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Preface

The intention of this book is to present the recent advances in fractional calculus of
dynamical systems. Clearly, this type of systems offers new properties that rely on
the derivative fractional order operator which contrast with classical techniques for
integer order systems. Also, the results of the recent advances to understand the
phenomena of dynamical systems for those modeled by non-integer order operators,
in particular for the Caputo operator, are also presented. Fractional order dynamical
systems and fractional order calculus are promising fields under current study in
many areas of engineering. As fractional calculus is as old as integer order calculus,
theoretical developments from 300 years to a couple of decades ago are in search of
possible applications. In many mathematical problems, the need to couple a defi-
nition of a differentiation/integration operator accordingly to the type of analyzed
systems is commonly encountered. This is exactly the case for applications of
fractional order operators to dynamical systems, the model to be analyzed is where
it all takes place. The authors attempt to write in such a way that this book can be
read not only by mathematicians or physicians but also all students in engineering
(control, system, electrical, mechanical, aerospace, chemical) who need more
background than that provided in the basic mathematics courses and Chap. 2 of this
book. Hopefully, the presented material may also be useful in studying some topics
related with the application of the fractional calculus to secure communications.
The present book is written for the audience of graduate students, control engineers,
mathematicians and physicians interested in fractional calculus. It is self-contained
and accessible with a basic knowledge of integer ordinary and fractional ordinary
differential equations. For clarity, most of the concepts are introduced and explained
by means of examples. Design applications are illustrated on several physical
models of practical interest. The book can be used for a first level graduate course
or as a collateral reading for an advanced or specialization course about fractional
calculus. This book addresses the first two chapters that focus on the basic concepts
of the fractional calculus and stability, and tools that are necessary to tackle
the synchronization theory in coupled fractional order systems as well; we attack
the essence of estimators concepts for integer order systems, and keep in mind
the synchronization and observation problems that are closely related. This is the

vii



viii Preface

basis for the generalizations encountered in the rest of the book for the same
problem. A more detailed description of each chapter is given in the next para-
graphs. As a first step towards the comparison of estimation of integer order sys-
tems, some preliminary results are stated for commensurate fractional order
systems. In Chap. 3, we deal with the synchronization problem of Lorenz system
using a proportional reduced-order observer design in the algebraic and differential
setting. We prove the asymptotic stability of the resulting error system and by
means of algebraic manipulations, we obtain the estimates of the current states
(master system). In this chapter, the construction of a proportional reduced-order
observer is the main ingredient in our approach. Finally, we present simulations to
illustrate the effectiveness of the suggested approach. In Chap. 4, the Immersion and
Invariance (I&I) methodology in order to design a novel observer to solve the
chaotic synchronization problem for the master—slave configuration is given, where
the master belongs to a class of feedback linearized systems. This chapter shows a
robust observer which asymptotically calculates the underlying dynamics of the
master system and we show convincing numerical simulations that illustrate the
effectiveness of the methodology. Chapter 5 deals with the master—slave synchro-
nization scheme for partially known nonlinear fractional order systems, where the
unknown dynamics are considered as the master system and we propose the slave
system structure which estimates the unknown state variables. Besides, a new
fractional model free reduced-order observer inspired on the new concept of
Fractional Algebraic Observability (FAO) is introduced; we applied the results to a
Rdssler hyperchaotic fractional order system and Lorenz fractional order system,
and by means of some simulations, we show the effectiveness of the suggested
approach. In Chap. 6, we propose the fractional observers for nonlinear commen-
surate fractional order systems such as a reduced-order observer and a fractional
Luenberger Observer in the algebraic and differential setting. We introduce the
Fractional Algebraic Observability (FAO) property, like a measurement degree of
fractional observability of states variables. Finally, a comparison between two
observers illustrates the effectiveness of the suggested techniques, this is performed
with two different numerical examples: a linear mechanical oscillator with an
integer and a fractional order damping, and a nonlinear fractional order Duffing
System. In Chap. 7, a master—slave configuration of strictly different commensurate
fractional order Liouvillian systems and the generalized synchronization problem of
multiple decoupled families of Liouvillian systems are addressed. The main key
ingredient is to find canonical forms for the original systems from a family of
fractional differential primitive elements based on the output of each system, taking
into account the Liouvillian feature. Fractional order dynamical controllers are
designed to solve the generalized multi-synchronization problem. Moreover, it is
shown that adding diffusive coupling terms in the dynamical controllers solves the
synchronization problem with complex interaction between slave systems, with any
type of interplay. Finally, some numerical examples show the effectiveness of the
proposed approach. In Chap. 8, we present a new estimator model free type for
synchronization of a certain class of incommensurate fractional order systems. We
apply our proposals in the master—slave synchronization scheme, where the
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unknown dynamics are considered as the master system and we propose an
observer structure like slave system which estimates the unknown state variables.
For solving this problem, we introduce a new Incommensurate Fractional Algebraic
Observability (IFAO) property that is used in the design of the slave system. Some
numerical results show the effectiveness of the suggested methodology. In Chap. 9,
we introduce the Fractional Generalized quasi-Synchronization (FGqS) problem for
nonlinear incommensurate chaotic systems in a master—slave configuration, this
phenomena is studied from an algebraic and differential point of view that allows us
to construct an Incommensurate Fractional Generalized Observability Canonical
Form (IFGOCF) from an adequate choice of a differential fractional primitive
element. The former enables to design an incommensurate fractional order
dynamical controller which is able to achieve synchronization of strictly different
incommensurate fractional order chaotic systems. Also, we give the Algebraic
Observability Property for incommensurate Fractional Order Systems (IFAO). The
process of FGqS is shown with numerical results over Chua-Hartley and Rossler
incommensurate fractional order chaotic systems. Finally, in Chap. 10, the prob-
lems of synchronization and anti-synchronization are solved for commensurate and
incommensurate fractional chaotic systems. A reduced-order fractional integral
observer is proposed for fractional systems satisfying the fractional algebraic
observability condition. This observer is used as a slave system, whose states are
synchronized with the ones from the chaotic system, which acts as a master. The
observer uses a reduced set of measurable signals from the master system, solving
also the anti-synchronization problem as a straightforward extension of the syn-
chronization one. It is proven that the proposed observer is Mittag-Leffler stable.
Numerical simulations on the fractional Lorenz and Rdssler systems assess the
performance of the proposed methodology.

In this book, several topics of synchronization and secure communication theory
are merged and directed towards a constructive solution of the dynamical feedback
stabilization problem and some analytic, algebraic, geometric and asymptotic
concepts are assembled as design tools for a wide variety of chaotic systems.
Differential algebraic concepts show important structural properties of chaotic
systems.

It should be noted that the difference with the existing literature of this new
book, within the context of coupled fractional order systems, is that this manuscript
covers some sensible areas such as stability, estimation, and (anti-)synchronization
that have not been given for this type of systems.

In the end, the authors are grateful to referees for a careful and helpful review
of the manuscript.

Mexico City, Mexico Rafael Martinez-Guerra
March 2018 Claudia Alejandra Pérez-Pinacho
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Chapter 1 ®)
Introduction Check for

1.1 A Brief History of Fractional Calculus

The origin of the fractional calculus dates back to the late seventeenth century,
almost on par with the development of differential and integral calculus, when Isaac
Newton and Gottfried Leibniz founded the concept of ordinary derivative. It was in
the wake of the introduction of the Leibniz notation

n

dx"

f),

which denotes the nth derivative of the function f, when Guillaume de L’Hopital
on September 30, 1695 wrote a letter to Leibniz questioning him about what would
happen if n was 1/2? [1-3]. Thus, becoming the first occurrence of what is now
known as fractional calculus; that name comes from the fact that the number 1/2 is
a fraction and which has remained in use since then, although now it is well known
that n is not restricted to take values from the set of rational numbers but also from
the irrational and complex numbers.

It is known that in 1812, P.S. Laplace wrote some expressions for certain frac-
tional derivatives [4]. And in 1819, Sylvestre F. Lacroix was the first to develop the
expression d'/?x = 2,/x//7 using the fact that I"(1/2) = /7, where I" is known
as the gamma function whose notation was introduced by AM Legendre [5].

However, probably the first application of the fractional calculus took place in
1823, when the mathematician Niels Henrik Abel used derivatives of arbitrary order
in the solution of an integral that emerged from the formulation of the tautochrone
[6] (or better known as the problem of the isochronous curve). This problem consists
in finding the shape of the curve in which any particle in any position of the curve,
when sliding without friction and with uniform gravity, invests the same time in
reaching the lowest point of the curve, that is, the time in which it takes a particle to
descend to its final position is the same and is independent of its initial position. The
integral with which he worked was
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/x(x — )72 f@)dr.
0

Now, it is well known that it looks like the fractional order integral used by Riemann.
In 1832 begins the first important study of the fractional calculus by Joseph Liou-
ville to whom today we owe the first definition of fractional derivative [7]. In 1850,
with all the advances of the concept of fractional derivative, W. Center analyzed the
derivative of the unit and observed differences between the definitions that existed
about the derivative of a constant, where the definition of Peacock gave that the result
was different to zero, unless the constant was zero, while Liouville’s definition gave
the derivative zero. Starting from the premise that the two derivative definitions of a
constant were true, what does (d /dx)? x° mean, when 6 is a fractional number? [8].
In 1847, Bernhard Riemman developed a theory of fractional operators [9],
inspired by a generalization of Taylor’s expansion, and he obtained the following

definition of fractional integral:
d—" 1

"= T0

/X(x — k) " uk)dk + ¢ (x),

where he thought it was correct to add a complementary function ¢ (x) to the defini-
tion, and later Liouville would take Riemann’s work to make modifications to the
integral (the complementary function taken to be identically zero and the lower limit
of integration c is normally zero) that would be known as Riemman-Liouville inte-
gral, which would be the first definition of the iterated integral in fractional calculus.

The study of fractional calculus was studied by great mathematical minds such as
Euler [10], Lagrange [11], Fourier [12], among the many who studied the fractional
calculus and its mathematical consequences [13]. Many found, by using their own
notation and methodology, definitions that fit the concept of an integral of non-integer
or derived order.

With the advent of the twentieth century and the new mathematical discoveries,
many of the scientists who continued to work in the area of fractional calculus found
new definitions for the derivative and integral. It was thus that in 1967 M. Caputo
gave a new definition of fractional derivative where the derivative of a constant takes
the usual interpretation [14].

From the above, the tools developed in the Fractional Calculus had important con-
sequences in the study of Volterra integral equations (related to differential equations
of fractional order) with an important potential that led to the first applications of the
fractional calculus in control theory. These occurred in the early 60s and made use
of the fractional integral operator in the control of servomechanisms and saturation
systems. For a more complete treatment of classic historical surveys, the reader is
referred to [1, 3].
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1.2 Synchronization, Chaos, and Fractional Calculus

1.2.1 Synchronization

Synchronization is ubiquitous in nature, and it is encountered in various fields of
science: biology, chemistry, physics, mathematics, astronomy, engineering, social
behavior, and technology [15-17]. In a unified attempt to understand this phe-
nomenon, its study relies on dynamical systems of (quasi-)periodic or chaotic behav-
ior! in which the influence of one system to the other allows the existence of acommon
motion, so-called coupled oscillators. More important, applications of the synchro-
nization phenomenon of coupled dynamical systems have a tremendous impact in
technology.

The oldest documented study/observation on synchronization of oscillators is a
phenomenon that was originally discovered by Christian Huygens in 1665 [23] from
his observations of two maritime pendulum clocks hanging on the same wall [17].
This phenomenon occurs when oscillatory (or repetitive) systems via some kind of
interaction adjust their behaviors relative to one another so as to attain a state where
they work in unison [16]. Roughly speaking, it is said that two dynamical systems
are synchronized once the trajectories of one of them are following the another due
to an external forcing or coupling between them. In the case of the pendulum clocks,
they were the dynamical systems coupled by the wall where they hang on. The result
was described by Huygens as some “odd kind of sympathy” [23] now so-called
synchronization. As this idea applies to more complex synchronization scenarios,
the former can be considered as the simple case of synchronization. In a more formal
expression, it is said that two systems are synchronized if the distance between their
states converges to zero as time goes to infinity, regardless the initial conditions of
both systems.

1.2.2 Chaos

Chaos theory is a field that studies the behavior of dynamic systems that are highly
sensitive to initial conditions, one of them poetically and famously known as the
butterfly effect [24]. The name of chaos and the adjective of chaotic are used to
describe the temporal behavior of a system of aperiodic behavior, apparently random
or noisy. The key word is apparently; under this apparent chaotic randomness is a
certain order, given by the equations that describe the system. According to the
Poincaré—Bendixson theorem, it is known that chaos cannot occur in continuous
nonlinear systems of order less than three [25]; this statement is based on the usual

IThere is clear evidence that consensus problems, for systems ranging from simple node integrators
to more complex dynamical systems (e.g., chaotic, hyperchaotic, etc.), are completely related to
the synchronization phenomenon [18-20]. Even observers (i.e., state estimators [21]) have a clear
connection to synchronization problems in some sense [22].
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concept of order, such as the number of states in a system or system integrators. While
describing the oscillation of chaotic systems, it is found that it does not correspond
to such simple geometrical objects like a limit cycle anymore, but rather to complex
structures that are called strange attractors (in contrast to limit cycles that are simple
attractors) [17]. Furthermore, chaotic systems have been of great interest in recent
years given to their presence in physical systems of interest, such as mechanical,
electrical, and meteorological systems, among others [26].

Surprisingly enough and despite this apparent randomness, the seminal paper [27]
introduced the idea of synchronized chaos related with two identical systems, which
can be coupled in such a way that the solution of one always converges to the solution
of the other and still chaotic, independently of initial conditions and parameters. One
of the current challenges, since its introduction by Pecora and Carrol [27], is still to
explain the synchronization between chaotic systems. The synchronization of chaos
appears in many natural processes such as the relationship between neurons and
heartbeats, among others. It has been extensively studied, given their applications to
areas such as medicine [16], biological systems [28, 29], and whose study of greater
relevance consists of understanding the synchronization between different chaotic
systems with potential applications in secure communications [19, 30, 31]. This has
been lead to several engineering applications; the most important is related to the
transmission of information using chaotic systems [21, 32, 33].

For this type of systems, there exist several types of synchronization schemes:

Complete Synchronization (CS), Generalized Synchronization (GS), Phase Syn-
chronization, Projective Synchronization, Lag Synchronization, and Observer-based
Synchronization. For most of these approaches, it is required that the system meet
certain characteristics related to the Lyapunov exponents; that is why it can be applied
only to certain kind of chaotic oscillators [16, 17, 27]. A complete review of this
topic is beyond the scope of this work, but the reader is referred to: [16, 17, 27,
34-36].

The purpose of this book is to tackle mainly two fundamental problems in chaos
synchronization: Generalized synchronization and observer-based synchronization,
both are commonly encountered in a unidirectional configuration unless otherwise
stated. One of the methods used for solving the synchronization problem in chaotic
systems consists of decomposing the system in question in two subsystems, where
one of them acts as a driver system in order to synchronize the behavior of the other
one. This configuration so-called master—slave synchronization means that, although
one system responds to the other, the reciprocal does not happen.

1.2.3 Synchronization and Observation

Chaotic synchronization has been a topic of huge interest due to its engineering
applications. Several related works can be found in the literature (see [27, 36-39]
and references therein). The research focus into two branches, one related to the
application of state observers for synchronizing nonlinear oscillators, and the other



1.2 Synchronization, Chaos, and Fractional Calculus 5

related to application of control laws to achieve synchronization between systems
with different structures. The first one has aroused great interest [22, 40, 41]. The key
idea is to design observers to accomplish chaos synchronization, where the slave is
actually an observer coupled to the master through its corresponding output. That is
to say, slave estimates the dynamics of the unknown states of master system by means
of measurements of its output. Therefore, the chaos synchronization problem can
be posed as an observer design in which the coupling signal is seen as the output and
the slave system as the observer. Several works related to this have been published.

Different kinds of observers have been used as slave systems, such as the Luen-
berger [42, 43], high-gain [44], adaptive [45], reduced-order [46], polynomial [47],
and bounded error [21]. Recently, the differential algebraic approach has been used
for the design of reduced-order observers [48]. Given that these observers do not
require to have full knowledge of the dynamics of the system, it is required that the
variables to estimate satisfy properties of algebraic observability.

On the other hand, the use of control laws makes it possible to achieve synchro-
nization between nonlinear (chaotic) systems with different structures and orders.
In [37, 47], feedback strategies’ control and nonlinear observers were proposed.
Theoreticians have paid attention to this issue, coming up with interesting works
like [49-51]. Other techniques that have attained noteworthy development are active
control [52, 53], adaptive control [37, 47, 54, 55], backstepping design [56-58], and
sliding mode control [59, 60], among others. There are many mechanisms to under-
stand the synchronization of chaos as stated in the last section. Of greater interest
because it allows describing this phenomenon between chaotic systems of different
nature is known as Generalized Synchronization (GS). This concept, introduced in
[61], is used to describe the synchronization scheme of chaotic systems coupled uni-
directionally (i.e., in a master—slave configuration) and occurs when the trajectories
of a system (slave system), through a mapping, they are equal to the trajectories of
another (master system). When this mapping is equal to identify a particular case
known as CS occurs, this is the case where systems possess identical dynamic model.
GS problem is twofold: first, find a mapping that relates the trajectories of the slave
system to the master system; and second, give an explicit form of the mapping.

1.2.4 Synchronization of Fractional Order Chaotic Systems

Currently, the fractional calculus is present in almost all areas of engineering and
science, such as physics, electrical engineering, robotics, control systems, chemistry,
and bioengineering, among others, and one of the important areas of application for
our case study in the theory of chaos.

Inspired by the above observations and due to the discovery of chaotic behaviors
in fractional differential equations [62, 63], where it is now known that the model of a
chaotic system can be reordered to three individual differential equations containing
derivatives of the non-integer-order (Fractional), extensions to the fractional case on
the synchronization of these systems have been an area of great interest among the
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scientific community. The attractiveness of these systems is evident, and it lies in the
order of the derivative as a new design parameter.

Recently, synchronization of fractional order chaotic systems has received much
attention as the integer-order case. The former is a broad topic tackled from differ-
ent techniques: a one-way coupling and a projective synchronization scheme for the
unified fractional order system is addressed in [64, 65], respectively. A dynamical
analysis for the one-way coupling scheme of fractional order Liu systems is obtained
in [66]. Synchronization of hyperchaotic Lorenz system is tackled from an active
control technique in [67]. In [68], a linear active control technique is used for syn-
chronization in driver and response configuration, where the proposed methodology
is applied to synchronize identical systems with commensurate and incommensurate
fractional order. An active sliding mode control is given in [69, 70], and a modified
version of [69] is given in terms of the projective synchronization problem in [71].
An adaptive projective synchronization method with parametric uncertainty of frac-
tional Lorenz systems with reduced number of active control signals is given in [72],
and it is proven that synchronization errors can only be bounded. In [73], a synchro-
nization method with optimal active control and fractional cost function is proposed.
Particularly, in [74, 75], both consider the generalized synchronization problem
for fractional order chaotic systems. These two last works are extensions from the
auxiliary system approach of Abarbanel et. al. [76], and the differential algebraic
approach of Martinez—Guerra et al. [47], respectively. There are clear extensions to
the fractional case of this methodology called Fractional Generalized Synchroniza-
tion (FGS) for a class of systems [47].

The existence of observers for fractional systems has shown another interesting
approach, widely used in full-order systems [22], for the solution of the problem
of synchronization of fractional chaotic systems. This is to translate the problem of
synchronization into an observation problem, and of course, this happens when the
trajectories of the master system can be estimated from an observer. In this case,
the observer plays the role of the slave system and the error of estimation of the
synchronization error.
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Chapter 2 ()
Basic Concepts and Preliminaries oo

In this chapter, definitions and concepts about the fractional calculus are presented.
Some of the concepts and definitions have been divided into two parts in order
to better locate the topic of interest, such as the concepts of commensurate and
incommensurate systems. Taking into account that there are tools that serve the
same for both cases.

Let us start by defining the n-th derivative of a function x for fractional case.

A fractional derivative of order o € R is an operator that generalizes the ordinary
derivative such that

x(a) — Daf(x) — daf(x)’
dx®

when o = 1 matches the ordinary differential operator.
Now, remember the factorial of a number n

n! = ﬁk,
k=1

where n € N > 0, so what happens with the rational, irrational, and complex num-
bers? Let us see the following definition.

2.1 Gamma Function

In the fractional calculus, one of the functions that will appear most in the tools of
the fractional calculus is the Gamma Function [1].
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This function generalizes the factorial expression n!.
o0
re) = / e dr 2.1
0

Considering z to be a real number, the above statement implies that Gamma
function is defined continuously for positive real values of Z.

Example 2.1 o I'(1) =1

rq) = /OO eldi = [—e I =1
0

1
« () =7

1 oo
re) = f (2etgr = oY _ 7
2" Jo 2

With a change of variable u = ¢/ with du = }1~"/2dt and along with the known
function of the Gaussian Integral | c0®e ™ dx = JT.

Now, we can introduce the following special function.

2.2 Mittagg—Leffler Function

The Mittag—Leffler (ML) function is the basis function of fractional calculus, as the
exponential function is to the integer order calculus [2].
One-Parameter Mittag—Leffler Function

& k

Z
Eq.(z) = kgo m, 2.2)

where I is the already seen Gamma function
Two-Parameter Mittag—Leffler Function [3]

o0

Eop(2) = Z T k—l—,B) (@>0,8>0) (2.3)

k=0

Note thatif 8 = 1, two-parameter ML function becomes one-parameter ML func-
tion. This function is used to solve fractional differential equations as the exponential
function in integer order systems. In the particular case when « = 8 = 1, we have
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that E; ;(z) = e*. Now if we have particular values of «, the function (2.3) has
asymptotic behavior at infinity.

Definition 2.1 ([4]) The solution of system D%x(t) = f (¢, x) is said to be Mittag—
Leffler stable if
X < {(mlx(0)]Eq 1 (=217},

ae(0,1),r>0,b>0,m(0) =0, m(x) >0, and m(x) is locally Lipschitz (with
Lipschitz constant m() on x € B, an open subset of R”.

Mittag—Leffler function satisfy the following Theorem:

Theorem 2.1 ([5]) If « € (0,2), B is an arbitrary complex number and  is an
arbitrary real number such that

”7“ < 1 < min{x, 7a}, (2.4)

then, for an arbitrary integer k > 1 the following expansion holds:

« 1 1
Eup(2) = -2, P —aiz +0 <|Z|K+1) , (2.5)

with |z| — oo, u < |arg(z)| < m. O

The Mittag—Leffler function has the following properties:

Property 2.1 ([5])

t
/ rﬁ’IEa,,g(—kr"‘)dr = tﬁEa,ﬂ+l(_k[a)a B > 0.
0

Property 2.2 ([5])
Eq p(—x) is completely monotonic, i.e., (—1)"E;f',)3(—x) >0for0 <o <2and
B > «a,forall x € (0,00) and n € NU {0}.

2.3 Fractional Operators

There are several definitions of a non-integer derivative of order v, commonly known
as fractional order derivative operators (see [5—7]). In this book, the Riemman—
Liouville fractional operator and the Caputo fractional operator are used.
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2.3.1 Riemman-Liouville Fractional Operator

Definition 2.2 (Riemman—Liouville Fractional Integral) Let « € R™ and let f be
piecewise continuous on J' = (0, o0) and integrable on any finite subinterval of
J = [0, co) (functions of class C). Then, for t > 0 we call

xC = oD x(t) =

@ / (t — 1) 'x(7)dr, (2.6)

the Riemman-Liouville fractional integral of x of order c. O

There exist several definitions of fractional derivatives of « order [6—9]. However,
here we will use the Riemman-Liouville approach.

Definition 2.3 (Riemman—Liouville Fractional Derivative [5]). Let f be a function
of class C and let i > 0. Let m be the smallest integer that is greater or equal to .
Then, the fractional derivative of f of order w (if it exists) is defined as

D" f(t)=D"{DVf(t)} ,u>0,1>0, 2.7

wherev=m —u >0 O

Note that v = 0 implies D* f (¢) = D™ f(¢)
Now, we define a sequential operator, as follows.

D™x(t) = [DY[D?...[D*x()]]], 2.8)

r—times

i.e., the Riemman-Liouville fractional derivative of order « applied r-times sequen-
tially r € N, with D%x(¢) = x(¢), we can note that if » = 1, then D%x(t) = x@
2.3.2 Caputo Fractional Operator

The Caputo fractional derivative of order a € RT of a function x is defined
as (see [10])

(“)szf‘X(t)— ) / dmxm — "l gr, (2.9)
—

d"x

wherem — 1 <o < m, dm

function!.

) is the m-th derivative of x, m € Nand I" is the gamma

I'To simplify the notation, we omitted the time dependence on x®, in what follows we take 7y = 0.
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Now, we define a sequential operator (see [7]) as follows

2"x(t) = ,D* ,D* ..., D¥, D* x(t), (2.10)

r-times

with 7 € N, note that 7O x () = x(¢), 2@9x(t) = x® forr = 0and r = 1, respec-
tively.

2.3.2.1 General Example

Example 2.2 Now that we know the Caputo operator, the gamma function and the
ML function, we can obtain the solution of the following fractional system.

(1) = ax(1), x(0) = xo,
assuming the type solution
x(1) = aop + a1t + art™ + ... + apt*®, (2.11)

We will find the coefficients of the expansion in power series.
At the initial instant ¢+ = 0, the expansion in power series has as a result

x(0) = ao,

Applying the derivative of Caputo to the expansion in series of powers and using
property

o—u
’

peo - L@t
Io+1—a)

we obtain

T'a+1) 'a+1) ,
ray “Trae+n

PR VI
I+ *—Da)

x@ @) =0+aq

+...+ =ax(t),

for t = 0, we have

ray  x0

a; = ax(0) =a )
F'a+1) F'a+1)

applying successive derivatives of (2.11) and substituting + = 0 and we find the
coefficients a,,, n = 1, ..., k, ... such that
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IFQa+1)@+1)
T'(a+ 1) (1)
Fkka+ DI +atk—-1)
e U kD P ratk =2 kDT

= ax (1) = (@)ax(t) = a*x(1),

x® 1) =04 a»

ifr =0
ax(0)

= ——
I'Qa+1)

For the k-th term

x% (1) = ap I (ko + D)1° = ap T (ko + 1) = ax & D9 1)
= (@)a"'x(1) = a"x (1),
ifr=0

a*x(0)

G = ————
I'(ka +1)
Finally, replacing all the terms in the series

x(0) x(0)

1) = 0 S 2—t2a
X0 =xO) +aprm b a e e T
ax(0) « akrke
— =X x(0),
Thatn S Thratr O

Note that the previous expression corresponds to a function of Mittag—Leffler
x(t) = Eq1(at®)x(0),

which is solution of x@ (¢) = ax (z).

2.4 Laplace Transform of Fractional Integrals
and Fractional Derivatives

The Laplace transform is a powerful method in the study of fractional differential—
integral equations. In the following paragraphs are introduced some facts about the
use of the Laplace transform in fractional calculus [7].

Let f a function of class C, if f is of exponential order, its fractional integral
Laplace transform is given by

1
LD} = m.,%{f(t)} =s%F(s) , a=>0. (2.12)
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Let us assume that the Laplace transform of f () exists and is denoted by F (s),
Thus, the following equation holds

m—1
LD f (1)} = s“F(s) — Zsm—k—le—m+“f(0), (2.13)

k=0

wherem — 1 <o <m, form € N.

2.5 Existence and Uniqueness of Fractional Order Systems

Next, we present some sufficient conditions, in the scalar case, to the existence and
uniqueness of solutions of fractional differential equations with Caputo derivative
(see [9] for more details) as a generalization of the integer order counterpart. Exten-
sions to vector cases are easily extended from this.
Consider the nonlinear differential equation of fractional order & > 0 and a <
x<b
€D% () = flx, y)] . 2.14)

where (¢ Dy, y)(x) as a Caputo fractional derivative on a finite interval [a, b], with
the initial conditions
Y (@) = by, b €R, (2.15)

withk =0,1,....n—1;n = —[—«a]. Conside_tring a fractional differential equation
with0 < o < 1, and f(x, y) is bounded by G in R x R and satisfies the Lipschitz
condition with respect to y.

|flx, yi1 = flx, 211 = Alyr = yal, (2.16)

where A is a constant A > 0 does not depend on x.

The solution of (2.14) over the interval defined by a < x < b is understood as a
continuously differentiable function within some defined space associated with its
Volterra integral equation

n—1 b '
NOEDY le(x —a) +

Jj=0

LIt y(@)]
) J, (x—1l

dt (a <x <b), 2.17)

such that (CDZ‘+y)(x) is well defined and (2.14) fulfills for alla < x < b with initial
conditions at the end point of the interval. The latter is a generalization of the Cauchy
problem for ordinary differential equations (ODE) with « = n, n € N for a suitable
function y(x):
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YO = fleywl @=x<b). yW@=beR (k=01 .n-1.
(2.18)
Before stating the existence and uniqueness theorem, consider the next spaces of
functions. Let 2 = [a, b](—o0o S a <b < oo)andm € Ny = {0, 1, ...}. We denote
by C™(£2) a space of functions f which are m times continuously differentiable on
£2 with the norm

1 fllen = Sl f Vlle = ZiLgmax |f )l m € No.

In particular, for m = 0, C°(£2) = C(£2) is the space of continuous functions f
on §2 with the norm

1 flle = max | f(x)],

when 2 = [a, b] is a finite interval and y € C(0 < R(y) < 1), we introduce the
weighted space C, [a, b] of functions f given on (a, b], such that the function (x —
a)?” f(x) € Cla, b], and

1 fllc, = l(x —a)’ f()llc, Cola, b] = Cla, b].

For n € N, we denote by CJ[a, b], the Banach space of function f(x) which
are continuously differentiable on [a, b] up to order n — 1 and have the derivative
£™(x) of order n on (a, b] such that £ (x) € C,[a, b]

Chla, bl =1{f : [Ifllcy = Zio 1 Plle + 11 le, ), Cla, bl = Cyla, b].

Finally, we have the space of functions for which the solution of (2.14) is well
defined in a general sense

Cy'la, bl = {y(x) € C'[a, b] < Dy y € Cyla,bl}, C)'la,bl=Cla,b]

Finally, we have the following Theorem which states the Global sufficient condi-
tions for existence and uniqueness of the solution to the fractional order differential
equation of Caputo-type (2.14)—(2.15).

Theorem 2.2 (Global Existence and Uniqueness) Let o > 0 and n = —[—«], and
let0 <y <landy < a. Let G be an open setin C and let f : (a,b] x G — C be
a function such that for any y € G, flx, y] € C,la, b] and the Lipschitz condition
(2.16) holds.

e Ifn—1 <o <n (neN), then there exists a unique solution y(x) to the Cauchy
problem of (2.14)—(2.15) in the space C}‘f*”_l [a, b].

o [fa=n €N, then there exists a unique solution y(x) to the Cauchy problem
(2.18) in the space Cyla, b].
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e In particular, when y = 0 and f[x, y] € Cla, b), there exist unique solutions to
the Cauchy problem (2.14) and (2.15) in the space Cc*"a, b]:

C*" a,b] := C¢" '[a,b] = {y(x) € C"'[a,b] :€ D,y € Cla, b]},
(2.19)
and to the Cauchy problem (2.17) in the space C"[a, b].

The proof of this theorem follows from the Banach fixed point theorem by means
of the reduction of initial value problem (2.14)—(2.15) to its equivalent Volterra
integral equation (2.17) (see Theorem 3.25 in [9]).

2.6 Types of Fractional Systems

Throughout the book, two types of fractional systems are handled, then we present
the difference between them and the definitions and concepts corresponding to each
one. Consider the following fractional order nonlinear system in the form:

oD xi (1) = fi(x(1),u), xi(to) = xo,
y = h(x,u), (2.20)

for 1 <i < n, orin its vector representation

wDix = f(x,u), x(t) = xo
y = h(x,u), (2.21)

where x € R" is the state vector, f : R” x R™ — R" is a Lipschitz continuous func-
tion, xo € R” are the initial conditions with zp = 0 and y € R” denotes the available
output (measurable output) of the system, i : R" x R” — R? is a continuous func-
tion, and u € R™ is the vector input and @ = [a1, o2, ..., @, ]7 for0 =g < o < 1
(i =1,2,...,n). We omit argument ¢ in these notations and write x instead of x (¢).

Ifo; =ar = ... = o, = «, system (2.20) is called commensurate fractional order
system, otherwise it is an incommensurate fractional order system [11]. From
now, we consider « for an incommensurate fractional order system and, moreover,
ap, Ay, ..., o, are not multiples of each other.

In this book, we will work with these two types of fractional systems, each one
with different characteristics that it is important to highlight, due to that we are going
to study the different properties that have the fractional systems commensurate and
incommensurate.
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2.7 Algebraic Definitions

2.7.1 Commensurate Fractional Order Systems

Definition 2.4 ([12]) A state variable x; € R of system (2.21) satisfies the Fractional
Algebraic Observability (FAO) if x; is a function of the first |, r» € N sequential
fractional derivatives of the available output y and the input u, respectively, i.e.,

xi =i (v Y Py Dy P D)

where ¢; : R1HDP  RO2tDm 5 R
From Definition 2.4, we have the following example:

Example 2.3 Classical Chua’s oscillator is a simple electronic circuit that exhibits
nonlinear dynamical phenomena such as bifurcation and chaos. The model in state
equations is given by:

X1 =p—x— f(x))
X2 =X] — X2 +x3

X3 = —Bxy — yxs,

where f(x) = myx; 4+ (mo —my) x (Ix; + 1| — |x; — 1)), and p, B, y,mo, m, are
parameters obtained from the values of the resistances, capacitances, and inductances
of the circuit.

The Chua—Hartley’s system is different from Chua’s system in that the piecewise-
linear nonlinearity is replaced by an appropriate cubic nonlinearity which yields
very similar behavior. Derivatives on the left side of the differential equations are
also replaced by the fractional derivatives [13].

Let the Chua—Hartley fractional commensurate oscillator be given by:

o X1 —2x}
D%x; = p x2+T

D%xy = x; — x2 + x3
DaX3 = —ﬂx2

Taking the measurable output as y = x3, the following relations can be obtained:

1 1
x1 = ¢1 (v. D"y, D*y) = _EDZ"y - ED“y -y

1
X2 = ¢y (DY) = —ED“y

and, therefore, states x; and x; satisfy the FAO condition.
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For commensurate systems we have the following definition about Picard—Vessiot
Systems

Definition 2.5 A fractional order system is fractional Picard—Vessiot (PV) if and
only if the vector space generated by the derivatives of the set { 7**y, u € N U {0}}
has finite dimension, where ¥ is the fractional differential primitive element.

Now, consider there exists an element y € R and letn € N U {0} be the minimum
integer such that 2"*y is analytically dependent on {?, ¥, g%y, @[”’1]‘@} ,
then

2"y = -7 (3.5, 23, .., 2"y, ..
e, u®, 9%y, ., @y“u) ,

with n, y € NU {0}. Set
n; = gU-bas 1<j<n, (2.22)

then, Fractional Generalized Observability Canonical Form (FGOCF) of system
(2.21) is obtained

(o)

m - =n2,
Y = ns,
(2.23)
0y = 1
n— 9
D = —T (N1, ees s u, ', D%u, ., DVu)
y =n.

This yields to the following lemma which is proved as above.

Lemma 2.1 Anobservable nonlinear fractional order system (2.21) is transformable
to a FGOCF if and only if it is PV. (]

There exist some systems that do not necessarily satisfy FAO. Then, the following
definition is given.

Definition 2.6 Let n states of system (2.21) satisfy FAO property for nn < n, then
we will say that system (2.21) is Fractional Liouvillian if the n — n states can be
obtained by adjunction of fractional order integrals of the 7 states.

As a result from above definition, we can rewrite Definition 2.6 as follows:

Definition 2.7 A state variable x; € R satisfies Fractional Liouvillian Algebraic
Observability (FLAO), if x; is a function of the first r|, r, € N sequential fractional
derivatives of the available output y = /*y and the input u, respectively, i.e.,
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xi=¢; (1%, 9. 2%, ..., 2"y, uu, D, D)),

where ¢; : RHDr  RO2tDm 5 R

Definition 2.8 A family of systems is Picard—Vessiot (PV), if and only if the vector
space generated by the fractional derivatives of the family

(275;, n; >0, 1< j<q, 0<a =<1}

has finite dimension, where y; is the j — th output (fractional differential primitive
element [14]).

Now, consider next property about diagonalization of companion form matrices, take
into account this property for Chaps. 6 and 9:

Property 2.3 ([15]) Given the Hurwitz matrix A € R"*" with different eigenvalues,
ie., A;(A) # A;(A), there exists a linear transformation V € R"*" such that D =

VIAV = diag(Xrq, ..., A,), where matrix V is the Vandermonde matrix given by
1Ay - )L'f—l
LAy - A’;‘l

V=1|.. ] , (2.24)
1A, - ant

with the associate monic polynomial p(A) = [/ (A — ;) = po + p1A +--- + A"
And its inverse V™! = HVTA~!, where A = diag (p(A}), ..., p(ky)), p(X;) are
valued derivatives of p(X) with respectto A = A; for 1 <i < n and H is the Hankel
matrix given by

Pt P2 Pn-1 1

p2 p3-o- 1.0

H=1 : : Do
Pn—1 I--- 00

1 0--- 0 O

Finally, a generalization of the generalized synchronization definition [12] is
defined below for the synchronization of slave families with a master.

Definition 2.9 Let the vectors X,, = (X, ..., X5,,) € R™ and X5 = (x4, ..., Xn,) €
R be master and slave state vectors families, respectively, then the family of slave
systems is in a state of Fractional Generalized Multi-Synchronization (FGMS) with
their family of master systems if there exists a family of fractional outputs that
generates a transformation H,,; : R™ — R" with H,,; = CI);‘ o @, and there exist
an algebraic manifold M = {(X;, X,») | X;n = Hus(X;)} and a compact set B C
R"™ x R™ with M C B such that the trajectories with initial conditions in B tend to
M ast — o0. O
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Fig. 2.1 FGS regimen

' ms (X3 )

In Fig. 2.1, we can see a better representation of Fractional Generalized Synchro-
nization.

2.7.2 Incommensurate Fractional Order Systems

We introduce the following fractional algebraic observability property for incom-
mensurate fractional order systems.

Definition 2.10 A state variable x; € R satisfies the Incommensurate Fractional
Algebraic Observability (IFAO) property if it is a fractional polynomial function
of derivatives of the available output y, i.e.,

Qola) (T ai)
Yz

N = i (g, y Yy 0 < <1, (2.25)

where ¢; : R#+D7 — R,
from Definition 2.10 we have the following example:

Example 2.4 Consider, now, the Chua—Hartley fractional incommensurate oscillator:

N X1 —2x;}
D%x; =p xz+T

D%xy =x1 —x2+x3
D%x3 = —fx;

Taking the measurable output as y = x|, the following relations can be obtained:
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o 1 o 1 3
X2 =¢1(y, D"y) = ;D 'y =50 =2y7)
1 1
x5 = o (y, D"y, D%y, DD y) = —D® D"y — -D®(y = 2y") - y
0
1 1
+=D"y — Z(y = 2y")
P 7

and, therefore, states x; and x3 satisfy the IFAO condition.

Remark 2.1 Each state that satisfies the FAO (or IFAO) condition is said to be alge-
braically observable, and thus its dynamics can be reconstructed.

We introduce the concepts of fractional incommensurate differential primitive
element and fractional order Picard—Vessiot system (PV).

Definition 2.11 A fractional order system is PV if the vector space generated by the
derivatives of the set {yi=19) n >0, 0 < a; < 1} has finite dimension where y
is the fractional incommensurate differential primitive element.

For introducing the Incommensurate Fractional Generalized Observability Canon-
ical Form (IFGOCF), we have the following:

Consider a element 3 € R such that yXi=1 %) depends on
(5, 30, jlnta SO0 @y,

AGL 5, 50, 5T,
u, u(m)’ u(m-&-az)’ o u iz a,)) -0 (2.26)

The system (2.21) can be solved as

n n—1
y(zizla,‘) — _g(y, y(oll)’ )—](011+012), o y(Z,-zl Oti)7 u,
u@ | ylearer) (T ey L (0L )

Redefining z; = &%), for I < j < n, we introduced the IFGOCF of (2.21) as

& =z

¥ =z

(@n—1)
Zn—l1 = Zn

2 = — L(21, 22, 235 wes Znts Uy U,

u(011+0!2)’ o M(Z;";]l ai)) + M(Z:I:I @)
5=z (2.27)
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Then, the next result is immediate from the above and from the Definition 2.11, we
establish the following lemma for incommensurate systems.

Lemma 2.2 A nonlinear system of fractional order incommensurate (2.21) is trans-
formable to the IFGOCF:

@)

z;; =zijp, 1=j=n—1 (2.28)
Z(ai”) = —Z (Zi, Uiy .ony D%t ... D“”u,-) + D% ... D“”‘u,-

in

Yi = Zil
if and only if is PV, where y; is the incommensurate fractional primitive element. []

Remark 2.2 It is normally expected that in the presence of parameter mismatches
and noise, synchronization error is not asymptotically stable in the integer order case
and commensurate fractional order cases [16—19]. Here, even in the absence of latter
elements, synchronization is not perfectly achieved for the case of incommensurate
fractional order systems in a generalized sense.

We introduce a new definition of Fractional Generalized quasi-Synchronization
(FGqS) which depends on the existence of the fractional incommensurate differential
primitive element.

Definition 2.12 Let #) > 0 be the initial time. The slave (9.3) and master sys-
tems (9.2) are said to be in a state of FGgS with bound € if there exist T :=
T () > to and outputs that generate a transformation Hyg : R" — R"S with Hy g =
¢A’41 o ¢s as well as there exists a quasi-Synchronization algebraic manifold M, =
{Ges, xa)lllxpr — Hys(xs)|l < €} and a compact set B C R" x R"™ with M, C B
such that their trajectories with initial conditions in B are in M, fort > T.

Figure 2.2 make things intuitively clear.

Fig. 2.2 FGqS regimen
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Fig. 2.3 Matignon stability
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2.8 Stability Results Commensurate Systems

Theorem 2.3 (Matignon [20]) Let a < 2 and A € C™". The autonomous system
x® = Ax with x(0) = xo

is asymptotically stable if and only if |arg (A; (A))| > an /2, where 1;(A) is the i-th
eigenvalue of the matrix A (Fig.2.3). (I

Remark 2.3 As a particular case from above Theorem, for 0 < o < 1, all Hurwitz
matrix satisfy the condition

T oTT
A(A)] > = > —
larg (A (A))| > 7>

Definition 2.13 The Kronecker product of matrices A € R"*" and B € R”*7 is
defined as

anB --- a,B
A®B = : .. : c RmP*na_

amlB e amnB

Theorem 2.4 ([4]) Let x = 0 be an equilibrium point for the system D*x(t) =
f(t,x), and D C R" be a domain containing the origin. Let V (¢, x(t)) : [0, 00) X
D — R be a continuously differentiable function and locally Lipschitz with respect
to x such that

arllx)| < Vt, x(1) < aallx||*
DPV (1, x(1)) < —as| x|,
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wheret > 0, x € D, B € (0, 1), oy, as, a3, a and b arbitrary positive constants.
Then, x = 0 is Mittag—Leffler stable. If the assumptions hold globally on R", then
x = 0 is globally Mittag—Leffler stable.

Lemma 2.3 ([21]) Let x(¢t) € R be a continuous and derivable function. Then, for
any time instant t > ty

%D%ﬂ(r) < x(t)D%x (1) Yo € (0, 1)

2.8.1 Gronwall-Bellman Generalized Lemma

In 1918, Gronwall gave the Gronwall-Bellman inequality (see [22]), which is an
important tool in the study of boundedness, uniqueness and other aspects of qualita-
tive behavior of solutions of differential equations and stability. Many authors gave
a significant number of generalizations about this inequality (see [23, 24]) being
important for applications in differential and integral equations of integer and frac-
tional order. In this section, we will highlight the fractional formulation and the
usefulness of this tool for stabilization of fractional input-affine systems. In frac-
tional nonlinear systems, there is very little theory about the stabilization problem
through the Gronwall-Bellman Lemma. In 2011, N’Doye showed some results for
the stabilization of a particular class of nonlinear system, certain technical problems
have been found in the demonstration, in this section, we try to give a correction to
those problems.

Similar to the exponential function frequently used in the solutions of integer
order, a function frequently used in the solutions of fractional order is the Mittag—
Leffler function with two parameters defined as

© k
Z
Eqp(2) = ;—F(aﬂm, a,p >0

with the gamma function I"(z) defined by
oo
I'z) = / e 't ldt,z e C (2.29)
0

Now, we mention some results that will be very useful to demonstrate the stability
of a type of fractional systems.

Corollary 2.1 IfA € C"" and 0 < a < 2, B is an arbitrary real number, 1) is such
thatam /2 < n < min{m, ra} and 6 > 0 is a real constant, then

0
NEap(A)|| < ———, n <arg(u(A) <m, 1 <i<n, (2.30)
P 1+ [1A]]



28 2 Basic Concepts and Preliminaries

where L(A) denotes the eigenvalues of the matrix A and || - || denotes the I, — norm.

For the demonstration of exponential stability theorems, the following general-
izations of the Gronwall-Bellman Lemma will be very useful. The following result
will be used mainly for integer systems and the proof can be found in [13].

Lemma 2.4 ([13]) Let the functions ¥,¢, b and k be continuous and non-negative

of J = la, B, n be a positive, n > 2 and ¢ /b be a nondecreasing function. If

V(1) < o) + b(t)/ k(s)y" (s)ds, t € J, (2.31)

then,

1
V() = e{l —(n— 1)/ k(s)b(s)g" ™ (s)dsyn — 1

t
a<t<PB,B,=sup{tel:(n-— l)/ kb(p"’lds < 1} (2.32)

For the case of fractional input-affine systems is necessary to use a generalization
slightly different from the traditional Gronwall-Bellman Lemma in [24], the authors
proved the following result:

Theorem 2.5 ([24]) Let v (t) be a continuous, and nonnegative function, k(t, s)
be a continuously differential function in t and continuous in s, k(t,s) > 0 for
t> s >ty Ilf

() <c +/ k(t, )Y (s)ds, ¢ >0 (2.33)

fo
Then,
1
~(n-1) t K 1—n
¥() <|c —(n—1){ k(t,t) + 8—k(s, r)dr |ds} (2.34)
0 o 0§
The following result will be used to show the stability in the case of controlled
systems by means of a dynamical control.

Lemma 2.5 ([13]) Let the positive continuous functions Vr, ¢, b and k in J =
[a, Bl,n,m € N such that n, m > 2 and a nondecreasing function ¢(t). If,

V() < o) + f k(W™ (5) + ko™ (5)ds, 1 € J,
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then

1

. _ 1
Y (1) < (1) [1 —(n+m— 2)/ ki(s)e" ' (s) + kz(S)w'"_l(S)dS} nm=2

, o0 <t <Py,
where

t
Bn=sup{teJ:(n+m— 2)/ ki@" '+ k" ds < 1)

2.8.1.1 Stabilization of Integer Input-Affine Systems

This section is divided into two parts; in the first part, we present the conditions
that guarantee exponential stability for systems of the form (2.35), controlled by
means of a static state feedback, and in the second part, necessary conditions and
results are shown for systems controlled by means of a dynamical control. Let integer
input-affine systems of the form

£(1) = Ax(t) + ) gi(x()ui(t) + Bul(t)
i=1
y() =Cx(t), x(0)= xo, (2.35)

where A,B, C, are known constant matrices, x € R” is the state vector, y € R” is
the output vector and u € R™ is the input vector.

2.8.1.2 Static State Feedback Control
The following theorem, gives conditions for the exponential stability of the systems
of the form above given.

Theorem 2.6 ([13]) Consider the input-affine system given by (2.35), that satisfy
the following conditions

e For 1 <i < m, there exists an integer q > 1, such that

g (x (NI = willx (11, (2.36)

where w; are positive constant and g;(0) = 0 and we define u = Z;“:l Wi
e The pair (A, B) is stabilizable.

The system (2.35) controlled by means of a static state feedback, u(t) = Kx(t),
is exponentially stable if all eigenvalues of matrix (A + BK) have a strictly negative
real part and if
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0 < ||xo]| < o, eg < W, (2.37)

where M > 0y w < 0 are scalars that satisfy

llexp((A 4+ BK)t)|| < Mexp(wt), ¥Vt > 0.

Moreover, the state x(t) is bounded as follows

X ()] < oMexponiixll 1 (2.38)
(1 _ Mq“MIILIIGgIIXOllq>5

lwl

The proof'is given in [13]. O

We show a numerical example to illustrate the previous result (see the
Appendix A.1).

2.8.1.3 Dynamical Control

Any form given by an integer input-affine system, (2.35) can be carried out to the
canonical form (see [25])

1 =2

=23

Zn=F(ouu, ..., u" N+ (2.39)
upr =u

L'tl = Uy

iy = u3

"‘tnZIZ:_igz(zaulau2v"'5un)zkz7

where the control, u is above defined and the gain vector K is such that the matrix
0O 1 0 O
: Lo (2.40)
0o ... 0 1

—ki —ky ... =k,
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has its eigenvalues with negative real part.

The original system can be controlled by means of applying a dynamical control
u that is to say

%= Ax + Zg(x)iui + Bu (2.41)
i=1

The following theorem establishes sufficient conditions to guarantee the expo-
nential stability of the trajectories for the case of integer input-affine systems given
by (2.41).

Theorem 2.7 Let integer input-affine system satisfying

e The nonlinear part of g; (x) is bounded by
llgi (Ol < willx]|? (2.42)

e The control u is bounded by ||u|| < p||x||? where p > 1 and at least their n first
derivatives are bounded.
e The matrix A has all its eigenvalues with negative real part.

They are exponentially stable systems if there exists a K such that the matrix given
in (2.40) has its eigenvalues with negative real part and the initial condition of the
system (2.42) satisfies the following inequality.

0 < Ixoll = €0 (2.43)

Sfor 8§p+q_2 such that v(gg) > 1, where

v(eo) = 2p+q—2) [(Meo)”‘1 / M Bpexp((p — l)fw)dt]
0
+Q2p+qg—2) [(Meo)“p1 / Mupexp((g + p — 1)ra))dti|(2.44)
0

The constants M > 0 and w < 0 are given by
llexp((A)t)|| < Mexp(wt), Vi >0 (2.45)

In addition, the state norm, x(t), is bounded, i.e.,

()] < soMexplwtey 1 (2.46)

- Mq“,uegsg*l qg—1
o]
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Proof The solution of (2.41) is given by
x(1) = exp(A(1))xo +/ exp(A(t — 1)u(t)[B + G(x)]ldt
0

applying the norm on both sides of equality, we have

t
X0l = Mexp(wneo + / Mexp(wtexp(—on [IIBllpllx]| + uollx||7] dx
0

(2.47)
this yields to

t
llxllexp(—wt) < Meo + MBP/ exp((p — Do) ||x||Pexp(—pot)dt +  (2.48)
0

t
+Mpp|lull f exp(q + p — Dotexp(—(q + p)ot)||x||1dT
0

Finally, applying Lemma 2.5 for the functions

Y (@) = [|x|lexp(—wT)
() = Mgy

ki (1) = MBppexp((p — DNwt)
ka(t) = Muppexp((q + p — Do)
and since g satisfies the inequality (2.42), we have

]| < goexp(wt)eg
= (1= v(g))/Cr#a=D

(2.49)

To illustrate the results of the Dynamical Control (see the Appendix A.2).

2.8.2 Stabilization of Fractional Input-Affine Systems

In this section, stabilization is discussed for fractional input-affine systems of the
form (2.50), this section is divided in two parts,the first gives conditions for systems
controlled by a static state feedback, finally, in the second part, we give conditions
for systems controlled by means of a dynamical control.
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The fractional input-affine systems, with derivation order 0 < o < 1, are of the
form

Dx(t) = Ax(1) + Zgi(X(t))ui(t) + Bu(t) (2.50)
i=1

y() = Cx(), x(0) = xo,

where A,B, C are constant matrix of appropriate size.

2.8.2.1 Static Feedback Control

The following theorem establishes conditions for the exponential stability of frac-
tional input-affine systems of the form (2.50). Here, we make a modification in the
proof previously proposed by N’Doye.

Theorem 2.8 Suppose the system (2.50) satisfies

e Forall 1 <i <m, there exists an integer q > 1, such that
llgi (x)I < pillx (@117, (2.51)

where w; are positive constants and g;(0) = 0. As in the integer case, | =
Doimi Mi.
e The pair (A,B) is stabilizable
Then, the system (2.50) controlled by means of a static-state feedback, u(t) = K x(t)
b4
is asymptotically stable if the matrix W = A + BK, satisfies |larg(A(W))| > aE

and the initial condition satisfies

1

Wil \g
N 2.52
lxoll < (ZMHL”W1 (2.52)

In addition, the solution is bounded
011xoll|
1+ [|W]|t>

el < a Sooes

(1_ 2009 []]x01 14 <1_ 1 ))c_]
al|W| L+ [[WII(z/2)

where the constant 0 is given by the Corollary 2.1.
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Proof Using the control law, u(#) = Kx(¢), and applying the Laplace transform to
the system (2.50), with C = I,,, we have

X(s) = (Is* = W)™ (s““xo +Z (Z g&x(r))(Lx(r)»)) . (254
i=1

where W = (A + BL). By hypothesis there exists K such that |arg(X;(W))| > a%.

Now, applying the inverse Laplace transform to equation (2.54) we have

1 m
(1) = Ea 1 (Wt)xo + /0 [(r—r)‘“Ea,a(W(r - 0% (Zg,-(x(r»(u(r»,-)}dr
i=1
(2.55)

Applying the norm on both sides of the relationsship (2.55) and using
Corollary 2.1, we have the following inequality:

611xol| C Bl Ll = Tt
@] < ——— / llx(0)|7dr (2.56)
L+iwe|l  Jo 1T+I[IW(E — 1)
Rewriting the previous inequality,
611xoll © Ll — !
@)l < : llx (Ol dx (2.57)
L+[[Wllee Jo T+HIW(E —1)*|
0
It is clear that the term % of the previous inequality is bounded by a
positive constant, let say R, hence
t a—1
mb||L|[t —
ol =&+ [ ()1 dr 2.58)
o IT+IW(E —1)*|

Now, it is possible to apply the Theorem 2.5 to obtain the following inequality

! 59 1/(n—1)
le(t)lIS[R(””—(n—l) (f [k(t,t)+/ —k(s,r)dr]dr)]
0 0 as
(2.59)

with
_ pOI|LI|(r — 7)*!
I+ [|W( — 1)

k(t, 1) n=qg+1 c¢c=R
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It should be noted that N’Doye omits the fact that the k function depends on two
variables, so the generalization used is not appropriate. Hence, we have a modification

that is showed in the inequality above.
Given the form of the function k(z, ), we have k(z, 1) = 0 and

N 8
/ —k(s,r)dr = k(s,r)
0 av
replacing in (2.59), we have

t 1/(n—1)
x| < [R(”” —(n—1 {/ k(t, r)dr”
0

We show a numerical example to illustrate the previous result (see the
Appendix B.1).

2.8.2.2 Fractional Dynamical Control

Now, for fractional input-affine systems of the form (2.50), it is possible to transform
the system to the fractional canonical form

DaZ] =22
DaZz =13

D%, = % (x,u) +u

up=u (2.60)
D%uy = uy
D"‘uz = U3
Dal,{n = I/_[ = —y(z’ ul’ M27 ey un) — _IEZ

with gain vector K and

k=] (2.61)
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where the eigenvalues satisfy |arg(X; («))| > o % By replacing the fractional dynamic

control in the original system, we have

D%x = Ax + G(x)u + Bu

up =u
Do‘ul = U
D“uz = us (262)

D%, =il = — Y (x,ui, ua, ..., uy) + Kx

Now, the following theorem establishes sufficient conditions to guarantee stability
of the trajectories for the case of fractional input-affine systems.

Theorem 2.9 Suppose that (2.62) satisfies:

e Forall 1 <i < m, there exist an integer q > 1 such that

I1gi (x @I = pillx (1], (2.63)

where ; are positive constants and g;(0) = 0. As in the integer case jn = Y | ;.

e The matrix A is such that |arg(*;(A))| > a%
e The pair (A, B) is stabilizable
e The control, u(t) is bounded by p||x||’ and at least its first n derivatives are

bounded.

The system is stable if there exists K such that (2.60) is stable and the initial con-
dition satisfies ||xo|| < &, where the constant & is such that the following inequality
is satisfied for allt > 0

' o\ pub(t — o)
t, =1- -2 T L Allzx 1+ [|Al|(t — )
v(t, &) (g+p )A (1+||A||t°‘> L+ [All(r — 1)

t B0 P~ Bpo(t — )%}
— +p—-2 f < ) >0 2.64
@tr=2 ) \Tane)  T+anc -0 (269

The norm is bounded by

N
1+ [|A]|e

< et
WO < o= s

(2.65)

the constant 6 is given by Corollary 2.1.
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Proof First, we apply the Laplace transform to the system (2.62), and we have

X(s) = (Iis* — A7 (s* 'xg + ZL(G(x(t))u + Bu) (2.66)

By hypothesis |arg(i;(A))| > a%. Applying the inverse Laplace transform to
the Eq. (2.66), we have,

x(t) = Eq1(At%xg +/ [(t = D) "Eqo (A — 1)) G (x(1))u + Bu)]dt
0

(2.67)
Applying the norm on both sides of the previous equality and using Corollary 2.1,
we obtain

B1lxol| Lol — )t Bpo||t — z||*”"

t
9d _ Pd
IxOIl = 1+||Aza” A 1+||A(t_r)alll\if(f)ll f+/0 1+||A(t—r)°‘||||x(t)‘| T
(2.68)
Now, rewriting the terms, we get
Ollxoll /’ ub(t — )" q /’ Bpb(t —7)* ! >
d _— Pd
lxOIl = T+ Al@ + A l—l—HA(t—r)"‘lle(r)H T+ A 1+||A(z—r)a|||‘x(f)” T
(2.69)
0
as well as ﬂ < R, thus
L+ [|A]|z*
t a—1 t a—1
MBIILII( — 1) / Bpb(t — 1)
DII<R+ | —/—/—4Mm——— dgr 4+ | =222 77 Pg
x®Oll = /o T W= o)) [lx(@)?dz A 1+||A(I_T)O[HIIJC(T)II T
(2.70)

Now, it is possible to apply the Theorem 2.6, with

O||L||(t — 7)*!
kl(t,r)=“ [IL]|(t — 1)
L+ [JAGt — )]
BpO||L||(t — 7)*~!
k t,T = s =
e YRS T
Oe
1+ [|A]|r*

This yields to ||x(7)|| < S

To illustrate the results of the Fractional Dynamical control case (see the
Appendix B.2).
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2.9 Stability Result Incommensurate Systems

Consider the following stability result for fractional incommesurate order lineal sys-
tem

D x (1)

T =anx; +apxy+...+amx,

D(“Z)x2(t)

W =anxy +ayx+ ...+ aux, (271)
D“x, (1)

BPTC = au X1 + appx2 + ... + AupXp,

where «; is a rational number between O and 1. Let M be the lowest common
multiple of the denominators u;s of «;s, where o; = v; /u;, (u;, vi) = 1l,u;,v; € Z%,
i=1,..,nandsety = 1/M. Then the zero solution of system (2.71) is Lyapunov
globally asymptotically stable if all the roots A;’s of the equation.

M
AR —ay —ap - —a

A'M(th

"
—daz] —daxy - —az,

det , , , , =0 (2.72)

Ma
—dapi —dp2 cee AT —ayy,

satisfies larg(A)| > ya/2.
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Chapter 3 ®)
Synchronization of Chaotic Systems by st
Means of a Nonlinear Observer: An
Application to Secure Communications

3.1 Introduction

Applications of the synchronization phenomenon of dynamical systems are important
in several applications as in technology and have a wealth of science. Some applica-
tions of master—slave synchronization include the control of chaos and chaotic signal
masking, where several methodologies have been considered [1, 2]. Nonetheless, it
has been established that synchronization of chaotic dynamical systems is not only
possible but it is also believed to have potential applications in communication [3,
4]. The strategy is that when is transmitted a message; it is possible to mask it with
louder chaos. An outside listener only detects the chaos, which signals like mean-
ingless noise. But if the receiver has an adequate synchronization algorithm that
perfectly reproduces the chaos, the receiver can subtract the chaotic mask and detect
the original message. Chaos, the receiver can subtract the chaotic mask and detect
the original message. This synchronization is possible only when a similar chaotic
circuit as that of sending end is fabricated. If the configuration circuit is secret, it
is impossible to extract information from the transmitted message [S5, 6]. Hence,
there has been growing interest in the possibility of synchronizing chaotic signals.
This idea has been tested theoretically as well as experimentally in the variety of
dynamical system including Chua, Driven-Chua, and Chen circuits [7-9]. In gen-
eral, the synchronization of dynamic chaotic oscillator has been realized via two main
approaches; the design of feedback controllers to be tackled for the tracking problem
related with the proper synchronization phenomena where oscillators with different
order and structure can be synchronized and the design of state observers related
with the synchronization of chaotic oscillators with equivalent order and topology
[8]. The employment of chaotic signals in the wide field of secure communication
has been important, because it was demonstrated that two chaotic systems starting
from nonequal initial conditions can be synchronized if they are coupled [2, 6]. From
the above, the use of observers which have been widely analyzed in control theory
issues is one of the methodologies successfully employed for synchronization of
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chaotic attractors of equivalent order and topology with applications to secure data
transmission [5]. The main contribution of this chapter is to propose a master—slave
synchronization scheme, where the systems to be synchronized have arbitrary initial
conditions. In this configuration, the Chen oscillator is considered as an application
example of a master system and the corresponding nonlinear observer is the slave
system. The idea is that the trajectories of the observer follow the trajectories of
the Chen oscillator. The observer structure contains a proportional and a bounded
function of the synchronization error in order to provide asymptotic synchronization
with a satisfactory performance. Numerical simulations are developed in order to
provide the performance of the proposed synchronization methodology.

3.2 Application Case

The Chen system was proposed as an alternative chaotic attractor based on the struc-
ture of the Lorenz system, where the corresponding nonlinearities are related with a
simple multiplicative terms of two state variables, however the Chen system depicted
topological nonequivalent trajectories in comparison with the Lorenz oscillator [10].
The Chen oscillator has been applied to modeling simplified versions of brushless
DC motors, lasers, thermosyphons, dynamos, chemical reactions, and electric cir-
cuits [11-14]. Chen dynamical system is described by a three order of autonomous
ordinary differential equations as is shown in [15]:

1= a(z —z1)
DINE Z'2 = ()/ - CY) 21 — Y322 — 2133 (31)
3= 2 22 — Bz3,

where the considered measured signal is s = z5.
Here, z1, z and z3 are the state variables and the parameters «, 8, and y are three pos-
itive real constants. This system contains a chaotic attractor when o« = 35, 8 = 3, and
y = 28. The trajectory of the system is specified by (z(¢), z2(¢), z3(¢)). The critical
points of the systems (3.1) are CP; = (—p, —p, 2y —«); CP, = (p, p,2y — o),
and finally C P; = (0, 0, 0), where p = /(BQ2y — a)).

The divergence of the flow related with the system (3.1) is as follows:

0 ) 0
V~F=i+ﬁ+£=—(x+y—l3<0,
<1 22 23

whenao + 8 > y.
Here, F' = (f1, f2, f3) = (a(z2 — z1), (¥ — a)z1 — 2123 + Y22, 2122 — Bz3).

Thus, the system (3.1) is a forced dissipative system similar to a Lorenz system [16].
Thus, the solutions of the system (3.1) are bounded as + — co. Chen shows that the
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system (3.1) exhibits chaos for specified values of the parameters « = 35, 8 = 3, and
y = 28. Let us consider the system (3.1) as the master oscillator, in consequence the
slave oscillator, under the master—slave synchronization scheme, is given by a Chen
oscillator model disturbed by an external feedback, with the following structure:

u = koe(t) + kjarctang(e(t))
From the above, the corresponding structure of the slave system is as follows:
= «a(Zp — 21) +koe(t) + kyarctan(e)

f@:3z22= (y —a)Z1 — yZ2 — 2123 + koe(t) + kjarctan(e)
Z122 — BZ3 + koe(t) + kiarctan(e)

.
|

~
w
Il

3.3 Synchronization Methodology

Now, considering the below general representation of a class of nonlinear system, as
the chaotic oscillator

2= flz,u)

s =h(z) =Cz,
where z € R” is the variable states vector, u € R is the control input m < n, and
s € R is the corresponding measured signal f(z, u) is a differentiable vector func-
tion such that f : R* x R™ — R” it is Lipschitz continuous (with Lipschitz con-
stant, T = Sup, cgn cocre |f/(z.u)| > 0, being 2 a compact set), if and only if, it

has bounded first derivative, one direction follows from the mean value theorem as
follows:

I f(z,u) = fEwll <Yz —Zll (3.2)
Proposition 3.1 The dynamic system acts as a slave system for the system (3.1)
= [z, u) + koe(t) + kiarctan(e) (3.3)
That is to say,
limg_,le(t)] =0,

where e = 7z — Z is defined as the synchronization error.
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Fig. 3.1 Diagram of synchronization based secure data transmission

Note that the nonlinear feedback of the slave system satisfies the following prop-
erty:
larctan(e)| < I' < o0, 3.4)

where I is a positive constant.

From the above, the dynamic modeling of the synchronization error is defined
employing the Egs. (3.1) and (3.3) as

é= f(z,u) — f(Z,u) — koe(t) — kjarctan(e) 3.5)

In what follows an important observation is given

Remark 3.1 Letus define the output s = z, + w, where the output s is chaotic mask-
ing. The measurement is corrupted by a reasonable signal w which is bounded, the
information signal w is embedded into the output of chaotic transmitter, the transmit-
ter is a slight modification of the chaotic system (3.1). The schematic diagram of the
chaotic communication based on slave system (receiver) is shown in Fig.3.1. If the
synchronization error is defined as e = z — Z, that is to say, in our case e; = z; — 22,
where Z, represents the output of the receiver, then the recovered signal at receiver
isgivenby®d =s —§ = 75 + @ — Z, = e + w, with § = Z;. It should be noted that
if e, tends to zero, the message (information signal) is completely recovered, that is
to say, @ = w.
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3.3.1 Convergence Analysis

Consider the Lyapunov candidate function
V=e"Pe=|le||3, P=P" (3.6)
The time derivative along the trajectories of (3.6) is
V =¢TPe+el Peé
= (f(z,u) — fE u) — koe(t) — kiarctan(e))" Pe

+ e P(f(z,u) — f(z'u) — koe(t) — kyarctan(e))
=2e" P(f(z,u) — f(Z,u)) — 2e” P(koe(t) + kiarctang(e))  (3.7)

(a) The matrix P can be expressed as P = AA”, then

e P(f(z,u) — FG uDll = lle" AAT(f(z,u) — FE u)ll = l1E" £, 1] (3.8)

where, é” = eTAand f = AT(f(z,u) — f(Z, u))
Then,

l1e]| = &"e)'/?
= (" AATe)'?
= (e" Pe)'* = |lel|p (3.9)
As well, it is defined
A =11£lp (3.10)

Hence,

" P(f(z,u) — fG )l = 11" FII < 1" NIFI = lellpll £1]p (3.11)
(b) Considering
||eTP(kOe(t) + kiarctan(e)|| < |lkoe(t) + kiarctan(e)||||e||p (3.12)

From (a) and (b) and considering the bounded assumptions of the Chen oscillator
and the nonlinear feedback, assumptions (3.2) and (3.4)
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V <2llellpYllellp — (ki Tllellp + kollel3) (3.13)

Then,
V <2(Y —ko)llellp — ki Tllellp (3.14)

with an adequate choosing of the parameters k( and &, the following can be obtained
(Y — ko) <Oand k; > 0.

V<0

From the above, is concluded that the named synchronization error is stable. [l.

3.4 Numerical Experiment and Results

Figure3.1, shows a simplified diagram of a synchronization procedure under the
master—slave structure. Numerical simulations were done in order to provide the per-
formance of the proposed synchronization methodology; a personal computer (PC)
with Intel Core i7" M processor and the ode solver from Matlab (ode23s library)
were employed. For the master oscillator (3.1), the following initial condition was
considered z(0) = [1.5, 1.25, 7.5] and for the slave oscillator (3.3), the correspond-
ing initial condition was z(0) = [1.2, 1, 5.8], the parameters of the master and the
slave systems are the presented previously in Sect.3.2. The synchronization proce-
dure was turned on at time ¢ = 5's, the vector parameters of the corresponding feed-
back on the slave oscillator are ko = [500, 500, 100] and k; = [10, 10, 2] (Fig.3.2).
Figure 3.3 shows the variables of the observer z;, z» and z3 synchronized with the
coordinates of the Chen oscillator z;, 72, and z3 (z = x) respectively. In Fig. 3.4, it is
illustrated as to how the attractors give us the synchronization or estimation errors,
which tend to zero under the proposed methodology. Furthermore, a linear feedback
observer is also implemented for comparison purposes, the linear observer contains
the same vector of gains as the proposed methodology; as can be seen in Fig.3.5,
the corresponding synchronization errors are not enough diminished in comparison
with the proposed nonlinear methodology, therefore, is concluded that the nonlin-
ear synchronization procedure has a better performance. The proposed methodology
is an adequate guess for real time implementation as shown in previous published
works, where others nonlinear oscillators with similar structure were synchronized
experimentally [7, 17].
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Fig. 3.3 Phase portrait of the master-slave synchronization

Fig. 3.4 Synchronization
errors with the proposed
observer

3.5 Conclusions
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o
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-30

In this chapter, we tackled the master—slave synchronization problem via nonlinear
observer design. We considered the Chen oscillator as an application case of the
master and slave systems, the slave system corresponds with the proposed nonlinear
observer, which contains a proportional and a bounded function of the synchroniza-
tion error to guarantee asymptotic synchronization, the proposed methodology is
applicable to a wide class of Lipschitz systems, where the corresponding nonlin-
ear feedback of the slave system is bounded. Numerical experiments showed the
performance of the proposed methodology and the linear (proportional) feedback

observer.
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Fig. 3.5 Synchronization error with the linear feedback observer
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Chapter 4 ®)
Synchronization for Chaotic System i
Through an Observer Using the

Immersion and Invariance (I&I)

Approach

In this chapter, the named master—slave configuration, where nonlinear systems
observers and chaos synchronization are used together. The key idea is to design
observers to accomplish chaos synchronization, where the slave is actually an
observer coupled to the master through its corresponding output. This chapter aims
at the master-slave synchronization by applying the Immersion and Invariance (I1&1)
method to solve the chaos synchronization problem for a kind of simple chaotic
systems. To this end, a class of feedback-linearized chaotic systems is characterized.
Afterwards, the I&I method is applied to propose the corresponding observer, or slave
system, for such systems. This observer, which has some robust properties, allows
asymptotic estimation of the underlying dynamics of the master system. Notably, the
1& I approach has been successfully applied to control, identify, and observe a wide
range of nonlinear systems. The seminal ideas of the 1& I approach and its appli-
cation can be found in [1, 2]. The chapter is organized as follows. In Sect.4.1, the
problem statement is established. In Sect. 4.2, the observer is proposed to solve the
synchronization problem, by applying the I& I method. Section 4.3 shows the results
of some numerical comparisons with other well-known observers. The conclusions
are given in Sect.4.4.

Notations and Definitions:

To simplify, we adopt the following notation

010...0
001...0 o
Ai=| ... . e R
000...0
© Springer Nature Switzerland AG 2018 51
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0
Bi=]...|]¢ R
- 1 -
1]
Cl‘ =|...|eR
- () -
The vector xj., = [xg, ..., x,]7 € R"**! stands for a sub-vector of vector x =

[x1, X2, ..., x,]7 € R

4.1 Preamble

Consider the following master chaotic configuration:

¢ = F(x,t
SRS R LU @.1)
y = h(x)
where x = [xq,...,x,]7 € R" is the system state, y € R is the single measurable

output, and F and A are functions that depend on the arguments x;. It is assumed that
the vector fields F and & are forward complete [1]. That is, the trajectories starting
at time £y are defined for all times ¢ > #;. The corresponding slave system Xg, with
its state X (¢, y) € R™, for the master system X, can be any kind of observer. Thus,
the slave is considered synchronized with the master if

lim |x() —X(¢, y)| =0
t— 00

In this chapter, a new observer model is proposed, based on the I & I control
methodology, to design the slave system for system (4.1). To this end, the class of
chaotic system dealt with is characterized by introducing the following assumption
(see [3]):

Assumption A1: Suppose that there exists a primitive element y for system X, that
transforms it into the new form X, given by

i= A+ Bulo(y,)+ K"z + f(2))

EM :
y= Cz

T -

, 4.2)

where z = [y, y, ..., Y17 € R"; with zx = y*~V, ¢ is a known scalar nonlinear
function, which depends on y; K is a vector of constants, and f (z) is a scalar Lipschitz

function in z for the open set D C R”. That is,
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f&x) = fDI < yllx —yll; Vx,y € D 4.3)

Remark 4.1 The differential primitive element allows the formation of the observ-
able canonical form (4.2) and several chaotic systems admit this representation.
Examples of these systems include the Duffing chaotic oscillator, the Lorenz sys-
tem, and the Genesio and Tesi system.

Problem Statement: Consider the system Xj;, defined in (4.2). The objective
consists of designing and I & I-reduced observer for this system, such that

lim |22, (1) — 2(t, y)| = 0,
t—>00

where 7 € R*~! is an estimation of the nonavailable state z,., € R"~!, from the
measurable output y.

Remark 4.2 Since y is available, it is not necessary to reconstruct the whole state
7 =1y, z2..]7. This problem has been previously tackled and several solutions can
be found in the literature, where many of the proposed observers therein (e.g., con-
tinuous observers, sliding observers, fuzzy observers, and high-gain observers) were
designed into the basic idea of the Luenberger observer. Here, we propose a different
solution, based on the Immersion and Invariance manifold approach, which provides
amore general and abstract solution than the one based on the Luenberger Observer.

4.2 1&I Observer

In this section, the I&I observer methodology is adapted to recover asymptotically
the underlying dynamics of system (4.2). To facilitate the design of this observer,
the following additional assumption are made:

Assumption A2: There exists a mapping r(y) € R"~!, defined as

y
r(y) = yrq +/0 p(y(s))ds, (4.4)

where ry = [r4,, Ta5» - - -, 74,17 is a constant vector, and p(y) = [02(3), - - ., oa(M]T
is a vector of variable functions.

Assumption A3: Let M (y) = Mg + Mi(y) € R#=Dx0=D where M is a constant
matrix, and M (y) is a matrix of variable functions, defined as

Mg = —rdC(Tn_l) + A(nfl) + B(H*I)KZY;H + Mi(y) 4.5)

Mi(y) = —p(»Cl_y
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Then, there exist Pj,_1) = P(Z_ 1) > 0, such that
Pu-nyMg + Mg Pou1y = — Iy (4.6)
and
W (y) = M{ (y)Pu-ty + Pu-yMi(y) <0 4.7
That is, Mk is selected as a Hurwitz matrix, and ¥ (y) < 0.
Now, the main proposition of this work can be presented as follows:
Proposition 4.1 Considers systems (4.2) under assumptions A2 and A3. Then, the

following 1& I observer
i=¢+r(y)eR!

assures global exponential convergence of the observation error, if 2y ||r|| < 1, with

7 = |Pu—1yBu-1)|, andr(y) is obtained from (4.4), and the dynamic of q is computed
via (4.15). That is, for all initial conditions z(0), there exist a and . € RY, such that

2(t) — 22 ()] < €™ (4.8)

Proof To this end, the I& I procedure given in [1] is followed verbatim. Let us define
the (n — 1) dimensional vector error as

e=2—20m=q+r)— 22, (4.9)
where the dynamic of vector g is proposed below in expression (4.11). The objective
of the I & I method is to select g and the mapping r(y) to assure an asymptotic stable

dynamic for the observation error e. Differentiating e, defined in (4.9), and noting
that y = C &_1)22:;1, the following is obtained

- d
¢ =G+ Cl | zam o — iy (4.10)
(n—1) dy

Evidently, form the first equation of (4.2), we have that z,., can be expressed as
22:11 = A(n—l)ZZ:n + B(n—l)(d’(y’ t) + f(y, ZZ:n) + kly + KZ) (411)
KZ =K},

Therefore, after substituting the values of (4.11) into Eq. (4.10) and using assump-
tions A2 and A3, we obtain the following equation
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é=G4—MOz2n — Bu1y(f (s 22:0) — (3, D) = Bu_1) (@, 1) + k1y + f (v, D)),
(4.12)
where M (y) is given by

M(y)=—(@rq+ ,o(y))C&_l) + Aw-1) + Bu-nKs, (4.13)
Notice that the definition of M (y) = Mk + M;(y), given in A3, is in agreement

with Eq.(4.13). From Eq.(4.9), z2., = Z — e. Now, substituting these values into
Eq. (4.12), leads to expression:

é=q+Mye—Bu-(f(,Z2—e) = f(3,2) = MY)Z — Bu-ny@0, 1) +kiy+ f(y,2)

(4.14)
Therefore, § can be fixed as
G =M+ Bu1y@Q.0)+kiy+ f(3.2) (4.15)
and Eq. (4.14) becomes
e=M(y)e — Bu-1(f(y,z2—e)— f(,2) (4.16)

To analyze the convergence of vector e, the following Lyapunov function is used
V = eTP(n,l)e

According to Eq. (4.6), the time derivative of V along of the trajectory of system
(4.16) leads to

V= —lel’ +2¢" P1)Bu1)(f (v, Z2n —€) — [ (3, Z20)) + E, E =€ W(y)e
4.17)
From inequality (4.7), it is claimed here that ¥ (y) < 0. On the other hand, since
f is a scalar Lipschitz function, it follows that V can be upper bounded by

V < —le|® + 2yFlel?, (4.18)

wherer = | P,—1)B—1)|. Therefore, selecting 2y ||7|| < 1,itis assured that e asymp-
totically and exponentially converges to zero. Finally, remembering thate = 7 — z5.,
(see (4.9)), it can be claimed that 7 is an asymptotic estimator for the vector
state z5.,.
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Remark 4.3 From the definition of (4.5), matrices Mg and M (y) are explicitly com-
puted as

—rdy 1 0 ...0

—rd3 0 1 ...0
Mg = : S (4.19)
kz—rdn k3 kn,
—02(»0 0 ...0
—p3(»)0 0 ...0
M= . .. . (4.20)
_pn(y)o~-~ Os

where the characteristic polynomial of Mk is given by

P(s) =s" ' 4+ 5" 2(rdy —k,) + PP
PP =5"7(rdy — kyrdy —ky—1) +--- + PPP
PPP:(rdn_knrdn_l_kn—[rdn_z—"'—kz)

implying that Pk (s) can be Hurwitz, if constants rd; > 0, with i € 5., are con-
veniently fixed. On the other hand, if vector K = 0, it is easily concluded that the
characteristic polynomial of matrix Mg_o = M is given by

Py(s) =s" '+ 5" 2rdy + " rds + - - +rd, 4.21)

This section ends with analyzing the robust property of the proposed approach. To
this end, the following assumption is made.

Assumption A4 The trajectories of systems (4.2) belong to a bounded set D € R”",
and there exists § > 0, such that

sup (v, 1) + KTz 4+ f(z)| <6 (4.22)

zeD

W(2)
Following the steps in Proposition 4.1, Eq. (4.14), evidently, becomes:
é =G+ Mo+ M (e = BunW(@) — (Mo+ Mi(y)Z  (423)
with My and M, (y) defined previously in Remark 4.3. Therefore, fixing the dynamic

of g as )
g = (My+ Mi())z (4.24)
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the error dynamic is given by
e = (Mo+ Mi(y)e — Bu-nW(2) (4.25)

Now, My and M, (y) are selected, such that Egs. (4.6) and (4.7) are fulfilled, then
the time derivative of V = e P,_;)e leads to the following equation.

V = —le|® +2e" Pp_1)Bu_yW () + " ¥ (y)e (4.26)
that can be upper bounded, as
V = —le|* + 275|e|

From the last equation, it follows that |e()| < 1/(2r6) for all r > ¢, > 0, where
t, is a finite time. That is, the error is ultimately bounded stable.

Notice that constant » can be as small as desired, if the roots of the characteristic
polynomial Py(s), given in (4.21), are adequately fixed. For instance, in a first step,
the Immersion & Invariance Observer (I&I0) can be made to behave as a reduced
high-gain observer. It can be accomplished by fixing My, and M, (y) as

Mo, =| » 4.27)

[ 200

"
p3(y) 0.0
> ...
Ml//, ) = I’L S (4.28)

D),
L u" i

where 0 < it < 1and p(s) = s"~! + dps""%2 + - - - + d" is Hurwitz, and both matri-
ces are restricted to

Po—1yMoy + M{; Pou—1yMi1(y) <0, M1 (y) = M=) (y) (4.29)
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and
¥ (y) = M{,() Pty + Py M (y) <0 (4.30)

with Py_y > 0. Second, if we redefine the error as ¢’ = D(u)e (where D(p) is a
diagonal matrix that can be found in several high-gain observer schemes) it is easy
to see the following the steps in [4], that

le'(t)| < ks for t >t, > 0,

where k; is a constant that depends on both § and d;. That is, ¢’ is bounded by the con-
stant k§ 1, where p can be as small as desired. The last discussion and developments
are summarized in the following proposition.

Proposition 4.2 Consider system (4.2), under assumption A2 and A4. If matrices
My, and M, are selected according to (4.29) and (4.30), respectively, then the
following 1&I reduces high-gain observer (I&IHGO)

I=q+r(y)

with r(y) and g given, respectively, in (4.4) and (4.24), assures that the error is
ultimately bounded and stable.

4.3 Numerical Evaluations

In this section, the effectiveness of the proposed 1&IO approach is illustrated when
applied to solving the chaotic synchronization problem for the class of chaotic sys-
tems defined in (4.2). To this end, numerical simulations are used to compare the
proposed approach to the performances of a well established high-gain observer and
the Luenberger observer, the latter being a particular case of the former. In the exper-
iment, the Duffings oscillator is used. Finally, we mention that a formal comparison
between these observers performances is beyond the scope of this work, because
optimal control arguments should be considered.

4.3.1 Duffing’s Mechanical Oscillator

This system is an example of a periodically forced oscillator with a nonlinear elas-
ticity, describe by the following equations [5]:

21 =22
2y = —pi22 — P32) + pazi + Acos(wt),
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where measurable position is defined as y = z; and z; is the nonavailable system
velocity. It is well known that in a neighborhood of {A =0.3, p; =0.2, p, =
—1.1, p3 = 1, w = 1}, this system exhibits a chaotic behavior. Naturally, the Duff-
ing system belongs to the class of chaotic systems defined in (4.2), where

K =1[0,—pi1"; ¢(y, 1) = —p3y* + p2y + Acos(wt); f(z) = 0.

Using Remark 4.3, it follows that My = —p; — r, and M (y) = —p»(y), where
r, and p are control parameters selected according to Egs.(4.6) and (4.7). Notice
that assumption A3 is assured if Py =1, =—p;+1/e >0, with 0 <€ < 1
and p,(y) = p(y), where p(y) is any positive function. For this particular case,
p(y) = Izlsech(y) + EzyZi; ki, ky > 0andi € Nis selected. Consequently, the cor-
responding I &IO is given by

1 - - .
E= g4y +htan” (tanh(3)) + oy,
where g is generated by

X I - I z
5=— (E + kysech(y) + kzka) 2+, 1)

Numerical experiment set-up: The Duffing’s system parameters were chosen to
be the same as in the nominal case. The initial conditions were fixed as z; (0) = 1 and
72(0) = —1. The corresponding values of the I&IO were ki =0.5,k, =0.1,ande =
0.5. The high-gain parameters were selected such that p(s) = (s + 1)?> and o = 0.2.
Finally, the Luenberger observer parameters were selected, such that its characteristic
polynomial was fixed to be p(s) = (s + 1). To compare the effectiveness of these
observers a numerical test was carried out, where the parameters are known with 90%
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Fig. 4.1 Numerical comparison, parameters are known with 90% accuracy
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accuracy. The results are shown in Fig.4.1. For this set-up, the proposed approach
slightly outperforms the other observers, with the exception of high-gain observer
which has better performance.

4.4 Conclusions

This work presents a novel solution to the synchronization problem in the master—
slave configuration for a class of feedback-linearized chaotic systems. This class
of systems have the advantage of having a structure similar to a cascade chain of
integrators. This structure allows application of the I&I method to design the cor-
responding observer or slave system. The obtained observer exhibits some robust
properties and can be considered as a generalized observer, because it can behave
as a reduced-order, high-gain observer, under some considerations. To establish the
efficiency of the I&IO, some numerical experiments were designed in order to com-
pare this observer and the high-gain and Luenberger observer. In the obtained results,
the proposed observer slightly outperforms the other two.
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Chapter 5 ®)
Synchronization of Nonlinear i
Fractional-Order Systems by Means

of PI"* Reduced Order Observer

5.1 Introduction

The main contribution in this chapter is the synthesis of a new fractional-
reduced-order observer for the synchronization problem in partially known non-
linear fractional-order systems, we propose a PI"® reduced-order observer for esti-
mating the unknown state variables based on Fractional Algebraic Observability
(FAO) property (a system’s copy is not necessary). This novel observer presents
some advantages, for example, the norm of the estimation error, the time of conver-
gence, and the performance of the PI"* reduced-order observer can be improved by
the correct choice of the gains.

5.2 Problem Statement and Main Result

We take the initial condition problem for an autonomous fractional order nonlinear
system, with 0 < o < 1:

X@ = f(x), D*'x(0) = (I;;“x)(0+) = xo (5.1
y = h(x),

where x € 2 C R", f: 2 — R" is a Lipschitz continuous function (this assures
the unique solution [1]), with xo € £2 C R”, in this case, y denotes the output of the
system (the measure that we can obtain), 4 : R* — RY is a continuous function and
1<qg=<n.

Consider the system given by (5.1), we will separate in two dynamical sys-
tems with states x € R”, which represents the states that we can obtain directly
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via algebraic relations of the output (known states), and n € R"~7, respectively with
xT = (xT, n7), the first system will describe the known states and the second rep-

n y p
resents unknown states, then the system (5.1) can be written as

= fxm,
' =A@&,n) (5.2)
y=h(x),

where f7 (x) = (fT (%, n), AT, ), f € R?, h : R? - R7 and A € R""? with
1 < p < ¢ < n. Then, we only need to estimate the n's states.

The components of unknown state vector 7 are assumed to be FAO (see Definition
2.4), and the problem in terms of the master-slave synchronization scheme is defined
in the following manner.

Let us consider the master system:

0 = Ai(x, ), (5.3)

Yo =i = ¢i (y)z, Ve, Dy, - ,D(’“)yf) 54

for p + 1 < i < n, where 1, is a component of the state vector 1 and y,, denotes the
output of the ith master system.
The proposed observer (slave system) is given by

’

,
A = Kio(ni — i) + > Ky = 777), D' (0) =fio e R (5.5)
j=1

Vi = iy (56

for p + 1 <i < n, where 7, is the state, v;, denotes the output of the i-th slave system
and the gains K;; , j =0, 1,...,r" will be selected in order to fulfill the stability
conditions for the observer.

Given the master system (5.3) and the slave system (5.5), it should be determined
some conditions, such that the output of the slave system (5.6) synchronizes with the
output of the master system (5.4).

The synchronization error can be defined as

e =y, — Vi, =10 — i (5.7)

Let us assume the following conditions:
HI. n; satisfies the FAO property for p + 1 <i < n.
H2. A; is bounded, i.e., 3 N € R* such that ||A;(x)|]| < N, N < oo, Vx € £2.
H3. The gains K;; , j =0, 1,..., r’, are chosen such that P;(s%) is stable.
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Now, we are in position to establish the following result related with the conver-

gence analysis of the error.

Theorem 5.1 Let the system (5.1) which can be expressed as (5.2), if the conditions
HI-H3 are satisfied then the synchronization of the master output (5.4) with the slave

output (5.6) is achieved, for global initial conditions of the states.

Proof The proposed observer is given by

y
ﬁl‘(a) = Kio(ni — 0) + Z Kij(nf_-’o‘) — f;i(_-""))
=1

Let the error be ¢; = n; — 7; then,

(@) __ (@) A (@)
e =N =0

Substituting (5.8) in (5.9), the following equation for the error is obtained:
ei(a) = ’7,@ - KiO(ni - ﬁl) - Z Kij (ﬂf_'ja) — ﬁi(_ja))
j=l1

Taking the Laplace transform to both sides of Eq. (5.10)

sYE;(s) — [D*'e;(0)] = s* Hi(s) — [D* '1;(0)]
— KioE;(s) — Z KijsT/E;(s)
j=1
Then,
v (s%)

Ei(s) = P %)

)

where

(5.8)

(5.9)

(5.10)

.11

Wi(s*) = 5" [s* Hi(s) — (D*"';(0)) + D*~'e;(0)] and P, (s*) = s"+D* + Kjo5"*

+ K“S(ril)a + ...+ Ki(r/_l)sa + K, .

Note that it is possible to obtain a factorization of P;(s*) as

r+1
Pi(s) = [ +2))

j=1
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Furthermore, the condition of stability for the polynomial P;(s%) is given by
T
larg(A;)| > aE

where 1 is the jth root of the polynomial P;(s%) (see [2]).
Hence, the norm of the error is given as follows:

r+1 r+1

(Q+A)II_ZII (a+/\) I, Lj eR (5.12)

Thus, the error is bounded.

Finally, if the values of K;; , j =0, 1,...,r" are chosen, such that, P;(s*) is
stable (H3), then the norm of the error can be arbitrarily reduced with an appropriate
selection of K;;.

Remark 5.1 If the FAO of state variable is expressed in terms of fractional sequential
derivatives of the output y, which are unknown, then it is necessary to introduce
an artificial variable (if it is possible) in order to avoid the use of these unknown
derivatives.

Remark 5.2 Chaotic systems are characterized by global boundedness of the trajec-
tories [3], then H2 is always satisfied.

5.3 Numerical Results

In this section, the synchronization of nonlinear fractional-order systems is studied by
means of numerical simulations. The fractional-order Rossler hyperchaotic system
is presented as an example.

First, consider fractional-order Rossler hyperchaotic system [4].

X3 +ax; + x;
@ _ | —Cxa+dx;
- —X1 — X4
b+ x3x4,

X (5.13)

where x = (x1, x2, x3, x4)7 is the state vector, y; and y, are the outputs. When
a =0.38,b =3, a = 0.95, the Rossler equation (5.13) has a hyperchaotic attractor.
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Now, the system (5.13) could be rewritten in the form (5.2) as follows:

@ _| ™ +ax; + X
—cny + dxs,

S(@) _ —X1 — N4 5.14
" [b + 773714,} .19

S

where y; = x| = X1, Y2 = X = X2, )3 = X3, 4 = x4. From (5.14), it is possible to
find the following relations:

3 = ¢3(ye, ) = 9\ —ay; — y (5.15)

. 1 @  d
na = ga(yz, y&) = —;y§ )+ RE (5.16)

Then, 13 = x3 and n4 = x4 are FAO and therefore H1 is fulfilled. From above,
the master system are given by

ny) = —% — n4
> @ (5.17)
m=Y  —ayr—»n
ﬂf) :1b + 773'24 (5.18)
na = —;y;a) +=» ‘

For this example r = 1, i.e., we use a PI* reduced order observer.
Now we design the corresponding slave system for (5.17) and (5.18) for master
system (5.17) and using (5.5) we have

A5 = K003 — f13) + K31 D™ (13 — #3) (5.19)
K3, j =0, 1 are selected such that P(s*) = §2 4 K30s* + K3, be stable.
Using (5.17) and after some algebraic manipulations we have

y?)(a) = K3,0(—CWI — Y2 — ()’3 + K3,0)’1)) (520)

+K31y1 + K3,1D™*(—ayr — y» — (y3 + K3 ,0)1),



66 5 Synchronization of Nonlinear Fractional-Order Systems ...

where y3 = )3 — K30y is an auxiliary variable introduced in order to avoid the use
of derivatives of y;. Now consider Eq. (5.18) and by an analogous procedure we
have:

A = Kao(na — fia) + Kai D™ (s — ), (5.21)

where K4 ;, j =0, 1,2 are selected such that P(s%) = s°% + K4 05** + K4 15% +
K4, be stable.
” d Ky Ki»
Y = Ka1(=y2 — (ya — —2y1) — —2y,
c c c (5.22)

+Ka2 D™ (S = (s %ym,

K
where y4 = 74 + iyl. Then, it is possible to obtain the estimates 73 and 74 from
the following relations:

N3 =3+ K o)

N K4 (5.23)
N4 = Y4 — T)’I

Numerical simulations were performed with the following parameters: a = 0.38,
b=3,¢c=0.5d=0.05 o = 0.95 with initial conditions for the observer (slave
system) given by 7130 = —1800 and 749 = —9000 and initial conditions for the mas-
ter system xo = [—30, 60, —20, 2017 The convergence of the estimates to the true
signals is shown in Fig. 5.1.

Now, consider fractional-order Lorenz system

ax, — axi
x® = | bx; —cxo —x1x2 |, (5.24)
X1X2 — d)C3

where x = [x1, x2, x3]7 is the state and the outputis y;. Whena = 10,b =28, ¢c =
—2,d = 8/3, a = 0.96, the Lorenz system (5.24) exhibits a chaotic behavior.

It is possible to rewrite system (5.24) in the form (5.2) as follows:

@ =anm —axy,

bxy —cn —x
(O(): 1 7)2 1)73 525
7 [ Xin2 —dns ] (5:25)
y =X,

where y; = x; = Xj, 72 = X2, 113 = x3. From (5.25), the following relations are
achieved:
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Fig. 5.1 Synchronization of the fractional-order Rossler hyperchaotic system, a x3 — x1 — x4
space b 173 — x; — 174 space ¢ and d shows the convergence of the estimates 773 and 74 to the
states x3 and x4
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@y _ 1 @
m=¢0yz,y; ) = Pl + (5.26)

(@) (2a) 1 2a) (@)
n3=¢3(yz, ¥z » DVyz) = —a—y_[D Y+ (@+o)y; +alc—Db)yz] (5.27)

Note that n3 looses algebraic observability property when y; = x; = 0, hence,
only (5.26) satisfies FAO with respect to the selected output yz = x;.
Then, from (5.26), we obtain the following master system:

ﬂéa) =bx; —cm — X113

1w
m =y + ¥ (5.28)

Now, since there exists a singularity in (5.27) for y; = x; = 0 we cannot construct

a slave system for 73 in the proposed form, to overcome this problem, we propose
the following slave system:

RS = X1y — diy (5.29)

In order to estimate x;, we use (5.5), then we have
A5 = Koo — #2) + Ko DT (y — i) + K22 D2 (p — ) (5.30)

K> j, j =0, 1,2 are selected such that P(s%) = % 4 Kz,oszo‘ + K718% + Ko
be stable.

. . o . N K
Looking to avoid time derivatives of the output consider y, = 1, — ﬂyl as an
a

auxiliary variable, now we take (5.28) and after some algebraic manipulations we
have

K20 K1 _ K20
Vz(a) =Ko o001 =02+ — =y + — =y + Ky 1 DED (v — (1 + — 7Y+ K205

+%D(7“)Y1 + K222 (31 = (2 + %M))
(5.31)
We consider equations (5.31) and (5.29), then it is possible to obtain the estimates
1, and 13 from the following relations:

A K> o
N = T}H + 2

A = yifa — dis (5.32)
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Fig.5.2 Synchronization of the fractional-order Lorenz system, a x; — x3 — x2 space b x| — 7j3 —

112 space ¢ and d shows the convergence of the estimates 17> and 773 to the states xp and x3
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Numerical simulations were performed with the following parameters: a = 10,
8
b=28,c=-2,d = 3 a = 0.96 with the initial conditions xo = [0.5, —0.9, 2]7

and the initial conditions for the slave system are given by 79 = 10, 730 = 20. The
convergence of the estimates to the true signals is shown in Fig. 5.2.

5.4 Conclusion

In this chapter, it was introduced, a new fractional model-free P I"*-reduced-order
observer inspired in the new concept of fractional Algebraic Observability (FAO),
we applied the results to a Rossler hyperchaotic fractional-order system and Lorenz
fractional-order system, however, this technique can be applied to another class of
systems, which satisfy the properties of Theorem 5.1. Some numerical simulations
have illustrated the effectiveness of the suggested approach.
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Chapter 6 ®)
Estimators for a Class of Commensurate Guca i
Fractional-Order Systems with Caputo
Derivative

6.1 Introduction

Using some concepts of observability, based on algebraic properties of fractional-
order systems, we can synthesize observers for nonlinear fractional-order systems.
The technique used in this chapter is based on Fractional Algebraic Observability
property [1, 2]. The former verifies whether a given state of a system can be estimated
from a function that depends on the output, input and their finite number of fractional-
order derivatives, i.e., if state is reconstructible from output and input measurements.
The methodology proposed consist in finding a canonical form for the original sys-
tem, this is obtained through a mapping given by the output of the system and its
successive fractional order derivatives. Then, we can design an observer to estimate
the state of the transformed system, so-called Fractional Generalized Observability
Canonical Form [1]. Finally, from an inverse mapping, obtain the estimates of the
original state.

In general, the structure of the dynamics of the observer is composed of a copy
of the system and a correction term. In this chapter, we propose two fractional-order
nonlinear observers for a class of commensurate fractional-order systems in an alge-
braic setting: a reduced-order observer and a Luenberger like observer. The first one
is given when only part of the state is necessary to estimate, this is a more natural way
to design an observer, where the main feature is that we do not need to know before-
hand the system itself, thus the reconstruction of the state should be given only using
the system’s output. On the other hand, Luenberger observer needs a full copy of
the system and requires more fractional-order integrators at implementation level. It
should be noted that in case of the reduced order observer is necessary to construct an
observer for each unknown variable. Finally, a comparison between two observers
is performed with two different numerical examples: a linear mechanical oscilla-
tor with an integer and a fractional-order damping [3], and a nonlinear fractional
order Duffing System. The main contribution in this chapter is to show a flexible
methodology for the observation problem from very simple algebraic techniques.
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The rest of this chapter is organized as follows: the problem formulation is given
in Sect. 6.2, the design and convergence of the fractional-reduced-order observer is
detailed in Sect.6.3, in Sect.6.4 we show some numerical simulations and finally
some concluding remarks are stated in Sect.6.5.

6.2 Problem Formulation

We take the initial condition problem for an autonomous fractional-order nonlinear
system:
x@ = frouw), x(0) = x,

6.1

y = h(x), ©D
where x € 2 C R", f: £ — R" is a Lipschitz continuous function,! with xo €
£2 C R", u € R™ denotes the input, in this case, y denotes the output of the system
(the physical measurement that we can obtain), x € R” represents the states that we
can observe (known states), 4 : R? — RY is a continuous function and 1 < p < n.
Quite often, due to costs and type of variables, we only have few available state vari-
ables to be physically measured and the other state variables should be estimated.
From now on, consider the case, where ¢ = m = 1, which naturally appears in prac-
tical situations. Let & = [ar, a2, . .., a,]7, the system (6.1) is called commensurate
order system if¢ = oy = - - - = &, otherwise it is an incommensurate order system.
We consider a commensurate order system with 0 < o < 1.

Here, observability is regarded as a property to infer the systemstates x;, | <i <n
from the knowledge of its output y, input « and a finite number of it fractional-order
derivatives. This property is similar to the one used in nonlinear integer-order systems
(see [1, 2]). Thus, system (6.1) is called observable if it satisfies FAO (see Definition
2.4).

Inspired by the Theorem of differential primitive element [2], we propose the
concept of fractional Picard—Vessiot (PV) (see Definition 2.5), and we can get the
FGOCEF by the Lemma2.1.

Remark 6.1 We can take the nonlinear system (6.1) to the FGOCF by means of

n=@m..n)" =@), (6.2)

where @ : R" — R” is a nonlinear mapping obtained from (2.22). Thus, from the
fractional differential primitive element (the available output of system (6.1)), we
can obtain its FGOCFE.

At this point, the observation problem setting is clear. If we obtain an estimation
of the unknown fractional-order derivatives of the output (2.22) and due to original
system (6.1) is observable in the sense of FAO condition, the observation problem of

IThis assures the unique solution, see [4].
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system (6.1) is solved if we design an observer for this transformed system (2.23).
Roughly speaking, this observation problem becomes an estimation problem of the
unknown fractional-order derivatives of the output.

6.3 Main Result

6.3.1 Fractional-Reduced-Order Observer (FROO)

Consider the system given by (2.23), without loss of generality assume u = 0, we will
separate in two dynamical systems with states n; € Rand 7 = (ﬁz, e f)n) e R+!
respectively, the whole state is grouped as n” = (5, #7), the first system describe
the known state and the second represents unknown states to be estimated, then the
system (2.23) can be rewritten as

_(a) ~

n =n2,
7 =A@, 9), (6.3)
y =,

where f,]T(m, 0= (771, AT (1, ﬁ)) and A : R x R*™! — R*"! If we assume that
the components of unknown state vector 7 are FAO (in fact it is, see (2.22)), then we
can describe our problem in the following way. Let us consider the reduced-order
system

B = Ai(n, ),

. o i i (6.4)
hi=¢ (3, 3%, 25, ..., 2°3),

for 2 < i < n, where 7); is the ith component of the state vector 7 that satisfy FAO
property and consider the unknown dynamics

7 = A, ), (6.5)

where A_,-(m, n) is an unknown dynamics related to system (6.4). In the next
Lemma, we propose a fractional-order dynamical system to estimate these unknown
dynamics.

Lemma 6.1 Let system (6.1) be transformable into a FGOCEF, assume output y and
its fractional derivatives are bounded, i.e., 3 M; € R such that ||n§°‘) | < M;. And
consider the reduced-order observer for the fractional derivatives of output:

7 =k, (i — 1), (6.6)
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with a constant gain ky, > 0, for 2 < i < n. Then, system

%? —ki, (va, + ki fiie1) . v (0) = yio € R,
Ni = vs, + ki, Mi-1, (6.7)

is a reduced-order observer for FGOCF. Moreover, estimation error &; = n; — 1);
asymptotically converges to B, (0) = {g; € R | |&;| < p;}, with p; := N; /kj,.

Proof Consider the fractional reduced-order observer for unknown states (derivatives
of output) in the FGOCF:

1 = ki — ks, i, (6.8)
for 2 <i < n, due to n; is algebraically observable, i.e.,

n =, (6.9)

then, system (6.8) is equivalent to

7 = ks, 1) = ki, i (6.10)
Define an auxiliary variable y;, as follows

Vi, = —kpni—1 + i,

thus,
Ni = Vi, + ki Mi-1, (6.11)

obtaining its fractional derivative of order o, we have
A =y, + ki 1) (6.12)

Considering (6.11) and (6.12) in (6.10), it is obtained

yffia) = _kﬁ/(yﬁ/ + kﬁjﬁl‘*l)v

A ) (6.13)
ni = v +kinioa.

On the other hand, define the observation error for the ith observer as follows:
g =10 — i =i — Vi, — ki, i1, (6.14)
obtaining the fractional derivative of (6.14) gives

e =0 =y = ka i, (6.15)

1
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from the algebraic observability property and (6.13) we obtain
() __ () o 2 = o
& =m; +kyvi ko — ki, (6.16)

by adding the null term kj,7; — kj,7; yields to the dynamics of the estimation error
given by
e +kyer =0 = A1) (6.17)

There exists a unique solution for the system (6.17), due to A; () — kj,&;(¢) is a
Lipschitz continuous function on ¢; and uniformly in A; (¢).2 The solution of (6.17)
is taken from [4, 5], and is given by

6i(t) = €ioEy,1(—ky,t%)

-I-/ (t — t)o‘_'Ea,a(k,}, (t — 1)) A (r)dr, (©6.18)
0

where ¢;(0) = ;0. Using Triangle and Cauchy—Schwarz inequalities and the fact
that || A; ()| < M;

lei ()] < |8i0Ea,1t(_kﬁita)|
—|—M,-/ [(t — 1) Ego(—k;, (t — T)%)d7.
0

The functions (¢ — t)"“lEa,a(—k;h (t — 1)%) and E,(—kj;t*) are not negative due
to Property 2 of Mittag—Leffler function and k5, > 0

lei ()] < |8iO|Ea,lt(_kﬁ,ta)
+M,»/ (t — ) Eqo(—ks (t — T))d7.
0

Using Property 1 of Mittag—Leffler function
lei (O] = |eiol Ea,1 (—kit*) + Mit® Eq o1 (—kj, 19).

If t — oo, by using (2.5) from Theorem 2.1 with u = 37w« /4 and due to kj, > 0,

then
lim |g;(¢)] < |gjol lim Eq ((—kz1%)
t— 00 — 00

M:
+M; lim tYEy qq1(—ks1%) = —.
11— 00 ﬁi

Remark 6.2 The use of the reduced-order observer in (6.7) should be done in an
iterative way, that is, first obtain an estimation for the first unknown variable then for
the second and so on. This procedure gives a bank of reduced-order observers and

2Equation (6.17) is nonautonomous, but the Lipschitz condition assures a unique solution [4, 5].
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Fig. 6.1 Observation n y = h(Z)
scheme for the State Coordinate System Dynamics
fractional-order Transformation 2 = Sz, u)

reduced-order observer

FGOCF
7](rx) = fn(n: U’) Y

i Inverse T
A(C};Iﬁ(;‘? (Ba.n_kA) State Coordinate |— 5
Yo =mi [ = Sl =1l Transformation
W = —ka O+ kadic1) s 99,(0) = a0 €R

0 = Y+ kali-1

reduce the use of fractional-order integrators. Notice that this type of observer does
not need a copy of system (2.23). The former becomes an important issue compare
to estimation with a classical Luenberger observer.

Remark 6.3 A reduced-order observer of the form (6.6) can be designed directly
for system (6.1) (see [2]). The drawback of that approach is that state variables are
expressed in terms of the unknown fractional derivatives of 1;, thus it is necessary to
introduce an artificial variable which is more complicated variable than y;, in order to
avoid the use of these unknown derivatives. As a result a complicated reduced-order
observer, for each state of the original system, is obtained.

Corollary 6.1 Let anonlinear fractional-order system (6.1) to be transformable into
a FGOCE, assume inverse transformation @' (-) in (6.2) exist. Then, the dynamical
system (6.7) along with:

x=o7" ),

constitute an stable observer for the nonlinear fractional-order system (6.1).

Finally, Corollary 6.1 is depicted in Fig. 6.1 where full observation setting is shown.

6.3.2 Fractional-Order Luenberger Observer (FLO)

Consider system (6.1) in its FGOCF (2.23), we can rewrite this system in the
Brunovsky’s canonical form:

@ = An— BT (n, i),

6.19
o (6.19)

=S

where matrices A, x,, Byx1 and Cix, are given by
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01...0 O
A=|::- 4], B=]||. €=(10...0)
00...0 0

On the other hand, let us consider a copy of system (6.19) with a weighted correction

termwithgainL = ([; [, ... 1,)T € R" as the nonlinear fractional-order Luenberger
observer:
N = Afj — BT (@, i) + L — ). (6.20)
y=Cq.

Now, we are in position to establish the next convergence analysis for estimation
N T . . .\
error, € :=1n —1,& = (81 .. ~8,,) € R", resumed in the following proposition.

Proposition 6.1 Let system (6.1) be transformable into a FGOCF and consider the
full state observer

N = Af — BT (i, i) + L(5 — §),
y=Ci,

with a constant gain vector L. Assume

o A= (A~ LC) isaHurwitz matrix with »; (A) # x; (A), 1 <i, j <n,i #j,
o [T, u)— T, u) <N eRT,

0 1
e Permutation matrix P = )

1 0
Then, estimation error e = n — 1) is asymptotically bounded, i.e., |g| < N|PV ||«
max {[1/A1], ..., [1/A,[} ast — oo, where V=1 is the inverse Vandermonde matrix
of A.

Proof Take the fractional derivative of estimation error £ = @ — 4@ Using
(6.19) and (6.20), we have

e =(A—-LC)e— B (T, i) —T®{H, i)). (6.21)

T (i, ij,it)

Choosing gain matrix L such that A = (A — LC) is a Hurwitz matrix with distinct
eigenvalues A; (A) # A; (A), 1 <i, j <n,i # j. We can obtain a modal decom-
position of system (6.21) using a similarity transformation involving Vandermonde
matrix V (see Property 3, assuming its inverse V! exists) and matrix P
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ey = PVe, (6.22)

and the inverse relation
e =PV lgy. (6.23)

From (6.21), (6.22), and (6.23) we obtain the next decomposition

(a) (@) __ n —1 _ > A=
e9 = VPe® = VPAPV ey — VPBI (n, i, i),
D
= D8V - Bi(’lv ﬁv lz)v

where B = (1--- 1)T € R". Hence,
ey = hiey, — T (1., i), (6.24)
the solution for the Eq. (6.24) is the following
gy, = SVI(]Ea,i()\‘it(a))“‘

—/0 (t = ) B (it = 0)*) T (1), (1), i(1))d.

Using the same arguments as in proof of Lemma6.1 and assuming 7 (-) is a bounded
function |.7 (-)| < N, the error ey, asymptotically converges to

lim [ey, ()] < |ev,ol lim Eq 1 (Ai1%)
t—00 t—00

N
+Ntlim t*Eg gr1(Ait%) = —A—.

i

Finally, the next estimate fulfills’:

g ey

Iim || ey (?) [loo=< NmaX{
1—>00

1
Al
And consequently from (6.23),

1
lim ||&]leo < N||PV1||Oomax”—
t—00 )Ll

g e ey

Forz = (z1, ..., z0)" € R || x flooi= max {|x1], ..., [xal}.
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6.4 Numerical Examples

6.4.1 Fractional-Order Linear Mechanical Oscillator

Consider the following forced fractional-order linear mechanical system composed
of an oscillator with classical fluid damping and frictious fractional damping [3]:

¥+ax+bd"*x+cx =u. (6.25)

The measured output y is position x, which can be physically measured, contrarily
tod'?x, x and d'/*x. This system has a commensurate fractional order of « = 1/2,
such that, in state space form we can write system (6.25) as follows:

X =X; s 1 S j S 3’
a (6.26)
x, = —axs — bxy — cx| + u,

with x(0) = (=2 —120.5)7. Take y = x; as the fractional differential primitive
element, thus FAO condition is fulfilled

yI —xy =0, 1<t<4,

Hence, system (6.26) can be transformed into
@ _ 4. 1<j<3
n; = 1Mj+1 =J=5
ng = —ans — bny — ey + .
Now we want to estimate 7,, 73, n4 from measurements of ;. From Lemma6.1,
it is not hard to obtain the following state observer for the FGOCF, the bank of
reduced-order observers is given by
() 2
Vﬁa = —K5,v5, — Kj, vy

v, = —Kpys, — K fi =34

(6.27)

with
= Vi, + Kijy ¥y
ni=vy +Kynioy i =34

Numerical simulations corresponding to Luenberger observer for the system
(6.26), and the bank of reduced-order observers (6.27) are shown in Figs. 6.2 and 6.3.
Clearly, both observers estimate the state of the original system. However, to com-
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Fractional Reduced Order Observer

M, X,
o

N, X,
o

_5 ! ! ! ! ! ! ! ! !
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xﬂ‘
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=
_5 ! ! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100
Time (s)
Luenberger Observer
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X
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=
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Time (s)

Fig. 6.2 Estimation of system (6.26) with FROO and FLO, kp, = 10, kp, = 15, kj, = 20 and
L=(101520 )T (top to bottom, respectively)

pare the performance of both observers, consider the Integral Squared Error (ISE)
index* with « = 100, T, — T} = 0.5s.

“Due to lack of space we only compare the performance of both observers based on the same
observed trajectories with:

T
ISE:/ (Ke,-(r))zdt.

T

This index tolerates small errors for long periods and penalize long errors.
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—FROO ISE
—Luenberger ISE

—FROO ISE
—Luenberger ISE

—FROO ISE
— Luenberger ISE

00

Time (s)

Fig. 6.3 ISE index of system (6.26): FROO versus FLO

81
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6.4.2 Duffing System

Consider the following fractional nonlinear Duffing Systems [1]:

Y =x (6.28)

Xy, =X — x13 — Bxy 4 dcos(wt),

where 8 = 0.15 is the damping coefficient, § = 1.3 is the amplitude of the forcing
function and w = 1 is the forcing frequency and the initial conditions x (0) = (1 1)7,
and y = x; are the measures the horizontal displacement. From Lemma6.1, the
reduced order observer for Duffing system is given by
v, = —Kpvi — K,y
2 = Vi, + K5,y

In the Figs. 6.4 and 6.5, we show the performance of estimating state x, of duffing
system.

N W A O
S

0 10 20 30 40 50 60 70 80 90 100
Tiempo (s)

TR
WY

0 10 20 30 40 50 60 70 80 90 100
time(s)

Fig. 6.4 Estimation of system (6.28) with FROO and FLO, k;, = 200 and L = (11 12)" (top to
bottom respectively)
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Fig. 6.5 ISE index of
system (6.28): FROO versus
FLO

6.5 Conclusions

In this chapter, we have proposed two type of observers (e.g., FROO and FLO) for
commensurate fractional-order nonlinear systems, where FAO condition is funda-
mental to determine whether the system is observable from the knowledge of the input
and output and moreover. The FROO posses an acceptable performance without the
knowledge of the system dynamics.
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Chapter 7 ®)
Generalized Multi-synchronization of Gzt
Fractional Order Liouvillian Chaotic

Systems Using Fractional Dynamical

Controller

7.1 Introduction

The attempt to understand the synchronize of a pair of systems have been extended
to the study of a more complex problem involving multiple systems, of course, moti-
vated by problems in the integer order case where synchronization is observed such
as rendezvous, formation control, flocking and schooling, attitude alignment, sen-
sor networks, distributed computing, consensus, and complex networks in general
[1-8]. In the fractional order case, we can mention as related work from a control
theory perspective: A multi-synchronization scheme for identical systems in a ring
connection with unidirectional and bidirectional coupling [9]. In [10], a pinning
synchronization problem is presented for a network of systems with Lipschitz-type
nonlinearities and unidirectional configuration. In terms of generalized synchroniza-
tion, a modification of active control is given in [11] where it is considered the case of
interaction between multiple slave systems. As in general and in all aforementioned
contributions, proving stability of the origin of synchronization error, or synchro-
nization manifold if possible, is the main task in synchronization problems. It is well
known that in the case of interacting systems with identical dynamics, there exists a
trivial synchronization algebraic manifold (e.g., CS problem). However, for systems
with strictly different dynamics, the synchronization manifold is not trivial or it does
not necessarily exist. Therefore, it is unclear whether this type of interacting systems
can synchronize [4]. Thus, differences in the dynamical structure of the systems play
an interesting role, the study of the synchronization error (synchronization mani-
fold) is more challenging than the case of identical systems. Besides, the individual
dynamical structure of groups of interacting systems are different in most cases
[1, 6, 8]. For synchronization of strictly different fractional order systems, we can
mention the work in [11-15].
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In recent years, active control has been a popular technique used in chaos syn-
chronization. These controllers use a statical control signal and for each first-order
fractional differential equation [16], this suggests the search of appropriate signals
to obtain a stable error dynamics. This motivates us to propose, as part of our work,
a reduced number of fractional dynamical control laws is able to stabilize the origin
of error dynamics with less effort in searching the control signals.

In this chapter, we propose a methodology to synchronize a class of multiple
chaotic decoupled nonlinear fractional order systems, where systems are not nec-
essarily identical and is sufficient to construct a fractional differential primitive
element based on output of each system that generates a family of transformations.
Thus, systems are carried out to a Multi-Output Fractional Generalized Observabil-
ity Canonical Form (MFGOCEF). It is worth mentioning that the family of fractional
differential primitive elements is given in a natural manner as a linear combination
of the known state and inputs of the systems and their finite number of fractional
derivatives. Finally, from this coordinate transformation, we can synchronize multi-
ple decoupled families of chaotic systems in a master—slave configuration. This type
of synchronization is introduced as Fractional Generalized Multi-Synchronization
(FGMS). Moreover, it is also considered the case of complex interaction between
slave systems as a natural extension of the former result, as it will be shown that any
type of interplay between slave systems can be considered and still needs to obtain
synchronization error convergence to the origin. The main key ingredient is to find
canonical forms for the original systems that are synchronized by means of a family
of fractional dynamical control signals through a chain of fractional integrators.

There are several contributions in this chapter: First, amethodology to synchronize
multiple decoupled families of commensurate fractional order Liouvillian systems
where systems need not to be identical. This is given for a master—slave configuration
considering also the case of complex interaction between slave systems, both with
full access information of the master systems’ dynamics.

Second, an explicit construction of the mapping that relates the trajectories of
the master and slaves systems by means of the fractional differential primitive ele-
ment can be obtained. We use the special characteristic of a class of systems so-
called fractional Liouvillian systems. It should be noted that first component of these
transformations is a fractional order integral of the fractional differential primitive
element.

Third, a fractional dynamical control law able to achieve FGMS for all slave
systems is given. A natural extension is given for the case of complex interaction
between slave systems, this consist in adding diffusive coupling terms (weighted
difference between the states of a slave system and the states of the neighbors slave
systems) in the dynamical control law. It is worth mentioning that FGMS is given
regardless the type interplay between slave systems.
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Finally, we introduced definitions related to the concept of fractional Liouvil-
lian algebraic observability, Picard—Vessiot systems, and the concept of Fractional
Generalized Multi-Synchronization for fractional order systems.

The reminder of this chapter is organized as follows: The formulation of the prob-
lem and main result regarding to generalized synchronization of multiple decoupled
fractional order systems is stated in Sect. 7.2. In Sect. 7.3, the extension for the case
of complex interaction between slave systems is given. Some examples are provided
in Sect. 7.4 with two different fractional order Liouvillian chaotic systems. Finally,
in Sect. 7.5, some concluding remarks are given.

7.2 Problem Formulation

In this section, we will see that the synchronization of a class of multiple decoupled
nonlinear fractional order systems is reduced to a problem of multiple fractional
generalized synchronization where it is sufficient to know the output of each system
to generate a family of transformations which gives us the possibility to synchronize
multiple chaotic systems, these transformations are obtained from a family of outputs
givenby y; = I%y; with1 < j < p(poutputs). Letn; > 0 be the minimum integers
such that 2"/*y; are analytically dependent on (y;, y}“), v, Qi - where
yj=1%y;

HiG, 3, ey, 2005, w0l 9P = 0. (T.1)

j ’
The system (7.1) can be solved locally as:

D"y = =Z;(3;, _(“) ..,9["f_1]“yj,uj,u§“), gy 4 gy

Leté& ' = 25, I =1Lny+1,ni+n+1,...,n1 +ny+- +n,,1+1
1<i< Z1< j<pnj =n where index j gives the j — th system and the n;’s are
the so-called 1ndex of algebraic observability where each index coincides with the
system’s dimension. Then, it is possible to achieve a local representation for a set of
p decoupled systems, this representation can be seen as a Multi-output Fractional
Generalized Observability Canonical Form (MFGOCEF):
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@a%.;ll — gl
ga%‘gl — E;I
_@aé”l n

ny—1 = sny
76 = 216" 8" e g ) g
Sagh2  _ 2
2 §n1+l _En|+2

Gga 2 _ "2
7 $n|+2_$n|+3

G2 _ M2
7 Snl+nz—l _En|+n2
S ny o ony n (o) [yy—1l o 7.2
9 Eniny = —$2(§n1+1,§,11+2,...,5n1+,,2,uz,uz L9 uy) + 272%y (7.2)
ga "D _p
7 En1+n2+~~+np,1+l 7gn1+n2+~-+np,1+2
9 n np

&, =§
nytnptetn, _1+2 nytnptetnp_1+3

901%_"/’ _ E”I’
n|+n2+---+n[,_|+npfl T onptngteetn, g 4np

G P _ g np np
7 §n1+n2+~-+np,1+np = jp(§n1+n2+m+np,1+l' §n1+n2+~~+np,1+2' N

np (o) [yp—1la ypa
En1+n2+“*+np,1+np’ul"ul’ """ g7 uP)+9 P Up

vi=¢"
In a compact form, the new system (7.2) can be represented as:

Pt = AE—O(L, ..., L)+ U (D" Uy, ..., D""u,)

v (7.3)

where &, @, U eR", of € R"™" % ¢ RP and the matrices of (7.3) are defined as
follows:

Ay 0
%: '.. N

0 A,
[010 0 ---07]
0010 ---0

Aj=[iiie 0 g

0000 10
0000 01
10000 0 0]
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¢1()
$2(22)
DA, ..., L) = : ;

¢p(Zp)
0
0

$;(Z)) = : ;
0
_'gj ($:(+n2+~~~+n,i—l+l’ s S:f+n2+---+n,‘7 uj, ’45“), e, @[V/‘”auj)
U7 ) 0
_ U (D" ur)
U (P, ..., P u,) = . DUy =] |
» 0
%p(@Vp M,,) @Vf“uj
C 0
€ = . ; Cj= [1 0 O]
0 C,
Now, consider the following family of chaotic nonlinear systems:
X(-a) = Fj()Cj, uj)
! (7.4)

yj = Cjxj+ Dju,

where 1 < j < p denotes the j — th system, x; € R"/ is the state vector, F;(-) is a
nonlinear vector function, u; is the input, y; is the output and C;, D; are matrices
of appropriate size.

We establish the following important result.

Lemma 7.1 Consider the family of nonlinear systems (7.4). If the output is chosen

as:
n m
yi= Y vixi+ Y Bk

i=n—n;+1 k

where y;, By are differential quantities of u and their time finite derivatives, such that
the first component of the coordinate transformation is given by y; = 1%y, then the
nonlinear system (7.4) is transformable to a MFGOCF if and only if is a family of
PV systems.
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Proof Let the set {¢;, g“j@, sy Qi A1 < j < p with & = 1@y, =y,
Pli-lep, = gli-i=lley, 1 <j < Z?:, n;, where n; > 0 is the minimum integer
such that 9[”f’1]°‘yj is dependent on I(O‘)yj, v, y;a), e, @[".f’l’l]“yj, Uj,.... Now,
if we redefine & = ¢; = @y, & = li-lleg; = gli-I=Ney, | <i <30 n;
that yields to:

2" =&}, 1<i<n —1

2N = —21E gl 9Ty gy,

2P =€, m+1<i<n+n—1

7 n ny n (o) -1 ;
DGy = —L2E Byt us L 9T ) gy,

np

n .
72" =&, m+-+npa+l<i<ni+o4n, -1
aglp _ np np (@) lyp—1la Y
7 5n1+---+n,, = ‘Z)ﬁ(gnl+.,.+npil+la-~-7sn|+...+n,’supyup s, 9P up) + 2%,
j—1

n;j

g1 =1, 1<j<p I=1+Y n;
Ll O
j=
We discuss the problem of generalized synchronization for a class of fractional
order systems so-called Fractional Liouvillian Systems, and within this class, we can
find some fractional order chaotic systems. In this case, we consider the master—slave
configuration. We define a family of master systems as:

@(a)xm# = Fm,l (xm# ) umu)

(7.5)
ym,‘ - hm,l (xm,‘ s Mm,l)
and the family of slave systems is:
-@(a)xs” = Fsv (xs.,a u.s*.,) (7.6)
Vs, = hs,, (-xs.,v us,,)
where Xs, = (xl,s,,v ey xnw,s‘,) € Rﬂ.;.,’ Xm, = (xl,m,u e xn,,,u,m“) € an#’ hSu :

R™ — R, by, : R — Ry, = Wi, Uy, m,) € R ug, = (Ui, ..,
Uy ) €ER™ 1 <v<p-—1,1<pu =< p—v,these conditions tell us that we can
consider one or more slave systems associated with one master but we cannot have
an slave with more than one master. One slave is associated with one master when the
number of slaves is equal to the number of masters, on the other hand, it is possible
to consider a case where the number of slaves is greater than the number of masters,
this means that a master system interacts with more than one slave system. This
configuration is depicted in Fig. 7.1, the circles or nodes represent the dynamical
systems involved. Encircled nodes in Fig. 7.1b represent the same master system,
dashed circles represent virtual master systems, these posses the same dynamics and
initial conditions as the original master system (solid circles) associated with the
corresponding slave system, hence it can be represented as a single master node.
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Lsry g

xsrl—l—w-—l—rpfl—kl

x8r1+...+7»p

Fig. 7.1 Generalized Multi-synchronization configuration: a An equal number of slaves and mas-
ters, b More slaves than masters

From Definition 2.9, we can say that FGMS is achieved when lim;_ oo || Hyps (X5) —
Xnll=0

Next theorem gives a methodology to synchronize multiple decoupled families
of commensurate fractional order Liouvillian systems where systems need not to be
identical (see Fig. 7.1). Moreover, the design of the dynamical controllers is given
in proof. The idea behind it is to impose similar dynamics of the master systems to
their corresponding family of slave systems.

Theorem 7.1 Let a set of systems as (7.5) and (7.6) be transformable to a MFGOCF.
Then, lim; . ||&n — & || = O where &,, and & are the trajectories in the transformed
space of the family of master and slave systems, respectively.

Proof Withoutloss of generality, we consider thatu,,, = 0. The setof master systems
has the following family of outputs:

n

M

— E . _ J

Ym; = yle,m/ = E,’ s
i=n—n;+1

where y;, (i = [) are differential quantities of u and their time finite derivatives, the
family of outputs for slave systems is:

n
ny.
Ys; = Z YiXis; + Zﬂkuk»mj =&,

i=n—n;+1 k
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where y;, (i =1),
Then, we obtain:

g ginm 1
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B are differential quantities of # and their time finite derivatives.

1<i<n, —1

o,
ey Eng)
nm1+1§i§nml+nm2_l

Ty
sy +11y)

N
=&
N
_gml (51 ! )
Ny
=41,

Ty
- %, (5n,,,1+1» ...

in a compact form (7.7) can be expressed as:

=&, At H LS S ey, —
= —gmp (%_n,:,”lp+"'+nmp71+l g ey n,:ll[7+,..+nmp)v
(1.7)
-@aém Zﬂém_ém(gmp-”vfm,,) (78)

Now, let us define the following extended system that represents the family of slave
systems and a chain of fractional integrators given by a family of dynamical feedbacks

is given as:

nsy

o _ s .
9&,— _§i+1’ l<i<ng -1
ng ng ng —1
@aénsll :*gsl(fl ]q-~-s§n_;-11~llx1a“57)v-~-,@[%ql JOIMSI)+9V,Y|0£“A_1
ng ng
go 1 _ 1 ; _
9 U =iy, 1515)/51 1
ng nm nm ng ng (@) sy —1la
DUyl ==Ly D+ Ly syl P g
+ K€" — g1
g sy _ . Msp 1<i< 1
Ei —§[+1- nsy + =1 =ng +Vl52*
ag's2 _ sy sy (cr) [ysy) =1l GVsrd
9 S,le+nA,2 _7352(§ns1+1'""énsl+ny2'”52'usz L., 9'2 Usy) + 2752%uy,

_@au?xz = ”74?1* ysp F1=i=ysy sy —1
2 a”:/L;fWQ = _fmz(g:,',’:lzﬂw'~5;l::12+nm2)+$sz (Enn,:lzﬂ* "'~5r7§12+n52*“52*”§g)* g )
+ Kp(E"2 —g"2)
P =5 ng b ngy 1S <ng g, — 1
@m§:§f+-~+nsp =-Zs (EZ:IP"'”"""SI)—I FRTRRS 5:51 g s u?;), cl f)lysl’_”auxp) + @yspauxp
@Otu:lsp :u:ljr’;, ¥sy +”'+V-Yp—1 Fl<i<yg+otysy -1
ya“;ijr---ersp = Ly ") + L,y 6P Mspyus(;), '_”_@[Vs,,fllausp) + K" —£"p)

(7.9)
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Rewriting (7.9) in a compact form, we have:

@asﬁ‘ = %%_Y - ¢S(°%15 M) Zl’) + %_(@V.r]aus” M) @V.\-,,Ulusp)
DU = MU + U
U =K En—E)— Pul(Lonys o os L)+ O (L, ..., L)

where
ng;
uy
ng
Ltnx] uz J
U = N 7 .
un”} uns.fv
X v
A h 1 si 1 Msj Msj Qe Msj @[%-—1]01
ssume the control signals as Up" =Us;, Uy = Usis ooy Majj = J Us;,
ng n, T T
sio— J J T &Mm; __ J J T
Jo= [%‘":1‘5‘”""'":/714'1 s Sig +“'+”.vj] ,s ;= [%-”nx1+"'+””tj,1+1 g ee ey %nm] +‘“+”mj]

and K; = [kyj, ..., kn, j]. Matrices .2 and %" are defined as follows:

0100 ---0
i o 9910 0
= ' =000 10|
0 0000 01
10000 0 0]
"0 0 0 0 0
Z o 00 0 0 0
T
UG 00 0 0.0
Lki,j ka,j ks jkaj -+ kn ;|

Finally, we consider the error of synchronization e; = &, — &, thathas a dynamics
given by:

@aef =VQ{€m _d)m(gml»“"o%n,,)_%gs+¢s(°%s1w~"->2ﬂsp)_62/_
DU = MU + U
U =HEn—E)— Pu( Ly L) + O L,, ..., L)

and after some algebraic manipulations, we have that:

D De = (A — K )ex (7.10)
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from the Theorem 2.3 (see Chap. 2), the system (7.10) is asymptotically sta-

ble if all eigenvalues of matrix &/ — % = diag(<, ..., Jz{_,,) with control gains
(k1,j. kojy ..o, knj,j) are chosen such that:

- T T
largGu( )| > 5 > a3

2
where _ _
0 1 0 0 0
0 1 0 0
42%3 — : : : oo 0
0 0 0 0 1 0
0 0 0 0 0 1
| —kij —ka,j —ksj —kaj - —kn, ;|

]

Corollary 7.1 A family of Liouvillian fractional order system class that is a family
of PV systems is in a state of FGMS.

Proof The proof is trivial and it is omitted (transitivity). [

7.3 Extension of Results to Complex Interaction Between
Slave Systems

In this section, the previous results are extended to a more complex interaction of
slave systems. This is the case when time-invariant interaction exists between slave
systems of the same group, and each slave system have complete access to their
corresponding master’s system dynamics. Consider the master system’s dynamics
available for all slave systems of the same group as is described in Theorem 7.1, as
well as consider a number of slave systems associated with a single master system.
This is the case when the number of master systems is less than the number of slave
systems. Let us define g as the number of groups of slave systems in the network. The
Theorem 7.1 can be naturally extended to the case of complex interaction between
slave members of the same family as is shown in Fig. 7.2.

Each interaction in Fig. 7.2 is represented by a dashed semicircle, it can be unidi-
rectional or bidirectional depending on whether a slave system knows the state of its
neighbors. Note that there is no link between slave systems from different groups.
Hence, a complex system is considered as a population of interacting systems as
described above. The interaction between “r,” slave systems of the same group is
modeled by the graph G,, = (V,,. E;,, A, ) with 1 < p <gq.,letV, ={1,...,r,}
asetofnodes, E,, €V, x V, asetofedges,and A,, = [a;;] € R»*"» an adjacency
matrix with nonnegative adjacency elements ai’} is defined by:
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Fig. 7.2 Slave interactions
in complex network

8
[P
5
=,
|
-

x3r1+-~~+rp,1+1

x5r1+~~+rp_1+2

. $$T1+"'+Tp—l

xsrl ':CS7~1+...+TP

o [1if (i) €E,,
i 710 elsewhere.

Let L,, = [l;;] € R"**'» be the nonsymmetrical graph Laplacian matrix induced
by the information flow G,, that is defined as:

r+1 oo .
1o = | 2 ki i i 0=,
Y —a;; elsewhere.

Now, consider again the chain of integrators of the dynamical fractional order
control law in Theorem 7.2, next we will add the following diffusive coupling terms
O, in the dynamical control law for the o -th slave system.

"p

o 0 nse 000 Nsg _ 00D
o = Zl“;w,p),j ["1 (%(a)ﬂ Ee(p,_nﬂ) e (Een(awnsa Ez(p,mnsﬁ(ﬂ_j))}
=

with €,(0) = Y7 g0 £0p, ) = Y00 ny 1 90, ) = j +7pm1. 5o p) =
o=y r-1, 1 <g(o,p) <ry, nyy=rg=0 and «i,...,k,, >0 weighting
scalar gains.
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The interaction G,, is considered time invariant and fixed for all time. Incorpo-
rating this interaction in the network allows to obtain the following important result.

Theorem 7.2 Let a set of systems as (7.5) and (7.6) with complex interaction ®,, for
the o-th slave system be transformable to a MFGOCE, then lim;_ &, — & = 0
where &, and &, are the trajectories in the transformed space of the family of master
and slave systems, respectively.

Proof Withoutloss of generality, we consider that u,,, = 0. The setof master systems
has the following family of outputs:

n
N ;
— E — J
ym,- - V;Xi,m, - Si s

i=n—n;+1

where y;, (i = 1) are differential quantities of u and their time finite derivatives, the
family of outputs for slave systems is:

n
ng.
ij = Z Vixi,sj + Zﬂkuk,m, = éj-,‘ ja

i=n—n;+1 k

where y;, (i =1), By are differential quantities of u and their time finite derivatives.
Then, we obtain:

n n .

@asi "= E,‘J:llla I<i= My — 1
a s Timy g Ny Ny

9 %_nm] = - m,(El 7-~~s§nm, )

wellm Ty .
95,’ —E,‘Jrl’ nm|+1§l§nml+nm2_1

o s-Ttmy _ My Nimy
7 %_nm] i, T _gmz (snmﬁ-l LR ‘i:nmlJrn,,,z)

s tmp My .
7°¢; =& M+t np, a0+ 1 <i<ny 4+ +ny, —1
o slmp _ N,y N,y
7 énm,+-~+nm,, - gmﬂ (snm,+---+nmp71+1’ Tt Enml+--~+nmﬂ)’

(7.11)
with 1 < p < g < p. Now, let us define the following extended system which rep-
resents a group of r, slave systems and a chain of fractional integrators given by a
family of dynamical feedbacks:
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9“5-"’” =g, 1<i<n, -1

ng ng ng e —1 ]
2%k, ‘ =—Z5 (& ',A“,S,,SI' ,usl,ug'i‘),.u,@[%x ]”uS,)+@V'1”uS,
7 _—— ;
9 u- =u;l, 1<i<y, -1
”rl _ Ny Ny
P uyy = ZLm, (E”m"F A,y 10 "'Enmﬁ iy )+
n
L E L E @ o ) K e — g+
"
+Z p nsy Moo ) Fo+ E”n _ M0
aj & =S i) e, (S = S jiing,,,
j=1

sy

ns, .

77 =574, ng +1<i<ng +ng,—1

gag™ _ s () 2 g Vnd
Sn s, = —ZLs, (En.rlﬂ‘ Enr, +nyy > Usas “Jz v P ”Jz) + 272 %u,
27 = u}? l<is< 1
i T O e e

n

2%,

i nm
— _g P P
Vst T j"’p (gnml +ot i, (e gn,,,, Fotiim, )+

Ny, Ny, —
F L 6 g gy sy 1) PTG ) 1 K (e — g )+

"50(p.4) sy _ £ )
+ Zazj |:K1 ( ny, 41 =&, /)+1) + ot Ky, (5n,|+nw Eg(p f””w(ﬂ.;»)}

298" =60 ng +odng o Fl<i<ng +edng — 1

g, ng, Ny e —1a o
o @ P — _ g » » () Ysrp g Vsrp
7 ny, = =L, (G by, 1 By bty 2 Wy o Usy oo D us, )+ us,,
gy _ | <i 1
Z%u; " =uy Yoot t Vs, TSy 0+, —
29, Msry _ iy Mgy
9 Uy 4oty = L m, (En,,,l ot 5”,,” ER. )+

n n(fs,ﬂ (gn\,o g, ”iz} D sr, 71]&1“% )+ Kr,, (&"m — £ )4

p
o, [K, (sml'q__ﬂw " su;:‘;):l) -
j=1
L G|
in a general compact form, we have:

GO = £ €n(0) + 1< < Ly(0) + gy — 1

o Mo _ Nso Nsg () g lysg —lla Vsg &
Een(GH"lsq = ng(gen(U)+l9"'5Een(o)+nja’uxgaujg s DS M.va)+9 S0 %ug,
DU = Ul @)+ 1 =i =y (0) +ysp —1

nm nm
g, so _ 14
7 uey(t‘f)ﬂ/sa - g’"ﬂ (Enm1 o, 1 Enm] +otiimy )+

+ Ly €50 sy P50 T ) g Ko (670 — M50 )+

rp
+ ,Zlag("-ﬂ)vf ["‘ ("EZf‘(’am i 5‘;3) ot K (%(onnsa -5y %ﬁsw, j))}
" (7.12)
with £,(0) = X7 ny 0 £,(0) = X0 v s Lo, ) = 00 ny 90, ) =
j+ry—1, clo,p) =0 — Zz=1 ri-1, 1 < ¢(o, p) <r,, ng, =ro=0. Assume the
control  signals as u|” =u; ,uy" = Puy, ..., ug? = PNy g =

N

Nso Ny T &n _ P T —
[g:”»‘l oty N R SnS1+...+nS0] 95 "= [énm +"'+”m071 FE EREEE Snm1+...+nmp] > Ka -
[Kios .- kn, o] and scalars k1, ..., K, > 0.
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Define the synchronization error for each slave’s state as:

Mg Ny _ gy
€ = S ity 5 (7.13)

for £,(0) +1 <i < £,(0) 4 n,,, with £, = > My, Ny = 0. From equations
(7.11) and (7.12), it is clear that the fractional order dynamics of synchronization
error (7.13) are given by:

Py =ey,, (o) +1<i=<Lo)+n, —1

G liso _ Nsg
7 e&u(aH»n,n - K”eE +

"p

P g _ 0.0 Nso _ 00
+ Za;(a,p),j |:Kl (eét'nwwl eglip.[)+| +eot Kn, L§z',,w)+n.\g L§up./)+n,\gw_“
j=1
o s s .
Du;” =ufy, b)) +1<i<l,(0)+y, —1 (7.14)

o Nso _ Nmp Nimyy
7 uly(cr)er,(, - ‘g”‘p (Enml +...+nmﬂ7| N ERRR] éflml +otim, )+

+ Ly €™ g, u@, P Ty 4 K (8 — ™)+
"p
P Nso "59(p. j) Nso s9(p.j)
+ 2o [KI (Ez,,(nm - fup,ml) ot g, (§Z,1(0)+n\-a 8 g,
j=1

Ny Ny

with e = [e e, 7. Define matrix B, as follows:
3 Etn(0)+1 &by (0)+nsy P
000... 0
000... 0
By=|. .. . [eRrmxm
K1 K2 K3 ... Knmp

and assume Laplacian matrix L,  then the closed-loop synchronization error dynam-
ics for the group of r, slave systems is given by (® Kronecker product, see Definition
2.13 Chap.2):

@aegp = (_Lrp 2 Bp + diag(,ﬂ:;(p,l), ceey JZZ;(p’rp))) eg”

o)

P

£ bevns €
groups in the network, we have:

. Ny Rsyinr T .
with e:f = [e 2D e ”)] and for the whole network, that is, the ¢ slave

P = (—L+ 5)e: (7.15)

where £ = diag (L,, ® By, ..., L,, ® By) and & =diag (&1...., &,).

From the Theorem 2.3 (see Chap. 2), the system (7.15) is asymptotically stable
if eigenvalues of matrix (—£ + &) with control gains (k; 4, ..., kn, ») and scalars
K1y ..., kn,, > 0are chosen such that:
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. T g
larg(A:(E,))| > 2 > as O
Remark 7.1 Note that there is no restriction on the complex interaction between
slave systems, that is, synchronization is satisfied as a graph G,, can be considered
either directed or undirected, with any adjacency matrix A,, and not necessarily
identical systems. Notice that Theorem 7.2 is recovered if A, = 0, x,.

Remark 7.2 The case of complex interaction given in [11] is contained in Theorem
7.1. It is worth mentioning that we are using dynamical controllers to synchronize
multiple groups of slave systems.

7.4 Some Numerical Examples

In this section, we consider the FGMS of three strictly different commensurate frac-
tional order systems. We show four examples with Rossler, Arneodo and Chua—
Hartley systems in different configurations. It will be shown that our methodology
is not restricted to Liouvillian-type systems, this is the case given in the last two
networks involving Rossler systems, which are not Liouvillian systems. The first
example considers the case of GS. The second example considers the case of FGMS
with one master system where CS and GS is achieved. The third example consists
of the case of two families of slave systems without interaction. And, final example
shows the interesting case of complex interaction between slave systems with two
master systems.

7.4.1 Example 1

Let a master—slave configuration with Arneodo and Chua—Hartley systems as master
and slave respectively. This is depicted in Fig. 7.3. The objective is to achieve the
state of GS and shows the Liouvillian feature of these systems.

First, let the master system be:

P*x = X
1 2
o my __my

Dxy" = x5

DX = —ix" — Box — Bax + fax]"” (7.16)

Zmy @—0 s

Fig. 7.3 GS configuration: Master system x,,, and slave system xg,
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assume y,,, = x5 ' as output, we obtain the states of system (7.16) as a function of

the output:

D51 = Y,
m[

= Ym,

X3 = yy(fl)

m m

Hence, state x|"' satisfies FLAO COl’ldlthIl Now, note that x;' can be written as a

function of a fract10na1 integral of x5"', that is to say:

= Ia)’ml
"= Y,

_ ysﬁ)

thus, system (7.16) is a fractional order Liouvillian system. On the other hand, let us
verify the observability condition that slave system fulfils. Let the slave system be:

— 2y
@axsl — S + 1
1 o ( —7
@axgl — xil _ x; +x;1 (717)
P°x3 = —px3

Assume y,, = xé‘ as output, we obtain the states of system (7.17) as a function of
the output, this yields to the next expressions:

=y o =
X2 = ySl
9“363" = _,By.ﬂ

Hence, states xs' and xs' satisfy FLAO condition. Note that, we can choose y;, =
I ys, +uj such that x}" and x3' can be obtained as a function of fractional integrals
of x2 , that is to say:

= o + 3+ BI%yy, — uy
x2 = Ys
x;l — _IBIOtyS] + uil
system (7.17) is a fractional Liouvillian system. Now, assume systems (7.16) and

(7.17). Consider the family of outputs for the master and slave systems, respectively,
and are as follows:

mi

)_]ml = Iaym] =X
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and

- 1
ySl = IotyS] +M§I = _EX3 +u;1

101

From the family of outputs, next transformations are fulfilled for the master system:

L Iy, !
Em - ‘i: == Ym, = xgm == ®m(Xm)
3 '@ayml xgm
with its inverse:
m m
o W)
Xm =1 X : = 2 ] = qu (Em)
xm] m
3 3
For the slave system, we have:
i:] IaySl +I;L‘:] _%xgl _}_u;l
E=1&" = ywtuw |= X'+ uy = ®s(Xy)
3S] @ayS] + M;l xfl _ x;l +x§1 + uf;
with its inverse:
VAT G b el Rt 1
X, = xi] = ' — MlQI = djb_ )
N N
Xy —plE! —ul)

Then, the master in transformed coordinates is given by:

@a mj — m
1 2
ga L p——
2 3
o m m m
98" = L, ", 8 &)

with
L () =B (& — ) + B2 (&' —uy) + B (& —ud) — Ba (&' — )
and the slave system in transformed coordinates is given by:

o =S __ &8
@ 1 — 52

o &S &S
Z 2 T 53

o =51 S S S1 =
78 = %, (8.6, & uy' w3 u3') + iy,

)3
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o S1
P°u) = uj
o —_ S1
D%uy = uj
2wy = iy,

with
5 8p —17 5 5 7
zs,m:—@(l—u1>—(%ﬁ)(2—u2)—(p ) e )
+7(ﬂ(€f‘ W) 4 (E — ) + € —ud))’

The closed-loop dynamics for synchronization error ez = &, — & is represented in
the next augmented system:

@aeél = eg
@aegz egé
_90‘ 53 = _"%"l(siﬂl’%‘énlv )+‘>g\'l ( VI él ?',ul allz ,M% ) - Qu‘u‘;
.@a = ué‘
@au; — u:;l

D us; Us Z_Zm(é]‘iﬂl’éénla )+‘>Z']( Sl él gl»ulauz’ug)'kkxlegl

we have that Z%e; = (@/ — ') e¢. Then, synchronization error converges asymp-
totically to zero if matrix &7 — # = o) is Hurwitz. Where

[0 1 0
o = 0 0 1
—ki,1 —ka1 —k31

This is given when k; 1, k13 > 0 and k; » > k;,1/k; 3. Parameters for master and
slave systems are p = 12.75, § =100/7, By = —5.5, B, =3.5, B3 =0.8, B4 =
—1, commensurate fractional -order o = 0.92 [17], initial conditions x,,, (0) =
[-0.20 0.35 O.ZO]T, x5, (0) = [-0.58 —0.01 0.3O]T to obtain a chaotic behavior
and ks | = [10 10 10].

In Figs. 7.4 and 7.5, GS is shown in original and transformed coordinates. This
case of study is given for completeness the chapter. It illustrates how GS is given
in master—slave configuration. Figures 7.4 and 7.5 are apparently the same due to
master system is given in a canonical form (transformation @,,(-) is equal to the
identity), that makes the mapping

——x3 + “S11
Hyo(X,) = @, 0 Dy(X,) = X5 ul (7.18)
xfl _ x;l +X§l + u?
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Fig. 7.4 GS in transformed coordinates (see Sect. 7.4.1, Example 1)
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Fig. 7.5 GS in original coordinates (see Sect. 7.4.1, Example 1)
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to be easily obtained. The structure of the mapping is directly obtained from @;(-),
which means that synchronized original and transformed coordinates are equal, there-
fore we obtain similar trajectories. Original trajectories for the slave system are
obtained from mapping (7.18). Synchronization error asymptotically converges to
the origin as seen in Figs. 7.4a and 7.5a. Finally, note that GS trajectories converge
to the same chaotic attractor. Convergence can be verified from time evolution of the
synchronized trajectories (see Figs. 7.4b, c and 7.5b, c).

7.4.2 Example 2

Consider two strictly different commensurate fractional order Liouvillian systems.
The first one is a Chua—Hartley system as master, and let Arneodo and Chua—Hartley
be as slave systems. This configuration is illustrated in Fig. 7.6. The objective is
to achieve the state of CS and GS for these Liouvillian systems, hence the state of
FGMS.

Consider the master system (Chua—Hartley) which is given by:

o my my x;”l _2x1’”13
2°x1" =p | x; +

2°x5" = x]" =Xy 4 xg (7.19)

o my mi
D%x5" = —Bx,

Assume y,,, = x,'"' as output, we obtain the states of system (7.19) as a function of

the output, this yields to the next expressions:

mp __ (o) mp
X = Yyt Y, — X3
mp __
Xy = Imy
m
@ax3 ' = _:Byml

1 m

Hence, states x}"' and xj'' satisfy FLAO condition. On the other hand, we rewrite
xj"" and x5 as a function of fractional integrals of x3"', that is to say:

m

X1 = IYmy +y,(,ﬁ)+.31ayml
m

X2 = yml

xgnl = _,BIa)’ml

system (7.19) is a Fractional Liouvillian system.

Fig. 7.6 Configuration of T
master system x,,, and slave
systems Xy, , Xy,

1

Tmy
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Now, consider the master system (7.19) and assume dynamics of the family of
slave systems as:

o LS S
P°x)' = x5
o0 ST 81
Dxy' = x5

P°x3' = —pix)' — Baxy' — Baxy' + faxy

X — 2’
Dxy =p (xgz 444 2 4

o 52 52 52 52
Dxs = x0 — x5 + x4
o S p. .5
D*xg = —Bx;

Consider the family of outputs for the family of master and slave systems, respec-
tively, are as follows:

Ymy = [ayml = _Exg”

and
Bo = 1y =2y
) R B
Vo = 1%y, + “jf = __xéz + “jf
B
Then, the master system in transformed coordinates is given by:

oMy ey
% I — 52

o =my m
Z 2 T 53

P = 2 € 8 )

with

pB m 8p — 178 m p—17 m 2p my my m\3
o () = =8 ‘(T) : ‘(T) P E )

and the family of slave systems in transformed coordinates is given by:

A &S __ &5
g 1 — 52
A &Sl __ 51
7 52 — 53
o =S 81 S1 S1 S S S -
2 3—_9%1(1, 2 3,1/!1,142,1/[3)—{-1451
2%y = u)
1 2

o ST .51
D uy = uy
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Dy = iy,
@O{ 52 — 52
4 5
901 52 — 52
5 6
o582 52 82 852 il
PUEy = =, (8,657, & uy, ug  ug) + iy,

Puy = ui
4 5
DU = up
5 6

o 82 __ =
D ug = iy,

with

Ly O =P (E —u)) + B (& —u3) + B3 (6 —uy) — Ba( 1“—“31‘1)3

20 =26 ) - (YE) @ ) - () € - )
+7”(ﬂ@f uP) + (€ —u) + & —u)

Remark 7.3 We extend the dimension of master systems via virtual master systems
that will have the same dynamics and initial conditions as the original master systems
associated with the corresponding slave system (see Fig. 7.1a).

The closed-loop dynamics of synchronization error e; = &, — & is given by the
following augmented system:

o 8
7 651 =
o I |
9 e‘Eo = e
@“es; =—Zu G E+ L (6L S E L w ) - 2y
@a 1 zu;l
‘@auél — uél

DUy = =L G EEN) Ly (6 6w ) + e}

o N )
'@e&_eés
o _ 5N
@e T =

o _ m m 52 52 52 o 52

@egﬁ—_gml(gl a%- s )+$2( » 65 6’”4’”5’”6)_91’!6
DU} = u?
Uy 5

o 5 5
D us’ = ug
Dug = =L, (", 8,8 + L, (87,87, 667wy ug ug) + ke
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After some algebraic manipulations, we have that 9%e; = (& — ) ez. Then,
synchronization error converges asymptotically to zero if matrix & — % =
diag (42%1 ;zfz) is Hurwitz. Where

] o 1 0
;=1 0 0 1|, I<j=<2
—kij —kaj —k3

Parameters are taken as in example 1 (Sect. 7.4.1). Let initial conditions
be  x,,(0) = [<0.50 —0.07 0.65]", x,,(0) = [0.20 0.35 0.20]",  x,,(0) =
[—0.58 —0.01 O.3O]T to ensure chaotic behavior and k, ; = [200 200 200] for
l<j=<2

Figure 7.7 illustrates transformed coordinates of master and slave systems that are in
state of FGMS, Fig. 7.7a shows error synchronization convergence in transformed
coordinates, and in Fig. 7.8 are shown the states of master and slave systems and
synchronization error convergence in original coordinates with

S S S S S S1
Py +ui') + x; + iy x5
x*zl + u~21
A+ uf)

Ry Ry S Ry
)C42 —|—/3u42 +M52 +u62
S A
x52 + MSZ
52 52 52 52
—B (5 — x5 +xg +ug)

H, (Xs) =

The effectiveness of our approach can be verified from the multi-sychronization
trajectories. Note that the synchronization error converges asymptotically to the ori-
gin.

7.4.3 Example 3

Assume the configuration composed of two master systems given in Fig. 7.9. The
objective is to synchronize the decoupled groups of slave systems with their associ-
ated master system.

The first group is considered as the system given in example above. Consider
the second master as a Rossler system with Arneodo, Chua and Rossler systems as
slaves. Let the second master system be:

Dxy = — (x5 + x¢?)
D°x? = x)” + axs”
Dxg? =b+x7 (x4 —¢) (7.20)
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Fig. 7.7 FGMS in transformed coordinates (see Sect. 7.4.2, Example 2)



110 7 Generalized Multi-synchronization of Fractional Order ...
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(a) Time evolution of synchronization error

time (s)
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(c) Multi-synchronization trajectories

Fig. 7.8 FGMS in original coordinates (see Sect. 7.4.2, Example 2)
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Fig. 7.9 Configuration of

Ts,
master system x,,, and slave T
systems Xy, , Xs, mi
T,
Tsy
Tmgy Ly
T
assume y,,, = x5~ as output, we obtain the states of system (7.20) as a function of

the output:

xznz = @aymz + aym,
my __
xS = Ym>
xgnz = _@2aym2 - @aymz + Y,

Hence, the states of system (7.20) satisfy FAO condition. Consider the family of
outputs for the family of master and slave systems, respectively, are as follows:

_ 1
Ymy = Iayml = _Exgnl

Fe = Yy = X1
and
o =1 +ul =X+ u
5o = 4 =
oo =1ys, +u7 = X3 +u3
Yoo = 1y, +ujo = —%xﬁ + ujp

= _ S5 __ S5 S5
Vs = Yss T U3 = Xy U

Then, the master in transformed coordinates is given by:

ga lml — énl
(7 én] — 3ml
26" = =2, §", & &)
@ot my — my
4 5

oMy My
95_6
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@Ot énz = _gmz(sinz’ Sjmzr ésmz
with
pB 8p -8 p—=7 2p 3
L () = ==& = (f g - ()" + 5 E" g &)
Ly () = —(ac — DE + &) + (c — )& — (€] — a&s? + &) (S —ag)'?) +b

and the family of slave systems in transformed coordinates is given by:

90{ S1 — S
1 2
A S __ &SI
78 =&
aEst 51 51 S1 51 S1 kit -
78 = "ZI(I’Z’S’M]’MZ’MS)_’_”SI
o St __ o S1
P%u) = uy
2°u) = u?
2 3
2%y =1u
3 S1
_@ot 2 g52
4 5
ga 2 _ g%2
5 6
o =52 852 82 82 52 52 52 -
.@ 6__$Y2(4’ 5 65“47”5’“6)+u52

o, S22 5
D uy = us

o S22 __ 52
Dus = ug

Dug = Uy,
@0[ ’»73‘3 — §3
901 £3 — 33
Y = 2 (6 6 )+
Du3 = ug
Pug = ug
P*ug = i,

90{ S4 — 54
10 11
o =54 __ =S54
281 = &5
o 54 S84 54 Sq S4 S4 Sq -
Z 12—_'$v4( 105 511> 12’“10’”11v“12)+’4m
D*ut = ul
10 11
2°u = u't
11 12
oS4 =
D uyy = s,
@a S5 — 55
13 14
A &85 _ &S5
D81, = &5

oS5 S5 S5 S5 S5 S5 S5 -
DUES = =L (813 &1 613 113, U1y, UYS) + g
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oS5 S5
DUy = upy
o
Dy = uyy
o _
Duly = iy,

with

L= P (E —u)) + B (& —ud) + B (8 —u) — Ba (€ —u)
52 _7 5 52 7 52 52
Z, () = pﬁ(4—“4')_<T'3>(5_“5)_(p7 )(56_ ¢)

3

+— (BGE? — i) + (& —us) + (65 — ug)
-%3()—/31(7 —u}) + B (6 —uy) + Bs (& —uy) — B (&6 — )’
2,0 = =2 (6 u) - (578 @ ) - (557 - )
+ 22 (BN — wi) + &1 — i) + &3 —uiy)’

() = —(ac — 1)(514 - u14) +C(El3 - M13) + (¢ — a)(5|5 - u15)
(513 —uyy —a(E) —uy) + &3 — 1’5) ( 1~y —alg — ”?3)) +0b

The closed-loop dynamics of synchronization error e; = §,, — &, is given by the
following augmented system:

o I |
2 651 =€,

o |
7 e§2 =g

o _ m ml ml 51 sl Nl a, Sl
.@653— — L, E, )+$l( 3,u1,u2,u3)—.@u3

o —
P°uy = uy

P%uy = uy
9%y s1 _ Zml(gml %’ml )+$1 ( 5t 91 381’ ”1 , ”2 , u3 ) +ksle§
@"esz =e

& &s

‘@ae% Zegé
o 52 m mp m 52 $2 52 o Sz
Deg ==L (&, & ,3)+$2(4,5,6,u4,u5,u6) P%u
@a Sz = 2
5
@a Yz — uSz
6
o S mj ml ml 52 52 52 S2
D”u Ug = jml(gl a%‘ )+$2(4a 5’6»’44,”5’”6)"']%2@5

gt = <
90‘653 =e§
9

o s my emp em 53 £53 &S o S

P 6‘%.; = ws/pmz(é42a552a 2)+$3( ’ 8%’ 9251’!7’”87”9) 2 M93
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P%u3 = ug
P°ug = uy
oS3 my my my 53 53 53 53
Pu —_$712(‘§4 ’55 s’g:() )+‘=%‘3(77 8 97”7»”8’u9)+kS3e§
D% = e
10 &
@aeéu = egzl‘z

@aeélz :_an(giﬂz’ ;’12’ g12)_,’_$4( lvé‘)7 1&;’ ;427”‘107"{11’ ) 9Ot”]z
D uyy = uy
D uyy = u)
DUty = =L, (67,857, &) + L, ( 105 §115 §13, W30, U3y, U ;42) +ks4e§4
‘@aeéls = 624
@aefm = eé?s
Deg, = — Ly (67 7 EC) + L (613, 613 E15. w3, iy uys) — DUy
D uyy = uy,
D uiy = i
D uys = =L, (6,7, 657, 567) + L (‘5139 120 E150 Uiy, Ui, ”15) + ksse?
After some algebraic manipulations, we have that P%e; = (& — %) ez. Then,

synchronization_error converges asymptotically to zero if matrix & — % =
diag (ﬂ'l o, s, Ay, 42/5) is Hurwitz. Where

) o 1 0
;=1 0 0 I |, 1<j<s.
—ki,j —ka,j —k3

Parameters are taken as in example 1 with a =0.5, b =0.2 and ¢ = 10 [17].
Let initial conditions be x,,, (0) = [~0.50 —0.07 0.65]", x,,,(0) = [0.50 1.5 0.1]",
x,,(0) = [-0.20 0.35 0.20]", x,,(0) = [~0.58 —0.01 0.30]", x5, (0) =
[2 -0.1 =2]", x,,(0) = [-0.71 0.1 0.45]", x,,(0) =[125~1]" to ensure
chaotic behavior and &, ; = [10 20 10] forl < j <5.

Figure 7.10 illustrates synchronization error convergence to the origin in trans-
formed and original coordinates, respectively, FGMS is shown in Figs. 7.11 and
7.12 in transformed coordinates. And, taking the mapping (7.21) FGMS is shown in
original coordinates in Figs. 7.13 and 7.14. The effectiveness of our approach can
be verified from the multi-synchronization trajectories. Here, multi-synchronization
is shown for two decoupled groups. Note that the synchronization error converges
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asymptotically to the origin. In case of the first group, convergence to the trajectories
of first master system is more slowly than Example 2 (see Figs. 7.7, 7.8, 7.11 and
7.13 respectively). This is due gains k; 1, ks » are smaller than gains in Example 2
(Sect. 7.4.2). It is worth mentioning that our methodology can be applied not only
to Liouvillian systems, this is the case of any system that fulfils FAO condition, i.e.,
Rossler system.

B(xy' —i—ul‘)—l—x 34X 4 uy
X +”
Bl +up)
sz +ﬁ”f¢2 +u§z+ugz
§2+u52
—B (x§ — x5 +xg +” )
ug + xg° —a(xy —uy )

H,,(X,) X7 +uy (7.21)
s —(xF —u) +axy —uy) — (x5 — uy) ’
x11+axi42+”11 auyy
— X715 + 110

1
—x16 + (a + Dxjj (; 1)x12—u10+au”—u12
S5 5
X33 — a”13+”14
x14+u
S5 S5
Xy5 — uyy +auyy — ug

7.4.4 Example 4

Assume the following configuration which is composed of two master systems with
complex interaction between slave systems:

The objective is to look at the state of FGMS in presence of interplay between
slave systems of the same group. Consider all systems dynamics as in last exam-
ple. Note that first interaction between slave systems is bidirectional (undirected
graph G,,) and the second one is unidirectional (directed graph G,,) as depicted in
Fig. 7.15. The associated graphs are given by:

G, = {er E., Arl}’ G, = {VrZ’ E’Z’Arz}
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Fig. 7.10 Time evolution of synchronization error (see Sect. 7.4.3, Example 3)
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v,'\w»'v

time (s)

(a) Time evolution of synchronized trajectories

-02 -05

(b) Multi-synchronization trajectories

Fig. 7.11 FGMS in transformed coordinates (see Sect. 7.4.3, Example 3)
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Fig. 7.12 FGMS in transformed coordinates (see Sect. 7.4.3, Example 3)
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3 P g R i i LU L L :

time (s)

(a) Time evolution of synchronized trajectories

-05 -3

(b) Multi-synchronization trajectories

Fig. 7.13 FGMS in original coordinates (see Sect. 7.4.3, Example 3)
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where
v, = (1,2}
E, ={1,2),2, D}
V,, = (1,2,3)
E, =1{(1,2),(2,3),G, D}
and
010
A,l=<(1)(1)>, A, =001
100
respectively. It is easy to see that
1 -10
() e e
-10 1

withr; = 2andr, = 3, note that L,, is asymmetric matrix due to G, is an undirected
graph. The closed- loop dynamics of synchronization error ez = §,, — & is given by
the following augmented system:

o |
9 eél s,
o —
e, = ¢,
.@“e& =—ZnEMEEN+ L (8.6 8wy ud uy) — DUy
P°u) = uy
Qo‘u; — u;]
ga — "gml(sml 2ml7 )+$l( l 31 gl’ul,l/lz,ug)+kq]€ +01
@aesz — eS'J
& Es
D%el = el
&s 56
Der = =L (E"EE) + L, (8787, 80w ud ug) — D ug

Puy = ui
@a Yz — ugz
Poug = —Lp (" 8" &) + L, (67,657,657 ui ug ug) + kel + 02
@ae =ep
& &
‘@aeés = eEt)

@ae; = =L, (647, E7 E) + L, ( 2L ESL 6 Uy ug ,u9) — P%ug

o
P°uy = ug



7.4 Some Numerical Examples 121

60

50

40

30

20

xmz ax83 7:'1:54 axS{,

10

opeS

time (s)

(a) Time evolution of synchronized trajectories
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Fig. 7.14 FGMS in orignal coordinates (see Sect. 7.4.3, Example 3)



122

Fig. 7.15 Configuration of
master system x,,, and slave
systems Xy, , Xg,

90( Yz

Y~ —
Duy =
a
7 eélo -
o _
7 8511 -
o
7 8512 -

o
D*uyly

o
D*uy,

o
7 ”12

D€y, = ey,
.@O‘EEM =
@“esls =
D*uis =
D uiy =

QS5
D uy

where

53
Uy
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.Tsl

— L, (77,87 B + L (87,67 & uy s ug ug) + ke + O3

S4
e,

s4
3

— L, (8], 657 E67) + L, (816, 11 £ 10, 1Y) UYy) — Duy

54
un

84
Up

«Zmz@ ’ Esmz ’Sgnz)"‘-’gﬂu( 1%7 ﬁv f42’”10’u11’”12) +k-v4e§4 + 6,

S5
s

L 2 E B+ L (6, £ Wy us) — DU

55
Uy

S5
Uys

— L, (647 Esmz &) + L ( 13 14"515’ Uy, Uy, U ;55) +kSse§5 +6s

O = (
O, = -0,
O = (6 -
@4—/(1( %
@5:/(1(

D& &)t - 8)

10) T2 (& — &) +r3 (&7 — £3)
13) e (611 — &0 + x5 (513 — 673)
7) Ko (8 — &) +rs (65 - &)

After some algebraic manipulations, we have that #%e; = (—£ + &) e;. Then, syn-
chronization error converges asymptotically to zero if matrix (—£ + &) is Hurwitz.
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Where
E =diag(&, 5), £=diag(L,® B, L, ®B,),

8y =—L, ® By +diag (7, %), &= —L,, ® B + diag (94, o4, %),

000 . 0 1 0
Bi=B,=(000]|, &= 0 0 1 , 1 <j<5,
K1 K2 K3 —kij —kaj —ks ;

Assume parameters and initial conditions that ensure chaotic behavior as in example
4 (Sect. 7.4.4). Let ks ; = [10 20 10] for 1 < j < 5 and diffusive coupling gains as
K1 =2,k =2 and k3 = 2.

Figure 7.16 illustrates synchronization error convergence to the origin in trans-
formed and original coordinates, respectively, FGMS is shown in Figs. 7.17 and
7.18 in transformed coordinates. And, taking the mapping (7.21) FGMS is shown in
original coordinates in Figs. 7.19 and 7.20. The effectiveness of our approach can
be verified from the multi-synchronization trajectories. Here, multi-synchronization
is shown for two decoupled groups. Note that the synchronization error converges
asymptotically to the origin. Convergence to the trajectories of master systems is
unaffected from the interaction between the slave systems, this is due all eigenvalues
of (—£ + &) have negative real parts. It can be seen that any interaction is allowed,
and in this example, first group have a undirected graph and second group have a
directed graph. It is worth mentioning that the state of GS and CS can be achieved
in the network, that is, the state of FGMS is present.

7.5 Concluding Remarks

In this chapter, we tackled the fractional generalized synchronization problem of non-
linear commensurate fractional order Liouvillian systems, this problem was solved
via multiple fractional dynamical feedbacks from a chain of fractional integrators
inspired in differential algebra techniques. Moreover, we proposed a methodology
for generalized synchronization of strictly different fractional order Liouvillian non-
linear systems, we have designed a family of transformations by means of a family
of fractional differential primitive elements and their fractional derivatives to carry
out the families of master and slave systems to a MFGOCEF, then generalized multi-
synchronization is achieved. We have also considered the case of complex interaction
between slave systems as a natural extension of Theorem 7.1, we showed that there
is no restriction on the interplay between slave systems and synchronization error
convergence to the origin. We introduced definitions related with the concept of frac-
tional Liouvillian algebraic observability, Picard—Vessiot systems, and the concept of
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4 i i : : :
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(a) Transformed coordinates

time (s)
(b) Original coordinates

Fig. 7.16 Time evolution of synchronization error (see Sect. 7.4.4, Example 4)
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Fig. 7.17 FGMS in transformed coordinates (see Sect. 7.4.4, Example 4)

Fractional Generalized Multi-Synchronization (FGMS). And, we gave some numer-
ical examples over a particular class of fractional order chaotic systems to show
the effectiveness of this methodology. In our approach, we can explicitly obtain a
fractional- order dynamical controller for the whole system instead of using a control
signal for each fractional differential equation (active controllers), this versatility is
obtained due to fractional differential primitive element. A disadvantage of the pro-
posed approach is that we need a complete knowledge of the system to achieve
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(b) Multi-synchronization trajectories

Fig. 7.18 FGMS in transformed coordinates (see Sect. 7.4.4, Example 4)

synchronization as is in active control case, but this problem is evidently solved
with our methodology by means of observer-based fractional dynamical controllers.
Potential applications of our current approach can be given in the context of secure
communications and data encryption, our results can be naturally extended to this
type of applications highlighting the Liouvillian feature that improve the reconstruc-
tion of the messages [18]. Forthcoming investigations will tackle the optimization of
the proposed fractional controller as in [12], this will allow us to obtain anappropriate
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Fig. 7.19 FGMS in original coordinates (see Sect. 7.4.4, Example 4)
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Fig. 7.20 FGMS in orignal coordinates (see Sect. 7.4.4, Example 4)
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size of the control signal. Another direction is the extension to the case of parameter
uncertainty, by designing fractional dynamical controllers in the sense of identifiable
parameters [19, 20].
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Chapter 8 ®)
An Observer for a Class of St
Incommensurate Fractional Order

Systems

8.1 Introduction

The main contribution in this chapter is to show a new observer for the synchro-
nization problem in partially known nonlinear incommensurate fractional-order sys-
tems, we propose a novel technique using the master—slave synchronization scheme
for estimating the unknown state variables based on a new IFAO property. As far
as we know in the literature, this class of estimation scheme has not been used in
incommensurate fractional-order systems.

The remainder of this chapter is organized as follows: In Sect. 8.2, we introduce the
new concept given by Definition 2.10 (IFAO) as well as we propose a new system to
estimate the unknown dynamics (slave system) so-called Incommensurate Fractional
Reduced-Order Observer (IFROO), In Sect.8.3 we apply our methodology to an
Incommensurate Fractional-Order Rossler, Chua—Hartley and Financial Systems, the
intention of choosing these systems is to clarify the proposed methodology and to
highlight the simplicity and flexibility of the suggested approach, also we show some
numerical results to confirm the effectiveness of the suggested approach, Finally, in
Sect. 8.4, we close this chapter with some concluding remarks.

8.2 Problem Statement and Main Result

Now, consider the following class of incommensurate fractional order system:

d
Wxi=ﬁ(x1,.-.,xn),1§i§n,ieZ+ (8.1)

where «;’s are rational numbers between 0 and 1.

Consider the system given by (8.1), we will separate in two dynamical systems
with states X € R” and n € R"~7, respectively, with x/ = (x/, n!) the first system
© Springer Nature Switzerland AG 2018 131
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describes the known states and the second system represents unknown states, then
the system (8.1) can be written as:

X = f(x,n)
n®) = A%, n) (8.2)
i = hz(x)

where ¥ € R?, h : R? — RY is a continuous function and 1 < p <nand f7(x) =
('@ m). AT ), f eRP, AR

Now, the problem is: How can we estimate the 7’s states? this question arises
because if we know the n’s states, we can use this signals to generate measuring
depending on them.

If we assume that the components of unknown state vector n are IFAO (see
Definition2.10), then we can describe our problem in terms of the master—slave
synchronization scheme, which is defined in the following way. Let us consider the
master system:

' = AiE, ) (8.3)

Yoo =1 = i (e, y, DD yg, ..., DU D y) (8.4)

and consider an unknown dynamic:
) = A; (%, m) (8.5)
where 0 < @; < 2 is a rational number and A; (X, 1) is an unknown dynamics which

contains 4; (x, ). Now, letus propose an Incommensurate Fractional Reduced-Order
Observer (IFROO) with order ¢;, so the slave system is given by:

7% = ks, (n; — ;) (8.6)
yi = i (8.7)

In the master—slave synchronization scheme, the output of the master system
represents the target signal, while slave’s output is the response signal. Therefore,
given a master system and our slave system, it should be determined some conditions
in order to synchronize the output of slave system with the output of master system.

Let us define the synchronization error as:

e =Yy — Vi =N — M (8.8)
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We establish the following assumptions:

H1: n; satisfies IFAO property fori € (p+1,...,n)

H2: A_,,H is bounded, i.e.,, 3 M € R™ such that ||A_(X)|| < M,V x in a compact
set £2, where A(X) = (A, ..., A)T

H3: k;“ S R*

Now, we are in position to propose the proposition

Proposition 8.1 Let the system (8.1) which can be expressed as (8.2), where the
above conditions are fulfilled, then (8.8) converges asymptotically to an compact set

_ M
B, (0), withr = o i.e., the synchronization is achieved (See Chap.2).
i

Proof From HI1, we can write Egs. (8.5)—(8.8). Taking the fractional derivative of
the Eq. (8.8), we have: . ) )
ei(ai) — 77(Ofi) _ ﬁz‘(m) (8.9)

Substituting the fractional dynamics (8.5) and (8.6) into (8.8), we obtain:

e 4 ks ei =0 (x) (8.10)

1

There exists a unique solution for the system (8.10), due to A; (x(1)) — kj,e; (¢)
is a Lipschitz continuous function on e.! Solving the above equation, we have:

ei(t) = e;, Eg, 1(—k;;1®) + (8.11)
t
+ / (1 — 0% Egy (kg (t — D) 47 (1)t
0
where ¢; (0) = ¢;,. Using Triangle and Cauchy—Schwarz inequalities and H2
| ei(t) | < | eigEa,n(—k,1®) | (8.12)

t
+ M/ | (t — )% Eg, 5, (—k;, (t — T)%) | d
0

The functions (r — 7)% ' Eg, & (—kj, (t — 7)%) and Eg, (—k;,1%) are not negative
due to Property 2.1 in Chap. 2 of Mittag-Leffler function and H3.

lei(t) | < | ey | Eqa(—kyt™) (8.13)

t
+ M/ (t — )% " Eg, 5, (—k;, (t — ©)*)dT
0

1Equation (8.10) is nonautonomous, but the Lipschitz condition assures a unique solution [1].



134 8 An Observer for a Class of Incommensurate Fractional Order Systems
Using Property 2.2 in Chap. 2 of Mittag-Leffler function

| ei(t) I<| €, | Ea1(—kyt™) + Mt Eg, 51 (—k;t*) (8.14)

Ift - oo, we use the Eq. (8.4) with u = Sn% due to H3.

lim |e;(t) | <|e;,| lim E&i,l(—k;,,t&") (8.15)
t—00 1—00
. & & M
+ Mtglgt 'E&,.@H_[(—k;h,[ N = k_ 0

i

8.3 Numerical Results

In this section, we study the problem of synchronization for incommensurate frac-
tional dynamical systems by means of numerical simulations. Consider the fractional-
order Rossler system [2] as follows:

= —x —x;
X = x4 0.63x, (8.16)
X =02 4 x3(x; — 10)
where x = (x, x2, x3)7 is the state vector, o; = 0.9, o, = 0.8 and a3 = 0.7 and we
take the system output as y = x,. The system (8.16) can be rewritten as (8.33):
5 =1 +0.63%,
0= —% - (8.17)
ﬂ§a3) =0.2+n3(n — 10)
where x, = X»,x; = n1,x3 = n3and y = X,. From (8.17) the following relationships

are achieved:
m=y“ —0.63y (8.18)

m=—y+0.63y@ — p2pay (8.19)

from (8.18) and (8.19) we can see that n3 = x3 and n; = x; are IFAQO;
The master systems are given by:

=% —m (8.20)

Yy =M1 = y(az) — 063_)7 (821)
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) = 0.2+ n3(n; — 10) (8.22)
Yoy =13 = —y +0.63y@ — DDy (8.23)

Remark 8.1 To design the slave system, the derivative order for each #; is chosen
such that ¢; is equal to the biggest fractional-order derivative of the output y.

Now, we design the slave system for (8.21) in this case o; = o, = 0.8, then we have:
A = ki (g = ) (8.24)

and substituting (8.18) into (8.24) we obtain:
A = ki (v —0.63y — i) (8.25)

In order to avoid fractional-order derivatives, it is proposed a change of variable
N1 = y1 + k1 y and from Eq. (8.25) after some manipulations, we obtain:

1 = ki (—0.63y — i — k1Y) (8.26)

Now, it is time to estimate x3, but in this case we consider x; unknown, then we
use:
X = D* D% x; — 0.63x,™" (8.27)

Due to the system is incommensurate, previous equation shows a derivative which
depends on different fractional orders; however, it is possible to obtain a reduced
order observer after additional manipulations as it is shown. From the first equation
of (8.16) and Eq. (8.27), the following expression is obtained:

x3 =13 =—y+0.63y®@) — p2py (8.28)

In this case a; = o1 + ap = 1.7 which is smaller than 2. At the beginning, the
slave system for (8.22) has the following representation:

D D" 5 = ky(—y — D2 D%y 4+ 0.63y®) — 73) (8.29)

We introduce in (8.29) the change of variable 73 = B — kyy in order to avoid the
term y® %) then we have:

DD By = ky(—y +0.63y) — B; + k) (8.30)

Finally, we need to avoid one more term, that is y©@’. To achieve this goal,
we propose a change of variable as follows: first consider a new variable 8, and
substituting the change of variable 8; = §_a2) + 0.63k, y("”) into (8.30); then, after
some algebraic manipulations it is possible to achieve the following relationship:



136 8 An Observer for a Class of Incommensurate Fractional Order Systems
Y = ka(—y — B = 0.63kay ") + kay) (8.31)

We select the observer’s constant parameters as k; = 120 and k, = 7000.

Figures 8.1 and 8.2 show the original system states and the slave system syn-
chronized with the master system respectively. To end this example, the Figs. 8.3
and 8.4 evince the convergence of estimates to original states. Now, consider the
fractional-order Chua system [3] as follows:

3
(@) ax;  2axj
X, =axy + — —
! T T
) =x; — x3 + x3 (8.32)
X =~ B

100

x2 -40 -20 X

Fig. 8.1 Phase plot of the incommensurate fractional-order system with initial conditions
xl(O) = 1,xz = Oandx3(0) =-5

100

-40 -
X, 20

Fig. 8.2 Phase plot of the slave incommensurate fractional-order system with initial conditions
71(0) = 100 and 73(0) = 200
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Fig. 8.3 Synchronization of the incommensurate fractional-order system, state x; versus
estimate 1

100

-40 ! E
-60 o 1
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_100 ! ! !
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Fig. 8.4 Synchronization of the incommensurate fractional-order system, state x3 versus
estimate 73

100
where a = 12.75, B = —, x = (x1, X2, x3)7 is the state vector, o] = 0.99, ar =

0.91 and @3 = 0.95 and we take the system output as y = x;. The system (8.32) can
be rewritten as:

@) ax;  2ax;
X =an, +— —
n 7 7
ny? =% — 2+ (8.33)

Ny = — B
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where x| = X, X = 12, x3 = 3 and y = x;. From (8.33), the following relation-
ships are obtained:

(1) 23
Y Y Y
= — = 8.34
m=— 7t (8.34)
D% D% (@) 9y,3(@) (a1) 23
n3 = y_or o4 —y+y A (8.35)
a 7 7 a 7 7

from (8.34) and (8.35), we can see that , = x, and 13 = x3 are IFAQO;

(02)

mo=X1—m+tn (8.36)
(1) 2 3
y y 2y
o _rX 2 8.37
yT]z n2 a 7 + 7 ( )
ny? = —Bny (8.38)
D* Dﬂtly y(vtz) 2y3(012) y(al) y 2y3
= = - - —Z 4= 8.39
Yoy =13 p 7 + 7 y+ p 7 + 7 (8.39)

Now, we design the slave system for (8.21) in this case &; = o1 = 0.99, then we
have:

A = ky(ny — Ha) (8.40)

and substituting (8.34) into (8.40) we obtain:

(or1) 2 3
N y y y N
77; l)_k1< - _74___ 2) (8.41)

7

In order to avoid fractional-order derivatives, it is proposed a change of variable

k
=y + ny and from Eq. (8.41) after some algebraic manipulations we obtain:
a

2y° k
Y =k, (_X 2, l_y) (8.42)

Now, we estimate x3, but in this case we consider x, unknown, then we use:

N =% —m+m (8.43)

Since the system is incommensurate, previous equation shows a derivative which
depends on different fractional orders; however, it is possible to obtain a reduced
order observer after some manipulations as it is shown. From the first equation of
(8.32) and Eq. (8.43), the following expression is obtained:
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(02)

X3 =13 =1, y =12
D% D% (a2) 2y3() (ar) 243
= SRR S R A (8.44)
a 7 7 a 7 7

In this case @; = | + @ = 1.9 which is smaller than 2. At the beginning, the slave
system for (8.38) has the following representation:

A = k(s = ) (8.45)
(@ita) r y(ot|+ot2) B y("‘” N 2y3(a2)
n3 =K P 5 -
(1) 23
- (8.46)
a 7 7

k
We introduce in (8.46) the change of variable 73 = ) + =y in order to avoid the
a

term D% D%y, then we have:

(a2) 2 3(an) (ay)
(o1 +0an) y y y
=k (-2 — -
hi 2 ( 7 P Tt
y | 2y kay
RN A A 8.47
7 7 B p ) (8.47)

Finally, we need to avoid derivatives y© and y®). To achieve this goal, we
propose a change of variable as follows:

B ko) Dy 3 py (maa)
pr=pier L r ) (8.48)
7 7 a

Substituting the change (8.48) into (8.30) then, after some algebraic manipula-
tions, finally, we have the next:

—y 2y k2
Y 2 y ) (8.49)

(1)
prm— k - — - -
2 2 ( Y + 7 o Bi

We select the observer’s constant parameters as k; = 100 and k, = 1000.

In Fig. 8.5, we can observe the original systems while Fig. 8.6 shows the slave
system synchronized with the master system. Finally, the convergence of estimates
to original states it is shown in Figs. 8.7 and 8.8.
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X, -10 -2 X

Fig. 8.5 The incommensurate fractional-order system with initial conditions x;(0) = 1, x, =2
and x3(0) = —1

Fig. 8.6 The slave incommensurate fractional-order system with initial conditions 7; (0) = —10
and 72(0) =0

Finally, we study the problem of fractional financial system [4]

2 =x3 4 (12 = 3)xy
X =1-0.1x, —x3 (8.50)
x3 U= =X — X3
where the interest rate, investment demand, and price index are given by xy, x, x3,
respectively, x = (xy, x2, x3)7 is the state vector, a; = 0.95, ap = 0.98, and a3 =

0.99, and we take the system output as y = x3. The system (8.50) can be rewritten
as (8.33):
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Fig. 8.7 Synchronization of the incommensurate fractional-order system, state x» versus
estimate 7,
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Fig. 8.8 Synchronization of the incommensurate fractional-order system, state x3 versus
estimate 73

B = —m -3
N\ =% + (2 — 3)m (8.51)

ny” =101 —n;

where x3 = X3, x; = 1y, x, = 12 and y = x3. From (8.51) the following relations

are achieved:
(03) _

n=-y y (8.52)
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1
= ey DT =Yy 3 ) (8.53)

from (8.52) and (8.53), we can see that n; = x; and 1, = x; are [FAO.

(ar)

) =%+ (= 3y (8.54)
ypo=m=—y —y (8.55)
s =1-0.1n —n} (8.56)
Vi = —_y(af) e e A S A2l I CED

Now, we design the slave system for (8.54), then we have:

~(a3)

ny o = ki(n — 1) (8.58)
and substituting (8.52) into (8.58) we obtain:
i =k (= =y =) (8.59)

In order to avoid fractional-order derivatives, it is proposed a change of variable
11 = y1 — k1 y and from Eq. (8.59) after some manipulations we obtain:

vy =k(kiy —y — y1) (8.60)

To estimate x, there is a problem when —y®) — y = 0, in this moment the IFAO
property is lost so, in order to overcome this drawback, from (8.51), we use as an
estimate:

n2 = 10 — 1075 — 1072 (8.61)

then, the slave system for (8.56) is given by:
15 = ko (12 — ) (8.62)

substituting (8.61) into (8.62) and after some algebraic manipulations, we achieve
the following observer:

1
~(a2) A2 ~
= ——(10k, — 10k —k 8.63
1, 1 10k2( 2 217 212) ( )

Finally, the simulations shows the effectiveness of the proposed observer, in sim-
ulations the gains are k; = 100 and k, = 100.
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Fig. 8.9 Original system
initial conditions
X0 =1(2,3,2)

Fig. 8.10 Slave system
initial conditions 1| = 20,
n =30

Fig. 8.11 State x| versus
estimate 1|

o
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Fig. 8.12 State x, versus 20
estimate 7,

40 60 80 100

0 100 200 300 400 500
Time (sec.)

The Fig. 8.9 shows the original systems while Fig.8.10 shows the slave system
synchronized with the master system. To end this section, the Figs.8.11 and 8.12
evince the convergence of estimates to original states.

8.4 Conclusions

In this chapter, it was introduced a new concept of Incommensurate Fractional Alge-
braic Observability (IFAO), we introduced a new observer (IFROO) to solve the
synchronization problem for incommensurate fractional dynamical systems. The
scheme was applied to incommensurate fractional chaotic systems; however, it could
be applied to other classes of systems which satisfy the Proposition8.1. Finally,
numerical simulations showed the effectiveness of the suggested approach.
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Chapter 9 )
Fractional Generalized R
Quasi-synchronization

of Incommensurate Fractional

Order Oscillators

9.1 Introduction

GS was introduced in [1], but here definitions are extended and given in our own
conception, for fractional order nonlinear systems, by using the fractional incom-
mensurate differential primitive element. The problem of the Fractional Generalized
Synchronization (FGS) was studied for a class of strictly different nonlinear com-
mensurate fractional order systems in the master—slave configuration scheme [2].
Recently, numerous works have been reported on the problem of synchronization for
incommensurate fractional order chaotic systems [3—6]. In general, study synchro-
nization of strictly different systems is equivalently to study the asymptotic stability
of the origin of the synchronization error or the stability of the synchronization man-
ifold if possible. In many of these references, the stability of the incommensurate
fractional order dynamics of the synchronization error is translated into a problem of
stability of a commensurate fractional order or even an integer order system through
a change of variable. In this chapter, we will show a convergence analysis directly
from the incommensurate fractional order dynamics of the synchronization error. It is
natural to present the incommensurate fractional order dynamics of the synchroniza-
tion error in a modal decomposition due to each dynamics have different fractional
order. Thus, we can obtain asymptotic convergence in a compact region near the
origin in case of synchronization error for generalized synchronization of strictly
different incommensurate fractional- order systems by using dynamical controllers
obtained from differential algebraic techniques. In this chapter, the main contribu-
tion is a Fractional Generalized Synchronization constructive method for nonlinear
incommensurate fractional order chaotic systems in a master—slave topology, this
phenomena is studied from an algebraic and differential point of view, that allows
us to construct an Incommensurate Fractional Generalized Observability Canonical
Form (IFGOCF) from an adequate selection of a fractional differential primitive
element and moreover, give explicity the form of the synchronization algebraic man-
ifold for strictly different fractional order nonlinear systems. The former enables us
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to design an incommensurate fractional order dynamical controller able to achieve
synchronization of strictly different incommensurate fractional order chaotic sys-
tems. Moreover, we introduce the concepts so-called Incommensurate Fractional
Algebraic Observability and a fractional order Picard—Vessiot system. As far as we
know, synchronization of strictly different incommensurate fractional order systems
have not been tackled from this perspective. The rest of the chapter is organized as
follows: A solution for the problem of generalized synchronization for incommensu-
rate fractional order chaotic systems is shown in Sect. 9.2. In Sect. 9.3, the proposed
methodology for fractional generalized synchronization between Chua—Hartley and
Rossler is applied and numerical results are showed to confirm the effectiveness of
the suggested approach. Finally, in Sect. 9.4, some concluding remarks are given.

9.2 Problem Statement and Main Result

Consider that there exists an element y € R such that (D% - - - D%y) is analytically
dependent on (y, D*'y, D**D*'y, ..., D! ... D¥y):

H(y, D%y, D*'D®y, ... D% ...D%y y, D*u, D*2D%u, ..., D% ... D%u) (9.1)

The system (9.1) can be solved locally as:

Dot,, .. Dctly — (y’ Daly, DalDazy, e Dan—] . ,Da]’u’ Dotlu7
DD u, ..., D" .. D*'u) + (D* - D“'u)

Then, we can establish the following lemma.

Lemma 9.1 A nonlinear incommensurate fractional order system (2.21) is trans-
formable to a IFGOCF if and only if it is PV.

Proof (Sufficiency) Letthe set {e, D*', D**D%¢, ..., D%-' ... D% ¢} be a finite basis
(PV) where n > 0 is the minimum integer such that (D% --. D*'y) is dependent
on y, D%y, D D%y, ..., D%"...D* u, D*"u, D**D%u, ..., D% -.- D%y
Redefining & = D%-! ... D%g, 1 <i < n, this yields to next IFGOCF

5,@” =&+, 1=j=n—1

@) = — L&, ... &, u,u, . .. D" ... D" y) + D ... D"y
y==6&
(Necessity) It is immediate. O

Now, consider a master—slave configuration of two incommensurate fractional
order systems, assume the master system has the following form:
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xg(;;) = Fy(xp, upy)

ym = hy(xp, upy) 9.2)

and the slave system is given by:

xff‘) = Fg(xs, us(xs, ym))

ys = hs(xs, us(xs, yu)) (9.3)

where xg € R", Fg : R" x R — R" Fy; : R" x R — R" x), € R* hg : R* x
R — R, hy : R x R™ — R, up € R™, yg € R ug: R* x R — R yy,
vs € R, Fs, Fy, hg, hy are assumed to be polynomial in their arguments, with
initial conditions x,;0 = x3/(0) and x50 = x5(0) and assume the fractional order
a(@=I[a,a,...,0,)  forO=ag <& <2,i=1,2,...,n)is not necessarily
equal to «.

In this case of strictly different Incommensurate Fractional Order Chaotic Sys-
tems, the well-understood definition of Fractional Generalized Synchronization lacks
sense.

From Lemma9.1, it is clear that we can obtain a corresponding IFGOCF for
master and slave systems, and from these canonical forms, it is possible to obtain an
incommensurate dynamical controller to ensure the state of FGS, this is summarized
in the following Theorem and the main result of this chapter.

Theorem 9.1 Let systems (9.2) and (9.3) be transformable to a IFGOCF. Let us
define zy = (Zm,» My - - - zMn)T and zs = (2s,, 28ys - - - » zsn)T as the trajectories
of master and slave systems in the transformed coordinates, respectively, with zy, =
D=1 ... D%y and z5, = D' --- D% yg for 1 <i < n. Moreover, assuming that
HI and H2 are fulfilled. Then, the solution of (9.4) converges asymptotically to a
compact set B, (0), withr = max <;<, i; and r; = Y_)_; | 7]~ |i_l| In other words,
I
generalized synchronization is achieved.

Proof Without loss of generality suppose u,, = 0 € R™, and take the fractional
incommensurate differential primitive element for the master system as:

M = E Oy XM, =2 2ZM;

l

where ay, is a differential quantities of u, and their time finite fractional derivatives
and for the slave system is:

ys = Zas,»xs,» + Zﬁs,-us, =2z,
i i

where «,, Bs, are differential quantities of ug and their time-fractional derivatives.
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According to Lemma9.1, we obtain the IFGOCF of system (9.2)

(o)

ZM/- ZZM,'H’ 15]5}’[—1
(an)
2y = —LuEm s imys -5 2m,)

and the IFGOCF of system (9.3),

(@))

Zsj ZZSH_]» 15]5”1_1
(o) (@)
ann = _XS‘(ZSwZSz? "'»anvulaMZs "'1uy) +u}/y
where
Uy =us
(1)
Uy =ug'

uz = DaszuS

u, = D% ... DYy

Consider the dynamics of the synchronization error e, = z); — zs given by the sys-

tem:

@) @;) .
e =e,, +gj(ZM/+1,ZM; ) 1<j<n-—-1

Zn

(@) () .
wheregj(zMjH,zAj; )= zAZj —ay,, forl <j<n-—1

Then, we can rewrite the error dynamics as an augmented system:

' - ]
e = 2"+ Li(25ys 25 a2 U U, s ) — U

eg’) =e, +§fj(zM/H,z§S?)) 1<j<n-1

eg‘”) = zf&l) + L (25, 28y - 28, UL UD,y ooy Uy) — u;&”)
u;&])zuﬂl 151_'5)/—1

u;&") :zﬁ:)—i—,i”s(zsl,zgz,...,zsn,ul,uz,...,uy)+KeZ

where k = (ki ky -+ k,), ki >0 for 1 <i <nande. = (e, e, -

we have: i
eéa) =Ae; +9,

ezn)T. Then,

9.4)
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with
0 1 0 0
0 1 0 0
A =
0O 0 O 1 0
0o 0 0 . 0 1
—ky —ky —k3 ... —k,_1 —k,
and

G (2 Z;‘;:))

G (2 Zj&j))

(@n-2)
%1—2(ZM,,,| ’ Z/S,,,; )

(@)
Gu-1(2m,s ZMHl

0

In order to analyze the solution of (9.4), consider the following assumptions:
H1: Assume A is Hurwitz matrix with A; (A) # 1;(A).
H2: ¢; is bounded, i.e., 3 g; € R* such that

aj)
%)@y 2y ] < 8
forl <j<n-—1. O

Remark 9.1 1f the order of time-fractional derivatives coincides @ = a (master and
slave, respectively), the term ¢; (@M zﬁsj’f)) is zero for all j. Then, it is clear that
the asymptotic stability of the zero solution of the Eq. (9.4) is directly obtained from
Deng’s Theorem [7] for all rational numbers 0 < o = @ < 1.

Remark 9.2 Given the Hurwitz matrix A € R"™" with different eigenvalues,
i.e., Lj(A) # A;(A) there exists a linear transformation V € R"*" such that D =
V-IAV = diag(Xrq, ..., A,), where matrix V is the Vandermonde matrix, and is
given by:

1 1 1 -1 1

Al A2 A3 Al Mg

V= 9.5)

n—3 yn—=3 1n-3 n—3 yn-3
)‘1 )"2 )"3 U )‘n—l )"n

n—2 yn—2 yn-=2 n—=2 yn-2
)"1 )‘2 )"3 e )"nfl )"n

-1 -1 -1 -1 -
AT AS TSt

n—1
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with the associated characteristic monic polynomial p(}) = ]_[7 A —X) = po+
piA+---+ A" And, its inverse V™! = ATV H where A = diag(p(r)), ...,
P (X)), p(X;) are evaluated derivatives of p(X) regardingto L = A; for 1 <i <n
and H is the Hankel matrix given by:

P1 P2 P3Pl
p2 ps psa--- 10

H = . . . . .
pn—2pn—11 0 0

Posi 1 0 -0 00

I 0 0--- 00

where the coefficients of p()) are p;_; = k; for 1 <i < n (for further details of the
inverse Vandermonde matrix see [8]).

Remark 9.3 Since the trajectories of a chaotic system are bounded, we can choose
gjasthesup,_;_, ¥;() foreach zy, with1 < j <n—1.

Assume V is invertible, taking the derivative of &, = Ve, in the trajectories of
(9.4) we obtain:

e =De, +9, (9.6)
where 4., = V!9, )
&
4
G, =|
M g_n_z
gqn 1

with

p (ZZ;{ Pirk— T )L?_j)
- o ¥, ©9.7)
P (A

for 1 <i <n, 1 <j<n—1. Note that for complex eigenvalues, A; should be
replaced by its complex conjugate in (9.7). From assumption H2, we can establish
the following

H2’: g_, is bounded, there exists g; € R* such that

n—1 n—j k—1 n—j
-~ _ _1 Ditk—1A: A
Gl <g=) "*lp”".(l)v’) Llgj, 1<izn
P P (i
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Then, we obtain from (9.6) the following:

e = pe, +%, e, 0)=e,0), 1<i<n 9.8)

Note that (9.8) is the initial value problem for a nonhomogeneous fractional dif-

ferential equation under nonzero initial conditions with Caputo differential operator,

due to f(e;,, zm) 1= Mie;, + ¥ (zm) is a Lipschitz continuous function regarding to

e,,, that is to say, there exists a unique solution for (9.8) (see [9]). We can calculate
the solution of (9.8) as follows:

e, (1) = e, Eq,i (ht™)

+ / (t = D% Eg g (it — )G (2t ()T
0

where e,,, = e, (0). Using Triangle and Cauchy—Schwarz inequalities, we can obtain
the following:

ez, ()| < |e.,,Eq.1 (A1)

t
+g,-/ (= O Eg o Ot — 1)) |d
0

Due to Property2.1 (Chap.2) of Mittag-Leffler functions and 2; < 0 we have
(r— t)"""lEO;,,,(;,, (Ai(t — v)*) and Eg4, 1(A;, t)* are not negative, then

18, (0)] = ez | Ea,1 (Ait™) (9.9)
t
+ & / (t = D% Egq (it — 1))t
0
and from Property 2.2 (Chap.2)

|e., ()] < |ez,| Eg, 1 (hit™) + 8t Eg, a1 (1i1™)
Note that, if 1 — oo, from (9.9) with u = 371% using Theorem 2.1 (Chap. 2)

lim |2, ()| < |&,,| lim Eg, 1 (3;1%)
t—00 =00

+ g; lim 1% Esz 1()‘it&i) = i

e o |2 ]
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Then, system (9.8) converges asymptotically to a compact set { e | le;| < gi/lAil }
The former enable us to obtain a bound for the error vector in transformed coordinates.
Assume e, = Ve,, then:

n
e, =Y M'e, 1<iz<n
I=1
using Triangle inequality and the limit when ¢+ — oo, we have the following:

n
lim le; | < 7= |27 lim |2,
—00 =1 —00

Finally, the next estimate is fulfilled'

lim llezlloo < 1
—>00

Then the solution of (9.4) converges asymptotically to a compact set B, (0) with
r = maXISiSn f[.

Remark 9.4 1t is not hard to see that when o #~ &:
. n . n
lim || (zm, zs) lIn.< (/5 lim [le;|lc </ 57
t—00 2 t—o00 2

lim || (zur. 25) 2. = 0

and when o = a::

where
I (zmsz9) = inf |l zarszs) — G 29) 11}

m,2s)EM;
with
M, :={(zm, zs5) lzm = zs} -

From Lemma9.1 and Theorem9.1 we can establish the following result.

"Forx = (x1, %2, ., %) € R || x [looi= max {|x1], [xa, . .., xal}.
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Corollary 9.1 All incommensurate fractional order systems are in a state of FGS if
and only if are PV.

Proof The proof is immediate and is omitted. |

9.3 Numerical Results

Consider the incommensurate fractional order Chua—Hartley system [10] as the mas-
ter system:

ax, 2ax
x{m)=az+7— 71
X =x —x 4 x3 (9.10)
X = —Bx
y =X

where o = (0.94 0.98 0.92), witha = 12.75, 8 = 100/7, the fractional incommen-
surate differential primitive element is chosen as the output of system yy, = x;.
Then the corresponding coordinate transformation is given by:

2y ym
2 | = 0" | = du o) ©.11)
23, yl(\;tz)
le
2ax3
_ axy,, + ax71M — T
( +x3,) + axiy  2a(xy,)*
a(x;, —x X —
i 2u 3y 7 7
From (9.11), we obtain the IFGOCF.
Z(Dtl)lM 22,
Z(OI)M — Z(a2)2M — ZSM (9'12)
7@, Y (Xpr)

3
ale 2(1le

axy,, +
axﬁf) 3 2a(xy,, )3 @)

7
ax
axl(‘;j) — axéi‘;) —afxy, + D" D™ (—71M) — D% D* <

= a(xy,, — x2,, +x3,) +

2a(x1M)3
=)
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Let the slave system be the incommensurate fractional order chaotic Rossler sys-
tem given by [11]:

xf&‘) = —X; — X3
0 = x; +0.63x, (9.13)
= 0.2+ x30x; — 10)

y=x

where o = (0.9 0.8 0.7), the fractional incommensurate differential primitive ele-
ment is chosen as the output of system (9.13) ys = xo + u;.
We propose the coordinate transformation:

21y ys
25 | = [ 57| = dsxs) (9.14)
23, ygal)

Xog + Up
= X5 + 0.63)(25 -|-_I/t2
—xpg — X35 + 0.63x37 + u3

Then, the IFGOCEF of system (9.13) is given by:

] @) 22,
1@ = Z(fitl)zs = 23 o (9.15)
73 Vs(xs) + us”®

Xlg + 0.63)625 +iu2
i —Xo, — X35 + 0.63X§?1) + u3 i
—x3 — 0.2 — x3; (x1; — 10) + D% DT0.63x5 + uy™

According to methodology proposed, consider the synchronization error as:
€ =2y — s 1<i=<3 (9.16)
ie.,

€] = ZIM - Z]s
€y = 22, — 224

€3 =23, — I3
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Taking the Caputo derivative «; of (9.16), we have:

@) _ @) _ @)

a
oD;'e; = ¢, v is

for &; in the order that the transformate coordinates appear in slave system. The
incommensurate error dynamics is the following:

65&2) =e+9

) — ey 4+,
6‘;&3) — Z:(;z;) _ WS _ Mé&})
where ¢, := 7\ — d% =7 —
1:=2q, 2oy ANA 5 =2, L3y
Taking uy" = 2§ — Ws + ke, where k = (ki k» k3), k1, ko, k3 > 0 and e =
(e1 e 63)T, then:

™ 0 1 0 (e 4
SV =10 0 1 el|l+|% 9.17)
el —ki —ky —k3 ) \e3 0

Choosing the gains k = (170, 476, 150) with initial conditions zy0 = (6 1 —6)
and zgg = (5 1 —6). We can numerically estimate the bounds for ¢, and % as
g1 = 0.4994 and g, = 1.1642 respectively. Due to A} = —146.764, », = —0.41,

A3 = —2.825 are distinct eigenvalues and the corresponding matrix is:
111
V=1Xx X2 X3
2343

is nonsingular, (9.17) can be expressed as follows:

& a0 0 (e 4
éng) 010 el+|4%]|.
—§a3) 0 0 A3 e3 %

where

_ (kA + A G+ (ks + A3) Y
%:(2 shi + A1) 9, (32 3) 2 1<i<3 ©.18)
k2+2k3)ni+3)ni
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Consequently, we can calculate the bounds for %_1, 54_2, and %_g as g1 = 0.0002, g, =
1.0784 and g3 = 0.5792 respectively. Finally, we conclude that error e; is bounded
for all i in an compact set B, (0), with r = 2.8356.

The original variables can be obtained from the inverse transformation, since they
satisfy the IFAO condition, that is to say:

Ly
3
Fl 2y U Hiy
X2 =
X ’ “ ! 2.3 (@) 5 3@)
S B ooy e S Zy Sy Py
a " a 7 7 7 7
-1
= ¢M (zm)
Xls 22, — 0.63z1, + 0.63u; — uy
Xog | = 215t ug .
X3 —235 = 215 + U1 +0.63(z1 — u) @ 4 us
-1
= ¢s (zs)

In Figs.9.1 and 9.2, the transformed trajectories are displayed. In Figs.9.3 and
9.4, the original reconstructed trajectories of fractional order systems are shown.
Finally, the error in transformed and original coordinates is shown in Figs.9.5 and

9.6.

State z ™

Fig. 9.1 Master system in transformate coordinates
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20—
2 10—
N
2
S
» 0

2
_107 ' B
-3
0 1 2
3 Statez2S

State z 15

Fig. 9.2 Slave system in transformate coordinates

State Zy

Fig. 9.3 Master system in original coordinates

State x 15

State X

Fig. 9.4 Slave system in original coordinates
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Fig. 9.5 Synchronization errors in Transformate coordinates
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Fig. 9.6 Synchronization errors in original coordinates

9.4 Concluding Remarks

In this chapter, we have proposed an incommensurate fractional order dynamical con-

troller for the Generalized Synchronization problem of incommensurate fractional
order systems, where an Incommensurate Fractional Observability Canonical Form
for these class of systems is given. We have introduced a new property called frac-
tional algebraic observability for Incommensurate Fractional Order Systems (IFAO).
As far as we know, the perfect synchronization has not been achieved in IFOCS.
Therefore, we are talking about quasi-synchronization for IFOCS. The method was
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applied to an incommensurate fractional order Chua—Hartley system and Rossler
system and we can observe that the synchronization error is contained in a compact
region and numerical results show the effectiveness of the methodology proposed.
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Chapter 10 ®)
Synchronization and i
Anti-synchronization of Fractional

Order Chaotic Systems by Means

of a Fractional Integral Observer

10.1 Introduction

The problem of anti-synchronization is another phenomenon of interest that occurs
in chaotic oscillators. This problem has appeared in modern repetitions of Huygens’
experiments [1], lasers [2, 3], saltwater oscillators [4], and some biological systems
where a nonchaotic signal is generated [5]. Anti-synchronization has been treated as
a direct modification of synchronization, simply with a sign change in the condition
required for the error, and has been attacked with methods such as the active control
[6, 7] and the sliding mode control [8]. It can also be induced by noise [9].

Recently, systems with fractional dynamics, i.e., systems whose mathematical
model is represented with derivatives and integrals of non-integer-order, have been
of great interest. This is mainly given to their applications to interdisciplinary areas
such as material science [10], electromagnetism [11], electromechanics [12], and
thermal systems [13]; in addition, in certain cases, fractional equations give better
approximations of the behavior of the systems than the integer ones. Furthermore,
it has been found that these systems can present chaotic behavior, and also some
strategies to control or synchronize them have been developed [14—18].

This chapter deals with the synchronization and anti-synchronization problems in
the Lorenz chaotic system with commensurate fractional dynamics, i.e., where the
fractional order of the dynamics of all the states is the same, and in the Rossler chaotic
system with incommensurate fractional dynamics. A reduced-order fractional inte-
gral observer is proposed, whose design is based on the fractional algebraic observ-
ability property, in order to estimate the states of the master system and build the
slave system that will synchronize with it. This observer is also used to estimate some
fractional derivatives of the output that appears in the slave system dynamics. After
applying the methodology, simulations are performed in order to obtain numerical
results.

The chapter is divided as follows. In Sect.10.2, some concepts and results
from fractional calculus are introduced. In Sect. 10.3, the reduced-order fractional
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R. Martinez-Guerra and C. A. Pérez-Pinacho, Advances in Synchronization

of Coupled Fractional Order Systems, Understanding Complex Systems,
https://doi.org/10.1007/978-3-319-93946-9_10


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93946-9_10&domain=pdf

162 10 Synchronization and Anti-synchronization of Fractional Order ...

integral observer to be used is proposed, the synchronization and anti-synchronization
problems are defined and the proposed methodology for their solution by means
of the observer is presented. In Sect. 10.2, the methodology is applied to the frac-
tional Lorenz and Rossler systems and numerical simulations are performed. Finally,
Sect. 10.3 concludes the results of the chapter.

10.1.1 Reduced-Order Fractional Integral Observer

Once determining that all the unknown states of the system are observable, the frac-
tional synchronization problem can be solved using the master—slave configuration
by means of an observer. Consider again system (2.21) without u:

D (1) = f(x)
y(t) = h(x).

This dynamics can be extended to include the unknown vector state in a new
variable 1 with unknown dynamics:

D = f(x,m)
D% = A(x)
y = h(x).

The problem is to construct the state n in order to determine the value of the
desired state. But, given that the model has an unknown part, a fractional classi-
cal Luenberguer observer cannot be constructed. So, for this matter, the following
reduced-order fractional integral observer (ROFIO) is proposed:

D*n; = Kio(n; — 1) + K I%(n; — 1;). (10.1)

This observer considers a proportional corrective term of the estimation error,
followed by a fractional integral term of the error in order to improve its convergence.

Remark 10.1 The ROFIO is model-free, i.e., it does not require to know the dynamics
of the states, using only the FAO (or IFAO) condition to reconstruct them. Thus, it
has an advantage against other methods and observers used for synchronization that
require full knowledge of the system dynamics.

In order to work with the ROFIO, it is assumed that the following hypotheses are
satisfied:

H1: n; satisfies the FAO (or IFAO) condition.
H2: Let an auxiliary variable y; be a C! real-valued function.
H3: A;(x) is bounded, i.e., 3 N; € R* such that |A;(x)| < N;, Vx € 2 C R".
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Theorem 10.1 The reduced-order fractional integral observer (10.1) is Mittag-
Leffler stable.

Proof Define the observer error as ¢; = n; — 15;. Consider the following Lyapunov
function candidate:

Vie) = el (10.2)
Note that V (e;) satisfies the first inequality of Theorem 2.4 since

atlleill = Ve < arleil (10.3)

witha = b = o) = 1 and «a, = sup(J|e; ).
By Lemma 2.3, it follows that

D%V (e;) = D"‘ei2 <2¢;D%;.

Therefore,

D%V (e;) < 2e¢;D%; = 2¢; D*(n; — 1);)
= 2e;(A; — Kioei — Kin1%e;)
< 26,‘Ai - 2Ki1€i1a€i
< 2Nilleill = 2Kt llei || 1%e;]
< —QK;i[I%;| = 2N;)llei .

Then

D*V(e;) = —aslle] (10.4)

with o3 = 2Ki1 |1a€i| — 2N,
Therefore, if o3 > 0, from Theorem 2.4 and Egs. (10.2)-(10.4), it is concluded
that the origin of system (10.1) is Mittag-Leffler stable. ([

10.1.2 Fractional Synchronization Problem

In this chapter, the fractional synchronization problem is solved as follows. The
original fractional chaotic system will be known as the “master”, because it acts as
a driving system by means of its measurable output. Then, the ROFIO will use this
output in order to synchronize the dynamics of the estimated states with those of the
master system; hence, the ROFIO is known as the “slave” system. This problem is
usually determined by the analysis of the fractional synchronization error dynamics,
which is defined as follows:

e; =0 — ;. (10.5)
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Considering the fractional dynamics of this error, the following is obtained:

D“ei = Dani — Daﬁi
= D“n; — Kioe: — Ki11%e;
D%; + Kjoe; + K1 I%e; = D%);.
The last equation is transformed to the Laplace domain:
SYEi(s) =57 (0) + Kio Ei(s) + Kits ™ Ei(s) = 5" Hi(s) — s~ '1i 0),

from where the following solution is obtained:

s*Hi(s) — s '1;(0) + 5% '¢; (0)
s+ Kijp + Kjps™¢
s(s* H; (s) — s '1;(0) 4 5*'¢;(0))
§2¢ 4 Kios® + Kj .

Ei(s) =

Note that this equation can be rewritten as

S Hi(s) = 5“0 +54 e (0) b

Ei(s) = _ 7
) (% + A (Y + A2) S+ A SY4 A

with [, I, € R, and this solution in time domain reads as follows:
e = llta_léaa,a(_)"lta) + tha_]@@a,a(_)\Zta)'

So,
el < Nt AN Sna (A1) + 1] | oo (— A2t D),

and hence it can be observed that the norm of the estimation error is bounded by the
absolute values of the scalars /; and /, and by the norms of #*~! and the Mittag-Leffler
functions &, 4 (—A11%) and &, o (—X121%). Given that 0 < o < 1, — 1 < 0, and thus
the function 1*~! decreases. Furthermore, if gains K;o and K;; are chosen such that
the polynomial 2% 4+ Kios® + K1 = (s% + A1) (s* + A,) is stable, i.e., such that the
following condition is fulfilled [19]:

T
larg(Ai)| > s i=12,

then the polynomial is stable, and the Mittag-Leffler functions &, o(—A7%) and

Eu.u(—2t%) tend to the origin of the error dynamics, which makes #; to follow 7;.

Thus, the fractional synchronization problem is solved. (I
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10.1.3 Fractional Anti-synchronization Problem

The problem of fractional anti-synchronization consists in obtaining also an estima-
tion of the unknown states of the master system, but instead of having the state of
the slave system converges to the value of the state of the master, it will converge
to that value with opposite sign. For this, a new variable éi = —7; is introduced,
which is the estimated state of the anti-synchronized system. So, the fractional anti-
synchronization error dynamics is defined as follows:

& =ni+§&. (10.6)
In a procedure similar to the former, the following equation is obtained:
el < e A0 Era (=2 |+ 12| Ena (=222 ),

hence selecting the appropriate values of gains K;o and K;;, the polynomial s2* 4
Kios® 4+ Ki1 = (s* + A1) (s + A,) is stable, and the Mittag-Leffler functions
Eya(—A11%) and &y o (—r2t%) tend to the origin of the error dynamics, which makes
é,- to follow n; but with an inverse sign. Thus, the fractional anti-synchronization
problem is solved.

Remark 10.2 This methodology works for commensurate and incommensurate-
order systems, given that the respective unknown variables satisfy the FAO (or [FAO)

property.

10.2 Application to Fractional Chaotic Systems

In this section, the ROFIO is used to achieve synchronization and anti-synchronization
in two fractional chaotic systems, namely, the Lorenz and the Rossler oscillators.
The former will be treated as a commensurate-order system, and the latter as an
incommensurate-order one.

10.2.1 Fractional Lorenz System

The Lorenz oscillator is an attractor named after Edward M. Lorenz, who derived it
from the simplified equations of turbulent convection rolls arising in the equations
of the atmosphere [20]. This system is related to the so-called “butterfly effect”. The
generalization to fractional dynamics was presented in [21].
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Consider the commensurate fractional order chaotic Lorenz system:

D%x; = o(x2 — x1) (10.7)
DaXQ = pPX] — X2 — X1X3
Da)C3 = X1X2 — ,3)(?3
y=x
with o, p, B > 0.

First, it has to be verified that the unknown states, x, and x3, satisfy the FAO
condition. From (10.7), the following equations can be obtained:

x2 = ¢(y, D*y) = (1/0)(oy + D*y) (10.8)
x3=¢(y, D%, D*y) =p—1—(1/oy)(D*y(oc + 1) + D*y),

and thus, both states are algebraically observable, so the ROFIO can be built.
Let 7, = x;. Using (10.8), the ROFIO for this variable is

DNy = Kio(na — 02) + K11 1% (n2 — 12)
l o ~ o 1 o ~
= Ko ;(ay+D y) =i )+ Kl ;(0y+D —m].
Define the auxiliary variable y; = 7, — % y. Then,
K
D%y = D%} — = D%y
o
R K R
=Ko (y — M) + — Y+ Kl (y—12).
So, the ROFIO for 7, is
K K K
D%y = Ko <y—V1—jy)+¢Y+K111a <,V—V1—jy) (10.9)
o (e o

K
=+ 710” (10.10)

Now let n3 = x3. Note that from (10.7), the following relation can be obtained:

x3 = (1/P)(y/o)(oy + D*y) — D*n3]. (10.11)
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Using this equation, the ROFIO for this variable is
D13 = Kao(nz — 13) + Kot I%(n3 — 13)

1 /1 N N
= Ky (— <—y(c7y + D%y) — Dam) - 773)
B \o

1/1 . )
+ Ky I* (E (;y(oy + D%) — D“nz) - Tl3> .

After some algebraic manipulations, the following is obtained:

K
0 p
(B + K)o

KB 1 Ko 2 . K2 2
t |z )Y It s
B+ Ky [\B 2(B8+ Kx)o 2(B + Kx)o
KK K20K21,31a< 1 )

- UK —y(oy + D*y) — 3
B+ Ky B+ K Bo

o

D3 =

Define the auxiliary variable y, = 73 — M:#yz. Then,

K>
-—2 D
(B + Kx)o

_ _KnB [(l _ L) 2_ ]
B+ Ky [\B 2B+ K)o yon
K»K> . K20K21,31a< 1 )

—y(oy+ D%y) — 7
ﬁ+K20773 B+ Ko ﬁay( y y)—1m3

o

D%y, = D*ij3

So, the ROFIO for 75 is

D%, KB [(l 3 Ko ) = y2i| (10.12)

B+ Ko \B 208+ K)o
_ KK (J/z n K> y2>
B+ Ko 2(8 + Kx)o
KK 1 K
BooK1P e (—y(oy + DY) —py— y2>
B+ Ky Bo 2(B + Ky)o
R K
fis =y, + 22 (10.13)

206+ Kn)o©

Thus, system (10.7) acts as the master system, and systems (10.9) and (10.12)
form the slave system. For the synchronization problem, the unknown states are
obtained with (10.10) and (10.13). For the anti-synchronization problem, the same
equations are used, but defining the states & = —#), and & = —#s.
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Fig. 10.1 Synchronization between x; and 72

T T T T
—x3
- - -eta3

50

40

30

20

00 2 4 6 8 10 12 14 16 18 20

Time (s)

Fig. 10.2 Synchronization between x3 and 73

Simulations were performed during 20 s, with o = 0.993, parameters o = 10,
p =28,  =8/3 and gains Ko = 250, K} = 1, Ko = 150 and K,; = 0.01. The
initial conditions were set as x;(0) = x,(0) = x3(0) = 10, »»(0) = y3(0) = —10.

Figures 10.1 and 10.2 show the synchronization between the states x, and x3 of
the master and their estimations 7, and 73, respectively, from the slave. Figures 10.3
and 10.4 show the anti-synchronization between the states x, and x3 of the master
and their estimations & and &, respectively, from the slave. Finally, Fig. 10.5 shows
the synchronization and anti-synchronization signals in state space.
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Fig. 10.4 Anti-synchronization between x3 and &

10.2.2 Fractional Rossler System

This attractor was designed Otto Rossler in 1976; its original theoretical equations
were later found to be useful in modeling equilibrium in chemical reactions [22].
The generalization to fractional dynamics was proposed in [23].

Consider the incommensurate fractional order chaotic Rossler system:

D""xl = —X2 — X3 (1014)
D*x, = x1 + ax,
D% x3 = 0.2 + x3(x; — 10)

Yy = X2,
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Fig. 10.5 Synchronization and anti-synchronization of the Lorenz system in state space

where a is allowed to be varied.
First, it has to be verified that the unknown states, x; and x3, satisfy the IFAO
condition. From (10.14), the following equations can be obtained:

x; = ¢(y, D?y) = —ay + D™y (10.15)
X3 = ¢(y’ D(Jtly’ DO[]+C(2y) =—y +aDa]y _ D(J(|+Olzy’ (1016)

and thus, both states are algebraically observable, so the ROFIO can be built.
Let n; = x;. Using (10.15), the ROFIO for this variable is

D*“fy = Kio(m — M) + K I (0 — 1)
= Ko (D"y —ay — i) + Kii I (D%y —ay — iy).

Define the auxiliary variable y; = 1; — Kjoy. Then,

D*y = Ko (D*y —ay — 1) — KioD*y + K11 1**(D*y — ay — ;)
= —Kyo (ay +m) + Ky — K1 I*(ay + ).

So, the ROFIO for 7j; is

D*?y; = —Kjg (ay + y1 + Kioy) + K11y — K11 1*(ay + y1 + Kioy)  (10.17)
n = y1 + Kioy. (10.18)
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Let n3 = x3. Using (10.16), the ROFIO for this variable is

D™ )3 = Ko (n3 — 03) + Ko 1% (93 — 13) (10.19)
= Ky (—y — D"y +aD"y — fj3)
+Ko 1% (—y — D"y +aD"y — 73) .

Note that this equation deals with both D*'y and D**y, so a variable { = D*'y
is defined and is also estimated via ROFIO:

D¢ = Kpo(§ —8) + K I (¢ — ©)
= K o(DYy — ) + K I*/(Dy — ©).

Define the auxiliary variable y, = E — K;oy. Then,

Dy, = Kpo(D*y — &) — KoD*'y + K¢ 19 (D*y — ¢)
= —K;o&—}—KC]y—K(]Ia]E.

So, the ROFIO for ¢ is

Dy, = =Ko (v + Keoy) + Koy — Kl (ve + Keoy)  (10.20)
¢ = + Koy (10.21)

Substitution of (10.21) into (10.19) leads to

D™f3 = Kao(—y — D¢ +a¢ — i3) + Ko [ (—y — D¢ +ag — ii3).

(10.22)
Define the auxiliary variable y, = 73 + K»¢. Then,
D*y, = Kao(—y — D*{ +al — fi3) + KagD*¢
+K I (—y — D¢ +al — 13)
= Ky(—=y +at —103) — K¢ + Ko I (—y + at — 13).
Finally, the ROFIO for 73 is
D™y, = —Kx(y — al +y> — Kx8) — K2 g (10.23)
=Ko I (y — al + y» — K2¢)
3 =y, — K¢ (10.24)

Thus, system (10.14) acts as the master system, and systems (10.17) and (10.23)
form the slave system. For the synchronization problem, the unknown states are
obtained with (10.18) and (10.24). For the anti-synchronization problem, the same
equations are used, but defining the states & = —); and & = —#s.
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Simulations were performed during 100 s, with «; = 0.9, o, = 0.8, a3 = 0.7,
parameter a = 0.63 and gains K1y = 120, Ky; = 1, K;o = 100, K;1 = 1, K59 = 10
and K,; = 0.01. The initial conditions were set as x; (0) = 1, x»(0) = 0,x3(0) = -5,
y1(0) =3, y:(0) = y3(0) = 1.

Figures 10.6 and 10.7 show the synchronization between the states x; and x3 of
the master and their estimations 7; and 73, respectively, from the slave. Figures 10.8
and 10.9 show the anti-synchronization between the states x; and x3 of the master
and their estimations é 1 and §3, respectively, from the slave. Finally, Fig. 10.10 shows
the synchronization and anti-synchronization signals in state space.
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10.3 Concluding Remarks

In this chapter, a reduced-order fractional integral observer was proposed for syn-
chronization and anti-synchronization of commensurate and incommensurate-order
fractional chaotic systems. The observer served as a slave system, while the chaotic
system acted as the master. To be able to use this observer, the unknown variables
of the master systems had to satisfy the fractional algebraic observability condition.
The reduced-order fractional integral observer was proven to be Mittag-Leffler sta-
ble. Simulations were performed using the proposed methodology, and it was verified
that both synchronization and anti-synchronization were carried out successfully for
commensurate and incommensurate-order systems.



174

Fig.

10 Synchronization and Anti-synchronization of Fractional Order ...

—— Synchronized system
— Anti-synchronized system

=20 -
x2 20 x1

10.10 Synchronization and anti-synchronization of the Rdssler system in state space

References

1.

2.

10.

11.

12.

13.

14.

M. Bennett, M.F. Schatz, H. Rockwood, K. Wiesenfeld, Huygens’s clocks, Proceedings: Math-
ematical, Physical and Engineering Sciences, 458(2019) (2002) 563-579.

A.Uchida, Y. Liu, I. Fischer, P. Davis, T. Aida, Chaotic antiphase dynamics and synchronization
in multimode semiconductor lasers, Physical Review A 64 (2001) 023801-1-023801-6.

1. Wedekind, U. Parlitz, Experimental observation of synchronization and anti-synchronization
of chaotic low-frequency-fluctuations in external cavity semiconductor lasers, International
Journal of Bifurcation and Chaos 11(4) (2001) 1141-1147.

S. Nakata, T. Miyata, N. Ojima, K. Yoshikawa, Self-synchronization in coupled salt-water
oscillators, Physica D 115 (1998) 313-320.

C.-M. Kim, S. Rim, W.-H. Kye, J.-W. Ryu, Y.-J. Park, Anti-synchronization of chaotic oscil-
lators, Physics Letters A 320 (2003) 39-46.

A. A.Emadzadeh, M. Haeri, Anti-Synchronization of two Different Chaotic Systems via Active
Control, International Journal of Electrical, Computer, Energetic, Electronic and Communica-
tion Engineering 1(6) (2007) 898-901.

L. Guo-Hui, Synchronization and anti-synchronization of Colpitts oscillators using active con-
trol, Chaos, Solitons & Fractals 26 (2005) 87-93.

D. Chen, R. Zhang, X. Ma, S. Liu, Chaotic synchronization and anti-synchronization for a novel
class of multiple chaotic systems via a sliding mode control scheme, Nonlinear Dynamics 69
(2012) 35-55.

Y. Kawamura, Collective phase dynamics of globally coupled oscillators: Noise-induced anti-
phase synchronization, Physica D 270(1) (2014) 20-29.

J.J. de Espindola, J. Neto, E. Lopes, A generalized fractional derivative approach to viscoelastic
material properties measurement. Applied Mathematics and Computation 164 (2005) 493-506.
J.J. Rosales, J. F. Gémez, M. Guia, V.I. Tkach, Fractional Electromagnetic Waves, Proceedings
of the LENM*2011 International Conference on Laser & Fiber-Optical Networks Modeling,
4-8 September 2011, Kharkov, Ukraine, p. 1-3.

W. Yu, Y. Luo, Y. Pi, Fractional order modeling and control for permanent magnet synchronous
motor velocity servo system, Mechatronics 23 (2013) 813-820.

J.-D. Gabano, T. Poinot, Fractional modelling and identification of thermal systems, Signal
Processing 91 (2011) 531-541.

C. Huang, J. Cao, Active control strategy for synchronization and anti-synchronization of a
fractional chaotic financial system, Physica A 473 (2017) 262275.



References 175

15.

16.

17.

18.

19.

20.

21.

22.
23.

A.Razminia, D. Baleanu, Complete synchronization of commensurate fractional order chaotic
systems using sliding mode control, Mechatronics 23 (2013) 873-879.

A.Razminia, V. J. Majd, D. Baleanu, Chaotic incommensurate fractional order Rossler system:
active control and synchronization, Advances in Difference Equations 2011(15) (2011).

A. Razminia, D. F. M. Torres, Control of a novel chaotic fractional order system using a state
feedback technique, Mechatronics 23 (2013) 755-763.

T. Zhou, C. Li, Synchronization in fractional-order differential systems, Physica D 212(1-2)
(2005) 111-125.

D. Matignon, Stability results for fractional differential equations with applications to control
processing, Computational Engineering in Systems Applications (1996) 963-968.

E. N. Lorenz, Deterministic Nonperiodic Flow, Journal of the Atmospheric Sciences 20 (1963)
130-141.

I. Grigorenko, E. Grigorenko, Chaotic dynamics of the fractional Lorenz system, Physical
Review Letters 91(3) (2003) 034101-1-034101-4.

0. E. Rossler, An equation for continuous chaos, Physics Letters A 57 (1976) 397-398.

C. Li, G. Chen, Chaos and hyperchaos in the fractional-order Rossler equations, Physica A 341
(2004) 55-61.



Appendix A
Integer-Order System

A.1 Static-State Feedback Control

To illustrate the results of the static-state feedback case, we consider the system
defined by

X = Agx + Zgi(x)u + Bu
i=1

y=Cx, (A.1)

where

Ag = (]2 _12> L s = A= (x‘o’”) (A2)
1
B = (1) Cc=(10) (A.3)

Now, we calculate the necessary constant to obtain a numerical bound for the
[|x||, given by (2.38). From ||g1(x)|| = ||A1x]|| < u||x]|?,' we can choose u =2
and g = 1. Since A has an eigenvalue with positive real part A; = 1, we design a
control law, u = K x, such that (Ag 4+ B K) has eigenvalues with strictly negative real
part. We choose K = [—1 — 1], the eigenvalues of (Ag + BK) remainas A, = —1
and A., = —3. While the eigenvalues of (Ap + BK) have negative real part, this is
possible to find M and w, such that ||e‘ATBK)|| < Me®', V¢ > 0. For this example,

lllAH: }“max(A*A), A e R" x R".
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the constants are M = 1 and w = —1 that satisfy the inequality. Finally, the interval
of the initial conditions can be determined from (2.37), that is

|l

< <12 A4
oll = 5 3 rgerry = (A4)
Now, it is possible to calculate a numerical bound.
1.2exp(=0)|lxol|
HxOIl = ——=~c—+ (A.5)
(1 —=3.309]Ixol)

A.2  Dynamical Control

The original system can be controlled by means of applying a dynamical control u
that is to say

i=Ax+) g(x)u;i+ Bu (A.6)

i=I

The results obtained for the exponential stability are illustrated with a particular
example of the form (A.6). The transformed systems for (A.1) is given from the
change of variable y = x| = z;, the canonical form obtained is

21 =2
2o =F (1,22, u) + 1 (A7)
u= -9,z u) +kz

The values for the constants are calculated analogously to the static-state feedback
case,and the valuesare u = 2,9 = 2,p =2, M = 1,and w = —3. Substituting these
values in (2.44) and in inequality (2.46), we get a function that is a bound of the norm
of the solution ||x]||.
xoexp(—31)0.53

e T

with the initial condition that satisfies ||xo|| < &9 = 0.53 (Fig.A.1).
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Appendix B
Fractional-Order System

B.1 Static-State Feedback Control

Let the fractional input-affine system, given by

D% = Aox + Ajxu + Bu
x(0)=xy O<a<l (B.1)

A R I [

To calculate the bound of the norm of x (¢) for the system (B.1) it is necessary to
calculate the constants given in the previous results, first given a gain K = [—1, —1],

Vg
the matrix W = Ay + BL satisfies the condition |arg(A(W))| > aE also the in-

with

equality [[A1(x ()] < u|lx(2)][|4 is satisfied for the values u© = 3 and ¢ = 1. On the
other hand ||W|| = 2. From the Corollary 2.1 is obtained 6 = 1.

Now, given the constants above it is possible to find and interval for the initial
condition

1
W _
ol < (2L Ya _ ¢ 14 (B.3)
2| L||gF!
as well as, we have
[1xol
1 4+ 2403
@] < + (B.4)
1
1 —5091|xol| | 1 — —F
1 21(=
+ 1l ||(2)
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Fig. B.1 Fractional Systems

B.2 Dynamical Control

The fractional transformed system obtained for (B.1) is given by

D%z =2,
D%z = F (21,22, u) + Du (B.5)
D% = —F (21, 22, u) + kz,

where the values constants are calculated analogously to the integer case, and the
resulting values are © =2, g =2, p =4, and (2.65), we get a function that is a

bound of ||x]||, with the initial condition that satisfies ||xg|| < g9 = 0.2 as well as,
€0

1421«

we get |[x(B)|| £ ———————
get Ikl < o=

(Fig.B.1).
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