io(22)Ko(TR) — Io(TR)Ko(%2) ~ 93(w — kva)®

With these definitions the dispersion relation reads
0,1 -1 0K K

1Io(on) (o) _ U o(on) + Ky (o) (3.5.45)

9210(0(2) — 11(062) o 02K0(O€2) + K](OQ) ’

Fig. 3.20 Two-beam
instability: two beams of
different currents and
different velocities move in a
cylindrical waveguide. Under

certain circumstances dc e
energy is converted into rf Symmetry axis
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A more familiar shape is obtained by assuming that the beam radius is large on the
scale of the wavelength i.e., |o;,| > 1 implying

2

Wpy
0 =1—-———5TA,
3 2
'))1 ((U — kV] )
5 (3.5.46)
Wp o
0, = —coth(a — ap) + ——=——TA.
> (o0 — 2) TR
and
wP,erA a’p?l A exp(o — o)
B —kv)* (o —kvy)? - sinh(o — o) + tanh(z —a)
: 1 (3.5.47)

x{l—i—

Keeping only terms linear in the plasma frequency and assuming that
o = I'R > w5, the dispersion relation of space-charge waves in two planar beams
of thickness A is virtually identical to (3.5.33) up to a form factor

wp?IFA 1
-

73 (@ — kvy)

wpTA
coth(x —op) — ————1 ».
3 (@ — kvy)

w,2 .2 2
2 = (3.5.48)
B —kva)” (o —kv)” TA

Another case that warrants special attention is when the outer beam is very close
to the metallic wall o ~ «,. As one may expect, there is no instability since the
electric field is “short-circuited” by the metallic wall. In fact, it can be readily
shown that the space-charge wave propagates only along the inner beam. Its
dispersion relation being determined by

wp‘zer _exp(a — o)

V? (a) — kV1)2 sinh(oc — OC]) '

(3.5.49)

Comment 3.2. Note that the two annular beams may be generated on the same
cathode provided the potential’s suppression is significant.
3.5.5 [Interference of Space-Charge Waves

After establishing the existence of space-charge waves, let us examine next
how they carry a small perturbation. For this purpose, it is convenient to adopt



150 3 Elementary Electron Dynamics

a transmission-line notation whereby the longitudinal electric field is associated
with the voltage

V(z) = Vyexp[—j(ke + Kp)z| + V_exp[—j(ke — K)z], (3.5.50)

and the azimuthal magnetic field is associated with the current

V V_
I(z) = Ziexp[—j(kg +K,)z] + Z—exp[—j(kg —-K,)z] . (3.5.51)

+ —

In these expressions k, = w/vo, K, = wp/V0y3/2,

1 K,
Zy =1 (E + ?p) , (3.5.52)

B =vo/c and y = [1 — ] /%, Note that, in contrast to transmission lines where
the two possible waves propagate in opposite directions, here both waves propagate
in the same direction but with two different phase velocities. Let us assume now
that both the voltage and the current are known at z = 0,

V(0) = Uy,

10) = 1o, (3.5.53)

Subject to these two conditions the amplitudes Vi can be calculated and
consequently, the voltage and current modulation on the beam may be determined
at any location

Z
Vy=———"——Uy—Z_I
+ ZJr 7 ( 0 0)7
Z_
= —— —Z1
Vv Z+ _7 (UO + 0)7
Z .
V(z) = Z%Z (Uo — Z_Ip)exp[—j(ke + K,)z]
+ —Zi (3.5.54)
+ ﬁ (Uo — Z1y)exp [_j(ke - KP)Z} )
+ - -
1 .
I(z) =——+(Uy — Z_Io)exp[—] (ke + K,,)z}
Z,—7_
-1 )
+ ﬁ (UO — Z+Io)exp I:—](ke — Kp)Z} 5 -
When the initial current modulation is zero (/p = 0) these equations read
V(@) = 5 exp(jkez) [Zrexp(~jKyz) — Z-exp(iK,2)]
+ - -
. (3.5.55)
0 . . .
1(z) = 77 exp(—jkez) [exp(—jKpz) — exp(jKpz)].
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and associated with this modulation the average real power which develops along
the beam oscillates in space and it is given by

P(z) = Re[V(2)I*(2)]

2
— U(2> 0] s 02
=5 (CKp sin” (Kpz).

(3.5.56)

It is important to point out that along an ideal space-charge wave the Poynting
vector is identically zero and the term above is proportional to [dVE.J. Note that
both the current and the power is zero at z = 0. Down the stream, they both grow
monotonically until it peaks after a quarter of the plasma wavelength (}vp =2n/ Kp)
namely z = /,/4 — similar to the interference of two regular electromagnetic waves.
This fact is utilized in relativistic klystrons for further amplification of the modula-
tion by placing a cavity at z = 4,/4. Let us now examine this effect.

In the framework of the current model the cavity is represented by an RLC
circuit whose impedance is

Jowo

Z v:Z . )
“ Ow(z, — w? + 2jowy /0

(3.5.57)

where Q is known as the quality factor of the cavity and together with Z, they
determine the impedance at resonance i.e., Z,, = ZoQ/2 as illustrated in Fig. 3.21.
The incident waves are given by (3.5.50)—(3.5.51) and the transmitted ones by

Vie(z) = Vi exp {—j(ke +K,) <z - Z’)] + Vir_exp {—j(ke -K,) (z — 2’)] ,

I,(z2) = VZ": exp {—j(ke +K,) (z - 2—”)} + VZ“: exp {—j(ke -K,) (z - %)] )
(3.5.58)

The boundary condition at z = 4,/4 can be determined from the fact that the
current associated with the incident and transmitted waves has to be continuous i.e.

W\ (e
1(1) - 11r<4 ) (3.5.59)

Fig. 3.21 Schematic of
beam-cavity interaction in the
framework of the
transmission line formulation.
The amplitude of the space-
charge waves is significantly
affected by the cavity
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and the voltage associated with the incident waves is the sum of the transmitted and
the voltage on the cavity aperture:

pi i
v(zp) = Vg ( 4") + Ve (3.5.60)

Subject to these boundary conditions, the transmitted waves are given by

Ve(2) = V(z )+zm1(i4 )exp [—Jk ( iz,,)]
(ol )

o=+ 20 (2w - 1)

1 Zeay
xsin|Kylz—=7, )| 5——=—.
4 Z, —7_

With these relations we realize that a small voltage modulation evolves, after
quarter of the plasma wavelength z = 4, /4 into a relatively low power at the cavity
location is P(z = 4,/4) = (U}/2noB) (w/cK ) whereas after another quarter of
the plasma wavelength

Pk 2
ngg = <Znoc(;<)p> (QZ;O ) ﬁf(vﬁ) > 1. (3.5.62)

the available power is several orders of magnitude larger than that available at the
location of the cavity. Three main terms contribute to this ratio: (1) the quality
factor of the cavity, (2) the ratio of the operating frequency and the plasma
frequency and (3) the momentum of the electrons.

Before we conclude it is important to emphasize here that in contrast to the
case of the two instabilities introduced in the last two sections, the amplitudes of
each one of the space-charge waves are uniform in space and only the interference
between the two generates the power mentioned above.

(3.5.61)

3.6 Radiation from Moving Charges

In the previous chapter we examined the process of radiation generation when the
charge moves at a constant velocity near a uniform dielectric medium (Cerenkov
radiation) or near a finite-size body (diffraction radiation). Before concluding this
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Chapter, we briefly examine the process of radiation generation due to non-uniform
velocity of charged particles.

3.6.1 Radiation from an Oscillating Dipole

Among the simplest and at the same time widespread manifestation of radiation
emission is the one occurring when a charge (g) oscillates at a given angular
frequency (w) and in this subsection we consider the power generated by this
moving charge. Denoting by d/2 the amplitude of oscillation, the current density
associated with this particle is J, = jo(d/2)(q/2nr)5(r)(z). Further defining the
dipole moment p = ¢gd, the vector magnetic potential and the electric scalar coun-
terpart read

i .o p 1 ( w)
,=]j— ——exp|—j—r
: ]c247t30r PUHIET)

(1 —}—j8r> cos@exp(—jgr).
c c

In what follows we consider only terms that contribute to the far-field r > A
namely, field components that are inversely proportional to r such that the radial
component of the Poynting vector

(3.6.1)

é =
4megr?

_ 1r. — _
S=5 [EHH:; — E (3.6.2)

is inversely proportional to 7> and as a result, the total power emitted in vacuum
does not depend on the radius where the measurement is performed. Moreover, it
can be readily shown that the azimuthal component of the electric far-field is zero
thus S, = EgH s /2. Consequently, the relevant far-field components are

H l o P 1e ( & ) sin 6
~—— — ——|—exp(—j—r
? Uy C3 dmey |1 PAT% ’

0 (3.63)
E o P lex (f'gr) sin 0
07702 4 |1 P\ ’

implying

_ 1 /onN4( p ? sin%0
S=5-(2) (1= 3.64
2upc \c¢ <4nao> r? ( )

and finally the average power reads

B 21 T _ 1 p 602 287T
P=r2| 4 d0sinfS, = L) = 3.6.5
2], def avsnos = ((20%) T 09
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Several comments are in place at this stage:

Comment 3.3. With the average power established, we may deduce the instanta-
neous power by replacing the harmonic oscillation {(¢) = (d/2) cos(wt) with an
arbitrary acceleration

2 olen
P(r) = 3mc” 3 0(1), (3.6.6)
wherein
? 1 ~15
Fo=——— ~28 x 10"’ [m] 3.6.7)
4mey mc?

is the classical radius of the electron.

Comment 3.4. Another interesting observation relies on the fact that the average
energy emitted during one period of the radiation field is W = PT = (n,/2)
(pw/c)*o. Bearing in mind that the energy of a single photon is expressed in
terms of Planck’s constant (7 = 1.054 x 107**Js) is given by Wy, = i, then the
number of emitted photons by the dipole is

Nyp = 2?”&(’5 %)2 (3.6.8)

wherein

21
£ (3.6.9)

"= dneo he - 137

is the so-called fine-structure constant. Examining this relation (3.6.8) for a single
dipole reveals that the number of photons emitted per dipole is very small bearing in
mind that typically the size of the dipole is much smaller than the wavelength.
Comment 3.5. Subject to the far-field approximation, we have concluded that the
amplitude of the oscillating dipole is not constant. From the perspective of the
oscillating charge this implies that in addition to the “binding” force there is another
force associated with the radiation field. A rough evaluation of this force (Fyq) is
possible by pursuing the following approach. In a lossless medium, the electromag-
netic energy emitted comes at the expense of the kinetic energy of the particle
namely,

Jdté (1)Fraa(1) = %mczg Jdr (). (3.6.10)

Bearing in mind that

Jdtéjz(t) - Jdt L“;t (52) e é} (3.6.11)
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and assuming that the contribution of the second term vanishes in the relevant time
interval we conclude that the radiation reaction force is

Fraa(r) = %chZ—g (). (3.6.12)

With this force term, the equation of motion may be generalized when an
external force is applied

(28 &Y
- Mg

) = Fex(1) (3.6.13)

wherein the radiative damping time is

2 "
Ta =3 'f = 0.52 x 1073 [sec]. (3.6.14)

3.6.2 Radiation from a Moving Charge

The power emitted by an oscillating dipole is independent of whether it moves with
a constant velocity or it is motionless. In this subsection, we consider a dipole
moving with a constant velocity v and for the sake of simplicity, it is first assumed
to be parallel to the oscillation. In the frame of reference where the dipole is
stationary,

- 2ol g\ 2
P(t')z%mczlc—;{djﬂ(;)} . (3.6.15)

In terms of the laboratory frame of reference variables df' = dt/y, d{' = d{y
we get

2re L[1 d( di\]?
=== — — = 3.6.16
3¢ [mc dr (mydl>} ’ ( )

For a longitudinal gradient of the order of 100[GeV/m] which has been reported
in recent plasma laser wake-field acceleration experiment, the power emitted by
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a single electron is of the order of nWatt which is completely negligible on the scale
of the electromagnetic power required to generate such a gradient.

In case of an oscillation perpendicular to the motion df =dt/y, d{' = d{
therefore,

2 L [ ,d¥])
P(t):gmczg[yz dt2:| s

2re L[y d( dl\]
=== - = 3.6.17
3¢ [mc dt (my dr) |’ ( )

2}"() 2|:'))FL:|2
=—-—mc"|—]| .
3¢ mc

As an example, one may consider a relativistic electron (5 GeV) bent by a dipole
(B4 =0.2[T]) in a damping ring. The vertical force is F, ~ eByc, and the
corresponding radius of curvature is about p ~ 80[m] and consequently, the energy
lost per unit length is AE/2np = P/c ~ 1.4[keV/m]. Bearing in mind that the
electrons may make billions of revolutions this gradient is significant and the
essence of the operation of a damping ring relies on this phenomenon: electrons
emitting synchrotron radiation are decelerated proportional to 7* in all three
dimensions and reaccelerated only in the longitudinal direction, reducing in the
process the transverse phase-space.

For completeness, it may be demonstrated (Jackson 1962) that the power emitted
in case of an arbitrary angle between the acceleration and the velocity is given by

P(t) = %mczrfvﬁ[ﬁ B-(BxB)- (BxB)] (3.6.18)

3.6.3 Ensemble of Radiating Sources

In the previous two subsections, we considered a single, point-like radiator. In this
subsection we consider an ensemble of N radiators located at (X,,Y,,Z,) where
v = 1,2...N. For simplicity sake, the size of each source is assumed to be finite in
each one of the dimensions and its size is denoted by (Ax, Ay, AZ). Our starting point
is the expressions for the far-field determined in (3.6.3) explicitly, the exponent
may be replaced by

O] RO 1, o .
exp(—]?r) — exp(—]?;)smc <§AX; sin 6 cos d))
1 1
X sinc —Ayg sin 0 sin ¢ | sinc —AZ9 cos ¢ (3.6.19)
2 ¢ 2 “c¢

X Zexp{jg(Xv sinfcos ¢ + Y, sin0sin ¢ + Z, cos 0)}
c



3.6 Radiation from Moving Charges 157

With this observation, we may deduce that the power emitted by the N radiators
is given by

oo (qu a)_2>2 81

N= % 471?80 2 3
1 [ 37 1
X — dp= / dOsin’0 sinc? | = A, ? §in 0 cos ¢
2n 0 4 0 2 &

(LA sin0sin )sinc? (LA, ¢
X sinc (2 Ay E sin 6 sin ¢> sinc (2 A, - cos ¢>
1 . . . .
X N2 Zexp{;— [(X‘ —Xﬂ) sinf cos ¢ + (Yv — Yﬂ) 51n951nq5]}
v

c

X exp [j% (Z, - Z,) cos 9} : (3.6.20)

A relatively simple expression may be developed at the limit of a point-source A, =
Ay = A. — 0 and subject to the assumption that they all are in the Z, = 0 plane thus

Py =N’P,

L3 7 s w 2 7 (3.621)
XW%;Z/O dOsin’0 J, [?\/(XV—X#) + (Y, —Y,) smﬁ].

Of specific interest is the case when all emitters form a line therefore without
loss of generality we consider X, = va, Y, = 0 thus

Py = N*P in/n d0sin®0.J [9a|v—,u|sin6} (3.6.22)
N 1\ 32 >3 )y 0|2 - 6.

The curled brackets represent a form factor that is always smaller than unity: for
small arguments (wa/c < 1/N) it is unity and for large arguments (wa/c > 1) it
asymptotically approaches 1/N as illustrated in Fig. 3.22 and even better in
Fig. 3.23.

A reasonable approximation (error <5%) of the form factor reveals that the
power is given by

Py = N*P l+ -
N — lN N

1+ lga ’
45 ¢ ’

(3.6.23)
=P {N+N(N-1)
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Fig. 3.22 Form factor in
(3.6.22) as a function of the
normalized frequency. For
large values, the form factor
approaches the value 1/N

Form Factor

Fig. 3.23 Form factor in
(3.6.22) as a function of the
number of sources. For large
values, the form factor
approaches the value 1/N

Form Factor

10-3 1 -
10° 10 10
N

which in turn indicates that if the radiated wavelength is much longer than the
spacing between the sources (wa/c < 4.5/N), the radiation is emitted coherently
(recall that all dipoles have the same phase) being proportional to N> whereas in the
opposite case (wa/c > 4.5/N), the emitted power is not coherent being propor-
tional to the number of emitters (x N).

3.6.4 Synchrotron Radiation of an Ensemble of Electrons

Electrons organized in bunches may generate coherent Cerenkov radiation
according to the size of the bunch — see Exercise 2.6 in the previous chapter.
In Sect. 3.6.2 we have evaluated based on simple arguments the total power of
synchrotron radiation emitted by a single relativistic (y > 1) electron following
a circular (R) trajectory during one revolution;

P 2 e*c
1=37 47eoR?

(3.6.24)
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Our goal in this subsection is to formulate and examine some of the simple
scaling laws regarding the spectrum of coherent and non-coherent synchrotron
radiation generated by some simple electrons configuration. With this purpose in
mind, we consider an ensemble of relativistic electrons following a circular trajec-
tory with an angular frequency Q; the latter is contemplated to be due to a uniform
magnetic field B thus (Q = eB/my). The first stage is to determine the electromag-
netic field in the entire space. Associated with this ensemble there is an azimuthal
current density

Jo(r, ¢, z,t) = —e(QR)% d(r—R) d(2) ZL Sp—QUr—1);  (3.625)

N is the total number of electrons and ¢, is the time the v electron reaches the point
¢ = 0. This current density generates an electromagnetic field that may be derived
from the two z-components of the field

J dk exp(—jkz) Z exp(—jn¢) Z exp(jm Q) Hym(k, 1)
Hom(kr) = Apm Tn(Amr) r<R
mm\fo ) = B,,,,”H(z)(Ami) r>R
E.dn0) = | dkexp(jke) 3 expl=ing) Y expm o) E,n(kir)

g (k )_ Cn.m Jn(Amr) r SR
nmfo ) = DymHP(A,r) >R

(3.6.26)

with A2 = (mQ/ ¢)* — k2. In this notation, we tacitly assumed that the spectrum is
discrete

o = mQ. (3.6.27)

For evaluation of the four coefficients (A, B, C and D) it is necessary to impose
the continuity of E4, E. and Hy at r = R whereas the discontinuity on H. is
determined by the surface current density derived from Jg. Based on these
constraints the amplitudes are

— |y g® T T
A)l,nl |:2jl//n Hn (lpn):| Snén,m Bnm |:ij J (lpn):| Snén,m
T jk i —jk
— | ZH® D, A= |= — .6.2
Cn,m |:2] n (‘pn) (QS(]):| Sn(sn m nm |:2] Jn(l//n) (Q£O>:| Sn(sn.m (3 6 8)
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wherein Wy, = AR, S, = eQg,/ (271)2 , gn= Z{Yzl exp(jnQt,). The latter is the
form factor determined by the spatial distribution of the ensemble.

With the field established, we may proceed to the next stage to determine and
simplify the power emitted by the ensemble. Formally, the emitted power is

00 o) 2n
P(t)=— J dszrr Jd(b.ld,(r, O, 2, 0)Ey(r, ¢,z,1)
“% 0 0 (3.6.29)

N
= eQR ZE(/)[r =R, ¢=Q(t—1,),z=0,1]

=1

and since the contribution to the power stems only from the “radiative” part of the
spectrum namely, k> < (nQ/c)?, it reads

P=2Y s ool { [ ace fon? - 2] 8 (Vi - 2)

+ﬁ2J &z 32 ( (ﬂﬁ)2—52)};

fi = QR/c representing the normalized local velocity of the electron and the
normalized power is P = P/(e*c/4neoR?). Further simplification of this result may
be achieved by defining a new variable & = nf} cos 6, with the observation that for
relativistic particles f ~ 1 — 1/2y%as well as the fact that most of the radiation is
emitted in a narrow angle 60 in the plane defined by 0 = 7/2, it simplifies to be

- - 1 60? 1 60?
P=2 nzgn|2jd50{Ji{n(l—— )} +502 [ (1____)]}.
; 22 2 292 2

(3.6.31)

(3.6.30)

This result makes the use of asymptotic Bessel functions

J(n 1 )Nexp[—n(w—tanhtﬁ)] ! exp[_n‘/’_S]
"\coshyy) = \/27n tanhy \2mny

] 1 h2 ,
Jn( cosh a//) Slznndjexp[_”(lﬁ —tanh /)] ~ \/Eexp [—n lé] 7

(3.6.32)

rather natural and therefore, identifying i ~ \/96* 4+ y=2 we have

_ 1 & 1 2
Pl sl 2 [ a0 (¢ L o0 E) exp (_ngw). (3.633)
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This, in turn, may be further simplified by defining 60 = sinh u leading to
0 21 5
Z |g,, du cosh2u exp|—n= /—cosh (3.6.34)

The last integral can be evaluated numerically the result is

o 0.883
J du cosh2u exp[—xcosh’u] ~ ——— exp(—x), (3.6.35)
0 X3
and finally implying
e’c 1157 ) 2n
=— /3 -—. 3.6.36
4negR? 7 nz_; l8al” exp( 33 > ( )

This expression determines the synchrotron radiation power emitted by an ensem-
ble of electrons during one revolution.

In order to assess the numerical error associated with the approximations so far
we replace the sum for the single electron case (g, = 1) with an integral that can be
evaluated analytically

o0
00 2 2 —4/3
> n'Pexp ( 3—;> - Jdn n'/3 exp(—2n/3y%) = 0.893 <W> (3.6.37)
n=1 0

leading to

€2C

4regR?’

P =0.57y* (3.6.38)

This is within less than 20% error of the exact expression introduced in (3.6.24).

Since the expression in (3.6.36) provides us with the accurate scaling of the
emitted power on y during the period of one revolution, we proceed now to the third
stage and this is: analysis of the spectrum as well as the power for several simple
configurations.

Comment 3.6. The spontaneous power emitted by N un-correlated electrons is
obviously given by

P 2y e’c
P37 4megR?

(3.6.39)

Comment 3.7. A single bunch of N electrons of Gaussian distribution (A),
namely a probability density f({) = (1/v2nA,) exp(—C2 / 2A§) leads to
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00 2

Q Q \?
]%Ign\z _ J def (o) exp(jncC> = exp l— (ncAb> 1 (3.6.40)

the corresponding spectrum is proportional to

2 Ay
1"/ exp [—3; - <an)1 (3.6.41)

and consequently, the emitted power is

¥ Ay 39° 2

s e [ dxx'exp [x —x? (7" f) }
Py =27 N+N(N —1)2
3" 4meoR? }dexl/.% exp(—x)
" (3.6.42)
-1
2, e Ay 393 32
~— —— I N+NN-1)|1 —

3 Tmrz |V TNV D) +<R 2

Evidently, the second term is the contribution of the coherent synchrotron
radiation. In order to have an estimate regarding the orders of magnitude involved,
let us consider N = 10'°, 5 GeVelectrons forming a A, = 1 cm long bunch, follow-
ing a circular trajectory of radius R = 100 m. The coherent term is 0.5% of the total
power. On the other hand, if the number of electrons is increased to N = 10!', the
energy reduced to 1 GeV and keeping the other parameters the same, the coherent
term is almost two orders of magnitude larger than the spontaneous term. Based on
this result we may develop a relatively simple criterion for the coherent synchrotron
radiation from a bunch to become dominant namely,

2R
3731\/2/3 > Ayp. (3.6.43)

Comment 3.8. The same approach may be employed for a train of micro-bunches.
Each micro-bunch has a length A, (Gaussian distribution), there are M micro-
bunches and the distance between any two bunches is Ay > Ayy. In each micro-
bunch there are Ngelectrons and the total number of electrons is assumed to be as
above N = N, M. In this case

1 Ar 2
inc(=n—M
1 Amp ) Smc(z”R >
N2 |ga|” = exp l— <n %) (3.6.44)

sinc L, Ar
incl =p=L
2"R




3.6 Radiation from Moving Charges 163

and the emitted power is

- 2
o0 . i ArM
[ dxx'Pexp(—x —x?A%,) M
p 2, e N sinc (xAr)
train 3" AxenR2 +N(N — 1) =
0 [ dxx'/3 exp(—x)
0
- A b 3’))3 - 1 AT 3’))3
Amp = —2 7 Ap=-— "
=R 2 TTT2R 2

(3.6.45)

However, for the sake of simplicity, we limit the discussion to a “zero” size
micro-bunch such that

- 2
o inc (xArM)
T3 B sinc (x 7
2, Of e Fexp( x)[ sinc(xAT)

Pirain =29 N+N(N-1 ] 3.6.46
train 3/ 47'[8()R2 + ( ) ( )

[ dxx'3exp(—x)
0

and it may be approximated by

NN —1) M—1
N+ ll e . (MAT/Z)Z] H . (3.6.47)

Assuming the same macro-bunch length (1 cm), a bunch spacing corresponding
to optical wavelength (1 um) and correspondingly, M ~ 10*, the coherent term is
inversely proportional to M and, in fact, numerical analysis of this term reveals that

2,

37 4neoR?

P train =~
3

[NeaM + Net(NeaM — 1)]. (3.6.48)

However, while simple, this result has limited practical relevance since the size of
the micro-bunch plays a dominant role. For considering the latter, we need to
evaluate (3.6.46) numerically. As before, let us consider N = 10'°, 5 GeV electrons
forming a A, = lcm long bunch, following a circular trajectory of radius
R =100m. The spacing between two bunches is 1 um corresponding to
M = 10* micro-bunches and the size of one micro-bunch is assumed to be
Anp >~ 0.1 um. The coherent term increases from 0.5% to 13.6% of the total
emitted power. Reducing the energy to 1 GeV and increasing the number of
electrons in the macro-bunch to N = 10''cause an increase of three orders of
magnitude (950) in the coherent component relative to the spontaneous term —
this is an increase of more than one order of magnitude above coherent power
emitted by a uniform bunch.
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In the configuration presented here the bunches were assumed to be pre-formed.
In practice, a uniform bunch may become bunched — this process has been observed
experimentally by Byrd et al. (2002) and discussed by Venturini et al. (2005) but it
is beyond the scope of this chapter.

Comment 3.9. Itisinstructive at this stage to determine some of the characteristics
of the spectrum emitted by a point-charge specified in (3.6.37). Obviously, it
increases monotonically to a peak value which occurs at 71, = 73 /2 and corre-
spondingly, the peak value is proportional to ). Beyond this peak value, the
spectrum decreases exponentially. In terms of frequencies, according to (3.6.27),

3 3 3
Y eB\ " _cy
'max =Q—= N =75 A 3.6.49

@ 2 (my) 2 R2 (3.649)

reflecting the fact that for a given bending magnetic field wp o< > whereas for a

given radius of curvature wmay o 7°; here we used the fact that for a relativistic particle
QR /c ~ 1. The average frequency emitted is proportional to wmax or explicitly,

o0 2
i n*/3 exp(—%) | dnn*3 exp (— 3—}1)
<(,O>:Q<I’l>:Qn;1 / :QO y

2 oo 2
Sonl/3 exp(—y—;) gdnn‘/3 exp(—}—)ﬁ)

n=1

N (3.6.50)
dxx*3 —
3y} g i exp(—x) 3P L(7/3) _ 5
=055 2 T@p) 2 Ao
| dxx!'/3 exp(—x)
0
and in a similar way,
3,3\ [ dxx? exp(—x)
(o) =) = ()
J dxx!/3 exp(—x) (3.6.51)
0
33\ T'(10/3)
=2 ) =L = 70%)° = 28 w?
(F) Tarm =79 =280k

implying that Ao = 21v/30ma and Aw/ (@) ~ 0.866.

Comment 3.10. Following a similar approach for a finite length bunch, we estab-
lish first the probability of obtaining a photon of energy 7n€2, accounting for both
spontaneous and coherent spectrum,

2 2 A\
Nn'/3exp (—3—;) +N(N—1)n'exp [— 3; — (nﬁ)

- 2
> 3 Nm!'/3exp _2m +N(N—1)m'/3 exp _am mﬁ
m=1 3)}% 33)3 R

. (3.6.52)

}
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Assuming that the particle is ultra-relativistic namely,
A
27> (3.6.53)

the first two moments (n) = >°, np, and (n*) = ¥, n’p, are given by
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(3.6.55)

As an example, let us consider N = 10'°, 2 GeVelectrons forming a Ab = 1 cm long
bunch, following a circular trajectory of radius R = 100 m implying =2 37 A ~107¢
and consequently,
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(n) ~ ——7> ~ 0.026}° An A
76.8 229 1156 (3.6.56)

An = <n2> _ <l’l>2 — 0'3},3 (n) ()

which is one order of magnitude higher than the case of a point-charge.

Exercises

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Show by substituting (3.1.10) in Lagrange’s equation of motion that
they are identical to the Newtonian equations of motion. Repeat the
exercise with Hamilton’s equations of motion.

Show in a systematic way that if the charge of an electron is the same in
all frames of reference then the set (J, cp) forms a 4-vector.

Show that the condition in (3.4.19) is sufficient to ensure stability of the
beam. Hint: linearize the equation of motion and assume that in spite
oscillation the total current is preserved.

Determine the frequency emitted by an electron wiggling in a magnetic
field at any angle 0 — see end of Sect. 3.2

Based on Sect. 3.3.1 determine the effective enhancement parameter as
a function of the geometry of the grating. Analyze the effect of the
various geometric parameters. Can you suggest a measurement such
that based on the presented analysis it would be possible to assess, at
least part of, the surface topology.

Determine the limiting current in a cylindrical and spherical diode for
the non-relativistic regime. Show that like in the planar configuration,
the current is proportional to Vf,,/vZ. Hint: follow Langmuir (1913) and
determine the corresponding proportionality factors.

Calculate the limiting currents of two thin annular beams of radii R,
and R, moving in a waveguide of radius R (R > R, >R, ); both beams
are generated by the same diode, thus the initial kinetic energy
[mc?(p, — 1)] is the same. Determine the kinetic energy of the electrons
in each one of the beams. Repeat the exercise for two beams of different
initial energies and currents.

Show that in dielectric loaded waveguide the limiting current of a pencil

beam is given by
Ry (R '/
Ri\ R '

The dielectric (¢ > 1) fills the region R > r > R,; the beam radius is Ry
and it is smaller than the inner radius of the dielectric, R;. Note that with
the dielectric, for the same waveguide radius R, the limiting current is

2 3/2
Inax = 27rm—C (yg/3 — 1) In~!
€Ty

(continued)
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3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

larger which means that the potential depression is smaller and conse-
quently, the kinetic energy is larger.

Calculate the limiting current for an annular beam of radius R, which
carries a current / and its thickness is A and it moves outside a metallic
waveguide of radius R.

Prove the dispersion relation specified by (3.5.45). Analyze (numerically)
the condition for instability to occur. In particular examine the depen-
dence on the geometric parameters. Examine also the spatial growth as a
function of the frequency, geometry, momenta and the currents.
Calculate the two-beam instability for the case of a motionless plasma
and a pencil beam moving through the plasma in a waveguide of radius
R. The radius of the electron beam is Ry, its density is 1, and the density
of the background plasma is denoted by 7p.

Compare the Debye length with the plasma wavelength. For a tempera-
ture of 1, 000°K, which one is larger? What is your conclusion regarding
the use of the hydrodynamic and kinetic approximations.

Develop the Child-Langmuir limiting current using the Lagrangian
formulation. Hint: consult Chodorow and Susskind (1964) p. 125.

Use the integral $E -d/ = 0 in order to calculate the potential depres-
sion of a pencil beam in a waveguide. Hints: (a) include the diode in
your contour, (b) assume perfect conductors and (c) in the beam region
the contour closes on axis.

3.15 Determine the effect of the vacuum chamber on the coherent
synchrotron radiation. Hint: consult Schwinger(1949), Schiff (1946),
Nodvick (Nodvick and Saxon 1954), Warnock and Morton (1990) or
Ng (1990).

Consider a train of micro-bunches. Each micro-bunch has a length
Anp(Gaussian distribution), there are M microbunches and the distance
between any two bunches is A7 > Ayp. In each micro-bunch there
are N, electrons. Relying on (3.6.44) determine the probability p, for
emission of a photon of energy /iQn-accounting for both spontaneous as
well as coherent radiation. Subject to the assumption A,y> > R analize
the effect of the number of micro-bunches on Aw/(w). Use the
parameters in Comment 3.10 in Sect. 3.6.4.
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Chapter 4
Models of Beam—Wave Interaction
in Slow-Wave Structures

So far we either assumed that the trajectory of the electrons is known and the
electromagnetic field has been evaluated or vice versa, the electromagnetic field
was known and the problem was to determine the trajectory of charged particles. In
reality, both vary and at any point and instant, they need to be established in a self-
consistent way. In this chapter, we investigate the fundamentals of distributed
beam—wave interaction in a slow-wave structure. In Chap. 7, while discussing the
interaction in a free electron laser, we will formulate the self-consistent interaction
in a fast-wave device. Some additional aspects will be considered in Chap. 8 when
discussing beam—wave interaction in accelerators.

A dielectric loaded waveguide and a pencil beam are chosen as the basic model
in the first sections because it enables us to illustrate the essence of the interaction
without the complications associated with complex boundary conditions. Through-
out this chapter, the electron beam is assumed to be guided by a very strong
magnetic field such that the electrons’ motion is confined to the longitudinal
direction. Furthermore, the kinetic energy of the electrons is assumed to take into
consideration the potential depression associated with the injection of a beam into a
metallic waveguide.

In the first section, we present part of Pierce’s theory for the traveling-wave
amplifier applied to dielectric loaded structure and extended to the relativistic
regime. The interaction for a semi-infinitely long system is formulated in terms of
the interaction impedance introduced in Chap. 2. Finite length effects are consid-
ered in the second section where we first examine the other extreme of the
beam—wave interaction namely, the oscillator. In the context of an amplifier, it is
shown that reflections affect the bandwidth and in addition, the beam shifts the
frequency where maximum transmission occurs.

The macro-particle approach is described in Sect. 4.3 where the beam dynamics
instead of being considered in the framework of the hydrodynamic approximation
i.e. as a single fluid flow, is represented by a large number of clusters of electrons.
Each one of the clusters is free to move at a different velocity according to the local
field it experiences but the electrons that constitute the cluster are “glued” together.
This formalism enables us to examine the interaction in phase-space either in the

L. Schachter, Beam-Wave Interaction in Periodic and Quasi-Periodic Structures, 169
Particle Acceleration and Detection, DOI 10.1007/978-3-642-19848-9 4,
© Springer-Verlag Berlin Heidelberg 2011
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linear regime of operation or close to saturation. It also permits investigation of
tapered structures and analysis of the interaction of pre-bunched beams in tapered
structures.

The chapter concludes with a further extension of the macro-particle approach
formalism to include the effect of reflections. This framework combines the
formulations of an amplifier and an oscillator and permits us to quantify and
illustrate the operation of a realistic device, which is neither an ideal amplifier
nor an ideal oscillator.

With the exception of the first section that, as indicated, is a review of Pierce’s
TWT theory, most of the material presented in this chapter has been developed
during the nineties as part of an effort to develop high power traveling-wave
amplifiers. The first experiments on high power TWT performed at Cornell Uni-
versity and conducted by Professor John A. Nation (Shiffler et al. 1989) indicated
that 100 MW of power at 8.76 GHz can be achieved before the system oscillates.
Although no rf break-down was observed, the fact that the input is no longer
isolated from the output, allows waves to be reflected backwards and this feedback
could cause the system to oscillate. In order to isolate the input from the output the
TWT was split in two sections separated by a sever (waveguide made of lossy
material which operates below cut-off).

The second set of experiments on a two stage high power TWT indicated that
power levels in excess of 400 MW are achievable with no indication of rf break-
down (Shiffler et al. 1991). In this case, the spectrum of output frequencies was
300 MHz wide and a significant amount of power (up to 50%) was measured in
asymmetric sidebands. The latter observation was investigated theoretically
(Schachter et al. 1991) and it was concluded that it is a result of amplified noise
at frequencies selected by the interference of the two waves bouncing between the
ends of the last stage. In fact, we have shown (Schachter and Nation 1992) that what
we call amplifier and oscillator are the two extreme of possible operation regimes
and any practical device operates somewhere in between, according to the degree of
control we have on the reflection process. One possible way to eliminate the
problem is to use the transit-time isolation method. Its essence is to design a low
group velocity structure such that by the time the reflected electromagnetic pulse
reaches the input end, there are no longer electrons to interact with. This method
was successfully demonstrated (Kuang et al. 1993) experimentally and power levels
of 200 MW were achieved at 9 GHz. The spectrum of the output signal was less
than 50 MHz wide and the pass-band of the periodic structure was less than
200 MHz.

4.1 Semi-Infinite Structure: Pierce-Like Theory

In the previous chapter it was justified to decouple the two groups of solutions
described by the dispersion relation in (3.5.8) because the propagating electromag-
netic modes have a phase velocity larger than ¢, whereas the space-charge waves
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have a phase velocity which is of the order of v,. In principle, it is possible to slow
down the phase velocity of the electromagnetic wave, in the absence of the beam,
below ¢ and then, the waves may become coupled — it is there where resonance
occurs. One possibility to slow down the phase velocity, which will be considered
throughout this chapter, is to load the waveguide with a dielectric material. In
Fig. 4.1 we illustrate schematically the dispersion curve of an electromagnetic wave
which propagates in a dielectric loaded waveguide. The space-charge wave
intersects the former curve at resonance.

4.1.1 Dielectric Filled Waveguide

As a first step, we assume full overlap between the beam and the dielectric.
Although, in general no such overlap is permissible, this model will be used to
explain in a simple way the quantities that describe the beam—wave interaction in a
slow-wave structure. A realistic but somewhat more complex picture will be
presented in the next sub-section. Based on hydrodynamic description of the
beam-dynamics, as in Sect. 3.5, the dispersion relation of the TM, modes in the
presence of a dielectric material (g;) is given by

2 > 2
@%_ﬁ>1m——l——5:%, 4.1.1)
¢ Sry3 ((O - V()ks) R

k represents the wave-number of the s™ mode and p is the zero of the zero-order
Bessel function of the first kind i.e., Jo(ps) = 0. For simplicity sake, it is assumed
that only the first mode, s = 1, is excited and in the absence of the beam the solution
of the electromagnetic wave is given by

PO e

V= yfa -2 (4.1.2)
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where R is the radius of the waveguide. The solution of the dispersion relation with
the beam present is further assumed to have the form

ky =k + k. (4.1.3)

Substituting this relation in (4.1.1), assuming that the beam effect on the
distribution of the electromagnetic field is small on the scale of one wavelength
ie.,

|6k < £\, 4.1.4)

neglecting the beam effect on the wave which propagates anti-parallel to the beam
and finally assuming that

2
p 0
R—lz > 2k |6k], (4.1.5)
we obtain the following simplified version of the dispersion relation

2 w2
Sk(3k — Ak = —K3 = 2P0 _ D (4.1.6)

In this expression Ky is the coupling wave-number and Ak = w/vy — k&o)
represents the slip between the beam and the electromagnetic wave; this is more
easily observed when dividing Ak by w since

A_ 11 @.1.7)

The dispersion relation in (4.1.1) is a fourth order polynomial whereas (4.1.6) is a
third order polynomial since the effect of the beam on the reflected wave was
neglected. This type of dispersion relation was initially presented by Pierce (1947)
in the context of beam—wave interaction in a helix — and it will be referred to
hereafter as the Pierce’s approach. Soon afterwards, Chu and Jackson (1948)
presented the formulation based on full electromagnetic field analysis. In both
cases, the dynamics of the beam was non-relativistic since the regime of operation
at the time did not require relativistic analysis.

A third order polynomial has explicit analytic solution (see Abramowitz and
Stegun 1968, p. 17). Two of its roots are complex provided that

3
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and then the imaginary part of ok is equal to

V3

1 1/3
Im (k) = —- —q3——K8+(Koq)3/2} - — Ky — (Kog)?|

4

\/§ , 1 1/3
2 4 1

(4.1.9)

which can be readily shown, by assuming that Ak and K are independent, to have
its maximum at

AkEa)(i—L) =0. (4.1.10)

Vo Vph
This is also the resonance condition (see Fig. 4.1) and it can be formulated as
Vph = V0, “4.1.11)

indicating that maximum growth rate occurs when the electron beam is synchro-
nous with the wave. At resonance (4.1.6) has three solutions

oki = —Ko, Ok = Ko <%/?) Sky = Ko <%+]§) (4.1.12)

corresponding to the three waves, which propagate in the forward direction.
The first wave has a constant amplitude and its phase velocity is larger than
vo; the other two waves have a slower phase velocity and their amplitude vary in
space. The third solution corresponds to a wave whose amplitude grows exponen-
tially in space. The maximum spatial growth rate is therefore

Im(5k), . = QKO. (4.1.13)

max 2

Further discussion of the interaction between electromagnetic waves and space-
charge waves in slow-wave structures can be found in the early literature e.g.,
Pierce (1950), Slater (1950), Hutter (1960), Chodorow and Susskind (1964), or
more recently in Gilmour (1986). At this point we wish to emphasize the difference
between the operation of a traveling-wave tube in the relativistic and non-relativis-
tic regime (Naqvi et al. 1996). We have emphasized, in the context of
(4.1.9)—(4.1.10), that maximum gain occurs at resonance if we assume that K
and Ak are independent. But clearly this is not generally the case since both
quantities are velocity dependent as revealed by their definition in (4.1.6)—(4.1.7).
Furthermore, the validity of (4.1.8)—(4.1.9) is limited to the close vicinity of the
expansion point, therefore we should solve (4.1.1) with no additional
approximations. The result is illustrated in Fig. 4.2 for two cases. In one case the
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Fig. 4.2 Imaginary part of 0.2
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phase velocity of the wave is fi,;, = 0.3 corresponding to a non-relativistic regime
and in the other, f;, = 0.9. In both cases at “resonance” ( = f3,,) the spatial
growth rate was designed to be the same. We observe that at low velocities the
predictions of the Pierce approach behave as expected but at higher energies the
peak gain occurs at much lower velocity than anticipated by the model. This can
be attributed to the yf dependence of the coupling coefficient (Ky). At low energies
the coupling occurs in a relatively narrow range of velocities and as a result, the
change in K is small and the peak gain occurs at resonance. At higher energies,
although the gain might have decreased if K were constant, it actually increases
because of the increase in K due to its 1 /7 dependence. For a large deviation from
resonance, the slip will ultimately take over and the gain drops. Now to some
further comments regarding the kinematics of the interaction:

Comment 4.1. From the resonance condition (4.1.11) we conclude that maximum
gain is achieved at a frequency which is related to the geometric and mechanical
parameters by

P1Vo 1
o =5 .
er(vo )t — 1

(4.1.14)

If we assume that at a frequency, wg, there is no longer growth, i.e.,
qg(w = wp) =0, and wy is only slightly apart from the resonance frequency
(wo = w; + 0w and |dw| < ;) then we can make a crude estimate of the fre-
quency range in which the ideal system under consideration will amplify. For this
purpose we use the condition for an imaginary solution in (4.1.8) and the definition
of Ak in (4.1.10): we substitute w = w;+ dw and k; :kio) + Vg (0 =0;)dw thus

w; + 0w

0) 3 e
o K —bovy + 175K = 0. (4.1.15)

We shall define the interaction bandwidth, dw;, as equal dw:

Vo
0w; = 0w = ——= KoV

e (4.1.16)

Vo — Vgr
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This result indicates that the interaction extends beyond the resonance frequency
() in an interval which is linearly proportional to the maximum spatial growth
rate (Im(dk)

max)

Sewy= 31/221/3 ng,.lm(ék) (4.1.17)

max*
Vo — Vg

Furthermore, the closer the group velocity is to the beam velocity, the broader
the interaction. Finally, this quantity is not dependent on the total interaction length.

Comment 4.2. The coupling coefficient K} can now be represented in terms of
quantities that are more familiar. First we define the average current which flows
along the waveguide as I = engvonR>. Next we define the cross-section through
which the wave propagates as S,, = mR?. The interaction impedance defined in
(2.3.29) was calculated for the present configuration in (2.3.30), reads

Zint = 1o(p1¢/&:0R)? | Ben. With these quantities we can express KJ as

ngngelzim 1

(4.1.18)

In the linear regime, the linearity of K in the interaction impedance is a general
feature whenever the electrons interact with a TM mode and their oscillation is
longitudinal. And so is its dependence on the normalized momentum of the particle,
yp. The last expression can also be formulated in terms of the energy velocity using
(2.3.33) as

Kgiligelno 1 1

28, ¢ mc? (vB)? intBen’

(4.1.19)

which indicates that the growth rate is inversely proportional to the energy velocity.
Since in most cases of (our) interest this is equal to the group velocity, we observe
that if we substitute in the expression for the interaction bandwidth, the latter still
decreases with the group velocity as dw; o vg,2/3.

Comment 4.3. The entire approach relies on a linearized hydrodynamic approxi-
mation, which implies that the deviation from the initial average energy is small i.e.,

7> |y, (4.1.20)

In Sect. 4.3 we adopt the macro-particle approach for description of the electron
dynamics and it will be shown that an individual particle can have energy which is
more than twice the average initial energy. Nevertheless, the average energy
modulation of all particles can still be relatively small — namely the relation in
(4.1.20) still holds.

So far we discussed the kinematics of the interaction, now we focus our attention
onto the dynamics of the interaction. Let us consider a system of length d and assume
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that we know the value of the field at the input i.e., E.(r,z = 0) = EoJo(p17/R).
Furthermore, at this location the beam is not modulated yet thus, ov(z = 0) = 0 and
on(z = 0) = 0. According to the three modes we found previously (4.1.12) we can
write the solution for E, as:

E.(r,z,0) =T (pl 1}3) e M T [Ere 07 4 e kT 4 Bre R (4.1.21)
The three conditions above determine three sets of algebraic equations:

Ei+E,+E3; =Ey,

E; E, E;
@ + @ + @ =
(U/Vo—kl —5/(1 (U/V()—kl —(Skz CO/V()—kl —(Sk3
E (K" + 6k) . Ey (K" + k) Es(k” 4+ 0ks) 0
2 2 2
(@/vo— K" —6k)" (w/vo — K = 6ky)" (w/vo — &\ — 6ks3)
(4.1.22)

and in principle, we can now solve for E1, E, and E5 such that we can determine the
total electromagnetic field at the output (z = d). For the sake of simplicity, we limit
our discussion to the solution near resonance (where according to the Pierce
approach the gain reaches its maximum). The three 6k’s are of the same order of
magnitude so we can estimate that |E|| ~ |E;| ~ |E3| ~ Eo/3. Therefore, the z
component of the electric field is

E.(r,z,0) ~ gOJo (m 1%) etz [e7h17 4 emidhz 4 gmidka] (4.1.23)

According to the three solutions in (4.1.12) the first ok is always real therefore its
amplitude is constant, the amplitude of the second decays exponentially, and the
third grows in space. The local gain is the ratio between the local amplitude and the
amplitude at the input is

E(2)]
[E(0)]

G(z) =
1 —jokz —jokaz —jok
= |e7hE eI 4 ok
3

= % ’63/[(02/2 + e—\/gKUZ/2 =+ e\/gKolﬂ‘. (4.1.24)

The expression in (4.1.24) is illustrated in Fig. 4.3 where we present G(z) in dB
for several values of Kod. Although one of the solutions grows exponentially in the
first part of the interaction region, the local gain is zero — this effect is referred to in
literature as spatial lethargy since it takes some space for the exponentially growing
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Fig. 4.3 The way the gain 40
develops in space for different
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wave to become dominant. We can estimate this lethargy length d; by determining
the location where the amplitude of the first and third waves combined, reach the
value at the input i.e., | exp(3jKod./2) + exp(v/3Kod./2)|/3 = 1. This equation
can be solved numerically and the result is

1.412
dp, = ; 4.1.25
L KO ) ( )

the second wave decays exponentially therefore it is neglected in this calculation.
We shall further discuss this effect in the context of the macro-particle approach in
Sect. 4.3. At the end of the interaction region we can also neglect the mode which
has a constant amplitude (assuming that the gain is large enough) and the total gain
(at z = d) is defined as

1
gaings = 201og,, [g eﬁKod/z} . (4.1.26)
The total gain and the lethargy length are related by

%L: %@ 1! [3 y 10gain<dB>/20] (4.1.27)

The effect is evident in Fig. 4.3 and using the relations above we found for Kod = 3
the lethargy length is 0.47 d while the gain is 13 dB. For twice this growth
(Kod = 6) the lethargy length is 0.23 d and the gain is 35 dB.

4.1.2 Partially Filled Waveguide

Although in the previous model, the beam and the dielectric were occupying the
entire space of the waveguide, has its tutorial merit, it is impractical concerning the
generation of radiation. In general no beam-dielectric overlap is permitted namely,
there has to be a significant distance between the electron beam and the structure
that slows down the wave. In this sub-section, we consider the interaction between
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Fig. 4.4 A dielectric loaded
waveguide. The radius of the
guide is denoted by R. R; and
R, stand for the dielectric
inner radius and beam’s
radius, respectively

Ny, Vo

b
AR A

a beam of radius Ry, and a wave which propagates in a waveguide partially filled
with dielectric material (e;). The dielectric occupies the region between Ry <r <R
where R is the radius of the waveguide and R4 > Ry, — see Fig. 4.4. The system is
semi-infinitely long, thus no reflections occur.

As a first stage, we consider the electromagnetic problem in the absence of
the electrons. A TMy; mode is assumed to propagate along the waveguide and it
is described by the z component of the magnetic vector potential, which in the
vacuum gap (0 < r < Ry) reads:

A.(r,z,0) = Agly(Tr)e %, (4.1.28)

where T? = k2 — (w/c)*. In the dielectric material (Ry < r < R) the magnetic
vector potential is given by

A.(r,z,0) = BoTo(kr)e 7, (4.1.29)

where K2 = & (w/c)* — k2, 1p(&) is the zero order modified Bessel function of the
first kind and

To(xr) = Jo(kr)Yo(kR) — Yo(kr)Jo(kR). (4.1.30)

The electromagnetic field in the vacuum gap is

1 i
Hy(r,z,0) = —Ao— T (Tr)e 7%,
Ko

*k ik
E.(r,z,0) = —Ag—TL(T'r)e™™,
w
2
E.(r,z,0) = —Ag— o (Tr)e @.131)
jo
In a similar way, in the dielectric material,

1 o
Hy(r,z,0) = Bo— KTl(Kr)e_"k‘,
Ho

2k

E,‘(V, Z, CO) = BO KTI (K},)e—jkz’

ér
2

E.(r,z,0) = By—— 12Ty (kr)e ¥, (4.1.32)

Er
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where
Ti(kr) = J1(kr)Yo(kR) — Y1 (1cr)Jo(kR). (4.1.33)

In order to determine the wave-number & we now impose the boundary
conditions at r = Rq: the continuity of H, implies

— AoT'1y(TRy) = BokTi(kRy), (4.1.34)

whereas the continuity of E, results in
1
— AoI’1y(TRy) = By K*To(kRq). (4.1.35)
T

From these two equations the dispersion relation of the passive (subscript pa)
device reads

Dya(0,k) = &do(04)T1 () — g"—jIl(Gd)TO(;(d) —0, (4.1.36)

where 0; = 'R, and 3, = kRy. Figure 4.5 illustrates a solution of this dispersion
relation [line (a)]. For comparison, two other dispersion relations are plotted: curve
(b) represents the empty waveguide, whereas curve (c) corresponds to a waveguide
filled with the same dielectric. From the dispersion relation we observe that at low
frequencies (long wavelength) the mode behaves as if no dielectric exists. At high
frequencies, the dielectric slab primarily confines the mode.

Next we consider the effect of the electron beam on the propagating waves.
In this case, the magnetic vector potential in the beam region 0 < r < R\, is given
by

A, (r,z,m) = AOIO(Ar)e_ﬂ‘Z,

| w? 1 (4.1.37)

A2 =T? v
(o = vok)

with the plasma frequency, w,, defined in (3.4.18). Accordingly, the electromag-
netic field reads

Fig. 4.5 (a) Solution of the
dispersion relation in (4.1.36).
(b) represents the empty
waveguide, whereas (c)
corresponds to a waveguide
filled with dielectric. The
upper dashed line represents

the dispersion of a TEM mode 0 el | © | |
in vacuum whereas the lower 0 2 4 6 8 10
one represents the same mode kR

in the dielectric medium
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1 ,
Hy(r,z,w) = —Ap— AL (Ar)e %,
Ho
c2k i
E (r,z,0) = —AOEAh(Ar)e e
2 .
E.(r,z,0) = —Ag— Iy(Ar)e (4.1.38)
jo

In the vacuum gap between the beam and the dielectric (R, < r< R4) the
potential is

A.(r,z,0) = [Bolo(T'r) + CoKo(T'r)]e ™, (4.1.39)

while the electromagnetic field is

1 .
H¢(I’,Z, (JJ) = —; F[B()Il (Fr) — COK1 (l"r)]e‘sz,

0

2k ik
E.(r,z,0) = —;F[Boll(l"r) — CoK (I'r)]e™™,

2
E.(r,z,0) = ——T2[Bolo(T'r) + CoKo(Tr)]Je 7. (4.1.40)
Jj
In the dielectric the expression is similar to (4.1.29):

A,(r,z,0) = DoTy(kr)e ™, (4.1.41)

and the electromagnetic field

1 0
Hy(r,z,w) = Do— KTl(Kr)e_/k‘,

Mo
2
2 )
E.(r,z,m) :DOC ~ KT (kr)e 7,
T
C2 7 —ikz
E.(r,z,w) = Dq- K To(xr)e™. (4.1.42)
T

In order to determine the dispersion relation we now impose the boundary
conditions at r = Ry, and r = Ry. Continuity of H, implies at r = Ry:

AoAlL (ARy) = ['[Boli (T'Ry,) — CoKy (T'Ry)], (4.1.43)
while at r = Ry:

— F[Boll (er) — C()K] (er)] = D()KT] (KRd). (4144)
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Similarly the continuity of the longitudinal component of the electric field (E.)
implies at r = Ry:

Ao(=THIH(ARy) = (—=T?)[Bolo(TRy) + CoKo(TRy)], (4.1.45)

and at r = Ry:
1
(=T2)[Bolo(TRy) + CoKo(TRy)] = DOE K>To(KkRy). (4.1.46)

These are four homogeneous equations and the non-trivial solution is determined
from the condition that the determinant of the corresponding matrix is zero. Thus
the dispersion equation of the active (subscript act) system is

Daci (@0, k) = Dpa(0, k) + Dieam (@, k) = 0. (4.1.47)

The first term is the dispersion relation of the passive system and the second (Dpeam)
represents the beam effect:

Diean (@, k) = 'L (TRu)Io(ARb) — Alg(TRy )11 (ARy)
beam %> %) = TR (TRy Lo (ARy) + AKo(T Ry ), (ARy)

x ngo(ed)Tl(Xd)+%K,(9d)TO(Xd) . (4.1.48)

The solution of the dispersion relation in the beam absence is denoted by k(¥ ()
and the effect of the beam will be represented by a deviation, dk, from this value
namely, k = k© + k. If we now expand the first term in (4.1.47) around £(©),
we find

ODpa(w, k) ODpa(w, k)
Dyul,K9) + 3k {P—] — ok {Pi L @1
pa( ) Ok k—k(©) Ok k=k(©) ( :

since by the definition of (), the dispersion function Dpa(w, k) is identically
zero. Regarding the second term in the dispersion relation of the active system
(4.1.47), we canreadily check that for w, = 0 the beam term Dyear, is zero. We shall
consider only the correction of the first order in the term wg /(w — vok)*y?, there-
fore we can neglect the beam effect in the denominator of Dyean, Which after a first
order Taylor expansion implies

2

@ ta To(%a)
Deam (0, k0 ~ P 02 (12(6,) — 12(0 Za L0\ Xd . (4.1.50

In the process of evaluating this expression the following relation was used
Ip(x)K; (x) 4+ I (x)Ko(x) = 1/x and 0, = T'Ry,. Equations (4.1.49)—(4.1.50) can be
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substituted in the active dispersion relation (4.1.47) and the result written in an
identical form as (4.1.6). The beam—wave coupling is determined by

3 _lelny 1 1

07 2 mc? (Vﬁ)3 TR2 [1(2)(9/7) - I%(eb)h:kw

R zydT0(7d> <6Dpa>l
= | LA . (4.1.51)
<Rd> Io(ed) ok k)

The effect of the radius in the case of a pencil beam is revealed since the
coupling coefficient K} is

K3 (Ru) = K3(O)B(0,) — B (0,)],_yo- (4.152)

The modified Bessel function of the first kind is a monotonic function thus for
Ry, — 0 the coupling coefficient Kj has its minimum and grows with increasing
beam radius. This fact can be readily understood bearing in mind that the slow
wave, which interacts with the electrons, decays exponentially from the dielectric
surface inward. The larger the radius of the beam, the stronger the electric field it
encounters, therefore the coupling is stronger. Walsh (1987) presented further
discussion on the interaction in a dielectric loaded waveguide.

4.2 Finite Length Effects

All the examples of beam—wave interaction presented so far, such as resistive wall
instability — Sect. 3.5.3, two-beam instability — Sect. 3.5.4 and traveling-wave
interaction in the last two sub-sections, disregard the possibility of reflections
from the output end. In practice, there are several causes for reflections to occur
(1) the characteristic impedance of an electromagnetic wave in the interaction
region differs from the impedance of the input and output waveguides. (2) Even
if at a given frequency this impedance mismatch can be tuned, at other frequencies,
reflections may dominate and control the interaction process. (3) In any interaction
scheme eventually, the electromagnetic energy has to be decoupled from the beam.
This decoupling process is always associated with some kind of discontinuity,
therefore in this regard, reflections are an inherent part of the interaction.

In order to illustrate the effect of reflections, we first consider the extreme where
the interaction is dominated by reflections, which is the case in an oscillator. It is
shown that in zero order, the amplitude of the electromagnetic field in an oscillator
is constant in space but varies in time whereas in an amplifier, it is constant in time
but it varies in space. The oscillator analysis is followed by an investigation of the
effect of reflections on an amplifier and the section concludes with some remarks on
the interaction in an extended slow-wave cavity.
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4.2.1 Oscillator

The simplest configuration we can conceive for an oscillator is a section of an
amplifier with two reflecting mirrors at the two ends. There are two major
differences between an amplifier and an oscillator (1) in an amplifier, the frequency
is set externally whereas the wave-number is determined by the waveguide and the
interaction. Consequently, (2) the amplitude of the wave varies in space but at a
given location it is constant in time. The opposite holds for an oscillator; the wave-
number is set by the cavity (mirrors) and the frequency is determined internally by
both cavity and interaction. The amplitude is constant in space (at a given moment)
and it varies in time. Therefore, if we assume that the distance between the two
mirrors is d, then from the condition that E,(r,z = 0,d) = 0 we conclude that

k=v= 421

v (4.2.1)
where v is an integer which labels each longitudinal mode. In the remainder, we
assume that the interaction is only with one of these modes (v = 1). In the beam
absence the resonant frequency is

¢ Ip2 n?

and the beam introduces a small deviation 0w = w — w, which is a solution of the
following dispersion relation

2o L piey? o

where similarly to the amplifier case €, is the coupling frequency and
Aw = vor/d — o, is the slip. The main difference here is that in contrast to
(4.1.6) the right-hand side is positive thus the same analysis of the third order
polynomial can be applied for (4.2.3). We shall not repeat it but rather present the
important results. The maximum temporal growth rate occurs at resonance and it is
given by

1 1
(50)1 = Qo, 5(1)2 = _EQO(I —j\/§)7 5603 = _590(1 +]\/§> (424)

The first solution corresponds to a wave whose phase velocity is larger than the
average velocity of the electrons (vg). The other two have phase velocities smaller
than vy. The second solution represents a wave that is decaying in time whereas the
third grows.

Comparing the dispersion relation for the amplifier (4.1.6) with the dispersion
relation for the oscillator (4.2.3) we find that the relation between Q and Kj is
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given by Q) = K3vgv2, which implies that the connection between the maximum
temporal growth rate [Im(dw)__. ] in an oscillator and the maximum spatial growth
rate in an amplifier [Im(dk)

max]
] is

max

Im(éw) 1 1/3
im0, ¢~ V) e

max

As in the amplifier case, we can define the temporal lethargy as the period
of time, 77, during which the electromagnetic energy in the oscillator starts to
grow exponentially relative to the situation before the beam was launched (here
we have assumed that initially the cavity was filled with electromagnetic

energy):

1.412
1L = QO

. (4.2.6)

If we consider a system which is characterized by Kod = 4,d = 20cm, = 0.9
and fi,, = 0.2 then the temporal lethargy is 0.4 ns, therefore on the scale of a pulse
of hundreds of nanoseconds this is negligible. However, for Kod = 0.04 and
assuming that all other parameters remain the same, the temporal lethargy is
40 ns which is significant.

In most cases of interest, the cavity is not initially filled with electromagnetic
energy and the mirrors/walls are not ideal reflectors. As a result, the electromag-
netic signal has to build up from noise and at the same time overcome ohm,
dielectric or radiation loss through extraction ports/mirrors. All the combined
loss mechanisms cause a decay in the electromagnetic field which, in zero order
can be assumed to be proportional to the total amount of energy stored at a given
time i.e.,

d W+ 2
de Tloss

W =0. (4.2.7)

On the other hand, in Sect. 2.5.3 it was shown that a single particle excites a
variety of electromagnetic waves in a cavity. When a uniform distribution of
particles is injected into a cavity, waves of different frequencies and phases are
generated and absorbed in the same time. This is noise induced by the beam in
the cavity. For a coherent signal to develop from noise it is necessary that the
beam—wave interaction exceed some threshold which can be expressed in terms
of the injected current. This amount is determined from the condition that the
growth due to the interaction at least cancels the decay due to loss mechanisms
ie.,

e\/:;Qg[/ze*I/Tln» > 1. 4.2.8)
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Using this expression we can explicitly write for the threshold current

16 me®> S, 9B

= _— &;
. 3\/§ €7y (C‘ElOSS)Z WrTloss n
Sy
=3.08.y’ f—————&int. (4.2.9)

(Cfloss) (wrfloss)

Note that this current is proportional to the dielectric coefficient of the interaction
and it scales as y°.

4.2.2 Gain and Bandwidth Considerations

In the previous sub-section we examined the dramatic change in the characteristics
of the beam—wave interaction as reflections are deliberately introduced causing
temporal rather than spatial growth. Based on the (pure) electromagnetic analysis
presented in Chap. 2 the assumption of zero reflections in an amplifier is not
justified in general since the wavelengths of the electromagnetic wave (and thus
the characteristic impedance) in the interaction region and the extraction region are
different. If discontinuities in the characteristic impedance occur they generate
reflected waves. The reflected waves interfere (constructively or destructively)
with the incoming waves to generate transmission patterns that were discussed in
Sect. 2.5.1. According to this picture, there are frequency ranges for which the
transmission coefficient has a maximum or minimum. When the beam is present,
the situation is somewhat more complex since, in addition to the regular electro-
magnetic modes that can propagate, there are also space-charge waves which carry
energy. However, in the case of a sufficiently long system such that at the output
end the exponentially growing mode is dominant we can still assume only two
waves bouncing between the input and output ends.

The starting point is similar to what was presented in Sect. 2.5.1: consider a
waveguide of radius R is filled with a dielectric material according to

1 —oc0<z<0,
gz)=q & 0<z<d, (4.2.10)
1 d<z<oo.

A wave is launched from z — —oo toward the discontinuity at z = 0 and for sake
of simplicity we assume that this wave is composed of a single mode (TMy;, i.e.,
s =1). The z component of the magnetic vector potential in the first region
(— o0 < z <0) is given by

A.(r,—00<z<0,m) =Jo (pl 1%) [Aine 717 + Agere™?], (4.2.11)
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where Aj, is the amplitude of the incoming wave and As represents the amplitude

of the reflected wave because of the discontinuity; k; = \/ (w/c)* = (p1/R).
Between the two discontinuities at z = 0 and z = d the solution has a similar form

Ar, 0 <z <dw) =] (pl;—;> [Ae /K% 4 Bel?], (4.2.12)

where k, = \/f,r(cu/c)2 — (p1/R)*. The term Ae /X is an “effective” wave which
represents all three modes we discussed in Sect. 4.1. Finally, in the third region
there is no reflected wave thus

Ar, d <z < o0, ®) =T (pl ]%)Atre’jk‘(z’d). (4.2.13)

The four, as yet unknown, amplitudes A, Ay, A and B are determined by
imposing the boundary conditions at z = 0, d:

Z1[Ain — Awet] = Z2[A — B], (4.2.14)
Ain + At = A+ B, (4.2.15)
ZoJAe W+ — BeV-] = Z,A, (4.2.16)
and
Ae W+ 1 Bl = A, (4.2.17)

In these expressions, the following definitions were used:

2 1 2
Zi=np/1 - (Z_‘) L D= fe- (%) , (4.2.18)

v 4 = Kd represents the phase and amplitude variation of the effective wave as it
propagates from z = 0 to d; = k,d represents the phase shift of the backward
wave. Note that the effect of the beam was neglected in the impedance terms.
The transmission coefficient is defined as t = A, /Ay, and is given by

477 eIV —V2)
T=— e . (4.2.19)
e/ (Zl -I—Zz) — e (Z1 — Zz)

Before we consider the beam effect on the transmission coefficient let us
examine the passive device namely when no beam is present. The wave-numbers
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in this case are the same ¥/ L= Y_ = = k»d and the transmission coefficient
reads
47,7,

T=— 3 — 5 (4.2.20)
e/‘P(Zl —|—Zz) — e*J‘/’(Zl — Zz)

The peaks of the transmission coefficient occur when 2k§0)d = 2nn and the
valleys at 2k,d = nm. According to the first relation, the “distance” (Ak,) between
two peaks is (Ak;)d = n. Using the definition of the group velocity, v, in (2.3.24),
the “distance” Af, between two peaks is approximately given by

Ver
(Af)pa ~ é. (4.2.21)
The subscript pa indicates that this is the bandwidth of a passive device. In
general, the bandwidth of a given peak is the difference between the two
frequencies for which the transmission coefficient is half (=3 dB) of its peak
value. Since there are cases where the total height of the peak is less than 3 dB,
we define in this case the bandwidth as the distance between two peaks (or two
bottom points). If the impedance mismatch is much larger and the difference
between the peak and bottom values is much larger then the bandwidth is explicitly
dependent on both impedances. At least in what concerns the operation of a
traveling-wave tube the trend is to work with minimum reflections, therefore the
definition in (4.2.21) is sufficient for our purpose.

Our next step is to calculate the bandwidth of an active device. For this purpose
we direct our attention back to the expression for the transmission coefficient in
(4.2.19). It was mentioned above that the effect of the beam is effectively
represented by e ¥+, This is the ratio between the amplitude of the wave at the
output and input. According to the simplified interaction model we developed in
Sect. 4.1 we can represent this ratio as

e no L gilhotoks)d (4.2.22)

)

where 0k3 is that solution of (4.1.6) which has a positive imaginary part as presented
in (4.1.12) for the resonance case. In this expression, we tacitly assumed that this
growing wave is dominant.

In this effective representation, we have two contributions: one is the real part of
the wave-number and the other is its imaginary part. We consider first the effect of
the real part. We already indicated that, without electrons, the peaks in the
transmission coefficient are separated by 2k,d = 2n (n = 0,%1,...). In a similar
way when the beam is injected they occur at [2k, + Re(dk3)|d = 2nn. Conse-
quently, the frequency shift, Jf, in the location of the peak due to the interaction is

1
Of ~ —EvgrRe(élQ), (4.2.23)
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The maximum frequency shift is expected to occur at maximum gain, namely at
resonance hence:

Ofmax ~ ——=Vg Im(0k3). 4.2.24)

mf

As an example, consider coupling coefficient Ky = 30m~' and group velocity
of 0.5 c; the anticipated frequency shift is 180 MHz. For a group velocity ten
times smaller the frequency shift drops to 18 MHz. Here it is important to
emphasize two aspects (1) The effect of the beam on the reflection process at
the end of the extended cavity was ignored. This is not always justified since the
capacitive effects at the ends may become significant and consequently the
impedances, which we assumed to be virtually frequency independent, may
vary significantly causing an additional frequency shift. (2) When we mention
here “frequency shift” what is meant is that the frequency where maximum gain
occurs, shifts from one frequency to another but the system operates all along in
a linear regime, namely the frequency at the output is identical with that at
the input and only the frequency where maximum transmission occurs, varies
because of the interaction.

Next we examine the effect of the imaginary part of the wave-number on the
transmission coefficient. The transmission coefficient near the peak and close to
resonance is given by

42,2,V Kod /2
(21 +22)° — (2, — Z)) eV3Kod/2]

7| ~ (4.2.25)

where K( has been defined in (4.1.6). In the relatively close vicinity of a peak,
we may approximate the transmission coefficient for the case when no beam is
present by:

fi

—r (42.26)
(f —fo) + 1?7

| Tpa|

where f; is the frequency where the peak is located and, 21/3f; is the bandwidth of
the peak which according to the definition in (4.2.21) equals (2v/3f; =)vg/2d.
When the beam is present, the wave is amplified by a gain factor, g(f) which at
resonance reads g(fo) ~ 1 V3Kod/2 By analogy with the expression in (4.2.25) we
can write the transmlss1on coefficient for an active system as

taet| ~ fig(f) _
VU o = a2 () + 17

(4.2.27)
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The bandwidth is the difference between the two frequencies at which |7,y|
reaches 1/2 of its peak value. Ignoring the frequency shift, these two frequencies are
a solution of

(f —fo)> = 42¢72(fo) — 28 2(f). (4.2.28)

Next we assume that the interaction bandwidth [see (4.1.17)] is much broader
than f;, therefore the right-hand side in the last expression can be approximated
with 3f2¢72(fo). This result indicates that the bandwidth of an active (and
high gain) system (Af),. is related to the gain and passive device bandwidth,

act

(Af)pas bY
(Af )aer = %, (4.2.29)
or
(Af ) = (AF)pu 10755 (42.30)

This result indicates that the product bandwidth x gain is constant. For example, a
gain of 25 dB in a system whose passive bandwidth is 200 MHz causes the
bandwidth of the active device to be 11 MHz.

4.2.3 Interaction in an Extended Cavity

If we examine the condition for the occurrence of the peaks in the last section and
the resonance condition for cavity creation (see Sect. 4.2.1) — we find that the two
are identical. In fact, we have indicated in Sect. 2.5.1 that the denominator of the
transmission coefficient determines the resonance frequencies of the system.
Whether these frequencies are real or imaginary depends on whether electromag-
netic energy can leave the system either as a propagating wave (Davis et al. 1994)
or via a dissipative (Ohm loss). An additional insight on the nature of the process
can be achieved if the transmission coefficient of a system with two discontinuities
(three characteristic impedances — see Fig. 2.9 in Sect. 2.5.1) is represented in terms
of the local reflection and transmission coefficients. For this purpose let us define
the transmission coefficient from the first region (— oo <z <0) to the second
(0<z<d) by, as

2z
i+ 7

712 (423 1)
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where Z| and Z, are the characteristic impedances in each one of the regions. The
reflection from the first region when a wave impinges from the second region is
denoted by p,; and is given by

VA

=21 (4.2.32)
71+ 7,

P21

and correspondingly the wave reflected from the third section when the wave
impinges from the second is

775

_L—s 4233
25+ 7, ¢ )

P23

in a similar way, the wave which is transmitted into the third section in this case is

27,

=\ 4.2.34
3+ 7, ¢ )

123

Using this notation in addition to the phase and amplitude advance as described
in the previous sub-section (e 7%+ and e/¥-), we find for the transmission coefficient
of the active system (4.2.19) the following expression

e_./"]/Jr

23. (4.2.35)

Tact = T12 ————— 1
R Pa1ppse Ve -

Using this notation, we can now emphasize several aspects of the finite length
effect:

Comment 4.4. The transmission coefficient of the active system depends on the
ability to couple the power into the system (7},), the gain and the reflection process
in the interaction region (the middle term) and on the ability to extract the power out
of the system (7,3)

Comment 4.5. The middle term denominator includes all the information about
the effect of reflections on the interaction process and in addition, it provides
us with a criterion regarding transition to oscillation. As in the case of the empty
cavity the eigen-frequencies of the system are determined by the zeros of the
denominator i.e.,

1 — py pyze e - =0. (4.2.36)
From this expression we conclude that the necessary condition for oscillation is

g()lpxsllpal > 1. (4.2.37)

The physical interpretation of this expression is the following: consider a wave
of an amplitude 1 at the input end of the interaction region. As it traverses the
system the wave is amplified according to the gain in the system, g(f). At the output



4.2 Finite Length Effects 191

end it is partially reflected (|p,3]) and it undergoes an additional reflection (|p,,|) at
the input. If the amplitude after this last reflection is larger than unity the amplitude
will continue to grow in time after each round trip thus the system will oscillate.

In order to envision the effect let us consider two systems (1) |p,3| = 05| = 0.1,
for which case the maximum gain before oscillation occurs is 20|log,
(0.1 x 0.1)] =40dB. (2) The other case of interest represents a situation in
which one end (typically the input) is effectively short circuited thus |p,,| = 1.0
and the second has a reasonably good transition such that the effective reflection
coefficient is |p,3] = 0.05; the maximum gain before oscillation in this case is
20| log,( (0.05 x 1.0)| = 26 dB.

Comment 4.6. If the system does not operate in a regime which is close to
oscillation, it is possible to write the transmission coefficient of the active system,
in the following form:

O e e o\
Toer = Tioe ¥+ [Z (021P2337ﬂ/’*37ﬂ/”) ]TB

n=0

- = = o 2o\ 2
=1pe M+ {1 + pyipaze e (P21P23eﬁ¢+eﬁ¢’> - } T3 (4.2.38)

In the framework of this notation, it is tacitly assumed that the electron pulse is
infinitely long and there are an infinite number of reflections (as the number of
terms in the sum). This is obviously not the case in practice and only a limited
number of terms has to be considered according to the pulse length and the time it
takes the signal to complete one round trip.

Comment 4.7. If there are fluctuations in the current or voltage the expression in
(4.2.38) is more adequate for generalization purposes than (4.2.25). Let us denote
the total round trip amplitude and phase shift by R = p,; py3e 7¥+e“¥~; using this
notation, the transmission coefficient of the active system reads

Toer = Tppe [1 YR+R+R - ] . (4.2.39)

If the current varies along the pulse, then R(/) is a function of the current and the
natural generalization will be

Tact = leeijl]/*[l +R(11) +R(11)R(12) +R(11)R(12)R(13) .- ~]‘523, (4.2.40)

where [, indicates the average current in the course of the vth reflection. We shall
return to this subject when we discuss the generalized formulation of an amplifier
and an oscillator.

4.2.4 Backward-Wave Oscillator

In the type of structures on which we have based our model so far the wave and the
energy, it carries flow both in the same direction. Therefore, if the input of an
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amplifier is at z = 0 and the beam flows in the positive direction, then power is
converted from the beam to the wave. Consequently, comparing the power at a
location d far enough from the input we will find that P(z = d)>P(z = 0). Further-
more, the wave at z = 0 does not “know” that it is going to be amplified since there
is no reflected wave or in other words, there is no feedback to provide this
information. On the other hand, in an oscillator, the mirrors at both ends together
with the structure itself provide a feedback that causes the amplitude at the input to
follow the amplitude at the output such that approximately the amplitude of the
wave is constant in space.

Imagine now a situation in which the wave propagates in the positive direction,
but the energy flows in the opposite direction — this is exactly the case in periodic
structures that will be discussed in the next chapter. The information regarding the
interaction is carried by the wave opposite to the beam and in fact the input and the
output trade places: the input in such a case is at z = d and the outputis at z = 0. In
order to quantify our statements we start from the expression for the interaction
wave-number as presented in (4.1.19) and since it was assumed that the energy
velocity and the phase velocity are parallel we can now consider a situation in
which f,, is negative and so is K;. As a result we get, instead of (4.1.6),

Sk(0k — Ak)? = K, (4.2.41)

where the only difference is that the right-hand side is positive (as in the oscillator).
The solution at resonance is different and it reads

1 1
ok = Ko, 0k, = —Kp (E —j?), oks = —K (5 +j?) 4.2.42)

As in the traveling-wave amplifier the wave propagates in the forward direction,
therefore similar to (4.1.21), we can write

E.(r,z,0) = Jo (pllg)e—jkgo)(z-d)

(4.2.43)
X |:Ele7j(3k1(27d> +Ezefj(3k2(27d) +E3e7j5k3(27d) .

Since at the input (z = d) the beam is assumed to be uniform (not bunched) and the
initial amplitude is £y, the boundary conditions imply

E| + E, + Ez = E,

El E2 E3
+ + ,
w/vo — 0 _ Sk w/vo — —5k2 /vy — ) Sk
E
E, (k! +5k) _ 2( +5k2) N 3( +5/<) o,
(fvo — kK" = ok) (@fvo— k" k) (w/vo— K" — k)’

(4.2.44)
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as in the traveling-wave tube case these three equations determine the amplitudes
E1, E; and E5. At the output, the third solution is dominant; thus the gain is given by

= EOl 1 kap (4.2.45)

[E(d)] 3

Although the right-hand side is identical to the traveling-wave amplifier result,
the fact that in this case the feedback is inherent in the interaction process and is not
dependent on load impedance, makes the backward device substantially less sensi-
tive to the load. Furthermore, Carmel et al. (1989) has shown experimentally that
the presence of a stationary background plasma (gas) can improve substantially the
efficiency of the system. In fact, several years before that, Carmel and Nation
(1973) had shown that high power microwave radiation can be generated by a
backward-wave oscillator driven by a relativistic, high current, electron beam.

4.3 Macro-particle Approach

The hydrodynamic approximation is adequate for the description of the interaction
in the linear regime when we wish to consider the variation in the average dynamic
variables — density and velocity fields. As we approach saturation, the spread in the
velocity and density field becomes significant and the validity of the hydrodynamic
approximation becomes questionable. In order to solve the problem we have to
adopt a more fundamental approach, which is based on the solution of the single-
particle equation of motion.

There are at least three ways to develop the simplified set of equations, which
describes the interaction between electrons and an electromagnetic wave. All three
have the one particle equation of motion in common and assume that the basic form
of the solution of the electromagnetic field is preserved. The three methods differ in
the way the equation that describes the amplitude and the phase of the electromag-
netic field is developed. One possibility is to start from the non-homogeneous wave
equation for the magnetic vector potential, the second method is to start from the
wave equation for E, and in the third method, the starting point is Poynting’s
theorem. Throughout this text we use either the first (Chap. 6) or the third. It is
the latter that will be used in this section.

4.3.1 Simplified Set of Equations

The starting point is Poynting’s theorem:

0
V-S—l—EW——J-E. 4.3.1)
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Assuming that the walls of the system are made of an ideal metal, then all the
power flux flows in the z direction thus we can integrate over the cross-section (tR?)
of the system:

8 R 8 R R
—ZnJ drrS.(r,z,1) —|——2nJ drrW(r,z,t) = —27‘CJ drJ,(ryz,0)E.(r,z,1).
82 0 8t 0 0

(4.3.2)

We assume that a very strong magnetic field confines the electron motion to the
z direction therefore, the only non-zero component of the current density is longi-
tudinal. Furthermore, the system is assumed to operate in the linear regime and it
oscillates at a single frequency w. For the present purposes we average out over one
period of the wave T = 27/w and if we assume that there is no reflected wave and
consequently, there is no change in the electromagnetic energy stored in the system,
then (4.3.2) reads

d R 1 T R 1 T
— 27‘[J drr—J deS;(r,z,1) :—27'EJ drr—J deJ.(r,z,0)E-(r,z,t)  (4.3.3)
dz 0 T 0 0 T 0

The first term is the total average power that propagates along the system:
R 1 (T
P(z) = 27rJ drr— J dsS.(r,z,1), (4.3.4)
o Tlo

and according to the definition of the interaction impedance for a very thin pencil
beam it is given by

_nR% 1 JT
Zint T

P(2) dtE? (Ry, 2, 1). (4.3.5)

0

The factor two difference between this equation and (2.3.29) is due to the fact
that in the latter, the field has already been averaged on time. The principal
assumption of the current approach is that at a given frequency and at a given
location, the same interaction impedance, which relates the total average power to
the longitudinal electric field in vacuum, relates the same quantities when the beam
is also present. Consequently, Poynting’s theorem now reads

T Ry

dlft1 1’ 1
R> — — | dtE*(Ry,z,t :—2—Jth,R rJ driJ.(r,z, 1),
g | 6B Rzn| = <ng [z [ ez

0
(4.3.6)

where again we used the thin beam approximation namely, the transverse variations
of the electric field are negligible across the beam thickness, therefore the electric
field was extracted from the integral in the right-hand side of the equation.
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Within the framework of the single particle description, the current density of an
azimuthally symmetric flow of electrons is given by

L(r,z,1) —eE:w z — zi( ]5—5[ r(0)]; (4.3.7)

zi(t) and r;(¢) are the longitudinal and the radial location of the i"* electron at a time

t. With this definition of the current density the radial integration is straightforward
and it reads

dil ! 2 eZin 1 N
% [f L drE? (Rb,z,z)] 2 TJ dtE.(Ry, z, t)lz:l:vi(t)é[z—zi(t)] (4.3.8)

The second main assumption in this approach is that the effect of the beam on the
(single mode) distribution of the electric field is only longitudinal. In other words, if
in the beam absence, the longitudinal electric field in the beam region was given by
E.(Ry,z,t) = Eycos(wt — kz — 0p) where the amplitude (Ey) and the phase (6y) are
constant, in the presence of the beam the same component reads

E.(Ry,z,t) = E(z) cos[wt — kz — 0(z)] (4.3.9)

and both the amplitude and the phase are allowed to vary in the longitudinal
direction.

We proceed now by performing the time integration on both sides of (4.3.8). In
the left-hand side, the integration over the trigonometric functions is straightfor-
ward whereas in the right-hand side, we take advantage of the Dirac delta function,
thus

% BE2(2)] - engg E(2) (cosori(z) — kz — 0(2)]), 4.3.10)

where 7;(z) is defined as

m@m@+ﬁ@ﬁb, (4.3.11)

and it represents the time it takes the i electron to reach the point z. v;(z) is the
velocity of the i™ electron at z, N is the total number of electrons in one period (T) of
the wave and (---) = N~' SV, ---. We can now identify eN/T as the average
current during the period T namely, I = eN/T.

It is convenient at this point to adopt a complex notation namely,
E(z) = E(z)e "), which permits us to write (4.3.10) as

1d 1d
2 dz T 2dz

;
_ IZ; 1 [E(Z) <eJ'Z;(Z)>

B0 L () + 0 L E6)
nR* 2 +

E*@)<eﬂ%@>4ﬂ, (4.3.12)
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wherein y;(z) = wt;(z) — kz. The last expression can also be written as

= d _. IZinl

d - 1Z;
BG)|£E'0) - -2

<azf<-’>>] + E*(2) [E(z) 2

5 eV =0 (4.3.13)
VA

and since it has to be satisfied for any E(z), we conclude that

d - 1Z;
L2 E(y) - it
dz (2) nR?

(e71C)y = 0, (4.3.14)
which describes the dynamics of the amplitude and phase of the electromagnetic
field and its dependence on the distribution of particles.

The next step is to simplify the equation of motion of the electrons. Since the
motion is in one dimension, it is more convenient to use the single particle energy
conservation as introduced in (3.1.6). Using the explicit expression for the electric
field in (4.3.9) and following the motion of the electron in space we have

d e 171~ :
() = = 7(2)
e =5 > [E(z)eJ + c.c.} . 4.3.15)

It is more convenient to present these two equations (4.3.14) and (4.3.15) using a
normalized notation. For this purpose, we normalize z to the length (d) of the
interaction region and define { = z/d as a normalized coordinate. The normalized
(complex) amplitude of the longitudinal component of the electric field in the
region of the beam is

eE(z)d
=— 4.3.16
a©) == 55, (43.16)
and the coupling coefficient o is
elZiy d*
= —. 4.3.17
T e TR? ( )

Using this notation the variation in space of the normalized amplitude is given
by

d o
_ — —j1(0)
0= oc<e it > (43.18)

and the single particle energy conservation reads

—7:(0) = —% [a(é)e”f@ +c.c.}‘ (4.3.19)
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To complete the description of the particles’ dynamics we have to determine the
dynamics of the phase term y;. According to its definition and (4.3.11) we find

d 1 11
d—(:xi(é) = QE -K= Q<E ﬂ_ph> (4.3.20)

where K = kd, Q = wd/c and Bpn is the normalized phase velocity. The last three
equations form a closed set of equations, which describe the interaction.

Before we proceed to solutions of this set of equations for a practical system, we
show that the approximations involved do not affect the global energy conservation.
This is readily obtained by averaging the single particle energy conservation
(4.3.19) and substituting the equation for the complex normalized amplitude
(4.3.18):

d
d¢

1

{m) +5 Ia(C)Iz] =0. 4.3.21)

In addition, we show how this set of first order differential equations leads to the
same solution we found using the hydrodynamic approximation. To retrieve this
limit we take twice the derivative of the amplitude equation in (4.3.18). After the
first derivative we obtain

2
;—gza(é) = joc< <% — K> e 1) > (4.3.22)

and after the second

3 2
:—@a(é’) = jaQ<(B;)3e”'(C)d%yi> — oc< <% K> ef'%f<0>. (4.3.23)

Next we substitute the explicit expression for the single-particle energy conser-
vation from (4.3.19) and consider only the slow varying term. The result is:

‘ 2
) e (RO B

The differential equation on the left-hand side is equivalent to the third order
polynomial obtained using the hydrodynamic approximation. According to this
expression, if the variation in the momentum is small, the spatial growth rate is
given by the imaginary part of the root of the characteristic polynomial:

1/3
Im(k) = V3 F ez 1 o <L>] , (4.3.25)

2 |2 mc? nR? ¢ (ﬂiyi)S
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and this is identical with the result in (4.1.13). The right-hand side term in (4.3.24)
represents the driving term in the system. If at the input the phase and the velocity of
the particles are completely uncorrelated then its contribution is zero. As the
interaction progresses in space, the phase and the velocity of the particles become
correlated and its contribution increases.

4.3.2 Phase-Space Distribution: Linear Regime

We now consider the beam—wave interaction using this set of simplified equations
(4.3.18)—(4.3.20). The slow-wave structure consists of a dielectric loaded wave-
guide which is 20 cm long. The system is driven by a 850 kV, 450 A electron pencil
beam. In addition, a wave is launched at the input. The longitudinal component of
the electric field at the beam location is assumed to be 1 MV/m. For a practical
solution of the equations of motion, we divide the entire ensemble of electrons into
64 clusters equally populated with electrons. The internal distribution in each one of
these clusters is assumed to remain unchanged along the interaction process.
Figure 4.6 illustrates the way the gain and the efficiency

(2 =0)) - ()
GE=0) -1

n(%) = x 100, (4.3.26)

vary along the system. As in the hydrodynamic model we observe first the “build-
up” region where the gain is effectively zero, followed by a region where the gain
(in dB) increases linearly. The efficiency in this case is less than 10% which means
that the average energy has dropped by less than 10%. This is, on average, what one
can expect from a single-stage traveling-wave tube (TWT) without special inter-
vention. Both the lethargy and the linear gain section are in reasonable agreement
with the regular Pierce approach.

Next step is to exploit the present formalism to investigate more systematically
the interaction process. Figure 4.7 illustrates the way the phase-space distribution

20.0 8.0
1=450A
150+ E,=1.0MV/m | —
@ d=0.2m &
T 100+ >
£ 4.0 §
o] -2
o 50+ 8
I
Fig. 4.6 Gain and efficiency 0.0
along the interaction region.
The upper curve represents -0.5 ‘ . . 0.0

the gain and the lower one 0.0 0.2 04 0.6 0.8 1.0
shows the efficiency z/d
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Fig. 4.7 Phase-space distribution at various locations along the interaction region
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evolves along the interaction region. At the entrance z = 0.0d, the clusters are
uniformly distributed in the domain — 7 < y < 7 and |y — 2.665| < 0.005. After
crossing 20% of the interaction region, the electrons in-phase with the wave were
decelerated while those in anti-phase (y = +n) are accelerated. As the electrons
advance to z = 0.4d, the bunching process continues and the electrons’ energy
spread is now = 6% around the initial average value. At this stage the bottom point
of the distribution starts to be shifted towards y = n. This is also the point where the
collective effect becomes dominant and the gain starts to grow exponentially. The
two processes mentioned above (increase of the energy spread and distribution
shift) continue as electrons advance towards z = d. At z = 0.6d the energy spread is
already + 10% and the bottom point of the distribution has slipped 0.8 radians from
2 =0.

In the last 20% of the interaction region the electrons are strongly bunched and
the energy spread (“peak-to-peak”) is actually larger than the average kinetic
energy of the electrons at the input (y,,,« = 3.5, Vmin = 1.75). This is a remarkable
result bearing in mind that the efficiency (and thus the change in the average
energy) is less than 10%.

The slow and fast electrons have a completely different (relative) weight on the
interaction process. According to (4.3.25) the spatial growth rate is proportional to

| 1/3
[<m>] , 327)

therefore the low momentum electrons have a much larger effect on the interaction
process than the fast ones.

In order to have a quantitative measure of the energy spread we can determine its
variation as a function of the other parameters. The first step is to define the energy
spread as

Ay =/ (2 — () (4.3.28)

Next, if we multiply the energy conservation equation (4.3.21) by 7; and average
over the entire ensemble we obtain

d

: (5 = — [a(g)@ieﬂ"(% i c.C.} . (4.3.29)

In a similar way, the variation in space of the square of the average energy is
given by

0 = = [aQ ) +ec. (43.30)
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If we now subtract (4.3.30) from (4.3.29) and use the definition of the energy spread
we find

AP = —a®)[1e7O) — (O] — a (0) [ (e HO) — (r)fe ).
(4.3.31)

d¢

This expression indicates that the energy spread is controlled by two principal
quantities (1) the amplitude of the radiation field which is obvious since the latter
determines the modulation. But this is not sufficient since (2) the phase and energy
of all particles have to be correlated i.e.,

(7 e’/' ) — | NCL © | >0, (4.3.32)

in order to cause any variation of the energy spread. Otherwise, even for a large
amplitude of the radiation field, the change in the energy spread is negligible.

4.3.3 Phase-Space Distribution: Saturation

Saturation process is the next topic to consider. For this purpose we extend the
total length by 50% such that d = 30cm. Saturation occurs when the electrons
start to “absorb” energy from the wave. This will happen when the electrons,
which were initially decelerated, reach the point of © phase with the wave and they
start to be accelerated. To examine the conditions for saturation we first resort to
the hydrodynamic model. Consider the longitudinal component of the electric
field which is a self consistent solution of the interaction process near resonance:

E(z) ~ Egcos|wt — z(w/vo — Ko/2)]eY¥7/2_ The amplitude of the oscillation can
be estimated by substituting in the equation of motion: mvo(voKo) 35z = eE, eV3/2,
Accordingly the saturation length is defined by %Koéz(z = dgy) = 7 hence

dyat 1

= 4.3.33
d  \/3Kyd/2 ! ( )

ao

anod(”/ﬁ)j .

For the present parameters d,,/d = 0.7.

We examined the saturation within the framework of the macro-particle
approach and the result is illustrated in Figs. 4.8 and 4.9. Figure 4.8 illustrates the
phase-space distribution only in the last 33% of the interaction region since in
the first 67% it is identical with what we presented in Fig. 4.7. We observe that the
bottom of the distribution (z = 0.7d) is almost at the 7 point. Beyond this point slow
electrons are accelerated. This is accompanied by a decrease in the gain and
efficiency as illustrated in Fig. 4.9.
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Fig. 4.8 Phase-space distribution at the end of the interaction region
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4.3.4 Interaction in a Slowly Tapered Structure

In order to increase the efficiency (and consequently the gain) we have to compen-
sate for the energy lost by the electrons. The velocity drop associated with this
process and the collective effect itself, cause the phase shift we presented above. In
order to adjust the relative phase between the wave and the slow electrons we can
taper the slow-wave structure. In terms of the dielectric loaded waveguide this can
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be done by changing the dielectric coefficient along the z axis or changing the
radius of the waveguide and/or dielectric slab. Let us now examine the case
whereby the dielectric coefficient, &(z), varies in space. We assume that this
variation is weak such that

(4.3.34)

&(z)”

Subject to this condition, the equations that describe the dynamics of the
amplitude and the particles’ dynamics remain unchanged and only the phase
equation becomes

d Q

S 1i(0) = o~ K(0),
T TR
since the normalized wave-number is K2({) = & (¢)Q* — p?(d/R)*. To simplify the
analysis even further we assume a linear variation in space of the dielectric
coefficient ¢ namely

(4.3.35)

&(0) = &(0) + C1 L. (4.3.36)

We may now ask: what is the optimal value of the slope C;, given the initial
electromagnetic field and the beam characteristics, in order to obtain maximum
efficiency and gain. We expect such an optimal value to occur from inspection of
Fig. 4.9: when the phase velocity is constant, at z = 0.8d the phase shift is such that
they are in anti-phase. Gradually slowing down the phase velocity, by increasing &,
we may push the saturation beyond z = d. Increasing & too much could cause the
wave to be too slow, leading to a weak beam—wave coupling, and consequently, the
system does not reach saturation, thus remaining in the linear regime without
extracting maximum energy from the beam.

For the parameters mentioned above, we found that the peak occurs at C; =
0.65 and the efficiency was increased from the 6% in the uniform case to 31%
as illustrated in Fig. 4.10. This increase in efficiency is accompanied by 10 dB
increase in gain. Figure 4.11 illustrates the gain and the efficiency for a slope

35.0
30.0 &(z=0)=2.36 o
°
250} o°8%,
°® °® he o
20. 0..—. o0 ® o L
15.0 - o] [ ]
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Fig. 4.10 Gain and 504000 o0 Efficiency (%) o
efficiency as function of the - o
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Fig. 4.11 Variation of gain 30.0 35.0
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which is somewhat below the optimal value C; =0.6. Comparing to the
uniform case (Fig. 4.10) the saturation point was shifted from z = 0.8d to
z=0.9d.

Two comments are in place at this stage:

Comment 4.8. Linear taper is not necessarily the optimal approach and this will be
discussed in some detail subsequently in the context of the resonant-particle
approximation.

Comment 4.9. Any taper is optimized to a certain set of initial conditions.
Deviations from these conditions may lead to performance inferior to that of a
uniform structure.

4.3.5 Noise

One of the disadvantages of the hydrodynamic approximation is that the beam is
conceived as a fluid and as such, the particle character of the electron is lost. As a
result, for evaluation of noise effects one has to postulate velocity or density
fluctuations — see discussion by Haus (1959). In the present approach, the individual
character of the particles to some extent is preserved. If a single electron is launched
into a slow-wave structure which at a given frequency has an interaction impedance
Zint, then the variation in the amplitude E(z) is given by

d Lint iy, Fd (w)vi(Z)—
ZEi(z) = ;Rz}e J(O)+ [ 2 (/i) =k (4337)
We ignore now the effect of the radiation field on the particles such that in

the phase term we can take v; as constant. At the output of the structure the electric
field is

ZLint i (0) —iler/v—k . 0] d
Ei(d) = F‘2’Tde 710) g =i(@/vi=kK)d[2ginc Kv— — k) 5]; (4.3.38)
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here sinc(x) = sin(x)/x. For a uniform distribution of electrons the average electric
field at the output is zero due to the random phase of the particles relative to the
wave: (e /%) = 0. Nevertheless, each such electron emits spontaneous radiation
whose power level at the output is given by

nR?

_ MY g 2
=57 IE)L. (4.3.39)

P;

The total average power of spontaneous radiation emitted by a uniform beam is

1 el & . L[(w d
Psp = |:§Ziml ?:| WSH]C |:(V_0 — k) 5:| . (4340)

This power is linearly proportional to the number of electrons (since / = eN/T).

4.3.6 Super-Radiant Emission

If for a uniform beam the power emitted was proportional to the number of electrons
N, in the case of a pre-bunched beam, the emitted power is proportional to N? this is
also known as super-radiant emission. For demonstrating this effect in the frame-
work of the present formulation, we ignore the effect of the radiation field on the
electrons. Contrary to the previous case where the low level of emitted power
justifies completely this assumption, in this case, it is no longer justified and for an
adequate solution one has to take into account the variation in the electrons’ phase-
space distribution. Nevertheless, in order to have a zero order estimate we do ignore
the effect of the radiation on the electrons. In the framework of this approximation
the amplitude equation reads

d i

—E(z) = —J1i(0)+2(w/vi—k)]
dz (2) R? (e )

: (4.3.41)

the phase (y,;(0)) and the energy 7, are correlated and for simplicity we consider a
cold bunch (very small energy spread) which has a phase distribution
—n< — o <yxi(0) <y <m, hence

_[Zim : N —j(w/vo—k)d/2 w d
E(d) = 3 sinc(yo)e sine | { - k)31 (4.3.42)

Note that at the limit y, = © we obtain the result of a uniformly distributed beam
namely, E(d) = 0. The power emitted in this case is

2

1 - . 0} d| .
Py ~ [5 Zimlz] _— sinc? [(% — k) 5] s1nczxo. (4.3.43)
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This crude estimate of the super-radiant emission reveals its relation to the sponta-
neous radiation power as

Py oc Nsinc? Py, (4.3.44)

Emphasizing our statement at the beginning of this sub-section regarding the factor
N difference between the power emitted in the two processes.

4.3.7 Resonant Particle Model

In Sect. 4.3.2 we found that as electrons lose energy to the wave, their velocity is
decreased and therefore they slip from the resonance condition. We have also
shown, using a very simple model, that this effect can be corrected if the slow-
wave structure is tapered. Let us now examine this process in a more systematic
way. Our goal is to determine how the structure should vary in space in order to
extract maximum energy from a given distribution of electrons and a given input
field. As stated, this requirement (in general) will be very difficult to meet however,
we can solve the problem for a limited set of distributions. In particular, we can
solve for a very narrow phase-space distribution, which is approximated by a single
macro-particle and this solution gives us a crude design as for how the structure
should vary in space. With such a design, we can release somewhat the constraint
on the initial particle distribution and address distributions that are more practical.

The equations, which describe the dynamics of a system that consists of a single
macro particle and an electromagnetic wave, are given by

d%ar(o = e 40,

d%“/r(fi) = —% [ar(C)eWC) +cc., (4.3.45)
d Q

d—CXr(C) =80 K(().

The coupling coefficient o, is considered to be constant but the wave number in the
phase term is allowed to vary (the important variations are assumed to be controlled
by the phase term). We further assume that (1) the electrons are ideally bunched
such that they form a single macro-particle which (2) remain “glued” together along
the entire interaction region. (3) The initial velocity of the macro-particle is equal to
the phase velocity of the wave. The problem is to determine the necessary variation
in the wave-number of the slow-wave structure in order to keep the macro-particle
in resonance along the entire interaction region. This last condition can be mathe-
matically formulated as
d Q
O =75 KO =0 (4.3.46)
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subscript r indicates the resonant particle. Because of this condition, the model is
called the resonant particle model. From the first term in this equation, we conclude
that the phase is constant (y,) along the interaction region, therefore the integration
of the amplitude equation is straightforward

ar({) = a(0) + ale /b, (4.3.47)

Our natural next step is to substitute this expression into the single particle
equation of motion; the result is

é/Z

7.(0) = 7,(0) — La(0) cos 3, — o (4.3.48)

and is illustrated Fig. 4.12. In order to determine the wave-number of the structure,
the last result is substituted in (4.3.46) and we obtain

K@) = Q% (4.3.49)

According to the initial phase of the resonant particle with the wave the latter
will gain (y, = 7) or lose (y, = 0) energy and the system operates as an amplifier
(left frame) or an accelerator (right frame). In either one of the two cases, the
solution above satisfies the global energy conservation i.e.,

o () = 1+ (O = 7(0) — 1+ - |4 (0)2
1O =1+ 5 a@F =30 = 1+ laOP.  @350)

In an amplifier the normalized kinetic energy (y, — 1) at the input is much larger
than the electromagnetic energy per particle (|a,(0) |2 /2w). The situation is reversed
in an accelerator. However, in practice the loading effect (change in the electro-
magnetic energy) in the case of an accelerator is usually small. As an example
consider a system which operates as an amplifier at 10 GHz, its length is 2 m and the
normalized coupling coefficient is o = 2.5. The initial energy of the electrons

P Ampilifier s Accelerator
S Total S a,=0.05 Total
2 QO gL =25
= IS
W | 2,=0.05 ™ Kinetic W $,=2.55
87 ,a_:22.5 8 4r Kinetic
(\g %=2.55 ‘\E“
2
S =
&) S
2 Em S EM
0 ! | | 0 | | | |
00 02 04 06 08 10 0.0 02 04 06 08 10
zd 2/d

Fig. 4.12 Solution corresponding to the resonant particle model: amplifier left frame and accel-
erator right frame



208 4 Models of Beam—Wave Interaction in Slow-Wave Structures

corresponds to y, = 2.55 and the input radiation power corresponds to an initial
amplitude of a,(0) = 0.05. According to (4.3.47)—(4.3.48) the energy at the output
(for y, = 0) will correspond to y, = 1.25 thus the efficiency is more than 80%.

The resonant particle model, as presented above, is obviously an idealization of a
realistic system which has a finite spread on the initial phase distribution. It is used
for the design stage when it is required to calculate the parameters of the structure
i.e., the variation in space of the wave number in (4.3.49). In a realistic system, the
electrons are not “glued” together therefore they spread. We formulate next the
equations for the deviations from the ideal model: da({) = a({) — a;({) represents
the change in the amplitude of the radiation field. In a similar way Jy;({) = y;({) —
7.(0) and 0y, (0) = x;(0) — .- These deviations satisfy the following set of
equations:

i(sa(C) L [<ef/‘51i(C)> _ 1},

&

d L fein jon(c

00 = =3 { @O + 0O —a©)] +ec ) @35y
d 1 1

%0 =255~ 5]

It is instructive to examine this set of equations in a regime where these deviations
are small

9 sa(t) = —joe 4 (57,(0)),

d¢

M0 =~ 3oz + dald)el + e,

d Q

— 0y () = ———=07,(0). 4.3.52
= posor (222

It is evident from the first two equations that if the average phase distribution
(0y:(0)) vanishes or is very small, the system behaves as if driven by a single macro
particle. The third equation indicates that the phase distribution tends to spread as the
momentum of the electrons decreases, diminishing in the process the energy conver-
sion. On the other hand, if the bunch is being accelerated, the phase deviations are
much smaller and, as will be shown in Chap. 8, the bunch is actually compressed.

The next step is to examine the operation of a realistic system which has
the same parameters as in the example at the beginning ot the previous paragraph.
The simulation is based on the solution of (4.3.51) and is performed as follows: we
take 10,240 macro-particles uniformly distributed in the range |0y;(0) = ,;(0) —
7:(0)] <7,(0)/80 and |5y, (0)| < /36. Figure 4.13 illustrates the phase-space plot at
three different locations along the interaction region. First frame illustrates the
bunch at the input. After 70 cm the bunch lost about 10% of its momentum and it
still maintains its shape. After another 70 cm the bunch has lost a total of about 30%
of its initial momentum.
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Fig. 4.13 Phase-space 24
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Fig. 4.14 Gain and efficiency variation along the interaction region (left frame). Average energy
and energy spread in the right frame

Finally, we present in Fig. 4.14 the gain and the efficiency (left frame) and in the
right the average energy of the electrons as well as their energy spread. Several
characteristics are evident (1) The gain starts to grow in space immediately without
the spatial lethargy required in an amplifier driven by a uniform beam. This result is
obvious bearing in mind that the wave at the input does not have to bunch the beam
— the latter is already bunched.

The gain is about 33 dB in comparison to 34 dB predicted by the resonant
particle model and 16 dB using a uniform structure. (2) The efficiency is more than
65% compared to more than 80% predicted by the resonant particle model or a
typical 10% in a uniform structure. (3) From the energy spread we conclude that the
bunch maintains its shape for about 70% of the interaction region. Beyond this point
there is a significant increase in the energy spread.

4.4 Amplifier and Oscillator: A Unified Approach

In Sect. 4.3 we formulated the interaction in an amplifier based on the single-particle
equation of motion and ignoring variation in time i.e., reflections. The next step is to
include these effects in the analysis. The motivation for this generalization was
introduced already in Sect. 4.2.1 where we discussed the effect of reflections within



210 4 Models of Beam—Wave Interaction in Slow-Wave Structures

the framework of the hydrodynamic model and it was shown that one manifestation
of their effect is the product gain x bandwidth which was proved to be constant.
Another consequence of a wave being reflected is amplitude variations which occur
at the input, according to the time it takes the reflected wave to traverse the distance
between the output and input end. Thus, when reflections are not negligible, the
assumption of no time variations in a realistic amplifier is not justified.

The opposite situation occurs in oscillators. “Mirrors”™ at the two ends impose the
variation in space of the electromagnetic field. Thus the field amplitude is considered
constant in space and the beam—wave interaction determines the temporal growth
rate. But the beam which enters the system is presumably unbunched therefore, it will
take some space for this beam to become bunched. If so, the modulation amplitude
is expected to vary in space and consequently, the amplitude of the radiation field
will vary in space. As before, this is in contradiction to the initial assumption.

In order to emphasize even further the difference between an amplifier and an
oscillator, we recall that within the framework of the hydrodynamic model, the
beam—wave interaction was formulated in terms of a dispersion relation

Dact(k, ) = 0. 4.4.1)

In an ideal amplifier we assumed that there are no variations in time of the
amplitude thus the frequency is set for us by an external generator (o = @) and we
have to determine the variation in space represented by a set of k’s which can be
complex and they are a solution of:

Dact(k, = wp) = 0. 4.4.2)

This is one “extreme” among the regimes of beam—wave interaction. The opposite
extreme happens in an ideal oscillator. There it is assumed that there are no
variations in space of the amplitude since the wave-number k is determined by
the separation of the mirrors (d) i.e., k = nn/d where n is an integer. Consequently,
we have to determine the variation in time represented by a set of frequencies,
which can be complex and they are a solution of:

n
D (k ==, a)) —0. (4.4.3)
We now include the role of reflections on the beam—wave interaction and in this
process we generalize the formulation which will allow us to derive the operation of

an amplifier or an oscillator from one set of equations.

4.4.1 Simplified Set of Equations

As in the previous case, the starting point is Poynting’s theorem

d
V-S4 W=-JE 4.4.9)
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Assuming that the walls of the system are made of an ideal metal, all the power
flux flows in the z direction therefore we can integrate over the cross-section of the
system:

0 k 0 k
Eh [ZEJ drrS.(r, z, t)} + o |:2TEJ drrw (r,z, t)}

0 0
R
= —27‘CJ driJ,(r,z,0)E.(r, z,1). (4.4.5)
0
The first term,
R
P(z,t) = ZRJ drrS(r,z,1), (4.4.6)
0

is the total instantaneous power which flows in the system and

R
W(z,t) = ZEJ drrW(r, z,1), (4.4.7)
0

represents the total instantaneous energy per unit length stored in the system. As
before, we assume that the oscillation is longitudinal and the transverse variations
in the electric field are negligible on the scale of the beam thickness. Thus, for a thin
pencil beam of radius Ry, the right-hand term of (4.4.5) reads

Ry
—2nE.(Ry, z,1) J drrJ.(r,z,1). (4.4.8)
0

Now, since the current density is given by

(r,z,1) *erV, —z ]2—5[ (1)), (4.4.9)

the integration over the transverse coordinate becomes trivial by virtue of the Dirac
delta function. As a result, (4.4.8) reads
N

Vl

Rb,Z,t Z

i=1

o[z — z(1)], (4.4.10)

where it was tacitly assumed that there is no transverse motion. According to our
assumptions and definitions so far, Poynting’s theorem is given by

d d N
aZP(z ) +5 W(z,1) = eE.(Ry, z,1) ;v, [z — zi(1)]. 4.4.11)
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When reflections are non-negligible, the longitudinal electric field, which acts on
the electrons has two components: one which is propagating parallel to the electrons
and another which is propagating anti-parallel:

E.(Ry,z,t) = E,(z,1) cos[wt — kz — Y (z,1)] + E_(z,1) cos[wt + kz — Y _(z,1)].
(4.4.12)
It will be further assumed that the amplitudes and the phases (E_,E_, ¥, and {_)

vary slowly comparing to the trigonometric function i.e.:

0
—E
‘a -

<L k], ’ vy

3]
’EEi < w|E4], L k|E+],

(4.4.13)
<L ol

0
‘E Vo

Among the two waves, only the one propagating parallel has an average net effect,
therefore the right-hand side of (4.4.11) simplifies to

eE_ (z,t)cos[wt — kz — i, (z,1)] ZN: vi(?)

i=1

8z — zi(1)]. (4.4.14)

Without loss of generality, we can use the trigonometric properties of the cos
function to write

= eNE.(z,1) cos [y, (2 )] {vi(r) cosl, ()]0 — z(0)])
+eNE (z,1) sin [y, (z,1)] (vi(t) sin[y;(£)]6[z — zi(1)]), (44.15)

where
1:(t) = ot — kz;(1), (4.4.16)

is the phase of the ith particle relative to the wave at the time ¢ and
() =% Zfi] ---. The notation in (4.4.15) indicates that if the particles move
with a velocity which is close to the phase velocity of the wave, all quantities are
slow varying functions of z and . This is in contrast to the left-hand side of the
expression for Poynting’s theorem, which consists of both slow and fast terms.
Naturally, the next step is to eliminate the contribution of the fast oscillation.

The fast variations of the electromagnetic field are determined by the angular
frequency @ = 2n/T. We can use the definition of the interaction impedance to
average out these fast variations in the total power i.e.,

B 1 t+T/2 1 +T/2 R2
— J J 2Ry, 2, 1); (4.4.17)

P(z,t) = d'P(z,¢) = = dr
t—T/2 t—T/2 Zint
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the result is

_ nR?
P(z,1) = 7

[E2 (z,1) — E* (2,1)]. (4.4.18)

The cross term proportional to (E+E_) was neglected since it varies rapidly in
space. In addition, we took into account the fact that the power carried by the
backward wave is in the opposite direction to that of the forward propagating wave.
In a similar way the average energy stored per unit length is given by

W(z,t) = %nstoeim [E2 (z,1) + E2 (z,1)). (4.4.19)

Consequently, we can write for the slow varying components of Poynting’s
theorem

0 1 0
e [E2 (z,t) — E* (z,0)] + " [E2 (z,1) + E* (z,1)]
= 2 (21 cos [ (2,1)) ()32 — (0] cos ()]}
2eNZin

o {EL G0 sinfy, ()] (w00l — ()] sinlz ()} (4420

Here we used (2.3.33) which relates the interaction impedance with the interaction
dielectric coefficient and the energy velocity: Ziné&int = 7o/ Pen-

Before we proceed and simplify the amplitude equation, it will be more conve-
nient to use a normalized notation. For this purpose, we examine the single-particle
energy conservation ignoring the effect of the backward wave on the motion of the
electrons,

%y,. = C VO [ = 50, eos{or — k() — e = (0,1} 4421)

this justifies the normalization of the electric field according to

€Ei(2, f)d

e (4.4.22)
mc

ar(( 1) =

of a new spatial variable { = z/d where d is the total length of the interaction
region, of a new time variable T = #¢/d and of the coupling coefficient o as

elZn d?
g = a4

= 2R (4.4.23)
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where [ is the average current in one period of the wave. Subject to this normalized
notation (4.4.20)—(4.4.21) read

)
¢ llas @O —la- (0P| +ﬁ—m O e @R + la (@ o)
— afa (¢, f)<ﬁ,.(f)5[z: — 5()]el )>,» +eel, (4.4.24)
and
4, - —/3,(7:)l [a [ = Zi(1), 7] +c.c (4.4.25)
ac Vi = i B 416 = Zj s .C.|, A
as well as
%Xi(r) =Q—Kp;(7). (4.4.26)

The amplitudes of the forward wave [a ({, )] and backward wave [a_ ({, )] are
correlated at both ends of the structure by the reflection process. In the interaction
region itself the two amplitudes are not coupled since we indicated that the
electrons are interacting only with the forward wave. Consequently, the energy
conservation associated with this wave reads

P L %] @ (Cof =0, .427)

that in turn implies that the equation for the amplitude of the forward wave is
given by

a.((,7) + a (¢,7) = ale B ()¢ — Z:(1)]). (4.4.28)

0 o
C ﬁen
In order to determine the effect of reflections we denote by a the amplitude of
the forward wave present in the system in the absence of the beam. The reflection
process is represented by a scalar reflection coefficient at the input (p,,) and output
(Pour) €nd. At any instant 7, the change in the forward wave amplitude is reflected
from the output end towards the input according to

[a+ (( = 17 T) - ao]poutein' (4429)

As already indicated, the backward wave is not directly affected by the beam and
therefore it propagates towards the input as if no electrons were present. The time it
takes this change in the energy (variation in the amplitude) to reach the input end is
determined by the energy velocity of the cold structure. In our normalized notation
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this delay is 1/f.,. Consequently, after this delay, the change mentioned above
undergoes an additional reflection — this time from the input end. The contribution
of the reflection to the amplitude of the forward wave at the input end ({ = 0) is
given by

a (({=0,7)—ap=pla ((=1,t—1/,,) — aol, (4.4.30)
where p = p;,poume /K is the feedback term of the passive (no beam) system. Let
us now summarize the generalized set of equations, which describe the dynamics of
the field and the electrons when reflections are included:

2o ) = ale OB - 50,
©i0) = B3 [anlt = 5, 90 e,
10 =0~ Kp(2)
a.((=0,7) —ap=pla((=1,7 — 1/B,,) — ao]. (4.4.31)

From this generalized formulation, we can obtain the equations which were devel-
oped in the previous sections for an ideal amplifier.

4.4.2 Ideal Amplifier

In an ideal amplifier, we expect no reflections and thus no time variations, of the
amplitude (9/90t ~ 0). The amplitude equation is averaged on time and since the
integration over the Dirac delta function is straightforward thus

icq(() = a{e %0y, (4.4.32)
d¢

Since no time variations are assumed, then according to the definition of d/dt(=
/0t + B,0/0( ~ B,0/0( = p,d/d{) it is sufficient to describe only the space
variation and in this framework f;({) represents the velocity of the ith electron at
{. Consequently, the equation of motion reads

d 1 .
a __1 i© 4 eel, 44.
= 3 @O tee] (4.433)
In a similar way,
d Q
— 1) =- —K, (4.4.34)
dC/C( ) 5,
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and finally the reflections equation is identically satisfied since there are no
reflections thus p = 0 and the amplitude at the input is always the same and it
equals ag.

4.4.3 Ideal Oscillator

For an ideal oscillator we assume that no variations in space occur and therefore the
amplitude of the electric field experienced by the electrons does not depend on
the location of any individual electron. As a result, we replace a.[Z(7),7], in
the single particle energy conservation (4.4.31), with its value at the input —
a,(0,7) — hence

d

1 :
4= —Bi(1) 5 |a+ (0,7)e™ +c.c.|. (4.4.35)
T

2

The reflection coefficients from both ends are unity and the boundary conditions
imply K = 7mn. As a result, p = 1 and the reflections equation (4.4.31) reads

a:(0,7) =ay(l,7— 1/f.,)- (4.4.36)

In order to determine the dynamics of the amplitude in an oscillator we average the
amplitude equation [in (4.4.31)] over the interaction region:

1 d

5 54+ (0,7) = (B (t)e 1)y, (4.4.37)

and as in the case of an ideal amplifier, we calculate the normalized growth rate. For
this purpose we take twice the derivative of (4.4.37), neglect terms which oscillate
rapidly and obtain the following expression for @ (0, 1)

dPay 1 ,/1\day 1 ,/1
—o N 2 (Q— KB,
i 2%\ @ 2%\ @ KB e

1' i 3 i i i iy "
+§/a’K<f—3>a+—Za’a+|:<f_3ejll>a++<f_§e JX/>a+:|

- _a’<[;i(g _ Kﬁi)ze*flf>, (4.4.38)

where of = af5,,. A simple evaluation of the growth rate in the linear regime of
operation is possible by ignoring the fifth term (since it is non-linear); near
resonance, where we expect the growth rate to be maximum, the third term is
much smaller than the fourth. Finally, for relativistic electrons and long interaction
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length (such that K > 1) the second term is negligible relative to the fourth,
therefore we have

3 _ )
L;l 3 +l <%’>]a+ = —“/<ﬂi(Q - Kﬁi)zeﬁl'>- (4.4.39)

Assuming that < Bivr %>does not vary significantly in time, the normalized growth

rate is
® = f[ 1B enK <f ’>] . (4.4.40)

1

This expression is identical to that calculated in Sect. 4.2.1 developed using the
hydrodynamic approximation.

4.4.4 Global Energy Conservation

Global energy conservation is obtained by multiplying the equation of motion [in
(4.4.31)] by 0[¢ — z;(7)] and averaging over the entire ensemble of particles. In the
resulting expression,

d 1 .
()] —y ) = = — 7 (DD s —
<5[c (7)) drv1> > [asle =70, ABe 0l — 2(0)]) + e,
(4.4.41)
we substitute the equation for the amplitude (4.4.31) and get

(31 -5 50(0) = = 5 | plan 0P + 5 sG] @

en

In order to bring this last equation to a more familiar form we note that the left-hand
side term, after differentiation by parts, reads

d d
3 0 =56 = (gl — a0 @4.43)
and the last term is zero by virtue of the definition of d/dt namely

d B 0 B 0 _
55[5 —zi(1)] = 15[5 - zi(7)] + ﬁia—gﬂé — zi(7)]

ot
9 d (4.4.44)
ot
0

T5[C —Zi(1)] —5—5[C —Zi(7)]
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Using the same definition, we can write for (4.4.43)

o 01 = 26} + 5 Bdle — (0, (44.45)

which finally allows us to present (4.4.42) in the familiar form of a conservation law
1.e.,

5 [0l =30 + a0
+ o [l = a0 + oLl @R 0. a9

As in the hydrodynamic approximation, we can identify the average energy of
an electron and its energy flux ((y;0[( — z]), (B;7,0[C — Z;]) correspondingly) as
well as the normalized electromagnetic power per particle |a.|*/2« and the
normalized electromagnetic energy per particle |a. |*/20f,,.

4.4.5 Reflections in an Amplifier

There are two processes, which may cause significant time variations in an ampli-
fier: saturation and reflections. Saturation occurs when the initial amplitude of the
radiation field is large; we shall not consider here variation in time caused by
saturation without reflections involved. An amplifier is designed to operate below
the saturation level. However, if in the design process reflections are disregarded,
then until the first reflection reaches the input the system will probably operate as
designed. But as the first reflection adds to the initial amplitude it may bring the
system to saturation.

In this sub-section, we investigate the variation in time caused by reflections in
an amplifier. The process is as follows: before the electron beam is injected into the
structure, the amplitude of the forward propagating wave is uniform in space and
constant in time. Let us denote it by ag. Ignoring effects associated with the pulse
front, we may expect this amplitude to be amplified according to the equations
determined previously for an ideal amplifier. The change in this amplitude is
propagating with the energy velocity ve, = ¢f,, so it will take 7, = d/Ve, to the
amplified field to approach the input end. We denote by g, the first one-pass gain,
which is the ratio of the amplitude at the output of the interaction region to the input
point. The contribution of reflections at the input is denoted by b, — where v is the
index that numerates the bouncing process therefore, it can be considered as a
discrete (normalized) time variable. During the first period, the reflections have no
contribution and clearly, by = 0. The amplitude at { =1 is g(ao + bo)e 7.
Without the beam present the amplitude at this point is age #*¢. Therefore, only
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the difference is reflected backwards. After an additional reflection from the input
end, we may write the contribution of the first reflection to the amplitude at the
input as by = p[g1(ao + bo) — ao|. Before this reflection arrives (#<2tg,) the ampli-
tude at the input is constant and its value is ay. Until the next reflection arrives the
amplitude at the input has two contributions which are constant in time, one from
the generator and the other from the reflection, i.e., @y + b;.

After the v'th reflection the amplitude at the input is ag + b, and at the output end
gvt1(ao + b‘,)e’-fkd . As a result, the contribution of the reflections to the input
amplitude after v 4 1 steps is

by = ﬁ[gv_H (Clo + b‘) — Clo]. 4.4.47)

This expression is a discrete formulation of the reflections equation introduced
in (4.4.31); the process is summarized in Fig. 4.15. Note that at the limit of a very
long pulse and a linear gain such that g, =g for any v, we have for
by, = app(g — 1)/(1 — pg). It implies that the amplitude at the input reads

I-p
I-p

ao + by = ag , (4.4.48)

3]

exactly as predicted by a linear (steady state) theory.

Let us now consider an example: an amplifier which is 20 cm long, operates at
8.8 GHz, driven by a 800 kV, 1 kA beam. In the absence of reflections the gain of
the system is 32 dB for 80 kW at the input. Without loss of generality we chose both
the reflection coefficients to be equal p;, = p,, = p- The electrons’ pulse is 100 ns
long. In Fig. 4.16 we can see how the one-pass gain (squares) and the total gain

b

g
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a,+b, )e 7
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|

v [9, (ap+by )'aa]e e
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Fig. 4.15 Schematics of the T
beam—wave interaction in the
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Fig. 4.16 Evolution of the one-pass gain and total gain in the interaction region

(circles) are varying in time (v indicating the index of the reflection i.e., v =1 is
reflection number one etc.). The total gain is the ratio between the accumulated
amplitude, of the forward wave, at the output and the initial amplitude (before the
beam was injected) at the input of the interaction region. For a small reflection
coefficient, p = 0.1, we observe that both gains are relatively stable. The fact that
the total gain is smaller than the one-pass gain is not of particular significance at this
point since this depends on the phase accumulated by the wave in its round trip.
However, as the reflections are increased, the total amplitude at the input increases,
saturation is reached and therefore, the one-pass gain is systematically smaller than
the total gain. There exists an intermediary point, p = 0.5, where the system acts
very unstable whereas at another, p = 0.7, the system appears to be very stable in
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spite of the fact that the reflection is higher. This is a direct result of the phase
dependence of the reflected amplitude.

Ultimately, at high reflection (p = 0.9) the system reveals an immediate increase
of the amplitude in time associated with practically zero one-pass gain, indicating
that the system is operating as an oscillator. Note that regardless the actual value of
the reflection coefficient, before the first reflection arrives, the one-pass gain and the
total gain are equal.

In order to show the general influence of the reflection coefficient on the total
gain and the one-pass gain we have averaged out these two quantities over the entire
number of reflections for different values of the reflection coefficient. Figure 4.17
illustrates this result. We observe here that the average one-pass gain is monotoni-
cally decreasing when increasing the reflection coefficient. The average total gain is
stable for small p corresponding to a linear regime of operation; it slightly decreases
for intermediary reflections — corresponding to saturation and it increases again
when the reflection is so high that the system practically operates as an oscillator.
Note that in this case the one-pass gain is practically zero.

An additional insight of the physical process can be achieved by examining the
spectrum of the signal as illustrated in Figs. 4.18 and 4.19. The power in each
frequency component of the signal is normalized to the power in the central frequency
(8.8 GHz). When the reflection is low (p < 0.15) the power in all the other frequencies
is 30 dB below the level of the main signal. For p = 0.2 the eigen-frequencies of
the “oscillator” are less than 15 dB below the central frequency. The power in the
sidebands is increasing monotonically with the reflection coefficient p, and at p = 0.4
they dominate. It warrant to reiterate that the interaction is in the linear regime
nevertheless, reflections cause temporal amplitude variations that manifest as spec-
trum broadening. According to the reflection process and the phase accumulation
there are longitudinal modes that are “selected” and other are suppressed.

4.4.6 Spatial Variations in an Oscillator

Part of the energy in an oscillator is extracted since intentionally the mirror(s)
have a reflection coefficient smaller than unity. As a result, the amount of electro-
magnetic energy available for interaction with the electrons decreases. Since this
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power is extracted at the ends, it is revealed as an effective variation of the field
amplitude. In order to illustrate the effect of the spatial variation on the operation of
an oscillator we start by integrating the equation, which describes the dynamics of
the amplitude (4.4.24) over the entire length of the oscillator:

%|a+(1vf)‘2+Ben[|a+(17‘[)|2 — a1 (0,7)’] = afey(Bi(x)e ). (4.4.49)

Next we substitute the reflections equation from (4.4.31). The result is

i\a+(17f)|2 + Benllas (1, 1)1 = lao(1 = p) + pay (1,7 — 1/Be) ]
= O‘ﬁen<ﬁ( )e it )>

(4.4.50)

Expanding in Taylor series with respect to 1/f,, (this normalized characteristic
time is assumed to be much shorter than the pulse duration) and assuming that ay = 0
we finally get

1—1p
ﬁen “
1+p)

aﬁen
1+ |pf

ap(1,7) = > (Bi(2)e 1), 4.4.51)

This expression replaces (4.4.37) in the description of a non-ideal oscillator.
Note that the second term on the left-hand side of (4.4.51) represents the “radiation”
loss due to the finite transmission from both ends of the oscillator. This becomes
even more evident from the expression for general energy conservation

1
(v) + (1 +1pI*)as (1, 7)) Z—&(l—\ﬁlz)lw(l,f)lz (4.4.52)

1
dt 20fen
as revealed by the right-hand side term.

The only source of energy in the oscillator is the beam and when the mirrors are
ideal, all the kinetic energy converted in radiation power is confined to the volume
of the oscillator. If part of this energy is allowed to flow out, then self-sustained
oscillation is possible only if the current injected is above a threshold value that
depends on the reflection coefficients. In order to determine the threshold current
we first have to realize that the radiation loss is associated with an exponential
decay with a coefficient [see (4.4.51)] fen(1 — |5[%)/(1 + |p|*). For self-sustained
oscillation this decay has to be compensated by the exponential increase due to the
interaction — as determined in (4.4.40), i.e.,

g[ B K <f>] , (4.4.53)

i

1—|p)?

1+]

=

<

ﬂeﬂ
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Therefore, the condition for self-sustained oscillation can be formulated as

3
s R? 1—|p|®

& |1+ |pf’

16 mc?

— 202

Note that in case of “radiation loss” the threshold current is quadratic in the energy
velocity, therefore the lower f3,, the lower the current required for the system to
oscillate.

Energy extracted from both ends is one mechanism responsible for spatial
variation but it is not the only one. Another mechanism is associated with the fact
that electrons entering the oscillator are un-bunched and their build-up into bunches
is not “immediate” in space but it takes some portion of the interaction length. After
this transient region, there will be no variations in space, provided that the system
does not reach saturation — which will be not considered here. In order to illustrate
this effect, we examine the same system as in the case of the amplifier; in this case
however the input power Pj, is zero, the pulse length is 50 ns instead of 100 ns in the
amplifier and the “mirrors” at both ends have a reflection coefficient p = 0.9. The
entire pulse was assumed to consist of 35, 000 macro-particles, 512 of those being
at any time in the oscillator. In Fig. 4.20 we illustrate the phase space of these
electrons which are in the interaction region. In the first 20% of the pulse duration
there is not sufficient electromagnetic field built in the oscillator in order to affect
significantly the electron’s distribution (although there is a small increase in the
momentum spread). After 40% of the pulse has passed, we clearly see the spatial
transient in the interaction region. At this point in time, the constant amplitude
regime is achieved after about 20% of the total interaction length. The normalized
momentum spread which at the beginning is less than 0.06 is now larger than 0.35.
Later the bunches continue to grow — the momentum spread is further increased
approaching 3 at the end of the electrons’ pulse.

Before we conclude, we wish to emphasize the difference between the two
transients which occur in an oscillator. One is the temporal lethargy which we
have discussed already and it is indicative of the time it takes for the exponential
growth of the electromagnetic energy to become dominant. However the transient
presented in Fig. 4.20 is a spatial transient in an oscillator. It is not a result of the
three eigen-modes mentioned above since in an (ideal) oscillator these modes have
a constant amplitude in space. As we mentioned above, this is a result of the finite
length it takes the radiation field to bunch the “fresh” electrons.

The last two sub-sections indicate that the convenient picture of a traveling-
wave tube operating either as an amplifier or as an oscillator is too simplistic. In fact
we have shown that these two regimes are the extreme cases and any system
operates somewhere in between corresponding to the reflection coefficients at
both ends, the phase accumulated in one round trip and the gain. Furthermore, in
the absence of reflections and saturation in an amplifier it is justified to assume that
the amplitude of the electromagnetic wave remains constant in time. However, even
a low reflection coefficient may affect the performance of an amplifier if the gain is
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Fig. 4.20 Phase-space distribution in an oscillator at different instants of time

high enough. When reflections were included in the analysis, the amplitude was
shown to vary in time. The resulting spectrum revealed peaks at other frequencies.
These peaks are symmetric to the initial frequency and their separation is deter-
mined by the feedback time, namely the energy velocity.

4.5 Parasitic Hybrid Mode

Similar to the occurrence of hybrid modes in the case of dielectric waveguide due to
the asymmetry of the modes, so can hybrids of TM and TE develop in a partially
loaded waveguide or in a disk loaded waveguide in spite of the fact, that the
structure itself, is azimuthally symmetric. In this section we postulate the existence
of such a mode and assume that the beam-line intersects the dispersion curve of
both TMy; and HEM;; modes at (w;,k;) and (wy, k) respectively. Both modes
have amplitudes E.; and E,, and correspondingly, the interaction impedance is
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Zin,1 and Zini 2. Subject to these assumptions and ignoring space-charge effects, the
dynamics of the system is described by

%(ﬂ) = Var(exp(—jxi1)lo(T177)).,

Ve
i (&) = \/@<6Xp(*jxl2 - ](,b,)ll (fZFi)>7
dé\ /o c

d Q

dé )(zl ﬁi 1

d Q,

—ir =— — K>,

dé xia B ?

d

1 _ _
%% =-3 lar exp(jyi1)lo(T177) + azexp(jyin + jd;) 11 (Tari) + c.c.].
4.5.1)

Here { = z/d, T, = Rin/k2 — 02 /c2,a, = ¢E.,d/mc? the interaction coupling
is o, = (IZim_y/mc )(dz/ant) F; =ri/Rin with v=1,2. According to the
definitions in (4.5.1), it is evident that the interaction impedance is defined with
the value of the longitudinal electric field on axis.

Comment 4.10. Energy conservation may be readily deduced from (4.5.1) by
averaging the last equation and substituting the first and the third thus,

df 20(1 20(2

2
</>+ﬂ+ﬂ1 =0. “4.5.2)

In fact, a similar set of equations may also describe the interaction of two TM
modes with a beam of electrons.

Comment 4.11. In the framework of this section, we focus only on the longitudi-
nal motion. The effect of both the longitudinal as well as the radial motion was
considered in detail by Banna et al. (2000a, b); the details are left as an exercise to
the reader (Exercise 4.6). At this point we wish to emphasize that the detrimental
aspect of the excitation of HEM;;. Specifically, the fact that it has a non-zero
transverse magnetic field on axis and this causes deflection of the beam. In the
accelerators physics community this is effect is known as beam break-up (BBU) as
described by Helm and Loew (1970).

As in Sect. 4.3.1 the spatial growth in the system may be readily deduced by
evaluating the third derivative of the amplitude. The result being

d3 j Ql : —jr - —

df?’ + = 0(191(])1611 + Udz) —0 F —Ki) e “’Jlo(rlr,-) ,

d3a2 j ) .“ | ) 4.5.3)
d—é3 + EOCzQz[polz + U*al] ~ —0 <F — K2> e iz +j¢511(rzfi) .
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In this expression U= <€_-i(xf-1_xi,2+¢i)(’))iﬁi)7310(rlfj)11(1;2’71‘)>,
p1 = <I(2)(flfi)(yi[3,»)73>, D2 = <If(l:2f,-)(yiﬁl-)73> and the terms where the phase
varies rapidly were neglected. Ignoring the two “noise” terms in the right hand side

of both equations, we may calculate the eigen-wave number of the coupled system,
by assuming solutions of the form a, = a, exp(—js{), hence

S3+%06191[71 %OC]Q]U ap
=0. 4.5.4)
%OCZQZU* s + %OCQQQ])Z a

As clearly revealed by this matrix, the term U represents the coupling between
the cold-structure eigen-modes (TMy; & HEM|,). From its definition it is realized
that U is determined by the correlation between the two phases (y;, %;,) and also
by the correlation of the azimuthal, radial and momentum distribution of the
electrons. When the coupling between the modes is zero, each one of the modes
(TMy; and HEM,;) develops independently according to s+ S? =0 and
s> + 83 = 0 respectively where S = 30,Q,p,. The coupling between the TMy,
and HEM,, is controlled by a single parameter

UuU+ ‘<e_j(x"'l_x"‘2+¢")(7i5i>_310(1:1’7i)11(f27f>>‘
ii= - . (4.5.5)

o Wlmlmmﬁﬂ3><1$<r2ff><vfﬁ,»>3>

Clearly, the solution of the dispersion relation of the coupled system can be
determined from s* + 53 = 0 where

1 1 ,
$1=-5(61+5) ii\/(Sf — 83)° + 48383 . (4.5.6)

In these expressions S corresponds to the HEM-like solution since at the limit
i =0,S5; =S, whereas S_ corresponds to the TM,-like solution.

The solid-lines in Figure 4.21 illustrate the variation of the spatial growth per
cell, g» = (L/d)201og{exp[Im(v/3S+/2)] }, as a function of the parameter it. The
parameters in this calculation are [ =300A, V =850kV, Ry, = 3.5mm,
Rexe = 5mm, Ryeam = 2mm, L = 1.98 mm, frm,, = 35 GHz, fugm,, = 38.63 GHz,
ZiTnl:A“‘ = 374Q, ZEFM” = 1.61kQ, and it was assumed that the electrons have
a vanishingly small velocity spread. When the modes are completely correlated
(& = 1) the spatial growth of the HEM -like mode is zero whereas the TMy,-like is
slightly larger than the case when there is no coupling (i = 0). Although, the
HEM,-like wave becomes unimportant, we have to remember that the TMy;-like
mode is not a pure TMy; mode but rather a linear superposition of TM; and HEM
therefore, the impact of the HEM’s components are destructive since they have the
same spatial growth as the pure TM, as they share the same eigen wave-number.
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At the best, the HEM;; may prevent the system from reaching high efficiency
and in the worst case it deflects the beam to the wall. In order to suppress the
asymmetric mode, selective damping is required. This is to say that the damping
mechanism is transparent to TM,; mode but it suppresses the asymmetric mode. In
order to envision the impact of such a mechanism on the interaction process we may
represent this mechanism by a damping parameter, &, that in the absence of the
beam, causes a decay corresponding to exp(—{/a) of the asymmetric mode only.
Consequently, in the amplitude equation of the HEM;; mode we may replace

“;—‘? — “;—‘? + %dz; following the same approach as before we find in stead of (4.5.4)

s +%O€1le1 %O(]Q]U a;
_ =0. 4.5.7)
%OCQQzU* s+ ész + %O(zgzpz a,

The dashed-lines in Fig. 4.21 illustrate the spatial growth per cell (in dB) in the
case of damping the HEM;; mode (¢ =~ 0.05 corresponding to 1.7 dB per cell in the
absence of the beam). Two facts are evident: first, the “HEM,;-like” mode is
substantially suppressed though not as one would expect from the cold attenuation
and second, the “TMj-like” mode is almost independent of the u indicating that the
“TMy;-like” is close to the pure TM,; mode.

Figure 4.22 illustrates one possible implementation of such a selective damping
that uses a series of choke loaded cavities (Shintake 1992). This structure has a high
quality factor Q at the frequency where the TMy, operates and low quality factor
otherwise. The choke ensures that, in our case, the 35 GHz wave experiences an
“ideal” periodic structure whereas any wave of different frequency in its narrow
vicinity, is absorbed in the radial transmission line. In the optical regime this
concept is implemented in the so called photonic band-gap structures whereby an
ensemble of obstacles ensure the propagation of a specific mode and virtually all the
other modes are propagate radially.

A detailed discussion on beam breakup (BBU) is presented in Sect. (8.1.5).
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Fig. 4.22 One possible Absorber
implementation of selective

damping of an HEM mode —

Shintake cavity

Symmetry axis

Exercises

4.1 Show that the modes in a partially dielectric loaded waveguide form a
(complete) orthogonal set of functions.

4.2 Calculate the interaction impedance, as defined in (2.3.29), in a partially
loaded waveguide for two cases (1) pencil and (2) annular beam. Express
the coupling coefficient in terms of this impedance.

4.3 Develop the amplitude equation (as in Sect. 4.3) using in one case, the
non-homogeneous wave equation for the magnetic vector potential and in
the second case, wave equation for E.

4.4 Formulate the set of equations, which determine the beam—wave interac-
tion in the framework of the macro-particle approach of an annular beam
in a slow-wave structure — Sect. 4.3.1.

4.5 Formulate, based on Sect. 4.4, the set of equations, which describe the
interaction in a backward-wave oscillator.

4.6 Formulate based on Sect. 4.5, the set of equations which describe the 3D
motion of particles and 1D dynamics of TMg,; as well as the two adjacent
HEM;; modes. Hint: use Banna et al. (2000a, b)



Chapter 5
Periodic Structures

One of the conditions for distributed beam-wave interaction to occur is phase
velocity smaller than c. There are two relatively simple ways to slow down the
phase velocity: (1) load a waveguide with dielectric material or (2) load a wave-
guide with periodic metallic or dielectric obstacles. The periodic metallic structure
is usually the preferred solution in microwave devices since it has relatively low
loss, it may sustain relatively high gradients and it may drain any stray electrons.
Dielectric structures are virtually the only solution in the optical regime since
metals have much higher loss. In addition, breakdown is not the major impediment
but rather non-linear effects.

A periodic geometry may be conceived as a set of obstacles delaying the
propagation of the wave due to the multi-reflection process and as a result, an
infinite spectrum of spatial harmonics develops. A few of these harmonics may
propagate with a phase velocity larger or equal to ¢ but the absolute majority has a
slower phase velocity.

This chapter presents various characteristics of periodic structures with emphasis
on these aspects relevant to interaction with electrons. In particular, the interaction
impedance, Z;,, and the interaction dielectric coefficient, &, are calculated and
analyzed since in the previous chapter we have shown that they play an important
role in the collective beam-wave interaction. We assume that only a single mode
participates in the interaction and from the infinite spectrum of spatial harmonics of
this single mode, only one harmonic interacts directly with the electrons. In the
accelerators context, we evaluate in the second part of the chapter the wake
generated by one bunch or a train of bunches in various periodic structures. Since
our treatment of periodic structures is limited to the objectives of the above, we
refer the reader to Elachi (1976) for a broader review on periodic structures.
Tutorial discussion of this subject can be found in a book by Brillouin (1953) and
aspects associated with solid state physics are presented by Kittel (1956) or
Ashcroft and Mermin (1976).

In the first section we present the basic theorem of periodic structures namely,
Floquet’s theorem. This is followed by an investigation of closed periodic
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structures in Sect. 5.2 and open structures in the third. Smith-Purcell effect is
considered as a particular case of a Green’s function calculation for an open
structure and a simple scattering problem is also considered. A simple dielectric
configuration is analyzed as an introduction to optical accelerators to be discussed
in Chap. 8. The chapter concludes with transient phenomena in periodic structure,
which is of importance in accelerators where wake fields left behind one bunch,
may affect trailing bunches.

5.1 The Floquet Theorem

A periodic function, f(z), is a function whose value at a given point z is equal to its
value at a point z + L i.e.,

f(z) =f(z+1L), (5.1.1)

where L is the periodicity of the function. Any periodic function can be represented
as a series of trigonometric functions exp(—j2znnz/L) and since this is an orthogo-
nal and complete set of functions, it implies

f) = i f,,exp(—jZnn%). (5.12)

n=—0o0

The amplitudes f,, are determined by the value of the function f(z) in a single
cell. Specifically, we multiply (5.1.2) by exp(+j2nnz/L) and integrate over one
cell i.e.,

E dzf (z)exp (j27rm %) = J: dzexp (jan %) niocf,,exp (—j27m %) . (5.1.3)

Using the orthogonality of the trigonometric function, we conclude that

1 L
fa=1 L dzf (2)exp <j2nm %) (5.1.4)

This presentation is called the Fourier series representation and it is valid for a static
phenomenon in the sense that the value of f(z) at the same relative location in two
different cells is identical. For describing a dynamic system, the function f(z) has to
satisfy

f(z) =&(z+1L), (5.1.5)
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which means that the value of the function is proportional to the value of the
function in the adjacent cell up to a constant, &, whose absolute value has to be
unity otherwise at z — oo the function diverges or is zero as can be concluded
from

f(z) =& (z+nL), (5.1.6)

where n is an arbitrary integer. Consequently, the coefficient & can be represented as
a phase term of the form & = exp(ji/) hence

flz2) =e’f(z+1L); (5.1.7)

V) is also referred to as the phase advance per cell. Without loss of generality one
can redefine this phase to read = kL. Since a-priori we do not know 1, this
definition does not change the information available. Nonetheless based on the
Fourier series in (5.1.2) we can generalize the representation of a dynamic function
in a periodic structure to

fe) = i fiexp (fj27m 1% - jkz) , (5.1.8)

n=—0o0

and realize that it satisfies

f(z) =eMf(z+1L), (5.1.9)

which is identical with the expression in (5.1.7). The last two expressions
are different representations of the so-called Floquet’s Theorem. Subsequently we
shall mainly use the form presented in (5.1.8), however in order to illustrate the use
of Floquet’s theorem in its latter representation, we investigate next the propagation
of a TM wave in a periodically loaded waveguide.

Consider a waveguide of radius R, which is loaded with dielectric layers: a
representative cell (0 < z < L) consists of a region, 0 < z < g, filled with a dielec-
tric, &, and the remainder is vacuum — see Fig. 5.1. Our goal is to determine the
dispersion relation of this structure and for this purpose, we write the solution of the
magnetic vector potential and electromagnetic field (steady state) in the dielectric
0<z<g:

2R

Fig. 5.1 Periodically loaded
waveguide |
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A(r,z :ZJQ( S;) [A e Tes? + B, e+r"‘]

w

C > Ps r — z z
Er(ra Z) = Z Erd,le (ps E) [Ase Tasz _ Bse+rd'x ]a
S (5.1.10)

E.(r,z) = 7j(j)s ZF Jo (pYR> [A e Tasz _ Bse”ﬂ-»"z],
T =1

Zps ( ) Aefrd§z+Be+rd,k]

where F?l,s = (ps/R)* — &(w/c)®. In a similar way, we have in the vacuum
(g<z<L):

— R
s=1
2 & r _ _
E,(i,Z)sz;%FsL( SI_€> {Cse Ti(z=8) _ petTil ‘ﬂ
- (5.1.11)
c .
E.(r,z) = "o ;R%(,Ds*) |:Cse FiE=0) _ pethil )]»
Hgb(rv z) = l i &Jl< s£> [Cve_r&(z_@ _’_Dve+l"l\.(z—g):|,
1o 2~ R AR s

with T2 = (p, /R)* — (w/c)*. At this point, we limit the discussion to the first mode
TMy;, thus the continuity of the radial electric field at z = g implies

1
" [yi[Are T4 — Biett €] =T[C) — Dy, (5.1.12)
T

and in a similar way, the continuity of the azimuthal magnetic field reads
Are T4t 4 et = ¢y + D). (5.1.13)

Last two equations express the relation between the amplitudes of the field in the
dielectric and vacuum.

In the dielectric filled region of next cell (L < z < L + g) the field has a similar
form as in (5.1.10) i.e.,
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z) = Z Jo(ps 1}?) [A e Tusl-L) B;e+rd4,§<z—L>}7
§=
Ps

2 00
Pip, ( )[A Tue-1) _ g *“’vf“*)},
]wer 21: R \Ps © s
= (5.1.14)
E. ( ){ A eTas-L) _ g +rl,_,\.(sz)}’
(r2) = =2 Z; e i
Z Psy 1( ) [A C e+rd,.,\<sz>]
=1 R :

The prime indicates that this amplitude represents the solution in the adjacent cell.
Accordingly, the boundary conditions at z = L read

1 ! U
~ T [A) = By | = D[ Cre T - prelt9)], (5.1.15)

and
A+ B, =Ce =9 L peht=s), (5.1.16)

The relation between the amplitudes of the wave in the second cell (L < z < 2L) and
the first cell can be represented in a matrix form

a’ = Ta, (5.1.17)
where the components of a’ are A and B} and similarly, the components of a are A,

and B,. According to Floquet’s theorem (5.1.9) the two vectors are expected to be
related by

a’ = e a, (5.1.18)
thus e /* represents the eigen-values of the single cell transmission matrix T:
IT — e/ 1| = 0. (5.1.19)
Explicitly this reads
e ¥ _ e (T | + Tay) + T11Tay — T12Tay = 0. (5.1.20)

For a passive system, the determinant of the matrix T is unity, thus

oYk _ efjkL(T“ +Tyn)+1=0. (5.1.21)
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The fact that the last term in this equation is unity indicates that if & is a solution
of (5.1.21) — k is also a solution. Consequently, we can write

cos(kL) = = (Ty1 + Tx). (5.1.22)

N =

Note that this is an explicit expression for k as a function of the frequency and the
other geometric parameters. In principle, there are ranges of parameters where the
right-hand side is larger than unity and there is no real k, which satisfies this
relation. As a function of the frequency, the absolute value of the right hand side
of (5.1.22) can be either larger or smaller than unity. In the former case there is a
real solution for k£ which entails that in the corresponding frequency range the wave
is allowed to propagate — this frequency range is called the pass band. In the
frequency ranges k is complex therefore the amplitudes are identically zero,
otherwise the solution diverges. This frequency range is called the forbidden
band or band-gap. Explicitly, the right-hand side of (5.1.22) reads

1 (Z1 +2Z,)°

(Z) —Z,)°
—(Ty; +Tp) = =
5 (T +T2) 47,7,

cosh(y + y) — A

cosh(y — y), (5.1.23)

where = I'1(L — g), y = 4.1, the characteristic impedances are

T T
Cdl gy =L, (5.1.24)
JCU

Z =
1 Uojwsr

and 7, = 377[Ohm)] is the impedance of the vacuum. Figure 5.2 illustrates the right-
hand side of (5.1.22) as a function of the frequency (¢, = 10, R =2cm, L = lcm

and g = L/2). The blocks at the bottom, illustrate the forbidden frequencies,
namely at these frequencies TM waves can not propagate. In Fig. 5.3 the dispersion

, LA

O —

-1 \S
Fig. 5.2 Right-hand side of \/
(5.1.22). For the frequencies
marked at the bottom, no -2 |

electromagnetic wave can 0 5 10 15 20 25
propagate in the system f(GHz)
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Fig. 5.3 The dispersion 20
relation corresponding to the
same parameters as those for
which Fig. 5.2 was plotted; 15
the parameters R = 2 cm,
g = 10, L = 1cm and
g=05cm

yA

0
0.0 0.4 0.8
kL/m

relation of the first three passbands are presented; these branches correspond only
to the TMy; mode. Higher symmetric or asymmetric modes have additional
contributions in this frequency range.

Comment 5.1. The expression in (5.1.22) is the dispersion relation of the periodic
structure we introduced. From this simple example however we observe that the
dispersion relation of a periodic structure is itself periodic in k with a periodicity
2n/L. This is a general feature which can be deduced from (5.1.9). If the latter is
satisfied for k = ko then (5.1.9) is satisfied also for k = ko + 27/L as shown next

f(z _|_L)ei(/<o+2n/L)L =f(z _'_L)e,'koLe,‘zn7

A (5.1.25)
=fz+ L) =£(2).
Consequently, since the dispersion relation is periodic in %, it is sufficient to
represent its variation with k in the range — n/L < k < m/L; this k domain is
also called the first Brillouin zone.

Comment 5.2. Bearing in mind the last comment, we can re-examine the expres-
sion in (5.1.8) and realize that f(z) is represented by a superposition of spatial
harmonics exp(—jk,z) where

2
Ky = k+n, (5.1.26)
L
which all correspond to the solution of the dispersion relation of the system.
According to this definition the phase velocity of each harmonic is

w

— 5.1.27
ok ( )

Vphn =

and for a high harmonic index, n, this velocity decreases as n~!. Furthermore, all
harmonics with negative index correspond to waves, which propagate backwards.
In addition, note that the zero harmonic (n = 0) has a positive group velocity for
n/L >k > 0 and negative in the range — /L < k <0. This is a characteristic of all
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spatial harmonics. Since the group velocity is related to the energy velocity, one can
conclude that although the wave number of a particular space harmonic is positive,
the power it carries may flow in the negative direction (if the group velocity is
negative). This opens a completely new family of devices in which the power flows
anti-parallel to the beam — the generic device is called backward-wave oscillator
(BWO) and it was discussed in Sect. 4.2.4. Note also that at all m-points, i.e.,
kL = mn, the group velocity is zero.

Another instructive example that was considered in what follows corresponds to
a continuous periodic dielectric structure

o0

62 =Y & exp(—jZnn%) (5.1.28)

n=—0o0

that supports a symmetric transverse magnetic mode confined by an ideal circular
waveguide of radius R. In this simplified model, the TM mode is determined by the
magnetic vector potential that is a solution of

190 0 o ?
oot a0 G| =0 o122

For simplicity sake we confine the discussion to the first mode such that
A.(r,2) = a,(2)Jo(p17/R) thus

2 2 2
[d_ Py Cc"—z} a.(z) = 0. (5.1.30)

dz? R?

Employing Floquet theorem, a,(z) = exp(—jkz) Z a, exp(—j2nnz/L) and the

n=—0o0
orthogonality of the trigonometric functions in one period of the structure we get

<k+zﬂ> e _< ) S G (5.1.31)

L R? it

We may now define the normalized vacuum wavelength 4 = 1/L and the charac-
teristic matrix M,y = &, [(kL/27 + n) + (plL/ZnR)z]_l implying that for a
given k, the normalized vacuum wavelength (representing the frequency) is deter-
mined by the eigen-values of the matrix M namely,

[M — 121} a=0. (5.1.32)

Contrary to the previous formulation whereby for a given frequency we could
establish the wave-number (k), in the framework of this formulation, for a given
wave-numberk, (5.1.32) determines the discrete spectrum of allowed frequencies.



5.2 Closed Periodic Structure 239

Evidently, this last approach is particularly useful when the periodic structure is
represented by a smooth function described by a small number of harmonics.

5.2 Closed Periodic Structure

Based on what was shown in the previous section one can determine the dispersion
relation of a TMy; mode, which propagates in a more practical periodic structure
namely, a corrugated waveguide (Brillouin 1948). Its periodicity is L, the inner
radius is denoted by R;, and the external by R.y; the distance between two cavities
(the drift region) is d — see Fig. 3.17. Using Floquet’s Theorem (5.1.8) we can write
for the magnetic potential in the inner cylinder (0 <r <Rj,) the following
expression

)= Y A I(Tr), (5.2.1)

n=—00
and accordingly, the electromagnetic field components read

2 (o @]
Era) = 30 (<bT)Ae ()
2 X

Ez(r,z) :;_ Z <_ri)Ane_jk”ZIO(rnr)7 (5.2.2)
Hy(r,z) = —— Z [,A,e 7571 (T,r).
Ho ==
In these expressions,
2
rr-g-2, (5.2.3)
c

and Iy(x), I; (x) are the zero and first order modified Bessel functions of the first kind
respectively. This choice of the radial functional variation is dictated by the
condition of convergence of the electromagnetic field on axis.

In each individual groove, the electromagnetic field can be derived from the
following magnetic vector potential:

B cos[q,(z — d)|Ro.(r), (5.2.4)
=0

v

where ¢, = nv/(L — d),

RO,V (l’) = IO(A‘,r)KO(/\VRm) — KO(A\!")IO(A»‘Rext)v (525)
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and A> = ¢ — (w/c)*. The electromagnetic field reads

2
E9(r,z) = j% Z (—q,)AB sin[g,(z — z, — d)|R1,(r),
v=0
S
EO(r2) =50 > (SADBL coslan(z = 2 — )[Ry (1), (5.26)
v=0
o 1 &
Hfj; )("72) = _;0 ZA\)BV cos[qy(z — z, — d)]Rl W(r).
v=0

In these expressions R, (r) is the derivative of Ry ,(r) defined by
Rl,v (I’) =1 (Avl‘)Ko (AvRexl) + Ky (A‘,I‘)Io (AvRext)7 (527)

and except at r = Ry, all the boundary conditions are satisfied; the index o labels
the “cavity”.

5.2.1 Dispersion Relation

Our next step is to impose the continuity of the boundary conditions at the interface
(r = Rinr). The continuity of the longitudinal component of the electric field
[E.(r = Rint, —00 <z < 00)] reads

2
C _
jE E ( ri)Ane 7k IO(Fant)
0 for z;,<z<z,+d,

Z AzB cos[qy(z — zo — d)|Roy(Rine) for zo+d<z<z;+1L,
v=0

(5.2.8)
and the azimuthal magnetic field [Hg(r = Rin, Zo + d <z <z, + L)] reads
. 1 &
— Z TyAue 7T (DyRin) = — > AWBY cos[g, (z —d)|R1y(Rint).
Ho ,—% Ko =5
(5.2.9)

From these boundary conditions the dispersion relation of the structure can be
developed. For this purpose, we analyze the solution in the grooves having
Floquet’s theorem in mind. The latter implies that the longitudinal electric field
in the ¢’s groove has to satisfy the following relation:



5.2 Closed Periodic Structure 241

ZA ) cos[qy(z — 2o — d)|Ro(r)

(5.2.10)
— Z AB DM cos[q,(z + L — 2511 — d)|Ro,(r).
But by definition z,.; — z, = L therefore, the last expression implies that
B\ = B ek, (5.2.11)

This result permits us to restrict the investigation to a single cell and without loss
of generality we chose z,—o = 0 since if we know B, in one cell, the relation in
(5.2.11) determines the value of this amplitude in all other cells.

Comment 5.3. In practice we could have harnessed this implication of Floquet
theorem already in (5.2.4) but didactically we believe that when used for the first
time one should avoid short cuts.

With this result in mind we multiply (5.2.8) by exp(jk,z) and integrate over one
cell; the result is

o0 o0 L
> T2ASumLlo(TiRim) = > AfB‘,RO,V(Rim)J dze™* cos|q,(z — )],
n=—o00 v=0 d

(5.2.12)

here 6., is the Kroniker delta function which equals 1 if 7 = m and zero otherwise;
we also used the orthogonality of the Fourier spatial harmonics.

A similar procedure is adopted when imposing the continuity of the magnetic
field with one difference, (5.2.9) is defined only in the groove aperture thus we
utilize the orthogonality of the trigonometric function cos|g,(z — d)]. Accord-
ingly, (5.2.9) is multiplied by cos|q,(z — d)] and we integrate over d <z <L; the
result is

00 L
Z AL (TR J dzcos|q,(z — d)]e
S ‘ (5.2.13)
= Z AvaRl,v(Rint)(L - d)g,uév,u

v=0

where go = 1 and g,.o = 0.5 otherwise. It is convenient to define the quantity

L
Lon(k) = L%d L dz coslgy (z — d)]e, (5.2.14)
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which allows us to write (5.2.12) as

1 L—d
ARy (Rin) L1y (K)By, 5.2.15
F%IO(FnRim) L ; v 0’( y n, (k) ( )

n =
and (5.2.13) as

B, = AL (TR ) L (k). 5.2.16
A Rh int g» nZOO 1 ' f> n’V( ) ( )

These are two equations for two unknown sets of amplitudes (A,, B,) and the
dispersion relation can be represented in two equivalent ways: one possibility is to
substitute (5.2.16) in (5.2.15) and get

i 5n,m _ L—d 1—‘nzlezntIl m mt i RO\ 1nt A Rmt En WC:; , _ O,
L I'R; ( n mt =0 Rl,v m[)g‘

m=—0Q0 n l]’lt

(5.2.17)

whereas the other possibility is to substitute (5.2.15) in (5.2.16) and obtain

i [5 L—d Au mtROM( mt) - Il(rnRint)
Vi T

L Ly |By=0.
L AVR,mRLV( int)gv ] ’

(F11Rint)lo(FnRim) Ny~

u=0 n=—00

(5.2.18)

In both cases, the dispersion relation is calculated from the requirement that the
determinant of the matrix, which multiplies the vector of amplitudes, is zero.

Although the two methods are equivalent, at the practical level, we found that
the latter expression to be by far more efficient for practical calculation because of
the number of modes required to represent adequately the field in the groove
compared to the number of spatial harmonics required to represent the field in the
inner section. In the case of single mode operation, we found that 1-3 modes are
sufficient for description of the field in the grooves and about 40 spatial harmonics
are generally used in the inner section. As indicated by these numbers it will be
much easier to calculate the determinant of a 3 x 3 matrix rather than 40 x 40 one;
we quantify this statement later. At this point, we consider the design of a disk-
loaded structure assuming that the number modes in the grooves and harmonics in
the inner space are sufficient.

Let assume that we want to determine the geometry of a disk-loaded structure
which enables a wave at 10 GHz to be in resonance with electrons of f = 0.9 and
the phase advance per cell is assumed to be kL = 27/3. These two conditions
determine the period of the structure — in our case L = 9mm. There are three
additional geometric parameters to be determined: Ry, Rin and d. The last two
have a dominant effect on the width of the passband and for the lowest mode, the
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Fig. 5.4 A solution of the
dispersion relation in (5.2.18).
The geometry chose
corresponds to: R, = 8 mm,
L =9mm, Ry = 13.96 mm
and d = 2mm

f (GHz)

Beam Line ,'l
B=0.9 ‘-'

KL/ 7

passband increases with increasing R;, and decreases with increasing d. The
passband, Aw, of a mode sets a limit on the maximum group velocity as can be
seen bearing in mind that the half width of the first Brillouin zone is Ak = n/L.
Consequently, Vg = Aw/Ak < AwL/n. A solution of the dispersion relation in
(5.2.18) is illustrated in Fig. 5.4, the geometry chosen is: Rijy = 8 mm and d =
2mm and from the condition of phase advance per cell of 120° at 10 GHz, we
determined, using the dispersion relation, the value of the external radius to be
Rexy = 13.96 mm.

In the remainder of this section we consider only a single mode in the groove.
Therefore, before we conclude this subsection, it remains to quantify the effect of
higher modes in the groove. The first mode in the groove (v = 0) represents a TEM
mode which propagates in the radial direction. Other modes (TMy,~ o) are either
propagating or evanescent. The amplitudes of the magnetic and electric field (E,) of
the TEM mode are constant at the groove aperture thus the choice of using a single
mode in the groove is equivalent to the averaging the field at the aperture — approach
usually adopted in the literature. Figure 5.5 illustrates the dependence of upper and
lower cut-off frequency on the number of harmonics used in the calculation; the
number of modes in the grooves is a parameter. For the geometry presented above,
the number of harmonics required is 20 or larger; typically about 40 harmonics are
being used. The effect of the v = 1 mode is negligible in this case as seen for both
upper and lower cut-off frequencies. The effect of the higher mode introduces a
correction on the order of 1% which for most practical purposes is sufficient.

5.2.2 Spatial Harmonics Coupling

Contrary to uniform dielectric structures, here each mode consists of a superposi-
tion of an infinite number of spatial harmonics. These harmonics are all coupled by
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Fig. 5.5 The dependence of the upper and lower cut-off frequency on the number of harmonics
used

the conditions imposed on the electromagnetic field by the geometry at r = R;j,,. We
limit the investigation to the accuracy associated with a single mode taken in the
groove, therefore according to (5.2.15), we have

1 ?
Ay = ———————5Roo(Rin)Lno(k)By, 5.2.19
o[k @ 0.0(Rint) L1.0(k)Bo ( )
and in this particular case
L—d 1 1
Lyo(k) = 7 sinc [2 kn(L — d)] exp [jz kn(L + d)} . (5.2.20)

Let us compare the first few spatial harmonics relative to the zero harmonic. For
this purpose we take f= 10 GHz, vo=0.9c, Rjpy = 8mm, L =9mm and
d = 2mm. The ratio of the first few amplitudes is

Az

A A
=8x 1073, |- =3x 1075, |2/ =2 x10% [ =1 x 10°*.

0 0 0

A
Ao
(5.2.21)

This result indicates that on axis, the amplitude of the interacting harmonic is
dominant. At the interface with the grooves (r = Rj,) the ratio between the
contribution of the zero and nth harmonic is much closer to unity and it can be
checked that it reads

_ |sinc[k, (L — d)/2]|
[sinclko(L — d)/2]]

(5.2.22)
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which is virtually unity. It also reveals that there is a significant amount of energy in
the high spatial harmonics which may cause breakdown due to the associated
gradients on the metallic surface.

A more instructive picture is obtained by examining the average power flowing
along one cell:

Rint L 1
P= 27[J drr— J dz {ZEr(r, z)Hy (r, z)} . (5.2.23)
0 0

According to the definition in (5.2.2) we have

s o) 5 Ckn T Rint 2
P== 3" |cA,[—" [ dxx? (x); (5.2.24)
Mo o @ Jo

the integral can be calculated analytically (Abramowitz and Stegun 1968, p.484)
and it reads

U(é) = J: o (x) = E(E(€) + %52[1%(5) —13(¢)]. (5.2.25)

Based on these definitions we can calculate the average power carried by each
harmonic as
2 Ckn

Pp = |cAn SR U(T R ), (5.2.26)
Mo w

and the result is listed below

P_ P_ P P
2= 3% 103, =L =016, L =1x10% 2=3x1073. (5227
P P P

Py 0 0 0

Although there is a total flow of power along (the positive) direction of the z axis,
a substantial amount of power is actually flowing backwards. In this numerical
example for all practical purposes, we can consider only the lowest two harmonics
and write the total power that flows, normalized to the power in the zero harmonic.
Thus if the latter is unity, then the power in the forward is 1 — 0.16 = 0.84. This
result indicates that if we have a finite length structure with finite reflections from
the input end, then in this periodic structure we have an inherent feedback even if
the output end is perfectly matched.

5.2.3 Interaction Parameters

Even if an electron beam interacts only with a single mode the latter consists of an
infinite number of harmonics and with this regard, we distinguish between direct
and indirect interaction. By direct interaction, we refer to the harmonic to which the
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electron transfers energy directly. For example, for a pencil beam (on axis) it is
primarily the n = 0 harmonic, which interacts with the beam, namely, it has a phase
velocity close to the velocity of the electrons. Because of the interaction we have
shown in Chap. 4 that the wave-number of the mode becomes complex, which in a
periodic structure, implies that the projection of the wave-number in the first
Brillouin zone (k) becomes complex. However, this corresponds to all harmonics,
which finally implies that they all grow in space by the same relative amount such
that locally the boundary conditions are satisfied. With this regard, the beam
indirectly interacts with all harmonics and this is referred to as indirect interaction.
The condition for the beam to interact directly only with a single harmonic can be
formulated in terms of the velocity spread of the beam and resonance condition: the
latter reads in general w/vo — k, ~ 0 whose variation for a constant frequency
reads w|Av|/v} = |Ak|. Since two harmonics are separated by Ak =2m/L,
we conclude that the condition for single harmonic direct operation is that
(wL/c)(|AB|/B*) < 2m. Subject to this condition, the beam-wave interaction is
described primarily by a single parameter: the interaction impedance introduced in
Sect. 2.3.3 (2.3.29). For a pencil beam of radius Ry, the effective field that acts on the
electrons in a uniform periodic structure is

R p
B = | drrlEemolr,2) (5.2.28)

2
bp JO

Using the explicit expression for E; in (5.2.2) we find

|E|2=i\A |2r43 Rbd 12(Tor); (5.2.29)
_wz 0 OR}Z) o VVO ol); L

the integral can be evaluated exactly (Abramowitz and Stegun 1968, p.484) and it
reads

W) = || deci(@) = 5200 - Beol (5.2:30)

With this expression the effective electric field reads

412
|E|2 _ 2c FO

= Ao|*W; (TR 5.2.31
szﬁ' o Wi(ToRs), ( )

and finally we can determine the explicit expression for the interaction impedance
in a periodic structure

_1|EP(nRY,)
th = E T7

Rint\” [0\’
= — — ) Wi(T'hR
nO<Rh> ( w ) 1( 0 b)

1—1 (5.2.32)

= cky\ |Anl*
Z U(FnRint) (_> | |2
n=-—00 @ |A0|



5.2 Closed Periodic Structure 247

The ratio |A, /Ap| can be deduced from (5.2.19). Furthermore, the last expression
reveals the effect of the beam radius on the interaction impedance. The latter can be
formulated as

Zint(ToRb) = Zine(0) [I5(ToRb) — I1(ToRv)], (5.2.33)
where
Zin(0) = (TR >(F> > UK ><Ck") L PP
in = Tjo\L oftin — int) | 7 : i
t 0 t w = n t w |A0|2

The interaction impedance increases monotonically with the beam radius; this
fact has been discussed also in Chap. 4 in the context of the interaction in a
dielectrically loaded waveguide. Another aspect of the same phenomenon is
illustrated in Fig. 5.6 where we present the interaction impedance as a function of
the internal radius keeping L, d and the frequency (f = 10 GHz) constant; the
external radius is determined from the resonance condition and the phase advance
per cell (which is chosen to be 120° for reasons which will be clarified in Chap. 8).
In addition, the beam radius is taken to be R, = 3 mm. Note the rapid decrease of
the interaction impedance with the increase in the internal radius of the structure.
Again, this is a direct result of the exponential decay of the slow (evanescent) wave
from the corrugated surface inwards.

The other parameter of interest is the interaction dielectric coefficient that is a
measure of the total electromagnetic energy stored in one cell of the structure as
defined in (2.3.31):

’%
i = % (5.2.35)
2
E‘("O|E | nRint
10
8
N 6 L
g
&
N 4+
Fig. 5.6 Z;, as a function of
the internal radius. The period oL
L, the tooth width d and the
frequency are kept constant.

Rex is determined from the 0
resonance and phase advance
conditions

]
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This parameter is important in the description of the operation of an oscillator.
However, we have to bear in mind that according to (5.2.33) ¢ and Z;,, are related.

Both the interaction impedance (Z;,) and the dielectric coefficient of the inter-
action () are illustrated in Fig. 5.7 for these frequencies for which the phase
velocity of the wave is smaller than c; the geometric parameters are: Rj,, = 8 mm,
Rexi = 13.96 mm, L = 9mm, d = 2mm, R, = 3 mm and the number of harmonics
used is 13 (— 6 < n < 6). Note that the interaction impedance has a minimum at a
frequency which is higher than the frequency where the system was designed to
operate (f = 10GHz). Close to the m-point (kL = m) the interaction impedance
increases since the amount of power which can flow in the system diminishes. At
the same time, the dielectric coefficient of the interaction increases, which means
that the ratio of energy stored in the system to the electric field acting on the
particles, increases. Consequently, in this frequency range the system will tend to
oscillate.

&ine has two contributions: the first from the energy stored in the grooves and the
second represents the energy stored in the inner cylinder. Figure 5.8 illustrates again
&ine and the contribution of each region. We observe that the effect of the groove is
dominant at all frequencies of interest, emphasizing its cavity role. We conclude
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Fig. 5.9 Comparison of 0.2
energy and group velocity as
a function of the frequency
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this subsection with a comparison of the group and energy velocity as illustrated in
Fig. 5.9. Within the framework of our approximation, the two are close but not
identical.

5.3 Open Periodic Structure

In this section, an analysis similar to that in Sect. 5.2 is applied to an open periodic
structure. As we shall see the number of modes, which may develop in such a
structure is small and therefore, mode competition is minimized. This competition
is a byproduct of the necessity to generate high power radiation, which in the case
of a single mode operation generates high gradients on the metallic surface. In
order to avoid breakdown, it is necessary to increase the volume of the waveguide.
Doing so, we allow more than one mode to coexist at the same frequency.
Furthermore, the beam line intersects higher modes at frequencies higher than
the operating one and these modes may deflect the electrons, as will be briefly
discussed in Chap. 8.

We consider a system in which the wave propagates along the periodic structure
forming a disk-loaded wire, as illustrated in Fig. 5.10. Its periodicity is L, the inner
radius is denoted by Rj,, the external by R.x: and the distance between two cavities
(the drift region) is d. Floquet’s theorem as formulated in (5.1.8) allows us to write
for the magnetic potential in the external region (oo >r > Rey) the following
expression

A.(r,z) = Z Anexp(—jknz)Ko(T,r), (5.3.1)

n=-—00
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Fig. 5.10 Schematics of a \/\/\/\/\—»

cylindrical open periodic
structure; the wave
propagates along the outer
region

E,(r,2) = J‘— > (kaTn)Anexp(—jknz)K; (L),
2 00
E.(r,z) = J‘— 3 (~T2)Asexp(—jkaz)Ko(Tur), (5.3.2)
1 o0
Hy(r,z) = —— (=T)Aexp(—jknz)K; (Tyr).
Ho =%

In these expressions Kg(x),K;(x) are the zero and first order modified Bessel
functions of the second kind respectively and I'> = k2 — (w/c)*. This choice of
the radial functional variation is dictated by the condition of convergence of the
electromagnetic field far away from the structure.

As pointed out in the previous subsection, based on Floquet theorem, it is
sufficient to determine the field in one groove therefore, the magnetic vector
potential in a given groove is

Al(ra Z) = ti COS[CIV(Z - d)]RO,v(r); (5.3.3)
v=0

where g, = nv/(L — d),
RO,V(’A) = I()(Avr)KO(AvRim) - KO(A»'r)IO(AL'Rinl)y (534)

and A? = ¢ — (o/ ¢)*. The electromagnetic field reads
(_CIV)AVBV Sin[‘]v (Z - d)]Rl,v(r)a
(=A3)By coslgy(z — d)|Rou(r), (5.3.5)

1 o0
Hy(r,z) = — o Z A,B, cos[q,(z — d)|R1,(r).
v=0
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In these expressions we used
R]jv(l’) = I] (A‘,I‘)K()(AVRim) + K] (A‘,I‘)IQ(A‘,Rim). (536)

The solution above satisfies all boundary conditions with the exception of
’ = Rex

5.3.1 Dispersion Relation

Our next step is to impose the continuity of the boundary conditions at the interface
(r = Rext). Continuity of the longitudinal component of the electric field implies
E.(r = Rex, —00 < z < 00), reads

0
C— Fz A n€Xp —]an)K()(r Rext) =
Jo 2=,

0 for 0<z<d, (5.3.7)

_JEZAB v€0s[qy(z — 2o — d)]Roy(Rext) for d<z<L,

and the azimuthal magnetic field, Hy(r = Rey,d <z <L), reads

— Z I, Anexp(—jknz) Ky (T Rext)
Ho ==

—— ZA B, cos|g,(z —d)|R1y(Rext)-
Ho =

(5.3.8)

As in the previous section, we multiply (5.3.7) by e/»* and integrate over one cell;
the result is

00 o0 L
Z r 3An5n,mLK0(F wRext) = Z A%BVROW (Rext) J dzexp(jkmz) cos[qy(z — d)].
d

n=-—o00 v=0

(5.3.9)

We follow a similar procedure when imposing the continuity of the magnetic
field; the difference in this case is that (5.3.8) is defined only in the groove’s
aperture thus we shall utilize the orthogonality of the trigonometric function
cos[q,(z — d)]. Accordingly, (5.3.8) is multiplied by cos|g,(z — d)] and we inte-
grate over d < z < L; the result is
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00 L
HZZOO IA K (T Rext) L dz cos[q,(z — d)] exp(—jknz) (5.3.10)

= _AMBMRLM(Rext)(L - d)gu

In this expression go = 1 and g, = 0.5. It is convenient to define the quantity

L
Lon(k) = —— J dz cos[gu(z — d)lexpliknz), (53.11)
’ L—d),
by whose means, (5.3.9) reads
1 L—d
A, = A*Ro,(Rex k)B,, 5.3.12
n T%Ko(FnRext vz(; 0, el ( ) ( )
whereas (5.3.10) reads
1
B, = — Z AT K (TyRex ) L, (K). (5.3.13)

A\'Rl,v( ext)g» n=———o0

These are two equations for two unknown sets of amplitudes (A4,, B,). As before,
the dispersion relation can be represented in two equivalent ways: One possibility is
to substitute (5.3.13) in (5.3.12) and obtain one equation for the amplitudes of the
various harmonics

- L—d (FmRext)Kl (rmRext) - R(),v (Rext)AvRext * _
Z 511 m P ;Cn "[’m v =0.
L (FnRext) KO(rnRext) v=0 Rl,v(Rext)gv
(5.3.14)

m=—00

The other possibility is to substitute (5.3.12) in (5.3.13) and obtain one equation for
the amplitudes of the various modes in the groove

o0

D> [

n=0

Vv +
" L (AvRext)Rl,v( ext)gv n——o0 (FnRext)K()(rnRext)

(A Rexl) ROM( ext) = Kl(rnRext>£:1v£n,v‘| —0

(5.3.15)

In both cases, the dispersion relation is calculated from the requirement that the
determinant of the matrix which multiplies the vector of amplitudes, is zero. As in
the closed structure, the two methods are equivalent, but the last expression is by far
more efficient for practical calculation.

There is one substantial difference between open and closed periodic structures.
In the latter case, the radiation is guided by the waveguide and there is an infinite
discrete spectrum of frequencies that can propagate along the system. In open
structures, modes can propagate provided that the projection of the wave-numbers
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Fig. 5.11 Only the wave- s
numbers which are in the — — X ——
white triangles correspond to =P = 152% ph~ "=
waves supported by an open
structure

Fig. 5.12 Dispersion relation 50
of the open periodic structure Rint =15mm
40+ Ryt =21mm
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of all harmonics in the first Brillouin zone corresponds to waves whose phase
velocity is smaller than c; in other words, no radiation propagates outwards
(radially). Figure 5.11 illustrates the two regions of interest: in the shadowed region
no solutions are permissible and in the remainder the solution is possible with an
adequate choice of the geometric parameters. It is evident from this picture that
waves at frequencies higher than

fz=-, (5.3.16)

| —
S~lo

cannot be supported by a disk-loaded wire, regardless of the geometrical details of
the cavity. With this regard, an open structure forms a low pass filter. Figure 5.12
illustrates the dispersion relation of such a system for L = 3mm, d = 1 mm, R;,, =
15 mm and R.,; = 21 mm. For comparison, in the same frequency range (050 GHz)
there are 6 symmetric TM modes which can propagate in a closed system of the
same geometry; obviously there are many others at higher frequencies.

5.3.2 Interaction Parameters

Provided that the electrons are interacting primarily with one harmonic (say n = 0)
then we assume that the spatial component of the interaction in an amplifier is
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controlled by one parameter: the interaction impedance. For an annular beam of
radius R}, and width A the effective field that acts on the electrons is

1 Rb+A/2
E|* = — J drr

E.mo(r,2)|. (5.3.17)
RoA J s (r,z)]

Using the explicit expression for E. in (5.3.2) we find

EP = < jagr jwm\m
(03]

2 .
0 RoA dEEKG(E); (5.3.18)

Lo(Ry—A/2)

assuming that the variations of the wave across the beam section are negligible the
integral reads

To(Ry+A/2)
J dEEKG (&) = (TGRyA)KG(ToRy); (5.3.19)

To(Ry—A/2)

With this expression the effective electric field reads

2 C4Fg 2,2

In order to determine the explicit expression for the interaction impedance the
total power, which flows along the structure, has to be determined. According to
(5.3.2) it is given by

o0

-kn 00
3 |cA,,|2(%) LR dEER2(E), (5321)

1 1
P=-(2n)-
2 U —

The last integral can be evaluated analytically (Abramowitz and Stegun 1968,
p-484) and it reads

00 2
Wi(x) = J dEEKT (&) = xKo (0K (x) + % [KG(x) — Ki(v)] (53.22)
hence
7 = 1 |E|2(”Rc2:x1) 1 [Ko(IpRy) :
m=5""p "2 [KO(FORQHJ
(5.3.23)

. ZN: (2 Rexe) (knRext) W3 (TuRexe) sinc® [Lhey(L — )] ]
n (rr1Rexr)4K(2)(rnRext) sinc? [% kn(L — d)}

=—00
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The other parameter of interest in an oscillator is the interaction dielectric
coefficient, which is a measure of the total electromagnetic energy, stored in the
open structure and is defined by

Wem

= —em (5.3.24)
Yool EI (nR2,)

Eint

Note that in the open system the effect of the beam distance from the structure is
represented by

Ko(ToRy) r (5.3.25)
KoToRo)| 3.

Z;
m |:K0(FORext

which for large arguments of the modified Bessel function implies Zj, o
exp[—2To(Ry — Rexr)] wWhereas the dielectric coefficient of the interaction,

2
Ein OC {KO(F"RC“)] (5.3.26)

Ko(I'oRy)

is proportional to &g o exp[2Io(Rp — Rext)] for large arguments.

The two frames in Fig. 5.13 illustrate the interaction impedance of the two
modes, which are supported by the structure introduced above. In contrast to closed
structure where the impedance has a minimum, in the open structure presented here,
the impedance has a maximum as a function of the frequency. The peak of the lower
(frequency) branch occurs at 9.575 GHz, the phase velocity is 0.58 c, the interaction
impedance, for Ry, =25mm, is Zj, = 196 and the coupling coefficient Ky =
29.2m~! see (4.1.18) when the total current is 500 A. The peak at the upper branch
occurs at 31.75 GHz and Zj, = 31.9 corresponding to Ky = 9.3m™'; the phase
velocity in this case is 0.877 c.

We indicated previously that the advantage of an open periodic structure is that
it supports the propagation of a small number of modes. Clearly, it would be
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convenient to utilize this fact to generate radiation at high frequency. From the
previous example, we observe that we could generate radiation at 32 GHz if we can
suppress the lower frequency and no additional frequencies (of TM like modes) can
develop in the system. In order to suppress the lower frequency we can take
advantage of the fact that the interacting waves decay exponentially in the radial
direction and a high frequency wave decays radially more rapidly than a low
frequency one. It implies that in principle, we can put an absorbing wall (say at
R = 30mm) which will virtually absorb all the energy from the low frequency
wave but practically it will not affect the higher frequency mode since its amplitude
is virtually zero at its location. Obviously, the coupling to the beam is weaker
because of the exponential radial decay associated to the evanescent wave.

5.3.3 Green’s Function: The Smith-Purcell Effect

When we investigated the electromagnetic field generated by a charged particle in
its motion near a dielectric material it was shown that radiation could be generated
if the velocity of the particle exceeds the phase velocity of the plane wave in the
medium. A similar process may occur in a metallic periodic structure. Qualitatively
the process is as follows: it was indicated in Sect. 2.2.4 that a point charge moving
at a velocity vy generates a continuous spectrum of evanescent (non-radiating)
waves; these waves impinge upon the grating whose periodicity is L. The incident
wave-number in the direction parallel to the motion of the particle is given by

gine = & (5.3.27)
Vo

Although the great majority of the reflected waves are evanescent, under certain
circumstances, there might be a few, which can propagate. An observer, located
far away from the grating at an angle 0 relative to the motion of the particle
(z direction), measures the outgoing radiation. The projection on the z direction
of the wave-number as measured by this observer is

kot =2 cos 6. (5.3.28)
C

The periodic structure couples between the wave-numbers in the z-direction
therefore the difference between the incident and observed (scattered) wave-
numbers is attributed to the grating and it is an integer number v of grating wave-
numbers 27y /L,

, .2
k;nc _ k;)bb — % (5.3.29)
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Substituting the previous two equations into the latter, we obtain

2
S (5.3.30)
¢c L 7' —cosf

It indicates that for a given velocity and a given periodicity, different frequencies
are emitted in different directions. Smith and Purcell (1953) first reported the effect.
Toraldo di Francia (1960) has formulated the problem in terms of the coupling
between evanescent and propagating waves and Van den Berg (1973) has calcu-
lated the effect numerically. Salisbury (1970) observed a similar spectrum of
radiation but in his experiment, he found that there is a correlation between the
radiation intensity and the current associated with electrons scattered by the grating.
His interpretation is based on the oscillation of the electrons in the periodic
potential induced by the scattered electrons. However, estimates of the acceleration
associated with this process indicate that it cannot account for the intensity of the
observed radiation — Chang and McDaniel (1989). Later, the Smith-Purcell effect
was re-examined at much higher energies (3.6 MeV) and in the angle range
56° — 150°; the agreement between the dispersion relation and the experiment
was excellent — see Doucas et al. (1992). A renew interest in the Smith-Purcell
effect was motivated by the increased interest in terahertz radiation (Andrews et al.
2005; Korbly et al. 2005; Kim 2007; Shin et al. 2007). In this subsection we discuss
in detail the dynamics of the Smith-Purcell effect as a particular case of Green’s
function formulation of the electromagnetic problem in an open periodic structure.
Consider a train of charged rings of radius R, > R moving at a constant
velocity v( along a periodic structure identical to the one illustrated in Fig. 5.10.
Consequently, the current density is periodic in space and time therefore

o0

Jo(ryz,t) = AL S(r— Rb)% Z exp [—szﬂ (z— Vol‘):| . (5.3.31)

n=-—00

This current density excites the longitudinal component of the magnetic vector
potential that has a homogeneous and a non-homogeneous component. For
evaluating the latter, we may ignore the structure thus

Ag”h)(r,z, ) = Z An(r)exp [—szﬂ (z— Vof)} (5.3.32)

n=—00

where a,(r) is a solution of

2
F a2 ]Am _pot o Ry (5333

2nL 1
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and defining y,, = 2x|n|/yL, it reads

Ko(x,7)/Ko(x,Rs) 7> Ry,
Io(x,r)/To(x,Ry)  r<Rp,  (5.3.34)

9Volo
To(y,,Rp)Ko(yx,,R
0 kKol ) {

an = To(%,Rext)Ko (2, R5p)-

Ay(r) =—

The homogeneous solution has to have the same temporal dependence since
together they must satisfy the boundary conditions at any instant thus

X 2 > 2
Agh)(r,z7 t) = _q;(;zo 2 exp (j%vot) m;w exp (-j 72’" z) 5335,

X bu(n)Ko [% \/ m?— nzﬁz} .

Imposing the boundary conditions for E; and Hy in a similar way as done in this
section for establishing the dispersion relation, we may formulate the two non-
homogeneous equations in terms of a reflection matrix

b= Rumm (5.3.36)

ap, 1s the normalized amplitude of the wave impinging upon the periodic structure.
We are not aware of an analytic expression for the reflection matrix and in general,
numerical methods are necessary for its evaluation. However, for the geometry
employed here, quasi-analytic formulation is possible adopting an approach identi-
cal to that used to determine the dispersion relation. An explicit formulation of this
matrix is left as an exercise. In the remainder of this subsection we determine the
expression for: (1) the power emitted radially and (2) the decelerating force acting
on one ring assuming that the reflection matrix is known.
For the power radiated radially the relevant field components are

e8] o)
qVoko 2nn 2nm
E.(r,z,t) = exp (J—Vot) exp (—/—z)bm(n)
2L L L 2 L

m=—0o0

- 2 2 2 2 2
x Ko |20 \/m? — 2 '2; s (2
L jZmv |\ L L
Hy(r,z,t) = _ Voo 1 i ex '@v t i ex —'h—mz b (n)
o\l 2, 1) = 2l 1o p{J I 0 p J I m

n=—00 m=—00

x K [2n£\/m2 - nzﬂz} <2L—n A/ m? — n2ﬂ2>

(5.3.37)
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thus the energy radiated (r — o0) is

L/vo L L/vo L
Wiad = J dt2nrszS,.(r,z,t):—2nr J dtszEz(r,z,t)H¢(r',z,t)
0 0 0 0 (5.3.38)
2 00 202 2
_q 2 np—m 2 202 2
_m&r n:lzm::oﬁbm(n) |h(n p —m)

whereas the decelerating force on one charged ring is Fgec = Wya/L or explicitly

F q2 2 i nzﬁz_mz‘b ( )2’1’1( 2ﬁ2 2) (5.3.39)
dec =—————— ———|bu(n n“ e —me). 3.
- 477:80 (L/ZTC)2 n=1,m=0 n "

As clearly reflected from the step function, in both cases only harmonics
corresponding to propagating waves contribute. The radiation energy as determined
in (5.3.38) is indicative of the coherent Smith-Purcell radiation as generated by the
train of charged rings moving in the close vicinity of the disk-loaded wire. Our next
step is to generalize this approach in order to determine the electromagnetic field
generated by a non-periodic source in the presence of a periodic structure

5.3.4 Periodic Structure and Non-periodic Source

The reflection matrix formulation introduced in the previous subsection although
developed with a specific geometry in mind is general and it may be employed
for an arbitrary geometry. In this subsection we aim to determine the maximum
decelerating and transverse force on a charged line (Q / Ay) moving at a constant
velocity v at a height 2 from the top of a grating of arbitrary geometry but of
periodicity L — see Fig. 5.14.

As above, the non-homogeneous component of the magnetic vector potential is

00 o8] 1
AN (x 2, 8) = J dw J dkA(w, k)m exp(jot — jkz — T'|x — h|) (5.3.40)
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grating of periodicity L
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where I = \/k? — (0/c)*, A(w,k) = —(Q/A,) 1tyvod(® — vok) and the homoge-
neous counterpart that, also represents the scattered waves, is given by

AW (x,z2,1) = J dow J dk B(w, k) exp(jor — jkz — T'x) . (5.3.41)

—0Q —00

Without loss of generality, the amplitude of the scattered field, B(w, k), may be
expressed in terms of Floquet harmonics B, (w, k') = B(w, k' + 2nn/L) where 'is
the projection of the wave number on the first Brillouin zone. It is related to the
incident field in terms of a reflection matrix

B,(w,k) = Z Rom(0, k')A (0, k) (5.3.42)

where

— 2 —Iph
Am(w,k’) A( K +m) M

L 4nl,,
w? 53.43
L=k =5, ©.3.43)
2nm
km - k, + T .

As a second step we determine the average longitudinal gradient (per unit
length),
o vo/2L
Ej=T J dtEM (x = h,z = vot, 1). (5.3.44)

—vo/2L

which explicitly reads

0 1 /L
E| = J

- dr’ an(@ = Voky, k' ol 2\ky|h 5.3.45
Tk, 7 > Runler = Vokn, K) 225 exp(=2lkalh/7). (5:3.45)

—n/L n=—00

At this point we assume that the absolute value of each diagonal term of the
reflection matrix is smaller than unity,

Rm(® = Vokn, K')| < 1 (5.3.46)
implying
(max) Q /L / >
Ey<E = dk'h —2|k,|h
== 47'580Ayh J—n/L /V n;oo exp( | 1| /y) (5.3.47)
0 3.

" 2me0A,(2h)
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In a similar way we may calculate the average transverse field

L/2V0
E =2 J dt [E, — vopoH, ] (5.3.48)

z=vtx=h,t"

As in the longitudinal case

E __9 1 Jn/L dk'(h/y) i Run(@ = voky, k') exp(—2kn|h/y)
1 27T80Ay(2/’l) y L Y L nn 0%n, p n V)
(5.3.49)
and subject to the condition in (5.3.46), we get
(max) 0 1
E, <E = — 5.3.50
=T 2meoAy(2h) y ( )

The last two results (5.3.47) and (5.3.50) provide us with extremum values for
the transverse and longitudinal gradients as a charged-line traverses an open
periodic structure of arbitrary geometry. Several aspects are evident subject to
our assumption in (5.3.46): (1) both gradients are independent of the period or
any other geometric parameter of the structure. (2) Both gradients are inversely
proportional to the image-charge gradient (corresponding to a flat surface) i.e. are
inversely proportional to the height (/). (3) The extremum longitudinal force is
independent of the kinetic energy of the particle (y > 1). (4) This is in particular
important for ultra-relativistic particles since the reflection matrix required for the
calculation becomes very large. (5) For a motionless particle the longitudinal
gradient vanishes. (6) The extremum transverse gradient corresponds to an image
force that is inversely proportional to y and for a motionless charge-line this
extremum equals the exact gradient in the case of a flat plane.

5.4 Bragg Waveguides

Bragg reflection waveguides are one-dimensional periodic structures, designed to
guide light in a low refractive index surrounded by alternating layers of high
refractive index. Two possible configurations are depicted in Fig. 5.15, one is the
planar Bragg reflection waveguide, and the other is the cylindrical, which is also
known as the Bragg Fiber. The theory of Bragg reflection waveguides was devel-
oped by Yeh and Yariv (1976) and recently there has been a growing interest in
using such hollow cylindrical structures as low-loss optical fibers in long distance
communications as well as for optical structures for particles acceleration.

Most of the studies carried out on Bragg reflection waveguides dealt with
configurations where all the dielectric layers are transverse quarter-wave thick.



262 5 Periodic Structures

Fig. 5.15 Planar and
cylindrical Bragg reflection
waveguides
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However, controlling the dispersion properties in Bragg fibers was demonstrated by
creating a defect in the form of changing one or more of the layer widths. In this
section, a systematic adjustment of the layer adjacent to the core, will be shown to
change the waveguide properties to fulfill specified requirements.

A metallic waveguide supports modes with phase velocity which is always
greater than ¢, and therefore for a metallic waveguide to serve as a particle
accelerator, the electromagnetic wave must be “slowed down”. Such an effect
can be achieved by either designing an appropriate metallic periodic structure, or
by partially filling the waveguide with a dielectric material. If at the vicinity of the
operation wavelength in a Bragg reflection waveguide, the reflector acts similarly to
a metallic wall, as was shown in previous studies, the phase velocity is expected to
be greater than c, and therefore some adaptation is required for this to change.
Motivated by the requirement v,, = ¢, we develop in this section a general method
for designing the Bragg waveguide for a given phase velocity, given the core
dimension and a set of dielectric materials. The core’s dimension itself may be
dictated by other considerations, such as the maximum field, allowed to develop
within the core to prevent material breakdown, and the interaction efficiency. The
modes of interest are the symmetric modes, TM and TE, the hollow core field
distributions of which are summarized in Table 5.1. As a special case, which
received modest attention in waveguide literature, the field components corres-
ponding to vy, = ¢, are written explicitly. All the demonstration presented in this
section will be on waveguides made from dielectric materials with refractive
indices 1.6 and 4.6. In addition, we neglect the losses due to the finite cladding.

5.4.1 Matching Layer

We consider the planar Bragg reflection waveguide (9/9y = 0), with core half-
width Dy, as depicted in Fig. 5.15. Let us assume that at some specific wavelength
/o with a corresponding angular frequency @y, this waveguide is required to
support a symmetric TM mode with a specific phase velocity vy, = wo/k:,
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Table 5.1 Hollow core symmetric modes. The transverse wave-numbers are k| = \/w?/c> — k2.
In the planar case k, = k; whereas in the cylindrical configuration &k, = k.

General symmetric mode x exp(—jk.z)

Special case vy, = ¢ X exp(—jwz/c)

E. = Eycos(k x)

E. = E,
k.
E, fj< )EO sin(k x) E, :j(gx)Eg
ki ¢
o\ 1 i (w )
- Hy =L (2Y)E
Planar TM H, ]<clq_) OEO sin(k, x) = -¥)Eo
Hz = H() COS(kLX) H. = HO
[k .
Hx ZJ(H)HO Sll’l(kLX) I‘IX :‘](%A)H()
E, = —j(2x)nH.
Planar TE Ey, = (ck )7701‘10 sin(k x) y="J (;x) noHo
E. = EoJo(kir) E, = E,
k. lw
E. =j|—|EoJi(k E.=jl=—r)E
J(’Q) o/ kur) J<2 c ) 0
w 1w 1
Cyl. TM Hy _J<ckL) —EoJy (kor) H, —j(i - ) n—oEo
H H()J()(kll) H :HO
k. lw
H. =il —=|H - H =il-2\H
e
1w
Cyl. TE Ey=—j k noHoJ1 (kor) Ey=—j{5 7 )mtlo

k. being the longitudinal wave-number. Equivalently, a specific field distribution
in the hollow core may be required, determined by the transverse wave-number

ke = \/®?/c* — k2, as shown in Table 5.1. Expressing the phase velocity in terms
of the transverse wave-number in the core, we obtain

Voh = (5.4.1)

The electromagnetic field components in the layer adjacent to the core, which
has a dielectric coefficient ¢;, are given by

E. = [A| exp(—jkix) + By exp(+jkix)] exp(—jk.z),
k- . . .
E,=— E [Ay exp(—jkix) — By exp(+jkix)] exp(—jk,z), (54.2)

1 ) ‘ .
H, = A [A; exp(—jkix) — By exp(-+jkix)] exp(—jk.z),

wherein the transverse wave-number is k; = /g w?/c? — k2 and the transverse
impedance is Z; = nykic/we;. The required electromagnetic field in the vacuum
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core dictates by virtue of the boundary conditions on E. and H, at the interface
between the core and the adjacent dielectric layer, the amplitudes in the first layer.
Imposing the boundary conditions on E. and H, at x = Djy, the amplitudes are
found to be given by

A1/Ey = (B1/Ey)"

LI (jkiDing) sin(kDine) 643
281kx PI 1&int xint ) -

1
=5 exp(jk1Dint) co8(kyDint) — J

The electromagnetic field required in the core entails the amplitudes of the
outgoing and incoming transverse waves, as calculated above. It is now our goal
to ensure that the complete structure, including the Bragg reflector, indeed supports
the required field at the given wavelength as an eigen-mode.

The Bragg reflector can be analyzed from the perspective of a pure periodic
structure according to the Floquet theorem (Yeh and Yariv 1976). This analysis
gives the eigen-vectors and the eigen-values of the periodic structure, and
determines the band-gaps of the system, where the waves are evanescent. The
strongest exponential decay is found to be when each material of the two is chosen
to be a quarter of wavelength thick. In case of a Bragg reflection waveguide it is a
quarter of the transverse wavelength, meaning that this thickness of layer v with
dielectric coefficient ¢, is given by

A= (5.4.4)
24/ %e, — k2

The eigen-values in this optimal decay case are given by the ratios of the two
transverse impedances in the two materials. In the optimal confinement case, each
one of the electromagnetic field components either peaks or vanishes at the inter-
face between any two dielectrics. Going back to the Bragg reflection waveguide,
since the amplitudes in the first dielectric layer are already known, the interface
between the first and the second dielectric layers may be considered as an entrance
to a periodic structure, to which the wave must enter in one of the eigen-vectors for
the mode to be supported. Explicitly, this condition is given by

EZ()C:Dim+A1):0 Zy>2p

OE. 5.4.5)
axh (X = Dint +A1) =0 Z <Zz,

where A is the first layer width, and Z;, Z; are the transverse impedances of the first
and second layers respectively. This condition was pointed out by Mizrahi and
Schachter (2004a). Setting the first layer width according to the above condition
will ensure that the required mode at the given wavelength will indeed be supported
by the waveguide. The first layer may therfore be conceived as a matching layer
between the vacuum region and the subsequent periodic structure, as it rotates the
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amplitude vector dictated by the vacuum mode, to overlap the eigen-vector of the
periodic structure.

Given the amplitudes, as required by (5.4.3), it is now straightforward to
determine the points where E, peaks or vanishes. The resulting expression for the
first layer width reads

1 k
- arctan <811< i cot(kxDim)) Z>7

A™ )M ! (5.4.6)

=
1 k
—arctan< ! tan(kxDim)> Z1<Z,.
ki erky

In the above expression, the smallest positive value of the arctan function is
chosen. It should be noted that k, may be purely imaginary, meaning that the
transverse waves in the core are evanescent, and the expression still holds, as
long as the transverse wave-numbers in the dielectric layers are real. A special
case of this expression is when k,Dj, = m,7/2, and then the matching layer is
transverse quarter-wavelength thick similarly to the outer layers. For the special
case where the phase velocity equals the speed of light (k, = wg/c), the expression
for the first layer width reads

1 Z !
T arctan l(—l %Dim> Z1>27,
A™ ) "o (5.4.7)
1 Z
k_ arctan (— il @Dim> VARV
1 Mo ¢

Figure 5.16 illustrates at the bottom curve the planar TM first layer width as a
function of the core half-width Djy, for the requirement that vy, = c. The first layer
was set to have a refractive index of n; = \/e; = 1.6, and the other material was
taken to be of refractive index n, = /e, = 4.6. The first layer width is normalized
by Aq = Ao/4+/e1 — 1, which is the transverse quarter-wavelength width in the

2.0
150 Cylindrical TE
Planar TE
S 4ol
3 1.0

Fig. 5.16 First layer width
for vy = ¢, normalized by 0.5+
Aq = 20/4+/e1 — 1. The layer
adjacent to the core has a
refractive index of n; = 1.6 0 1 2 3 4 5
and the other material has
ny = 4.6

Cylindrical TM
Planar TM
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vph = ¢ case. The choice of placing the lower refractive index first entails that first
case of (5.4.7) is used in the calculation of the planar TM first layer width.

The same principles can easily be implemented for TE modes, planar and
cylindrical. From the requirement that H. either peaks or vanishes the planar TE
matching layer width is found to be

1 ky
- 0 arctan <k—: cot(kxDim)> Y, >Y,
ATE) _

=
1 k
o arctan( k—l tan(kXDim)> Y <Y,

1 X

(5.4.8)

wherein Y|, = ckj/won, are the transverse admittances; k;» are the transverse
wave-numbers in the first and second layers. The difference between the above
expression and the TM expression is in a ¢ factor in the arctan argument. The
second curve from the top of Fig. 5.16 illustrates the planar TE case. We observe
that the TM curves approach zero, whereas the TE curve is above the A /A = 1
line, and approaches it for larger core widths. This situation is reversed according to
the given analytical expressions, should the material of the layer adjacent to the
core is chosen to be of the higher refractive index of the two mentioned.

To summarize, the design procedure is as follows: According to the required £,
a Bragg mirror is designed so that all layers are transverse quarter-wavelength
thick. In order to match the mirror to the desired core field, the layer adjacent to the
core is adjusted to the width given above by analytic expressions. A similar
approach may be employed for cylindrical structure and the reader can refer
Mizrahi and Schachter (2004a) for details.

5.4.2 Field Distribution

With the same given set of two dielectric materials and a given core dimension, the
above design procedure makes it possible to achieve different phase velocities, and
correspondingly, different field distributions across the core. As a demonstration of
the ability to control the field behavior in the core, the symmetric planar TM mode
will next be considered. Figure 5.17 presents different configurations, where in all
cases the core half-width is D;;; = 19, and the two materials used have refractive
indices of 1.6 and 4.6. In all cases, E. is marked by a solid line whereas H, is
marked by a dashed line. The dielectric layers are depicted in gray, where the higher
refractive index layers are indicated by the darker gray.

As an example, we consider a structure which supports a mode with a phase
velocity equal to c¢. The transverse impedance for the first layer, which is given by
Zy = nycky /wey, takes the form Z; = nyv/er — 1 /e, when k, = wq/c. For the
materials chosen here, this entails that the higher refractive index material has the
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Fig. 5.17 Planar TM profiles. (a) k.Dj = 0 low refractive index first (b) k.Dj = O high
refractive index first (¢) kDin = /3 (d) kuDine = 37/4 (€) kyDiny = /2 (metallic-like walls)
(f) kxDine =  (magnetic-like walls). The normalized decay parameter o = o/ tan d and £ is the
ratio of the power flowing in the core to the total power

lower transverse impedance and vice versa. We locate the material with the lower
refractive index adjacent to the hollow core. Moreover, setting the matching layer
width according to (5.4.7) for the vp, = ¢ case, the field profile depicted in
Fig. 5.17a, in which E, is uniform across the core, is obtained. As indicated by
(5.4.5) the longitudinal electric field vanishes and the transverse magnetic field
peaks at the interface between the first and the second dielectric layers, identically
to the case of a metallic wall located at that interface. Maintaining the same field
distribution in the core itself, Fig. 5.17b illustrates the case where for v, = ¢, the
material with the higher refractive index borders the core. The second case of
(5.4.7) is used, and the picture obtained is as if a perfect magnetic wall is placed
at the interface between the first and the second layers. As examples of arbitrary
field profiles that can be achieved setting the matching layer width according to
(5.4.6), Fig. 5.17¢c, d, where the transverse wave-numbers were chosen to be
kyDiny = m/3 and kDj, = 31/4 respectively, are shown. Finally, as a special
case of (5.4.6), the field distributions when all the layers are transverse quarter-
wave thick, are shown. Figure 5.17e illustrates the case k,Diyy = 7/2, in which the
field in the core behaves as if the core boundary is a metallic wall. Figure 5.17f
illustrates the case k.Di,; = m, which has an identical field to a perfect magnetic
wall at the core boundary. Common to all cases presented is that at every interface
between any two dielectrics, each one of the fields either peaks or vanishes.
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5.4.3 Dispersion Curves

So far we have considered only the electromagnetic field behavior at the specific
wavelength 1y, for which the waveguide was designed. As is demonstrated next,
adjusting the first layer width, may have a significant effect on the dispersion curve.
The dispersion points are determined by searching numerically for the zeros of the
dispersion function, which has an analytical expression in the planar case. For the
cylindrical case, the transfer matrix method is harnessed to determine the reflection
coefficient from the outer layers. Taking a relatively large number of layers, the
reflection coefficient within the band-gap represents that of an infinite number of
layers, i.e., its absolute value is unity for all practical purposes.

Our next step is to investigate the symmetric TM mode of both planar and
cylindrical Bragg reflection waveguides with Dj,, = 0.34g and R;,, = 0.34¢. For the
layer adjacent to the core, the material with the lower refractive index was chosen.
In the left frame of Fig. 5.18, a band diagram is shown, where the allowed
transverse propagation areas are indicated in gray, and the dispersion curves of
the symmetric TM mode in the planar case are depicted for two configurations. In
the first configuration, all the layers are 1y/(4v/¢ — 1) thick, meaning that the Bragg
mirror is designed for vp, = ¢, but without using a matching layer to match between
the mirror and the core field. The result is that the red solid line does not intersect
the point (w/wy,ck./wg) = (1,1), as is required. Nevertheless, this dispersion
curve intersects the light-line at a lower frequency. Operating the waveguide at
that frequency is not desirable since the mirror is not optimal, i.e., the transverse
exponential decay is weaker than could be achieved. When the first layer is adjusted
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Fig. 5.18 Symmetric TM mode dispersion diagram for: Left frame: Planar waveguide with
Diny = 0.34¢. Right frame: cylindrical waveguide with Rj, = 0.34p. In both cases the dashed
curves are obtained with no design procedure (layer identical to the structure’s), and the solid
curves correspond to a vp, = ¢ design procedure
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according to the design procedure describe above, the blue curve is obtained. It is
seen that changing the first layer thickness shifted the dispersion curve so that there
is now an intersection with the point (w/wy, ck,/wo) = (1,1). A similar picture is
obtained for the cylindrical case shown in the right frame of Fig. 5.18.

5.4.4 Quasi-TEM Mode

In a planar waveguide, it is possible to create a power distribution in the core with
either monotonically increasing or monotonically decreasing profile, and non-zero
on axis. A special case is when the power profile is completely uniform within the
core, implying that inside the core the field is TEM, having both £, = 0 and H, = 0.
In the dielectric layers, the modes are either TM or TE, and the waveguide may be
matched to either. By computing the amplitudes in the layer adjacent to the core, we
find for the TEM-TM that the first layer should either be transverse quarter-
wavelength thick for Z; < Z, (higher refractive index first for the materials chosen
here), meaning that actually no matching to the Bragg mirror is needed, or trans-
verse half-wavelength thick for Z; > Z,. A TEM-TE mode would have H,, H,, and
E,, and no matching to the mirror is needed if the higher TE admittance material is
first, and a transverse half-wavelength is required if lower admittance is first — see
the field profiles in Fig. 5.19.

5.4.5 Forces on the Layers and Discontinuities

Electromagnetic power injected into a Bragg waveguide exerts forces on the
dielectric layers and on the discontinuities. In this subsection, we evaluate these
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forces for a general regime but the examples are motivated by an acceleration
structure. For simplicity sake, the discussion will be limited to a planar structure.
Within the dielectric layers, the Lorentz volume force density is given by

f=pE+J xB, (5.4.9)

where p is the instantaneous electric charge density, J is the instantaneous electric
current density, E is the instantaneous electric field, and B is the instantaneous
magnetic induction. In a polarizable material with instantaneous polarization den-
sity P, the macroscopic effective charge density is p = —V - P, and the effective
current density is J = OP/0t. Since in a dielectric material gye,E = ¢E + P and
V -E =0 as there is no free charge, it follows that p = 0. Therefore, only the
second term in (5.4.9) is nonzero, and the volume force density, using B = pyH, reads

f=eo(e — l)aa—l;: x poH. (5.4.10)

Specifically, for time harmonic fields of time-dependence exp(jwt), the time-
1
average force density is given by (f) = ERe[—jwao(sr — 1)E* x uoHJ, where we

kept the same notations for the phasors of the two field components.

At the interface between any two dielectric layers, a polarization surface charge
is created, giving rise to a surface force density. The instantaneous polarization
surface charge between layer v and layer v + 1, as shown in Fig. 5.20, is given by

Psy = —Li- (Pf;)l - PS”), (5.4.11)

- +
layer v r;spectivelgl. The Lorentz force per unit area is obtained by multiplying
the polarization surface charge density by the average of the perpendicular electric
fields from both sides of the discontinuity. Defining E‘t and Ex:,) as the x components
of the electric field at the boundary in layer v and layer v + 1 respectively, we obtain
for the surface force density

where P! >1 and P! )1 are the polarization densities at the interface in layer v 4 1 and

1 .
Fuv = Pans (Eﬁ,x) v EHH) (5.4.12)

Ev Evil
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Fig. 5.20 An interface / X
between two dielectric layers, /
where a polarization surface p/ 1

charge density is formed
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Using the boundary condition st,(X-ﬁ) = 8‘,+1E§,;)+1 together with (5.4.12), the
surface force density at the boundary reads

1 &2
Foy=-eoE2 (2 —1). (5.4.13)
) 2 X,V 82
v+1

This total surface force density may be conveniently divided into two
contributions from the two polarization densities of each layer at the interface.
For this purpose, we may postulate the existence of an infinitesimal vacuum gap
between the two layers, and then the force density is calculated on each of the two
surface polarization charges. The force density on the surface charge of layer v is
given by

1
FU) = eE(H? (2 - 1) >0, (5.4.14)

X,V 2 X,V

and the force density on the polarization surface charge of layer v + 1 is

1
Fi) = =S 2 (6, — 1) <0, (5.4.15)

and F,, = Fi;,) + FW In the two above inequalities, we have assumed that ¢, > 1,
leading to the conclusion that the effect of these forces is to pull each of the two
layers at the interface towards the other, as illustrated in Fig. 5.20.

Finally, the rotal transverse pressure exerted on all the layers may be found by
integrating the Maxwell stress-tensor (Stratton 1941) over a closed surface. Within
the vacuum core, the relevant Maxwell stress-tensor component T, for a TMg,
mode reads

1 2 1 2 1 2
Tex = 5 00E3 — 560E2 =5 poH;, (5.4.16)

In the remainder of this sub-section, we consider a planar acceleration structure
as an example. The explicit expressions for the field components of the TM more
were presented in the right column of Table 5.1. For this field distribution the time-
averaged Maxwell stress-tensor is (Ty) = —(g0/4)|Eo|*. Enclosing one side of
the waveguide by a rectangular surface, only the T, component contributes to the
integral, as the Ty, component has zero contribution due to symmetry, and the T,
component is identically zero. Assuming that the laser field decays to zero at
x = £oo, the time-averaged transverse pressure exerted by the guided mode on
the Bragg structure located at x = Djy, is

1
(Fer) = 380|EO|2; (5.4.17)
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the subscript T indicates that this is the tofal pressure. Hence, for a given
accelerating gradient E, the total transverse pressure is repelling and is indepen-
dent of the details of the structure. For comparison purposes, we note that this
pressure is 1/4 of the pressure exerted by a plane wave of amplitude E, incident
perpendicularly upon a perfect metallic plate. Assuming that the gradient of interest
is Eg = 1 GV/m, the total pressure is (Fy 1) ~ 2.2 x 107® N/um?.

Based on (5.4.10) the time-averaged volume force densities associated with the
TM acceleration mode are

1 ) y
(fi) =3 Re ljiwoeo (& — 1)E: poH, ] (5.4.18)
whereas the longitudinal component of the volume force density is zero
1 ) y
) = SRe [—jwoso(er — 1)ELpgH,| = 0, (5.4.19)

and so is the horizontal component (f,) = 0

The surface force densities are computed using the time-average of (5.4.14) and
it warrants to point out that the total pressure is the sum of all transverse force
densities, and explicitly,

Xy+1

(Fir) = z“’: (Fryv) + J dx{fe () |; (5.4.20)

v=0

Xy

x, denotes the boundary between layer v and layer v + 1 and v = 0 denotes the core.

The above expressions for the force densities may now be utilized for Bragg
acceleration structures, and particularly, the analysis of two structures made of SiO,
(y/& = 1.45) and Si (\/¢, = 3.45) with core half-width Di, = 0.3/ is given in
Fig. 5.21. In each figure, the frames in the left column correspond to a structure
having the SiO; as the matching layer adjacent to the core, and the right column
corresponds to a structure with Si as the layer adjacent to the core. When the lower
refractive index is used for the matching layer, the maximum of the volume force
density is obtained inside the second layer (Fig. 5.21c), whereas in the second case,
the maximum is obtained inside the matching layer (Fig. 5.21d).

The total internal pressure at some point within the layers against an external
mechanical enforcement is given by the cumulative sum of both surface and volume
force densities starting from the vacuum core up to the point of interest, similarly to
the sum of (5.4.20), which is up to x = co. This pressure, which we denote by (Fy),
is depicted in Fig. 5.21e—f. It is seen that in the layers that are close to the vacuum
core, the pressure is negative, pulling these layers towards the core. Farther away

from the core, the pressure becomes positive and approaches (F ) = ZE()|E0|2 (not

seen clearly in the figure due to the scale).
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Fig. 5.21 Volume force densities in two Bragg structures made of SiO, (indicated by lighter gray)
and Si. (a—b) Two of the electromagnetic field components, (c—d) volume force densities, and (e—f)
total internal pressure. The left column frames correspond to a structure with SiO, as the matching
layer, and the right column corresponds to Si as the matching layer

By calculating the fields inside the dielectric layers given the vacuum field, it is
possible to show that the behavior of the maximal volume force density takes the
form

2 2

T woDim & — 1 8()|E0|
oy = K= | 1 , 5.4.21
) e = 5 +( ) = (5:4.21)

where x is a constant independent of Dj,.. When the maximum is obtained in the
matching layer, k¥ = ¢;/¢; — 1, and when the maximum is in the second layer,
k = (¢ — 1)Z,/Z?, where Z, = /e, — 1/¢,, v = 1,2 are the normalized transverse
impedances. Since the maximal surface force density occurs at the vacuum-
dielectric interface, we may use this quantity as reference

c 82

1 (@Din\” &3 — 1
s =5 (220) 2Ll (5422
1

We have already stated that the total transverse pressure on one of the
Bragg mirrors is (F, 1) ~ 2.2 x 10% N/m? if we consider an accelerating field of
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Ey = 1GV/m. Assuming that one Bragg mirror in the structure has an area of
1mm x 1 mm, the total transverse force on the mirror is 2.2 N. For a mirror
thickness of 50 pm and material density of about 2 gr/cm’, we obtain that this
force is 6 orders of magnitude larger than the gravitational force on the mirror,
indicating that the radiation pressure is by no means negligible.

On the other hand, from the perspective of material strength and the possibility
of crack formation, the situation is different. The order of magnitude of the
pressures in the Dy, = 0.3 Bragg structure including the internal pressure (F pr),
as shown in Fig. 5.21, is of the order of 10® — 10’7 N/m?. According to rough
theoretical estimates, it would be reasonable to assume that an internal pressure
below EY) /zt, where E(Y) is Young’s modulus, may be sustained without damage to
the structure. Young’s modulus for SiO, is 72.6 GN/m?, whereas for Si it is
162 GN/m?. It follows that the electromagnetic pressure in the structure under
consideration is at least 3 orders of magnitude below the theoretical threshold
EW) /. Moreover, even if D, is increased to 0.8, there is a difference of more
than 2 orders of magnitude between the obtained pressure and EY)/z. It is also
worth noting that a gradient significantly larger than 1 GV/m would be unaccept-
able since it would cause material breakdown long before reaching the radiation
pressure damage threshold. We, therefore, conclude that under the assumptions
considered here, the electromagnetic forces on the planar Bragg acceleration
structure do not pose a significant threat to the operation of an optical Bragg
accelerator. A detailed analysis was published by Mizrahi and Schachter (2006).

5.5 Transients and Wakes

When several bunches of electrons are injected in a structure, as is the case in
an accelerator they not only interact with the electromagnetic field, which was
prepared for their acceleration, but they also generate a whole spectrum of waves at
different frequencies. These form a so-called wake field, which in turn decelerates
the bunch. In order to visualize the process, imagine a pulse consisting of two
bunches. When the first enters the periodic structure it generates a wake-field and if
this is not “drained” fast enough then it may affect the interaction of the trailing
bunch according to the distance between the two.

Propagation of a pulse in a disk-loaded waveguide should, in principle, account
for all the modes and all the reflections from the disks. The difficulties in the
analysis of transients generated by charged particles in periodic closed structures
arise from the fact that (1) the frequency spectrum of a moving point-charge is
infinite and (2) although the spectrum of frequencies in a closed periodic structure is
discrete, it spans to infinity. The analysis is somewhat simplified by the fact that in
the transverse direction the (evanescent) wave decays exponentially exp(—wr/cyf)
therefore, the contribution of the high frequencies might be small — at least at low
energies. The situation is different in open periodic structures where, as we already
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indicated, the spectrum is discrete and finite. Therefore, potentially less energy is
induced in the system. In this context Smith-Purcell effect can be regarded as a
transient generated by a moving particle. We also consider the wakes generated in a
Bragg-reflection structure. What we do not consider here is azimuthally asymmetric
modes that may cause deflection forces on the electrons. A qualitative discussion on
this subject is presented in Sects. 4.5 and 8.1.5.

5.5.1 Propagation of a Wave-Packet in a Periodic Structure

In order to illustrate the effect of the periodicity on the propagation of a wave packet
we consider at ¢ = 0 the same wave-packet a(z), in free space and in a periodic
structure. The propagation in free space is represented by a dispersion relation
k*> = w?/c?, therefore a scalar wave function W(z, 7) is given by

o0}

Y(z,t) = J dky(k)exp(—jkz) % [exp(jkct) + exp(—jkct)]. (5.5.1)

—00

Since at ¢+ = 0 this function equals a(z), the amplitudes (k) can be readily
determined using the inverse Fourier transform hence

(k) = L JOO dza(z)exp(jkz). (5.5.2)

—00

Substituting back into (5.5.1) we find that
1
Y(z, 1) = 3 [a(z = ct) + a(z + c1)], (5.5.3)

which indicates that the pulse moves at the speed of light in both directions and
asymptotically, it preserves its shape.

In a periodic structure the description of the wave packet is complicated by the
dispersion relation which in its lowest order approximation (e.g., first TM symmet-
ric mode in a waveguide) can be approximated by

w(k) = & — dwcos(kL), (5.5.4)

where @ = (wp + w,)/2 is the average frequency between the low (kL = 0) cut-off
denoted by wy and the high cut-off (kL = ©) denoted by w,. The quantity dw =
(g — wp)/2 is half the pass-band width and L is the period of the structure.
Contrary to the previous case k here denotes the wave-number in the first Brillouin
zone. In the framework of this approximation, we can use Floquet’s representation
to write

n/L

Y(z,1) = Re{n_zoc;o J_n )

dkyr, (k)expljw(k)t — jk,z] }, (5.5.5)
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where k, = k + 2znn/L. The amplitudes ¥, (k) are determined by the value of the
function at ¢t = 0 hence

v, (k) ! JOO dza(z)exp(jk,z). (5.5.6)

= % .
Substituting back into (5.5.5) we have

1 (o 0)
o Jioo d¢a(()
Y(z,1) =Re s /L . (8.5.7)

X Z J dkexp{jt[® — dw cos(kL)] — jk,(z — ()}

n=—oc J-m/L

At this point, we can take advantage of the generating Bessel function and simplify
the last equation

1 00 o0 n/L
Y(z,1) =Re 7 Jioo dla({) n;m an Ldkexp(]wt)
(5.5.8)
% 3 T(Gonexpl(kL — n/2)vlexp(—jki(z — )]
which after the evaluation of the integrals and summation (over n) reads
Y(z,t) = Z a(z — vL)J, (owt) cos(wt — v /2). (5.5.9)

Figure 5.22 illustrates the propagation of two wave-packets in vacuum (dashed
line) and in a periodic structure. The latter is characterized by @ = 2n x 10[GHz],
0w = ®/30 and a spatial periodicity of L = 1 cm. At ¢ = 0 the distribution is a
Gaussian, a(z) = exp[—(z/L)*]. In each one of the frames W (z, f) was plotted at a
different time as a function of z. Characteristic to all the frames is the relatively
large peak following the front of the pulse.

It is evident that although the front of the pulse propagates at the speed of light
(as in vacuum) the main pulse propagates slower. In fact, a substantial fraction of
the energy remains at the origin even a long time after + = 0. For the parameters
used, the amplitude of the signal at the origin (z = 0) is dominated by the zero
order Bessel function i.e., Jo(dwr) therefore the energy is drained on a time scale
which is determined by the asymptotic behavior of the Bessel function namely

x 1/ Vdwt. Clearly the wider the pass-band the faster the energy is drained from
the origin.
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Fig. 5.22 Propagation of the
wave-packet in vacuum
(dashed line) and in the
periodic structure at four
instants

5.5.2 Wake in a Closed Periodic Structure

A point-charge moving in free space generates a broad spectrum of evanescent
waves. This spectrum is attached to the charge and as long as near the particle there
is no obstacle, this spectrum is not altered and the charge may move at a constant
velocity. In the presence of obstacles, this spectrum is partially scattered and these
scattered waves affect the motion of the particle. It is therefore natural to charac-
terize the wake generated by the particle in a periodic structure in terms of the
external power (or force) necessary to apply in order to preserve constant motion.

The electromagnetic wake generated by a relativistic bunch of particles in a
periodic structure or single cavity, that RF accelerators consist of, was the subject of
many studies. However due to the complexity of the problem there are only a few
analytic or quasi-analytic solutions: for example Bane et al. (1981), has developed a
simple model that describes the energy loss of a bunched beam traversing a cavity
attached to a cylindrical waveguide. The calculation was subject to the assumption
of an azimuthally symmetric structure. Later Dome (1985) has extended the
approach to asymmetric modes.

Another quasi-analytic approach was developed by Dome et al. (1991) for the
evaluation of the diffraction of the electromagnetic field created by a charge
traveling on the axis of circular apertures in a set of perfectly conducting infinite
planes. The total field was assumed to be a superposition of the evanescent waves
traveling with the charge itself and the radiation from the plates. Or in other words,
the total field is a superposition of two components: a part generated by the charge
in free space and a part reflected from the plates; together they satisfy the boundary
conditions.
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In recent years wakes have attracted the attention of many researchers. Several
reviews summarize in a systematic way many of the phenomena and the methods
involved: Heifets and Kheifets (1991), Chao (1993) and Zotter and Kheifets (1998).
For a detailed discussion the reader should consult these publications. In the present
sub-section we focus on an analytic and intuitive approach yet we try to keep the
discussion as general as possible. Explicitly, we determine the maximum field
acting on a point-charge moving in a cylindrical waveguide with periodic wall of
arbitrary but azimuthally symmetric geometry. The gradient is a result of the
electromagnetic field scattered by the periodic wall where the latter is electromag-
netically described by a reflection matrix. The extremum determined here is subject
to the assumption that the absolute value of each diagonal term of this reflection
matrix is smaller than unity.

Consider a point-charge (Q) moving at a constant velocity vy along the axis of an
azimuthally symmetric structure of periodicity L and arbitrary geometry otherwise.
The nearest point of the waveguide’s wall to the axis is denoted by Ry, — see
Fig. 5.23. The current density associated with this charge is given by J.(r,z,t) =
—Qvpd(z — vot)d(r)/2nr and it excites the longitudinal component of the magnetic
vector potential. The latter has two components: a non-homogeneous part (super-
script nh) that based on the free-space Green’s function may be written as

00 e}

do exp(jor) J dkA(w, k) exp(—jkz)Ko(I'r)  (5.5.10)

—00

AU (7 2 1) = J

—00

where T = 1/k2 — (w/c)?, A(w, k) = Qugvod(w — vok)/(2n)* and the homoge-
neous counterpart (superscript h) that reads

o0 o0

Aff')(r,z,z)zj do exp(ja)t)J dk B(w, k) exp(—jkz)Ip(Tr).  (5.5.11)

—00 —00

The boundary conditions at r = R;,, impose the relation between A(w,k) and
B(w, k). In general, this relation may be expressed in terms of the reflection
operator (R)

B(w, k) = JOQ Ak’ R(w; k, K)A(w, k). (5.5.12)

—00

Fig. 5.23 Schematics of the W
structure under consideration
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Since by virtue of Poynting’s theorem we know that the amount of power in the
wake-field is entirely determined by the reaction-field on the particle, we consider
the longitudinal electric field linked to the homogeneous solution:

00 00 _ 21ﬂ2
EW(r,z,1) = J do exp(jor) J dk ( ¢ ) exp(—jkz)Io(I'r)
- —00 —00 .]w
X J dk' R(w; k, K )A(w, k). (5.5.13)

At this point we may take advantage of the explicit expresion for A(w, k) that
includes a Dirac delta function, therefore at r = 0

OQugvo [~ oty —(T)c
EM(z,1) = (22)2 N dkdk’ /Ko k)WR(w =kvo;k, k) (5.5.14)

wherein I = \/k2 — f* (k' )2. This expression is general (subject to the previously
mentioned assumptions) and at this point it will be applied to a specific class of
problems i.e., periodic geometry. In this case, we limit the discussion to the
decelerating field averaged over one period (L) of the structure

L/2vg
Ej=—T J diEW (r = 0,2 = vot, 1) (5.5.15)

7L/2V(]

and take advantage of the the Floquet decomposition of the continuous integral
%, dk... = fi/r ?L dg >0 o e as well as the simplification of the reflection

operator
R(w;k, k') = 210(q — ¢')p, m(@;q,4'). (5.5.16)

The latter reflects the fact that a wave scattered by a periodic structure preserves
its frequency and wave-length projection in the the first Brillouin zone but the
harmonics are coupled by the reflection matrix — p,, ,,(®, q).

Averaging over the period of time it takes the particle to traverse one period of
the structure, resorting to the Floquet decomposition and using the explicit expres-
sion for R in (5.5.16) the expression for the decelerating field is given by

n/L
E| J . dg > jknpn(® = Vokn, q) - (5.5.17)
,n —

" 2nee)?

It should be emphasized that this is an exact expression for the average decelera-
ting field. Practical evaluation of (5.5.16) is relatively easy at non-relativistic
velocities since if the period (L) and the internal radius (Rj,) are of the same
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order of magnitude then the argument of the modified Bessel function becomes
significant for |n| > 2 and as a result, only the contribution of the first few harmonics
is not negligible. As the particle becomes relativistic, the number of terms
(harmonics) that have a non-negligible contribution becomes larger and accurate
evaluation of a larger reflection matrix is required. For example if y ~ 10°, R;,,/
L ~ 0.5 then p is a 10° x 10° matrix and obviously the calculation is fairly time-
consuming particularly bearing in mind that for each ¢ and each » the entire matrix
has to be re-calculated. It is therefore natural to search for an upper value of this
integral. With this purpose in mind, we assume that in the ultra relativistic regime,
the absolute value of each diagonal term of the reflection matrix satisfies,

[0 (@ = Vokn: )| < KG(|KnlRint/7), (5.5.18)

and consequently we found that

L
4meoR?

int

Ey < E(max) _ 0
F="1 7 4meoR?

X {4 J:O dféKg(é)} x 2. (5.5.19)

int

The last result provides us with extremum value for the longitudinal decelerating
field as a point-charge traverses a periodic structure of arbitrary geometry. Several
aspects are evident: the field is independent of the period or any other geometric
parameter of the structure with exception of Rj,. The result in (5.5.19) may be
generalized to include the effect of bunch of finite sizes. For a finite length (A,) the
average decelerating field may be generalized and it is given by

max o . 1 A,
E‘(‘ ) = 7Q ) X [4 L défKé(i)smcz (ZVRim f)}

4meyR?
10) 2 (5.5.20)

X
471:60Rm1 1+ (%VRA:>3/2
T int

Note that if A, ~ 0.4R;, and y ~ 100, the decelerating field is less than 6% of the
original value (A, = 0).

In a similar way we may determine the maximum power generated by M micro-
bunches each one carrying a charge ¢ and the spacing between two adjacent micro-

bunches is L, namely
2
( /cfv )

sinc? <1M§/R ‘)
sinc? ( &y Rm‘)

_ 42 00
P<max>:4 "V;’ X 4J dEEK3(€)
neoRy, 0

(5.5.21)
—q2M2v0

> 2
4meoR? % 4J0 dféKO(é)

int
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Fig. 5.24 Maximum 10
normalized power as a
function of the bunch spacing
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At the limit yL,/R;y > 1 the integral reaches an asymptotic value (2/M) or
explicitly

(5.5.22)

Figure 5.24 reveals the dependence of the normalized power as a function of
the bunch spacing yL,/R;n. We clearly observe that for large normalized spacing
the term in the square brackets reaches its asymptotic value.

5.5.3 Wake Effect in a Bragg Waveguide

Bragg reflection waveguides rely on perfect reflection in predesigned frequency
range(s). Outside this range the electromagnetic power may escape the structure
therefore the effect of a single bunch on the trailing bunches may diminish. This is
one of the main differences between a Bragg reflection waveguide and closed
structures. In this subsection the attention will be directed towards the wake
generated by a train of relativistic bunches with special emphasis on the effect of
the Bragg reflections properties. Figure 5.25 reveals schematically the configuration
under investigation: A train of M bunches each one carrying a charge ¢ moves on
the axis of a vacuum tunnel of radius R;, surrounded by a dielectric medium ¢;; the
spacing between adjacent bunches is denoted by L;. Beyond the matching layer,
there is a Bragg structure represented here by a reflection coefficient R thus the
magnetic vector potential in the matching layer is given by

Vo

A.(r,z,0) = T dwA(w) exp {Jw (f - i)} (5.5.23)

X {H((f) (r% m) + 'R(a))H(()l) (l% & — 1)}
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Fig. 5.25 A train of M
bunches each one carrying a
charge ¢ moving on the axis
(ro = 0) of a vacuum tunnel
of radius Rj, surrounded by a
dielectric medium ¢,; the
spacing between adjacent
bunches is denoted by L;.
Beyond the matching layer,
there is a Bragg structure

5 Periodic Structures
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After defining @ = (wRjy/c)v/er — 1/2¢, the power generated by the wake is

given by
2 2 T 11+ R(@) M ’
—g°c _ @ o
pP=—*1"_ = d —jcL
AmeoR2, 7 J T+ jo— (1 —jo)R(®) ;eXp( jolyn)
- ) (5.5.24)
 —¢*M*c 2 J 1+ R(®) sinc? (1 wLyM)
- dneRi, 1+ jo— (1 —jo)R(®) sinc?(aL,)
where L, = 2¢:(Ly/Rin)/+/é: — 1 denotes the normalized bunch spacing.
Clearly, in the absence of reflections i.e., R = 0,
—Pc 2 ¢ T expljoLy(n — m)]
Py = 5 = J doo——-——75-
dmegR;, e 1+ jo
—gPc % . (5.5.25)
_ T, 2f(M, L)
 4megR?, b
where
0 x<0
hx)=4¢ 05 x=0 (5.5.26)
1 x>0

is the Heaviside step function and f(M,L,) is the train form factor that can be

evaluated analytically
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f(M,Ly) =2 exp[—Ly(n — m)]h(n — m)

nm=1
=M +2(M —1)exp(—Lp) + ...... +2exp[-Ly(M —1)]  (5.5.27)
M[1 — exp(—2Lp)] — 2exp(—Ly)[1 — exp(—ML,)]
[1 = exp(~Ly)]”

Four regimes are evident: (1) in case of a single bunch the form factor is unity,
(2) if the length of the train is much smaller than the effective radius of the tunnel,
the form factor is proportional to M? this is to say that the wake consists of coherent
radiation. (3) In between the form factor is determined by the expression in the third
line

1 M=1
_ M? MLy, < 1
f(M,Ly) = _ o (5.5.28)
MLy — 1 +exp(—ML,)|/L;, Ly < 1
M [4, > 1

whereas (4) if the train length is large the power is proportional to the number of
bunches in the train. Note that each bunch is assumed to be a point-charge.

Let us now repeat the analysis from the above but accounting for reflections from
the Bragg structure, namely

—¢’c 2 T 1 i _ :
=——— = | do————|> exp(—j@Lyn) (5.5.29)
4n80Riznt n B Lrgga); +](D n=1

In order to account for the special character of the reflection matrix describing a
Bragg structure let us assume that there is a set of normalized frequencies and their
vicinity |@ — @;| < 0@;/2 wherein R =1 and zero otherwise. For an analytic
estimate we push this assumption to the extreme and consider the limiting case
when the reflection coefficient is unity over the entire spectrum

2 2 oo
—q°c 1
1= Lz - J do—
4dmegR;, T Jjo

—00

2
(5.5.30)

M —
Z exp(—j@Lyn)
n=1

implying

1= 2 = 2
dmeoR;, dmeoR;,

_ M 2
¢ o [2 > hin - m)] — 1 oM (5.5.31)
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Obviously, for a train of M point-charges when the radiation is reflected from the
structure back to axis where the electrons are, the emitted power reaches the
maximum value. In case of an open structure (R = 0), the power generated by
the electrons reaches the limit of the closed structure only if the train length is much
shorter that the tunnel radius.

For a more realistic assessment of the reflections effect, one may consider a
perfect reflector (£, = 0) located at r = Ry > R, for which the reflection coeffi-
cient is

HY (ARex) H" (ARin)
H(()1> (ARCXI) H(()2> (ARint)

R=— ~ e HO" (5.5.32)

wherein it is tacitly assumed that ARy > 1 and 7 = 2¢&,(Rext — Rint) /Rine; this last
parameter represents the normalized distance where the reflection occurs. Explic-
itly, the power is given by

00 2

M
> exp(—joLyn) (5.5.33)

n=1

—g*c 2 _ 1
= - O
47T8()Rim I S W +](JJ
and its detailed analysis is formulated as an exercise (5.10) at the end of this
chapter.

Exercises
5.1 Based on the solution for A,(r,z) in Sect. 5.1 determine the Floquet
representation of the magnetic vector potential (TMy;). In other words

write

Ax(r.2) = Jo(p1 ) D an(K)exp(—ikc)

and determine a, (k).

5.2 Find all the waves which can propagate between f = 0 and 20 GHz,
including asymmetric modes for the system described in Sect. 5.1.
Repeat this exercise for the branches of the TE modes.

5.3 For the parameters in Figs. 5.2 and 5.3 consider N cells and calculate
(using the transmission matrix formulation harnessed in Sect. 5.1) the
transmission coefficient and analyze it in the frequency range where if
N — oo the system were in the forbidden gap. Hint: show that the
transmission coefficient decays exponentially with N.

5.4 Consider a 3D dielectric structure &(x,y,z) periodic in all three
dimensions (L,L,,L.). Based on Maxwell’s equations, show that the

dispersion relation has the same form as the one in (5.1.32).
(continued)
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5.5 Analyze the coupling of spatial harmonics for the system in Sect. 5.3 in
a similar way as in Sect. 5.2.2.

5.6 Determine the expression for the reflection matrix defined in (5.3.36)
Use it to analyze the decelerating force as prescribe in (5.3.39).

5.7 In the context of Sect. 5.3.3, calculate the force which acts on the
moving charge. Based on this expression, determine the total power
emitted.

5.8 Repeat the calculation of the propagation of a transient in a periodic
structure (Sect. 5.4) but this time for a TEM-like mode. [Hint: consider
® = oy sin(kL/2).]

5.9 Extend the expression for the maximum power emitted by a point
charge in a periodic structure as expressed in (5.5.19) to include the
effect of a finite radius (Rp).

5.10 For the evaluation of the power emitted by a train of electrons in a
closed structure (5.5.33), define the dispersion relation

D(®) = @ — cot(@r)

which determines the poles of the integral, D(®;) = 0; note that if
@®; is a solution, — @; is a solution too. By expanding D(®) ~
(o — @) (%) S— in the vicinity of the poles and employing the Cauchy
residue theorem show that

2 M 00
_q C -
= X 2 E o; cos|[@;Ly(n — m)|h(n — m)
4n80Ri2nt nm=1 i=1

M _
What is «;? Find an analytic expression for Y. cos[@;L,(n —m)]
n,m=1
h(n —m) and compare the train form factor with the two extremes

presented in the text.



Chapter 6
Quasi-Periodic Structures

Periodic structures play an important role in the interaction of electrons with waves
since they support harmonics of phase-velocity smaller than ¢ and with an adequate
design, this velocity can be set equal to the average velocity of the electrons. In
particular, in extraction structures, as the electrons interact with the wave and lose
energy, they slip out of phase and consequently, the interaction is degraded. In order
to avoid this situation the phase velocity of the wave has to be adjusted and the
geometry change associated with this process should be designed for minimum
reflections, otherwise the system oscillates. In a similar way, in photo-injectors,
electron bunches are accelerated from zero velocity to virtually the speed of light in
a relatively short distance (typically 1.5 period) and therefore, the design needs to
account for the accelerating bunch such that the latter experiences maximum (rf)
electric field.

In a periodic structure, at a given frequency and single mode operation, the
electromagnetic wave is characterized by a single wave-number & and quantities
like phase velocity, group velocity and interaction impedance are well defined. In
principle, if the structure is no longer periodic the field cannot be represented by
a single wave-number except if the variations are adiabatic in which case these
characteristics are assumed to be determined by the geometry of the local cell.
Adiabatic perturbations in the geometry may improve the efficiency from a few
percent level in uniform structures to the 30% level. But one cannot expect to
achieve 60—80% efficiency by moderate variation of the structure, bearing in mind
that in contrast to accelerators where these changes occur over many wavelengths,
in traveling-wave extraction structures these changes should occur in one or, at the
most, two wavelengths.

Non-adiabatic change of geometry dictates a wide spatial spectrum in which
case the formulation of the interaction in terms of a single wave with a varying
amplitude and phase is inadequate. In fact, the electromagnetic field cannot be
expressed in a simple (analytic) form if substantial geometric variations occur from
one cell to another. To be more specific: in a uniform or weakly tapered disk-loaded
waveguide, the beam-wave interaction is analyzed assuming that the general func-
tional form of the electromagnetic wave is known i.e., A(z) cos[wt — kz — ¢(z)] and

L. Schachter, Beam-Wave Interaction in Periodic and Quasi-Periodic Structures, 287
Particle Acceleration and Detection, DOI 10.1007/978-3-642-19848-9 6,
© Springer-Verlag Berlin Heidelberg 2011
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as indicated in Chap. 4 the beam affects the amplitude A(z) and the phase ¢(z).
Furthermore, it is assumed that the variation due to the interaction is small on the
scale of one wavelength of the radiation. Both assumptions are not acceptable in the
case of a structure designed for high efficiency interaction. In order to emphasize
even further this difficulty, we recall that a non-adiabatic local perturbation of
geometry affects global electromagnetic characteristics, this is to say that a change
in a given cell affects the interaction impedance or the group velocity several cells
before and after the point where the geometry was altered.

In order to overcome these difficulties, we present in the first part of this chapter,
an analytical technique that was developed in order to design and analyze quasi-
periodic metallic structures of the type discussed in Chap. 5. The method relies on a
model consisting of a cylindrical waveguide to which a number of pill-box cavities
and radial arms are attached. In principle, the number of cavities and arms is
arbitrary. We formulate the boundary condition problem in terms of the amplitudes
of the electromagnetic field in the cavities and arms. The elements of the matrix,
which relates these amplitudes with the source term, are analytic functions and no
a-priori knowledge of the functional behavior of the electromagnetic field is
necessary. In Sect. 6.1 we examine the homogeneous electromagnetic characteristic
of quasi-periodic structures. We further develop this technique to include Green’s
function formulation in Sect. 6.2 followed by the investigation of space-charge
waves (Sect. 6.3) within the framework of the linear hydrodynamic approximation
for the beam dynamics. In Sect. 6.4 the method is further generalized to include
effects of large deviations from the initial average velocity of the electrons by
formulating the beam-wave interaction in the framework of the macro-particle
dynamics. In Sect. 6.5 we employ the quasi-periodic structure for investigating
the electromagnetic wake generated by a bunch moving in the vicinity of a finite
roughness surface. In the last section, we present a simple analytic model for
another system wherein the quasi-periodic structure plays a crucial role namely,
the photo-injector. However, since the beam loading in the framework of the model
presented is not dominant, we consider an analytic formulation. Additional aspects
of beam-wave interaction in quasi-periodic structures will be discussed in Chap. 7
in the context of a free-electron laser with a tapered wiggler.

The study regarding output structures presented in this chapter was triggered
by research conducted at Cornell University. In the introduction to Chap. 4 we
indicated that power levels in excess of 200 MW were generated in a 50 MHz
bandwidth. The 200 MW generated with this structure were accompanied by
gradients larger than 200 MV/m and no rf breakdown was observed experimentally.
However, for any further increase in the power levels, it is necessary to increase the
volume of the last two or three cells in order to minimize the electric field on
the metallic surface. The system becomes then quasi-periodic. In order to envision
the process in a clearer way let us assume that 80% efficiency is required from our
source. If the initial beam is not highly relativistic, which is the case in most
systems, such efficiency implies a dramatic change in the geometry of the structure
over a short distance. Specifically, for a 500 keV beam, the initial velocity is vy ~
0.86¢ and 80% efficiency would imply a phase velocity of 0.55¢ at the output. This
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corresponds to a 36% change in the phase velocity and a similar change will be
required in the geometry, which is by no means an adiabatic change when it occurs
in one period of the wave.

Based on our experience there are three main difficulties associated with an
extraction section based on a quasi-periodic traveling-wave structure. (1) Reduction
of the reflections primarily at the output end of the structure in order to maintain a
clean spectrum and to avoid oscillations, (2) taper the output section to avoid
breakdown and (3) compensate for the decrease in the velocity of the electrons.
The technique presented in the next 4 sections enables us to optimize these
conflicting requirements.

6.1 Homogeneous Solution

The model used to analyze a quasi-periodic structure consists of a set of radial arms
and pill-box cavities attached to a cylindrical waveguide. Their number and order is
arbitrary. However for this presentation we consider a situation in which the input
arm is the first cell (subscript 1) and the output arm is the last (subscript N) — as
illustrated in Fig. 6.1. Each aperture, whether it corresponds to a cavity or an arm,
has a width denoted by d,, where 7 is the index ascribed to each unit (n = 1,2 - - - N);
N is the total number of cells and arms. The height, width and separation of each
cavity can be arbitrary. Only the internal radius (Rjy) has to be the same throughout
the device. The height of each cavity is determined by its external radius denoted by
Rexn- A cylindrical coordinates system is used: its origin is chosen in the center
of the first aperture. Furthermore, the system is azimuthally symmetric and so is the
electromagnetic excitation. Consequently, throughout this chapter we consider
only symmetric transverse magnetic (TM) modes. Specifically, in this section we
examine the transmission and reflection characteristics.

One way to analyze the electromagnetic characteristics of such a structure is
by mode decomposition and formulating the boundary condition problem in terms
of a transmission matrix from each discontinuity — see Sect. 2.5.2. This method is
addressed in literature (Mittra and Lee 1971 or Lewin 1975), but its performance is
poor whenever more than one discontinuity is involved. This is due to the large and
small numbers evolving from the evanescent modes associated with each disconti-
nuity and their advance from one discontinuity to another.

| I
Bifcal Al

Fig. 6.1 Schematic of the Jr
model used for investigation T

of quasi-periodic structures
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6.1.1 Definition of the Model

Contrary to a periodic structure, where the field in the inner cylinder (0<r<R;,) can
be represented by Floquet series, in this system we have to consider the entire
spatial spectrum of waves, therefore the magnetic vector potential reads

A(r,z;0) = JOO dkA(K)Io(T'r)exp(—jkz), (6.1.1)

—00

where I'?> = k? — @?/c? and Ip(x) is the zero order modified Bessel function of the
first kind. All the transients are assumed to be zero or in other words, the system
has reached a steady state regime thus a phasor notation exp(jwt), is adopted. In
the arms or grooves the electromagnetic field should be represented by a super-
position of modes which satisfy the boundary conditions on the metallic walls. In
principle an infinite number of such modes are required. However, as long as the
vacuum wavelength is about 5 times larger than the groove or arm width, the first
mode [transverse electric and magnetic (TEM)] is sufficient for most practical
purposes. This assumption is by no means critical for the present analysis and the
calculation is similar when a larger number of modes are required, however we
use it since it makes the presentation simpler. In order to quantify this statement
let us give a simple example of a periodic disk-loaded structure: consider the
case whereby Ry = 15.9 mm, R;,, = 9.0 mm, the period of the system is
10.0 mm and the disk is 5 mm wide. It is required that the phase advance per
cell will be 120° at 9 GHz. With 39 spatial Floquet harmonics, the lower cutoff
frequency (kL = 0) was calculated to be 8.206 GHz using three modes (TEM,
TMy; and TMy;) in the grooves, with two modes (TEM and TM,) the cutoff was
8.192 GHz and 8.192 GHz when only the TEM mode was used. For the higher
cutoff (kL = m) the calculated frequencies were 9.270 GHz, 9.229 GHz and
9.229 GHz correspondingly. Thus in the regime of interest the typical error
associated with the higher modes omission in the grooves is expected to be of
the order of 1% or less.

Within the framework of this approximation we can write for the magnetic
vector potential in the input arm,

1) /@O 2) [
Au(r,z;0) = ApH (? r) +DH? (? r) : (6.1.2)

where Hé] ) (x) and Hé2) (x) is the zero order Hankel function of the first and second

kind respectively; Ai, represents the amplitude of the incoming wave and D; is the
amplitude of the reflected wave which is yet to be determined. In the nth
(1 <n<N) groove we have

Al(r,z;0) = D, To, (w ) (6.1.3)

—7
c
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where D, is the amplitude of the magnetic vector potential,

w w w w w
Toa(2r) = 30(2r) Yo(ZRen) = Yo(2r)I0(ZRexn) (6.14)
- \C c c ' c c '
subsequently, we also use the function
w w w w w
Tia(2r) =3 (Zr) Yo (2 Rexn ) = Y1 ()30 (% Renin) (6.1.5)
c C C c c

Finally, in the output arm,
Au(r,z;0) = DyH? (9 r) , (6.1.6)
c

represents a cylindrical outgoing wave.

In order to determine the various amplitudes we next impose the boundary
conditions in a way that is similar to the case of a periodic structure but we no
longer consider a single cell to characterize the entire system, instead we examine
each individual region. From the condition of continuity of the longitudinal electric
field we can conclude that

1 o?

Al =—52 A’To(A)

N
lAinHél)(oc)dlﬁl(k)+2Dntp0’,,dn£n(k) . (6.1.7)
n=1

where o = @Rjy/c is the normalized angular frequency, A = I'Riy is the nor-
malized wave-number in the radial direction and

£n(k) -7

l Z/1+d/1/2
7 J dzexp(jkz); (6.1.8)

Zy—dy /2

z,, is the location of the center of the nth groove or arm and in the first cell its value is
zero (z; = 0). The function

2
%.n{H‘(’>(°‘) n=1 or n=n, 6.1.9)

N Tya(x) n#1 or n#N,

is a generalized function defined in the aperture of either the grooves or the arms
andv=0,1,

Imposing the continuity of the tangential magnetic field on each aperture we
find

AnH" (@)0,1 + Doy, = —é J  dKA(K)AL (AL (k). (6.1.10)

—00
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It is now convenient to substitute (6.1.7) in (6.1.10) in order to represent the entire
electromagnetic problem in terms of the amplitudes of the mode in the grooves
and arms i.e.

N
ZMn,mDm - Sna (6111)
m=1
where
M"sm = ‘/jl,nénqm - lpO,m%n,nﬁ
0 0 (6.1.12)
Sn = 7Hl (a)éﬂ,lAiﬂ + HO (OC)Xn,lAiHa
and
dmOC > Il(A)
=— dk L(k) L, (k). 6.1.13
=50 | hgh B L (0L (0 CRRE)

In principle, with the matrix M established, the electromagnetic problem is
solved.

6.1.2 Evaluation of Green’s Function

Our next step is to simplify the expression for the matrix M and for this purpose, we
evaluate the integral that defines the matrix y in terms of analytic functions using
Cauchy’s residue theorem. First we substitute the explicit expressions for £, (k)
from (6.1.8); the result is

dyo 1 Zm+dn /2 1 [tda/? 00 I (A)
) = — dx— dx dk ik(x; — .
Znm 27 dom Lm o ldn Jz,,d,,/z 2 X J ALy(A) expljk(x; — x2)]

—00

(6.1.14)

If we now examine the integrand we observe that there are an infinite set of poles
which correspond to Iy(A) = 0 since the modified Bessel function and the regular
one [Jo(x)] are related thus we realize that the condition above is satisfied for
K= (w/c)* — (ps/Rint)*; here py are all the zeros of the zero order Bessel function
of the first kind i.e., Jo(ps;) = 0. According to Cauchy’s theorem the contribution
to the integral will come from the poles of the integrand thus the last integral in
(6.1.14) reads

1 [* . L(A) ) L[, explik(x — )]
7 J dkAI()(A) eXp[]k(Xl Xz)} - nR2 Z J—oo dk k2 + 1"? ’

—00 int g—1

(6.1.15)
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wherein T2 = (p,/Ri)> — (w/c)*. The last integral corresponds to Green’s func-
tion for a uniform waveguide and it is easily evaluated as G(x|xy) =
(n/T5)exp(—Ts|x1 — x2]). This result enables us to express the matrix y in terms
of analytic functions. Moreover, the integration over x; and x; in (6.1.15) can be
performed explicitly

2
P [1 — exp(—T'yd,/2)sinhc(Tsd,/2)] n=m,

Tom = ; . 6.1.16

T = RE 22\ (/T3 )expl=T |z — 2 Jsinhe(Tsdy /2) 6.1.16)

xsinhe(Tsd,, /2) nm

in this expression sinhc(x) = sinh(x)/x. The electromagnetic problem was now
simplified to the inversion of a matrix whose components are analytic functions.

6.1.3 Transmission and Reflection

In order to test the method we used a set of identical cells. We were able to calculate
the pass-band in the transmission coefficient and it fits very well that calculated
using the dispersion relation of an infinite periodic structure. The following exam-
ple illustrates the potential of this method: our first goal is to determine what
should be the location of the arms to feed power adequately into a 9 cell structure
(Rexy = 142 mm, Ry, = 6.2 mm, L =12 mm and d = 6 mm). Figure 6.2
illustrates the geometry of the narrow band structure with 9 cavities and two
arms. In the first case, the arms are 6 mm from the adjacent cells (see lower system)
and we observe that the average transmission coefficient, as illustrated in the lower
curves, is about —20 dB. Thus, the bandwidth is much narrower than that of a
practical source and to this extent, the fact that the peaks reach the 0 dB level
becomes irrelevant to any experimental consideration. For this reason, we prefer to
consider the average transmission coefficient in a range of frequencies. As the
length of the waveguide between the arm and adjacent cell was shortened to 1 mm
(both at the output and input), the transmission coefficient increases dramatically
to an average value of —3 dB.

Fig. 6.2 Power transmitted
for two geometries. The upper
geometry corresponds to the
upper curve and the distance -80
between the groove and the

arm is 1 mm. In the lower -100 : :

geometry and corresponding 86 87 88 89 90 91
curve this distance is 6 mm. f(GHz)

(Pout/Pin)dB
A
S
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Let us now assume that we have matched the system for a given frequency, i.e.,
the transmission coefficient in dB, defined by 10 log(|Dy|*dy /|Ain|*d1), is zero. It is
known that in a narrow pass-band structure high gradients may develop in the (high
power) interaction process — in particular in the last couple of cells. In order to
avoid rf breakdown the volume in which the electromagnetic energy is stored has to
be increased, thus reducing in the process the energy density, and consequently
reducing the field. As first attempt, we consider a linear tapering of the external
radius of the last three cells. In the process, the width of these cells and their
separation was varied in a wide range of parameters to bring the transmission
coefficient to O dB at given frequency and the best we could achieve was —3 dB
which is not acceptable (see Fig. 6.3). At this stage, we returned to the initial
geometry but doubled the external radius of the last two cells. These cavities have
two (rather than one) resonant frequencies, one of which is close to that of a cavity
in the uniform structure. After some fine-tuning, we obtained the transmission

@ o0
& W
%‘ imm 1mm)
8 -10 N
8 pa— I
5 12.4mm
é 20 Uniform ] —
1 Structure
g 30 I 1
87 8.8 89 9.0 e
0
-10 —
-20
No Design
-30 L
87 8.8 89 9.0 4.9
f(GHz) .
|[Tmm
0
T 124mm 62mm|
10 — — —
20 o i _
Optimized 3mm 6.1mm
-30 I I
87 88 89 9.0
f(GHz)

Fig. 6.3 Transmission coefficient for three different geometries
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which is optimized to the required frequency — as indicated in the lower frame of
Fig. 6.3.

This example emphasizes the dual way we can examine a quasi-periodic struc-
ture: as a traveling-wave structure or as a set of coupled cavities. It is the latter
which is of great importance in the design of extraction regions since, as we
indicated above, quantities like phase or group velocity have practically no mean-
ing when the geometry of the structure varies rapidly in space. Such variation is a
direct result of the broad spectrum of wave-numbers compared to a single wave-
number in a regular periodic structure.

6.2 Non-homogeneous Solution

The homogeneous solution presented above assumes that the source of the electro-
magnetic field is far away from the structure and the arm guides the electromagnetic
energy into the system. In this section, we consider the case when the source is in
the structure. By virtue of linearity of Maxwell equations, we may assume that the
remote sources are zero and we calculate only the contribution of the inner source.
A general solution is obviously a superposition of the two solutions.

6.2.1 Green’s Function

When a current distribution is present in the structure, we have to solve the non-
homogeneous wave equation

2
, O

[V —i—c—z} A(ryz,0) = —pet.(r,z, ), (6.2.1)

and we proceed by calculating Green’s function of the system. For this purpose,
consider, instead of the general source of the above, a simple one, namely a narrow
ring located at z = 7/ and r = ' which is a source to a field a, that satisfies

2
1
[VZ + %} a,(r,zlr',7) = — %5(1‘ —1")o(z —7), (6.2.2)
and when subject to the same boundary conditions as A, it is exactly Green’s
function of the system. In the absence of any boundaries this function is given by
(see Sect. 2.4.1)

0.8}

a,(r,z|r',2') = J dkgy(r

—00

Y exp[—jk(z — )], (6.2.3)
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where
1 Iy(Tr)Ko(Tr) for 0<r </
) — 0 0 <r<r,
g(rlr’) = (2n)? {KO(Fr)IO(Fr’) for ' <r<oo. 6.2.4)
Accordingly, the solution for the vector magnetic potential reads
Rh o0
A(ryz,0) = Zn'uOJ dr’r'J dZ'a.(r,z|r', 2).(F, 2, o)
0 0 (6.2.5)
+ J dkA(k)exp(—jkz)Io(I'r).

The second term is the solution of the homogeneous equation, which does not
diverge on axis and is a direct result of the presence of the metallic surface; R}, is the
radius of the source. In the region outside the source (r > Ry,), this expression can
also be written as

A (r>Ryp,z,0) = JOO dk[B(k)Ko(I'r) + A(k)Io(I'r)|exp(—jkz), (6.2.6)
where
Ry 00
B(k) = ,u_;)l J dr'r’Io(l"r’)J dZ'exp(jkz' ). (', 7, ), (6.2.7)
0 —00

is the spatial Fourier transform of the current density. For the boundary condition
problem the relevant components of the electromagnetic field are

C2 00
E.(r>Ry,z,0) :JB J dk(—T?)[B(k)Ko(Tr) + A(k)Io(T'r)]exp(—jkz),

—00

Hy(r>Ry,z,00) = _Hlo JOO dk(D)[-B(k)K  (I'r) + A(K)L; (T'r)]exp(—jkz).

—00

(6.2.8)

In the grooves and arms the solution is identical with (6.1.2)—(6.1.6) except that
Ajn = 0. When imposing the continuity of the longitudinal component of the
electric field, we obtain

2
—271% [B(k)Ko(A) + A(K)Io(A)] = DiHS (0)d) L1 (k)

N—1

+ Z DnTO.n (a)dnﬁn (k)
n=2

+ DyHY (o) dy Ly (K), (6.2.9)
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and the continuity of the azimuthal magnetic field provides us with an additional
set of equations similar to (6.1.10):

{o.¢]

Doy, = J ARAB(KK (A) — A(K)T (AL (k). (6.2.10)

n
—0o0

In these two equations £, (k) was defined in (6.1.8). Based on these two equations
we can determine the amplitudes D, in the arms and grooves by substituting
(6.2.9) in (6.2.10). The result is similar to the homogeneous case:

N
ZMnA,mDm = Sna (6.2.11)

m=1

except that the source term is now given by

e 1 )
s, :;J Az B K. 6.2.12)

—00

In this expression we used the property of the modified Bessel functions:
Ip(x)K; (x) 4+ I; (x)Ko(x) = 1/x. Expression (6.2.11) indicates that if we know the
source term S,, we can determine all the amplitudes D,, using the inverse of exactly
the same matrix M we defined in the previous section. Therefore, we next direct our
efforts to simplify the expression for the source term S,,.

Based on the definition of B(k) in (6.2.7) we can write

U Ry 00
S, = ;0 J dr/r/J dZJ.(r, 2, w)a,(r, ), (6.2.13)
0 —0o0
where
L (™ | Ip(Tr) .
W2 =— dk Lk kz'). 6.2.14
o) = 52 | @ o cwenpli) (62.14)

Thus in order to simplify the source term S, one has first to simplify the function
a.(r',Z'). We substitute the explicit expression for £,(k) and then evaluate the
integral on k based on Cauchy’s residue theorem; the result is

L1 (ot S 2pJo(psr’ [Rin) 7
a(r',?)=—- J d¢ A exp(=T|( = 7). (6.2.15)
( ) 21 dn Zy—dy /2 ; Rjszl (]7;) Is ( | |)
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Our next step is to perform the integration over { thus

Ry, 9] o0 w
Ko J /,/J / ] Psto(ps7’ /Rint) /
Sp=— dr'r dzJ.(r',Z, o ————05,(2), (6.2.16)
! o Jo - ( ) s=1 IﬂfRizntJl (ps) i 1( )
where
1 Zn+d,,/2 .
osn(z) == J déeTulel
dn Zn*dn/2
1
exp(—TI|z — z,|)sinhc (E l"sdn) for|z — z,| > %",

1
{1 —exp <2FSdn) cosh[I's(z — zn)}} forz — z,| < %.

(6.2.17)

Lyd,

Formally, this concludes the formulation of the boundary condition problem in
(6.2.11) and in the remainder we present two examples.

6.2.2 Stationary Dipole

Further simplification of the analysis is possible by making the following
assumptions: (1) the current density varies very slowly in the transverse direction
such that it can be considered constant. (2) We examine a Dirac delta function
current distribution in the longitudinal direction, such that the field due to any other
current distribution can be represented as a superposition of such point sources i.e.

I
n—R%Azé(z —z:)h(Ry — r); (6.2.18)

J.(r,z) =
h(x) is the regular step function. In this expression [ is the dipole’s current, A,
is its characteristic length and z. is its longitudinal location. This is a stationary
(motionless) dipole, which oscillates at an angular frequency w. With these
assumptions and bearing in mind that

Ro 1 Ry
drrlo(psr/Rint) = RbRintp_Jl Ds ; (6.2.19)
N

0 int

the source term in (6.2.11) is given by

IA, K T (poRy /Rin 1
Sn:/lo Z 1 (PsRy/Rint)

(). 6.2.20
TRy 4= J1(ps) p? —o? Oan () ( )
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In order to present the radiation emitted by such a stationary dipole it is
convenient to normalize both the source term and the amplitude with the term a =
UolA./(mRy) hence S, = S,/a and D, = D,/a. The average power which flows
through the v arm is P, = 2wd,|D,|*/1. Accordingly, the average normalized
power flowing through each one of the arms in the structure is

_ 1 A2 44,
P, =P, |=ny*—= =—
! |:2 o nR%:l T Rim

oD, () (6.2.21)

here, the index v indicates the input or output arms only i.e., v = 1 represents the
input arm and v = N, the output. First to be examined was the effect of the arm
location on the radiation emitted by a single dipole and for this purpose two
quantities are defined: the total emitted power, (Pio)yz = 10log(P; + Py), and
the ratio between the power emitted in the output arm and input arm i.e.,
(Pn/P1)gz = 101log(Py/Py). The geometry considered next is somewhat different
than in the previous section: Rey = 17.3 mm, R, = 9 mm, L = 10.4 mm and
d = 1.4 mm. This choice of parameters was determined by the need to increase the
internal radius of the structure while at the same time maintain the group velocity
relatively low. The phase advance per cell was chosen to be 120° at 9 GHz which is
the resonant frequency with a 1 MeV electron.

Figure 6.4 illustrates the power emitted by a dipole oscillating at 9 GHz as its
location varies along the structure, for two different geometries. The upper frame
represents the case we showed previously to be the optimal from the point of view
of feeding the system; namely, minimum distance between the arms and adjacent
cavities (gin = gouwr = 1 mm). In the lower frame, the separation of the input arm is
gin = g1 = Smm. There are several features, which should be emphasized. First,
for the upper frame there is a clear pattern of larger emission when the dipole is in
the cavity region compared to the case when it oscillates in the space between two
cavities. Second, comparing the power in the output arm with that in the input arm
for the upper case we observe that both are of the same order of magnitude. Thirdly,
breaking the symmetry of the system (gj, = 5 mm), causes a preferred direction of
emission towards the output (since the input is “blocked”) as indicated in the lower
frame. Note that although the dipole current is the same, the peak power is larger. In
addition, the clear pattern of maximum power obtained when the dipole is in the
cavity (see Fig. 6.4, upper frame) is not as clear in the case shown in the lower
frame of Fig. 6.4.

Another case of interest is to examine the effect of the length of the drift regions
between two adjacent cavities. We increased the distance between the third and the
fourth cavity from 9 mm to g4 = 20 mm. The effect is illustrated in the upper frame
of Fig. 6.5, and the lower frame shows the case when g3 = 20 mm. After examining
the previous case, the results are intuitive: in the first part of the structure, the
emission is primarily towards the input arm whereas in the second part, practically
all the radiation is emitted through the output arm. It should be mentioned that
since the current density is imposed, the emitted power is a direct measure of the
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longitudinal component of the electric field in the structure. As such, we observe
that the main difference between the upper and lower frame is the field pattern —
directly associated with the change in the geometry. We subsequently return to this
geometry since it can simulate the operation of a two-stage traveling-wave structure
or a klystron with a traveling-wave output.

6.2.3 Distributed Current Density

In a uniform section of a traveling-wave amplifier the modulation amplitude grows
exponentially. In this subsection we calculate the electromagnetic field generated
when imposing a current density similar to that developing in the interaction
process in a traveling-wave amplifier. The current density is given by

J.(r,z; ) = Joexp(—jKz)h(Ry — 1); (6.2.22)

K is a complex wave-number which represents the phase advance and the amplitude
variation. According to (6.2.13) the source term is
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00 ) Zn+dy /2 dz ( - )
X J dze /K= J —exp(—T|z = 7).
Rint —00 Zy—dy /2 d’l
Changing the order of integration, we have
1 [ . 1 [zntdn/2 1 [®
J dze /K. == J d7’ J dzexp(—jKz — Iz — Z'|),
Ril‘lt —00 d" Z,,*d,,/z Rint —00
(6.2.24)
thus
5, 270 R SR R SOKS) o)

o Ry & Nips)  p?—o®+ (KRim)®

According to the coefficient in this expression we define the normalization
factor a = 2JouyRyRin: Which entails that D, = D, /a and S, = S, /a. With these
quantities the normalized average emitted power reads
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_ P, 16 d, Rin

P, — =— L 2yD,(a)) (6.2.26)
Lno(JonRE)® ™ R R

In order to describe phenomenologically the saturation effect we can consider a
current density function that has the form

J.(r,z0) = Jy (1 - i) e "Ch(Ry = r); (6.2.27)

sat

in which case the source term is

! dy dK

Sp=2

JoR2H, Rimx < J1(psRv/Rint) {1 1 d] sinc(Kd,/2) s

o Ry = Jl(ps) p? -+ (KRim)2
(6.2.28)

Next we examine quantitatively the radiation emitted at 9 GHz by the cur-
rent distribution in (6.2.27) for the following parameters: dg = 1.3d0r,
K = 0.5Ky(1 +j\/§) +w/cB, B=094, Ko =80m~! and d,y is the total length
of the system. The total power emitted by this current distribution when in a
uniform structure is Py = 54.9 dB (see definition in previous section), and most
of this power is emitted forward due to the spatial phase correlation and the
varying amplitude. The asymmetry associated with the current distribution is
Py/Py = 8.6dB. As in the first section, we now increase the volume of the last
cavity by increasing the width of the cell djp = Smm. Its separation from the
previous cavity remains the same (gg = 9mm). Figure 6.6 illustrates the total
power and the arms power ratio as the external radius of the 10th cavity is varied.
It is evident from this figure the resonant character of the structure.

(Prot)as

Fig. 6.6 Power emitted by

he dipol function of th -10 ' : : : 45
the dipole as a function of the 10 15 20 25 30 35
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cavity Rextio(cm)
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6.3 Beam-Wave Interaction: Hydrodynamic Approximation

In the previous subsection the current density was imposed and the effect of
saturation was included phenomenologically. At this point, we extend our inves-
tigation to a self-consistent solution of the current density and the electromagnetic
field in the framework of the (linear) hydrodynamic approximation. This
facilitates to examine the propagation of space-charge waves in quasi-periodic
structures.

6.3.1 Definition of the Model

In the framework of this model, the beam is considered to be an active linear
medium which satisfies

w2

Jo(r k) = —jweg ———— E.(r, ko), 6.3.1)
(w — kvyp)

namely, it is considered to be a fluid. The relativistic plasma frequency is defined
as

5 meel 1
_ el < 1 (6.3.2)
P mc? R By}

With (6.3.1) and the definition of the longitudinal electric field in terms of A,

[ie., E, = —jwA, + j(ck)zAZ /], the non-homogeneous wave equation for the
magnetic vector potential

2
[Vz + C:—z} A (r,z,0) = —upJ,(r,z,®), (6.3.3)

becomes homogeneous and its solution (for a pencil beam) reads
A (r,z;o) = J dkA(k)exp(—jkz)Io(Ar), (6.3.4)

—00

with

2
A =T [1 = (6071’2] . (6.3.5)
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The longitudinal electric field and the azimuthal magnetic field read

E.(r,z;0) = f.iz Jw dkT?A(k)exp(—jkz)Io(Ar),

JO J oo
Hy(r,z;o) = 7.“%) Jio dkAA(k)exp(—jkz)L; (Ar). (6.3.6)

In the gap between the beam and the metallic surface (R, <r < Rjy) the solution

of the magnetic vector potential reads

A(r,z, ) = ro dk[B(k)Io(T'r) + C(k)Ko(I'r)]exp(—jkz), (6.3.7)

—00
and correspondingly, the field components relevant for the boundary condition
problem are

¢ JOO dkT2[B(k)Io(T'r) + C(k)Ko(Tr)]exp(—jkz),

E. "y Z, = -
L(r,z, ) o)
Hy(r,z,0) = o J dkT[B(k)1; (I'r) — C(k)Ky (T'r)]exp(—jkz). (6.3.8)
0 J—-oc0
Continuity of these two components at » = R}, implies
1 B(k)Ip(by k)Ko(by 1 Ip(b
()1o(b) + C(Ko(b) _ 1 o) 639)
I, (by)

where b, = ARy, and b, = 'R, (subscript v stands for vacuum and subscript b for
beam). This expression determines the relation between B(k) and C(k):

_Ck) bo(by)Li(by) — byl (by)lo(by)
PR =B = buto(bn), (by) T bl (o)olb) (6310

It is now convenient to extract B(k) from the brackets of (6.3.7)—(6.3.8) and

define the radial functions:

Io(I'r) + p(k)Ko(Tr), 6.3.11)
! . 3.

These can be considered generalizations of the modified Bessel functions we
used in the homogeneous case therefore the magnetic vector potential and the
field components relevant to the boundary condition problem are given by
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A (r,z,0) = J dkB(k)Io(k, r)exp(—jkz),
,; R )
E.(r,z,0) = - J dkT2B(k)Io(k, r)exp(—jkz), (6.3.12)
JO J -0
1 [ _
Hy(r,z,m) = — " J dkT'B(k)I (k, r)exp(—jkz).
0 J—-oc0

In the grooves and arms, the functional form of the solution is identical with that
established in Sect. 6.1. Therefore, the formulation now is similar to the case when
no beam is present and we can use the formal result we presented in Sect. 6.1
namely

N
> MypuDy =S, (6.3.13)
m=1
where
Mn‘m = lpl,nén,m - l//O,m;{mma (6.3.14)
Su = —H\"(@)8,1Ain + HY (2) 7,1 Ain, (6.3.15)
and

dot Joo Iy (k,Rin) LK) Lo (k). (6.3.16)

— m= dk———7"—+
Xnm o . A]O(k,Rim)

The only difference is that the modified Bessel functions (Ip and I;) were replaced
by the generalized counterparts Iy and I; defined in (6.3.11).
6.3.2 Evaluation of Green’s Function

As in the first section, we express the elements of the matrix y in terms of analytic
functions. Our first step is to substitute the explicit expressions for £, (k); the result is

duo 1 Zm - /2 1 Zn+dy /2 00 T k.R;
Xnm = m*J dx J dx, XJ dkl(’m))exp[jk(xl—xz)]~

’ 7ﬁdm Zm—dp /2 lg" zy—dy /2 —o0 AiO(kvRint
(6.3.17)
It is convenient to define the following Green’s function
dm JOO o4 ]_1 (k;Rint) .
G =— dk— ———F+% k(x; — 6.3.18
(vife) = BN AT expljk(x1 —x2)], ( )
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hence,

1 Zm+dm /2 1 Zn+dy /2
Anm = g J dxlg J dsz(xl |x2). (6.3.19)
mJzy—dy/2 nJz,—d, /2

If in the previous sections we evaluated Green’s function G using a “simple”
set of poles which were the zeros of Iy(A), in this case we have to examine the
poles of

~

1 (k Rmt)
( mt) .

For the sake of simplicity we consider the case when the beam fills the entire
waveguide i.e., R, = Ry, in which case

G= (6.3.20)

aull

kd
A

~ ob
G—AA To(b)’ (6.3.21)
where b = AR;,.. The poles of this expression correspond to the zeros of the
dispersion relation of a waveguide filled with a beam. Since it was shown in
Chap. 3 that in a cylindrical waveguide the electromagnetic modes and the space-
charge modes are essentially “decoupled”, we now determine the poles accord-
ingly. In other words, the expression for G is a superposition of the electromagnetic
and space-charge modes

G = Gem + Gsc. (6.3.22)

The contribution of the electromagnetic modes is determined by ignoring the
presence of the beam (wp =0) and it is identical with what was found in
Sects. 6.1-6.2. Using (6.1.16) we have

2
— [1 - e’r“‘d”/zsinhc(l“‘vd,,/Z)} n=m,
g (6.3.23)

int 5= slEn=znlinhe(Iyd,, /2)sinhe(Tgd,, /2) otherwise.

s

Next the contribution of the space-charge waves is evaluated. As in the empty
case, we consider the pole around b = jp,, namely

w? 1 w? .
by = (C—ZR%m 7 _R?m> [l—ﬁ] ~ jps; (6.3.24)

w — ksV()
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accordingly, Green’s function for the space-charge waves reads

- e K3
Gsc = — N , (6.3.25)
; (k—o/vo)* = K2
where
2832 B wp 1
Z.x = le [%m [%..v = —5 2 (6.3.26)
' O((l-i-fs) ' ' Vo 1+és
and & = pyyf/o. The next step is to evaluate Green’s function
> K7 dy exp[jk(x; — x2)]
G =— dk . 6.3.27
sl = =325 | ok Lo (32D

s=1 D,

After adequate change of variables the latter reads

s K2 dm 0 ] —
Gsc(xi|x)=— 2 bZn exp [j%(xl —xz)} LO dk%}%@]. (6.3.28)
The last integral is identical (except for the fact that the poles are real quantities)
to that in (6.1.15); however, for its evaluation we have to be more careful since
contrary to the electromagnetic waves, the space-charge modes propagate only
along the beam. Therefore, we may expect the integral in (6.3.28) to be identically
zero for x; > x, otherwise the solution would indicate a wave propagating against
the beam. In order to solve the integral it is convenient to follow the same approach
as in Sect. 6.1. The function

_ [ qpexplk(n —x)]
8s (.X] |.X2) = J_OO dkkz_—[(p%s, (6329)
is defined and it can be shown to satisfy
d? 5
[d_x% + Kp,s} g(x1|x2) = —2m0(x1 — x2). (6.3.30)

In the case of the space-charge waves we know that there are two waves which
form continuous solution at x; = x, whereas their derivatives as determined by
integrating (6.3.30) are discontinuous at the same location. This ultimately implies
that

21
gs(x1|)€2) = K
.S

sin [K, s (x1 — x2) | h(x1 — x2). (6.3.31)
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The contribution of the space-charge waves to the y matrix can now be
formulated as

0 Zm+dm/2 dx Zn+d,,/2 dX sz
Xﬁsﬁ)ZE:J 1J dx; Kj mexp['g(xl—xz)}
' s=1 JzZm—dn/2 dp Zn—dy /2 dy Kpﬁs Vo

x sin [Kp (X1 — x2)]h(xz — x1). (6.3.32)

In the evaluation of these integrals we take advantage of the fact that for x; >x;
the integrand is zero which means that if m > n then

759 = 0. (6.3.33)
Diagonal terms (n = m) of the matrix are given by

00 K2
/{nn - Z bS |:

s

1 o e*jéx,nﬂr Sil’lC(ég,n.+))

Sont (6.3.34)

=1
1
és,n.f

(1 - e smc«fyn_))} 7

where &, = d,(w/vo £ K, 5)/2 and the off-diagonal non-zero terms (n > m) are

> K}
2K,

o) ==
s=1

o0

|:efj(znfz,,,)(w/vn+l(p_’x) Sinc(fx,nﬁr ) Sinc(is,n1,+):|

. (6.3.35)
JKG

2K, [etermsnlelo Ko )sine (E,,, )sine (€, )]

s=1

Finally, the y matrix is the superposition of the electromagnetic term yE™) defined
in (6.3.23) and the space-charge term X(SQ defined in (6.3.33)—(6.3.35), i.e.,

Tnm = 1) + 150, (6.3.36)

The sinc function in the y matrix implies that this method is a hybrid of local
beam-gap interaction as in a klystron where the cavities are electromagnetically
decoupled and distributed beam-wave interaction as in a traveling-wave structure
where the cavities are electromagnetically coupled. In the examples presented
below, the finite size of the beam is accounted for by introducing the filling factor

Fp = (Ri“‘)ziﬁ((mb/ Ruwl) (6.3.37)

Ry B (a/yB)

which represents the actual overlap of the beam with the wave and it multiplies the
plasma frequency term (wg — wIZ)F £).
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6.3.3 Transmission and Reflection

In the remainder of this section we present a few results from simulations which use
this method. The system used is identical with the one in Sect. 6.2.3. A 1 MV, 1 kA
beam is propagating through the structure and the wave injected in the system is
assumed to be of sufficiently low power such that the system operates in the linear
regime. A frequency scan of a symmetric (g, = gow = 1 mm) system is illustrated
in Fig. 6.7. The gain, defined as the power at the output divided by the power
injected in the input arm, has a maximum at 9.0 GHz as designed. Another peak is
close to the n-point and it occurs at 9.06 GHz. Note that the gain is relatively low —
about 16 dB — and this is also the ratio (in dB) between the power in the output arm
compared to the input arm. For comparison, a Pierce-like analysis predicts a growth
rate of the order of 2.5 dB/cm which in a 10 cm long structure corresponds to a net
gain of approximately 15 dB.

The next stage is to break the symmetry of the system by increasing the distance
between the input arm and the first cavity. By doing so, both the gain and the arms
power ratio jumped to 24 dB (see Fig. 6.8).
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By increasing the distance between the second and the third cavity to 20 mm (see
Fig. 6.9) we were able to obtain a similar gain at the required frequency and
minimize somewhat the effect of the higher frequency peak (9.06 GHz). If instead
we changed the distance between the third and the fourth cavity, the gain dropped
below 20 dB. With the former result in mind, we increased the radius of the last
cavity to Rex 10 = 32 mm and its width to djp = 5 mm. The gain as a function of the
separation from the 9th cavity was found to have an optimum for g9 = 11 mm.

Next, we consider the separation between the second and the third cavity. We
vary it in order to obtain maximum gain. According to the classical klystron theory,
we would expect the maximum to occur around 4, /4, which in our case is roughly
4.6 cm. Figure 6.10 illustrates the gain and the arms power ratio for g3 = 50 mm. In
this case the gain approaches 40 dB. Finally, for the same geometry we calculated
the gain as a function of the (normalized) average velocity of the electrons at the
input. Figure 6.11 presents this gain and we observe that the gain may actually
exceed the 40 dB level.

Before we conclude this section, we wish to emphasize the important steps and
the main differences of the method presented here. When no beam is injected, the
poles (which determine Green’s function) correspond to the electromagnetic modes
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Fig. 6.11 Gain as a function 50
of the beam velocity. The
geometric parameters are
identical with these in
Fig. 6.10
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in a cylindrical waveguide. In the presence of the beam, there is an additional set of
poles that correspond to the space-charge waves “family”. Contrary to the electro-
magnetic modes, which can propagate in both directions, the space-charge waves
propagate only along the beam (forwards). This fact has been addressed in the
evaluation of the integrals. It is also important to point out that all poles are real
(both electromagnetic and space-charge) as they all correspond to the eigen-modes
in a cylindrical waveguide. Consequently, the gain in the system is a result of the
coupling between all these modes introduced by the cavities and arms — as in a
klystron. This is different from the regular approach of beam-wave interaction in
traveling-wave structures where the analysis relies strongly on the periodicity of the
structure and the poles (eigen-wave-numbers) are complex — see Chap. 4.

6.4 Macro-Particle Approach

The investigation of beam-wave interaction in quasi-periodic structures was
motivated by the large geometry variations required to obtain high efficiency.
The latter in turn implies substantial variation in the kinetic energy of individual
electrons from the ensemble average value. Consequently, the beam-wave interac-
tion is investigated here in the framework of the macro-particle approach. Another
issue addressed in this section is how one can design and analyze quasi-periodic
structures when quantities like phase velocity, group velocity and interaction imped-
ance are not well defined since there is an entire (spatial) spectrum of waves that the
electrons interact with. To be more specific, in a periodic structure, for a given
frequency, there is a single interacting wave (harmonic), and the interaction imped-
ance is well defined. The question addressed here regards the analog in the case
when substantial geometry variations occur.

It is shown that the interaction is controlled by a matrix interaction impedance,
which is a generalization of the scalar interaction impedance concept, introduced
for periodic structures. Its definition is possible after defining a set of functions that
are characteristic to each aperture. The number of functions is determined by the
number of apertures and number of modes that represent the electromagnetic field
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Fig. 6.12 A set of coupled ds
pill-box cavities and an Ruus i
output arm model a quasi- o
periodic output structure R,
.—> .—>
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in the grooves/arms. Each function has its peak at a different aperture but they are
not necessarily orthogonal. The matrix interaction impedance is closely related to
Green’s function of the system in the representation of this set of functions. After
we establish the basic formalism we illustrate the design and analysis of a high
efficiency (70%) traveling-wave section, including space-charge effects.

6.4.1 Definition of the Model

A schematic of the system is presented in Fig. 6.12. It consists of a cylindrical
waveguide of radius Ry, to which an arbitrary number of pill-box cavities and one
output arm are attached; all the geometric definitions are like those in Sect. 6.1 with
only one difference, there is only a single (output) arm. The system is driven by a
modulated beam which in turn is guided by a very strong (“infinite””) magnetic field
confining the electrons’ motion to the z-direction. Consequently, in the inner
cylinder (0 <r < Rjy) the only non-zero component of the current density is in
this direction i.e., J(r,z;¢) = J.(r,z; 7)1, and it is given by

J(r,z;t) = —e Z vi(1)d[z — zi(2)] %5[}” —ri(1)]- (6.4.1)

In this expression r;(7) and z;(¢) is the location of the i particle at time 7 and subject
to the assumptions above r;(t) = r;(0).

The operation of the system as an amplifier, dictates a single frequency opera-
tion, thus the time dependence of all electromagnetic field components is assumed
to be sinusoidal, exp(jwt); this tacitly implies that all the transients associated with
the front of the beam have decayed and for a particular phase-space distribution of
electrons, the system has reached steady state. According to the assumptions above,
the time Fourier transform of the current density is

T
J.(r,z;w) = % J drexp(—jowt)J.(r, z; t); (6.4.2)
0
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T =27/ is the period of the wave. The last expression can be further simplified.
For this purpose we denote by 7;(z) the time it takes the i particle to reach the point
z in the interaction region and by v;(z) the velocity of the i particle at z; the two are
related through

: 1
7i(z) = 7:(0) +J d{——;
o vi(0)
7;(0) is the time the i particle reaches the z = 0 point, which is chosen to be in the
center of the first aperture.

(6.4.3)

Comment 6.1. In (6.4.3) it has been tacitly assumed that no electrons are reflected
backwards.

Using these definitions the integral in (6.4.2) can be evaluated analytically and
the result is

® expl—joni(2)]0]r — r;(0)]. (6.4.4)

i

Jir,z0) = 5
A(r,z;0) =
R 21T
The summation is over all electrons (V) present in one time period of the
wave and I = eN /T is the average current. It is convenient to average over the

transverse direction thus by denoting the beam radius by R}, and assuming that
the electrons are uniformly distributed on the beam cross-section we find that

2 (R I
J(2) == drrd,(r,z; ) = —— (exp|—jor; " 6.4.5
=g || om0 = - ewlion@), 649
where (---) =Ng! Zi\[jl -+ -. Finally, subject to the previous assumptions, the

current density distribution reads

1
J.(r,z; o) = _n—R% (exp[—jwti(z)]);A(Ry — 1), (6.4.6)

wherein /(x) is the Heaviside step function and in what follows, the expression
(exp[—jwr(z)]);, is referred to as the normalized current density.
The longitudinal electric field averaged over the beam cross-section i.e.,

2 (R
E(Z)zﬁj drrE.(r,z; ), (6.4.7)
b JO

determines the dynamics of the particles via the single particle equation of motion
which in our case coincides with the single particle energy conservation

d 1 _
a4z i(2) = 3 #{E(z)exp[/wr,-(z)] +c.c.}; (6.4.8)
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m is the rest mass of the electron. In the next subsection we determine the relation
between the longitudinal electric field [averaged over the beam cross-section,
(6.4.7)] and the current density (6.4.6).

6.4.2 Evaluation of Green’s Function

A magnetic vector potential excited by the current distribution introduced above,
satisfies

2
[Vz + 6—2} A (r,z;0) = —upJ,(r, z; ®), (6.4.9)
in the cylindrical waveguide and
)
{vz + 62] A.(r,z;0) =0, (6.4.10)

in the grooves or output arm. The solution of the magnetic vector potential in the
first region (0 <7 < Rjy) reads

Rb (o)
A:(r,z;0) = 271,110[ dr'r’J dZ'Go, (r, 2|, 2 ). (r, z; )
0 - 6.4.11)
JrJ dkA(k)exp(—jkz)To(I'r).

where I'? = k2 — (w/c¢)?, Go(r,z|r’, ') is the vacuum Green’s function:

o0

Go(r,z|F,2') = J dkexp[—jk(z — 2)|gwx(rr), (6.4.12)

—00

and

(6.4.13)

o) = 1 {IO(FI')KO(F;”) for O<r<r/,

(2m)> | Ko(T'n)Ip(I'')  for r'<r<occ.

Ip(x) and Ko(x) are the zero order modified Bessel function of the first and second
kind correspondingly. Due to the azimuthal symmetry of the current distribution
and the metallic structure, only symmetric transverse magnetic (TM) modes have
been considered.

In the grooves, the electromagnetic field should be represented by a super-
position of modes, which satisfy the boundary conditions on the metallic walls.
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However, for the same reasons presented in Sect. 6.1, it is sufficient to consider only
the first mode in the grooves. Within the framework of this approximation we can
write

A"(r,z;00) = D, T, (9 r) , (6.4.14)
.

for the magnetic vector potential in the grooves, where D, is the amplitude of the
magnetic vector potential and Ty ,(wr/c) was defined in the context of (6.1.3). In
the output arm, the magnetic vector potential reads

A.(r, 2 0) = DyHY (? r), (6.4.15)

and H(()z) (x) is the zero order Hankel function of the second kind. This functional

form is dictated by the boundary conditions, which in this case assume no reflected
wave along the output arm.

In order to determine the various amplitudes we next impose the boundary
conditions following the same procedure as in the previous sections. From the
condition of continuity of the longitudinal electric field, we conclude that

1 o2

A(R)Io(A) + BK)Ko(A) = — °

N
> " Duhg dnLa(k), (6.4.16)
n=1

where o = wR;,;/c is the normalized angular frequency, A =T'R;, is the
normalized wave number in the radial direction, £, (k) was defined in (6.1.8) and
is the normalized spatial Fourier transform of the first mode amplitude (whose
amplitude is constant) in the domain of the nth aperture. The function

_ [P @) n=nN,
lﬁw’ = { Tw,(ot) nAN 6.4.17)

determined at the internal radius and nth aperture; v(= 0, 1) is the order of the
function. In addition, z, is the location of the center of the nth groove or arm and d,
is the corresponding width.

Imposing the continuity of the tangential magnetic field at each aperture
(grooves and arm) we find

1 o0
Dy, = — S J dk[A(K)I1 (A) — B(k)K, (A)]AL; (k). (6.4.18)
In these expressions
'u Rb {o.¢]
B(k) = ﬁ J dr'r'Ip(T'r") J dZ'exp(jkz')J. ("', 7, w), (6.4.19)
0 —00
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is the spatial Fourier transform of the current density averaged over the transverse
direction with a weighting function which is proportional to the longitudinal
electric field.

It is now convenient to substitute (6.4.16) in (6.4.18) in order to represent the
entire electromagnetic problem in terms of the amplitudes of the mode in the
grooves and output arm i.e.,

N
ZMM,DM =8,. (6.4.20)
m=1
The source term
!
S, = 2o, (6.4.21)
2mo

is proportional to the average current and the Fourier transform of the normalized
current density:

1
ay, =—

Rint JO; dzfu(z)(exp[—jwri(2)]);- (6.4.22)

The Fourier transform is with respect to a function

SR

as a(2), (6.4.23)

which is associated with the nth aperture. In particular, if all the modes in the inner
cylinder (index s) are below cutoff, this function peaks in the center of the aperture;
ps are the zeros of the zero order Bessel function of the first kind i.e., Jo(ps) = 0.
The function f,(z) is the product of two components,

1 Zn+d,,/2 .
Tsn(2) = d J e dée "l
L (6.4.24)
| e Tl=lsinhe(Td, /2) for |z — z,| > d, /2
B { 2[1 — e N/2 cosh(T(z — 2,))]/Tsd,  for |z — z,| < d,,/2

is the projection of Green’s function (s-mode) on the nth aperture; A =p>—o?
The other component is the filling factor, Fy = 2J;(psRy/Rint)/ (prb /Rint). T
determine the amplitudes in (6.4.20) one has to multiply the source term by the
inverse of the matrix M defined by

M m = l/jl,néﬂ,m - lpO,m%n.m' (6425)
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In this expression y,, was defined in (6.1.13), simplified in Sect. 6.1.2 and
expressed in terms of analytic functions in (6.1.16). The electromagnetic problem
has now been simplified to the inversion of a matrix whose components are analytic
functions without a-priori assumption on the form of the electromagnetic field.

6.4.3 The Governing Equations

The motion of the electrons is determined by the longitudinal electric field averaged
over the beam cross-section [E(z)] as defined in (6.4.7). In this subsection we use
(6.4.20) to simplify the relation between the normalized current density and E(z).
The longitudinal component of the electric field is related to the magnetic vector
potential by

2 T2 2
E.(r,z;m) :j% {w + gz 2} (r,z;0), (6.4.26)
which after substituting (6.4.9) reads
E.(r,z;o) = c2 ](iza))—lgraA(rZ'a)) (6.4.27)
jo —Ho ~or or )2 . 4.

Thus according to the definition of the effective electric field in (6.4.7), we have

E() =< { @)~ [gatzo)]| } (6428)

jaw

At this stage, we substitute the explicit expression for the magnetic vector
potential in (6.4.11) and the result has two contributions: the space-charge term

Esc(z) = — jw%o Jio d&7() % [o dkexp[—jk(z — 2]
y {1 - 211'0((AA”)) lo(A)K, (Ap) + Ko(A)L, (Ab)]}, (6.4.29)

and the “pure” electromagnetic term

]CO

Epm(z) = > J dkexp(—jkz

ZD du Lo (k)W 1, (6.4.30)

where F(k) = 21, (Ap)/ Ay is the filling factor and A, = T'Ry,.
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In the framework of the current approximation, we observe that the grooves have
no explicit effect on the space-charge term. Taking advantage of this fact we start
from Green’s function associated with TMy, modes in a cylindrical waveguide
(2.4.32) and using the same method as in (6.4.26)—(6.4.28) we obtain

(550 ]
(6.4.31)

mt

—1 |
E(z)—jw—ao[J(z)—R Lcdzj Zexp r|z_z|)2A

this can be simplified if all electromagnetic modes are below cutoff and in particu-
lar, for the case when the current density |J(z)| varies slowly in comparison with
exp(—T|z —Z/|). Subject to these assumptions, we can assume that the main
contribution to the integral is from the region z = 7' and therefore J(z) can be
extracted from the integral. The result in this case reads

o = J1 P Rb/Rmt)
E(2) *sto [ ; < AT (o) > ] (6.4.32)
or
1
Esc(z;0) = —jw—gofscf(z)y (6.4.33)

where the space-charge coefficient Egc is given by

X [Ni(psRy/Rin)]?
580—1—2 {7&11 o } , (6.4.34)

s=1

and is an approximation to the space-charge reduction factor.
It is possible to simplify the electromagnetic term by substituting the explicit
expression for £, (k) and using Cauchy’s residue theorem. The result reads

lnt

EEM (Z) 770] Z [Z Tn nlanz] P (6435)

=1
where

J 4y

T
mm = 21 le

o Woa M7, (6.4.36)

and it can be considered as a “discrete” Green function of the system since a,, is the
Fourier transform of the normalized current density with respect to the function
Jfm(0) — as defined in (6.4.22).
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Now that the relation between the effective electric field acting on the particles
and the current density has been established,

E(z) = Esc(z) + Eem(2), (6.4.37)
we proceed to analysis of the beam-wave interaction. Substituting this effective

field in the single particle energy conservation, defining Egc = Esc(Rint/Rb)* /o
and I = nyle/mc?, we obtain

N
d y expljwt;(z)] Z Tn-,mamfﬁ(z) _j§SC<eXp[_J.wTv(Z)]>v
—Vi = nm=1
dz 2Rint

+ c.c.
(6.4.38)

This is an integro-differential equation which describes the dynamics of the
electrons. In order to determine y; at any given location it is necessary to know the
Fourier transform of the normalized current density, a,, which in turn requires to
know the trajectories of all particles over the entire interaction region, as indicated
in (6.4.22).

Before we proceed to actually presenting a solution of this set of equations it is
important to make two comments which are evident from (6.4.38) and our prior
definitions:

Comment 6.2. Global energy conservation implies

(1(00)) = (1(=00)) = =51 D" i Zamitm, (©439)

n,m=1

where

Zom = % {T + T;m} : (6.4.40)

is the interaction impedance matrix. This expression implies that in case of non-
adiabatic changes from periodicity, as is the case in quasi-periodic structures, we
can no longer refer to the interaction impedance as a scalar (and local) quantity but
rather as a matrix and the interaction at a given location is affected by the geometry
elsewhere. Furthermore, since the left-hand side of the global energy conservation
[(6.4.39)] is proportional to the overall efficiency, it is evident that the latter is
controlled by the interaction impedance matrix. In the example presented next, it
will be shown that it is the largest eigen-value of this matrix that determines the
efficiency of the interaction.
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Comment 6.3. The space-charge term has no explicit effect on the global energy
conservation.

In order to solve the integro-differential equation in (6.4.38) for a large number
of macro-particles (more than 30,000 were used), an iterative way was chosen.
Typically a simple distribution is assumed, enabling the calculation of the zero
iteration ano . With this quantity, the trajectories of all particles are calculated and in
parallel, the “new” aﬁ,l) is evaluated; at the end of the iteration the two a,’s are
compared. If the relative error is less than 1% the simulation is terminated.
Otherwise we calculate the equations of motion again but this time using aﬁll) to
determine the dynamics of the particles and calculate in parallel a,(,z). If the energy
spread of the electrons at the input is not too large, then 3—4 iterations are sufficient
for convergence.

Consider now a modulated beam, which drives an extraction structure. The
initial energy of the electrons is 850 keV and the structure should extract 70% of
their kinetic energy; for the zero order design let us assume that in the interaction
region there is only a single macro-particle at a time. Furthermore, the disk
thickness is taken to be 1 mm in order to ensure maximum group velocity. For
the same reason the phase advance per cell is taken to be 90°. For the preliminary
design, a single macro-particle in one period of the wave and its velocity in the
interaction region is assumed to satisfy

v(z) = ; (6.4.41)

q and the total interaction length d, are determined from the required efficiency
and the condition that no two bunches will be present in the interaction region at a
time. For simplicity, we also assume that the internal and external radius are the
same in all cells. Their value is determined by maximizing the largest eigen-value of
the interaction impedance matrix at 9 GHz — as illustrated in Fig. 6.13 where R;,, =
9mm and Ry, = 16.47 mm; the other geometrical parameters are d; = 6.5 mm,
d, =6.0mm, d; =5.7mm and ds = 5.4mm. Overlaid is also the efficiency
assuming a single macro-particle injected into the system in one period of the
wave. The dynamics of the particle is calculated numerically (6.4.38).

30 100
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S 460 X
X 2
, : s 140 -8
Fig. 6.13 The largest eigen- 101 =
value of the interaction 420 W
impedance and the efficiency
as a function of the frequency '
89 90 9.1

using the resonant particle

model f(GHz)
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Fig. 6.14 The efficiency as a 100
function of the modulation
angle i.e., the fraction of 75 L

wavelength in degrees
occupied by electrons. The
case y(0) = 180° corresponds
to a uniform beam
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Fig. 6.15 The efficiency as a function of the location along the interaction region for two different
initially bunched beams

Figure 6.14 indicates that the efficiency of the electromagnetic energy conver-
sion is strongly dependent on the phase-space distribution at the input; the phase
here is defined as y;(z) = wt;(z). For a perfectly bunched beam the efficiency is as
designed (for I = 300 A). However, as the initial phase distribution increases to —
45° < y(0) < 45° the efficiency drops to 45% and to 25% for — 90° < x(0) < 90°. It
drops to virtually zero for a uniform distribution.

An interesting feature is revealed in Fig. 6.15 where we present the variation
in space of the efficiency for two initial distributions: — 9° < y(0) <9° —90° <
7(0) <90°. We observe that the general pattern is virtually identical in both cases
and only the spatial growth rate is smaller. The reduced efficiency is a result of
energy transferred back to electrons, which are actually accelerated as illustrated in
Fig. 6.16; clearly, in the narrower initial phase-space distribution all the electrons
are decelerated at the output, whereas in the case of broader phase-space distribu-
tion a substantial fraction of electrons is accelerated.

Finally, the efficiency is illustrated in Fig. 6.17 as a function of the frequency
for — 15° < y(0) <15°. The curve is virtually identical to that of the single
macro-particle case (Fig. 6.14). Overlaid, we present the energy spread
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Fig. 6.16 The phase-space 3 4
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(Ay =4/{y?) — <y>2> at the output and we observe that up to a constant value, this

quantity varies as the derivative of the efficiency with respect to the frequency.

6.4.4 Qualitative Approach

The approach presented above provides us with a convenient 1D tool for calculating
the dynamics of electrons in a quasi-periodic structure. Although this can be used
as a design tool, it is usually convenient to apply more qualitative arguments for a
zero order design that can be later improved with our model. Let us now follow such
a qualitative argument: consider an ideal bunch of electrons which generate a
current /. The electrons are mono-energetic and they are initially accelerated by
an initial voltage denoted by £. If we require an extraction efficiency 7 in an
interaction region of a length D then the average electric field experienced by the

bunch is

E=1 (6.4.42)
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Based on the definition of the interaction impedance in (2.3.29) we conclude that
the rf power in the system is

nR2 E?
Py =—n 6.4.43
f ZZim b ( )
and the power carried by the beam is
Pream = &I (6.4.44)

These two are related since we assumed an efficiency 7 and energy conservation
implies

Py = nPbeam- (6445)

From the expressions above we can determine the interaction impedance of the
structure i.e.,

2
Liny = gn (I%) §7 (6.4.46)
and we observe that we should design the interaction impedance of the structure in
conjunction with the effective impedance of the beam (€/I). In order to have a
feeling as for the values of the impedance consider £ = 0.85MV, [ = 0.5 kA,
Rin. = 12 mm, total interaction length D = 2.75 cm and efficiency of n = 70%; for
these parameters Z,, = 213Q. It should be pointed out that here we tacitly assumed
that E is constant thus the dynamics of the particles in space is different than the one
prescribed in (6.4.41) and is given by

7(2) =7(0) — —5 = 7(0)(1 — ¢z). (6.4.47)

The length of the structure (D) and ¢ can be determined exactly in the same way
as prescribed at the end of the last subsection. Once D is determined and assuming
that £ and I are known, then (6.4.46) provides us with a simple relation between the
internal radius and the interaction impedance. If we have in mind the disk-loaded
structure then this relation in conjunction with the expression for the interaction
impedance in (5.2.32) determine one constraint on the geometry of the structure.
Thus out of the four geometric parameters (Rjy, Rext, L and d in a periodic structure)
we are left with three degrees of freedom. The resonance condition, the phase
advance per cell and the group velocity (maximum gradient allowed) at resonance
determine three additional constraints that in turn set the “local values” of these
parameters. In other words, they roughly determine the geometry of the single cell,
which in turn is part of a quasi-periodic structure. Fine-tuning of the design should
be made following the approach in Sect. 6.4.3.
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6.5 Surface Roughness

Exactly as a bunch of electrons moving in a slow-wave structure generates a wake-
field, motion of a similar bunch in a metallic pipe with a rough surface excites
an electromagnetic signal. This field may become detrimental to the generating
bunch or trailing ones either by affecting their longitudinal or transverse dynamics.
Specifically, it may increase the transverse emittance or even enlarge the offset
from axis and in certain conditions, it may even affect the energy spread. Shorter
bunch may have a more significant impact in particular if its length is comparable to
the irregularities of the surface.

In order to envision the obstacles that we may encounter in future optical
accelerators, we need to bear in mind that, in the past, the acceleration structure of
the so-called next linear collider (NLC) designed to operate at X-band was machined
with an accuracy of about 1 pm. Therefore, there are four orders of magnitude
between the operating wavelength and the typical surface roughness. This difference
will be difficult to maintain in the case of a vacuum optical accelerator operating at
1 um since it entails engineering the structure at the atomic level (1 A). Other
applications also require high degree of surface “machining”: advanced light sources
are expected to be sensitive to surface roughness and throughout the years a signifi-
cant amount of research reports have been published. A brief review of publications
on the wake-field generated by surface-roughness can be found in the introduction of
the article this section relies upon — compiled by Banna et al. (2004).

In this section, we employ the quasi-analytic approach developed earlier in this
chapter facilitating a relatively simple evaluation of the wake-field due to surface
roughness of arbitrary size. The model relies on a cylindrical waveguide of radius
Rin to which a series of grooves are attached; their geometric parameters i.e. width,
height and location, are assumed to be random. In principle, they can be large on the
scale of the typical wavelength of the radiation that drives the system. Simulation
results focus on the average and standard-deviation of the electro-magnetic energy
emitted by a relativistic bunch in terms of the roughness parameter.

6.5.1 Definition of the Model

In order to analyze the wake-field generated by the surface roughness consider a
metallic structure consisting of a random number of pill-box cavities attached to a
cylindrical waveguide (internal radius Rj,) as illustrated in Fig. 6.18.

The center of the n' groove is denoted by z,, its width by d, and its external
radius by Ry ,. An electron bunch of radius Ry, length A; and a total charge Q, is
moving along the symmetry (z) axis of the structure at a constant velocity vy.

This bunch generates a current density

Jo(ryz;0) = —Qv02L {ih(Rb - r)] [ALh (AZ —|z— vot|>} , (6.5.1)

2
7 |R;
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Fig. 6.18 A finite-size bunch T
moving in vacuum at a
constant velocity v, along the
axis of a cylindrical structure
with grooves of random size

where the function /(&) is the well-known Heaviside step function. In what follows
it will be more convenient to use the Fourier transform of this quantity i.e.

o) = 2 2R~ Psine( L@ il
J(r,z;w) = (2n)? R}%h(R;7 r)sinc (2 v A_,) exp( Jjo Vo)’ (6.5.2)

wherein sinc(¢) = sin(&) /€.

As the only component of the current density is in the z-direction, it is sufficient
to consider only the longitudinal magnetic vector potential A, that satisfies the non-
homogeneous wave equation — (6.2.1). Its formal solution was introduced in (6.2.3),
(6.2.4) and (6.2.5). Contrary to Sect. 6.2 in this case we have no input or output arms
therefore, the boundary condition associated with the longitudinal electric field
reads

2

—271%[3(1() Ko(A) + Ak ZD Ton(2)d, L, (k) (6.5.3)

which replaces (6.2.9). Here

{o.¢]

Ry
B(k>=§—§L "”"’Iom’)J i exp()L( Fr ), (654)

—00

is the spatial Fourier transform of the current density, and is given explicitly by

Opy . ) )
B(k) = — ——A, Ry |ol k—— 6.5.5
® (2n)? Z <2 Vo ) (VOV b) ( VO)’ >

0(¢) being the Dirac delta function, I.(x)=2L(x)/x, f=vo/c and y=

1/4/1 - B%. In each one of the grooves the continuity of the azimuthal magnetic
field provides us with an additional set of equations namely,

aD, T (2) = JOO ARAB(OK, (A) — AR (A))LE (k) (6.5.6)

—00
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Based on these two equations (6.5.3) and (6.5.6) the amplitudes in the grooves (D))
may be determined from the following algebraic relation

N
> MywDy =S, (6.5.7)

m=1

Here the source term S, and the matrix M, ,, are given by

snzlro dk——B(k) L2 (),

Mn,m = Tl.n(fx)én,m - TO,m(a)Xn,mu

Lm0 Li(A)
Tam = 3 LO g0 2y SO Ln ) (6.5.8)

and the explicit expression for y was evaluated in (6.1.16).

6.5.2 Emitted Energy

In order to quantify the effect of roughness on the electron bunch it is convenient to
focus the discussion on the emitted energy. For this purpose we bear in mind that
the emitted power is

Ry 00
P(t) = 27‘CJ rer del.(r,z;0)E9 (r, 2;1), (6.5.9)
0

—00

where E(S>(r, z;t) is the secondary longitudinal electric field generated due to the

z

presence of the metallic surface. With the power, the emitted energy is given by

00 Q2 00 Q2 _
W= J dtP(t) = — pe—— Re UO docS(ac)} i W (6.5.10)

—00

the integrand [S(«)] represents the normalized spectrum of the emitted energy. The
latter is directly related to the so-called longitudinal impedance

Z)(w) = —é Jio dzE®) (z; ) exp <jv°‘;z> = g—;S(a). (6.5.11)

Evidently, for quantifying the total energy emitted it is necessary to determine
the longitudinal electric field E(*)
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3

_ 212
EV(r,z0) = | dkexp(—jk2)lo(T'7) Aw, k),
= (6.5.12)
= J dk exp(—jkz)Io(I'r)E(w, k),
—00
wherein £(w, k) is given explicitly by
o, k) = 2 EN:dD( YToun (o) Lo (K) (6.5.13)
w, - 7 IQ(A) T nn (W) 1o n(&) Ly e

consequently, the normalized spectrum of the emitted energy S(o) reads
<\ L(aRp /7B
S(o) = J_ocs (ocA) c(@Rs/7P)

28) To(a/7B)

X ZdnTo,, sinc <2/3 ) exp( Zzn>Dn(oc),

(6.5.14)

where A, = A./Rin, dy = d,/Rini, Ry = Ry/Rin; and Z, = 2z, /Rin.. In the analy-
sis that follows it is assumed that the geometrical parameters of each groove
are random and are of the same order of magnitude. Explicitly, they are given by

R_ext.n =1+ 5117 Czn = Sn (6515)

where 6, is a random variable that characterized by the average roughness (5) and
its standard-deviation Ad. The center of the first groove (Z; = z1/Riy) is being
chosen as point of reference and accordingly, the location of the n'(n = 2,3, ...,N)
groove is given by Z,,| = z, + d,, /2 + dny1/2 + 6,. Clearly, if Ry is of the order
of 0.5 um and the typical roughness is not expected to be significantly larger than
0.1 pm, then the normalized roughness parameter is expected to be of the order of
0.21e.,0< <5> < 0.2. Moreover, the accelerated bunch is expected to be of the
order of 30° = 45° (namely about 0.1 pm), therefore 0.15 < A. < 0.30. Typically
the bunch’s normalized radius is chosen to be R, = 0.5. In the results presented
next, each data point is a result of average over 80 different distributions. Increasing
the number of distribution did not affect the results of the simulation. In practice,
the electron bunch propagates along an extended length traversing a large number
of grooves. For the parameters of interest the radiation emitted per obstacle is the
same, as was demonstrated by Banna et al. (2004).

When examining the fotal energy emitted by the bunch per obstacle we focus on
the dependence of the emitted energy on the roughness characteristics ((5),5)
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with A, and y as parameters. For 7 > 50 the emitted energy per groove is virtually
independent of y and it can be approximated by

W 45 2L 1
_="> . 0.57tanh L . (6.5.16)
T X 14+207%=) 07+ 1455

and

VWIS —<W>? A\ AS
<W"> = <W> ~0.15< ) tanh<121.2)
4—75) R X int int

(6.5.17)

1) 1
x |0.57tanh B ) + <
142074 )  0.7+1452

Note that for a point-charge (A, = 0) and (0), Ad > 0.2R;, the expression for
the average energy per groove reads

<w> @

N o 47I80Rim

x 2, (6.5.18)

whereas the standard-deviation per groove is now given by

VW> — <> Q? os( ) 1/4
N T 4meRin " \Rint .

(6.5.19)

It should be pointed out that the expression in (6.5.18) is virtually identical to the
decelerating field (2.4.78) on a relativistic point-charge propagating in a vacuum
tunnel (of radius R;,;) in an otherwise uniform dielectric material — Cerenkov force.

Comment 6.4. For more details regarding electromagnetic wakes associated with
surface-rougness, the reader may want to consult Kurennoy (1997), Stupakov
(1998), Mostacci et al. (2002) and Bane and Stupakov (2003).

Comment 6.5. The model presented in this chapter was extended to include an
arbitrary number of modes in each groove in order to justify the single mode
approximation used so far. While there is less than 10% difference between using
one mode comparing to two modes but there is negligible difference between 2, 3
and 4 are modes in the grooves.

6.6 Photo-Injector

Laser-driven rf electron guns are operational for a quite long period of time and
they are the main source of high-current, low-emittance, short bunch-length elec-
tron beams, required in virtually all electrons accelerators. In essence, a high-power
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laser beam illuminates a photocathode surface placed on an end wall of an rf cavity.
The emitted electrons are accelerated in a short distance from rest to a relativistic
energy by the strong rf field stored in the cavity. For a simple mathematical
description of the physical processes described above, we chose to present in this
sub-section an analytic approach inspired by that developed by Kim (1989).

Before presenting the essentials of a mathematical model, let us review some of
the milestones in the development of photo-injectors and its typical parameters:
following the successful demonstration of the free electron laser (FEL) the need for
better electron source has become a necessity and a photo-cathode based gun was
suggested. The first experimental demonstration of normal-conductivity photo-
injector was performed at Los Alamos National Laboratory as part of the FEL
program in the mid eighties. Later, O’Shea et al. (1993) has reported the generation
of ultraviolet radiation employing an FEL driven by a photo-injector. At about the
same time, the first operation of a photo-cathode was demonstrated in a super-
conducting cavity — Michalke et al. (1992). Aiming for higher average power and
lower emittance, more recently, electrons emitted from photo-cathodes were
accelerated by a dc field, as reported by Siggins et al. (2001). As of today, this is
the most advanced electron injector concept harnessed for the new generation of
light-sources based on energy recovery linacs (ERL). For a more detailed overview
of photo-injectors the reader is referred to Russell (2003). Probably the most widely
used photo-injector among many laboratories throughout the world is the so-called
“ATF-BNL/SLAC/UCLA - injector”. Its typical parameters are as follows: a 3 ps
(rms) laser pulse generates up to 1 nC of charge, the peak electric field at the
cathode is 120 MV/m and the energy of the electrons at the output is of the order of
6 MeV; the emittance (rms) &, ~ 0.8[mm — mrad].

While in the context of photo-injectors the electron dynamics in a dc field is
conceptually different than in an rf field, energy-wise the outcome is virtually
identical. Moreover, in the near future it is most probably that rf injectors will
keep playing an important role in accelerator systems therefore we now pursue the
essentials of bunch generation in an rf photo-injector. Its main advantages are that
the time structure of the electron beam is controlled by the laser, facilitating an
enhanced 1f field, so that the degrading effects due to space-charge repulsion can be
minimized. In this section, we limit the discussion to a simple but vigorous model
leaving the fine details to numerical codes.

Consider a sequence of rf cells operating in the 7-mode. Since the electrons start
from rest, the first cavity is actually a half-cell such that by the time the bunch enters
the second cell the field reverses sign. Schematic of the structure is illustrated in
Fig. 6.19.

On axis, the longitudinal electric field may be approximated by

®
c

E.=Ey cos( z) sin(wt + ¢,). (6.6.1)

Here it has been tacitly assumed that: (1) this is an accelerating structure such
that the phase-velocity is ¢, (2) the plane where the photo-cathode is located is at
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Photo-cathode

g q
A2 A2

Fig. 6.19 Schematics of an rf gun. The photo-cathode is on the left wall of the half-cell. At the
operating frequency the cell operates at the m-mode. The entrance or exit coordinates of the n +
1/2cellare z = (n— 1/2)4/2 and z = (n + 1/2)2/2 correspondingly

z = 0 and (3) a particle emitted at = 0 experiences a phase ¢,. Moreover, contrary
to the previous sections since efficiency is not a major concern at this pomt the
effect of the particles on the rf field, is ignored. Next we define 7(z fo

which represents the time it takes a particle to reach a point z, tacnly assummg that
electrons do not bounce back. We further define the phase of the electron reaching
this point as

9(2) = o+ () — 2z
- o , o) (6.6.2)

Consequently, the equation of motion reads

%y _ZeTEc[')z [sinq’)—i—sin(d)—%—Z%z)} (6.6.3)

Formally, the phase variation is

2
¢ ¢
d ) (75+1)
@ _of v )i \Ee)
/'V2_1 .

dz ¢
a>¢ w 1 dy dy - z—(f £

i P S S A
dz? C (y2— 1)3/2 dz dz |:(d¢ C+1>2 1]3/2
4 < _

(6.6.4)
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leading to the following non-linear differential equation

Lp & Ey c[. .. e V)"

3?5?2‘;é£ﬂm¢+“4¢+%;ﬂlGEé+Q _4 (66.5)
$(0) = ¢ H
7(0) =1

Rather than solving this non-linear equation in a self-consistent way, we proceed by
adopting an iterative approach.

The second term in (6.6.2) reflects the fact that when the bunch becomes
relativistic (y > 1)the contribution of the integral to the phase of the particle is
negligible (except if |¢y| < n) therefore, in zero order we may assume that the
main contribution to the phase is from the first cell where the major change in
velocity occurs. Denoting by 7,,, the approximate solution for 7y and
o = eEy/2mcw as the dimensionless field parameter representing the strength of
the accelerating field acting on an electron on the scale of one wavelength, we get

, o)
7 2 Yapp = 1+ 20sin(y) (;Z) (6.6.6)

Substituting in the phase equation (6.6.2) the phase is given by

Vapp -1 Vapp +1
= -1 6.6.7
¢=9dot 2008in g |\ Vapp — 1 ( )

enabling to determine a better approximation for y namely,

y 1+oc{(fzsin¢+;[cos¢—cos<¢+2i)z)}} (6.6.8)

note that according to (6.6.7) at the limit y > 1 the phase is

1

o = P + Sasind, (6.6.9)

Comment 6.6. In case of a finite spread A¢, around ¢,, at the photo-cathode, the
spread at the output is

Mgy . cosdy
Apy 2osin’ ¢,

(6.6.10)

For assessment of the transverse motion several assumptions are in place: (1) the
initial transverse motion at the cathode is zero (p; = 0), (2) the acceleration mode
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is azimuthally symmetric and (3) at the output end the bunch is relativistic (f ~ 1).
Subject to these assumptions the radial momentum at the output (z = zyy) is

Prout = OC(% I‘) Sin(¢0u[) (6.6.11)

In what follows we omit the subscript “out” with the understanding that all
quantities are at the output end of the structure. In Chap. 3 we have shown that the
transverse motion may be characterized by the emittance and without any loss of
generality, we limit the discussion to the x-direction namely, p, = yf(dx/dz) =

(o sin ¢ /c)x thus & = 1/ (p2)(x2) — (xp,). Further assuming that the transverse

and longitudinal dynamics are independent, we conclude that the contribution of
the rf field to the emittance is

& = 22 (x*) \/<sin2¢>i>i — (sin (f),}lz (6.6.12)

c

For a small bunch whose average phase is (¢) the phase is ¢; = (¢) + d¢p; and
we will assume that |d¢);| < 7 hence

& = af<x2>\/sin2<¢> [(coszéd)i) —{(cos 54),-)2] +cos?(¢) [<sin25¢>i> - (sinéd),-}z}

(6.6.13)
It can be readily checked that this expression has a minimum if
(¢) = g (6.6.14)
implying that
&xmin = 22 <x2>\/(cos25q5,-) — (cos 8¢,)?,
¢ (6.6.15)

1 o 2
~ a2\ (0g]) — (947) .
From this result, we conclude that minimum emittance is achieved when the
transverse momentum is maximum and consequently, it will be necessary to
focus the beam immediately after exiting the injector.

According to (6.6.9), the condition for minimal emittance at the output (6.6.14)
further implies that the initial phase should match the field strength parameter
namely

. 1
(g - ¢>0) sin gy = 5 (6.6.16)
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Fig. 6.20 Bunch spread ratio 100
(in [%]) and the field strength
parameter (o) as a function of
the initial phase of the bunch
at the cathode (¢,). The

upper circle reveals that

choosing the latter to be ¢, ~
40° leads to zero spread at the

Bunch spread ratio [%]
o

output; for this to happen, -50
o~ 0.89
-100
30

Figure 6.20 illustrates both the bunch spread as defined in (6.6.10) (expressed in
percentage) and the field strength parameter (o) as a function of the initial phase of
the bunch at the photo-cathode (¢, ). It is evident that there is an entire range of
angles (¢,) which actually facilitates compression of the bunch |A¢ | < |A¢,|. In
fact, if ¢y ~ 40° the spread is virtually zero, A¢., ~ 0; for this to happen the field
strength parameter should be o ~ 0.89. In the framework of this estimate, the
space-charge effect was ignored and therefore, these results should be considered
only as a rough estimate.

Exercises

6.1. Analyze the electromagnetic problem as in Sect. 6.1 but with three
modes in each groove and arm.

6.2. Analyze the electromagnetic problem as in Sect. 6.1 but for three arms
that are not necessarily located at the ends of the structure.

6.3. Analyze the electromagnetic problem as in Sect. 6.1 but for a rectangular
waveguide.

6.4. Analyze the electromagnetic problem as in Sect. 6.1 but for symmetric
TE modes in a cylindrical waveguide.

6.5. Analyze the beam-wave interaction problem as in Sect. 6.4 but assume
that the metal at r = Ry, is of finite conductivity. Determine the effect of
resistive wall instability on the energy exchange.



Chapter 7
Free-Electron Laser

In Chap. 1 we have shown that the interaction of electrons with an electromagnetic
wave is possible even when the phase velocity of the latter is larger than ¢, provided
that there is a way to conserve simultaneously both energy and momentum. In a
free-electron laser (FEL) this is facilitated by the presence of a periodic magnetic
field. In most cases, the components of this field are transverse to the initial velocity
of the electron. An electron injected in a periodic magnetic field (wiggler) oscillates
and, as a result, it emits radiation. The highest frequency is emitted in the forward
direction and in zero order it is determined by the periodicity of the wiggler, L, and
the electron energy, 7. In Sect. 3.2.3 it was shown that for relativistic electrons
(B ~ 1) this frequency is given by w ~ 2y?(2nc/L).

To the best of our knowledge, the first analysis of the motion of an electron in a
wiggler of this kind was performed in the early 1930s by Kapitza and Dirac (1933).
The question raised was whether it would be possible to observe stimulated
scattered radiation from electrons moving in an electromagnetic wave. For this
purpose, the authors considered a low energy beam of electrons injected in a
standing wave region and they estimated the number of scattered electrons due to
the stimulated radiation. In the early 1950s Motz (1951) investigated the radiation
emitted by electrons as they move in a wiggler and later Phillips (1960) built the
first coherent radiation source with a wiggler as its central component; it was called
the Ubitron. In the late 1960s Pantell et al. (1968) suggested the same concept at
much shorter wavelengths and Madey (1971) has proven that laser light can be
amplified using this scheme but it was only later at Stanford that Elias et al. (1976)
demonstrated experimentally the amplification of a 10.6 um laser beam and since
then the name — free electron laser.

There are numerous textbooks, review articles, proceedings and articles on free-
electron lasers a small fraction of which will be mentioned in Sect. 7.5. However,
for an introductory guide to the free-electron laser we find the article of Hasegawa
(1978) as a good starting point. An excellent tutorial work on the theory of the free-
electron laser is the article by Kroll et al. (1981) which in fact inspired many of the
topics presented in Sect. 7.4. An overview of the field is presented in an article by

L. Schachter, Beam-Wave Interaction in Periodic and Quasi-Periodic Structures, 335
Particle Acceleration and Detection, DOI 10.1007/978-3-642-19848-9 7,
© Springer-Verlag Berlin Heidelberg 2011
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Roberson and Sprangle (1989) and among the books dedicated to FEL’s, Marshall
(1985) covers the basic theory and the early work done and more recently the book
by Freund and Antonsen (1992) also covers advanced topics on free-electron lasers
in addition to the basic theory.

In this chapter, we present what we conceive as the basics of free-electron lasers.
Alternative schemes of energy conversion from free electrons and some advanced
applications as advanced light source are briefly described in the last part of this
chapter. Specifically, in the first section we consider the spontaneous emission as an
electron traverses an ideal wiggler. This is followed by the investigation of coherent
interaction in the low-gain Compton regime. Section 7.3 deals with the high-gain
Compton regime, which includes cold and warm beam operation. The macro-
particle approach is presented in Sect. 7.4 and we review various alternative schemes
of free-electron lasers (Sect. 7.5). A brief description of FEL’s as an advanced light
sources concludes this chapter.

7.1 Spontaneous Radiation

As an electron is injected into a periodic magnetic field, it oscillates and emits
spontaneous radiation. In this section, we examine this process. For this purpose,
we consider a transverse periodic magnetic field that is uniform in the transverse
direction — at least on the scale of the beam cross-section. A helical undulator field
can be derived from the following magnetic vector potential

Ay = —Ay [l cos(kyz) + 1, sin(kyz)], (7.1.1)
or explicitly,
B, = By[1,cos(kyz) + 1, sin(kw2)]; (7.1.2)

the two amplitudes Ay, and By, are related via Ay, = By, /ky wWhere ky = 27/L is the
wiggler’s wave-number; 1,,1, are the unit vectors in the x and y directions
correspondingly. An electron is injected along the z axis and we examine its motion
in the absence of any radiation field. The relativistic Hamiltonian that describes
the motion of an electron in the presence of an electromagnetic field was developed
in Sect. 3.1 [(3.1.15)] and it is given by

H = \/(p + eAy)22 + (mc?)? = mc%y (7.1.3)

where collective effects are ignored and since no external voltage is applied and we
ignore space-charge effects, the electrostatic potential is taken as zero. In addition,
no boundaries are involved.
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The canonical momentum p has two components: one which is parallel to the
major velocity component of the electron and is denoted by p| and the transverse
one p . As indicated in Sect. 3.1, if the Hamiltonian is not explicitly dependent on
the transverse coordinates then the transverse canonical momentum is conserved
(p. = const.). This canonical momentum has also two contributions, the kinetic
and the electromagnetic i.e., p, = myv, — eA . Assuming that the electron is born
outside the magnetic field and its initial transverse motion is zero, we immediately
conclude that p; = 0, which implies

7€AL

2l (7.1.4)

my

We also observe that this Hamiltonian does not explicitly depend on time therefore,
energy is conserved i.e.,

7 = const.. (7.1.5)

From the last two relations we can deduce the expressions that describe the motion
of an electron in space, they read

eA

vi(z) = — y—n:, cos(kyz),
W@:_%fmmm, (7.1.6)
v.(z) = vo.

It is evident from these expressions that the particle undergoes a helical motion
whose amplitude is determined by the amplitude of the wiggler By, its wave-
number k,, and the initial energy of the particle. This fact becomes clearer when
realizing that in the x—y plane the particles undergo a circular motion as revealed by
the first two equations of (7.1.6) which can be rewritten as

eB 2
2 2 w
"+ v = . 7.1.7
Ve Yy (kwym) ( )

If we assume that the transverse motion is much slower than the longitudinal
component we can assume that z =~ v ¢ and therefore,

eA,, 1 .
X(t) = X(0) — — —— sin(kyv 1),
(1) (0) S sin(kyv |t) .
eAy, (7.1.8)

S~ [cos(kwvyr) — 1].
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This trajectory of the particle implies that it will interact naturally with a circu-
larly polarized plane wave. However, before we consider the radiation emitted,
it is instructive to make one more observation. The energy factor, y, is defined by

g (7.1.9)

)
/ 2 2
1 - I - ﬁL
and we can also define a similar factor associated only with the longitudinal motion
1.€.,

Since the transverse velocity, as determined in (7.1.4), is y dependent, we find that

Y
=
\/l + (eBy/mcky)?

, (7.1.11)

which indicates that the effective energy factor (y) can be substantially smaller
than y. For example, if By, = 0.5T and L = 2 cm the longitudinal energy factor is
about 70% of the original y.

An electron that follows the trajectory described by (7.1.8) radiates. In order to
calculate the emitted radiation we assume that the current density is given by

Jy(r, 1) Vy
Jy(r,t) | = —e| v, [6(x)6(y)d(z —v1), (7.1.12)
Jz(l', I) VH

where the transverse displacement of the electron was neglected. In free-space the
radiation generated by this current density is given by

A(r,t) = de Jdr’ P [jw (t _ u)} J(r', o) (7.1.13)

4m|r — /|

The time Fourier transform of the current density in (7.1.12), denoted above by
J(r, w), is given by

I(r ) = — 2e7r Vi(t VIZ/V) exp <_jv2|2)5(x)5(y)7
Jy(r, ) = —% VV(t;ilz/v') exp (—jvﬂz) 3(x)3(), (7.1.14)
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The integrals in (7.1.13) can be simplified for the case when the observer is far away

from the wiggler [(w/c)r > 1] in which case we have

dnr c

A(r,t) = o de exp {jw (z‘ - l;)} Jdr’exp(jgz’ cos Q)J(r', o)  (7.1.15)

0 in these expressions is the angle between the vector which connects the center of
the wiggler and the observer with the z axis. Substituting the explicit expression for
the current densities allows us to evaluate the integral analytically. Neglecting
rapidly oscillating terms [(w/c) cos 0 — ky — @/v| we have

_elly eByD SNSERAY w o D
Ay(r,)= (47[)2" P Re{deexp {jw (t cﬂ sinc {(c cosf v +kw) 2] }7

ey eByD J 1 ) " . w w D
A,(r,f) = Re! |dw— f—— —cos0———+ky | =| b,
y(r,) (4n)2rmkw“/V\| e{ cojexp{ja)( C)}smc Ccos VH+ >
0;

A (r )~

(7.1.16)

where sinc(x) = sin(x)/x, the total length of the wiggler is denoted by D and it
spans from — D/2<z<D/2. The longitudinal component of the magnetic vector
potential is negligible since it is proportional to sinc[(cos 0 — 1/f)(wD/2c)] and
this function varies rapidly for a wiggler length D much larger than the wavelength
of interest.

The magnetic vector potential determines the electromagnetic field, which in
turn enables us to evaluate the power and energy emitted. The Poynting flux is
given by

S.(r,t) = Ex(r,0)Hy(r, 1) — Ey(r,t)H(r,1), (7.1.17)

and the energy emitted per unit area in this process is given by
w(r) = JdtS,.(r,t), (7.1.18)

where S. = S, cos 0. Substituting the explicit expressions for the components of the
electromagnetic field, followed by the evaluation of the integral over ¢ simplifies
substantially the calculation since the resulting Dirac delta function can be utilized
to evaluate the double integration

4 | eu eBy, \D
W(r) = — 02 ( > —
Mo | (4m) mky vy ) T

2
D
X dewzsinc2 Kg cos O — @ + kw) —} .

C V” 2

(7.1.19)
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This energy is emitted by a single electron. An ensemble of N electrons in the
interaction region carry a current / = eNv|/D and the energy in an angular interval
0— 0+dois

W =Nr’w
elny ( eBy \* (D ’ o\ »? o w D
p— w PR —_ - 1 2 J— PE— _
= (47z)3 (mckwy) (ﬁ) X Jd(c) = sinc KC cosf v +kw) 2].
(7.1.20)
The term
(&) = sinc?(¢), (7.1.21)

represents the spontaneous emission line shape and we shall encounter it again
when considering the power in the low-gain Compton regime. The argument of
the sinc function is directly associated with the resonance condition

D
gz—(f cos9—3+kw> (7.1.22)
2 C VH

and maximum power is emitted when this condition is satisfied i.e., £ =0. It
implies that the frequency emitted in the forward direction (0 = 0) is given by

By(1+By)y?

4 eB,, 2
mkycC

which clearly depends on the strength of the wiggler. This can be considered the
exact resonance condition while the expressions presented in the first and third
chapters [(1.1.19) and (3.2.17)] are approximations, which are valid in case of a
weak wiggler field i.e. eByc/ky < mc?.

Rather than considering the whole spectrum of waves emitted in a given
direction in space, it is instructive to present the energy emitted in a frequency
interval w — ® + dw in one period of the wave i.e.,

w dW  eln, eB,, 2w 3 . ol (o w D
77 =D — 0——+ky | =|. (7.1.24
2 dow (47'5)4 (mékw')/’) (VI ) N c Cos v + ) ( )

Assuming operation at resonance we can substitute the explicit expression for the
resonant frequency and obtain

(7.1.23)

W = Wpes = Cky

T o dW eln, [D 3 Q?
W= {Zd] = . [L(1+/3||)} e, (7.1.25)
T dw W=y 0=0 n (1 + Qw)
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where Q,, = eBy/mck,,. Note that as a function of Q,, the emitted power has a
maximum at Q,, = 1/+/2 therefore

3

w e D
Wmax—zlén[ (1 +ﬁ,)] (7.1.26)

According to this result, a 10 MeV, 1 kA beam generates W.x = 0.1 uJ of energy
in 10 periods of the structure. If the electron pulse duration corresponds to the
radiation period 1/35 GHz, then the total energy carried by the beam is 0.28 J which
is six orders of magnitude larger than the radiated power.

The energy lost by the electron as it traverses the periodic magnetic field, can be
interpreted in terms of an effective gradient that decelerates the moving electron. In
order to evaluate this gradient, we integrate (7.1.19) over the spherical envelope

s

W = 2mr? J dOsin OW (r, 0)
0

—_ 2(47[)2 (e:uo)z €B 00
= (4m)* (mck Vﬁ) J d@sm@J dw (7.1.27)

xwzsinCZQ 80059,91+kw .
2 \¢ cp

For a long interaction region we use

oo

. D
[}grgo {E sinc {2 (ky — kz)] } =2nd(k; — ka), (7.1.28)
thus
- eB 2 e? m sin 0
W= = D do . 7.1.29
<2mckwvﬁ> dmeo [k, Jo (1/B — cos 0)° ( )

The integral can be calculated analytically and, as we indicated, it is convenient
to determine the effective gradient as E.;f = W/eD which reads

2
Eeft = = ﬂzek (eB ) (7.1.30)

drey \mck

This is the decelerating gradient which acts on the particle. Note that for a relativ-
istic particle it is quadratic in ), the energy of the particle, and it will become an
important factor when discussing acceleration of electrons using the FEL scheme in
Chap. 8.
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7.2 Low-Gain Compton Regime

If an electromagnetic wave is injected parallel to the beam and its frequency matches
the resonance condition, then stimulated radiation may occur. As a first stage, we
examine the lowest order effect of the beam on the radiation field. To be more specific
we look for the contribution to the radiated power of the first order in a)g term.

The wiggler is the same as in (7.1.1) and the injected wave is circularly
polarized:

Ay (r,t) = Aol cos(wt — kz) + 1, sin(wr — kz)). (7.2.1)

Ignoring space-charge effects and in the absence of boundaries it is justified to
omit the electrostatic potential from the expression for the relativistic Hamiltonian
(3.1.15) hence

H= \/ (P + Ay + eAw)’c? + (mc2)”. (7.2.2)

Neither the wiggler nor the radiation field have components of A parallel to the
beam and consequently,

H= \/(mcz)2 + c2pﬁ +2(p, + eAy + eAy)’. (7.2.3)

As before, the conservation of the transverse canonical momentum (p; = 0)
implies

H= \/(mcz)2 + czpﬁ + 22 (Ay + Ax)?, (7.2.4)
whereas the linearization of the Hamiltonian in the radiation field reads
H=Hy,+ H,

2
2 e
- Ay A
(E g f (7.2.5)
eonBw

= mc?y — cos[wt — (k + ky)z].

mkyy
From this expression, we learn that the first order perturbation is proportional to the
scalar product of the wiggler and radiation vector potentials. This part of the
Hamiltonian determines the so-called pondermotive force (subscript p)

OH;
oz
_ e*A¢By
 myky,

F, =
(7.2.6)
(k + ky) sinfor — (k + ky)z].
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For what follows, it is convenient to adopt a phasor notation

F,—F 'ezAOBW(K+K )exp{jlot — (k + Ky)z]}
— F,=— w) €X — w)Z
A P (7.2.7)

=F, exp{jlwt — (k + ky)z]},

where

(7.2.8)

Next we linearize the Liouville equation i.e., assume that the distribution
function f has the form

f(Z,t;p) :fO(p) +.fl(Zat;p)7 (729)

where fj is considered to be known and f; is linear in the pondermotive force hence

dfo

2.1
i (7.2.10)

<jw+v§z>fl = —ﬁpexp{j[a)t (k + kw)z]

A solution of this expression, assuming that the right hand side is known, can be
formally written as

filz,0)=— fO [Jw (t B ;)} exp(jokz) — exp(—jok?2)

dp —exp Jjok ’

1 dfo e*AoBy (k + ky) . z

_ L A hth) ()

pdp ki v
exp(jokz) — exp(—jokL

. EXPUOKz) — exp(~) 2), 7.2.11)

ok
where D is the length of the interaction region which starts at z = —D/2 and

ok = w/v — k — ky. With this expression for the distribution function, we can
define the macroscopic current density and in particular, its transverse components
read

Ji = —eng JdeJfl

1 [By\ " Aok + ky)
m

— 2"\ %,

(1L = 1)

. _ _ Q
x [ dpk Leexpljoo( — )] xp(jokz) 5;@( L) g
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Here we used the explicit expression for the transverse velocity in (7.1.4) and
ignored terms that vary rapidly in space; ny is the average density of the particles in
the absence of the radiation. Since we calculated the current density generated by a
known electric field, the next step is to calculate the power

D/2 1
P= SdJ dz=Re(E, -J}), (7.2.13)
7D/2 2

where S is the beam cross-section and
E| = —joAy = —jo(1, — j1,)Ajexp(jot — jkz). (7.2.14)

Note that it has been tacitly assumed here that the effect of the beam on the radiation
field is negligible. Substituting in (7.2.13) we obtain

1 EByAN [, v dfy . (1
P = Znow(k + ky)SaD? (T()) Jdp? di](a) sinc? (5 (3kD> . (7.2.15)

At this point we can evaluate the last integral for two extreme regimes: (1) cold
beam approximation and (2) warm beam approximation. In the former case it is
assumed that the initial distribution function f; is much sharper than the sinc
function hence by integration by parts we get

1 el AoD)?| [ eBy \* 1d

= - 67773 (@40D)” ( ¢ ) (k + ky)D [ sinczé} ,

23;8[30 me 21, mcky, 2.dé t—okD)2
(7.2.16)

or
2 2 2

p_ (cupD) 1 3 [eBw 1] (0Ag)~SetD(k + k) [—lisinczé} 7
¢ (7oBo)” | Lmckw 4o 2d¢ E=0kD/2
(7.2.17)

where we used fo(p) = 5(p — po). These expressions clearly indicate that the power
is inversely proportional to the y° out of which the y* term is due to the longitudinal
bunching, and }? is due to the transverse oscillation in the wiggler. In addition, note
that the power of the coherent radiation emitted is proportional to the derivative
of the spontaneous emission line shape.

The second regime of interest is when the sinc function is much sharper than
the distribution of particles and the power is
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Fig. 7.1 Normalized gain. In 0.5
the weak Compton regime
when operating exactly at -%
resonance the gain vanishes )
and it peaks { = 1.303 S
S 0.0 =~A S5
5
5
2
-0.5 1 I

1 1
Jdp_ ﬁsinc ( (3kD) o< 12 J'dpﬁsmc ( 5kD),
2 p dp

x 12 {Jdpi {fosinc < 5/<D)] dpfo — smc <l 5kD) }7 (7.2.18)
p dp 5

o —sinc?(zD /L) ~ 0,

which indicates that in the low-gain Compton regime, “warm” electrons do not
generate coherent radiation.

The coherent radiation generated in the course of the electrons’ motion in
the wiggler as revealed by (7.2.16), (7.2.17) is illustrated in Fig. 7.1 where the
normalized gain is — % %smc (¢). We observe that when the velocity of the
electrons is larger than the phase velocity of the pondermotive force i.e.,
v > o/(k + ky) meaning negative £, the normalized gain is negative thus energy
is transferred from the electrons to the wave. And when the electrons are slower,
they are accelerated by the pondermotive force. Maximum gain does not occur at
resonance but for |£] = 1.303 in which case the absolute value of the normalized
gain is 0.27.

7.3 High-Gain Compton Regime

In the previous section, the collective effect of the particles was neglected in the sense
that the effect of the beam on the radiation field was ignored and the gain was a result
of an ensemble of dipoles oscillating coherently due to the common excitation of the
external field. This interpretation is supported by the expression for the current
density in (7.2.12) which indicates that the electrons are organized in bunches. At
low currents the effect of these bunches on the radiation field is indeed small but as
the current is elevated, their effect becomes more and more significant. In parallel, as
the modulation increases, the quasi-electrostatic forces between particles also
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increases and space-charge effects have to be accounted for. These will be
represented here by a scalar electric potential ® and the longitudinal component of
the magnetic vector potential A,. Following the same approach as previously, the
dynamics of the distribution function satisfies

. 0 do . 0
[]w—&—va—&- (Fp—&—ea-i-jweAZ) 8—p]f—0. (7.3.1)

The electric scalar potential ®@ is determined by the charge distribution via the
non-homogeneous wave equation

{d_2+w_2}q) _ ¢ Udpf _ 1]_ (7.3.2)

dz2 - 2 £

This potential determines the longitudinal component of the magnetic vector
potential since we have tacitly assumed the Lorentz gauge i.e.,

dA, jo
- %@:0. (7.3.3)

Note that there is no magnetic field associated with this potential since it is
dependent only on the z coordinate. In addition to these two potentials, the distri-
bution of particles determines the transverse current density

J1(z,w) = —eng Jdpvj, (7.3.4)

which in turn governs the magnetic vector potential via the non-homogeneous wave
equation as in (2.1.39). In this case we ignore transverse effects therefore we
integrate the wave equation over the transverse dimensions. Assuming that the
effective area of the electromagnetic field is Sep, and that of the electron beam is S,
we define the filling factor term Fy = Se/Sem by whose means the 1D wave
equation for the magnetic vector potential reads

@ o
[@ + C—2:|AJ_ = —,LtoFfJJ_; (735)

this filling factor is assumed to be known.

This is the set of equations, which describes the interaction in a free-electron
laser in the high-gain Compton regime. Before we proceed to a solution of this
set of equations it is instructive to examine the same set of equations when
instead of the the Lorentz gauge we use the Coulomb gauge. In this case the
equations read
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) 0 0
ot (e gl =o

2
-2 -]

dz2 &o
A. =0, (1.3.6)

Ji(z,w) = —enojdpvj,

& w?
{@_FC_Z}AL = —HoFtJ L.

In principle the physical result should not be affected by the gauge choice. From
the point of view of the particles’ dynamics what is important is the acting field and
the latter is independent of the gauge choice. This is in particular easy to show in this
1D case: when using the Coulomb gauge, for a given source term p = —en, assuming
functional dependence of the form exp(jwt — jkz), the Poisson equation dictates

en
O=—-—— 7.3.7
el (7.3.7)

and since the longitudinal component of magnetic vector potential vanishes the
electric field reads

do en
E.=——=—jk—. 7.3.8
2 i J tok2 ( )

When choosing a Lorentz gauge, the non-homogeneous wave equation dictates

en/eg

and since @ is related to A, by A, = (w/c?k)®, the electric field reads

2

2
E. = —joA. +jk0 =< |2 _ 2| Lo (7.3.10)
Jjo | 2 2k

Substituting (7.3.9) in (7.3.10) we obtain the same expression for the electric field
asin (7.3.8) i.e.,

CZ w2 w en
E,=— || —®=—jk—. 7.3.11
[ }c% ek (7.3.1)
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In both cases, the magnetic field (associated with the space-charge) is zero: in the
case of the Coulomb gauge it vanishes since A, is zero and in the Lorentz gauge
case, because A, depends only on the z coordinate. Following the same procedure, it
can be shown that the force term in Liouville equations [(7.3.1) and (7.3.6)] is
identical in both cases.

7.3.1 The Dispersion Relation

The set of equations established previously will be analyzed in this subsection in
order to quantify the energy exchange process. For this purpose, it is convenient to
adopt a phasor notation for all linearized quantities. According to (7.2.7) F is
proportional to exp[jwt — j(k + kw)z]. However, since in this case the Hamiltonian
is time dependent, 7 is not conserved and therefore we redefine F p such that it does
not include the y term i.e.,

N €2Aon(k + kw)

-1
Fy, = —jFp;exp[jwt —jlk +ky)z], Fp (7.3.12)

mky,

Consequently, assuming that f; does not vary in time and in space, a similar
dependence as Fj, is anticipated for f;. Furthermore, since according to (7.3.2) @ is
linear in f7, a similar dependence is expected for ® and A;:

fi = Frexp(jor — jKz),
® = Dexp(jor — jKz), (7.3.13)
A = Ap(1, — jl,)exp(jowt — jKz),

where K = k + ky. Substituting in (7.3.2) we obtain

eny/¢o

Jdpf], (7.3.14)

and in a similar way we substitute in (7.3.1) to get

= 11z ef , o*\z]dh
=—|= - —— || == 3.
h=s5 L}FP—&- (K C2> }dp, (7.3.15)

where dw = w — v(k + ky) is the resonance term. Substituting the latter into
(7.3.14) we have, for the potential,

o= (7.3.16)

moy [ L 90
8. K) (w/e)? K2 ) " yow dp’
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where &(w, K) is the dielectric coefficient of the beam defined by

mao? 1 dfy
K)y=1+—"
e(w,K) + e Jdpéw W

(7.3.17)
The explicit expression for the amplitude of the scalar electric potential can be
substituted into (7.3.15) which results in an expression for f;:

fi= hp,

1
5 (7.3.18)

1 mo, 1 ,
@ §_Ks(w,pK) <Jdp "ow’ Efo([) )>

The particles’ density defines the current density via (7.3.4) whose linear term
(in the radiation field) is J| = —eng [ dpv . fi or explicitly,

1 By ~
Ji = - wke—Fy(1, — jl,)exp(jot — jkz)
2 Pk,
1 d
X Jdp— ﬁ

2

1__mo )Jd” ! fo(p)] (7.3.19)

y  Ke(w,K "o’ dp’

where off-resonance terms of the form w — v(k —k,) were neglected and
0w’ = w — v’ (k + ky). The current distribution from the above is the source term
to the wave equation in (7.3.5) which, after being substituted, gives the dispersion
relation

W\ 2 1 2
<?) —kZZ—E(QWCUp) kam
[t omep 1 oa ) 050
x | dp —— —fo(P)) |;
yowdp |y Ke(w,K) Yow' dp

Q,, was defined in the context of (7.1.25). For a given initial distribution of
particles, fo(p), this expression determines the relation between the @ and k in the
system. In the remainder of this section we assume that the system operates as an
amplifier which means that the frequency, w, is set externally and the interaction
determines the wave-number k.

The integrals in the dispersion relation indicate that there are two critical
functions: (1) the resonance term dw~' and (2) the distribution function folp)-
At the simplest approximation one considers a distribution of particles which can
be represented by the first two moments namely the average (longitudinal)

momentum ({p)) and its spread Ap = 1/ (p?) — (p)*. On the other hand, the

“sharpness” of the resonance term is determined by the imaginary part of the
wave-number — which is basically the gain and a priori, its value is not known. For
solving the dispersion relation, it is instructive to consider two extreme regimes:
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the first when the distribution of particles is much sharper than the resonance line.
This will be referred to as the “cold beam operation” [Im(k)/|k| > Av/(v)]. The
other case corresponds to the opposite regime i.e., Im(k)/|k| < Av/(v) referred to
as the “warm beam operation”. We discuss the two in the following two
subsections.

7.3.2 Cold Beam Operation

In the framework of the cold beam operation, we consider the extreme case namely,
a Dirac delta function distribution,

fo(p) = o(p — po)- (7.321)

With this distribution in mind, we can evaluate the three integrals in the dispersion
relation. The integral

Jd I dho (7.3.22)

pﬁéw@’

can be simplified by integration by parts to read

1 d [ fo d /1
7 U dP@ (g) - Jdpf0£ <%>} : (7.3.23)

In this expression, it was assumed that y~2 varies slower than the other two
functions. The first term in (7.3.23) is zero and in the second, the distribution
function varies slower than the resonance term, thus

1 dfy K 1
d —— o~ . (7.3.24)
J P60 = (6w) m
In a similar way,
1 dfy K 1 J 1 df K 1
J P60 ap (dw)? my§ P50 dp (dw)? myg ( )
With these results the dispersion relation reads
2 1Q2 opFr K> 1
(%) - =5 o - (7.3.26)
c 295 1y é(w,K) (dw)
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where

2

e(w,K)=1— @ (7.3.27)
7 (Sw)?

and Fy is the filling factor defined in the context of (7.3.5). For a solution of this
equation we examine two cases: firstly, when the space-charge effects are neglected
and secondly, when their effect is taken into consideration.

No Space-Charge Effects. Firstly, we ignore the effect of the space-charge term
in the dielectric coefficient of the beam. Following the same approach as in the case
of the interaction in a slow-wave structure, we assume that the change, due to the
interaction, of the vacuum solution is small and it is denoted by dk i.e., w > c|0k]|.
With this assumption, the dispersion relation is identical with the one in a traveling-
wave amplifier and it reads

Ok(Sk — Ak)? = —K3, (7.3.28)

only that in this case

K3*1 Quky )’ COI%Ff L@ N
=3 ) (e Ur) ©)
Yo c*Bovo w

(7.3.29)

Kroll (1978) was the first to point out the full equivalence between a free-electron
laser and a traveling-wave amplifier. As in TWT, assuming that Ak and K are
independent, maximum gain occurs at resonance (Ak = 0) and it is given by

2 wZFk 2 -1 173
1 <kaw> ol (1 +“’) (&) - a0
4\ 7y, 223 cky c

If we compare this result, as it stands, with the gain in a slow-wave structure we
observe that the main difference is the fact that here K; is proportional to y,> and in
the former it was proportional to 3. However, for relativistic electrons, assuming
that w > ck,, and bearing in mind that at resonance

V3 V3
=YKy =2
2 2

Im(k)

2 2
D00 (7.3.31)
c 14 Q,
we find that the coupling wave-number Kj, is
1 Q@ F o
3 L Wy (7.3.32)

S — Kw,
21+9Q Bong
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which for a strong wiggler, Q,, > 1, reads

;L opfr o LlenFrky 1
CT20850 " T2 me Sa (pofy)°

(7.3.33)

This result indicates that for a given periodicity and strong wiggler the growth-
rate scales with particle’s energy () as in a traveling-wave amplifier but still their
numerical value can differ quite substantially. A difference between this expression
and the one in (4.1.18) is that «/c was replaced here by k,,. However, in slow-wave
structures driven by relativistic electrons, the two are of the same order of magni-
tude. A more important difference regards the interaction impedance: in this case, it
is simply

Zine = 1oFr, (7.3.34)

and since this might be substantially smaller than in a traveling-wave amplifier
(based on metallic periodic structure) the gain per unit length in a FEL is typically
smaller.

Before we consider the space-charge effect it is important to emphasize that the
assumption Qy, > 1 which leads to (7.3.33) should be considered only within the
limited framework of the comparison with the traveling wave amplifier otherwise
too large wiggler amplitude in a FEL has a detrimental effect on its performance
which is clearly revealed when examining (7.1.23) since it reduces the operating
frequency.

Space-Charge Effect. When the current density is high enough such that its
effect on the dielectric coefficient [¢(w,K)] of the beam is significant, we can
simplify the dispersion for the forward propagating waves to read

W o 1\ )
(k—?) (k+kw———> —K

=-K 7.3.35
c ﬁ 0 ( )
where K} = ] /v§y;. The space-charge waves in this case are characterized by

2
F(k) = <k kg — % /13) ~K2=0. (7.3.36)

Thus expanding this expression in conjunction with the FEL resonance condition,
we obtain

w w\|d
F() = F(k=2) + (k=) [@F“‘ L_w/wﬁ@ (7337)
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This simplifies the dispersion relation to
2 1 K3
(k—g)z:—fgg, (7.3.38)
2 K,

and the spatial growth rate is

V2 Ky V2
p

2 1/2
1 Q Ff Wp
o (7.3.39)

The main difference between this regime and the former is that here the gain scales
as I'/* compared to I'/3. In addition, here the gain scales with energy of the
electrons like y~7/# compared to the /3 in the former case.

7.3.3 Warm Beam Operation

So far, we have investigated the dispersion relation in an FEL with a mono-
energetic beam of electrons. In this subsection, we examine the operation of the
FEL with a warm beam as defined in the context of (7.3.20). For this case, we have
to evaluate the integral

1 1d
JdP% 7 @fO(p)a (7.3.40)

only that the resonance term varies more rapidly than the distribution term. In the
evaluation of the integral we assume that k is a complex quantity i.e.,

k = ke + jki, (7.3.41)

hence

devz%@wm _Jd[y%%ﬂm [ — V(e + k) + jvk]

= (ke + k) = jvki ke + k)| + [Vk]
(7.3.42)

The main contribution is from the region where the resonance term peaks i.e.,
V = Vs = @0/ (ks + ky). This allows us to extract the slow varying term out of the
integral such that we are left with
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,zi :| Q)—V(kr+kw)
[V dpfo(p) - Jdp o vl - ko) - VT
o d JVk;
i {/ dI’fO(p)} T— Jdp [0 — vk + k)] + VK] (7:343)

The contribution of the first term (near resonance) vanishes because of the
asymmetry of the integrand relative to v = v, and the second’s can be evaluated
analytically,

1 dfo dfo Jjmm
d —— o~y . 7.3.44
J PS5 dp {’ dp]‘,_vm‘_ ke + Ky (7.3.44)
In a similar way
[arsh o o]  iom
dwy dp " dp],_, k+ky’
e (7.3.45)
[ap Lo [pda]
oo dp | dp] ., ki+ky
With these integrals the dispersion relation reads
2 2
(%) -1 = ! (222 F.
c 2 c
J {n(mc)%)(dfo/dp)} o
X =Vres
L+ g/ (@] + k) [mme) (Who/dp)|
(7.3.46)

As in the previous subsection, the gain without space-charge effects is calculated
neglecting the plasma frequency term in the denominator and it reads

Im(k) ~ % (?) - (QW %) “Fy [n(mc)2y i{‘j] o (7.3.47)

When the space-charge effect is significant, the growth rate is given by

it =1() (0.2 ]}

-1

»? df; ?
b 2,30
x |14 (@7 [n(mc) Y a} . ) (7.3.48)
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which also determines a quantitative criterion for the regime when the space-charge
effect is negligible i.e.,

w? d :
(CZ;Z {n(mc)zf (ﬁ] < 1. (7.3.49)

Note that the spatial growth rate in these two cases is proportional to the
current and if we consider Gaussian-like electrons’ distribution i.e., fo(p) ~

exp|—(p — po)z/Apz} , then the gain vanishes when the resonance velocity corres-

ponds to the peak value of the distribution function.

7.4 Macro-Particle Approach

Electrons that experience an electric field have a momentum which is either larger
or smaller than the average momentum of the beam. Since the system is designed to
operate as an amplifier, the number of electrons which have energy below the
average of the beam is larger than those which are faster and the energy difference
is transferred to the electromagnetic field. In addition, exactly as the gain is
associated with the imaginary part of the wave-number, its real part changes the
effective phase velocity of the wave and after a certain interaction length the
electrons may be out of phase. Consequently, electrons, which at the beginning of
the interaction region were decelerated are now accelerated and vice versa. At the
point in space where the slow electrons start to be accelerated because of the phase
slip, they drain energy from the electromagnetic field whose growth saturates and
beyond it, the gain decreases. In order to avoid this situation it is required to adjust
the relative phase between the wave and the electrons. In the FEL this can be done
by adjusting the wiggler period or amplitude (or both). Because of the large energy
spread, fluid or kinetic approaches are inadequate and we then use the macro-
particle approach, which will be presented in this section. For free-electron lasers
this approach was initially developed by Kroll et al. (1981) and in this section we
follow the essentials of their approach.

7.4.1 Basic Formulation

Assuming that space-charge effects are negligible, the scalar electric potential and
the longitudinal magnetic vector potential can be omitted from the expression for
the Hamiltonian, thus

H= /(0 +eA )’ +ple? + (mc2) = me* (7.4.1)
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The transverse magnetic vector potential has two components: the wiggler and
radiation field i.e.,

AL = Ay + Ay (7.4.2)

Since it will be necessary to adapt the wiggler parameters to the local conditions
in order to keep the electron in resonance, we consider a wiggler with variable
amplitude and wave-number namely,

Ay = —Ay(2) {1X cos (J dz’kw(z’)> +1,sin (J dz’kw(z’)>]; (7.4.3)

0 0

in a similar way, the magnetic vector potential which describes the radiation field
has an amplitude Ag(z) which varies in space and so does its wave-number:

A = Ap(2) [lx cos (wt - r dz’k(z’)) + 1, sin <(ut - JZ dz’k(z/))} . (744
0 0

The latter has two components, the wave-number in vacuum (w/c) and the effect
of the interaction [0(z)]. Therefore, [, dZk(z) = (w/c)z + 0(z); this is to say that 0
is the phase accumulated by the wave due to the interaction. As in the previous
sections the wiggler is assumed to be uniform in the transverse direction therefore
the canonical momentum in these directions is conserved; for simplicity it will be
assumed to be zero (p, = 0) hence

vi=2A, ~%4, (7.4.5)
my my

~

where in the second expression it is assumed that the contribution of the radiation
field to the transverse motion is negligible.

After substituting the expressions for the magnetic vector potentials into the
Hamiltonian we obtain

H = mc* \/;ﬂ + (%)2 — 2ay,(2)ag(z) cos Y = mc?y, (7.4.6)
where
_eAy(2) _ eAq(2) B
aw(z) =— "=, ax(z) =— =, K(z) = /:(Z) + kw(2), can
12(z) = 1+ di(2) +a%(z), Y(zt) = ot — Jo dZ/K (7).

The last expression represents the phase between the wave and the particle, when
the presence of the wiggler is accounted for. At the transition from the Hamiltonian



7.4 Macro-Particle Approach 357

in (7.4.1)~(7.4.6) no approximations were made other than p; = 0. Note that w2
plays the role of a normalized effective mass of the electron, which is z-dependent
but not time dependent. This Hamiltonian enables us to determine a relatively
simple expression for the longitudinal velocity of the particle; this is given by

dz OH D
=9 5,
dr ap” }’}’lcz\/lu2 + (p||/mC)2 — ZGW(Z)arf(Z) COS lp (748)

= ; \/'V2 — 2+ 2ay (Z)arf(z) cos

where in the last expression we used (7.4.6) to express p in terms of y.

Since we are interested in the operation of the system as an amplifier, it is
assumed that the frequency is determined by the external source and only spatial
variations are allowed. Consequently, we follow the particle in space and we
consider the time it takes the ith particle to reach a point z starting from z = 0;
this time interval is denoted by t;(z). Regarding the phase dynamics the situation
seems at a first glance more complicated by the three dimensional motion of the
electron (compared to 1D in the slow-wave structure). However, in practice, we
need only the projection of the motion along the wave propagation and this fact
simplifies the calculation substantially as will be shown next.

The phase between the wave and the particle is given by ;(z) = wt;(z)—
Jo dZ’K (') thus the dynamics of the phase ¥ in space reads

dyi(z) ﬂ _
Z - K(z). (7.4.9)

Now, the derivative of t with respect to z is inversely proportional to the
longitudinal component of the velocity as determined in (7.4.8) hence,

dyi(z) _ @ Vi K(2). (7.4.10)

dz c V7?7 — 12 + 2ayag cos -

As the velocity of the particle varies in space, so does its energy which satisfies
dv.
mcv, % — _ev-E, (7.4.11)
z
and since (in phasor notation) £, = —jwA.s we can use (7.4.8) to write

W .

dy, 1 J — GifAw CXP(/‘//I')

2 ¢ +cc.|. (7.4.12)
dz 2 \/Vi — U? + 2ayag cosy,
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Next we determine the dynamics of the amplitude of the radiation field. The
starting point is the non-homogeneous wave equation in (7.3.5). Its source term is
the current density which in the framework of the present approach is

Ji(r,f)=—e Z v, i0[x — x;()]d]y — y:i(#)]0]z — z:(2)]; (7.4.13)

in particular, we can substitute the explicit expression for the magnetic vector
potential and from the x-component of the wave equation we obtain

62 82 2
[@ - Ciz ﬁ} Ao(z) cos Pz, £) = Ao(z) cos Y(z, 1) {‘:’—2 ~ (Z+d.0) 2]
+2d.A(2) sin(z, 1) (? + dze) L (74.14)

In a similar way we substitute the explicit expression for v, from (7.4.5) in the x
component of the current density and write

Ji(z,t) = ec Z(j—w cos U dz’kw(z’)} ?5[2 —z(1)], (7.4.15)
— Vi 0

el

where we have already averaged out over the beam cross-section and the filling
factor was included [see (7.3.5)]. Note that second derivatives of Ay and 0 were
neglected in (7.4.14).

The coefficients of the trigonometric functions are time independent and there-
fore, we use the orthogonality of the trigonometric functions to average the wave
equation over one period (T) of the wave. First, we take advantage of the orthogo-
nality of the cos(wz- - -) function to obtain

o (db 1 11
22 () A= = —poFr— = — | dZk(Z
c(dz) 05 Ho fSITJdtcos[wt szk(z)]

el

x{eczi:(;—jcos UO dz’kw(z’)} Sz—z(0)]},  (74.16)

and second, using the orthogonality of sin(w?- - -) we have

G)dAol

_ 11 . i
s E——,uOFf——Jdtsm[wt—szk(z)]

S, T

x {ec Z ‘;—‘[’“ cos UO dz’kw(z’)} Sz — z(1)]}- (7.4.17)
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Assuming that no electrons are reflected backwards, the time integral can be
readily evaluated using the Dirac delta function and if only slowly varying (reso-
nant) terms are kept, then (7.4.16) reads

w (dO eug Fr 1 1
B e P (2). 7.4.18
C (dZ) 0 cmT Sel 2 2’: yiﬁH,i cos lpl(Z) ( )

The summation in this case is over all particles in one period of the wave and

assuming that there are N such particles, we can write > --- = N{---). Since the
average beam density is given by ng = N/S¢cT, we can finally write
do 1 cos y;(z)
ApSr =2 pFAW( ) : 7.4.19
Ydz 2 : ¢ /lﬁn,z ( )

Following exactly the same procedure, we have for (7.4.17)

dAy 1 g o\~ /siny;(z)
== E—zFAW(?) <vﬂ|> (7.4.20)

If d is the total length of the interaction region, it is convenient to use the following
set of normalized quantities: { =z/d, Q = (w/c)d, Kw = kwd, ay = arexp(jo)
and o =} (wpd/c)*Fr. With these definitions, there are two equivalent ways to
formulate the interaction: either in terms of complex variables

d _ o eIl
— i = —j s aw( — )
g™ Q Vi)

d 1 |jQarawexp(jz;

L=t JQaa eXp(lx,)JrC'C.]’

d{ Vi) (7.4.21)
d 1

— 5 =0——Q—K,,

T g N

1 .
Bio = /7 1 + anlawespiz) + ),

Comment 7.1. One can average over the equation of motion of the particles and
substitute the amplitude equation to get

d% [<v> i % (ga)z] _0, (7.4.22)

which is the global energy conservation.
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7.4.2 Resonant Particle Solution

Now that we have determined the equations which govern the dynamics of the
electrons and the electromagnetic field in the presence of a quasi-periodic wiggler,
we should be able to solve them provided that the initial conditions are known as
well as the wiggler’s parameters. However, we shall now make one step further and
ask what the wiggler should be, for a given initial distribution of particles and
electromagnetic field, that maximizes the energy extraction from the electrons. A
general solution of this problem is difficult and practically impossible with analyti-
cal techniques. However, if the distribution of electrons occupies only a small
region of the phase-space then the problem can be treated analytically.

For this purpose consider an ideally bunched beam such that we assume that all
particles in one bunch move together forming a single macro-particle whose shape
is preserved along the entire interaction region. Based on the equations of motion,
the condition for maximum energy extraction is to keep it in correct phase with the
wave i.e., maintain it in resonance. Assuming that at the input the macro-particle is
in phase with the wave, the resonance along the interaction region will be defined as
dy,/d{ = 0 and it translates into

1 Q
2 2
Vi ——————u”, 7.4.23
Vr 2 (KW +6) ( )

where the subscript r indicates resonance conditions. This expression becomes
exact if we choose the resonance phase to be Y, = +n/2 since df/d{ = 0. In this
subsection we consider an amplifier configuration so we take ., = —n/2 in which

case, B, =/ 1— (&/ 7,)%. Substituting in the equation for the amplitude we obtain

o ay
d¢ _Qq/yz—l_az—_a‘zv-

Bearing in mind that the total energy is conserved i.e., y,(¢) + [Qa({)] /20 =

(7.4.24)

¢ = 7,(0) + [Qa(0)]*/2x, we substitute the expression for 7, to get

Q1 <@ 19 1
=2 J dx\/[e—ETXZ} - —a =, (7.4.25)

o dw a(0)

This equation is solved numerically for a constant a,, (but variable k) assuming
a 3 mm beam radius which carries 100 A current, the filling factor being Fy = 0.1.
The total interaction length is 5 m, at the entrance the wiggler period is L = 2cm
and its amplitude is By, = 0.2T. The initial energy of the electrons is 4.6MeV X
[y(0) = 10] and the normalized amplitude of the radiation field is «,(0) =
8.4 x 1073. The result is illustrated in Fig. 7.2: the upper left frame shows the
way in which the amplitude should grow in space. The variation in space of y (upper
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Fig. 7.2 Variation in space
of the amplitude, energy,
efficiency and period. All
correspond to the resonant
particle model
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right frame) is calculated from the global energy conservation and the efficiency is
illustrated in the lower left frame. The last frame illustrates the required variation
in space of the period of the wiggler. It indicates that in order to achieve a 50%
efficiency at 100 pm, the period of the wiggler has to be reduced from 2 cm to
0.6 cm and the intensity of the magnetic field enhanced to almost 0.7 T.

7.4.3 Buckets

In practice, any bunch has a finite spread in energy and phase. Let us denote the
deviations from the resonant phase by oy, = \; — \, and from resonant energy by
0y; = y; — 7, Based on the equations developed in the last subsection these two

quantities satisfy

— oY, = —

(1 + ﬁ”,r)KW
Vrﬁ”,r

(7.4.26)
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and

d

@ cos Y, o;, (7.4.27)

1
oy; = Qaway ——
7B

provided that the deviations are small. For cosy, > O the trajectories are stable
and oscillate around the resonance point (1,,7,) in the phase-space at a (spatial)
“frequency”

1
D= W v aray cos ... (7.4.28)
ll.x

These equations and the last result indicate that there is an entire range of
trajectories around the resonance condition, which are stable. However, the analysis
was limited to small deviation from resonance. We now reformulate the dynamics
for the case when large deviations of the phase (i) are permitted. The phase
equation has a similar form as (7.4.26)

d (1+ By )Kw
— Y, = -y, (7.4.29)
dC ' yrﬂHﬁr
but the equation for Jy; reads

d Qaya

— 8y, = ——L[siny, — siny,]. (7.4.30)

d¢ 7B

It is convenient to redefine the phase as iy = —y and regard it as the canonical

coordinate whereas Jy; is the canonical momentum. With these definitions, the
Hamiltonian of the system reads

30

v(y)

Fig. 7.3 Effective potential -30
in whose minima electrons -10
can be trapped
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Fig. 7.4 The bucket limit 1
(outer curve), a typical bucket
shape (inner curve) and in the
center the coordinates of the
resonant particle are
illustrated
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H:—i’éﬁ—(}awa cosy; + 1, sini,
2y, ' rﬂHr[ ]
2./\/15% f—IC[cosw + smlﬁ] (7.4.31)
and it corresponds to a particle whose mass, M~ = K, /(1 +/))H.,r)/yr/))\2,r7 is z

dependent which moves in a potential V (i),

V() = —K[cosy + ¢ sinyp,], (7.4.32)

where K = Qaya, /7, -

This potential is illustrated in Fig. 7.3 and it shows that particles can be trapped
in its minima according to their initial conditions. The maximum stable trajectory
of the particles is determined by the extrema of the potential in (7.4.32) and there
are two sets of solutions: =y, & 2nn or Y = —, + n + 2xn. It is the latter
which corresponds to the local maxima and thus represents the maximal value of a
“bound state”. Assuming that /,>0 and that at the extremum the (canonical)
momentum is zero, we find that the maximum value of H, for which the trajectories
are still expected to be stable is given by

Hmax = éIC [cos ¥, + (, — m) sinyp,]. (7.4.33)

If . is negative, then 7 in this equation reverses its sign. Figure 7.4 illustrates
the limits of the stable trajectories region (bucket) and a typical stable trajectory.
Based on the maximal value of the Hamiltonian, one can also de}ermine the

maximal dy,,,, permissible for stable trajectory. It occurs at = v, and it is
given by

5’)}max =2y MIC\/COS lLr + (er - g) sin J/r' (7434)
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The two extreme phases of the bucket (1}1, 1}2) are determined in a similar way,
only that in this case dy = 0.

The bucket method infers that there is an inherent limit on the efficiency of
such a device since only those electrons, which are trapped in the bucket, can be
decelerated. Furthermore, in the context of a traveling-wave amplifier, it was shown
that in the interaction process the area of the phase-space increases and if the
electrons are to be “recycled” (ring configuration FEL), there are two conditions
to be satisfied. (1) Elevate to maximum the bucket at the entrance in order to capture
the maximal number of electrons and (2) minimize the energy spread, otherwise
many electrons are lost in the next cycle. This kind of design was thoroughly
investigated by Kroll et al. (1981). In what follows we investigate some additional
aspects of the interaction and its manifestation in the phase-space.

7.4.4 Energy Spread

The set of equations as introduced in (7.4.21) can be reformulated in the case of a
constant ay. From the equations of motion of the particles, we conclude that the
quantity a = jQayya,, is the effective (normalized) longitudinal electric field which
acts on a single particle. Substituting this definition in the amplitude equation it is
natural to redefine the normalized coupling coefficient « to read & = oa?,. With
these definitions we have

d_  _Je7u
—a=0ou{ —),
d¢ “/iﬁu,i

d 1 |aexp(—jy;)
V=3 +c.c ’
d¢ 2 [ VB
d 1
— . =0- —Q-K,,
d¢ By
LR i ;
By = ;4\/ Vi — w2+ [—jaexp(jy;) + c.c.]/Q. (7.4.35)

From the second equation, we can develop the equation for the energy spread:
Ay = (y2) — (y,)*. This is done by firstly averaging over all particles

i A 7_1 _ [ exp(=jni)
dc(%)* 2la<—%’ﬁ,i >+c.c.

secondly, we multiply by the local average (y;) to get

: (7.4.36)
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i W2 _l _ [ exp(=jx) .
az 3 [a<—Yiﬁ,i ></,> +c.c.

Next we repeat these steps but in the opposite order: we multiply the single
particle equation of motion by y; and then average over the particles ensemble; the

result is
ld, 6, 1| _/exp(—j1;)
~-—=Wi)=—z|al——— ) tcc
2dé</ ) 2[ < Bl

Subtracting from the last expression (7.4.40) and using the definition of the energy
spread, we obtain

doo o /exp(=)  \  fexp(=in)
dCAy B {aK Vi) /’> < Vi) ></l>

We know from our analysis of traveling-wave amplifiers that the energy spread
increases in the interaction process since part of the electrons are accelerated and
others are decelerated. It is the same electromagnetic field, which causes the
average deceleration (in an amplifier), and at the same time it accelerates a fraction
of the particles causing the energy spread at the output. It was Madey (1979) who
initially showed that in the low-gain Compton regime the energy spread at the
output is directly related to the gain; at the input the energy spread is assumed to be
negligible. Here we quote a result, which was revised, by Kroll et al. (1981) and it
relates the gain (y;(1)) — (y;(0)) to the energy spread at the output

. (7.4.37)

N —

U

. (7.4.38)

+ C.c.}. (7.4.39)

=T = % d%mz(l) (7.4.40)
where 7, = (y;(1)) and 7, = {y;(0)). We will show now that the Madey theorem as
formulated above for the low-gain Compton regime is related to the equation which
describes the energy spread (7.4.39).

First, we note that in addition to Ay({), there are two other macroscopic
quantities (y({)) and |@({)| which describe the system. Second, we bear in mind

. .. d S12 s
that these two are related via the energy conservation i.e., @ {(y) + |a|2 / Qa} =0,
therefore we can use one of the two as an independent variable instead of { hence

d 2 d’)j d 2
dCAy = <d£> d?Ay (7.4.41)

Comment 7.2. Although { does not occur explicitly in the right-hand side of the
equation, it is implicitly there since we consider the values of Ay and j = (y({)) at
the same location (.
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Using the energy conservation, we obtain

d 1 /dlal\ [ d
_szz—— - —Az 4.
s =31l (Fo7) (74.42)

and for simplicity we define ae/%: = |a|e/%. With this definition and using the ampli-
tude equation in (7.4.35) we obtain
d

- d
a7 = ~al{eos(1)/ b)) A7

~ ~ (7.4.43)
~ 24 cos X")w ~ [cosy; 5
“/iﬁu,i I “/iﬁu,i ’

where in the second expression we used (7.4.39). From the two right-hand side
expressions we conclude that

<COS(J~Ci)/ﬁ|\,i>

) {eos(m)/BL)
A = s b

d
— 7.4.44
dy ( )

N =

and the resemblance with Madey’s theorem becomes apparent. However, in
contrast with the latter this relation is exact at any point in the interaction region.
Furthermore, it is also valid in the high-gain Compton regime.

Under the simplifying conditions of low-gain Compton regime we may approx-
imate the second expression in the right hand side with its value at the input

<COS(}~{1')/[3\|J> - (COS(J@)//?H,,') =
<COS(J~(1‘)/%B\|J> B l<005(3~{i)/7’iﬁ|,z’>] =0 =70 (7445
thus
%%Aﬂl) ~5(1) — 5(0). (7.4.46)

Bearing in mind that in the low-gain Compton regime the energy transfer is small,
we can replace 7(1) on the left-hand side with 7(0) to obtain

d
—— Ay (1) ~ (1) — 7(0), 7.4.47
-0) y*(1) = 7(1) = 5(0) ( )

N =
o

which is exactly Madey’s theorem as formulated in (7.4.40).

Although the Madey theorem relates the moments of the electrons’ distribution
function, it does not actually help us to calculate them and for this purpose we have
to go back to the equations of motion. These were solved for a typical FEL set of
parameters and the question we address now is how does the energy spread vary at
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the output of the device when the only other parameter that is changed is the energy
spread at the input. The result of our simulation is presented in Fig. 7.5: the energy
spread at the output Ay(1) as a function of the energy spread at the input, Ay(0)
decreases for values of Ay(0) smaller than Ay(1). We observe that Ay(1) starts from
a high value when the energy spread at the input is virtually zero. By increasing
the latter we cause Ay(1) to decrease as does the gain. The latter vanishes when
the energy spread at the output equals its value at the input. Any further increase of
Ay(0) beyond this level does not change the gain and since the beam traverses the
interaction region almost unaffected, Ay(1) increases linearly with Ay(0).
Another interesting aspect of the energy spread that we examine next is revealed
when comparing the operation of an FEL and a TWT. In Sect. 7.3 it was shown that
the dispersion relation of a free-electron laser is similar to that of a traveling wave
tube but it was pointed out that the y dependence of the gain is different in the two
cases — a fact which may cause some differences in the operation of the two devices.
In order to emphasize the similarities and the differences, we have summarized, in
Table 7.1, the equations of the free-electron laser and the traveling-wave tube
(TWT). In these equations each quantity which plays a similar role is denoted

0.10
4
¢
0.08[%ws &
4
¢ 4
~ o006 o &
N
0.04
0.02
Fig. 7.5 Energy spread at the 0.00 :
output as a function of the 0.00 0.05 0.10
energy spread at the input Ay (0)

Table 7.1 Comparison of the TWT equation to these of an FEL

TWT FEL
i i d ; d exp(—ji)
Amplitude dynamics —a = o(exp(—jy; —a=o{ —5—~
p y @ (exp(—jx)) @ < -y
Equation of motion d Relaexp(jy;)] d y ! Relaexp(jy;)]
— Vi = —Reja (i Vi = T Rela (i
d¢ ’ d¢ }’fﬁu,i
Ph ti d Q K d Q K
ase equation — = =
d ati g, act =g,
d 1 d 1
Global energy conservation & [(y) *%. \a|2] =0 i {(y) *3a |a|2} =0

Spatial growth rate q= v {@ <(“/,~ﬁ,-)3>r a= & {@ <(}’fﬁ ")75>]
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(intentionally) with the same notation: y; represents the energy of the ith particle
and y; is its relative phase to the wave. In both cases a represents the normalized
amplitude of the electromagnetic field; however in the TWT this is the longitu-
dinal electric field (a = eE.d/mc?) whereas in the FEL it is the transverse field
[a = jawaywd/c]. The normalized coupling coefficient is denoted with « and it
consists of different quantities: for the FEL o used here is o = 3 (wpd/ ¢)*Fid%

and for the TWT o = (elZi,,/mc?)(d* /nR?). In the phase equation the longitudinal
velocity is denoted by f3; and in the TWT case it is related to y; via §; = /1 — 1 / y?
whereas in the FEL case f§; = \/1 — 12/y? + [—jaexp(jy;) + c.c.]/Qy? and p? =
1+ + |a* /a2 Q% In addition, Q = wd/c and K = kd in the TWT case and

= (k + kw)d in the FEL.

The general form of the equations is similar for both devices. In fact, the form
of the global energy conservation law is identical. The major difference is the
momentum term which occurs in the phase terms and which is not there in the TWT
case. It was indicated previously that this term originates in the transverse oscilla-
tion that the wiggler forces the electrons to undergo and associated with that is an
“effective relativistic transverse mass” of the electron which is my in contrast to ny>
associated with the longitudinal motion.

When comparing the TWT and FEL three parameters have to be the same: (1)
the average energy of the electrons (y), (2) the electromagnetic energy per particle,

|a|* /2¢ and (3) the total gain. Two cases have been examined. In the first, the total
length and the spatial growth rate were assumed to be the same but at the input
arwt = areL/{yp) and arwr = oppL/ (yﬁ>2 in order to satisfy the conditions above.
In the linear regime, the two devices operated practically the same and Fig. 7.5 also
represents the energy spread of the TWT.

In the second case examined, it was assumed that a at the input is the same in both
devices and consequently, from assumption (2), so is «. As a result, the spatial
growth rate is smaller in the FEL by (roughly) a factor of 1/ (yﬁ)z/ 3. Therefore, in
order to satisfy the constraint in (3), we increase the length of the FEL by a factor of
(yﬁ)2 such that Qpg; = QTWT<y[3>2 and Kpgp, = KTWT<yﬁ>2 the result is illustrated in
Fig. 7.6 where we plotted the gain as a function of the energy spread at the input. The

20
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£ O\
]
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Fig. 7.6 Gain as a function X

of the energy spread at the 0 ! !
input in a free-electron laser 0.00 002 004 006
and in a traveling wave tube Ay (0)
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simulation reveals a clear sensitivity of the free-electron laser to initial energy spread
compared to the TWT in the conditions determined above. The situation is even
worse at higher energies.

7.5 Other FEL Schemes

One of the major advantages of free-electron lasers is the fact that no external
means are required to confine the radiation. In fact Scharlemann et al. (1985) have
shown that under certain conditions the beam acts like an optical fiber and guides
the radiation. Later Sprangle et al. (1987) formulated the three-dimensional
problem introducing the source-dependent expansion technique. Beam guidance
may become crucial in two cases: in the case of very high power radiation where
the Ohm loss of walls makes the contact with the intense radiation field prohibi-
tive. And in the case of very high frequency e.g., Ultra Violet or X-rays, where
even if contact of the radiation with a metallic surface is permissible, from the
perspective of the power levels, the reaction of the surface is not as regular as at
low frequencies (visible and below). That is to say, that the surface quality is poor
since micro-perturbations are of the same size as the radiation wavelength. For the
reasons mentioned above, the FEL has the potential to generate coherent and
tunable radiation at short wavelengths such as UV and X-rays. There are, how-
ever, two major obstacles in its way: the beam quality, which is a major limitation
and the wiggler. As for the first, it was shown in this chapter (Sects. 7.2 and 7.3)
that the gain depends strongly on the temperature of the beam. This problem
becomes acute at high frequencies. In addition, transverse beam effects (emit-
tance), which were not discussed here, start to play an important role. The con-
straints imposed on the wiggler are also stringent. Obviously, the shorter the
period the better. However, a short period implies a low intensity magnetic field
that in turn implies a long interaction length. When a large number of magnets
are involved, two problems occur: alignment and statistical errors in the intensity
of each pole. While the first can be minimized, the latter is unavoidable. In this
section, we briefly review alternative configurations that aim to overcome some of
these difficulties.

7.5.1 Gas Loaded FEL

In order to release some of the constraints on the beam and wiggler Pantell et al.
(1986) and Feinstein et al. (1986) have shown that there are substantial advantages
to slowing down the phase velocity of the wave by loading the FEL with gas since
at the frequency of interest the refraction coefficient, n, is larger than unity. The
resonance condition in this case is
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= = n(w) =+ ky, (7.5.1)

and the resonance frequency reads

w 1
— =ky |—=—n]. 7.5.2
c l /1= 12]7? n] ( )

In order to emphasize the effect we shall examine two cases. Firstly we consider
a vacuum system (7 = 1) with g = 1 + (eBo/mcky)* = 1.2 and y = 100. If the
period of the wiggler is 5 cm then the radiation wavelength is 3.6 um. If the
refraction coefficient of the gas is n — 1 = 7 x 107> then the radiation wavelength
is 1,000 A. Therefore, the presence of the medium caused a frequency shift from
infra red to UV.

7.5.2 Longitudinal Wiggler FEL

Another free-electron laser configuration which was considered by McMullin and
Bekefi (1981, 1982) consists of a longitudinal rather than a transverse wiggler. In
this case the guiding magnetic field is rippled and it is approximately given by

B = Bol, + B11y(kyr) sin(kwz)1, — Bi1y (kyr) cos(kwz)1,. (7.5.3)

Both the wigglers as well as the guiding field control the transverse motion of the
electrons. Consequently, the resonance condition reads

Q.
w:7+@+mmb (7.5.4)

where Q. = eB/m is the non-relativistic cyclotron frequency. Assuming that the
interaction only slightly affects the TEM mode i.e., k >~ w/c, the resonant fre-
quency is

, 1+ ﬁH ( 1 )
0=y ——"5Qc.—+kycPy |, (7.5.5)
L+ B\ :

and it can be readily seen that without the guiding field (Q. = 0) the resonance
corresponds to that of a transverse wiggler FEL. Therefore, the guiding field causes
an effective increase in the wave number of the wiggler by the factor Q. /¢y — which
can be significant.
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7.5.3 Rippled-Field Magnetron

The basic configuration of free-electron lasers discussed so far was co-linear in the
sense that the dominant component of the electrons’ velocity was in the longitudi-
nal direction. Bekefi (1982) has suggested constructing a smooth bore magnetron
where the interaction is facilitated by a wiggler rather than a slow-wave structure
as is generally the case. The system consists of two cylindrical electrodes, an
insulating magnetic field along the axis and a wiggler that is azimuthally periodic
but its magnetic field is in the radial direction. A positive voltage V' is applied on
the anode. Electrons emitted from the cathode form a Brillouin flow around the
cylinder provided that the intensity of the insulating magnetic field exceeds the
critical value

B> By =/~ 1, (1.5.6)

where 7 = 1 + eV /mc? and R is the anode-cathode gap. This equilibrium is altered
by a wiggler, which can be approximated by

B, = Bycos(N¢), (7.5.7)

where N is the number of magnetic poles and ¢ is the azimuthal coordinate.
Conceptually the interaction is similar to the co-linear case however, the cylin-
drical configuration complicates the detailed analysis. Destler et al. (1985) tested
the concept experimentally and good agreement with theoretical predictions was
found.

7.5.4 Wiggler and Guiding Magnetic Field

In many cases, the electron beam is immersed in a guiding magnetic field even before
it enters the wiggler field. It is therefore reasonable to calculate the trajectories of the
electrons in a configuration which combines the two magnetic fields. Friedland
(1980) calculated these trajectories for an idealized magnetic field and Freund et al.
(1983) has improved the model for a more realistic configuration. The guiding field
causes an increase in the transverse velocity of the electrons but the effect on the gain
is strongly dependent on the parameters of the wiggler according to detailed trajec-
tory of the electrons — two types were initially emphasized. Conde and Bekefi (1991)
discovered that by inverting the direction of the guiding field a substantial improve-
ment of the efficiency could be achieved.
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7.5.5 Electromagnetic Wiggler

In principle the magneto-static wiggler can be replaced by an intense electromag-
netic wave which propagates anti-parallel to the beam. This was in fact the original
concept considered by Kapitza and Dirac back in 1933, however they investigated
the interaction with a standing wave (wave-number was perpendicular to the beam).

In the process of interacting with the wave, one gains a factor of 2 in the
frequency of the emitted radiation. Since the wiggler field varies in time (w,,) the
resonance condition reads

0 — 0y = (k+ky)v|. (7.5.8)

Furthermore, both wiggler and emitted fields behave as free waves (k ~ w/c and
ww =~ cky) therefore the resonance frequency reads

1+ T—@J7 4
0= cky TV IZENE G AT (7.5.9)
L= 1—p@2/y H

This concept was demonstrated by Carmel et al. (1983) when a high power
microwave pulse was generated with a backward-wave oscillator and used in a
second stage as an electromagnetic wiggler for a free-electron laser. We discuss this
scheme in more detail in the next chapter.

7.5.6 Electrostatic Wiggler

One of the difficulties with magneto-static wigglers is that their period, for substan-
tial field intensity, is of the order of cm’s, therefore highly relativistic particles are
required in order to achieve optical (or shorter) wavelengths. Even if the electrons
with this energy are available, disregarding the cost of their acceleration, we still
confront another problem which is: the scaling of the gain with ). In a regular FEL,
the electron undergoes a transverse motion under the influence of the transverse
wiggler and since the coupling coefficient is quadratic in the wiggler field, this
motion contributes a y~2 term to this parameter. The pondermotive force modulates
the beam in the longitudinal direction and this motion gives rise to an additional
factor of (Vﬁ)%. As a result, the coupling coefficient in the high-gain Compton
regime is proportional to (/) ~>. For comparison in TWT the coupling coefficient is
proportional to (yf) .

It is relatively easy to make a short period electrostatic wiggler with a period of a
few microns and even shorter using photolithography techniques. However, the
problem is that the gain is proportional to y~°f~>. Originally, Gover (1980) did
the calculation for the low-gain Compton regime. Here we present the analysis of
the high-gain Compton regime.
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In order to prove our previous statement let us consider an electrostatic potential
of the following form

¢(z,r ~0) = ¢ycos(kyz), (7.5.10)

and since all the discussion so far in this chapter considered only magnetic wigglers
we shall present the analysis of this scheme in more detail.

The electron’s motion has three components: the major one is the “dc”, f3, the
second is due to this electrostatic potential (f5,,) and the third is proportional to the
radiation field, df5. If we ignore momentarily the radiation field then the motion of
the electrons is longitudinal and it is given by

epy 1
By, = m_cg s cos(kyz). (7.5.11)

As in the regular FEL we expect the “resonance” motion to be determined by the
product of the wiggler induced motion and the magnetic vector potential of the
radiation field. The Hamiltonian of the system can be approximated by

H = Hy + H, = mc*y + ecB As, (7.5.12)

and the pondermotive force F, = —0H|/0z. Assuming that the rf field is given by
Ay = Acos(wt — kz), neglecting off resonance terms and using a phasor notation
we have

H; ~ hexp(jot — jKz) (7.5.13)

where h = (ecA)(e¢p,/2mc*By®) and K = k + ky. The phasor of the oscillatory
motion is therefore

Kc h
Pp=————=. 7.5.14
p ® — Kv mc?y3 ( )

Next we use the continuity equation to determine the particles’ density and,
as above, keeping only terms which may contribute to the resonant process, we
have

Kc

on = ny
w—Kv

3p. (7.5.15)

The longitudinal current density is given by J, = —ec(nyof + f,,0n) and since
the motion induced by the wiggler does not contribute to the net current we have
nw = —nof,/ P which allows us to use the following approximation for the current
density
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Iz = —ecno—— 0P,
2 (7.5.16)
2 (KC) edo 1 . .
~ — A t — jkz).
(ec)n @ K (chzﬁy3 P exp(jot — jkz)
This current density drives the magnetic vector potential which satisfies
a2
Li >+ ko] of = —loFtJz, (7.5.17)

where Fy is the filling factor and &y is the wavenumber of the interacting wave
(harmonic) in the absence of the beam. Substituting the expression for the current
density, assuming resonance and that k = ko + ok we obtain

ok = —K = —

IngFr (ko + k)’ (%)2 ! (7.5.18)

8mc2Se; ko mc?) B39

In this expression / is the total current carried by the beam and S denote its
cross-section. It clearly reveals what we indicated previously that the coupling
coefficient is proportional to y~° 7. If we assume the same frequency and compare
the coupling coefficient in this case with that of a regular FEL [see (7.3.29)] we get

Kglec (y5ﬁ4)mag ed)OkW ?
L . (7.5.19)
K?"ag <y9ﬁ )elec eBWC

If the two systems generate 5,000 A radiation in the magnetic wiggler case for
a period of 10 cm the electrons must have y,,, ~ 3 X 102. In order to generate the
same radiation with an electrostatic wiggler of 5 pm periodicity, the electrons
must have ... = 2.4(f = 0.9). If on a metallic surface the amplitude of the first
harmonic is ¢, ~ 50 V and the intensity of the magnetic field is By, = 0.1 T, then
the ratio of the two coupling coefficients is 10. However, in (7.5.19) the two filling
factors were assumed to be the same and this is not generally the case. Only those
electrons which are within 5 pm from the surface do interact; therefore, if the beam
radius is Ry ~ 2 mm, then the filling factoris ~ 6 x 1073, Within 2-3 pm from the
surface there is an exponential decay in the amplitude of the field by a factor of 10,
thus a factor of 100 in the coupling coefﬁcient. We may therefore expect the latter
to be smaller by almost a factor of K3,.. /K> mag ™ 10~°. In principle one can increase
the amplitude of the electrostatic wiggler to 50 kV in which case the two growth
rates are comparable. Unfortunately, in this case we run into a breakdown problem
since 50 kV applied on a structure of 5 um period generate (dc) gradients of the
order of 10 GV/m or higher. Once breakdown occurs, the wiggler is short circuited
and the gain vanishes. Consequently, the design of such a system is a trade-off
between high voltage requirements dictated by the high gain requirement and low
voltage regime imposed by the need to avoid breakdown.
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7.5.7 Channeling Radiation

All the wigglers mentioned so far were on the macroscopic scale i.e., order of cm’s
and down to the micron level. However, the lattice of a crystalline material forms a
natural periodic electrostatic wiggler. If a beam of relativistic electrons is injected
parallel into one of the symmetry planes of a lattice then it sees two periodicities.
One in the longitudinal direction that is negligible since the intensity of the potential
is too weak in order to bunch the beam, which is to say that the longitudinal
momentum of the particle is many orders of magnitude larger than the quanta of
lattice momentum. The other periodic system is in the transverse direction (Berry
1971). If the electrons have a small momentum in this direction, they are “reflected”
by the lattice plane and they undergo an oscillatory motion (Kumakhov 1976) —
therefore they may emit radiation. The radiation is a direct result of the transverse
momentum relative to the symmetry plane of the crystal. Terhune and Pantell (1977)
and later Pantell and Alguard (1979) discussed the effect from the quantum mechan-
ical perspective: the transverse potential of the lattice as seen by the moving electron
consists of a set of “bound states”. When the electrons are injected parallel to the
plane of symmetry only the lowest state is populated. When the beam is tilted to this
plane, higher states are populated. As in normal bound states, electrons can jump
from a high state to a lower state emitting a photon in the process. It is interesting to
note that from the point of view of the electron wave function propagation, it is
completely analogous to the propagation of an electromagnetic wave in an optical
fiber (Schachter 1988). Spontaneous emission of this process has been observed
(Swent et al. 1979) but the condition imposed on the emittance of the beam is very
stringent and to the best of our knowledge no stimulated radiation was observed so
far. Friedman et al. (1988) compiled an extended review of the quantum picture of
interaction of free electrons with radiation.

7.6 X-Ray FEL

Although the FEL, in principle, may be employed in a wide range of frequencies,
probably its major advantage is the possibility of generating controllable coherent
and obviously non-coherent radiation at wavelengths, which are virtually inacces-
sible by other sources. It plays a crucial role in the fourth generation of advanced
light-sources developed in recent years and in various stages of construction. Light-
sources are facilities based on powerful accelerators that inject multi-GeV electrons
in an FEL generating short-wavelength (nano-meter and below) in femptosecond
pulses of many GigaWatts of power. Lack of sources in this spectral region, even at
much lower power levels entails that the coherent radiation is achieved by self-
amplified spontaneous emission (SASE) in a high-gain FEL. As of today, there are
two operating machines: (1) The DESY machine (FLASH), employs a 1 GeV
accelerator which injects 2 kA of current to generate 50 fs of 6.9 nm (fundamental)



376 7 Free-Electron Laser

radiation at a power of up to 5 GW — corresponding to up to 10" photons per bunch.
The average (peak) brilliance is 10'® photons/sec/mm?/mrad®/0.1% (10°° photons/
sec/mm?/mrad®/0.1%) and it is facilitated by the presence of 15 m long wiggler of
2.73 cm periodicity and a peak magnetic field of 0.47 T. Users have first used
radiation (32 nm) from this machine in the first quarter of 2006. (2) The second
operational machine is the Linear-accelerator Coherent Light Source (LCLS) which
employs the Stanford Linear Collider (SLC) injecting a 13.6 GeV, 3.4 kA, 70 fs
(FWHM) electron beam in a 3 cm periodicity, peak magnetic field 1.25 T and 110 m
long wiggler. The first light (1.5A) from this machine was produced in April 2009 —
Emma et al. (2010). Several other machines are in various stages of design or
construction. Among those it warrants to mention the Energy Recovery Linac
(ERL) at Cornell University, Jefferson Laboratory and Argonne National Labora-
tory in the United States as well as European project, X-FEL at DESY.

It is virtually impossible in the framework of one section to cover in a reasonable
mathematical detail all the important concepts involved in the design of such a
complex facility therefore, whatever will be chosen to be presented in such a
framework, is a subset of a larger list of topics. Since, earlier in this chapter we
have presented the essentials of the 1D FEL theory, we choose to focus in this
section on aspects which we conceive to be important to the fourth generation of
light-sources. A reader interested in more professional details should consult the
review of the subject compiled by Huang and Kim (2007). For a more detailed
tutorial the reader is referred to Attwood (2000) and Schmiiser et al. (2008) that are
recommended for a deeper elaboration of the subject.

7.6.1 Seeding Techniques

In the VUV, X-ray and beyond, there are no sources to feed the free electron laser
therefore, the coherent radiation has to grow from noise. Two main approaches have
been contemplated in the design of the next generation light sources are the self-
amplified spontaneous emission (SASE) and the high-gain harmonic generation
(HGHG) scheme. One of the main advantages of the HGHG over the SASE FEL is
that, by using up-frequency conversion of the initial seed signal, HGHG allows us to
produce not only transversely, but also temporally coherent pulses. In contrast, the
SASE radiation starts from initial shot noise in the beam, with the resulting radiation
having an excellent spatial coherence, but a rather poor temporal one. Standard
HGHG allows only a limited frequency multiplication factor in a single stage
leading to multi-stage approach for X-ray production seeded at an ultraviolet
wavelength accompanied by a significant complication in the overall design. More-
over, generation of the 10th harmonic (or higher) requires a large energy modulation
of the beam and deteriorates the beam properties as a “lasing” medium.
Self-seeded FEL consists of two undulators separated by a mono-chromator and
a magnetic chicane. The interaction in the first undulator is started by shot noise and
is interrupted well before saturation. While the SASE radiation is sent through
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a monchromator, the electron beam passes through a magnetic chicane which
destroys the micro-bunching introduced by the SASE and compensates the delay
introduced by the monochromator. Further, the monochromatic radiation and
the demodulated electron beam are injected into the second undulator where the
interaction between the two reaches saturation. Since the self-seeded FEL does not
rely on an external radiation source to seed the FEL process and it can be scaled, in
principle, to any arbitrary wavelength.

In the High-Gain Harmonic Generation (HGHG) the FEL is seeded with a sub-
harmonic of the output wavelength. It consists of two undulators separated by a
magnetic chicane. The first undulator, the “modulator”, is seeded by an external
coherent source. In the first undulator an energy modulation in the electron beam
occurs while the dispersive section transforms the energy modulation into a density
modulation on higher harmonics of the seed wavelength. The second undulator
(“radiator”) is tuned to one of these harmonics and the bunches generated by the
dispersive section drive it. It is interesting to note that the approach resembles the
severed TWT (Kuang et al. 1993) and to some extent a klystron. A HGHG FEL with
a seed consisting of high harmonics generated by a laser in a gas has been reported
recently by Lambert et al. (2008). Marinelli et al. (2010) presented a comparative
study between self-seeded FEL and HGHG.

Stupakov (2009) has suggested a novel concept related to the echo effect in
circular accelerators whereby it was demonstrated that modulating the beam energy
with the frequency w; and, after some delay with frequency w, leads, after a build-up
time, to an echo signal oscillating at a frequency mw; + nw, where m and n are
integers.

In the remainder of this sub-section, we employ the 1D approach developed
previously in order to clarify SASE. Obviously this is a very crude approximation
since at the very foundations of this 1D-model is the assumption that the system
operates at a single frequency and when dealing with growth from noise this clearly
is an oversimplification. Nevertheless, we push this model beyond its limits in order
to convey the essentials of the process and not for the accuracy of its predictions.
Our stating point is the ultra-relativistic version of the 1D model as summarized in

Table 7.1 or explicitly,
d —Jjxi
a_ a<eXp( m)> ’
i

¢ Vi

dy; 1

d_/Cl =3, l[aexp(jy;) + c.c], (7.6.1)
i _ @

ac 2%’

We consider first the second derivative of the field-amplitude

d? Q —jy. dy. — iy,
_Z: O(<——2 exp( j/{l>> _a<i eXp( ‘]Kl)> , (76.2)
dg¢ 27 W i ac i
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and substituting the equation for the single particle energy dynamics. Ignoring fast
phase-variations we get

d*a o exp(—jyx;) |
— =4 —jO( —~ — 7.6.3
dg? 2{ ! < v >,-+a<"/?>,}’ 763

We now repeat the procedure for the third derivative but terms quadratic in the
amplitude are ignored therefore we obtain

d*a 30/ 1 o [ 1\ Jexp(—jx)\ o, /exp(—jx)
ca o <>a _* <> <> ~%0 <> (7.6.4)
de 4 \y? 2 \y} 7 4 7

This equation is equivalent to the result developed in Sect. 7.3 [(7.3.28)] but for a
synchronous beam. Contrary to the homogeneous model employed earlier, here we
clearly observe the source term in the right hand side which is dependent on the
beam current.

In the left hand side, we clearly identify the kind of expression that describes
the exponential spatial-growth associated with traveling-wave interaction (see
Table 7.1). Explicitly, the spatial-growth may be derived from the solution of the
characteristic third-order polynomial of the last equation (7.3.28). In the right hand
side, we realize that if, on the scale of X-ray wavelength the electrons emerging
from the accelerator have a uniform phase-distribution and this distribution is not
correlated to the electrons energy distribution, then the source term is zero.

In order to understand the self-amplified spontaneous emission we need to take
into consideration the fact that there are fluctuations due to the fact that there are a
finite number of electrons in one period of the radiation field. Further assuming that
the phase and energy distributions are not correlated we obtain

da 30 /1 o /1 1 o 1 .
g0y (o= [ () () 10 eetin ass

Assuming that there are N, electrons in one period of the radiation field then the
phase term may be approximated by

1

and also ignoring the energy spread we get
da 3o Q° o aQ?
—+jQ—a=|1—— ~ — 7.6.7
@ st [ 2w} 2N, 4PN (oD

Here we have tacitly assumed that the energy exchanged is negligible and the average
energy of incoming electrons is denoted by 7. Let us renormalize the coordinate
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(= ((30(!2/475)1/3% well as redefining the “noise-source” as a, = Q/3+/N, thus
(7.6.7) reads

d3
TC; +ja~ —ay, (7.6.8)
dr

subject to zero boundary conditions at { = 0. Following the same approach as in
Sect. 4.1 the solution has the form

3
a(l) =jan+ Y _ Ayexp(—ju,L) (1.6.9)
v=1

wherein u, are the three solutions of the third order polynomial #* 4+ 1 = Onamely
uy = —1, up =exp(—jn/3), u, = exp(jn/3) (7.6.10)

from the boundary conditions we have

1 1 1] (A —Jan

uy Uy U3 Aj = 0 = A=A, =A; = —jCln/3 (7.6.11)
2 2 2

uy u; U3 Aj 0

which finally implies

N 1< o
a(() =Janl1 -3 vzl:exr)(—/uvc)]. (1.6.12)
Evidently, far away from the input the normalized power is
1, - 2 1 ) _
7, 1a(@> [ = a] eXp(\@C)
1 [/ Q? /3 350N\ /3 5 (7.6.13)
=5 (o) o0 |3 (55)

demonstrating the exponential growth from shot noise. The exponential gain
eventually stops as the beam loses enough energy to upset the resonant condition.
Both the radiation intensity and the electron beam micro-bunching reach a maxi-
mum saturation level as discussed both in this Chapter as well as in Chaps. 4 and 6.

Before we conclude this sub-section one aspect warrants consideration. In
Chap. 4 we investigated the two extremes of any radiation source (amplifier and
oscillator). Contrary to the microwave and optical regimes where reflections may be
detrimental to the operation of an amplifier, in the X-ray range lack of natural
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reflectors (mirrors) is a significant impediment to the development of X-ray sources.
Huang and Ruth (2006) have suggested to employ narrow-band Bragg crystals to
form an X-ray feedback loop and thus implement a real oscillator configuration.

7.6.2 Self Focusing

In an X-ray FEL the magnetic field between the poles may be represented by
By = By, cos(kyz). Not too far off axis a reasonable representation of a planar
undulator with wide and flat pole faces is

B, = B, sin(kyz) cosh(kyy), (7.6.14)
B. = By, cos(kyz) sinh(kyy). -

A three dimensional solution of the equations of motion reveals that in the
horizontal plane (x) the force vanishes whereas in the vertical plane (y) the force
is focusing

& a2 k2
d_zf ~ —#y. (7.6.15)

For focusing also horizontal plane, one can shape the pole faces to be parabolic.
Note that this is virtually identical to the focusing periodic magnetic field discussed
in Sect. 3.4.2.

7.6.3 Quantum Recoil

Although in the Introduction of this chapter we indicated that quantum analysis of
the FEL interaction was performed throughout the years by several authors, quan-
tum effects have never had a central role in any of the operating FEL’s. This picture
may change in future light sources. As an electron emits an X-ray photon, its energy
is reduced due to the quantum recoil. If the fractional energy change is on the order
of or larger than the FEL gain bandwidth, the quantum recoil may significantly
degrade the FEL gain. For typical short-wavelength, high-gain FELs using mag-
neto-static field and high-energy electron beams, the typical FEL gain bandwidth is
on the order of 103, while the fraction energy change after a photon emission is
about three orders of magnitude smaller therefore, the quantum recoil is negligible.
However, it may become significant in the future when an extremely bright and
low-energy electron beam interacts with an electromagnetic field (laser), as the
fractional energy change due to an X-ray photon emission may be comparable to or
exceed the FEL bandwidth [Schachter (1987)].
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7.6.4 Harmonic Generation

In zero order, the motion of an electron in a periodic magnetic field is itself periodic
however, as the required efficiency is elevated, the motion is no longer purely
sinusoidal and as a result, odd harmonics are generated. Accounting for energy
spread, emittance, radiation diffraction and guiding, a 3D analysis of nonlinear
harmonic generation Huang and Kim (2000) have shown that the properties of the
first few harmonics are governed by those of the fundamental after the latter is well
in the exponential regime.

A 1D SASE simulation (Saldin et al. 2006) reveals that the maximum third-
harmonic power at saturation (for a cold beam) is about 2% of the fundamental
level. The relative spectral bandwidth is independent of the harmonic number. For
all practical purposes, the third nonlinear harmonic radiation is the most significant
harmonic component and can naturally extend the wavelength reach of the X-ray
FEL by a factor of three.

7.6.5 Undulator Errors

Demonstrating that X-ray radiation may be generated assuming an ideal model of
an undulator, is a necessary condition but it is by no means sufficient. Evidently, a
periodic magnetic field with a well defined period and amplitude, is an idealization
of a practical system in which each cell has minute defects associated with the
manufacturing process or alignment. Since the emerging spectrum is expected to be
sensitive to periodicity variations, we examine here a simple model that focuses on
miniscule variations in the amplitude and consider their effect on the gain.

In order to have a rough estimate on the role of undulator’s error on the output
power let us return to (7.6.13) and rewrite it at z = d

d
1 , 1/ =300\ /3
— =1)|" ~— — . .6.1
2a|a(§ )| > <9N)> exp deZ\/— e (7.6.16)

As already indicated, in this expression, it was explicitly assumed that the magneto-
static field is ideally periodic in other words, all the undulator’s cells are identical.
A relatively simple assessment is possible if we consider a situation whereby
there is no error in the period of the field but its amplitude may vary randomly —
the average error being zero but the standard deviation is non-zero. Obviously the
question is what is the effect on the gain.

Bearing in mind that the coupling parameter is proportional to the square of the
undulator’s amplitude, (« o< B}) we replace By — By + 0B(z) and this error 0B is
assumed to be much smaller than |0B| < By hence
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d

d d
1 s 1 23 _ 23l 81>
y szBO/ - sz[BO +oB*® =B/ 7| 3| (7.6.17)
0 0 0
A Taylor expansion up to the second order of the last term entails,
d 2/3 d 2
2/3 1 OB 2/3 1 J 20B 1 (6B
By = |dz|1 +— ~B) - |dz|1+-———-| = 7.6.18
0 djz{ +BJ o 2] 38, 9\B (7.6.13)
0 0

and since the average error is zero, we get that the power is reduced by a factor of

1o p (@ 300\ /° (6B?)
2260 =3, (o) e"PWﬁ) (%)

Consequently, the pole field error tolerance seems fairly relaxed (second order)
provided the gain parameter is not too large. To envision this fact let us define the
gain parameter g = \/3 (30(9/4)75)1/ : leading to the following expression for the
relative change in power

(7.6.19)

1 —ex [ <5Bz>} (7.6.20)
P85 | 6.

Obviously, if the gain is large g(dB*)/9B] > 2 the effect of poles errors becomes
significant. In fact, these errors are being continuously amplified.

Comment 7.3. Note that this approach may be extended to include the effect of
minute variations in the undulator’s periodicity since actually the coupling coeffi-
cient is proportional to o o a? = (eBy/ mckw)z. Explicitly, in the gain term one
should replace (9B?)/B} — (da2,)/d? . The difficulty with this approximation is
that in the gain expression (7.6.16), it was tacitly assumed that the system operates
at resonance that, in turn, assumes a uniform wiggler.

7.6.6 Roughness and Resistive Wall Effects

Two parasitic effects we have discussed in this text are important in high brightness
light sources: the most important one is the wake generated by the resistive wall and
the second in importance is the wake due to finite roughness of the beam chamber.
In both cases, there are two effects: long-range effects whereby wakes generated by
one bunch affects trailing bunches and short-range wakes generate weak energy
variations along the same bunch. In the latter case, the main impact of the wake is to
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change the central energy of various portions of the bunch. Consequently, it shifts
its resonant wavelength along the interaction region. Such an energy shift is detri-
mental to the achievable power at saturation. This depends on the tapering along the
undulator that, as was earlier shown, depends on the local resonant condition
assuming that all portions of the bunch have the same energy. However, obviously,
if the wake affects differently various portions of the bunch, the taper is no longer
optimal and saturation occurs after a shorter interaction length implying lower
radiation at the output. One possible remedy is reduction of the charge in each
bunch weakening the wake yet facilitating higher output power by reducing the
deviation from resonance as imposed by the tapering.

Exercises
7.1. Show that the equivalent to (7.4.44) in the case of a traveling-wave tube
reads
1 E_Ayz —5_ {yi COSE%»
2dy {cos(%:))

but the Madey theorem has the same form as in (7.4.47).

7.2. Use the formulation of the interaction in a tapered wiggler to calculate
the power generated in the low-gain Compton regime in a uniform
wiggler with stochastic errors in its parameters. Assume that the errors
follow a Gaussian distribution.

7.3. Calculate the spontaneous emission emitted by a particle moving in a
periodic electrostatic potential as in Sect. 7.5.6. Compare the spectrum
with that of the Smith-Purcell effect. Calculate the effective decelerating
force which acts on the particle and compare it with the result in (7.1.30)
and with the decelerating force in the Smith-Purcell case.

7.4. Calculate the stable trajectories of a particle in a combination of wiggler
and uniform magnetic field. Draw 3 as a function of By,.

7.5. Based on Sects. 7.2 and 7.3 make a summarizing table which will
include the gain and the condition (say on the current and beam temper-
ature) that the system will operate in a particular regime. Discuss the
transition from one regime to another.



Chapter 8
Basic Acceleration Concepts

One of the important systems where beam-wave interaction in periodic structures
plays a crucial role is the particle accelerator. The latter provides us with a unique
tool to test, on earth, the different models that describe the constituents of matter.
Accelerators have undergone a great progress in the last sixty years and it seems
that they still have a long way to go in order to meet the requirements necessary to
test the present theoretical models (Richter 1985). Over the years, in addition to
High-Energy Physics, several other disciplines learned to harness the unique
characteristics of accelerators and today they are widely used in chemistry, biology
and medicine. Regardless the application, it is virtually impossible to present a
thorough presentation of the topic in a single chapter and the reader is encouraged
to consult textbooks dedicated to this topic such as Wiedemann (1999a, b) and Lee
(2004) as well as collection of selected of lectures by Chao et al. (2002) or
collection of selected articles Pellegrini and Sessler (1995).

This chapter has two parts. In the first part (Sect. 8.1), we discuss the basics of
linear accelerator (linac) concepts with particular emphasis on the beam-wave
interaction (Loew and Tolman 1983). Our discussion will be limited to electron
linear accelerators of the type operational today at SLAC National Accelerator
Laboratory. The second part (Sects. 8.2-8.6) is a collection of brief overviews of
different alternative schemes of acceleration which are in their early stages of
research. In these sections the discussion is in general limited to the basic concepts
and the figure of merit which characterizes their application i.e. the achievable
gradient. For discussions that are more detailed the reader is referred to articles by
the experts of each scheme. In addition, the reader is encouraged to consult the
Proceedings of the Advanced Acceleration Workshop organized by the United
States Department of Energy and published by the American Institute of Physics
(AIP) every 2 years since 1982.

L. Schachter, Beam-Wave Interaction in Periodic and Quasi-Periodic Structures, 385
Particle Acceleration and Detection, DOI 10.1007/978-3-642-19848-9 8,
© Springer-Verlag Berlin Heidelberg 2011
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8.1 Basic Linear Acceleration Concepts

The field of linear accelerators is very broad and comprises many subfields which
have been covered in books and presented in detail in summer schools [e.g.
Lapostolle and Septier (1970)], and an entire set of proceedings of summer schools
or meetings which will be referred to in what follows. When such a subject is
presented in a single chapter, compromises have to be made as of what to include
and what to leave out. Since this text focuses on periodic and quasi-periodic struc-
tures we concentrate on the acceleration structure itself. Therefore, we ignore topics
associated with RF generation, pulse compression, injection and extraction of the
RF. Furthermore, we do not discuss beam generation or cooling.

8.1.1 Constant Gradient and Constant Impedance Structures

The basic configuration of an acceleration section is conceptually identical to the
coupled-cavity structure as discussed in the context of closed periodic structure in
Chap. 5 except that in this case, the effect of the beam on the radiation field is small.
Moreover, the ohm loss has to be considered since it causes amplitude and phase
variations that affect the acceleration process. This loss will be the focus of the
present subsection. In Chap. 2 we defined several impedances which have been
used throughout the text. At this point, we introduce an additional concept namely,
the shunt impedance, and several other related quantities that are important to
establish the dynamics of electrons in an acceleration structure. The shunt imped-
ance (Zg,) is important in accelerators since large amounts of electromagnetic
power flows in the system and any change in this power affects the electron
dynamics. This quantity is a measure of the ohm power loss in a unit length in
terms of the electric field [E(z)] that acts on the electrons. It is given by

_ o/ dP\ !
Zo=B@P(-F) B.1.1)

where P(z) is the power that flows along the structure. According to this definition,
the shunt impedance has units of impedance per unit length and it is related to the
quality factor of a waveguide defined by

oW
=—— 8.1.2
Q —dP/dz’ ( )
through
2
é — M (8.1.3)
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here W is the average electromagnetic energy per unit length. This quantity is also
related to the spatial decay associated with the Ohm loss tohm = (—dP/dz) /2P,
which in turn is related to the skin resistance R; = (¢0) ' where ¢ is the conduc-
tivity of the metal and J is the skin-depth defined by ¢ = \/2/woy,. For a
cylindrical resonator of radius R and length d the shunt impedance is

Mo d
T = 2 8.1.4
h 770(&) TR(R + d)F(py) @14
and
Mo dp,
== —— 8.1.5
Q Rs2(R +d) .19

Based on (8.1.2) and the fact that the energy velocity is ve, = P/W, it can be shown
that oopm = ©/2Ven Q0.

With the exception of the injection section, the electrons move in a typical
acceleration section at almost c, therefore in what regards the phase velocity,
there is no need to taper the structure. However, in order to have a feeling on the
effect of the ohm loss we can readily understand that part of the energy is absorbed
by the walls and consequently, the field experienced by the electrons decreases in
space. Therefore, if the motion is calculated for a lossless system, the variation in
amplitude or phase due to lossy material may cause the electron to slip out of phase.
Let us now calculate the energy transferred to the electron as a function of the shunt
impedance and the electromagnetic power injected at the input. For this purpose,
we first assume that the electron is "riding on the crest of the wave" and it gains in a
length D a kinetic energy

D
OExin = eJ dzE(z); (8.1.6)
0

the effect of the phase will be considered in Sect. 8.1.3. The energy gain will be
calculated for two different acceleration structures: (1) constant impedance, in
which case the shunt impedance is constant and the gradient varies in space. In
addition, (2) constant gradient structure, in which case primarily the group velocity
varies and consequently, the interaction impedance changes.

Constant Impedance. The shunt impedance in this case is constant along the
structure and this entails constant geometry and consequently uniform oppy,.
Bearing in mind that the power along the structure is given by P(z) = P(0)exp
(—20tonmz) and

E(z) = \/200tmZanP (2), (8.1.7)
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we can readily conclude that when the beam loading effect is ignored the change in
the kinetic energy is given by

— exp(=¢)

OExin = e[P(o)ZshD]l/z(zé)l/21 : , (8.1.8)

where & = oonmD.

Constant Gradient. Here ooy, 1 tapered in such a way that the gradient remains
constant along the structure. In order to avoid unnecessary complications we
assume that we can ignore spatial variations in Q as well as in the shunt impedance
and that the geometric variations affect primarily the group (energy) velocity and
consequently, the interaction impedance. From the definition of the shunt imped-
ance E%(z) = —Zg(dP/dz), we conclude that dP/dz has to be constant, which
implies

P(z) =A+Bz. (8.1.9)

Since we know the power at the input [P(0)] and at the output P(0)exp(—{()
where

D
(= J d20tohm (2), (8.1.10)
0

we conclude that the variation of the power in space is given by

P(z) = P(O){ - exp(fC)]}. @.1.11)

Lz
D
Using its formal definition, we find that

1 1 —exp(=20)
2D 1 —[1 —exp(—2{)]z/D

(8.1.12)

Olohm =

which subject to our assumptions, dictates the group velocity based on
Oohm = ®/2vVenQ. Since the gradient is constant, the kinetic energy gained by one
electron is dEy;, = eE(0)D which in terms of the input power (8.1.8), (8.1.11) reads

0Exin = e[P(0)ZD]"*[1 — exp(—20)]"/%. (8.1.13)

In either one of the two cases, maximum energy gain occurs for maximum shunt
impedance. This conclusion leads us to the choice of the phase advance per cell.
Recall that in Chap. 5, when solving the dispersion relation of a disk-loaded
structure, we assumed a certain phase advance per cell that together with the
resonance condition determined the periodicity of the structure. No reason has
been given for this particular choice and it will be explained in what follows.



8.1 Basic Linear Acceleration Concepts 389

Now that we have concluded that for maximum energy gain, one has to maxi-
mize the shunt impedance, we can ask what number of disks in one period of the
wave that satisfies this condition. It is intuitive that the larger the number of disks,
the greater the total Ohm loss and consequently for a given E(z) the shunt imped-
ance decreases. The same phenomenon occurs at the other extreme, since for a
small number of disks, the electric field that acts on the electrons, is expected to be
small (for a given Ohm loss). Simulations indicate that maximum shunt impedance
occurs for three disks in one period of the wave and for this reason, traveling-wave
accelerating structures are designed with a phase advance per cell of 27/3.

Beam Loading. Up to this point, we ignored the energy transferred to the beam.
In order to consider the effect of the beam we may argue that in the absence of the
beam and for constant impedance the electric field decays exponentially with a
coefficient oy, therefore it satisfies

dE
— = —topmE. (8.1.14)
dz
In the presence of the beam, an additional change in the field amplitude occurs
E — E + Zg I whose variation in space is given by

dE
= = o (E + Za). (8.1.15)

Here I represents the current carried by the beam in a narrow bunch. The solution of
this equation is E = Aexp(—aonmz) — Zsw[ and since at the input the loading effect is

expected to be zero we have, according to (8.1.7), E(z = 0) = \/20ohmZshP(0)
hence

E(z) = /20ohmZsh P (0)exp(—otonmz) — Zsnl[1 — exp(—0iohmz)]- (8.1.16)
Consequently, the kinetic energy gain of a single particle is given by

]/21—375 1—675

8Exin = e[DZ,P(0)]"/?(2¢) - eZshID(l - ); (8.1.17)

clearly the second term represents the beam loading effect.
For a constant gradient structure, when the beam loading is ignored it implies
that

dE
—=0 8.1.18
dz ’ ( )
thus when the beam effect is included, in analogy with (8.1.15), we have
dE
— = —OohmZshl. (8.1.19)

dz
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Following the same procedure as previously, we have

2exp(—2()

1/2 _ _26eXp(—28) |
[—exp(—20))°

) 1
OExin = e[P(0)ZD]'* (1 — ™) S elZaD |1~ (8.1.20)

as in (8.1.17) the second term represents the beam loading effect. Note that subject
to the present assumptions, we expressed the gain in kinetic energy of the bunch in
terms of a few “global” parameters (Zg,, %onm €tc.) determined in turn by the
geometric and electrical parameters which may vary from one module to another.

8.1.2 Auxiliary Coupling

The design of an acceleration structure is a continuous process of trade-offs. In the
previous subsection, we indicated that the phase advance per cell in a traveling-wave
structure should be 27/3 in order to maximize the shunt impedance. There are,
however, additional considerations that come into play. Strictly speaking from the
electrons’ point of view, the best choice would be a m-mode i.e., standing-wave
configuration, since the gradient for a given input power reaches its maximum. But a
m-mode is unacceptable from the electromagnetic wave perspective since the group
velocity at this point is zero, the filling time is long and if the structure is sufficiently
long, the mode is unstable due to proximity of the various longitudinal modes near the
crest of the dispersion relation. If we examine the same problem from the field aspect
then the best choice would be a m/2-mode since in this case the group velocity is
the largest. Unfortunately, in this case half of the cavities do not contribute to
acceleration.

Knapp et al. (1965) suggested a way to break this vicious circle. His basic idea is
to satisfy both the electrons and the electromagnetic field: the former sees a 7-mode
and the electromagnetic wave sees a m/2-mode. This is possible because the beam
occupies only a small fraction of the transverse dimension of the structure whereas
the electromagnetic wave fills the entire volume. Implementation of this concept is
possible by making each cell of two cavities: one cavity is the regular pillbox cavity
of a disk-loaded waveguide while the second is recessed and its aperture is on the
external wall coupling two adjacent pillbox cavities. In this way, one can design the
structure such that the electron sees a series of pillbox cavities operating at the 7-
mode whereas the electromagnetic wave actually operates in a 7w/2-mode.
Schematically this configuration is presented in Fig. 8.1.

8.1.3 Phase Dynamics

In Sect. 8.1.1 we assumed that the particle “rides” on the crest of the wave and we
examined the energy transfer assuming it stays on the crest along the entire
interaction region. In general, this is not the case since as the particle is accelerated,
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Fig. 8.1 Accelerating structure with side couplers. The electromagnetic wave undergoes a 7/2
advance per cell but the accelerated electron experiences a n-phase advance per cell

and as a result, its relative phase varies. In this subsection we consider the phase
dynamics assuming that the amplitude of the electric field is constant and so is the
phase-velocity (c). In addition, we disregard the transverse motion of the electrons.
Subject to these assumptions, the dynamics of the particle is given by

d eEy W
o/P= —%cos{wt—?z(t)] (8.1.21)

It is convenient to define the phase of the particle relative to the wave as
w
71(t) = %(0) + ot — ?Z(l‘), (8.1.22)
and since f is always smaller than 1, the normalized velocity is expressed as

f = cos . (8.1.23)

With these definitions, we can write two equations that describe the dynamics
of the particles as:

-l glﬁ——@cos
sinfy dt’  mc .
d
L= o(l —cosy), (8.1.24)

in addition, since we limited the motion to the longitudinal direction we can
replace

dy  (Or\dy
—= <a¢> T (8.1.25)

Substituting, the two expressions in (8.1.24) we obtain,

dy ———=——rcos ydy. (8.1.26)
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This expression can be integrated analytically and then re-arranged. Denoting with
indexes “in” and “out” the corresponding values of the variables at the input of the
interaction region and at its output; the result reads

Sin(lﬂout/Z) Sin('//in/z) _ eEy [sin Hout — SIN Xin]- (8.1.27)

cos(You/2)  cos(¥in/2)  mco

Finally, this relation can be rewritten in terms of the familiar f# and the phase y as

follows
. . mamc 1 — Pou 1—p;
$in oy = sin i, + - = . (8.1.28)
Zout 8 eEy (\/1 + Bout \/1 + Bin

Expression (8.1.28) determines, for given initial conditions, the relation between
the phase of the particle and its energy. Under certain circumstances, the particles
are trapped as may be readily seen since once trapped they are accelerated and we
may assume that they reach high y. Explicitly if, 8, ~1 we have

moc |1 — B
eEO 1+ ﬁin’

SIN Yoy = SIN Yip — (8.1.29)

which indicates that the value of the phase at the output is determined only by the
initial values and it is independent of the particle’s energy at the output. Since the
trigonometric functions together are of order 1, we conclude that the condition for
particles to become trapped is

2
1—8
Eo>Ee = %%, /Tgf“. (8.1.30)

For an initial energy of 300 keV the field intensity, assuming operation at 10 GHz,
is 38 MV/m. Increasing the initial energy to 400 keV, lowers the required field
to 33 MV/m. Figure 8.2 illustrates the trapping process for Ej = 60 MV/m,
f = 11.424 GHz, y;,= 95° and the initial energy of the particles is 400 keV. We
observe that beyond 5 MeV, in practice, the phase does not change.

Another direct result of (8.1.28) is the fact that if the initial particle is also highly
relativistic, implying that we can write

) . n mac ( 1 1 )
Sin Yout — sin Xin -
' eEy yout(l + Boul) yin(l + ﬁin)

mwc [ 1 1
~ sin y. —_— - — .1.31
10 Xin 2€E0 <yout Vin) ’ (8 : )
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Fig. 8.2 Relative phase as a 180
function of the energy. For an
initial energy of 0.4 MeV the
phase virtually remains
constant when the electron’s
energy exceeds the 5 MeV

level 135
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and the change in y is small relative to the initial value i.e., Ay = Vo0 — Vin < Vin
then the phase remains reasonably stable. In order to demonstrate this statement
note that according to the single particle energy conservation, the energy change is

ek ()D

Ay 2 ———-COS Vi, (8.1.32)
mc

therefore, the phase-shift varies according to

1
T

SIN Yoy — SIN Y5, =

(%D) COS 1ips (8.1.33)

where D is the interaction length. For a 2 m long structure, f = 11.4 GHz (SLAC)
and y;, ~600 the term in the right-hand side is on the order of 0.001.

Finally, (8.1.28) indicates that a bunch of finite (phase) spread is actually
compressed in the acceleration process. For example consider a 20° bunch i.e.,
130° > y;, > 110° while the other parameters are y;, = 2.0, f = 11.424 GHz and
Ep = 60 MV/m. The asymptotic values (y > 1) of the phase are 166° > y,, > 156°
which is one-half of the initial phase distribution. This calculation disregards the
space-charge effect.

8.1.4 Transverse Effects: Panofsky-Wenzel Theorem

Being relativistic (y;, > 1), the bunch does not spread in phase and the same reason
works in our favor with regard to the transverse motion. So far, we have considered
only the longitudinal motion of the electrons assuming that the beam width is very
small on the scale of the transverse variations of the electromagnetic field. How-
ever, its width is finite and the transverse components of the electromagnetic field
may affect the bunch. Panofsky and Wenzel (1956) were the first to point out that
the transverse kick on a relativistic bunch which traverses cavity is zero in the case
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of a symmetric TE mode and non-zero for a symmetric TM mode. In order to
examine the effect we first adopt an intuitive approach (Palmer 1986) followed by a
generalized formulation of what is known as the Panofsky-Wenzel theorem.

Consider a particle moving with a velocity vy and a TM wave propagating at c.
On axis the longitudinal electromagnetic wave is

E.(r,z0) = Eoexp(—jgz), (8.1.34)
:

and outside the bunch (but in its close vicinity) Maxwell equations imply

19 )
g Er(r o) + - E(r,z0) = 0. (8.1.35)

Solving for the radial component we obtain
1
E(r,z;0) = j(E Qr) Eoexp(—jfz), (8.1.36)
c c

and since Hy = E, /1, the radial component of the force that acts on the envelope
of the bunch is

1 1 .
Fr = —e{E/[r,z(t);1] — vopoHylr, 2(1); ]} = e(g %’) WEO sin y,
(8.1.37)

where y = y, + o[t — z(¢) /c]. Expression (8.1.37) indicates that off-axis, the radial
force is by a factor of 92 smaller than the longitudinal force. Let us, for the sake of
simplicity, ignore variation in y, which is to say that we examine the transverse
motion in a relatively short section where the change in the energy of the electrons
is small. For a relativistic particle, the radial motion is governed by

d> 1 eEywsiny
———=——|r=0; 8.1.38
a2  y3  dme it ( )
the azimuthal motion was neglected here. From this last expression, we conclude
that: (1) the radial motion scales as y~> therefore, for relativistic particles in a
symmetric TM mode propagating at c, the transverse motion is expected to be
stable. (2) If in the longitudinal direction the electromagnetic field is accelerating
the particle i.e.,

F, = —eFEycosy, (8.1.39)

z

is positive (say y = 135°), then the transverse motion is unstable.
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Now that we have a general feeling as to the transverse processes that occur
when a bunch traverses an acceleration structure, we shall introduce a systematic
way to deal with the problem. In their original work, Panofsky and Wenzel (1956)
defined the transverse momentum experienced by a relativistic bunch as it traverses
an interaction of length D by

D

—e

p=t J d(E+vo x B) | .. (8.1.40)
0

This definition takes into account the effect of the field generated by the particle
on itself via the structure (the self-field is obviously excluded). We have indicated
that as a particle traverses a slow-wave structure or a cavity, it leaves behind a broad
spectrum of electromagnetic waves — this was also referred to as electromagnetic
wakefield. Since this field may affect bunches trailing far behind the generating one,
it is convenient to define the so-called transverse wake potential as

Wi(s,r) =—e Joo dz[E + vo X B] | (r,z,t = (z+5)/V0), (8.1.41)

—00

which can be conceived as a generalization of (8.1.40). In an equivalent way one
can define the longitudinal wake potential as

Wi(s,r) = —e /OO dzE.[r,z,t = (z +5)/ Vo). (8.1.42)

o0

The Fourier transform of these two potentials

o0

J
Z(w,r) = Vol J

1 o0
Zon) =z [ amisn exp(—jj)os),

V()e‘2 —00

—00

dsW (s,r)exp (—j\%s),
(8.1.43)

determines the longitudinal and transverse impedances; several cases of interest
were considered by Heifets and Kheifets (1990).

Since the two wake potentials previously introduced are determined by various
components of the electromagnetic field, which are inter-dependent via Maxwell’s
equation, we may expect the two wake potentials to be also inter-dependent. The
relation between the two can be shown based on Faraday law, assuming a steady
state regime and having the symmetric TM mode in mind,

0 0 .
EEZ - aE,‘ = jougHy. (8.1.44)
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We firstly calculate

0 > 0
EWL(S, r)=—e Jioc dzEEZ[n z,t = (z+)/vol, (8.1.45)
and secondly,
QW ( r)——eJOC dzg[E —vopoHg | (r,z,t = (z+5)/vo)
Os 1S, = . Os r oMol1g s Ly b — s 0/
> o 1 ,
= feJ dz |:J— —E.(r,z,1) — jouyHgy(r, z, t)} . (8.1.46)
s cp 1=(z+s)/vo

Bearing in mind that

9 OE.. 1 [OE,
—E,.[r,z,r=<z+s>/w)1=[ } +—[ ]
Os oz 1=(z+5) /vo Cﬁ ot t=(z+s)/vo
E, 1
_ [a ] N [_ wa} ’ (8.1.47)
Oz | LB Limeraog

and assuming that for z — doo the transverse electric field vanishes, i.e.,
E.[r,z,t = (z+s)/vo] — 0, we have

0] o OE,
—Wi(s,r) = —eJ dz { - jco,uOHd)} . (8.1.48)
0s —00 0z t=(z+s)/vo
Adding (8.1.45), (8.1.48) we obtain
0 0] o0 OE, OE, .
—Wr(s,r)+=W ) =— d — — H 8.1.49
or Ls:r) +8s 1(s:r) eJ_oo : [ or oz VM0 4 1=(z+s)/vo ( :
which by virtue of Faraday law (8.1.44) implies
0 0
—Wi(s,r) = —=—WL(s,r). (8.1.50)

s or

This relation is the formal notation of the Panofsky-Wenzel theorem phrased above.
Equivalently, this theorem can be formulated in terms of the longitudinal and
transverse impedances introduced in (8.1.43) as:

0 w1
5= le. (8.1.51)

To reiterate, an acceleration structure is a defocusing element and for maintaining
stable motion over extended length, it is strictly necessary to incorporate a focusing
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element in an acceleration module. For a thorough discussion on electron optics,
magnetic lenses and periodic focusing systems (e.g. FODO lattice) the reader is
referred to Chaps. 4-6 in Wiedemann (1999a, b).

8.1.5 Beam Break-up

Even with focusing elements in place, the transverse motion may become unstable.
Already in the 1960s, it was observed at SLAC that the transmitted electron-pulse
appears to shorten if the total current exceeds a certain threshold. This effect was
attributed to a radial instability called beam break-up (BBU) which is due to the
coherent interaction of the electrons with a hybrid mode, that is to say a mode which
possesses properties of both TM and TE modes. In particular, we can conceive a
cavity in which the TM; ;o mode is excited. Longitudinal variations are ignored in
this case (9/0z ~ 0) but we allow radial and azimuthal variations such that the
non-zero component of the magnetic vector potential reads

A(r, §) = AT} (s1 1%) cos ¢, (8.1.52)

where s, is the first zero of the Bessel function of the first kind and first order i.e.,
J1(s1) = 0. Consequently, the non-zero components of the electromagnetic field are

E.(r,z) = —joAl; (sl 1’_'(’) cos @,

1 r
oy L AW 8.1.53
B,(r,2) rAJ1 (is) sin ¢, ( )
R
By(r,z) = ARJl(is)cosqﬁ,

where J, (1) = Jo(u) — J (u) /u and the eigen-frequency of this cavity is = s;c/R.
Near the axis the non-zero components are

1 (8.1.54)

An electron, which traverses this cavity, experiences a deflection even if it is
perfectly aligned because of the v x B term. Specifically, the change in the trans-
verse momentum due to the excitation of this mode is

Do eD )
Apy = —e X dz%(—voBy) ~ ERe(—JE). (8.1.55)
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Consistency with the prior assumptions forced us to assume a uniform field in
the z direction — which is not the case in general but it is a reasonable approximation
on the scale of a single cavity. Furthermore, from this expression we learn that the
transverse deflection is proportional to the longitudinal electric field and therefore,
if we now consider a set of such coupled cavities, then the mode may grow in space
and after a certain interaction region it dumps the beam to the wall. The
corresponding mode is called hybrid electric magnetic mode and in our particular
case, it is HEM, ;.

BBU can be divided into two different types: beam break-up that occurs in the
scale of a single acceleration structure because of feedback (either due to backward-
wave interaction or due to reflections) and then the condition for BBU occurs as the
threshold condition is reached — as in an oscillator. This is called regenerative beam
break-up. In the other case, the cumulative beam break-up, the “information” is
carried by the beam and it occurs on the scale of many acceleration sections (which
are electromagnetically isolated). Panofsky and Bander (1968) developed based on
Panofsky-Wenzel theorem a model which fits the basic features of long range BBU
occurring on the scale of many acceleration sections. Helm and Loew (1970) have
given a good tutorial of the various BBU mechanisms. Lau (1989) has proposed a
framework from which the various BBU regimes can be derived.

While in Sect. 4.5 we have discussed in some detail the BBU in the context of
coherent hybrid mode coupled to the beam and the way to suppress it, in the
previous paragraphs we have briefly discussed the deflection of a single bunch by
a hybrid mode in a cavity. In the remainder of this subsection we describe qualita-
tively the BBU that may occur along a single bunch due to the wake-field itself
generates. Chao (1993) has developed a simple model to describe the motion of the
tail of a bunch in terms of the wake generated by the head of the bunch. This is a
two-particles model whereby both particles follow an off-axis betatron motion
however, while the motion of the head-particle is determined solely by the external
field, the tail-particle is affected also by the wake-field the former generates.
Because the external field experienced by both particles is identical, the contribu-
tion of the wake-field to the motion of the tail-particle is in resonance with external
force. Consequently, the transverse motion is unstable. If the acceleration is
ignored, the growth rate of the instability is inversely proportional to y and
therefore, if the acceleration is accounted for, the growth rate is somewhat reduced.
Assuming a linear acceleration

Z Y — Vin
(2) = Yl 1 4+ — —) (8.1.56)
( ) ( L yin
thus
Lol 1
——>—sz—= 1n<ﬁ). (8.1.57)
7 L ) 22 V= Vin \Vin
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In order to suppress this resonant instability, Balakin, Novokhatsky and Smirnov
(BNS) have suggested (Balakin et al. 1983) to decouple between the two reson-
ances. In other words, the external betatron field experienced by the tail-particle is
slightly different than that experienced by the head-particle. In this way, under
certain idealized conditions (discussed in detail by Chao (1993)) the instability
can be eliminated. One example of such a shift is to introduce a time-dependent
betatron field.

8.2 Advanced Accelerator Concepts: Brief Overview

The need for more powerful accelerators has triggered an extensive search for various
other schemes to accelerate electrons. These schemes rely on either entirely new
concepts as is the case in the plasma-based accelerators or on new technologies which
is the case in optical accelerator. Although energy is the major parameter of interest
in accelerators, it is not the only critical one. Other parameters such as emittance,
repetition rate and number of particles per bunch are also of great importance.
Therefore, the test of each one of the methods that will be discussed in the following
sections is not only by the gradient that they are generating but also in the potential of
being incorporated in a large system taking into consideration all the other parameters
mentioned above. At this stage of research, the zero order parameter of comparison
remains the accelerating gradient and this will be the basis for our discussion.

Before we start describing the various schemes, it is important to point the reader
to the first characterization compiled by J.D. Lawson (1979) for acceleration of elec-
trons with a laser field. Throughout the years this study has evolved to the so-called
Lawson-Woodward Theorem. 1t specifies the conditions when electrons cannot gain
energy from a laser field: (1) the laser field is in vacuum with no walls or boundaries
present. (2) The electron is highly relativistic (v ~ c)along the acceleration path. (3)
No static electric or magnetic fields are present. (4) The region of interaction is infinite,
and (5) ponderomotive effects (nonlinear forces, e.g. v x B force) are neglected.

The various schemes can be categorized according to several criteria: (1) the
energy-source and (2) the facilitating structure/medium. In the former category, we
can list microwave, laser, a different electron beam or an active-medium whereas the
second includes slow-wave structures, plasmas and wigglers. In the past 30 years,
many of the possible combinations of the two categories have been explored in
one way or another and the reader can consult the series of proceedings of the
Advanced Accelerator Concepts workshops published since 1982; the credit for
funding this research goes virtually exclusively to the US Department of Energy.

Two examples are in place at this point: First let us consider the plasma-based
acceleration whereby space-charge waves are excited and they eventually acceler-
ate the particles. Typically either they are generated by a short electron-bunch or
a short but intense laser pulse or two-long medium-power laser pulses that the
difference between the two frequencies equals the background plasma frequency —
the latter is called plasma beat-wave acceleration.
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When electrons are injected with a velocity close to that of the space-charge
wave (beat wave), they can be trapped and therefore accelerated. Since no external
walls are involved there is no problem of breakdown; however, it does not mean
that the gradients are “infinite” since once the density modulation becomes sig-
nificant (larger than 10%) non-linear effects dominate and the acceleration is
altered. In order to have a rough estimate as of the typical gradients achievable
we quote here the numerical example presented by Joshi et al. (1993): the longitu-
dinal electric field that develops in plasma as a result of a density modulation dn/ng
where 719 the density of the unperturbed background plasma is, E ~ 100,/noon/ng
(V/m). If we take a 10% modulation on a background density of 10*! < ng(m—3) <
10?3 then the achievable gradients are between 0.3 and 3 GV/m.

A difficulty that might be raised is the scattering of the accelerated electrons with
the background plasma. Apparently, the dominant scattering mechanism for over
MeV electrons, is scattering by the plasma nuclei. Estimates made at UCLA
(Katsouleas and Dawson 1989) indicate that even at a density of 10%° m 3 the
mean free path of a relativistic electron (few MeV) is 2 km and it increases with the
energy of the accelerated electrons. Historically, Clayton et al. (1993) reported the
first clear indication of actual acceleration explicitly, externally injected 2.1-MeV
electrons were accelerated by a laser beat-wave driven relativistic plasma wave.
Electrons with energies up to the detection limit of 9.1 MeV were detected when
such a plasma wave was resonantly excited using a two-frequency laser in about
1 cm long interaction region. Throughout the years, several groups around the
world have investigated the concept in Japan, Kitagawa et al. (1992) in France,
Amiranoff et al. (1992) and others. Recently, Tochitsky et al. (2004) demonstrated a
laser plasma beat-wave acceleration of almost 40 MeV in a 3 cm long plasma
channel.

A second example is the two-beam accelerator. Conceptually, an accelerator can
be conceived, as a transformer in the sense that high current — low voltage beams
form the primary and low-current high-voltage constitutes the secondary. In all
large machines operating today, multiple microwave sources form the primary and
a single accelerated beam is the secondary. However, in principle, it is possible to
have a single beam that generates microwave radiation in a series of output
structures. The radiation is guided into an acceleration structure that accelerates a
different charged beam. In this case, the primary consists of a single high-current
low-voltage whereas the secondary is a low-current high-voltage. We discuss this
concept in more detail in the next section. Subsequently we discuss additional
advanced acceleration concepts.

8.3 Two Beam Accelerator

Conceptually a linear accelerator consists of many modules of acceleration
structures each one fed by one or more klystrons. Each klystron in turn is driven
by an electron beam generated separately therefore thousands of beams form the
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primary and they accelerate a single beam which, as indicated in the previous
example, is the secondary of a large “transformer”. Almost 30 years ago, Sessler
(1982) has suggested replacing all these discrete beams by a single driving beam
carrying all the required energy — this primary is still driven by discrete sources. It
came in parallel to the substantial progress in understanding the operation of the
free electron laser. In particular, the fact that electrons could be trapped [see
Sect. 7.4 as originally shown by Kroll et al. (1981)] and their energy extracted
without substantial energy spread, suggested that after extraction in an FEL, the
electrons could be re-accelerated. In addition, the operation of a klystron beyond
X-band becomes problematic because of the small structure required whereas the
free electron laser can generate high power levels at high frequencies without
inherent structure limitations but with substantial constraint upon the beam
quality.

Initially, this original approach of power generation, called two-beam accelera-
tion (TBA) — see Fig. 8.3 — was contemplated to start with a medium-energy
(3 MeV) high-current (1 kA) beam, extract power in each segment and compensate
the driving beam for the lost energy in a re-acceleration unit. Thus, each section
consists of three units: the acceleration unit, extraction unit and re-acceleration unit
(Hibner 1993).

At CERN, the original approach was somewhat different (Schnell 1991): the
initial energy of the electrons is three orders of magnitude higher, in the GeV range,
and at least in the preliminary experimental stages (2 x 250 GeV) no re-acceleration
was planned — as illustrated in Fig. 8.4. In the conceptually future system (2 TeV)
conceived at CERN, a few superconducting re-acceleration cavities are included in
the design. Traveling-wave structures were planned to extract electromagnetic
power on the order of 40 MW from a pre-bunched beam at 30 GHz. In order to
have the correct perspective of the performance of each section we should note that
the 40 MW of power generated at 30 GHz produce almost the same gradient as
400 MW at 11.4 GHz as is the case in the Choppertron (Haimson 1992). In spite of
the clear advantage of operation at high frequency with regard to the acceleration
gradient, the wake-fields are correspondingly high.

If, in order to reduce wake effects, the frequency is reduced from 30 to 24 GHz
the longitudinal wake effects are reduced to about 60% and the transverse wakes to
50% but this comes at the expense of the accelerating gradient which is lowered
from 80 to 50 MV/m. The scaling law behind this result can be readily retrieved
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bearing in mind that in a uniform waveguide the relation between the power carried
by a single TMy; mode and the electric field on axis is

R
= | o PR (Cfm). (8.3.1)

If we require a single mode operation, wR/c is limited by the cutoff of the
second mode i.e., » < pyc/R. Consequently, for a given group velocity Be:c and a
given gradient, the power (in the accelerating structure) is expected to be inversely
proportional to the frequency i.e.,

P x @* ~ const. (8.3.2)

Although the beam energy in both schemes is larger than in the klystrons of the
“conventional” scheme, the amount of current required to provide the power goes
up too. Consequently, the amount of charge that propagates is larger and this may
deteriorate the bunching via space-charge forces. In spite the apparent advantages
of high-frequency operation the drawbacks associated with such an operation, have
forced the designers in 2007 to return to X-band operation (12 GHz) and reduce the
requirement from an accelerating of 150 MV/m at 30 GHz to 100 MV/m. In 2008,
the CERN design was built at KEK and tested at SLAC. In the remainder of this
section, we highlight some of the design parameters of the Compact Linear Collider
(CLIC). A detailed account has been recently reported by Tomas (2010).

Two alternative linear collider projects are developed, the International Linear
Collider (ILC), based on superconducting technology and CLIC that relies on
the two-beam acceleration and harnesses room-temperature RF technology. Both
designs aim to the TeV range and as a first phase the goal is to demonstrate 0.5 TeV
operation and if successful, in Phase II, upgrades will aim to 1 TeV or higher — see a
comparison of the various parameters corresponding to the Phase I (0.5 TeV) in
Table 8.1.

Let us trace the conceptual design (3 TeV), as illustrated in Fig. 8.5, from top to
bottom: two 2.38 GeV 1 km long conventional accelerators driven by 326 klystrons
each; the 1GHz klystron generates a 139 ps-long pulse of 33 MW. In the next stage
the train of bunches is compressed such that the peak current intensity is elevated
from 4 to 100 A and the spacing between the bunches is reduced from 60 cm to
2.5 cm. Each train is 239 ns long and there are 24 trains with 5.8 ps spacing — see
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Table 8.1 CLIC and ILC CLIC ILC

parameters
Center of Mass Energy [TeV] 0.5 0.5
Luminosity [10*] 1.4 2.0
Main linac rf frequency [GHz] 12 1.3
Gradient [MV/m] 80 31.5
Linac repetition rate [Hz] 50 5
Number of particles per bunch [10°] 6.8 15
Number of bunches per train 354 2,670
Beam power [MW] 4.9 10.8
Total site AC power [MW] 130 230
Norm. hor. emittance [mm X mrad] 2.4 10
Norm. vert. emittance [mm X mrad] 0.025 0.04
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Fig. 8.5 Schematic of the recent design of Compact Linear Collider (CLIC) at CERN based on
two-beam acceleration paradigm

Fig. 8.6. The trains of bunches are injected into power extraction and transfer
structures distributed along the 2 x 21 km long linear accelerator generating a
gradient of the order of 100 MV/m at 12 GHz; the initial energy of the electrons/
positrons is 9 GeV.

In the context of the topics discussed earlier in this monograph, there are a few
“critical items” that need to be demonstrated experimentally in order for this design
to materialize. (a) Accelerating structures that sustain gradients of the order of
100 MV/m for a fraction of a microsecond. (b) Power extraction and transfer
structures (PETS) that generate the corresponding power level for the required
duration and transfer this power to the acceleration structure; integration of the two.
(c) Generation of the 100 A drive beam with 12 GHz bunch frequency, meeting the
phase, energy, and intensity stability tolerances. As of today, each one of these
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Fig. 8.6 The scheme of pulse compression and frequency multiplication (x24)

topics is in various demonstration stages and only time will tell whether the
conceptual or technical obstacles will be conquered — Tomas (2010).

8.4 Plasma-Based Acceleration

Wakefields of intensities relevant for acceleration may be generated in plasma by
either an intense laser pulse or a short bunch of electrons. Regardless the method,
the pulse duration needs to be half a plasma wavelength long as shown by Tajima
and Dawson (1979) — or shorter. For plasma densities in the range 10**~10* m ™,
this wavelength corresponds to laser pulse duration of the order of 15-150 fs — this
scheme is also known as laser wake-field accelerator (LWFA). Six years later Chen
et al. (1985) published the second paradigm whereby a particle beam drives the
plasma wakes. Plasma electrons are pushed off axis either by the transverse force of
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the light pulse or by the repelling electrostatic force. As the pulse passes, in both
cases, the plasma electrons snap back toward the back of the drive pulse because of
the restoring force exerted by the immobile plasma ions, overshoot, and generate in
the process the wake-field oscillation. In both cases, the wake-field propagates
virtually at the speed of light and the bunch to be accelerated may be placed 1.5
plasma wavelengths behind the driving bunch.

8.4.1 Laser Wake Field Acceleration

Observations of a wake produced by a single short laser pulse were first published
in 1996 by the Ecole Polytechnique (Marqués et al. 1996) and University of Texas
at Austin (Siders et al. 1996) groups. In both of these experiments, the laser was
focused to a spot size much smaller than the wavelength of the plasma oscillation
and consequently, the oscillation was dominated primarily by the radial motion of
the electrons and measurements of these oscillations provided the first indications
associated with the wake-field.

In the Ecole Polytechnique experiments, the cylindrical plasma wake-field was
excited by a 130 fs Ti:sapphire laser — Amiranoff et al. (1998). By injecting a
3 MeV electron beam into the wake, a maximum energy gain of 1.6 MeV was
measured; the interaction length was of the order of 1 mm therefore the energy gain
corresponds to a maximum longitudinal field of 1.5 GeV/m. This experiment was
followed a series of experiments that demonstrated that plasma electrons could be
trapped by the wake and accelerated to a broad range of energies that peaks at
200 MeV - see Malka et al. (2002). In practice, in all these experiments the laser
pulse length is longer than half of the plasma wavelength. Nevertheless, at the high
plasma densities and laser intensities employed, the laser pulse rapidly self-
squeezes due to the non-linear processes involved. These initially longer laser
pulses propagated through the plasma, they become shorter and excite the wake-
field in the plasma.

Such a broad spectrum of electrons is not practical for acceleration application
where Ay/y smaller than one thousandth are required. Therefore, researchers
started to look into the possibility of generating “mono-energetic” bunches. In
order to understand the broadening mechanism we should bear in mind that the
ions-bubble generated by the laser, moves close to the speed of light but still
accelerated electrons may outrun it in a distance known as the de-phasing distance.
While this limits the maximum energy gain, it may generate an electron beam with
a relatively narrower energy spread.

For this purpose, consider the fraction of the electrons blown out by the drive
pulse and are first trapped by the spike of the accelerating field. It so happens that a
significant number of electrons become trapped so that the wake is beam-loaded
and as a result, the accelerating field drops in amplitude. At this stage, no more
electrons can be trapped and they are accelerated as a collective. However, the
electrons initially have a spread of energies yet those in the front de-phase and
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begin to lose energy whereas the electrons in the back continue to gain energy. This
phase-space rotation generates a relatively low energy-spread bunch.

It is imperative for this kind of process to terminate the acceleration close to
the de-phasing distance by having a plasma-vacuum boundary. Otherwise, this
phase-space squeezing process terminates. Such relatively low energy-spread
beams have been observed experimentally in a plasma channel experiment at
Lawrence Berkeley National Laboratory — Geddes et al. (2005). Shortly afterwards,
the same group used a 3.3 cm long capillary discharge to produce a hydrogen
plasma channel with a density of 4 x 10**[m~3]. Injecting a 40 TW laser pulse
through this channel, an average energy of 1 GeV was measured with a relative
spread Ay/y<0.1 — see Leemans et al. (2006). For a review of the various
theoretical and experimental developments the reader is referred to Esarey et al.
(2009) who compiled a detailed summary of Laser Wake-field Acceleration.

8.4.2 Beam-Driven Plasma Wake-Field Acceleration (PWFA)

The University of Wisconsin group — Rosenzweig et al. (1988), reported first
demonstration of the excitation of a wakefield by a relativistic beam at Argonne
National Laboratory. Its essence was to measure the change in energy of a low-
intensity witness beam (15 MeV) with a variable delay for mapping the wake-field
induced by a high-intensity the drive beam (21 MeV) in plasma. A peak accelera-
tion gradient in excess of MeV/m and more importantly, the experiment clearly
showed the wakefield persisting for several plasma wavelengths. Beyond this
pioneering work, there was a major effort that demonstrated gradients of tens of
GeV/m. A detailed review was compiled by Joshi (2007) here we skip to discuss
one of the most exciting results achieved in recent years in the field of Advanced
Acceleration Concepts.

In the mid nineties it was suggested to employ the 30-50 GeV beam of the
Stanford Linear Accelerator Center to demonstrate 1 GeV energy gain in a one
meter long plasma column of Lithium [10'® — 10?*m~3] for both electrons and
positrons. Since the amplitude of the wake is inversely proportional to the square of
the bunch length one of the major contributions to the successful results to be
reported next, is the ability to compress the 5 ps long bunch by two orders of
magnitude (50 fs). In two different experiments at SLAC, the energy of a part of the
electrons in the bunch was doubled. First, the energy of trailing electrons of an
initial 28.5 GeV electron bunch was doubled at the expense of the front electrons;
the plasma column is 60 cm long. Extending the plasma column to a total of 85 cm
and using a 42 GeV bunch, the maximum energy that electrons have reached was
85 GeV — Blumenfeld et al. (2007).

E157 and E162 were carried out with 28.5 GeV electron and positron beams and
even for the same number of particles and identical plasmas, the wake-field excita-
tion is different for electron and positron bunches. Contrary to the electrons beam
driver whereby the plasma electrons are completely expelled by the head of the
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beam, in the positrons case, the background electrons are pulled in from a plasma
region that has a much larger radius than the beam radius. This leads to a factor
2 smaller wakes for identical conditions.

8.5 Other Wake-Field Acceleration Schemes

Wake-field generated by a bunch of electron in plasma is not the only configuration
whereby an accelerating field is generated by a bunch. As indicated in Chaps. 3 and
5 wakes may occur in dielectric loaded waveguide or in periodic waveguide.
Common to all is the fact that all the modes propagate with the same speed as
the driving bunch and acceleration is achieved by “synchronizing” the radiation
pulse and the accelerated bunch such that the latter trails behind and it sees an
accelerating gradient.

8.5.1 Dielectric Wake-Field Accelerator

In order to understand the principles of the Dielectric Wake-Field Accelerator
(DWFA) it is convenient to go back to Sect. 2.4.2 where we examined the Cerenkov
radiation emitted by a point-charge as it traverses a dielectric loaded waveguide
along its axis. We found that provided the velocity of the particle is higher than the
phase velocity of the plane wave in the medium, then the magnetic vector potential
is given by

. —q s >~ 4Jo(psr/R) . z z
A0 =g 2 i () ()

s=1

see (2.4.46) and the corresponding definitions. It is interesting to note that although
the waveguide is dispersive, all the electromagnetic waves that belong to the wake
travel at the particle’s velocity vy —though they may trail far behind. It also explains
why a “broad” spectrum signal can still provide net acceleration.

With this expression we can calculate the longitudinal electric field acting on a
test particle lagging behind — see basic configuration in Fig. 8.7. On axis, E. is

. I e _z _z
EZ(’_O’Z”)_4ngoRZZJ§(ps) cos[|QS|(t VO)]h(z VO), (8.5.2)

s=1

and since in practice the dielectric coefficient is frequency dependent the summa-
tion is only on these modes for which the Cerenkov radiation is satisfied i.e.,



408 8 Basic Acceleration Concepts

Fig. 8.7 Conceptual set up of
the dielectric wake-field
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B* > 1/e(w = Q). For simplicity sake, let us assume that only the first two modes
contribute, thus the normalized force that acts on a negative point charge e is

-1
_ eq _ 4h(1) [ 4h(7) [
F(t)=F, |:4TE808R2:| =70 cos (p1 ﬁR) + 70m) cos <p2 ﬁR)’ (8.5.3)

and it is plotted in Fig. 8.8.; 1 =1 —z/vo, i = e — f°.

As anticipated, in the close vicinity of the particle, the force is decelerating since
“naturally” the negative charge repels another negative charge. However, if the test
particle is located adequately behind the leading bunch, the trailing one will be
accelerated. This field distribution also helps us to envision the bunch compression,
which is a byproduct of this process.

For this purpose consider a uniform distribution of particles which spread
between the zero acceleration point and the crest of the wave. Electrons that
experience zero acceleration preserve their relative location in the bunch while
all the others are accelerated. Even if the accelerated electrons bypass the first
group, they immediately reach a deceleration region that pulls them back. Obvi-
ously, space-charge effects, disregarded in this discussion, limit this process.
Conceptually, one can regard the system as a transformer with a low voltage and
high current (say 10 MV, 1 kA) primary and the secondary is a high-voltage pulse
of low current (say 1 GV, 1 A). DWFA was tested experimentally at Argonne
National Laboratory by Gai et al. (1988) and analyzed theoretically by Rosing and
Gai (1990).

Park and Hirshfield (2000) published an extension of the theoretical models
beyond what was presented in Chaps. 3 and 5. In addition, a variety of reports
describing experimental work has been published. Here we intend to briefly focus
on two: the ANL group (Power et al. 2000) has designed a structure to have its
TMy, modes nearly equally spaced so that the modes generated by a single short
electron bunch constructively interfere in the neighborhood of integral multiples of
the fundamental wavelength producing large acceleration gradients. Since the
space-charge force limits the amount of charge concentrated in one bunch, it is
possible to split the charge into a train of micro-bunches. In the ANL experiment,
trains of 4-5 nC electron bunches, separated by 760 ps, were injected into a 60 cm
long dielectric-lined cylindrical waveguide. Use of a train of drive bunches spaced
by one wavelength reinforced the accelerating wake-field — the gradient was in
excess of 1 MV/m.
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The Omega-P group at BNL has recently performed a second demonstration of
the superposition of wakefields. The wake was excited by 50 MeV bunches which
travel 50 cm along the axis of a cylindrical waveguide loaded with alumina
(Shchelkunov et al. 2006). The bunches were prepared by splitting a single laser
pulse prior to focusing onto the cathode of an RF gun into two pulses and inserting
an optical delay in the path of one of them. Wakefields from two short (5-6 ps)
0.15-0.35 nC bunches were superimposed and the energy loss of each bunch was
measured as the separation between the bunches is varied to encompass approxi-
mately one wakefield period (21cm). A spectrum of 40 TM,, eigenmodes is excited
by the bunch. A substantial retarding wakefield (2.6 MV/m for the first bunch)
develops because of the short bunch length and the narrow vacuum channel
diameter (3 mm) through which they move. The energy loss of the second bunch
exhibits a narrow peak when the bunch spacing is varied by only 4 mm (13.5 ps).

Gai and Jing (2006) compiled a comprehensive review of dielectric-loaded
acceleration (DLA) structures including theoretical analysis of accelerating
modes and wake-fields as well as experimental aspects. From the theoretical
perspective, two computational methods used to compute the wake-fields of the
DLA structure are described in detail. In the experimental context, multi-pactoring
and dielectric joint breakdown are two major concerns for DLA structures which
are subject to high EM fields and physical models and possible amelioration
methods for both phenomena are considered. A multi-layered DLA structure
based on the Bragg reflection waveguide principle was analyzed by Mizrahi and
Schachter (2004a, b). It was demonstrated that the concept can reduce the RF power
attenuation and improve the shunt impedance significantly compared to a structure
consisting of a simple dielectric tube.

8.5.2 Wake-Field Acceleration in a Periodic Structure

The concept in this case is very similar to the case of the dielectric structure namely,
adriving pulse generates a wake in the periodic structure that in turn accelerates the
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Fig. 8.9 Conceptual set up of Driving Bunch <@il»—>
the periodic structure wake-
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trailing bunch. Mathematical complexity of the calculations involved is substan-
tially higher because the boundary conditions, however the outcome is similar to
the dielectric case. Voss and Weiland (1982) (at DESY, Germany) suggested an
annular configuration that is to say that the driving beam forms a ring which excites
a wake-field. The latter propagates toward the axis and in the process its amplitude
increases. As it reaches the axis, it accelerates a trailing bunch. Figure 8.9 illustrates
this concept.

A different implementation of the same concept involves electro-optic switches:
acceleration of a bunch requires a gradient at the (momentary) location of the
particle. The way this gradient is accomplished has no importance to the longitudi-
nal motion however, the transverse wake may vary from one scheme to another.
Progress in optical switching of semiconductor devices (Lee 1984), facilitates the
generation of fast voltage pulses that in turn can be used for acceleration. The
essence of this concept is to optically switch a radial transmission line connected to
a relatively high voltage source and benefit from the transformer effect as the
voltage pulse propagates inwards to accelerate the electrons on axis. Bamber
(1983) at the University of Rochester experimentally demonstrated the concept.
Wilson (1988) and Cooper (1988) compiled detailed reviews of periodic wake-field
in periodic structures.

8.6 Inverse of Radiation Effects

In all the effects where coherent radiation is generated by bunches of electrons,
these are located such that the electromagnetic field, which acts at their location, is
decelerating theses bunches. In principle, by virtue of the reciprocity theorem (see
Sect. 2.1.8), we can place a similar bunch distribution to be in anti-phase with an
illuminating wave, in which case the latter accelerate the electrons. The
illuminating wave needs to have the similar characteristics as the far-field generated
by the bunches.
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8.6.1 Inverse FEL

In principle, the same mechanism that facilitates generation of coherent radiation in
a periodic transverse wiggler as discussed in Chap. 7, allows to accelerate a bunch
of electrons. In fact, Palmer (1972) suggested this concept several years before the
renewed interest in the free electron laser as a radiation source (Elias et al. 1976).
An intense laser pulse interacts with a beam of electrons in the presence of a
transverse and periodic magnetic field. As a result, electrons may be accelerated —
see Courant et al. (1985). The advantages and disadvantages of the free electron
lasers as a radiation source, discussed in Chap. 7, apply also to its operation as an
accelerator. In addition, Courant et al. (1985) pointed out that the decelerating
gradient (Eg4.) due to the emission of spontaneous radiation has to be smaller than
the accelerating gradient associated with the laser field (E,..). According to (7.1.30)
and (7.2.6) this can be formulated as E,.. > Eg4cc thus

1 eBy, 1,, e eBy \*
Ag——— > =y ——= | —— | . 8.6.1
@ y mcky ” 2/3)1 4mey [k (mckw> 86.1)

This expression determines a critical laser intensity /., which has to be exceeded
in order to obtain net acceleration i.e.,

= |ohof >l = | ¢ V(B Yo (8.6.2)
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If we take By, = 1 Tand 27t/ky, = 10 cm then I, ~ 1071%9®W /cm? and for a typical
7 of the order of 10* the required laser intensity is 105W /cm? as shown next for
several other energies:

y = 10* = I, = 10°W/cm?,
y =10° = I, = 10*W/cm?
y = 10° = I, = 10°°W/cm?,
y =107 = I, = 10°°W/cm?.

This list indicates that with laser intensities of 10°°W /cm? one may accelerate
electrons up to a few TeV but at least with the present technology, this seems to be
the limit.

During the past decade, the I-FEL was instrumental in demonstrating two
fundamental questions: Let us assume that in one module a laser pulse accelerates
electrons, is it reasonable to expect that electrons entering a second module keep
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their shape after a few meters long drift region? Staging of two laser-driven I-FEL’s
has been demonstrated in a proof-of-principle experiment performed by Kimura
et al. (2001) at ATF. Two distinct and serial laser accelerators acted on an electron
beam in a coherently cumulative manner. Output from a CO, laser was split into
two beams to drive two inverse free electron lasers separated by 2.3 m. The first
IFEL served to bunch the electrons into 3 fs micro-bunches, which were “rephased”
with the laser wave in the second IFEL.

A second fundamental question that needs to be addressed concerns the effi-
ciency of trapping at optical frequencies. Development of practical and efficient
laser linear accelerators requires accelerating a large ensemble of electrons together
while keeping their energy spread small. Kimura et al. (2004) was the first to
demonstrate high-trapping efficiency (80%) and narrow energy spread (0.36%)
via laser acceleration. All these accomplishments (staging, high-trapping efficiency
and narrow energy-spread) were achieved in the framework of the Staged Electron
Laser Acceleration (STELLA) program conducted by Wayne Kimura at ATF —
Brookhaven National Laboratory.

8.6.2 Inverse Cerenkov

Edighoffer et al. (1981) at Stanford demonstrated experimentally the feasibility
of the inverse Cerenkov effect for acceleration of electrons. The idea here is to
illuminate an electron moving in a dielectric medium (gas) at the Cerenkov angle
with a laser beam at the adequate frequency. Later Fontana and Pantell (1983)
proposed an improved setup for the same purpose by ensuring an extended
and symmetric interaction region with axicon lens — see Fig. 8.10. The lens
generates a symmetric longitudinal electric field on axis when illuminated by a
radially-polarized laser beam and the gas slows down the electromagnetic wave
which in turn, intersects the electron trajectory at an angle 6; the longitudinal
wave-number is (w/c)n cos 0 where n is the refraction coefficient. Consequently,
the resonance occurs when the phase velocity equals the velocity of the
particle i.e.,

Axicon Lens

Fig. 8.10 Conceptual set-up : g
of the inverse Cerenkov ~~ ======- - Interaction T~

accelerator region
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c

Vph = py—r = vy. (8.6.3)

The concept was tested experimentally (Kimura et al. 1995) when electrons were
illuminated by a laser focused by an axicon lens have gained an energy which
corresponds to a gradient of 31 MV/m in the interaction region. Design of such a
system is a trade-off between a (relatively) large refractive coefficient that requires
high pressure and a long mean free path, which implies low pressure. A possible
solution, suggested in this context by Steinhauer and Kimura (1990) [previously
suggested in the context of FEL by Feinstein et al. (1986)], is to operate close to the
resonant frequencies of the gas. This facilitates the required refraction coefficient
but at low pressure.

8.6.3 Open Structure Accelerator

In Chap. 5 we discussed the electromagnetic characteristics of an open periodic
structure and two main conclusions were emphasized: (1) the number of eigen-
modes is finite and their number is controlled by the geometry of the structure. Each
such mode consists of an infinite spectrum of harmonics whose phase velocity in the
pass band is smaller than c; these harmonics correspond to evanescent waves and
they do not carry power in the transverse direction. Another conclusion we reached
was that (2) a particle moving in the proximity of an open structure emits radiation
(Smith-Purcell effect). In principle, one can use this effect to accelerate electrons by
illuminating the grating at the adequate angle and wavelength. However, contrary
to the inverse Cerenkov effect, where the use of the radiation field in the interaction
region can be fairly efficient, in the grating case, the incident wave is scattered in a
spectrum of harmonics, part of which are radiative therefore a substantial fraction
of the energy is lost.

Alternatively, we may use the eigen-modes of an open structure to accelerate
electrons (Palmer 1982; Kroll 1985). However, one can immediately realize that a
wave with phase velocity c is not supported by the kind of symmetric structure we
discussed in Chap. 5 since if k, = w/c is parallel to the direction in which the
electron moves then at least one harmonic of the mode does not decay exponen-
tially. A simple solution of this problem is to enforce field variation in the third
direction. Pickup (1985) has analyzed a grating which is periodic in the z direction,
the y direction is perpendicular to the surface and in the x direction two metallic
plates were placed at a distance D one from the other. Therefore, if the grating is
designed such that in the z direction k, = w/c and in the x direction k, = n/D
(lowest mode) then according to the homogeneous wave equation, k> + k§ +k2—

(w/c)* = 0, we have
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Consequently, the wave decays exponentially perpendicular to the grating.

Although the problem of the radiation confinement was solved, there still is
a problem of stability of the beam. To illustrate this problem let us consider the
following electric field

Ex(rv Z) = 0,
Ey(r.1) = E% sinfo(r — z/c)] sin(gx)exp(—ky), (8.6.5)

E.(r,t) = Ecos[o(t — z/c)] sin(gx)exp(—ky),

where ¢ = n/D. We can substitute in Maxwell’s equation and obtain the magnetic
field:

H(r,t) = quw/c>2Esin[a)(t — z/c)] sin(gx)exp(—ky)

Whoq
Hy(r,1) = wi’uOEsin[w(t — z/c)] cos(gx)exp(—ky) (8.6.6)
H.(r,t) = ULUE cos[w(r — z/c)] cos(gx)exp(—ky).

With these field components, we can calculate the transverse force, which acts
on the particle. For this purpose, we assume that the particle’s motion is around
x~D/2+ 6x and y = 0 + dy consequently,

[d_z_i_qusind)} Sx =0,

dr? my
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here it was assumed that on the scale of the transverse motion variations in y
can be ignored, y > 1 and ¢ = w[t — z(¢)/c|. The first two expressions indicate
that even if, in the x direction, the motion is stable in the y direction the beam
diverges and vice versa. Pickup (1985) suggested a solution whose essence is of
rotating the orientation of the grating relative to the axis as illustrated in Fig. 8.11.
Alternatively, the phase ¢ can be switched periodically as suggested by Kim
and Kroll (1982).
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Fig. 8.11 Conceptual set up
of the grating accelerator
(inverse Smith-Purcell effect)

8.6.4 PASER: Particle Acceleration by Stimulated Emission
of Radiation

In Sect. 2.4.5 we calculated the decelerating force that acts on a single electron
as it moves in a vacuum channel surrounded by lossy material. At the end of
that section we indicated that if the conductivity of the material is negative which
is to say that the medium is active, then the moving electron is accelerated
(Schachter 1995).

Motivated by this result, let us now take a closer look at the interaction of
moving charged particles with an active medium. For this purpose, consider an
ensemble of atoms, each one modeled by a two-states quantum system and a
moving electron whose primary field consists of a broadband spectrum of evanes-
cent waves — including the resonance frequency of this two-level system. These
waves may be conceived as a spectrum of virtual photons continuously emitted and
absorbed by the electron. When a virtual photon corresponding to the resonance
frequency impinges upon an excited atom, its effect is identical to that of a real
photon. Therefore, it stimulates the atom and as a result, two identical phase
correlated photons are emitted.

Being phase correlated, the moving electron can absorb the stimulated photon,
causing the latter’s acceleration. The inverse process is also possible: if the
virtual photon encounters an atom in the ground state and excites it, then the
moving electron loses energy namely, the electron decelerates. We may expect a
nonzero net acceleration only if the number of atoms in the excited state is larger
than that in the lower state; i.e., the population is inverted. From the description
above, the acceleration force is a result of a stimulated radiation and accordingly
the acronym PASER stands for particle acceleration by stimulated emission of
radiation.

Efficient interaction occurs only in the close vicinity of the resonance. There-
fore, from the perspective of a single moving electron, it is quite clear that since in
the laboratory frame of reference its spectrum is broad, the effect of the medium on
the electron’s energy is modest. In order to overcome this difficulty, it was
suggested to inject a train of microbunches rather than a single macrobunch — its
periodicity being identical to the resonance frequency of the medium. In this way,
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the projection of the train’s spectrum on the resonance frequency of the medium
becomes dominant.

The power exchanged between a train of M bunches of N, electrons, separated
by a distance 4y moving with a velocity v and a dielectric active medium is
given by

_ Qv 2 (™ olj_ 1
P(B) = Aol 7 JO dQRe{jQ[l 7 (g)} FL(U)}
. 2<1 Q A) sincz(% %M)
X SInc ~ 01 )l 7 N
2B %0/ ginc? (% %) (8.6.8)
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wherein in non-normalized units the dielectric function is
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(8.6.9)
subject to the condition ¢,(w < 0) = ¢ (—w). It is tacitly assumed that the medium
has a single resonance frequency g chosen to correspond to the macro-bunch
modulation i.e., wg = 27c/Ao; a); = e’n/mey is the “plasma” frequency with m
being the rest mass of the electron, and n representing the population density
atoms that store a photon. For an excited medium, when the relevant population
density is inverted, the plasma frequency is negative (w[z7 <0); T, being the
relaxation time.

The density of the energy stored in the medium at the resonance frequency,
assuming its population is inverted, np, denoting the photons’ density stored
in the medium, is Wy = —nppfiwg and 7 = 1.05457 x 10734[J-s] is the
Planck constant. Further simplification of (8.6.8) is possible subject several
assumptions: (1) the bandwidth associated with the frequency response of the
medium is much narrower than the spectrum associated with the finite-length of
the macro-bunch (MAy/cT, < 1). In other words, the frequency response of the
medium is sharper than the longitudinal form factor. (2) The bandwidth of the
resonance is very narrow compared to the resonance itself i.e., lo/cTr < 2m.
Based on these assumptions, we can take the longitudinal form factor out of
the integral and evaluate the latter only at the poles of the dielectric function
¢-(Q) = 0. (3) The bunches are initially relativistic (y > 1); (4) the optical gain
is small on the scale of one wavelength (w,,io /e K 1); (5) although the num-
ber of bunches is large, still yz > M; (6) beam’s radius is much smaller than
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the resonant wavelength 27R, /4y > 1. Based on these assumptions the relative
increase in the kinetic energy of the train along an interaction length d is
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N, is the total number of electrons in the train (Q = Nee), r, = €*/4neymc? is the
classical radius of the electron.

A proof-of-principle experiment has been carried out (Banna et al. 2006a) at the
accelerator test facility (ATF) of the Brookhaven National Laboratory. It harnessed
the photocathode-driven microwave linear accelerator and a high-peak power CO,
laser. A wiggler in which a laser beam interacts with a macro-bunch of electrons
traveling through a periodic magnet array, is used to impart a sinusoidal energy
modulation on the electron beam (e-beam). After a long drift region the velocity
modulation translates into density-modulation. The resulting train of micro-
bunches enters a CO, PASER cell follows shortly after by a spectrometer.
A schematic layout of the experiment is presented in Fig. 8.12.

More specifically, a quasi-mono-energetic (45 MeV) electrons macro-bunch of
5 ps duration and consisting of at least 7 x 108 particles, was injected into a wiggler
where it was bunched into about 150 micro-bunches by its interaction with a high-
power CO; laser pulse (200 ps, 0.5 GW) operating at a wavelength of 10.6 um.
A 2.5 m long drift region separates the wiggler from the PASER cell. Along this
drift region, the velocity modulation emerging from the wiggler becomes a density
modulation at the entrance to the cell. The former is controlled by the intensity of
the CO, laser pulse, and in this particular set-up, a ~ 1.5% peak-to-peak energy
modulation at the wiggler was found to generate an optimal density modulation in
the PASER cell. Either stronger or weaker modulation at the wiggler, lead to less

CO,LASER

0.5GW-0.2 nsec CO, active
Wiggler medium Diagnostics

=
WO%%%HH =

U vacrobunch Microbunches PASER Accelerated
cell  microbunches

Accelerator
45 MeV-5 psec

Fig. 8.12 Schematic layout for the PASER experiment. The distance separating the wiggler and
the PASER cell is about 2.5 m
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than optimal modulation, at the location of the interaction with the active medium
and thus, smaller acceleration.

The train of micro-bunches enters next the PASER cell that contains a mixture of
CO; [CO,:N;y:He(2:2:3)], held at a pressure of 0.25 atm, activated by a discharge
driven by a 130 nF low-inductance capacitor, initially charged to 30 kV. The dis-
charge is facilitated by two 40 cm x 12 cm aluminum electrodes, which are 2.5 cm
apart. Two diamond windows, of 1 mm diameter and 2 um thickness each, are
attached to both ends of the cell in order to maintain the pressure in the cell and at
the same time to allow the train to propagate through the cell.

For the typical values mentioned above electrical measurements (voltage and
current) of the discharge, indicate that the total energy density stored in the mixture
is at the most of the order of 0.1 J/cm>. Only a small fraction of this energy density
is associated with the resonance of the CO, molecule at 10.2 pum. Therefore,
assuming a potential efficiency (as an amplifier) of 1%, we estimate the energy-
density available, at 10.6 um, to be of the order of 1 mJ/cm?. Based on this estimate,
in the volume covered by a beam of a radius of 150 mm, the available energy is of
the order of 70 mJ. However, the field associated with a relativistic bunch covers
an area which effectively is y? larger than the geometric beam cross section. In
practice, in the vertical dimension the expansion is limited by the electrode spacing,
and hence, the available energy is about 200 mJ. This value should be compared to
5 mJ kinetic energy of the train.

In order to demonstrate the PASER effect, during the experiment, pairs of shots
with discharge on and off were recorded for different peak-to-peak energy
modulations (1-3%). A jitter of up to 50 keV in the energy spread of the e-beam
was observed at the spectrometer. As the PASER effect manifested itself as an
increase of the energy spread of the macro-bunch as measured at the spectrometer,
in the presence of the discharge in the cell, any increase beyond the 50 keV in the
energy spread is considered as an acceleration via the PASER scheme.

The energy spectra as monitored by the spectrometer’s camera are presented
Fig. 8.13. The spectrum is illustrated for the two relevant cases: discharge-off and
on. Evidently, the energy spectrum when the discharge is on, is broadened
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comparing to the “off’-case by about 0.45% i.e., 200 keV. A detailed theoretical
and experimental account was presented by Banna et al. (2006b) which also shows
that the simple analytic result in (8.6.10) is in good agreement with the experimen-
tal results.

8.7 Optical Accelerators

The progress in laser-technology in the past twenty year has triggered the question
to what extent can lasers replace the microwave sources as the drivers for particles
accelerators. While they still have a long way to go before reaching the wall-plug to
radiation efficiency of microwave sources (>70%), they possess a few inherent
advantages which can not be ignored. On the top of the list is the compactness.
Reducing the wavelength from tens of centimeters to microns and at the same time
increasing the accelerating gradient from a few tens of MV/m to 1GV/m leads to
reduction of almost two orders of magnitude in the length of a linear accelerator
either for high-energy physics or medical applications.

8.7.1 Optical Linear Collider

The first proposal for an optical linear accelerator has been suggested by Robert
Byer in the mid nineties (Huang et al. 1996) and in the past fifteen years some major
experimental progress have been made in collaboration with SLAC [e.g. Plettner
et al. (2005)]. While the initial configuration relied on a series of prisms that
allowed to focus a laser beam along the trajectory of relativistic electrons, about
a decade ago, a complex 2D quasi-periodic structure has been analyzed (Lin 2001)
at SLAC following the regular approach of designing a slow-wave structure. This is
to say that at the laser wavelength, the mode propagates at the speed of light and it
has a significant longitudinal component. In this case the structure was (quasi)
periodic in the transverse direction and uniform in the longitudinal direction. Some
improvement was later found (Cowan 2003) when the designed structure was
periodic in the longitudinal direction. Zhang et al. (2005) have also proposed to
employ periodic structures to couple power into these structures from the transverse
direction. A significant limitation of these structures is the fact that the periodic
“obstacles”, which facilitate the proper mode, are smaller that the wavelength and
thus impose some stringent constraints on the power that could be injected. Con-
trary to RF acceleration structures, the problem is not breakdown but rather non-
linear effects in dielectric material. The latter in turn is the only option in the optical
regime since dielectric loss is by far lower comparing to ohm loss. For reducing
the difficulties associated with these miniscule obstacles in 2D periodic structures, a
simple 1D Bragg structure was investigated theoretically in great detail by Mizrahi
and Schachter (2004b). Some of the fundamentals have been discussed in some
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detail in Sect. 5.4. At this point, we wish to emphasize a few aspects that are
common to all optical acceleration structures mentioned above.

The second significant difference between an optical structure comparing to an
RF one is the behavior of the wake-field and in particular, the long range wakes.
Being made of dielectric obstacles or layers the structure acts like a filter. It confines
radiation of frequencies close to the central frequency but it allows most of other
frequencies to leak out. This is dramatically different comparing to metallic
structures where all the spectrum generated by a single bunch is confined to the
structure’s volume — see Schachter (2003).

A third aspect that is conceptually different in optical accelerators is the structure
of the bunch. As specified in the description of CLIC in this chapter, at RF
frequencies, the number of electrons that are being accelerated are of the order of
10'" and for simplicity sake, let us assume that the volume they occupy is of the
order of 1 mm? — thus the typical density is of the order of 10°° m . In the optical
regime (say 1um) the vacuum tunnel has a vertical dimension that is smaller than
one wavelength (1/5) and obviously, the bunch needs to be much shorter than one
wavelength (say 1/20). In the horizontal plane, we may conceive a sheet-beam
configuration and we assume it to be 100 wavelengths wide. Assuming a similar
density as specified, in one period of the pulse there are only 100 electrons!

Regardless the acceleration scheme the number of electrons per second that need
to be accelerated, for either high energy physics applications or medicine is of the
order of 10'*[1/s]. Assuming a conservative rep-rate of the driving laser — say
10 MHz then the number of electrons in one micro-bunch needs to be of the order of
10”. There are very promising experimental results (Hommelhoff et al. 2006)
indicating that by the time such a machine will get to the drawing board, densities
of 10*' m—> will become available at reasonable low energy, implying that each
micro-bunch may contain order of 10° electrons and there should be 10* micro-
bunches in one train. While at a first glance this seems a complexity, it is actually an
advantage since this train of micro-bunches generates a coherent wake that can be
re-circulated — see Schachter (2004) — leading to a dramatic enhancement in the
efficiency of the acceleration process. However, there still remains one deficiency
associated with the different wake-field experienced by various micro-bunches
along the train. To compensate for this effect, it was suggested to taper the shape
of the external laser pulse whereas the wake generated by one train may be
amplified and harnessed for the amplification of the trailing train — see Fig. 8.14.
Another option is to reverse (front to back) the wake-field before being fed back
into the acceleration structure.

8.7.2 All Optical Light Source

While the discussion so far was primarily motivated by high energy physics, not
less appealing is the optical accelerator compactness when applied to light sources
in general and specially to medical accelerators. In the latter case, the electrons’
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Fig. 8.14 Energy recovery in an optical linear accelerator

energy is limited to about 10 MeV, which implies that if the gradient is of the order
of 1 GV/m, the acceleration structure could be 1 cm long; this should be compared
to the current 50 cm long structures. However, the accelerator is only half the
benefit. The other half, at least if quasi-monochromatic radiation is required, is the
possibility to generate such radiation in a relatively efficient and compact way.
Quasi-monochromatic X-ray radiation has been generated by focusing a laser beam
against a relativistic beam of electrons. Inverse Compton effect facilitates X-ray
radiation — see Sect. 7.5.5. Now that we have a vague idea of how FEL’s and
accelerators work, we may extend the discussion we started in that section.

X-Ray generation has been undergoing a steady revolution for the past five
decades. The brightness of these sources, measured in photons-s~' mm ™~ mrad™?/
0.1%-bandwidth, has been rising exponentially, starting from X-ray tubes (10”) on
to bending magnets (10'°-10'%), wigglers (10'*~10'®) and undulators (10'3-10%%) —
see Attwood (2000). The distinction between wigglers and undulators is set by the
deflection parameter ay,, = eB/mcky, that is a measure as of how strongly the
e-beam is deflected because of the interaction with the magnetic field. In wigglers
the magnetic field is stronger than in undulators and the magnets are more widely
spaced (Ay is larger). Accordingly, the e-beam deflection is typically much larger
than in an undulator and consequently, wiggler based sources are less bright.
Optimal deflection parameter for maximal brightness is a, = v/2, and this is
approximately where modern undulator based sources operate. For wigglers the
deflection parameter is typically measured in tens. In terms of this deflection
parameter K, and accounting for the double Doppler shift, the wavelength of the
emitted radiation is given by Ax_ry =~ (4u/27%)(1 + x*/2). In order to Doppler
shift from a few centimeters to X-Ray, the e-beam has to be accelerated to GeV
(v in the thousands). This requires relatively large and expensive accelerator. In
fact, the size of undulators is not exactly negligible.

In an effort to overcome the stringent (GeV) acceleration requirements of
undulators and wigglers, X-ray sources based on Compton scattering have
emerged. These sources harness the electromagnetic field of a laser as a
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Fig. 8.15 Conventional free space Compton scattering setup. An interaction between a laser and
an e-beam, propagating towards each other generates X-Ray emission in the +z direction. The laser
is typically focused to a ten-micron spot, which corresponds to Rayleigh length zg of the order of
millimeter. A, is the overall interaction length

replacement for the static magnetic field of an undulator. A typical configuration is
a 180° incidence between the e-beam and the laser pulse, as described in Fig. 8.15

For an electromagnetic wiggler k = eEZy /2mmgc? and the radiation’s wave-
length on axis is Ax-ray = (41/47?)(1 + k?/2); E being the amplitude of the electric
field and Ay the laser wavelength. Comparing the two expressions, reveals an extra
factor of 2 in the relativistic double Doppler shift term 4y*, which is due to the fact
that the field is no longer static and the laser pulse propagates towards the e-beam.
While this factor is in our favor, the main benefit stems from the fact that the laser
wavelength A; is 4 orders of magnitude smaller than the undulator period Ay and
consequently, the e-beam acceleration energy requirement is reduced by two orders
of magnitude from GeV to tens MeV. This is the main advantage of Compton
scattering sources over undulators. The deflection parameter of Compton sources is
of the order of k¥ ~ 1 to the very most, provided that high power laser pulses (TW)
are used (Babzien et al. 2006; Schwoerer et al. 2006).

In recent years, several groups have reported successful X-Ray generation via
Compton scattering from a laser pulse. In 2000, at the Brookhaven National
Laboratory Accelerator Test Facility (BNL ATF) collaborators reported (Pogorelsky
et al. 2000) generation of 6.5 keV photons by scattering a 10.6 um CO, laser from a
60 MeV e-beam. A collaboration at the Lawrence Livermore National Laboratory,
at the PLEIADES facility, demonstrated generation of 78 keV X-Ray photons
(Gibson et al. 2004) using a 57 MeV e-beam and an 820 nm Ti:sapphire laser. An
all-optical setup was reported more recently (Schwoerer et al. 2006), employing an
800 nm Ti:sapphire laser split into two pulses: one used for the acceleration of
electrons (5 MeV) and the second, counter-propagating pulse, used for Compton
scattering. Photons emerged in the energy range between 0.4 to 2 keV.

In typical Compton scattering experiments the laser pulse, propagating in free-
space, and the e-beam are focused to a spot size of tens of microns in diameter —
aiming to enhance the local power density which, in turn, facilitates higher X-ray
brightness. Obviously, focusing the laser comes at the expense of the interaction
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Fig. 8.16 A two-stage all optical setup, the first stage being optical acceleration by TMy; mode
guided in an optical Bragg accelerator. The second stage is inverse Compton scattering inside a
Bragg structure with a different mode design (TEM)

length between the e-beam and the laser — which is approximately two Rayleigh
lengths. Moreover, a shorter interaction length implies a broader X-ray spectrum — low
monochromaticity. Compromising one at the expense of the other is of limited
appeal, and a setup that facilitates both high-power density and long interaction is
desirable.

The easiest conceptual method to decouple focusing from interaction length is
by introducing a wave-guiding structure. For this purpose, rather than using a Bragg
structure that supports a TMy; mode for acceleration purposes, we employ a
different design. It facilitates propagation of a TEM mode (see Sect. 5.4.4) which
has a uniform transverse profile in the interaction region and the latter, in principle,
can extend at will. Obviously, in practice, emittance and defocusing of the e-beam
will limit the interaction length. Schematics of the all-optical structure is illustrated
in Fig. 8.16: the first stage is an optical Bragg acceleration structure that harnesses
the laser field to accelerate the electrons as the two propagate parallel to each other.
In the second stage, the electrons propagate anti-parallel to the laser pulse and
X-ray radiation is generated parallel to the beam — for detailed analysis see
Karagodsky et al. (2010).

Relying on a Bragg structure for a Compton scattering process significantly
improves the overall operation of an X-ray source by decoupling focusing and
interaction length. In order to quantitatively assess the improvement, we proceed to
a comparison between the two configurations: (1) Compton scattering based on
free-space Gaussian laser-beam (2) Compton scattering in a Bragg structure. For
adequate comparison, we assume that both systems have the same e-beam
characteristics and the laser injected into both systems is identical in terms of
power and polarization (linear).

For simplicity, we make the comparison in a two-dimensional regime. This
means that in both configurations the laser profile is focused along the x-axis only
and is uniform along the y-axis. This also implies that the e-beam has a sheet-beam
shape. For a typical set of parameters [see Karagodsky et al. (2010)] and an
interaction length of A, = 10\, the minimal enhancement in the emitted energy
is 38 whereas for A, = 10*\; the minimal enhancement is 119 — see Fig. 8.17.

The main reason for such enhancement is decoupling focusing and interaction
length by introducing a wave-guiding structure. This destructive trade-off is
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graphically described by the free-space curve: if zg is too small, the interaction is
too short, and if zy is too large, the focusing is too weak — in both cases the yield
falls off. Recently, Plettner and Byer (2008) suggested a similar concept but the
laser illumination is perpendicular to the e-beam.

Exercises

8.1. Calculate the two wake potentials, (8.1.42)—(8.1.43), as an electron
traverses two parallel plates separated by a distance D. Consider only
the region between the plates.

8.2. Calculate the two wake potentials, (8.1.42)—(8.1.43), as an electron
traverses a pill-box cavity of radius R and length D; the electron
moves along the axis. Consider only the internal region. Compare your
result with that in Exercise 8.1.

8.3. Consider a uniform cylindrical waveguide of radius R which is infinitely
long; ignore walls loss. Between z = 0 and z = D the waveguide is filled
with a dielectric material ¢ which is frequency independent; otherwise
the waveguide is empty. Calculate the two wake potentials,
(8.1.42)—(8.1.43), as an electron traverses this system along its axis.
Compare your result with that in Exercises 8.1 and 8.2.
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