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Preface

Traditionally one begins a course or a textbook on electrodynamics with an ex-
tensive discussion of electrostatics, of magnetostatics, and of stationary currents,
before turning to the full time-dependent Maxwell theory in local form. In this book
I choose a somewhat different approach: Starting from Maxwell’s equations in in-
tegral form, that is to say, from the phenomenological and experimentally verified
basis of electrodynamics, the local equations are formulated and discussed with their
general time and space dependence right from the start. Static or stationary situa-
tions appear as special cases for which Maxwell’s equations split into two more or
less independent groups and thus are decoupled to a certain extent.

Great importance is attached to the symmetries of the Maxwell equations and, in
particular, their covariance with respect to Lorentz transformations. Another central
issue is the treatment of electrodynamics in the framework of classical field theory
by means of a Lagrange density and Hamilton’s principle. General principles that
were developed for mechanics, appear in a deeper and more general application that
can serve as a model and prototype for any classical field theory. The fact that the
fields of Maxwell theory, in general, depend on space and time makes it necessary to
enlarge the framework of traditional tensor analysis in R3 to exterior calculus on R4.
The venerable vector and tensor analysis that was designed for three-dimensional
Euclidean spaces, does not suffice and must be generalized to higher dimensions
and to Minkowski signature. While the exterior product is the generalization of the
vector product in R3, Cartan’s exterior derivative is the natural generalization of the
curl in R3 and, by the same token, encompasses the familiar operations of gradient
and divergence.

Among the many applications of Maxwell theory I chose some characteristic and,
I felt, nowadays particularly relevant examples such as an extensive discussion of
polarization of electromagnetic waves, the description of Gaussian beams (these are
analytic solutions of the Helmholtz equation in paraxial approximation), and optics
of metamaterials with negative index of refraction. Regarding other, more tradi-
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viii Preface

tional applications I refer to the well-known, excellent textbooks by J. D. Jackson,
by L. D. Landau and E. M. Lifshits, and others.

As a novel feature I take up in the fifth chapter a further direction of great im-
portance for present-day physics: The construction of non-Abelian gauge theories.
These Yang–Mills theories as they are called1, are essential and indispensable for
our present understanding of the fundamental interactions of nature. Although these
theories which are at the basis of the so-called standard model of elementary particle
physics, lead us far into quantized field theory, their construction and their essential
features are of a classical nature, at least as long as one considers only the radiation
fields, i.e. the analogues of the Maxwell fields, and classical scalar fields, but leaves
out fermionic matter particles. Non-Abelian gauge theories are constructed follow-
ing the example of Maxwell theory. They bear some similarities to the latter but
exhibit also significant differences from it. Even the phenomenon of spontaneous
symmetry breaking that preserves us from the appearance of too many massless
fields, in essence, is a classical mechanism. In view of the great impact of gauge
theories on our understanding of the fundamental interactions it would be a loss not
to do this step which builds on Maxwell theory in a most natural manner.

Chapter 6 gives an extensive phenomenological and geometric introduction to
general relativity and, hence, rounds off the description of all fundamental interac-
tions in the framework of classical field theory. Here too, I use consistently a modern
geometric language which – after some investment in differential geometry – allows
for a transparent formulation of Einstein’s equations which is better focused to its
essentials than the older tensor analysis formulated in components only.

Much of the material included in this book was tried out in numerous lectures
that I gave at Johannes Gutenberg-University over the years. I am grateful to the
students who have followed these courses, for their questions and comments, and to
the teaching assistants who took good care of exercise classes, for their stimulating
questions and critical comments.

I owe special thanks to Immanuel Bloch for the discussions we had on Gaussian
beams and the fascinating topic of metamaterials with negative index of refraction,
and for his encouragement to include these modern applications. Special thanks
also to Mario Paschke who more than once brought up original ideas and pointed
out some almost forgotten but relevant references.

The cooperation with Springer-Verlag in Heidelberg and with the production
team of LE-TeX in Leipzig was excellent and very efficient. The great encourage-
ment and editorial care offered by Dr. Thorsten Schneider from Springer-Verlag is
gratefully acknowledged.

Mainz, November 2011 Florian Scheck

1 First ideas were published by Oskar Klein, Z. Physik 37 (1926) 895. It is reported that Wolfgang
Pauli developed them independently but did not publish them.
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1Maxwell’s Equations

1.1 Introduction

The empirical basis of electrodynamics is defined by Faraday’s law of induction, by
Gauss’ law, by the law of Biot and Savart and by the Lorentz force and the principle
of universal conservation of electric charge. These laws can be tested – confirmed
or falsified – in realistic experiments. The integral form of the laws deals with phys-
ical objects that are one-dimensional, two-dimensional, or three-dimensional, that
is to say, objects such as linear wires, conducting loops, spatial charge distributions,
etc. Thus, the integral form depends, to some extent, on the concrete experimental
set-up. To unravel the relationships between seemingly different phenomena, one
must switch from the integral form of the empirically tested laws to a set of local
equations which are compatible with the former. This reduction to local phenom-
ena frees the laws from any specific laboratory arrangement and yields what we
call Maxwell’s equations proper. These local equations describe an extremely wide
range of electromagnetic phenomena.

The mathematical tools needed for this transition from integral to local equations
are taken, initially, “only” from vector analysis over Euclidian space R3 and from
the well-known differential calculus on this space. However, since electromagnetic
fields in general also depend on time and, hence, are defined on spacetime R4, this
calculus must be generalized to more than three dimensions. The necessary gener-
alization becomes particularly transparent and simple if one makes use of exterior
calculus.

This chapter develops the phenomenology of Maxwell’s equations, first by means
of the full, space-dependent and time-dependent equations, then, in a second step, by
reduction to stationary or static situations. The formulation of Maxwell’s equations
requires some knowledge of elementary vector analysis as well as some theorems on
integrals over paths, surfaces and volumes. Therefore, we start by recalling for the
reader these matters in the case of R3 before embarking on more general situations,
and we illustrate matters with a few examples which will be useful for the sequel.

1F. Scheck, Classical Field Theory, Graduate Texts in Physics,
DOI 10.1007/978-3-642-27985-0_1, c� Springer-Verlag Berlin Heidelberg 2012



2 1 Maxwell’s Equations

1.2 Gradient, Curl and Divergence

Electrodynamics and a great deal of general classical field theories are defined on
flat spaces Rn of dimension n. In cases of static or stationary processes, an adequate
framework is provided by the ordinary space R3 and in all other cases by four-
dimensional spacetime with one time and three space components, R4, or, more
precisely, R.1;3/. These spaces are special cases of smooth manifolds. They are en-
dowed with various geometric objects and with a natural differential calculus which
allows one to set up relations between the former and thus to formulate physical
equations of motion. For example, if ˚.x/ D ˚.x1; x2; : : : ; xn/ is a smooth func-
tion on Rn, then one defines a gradient field by

grad˚.x/ D
�
@˚.x/

@x1
;
@˚.x/

@x2
; : : :

@˚.x/

@xn

�T
(1.1)

(with superscript T standing for “transposed”). In the case of R3, grad is the famil-
iar differential operator

r D
�
@

@x1
;
@

@x2
;
@

@x3

�T
;

often called the nabla operator.

Example 1.1
A small probe of massm is placed in the gravitational field of two equal, pointlike
masses M whose positions are x.i/, i D a; b. The potential created by these
masses at the position of the probe is

˚.x/ � U.x/ D �GNmM

�
1

jx � x.a/j C
1

jx � x.b/j
�
:

Without loss of generality, one can choose a system of reference such that x.b/ D
�x.a/. The force field that follows from this potential is

F .x/ D �rx˚.x/ D �GNmM

(
x � x.a/

jx � x.a/j3 C
x � x.b/

jx � x.b/j3
)

D �GNmM

(
x � x.a/

jx � x.a/j3 C
x C x.a/

jx C x.a/j3
)
:

This is a conservative force field. It is instructive to sketch this field for the choice
x.a/ D .d; 0; 0/T , x.b/ D .�d; 0; 0/T .
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If Oei , i D 1; : : : ; n, is a basis, and V D Pn
iD1 V i .x/ Oei a vector field, then its

divergence is defined by

divV D
nX
iD1

@

@xi
V i .x/ : (1.2)

This is a well-known construction in R3. In particular, if V is a gradient field, i.e. if
V D r˚.x/, then its divergence is

div grad˚ D
3X
iD1

@2˚.x/

@.xi /2
D �˚.x/ ;

where � is the Laplace operator.
In dimension 3, the curl of a vector field under proper rotations behaves again

like a vector field. Note, however, that this is a pecularity of dimension 3. Indeed,
in R3,

curlV D r � V (1.3a)

has three components. When expressed in Cartesian coordinates, these are

�r � V
�
1
D @V 3

@x2
� @V

2

@x3
(with cyclic completion) ; (1.3b)

or, making use of the "-tensor in dimension 3,

�r � V
�i D 1

2

3X
j;kD1

"ijk
�
@Vk

@xj
� @Vj
@xk

�
D

3X
j;kD1

"ijk
@Vk

@xj
: (1.3c)

We will return to this property in Sect. 2.2.2 below. One should note that r � V

cannot be a “genuine” vector field because the vector field V and its curl have the
opposite behaviour under space reflection: While V changes sign under P, its curl
r � V stays invariant.

I Remarks
1. On R3, which admits the metric gik D ıik, there is no difference between the

contravariant components V i of V and the covariant components Vi . There-
fore, instead of (1.3b), one may as well write

�r � V
�1 D @V3

@x2
� @V2
@x3

(plus cyclic completion) :

This was anticipated in (1.3c). The following remark shows that this slightly
modified definition of the curl is, in fact, the correct one.
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2. On Rn or, more generally, on the smooth manifoldM n with dimension n and
metric tensor g D fgikg, one may associate to the contravariant components
V i of the vector field V the covariant components Vi DP

k gikV
k . By gen-

eralization of the curl on R3 one defines a skew-symmetric tensor field of
degree 2 by

curlV � C ; with Cik D @

@xi
Vk � @

@xk
Vi :

As Cki D �Cik , this tensor has 1
2
n.n � 1/ components, i.e. in dimension

n D 2 it has one component, in dimension n D 3 it has three components, in
dimension n D 4 it has six components, etc. Obviously, only on R3 does the
curl (1.3c) have the right number of components to be akin to a vector field.

3. The preceding remark shows that it is meaningful only in dimension 3 to take
the divergence of a curl. In this case, one has

div curl A � r � �r �A
� DX

i;j;k

"ijk
@

@xi
@

@xj
Ak D 0 : (1.4)

This expression vanishes because the " tensor, which is antisymmetric in i
and j , is multiplied by the symmetric product of the two derivatives. More
generally, the contraction of a tensor which is symmetric in two of its indices
with another tensor which is antisymmetric in the same indices vanishes. This
is confirmed by direct calculation.

4. The curl of a smooth gradient field is zero. In R3, this is the well-known
formula r � �r˚.x/� D 0. It generalizes to

curl grad˚.x/ D 0 (1.5)

and is a consequence of the equality of the mixed second derivatives of ˚.x/.
5. In any other dimension not equal to 3, the combined application of divergence

and gradient yields (the obvious generalization of) the Laplace operator, too.
For example, in Rn, it reads

div grad˚ D
nX
iD1

@2˚.x/

@.xi /2
D �˚.x/ :

On a smooth manifold M n which is not flat, or when non-Cartesian co-
ordinates are used on Rn, there holds a somewhat more general formula
containing the metric tensor and second derivatives. We return to this in a later
section.

Example 1.2
Potential of a spherically symmetric charge distribution:
Let %.r/ be a piecewise continuous, local charge distribution with total chargeQ.
Locality means that there is a sphere S2R with radius R about the origin (the
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centre of symmetry of the charge distribution) outside of which %.r/ vanishes.
With d3x D r2 dr d.cos �/d�, the normalization condition reads

•
d3x %.r/ D 4�

1Z
0

r2 dr %.r/ D 4�
RZ
0

r2 dr %.r/ D Q :

Construct, then, the following differentiable function from %.r/:

U.r/ D 4�
8<
:
1

r

rZ
0

r 0 2 dr 0 %.r 0/C
1Z
r

r 0 dr 0 %.r 0/

9=
; :

For r > R, taking account of the normalization condition, U.r/ reduces to
U.r/ D Q=r , that is, to the Coulomb potential of a pointlike charge Q. For
values of the radial variable smaller than R the potential U.r/ differs from this
simple form. For example, in the case of a homogeneous charge distribution,

%.r/ D 3Q

4�R3
�.R � r/ ; with

�.x/ D 1 for x > 0 ; �.x/ D 0 for x < 0

denoting the Heaviside function, the above integrals give

Uinner.r/ D Q

R3

�
3

2
R2 � 1

2
r2
�

for r 6 R ;

Uouter.r/ D Q

r
for r > R :

In the interior region, the potential U.r/ has the shape of a parabola; in the ex-
terior region it falls off like 1=r . At the value r D R, both the potential U.r/
and its first derivative are continuous, but this is not true for its second derivative.
Calculating the (negative) gradient field of U.r/ and noting that the operator r
in spherical polar coordinates is given by

r � �rr ;r� ;r�� D
�
@

@r
;

1

r sin �

@

@�
;
1

r

@

@�

�
;

one obtains for E D �rU.r/

E inner.x/ D Q

R3
r Oer ; E outer.x/ D Q

r2
Oer :

Field E is oriented radially outwards, and its absolute value is shown in Fig. 1.1.
In the outer region, this is the electric field around a pointlike charge Q which
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1

0.5

0
1 2 3 4x=r/R

E(r)/E(R)

Fig. 1.1 The modulusE.r/ of the electric field E .x/D E.r/ Oer for the case of a homogeneous
charge distribution with radius R

decreases like the inverse square of the radial variable. In the inner region, de-
pending on the sign of Q, the field increases or decreases linearly from zero at
the origin to the value Q=R2 at R.

Calculating the divergence of E for this example and using

�U.r/ D 1

r2
d

dr

�
r2

dU.r/

dr

�
;

one obtains
div E D r �E D ��U.r/ D 4�%.r/ ;

both in the inner and in the outer domain. Of course, this is nothing but the
Poisson equation to which we will turn in Sect. 1.8 in more detail. Note that it is
written in terms of Gauss’ system of units.

Example 1.3
Vector potential of a magnetic dipole:
Suppose we are given the static vector field

A.x/ D m � x

r3
; .r D jxj/ ;
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in which m is a given constant vector. Calculate the quantity B D curl A. As an
example we give here the 1-component,

B1.x/ D @

@x2
A3.x/� @

@x3
A2.x/

D @

@x2

�
m1x2 �m2x1

r3

�
� @

@x3

�
m3x1 �m1x3

r3

�

D 2m
1

r3
C 3

r5

��m1.x2/2 Cm2x1x2 Cm3x1x3 �m1.x3/2	

D �m
1

r3
C 3x1

r5

�
m1x1 Cm2x2 Cm3x3	

D 1

r3

��m1 C 3. Ox �m/ Ox1� ;
where in the second to last step the term 3m1.x1/2=r5 was added and subtracted
and Ox D x=r was used. The result then becomes

B.x/ D 1

r3

�
3. Ox �m/ Ox �m

�
:

If m is a static magnetic dipole, then B.x/ describes the induction field in the
outer space that is created by this dipole.

1.3 Integral Theorems for the Case of R3

Using a simplified notation, which is perfectly acceptable for the case of the space
R3, the most important integral theorems of use in electrodynamics read as follows:

Gauss’ theorem
Let F be a smooth, orientable, closed surface embedded in R3. The surface F
is taken to be localized (this means that one can find a sphere with a finite
radius which encloses F completely). Let V.F / be the volume enclosed by
this surface, and let V be a smooth vector field. Then

•

V.F /

d3x r � V D
“

F

d� V � On : (1.6)

In the surface integral on the right-hand side, On denotes the outward directed
normal at the surface element d� .
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Equation (1.6) relates a volume integral of the divergence of a vector field with
the integral of its outward normal component over the surface which encloses the
volume. It makes no difference whether the vector field V is static, i.e. depends only
on the x coordinate, or is not, i.e. is a function V .t;x/ of time and space. The right-
hand side of equation (1.6) may be understood as the net balance of the flow across
surface F , which is defined by the normal component of V . The divergence on the
left-hand side characterizes the strength of the source which feeds this flow. What
follows represents an example for the application of Gauss’ theorem.

Example 1.4
Electric field of a homogeneous charge distribution. The charge distribution is
assumed to be localized, spherically symmetric and homogeneous. If it is nor-
malized to the total charge Q, then its functional form is given by %.x/ D
3Q=.4�R3/�.R � r/. The divergence of the electric field is proportional to
the charge distribution, r � E D 4�%. As there is no preferred direction in
space, the field must point in a radial direction, that is to say, it must have the
form E D E.r/ Oer . Inserting this ansatz for V in Gauss’ theorem and choos-
ing F to be the sphere S2r with radius r about the origin, the right-hand side
of (1.6) yields the scalar function E.r/ times the surface of S2r , i.e.E.r/4�r2.
The left-hand side, in turn, requires the distinction

r 6 R W 4�

•
d3x %.r/ D .4�/2

rZ
0

r 02 dr 0
�
3Q

4�R3

�
�.R � r 0/

D 4� Q
R3
r3 ;

r > R W 4�

•
d3x %.r/ D 4�Q :

A comparison with the right-hand side and using example 1.2 yields the expected
result

Einner.r/ D Q

R3
r ; Eouter.r/ D Q

r2
; .E D E.r/ Oer / :

Figure 1.2 illustrates the geometry of this simple example.

Stokes’ theorem
Let C be a smooth closed path and F.C/ a smooth orientable surface bounded
by C. For any smooth vector field V which is defined on F including its
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Fig. 1.2 The centre of symmetry of a spherically symmetric
charge distribution %.r/ is the centre of the auxiliary
sphere S2

r . One integrates %.r/ over the volume enclosed
by that sphere. The electric field on S2

r has a radial direc-
tion; its magnitude follows from Gauss’ theorem

S
r

R

2
r

(r)ρ ≠0

boundary, one has

“

F.C/

d�
�r � V

� � On D
I
C

ds � V : (1.7)

Here On denotes the oriented normal on the surface F.C/, and ds signifies the
oriented line element on C. The two orientations are correlated such that the
closed path C and On form a right helix.

I Remarks
1. For Gauss’ theorem to be applicable, it suffices that surface F , which is the

boundary of the volume V.F /, be piecewise smooth. For example, it may
look like the surface of a soccer ball: This surface is everywhere continuous
and consists of a finite number of smooth patches. Similarly, one may assume
the closed path C in Stokes’ theorem to be only piecewise smooth.

2. A common feature of the two integral theorems expressed by (1.6) and (1.7)
is that they relate an integral over a compact manifold M with a boundary
to an integral over its boundary, denoted by @M in differential geometry. In
Gauss’ theorem,M is a compact domain V.F / in R3, whereas @M is its sur-
face F . In Stokes’ theorem,M is a two-dimensional surface with a boundary
embedded in R3, whereas @M is its boundary curve. Furthermore, the integral
over @M contains a function of the vector field V itself, whereas the integral
overM contains a function of the first derivatives of V : In the case of Gauss’
theorem, this is the divergence; in the case of Stokes’ theorem, it is the curl
of V . In fact, a further analysis shows that both (1.6) and (1.7) are special
cases of the same theorem, though applying to different dimensions. Indeed,
in Sect. 2.2.2, one will learn that this important theorem can be formulated
for any dimension n. Anticipating the results of Sect. 2.2.2, the general inte-
gral theorem says the following: If ! is a smooth .n � 1/-form with compact
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support on an oriented manifold M with boundary @M , then, adopting the
orientation on the boundary induced by the orientation of M , one has

0
BBB@
“
� � �
Z

„ ƒ‚ …
.n/

1
CCCA
M

d! D

0
BBB@
“
� � �
Z

„ ƒ‚ …
.n�1/

1
CCCA
@M

! ; (1.8a)

or, in a more compact notation,

Z
M

d! D
Z
@M

! : (1.8b)

In theorem (1.6), the exterior form ! is a two-form and d! is a three-form,
whereas in theorem (1.7), the form ! is a one-form, and its exterior derivative
d! is a two-form.

3. There is a particularly simple example for Stokes’ theorem that illustrates well
the general equation (1.8b). Let the manifold be a smooth curve, M D � ,
which runs from a point a to a point b, and let ! be a function or, in the
language of exterior forms, a zero-form, ! D f . The boundary @M of M
consists of points a and b, @M D fa; bg, and d! D df is the total derivative
of f . Applying the general equation (1.8b) and translating back to a more
familiar notation, Stokes’ theorem yields for this case

Z
MD�

df D
bZ
a

dt
df

dt
D f .b/� f .a/ D

Z
@M

f ;

whose inner part will look familiar to the reader.

Green’s theorems
Gauss’ theorem, (1.6), has two variants, called Green’s theorems, both of which are
useful in the analysis of boundary value problems in R3. They are as follows.

Green’s first theorem
Let the functions˚.t;x/ and �.t;x/ be C 2 functions in the argument x. Let
V.F / be a finite volume, with surface F � @V (see Gauss’ theorem above).
Then

•

V.F /

d3x
�
˚�� C r˚ � r�� D

“

F

d� ˚
@�

@ On : (1.9)
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This theorem is a direct application of Gauss’ theorem, (1.6), provided one chooses
the vector field to be

V .t;x/ D ˚.t;x/ .r�.t;x//
and makes use of the product rule for differentiation,

r � �˚r� � D r˚ � r� C ˚�� :

Furthermore, rewriting theorem (1.9) with the functions ˚ and � interchanged and
subtracting the two equations thus obtained from one another yields Green’s second
theorem:

Green’s second theorem
Using the same assumptions as in Gauss’ theorem one has

•

V.F /

d3x
�
˚�� � ��˚

� D
“

F

d�

�
˚
@�

@ On � �
@˚

@ On
�
: (1.10)

In both cases, @�=@ On and @˚=@ On, respectively, denote the normal derivatives of
these functions, that is, the directional derivatives along the normal On at a given
point of the surface F . These derivatives may also be written as On �r� and On �r˚ ,
respectively.

1.4 Maxwell’s Equations in Integral Form

This section summarizes Maxwell’s equations in integral form, i.e. in the form in
which they are tested, directly or indirectly, in a great variety of macroscopic ex-
periments. It is assumed that the reader has seen most of the important classical
experiments of electrodynamics and knows the essentials of their analysis.

1.4.1 The Law of Induction

Let C be a smooth curve of finite length, ds the line element along the curve, and
E.t;x/ an electric field. The path integral

R
C ds � E.t;x/ is said to be the electro-

motive force.
Consider a magnetic induction field B.t;x/ which may depend on space as well

as on time, and let C be a smooth, closed curve in R3 which is the boundary of
a surfaceF . Note that both the surfaceF and its boundary C may be variable in time,
with the restriction that all variations must be at least continuous, if not smooth. The
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surface is assumed to be oriented, the local normal to the surface being denoted
by On.t;x/. Then the magnetic flux ˚.t/ across the surface F is defined to be the
surface integral

˚.t/ WD
“

F

d�B.t;x/ � On.t;x/ : (1.11)

Faraday’s law of induction relates the temporal change of the magnetic flux with
the electromotive force induced along the boundary curve.

Faraday’s law of induction (1831)

I
C

ds �E 0.t;x0/ D �fF
d

dt

“

F

d� B.t;x/ � On.t;x/ ; (1.12)

x0 2 C ; x 2 F :

The factor fF is a real and positive constant. Its value depends on the system
of physical units one has chosen: In the rational MKSA system, called the SI
system (système international des unités), it is fF D 1. In the Gauss system
of units, it is fF D 1

c
, with c the velocity of light.

I Remarks
1. The integrand of the left-hand side is the component of the electric field tan-

gent to the boundary curve. The integrand on the right-hand side is the normal
component of the induction field at point x on the surface. The negative sign
on the right-hand side characterizes a physical principle: The electric current
which is induced in curve C is directed such that the magnetic flux created by
this current is opposite to the time variation of the flux on the right-hand side
of (1.12). This is what is called Lenz’s rule.

2. Law (1.12) summarizes many different experimental situations. For exam-
ple, a surface and its boundary may be fixed relative to the inertial system of
an observer, while the induction field varies with time. A simple example is
provided by a circular annulus across which one moves a permanent magnet
such that the magnetic flux increases or decreases. Alternatively, given a fixed
induction field B.x/ (which may even be homogeneous), a closed loop is
moved through this field such that the flux ˚.t/ changes with time (principle
of generators and of electric motors).

3. The previous remark raises a problem which needs to be discussed in more
detail. Indeed, there may be experimental situations where on the left-hand
side, the electric field at the spacetime point .t;x0/ refers to a different frame
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of reference than the induction field B.t;x/ of the right-hand side. This is
why we are careful in writing E 0 in lieu of E on the left-hand side. To this
question we give a first answer here but refer the reader to a deeper and more
detailed analysis below.
Suppose the shape of a conducting loop and of the surface of which it is
a boundary are given and fixed. This fixed set-up is assumed to move relative
to the inertial frame with respect to which the induction field B is defined. As
seen from a reference system which is comoving with C (this is the instanta-
neous rest system of the set-up), one has

d

dt
D @

@t
C v � r

and, when applied to the right-hand side of (1.12),

dB

dt
D @B

@t
C �v � r�B D @B

@t
C r � �B � v

�C �r �B�v :
(The terms .B � r /v �B.r � v/ vanish if v is held fixed.)
Here we anticipate that the induction field always has a vanishing divergence,
r � B D 0. Inserting this expansion into (1.12) and using Stokes’ theorem
(1.7), the curl may be converted to a path integral over boundary C. This yields

I
C

ds��E 0 � fF
�
v �B

�	
.t;x0/ D �fF

“

F

d�
@B.@t;x/

t
� On.t;x/ : (1.13a)

Obviously, the integrands on both sides now refer to the same system of ref-
erence. It is then suggestive to interpret

�
E 0 � fF

�
v �B

�	 DW E (1.13b)

as an electric field which should be compared with the induction field B. The
differential operators now act on the integrands only, not on the integral of the
right-hand side as a whole.

1.4.2 Gauss’ Law

Besides the electric field the dielectric displacement D.t;x/ is an important element
of electrodynamics. In a vacuum, this vector field is proportional to the electric
field, D.t;x/ / E.t;x/, and hence contains the same information as the latter. In
polarizable media, the two fields are related by the formula D D "E , where ".x/ is
a tensor of rank 2 which describes the electric polarizability of the medium.
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Gauss’ law relates the flux of the dielectric displacement across a closed surface
to the total charge contained in the volume enclosed by the surface.

Gauss’ law
Let F be a closed, smooth or piecewise smooth surface, and let V.F / be the
spatial volume which is defined and enclosed by F . Then, with %.t;x/ being
a given electric charge distribution, one has

“

F

d�
�
D.t;x0/ � On� D fG

•

V.F /

d3x %.t;x/ D fGQV : (1.14)

The constant fG, which is real and positive, is universal but depends on the
system of physical units one has chosen. Unit vector On is the outer normal of
the surface, and QV is the total charge enclosed in the volume V.F /.

I Remarks
1. The left-hand side shows the net balance of the flux of vector field D across

the surface. This integral quantity can be positive, negative, or zero. Figure 1.3
shows the example of two identical spheres that carry equal and opposite
charges q1 D q and q2 D �q, respectively. As the total charge vanishes,
Q D q1Cq2 D 0, the net balance of the flux across any surface that encloses
the two spheres completely is equal to zero.

2. The constant on fG in (1.14) has the value

fG D 1 in SI units,

fG D 4� in Gauss units.

3. If D is proportional to the electric field E , i.e. if D D "E , with " a constant
factor, and if D does not depend on time, (1.14) leads to the Poisson equation.
This may be seen as follows. Making use of Gauss’ theorem, (1.6), replace
the left-hand side by the volume integral over V.F / of the divergence. As the
choice of the surface F and, hence, of the enclosed volume is arbitrary, the
integrands on the two sides must be equal:

r �E.x/ D fG
1

"
%.x/ : (1.15a)

By writing the (static) electric field as a gradient field1, E D �r˚.x/, one
obtains the Poisson equation

�˚.x/ D �fG
1

"
%.x/ : (1.15b)

1 In anticipation of subsequent results, we make use of the fact that in time-independent situations,
the electric field has a vanishing curl. This is not true in the general case!
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Fig. 1.3 Draw an ellipsoid such that it encloses two geometrically identical spheres with equal and
opposite charges. Although locally the flux of the vector field D does not vanish, its net balance
over the entire surface is zero because the effects of the two enclosed charge distributions cancel

If the fields are not stationary and depend on both x and t , then one concludes
from (1.14) only

r �D.t;x/ D fG%.t;x/ ; (1.15c)

and the relation between D and E remains undetermined. In fact, here we
have obtained one of Maxwell’s equations in local form.

4. Another important result is obtained by applying Gauss’ law, (1.14), to mag-
netic charges and to the induction field created by them. Experiment tells
us that there are no free magnetic charges. Every permanent magnet has
a north pole and a south pole, and they can in no way be separated and
isolated. Whenever one cuts such magnets into smaller pieces, every frac-
tion exhibits both a north pole and a south pole. Hence, the integral on
the right-hand side of (1.14) vanishes for every volume V.F / that encloses
the total magnetic charge density. Therefore, one expects the general prop-
erty “

F

d�
�
B.t;x0/ � On� D 0 (1.16)

to hold for every smooth or piecewise smooth surface. As in the pre-
vious remark, one may apply Gauss’ theorem, (1.6), to (1.16), thereby
converting the surface integral to a volume integral. As the surface F and,
hence, the enclosed volume V.F / are arbitrary, one obtains the local equa-
tion

r �B.t;x/ D 0 : (1.17)

Equation (1.16) says that the magnetic induction has no sources anywhere in
space.

1.4.3 The Law of Biot and Savart

As is well known, a conductor which carries an electric current creates a magnetic
field in the surrounding space. A simple model for a conductor is provided by a thin
wire, that is to say, a curve in R3 carrying the current J . To simplify matters and
to obtain a more generally valid concept, it is useful to introduce the current den-
sity j .t;x0/, defined as the amount of charge crossing a unit surface per second
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Fig. 1.4 Model of a thin cylindrical conductor

dσ

j(t, x)

ds

in the direction Oj . Loosely speaking, the current J , then, is the integral of j over
a section of the conductor. For the sake of illustration, consider a straight cylindrical
conductor with cross section F oriented along the 3-direction. The current density
is proportional to the direction Oe3; it is different from zero inside the cylinder only.
Denoting a segment of the cylinder by ds and the surface element perpendicular to
the 3-direction by d� , one has

J ds D
0
@Z
F

d� jj .t;x/j
1
A ds :

This is illustrated by the wire in Fig. 1.4.
Expressed in differential form, the law of Biot and Savart states that the piece ds

of the conductor yields the contribution

dH D fBS

4�
J ds � x

jxj3

to the magnetic field H . By combining these two formulae and assuming the current
density to be arbitrary but always localized, the following integral form of the Biot–
Savart law becomes plausible.

Law of Biot and Savart (1822)
The current density j .t;x0/ is assumed to be a localized smooth vector field.
The magnetic field created by this distribution is given by

H .t;x/ D fBS

4�

•
d3x0 j .t;x0/ � x � x0

jx � x0j3 : (1.18)

This expression holds outside as well as inside the source density j .x0/. The
value of the positive constant fBS depends on the choice of the system of units.
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j(t, x ')

dH
ds

x

J

a b

Fig. 1.5 a A current J flowing through a thin wire creates a magnetic field in the space around
it. The current element J ds contributes the amount dH . b A charge density contained in a finite
volume. The law of Biot and Savart yields the magnetic field created by this charge density inside
and outside the region which contains the current density

The position vector x denotes the point in space at which the field is measured,
and x0 is the argument by means of which the distribution j .t;x0/ is probed and
integrated over. Figure 1.5a illustrates the differential contribution of the current
element J ds of a conductor to the magnetic field, whereas Fig. 1.5b sketches an
example of a current density which is localized in the sense that it may be thought
of as being enclosable by a sphere with radius R.

1.4.4 The Lorentz Force

In a given electric field E .t;x/ and a given induction field B.t;x/, defined with
respect to a frame of reference K, a pointlike particle of charge q moving at ve-
locity v with respect to that frame experiences a characteristic force field. This is
called the Lorentz force and is another important empirical input which is tested
experimentally.

Lorentz force acting on charged point particle
A particle of charge q moving at instantaneous velocity v in a pair of fields
E .t;x/ and B.t;x/, defined with respect to the frame of reference K, is sub-
ject to the force field

F .t;x/ D q�E .t;x/C fFv �B.t;x/
�
: (1.19)

In this formula the modulus of the velocity is smaller than or equal to the
velocity of light, jvj 6 c.
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I Remarks
1. The factor fF is uniquely defined but depends on the choice of physical units.

It is identical with the factor on the right-hand side of the law of induction
(1.12). Thus, in the SI system, it is equal to 1; when Gauss units are used, it is
fF D 1=c.

2. The first term, qE.t;x/, is the action of forces in electric fields previously
discussed. The second term is compatible with the Biot–Savart law. This be-
comes plausible if one describes a charged particle moving along the orbit r.t/

by means of the current density j .t;x/ D q Pr.t/ı.x � r.t// and calculates
the action of an induction field on the particle.

3. Expression (1.19) for the Lorentz force field is an exact one. It holds for ev-
ery velocity that is compatible with Special Relativity. This is an important
finding, confirmed by experiment, and we return to it subsequently in more
detail.

1.4.5 The Continuity Equation

A further fundamental fact is the conservation of charge:
The electric charge is conserved by all fundamental interactions.
The reader should note that this holds not only globally, i.e. after integration over
volumes in R3, but also locally in any domain of space.

If we try to formulate this law in a general, integral form, the following model
seems physically meaningful. Suppose we are given a time-dependent charge distri-
bution %.t;x/, localized in space, and a current density j .t;x/ which is due to the
motion of the charges within %. For every (piecewise) smooth, closed surface F and
the corresponding volume V.F / enclosed by it, the following equation applies:

� d

dt

•

V.F /

d3x %.t;x/ D
“

F

d�
�
j .t;x0/ � On� : (1.20)

Expressed in words, this equation says that the negative change in time of the total
charge Q.V / which is contained in volume V is equal to the flux of the electric
current density, integrated over the surface of that volume. If the total chargeQ.V /
has diminished, then in the net balance over the surface, more current must have
flown outward than inward. If it has increased, then in the integral, more current has
flown inward than outward.

By means of Gauss’ theorem, (1.6), the right-hand side of (1.20) is replaced by
a volume integral of the divergence of j . As this expression holds for an arbitrary
choice of the volume of integration, the integrands must be equal. This yields the
differential form of the continuity equation:
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Continuity equation

@%.t;x/

@t
C r � j .t;x/ D 0 : (1.21)

I Remarks
1. Note that this equation contains no relative factors which depend on the sys-

tem of units. This is due to the fact that the physical dimension of the electric
current density is already fixed by its definition in terms of the electric charge
and the unit one has chosen for the latter. An example is provided by the cur-
rent density created by a charged particle with charge e moving at velocity
v:

j .t;x/ D e v.t/ı.x � r.t// :

If one measures charge e in cgs-units, then the dimensions of both charge and
current density are derived units and may be expressed in terms of mass M,
length L and time T:

Œe	 D M
1
2 L

3
2 T�1 ; Œj 	 D M

1
2 L� 1

2 T�2 :

More specifically, the unit of charge is then 1 g1=2 cm3=2 s�1, whereas the unit
of current density is 1 g1=2 cm�1=2 s�2. With the charge density % defined as
the charge per unit of volume, it is easily verified that the physical dimensions
in (1.21) match.
In the SI system, electric charge is assigned a unit of its own, Œe	 D 1C
(Coulomb), and the current is measured in Ampères, 1A, so that the dimen-
sion of current density becomes Œj 	 D 1C m�2 s�1 D 1A m�2. Here we have
used 1C D 1A s, i.e. 1 Coulomb equals 1 (Ampère per second).

2. The operation of divergence div.a/ D r � a, which is familiar from the case
of R3, can be generalized to the four-dimensional spacetime of Special Rela-
tivity. The analogous operator reads, with x0 D ct; fxi g � x,

�
@

@x�

�
D
�
@

@x0
;
@

@x1
;
@

@x2
;
@

@x3

�
�
�
1

c

@

@t
;r
�
: (1.22a)

It is not difficult to recall the behaviour of this differential operator under
proper, orthochronous Lorentz transformations ƒ 2 L"

C. Its application to
a Lorentz scalar product of a constant four-vector a and of a coordinate x,
a � x D a0x0 � a � x D a�x�, gives

@

@x�
.a � x/ D a� :
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The derivative of an invariant such as .a � x/ by the (contravariant) argument
x� gives a�, i.e. a covariant quantity. With this behaviour in mind, the opera-
tor (1.22a) is best written in the suggestive notation˚

@�

 D �@0; @1; @2; @3� : (1.22b)

If one applies to the points x of spacetime a Lorentz transformation such as
e.g. the special (boost) transformation

L.v Oe3/ D

0
BB@
� 0 0 ˇ�

0 1 0 0

0 0 1 0

ˇ� 0 0 �

1
CCA ; with ˇ D v

c
; � D 1p

1 � ˇ2 ;

the partial derivatives with respect to t and to x1 in (1.21) are mixed in a man-
ner that may seem confusing. However, if it were possible to combine the
charge and current densities in a four-component current density j ,

j D �c%.x/; j .x/�T ; with x D .x0;x/T ; x0 D ct ; (1.23)

and if j�.x/ transformed covariantly underƒ 2 L"
C, then the invariant

@�j
�.x/ D @0j 0.x/Cr �j .x/ D 1

c

@

@t

�
c%.t;x/

�Cr �j .t;x/ D 0 (1.24a)

would be identical with the continuity Eq. (1.21) and could be written in the
compact form

@�j
�.x/ D 0 : (1.24b)

If this were true, then what we call a charge density and what we call a current
density would depend on the frame of reference chosen for the observer.

3. One should note that the basic equations of Maxwell theory contain two dif-
ferent sets of physical quantities: on the one hand the electromagnetic fields
E.t;x/, H .t;x/, D.t;x/ and B.t;x/, on the other hand the source terms
%.t;x/ and j .t;x/. While the fields in the first group may perfectly well “live
on their own”, i.e. obey testable equations of motion, the quantities of the sec-
ond group concern the charge carriers which may exist in a great variety of
realizations. As an abbreviation that catches the essential difference one may
call the first set “radiation”, the second set “matter”. Matter which is described
by equations of motion which differ from those of radiation has its own dy-
namics, e.g. classical mechanics or quantum mechanics. The question raised
in the previous remark, in essence, is whether matter is described by a theory
which is invariant under Special Relativity and which respects absolute con-
servation of electric charge. Only if these conditions are met is there a chance
to be able to collect the source terms in Maxwell’s equations in a four-vector
current density j.x/ which has the correct transformation behaviour.
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4. A simple example will help to illustrate the previous remark. A charged point
particle moving along the world line x.
/, 
 being the proper time, within the
framework of Special Relativity has the velocity

u.
/ D d

d

x.
/ D ��c; �v

�T
:

At every point of spacetime the world line x.
/ follows a timelike direction
(see, e.g. [ME], Chap. 4). This expresses the fact that the magnitude of the
particle’s velocity never exceeds the velocity of light. The four-velocity is
normalized such that its invariant, squared norm equals c2,

u2 D .u0/2 � u2 D c2�2.1 � ˇ2/ D c2 :

While x.
/ and u.
/ are coordinate-free definitions (remember that proper
time 
 is a Lorentz-scalar!) the decomposition u D .�c; �v/T presupposes
the choice of a frame of reference K.
The particle, which is assumed to carry the charge e, creates the current den-
sity

j.y/ D ec
Z

d
 u.y/ ı.4/
�
y � x.
/� : (1.25)

This is a Lorentz vector. Indeed, the velocity u is such a vector, the proper
time variable and the product of the four ı-distributions being Lorentz scalars.
Therefore, j is a Lorentz vector. Furthermore, in any frame of reference K,
one recovers the expected expressions for the charge and the current densities
by integrating over 
 by means of the relation d
 D dt 0=� between proper
time and coordinate time and using the formula ı.y0�x0.
// D ı.ct�ct 0/ D
ı.t � t 0/=c,

j 0.t;y/ D ce ı.3/�y � x.t/
� � c%.t;y/ ;

j i .t;y/ D e vi .t/ı.3/�y � x.t/
�
; i D 1; 2; 3 :

Equation (1.25) describes correctly the densities % and j created by the parti-
cle in motion in a form which renders obvious their character as components
of a Lorentz vector. We leave as an exercise the verification that j.y/ fulfills
the continuity equation @�j�.y/ D 0.

1.5 Maxwell’s Equations in Local Form

The basic Eqs. (1.12), (1.14), (1.16) and (1.18), in their integral form, have the ad-
vantage that they contain genuine observables and, hence, are directly testable in
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experiments. The drawback is that they refer to specific set-ups such as conduct-
ing loops, local volumes and closed surfaces and that they relate phenomena which
cannot be simply interpreted as “events”, i.e. as physical phenomena which happen
at a well-defined position x in space at a well-defined time t . To get rid of con-
crete and specific experimental set-ups, one makes use of the integral theorems of
Sect. 1.3 to transform them into local equations. By local equations we mean dif-
ferential equations which are formulated at the same point .t;x/ of spacetime. This
step brings about two advantages. On the one hand, these local equations contain
all (historical) experiments from which Maxwell’s equations in integral form were
obtained by abstraction. On the other hand, the local equations allow one to design
new experiments and, hence, perform new tests of the theory.

A famous example is provided by electromagnetic waves in a vacuum: Maxwell’s
equations in local form allow one to derive a wave equation whose solutions can
be calculated for various boundary conditions. This prediction of the theory was
brilliantly confirmed in the experiments that Heinrich Hertz carried out in 1887.
The same experiments confirmed that Maxwell’s displacement current, originally
postulated on the ground of theoretical considerations, was real.

1.5.1 Induction Law and Gauss’ Law

The law of induction (1.12) is compatible with the relation

r �E.t;x/ D �fF
@

@t
B.t;x/ (1.26)

which is local in the sense described above. To show this apply Stokes’ theorem in
its form (1.7) to the left-hand side of (1.13a),

I
CD@F

ds �E .t;x0/ D
“

F

d�
�r �E

� � On :

The argument then goes as follows: The path C can be contracted continuously such
that the surface enclosed by it shrinks to a point. In this limit, the two integrands
must be equal, and one recovers the local Eq. (1.26). One must keep in mind, how-
ever, that even though the law of induction in its integral form follows from (1.26),
the local form does not, a priori, follow uniquely from the former. It does so only
if a further hypothesis is made. This assumption may be recognized in Eq. (1.13b),
which says that a field which is a pure electric field in a given frame of reference
appears as a linear combination of an electric field and a magnetic field with respect
to a frame which moves relative to the given frame of reference.

This property may seem surprising, but it is physically plausible. Consider once
more the example of a charged pointlike particle in uniform motion along a straight
line. In its rest system, it creates only the well-known electric Coulomb field of
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a point charge. In any other system in which it has the velocity v, the particle appears
both as a charge density and as a current density which, via the law expressed by
Eq. (1.18), creates a magnetic field.

In a similar way, Gauss’ law, Eq. (1.14), is converted into a local relation by con-
verting the left-hand side into a volume integral by means of the integral theorem,
Eq. (1.7):

“

F

d�
�
D � On� D

•

V.F /

d3x r �D D fG

•

V.F /

d3x %.t;x/ :

As the volume is arbitrary and as the surface F is continuously contractible, the
integrands must be equal. One obtains the local Eq. (1.15c) derived in Sect. 1.4.2.

1.5.2 Local Form of the Law of Biot and Savart

The aim here is to distill a local equation from the integral law (1.18). One starts by
noting the auxiliary formulae

x � x0

jx � x0j3 D �rx
�

1

jx � x0j
�
D Crx0

�
1

jx � x0j
�
: (1.27)

Inserting the first of these on the right-hand side of (1.18) and noting that the deriva-
tives with respect to x can be taken out of the integral, one has

H .t;x/ D �fBS

4�

•
d3x0 j .t;x0/ � rx

�
1

jx � x0j
�

D CfBS

4�
rx �

•
d3x0 j .t;x0/

jx � x0j :

The change of sign is due to the change of the order of the factors in the cross
product. One then calculates the curl of H and makes use of the known identity
(see also (1.47c) below)

r � �r �A
� D r�r �A� ��A : (1.28)

There follows

r �H .t;x/ D fBS

4�
rx �

�
rx �

•
d3x0 j .t;x0/

jx � x0j
�

D fBS

4�
rx

•
d3x0

�
j .t; x0/ � rx

�
1

jx � x0j
��

(1.29a)

� fBS

4�

•
d3x0 j .t; x0/ �x

�
1

jx � x0j
�
: (1.29b)
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By means of the auxiliary formula (1.27) one replaces the derivative with respect to
the variable x in the first term (1.29a) by the gradient with respect to x0. In a second
step one performs a partial integration in this variable.

Regarding the second term (1.29b), one uses the relation

�x

�
1

jx � x0j
�
D �4�ı.x � x0/ ; (1.30)

(see e.g. [QM], Appendix A.1, example A.3, for a proof of this formula) to find

r �H .t;x/ D fBS

4�
rx
�•

d3x0 �rx0 � j .t;x0� 1

jx � x0j
�

C fBS j .t;x/ :

The divergence of j in the integrand, by the continuity equation (1.21), is equal to
the negative time derivative of the charge density %.t;x/. Thus one obtains

r �H .t;x/ D �fBS

4�

@

@t
rx

•
d3x0 %.t;x0/

jx � x0j C fBS j .t;x/ :

In the first term on the right-hand side, the gradient of the integral is proportional
to D.t;x/,

rx

•
d3x0 %.t;x0/

jx � x0j D �
4�

fG
D.t;x/ :

This follows from the Maxwell equation (1.15c), by taking its divergence and using
relation (1.30) above. Inserting this result, one obtains the equation

r �H .t;x/ D fBS

fG

@

@t
D.t;x/C fBS j .t;x/ : (1.31)

This equation is entirely local in all its parts.

1.5.3 Local Equations in All Systems of Units

To start with, we collect the local equations (1.17), (1.26), (1.15c) and (1.31) without
specializing in any particular system of units of use in physics or applied sciences:

r �B.t;x/ D 0 I (1.32a)

r �E .t;x/C fF
@

@t
B.t;x/ D 0 I (1.32b)

r �D.t;x/ D fG%.t;x/ I (1.32c)

r �H .t;x/ � fBS

fG

@

@t
D.t;x/ D fBSj .t;x/ : (1.32d)
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These equations are supplemented by the expression for the Lorentz force (1.19)
and by the relation between D and E , and between B and H , respectively, which
apply in a vacuum and which also depend on the system of units that is chosen:

D.t;x/ D "0E .t;x/ ; B.t;x/ D �0H .t;x/ : (1.33)

The positive constants fF, fG and fBS are labelled such that one is reminded of the
fundamental law in which they occur: “F” for Faraday, “G” for Gauss and “BS”
for Biot and Savart. The constants "0 and �0, which are also positive, are called
dielectric constant and magnetic permeability, respectively.

In a first step, one verifies that the continuity equation (1.21) is respected, that is,
that it follows from the inhomogeneous equations (1.32c) and (1.32d). From (1.32c)
and (1.32d) there follows

@%

@t
C r � j D 1

fG

@

@t
.r �D/C 1

fBS
r � �r �H

� � 1

fG
r � @

@t
D D 0 :

Indeed, this is equal to zero because the partial derivatives with respect to time and
space variables commute and because the divergence of a curl vanishes.

1.5.4 The Question of Physical Units

The Maxwell equations (1.32a)–(1.32d) and the expression (1.19) for the Lorentz
force are supplemented by the relations (1.33) relating the dielectric displacement
field D with the electric field E and the magnetic induction B with the magnetic
field H , respectively. Choosing the constants fF of (1.32b) and fBS=fG of (1.32d)
in such a way that

fF D fBS

fG
(1.34)

holds, the product of E and D obtains the same dimension as the product of H and
B. Equivalently, by relations (1.33) one has

Œ�0	

Œ"0	
D ŒE2	

ŒH 2	
: (1.35)

While (1.34) is a convention which fixes relative dimensions such that

ŒE 	 W ŒB	 D ŒH 	 W ŒD	

holds, one learns more about the remaining freedom by deriving from (1.32a)–
(1.32d) other known laws of electromagnetic interactions.
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Coulomb Force Between Point Charges
The Coulomb force field follows from the third equation (1.32c) with a factor de-
pending on the system of units:

F C D �C
e1e2

r2
Or ; with �C D fG

4�"0
: (1.36)

This is seen as follows. In any static situation, i.e. one where all fields are inde-
pendent of time, the group of fields (E , D) decouples completely from the group
of fields (H , B). Regarding the first group, equations (1.32b) and (1.32c), together
with relation (1.33), reduce to

r �E.x/ D 0 ; r �E.x/ D fG

"0
%.x/ :

The static electric field has a vanishing curl. Therefore, it can be represented as
a gradient field E D �r˚.x/, the minus sign being a matter of convention. The
second equation then yields the Poisson equation (1.15b) for ˚.x/:

�˚.x/ D �fG
1

"0
%.x/ :

Putting the point charge e1 in the position x0, for example, one has

%.x/ D e1 ı.x � x0/ :

Relation (1.30) furnishes the corresponding solution of the Poisson equation, viz.

˚.x/ D fG

4�"0

e1

jx � x0j : (1.37)

Then define x�x0 D r and multiply the negative gradient of˚ by the charge e2 of
the second mass point whose position is x. This yields the formula for the Coulomb
force given above.

Wave Equation and Velocity of Light
Returning to the full Maxwell equations but omitting any external source terms,
equations (1.32a)–(1.32d) imply that every component of the electric and the mag-
netic fields satisfies the wave equation. We show this for the example of the electric
field:

Take the curl of equation (1.32b) and make use of formula (1.28) to obtain

��E .t;x/C �0fF
@

@t
r �H .t;x/ D 0 :
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By equation (1.32d) with j .t;x/ � 0 and relation (1.33), the curl of the H -field
can be expressed in terms of the time derivative of E.t;x/:

r �H .t;x/ D "0 fBS

fG

@

@t
E.t;x/ :

Inserting this and using convention (1.34), one obtains
�
f 2F "0�0

@2

@t2
��

�
E.t;x/ D 0 ;

i.e. a partial differential equation that holds for every component of the electric field
in a vacuum. The factor multiplying the first term must have the physical dimension
of the inverse of a squared velocity, i.e. Œf 2F �0"0	 D T2L�2. For example, assuming
the time and space dependence of a solution to be a plane wave, that is

E.t;x/ D E e�i!t eik�x ;

one obtains the relation .f 2F �0"0/ !
2 D k2 between the circular frequency and the

wave number. Together with ! D 2�
 and jkj D 2�=� this yields the well-known
relation 
� D c for propagation of light in the vacuum provided

f 2F �0"0 D
1

c2
(1.38)

holds. This yields a further condition which the constants of the system of unities
must obey.

Force Between Parallel Currents (Ampère)
We note that one reaches the same conclusion by calculating Ampère’s force per
line element dl acting between two parallel straight conductors which carry the
stationary currents J1 and J2, respectively, and which are situated at a distance a
from each other. From formula (1.19) for the Lorentz force and from (1.32d) the
modulus of this force is found to be

d

dl
jFAj D 2�A

J1J2

a
; with �A D f 2F fG�0

4�
: (1.39)

A simple comparison of physical dimensions shows that the ratio �C=�A has the di-
mension of a squared velocity, that is L2T�2. Experiments by Weber and Kohlrausch
in 1856 gave an intriguing result: The velocity that appears in this force was found
to have the numerical value of c, the velocity of light – even though one was dealing
here with a stationary situation where only static forces were measured! Thus, it
was found that

�C

�A
D c2 ; i.e. again f 2F �0"0 D

1

c2
:

In summary, these are the essential conditions which must be fulfilled in fixing a sys-
tem of physical units.
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1.5.5 Equations of Electromagnetism in SI System

The SI system, also called a rational MKSA system, is characterized by the choice

fF D fG D 1 (1.40)

and by introducing, in addition to the units fm, kg, sg, a unit for the electric current.
This is called the Ampère. It is defined by means of formula (1.39) as follows:

Given two equal currents J1 D J2 � J flowing in two parallel, infinitely
long wires whose distance is a D 1m, the current J has an intensity of 1A
if the Ampère force per unit of length, i.e. per metre, equals 2 � 10�7 N D
2 � 10�7 kg m s�2. By the definition of the Ampère, the unit of charge, called
the Coulomb, is fixed, too. The relation is 1C D 1A s.

Convention (1.40) fixes the value of �0:

�0 D 4� � 10�7 NA�2 : (1.41a)

Relation (1.38), together with fF D 1, then gives

"0 D 1

4�c2
� 107 : (1.41b)

In the SI system, the physical units of these two quantities differ from each other.
Their relation to the units of mass M, length L, current I and time T reads

Œ"0	 D M�1L�3 I2 T4 ; Œ�0	 D M L I�2T�2 :

The constants appearing in Coulomb’s law and in the Ampère force are fixed, re-
spectively, as follows:

�C D 1

4�"0
D c2 10�7 ; �A D �0

4�
D 10�7 ; (1.41c)

their dimensions following from those of "0 and �0. In the second step, the expres-
sions for "0 and �0, found above, were inserted.

As a result, the local Maxwell equations in SI units read as follows:

r �B.t;x/ D 0 I (1.42a)

r �E.t;x/C @

@t
B.t;x/ D 0 I (1.42b)

r �D.t;x/ D %.t;x/ I (1.42c)

r �H .t;x/� @

@t
D.t;x/ D j .t;x/ : (1.42d)
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The Lorentz force takes the form

F .t;x/ D q�E .t;x/C v �B.t;x/
�
; (1.42e)

and relations (1.33) remain unchanged. Electromagnetic fields in the vacuum, i.e.
outside of the sources, satisfy the wave equation

�
1

c2
@2

@t2
��

�
g.t;x/ D 0 ; (1.42f)

where g.t;x/ stands for any component of the field under consideration.
One verifies easily that electric fields and magnetic induction fields have the fol-

lowing units in the SI system:

ŒE 	 D 1 kg m A�1s�3 ; ŒB	 D 1 kg A�1s�2 :

The unit of electric tension, or voltage, called the volt, is

ŒV 	 D 1 kg m2 A�1 s�3 ;

so that one recovers the well-known convention that electric fields are measured in
volt per metre:

ŒE 	 D 1V m�1 :

For magnetic induction fields, the Tesla was introduced as a unit, i.e.

ŒB	 D 1 Tesla D 1Vsm�2 ;

whereas magnetic fields are measured in Ampère turns per metre: ŒH 	 D 1A t m�1.

1.5.6 The Gaussian System of Units

In the Gaussian system of units, no new unit of charge or current is introduced.
Rather, these units are derived units, following from the mechanical units fixed ear-
lier. The factor multiplying the Coulomb force is taken to be 1, �C D 1. Furthermore,
the fields E and H , as well as the fields B and D, will all have the same dimen-
sion. This means that fF and fBS=fG D fF have the dimension T L�1. Inspection
of (1.35) and of (1.38) shows that "0 and �0 not only have the same dimension but
are, in fact, dimensionless. This suggests setting them both equal to 1:

"0 D 1 ; �0 D 1 ; (1.43a)

so that in the vacuum one has D D E and B D H . This also gives, from (1.38),

fF D 1

c
: (1.43b)
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One chooses the factor multiplying the charge density on the right-hand side
of (1.32c) to be

fG D 4� ; (1.43c)

so that the factor �C in the expression for the Coulomb force (1.36) is indeed equal
to 1. Note that this is in accord with formula (1.30).

With these choices one obtains the following values:

fBS D 4�

c
; �C D 1 ; �A D 1

c2
: (1.43d)

Up to exceptions that will be mentioned explicitly, we will be using Gaussian
units in what follows; thus, it is useful to repeat here the fundamental equations in
these units:

Maxwell’s equations in Gaussian units

r �B.t;x/ D 0 I (1.44a)

r �E.t;x/C 1

c

@

@t
B.t;x/ D 0 I (1.44b)

r �D.t;x/ D 4�%.t;x/ I (1.44c)

r �H .t;x/ � 1
c

@

@t
D.t;x/ D 4�

c
j .t;x/ : (1.44d)

The expression for the Lorentz force reads

F .t;x/ D q
�
E.t;x/C 1

c
v �B.t;x/

�
: (1.44e)

In the vacuum the electric field and the electric displacement field are equal;
likewise, the magnetic induction and the magnetic field are identified, i.e.

D.t;x/ D E.t;x/ ; B.t;x/ D H .t;x/ (in the vacuum) : (1.44f)

Finally, we note the wave equation in Gauss units:

�
1

c2
@2

@t2
��

�
g.t;x/ D 0 ; (1.45)

where g.t;x/ stands for an arbitrary component of the electric or magnetic
field in the vacuum. (Of course, it has the same form in SI units.)
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Table 1.1 Two important systems of units and their comparison: the Gaussian system [or
centimetre–gram–second (cgs) system] and the SI (or MKSA) system

Gaussian system SI system Comparison

Length 1 cm 1m 1 m D 1 � 102 cm

Mass 1 g 1 kg 1 kg D 1 � 103 g

Time 1 s 1 s

Force 1 dyn 1 N 1 N D 1 � 105 dyn

Energy 1 erg 1 J 1 J D 1 � 107 erg

Power 1 erg s�1 1W 1W D 1 � 107 erg s�1

Charge 1 esu 1 C 1 C D 3 � 109 esu

Current 1 esc 1 A 1 A D 3 � 109 esc

Potential 1 esv 1 V 1 V D 1=300 esv

Electric field 1 esv cm�1 1 V m�1

Magnetic field 1 Oersted (Oe) 1 At m�1 1 At m�1 D 4� � 10�3 Oe

Magnetic
induction 1 Gauss (G) 1 Tesla 1 Tesla D 104 Gauss

The following table summarizes the comparison of the SI system and the Gaus-
sian system. The abbreviations “esu”, “esc” etc. stand for “electrostatic charge unit”,
“electrostatic current unit”, etc. For example, the electrostatic unit of charge is
1 esu D 1 g1=2 cm3=2 s�1.

The Gaussian system is a useful system of units for theoretical considerations
of principle but is unsuitable for practical purposes in the laboratory. As we are
studying the foundations here, we will use the Gaussian system almost exclusively
in what follows. If at all needed, the conversion should be easy when making use of
the arguments of Sect. 1.5.4 and of Table 1.1. Here are some examples.

The elementary charge, i.e. the absolute value of the charge of an electron, when
expressed in cgs and in SI units, respectively, is given by

e D 4:803 204 20.19/ � 10�10 esu

D 1:602 176 462.63/ � 10�19 C I (1.46a)

the numbers in parentheses give the present experimental error bar in the last two
digits. Because in physics, energies are often given in electron volts or powers of
ten thereof, it is important to know their conversion to SI units. From the numbers
given above one has for the electron volt

1 eV D 1:602 176 462.63/ � 10�19 J : (1.46b)

Multiples of an electron volt which are useful in practice are given symbols of their
own as follows. For example,

1meV D 1 � 10�3 eV ; 1 keV D 1 � 103 eV ; 1MeV D 1 � 106 eV ;

1GeV D 1 � 109 eV ; 1 TeV D 1 � 1012 eV ; 1 PeV D 1 � 1015 eV ;
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where “m” stand for “milli”, “k” for “kilo”, “M” for “mega”, “G” for “giga”, “T”
for “tera” and “P” for “peta”.

Also, massesm of atomic or subatomic particles, as a rule, are given in the equiv-
alent form of their rest energy,mc2, expressed in electron volts or multiples thereof.
Converting to SI units one has

1 eV=c2 D 1:782 661 731.70/10�36 kg : (1.46c)

To get a feeling for orders of magnitude, it is instructive to express the mass of a very
heavy nucleus in units used in daily trading, or to express electric fields which are
typical for atoms, in units which are familiar to an electrician, cf. Exercises 1.3
and 1.4.

I Remarks
1. In the theory of relativity and in elementary particle physics, it is customary to

use so-called natural units. These are chosen such that the velocity of light c
and Planck’s constant (divided by 2�) take the value 1:

c D 1 ; „ � h

2�
D 1 :

The reader who is not familiar with this choice may wish to consult [QM],
Sect. 7.2.1.
One may simplify matters even more by absorbing the factors 4� on the right-
hand sides of (1.44c) and (1.44d) in the fields and the sources through the
following choice. Let

E jnat WD
1p
4�

E jGauss ; %jnat WD
p
4� %jGauss :

The analogous factors 1=
p
4� and

p
4� , respectively, are absorbed in the

fields D, H and B, as well as in the current density, such that all factors in
the Maxwell’s equations take the value 1. Although this book does not make
use of it, this convention is very convenient in actual calculations. The conver-
sion back to conventional units is easy and follows simple rules. For instance,
even though this is a dimensionless number, the relation of Sommerfeld’s fine
structure constant to the elementary charge depends on the choice of system
of units. One has

˛ D e2
ˇ̌
Gauss

„c D e2
ˇ̌
nat

4�
D 1

137:036
:

This implies that in the result of a calculation one must replace e2
ˇ̌
nat by 4�˛

with ˛ D .137:036/�1.
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2. As remarked earlier, Maxwell’s equations (1.44a)–(1.44d), on their left-
hand sides, contain exclusively electromagnetic field quantities, whereas the
sources appear on the right-hand side of the two inhomogeneous equations
(1.44c)–(1.44d). The quantities of the first group concern and describe the ra-
diation field, those of the second group concern matter whose building blocks
are electrons, ions and atomic nuclei. This distinction is physically mean-
ingful: Matter, a priori, is described by a kind of dynamics other than the
Maxwell fields. It is remarkable that while matter can hardly be “seen”, that is
its dynamics can hardly be probed, without its coupling to the electromag-
netic fields, Maxwell’s equations describe interesting physical phenomena
even without external sources, in the absence of charge and current densities,
% � 0 and j � 0.

3. It is instructive to ponder the signs in Maxwell’s equations and to analyze
which of these are a matter of convention and which of them are fixed by
physical principles. We organize this discussion as follows.

Electric field and positive charge
It is common to define the electric field created by a positive charge at rest
in such a way that it points outwards, away from the centre of the charge.
But what is a positive charge? This term dates from the early history of elec-
trostatics when experiments were performed with static charges in various
materials such as glass, collophonium, combs, and the like. “Glass electric-
ity” was named positive, “resin electricity” was named negative. With this
convention the electron turned out to carry a negative elementary charge; its
antiparticle, the positron eC, carries a positive elementary charge. Likewise,
a proton carries a positive elementary charge. The continuity equation (1.21)
says that current density is defined by a flux of positive charge. Therefore, the
direction of a current density is opposite to the direction of the flow of freely
moving electrons.

Permanent magnets and magnetic field
The two poles of permanent magnets we played with when we were children
are called the north pole N and the south pole S respectively. Given a sta-
tionary current J flowing in an infinitely long, straight wire, small probing
magnets will be oriented as sketched in Fig. 1.6a. Traditionally, the magnetic
field lines outside a permanent magnet are chosen to run from N to S. Thus,
the field lines created by the current in the wire are directed so as to form
a positive helicity (obeying the right-hand rule), as sketched in Fig. 1.6b.
With these conventions the law of Biot and Savart yields equation (1.44d),
with the signs as indicated there. Similarly, Faraday’s law of induction,
(1.44b), is obtained with the signs as in (1.44b).

Of course, one could have chosen the sign conventions differently, thereby ob-
taining different signs in some places of Maxwell’s equations. The interesting
question, then, is which of the relative signs will not change by such redefinitions
and which physical property is connected with relative signs found to be essen-
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Fig. 1.6 a The current J
flowing through a thin wire
creates a magnetic field
in which small probing
magnets align as sketched.
b Magnetic field in space
around conductor

a b

tial. If one had defined the direction of the electric field such that for an electron
(which carries the charge�jej) this field points outward, or, alternatively, if one had
adopted the previous convention for the electric field but had taken the outside mag-
netic field to run from S to N, instead of from N to S, then on the left-hand sides
of equations (1.44b) and (1.44d) the relative signs would be changed. However, all
physically relevant information would remain unchanged, such as in the following
examples:

� The physical content of (1.44b), which is an expression for the law of induction
in the form of Lenz’s rule. The induction currents caused by motions of magnets,
or of current loops, are directed in such a way that their own magnetic field acts
against the motion;
� The orientation of a permanent magnet in the field created by currents in a con-

ductor: the magnet aligns itself such that its magnetic field and the field of the
conductor compensate as much as possible. The field energy, being proportional
to the space integral of H 2, is as small as possible;
� The relative signs of B and H , as well as of E and D in (1.44b) and in (1.44d),

respectively: as was shown in Sect. 1.5.4, this relative minus sign leads to the
wave equation (1.45) for every component of the fields and, thus, guarantees the
propagation of electromagnetic waves in the vacuum. Conversely, if this relative
sign were not invariant and independent of the conventions, then the differential
operator

�
.1=c2/@2=@t2 ��

	
in (1.45), which is responsible for the propagation

of plane waves with velocity c, would compete with the operator

�
1

c2
@2

@t2
C�

�
;

which is relevant for a radically different type of physics.
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1.6 Scalar Potentials and Vector Potentials

In static situations, an electric field E.x/ can be represented as the negative gradi-
ent of a scalar function ˚.x/ (cf. Sect. 1.4.2) E .x/ D �r˚.x/. The electric field,
being an observable, is obviously defined in a unique way. The auxiliary function˚
is determined only up to an additive constant function. In this section, we show that
also in time-dependent situations both the electric and the magnetic (or induction)
fields can be represented in terms of such auxiliary functions and certain auxiliary
vector fields. Although these are not direct observables and, hence, are not uniquely
defined, they are very useful tools for many reasons. We summarize here their defi-
nition and their most important properties. Their deeper significance, as well as their
advantages and disadvantages, will become clear in subsequent sections.

1.6.1 A Few Formulae from Vector Analysis

Equations (1.4) and (1.5) of Sect. 1.2 show for dimension 3 that the curl of a gradient
field and the divergence of a curl vanish. We derive here these formulae, as well as
some other formulae which are useful for the sequel. For the sake of illustration and
as a matter of exercise, we do this in different, though equivalent, ways. The most
important formulae for the subsequent discussion are as follows:

r � �r �A.t;x/
� D 0 I (1.47a)

r � �rf .t;x/� D 0 I (1.47b)

r � �r �A.t;x/
� D r�r �A.t;x/� ��A.t;x/ : (1.47c)

The third of these is to be understood as an equation that holds for every component;
that is, when written out in Cartesian coordinates, it reads

�r � .r �A.t;x//
�
i
D @

@xi

�r �A.t;x/� ��Ai .t;x/ ; i D 1; 2; 3 :

Proofs by use of the " tensor
The " tensor, or Levi-Civita symbol in dimension 3, is defined by

"ijk D C1 ; if fi; j; kg is an even permutation of f1; 2; 3gI
"ijk D �1 ; if fi; j; kg is an odd permutation of f1; 2; 3gI
"ijk D 0 ; whenever two or three indices are equal.

In dimension 3, all cyclic permutations of fi; j; kg are even, and all anticyclic
permutations are odd, i.e. "123 D "231 D "312 D 1, "132 D "321 D "213 D �1. The
contraction over two indices of a symmetric tensor with the antisymmetric Levi-
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Civita symbol gives zero:

3X
i;jD1

"ijkT
ij D 0 if T ij D T j i :

Important formulae for sums of products of two " tensors are as follows:

3X
kD1

"ijk"klm D ıi lıjm � ıimıjl ; (1.48a)

3X
j;kD1

"ijk"jkm D 2ıim : (1.48b)

The proof of the first of these is the subject of Exercise 1.5, and the second formula
follows from the first, viz.

3X
j;kD1

"ijk"jkm D �
3X

j;kD1
"ijk"kjm D �

3X
jD1

�
ıij ıjm � ıimıjj

�

D �.1 � 3/ıim :

It is customary to write partial derivatives in abbreviated notation:

@

@xj
� @j :

In this notation, the curl of a vector field reads

�r �A
�
k
D

3X
l;mD1

"klm@lAm :

The divergence of this curl, being a contraction of a symmetric tensor with the
" symbol, vanishes:

X
k

@k
�r �A

�
k
D
X
k;l;m

"klm@k@lAm D 0 :

This proves (1.47a).
Similarly, in (1.47b), the " tensor is contracted with the symmetric operator @k@l

and, hence, gives a vanishing result.
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To prove (1.47c), one calculates one Cartesian component on the left-hand side
as follows:

�r � �r �A
��
i
D
X
j;k

"ijk@j
�r �A

�
k
D
X
j;k

X
l;m

"ijk"klm@j @lAm

D
X
j;l;m

�
ıi lıjm � ıimıjl

�
@j @lAm

D @i
X
m

@mAm �
X
j

@2jAi D @i
�r �A� ��Ai :

Proof of (1.47a) and of (1.47b) using integral theorems
Using a somewhat intuitive approach one may choose a very small volume in Gauss’
theorem, (1.6), and consider the limit V ! 0. This yields a local form of Gauss’
theorem:

r � V D lim
V!0

1

V

“

FD@V
d� V � On :

Stokes’ theorem, (1.7), relates a surface integral of the normal component of a curl
with the path integral over the boundary curve of the surface:

“

F.C/

d�
�r �A

� � On D
I
@F

ds �A :

If one chooses a closed surface, the boundary curve shrinks to such a point where the
right-hand side of the equation is zero. Comparison with the local form of Gauss’
theorem given above, and inserting there V D r �A, formula (1.47a) follows.
If one inserts a gradient field V D �rf into Stokes’ theorem (1.7), the path integral
becomes, in the general case,

bZ
a

ds � rf D f .b/� f .a/ :

In the case of a closed path integral in Stokes’ theorem, the starting point a and
the end point b coincide. The right-hand side of (1.7) is zero. As this holds for any
choice of surface F , formula (1.47b) is proven.

Proofs using exterior forms
This section makes use of the calculus of exterior forms, though at this point exclu-
sively the formalism on R3 that is treated e.g. in [ME], Sect. 5.4.5. The reader who
is not familiar with this method or is reluctant to repeat it here may skip this part for
now. We will return to it later.
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The method described above which made use of the " tensor suggests that (1.47a)
and (1.47b) must be closely related and that both might be derivable from one com-
mon principle. Indeed, both identities are consequences of the fact that the exterior
derivative, when applied twice in succession, gives zero, d ı d D 0. This is shown
as follows. To a vector field A on R3 associate two exterior forms, a one-form and
a two-form, by means of the following definitions:

1
!AD

3X
iD1

Ai dxi ;
2
!AD A1 dx2 ^ dx3 C cyclic permutations :

Here, dx1, dx2 and dx3 are the base one-forms which correspond to the coordinates
of a Cartesian system of reference. The exterior derivative of the first form leads to
the curl of the vector field:

d
1
!AD

�r �A
�
3

dx1 ^ dx2 C cyclic permutations I
the exterior derivative of the second yields the divergence of A:

d
2
!AD

�r �A� dx1 ^ dx2 ^ dx3 :

To every exterior form of degree k there is an associated, or dual, .n � k/-form (in
the present case n D 3) called the Hogde dual form, which is defined if one knows
the duals of the base forms. They are

�dx1 D dx2 ^ dx3 (cyclic) ,

��dx1 ^ dx2
� D dx3 (cyclic) ,

��dx1 ^ dx2 ^ dx3
� D 1 :

One concludes that the one-form defined above is the Hodge dual of the two-

form, � 2
!AD 1

!A . One calculates

d
�

d
1
!A

� D r � �r �A
�

dx1 ^ dx2 ^ dx3 ; or

�d
�

d
1
!A

� D r � �r �A
�
:

As d ı d D 0, relation (1.47a) follows.
If, alternatively, one constructs the one-form which corresponds to the gradient

field rf ,
1
!gradfD

X
i

�
@if

�
dxi D df ;

its exterior derivative is

d
1
!gradf D

�r � rf �
3

dx1 ^ dx2 C cyclic permutations

D d ı df D 0 :
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This is relation (1.47b). Indeed, both relations (1.47a) and (1.47b) are special cases
of the general property d ı d D 0 of the exterior derivative in R3.

The third relation, (1.47c), is the most interesting of the three. One starts by

taking the exterior derivative of
1
!A and then takes the Hodge dual of this:

�d
1
!AD

X
i

�r �A
�
i
dxi :

Next, one takes the exterior derivative of this,

d � d
1
!AD

�r � �r �A.t;x/
��
3

dx1 ^ dx2 C cycl. perm. ;
and then its Hodge dual,

�d � d
1
!AD

X
i

�r � �r �A.t;x/
��
i

dxi :

In other terms, the left-hand side of (1.47c) is obtained from the one-form
1
!A by

applying the operator .�d�/d to it.
It is then not difficult to show that the operator d.�d�/, which is different from

.�d�/d, upon application to the same one-form, yields the first term on the right-
hand side of (1.47c):

d.�d�/ 1!AD
X
i

@i
�r �A�dxi :

The combined operation �d� of exterior derivative and double dualizing appears in
the definition of what is called the codifferential. In dimension n, and applied to a k
form, it reads as follows.

I Definition 1.1 Codifferential and Laplace–de Rham operator If d denotes the
exterior derivative, and if � denotes the Hodge dual on Rn, then the codifferential
applied to an arbitrary smooth k-form is defined by

ı WD .�/n.kC1/C1 � d � : (1.49)

The sum of the combined operations d ı ı and ı ı d

�LdR WD d ı ı C ı ı d (1.50)

is called the Laplace–de Rham operator.2

Before we return to relation (1.47c) we wish to comment briefly on these defini-
tions. While the exterior derivative d raises by one the degree of the form on which
it acts,

d W �k ! �kC1 W k! 7!.kC1/
� D d

k
! ;

2 These definitions are valid also on more general smooth manifolds if the latter are orientable.
This assumption is necessary for the existence of the Hodge dual.
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the codifferential ı lowers the degree by one. Indeed, the operator � turns degree k
into .n � k/, operator d changes it to .n � k/C 1, and the second Hodge dualizing
leads to the degree n � Œ.n � k/C 1	 D k � 1. Combining these steps, one has

ı�k ! �k�1 W k! 7!.k�1/
� D .�/n.kC1/C1 � d� k

! :

As a consequence, the operator �LdR, which is composed of both, does not change
the degree of the form to which it is applied:

�LdR W �k ! �k :

If one applies the operator (1.50) to a one-form, then ı in the first term must be
taken with k D 1 but in the second term with k D 2 because the previous action
of d turns the one-form into a two-form, so that

�LdR
1
!D ��d.�d�/C .�d�/d� 1! :

Returning now to (1.47c) and applying �LdR to
1
!A:

�LdR
1
!A D

X
i

��@i �r �A�C �r � �r �A.t;x/
��
i

	
dxi

D �
X
i

�
�Ai

�
dxi :

This result is in accord with the statement that the Laplace–de Rham operator, when
acting on a function, equals minus the ordinary Laplace operator:

�LdRf D
�

d ı ı C ı ı d
�
f D �.�d�/.df / D �

X
i

@2i f :

This latter operator is also called the Laplace–Beltrami operator.

1.6.2 Construction of a Vector Field from Its Source and Its Curl

Suppose the following information on a vector field A.t;x/ is given. The vector
field is smooth, and its divergence is given by the smooth function

f .t;x/ D r �A.t;x/ :

Its curl is given by the smooth vector field

g.t;x/ D r �A.t;x/
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such that both f .t;x/ and g.t;x/ are, at all times, localized, i.e. are confined to
a finite domain in space. Is it possible to reconstruct the full vector field A.t;x/

from the data
�
f .t;x/;g.t;x/

�
and, if so, is the constructed representation unique?

To answer these questions, start from the ansatz

A.t;x/ D A1.t;x/CA2.t;x/ such that (1.51a)

r �A1.t;x/ D f .t;x/ I r �A1.t;x/ D 0 I (1.51b)

r �A2.t;x/ D 0 I r �A2.t;x/ D g.t;x/ :

The first term carries the source but is irrotational (i.e. it has vanishing curl), whereas
the second term has a vanishing source but yields the given curl of the vector field.
One proceeds in two steps.

The term whose curl is zero may be written as a gradient field A1 D �r˚ , the
minus sign being a matter of convention. Thus, one obtains the Poisson equation

�˚.t;x/ D �f .t;x/ :

In the absence of any further condition, a solution is

˚.t;x/ D 1

4�

•
d3x0 f .t;x0/

jx0 � xj : (1.52a)

The reader who is unfamiliar with this formula may wish to derive it by means
of Exercise 1.6.

The term which has no source is represented in the form of a curl, i.e. A2 D
r � C , where the auxiliary field C can be chosen such that it has a vanish-
ing source, too, that is to say, such that r � C D 0. If such a vector field C

is already known which has a nonvanishing source, it may be replaced by C 0 D
C C B with r � B D 0, choosing B such that r � C 0 D 0. This is always possi-
ble because B can be represented as a gradient field, B D �rh, and because the
Poisson equation �h D r � C is soluble. By assumption, one then has

r � �r � C .t;x/
� D g.t;x/ :

As the divergence of the auxiliary field C vanishes, the left-hand side of this equa-
tion equals��C by (1.47c). Thus, one has �C D �g.t;x/. This Poisson equation
is solved for each component as before, giving

C .t;x/ D 1

4�

•
d3x0 g.t;x0/

jx0 � xj : (1.52b)
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Based on these results, one obtains a reconstruction of the vector field A in terms of
a gradient field and a rotational field

A.t;x/ D �rx

�
1

4�

•
d3x0 f .t;x0/

jx0 � xj
�

C rx �
�
1

4�

•
d3x0 g.t;x0/

jx0 � xj
�
: (1.53)

This decomposition of the unknown vector field in terms of its source and its curl
is not unique: To the reconstructed field A one can always add a gradient field r�,
without modifying its source or its curl, provided the smooth function �.t;x/ fulfills
the Laplace equation ��.t;x/ D 0. All vector fields belonging to the class

˚
A.t;x/C r�.t;x/ j�.t;x/ smooth solution of ��.t;x/ D 0
 (1.54)

have the same source and the same curl.

1.6.3 Scalar Potentials and Vector Potentials

The results obtained in the previous section can readily be applied to the B and E

fields in Maxwell’s equations. Equation (1.44a) tells us that the magnetic induction
can be represented as the curl of an auxiliary field A.t;x/, B D r � A. Inserting
this ansatz into (1.44b), one concludes

r �
�

E C 1

c

@

@t
A

�
D 0 :

This, in turn, means that the expression in brackets can be written as a gradient field
�r˚ of another auxiliary function˚.t;x/. One thus obtains a representation of the
induction field and of the electric field in terms of A and ˚ :

B.t;x/ D r �A.t;x/ ; (1.55a)

E.t;x/ D �1
c

@

@t
A.t;x/� r˚.t;x/ : (1.55b)

While fields B and E are the genuine observables, neither the function˚ , called
the scalar potential, nor the vector field A, called the vector potential, is directly
measurable. This is so because these auxiliary quantities can be modified in a way as
to be described in a moment, without modifying the Maxwell fields proper. One rea-
son that justifies the introduction of these potentials is that with (1.55a) and (1.55b)
the two homogeneous equations (1.44a) and (1.44b) are fulfilled automatically.

In the vacuum and choosing Gaussian units, the fields D and E are equal, as
are the fields B and H . In this case, one can insert (1.55a) and (1.55b) into the
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inhomogeneous Maxwell equations (1.44c) and (1.44d), thereby obtaining

�˚.t;x/C 1

c

@

@t

�r �A.t;x/� D �4�%.t;x/ I (1.56a)

�A.t;x/� 1

c2
@2

@t2
A.t;x/� r

�
1

c

@˚.t;x/

@t
C r �A.t;x/

�

D �4�
c

j .t;x/ : (1.56b)

As noted above, the decomposition of (1.55a) and (1.55b) is not unique. The
remaining freedom in the choice of the potentials can be described in more detail
as follows. Choosing A0 D A C r�, with �.t;x/ an arbitrary smooth function,
the induction field B is unchanged. However, because of (1.55b), the electric field
changes unless one replaces ˚ simultaneously with

˚ 0.t;x/ D ˚.t;x/ � 1
c

@

@t
�.t;x/

to compensate the unwanted additional term. This leads to an important new notion:

I Definition 1.2 Gauge transformations Let �.t;x/ be an arbitrary function
which is at least C 3 in its arguments. If one replaces the scalar potential and the
vector potential as follows:

˚.t;x/ 7�! ˚ 0 D ˚.t;x/ � 1
c

@

@t
�.t;x/ I (1.57a)

A.t;x/ 7�! A0.t;x/ D A.t;x/C r�.t;x/ ; (1.57b)

then the electric field and the induction field remain unchanged:

E 0.t;x/ D E.t;x/ I B 0.t;x/ D B.t;x/ : (1.57c)

A transformation of this type applied simultaneously to ˚ and A is called
a gauge transformation of the Maxwell fields.

The function �.t;x/, called a gauge function, is completely arbitrary. However, it
may be subject to restrictions in order to satisfy certain conditions for the potentials.
For instance, one may require � to satisfy the inhomogeneous differential equation

�
1

c2
@2

@t2
��

�
�.t;x/ D r �A.t;x/C 1

c

@˚.t;x/

@t
:
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With this choice the transformed potentials obey the condition

1

c

@˚ 0.t;x/
@t

C r �A0.t;x/ D 0 : (1.58)

Every choice of the gauge transformation for which this condition holds is called
a Lorenz gauge.3 Note, however, that (1.58) fixes no more than a class of gauges.
Indeed, any subsequent gauge transformation by a gauge function  .t;x/ which is
a solution of the differential equation

�
1

c2
@2

@t2
��

�
 .t;x/ D 0 ;

when applied after the gauge transformation generated by �.t;x/, leaves the Lorenz
condition (1.58) unchanged.

Assume that the potentials are chosen such that they satisfy condition (1.58).
Then writing ˚ instead of ˚ 0, A instead of A0, the differential equations (1.56a)
and (1.56b) simplify to wave equations of the form of (1.45) with external sources:

�
1

c2
@2

@t2
��

�
˚.t;x/ D 4�%.t;x/ I (1.59a)

�
1

c2
@2

@t2
��

�
A.t;x/ D 4�j .t;x/ : (1.59b)

Here again, the left-hand sides contain quantities related to “radiation”, and the
right-hand sides contain “matter” as sources of the equations of motion.

There is a second reason in favour of using potentials: There are situations where
it seems simpler to solve the wave equation (1.45) for the auxiliary entities˚ and A,
with or without source terms, and to derive from them the observable fields rather
than to solve the wave equation for the observable fields including the relationships
between them that are contained in Maxwell’s equations.

At this point it is worthwhile to return to remark 2 in Sect. 1.4.5, where we
had assumed that the charge density %.t;x/ and the current density j .t;x/ could

perhaps be combined into a vector field over R4, viz. j.x/ D �
c%; j

�T
, with x D

.x0;x/T and x0 D ct , such that j�.x/ transforms underƒ 2 L"
C as a contravariant

vector field. In this spirit, one may tentatively combine the scalar potential and the
vector potential by the following definition.

I Definition 1.3 Four-potential With ˚.t;x/ a scalar potential and A.t;x/

a vector potential satisfying the differential equations (1.56a) and (1.56b) respec-

3 After L.V. Lorenz who should not be confused with H.A. Lorentz, see Historical Remarks.
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tively, let

A.x/ WD �˚.x/;A.x/�T ; i.e.

A0.x/ D ˚.t;x/ ; Ai D �A.t;x/�i : (1.60)

The importance of this definition will become clearer in a more general frame-
work below. Nevertheless, there are a number of interesting observations to be made
already at this point. The time and space derivatives can be combined as in (1.22a)
and (1.22b):

f@�g D
�
@0;r

�
; with @0 D 1

c

@

@t
:

Taking account of definition (1.60), condition (1.58) takes a simple and invariant
form:

@�A
�.x/ D @0A0.x/C

3X
iD1

@iA
i .x/ D @0A0.t;x/C r �A.t;x/ D 0 : (1.61)

Note that if A.x/ transforms like a Lorentz vector, the condition (1.61) will have the
same form in every inertial system.

Likewise, in this formulation the general gauge transformation, (1.57a) and
(1.57b), takes a simpler and more transparent form. It now reads

A�.x/ 7�! A0�.x/ D A�.x/ � @��.x/ : (1.62)

It contains the contravariant version of the four-gradient, which is obtained from its
covariant form in (1.22a) and (1.22b) as follows:

f@�g D fg��@�g D diag.1;�1;�1;�1/�@0;r�T D �@0;�r�T :
The minus sign in front of the second term of (1.62) has no deeper significance be-
cause the (arbitrary) gauge function � can always be replaced by ��. Here again,
the form of (1.62) will be the same in any inertial system. The derivative @�� trans-
forms like A� if �.x/ is a Lorentz scalar function.

I Remark
Another class of gauges is defined by the condition

r �A.t;x/ D 0 : (1.63)

A gauge that satisfies this condition is called a transversal gauge or Coulomb
gauge. This class can be useful, for physical reasons, because it emphasizes the
transverse nature of the physical radiation field. To make this evident already at
this point, consider equations (1.56a) and (1.56b) without external sources, and
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Fig. 1.7 In an electromagnetic plane wave, the electric
field and the magnetic induction are perpendicular to
each other, and both are perpendicular to the direction
of propagation. Vectors E .t;x/, B.t;x/ and k form
a right-handed system

B

E

k

take the scalar potential ˚ to be zero. Then solve the wave equation (1.56b) by
means of the ansatz

A.t;x/ D ".k/e�i!t eik�x ;

where k is the wave number vector and ! D cjkj the circular frequency. The
unit vector Ok defines the direction of propagation, ".k/ is a polarization vector
which, in general, depends on k. Condition (1.63) gives at once the relation

".k/ � k D 0 ;

which tells us that the direction of A is perpendicular to the direction of propa-
gation. The same conclusion also holds for the observable electric and magnetic
fields:

It follows from (1.55a) that in a plane wave solution, B is proportional to
k � ", i.e. is directed perpendicular to the direction of propagation. The electric
field contains a transverse part in the first term on the right-hand side of (1.55b)
and the contribution �r˚ . The latter vanishes because the potential was as-
sumed to be identically zero. Therefore, the field E.t;x/ is perpendicular to the
direction of propagation, and E / ". This is an important result. In an electro-
magnetic plane wave, the two fields are perpendicular to each other, and both are
perpendicular to the direction of propagation; E , B and k span a right-handed
system as sketched in Fig. 1.7.

1.7 Phenomenology of the Maxwell Equations

The previous sections clarified the essential features of Maxwell’s equations in inte-
gral and differential form, whereas this section serves the purpose of exploring some
of their phenomenology, with the aim of becoming more familiar with the physical
properties coded in these equations. Therefore, we interrupt the formal analysis for
a while in favour of some remarks and comments on Maxwell’s equations. In doing
so we make frequent use of the results and techniques of Sect. 1.6.
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1.7.1 The Fundamental Equations and Their Interpretation

Even though some of the following remarks repeat previous ones, it is useful to
recall the essential messages of Maxwell’s equations and to group them together
in one block. We do this, step by step, by following the basic equations (1.44a)
to (1.44f).

i The first homogeneous equation (1.44a), r �B.t;x/ D 0, is a consequence
of the statement that the magnetic induction has no isolated source and no
source that could be isolated, even in principle. In contrast to the purely
electric case, there does not exist a magnetic “charge distribution” which
could produce static or nonstatic fields. Magnetism – to invoke a simple
picture – always involves the two kinds of poles, the north pole and the
south pole.

ii The second homogeneous equation (1.44b)

r �E.t;x/ D �1
c

@

@t
B.t;x/

tells us that the vortices of the electric field are due to the time variations of
the magnetic induction. In stationary cases, i.e. in cases where the induction
field does not depend on time, B D B.x/, the electric field is irrotational.
As can be seen from (1.53) with g.t;x/ � 0, it can be represented as
a gradient field. This is true only in stationary situations!

iii The first of the inhomogeneous Maxwell equations, (1.44c), r �D.t;x/ D
4�%.t;x/, is an expression of the fact that the given electric charges are the
sources of the (electric) displacement field D. There is no information about
its vortices! This remark, as well as the previous one, shows that, beyond
the basic equations, one needs further relations linking D to E , and linking
B to H . In the vacuum these relations are given by (1.44f), with or without
constant factors different from 1, depending on the system of units one is
using. We return to this in Sect. 1.7.2 and in 1.7.3.

iv The second inhomogeneous Maxwell equation (1.44d),

r �H .t;x/ D 4�

c

�
j .t;x/C 1

4�

@

@t
D.t;x/

�
;

here slightly rewritten in view of the next remark, in any stationary case
reduces to

r �H .x/ D 4�

c
j .x/ : (1.64)

The vortices of stationary magnetic fields are due solely to the given time-
independent current density j .x/. As the divergence of a curl vanishes, the
continuity equation (1.21) holds in the simpler, time-independent version
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r � j .x/ D 0. Suppose that, from the beginning, we had not characterized
the continuity equation in its general form, (1.21), as an important basic
equation. One could then argue as follows: The stationary equation (1.64)
is compatible with the continuity equation. Stationary currents necessarily
are always closed currents and, by (1.64), cause magnetic fields which are
stationary, too. If the continuity equation holds true also in the nonstation-
ary, i.e. time-dependent, case, in its general form, (1.21), the current density
must be replaced by

j .x/ 7�!
�

j .t;x/C 1

4�

@

@t
D.t;x/

�
; (1.65a)

so that stationary equation (1.64) becomes the Maxwell equation (1.44d).
Thus, to the time- and space-dependent current density one must formally
add the new “current density”:

j Maxwell.t;x/ D
1

4�

@

@t
D.t;x/ : (1.65b)

Maxwell named this additional term the displacement current. This new
term must be present for Maxwell’s equations in order not to contradict the
continuity equation. Note that it is only partially possible to visualize this
displacement term. Exercise 1.13 gives a simple example in which a di-
electric medium is inserted between the plates of a charged capacitor and
charges are indeed found to be locally shifted in the medium during dis-
charge of the capacitor. However, in empty space it is not obvious what
is being shifted. Whatever justification one chooses, this term is essential
for basic properties of physics. It guarantees not only the validity of the
continuity equation if the fields become time dependent; it provides the
essential basis for the existence of electromagnetic waves. As was shown
in Sect. 1.5.4, the wave equation follows from Maxwell’s equations only if
this term is present. Therefore, the experimental verification of the existence
of electromagnetic waves was the touchstone in the proof of the displace-
ment current postulated by Maxwell.

v The Lorentz force, as shown by (1.44e), with its typical dependence on
velocity, finally gives an important hint about the spacetime symmetries of
Maxwell’s equations which we work out in Sect. 2.3 below.

vi In static, i.e. time-independent, situations the Maxwell equations decom-
pose into two independent groups of equations:

r �E.x/ D 0 ; (1.66a)

r �D.x/ D 4�%.x/ ; (1.66b)

D.x/ D ©.x/E.x/ I (1.66c)
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r �B.x/ D 0 ; (1.67a)

r �H .x/ D 4�

c
j .x/ ; (1.67b)

B.x/ D F
�
H .x/

�
: (1.67c)

Only under certain conditions does the last of these, (1.67c), yield a linear
relation between B and H , analogous to (1.66c):

B.x/ D �.x/H .x/ ; (1.67d)

a question to which we subsequently return.
The first three are the basic equations of electrostatics, whereas the sec-
ond group defines the basic equations of magnetostatics. Note, however,
that the decoupling of magnetic and electric phenomena is only an apparent
one because currents are due to charges which are in motion. As soon as
the electric and magnetic quantities become time dependent, all phenom-
ena intermix. This is why one talks about electromagnetic processes, with
“electromagnetic” in one term.

vii The wave equation (1.45) plays a fundamental role: It guarantees that elec-
tromagnetic oscillations in the vacuum always satisfy the relation !2 D
k2c2 between the circular frequency ! D 2�
 D 2�=T and the wave
number k D 2�=� of a monochromatic wave. Adding to this the relations
E D „! and p2 D „2k2 by which quantum theory relates energy and cir-
cular frequency, and momentum and wave number, respectively, one finds
the relation between energy and momentum

E2 D p2c2 ; (1.68)

which is typical for massless particles. This is a hint that Maxwell theory,
when subject to the postulates of quantum theory, describes massless parti-
cles, photons.

viii The wave equation (1.45) provides a necessary, but certainly not a suffi-
cient, condition for field quantities of Maxwell theory. Although it ensures
that there are electromagnetic waves at all and fixes the relation between
circular frequency and wave number and, thus, after quantization, between
the energy and momentum of photons, Maxwell’s equations contain more
information than that. These partial differential equations determine the
correlations between the directions of electric and magnetic fields. The
monochromatic plane wave may serve as an example. As was noted earlier,
its electric and magnetic fields are transversal and oscillate perpendicu-
larly to each other. When translated into quantum theory, this means that
Maxwell’s equations contain information about the spin and polarization of
photons.
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1.7.2 Relation Between Displacement Field and Electric Field

The relation between the electric displacement field D.t;x/ and the electric
field E.t;x/ is determined by the properties of physical media, which, strictly
speaking, can be obtained only from a theory of matter proper. In macroscopic elec-
trostatics, magnetostatics and electrodynamics, where one investigates phenomena
at macroscopic scales, it is useful to parametrize the properties of matter in a bulk
manner by means of quantities which, though in principle are calculable from a mi-
croscopic description, reflect averaged properties of matter. For example, for the
purposes of electrostatics, it makes sense to distinguish generally between electric
conductors and polarizable media. In an idealized conductor, there are freely mov-
ing charges which, when subject to an electric field, will move until an electrostatic
equilibrium is reached. In polarizable media, there are no freely moving charges.
Yet, an external electric field can polarize the medium locally, i.e. over microscopic
distances.

If the medium is homogeneous and isotropic in its electric properties, then
D.x/ D "E.x/, where " is a constant and commutes with all differential opera-
tors. If the medium is isotropic but no longer homogeneous, then ".x/ is a function
of the position at which one investigates the relation between the two types of fields.
In both cases, it is advisable to write ".x/1l3, i.e.

D.x/ D ".x/1l3 E.x/ ;

with 1l3 the 3 � 3 unit matrix. This notation emphasizes the assumed isotropy of
the medium. Indeed, if the medium is not isotropic and the response of the medium
to an applied external field depends on the direction of that field, then the function
".x/ is replaced by a 3 � 3 matrix ".x/ whose entries are functions of x.

The electric field E is the elementary, microscopic field. The electric displace-
ment field D can only deviate from E inside a medium (except, of course, for
possible numerical factors which are due to the system of units!). This will only
happen if the electric field induces some polarization in the medium, i.e. if there
are locally mobile charges in the medium. To illustrate this, we consider a simple
schematic model.

A piece of material which is electrically neutral is divided into cells such that
within each cell there exist positive and negative charges which can move inside
the cell but cannot leave it. Without an external field these charges are assumed to
be homogeneously distributed such that not only the whole piece of matter but also
each cell is electrically neutral. If one now applies an external electric field (taken
to be homogeneous), equal amounts of positive and negative charges are displaced
inside each cell, the positive ones in the direction of the field, the negative ones
in the opposite direction (Fig. 1.8b). As a model, every such polarized cell i can
be described by an electric dipole d i . Its macroscopic effect will be contained in
a polarizability:

P.x/ D
X
i

Ni hd i i .x/ ; (1.69)



1.7 Phenomenology of the Maxwell Equations 51

where Ni is the average number of dipoles per volume element and hd i i.x/ is the
average dipole acting at point x.

A single dipole d , located at point x0, creates a static potential at some test
point x:

˚dipole.x/ D d � .x � x0/
jx � x0j3 D d � rx0

1

jx � x0j ; (1.70a)

where the second formula (1.27) was inserted. Denoting by %.x0/ the distribution
of the true charges, the total potential, including the induced polarization in the
material, reads

˚.x/ D
•

d3x0
�
%.x0/
jx � x0j CP.x0/ � rx0

1

jx � x0j
�

D
•

d3x0 %.x0/� rx0 �P.x0/
jx � x0j : (1.70b)

The electric field is given by the negative gradient field, E D �r˚ , its di-
vergence is calculated by means of (1.30) and the first of Eqs. (1.27), giving
r � E.x/ D 4�Œ%.x/ � rx � P.x/	. Comparing this to the first inhomogeneous
Maxwell equation (1.44c) yields the relation

D D E C 4�P : (1.71)

In the simplest case, the response of the medium to the applied field is linear in
E and the same in all directions (isotropy). Expressed as a formula, it is

P.x/ D �e.x/E.x/ ; (1.72)

where �e.x/ is the electric susceptibility of the medium. In this case, one obtains
the relation

D.x/ D ".x/ E.x/; with (1.73a)

".x/ D 1C 4��e.x/ : (1.73b)

If, in addition, the medium is homogeneous, then " is a constant which is the same
everywhere in the medium. It is called a dielectric constant. By use of (1.44c) one
obtains the following inhomogeneous differential equation:

r �E.x/ D 4�

"
%.x/ : (1.74)

An electric dipole points from the negative to the positive charge. Therefore, the
polarization P has the same direction as the field E , and one finds �e > 0 and " > 1.
When this is inserted into (1.73a), one finds that the applied field is weakened by
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Fig. 1.8 Schematic model of an electrically polarizable medium. a The medium consists of ele-
mentary cells which are electrically neutral. b Under the action of an external electric field E , the
positive and negative charges separate in the elementary cells, creating an induced electric field
which acts against the external field

the dipole fields that it induces in the material, in agreement with the simple model
sketched in Fig. 1.8.

In electric conductors, as long as they are assumed to have ideal conductivity,
there is no polarization. All charges contained in the metal move freely and, hence,
will flow under the action of the applied field until equilibrium is reached. The
induced charges will all sit on the surfaces of the conductor being studied. Except
for these surfaces, D and E are equal.

1.7.3 Relation Between Induction andMagnetic Fields

Use is made here of a few formulae of magnetostatics taken from Sect. 1.9.3 below
which will be derived there but are made plausible at this stage. Their purpose is to
derive relations between the magnetic induction B and the magnetic field H , which
are analogous to (1.73a).

A magnetic pointlike dipole m, placed at the origin of the system of reference,
gives rise to the vector potential (up to gauge transformations):

Adipole.x/ D m � x

jxj3 : (1.75a)

If it is placed at some other point x0, then the potential at the test point x reads

Adipole.x/ D m � .x � x0/
jx � x0j3 : (1.75b)
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The formal resemblance to the scalar potential of an electric dipole (1.70a) is obvi-
ous.

A stationary current density j .x/, by equation (1.67b), has vanishing divergence.
It creates a magnetic field whose curl is given by (1.67b). Using the general decom-
position (1.53), the field H can be represented as follows:

H .x/ D rx �
�
1

4�

•
d3x0 .4�=c/j .x0/

jx0 � xj
�
:

In the vacuum, one has H .x/ D B.x/, so that, upon using representation (1.55a)
of B in terms of a vector potential, this potential is given by the integral on the
right-hand side of the preceding formula:

Acurrent.x/ D 1

c

•
d3x0 j .x0/

jx0 � xj : (1.75c)

In this formula, the test point x lies outside the domain where the current density is
different from zero.

Consider a localized piece of matter whose magnetic polarizability can be char-
acterized macroscopically by a magnetization density:

M .x/ D
X
i

Ni hmi i .x/ ; (1.76)

where hmi i.x/ is the average magnetic dipole moment of an elementary cell (e.g.
a molecule) at point .x/ and Ni is the average number of such cells (molecules of
a given kind). If, furthermore, there is a nonvanishing free current density j .x/, it
is possible to write down a vector potential. By equations (1.75c) and (1.75a), it has
the form

A.x/ D Acurrent.x/CAdipole.x/

D 1

c

•
d3x0

�
j .x0/
jx0 � xj C c

M .x0/ � .x � x0/
jx � x0j3

�
:

In the second term of this expression, one of the formulae contained in (1.27) is
used, and then a partial integration with respect to variable x0 is performed to find

•
d3x0 M .x0/ � .x � x0/

jx � x0j3 D
•

d3x0 M .x0/ � rx0

1

jx � x0j
D
•

d3x0 �rx0 �M .x0/
� 1

jx � x0j :

There is no minus sign following the partial integration because the order of the
nabla operator and the magnetization density was changed in the cross-product. As
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by assumption M .x/ is localized, there are no surface terms. With this interme-
diate result the vector potential takes a form which exhibits an obvious similarity
to (1.70b):

A.x/ D 1

c

•
d3x0 j .x0/C c rx0 �M .x0/

jx � x0j : (1.77)

Taking the curl of B and using formulae (1.47c) and (1.30), one has

r �B.x/ D r � �r �A.x/
� D ��A.x/ D 4�

c
j .x/C 4�r �M .x/ :

(A term in (1.47c) containing the divergence of A vanishes because the current
density j has vanishing divergence.) Rewriting this in the form of the second inho-
mogeneous Maxwell equation (1.67b), one sees that one should write

H .x/ D B.x/� 4�M .x/ (1.78a)

to obtain the familiar form of the basic equations (1.67a) and (1.67b).
The relationship between the magnetic induction B and the magnetic field H is

an issue concerning the magnetic properties of matter. For isotropic, diamagnetic
and paramagnetic media the relation is a linear one:

B.x/ D �.x/H .x/ : (1.78b)

The function �.x/ is called the magnetic permeability. As in the case of dielectric
media, the response of the medium to the applied magnetic field H is linear:

M .x/ D �m.x/H .x/ ; (1.78c)
with �m the magnetic susceptibility, so that the permeability is given by

�.x/ D 1C 4��m.x/ ; (1.78d)

a formula which is analogous to (1.73b).
Diamagnetic substances can be modelled by an assembly of atoms whose to-

tal angular momentum is equal to zero and, hence, which have no static magnetic
moment. The applied magnetic field induces magnetic moments which are directed
opposite to the applied field; the induced magnetic moments weaken the external
field by their own magnetic field. Regarding the macroscopic parameters, this means
that �m < 0 and, hence, � < 1.

Paramagnetic substances consist of atoms which have a nonvanishing total an-
gular momentum and a nonvanishing primary magnetic moment. This magnetic
moment, which stems from the unpaired electron of the atomic shells, aligns paral-
lel to the applied field, the magnetic susceptibility is positive, �m > 0 and therefore
the permeability is � > 1.

In both cases, for diamagnetic and paramagnetic substances, the susceptibility
�m is found to be very small, and the permeability � is very close to 1.
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Fig. 1.9 Qualitative relation between the applied
magnetic field and the resulting induced field for a ferro-
magnetic substance (hysteresis in steel)

H

B

In ferromagnetic substances, finally, the response of the medium is no longer
linear. Furthermore, the function F

�
H .x/

�
is multivalued, i.e. the value of the in-

duction B, for a given value of H , depends on how field H was built up. This is the
phenomenon of hysteresis, which is illustrated qualitatively in Fig. 1.9.

I Remark
So far we have introduced the polarizability and the magnetization density as
phenomenological, semimacroscopic, averaged properties of matter to obtain an
impression of the nature of these quantities. This was certainly not meant to
indicate that they exist only in this sense and that the fields D and H are nec-
essarily macroscopic fields. Indeed, electric polarizability and magnetization are
also well defined microscopically, i.e. for a single atom or even an elementary
particle. The electric displacement D.t;x/ and the magnetic field H .t;x/ are
entities which are as fundamental as the electric field E.t;x/ and the induction
field B.t;x/. (For a more detailed discussion, see Hehl–Obukhov 2003 and the
literature quoted therein.)

1.8 Static Electric States

The basic equations of electrostatics are given in (1.66a)–(1.66c), where in the vac-
uum, and upon using Gaussian units, the function " is the constant function 1. In
view of the general remarks in Sect. 1.7.2, it is meaningful to leave aside for the
moment polarizable media and to study electrostatic phenomena only in conduct-
ing media and in the vacuum. Except for the surfaces of ideal conductors, fields D

and E can be identified. The essential problems of electrostatics are then well de-
fined: Establish the relationship between given charges or charge distributions and
the electric fields created by them, define surface charges on the surfaces of ideally
conducting bodies, and study the discontinuities of fields across surfaces.
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1.8.1 Poisson and Laplace Equations

Identifying displacement field D and electric field E , one has

r �E.x/ D 0 ; r �E.x/ D 4�%.x/ :
The stationary electric field E is irrotational and can therefore be written as a gra-
dient field:

E.x/ D �r˚.x/ ; (1.79)

where˚.x/ is a real, piecewise continuous and differentiable function. The equation
˚.x/ D c, with c a constant, defines a locally smooth surface in R3, as sketched
in Fig. 1.10. Let Ovn denote the normal to the surface at point P , the direction of Ovn
being chosen such that the function grows in that direction. Let Ov be an arbitrary unit
vector in P . As shown in Fig. 1.10, it is decomposed in terms of Ovn and of a unit
vector Ovt in the tangent space at P :

Ov D an Ovn C at Ovt ; with an; at 2 R and a2n C a2t D 1 :
Calculating the directional derivative of ˚.x/ in the direction of Ov, written symbol-
ically as @˚=@v,

@˚

@v
� r˚.x/ � Ov ;

and inserting the decomposition of Ov, only the normal component is seen to con-
tribute. The value of ˚.x/ is constant along a tangent vector. Therefore, one has

@˚

@v
D an

�r˚.x/ � Ovn� with � 1 6 an 6 C1 :

This result shows that the growth of the function is maximal in the direction of the
positive normal, i.e. for the choice Ov D Ovn. Thus, the gradient field defines the di-
rections along which the potential grows or decreases the fastest. With the choice of
sign in definition (1.79), one draws the following conclusion:
In every point of the surface˚.x/ D c, the electric field is perpendicular to the sur-
face and points in the direction along which the potential falls off the most rapidly.

A surface of the kind ˚.x/ D c is called an equipotential surface. Every curve
whose tangent vector field coincides with the electric field is orthogonal to this sur-
face. In other terms, a charged particle which follows the electric field moves on an
orthogonal trajectory to the surfaces ˚.x/ D c.

With D.x/ D E.x/ and by ansatz (1.79), the potential˚.x/ obeys the following
ordinary differential equation:

Poisson equation

�˚.x/ D �4�%.x/ : (1.80a)
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Fig. 1.10 Locally the equation ˚.x/ D c defines a surface in R3 whose tangent plane in the
point P is also shown

The Poisson equation, supplemented by boundary conditions which are usually
defined by experimental set-ups, is another basic equation of electrostatics. Out-
side of given point charges or charge distributions, that is everywhere where %.x/
vanishes locally, the Poisson equation is replaced by the following equation:

Laplace equation

�˚.x/ D 0 : (1.80b)

This differential equation is called the Laplace equation.
Generally speaking the Poisson equation is solved formally by means of Green

functions. A Green function, which in fact is not a function but a distribution, de-
pends on two arguments, say x and x0, and obeys the differential equation

�xG.x;x
0/ D ı.x � x0/ ; (1.81)

with ı.z/ denoting the Dirac ı-distribution. Indeed, if the source %.x/ in (1.80a) is
given, then

˚.x/ D �4�
•

d3x0 G.x;x0/ %.x0/ (1.82)

solves the Poisson equation. Relation (1.30), whose proof may be found, for exam-
ple, in [QP], Appendix A.1, shows that

G.x;x0/ D � 1

4�

1

jx � x0j (1.83)
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is an example of a Green function. Inserting this into (1.82) gives the expression

˚.x/ D
•

d3x0 %.x0/
jx � x0j ; (1.84a)

which was derived in a different way previously. It represents the electric potential
created by the given charge distribution and holds as long as no further boundary
conditions are imposed, such as conducting surfaces on which charges will be in-
duced or the like.

A simple example is provided by a finite number of point charges, q1, q2, : : :,
qN , which are located at points x1, x2, : : :, xN , respectively, so that

%.x/ D
NX
iD1

qiı.x � xi / ;

the corresponding potential being

˚.x/ D
NX
iD1

qi

jx � xi j : (1.84b)

In electrostatics the force K .x/ D q0E.x/ acting on a test charge q0 is a potential
force. Therefore, the work done or gained by moving this charge from A (“alpha”)
to ˝ (“omega”) is independent of the path linking A and ˝:

W D �
Z

ds �K .x/ D �q0
Z

ds �E.x/ D q0Œ˚.˝/ �˚.A/	 :

It is given by the difference of the potential energies of the test charge at these points.

Example 1.5 Spherically symmetric charge distribution
Assume the charge density to be spherically symmetric, i.e. %.x/ D %.r/, and
to be localized, which means that one may draw a sphere with radius R about
the origin outside of which there are no further charges. The radial part of the
Laplace operator is taken from (1.96) below. When this is inserted into the Pois-
son equation, this differential equation reduces to a differential equation in the
radial variable alone:

1

r2
d

dr

�
r2

d˚

dr

�
D �4� %.r/ :

A first integral of this equation yields

d˚

dr
D �4�

r2

rZ
0

dr 0 r 02%.r 0/C c1

r2
:
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The integration constant c1 must be chosen to be zero. If it were not zero, the
electric field strength would become infinite at r D 0. The first term has a phys-
ical interpretation: 4�

R r
0 dr 0 r 02%.r 0/ is the chargeQ.r/ contained in the sphere

with radius r . Depending on whether r 6 R or r > R, this charge is part or all of
the total charge contained in the charge distribution, respectively. By integrating
once more, and using partial integration, one finds

˚.r/ D
rZ
0

dr 0
�
� 1

r 02

�
Q.r 0/C c2

D Q.r 0/
r 0

ˇ̌
ˇ̌r
0

� 4�
rZ
0

dr 0 r 0%.r 0/C c2

D Q.r/

r
C 4�

1Z
r

dr 0 r 0%.r 0/C
"
� 4�

1Z
0

dr 0 r 0%.r 0/C c2
#
:

The third term (in square brackets) is a constant which can be taken to be zero by
a suitable choice of the integration constant c2, without loss of generality. There
results an important formula which was derived previously in Example 1.2:

˚.r/ D 4�
(
1

r

rZ
0

dr 0 r 02%.r 0/C
1Z
r

dr 0 r 0%.r 0/
)
: (1.85)

By means of this formula one can derive the potential for any localized, spheri-
cally symmetric charge distribution. Examples are as follows:
(i) the homogeneous density of Example 1.2 in Sect. 1.2;
(ii) a sphere of radius R made of an ideal conductor material: All charges sit on
the surface of the sphere and are equally distributed, i.e. we have Q.r/ D 0 for
all r < R. With Q denoting the total charge carried by the sphere, one has

E inner D 0 ; E outer D Q

r2
Or :

The component of the electric field parallel to directions tangent to the sphere
vanishes inside and outside the sphere. The radially oriented normal component
has a discontinuity at r D R;
(iii) a distribution which is often used as a model for the charge distribution of
atomic nuclei:

%Fermi.r/ D N

1C expŒ.r � c/=z	 with

N D 3

4�c3

�
1C


�z
c

�2 � 6 
z
c

�3 1X
nD1

.�/n
n3

e�nc=z
��1
I
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it is called a Fermi distribution. Parameter c is the distance from the origin
at which % has decreased to about half its value at r D 0, and parameter z
characterizes the width of the fall-off of % near the surface. Although this is
somewhat more tedious, the potential can also be calculated analytically for this
example. In applications to electromagnetic processes with nuclei (electron scat-
tering, muonic atoms, etc.), one often constructs ˚.r/ by numerical integration
of (1.85).

Example 1.6 A function-theoretic method
Suppose an electrostatic set-up is homogeneous in one space direction, so that
its nontrivial physical features are confined to the planes perpendicular to that di-
rection. In such a situation, the analysis can be restricted to a plane, i.e. the given
problem is reduced to two spatial dimensions. Denoting Cartesian coordinates in
R3 by x; y; � and choosing them such that the �-axis is taken to be the direction
of homogeneity, neither the charge distribution % nor the potential ˚ depends
on �. The Poisson equation reduces to

�˚.x; y/ D
�
@2

@x2
C @2

@y2

�
˚.x; y/ D �4�%.x; y/ :

The corresponding homogeneous differential equation (%.x; y/ � 0) is well
known from function theory. With z denoting a complex variable and w.z/ an
analytic function, and with the decompositions into real and imaginary parts,

z D x C iy �! w.z/ D u.x; y/C iv.x; y/ ;

respectively, the functionsu and v satisfy the Cauchy–Riemann differential equa-
tions:

@u

@x
D @v

@y
; (1.86a)

@u

@y
D �@v

@x
: (1.86b)

These equations have two consequences. (i) Both u.x; y/ and v.x; y/ satisfy the
Laplace equation in two dimensions:

�
@2

@x2
C @2

@y2

�
u.x; y/ D 0 ;

�
@2

@x2
C @2

@y2

�
v.x; y/ D 0 :

This is shown for the function u.x; y/ by taking the partial derivative of (1.86a)
with respect to x and the partial derivative of (1.86b) with respect to y and adding
the results. Similarly for v.x; y/, one takes the partial derivative of (1.86a) by y
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and the partial derivative of (1.86b) by x and subtracts the resulting equations.
(ii) Equations (1.86a) and (1.86b) tell us that the curves u.x; y/ D const and
v.x; y/ D const are orthogonal to each other in the .x; y/-plane. This is seen by
taking the scalar product of the tangent vectors at the point .x; y/:

.@u=@x @u=@y/
�
@v=@x

@v=@y

�
D 0 :

These curves are said to be orthogonal trajectories of one another.
In the two-dimensional sections of our electrostatic problem, we encounter

a similar situation: The intersection curves of the equipotential surfaces with the
.x; y/-plane and the electric field lines are orthogonal to each other. One can
make use of this observation to generate further solutions from a given solu-
tion of the Laplace equation. Every analytic function f .z/ generates a conformal
mapping at any point where its derivative is different from zero, i.e. a mapping
from the complex z-plane to the planew D f .z/ under which the angles at inter-
sections of curves are preserved both in modulus and orientation. For example,
consider the two sets of curves

x2 � y2 D a and 2xy D b ; a 2 RC; b 2 R ;

as a model for equipotential lines (Fig. 1.11a) and for field lines (Fig. 1.11b),
respectively. Obviously, these two sets are the real and imaginary parts, respec-
tively, of the function w D f .z/ D z2. The curves x2 � y2 D a on the z-plane
are mapped to straight lines w D a C iv parallel to the v-axis, and the curves
2xy D b are mapped to straight lines w D u C ib parallel to the u-axis. The
image of the given system is found to be a homogeneous electric field parallel to
the u-axis, together with its equipotential lines, which are parallel to the v-axis,
as illustrated in (Fig. 1.11c).

I Remarks
1. If the function is chosen to be of the type

z 7�! w D az C b
cz C d ; with ad � bc 6D 0 ; c 6D 0 ;

then the mapping is not only conformal but also bijective. Therefore, it may
be used in either direction.

2. The class of problems defined previously still live in R3, even though one
dimension is irrelevant. In a “genuine” R2, the Laplace operator

�.Dim 2/ ˚.x/ D
�
@2

@x2
C @2

@y2

�
˚.x/

D 1

r

@

@r

�
r
@˚.r; �/

@r

�
C 1

r2
@2˚.r; �/

@�2
D 0
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Fig. 1.11 a Equipotential lines x2�y2 D a on the .x; y/-plane. b Electric field lines xy D b=2,
which are the orthogonal trajectories of the equipotential lines of Fig. 1.11a. c Image of this set-up
under the mapping w D z2

provides a different type of solution for the point charge. Indeed, this solution
is ˚ .2/.r/ D ln r and is notably different from the potential ˚ .3/.r/ D 1=r

of a point charge in R3!

1.8.2 Surface Charges, Dipoles and Dipole Layers

Example 1.5 (ii) may serve as an inspiration to consider the mathematical limit
of a more general surface charge. On a localized ideal conductor whose boundary
is a smooth surface in R3, the charge will be distributed exclusively on its sur-
face. With this idealization the spatial charge density % (whose physical dimension
is charge/volume) is replaced by a surface charge density � whose dimension is
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charge/surface. The potential which is created by a surface charge is given by

˚.x/ D
“

d� 0 �.x0/
jx � x0j :

Through application of Gauss’ theorem, (1.6), to a suitably chosen volume that en-
closes a piece of the surface, and with On denoting the normal directed outwards, one
finds the following relation between the difference of electric field strengths outside
and inside the surface carrying the charge density � (cf. Exercise 1.8):

�
E o �E i

� � On D 4�� : (1.87a)

The normal component of the electric field is discontinuous; the discontinuity is
4� times the charge density per unit area. Applying now Stokes’ theorem, (1.7), to
a closed loop which joins inside and outside (for details see Exercise 1.9), one finds
that the component tangent to the surface is continuous, i.e.

�
E a �E i

� � Ot D 0 : (1.87b)

These considerations hold for any piecewise smooth surface, independently of
whether or not this is a conductor. The tangential component of E is continuous, and
the normal component is discontinuous by the amount 4��. In the case of an electric
conductor, however, the tangential component must vanish since otherwise charges
would flow along the surface until equilibrium is reached. Inside the conductor the
potential is constant, and the electric field strength is equal to zero, E i D 0. In the
exterior region, there is only a normal component whose modulus is determined by
the surface charge density:

E a D 4�� On :
A static electric dipole is obtained by the mathematical limit of a system consisting
of two equal pointlike charges of opposite sign whose distance is taken to zero.
More precisely, let the chargesCq and �q be given in the positions .0; 0; .a=2/ Oe3/
and .0; 0;�.a=2/ Oe3/, respectively, as sketched in Fig. 1.12. They give rise to the
electrostatic potential

˚.x/ D q
�

1

jx � .a=2/ Oe3j �
1

jx C .a=2/ Oe3j
�
:

As a is assumed to be small compared to jxj, the two terms can be expanded up to
terms which are linear in a. With r D jxj and x3 D r cos � one has

1

jx � .a=2/ Oe3j '
1

r

�
1˙ 1

2

a

r2
x3
�
D 1

r
˙ 1

2

a

r3
x3 D 1

r
˙ 1

2

a

r2
cos � :

Upon insertion of these formulae, the first term is seen to cancel out while the second
term is proportional to the product qa. Taking, then, the simultaneous limit (q !1,



64 1 Maxwell’s Equations

Fig. 1.12 Shrinking the distance a of two opposite point
charges ˙q while simultaneously increasing the value
of q such that the product qa stays finite yields an ideal-
ized dipole

3

2
1

a
x

q

−q

a! 0) performed such that the value of the product is kept fixed,

q !1 ; a! 0 ; with qa DW d fixed,

one obtains an expression which is exact in this limit, viz.

˚dipole.x/ D d

r2
cos � : (1.88a)

It is not difficult to generalize this expression to a situation where the dipole is
still located in the origin but does not point along the 3-axis. Let a be the vector
which points from the negative to the positive charge (in the figure this is a D a Oe3)
and let d D lim.qa/ as defined above for q ! 1 and jaj ! 0. Then we have
d cos � D d � x=r , and (1.88a) takes the form

˚dipole.x/ D d � x
r3
D �d � r

�
1

jxj
�
: (1.88b)

When the dipole’s position is x0 6D 0 and is not the origin, the potential (1.88b)
reads

˚dipole.x/ D d � .x � x0/
jx � x0j3 D �d � rx

�
1

jx � x0j
�
: (1.88c)

An electric dipole layer is another idealization which consists in superposing two
charged surfaces, F1 and F2, on top of each other, as sketched in Fig. 1.13. The
surface densities are chosen such that �1 d�1 D ��2 d�2 and, when the two surfaces
approach each other, the surface charge density � is inversely proportional to their
distance a.x/ such that the product �.x/a.x/ stays finite when a! 0. Qualitatively
speaking, this system consists locally of very many small dipoles. There emerges
a position-dependent dipole moment of the double layer which is aligned along the
positive normal of the surfaces:

D.x/ D D.x/ � n with D.x/ D lim
a!0;�!1.�.x/a.x// :
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P

dΩ

θ

n
∧

|x−x'|

F1

F2

a(x)
dσ1

dσ2
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b

Fig. 1.13 a A dipole layer which is composed of equal and opposite surface charges on surface
elements facing each other is generated if one lets the distance of the surfaces go to zero while
sending the surface charge density to infinity. b At a test point P outside the dipole layer, the
potential can be expressed in terms of the solid angle from P , cf. (1.89b)

The potential created by an idealized dipole layer can easily be inferred from the
results for the point dipole. It reads

˚.x/ D �
“

F

d� 0 D.x0/ � rx
�

1

jx � x0j
�

(1.89a)

D
“

F

d� 0 D.x0/ � rx0

�
1

jx � x0j
�
:

At a test point P far from the surface F one observes the surface element d� under
the solid angle d˝ , and one has

On � rx
�

1

jx � x0j
�
D cos � d�

jx � x0j2 D d˝ ;
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so that the potential can also be written in the following alternative and simpler
form:

˚.x/ D �
“

F

d˝ 0 D.x0/ : (1.89b)

The dipole (1.88c) will be relevant for the discussion of time-dependent oscillations.
Surface charges and dipole layers are needed in the discussion of general boundary
value problems, to which we turn next.

1.8.3 Typical Boundary Value Problems

Green functions provide a rather general, though not always easily implementable,
method for solving boundary value problems (for a first example see Sect. 1.8.1).
The differential equation at stake is the Poisson equation (1.80a). In fact, Green
functions are distributions and satisfy differential equation (1.81). Their most gen-
eral form is given by (1.83), to which an arbitrary solution of the Laplace equation
is added:

G.x;x0/ D � 1

4�

1

jx � x0j C F.x;x
0/ ; (1.90)

with �xF.x;x
0/ D 0 D �x0F.x;x0/ :

Making use of Green’s second theorem, (1.10), by inserting � D G.x;x0/ and
the Poisson equation (1.80a), one has

˚.x/ D� 4�
•

V.F /

d3x0 G.x;x0/%.x0/ (1.91)

C
“

F

d� 0
�
˚.x0/

@

@ On0G.x;x
0/ �G.x;x0/

@

@ On0˚.x
0/
�
;

whenever x lies inside volume V.F /, which is defined by the closed surface F . If,
in turn, x lies outside this volume, then the left-hand side is equal to zero.

To obtain a physical interpretation of the additional terms on the right-hand side
of (1.91), it is appropriate to choose F.x;x0/ D 0 in a first step. One then finds

x 2 V.F / W ˚.x/

x … V.F / W 0

�
D
•

V.F /

d3x0 %.x/

jx � x0j (1.92a)

C 1

4�

“

F

d� 0
�
�˚.x0/

@

@ On0
1

jx � x0j C
1

jx � x0j
@

@ On0˚.x
0/
�
:
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The interpretation of the two terms in the surface integral is as follows. Upon com-
parison with (1.89a) the first term is seen to be the potential of a dipole layer whose
dipole density is given by

D.x/ D � 1

4�
˚.x/jF : (1.92b)

The second term is the potential of a surface charge density which sits on surface F
and is described by the function

�.x/ D 1

4�

@˚

@ On
ˇ̌
ˇ̌
F

: (1.92c)

Finally, one may study the limiting case whereby the closed surface is shifted to
infinity. If the directional derivatives of the potential, for x0 ! 1, decrease faster
than the inverse distance function, then the surface integral does not contribute in
this limit and one recovers the familiar formula

˚.x/ D
•

V.F /

d3x0 %.x/

jx � x0j :

In discussing boundary value problems, i.e. problems where certain potentials or
fields are given, it seems natural to ask which kind of data determine the solution of
an electrostatic problem in a unique manner. For example, one will realize that it is
not possible to fix both the potential˚.x/jF and its normal derivative @˚=@ OnjF on
a given closed surface. Admissible, i.e. well-posed, boundary value problems are as
follows:

(a) On some closed surfaces, the values of the potentials are given. An example
is a set-up of conductors with known constant potentials. A specification of
this kind is called a Dirichlet boundary condition.

(b) On certain surfaces supporting known surface charges, the normal component
of the electric field is specified. A problem of this kind is called a Neumann
boundary condition.

These conditions, either (a) or (b), lead to a unique solution of the given problem.
This can be shown by using the integral theorems as follows. Suppose either set-
up (a) or set-up (b) admitted two solutions, ˚1.x/ 6D ˚2.x/. Then define U.x/ WD
˚2.x/�˚1.x/. Inside the volume defined by closed surfaceF , the Laplace equation
�U.x/ D 0 applies, whereas on the surfaceF , which need not be singly connected,
we must specify

in case (a): U.x/jF D 0 ;
in case (b):

@U.x/

@ On
ˇ̌
ˇ̌
F

D 0 :
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Applying now Green’s first theorem, (1.9), with ˚ D � D U , one obtains•

V.F /

d3x


U�U C �rU �2� D

“

F

d� U
@U

@ On :

(Recall that @U=@ On D On � rU is the directional derivative along the normal to the
surface. Up to a sign this is the normal component of the electric field.) The two
terms on the left-hand side, by partial integration, give the same contribution. On
the right-hand side, either U or its normal derivative vanishes. One concludes that
in either case, •

V.F /

d3x
�rU �2 D 0 ;

and, hence, that rU � 0 or U.x/ D 0, respectively, for all x 2 V.F /. In the case
of the Dirichlet condition, this means that U.x/ D 0; in the case of the Neumann
condition, it means that U and the solution ˚.x/ are determined up to an additive
constant. Such a constant is physically irrelevant. This result shows, on the one
hand, that in either class of problems the solution, if it exists, is unique (possibly up
to an additive constant). On the other hand, it shows that a set-up in which both the
potentials and their normal derivatives were specified on a closed surface would in
general be overdetermined.4

Formally, but rarely implementable in practice, one can choose the solution
F.x;x0/ of the Laplace equation in a Dirichlet problem such that the Green function
vanishes for all x0 on the surface:

GD.x;x
0/ D 0 for all x0 2 F :

Example 1.7 Dirichlet condition on the sphere
Let the closed surface be a sphere with radius R about the origin, F D S2R 	
R3. It is a matter of a simple geometric construction (cf. Exercise 1.14) to find
an additive term in (1.90) which guarantees the vanishing of GD.x;x

0/ on the
surface of the sphere. The result is found to be

GD.x;x
0/ D � 1

4�

1

jx � x0j C
Rjx0j
4�

1ˇ̌jx0j2x � R2x0ˇ̌ :
The required propertyGD.x;x

0/ D 0 for all jx0j D R is easily verified.

Having found this solution, we obtain the representation

˚.x/ D �4�
•

V.F /

d3x0 GD.x;x
0/%.x0/C

“

F

d� 0 ˚.x0/
@

@ On0GD.x;x
0/ (1.93)

of the potential. This solution for the potential is unique.

4 The closed surface F may be localized. However, with suitable care it may be continued entirely
or partially to infinity.
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In the case of a Neumann problem, one proceeds as follows. Like every Green
function, the distribution which satisfies the Neumann boundary condition obeys
the differential equation (1.81):

�GN.x;x
0/ D ı.x � x0/ :

Let the piecewise smooth surface F be given and let V.F / be the volume which
it defines. Inserting the gradient field V D rGN into Gauss’ theorem, (1.6), and
recalling the definition

@GN

@ On D
�rGN

� � On ;
Gauss’ formula (1.6) implies

1 D
“

F

d�
@GN

@ On :

Therefore, one can choose the normal derivative ofGN such that it is constant on
the surface F and equal to 1=F :

@GN

@ On D
1

F
:

Then, from the general formula (1.91) one obtains the representation

˚.x/ D� 4�
•

V.F /

d3x0 GN.x;x
0/%.x0/

C h˚i F �
“

F

d� 0 GN.x;x
0/
@

@ On0˚.x
0/ ; (1.94)

which contains the average of the potential over the surface F ,

h˚i F D 1

F

“

F

d� ˚.x/ :

This average is zero if one adds a closed surface placed at spatial infinity. Of
course, the implicit assumption is that all physical quantities are localized and,
hence, vanish at infinity.

1.8.4 Multipole Expansion of Potentials

There is an important, practicable and very useful technique which makes use of ex-
pansions in terms of spherical harmonics. Before developing the relevant formulae
and techniques, let us summarize the essential ideas of this method.
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The aim of the method is to find a set of fundamental solutions of the Laplace
equation (1.80b) which are complete, in a sense yet to be specified. Every physically
relevant solution which cannot be formulated directly and analytically should never-
theless be written as a series in these fundamental solutions. This program consists
of the following steps:

1. One solves the Laplace equation (1.80b) for a specific ansatz in spherical polar
coordinates .r; �; �/ such that the dependences on r , on � and on � are factorized:

˚ansatz.x/ � 1

r
R.r/P.�/f .�/ : (1.95)

Although this is not the most general solution, it has the advantage that the three
types of functionsR.r/, Y.�/ and f .�/ are known explicitly.

2. One then discovers that the set of all functions Y.�/f .�/ which are regular in the
interval .0 6 � 6 � , 0 6 � 6 2�/, are orthogonal, in a generalized sense, and
complete. Therefore, these product solutions span a basis for functions which are
regular on S2, the unit sphere in R3 which is described by coordinates � and �.

3. More general, and in particular nonfactorizing, solutions of the Laplace equa-
tion are expanded in terms of this base system. The completeness of this basis
is essential for this procedure. The method of expansion in terms of spherical
harmonics is also very useful in finding solutions of the Poisson equation if it is
combined with the technique of Green functions.

When expressed in terms of spherical polar coordinates the Laplace operator reads

�˚.r; �; �/ D 1

r2
@

@r

�
r2
@˚

@r

�C 1

r2 sin �

@

@�

�
sin �

@˚

@�

�
(1.96)

C 1

r2 sin2 �

@2˚

@�2
:

Upon inserting the factorization ansatz (1.95) one obtains separate ordinary differ-
ential equations for the radial part and for the parts depending on � and � only.
Without developing this method in detail we write down the differential equations
for the functions P.�/ and f .�/ of the angular variables � and �, respectively, as
well as the conditions on their parameters:

d2

d�2
f .�/Cm2f .�/ D 0 ; m D 0; 1; 2; : : : ;

1

sin �

d

d�

�
sin �

dP.�/

d�

�
C
�
`.`C 1/� m2

sin2 �

�
P.�/ D 0 ;

` D 0; 1; 2; : : : :
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The solutions of these differential equations, which are regular on the unit sphere

Y.�; �/ D P.�/f .�/ ;
are called spherical harmonics. The f .�/ solutions are labelled by the real num-
ber m, the P.�/ solutions by the reals ` andm:

Y`m.�; �/ D N`mPm` .�/fm.�/ ;
The requirement that fm.�/ should be single valued, which is to say that a complete
rotation of the frame of reference acts as the identity, fm.�C2�/ D fm.�/, implies
that m must be a (positive or negative) integer. The differential equation for Pm

`
.�/

has solutions which are regular in the whole interval � 2 Œ0; �	 and cos � 2 Œ�1; 1	
only if ` 2 N0 and if the modulus ofm does not exceed `.

Spherical harmonics belong to the realm of special functions, which one should
learn to make use of, in physics and in many other disciplines, like trigonometric
functions, logarithms, the exponential function and many other elementary func-
tions of analysis and function theory. Therefore, I restrict this presentation to their
definition and their essential properties, as well as to a few examples.5

Spherical harmonics on the unit sphere S2

Spherical harmonics Y`m.�; �/ are products of exponential functions in the
azimuthal variable � and of Legendre functions of the first kind Pm

`
.�/:

Y`m.�; �/ D
r
2`C 1
4�

s
.` �m/Š
.`Cm/Š P

m
` .cos �/eim� : (1.97a)

The indices ` and m take their values in the sets

` 2 N0 ; m 2 Œ�`;C` 	 ; i.e. more explicitly,

` D 0; 1; 2; : : : ; and m D �`;�`C 1; : : : ;C` : (1.97b)

The Legendre functions of the first kind depend on cos � DW z only and are
generated by differentiation of Legendre polynomials:

Pm` .z/ D .�/m
�
1 � z2�m

2
dm

dzm
P`.z/ ; .z � cos �/ ; (1.97c)

where, in turn, the Legendre polynomials may be defined, for example, by the
formula of Rodrigues:

P`.z/ D 1

2``Š

d`

dz`
�
z2 � 1�` : (1.97d)

5 The differential equations for spherical harmonics derive from (1.96). For details, consult, for
example, [QP], Sect. 1.9.1, in the context of orbital angular momentum in quantum mechanics.
A proof of formula (1.97a) can also be found there.
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The first five Legendre polynomials read explicitly as follows:

P0.z/ D 1 ; P1.z/ D z ;
P2.z/ D 1

2

�
3z2 � 1� ; P3.z/ D 1

2

�
5z3 � 3z� ;

P4.z/ D 1

8

�
35z4 � 30z2 C 3� : (1.97e)

The spherical harmonics with ` D 0; 1; 2; 3 are given by

Y0;0 D 1p
4�

;

Y1;0 D
r

3

4�
cos � ; Y1;˙1 D �

r
3

8�
sin � e˙i� ;

Y2;0 D
r

5

16�

�
3 cos2 � � 1� ;

Y2;˙1 D �
r
15

8�
cos � sin � e˙i� ; Y2;˙2 D

r
15

32�
sin2 � e˙2i� ;

(1.97f)

Y3;0 D
r

7

16�

�
5 cos3 � � 3 cos �

�
;

Y3;˙1 D �
r

21

64�
;
�
4 cos2 sin � � sin3�

�
e˙i� ;

Y3;˙2 D
r
105

32�
cos � sin2 � e˙2i� ; Y3;˙3 D

r
35

64�
sin3 � e˙3i� :

Some of their important properties concern the relations between Y`m.�; �/
and its complex conjugate Y �

`m
.�; �/, as well as between Y`m.�; �/ at the

point .�; �/, the S2 and the same function at the antipode .� � �; � C �/
of this point. [The reader may wish to check these relations by means of the
general formula (1.97a) and the examples of (1.97f)]:

Y �
`m.�; �/ D .�/mY`;�m.�; �/ ; (1.97g)

Y`m.� � �; � C �/ D .�/`Y`m.�; �/ : (1.97h)

As the points .�; �/ and .� � �; � C �/ are related by reflection about the
origin, relation (1.97h) says that spherical harmonics with even ` are even
under space reflection, whereas spherical harmonics with odd ` change sign
under space reflection.
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The spherical harmonics are orthogonal in a generalized sense. They satisfy
the following orthogonality relation:

Z
S2

d˝ Y �
`0m0.�; �/Y`m.�; �/ D ı`0`ım0m : (1.98a)

The volume element is d˝ D d� sin � d� , and the integration extends over
the entire sphere. Furthermore, the spherical harmonics form a complete set
of base functions on S2. This means that every function f .�; �/ which is
continuous on S2 can be expanded in terms of this basis:

f .�; �/ D
1X
`D0

CX̀
mD�`

Y`m.�; �/a`m; with (1.98b)

a`m D
Z

S2

d˝ Y �
`m.�; �/f .�; �/ : (1.98c)

The second of these may also be written as a completeness relation which in
the present case reads as follows:

1X
`D0

CX̀
mD�`

Y`m.�; �/Y
�
`m.�

0; �0/ D ı.� � �0/ı.cos � � cos � 0/ : (1.98d)

Having clarified the angular dependence of the factorized ansatz (1.95), one needs
to identify the differential equation for the radial function R.r/. For this purpose, it
is useful to extract a factor 1=r from the radial function. Indeed, the nested differ-
entiation by r in (1.96) then turns into the second derivative by r multiplied by 1=r :

1

r2
d

dr

�
r2

d

dr

�
1

r
R.r/

��
D 1

r

d2R.r/

dr2
:

Making use of the differential equations forfm.�/ and for Pm
`
.�/, equation (1.96)

reduces to the ordinary differential equation

d2R.r/

dr2
� `.`C 1/

r2
R.r/ D 0 (1.99a)

whose general solution is easily seen to be

R.r/ D c.1/ r`C1 C c.2/ 1
r`
: (1.99b)
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The first term is the one to be chosen if R.r/ must be regular at r D 0. The second
term is relevant if R.r/ is required to be regular at infinity.

Electrostatic Problems with Axial Symmetry
In a problem which exhibits axial symmetry about some direction in space, it is
useful to choose the 3-axis along that direction. As the potential does not depend
on �, the solutions of the Laplace equation can only depend on r and � . When
expanding a solution of this kind,˚.r; �/, in terms of spherical harmonics, only base
functions withm D 0 can contribute. In this case, Legendre functions (1.97c) reduce
to Legendre polynomials (1.97d) so that the potential may be expanded directly in
terms of the latter, viz.

˚.r; �/ D
1X
`D0

�
c
.1/

`
r` C c.2/

`

1

r`C1

�
P`.z/ ; .z D cos �/ : (1.100)

The expansion coefficients c.1/
`

and c.2/
`

are determined by taking account of the
boundary conditions that are given. Note, however, that although the Legendre poly-
nomials are orthogonal, they are not normalized to 1. Instead, by definitions (1.97a)
and (1.97c), and by the orthogonality relation (1.98a), one has

�Z
0

sin � d� P 2` .cos �/ D
C1Z

�1
dz P 2` .z/ D

2

2`C 1 :

The normalization of the Legendre polynomials is such that at � D 0, i.e. at z D 1,
they have the value 1 for all `, P`.1/ D 1. This is a useful condition when they are
being generated from a generating function:

1p
1 � 2zt C t2 D

1X
`D0

t`P`.z/ ; (1.101)

a relation which for z D 1 goes over into the well-known geometric series.
As an example of expansion (1.100) we study the following application: So-

lution (1.100) is uniquely determined. Therefore, it is sufficient to calculate the
coefficients for a fixed value of the argument z such as e. g. z D 1. We set out
to determine the inverse distance function jx � x0j, where x and x0 are two vectors
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Fig. 1.14 The difference between test point x and
source point x0 of a concrete electrostatic problem,
expressed in terms of the two vectors and the angle ˛
sustained by them

3

1

2

x−x'

x'
α

x

defining the angle ˛ (cf. Fig. 1.14). Choosing the 3-axis along x0, one has

1

jx � x0j D
1p

r2 C r 02 � 2rr 0 cos˛
:

To determine the expansion

1

jx � x0j D
1X
`D0

�
c
.1/

`
r` C c.2/

`

1

r`C1

�
P`.z/ ; .z D cos �/ ;

consider the case cos˛ D 1, i.e. choose vector x along the 3-direction as well,
without loss of generality. The distance function, then, is the absolute value of the
difference of the two radial variables, and the expansion coefficients are deduced
from the simpler equation

1

jr � r 0j D
1X
`D0

�
c
.1/

`
r` C c.2/

`

1

r`C1

�
:

The well-known series expansion 1=.1� x/ D 1 C x C x2 � � � converges only if
jxj < 1. Therefore, one has

for r 0 > r W 1

jr � r 0j D
1

r 0
1X
`D0

r`

r 0 ` ; and hence

c
.1/

`
D 1

r 0 `C1 ; c
.2/

`
D 0 I

for r 0 < r W 1

jr � r 0j D
1

r

1X
`D0

r 0 `

r`
; and hence

c
.1/

`
D 0 ; c

.2/

`
D r 0 ` :
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The distinction of the two cases can be written in a more compact notation:

r< D r ; r> D r 0 for r < r 0 ;
r> D r ; r< D r 0 for r > r 0 ;

that is to say,

1

jr � r 0j D
1

r>

1X
`D0

�
r<

r>

�`
:

Thus, the desired solution is found to be

1

jx � x0j D
1X
`D0

r`<

r`C1>

P`.cos˛/ : (1.102)

As a remark, we note that this series may also be obtained from the generating func-
tion (1.101). Conversely, the latter may be obtained from the result (1.102) above.

Example 1.8 Potential of a spherically symmetric charge distribution
Choose the 3-direction along the direction of x so that the angle ˛ becomes
the polar angle of x0. Inserting the expansion (1.102) and integrating over
d3x0 D r 02 dr 0 d˝ 0, the Legendre polynomials which have ` 6D 0 give vanishing
contributions:

“

S2

d˝ 0P`.cos �/ D 2�
C1Z

�1
dz P`.z/P0.z/ D 0 for all ` 6D 0 :

For ` D 0 there remains the integration over the radial variable keeping in mind
the distinction between r 0 < r and r 0 > r :

˚.x/ D
•

d3x0 %.r/

jx � x0j D 4�
1Z
0

dr 0r 02 1

r>
%.r 0/

D 4�
(
1

r

rZ
0

dr 0r 02 %.r 0/C
1Z
r

dr 0r 0 %.r 0/
)
:

Note that we obtained this formula in (1.85) by direct integration of the Poisson
equation.
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More General Configurations Without Axial Symmetry
If there is no axial symmetry about some distinct direction in R3, then for-
mula (1.100) must be replaced by the more general ansatz

˚.r; �; �/ D
1X
`D0

CX̀
mD�`

�
c
.1/

`m
r` C c.2/

`m

1

r`C1

�
Y`m.�; �/ : (1.103)

By making use of the important addition theorem for spherical harmonics

P`.cos˛/ D 4�

2`C 1
CX̀

mD�`
Y �
`m.�

0; �0/Y`m.�; �/ ; (1.104)

expansion (1.102) of the inverse distance function is written in a more general form:

1

jx � x0j D
1X
`D0

4�

2`C 1
r`<

r`C1>

CX̀
mD�`

Y �
`m.�

0; �0/Y`m.�; �/ : (1.105)

In this formula, .�; �/ are the spherical polar coordinates of the unit vector Ox,
.� 0; �0/ are the coordinates of Ox0, and ˛ is the angle between these two vectors.

The proof of the addition theorem (1.104) provides a nice illustration of the tech-
nique of expansion in terms of spherical harmonics. For this reason, and although
this belongs rather to the subject of a monograph on special functions, the proof is
included here.

Proof of the addition theorem (1.104)
The Legendre polynomialP`.cos �/ is a function which is regular on S2. Therefore,
it may be expanded in terms of spherical harmonics:

P`.cos˛/ D
1X
`0D0

mDC`0X
mD�`0

c`0mY`0m.�; �/ :

The angles ˛, � and � are defined as shown in Fig. 1.15, which means that the ex-
pansion coefficients c`0m will depend on � 0 and �0. Obviously, one has the freedom
to choose the vector x0 in Fig. 1.15 on the cone with opening angle ˛ around x.
As the left-hand and right-hand sides of this ansatz must obey the same differential
equation, one concludes that only terms with `0 D ` can contribute. The coefficients
are calculated by means of the orthogonality relation (1.98a):

c`m.�
0; �0/ D

“
d˝ Y �

`m.�; �/P`.cos˛/

D
r

4�

2`C 1
“

d˝ Y �
`m.�; �/Y`mD0.˛; ˇ/ :
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φ
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Fig. 1.15 The unit vectors Ox and Ox0 define the angle ˛, whereas .�; �/ are the polar angles of the
first, .� 0; �0/ those of the second vector

The second spherical harmonic formally contains a second azimuth ˇ, which, how-
ever, is irrelevant because the function Y`mD0 does not depend on this argument. If
we then knew how to expand the function

p
4�=.2`C 1/Y �

`m
.�; �/ in terms of the

basis Y`mD0.˛; ˇ/, we would have found the sought-after formula. We now show
that this is indeed possible without any further calculation. Because of the unique-
ness of such an expansion

Y �
`m

�
�.˛; ˇ/; �.˛; ˇ/

� DX
m

b`mY`m.˛; ˇ/ ;

it is sufficient to consider special cases for which the spherical harmonics on the
right-hand side are obvious. Furthermore, one must keep in mind that the expansion
assumes the direction Ox0 of Fig. 1.15 to be the 3-axis. At ˛ D 0 only the term
b`0Y`0.0; ˇ/ D

p
.2`C 1/=4�b`0 survives on the right-hand side. This follows

directly from (1.97a) and the property P`.cos˛ D 1/ D 1. This yields

b`0 D
r

4�

2`C 1 Y
�
`m

�
�.˛; ˇ/; �.˛; ˇ/

�ˇ̌
˛D0 ; or



1.8 Static Electric States 79

c`m.�
0; �0/ D

r
4�

2`C 1b`0 D
4�

2`C 1 Y
�
`m

�
�.˛; ˇ/; �.˛; ˇ/

�ˇ̌
˛D0 :

On the other hand, if ˛ D 0, then inspection of Fig. 1.15 shows that

�.˛; ˇ/j˛D0 D � 0 ; �.˛; ˇ/j˛D0 D �0 :

This completes the proof of formula (1.104).

Assume a localized charge distribution %.x0/ to be given. The potential that it
creates at a test point x (this point may lie inside or outside the given density) reads

˚.x/ D
•

d3x0 %.x0/
jx � x0j (1.106a)

D
1X
`D0

4�

2`C 1
mDC`X
mD�`

Y`m. Ox/
1Z
0

r 02 dr 0 r`<

r`C1>

“
d˝ 0 Y �

`m. Ox0
/%.x0/ :

In this formula, the polar coordinates of x and x0 are symbolized by the corre-
sponding unit vectors. The radial integral requires the distinction of cases of smaller
or larger radial argument, viz.

1Z
0

r 02 dr 0 r`<

r`C1>

� � � D 1

r`C1

rZ
0

r 02 dr 0 r 0 ` � � � C r`
1Z
r

r 02 dr 0 1

r 0 `C1 � � � : (1.106b)

Matters simplify considerably if one considers the exterior region only, i.e. if r �
jxj > r 0 � jx0j, because then only the first term in (1.106b) contributes. In this case
one has

˚.x/jouter D
1X
`D0

4�

2`C 1
mDC`X
mD�`

Y`m. Ox/ q`m
r`C1

; with (1.106c)

q`m D
rZ
0

r 02 dr 0 r 0 `
“

d˝ 0 Y �
`m. Ox0

/%.x0/ : (1.106d)

By assumption, the charge distribution is localized, that is to say, one can draw
a sphere of radiusR about the origin such that %.x0/ D 0 for all r 0 > R. Therefore,
the upper limit of the radial integral in (1.106d) may be taken to R, or even toC1.
Formula (1.106c) tells us that the properties of the source which are contained in
the multipole moments (1.106d), and the functional dependence of the potential on
the test point x factorize – in contrast to the more general case of formula (1.106a),
where the two contributions are folded and intermix. This simplification will be
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useful and sufficient in many applications. Clearly, one will obtain more information
on the spatial structure of the charge density % if it can be probed outside as well as
in the inside.

The multipole moments expressed by (1.106d) have the following properties.
Although the charge distribution and the potential are real functions, the moments
q`m are complex numbers. However, these complex quantities satisfy the symmetry
relation

q�
`m D .�/m q`�m : (1.107)

This is a consequence of the property (1.97g) of spherical harmonics and of the
fact that % is a real function. For ` D 0, there is only one multipole moment, the
monopole moment, which reads

q00 D
r

1

4�

•
d3x %.x/ D

r
1

4�
Q ; (1.108)

and where Q is the total charge.6

There are three multipole moments for ` D 1, only two of which, by the property
of (1.107), need to be calculated:

q11 D
•

d3x rY �
11. Ox/%.x/

D �
r

3

8�

•
d3x .x1 � ix2/%.x/ � �

r
3

8�

�
d 1 � id 2

�
; (1.109a)

q10 D
•

d3x rY10. Ox/%.x/

D
r

3

4�

•
d3x x3%.x/ �

r
3

4�
d 3 : (1.109b)

We inserted the spherical harmonics of (1.97f), expressed them in terms of Cartesian
components of x, and finally introduced the Cartesian components of the dipole
moment

d D
Z

d3x x%.x/ : (1.109c)

As an example, insert moment q10 into formula (1.106c):

˚dipole.x/ D 4�

3

r
3

4�
d 3

1

r2
Y10. Ox/ D 1

r2
d 3 cos � :

Here the explicit expression for Y10 from (1.97f) was used. This result agrees with
formula (1.88b), which was derived in Sect. 1.8.2.

6 As the contribution from the source and the dependence on the test point factorize completely,
we have suppressed the prime on the integration variable x0.
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In the case ` D 2, there are 2` C 1 D 5 multipole moments, four of which are
related via relation (1.107). Hence, it is sufficient to know the following formulae:

q22 D
•

d3x r2Y �
22. Ox/%.x/

D
r

15

32�

•
d3x .x1 � ix2/2%.x/ ; (1.110a)

q21 D
•

d3x r2Y �
21. Ox/%.x/

D �
r
15

8�

•
d3x x3.x1 � ix2/%.x/ ; (1.110b)

q20 D
•

d3x r2Y20. Ox/%.x/

D
r

5

16�

•
d3x

�
3.x3/2 � r2�%.x/ : (1.110c)

At this point of the analysis it is instructive to pause and calculate the same
monopole, dipole and quadrupole terms in yet another way. Suppose the test point x,
which is the point at which the potential or its gradient field is measured, lies far out-
side the charge density %.x0/. In this case, the multipole expansion is nothing but
a Taylor expansion of

˚.x/ D
•

d3x0 %.x0/
jx � x0j

around x0 D 0. We set jxj DW r and expand in the variable x0. In doing so, we start
from the formulae

ˇ̌
x � x0 ˇ̌ D

vuut 3X
iD1

�
x0 i � xi �2 ;

@

@x0 i
ˇ̌
x � x0ˇ̌ D x0 i � xi

jx � x0j ;
@

@x0 i
1

jx � x0j D �
x0 i � xi
jx � x0j3 D C

xi � x0 i

jx � x0j3 ;

which allow us to determine the mixed second derivatives:

@2

@x0k@x0 i
1

jx � x0j D �
1

jx � x0j3 ı
ik C 3

jx � x0j5
�
xi � x0 i��xk � x0k� :
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These derivatives appear in the Taylor series at x0 D 0, which reads

1

jx � x0j '
1

r
C 1

r2

3X
iD1

xi

r
x0 i C 1

2Š

X
i;k

3xixk � r2ıik
r5

x0 ix0k :

Inserting this expression into the potential ˚.x/, one obtains the terms with ` D 0,
` D 1 and ` D 2 of expansion (1.106c), but now in the form

˚.x/ ' Q

r
C d � x

r3
C 1

2

X
i;k

Qik x
ixk

r5
; with (1.111a)

d D
•

d3x0 x0%.x0/ ; (1.111b)

Qik D
•

d3x0 �3x0 ix0 k � r 02ıik
�
%.x0/ : (1.111c)

The dipole term (1.111b) is the familiar one derived earlier. The quadrupole term,
expressed here in Cartesian components, is symmetric, i.e. Qki D Qik, and has
vanishing trace tr Q �Pi Q

i i D 0. Therefore, it has five independent entries only,
in accordance with the fact that for ` D 2 there are five values ofm. It is not difficult
to establish the exact relationship between the moments q2m (spherical basis) and
the (Cartesian) Qik. One finds

q22 D
p
5

4
p
6�

�
Q11 � 2iQ12 �Q22

�
;

q21 D
p
5

2
p
6�

��Q13 C iQ23
�
; q20 D

p
5

4
p
�
Q33 :

The physical significance of terms (1.111b) and (1.111c) is further clarified by cal-
culating the energy of some charge distribution �.x/ in the electric field due to an
external potential ˚.x/. In the expression for the energy

W D
•

d3x �.x/˚.x/ ; (1.112a)

one inserts the Taylor expansion of the potential around the value 0 of the argument:

˚.x/ D ˚.0/C x � r˚.0/C 1

2

X
i;k

xixk
@2˚

@xi@xk
.0/C : : :

D ˚.0/� x �E .0/� 1
2

X
i;k

xixk
@Ek

@xi
.0/C 1

6
r2r �E .0/C : : : :
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In the last step, we added a term proportional to r �E which is zero. Indeed, as long
as the source % of the potential ˚ lies outside the charge distribution �, field E has
a vanishing divergence everywhere that the integrand in (1.112a) differs from zero.
The added term then vanishes, and the energy becomes

W D Q˚.0/� d �E.0/� 1
6

X
i;k

Qik @E
k

@xi
.0/C : : : : (1.112b)

As expected, the first term is simply the product of the charge and the potential
at the origin. The second term is the energy of an electric dipole in the external
electric field. The third term is new and contains the inner product of the quadrupole
tensor Q and the field gradient

˚
@Ek=@xi
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1.9 Stationary Currents and Static Magnetic States

The basic equations (1.67a)–(1.67c) describe all phenomena involving permanent
magnets at rest or stationary, i.e. time-independent, electric currents. We repeat the
first two of these here:

r �B.x/ D 0 ; (1.113a)

r �H .x/ D 4�

c
j .x/ : (1.113b)

In the vacuum, outside of magnetically polarizable media, and using Gaussian units,
one has B.x/ D H .x/.

For stationary processes, the continuity equation reduces to

r � j .x/ D 0 : (1.113c)

The first of these, (1.113a), which holds also for nonstatic and nonstationary pro-
cesses, follows from the fact that there are no isolated magnetic monopoles. The
second equation is the time-independent version of the Maxwell equation (1.44d)
and, in its integral form, yields Ampère’s law: With a given finite, (possibly piece-
wise) smooth surface F in R3 whose boundary is denoted by C, integrate the
left-hand side of (1.113b) over this surface. Using Stokes’ theorem (1.7) this yields“

F .C/

d�
�r �H � On� D

I
C

ds �H ;

where On is the local positive normal to the surface (positive with respect to the orien-
tation of boundary curve C). When integrated overF , the right-hand side of (1.113b)
yields

4�

c

“

F.C/

d� j � On D 4�

c
J ;
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with J the total electric current flowing across the surface. Thus, one obtains Am-
père’s law in the form

I
C

ds �H D 4�

c
J : (1.114)

In analogy to the electromotive force in (1.12), the left-hand side of (1.114) repre-
sents a magnetomotive force. Furthermore, there is an interesting analogy to Gauss’
law (1.14): The integral over a closed surface on the left-hand side of (1.14) is re-
placed by an integral over a closed curve, and the integral over the volume on the
right-hand side of (1.14) becomes a surface integral in (1.114).

1.9.1 Poisson Equation and Vector Potential

As before, the field B may alternatively be described in terms of a vector potential
A, B D r �A. In cases where the magnetic field and the magnetic induction can
be identified, one obtains from (1.47c) and from (1.113b)

r � �r �A
� D ��A C r�r �A� D 4�

c
j :

When using a Coulomb gauge, (1.63), this differential equation reduces to a Poisson
equation for the components of A.x/:

�A.x/ D �4�
c

j .x/ ; (1.115)

whose general, time-dependent form is given by (1.59b). With the experience gained
in Sect. 1.8.1, and if there are no special boundary conditions, one obtains a solution
at once. It reads

A.x/ D 1

c

•
d3x0 j .x0/

jx � x0j : (1.116)

This result suggests a certain analogy between electrostatics and magnetostatics.
However, this analogy should not be taken too literally because it may conceal the
more profound differences in their physics.

1.9.2 Magnetic Dipole Density andMagnetic Moment

We assume the spatial domain in which the current density j .x/ is different from
zero to be localized, i.e. to be contained inside a sphere about the origin, jx0j 6 R.
In the space outside this sphere and with jxj 
 jx0j, the inverse distance function
in (1.116) is expanded as follows:

1

jx � x0j '
1

jxj C
x � x0

jxj3 ;
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so that the i th component of the vector potential is obtained in the form

Ai .x/ ' 1

cjxj
•

d3x0 j i .x0/C 1

cjxj3
3X
kD1

xk
•

d3x0 x0kj i .x0/ : (1.117)

To analyse the second term and to render it more transparent, one makes use of the
following formula.

Auxiliary Formula
Let f and g be smooth functions on R3. For a smooth vector field v.x/ which is
localized and does not possess any sources, one has

•
d3x ff .x/ v.x/ � rg.x/C g.x/ v.x/ � rf .x/g D 0 : (1.118)

The proof of this formula is easy: In the second term, perform a partial integra-
tion: •

d3x f� � � g D
•

d3x
˚
f v � rg � r � �gv

�
f



D
•

d3x
˚
f v � rg � �rg�vf � g�r � v�f 
 :

As the vector field v is localized, there will be no surface terms from the partial
integration. The first two terms cancel, and the third term is proportional to the
divergence r � v, which vanishes, by assumption. This proves (1.118).

With v replaced by the current density v, two applications are relevant here:
(i) Choose f to be the constant function 1, g to be the i th coordinate, f D 1,
g D xi . Then (1.118) yields

•
d3x j i .x/ D 0 : (1.119a)

Taking account of (1.115), this is equivalent to the integral version of (1.113a):
There are no magnetic monopoles.
(ii) Choose f D xi , g D xk , whereby (1.118) yields the relation

•
d3x

n
xij k.x/C xkj i .x/

o
D 0 :

This is used to transform the second term in (1.117). We have

3X
kD1

xk
•

d3x0 x0 kj i .x0/

D 1

2

X
k

xk
•

d3x0 nx0kj i .x0/ � x0 ij k.x0/
o
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D �1
2

X
k;l

"iklx
k

•
d3x0 �x0 � j .x0/

�l

D �1
2

�
x �

�•
d3x0 x0 � j .x0/

��i
:

One inserts this into (1.117) and defines

m.x/ WD 1

2c
x � j .x/ (1.120a)

to be the magnetic dipole density. The space integral of this density is the magnetic
moment:

� WD 1

2c

•
d3x x � j .x/ : (1.120b)

With these results and definitions, the second term of (1.117) is seen to be a dipole
term and takes the form

Adipole.x/ D 1

jxj3� � x : (1.121)

I Remarks
1. Consider briefly the physical dimensions of the quantities being discussed

here: Denoting the dimension of electric charge summarily by Œq	, the dimen-
sion of length by L, and the dimension of time by T, one has

Œ%	 D Œq	L�3 ; Œj 	 D Œ%	LT�1 D Œq	L�2T�1 ;
and, therefore, Œ�	 D Œq	L :

Students of atomic physics know the Bohr magneton:

�B D e„
2mc

; (1.122)

where e denotes the elementary charge andm is the mass of the electron. The
magnetic moment of the electron is expressed in terms of this unit. One then
verifies immediately that the � thus defined has the correct physical dimen-
sion: �

e„
mc

�
D Œq	

� „c
mc2

�
D Œq	L :

2. When using Gaussian units, the fields involved in Maxwell’s equations all
have the same dimension:

ŒE 	 D ŒD	 D ŒH 	 D ŒB	 D Œq	L�2 :
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The product of an electric dipole moment and an electric field, very much like
the product of a magnetic moment and a magnetic field, have the dimension
of an energy: �

d �E	 D Œq2	L�1 D �� �H 	
:

Note that this confirms the result expressed by (1.112b) above.

Example 1.9 Magneticmoment of a plane current loop
Consider a stationary current density j .x/ flowing in the planar, closed and
smooth loop of Fig. 1.16. If the wire is ideally thin, then one has

•
d3x x � j .x/ D J

I
x � ds :

The magnetic moment generated by this loop in the space around it is given by

� D 1

2c
J

I
x � ds :

The integral in this formula is seen to be twice that of the surface F enclosed
by the loop as can be inferred from Fig. 1.16. The magnetic moment is directed
perpendicular to the surface and has the absolute value j�j D JF =c.

x
ds

dσ=   |x × ds|1
2
−

Fig. 1.16 A current J of constant intensity flows in a closed loop in a plane and creates a magnetic
moment which is perpendicular to that plane
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Example 1.10 Magnetic moment of a flux of particles
Given an ensemble ofN pointlike particles, i D 1; 2; : : : N , carrying the charges
qi and moving with velocities v.i/, respectively, these particles generate the cur-
rent density

j .x/ D
NX
iD1

qiv
.i/ı

�
x � x.i/

�
:

Inserting this expression into (1.120b), one obtains

�.x/ D 1

2c

NX
iD1

qix
.i/ � v.i/

D
NX
iD1

qi

2mic
`.i/ D

NX
iD1

qi„
2mic

�
1

„`.i/
�
: (1.123)

The right-hand side of this result exhibits the analogue of Bohr’s magne-
ton (1.122) and contains the dimensionless vector `.i/=„, which in quantum
mechanics becomes the operator of orbital angular momentum.

1.9.3 Fields of Magnetic and Electric Dipoles

In a first step, we calculate the induction field which follows from the vector poten-
tial (1.121):

Bdipole.x/ D r �Adipole.x/ :

In some detail and calculating by components, one finds

�r �Adipole.x/
�i D X

k;l;m;n

"ikl"lmn

�
rk�

mxn

jxj3
�

D
X
k;l;m;n

"ikl"lmn

�
�m

jxj3 ı
kn � 3�mxnxk 1

jxj5
�

D 2
X
m

ıim
�m

jxj3 �
�
ıimıkn � ıinıkm�3�mxnxk 1

jxj5

D 2

jxj3�
i � 3 1

jxj3�
i C 3xi� � x 1

jxj5 :

In vector notation and introducing the unit vector Ox D x=jxj, this result is rewritten
as follows:

r �Adipole.x/ D 3. Ox � �/ Ox ��

jxj3 : (1.124a)
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This is not yet the full answer. As will be shown subsequently, the correct expression
for the induction field contains an additional, distribution-valued term in the origin:

Bdipole.x/ D 3. Ox � �/ Ox � �

jxj3 C 8�

3
� ı.x/ : (1.124b)

This formula and (1.121) refer to cases where the dipole is located in the origin. If
the (pointlike) dipole is located in x0 instead, x must be replaced by x � x0, and Ox
by the unit vector On, which points from x0 to x:

Bdipole.x/ D 3. On � �/ On� �

jx � x0j3 C 8�

3
� ı.x � x0/ ; with On D x � x0

jx � x0j : (1.124c)

Before the analogous calculation is performed for the electric dipole, a discussion
of the origin of the additional term in (1.124b) or (1.124c) will be presented.

Derivation of the Distributional Term in (1.124b)
Let the dipole be located in the origin, for the sake of simplicity, and let the 3-axis
be chosen along the direction of �. The dipole generates a magnetization density:

m D � ı.x/ D �ı.x/ Oe3 � m.r/ Oe3 :

The notation introduced in the last step is simply an abbreviation. It leaves open
the alternative of the dipole having a finite spatial extension, localized around the
origin. This will be the case, for example, when the dipole is an atomic nucleus
with a nonvanishing magnetic moment in interaction with the dipole moment of the
electrons of the atom.

Equation (1.78a) yields B D H C 4�m and, thus, as r � B D 0,
r � H D �4�r � m. Furthermore, field H is irrotational in magnetostatics,
r �H D 0. Therefore, one can write it as the gradient field of a magnetic potential
�.x/ and obtain a Poisson equation for the latter:

H D �r� ; ��.x/ D 4��r �m�.x/ :
Comparing with the Poisson equation (1.80a) and accounting for the sign on the
right-hand side, one immediately obtains a solution:

�.x/ D �
•

d3y
r �m.y/
jx � y j :

One then calculates the divergence in the numerator of the integrand. With r or
s WD jyj and with the choice of the 3-axis above, using the explicit form of the
spherical harmonic Y10, one has

r �m D
�

d

dr
m.r/

�
@r

@z
D m0.r/ cos � D m0.r/

x3

r
D
r
4�

3
m0.r/Y10. Oy/:
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One inserts the multipole expansion (1.105) of the inverse distance function, of
which only the term with ` D 1 and m D 0 contributes, by the orthogonality
relation (1.98a):

� D �
r
4�

3

� 1Z
0

s2 ds d˝y m0.s/
4�

3

r<

r2>
Y �
10. Oy/Y10. Oy/

�
Y10. Ox/ :

As long as one stays outside the source, one must take r< D s and r> D r , so that

� D �
�
4�

3

� 3
2 1

r2
Y10. Ox/

rZ
0

s3 ds
d

ds
m.s/

D C
�
4�

3

� 3
2 3Y10. Ox/

r2

rZ
0

s2 ds m.s/ � 4�

3
x3 f .r/ : (1.125a)

Here, a partial integration was performed, x3 was replaced by r cos � , and the short-
hand notation

f .r/ WD 3

r3

rZ
0

s2 ds m.s/ D 3

4�r3

•
d3y m.y/ � Oe3 (1.125b)

was introduced. In calculating the fields H and B, one makes use of the expression

f 0.r/ D 3

r

�
m.r/� f .r/� (1.125c)

for the derivative of f .r/. With

H D �r� D �4�
3

�
x3f 0 x1

r
; x3f 0 x2

r
; x3f 0 x3

r
C f .r/

�T
;

one has

B.x/ D H .x/C 4�m.x/

D 4�
��
f .r/ �m.r/	

�
x3

r2
x � 1

3
Oe3
�
C 2m.r/

3
Oe3
�

D 8�

3
m.r/ Oe3 C 4�

3

�
f .r/ �m.r/	

�
3
x3

r
Ox � Oe3

�
:

Inserting now (1.125b), and noticing that the ideal dipole is different from zero
only in the origin and that the part of m.r/ which lies outside the origin does not
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contribute, one finds the result

B.x/ D 8�

3
� ı.x/ Oe3 C �3x

3 Ox=r � Oe3
r3

bD 8�

3
� ı.x/C 3.� � Ox/ Ox � �

r3
: (1.125d)

In the last step, the dipole was taken in an arbitrary direction.
The contact term proportional to the ı-distribution plays an important role in the

description of hyperfine structure with atomic s-states (see, e. g. [QP], Sect. 5.2.4).
For the case of hydrogen, for example, this concerns the interaction of the spin of the
pointlike proton at the origin with the spin of the electron.7 In this case, the function
m.r/ is proportional to the probability of finding the electron in the origin, i.e. the
position where the proton is at rest, in good approximation, as it is much heavier
than the electron:

m.r/ D �P j .r/j 2 ; with  .r/ D 1p
4�
R1s.r/ :

R1s.r/ is the radial function in the 1s-state, the factor 1=
p
4� stems from the angu-

lar wave function Y00.

One will have noticed a certain, yet not complete, analogy of these results to the
electric dipole which is described by the scalar potential of (1.88c):

˚dipole.x/ D d � .x � x0/
jx � x0j3 :

In calculating the electric field as the negative gradient of this function, one finds
a form akin to (1.124a), viz.

�r˚dipole.x/ D 3. On � d/ On� d

jx � x0j3 ;

where d is the electric dipole moment, as in (1.88b). However, this answer is in-
complete as well: The electric field of the dipole at the position x0 is supplemented
by a contact term as well so that it reads

E dipole.x/ D 3. On � d/ On � d

jx � x0j3 � 4�
3

d ı
�
x � x0� : (1.126)

7 The derivation given here follows essentially R.A. Sorensen, Am. J. Phys. 35 (1967) 1078. An-
other, rather natural, approach which does not exhibit the singularity of the contact term derives
from the relativistic treatment of hyperfine structure by means of the Dirac equation. It yields
the nonrelativistic contact term in the approximation v=c � 1. Both aspects are worked out in
J. Hüfner, F. Scheck, and C.S. Wu, Muon Physics I, Chap. 3.
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For all x 6D x0 this is the same expression as the previous one. The term proportional
to the ı-distribution may be derived in a way similar to the case of the magnetic
dipole. It guarantees that the integral over a sphere V which encloses the dipole
yields

•

V

d3x E dipole.x/ D �4�
3

d :

(Note that one must integrate the first term of (1.126) over the angular variables
first!) That this must be so is the subject of Exercise 1.12.

1.9.4 Energy and Energy Density

There is an aspect of field theory that may be new for some readers: Static or
time-dependent electric and magnetic fields possess an energy content. This can
be demonstrated by means of a simple example which relates directly to mechanics.

Suppose in vacuum N � 1 point charges q1, q2, : : :, qN�1 are given, and none
of them is located at an infinite distance from the others. Their positions are x1, : : :,
xN�1. At an arbitrary test point x the potential created by this set-up is given by

˚.x/ D
N�1X
kD1

qk

jx � x.k/j :

Imagine now another point charge qN being shifted from infinity to the position
xN . The work involved in doing this is W D qN˚.xN /. This is also the potential
energy that is built up by the given N � 1 charges. This argument is the same as
with a pointlike mass that is brought into a gravitational potential, well known from
mechanics. Thus, the potential energy contained in the set-up of the N charges in
total is

WE D
NX
iD2

i�1X
kD1

qiqk

jx.i/ � x.k/j D
1

2

NX
i;kD1
i 6Dk

qiqk

jx.i/ � x.k/j : (1.127a)

In the second expression, only k 6D i is required. The original restriction k < i is
taken care of by the factor 1=2.

Only the mutual energy was calculated here, not the energy that would be needed
to concentrate the charge qi in the point x.i/. This so-called self-energy, which is
infinitely large, is ignored here. The problem of self-energy in classical field theory
is a difficult one and becomes manageable only in its quantized version.

If the pointlike charges are replaced by continuous localized charge distributions,
then the obvious generalization of formula (1.127a) reads

WE D 1

2

•
d3x

•
d3x0 %.x/%.x0/

jx � x0j : (1.127b)
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This formula can be transformed such that the energy is expressed in terms of the
electric field. Introducing the potential expressed by (1.84a) and making use of the
Poisson equation (1.80a), one finds

WE D 1

2

•
d3x %.x/˚.x/ D � 1

8�

•
d3x ˚.x/�˚.x/

D 1

8�

•
d3x

�r˚�2 :
In going from the second to the third formula, a partial integration was performed.
As the charge density is localized, implying that the potential tends to zero at infin-
ity, there is no boundary term from the partial integration. At this point the electric
field E.x/ D �r˚.x/ comes into play. There follows an expression for the energy:

WE D 1

8�

•
d3x E2.x/ ; (1.127c)

which is remarkable for two reasons. On the one hand, one has succeeded in ex-
pressing the total energy contained in the vector field E.x/ by the electric field
and no longer by auxiliary functions such as the potential. On the other hand, the
integrand

uE.x/ WD 1

8�
E2.x/ (1.127d)

may be interpreted as the energy density of the electric field, that is as a local quan-
tity like the field itself. This offers the possibility to define the energy content of
a partial domain V of the space R3 and to determine it by integration of (1.127d)
over that volume V .

I Remarks
1. There is an important difference between (1.127a) and (1.127b). While in

expression (1.127a) the energyW can be positive, negative or zero, in expres-
sion (1.127b) one will always have W > 0. The reason for this difference
stems from the self-energies which are contained in the second expres-
sion, (1.127b), but not in the first.

2. In a medium with a nontrivial dielectric constant " (i.e. " is not equal to one,
in Gaussian units), expressions (1.127c) and (1.127d) are modified. Let ˚ be
the potential generated by the given charge density. If the charge density is
changed by a small amount ı%, the energy changes by the amount

ıWE D
•

d3x ˚.x/ ı%.x/ :

Through the Maxwell equation (1.44c) the change in charge density ı% is
related to a change in the displacement field D,

ı%.x/ D 1

4�
r � �ıD� ;
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so that the change in energy can also be expressed in terms of ıD. Inserting
this into the integrand of ıWE and performing a partial integration, one obtains
with E D �r˚

ıWE D 1

4�

•
d3x E � ıD : (1.128a)

If the relation between E and D is linear, i.e. if the response of the medium
to the applied field is a linear one, then one has E � ıD D ı.E � D/=2.
The total energy content of the field configuration may be thought of as the
addition of many small contributions of this kind. By formal integration over
the space variables one obtains the following expression for the energy of the
configuration:

WE D 1

8�

•
d3x E.x/ �D.x/ : (1.128b)

As before, the integrand may be interpreted as an energy density:

uE.x/ D 1

8�
E.x/ �D.x/ : (1.128c)

In the vacuum, where one can select D D E by the appropriate choice of
units, the two expressions go over into formulae (1.127c) and (1.127d), re-
spectively.

The energy content of a magnetic field configuration is calculated in close analogy
to the electrostatic case. Let j .x/ be a stationary, localized current density, and let
A.x/ be the vector potential by means of which the induction B.x/ is derived. With
reference to (1.127b) one would guess the relation

WM D 1

2

•
d3x

1

c
j .x/ �A.x/ : (1.129a)

The charge density is replaced by the current density (multiplied by 1=c), and the
scalar potential is replaced by the vector potential. If this is true, then the magnetic
energy can be expressed in terms of fields H and B, making use of the Maxwell
equations (1.67a) and (1.67b),

WM D 1

8�

•
d3x H .x/ �B.x/ : (1.129b)

As in the previous case, the total magnetic energy is the integral of the magnetic
energy density

uM.x/ WD 1

8�
H .x/ �B.x/ ; (1.129c)

in close and obvious analogy to (1.128c). Of course, in a more rigorous derivation,
one must first calculate the change of the magnetic energy caused by a change of
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the vector potential:

ıWM D 1

c

•
d3x ıA.x/ � j .x/ :

Under the assumption that all quantities contained in the integrand are localized,
one uses (1.67b) to obtain

ıWM D 1

4�

•
d3x ıB.x/H .x/ ;

i.e. an expression which is the analogue of (1.128a). One now understands the
condition under which one obtains the result expressed by (1.129b): The above in-
finitesimal expression can be integrated to obtain formula (1.129b) only when the
relation between B and H is linear, i.e. if one is dealing with a paramagnetic or
a diamagnetic substance.

In summary, one obtains the following result for the total electromagnetic energy
density and for the total energy, respectively:

u.x/ D uE.x/C uM.x/ ; (1.130)

W D WE CWM D 1

8�

•
d3x .E.x/ �D.x/CH .x/ �B.x// : (1.131)

These formulae hold for linear relationships between D and E , as well as between
B and H . Although here we sketched their derivation only for static or station-
ary situations, we will see later that these formulae apply also to time-dependent
electromagnetic processes.

1.9.5 Currents and Conductivity

The current density j in matter is, as a rule, proportional to the force density f ,

j .x/ D �f .x/ : (1.132)

(We assume the current density to be stationary here.) The function � is called the
conductivity, and its reciprocal is the specific resistance. The force density may be
obtained from the Lorentz force, (1.44e), so that

j .x/ D �
�
E.x/C 1

c
v �B.x/

�
: (1.132a)

Typically, in electric circuits, the action of magnetic forces is negligible. In this
approximation, one obtains the simple relation

j .x/ D �E .x/ ; (1.132b)
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which contains the well-known Ohm’s law

V D RI : (1.133)

Here V denotes the tension, I the electric current, and R the Ohm resistance. Obvi-
ously, Ohm’s law in the form of (1.133) is of great importance for the practitioner.
However, the basic relation is contained in equation (1.132). As a simple example,
consider a homogeneous cylinder of length L and cross-section F made from a ma-
terial whose conductivity is � . As a result, the resistance is given by the formula
R D L=.�F /.



2Symmetries and Covariance
of the Maxwell Equations

2.1 Introduction

Already within a given, fixed division of four-dimensional spacetime into the space
where experiments are performed, and the laboratory time variable, Maxwell’s
equations show interesting transformation properties under continuous and discrete
spacetime transformations. However, only the action of the whole Lorentz group on
them reveals their full symmetry structure. A good example that illustrates the co-
variance of Maxwell’s equations is provided by the electromagnetic fields of a point
charge uniformly moving along a straight line.

A reformulation of Maxwell theory in the language of exterior forms over R4, on
the one hand, sheds light on some of its properties which are less transparent in the
framework of the older vector analysis. On the other hand, it reveals the geometric
character of this example of a simple gauge theory and, hence, prepares the ground
for the understanding of non-Abelian gauge theories which are essential for the
description of the fundamental interactions of nature.

2.2 TheMaxwell Equations in a Fixed Frame of Reference

In a fixed inertial system in which x are coordinates in ordinary space R3, t the
coordinate time that an observer at rest reads on his clock, Maxwell’s equations
(1.44a–1.44d) read

r �B.t;x/ D 0 ; (2.1a)

r �E.t;x/C 1

c

@

@t
B.t;x/ D 0 ; (2.1b)

r �D.t;x/ D 4�%.t;x/ ; (2.1c)

r �H .t;x/ � 1
c

@

@t
D.t;x/ D 4�

c
j .t;x/ : (2.1d)

97F. Scheck, Classical Field Theory, Graduate Texts in Physics,
DOI 10.1007/978-3-642-27985-0_2, c� Springer-Verlag Berlin Heidelberg 2012



98 2 Symmetries and Covariance of the Maxwell Equations

They are supplemented by the relationships

D D "E ; B D �H (2.2)

between the displacement field and the electric field, and between the induction field
and the magnetic field, respectively, " being the dielectric constant, and � the mag-
netic permeability. (In vacuum and using Gaussian units both constants are equal
to 1.) The force that acts on a particle carrying the charge q and moving with the
velocity v relative to the observer, is the Lorentz force (1.44e)

F .t;x/ D q
�
E.t;x/C 1

c
v �B.t;x/

�
; (2.3)

the second, velocity dependent, term of which is particularly remarkable. Finally,
we note the relation between the current density in a given medium and the applied
electric field

j .t;x/ D �E .t;x/ ; (2.4)

where � describes the conductivity of the medium.
The frame of reference in R3 �Rt with respect to which these equations are for-

mulated, for the time being, is defined by the observer who interprets his position as
the origin of the frame, chooses appropriate coordinates in R3 and uses his clock for
measuring time. An experimenter measures electric fields with specific instruments
which differ from those he uses for measuring magnetic fields. In this sense the spe-
cific nature of the two types of vector fields is established empirically. This remark
which seems to be a matter of course, will be important when one asks whether an
electric field and a magnetic field, when measured by a second observer who moves
relative to the first at constant velocity, will continue to be an electric or a magnetic
field, respectively.

2.2.1 Rotations and Discrete Spacetime Transformations

Before following up the question raised above let us remain for a while in the inertial
frame chosen by the observer and let us analyze the covariance of the equations
(2.1a–2.4) with respect to rotations, space reflection, and time reversal, as well as
charge conjugation.

Rotations of the Frame of Reference in R3

Rotations R 2 SO(3) of the frame of reference are coordinate transformations

.t;x/T 7�! .t 0 D t;x0 D Rx/T ; with RTR D 1l ; det R D C1 :
A scalar field ', by definition, stays invariant,

'.t;x/ 7�! ' 0.t 0;x0/ D '.t;x/ ; (2.5a)
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while a vector field transforms according to

A.t;x/ 7�! A0.t 0;x0/ D RA.t;x/ : (2.5b)

(Here we have made use of the fact that in the orthogonal group SO(3) the inverse of
the transposed equals the original matrix, .RT /�1 D R.) If instead of SO(3) one ad-
mits the full group O(3) then also transformations QR 2 O(3) must be studied whose
determinant equals �1. These can be written as the product of a proper rotation
R 2 SO(3) and space reflection …. There are fields Q' of the first kind (2.5a) which
though invariant under rotations, obtain a factor det QR D �1 under space reflection.
Likewise, in the second category there are fields QA which beyond the transformation
behaviour (2.5b) receive the same factor det QR. Thus, with R 2 SO(3) and QR D R…
they transform according to

Q'.t;x/ 7! Q' 0.t 0;x0/ D �det QR� Q'.t;x/ ; (2.6a)

QA.t;x/ 7! QA0
.t 0;x0/ D �det QR� R QA.t;x/ : (2.6b)

Although in geometric terms Q' is not a scalar field, and QA is not a vector field, the
customary nomenclature in physics for them is pseudoscalar field for Q'.t;x/, and
axial vector field for QA.t;x/. A few examples over the space R3 will illustrate these
definitions:
(i) The velocity v, very much like the momentum p, is a genuine vector, i.e. it
transforms under rotations R 2 SO(3) as indicated in (2.5b). If these vectors are
defined as smooth functions over R3 they become vector fields. In contrast, the
orbital angular momentum ` D x � p is an axial vector. Indeed, under a space
reflection both x and p change sign, while ` does not.
(ii) The scalar product x � p is a scalar. Likewise the scalar product of a spin and an
orbital angular momentum s � ` is a genuine scalar. However, the products x � ` and
x � s are pseudoscalars.

The geometric interpretation of the quantities (2.6a) and (2.6b) in the language
of exterior forms will be clarified in Sect. 2.5.3 below. For the moment we will stick
to the terminology defined above.

Inspection of Maxwell’s equations (2.1a–2.1b) shows that they are covariant un-
der rotations from SO(3) provided the fields E , D, H , B, and the current density
j transform according to (2.5b) and the charge density % transforms like in (2.5a).
The first equation (2.1a) contains the divergence of B and is a scalar with respect to
R 2 SO(3). Regarding the second equation (2.1b) we have for the first term

�r 0 �E 0� D �Rr� � �RE
� D R

�r �E
�
;

and, obviously, for the second term

1

c

@

@t
B 0 D 1

c

@

@t

�
RB

� D R

1
c

@

@t
B
�
;
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so that covariance of (2.1b) is established. A similar reasoning proves the covariance
of the two inhomogeneous Maxwell equations (2.1c) and (2.1d). All terms which are
related by Maxwell’s equations exhibit the same transformation behaviour.

Space Reflection of the Frame of Reference
The behaviour of Maxwell’s equations under a reflection of the spatial coordinates
about the origin,

.t;x/T 7�! .t 0 D t;x0 D �x/T

is less obvious. In a first step one asserts that the curl of a genuine vector field (in
R3) is an axial vector field,

A0.t 0;x0/ D �A.t;x/” r 0 �A0.t 0;x0/ D Cr �A.t;x/ ;

while the curl of an axial vector field is again a vector field. Equipped with this
knowledge one sees that the Maxwell equations are invariant under space reflection
if

E ;D; and j are vector fields;

B and H are axial vector fields;

% is a scalar field:

This becomes plausible if one recalls some concrete experimental situations involv-
ing electric and magnetic fields. For instance, the electric field of a point charge at
rest

E .x/ D q

r2
Or

is proportional to the position vector r , up to factors which are invariant under …,
and, hence, is a vector field. A current density j may be thought of as a flux of
point-like charged particles which flow through space with the velocity v. This is
a genuine vector field, too. The magnetic dipole density (1.120a) is proportional to
the cross product of x and j .x/ and, therefore, is an axial vector field. The same
statement holds for the induction field (1.124b). Finally, the charge density must be
a scalar, be it only for the reason that the continuity equation (1.21) relates the time
derivative of % with the divergence of the current density and, as a whole, must be
invariant.

Once more we refer the reader to the geometric formulation of Maxwell theory if
he or she wishes to work out more clearly the noted difference between the electric
quantities E and D on the one hand, and the magnetic quantities B and H on the
other. One will then find out that the first two are equivalent to exterior one-forms,
while the second group are equivalent to exterior two-forms over R3.
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Behaviour Under Time Reversal
It is certainly reasonable to expect that the charge density %.t;x/ does not depend
on the direction of time, whether time runs towards the future or towards the past.
That is to say to require that it be invariant under time reversal T,

%0.t 0;x0/ D %.t;x/ ; t 0 D �t ; x0 D x :

The continuity equation which contains the first derivative of the charge density
with respect to time, then implies that the current density must be odd, j 0.t 0;x0/ D
�j .t;x/. Note that this property was to be expected on the basis of the simple
model developed above. In order for the two Maxwell equations (2.1c) and (2.1d)
to be invariant, one must have

H 0.t 0;x0/ D �H .t;x/ ; D0.t 0;x0/ D CD.t;x/ :

The electric field E transforms like the displacement field D, the induction field B

transforms like the magnetic field H .

Charge Conjugation
A particularly interesting question which is new as compared to mechanics concerns
the behaviour of Maxwell’s equations when the signs of all charges are reversed.
This is the operation of charge conjugation C which plays a central role in the
quantum dynamics of elementary systems. For example, when applied to a hydrogen
atom this means that the proton p is replaced by an antiproton p, the electron e� is
replaced by a positron eC.

By their definition both the charge density and the current density reverse
their signs. Written symbolically, C%.t;x/ D �%.t;x/, Cj .t;x/ D �j .t;x/.
From (2.1c) and from the first of these relations one concludes that the displace-
ment field D changes sign, too. This behaviour then also applies to the electric
field. The second relation, together with (2.1d), requires that H and thus also B be
odd as well. In summary,

CD.t;x/ D �D.t;x/ ; CE.t;x/ D �E.t;x/ ;

CH .t;x/ D �H .t;x/ ; CB.t;x/ D �B.t;x/ :

As before these transformation rules are plausible: If the charges which are the
sources of the electric field change sign (without modifying their absolute value)
the electric field changes everywhere from E.t;x/ to �E.t;x/. As all current den-
sities change sign, too, this applies also to the magnetic fields they give rise to.

In summary, we note that Maxwell’s equations are covariant under rotations in
the given frame of reference, as well as under the discrete transformations…, T, and
C. However, whether or not the discrete transformations are symmetries in the sense
of quantum mechanics is a question about the interactions other than electrodynam-
ics which are acting between the building blocks of matter. The electromagnetic
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interaction, taken in isolation, is indeed invariant under space reflection and time
reversal, as well as under charge conjugation. In a world where all protons are re-
placed by antiprotons, all electrons are replaced by positrons, the atoms have the
same bound states and the spectral lines of atomic physics are the same as in our
familiar environment.

2.2.2 Maxwell’s Equations and Exterior Forms

This section deals for the first, but not the last, time with the geometric nature of
the physical quantities that are involved in Maxwell’s equations. In particular, we
elucidate what in the intuitive language of physics is called pseudoscalar and axial
vector. We do this by means of a short summary of exterior differential calculus on
Euclidean spaces Rn, but refer to [ME], Chap. 5, for an extensive and more general
presentation.

Exterior Forms on Rn

Exterior one-forms
1
! in the point x 2M D Rn are linear maps of tangent vectors

on M in x, i.e. of elements of the tangent space TxM , into the reals,

1
! W TxM �! R W v 7�! 1

! .v/ : (2.7a)

An important example which illustrates well this notion is the total differential df
of a smooth function on Rn, in which case

df .v/jx D v.f /.x/ D
nX
iD1

vi
@f

@xi

ˇ̌̌
ˇ
x

�
nX
iD1

vi@if
ˇ̌
x

(2.7b)

represents the directional derivative of the function f at the point x along the di-
rection of v. The action of df on the tangent vector v is equal to the action v.f /
of this vector on the function and coincides with the derivative of f in the direction
defined by v. Indeed, the directional derivative is a real number. In the formulation
of (2.7b) we introduced the compact notation

@if WD @f

@xi
(2.7c)

for the derivative by the contravariant component xi which, in turn, is covariant.
The set of linear maps from TxM to R (by definition) spans the dual vector space

T �
xM , called cotangent space which is attached to the point x, like TxM is attached

to x.

I Remark
If M is a smooth n-manifold which is not a Euclidean space Rn, one must con-
struct a complete atlas composed of local charts .'; U / (also called coordinate
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systems) where U is an open neighbourhood of the point p 2 M and

' W M ! Rn W U 7! '.U /

is a homeomorphism from U onM to the image '.U / 	 Rn. Denoting local co-
ordinates in this chart by fxi g, i D 1; : : : ; n, the partial derivative of a function f
is given by

@
.'/
i

ˇ̌̌
p
.f / D @.f ı '�1/

@xi

�
'.p/

�
: (2.8)

Only the composition of '�1 W Rn ! M and of f W M ! R is a real function
on Rn which can be differentiated according to the rules of analysis. In case the
manifold is an Rn matters simplify: For M D Rn only one single chart U DM
is needed, up to diffeomorphisms, and the corresponding map can be chosen to
be ' D id, the identical mapping. In this case the formerly local expression (2.8)
holds on the whole of M and reduces to the usual partial derivative (2.7c) well
known from real analysis.

With v.f / the directional derivative of the function f in the point x, and @if
the partial derivative with respect to the coordinate xi the expression

v D
nX
iD1

vi@i

is the decomposition of the vector v in terms of the base fields f@i g, i D 1; : : : ; n.
These base fields span the tangent space TxM . In the case of an Rn, however, one
can identify all tangent spaces with one another and with the base manifold. This
means that every smooth vector field V on M D Rn can be decomposed

V D
nX
iD1

vi .x/@i ; (2.9)

with coefficients vi .x/ which are smooth functions.
Of course, the coordinates xi are smooth functions on M themselves: xi asso-

ciates to the point x 2M its i -th coordinate. The differentials dxi of these functions
are one-forms and are called base one-forms. The set of all fdxig, i D 1; : : : ; n is
dual to the basis f@ig, since

dxi .@k/ D @k.xi / � @

@xk
xi D ıik :

Therefore, every one-form
1
! 2 TxM can be expanded in this basis,

1
! DP

!i dxi .
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A one-form
1
! is said to be smooth if it is defined on all of M and if

1
! .V /

is a smooth function for all smooth vector fields V 2 V.M/. When applied to

M D Rn this means that every one-form
1
! can be written as an expansion

1
! D

nX
iD1

!i .x/ dxi (2.10)

where the coefficients !i .x/ are smooth functions. The coefficient functions are
calculated from the action of the one-form on the base vector fields, viz.

!i .x/ D 1
! .@i / :

Thus, the action on an arbitrary smooth vector field is given by

1
! .V / D

nX
iD1

V i .x/!i .x/ ;

where

V D
X
j

V j .x/@j and
1
! D

X
k

!k.x/dx
k :

There exists a skew-symmetric, associative product of exterior forms, called ex-
terior product, or wedge product, whose definition is most simply given for base
one-forms and their action on vectors as follows

�
dxi ^ dxj

�
.v; w/ D viwj � vjwi D det

�
vi wi

vj wj

�
; (2.11a)

where use was made of its antisymmetry,

dxi ^ dxj D �dxj ^ dxi : (2.11b)

The following example shows that this definition is the direct generalization of the
well-known cross product in R3:
In the space R3 there are three base one-forms, dx1, dx2 and dx3. If one applies
the wedge product of the second and the third of these to two vectors a and b,

�
dx2 ^ dx3

�
.a;b/ D a2b3 � a3b2 D .a � b/1 .on R3/ ;

the result is seen to be the first component of the cross product. Adding to this
formula the two formulae obtained by cyclic permutation of the indices one obtains
the full cross product a � b.
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The exterior product is easily extended to three or more factors. For example,
with three base one-forms and three tangent vectors one has

�
dxi ^ dxj ^ dxk

�
.u; v; w/ D det

0
@u

i vi wi

uj vj wj

uk vk wk

1
A (2.11c)

This formula illustrates the associativity of the exterior product. No parentheses
need be written in a product of more than two factors. For example, the product
.dxi ^ dxj / ^ dxk is the same as dxi ^ .dxj ^ dxk/. (Note that in the second
example the position of parentheses corresponds to the expansion of the determinant
along the first row.)

The products dxi ^ dxj with i < j , of which there are n.n � 1/=2 D �
n
2

�
, are

elements of T �
x � T �

x , which, in addition, are antisymmetric. The whole set for all i
and j provides a basis for arbitrary smooth two-forms so that

2
! D

X
i<j

!ij .x/ dxi ^ dxj : (2.12)

The coefficients !ij .x/ are smooth functions on M D Rn. In the language of clas-

sical tensor analysis such an object
2
! is a tensor field of type .0; 2/

2
! 2 T02.M/ ;

which, in addition, is antisymmetric. The set of all coefficients !ij gives its repre-
sentation in coordinates and in the form of an antisymmetric tensor of degree 2.

The chain of base forms can be continued, in a finite number of steps, up to
the wedge product of n base one-forms. This procedure yields the base k-forms
dxi1 ^ dxi2 ^ � � � ^ dxik , k D 3; : : : ; n, of which there are

�
n
k

�
for every k. With

these tools at hand one can construct smooth k-forms

k
! D

X
i1<���<ik

!i1:::ik .x/ dxi1 ^ : : : ^ dxik ; (2.13)

with coefficients !i1:::ik .x/ which are again smooth functions on Rn. The exterior

form
k
! is an element of T0

k
.M/, the space of covariant tensor fields of degree k,

and is antisymmetric in the k vector fields to which it is applied. It is customary to
denote the space of antisymmetric, covariant tensor fields of degree k by

k
! 2 �k.M/ : (2.14)

It is not difficult to determine the dimension of theses spaces. By counting the base
elements dxi1 ^ dxi2 ^ : : :^ dxik one finds that the dimension of�k.M/ is (s. Ex-
ercise 2.1)

dim�k.M/ D
 
n

k

!
D nŠ

kŠ.n � k/Š :
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Thus, �1 has dimension n, very much like �n�1. �n has dimension 1, while there
is no space �m whose dimension is greater than n.

The Exterior Derivative
The exterior derivative is the generalization of the total differential for functions, of
the gradient of a function and of the curl and the divergence for vector fields in R3.
It has the following properties:
It maps k-forms to .k C 1/-forms (which may be zero),

d W �k.M/! �kC1.M/ W k
! 7! d

k
! : (2.15a)

When applied to a smooth function it yields the total differential

d W f 7! df D
X
i

@f

@xi
dxi : (2.15b)

The exterior derivative fulfills a graded Leibniz rule with specific signs as follows:
When applied to the exterior product of an r-form and an s-form (r; s D 0; 1; : : : ; n)
the result is

d
� r
! ^ s

!
� D �d

r
!
� ^ s

! C .�/r r
! ^ �d

s
!
�
: (2.15c)

This resembles the familiar product rule of differential calculus except for the fact
that the second term keeps its plus sign only if the first factor is an even form, but
receives a minus sign if the degree r of the first factor is odd. As a rule of thumb
one may remember that “shifting” the operator d past an r-form produces a sign

.�/r . Obviously, the exterior product
r
! ^ s

! is an element of �rCs , its exterior
derivative is in �rCsC1.

If d is applied twice the result is always zero

d ı d D 0 : (2.15d)

The following formula for the exterior derivative of a k-form in the representa-
tion (2.13) is useful in practice

d
k
! D

X
i1<:::<ik

d!i1:::ik .x/ ^ dxi1 ^ dxi2 ^ � � � ^ dxik (2.15e)

D
nX

jD1

X
i1<:::<ik

@!i1:::ik .x/

@xj
dxj ^ dxi1 ^ dxi2 ^ � � � ^ dxik :

It contains in the first step the total differential of the functions!i1;:::;ik .x
1; : : : ; xn/

which is to be calculated following the rule (2.15b) for functions. At the end of
a calculation of this type one must reorder the base one-forms in order to arrange
them in increasing order and keep track of the signs that this may produce.
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I Remarks
1. For functions the property (2.15d) is nothing but the fact that the mixed sec-

ond derivatives of a smooth function are equal. Indeed, taking the exterior
derivative of df , one has

d.df / D
X
i

�
d
@f

@xi

�
^ dxi (according to rule (2.15e))

D
X
k 6Di

@2f

@xk@xi
dxk ^ dxi (with formula (2.15b)

for total differentials)

D
X
k<i

�
@2f

@xk@xi
� @2f

@xi@xk

�
dxk ^ dxi D 0

(antisymmetry of base-forms) :

For forms of higher degree the rule (2.15d) follows from the Leibniz rule
(2.15c).

2. Contemplating the series of spaces �1.M/, : : :, �k.M/, : : :, �n.M/, one
notices that their dimensions follow the binomial series

�
n
1

� D n, : : :,
�
n
n

� D 1
but that the series of numbers in Pascal’s triangle is incomplete. The number�
n
0

� D 1, i.e. the dimension of �0.M/ is missing. Conversely, the exterior
derivative df of a function f is a one-form and, according to (2.15a), the
operator d leads from �k.M/ to �kC1.M/. This suggests interpretation of
the smooth functions in the framework of exterior forms as zero-forms,

f 2 F.M/ (smooth functions on M ) ; f 2 �0.M/ :

3. If the application of d to an exterior k-form is zero this form is said to be
closed,

d! D 0 ; ! 2 �k.M/ :

For instance, the total differential of a function is a closed form because
d ı df D d.df / D 0.

In turn, it may happen that a .k C 1/-form � can be written as the exterior
derivative of a k-form !, i.e.

� D d! ; � 2 �kC1.M/ ; ! 2 �k.M/ :

A form of this kind is said to be an exact form. Clearly, every exact form is
also a closed form. Regarding the converse one has: OnM D Rn every closed
k-form can be written as the derivative of a .k � 1/-form. Note that on more
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general manifolds this holds only locally. This is the content of Poincaré’s
lemma1.

Hodge Dual Forms
The space Rn not only is a smooth manifold but is also orientable. In other terms,
an ordered basis . Oe1; Oe2; : : : ; Oen/ spans a generalized parallelepiped which can be
assigned a sign. The spaces �k.M/ and �.n�k/.M/ have the same dimension be-
cause of the equality of binomial coefficients

 
n

k

!
D
 

n

n � k

!
D nŠ

kŠ.n � k/Š

and they are isomorphic. One defines a bijective mapping, the so-called ?-operation,
which associates to every k-form a .n � k/-form. The image of a k-form ! under
Hodge dualism is denoted by ?!. Defining it by means of the action of forms onto
unit vectors, the k-form ! is mapped to the .n � k/-form ?! by

.?!/
� OeikC1

; : : : ; Oein
� D "i1:::ik ikC1:::in!

� Oei1 ; : : : ; Oeik
�
: (2.16)

For example, in R3 one has

? dxi D 1

2

X
j;k

"ijk dxj ^ dxk ; (2.17a)

?
�

dxi ^ dxj
� D "ijk dxk ; (2.17b)

?
�

dx1 ^ dx2 ^ dx3
� D 1 : (2.17c)

In this example the spaces of one-forms and of two-forms are isomorphic because of
the equality

�
3
1

� D �
3
2

� D 3 and because R3 is orientable. Likewise, the three-forms
and the functions are related one-to-one. (Note that in this case there is only one
base three-form.)

In the general case of an Rn bijectivity is established by the relation

?
�
.?!/

� D .�/k.n�k/! ; .! 2 �k/ : (2.18)

Applying the ?-operation to a k-form twice takes it back to the original form, up to
a sign which depends on its degree.

The star operation and the exterior derivative can be combined to a new and very
interesting operator. As anticipated in equations (1.49) and (1.50) define

ı D .�/n.kC1/C1 ? d? ; (2.19a)

�LdR D d ı ı C ı ı d : (2.19b)

1 The Poincaré lemma applies to any open neighbourhood U � M of the point p 2 M which
can be contracted to p without leaving the manifold M .
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The first of these operators, in some sense, is the counterpart of the exterior deriva-
tive. Indeed, one easily verifies that ı lowers the degree of the exterior form by one,

ı W �k.M/ �! �.k�1/.M/ :

The first mapping ? leads from degree k to degree .n � k/, the application
of d converts it to an .n � k C 1/-form, and a second ?-mapping yields a
.n � .n � k C 1// D .k � 1/-form. By the same token one sees that the Laplace-
de-Rham operator �LdR does not change the degree of the form on which it acts.

Example 2.1
On the space R3 there exist the spaces�0 and�3 both of which have the dimen-
sion

�
3
0

� D 1 D �3
3

�
, as well as the spaces�1 and�2 which both have dimension�

3
1

� D 3 D �3
2

�
. Regarding the base forms one has

? dxi D 1

2

X
j;k

"ijk dxj ^ dxk ; (2.20a)

?
�

dxi ^ dxj
� DX

k

"ijk dxk ; (2.20b)

?
�

dx1 ^ dx2 ^ dx3
� D 1 : (2.20c)

Example 2.2
This example is particularly important for electrodynamics, though it repeats an
example whose details are worked out, for example in [ME], Sect. 5.4.5. Note
that we made use of it in Sect. 1.6.1 above. Let a be a vector field on M D R3.
Define the covariant components ai D ai (with a � a.x/), a one-form and
a two-form, respectively, by

1
!a D

3X
iD1

ai .x/ dxi ; (2.21a)

2
!a D 1

2

X
i;j;k

"ijkai .x/ dxj ^ dxk : (2.21b)

(The numerical factor in (2.21b) accounts for the antisymmetric permutations of
.i; j; k/.) On account of the relation (2.20b) and the formula (1.48b) one sees
that

?
2
!a D 1

2

X
i;j;k

"ijkai .x/"jkl dxl D 1
!a ;
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i.e. the Hodge dual of the two-form (2.21b) coincides with the original one-form
(2.21a).

The exterior derivative of the first form (2.21a) yields the two-form cor-
responding to the curl of a, and then, after application of ?, the one-form
constructed with the curl, viz.

d
1
!a D 1

2

X
i;j;k

"ijk
�r � a

�
i

dxj ^ dxk ; or ? d
1
!a D 1

! r �a : (2.22)

The exterior derivative of the two-form (2.21b) yields the divergence of a,

d
2
!a D

�r � a� dx1 ^ dx2 ^ dx3 ; or ? d
2
!a D r � a : (2.23)

The action of the Laplace–de-Rham operator on a function or on a one-form of
the type (2.21a) gives the results, respectively,

�LdRf D ��f .x/ ; (2.24a)

�LdR
1
!a D �

3X
iD1

�
�ai .x/

�
dxi ; (2.24b)

where � denotes the customary Laplace(–Beltrami) operator, i.e. � D @21C@22C
@23, acting on smooth functions in either case.

Fields and Sources in Maxwell’s Equations
We still remain in a fixed reference frame where spacetime has the structure Rt �R3

with a fixed division of spacetime into the factor to be called time and the remainder
describing the well-known laboratory space of an experimenter. All quantities which
are related by Maxwell’s equations are defined as geometric objects over R3 but
depend parametrically on time. Surely, this is a restricted perspective because it
rests on a subjective perception of time and space. Nevertheless, the fundamental
laws of electrodynamics in integral form give direct hints at the geometric role of
fields and densities.

Faraday’s law (1.12) contains, on the one side, the path integral of the tangential
component of the electric field, and, on the other side, the integral of the magnetic
flux over a surface whose boundary is that path. The path C, by itself, is a smooth,
closed manifold with dimension dim C D 1. The surface whose boundary is C,
is also a smooth manifold with dimension dimF.C/ D 2. Quite generally, on an
orientable manifoldM with metric g and dimM D n, the exterior n-form

˝.n/ D
p
jgj dx1 ^ dx2 ^ � � � ^ dxn (2.25)

defines the so-called volume form. Here jgj is the determinant, or more precisely,
the absolute value of the determinant of the metric, jgj D j detfgikgj. The exterior
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form which is proportional to the only base element that exists in �n.M/, carries
the orientation of the basis through the order of factors in the product dx1 ^ � � � ^
dxn. It is independent of the choice of the coordinate system. This is shown as
follows: Let ˚ be a diffeomorphism which relates the coordinates .x1; : : : ; xn/ to
new coordinates .y1; : : : ; yn/. The metric tensor which in the original coordinates
has the form fgij .x/g, is replaced by Ngkl .y/ in the new coordinates, and we have

.x1; : : : ; xn/ ! .y1; : : : ; xn/ ; Ngkl .y/ D
nX

i;jD1

@xi

@yk
@xj

@yl
gij .x/ :

Hence, the determinants of the metric tensors g and Ng are related by

j Ngj .y/ D
�

det

 @xi
@yk

��2
jgj .x/ :

If the map ˚ preserves the orientation, i.e. if the two coordinate systems have the
same orientation, one takes the square root and obtains

p
j Ngj D det


 @xi
@yk

�p
jgj :

Therefore, the expansions of an arbitrary smooth n-form in the first and in the second
coordinate system, respectively, are related by

n
! D a.x/ dx1 ^ � � � ^ dxn D Na.y/ dy1 ^ � � � ^ dyn with

Na.y/ D a.x/ det

 @xi
@yk

�
:

This shows that, indeed, the volume form (2.25), ˝.n/, is invariant.

Example 2.3
This is an example in dimension 2 where calculations are particularly simple:

˝.2/.x/ D pjgj dx1 ^ dx2

D
p
jgj

@x1
@y1

dy1 C @x1

@y2
dy2

�
^

@x2
@y1

dy1 C @x2

@y2
dy2

�

D pjgj n@x1
@y1

@x2

@y2
� @x

1

@y2
@x2

@y1

o
dy1 ^ dy2

D pjgj det

 @xi
@yk

�
dy1 ^ dy2

D
p
j Ngj dy1 ^ dy2 � ˝.2/.y/ :
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One sees that not only the volume element but also the orientation of the coor-
dinate system is conserved. The transition between x and y contains the Jacobi
determinant of the transformation which carries a well-defined sign. Liouville’s
theorem on the conservation of a domain of initial conditions, of its volume and
orientation, provides a good illustration.

These arguments and the example show that integration over an n-dimensional
manifoldM must have the form

Z
M

(integrand)˝.n/ ; with ˝.n/ the volume form on M :

Expressed differently this means that only integration of n-forms over the whole of
M is meaningful.

A detailed discussion of integration on smooth manifolds would go beyond
the scope of this section and also of this book. Therefore, I concentrate here on
some plausibility arguments which emerge from Maxwell’s equations in integral
form, and refer to the literature on differential geometry for a more rigourous pre-
sentation. (For a concise, though short introduction and, in particular, a proof of
Stokes’ theorem in the general form of the equation (1.8b) see, e. g. [Arnol’d 1988,
Sect. 36].)

Let us return for a moment to the original integral form of Faraday’s law (1.12).
The closed curve C over which one integrates, geometrically speaking, is a one-
dimensional manifold embedded in R3. It inherits an induced metric from gik D
diag.1; 1; 1/. In the spirit of what was noticed above the path integral over the tan-
gential component ds �E.t;x/ of the electric field must be the integral of a one-form
on C, and, therefore, on R3, by the embedding of the curve in space. Thus, it seems
natural to associate to the electric field a one-form of the kind of (2.21a), viz.

1
!E WD E1.t;x/ dx1 C E2.t;x/ dx2 C E3.t;x/ dx3 : (2.26a)

On the right-hand side of Faraday’s law (1.12) the normal component of the
field B is integrated over a surfaceF which is also embedded in R3. If one compares
this with the definition of the two-form (2.21b) including its characteristic ordering
of indices, and takes account of the statement that only two-forms can be integrated
consistently over surfaces (dimF D 2), one realizes that, from a geometric point of
view, B must be associated to a two-form of the type of (2.21b),

2
!B W D B1.t;x/ dx2 ^ dx3 C B2.t;x/ dx3 ^ dx1 (2.26b)

C B3.t;x/ dx1 ^ dx2 :
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Fig. 2.1 Spherical calotte in 3-space. Faraday’s law
is formulated by exterior forms on this surface

Example 2.4
A simple, though physically unrealistic example may be helpful. Consider the
rectangle in the .1; 2/-plane which is defined by the vectors v D v Oe1 and w D
w Oe2. The integral of the one-form (2.26a) over the edges of the rectangle is seen
to be the integral of the tangential component of E along this curve. Regarding
the restriction of the two-form (2.26b) to the surface of the rectangle, conversely,
only the third term survives whose coefficient, indeed, is B3.

Example 2.5
The following example is closer to physics and it should be studied carefully
because, on the one hand, it illustrates the assertion that only the integration of
an n-form over an n-dimensional manifold is meaningful. On the other hand, it
shows that the integral form of Faraday’s law written in terms of exterior forms,

Z
@F

1
!E D �1

c

d

dt

Z
F

2
!B ;

is identical with the customary form (1.12) of that law.
Let the surface F be the calotte of a sphere with radius r D R shown

in Fig. 2.1 which is enclosed between the latitude defined by the angle �0 and the
north pole (� D 0). Its boundary @F is the circle of latitude with fixed � D �0 and
azimuth in the interval � 2 Œ0; 2�	. In this example it is useful to use spherical
polar coordinates r; �; � instead of the cartesian coordinates x1; x2; x2,

x1 D r sin � cos� ; x2 D r sin � sin � ; x3 D r cos � :

The first problem consists in determining the base one-forms duk in polar coor-
dinates and to expand the two exterior forms in terms of these. Denoting by Oei
the cartesian unit vectors, by Oa1 � Oer (pointing in radial direction), Oa2 � Oe�
(tangential to the meridian), and Oa3 � Oe� (tangential to circle of latitude) the
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spherical unit vectors, the following relation holds

Oa1 D Oe1 sin � cos� C Oe2 sin � sin � C Oe3 cos � ;

Oa2 D Oe1 cos � cos� C Oe2 cos � sin � � Oe3 sin � ;

Oa3 D � Oe1 sin� C Oe2 cos� :

The base forms duk are dual to the base vectors Oaj and, therefore, must fulfill the
relations duk. Oaj / D ıkj . Both systems refer to real and orthogonal coordinates.
Hence, the same transformation formulae hold for base one-forms and for base
vectors,

du1 D dx1 sin � cos� C dx2 sin � sin � C dx3 cos � ;

du2 D dx1 cos � cos� C dx2 cos � sin � � dx3 sin � ;

du3 D �dx1 sin � C dx2 cos� :

This partial result may be interpreted in two different ways: One calculates the
action of duk on the unit vectors Oaj , makes use of the relation dxp. Oeq/ D ı

p
q

and deduces the expected relationduk. Oaj / D ıkj . Alternatively, one utilizes the
differentials

dx1 D sin � cos� dr C r cos � cos� d� � r sin � sin � d� ;

dx2 D sin � sin� dr C r cos � sin� d� C r sin � cos� d� ;

dx3 D cos � dr � r sin � d� ;

to determine the line element

.ds/2 D
3X
iD1
.dxi /2 D

3X
kD1

.duk/2

D .dr/2 C .r d�/2 C .r sin � d�/2 :

As a result one obtains the representation of the base one-forms in spherical polar
coordinates:

du1 D dr ; du2 D r d� ; du3 D r sin � d� :

One then applies these results to the exterior forms of electrodynamics to obtain
on the circle of latitude � D �0

1
!E D

3X
iD1

Ei dxi D Œ�E1 sin � C E2 cos�	R sin � d� D E� du3 :
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As expected, the one-form appears as the tangential component oriented along
the circle of latitude. Its integral over that circle is

Z
@F

1
!E D

2�Z
0

R sin � d� E� :

Regarding the two-form of the magnetic induction, its restriction to the spher-
ical calotte implies that du1 D 0 so that only the base two-form du2 ^ du3

contributes. Inserting the results given above one finds

B1 dx2 ^ dx3 C B2 dx3 ^ dx1 C B3 dx1 ^ dx2

D ŒB1 sin � cos� CB2 sin � sin � CB3 cos �	 du2 ^ du3 :

The base form du2^ du3 fixes the orientation of the normal to the surface and is
equal to R2 sin � d� d�. The expression in square brackets is the normal compo-
nent Bn D B � On of the magnetic induction, the normal On being directed outwards
on the calotte. Thus, the integral of the two-form is

Z
F

2
!B D R2

�0Z
0

sin � d�

2�Z
0

d� B � On

and one recovers the integral form of Faraday’s law.

Following similar arguments as for B one deduces from Gauss’ law (1.14) that
one must associate to the field D a two-form – in contrast to the electric field E ,

2
!D WD D1.t;x/ dx2 ^ dx3 CD2.t;x/ dx3 ^ dx1 (2.27a)

CD3.t;x/ dx1 ^ dx2 :

It should be clear that Maxwell’s equations when written in terms of exte-
rior forms, can only relate forms of equal degree. The second inhomogeneous
Maxwell equation (2.1d), considered in vacuum, i.e. with j � 0, without loss
of generality, indicates that the curl of the field H must be equivalent to a two-
form. Therefore, the field H itself must be associated to a one-form of the
type (2.21a),

1
!H WD H1.t;x/ dx1 CH2.t;x/ dx2 CH3.t;x/ dx3 : (2.27b)
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Regarding the source terms in the inhomogeneous equations (2.1c) and (2.1d)
one sees that to the charge density one must associate a three-form, to the current
density a two-form, respectively, as follows,

3
! % WD %.t;x/ dx1 ^ dx2 ^ dx3 ; (2.28a)

2
!j WD j1.t;x/ dx2 ^ dx3 C j2.t;x/ dx3 ^ dx1 C j3.t;x/ dx1 ^ dx2 (2.28b)

These assignments were deduced from the inhomogeneous equations but they can
also be made plausible from the integral fundamental laws. Indeed, the charge
density always appears integrated over three-dimensional volume in order to yield
physical charges, while the current density is integrated over cross sections of con-
ductors such as to yield current strengths.

Maxwell’s equations can now be formulated in terms of exterior forms such that
their local form (2.1a–2.1d) follow by comparison of coefficients for forms of equal
degree. Both the two homogeneous Maxwell equations (2.1a) and (2.1b), and the
two inhomogeneous equations (2.1c) and (2.1d) take a very simple form. They
read

d
2
!B D 0 ; (2.29a)

d
1
!E C 1

c

@

@t

2
!B D 0 ; (2.29b)

d
2
!D D 4� 3

! % ; (2.29c)

d
1
!H � 1

c

@

@t

2
!D D 4�

c

2
!j : (2.29d)

The first of these equations follows from Example 2.2, making use of (2.23),
while the second is obtained using (2.22) of the same example. Similar argu-
ments apply to the case of equations (2.29c) and (2.29d). The first and the third
equations relate exterior three-forms, the second and the fourth relate exterior two-
forms.

The continuity equation expressed in terms of exterior forms reads

@

@t

3
! % C d

2
!j D 0 ; H) @%.t;x/

@t
C r � j .t;x/ D 0 (2.30)

where again the equation (2.23) was used. The second equation on the right follows
by comparison of coefficients.

I Remarks
1. Contemplating the definitions (2.26a), (2.26b), (2.27a), and (2.27b), an

important observation comes to mind: All exterior forms are invariant
under rotations R 2 SO(3) of the frame of reference. In contrast to the
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components of the original fields they do not depend on the choice of co-
ordinate system. The covariance of the Maxwell equations (2.29a–2.29d)
with respect to rotations is obvious and needs not be checked sepa-
rately.

2. Their behaviour under space reflection … introduced in Sect. 2.2.1, is also
of interest. The one-form (2.26a) of the electric field and the two-form
(2.26b) of the induction field are invariant under …. By the same to-
ken the peculiar difference in the behaviour of the original vector fields
E and B under … is understood: The electric field is a genuine vec-
tor field and corresponds to a one-form, the induction field which has the
“wrong” transformation behaviour under space reflection corresponds to
a two-form.

3. The spacetime on which Maxwell’s equations are formulated, is R4, i.e. an
orientable manifold. As long as we study only proper rotations R 2 SO(3)
the orientation is not changed and all four exterior forms corresponding
to the fields remain unchanged. Space reflection reverses the orientation.
In contrast to the one-form (2.26a) of the electric field, the one-form
(2.27b) of the magnetic field changes its sign. A similar conclusion fol-
lows from the comparison of (2.26b) with (2.27a). Exterior forms of
this kind are defined on nonorientable manifolds and are called twisted
forms.

4. Although this cannot be the last word on this topic it is instructive to summa-
rize the behaviour of the exterior forms that are related by (2.29a–2.29d), and
by (2.30), under the three discrete transformations …, T, and C. Table 2.1 is
based on the analysis of Sect. 2.2.1.

5. This analysis as a first attempt of a geometric interpretation of the Maxwell
fields remains unsatisfactory because the fields depend not only on x 2
R3, but also on the time coordinate t 2 Rt , hence, are defined over
a four-dimensional manifold. In the following section we will quit the
fixed frame of reference that was assumed here, and will prove the co-
variance of Maxwell’s equations under Lorentz transformations. This will
lead quite naturally to generalizing these definitions in such a way that
the fields and the source terms become exterior forms over Minkowski
space.

6. If like in Sect. 1.6.3 one wishes to describe the electric field and the mag-
netic induction by means of potentials – still within a fixed division of
spacetime into coordinate space and time – it is useful to define the one-
form

1
!A WD

3X
iD1

Ai .t;x/dx
i (2.31)

whose coefficients are the components of the vector potential A.t;x/. The
scalar potential ˚.t;x/ is a function and can be interpreted as a zero-form
over the space R3. The representations (1.55a) and (1.55b) of the induction
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Table 2.1 Behaviour of the electromagnetic exterior forms under the three discrete transforma-
tions. Note, however, that the behaviour under T and, hence, under the product …TC will be
modified to some extent when these forms are defined over space and time

… T C …TC
1
!E C C � �
2
!B C � � C
1
!H � � � �
2
!D � C � C
3
! % � C � C
2
!j � � � �

field and the electric field, respectively, written by means of exterior forms,
become

2
!B D d

1
!A ; (2.32a)

1
!E D �1

c

@

@t

1
!A � d˚ : (2.32b)

Taking the exterior derivative of the first of these, one obtains

d
2
!B D d

�
d
1
!A

� D 0 ; or r �B.t;x/ D 0 :

Here use was made of the property (2.15d) of the exterior deriva-
tive. This repeats the well-known fact that an induction field that can
be represented by a vector potential has divergence zero automati-
cally. The exterior derivative of the second equation (2.32b), in turn,
yields the conclusion that the curl of E is related to the time derivative
of A,

d
1
!E D �1

c

@

@t
d
1
!A ; or r �E.t;x/ D �1

c

@

@t
r �A.t;x/ :

If the vector potential is independent of time the electric field is irrota-
tional.
This representation has a further unsatisfactory feature: Although to the vector
potential A it associates a one-form over R3, the scalar potential is described
by a zero-form. Furthermore, no real use is made of the time dependence of
these quantities.
Why is there this asymmetry between space and time?
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2.3 Lorentz Covariance of Maxwell’s Equations

Space and time translations,

x0 D x C a ; t 0 D t C s ;

rotations (t 0 D t , x0 D Rx) in R3, space reflection diag .1;�1;�1;�1/, and
time reversal diag.�1; 1; 1; 1/ have the same effect in the Galilei group and in the
Poincaré group. Only the Special Galilei transformations

�
t

x

�
7�!

�
t 0 D t

x0 D x C vt

�
; or

�
t 0
jx0i

�
D
�
1 0
jvi 1l3

��
t

jxi
�

(2.33)

differ in an essential way from the Special Lorentz transformations (also
called boosts)

�
x0

jxi
�
7�!

�
x00
jx0i

�
D
 

� 1
c
�hvj

1
c
� jvi 1l3 C �2

c2.�C1/ jvihvj

!�
x0

jxi
�
; (2.34)

where the time variable is replaced by the equivalent length x0 D ct . A Galilei
transformation of this class, taken along the 1-axis jvi D vj Oe1i, for example, reads

t 0 D t ; x01 D x1 C vt ; x0 2 D x2 ; x0 3 D x3 ;

or, in a somewhat different notation, using x0 D ct and ˇ D v=c,

x0 0 D x0 ; x0 1 D ˇx0 C x1 ;
x0 2 D x2 ; x0 3 D x3 ;

while in the case of the Lorentz group one has, instead,

x0 0 D �x0 C �ˇx1 ; x0 1 D �ˇx0 C �x1 ;
x0 2 D x2 ; x03 D x3 ;

with ˇ D jvj=c and � D .1 � ˇ2/�1=2.
Under a special Lorentz transformation which relates two observers moving with

constant velocity v relative to each other, neither the electric field E by itself nor
the induction field B by itself, can have a simple transformation behaviour. This can
be seen in different ways. A first, intuitive argument is the following:

The argument relates to the Biot–Savart law (1.18) and starts from the model
of a single point charge q assumed to be moving with constant velocity v relative
to an inertial observer. In his frame of reference K the observer sees the particle
moving along a straight line with constant velocity, first approaching and then fly-
ing off, so that the strength of the particle’s Coulomb field increases and decreases



120 2 Symmetries and Covariance of the Maxwell Equations

in the course of time. In addition, he perceives the particle which passes by as an
electric current density j .t;x/ D q ı

�
x � .vt C x0/

�
which according to (1.18)

creates an H -field – and, as he is in vacuum, an induction field B � H – which
is time and space dependent. Another inertial observer who travels along with the
particle sees something radically different: In his frame of reference K0 the parti-
cle is at rest and creates the spherically symmetric electric field E 0 D q Or=r2.
Since there is no electric current there is also no magnetic or induction field,
H 0 D B 0 D 0. As only relative motion is relevant, the two observers are equiv-
alent and the Maxwell equations should have the same physical interpretation in
the two frames of reference. Independently of whether the relative velocity is small
as compared to, or close to the speed of light, the special Lorentz transformation
L.v/ W .E.t;x/;B.t;x// 7! .E 0.t 0;x0/;B 0.t 0;x0// must mix the two types of
fields.

A more rigourous analytical argument starts from the Lorentz force (1.44e) and
is worked out in more detail in Sect. 2.3.4 below. It leads straightforwardly to the
correct transformation behaviour: Maxwell’s equations are found to be covariant
under the Lorentz group.

We start with a summary of the most important properties of the Poincaré and
the Lorentz groups, but refer to [ME] for a more detailed exposition.

2.3.1 Poincaré and Lorentz Groups

A Poincaré transformation is a general affine transformation of the coordinates x of
spacetime M D R4, as well as of tangent vectors2 v 2 TxM ,

.ƒ; a/ W x 7�! x0 D ƒx C a ; y 7�! y0 D ƒy C a ; (2.35a)

which leave the generalized (squared) distance

.x � y/2 D �x0 � y0�2 � �x � y
�2

(2.35b)

invariant. Here (x0 D ct , x) is the decomposition of x into temporal and spatial
parts, respectively, in a given system of reference K which may, but need not be
an inertial system. By convention the components are labelled by Greek indices
whenever one deals with all four of them, for time and for space, and by Latin
indices if only the spatial components are concerned,

x D fx� j� D 0; 1; 2; 3g D �x0; fxi j i D 1; 2; 3g�T D �x0;x�T :
When it is equal to zero the invariant (2.35b) describes the causal relationship be-
tween emission of a light quantum at x, i.e. at time tx D x0=c and position x, and

2 As the base manifold M is the flat space R4 all tangent spaces TxR4 can be identified with
this space. As a consequence, the points x 2 M and the vectors v 2 TxM have the same
transformation behaviour.
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its detection at the world point y, i.e. at time ty D y0=c and position y. It expresses
the experimentally confirmed constancy of the speed of light: In all inertial frames
the speed of light has the universal value

c D 2:99792458 � 108 m s�1 : (2.36)

The squared distance (2.35b) is invariant under Poincaré transformations, indepen-
dently of whether it is zero (i.e. lightlike), positive (i.e. timelike), or negative (i.e.
spacelike). A notation which is equivalent to (2.35b) makes use of the metric tensor
g D fg��g D diag.1;�1;�1;�1/. It reads

.x � y/2 D
3X

�;�D0
.x� � y�/g��.x� � y�/ � .x� � y�/g��.x� � y�/ ; (2.37)

where in the second step Einstein’s summation convention was introduced which
says that two equal indices, one of which is covariant, while the other is contravari-
ant, are to be summed over from 0 to 3. Conventionally covariant indices are written
as lower indices, contravariant indices are noted as upper ones.

Inserting the transformation (2.35a) into the formula (2.37), and requesting the
equality .x0�y0/2 D .x�y/2 for all inertial systems, the translation term a cancels
out in the difference of x and y. There remains a condition on the homogeneous
part of the transformation (2.35a), viz.

ƒT gƒ D g : (2.38a)

This equation is the essential condition for the Lorentz group from which all char-
acteristic properties of Lorentz transformations are deduced. One should note the
analogy to the rotation group in R3: The defining property of the rotation group
O(3) in three-dimensional space with the metric gjR3 D diag.1; 1; 1/ is

RT 1l3R D 1l3 ;

from which one concludes that .det R/2 D 1 and that R�1 D RT , i.e. that R is
orthogonal.

Equation (2.38a), written out in components, leads to a number of consequences
that we describe schematically as follows. With the notation ƒ D f���g and using
the summation convention the equation (2.38a) reads more explicitly

��	g���
�

 D g	
 : (2.38b)

Note that � and 
 are summation indices, while � and 
 assume fixed values on
both sides of the equation. The relative position of indices in the left-hand factor
of (2.38b) seems in conflict with the rules of matrix multiplication but, in fact, is
correct because it is the transpose of ƒ which appears here.
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Depending on the values of the fixed indices � and 
 , equation (2.38b) yields for

� D 0 ; 
 D 0 W �
�00

�2 �
3X

jD1

�
�
j
0

�2 D 1 ; (2.38c)

� D i ; 
 D k W �0i�
0
k �

3X
jD1

�
j
i�

j

k
D �ıik ; (2.38d)

� D 0 ; 
 D k W �00�
0
k �

3X
jD1

�
j
0�

j

k
D 0 : (2.38e)

One concludes from the first of these the alternatives that

either (a): �00 > C1 ; or (b): �00 6 �1 : (2.39a)

Lorentz transformations which have the property (a) map the time coordinate
forward, i.e. into the future. They are called orthochronous. Calculation of the de-
terminant of the two sides of (2.38a), remembering that ƒ is real, yields

�
detƒ

�2 D 1 ; hence, either (c): det� D C1 (2.39b)

or (d): det� D �1 :

Thus, the four possible combinations of the properties (a) to (d) show that the
Lorentz group has four disjoint branches. These are denoted by ˙ for the sign of
the determinant, and by an arrow which points upward if�00 is larger than or equal

to C1, downward if �00 is smaller than or equal to �1. The branch L"
C, called the

proper, orthochronous Lorentz group, contains all elements ƒ with detƒ D 1 and
�00 > C1. As one easily verifies, this is a subgroup of the Lorentz group: It con-

tains the identity 1l4; the product of two transformationsƒ1; ƒ2 2 L"
C is an element

of L"
C, and so is the inverseƒ�1 of every elementƒ 2 L"

C.
Space reflection ƒ D … D diag.1;�1;�1;�1/ has detƒ D �1, and �00 D

C1, hence, is an element of the branch L"�. Time reversal T D diag.�1; 1; 1; 1/
belongs to L#�, while the product …T of space reflection and time reversal has de-

terminant C1, but �00 D �1, hence, belongs to the branch L#
C. As an essential

lesson from this analysis we note that one knows the entire Lorentz group once one
understands its subgroup L"

C, the proper orthochronous Lorentz group. Indeed, ev-

ery element of L"� can be written as the product of an element of L"
C with …, every

element of L#� as the product of an element of L"
C with T, and every element ofL#

C
as the product of an element of L"

C with …T.
The key to the proper orthochronous Lorentz group is provided by the decompo-

sition theorem, which asserts that every element of L"
C can be written, in a unique
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manner, as the product of a rotation

R D
�
1 0
0 R

�
; with R 2 SO(3) ;

and a special Lorentz transformation, cf. (2.34). Thus, one has

ƒ D L.v/ R ; ƒ 2 L"
C : (2.40a)

The entries of the 4 � 4-matrix L.v/ are determined by the velocity

v D c

�00

�
�10; �

2
0; �

3
0

�T
; (2.40b)

hence, by the entries ��0 of the given transformationƒ. The entries of the orthog-
onal 3 � 3-matrix R are calculated from the formulae

Rik D �i k �
�i 0�

0
k

1C�00
: (2.40c)

For a proof of this important theorem see, for example [ME], Sect. 4.5.1.

2.3.2 Relativistic Kinematics and Dynamics

To the best of our knowledge, all charged particles of nature are massive particles.
Physical trajectories on which such a particle moves at a velocity smaller than c, are
described by world lines x.
/ whose tangent vector field is everywhere timelike.
The Lorentz invariant parameter 
 denotes proper time, i.e. the time that an ob-
server who travels with the particle reads on his clock. The trajectory is described
by the function x.
/ in a way independent of any choice of specific coordinates.
The corresponding velocity is characterized by a four-vector which is given by, in
a coordinate-free way,

u.
/ WD d

d

x.
/ : (2.41)

Without loss of generality, the invariant square of u can be normalized such that
u2 D c2.

In the rest system the proper time coincides with the coordinate time of K0 and
one has d
 D dt . With respect to a moving system K the line element is .ds/2 D
c2.d
/2 D c2.dt/2 � .dx/2 so that

.d
/2 D .dt/2 � 1
c2 .dx/2 D .1 � ˇ2/.dt/2 D .dt/2=�2 :

In the momentary rest system K0 of the particle (whose existence is guaranteed
whenm 6D 0) the velocity four-vector is

u.
/jK0
D �c; 0�T ; (2.41a)



124 2 Symmetries and Covariance of the Maxwell Equations

while in the “laboratory” system K of another observer relative to whom the particle
is moving, it is

u.
/jK D
�
�c; �v

�T
: (2.41b)

The relativistic variant of the momentum is the four-vector p WD mu. It comprises
the spatial momentum p D m�v and the corresponding energy (divided by c) p0 D
mc� D Ep=c. In the frame of reference K of the observer, i.e. in the laboratory
system, one has

pjK D
�
1
c
E;p

�T
; with E D �mc2 D

p
.pc/2 C .mc2/2 ; p D m�v ;

(2.42a)
while in the momentary rest system of the particle one has, of course,

pjK0
D �mc; 0�T ; EjK0

D mc2 ; pjK0
D 0 : (2.42b)

One easily verifies that (2.41b) follows from (2.41a) by the action of the special
Lorentz transformation L.v/, cf. (2.34). In a similar way one verifies that

pjK D L.p/ pjK0
;

with L.p/ D 1

mc2

 
E chpj
cjpi mc21l3 C c2

.ECmc2/
jpihpj

!

where L was converted from a parametrization in terms of the velocity v to
a parametrization in terms of the spatial momentum p, using the relations (2.42a).
Indeed, one has

 
E chpj
cjpi mc21l3 C c2

.ECmc2/
jpihpj

!�
mc

j0i
�
D mc2

�
.E
c
/

jpi
�
:

The relativistic, Lorentz covariant version of Newton’s second law reads

m
d2

d
2
x.
/ D f .x/ : (2.43)

It is obtained from the usual nonrelativistic formula m Rx D F N.x/ in which F N

denotes the force field of Newtonian mechanics, by a “boost” from the rest system
K0. Thus, in the rest system

m
d2

d
2
x.
/

ˇ̌̌
ˇ
K0

D m.0; Rx/T and f jK0
D .0;F N/

T

must hold. The action of the special Lorentz transformation L.v/ on these two four-
vectors, �

f 0

jf i
�
D
 

� 1
c
�hvj

1
c
� jvi 1l3 C �2

c2.�C1/ jvihvj

!�
0

jF Ni
�
; (2.44)
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yields the individual components of f , using the notation hajci � a � c, as follows

f 0 D 1

c
�
�
v � F N

�
; (2.44a)

jf i D F N C �2

c2.� C 1/
�
v � F N

� jvi : (2.44b)

These expressions can be converted to another form which is instructive: Take the
scalar product of (2.44b) with v and use the relation

v2

c2
D ˇ2 D �2 � 1

�2
D .� � 1/� C 1

�2
;

to obtain

.v � f / D
�
1C �2

� C 1ˇ
2

� �
v � F N

� D � �v � F N
�
:

Thus, the zero-component of (2.44a) can be written alternatively f 0 D .1=c/.v �f /.
Regarding the space component (2.44b), make use once more of ˇ2 D .�2 � 1/=�2,
and insert the identity

.v � a/v D v2aC v � �v � a
�

to obtain

f D F N C �2

� C 1
�
1

c2
v � �v � F N

�C ˇ2F N

�

D F N.1C � � 1/C �

c
v �

�
�

c.� C 1/
�
v � F N

��

D �
�
F N C 1

c
v �


 �

c.� C 1/
�
v � F N

���
: (2.44c)

The spatial part of the left-hand side of the equation of motion (2.43), when ex-
pressed in terms of the time derivative of the spatial momentum, is equal to � dp=dt ,
so that the equation of motion divided by � reads

dp

dt
D F N C 1

c
v �


 �

c.� C 1/
�
v � F N

��
: (2.43a)

The time component satisfies the differential equation

mc
d�

dt
D 1

c

�
F N � v

�
: (2.43b)
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(It is easily verified that (2.43b) follows from (2.43a).) The first of these equations
shows a striking similarity to the equation of motion of a charged particle under the
action of the Lorentz force, with F N taking the role of qE , and

“qB ” � �

c.� C 1/
�
v � F N

� � q�

c.� C 1/
�
v �E

�

appearing in the magnetic term of the force.

2.3.3 Lorentz Force and Field Strength

The Lorentz force with its characteristic dependence on the velocity

dp

dt
D q



E.t;x/C 1

c
v �B.t;x/

�
(2.45)

can be cast into the form of the equation of motion (2.43). The space part is obtained
by multiplication of (2.45) with a factor � D 1=

p
1 � v2=c2, the temporal part is

obtained from the scalar product of (2.45) with the vector .�=c/v:

m�
d

dt
.�c/ D � 1

c
qE � v ; (2.45a)

m�
d

dt
.�v/ D �



qE.t;x/C q

c
v �B.t;x/

�
: (2.45b)

One sees again the analogy between the differential equations (2.45b) and (2.43a),
as well as between the equations (2.45a) and (2.43b). The left-hand sides of (2.45a)
and of (2.45b), written covariantly, are m.du�=d
/; their right-hand sides can be
expressed in terms of the four-velocity u as follows. In the frame of reference K
define

F ��.x/ WD

0
BB@

0 �E1.x/ �E2.x/ �E3.x/
CE1.x/ 0 �B3.x/ CB2.x/
CE2.x/ CB3.x/ 0 �B1.x/
CE3.x/ �B2.x/ CB1.x/ 0

1
CCA ; x D .t;x/T ;

(2.46)
and let this field act on u� D g�	u	 D .�c;��v/T . Using the summation conven-
tion one has

F ��u� D

0
BB@

0 �E1.x/ �E2.x/ �E3.x/
CE1.x/ 0 �B3.x/ CB2.x/
CE2.x/ CB3.x/ 0 �B1.x/
CE3.x/ �B2.x/ CB1.x/ 0

1
CCA
0
BB@
�c

��v1
��v2
��v3

1
CCA

D

0
BB@

�.E.x/ � v/
�cE1.x/C �.v2B3.x/ � v3B2.x//
�cE2.x/C �.v3B1.x/ � v1B3.x//
�cE3.x/C �.v1B2.x/ � v2B1.x//

1
CCA :
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The equation of motion in its general form (2.43) appears here in the specific form

m
du�

d

D q

c
F ��u� : (2.47)

In the frame K it is seen to be identical with the differential equations (2.45a)
and (2.45b).

This observation raises an important question:
Does the combination of the electric field and the magnetic induction by the def-

inition (2.46) have a deeper and more general significance than just to reformulate
the Lorentz force (2.45) in a compact form with respect to the special frame of ref-
erence K?
In other terms the question we are asking is the following: In another frame K0 which
differs from K by a Lorentz transformation (which is to say that with K also K0 is an
inertial system) the Lorentz force can be expressed in the same compact form, i.e.
as F 0��u0

� . Are the fields F 0�� and F �� also related by Lorentz transformations?
More precisely, is it true that with

u0 D ƒu also F 0 D ƒF ƒT holds true?

or, written in components,

u0	 D �	�u� ; F 0	
 .x0/ D �	��
�F ��.x/ ?

If this were so then the equation of motion (2.47) would be Lorentz covariant. Its
right-hand side F ��u� , summed over 
, is a Lorentz vector and thus transforms
with ƒ like its left-hand side. The equation of motion has the same form in every
inertial system. The question that is raised then narrows down to the question:
Are the Maxwell equations covariant with regard to the transformationsƒ 2 L"

C as
suggested by the special form of the Lorentz force?

The analysis of this question is the subject of the next Section. Before turning to
it let us collect the inverse formulae that express the electric and induction fields in
terms of F �� . These are

E i D F i0 D �F 0i ; .i D 1; 2; 3/ ; (2.48a)

B i D �1
2

3X
j;kD1

"ijkF
jk ; .i D 1; 2; 3/ : (2.48b)

The object F ��.x/ will turn out to be a tensor field, the tensor field of electro-
magnetic field strengths. It is called, somewhat shorter, field strength tensor3. Its
definition (2.46) shows that this tensor is antisymmetric. In fact, one could have

3 Its geometric role will be clarified in Chap. 5 below.
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deduced this property directly from the equation of motion (2.47): Because of the
property u2 D c2 D const. one has

1

2

du2

d

D u� du�

d

D 0 :

Therefore, by contraction of (2.47) with u�, one concludes that for all x

u�F
��.x/u� D 0 :

This can only be correct if F ��.x/ D �F ��.x/: The tensor u�u� which is sym-
metric in � and 
, when contracted with the antisymmetric tensor F �� , gives zero.
Conversely, if F �� had a symmetric term this would not give zero upon contraction
with u�u� .

2.3.4 Covariance of Maxwell’s Equations

The homogeneous Maxwell equations (2.1a) and (2.1b) are easily expressed in terms
of the tensor field F ��.x/. We show that they read as follows

@�F �� C @�F �� C @�F �� D 0 ; with � 6D � 6D 
 2 .0; 1; 2; 3/ : (2.49)

An alternative notation is obtained if one introduces the Levi-Civita symbol in di-
mension 4 whose properties are:

"0123 D C1 (2.50)

"��	
 D C1 for .�; 
; �; 
/ D even permutation of .0; 1; 2; 3/

"��	
 D �1 for .�; 
; �; 
/ D odd permutation of .0; 1; 2; 3/

while "��	
 D 0 in all other cases, i.e. whenever two or more indices are equal. In
terms of this totally antisymmetric symbol the equations (2.49) become

"��	
@
�F 	
 .x/ D 0 ; .� D 0; 1; 2; 3/ : (2.49a)

It is not difficult to verify that (2.49a) summarizes the four homogeneous
Maxwell equations. In doing so one must recall that

@0 D @0 D @

@x0
; but @i D �@i D � @

@xi
D �.r /i :

Equation (2.49a) with � D 0 and with "0�	
 � "0ijk D "ijk (where in the last step
one sees the usual "-symbol in dimension 3) yields

0 D "0�	
@�F 	
 .x/ D
3X

i;j;kD1
"ijk@

iF jk.t;x/

D 2�"123@1F 23 C "231@2F 31 C "312@3F 12	 D 2r �B.t;x/ :
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This is the Maxwell equation (2.1a). If the first free index of (2.49a) is taken to be
1, one of the remaining indices 
, � , and 
 , must equal 0, while the other two must
be 2 and 3, respectively. In this case (2.49a) yields

0 D "1023@0F 23 C "1230@2F 30 C "1302@3F 02

D �1


@0.�B1/C .�@2/E3 C .�@3/.�E2/

�

D 1

c

@B1

@t
C @E3

@x2
� @E

2

@x3
:

Obviously, this is the 1-component of the homogeneous Maxwell equation (2.1b).
The other two space components are obtained by cyclic permutation of the indices
.1; 2; 3/.

The inhomogeneous equations (2.1c) and (2.1d) are more difficult to translate
to a covariant form because they contain source terms which are not genuine ele-
ments of Maxwell theory but should follow from a theory of matter. We start with
a heuristic remark:

The volume element in R4 is invariant under ƒ 2 L"
C, d4x0 D d4x, or, with

respect to a given frame of reference K, dx00 d3x0 D dx0 d3x. If %.t;x/ is the
charge density in that frame then the charge element

dq D %.t;x/ d3x D %0.t 0;x0/ d3x0 ;

by its very nature is a (physical) invariant. This suggests that under Lorentz
transformations the charge density should transform like the time component of
a four-vector. This, in turn, is so if the charge density and the current density to-
gether build up a Lorentz four-vector, i.e. if

j.x/ D �c%.x/; j .x/�T ; x D �x0;x�T ; (2.51)

is a vector field transforming like a Lorentz vector. As we anticipated in Sect. 1.4.5
the continuity equation then has the compact and Lorentz invariant form (1.24b),
@�j

�.x/ D 0. Of course, this is a question whose answer must be found outside of
Maxwell theory proper. Charged matter which provides the sources of Maxwell’s
equations, must be described as well by a Lorentz covariant theory and must allow
for a four-vector current j.x/ which is conserved. This is not obvious!

In what follows let us assume that this is valid and that the charged matter parti-
cles, i.e. electrons, atomic nuclei, ions, which compose macroscopic matter, obey a
Lorentz covariant theory.

It is suggestive to combine the dielectric displacement field D and the magnetic
field H in a tensor field analogous to (2.46),

F��.x/ WD

0
BBB@

0 �D1.x/ �D2.x/ �D3.x/

CD1.x/ 0 �H 3.x/ CH 2.x/

CD2.x/ CH 3.x/ 0 �H 1.x/

CD3.x/ �H 2.x/ CH 1.x/ 0

1
CCCA ; (2.52a)
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which is antisymmetric, too. The fields are expressed in terms of F�� by formulae
analogous to (2.48a) and to (2.48b),

Di D F i0 D �F0i ; .i D 1; 2; 3/ ; (2.52b)

H i D �1
2

3X
j;kD1

"ijkFjk ; .i D 1; 2; 3/ : (2.52c)

The inhomogeneous Maxwell equations now take the compact form

@�F��.x/ D 4�

c
j �.x/ ; .
 D 0; 1; 2; 3/ : (2.53)

As in the case of the homogeneous equations let us verify this equation in more
detail.

For 
 D 0 the first index of F can only take the values 1, 2, and 3, so that (2.53)
reduces to

3X
iD1

@iF i0.x/ D r �D.t;x/ D 4�

c
c%.t;x/ D 4�%.t;x/ :

Obviously, this is the same as (2.1c).
For a space index, for example 
 D 1, the equation (2.53) yields

4�

c
j 1.t;x/ D @0F01.x/C @2F21.x/C @3F31.x/

D �@0D1.t;x/C @2H 3.t;x/ � @3H 2.t;x/

D


�1
c

@D.t;x/

@t
C r �H .t;x/

�1
:

This is the 1-component of the differential equation (2.1d); the remaining two com-
ponents follow by cyclic permutation of the space indices .1; 2; 3/.

Under the assumption discussed above, i.e. the current density j.x/ transforms
like a Lorentz vector, the inhomogeneous equations (2.53) are manifestly covariant:
Their left-hand sides as well as the right-hand sides transform like vectors under
ƒ 2 L"

C.

I Remarks
1. The contraction of the Levi-Civita symbol in dimension 4 with the field

strength tensor that was used in the homogeneous equations (2.49a) rather
naturally leads one to define another covariant tensor field of degree 2, the
dual field strength tensor field,

? F˛ˇ .x/ WD 1
2
"˛ˇ��F

��.x/ : (2.54a)
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The corresponding contravariant tensor field is

? F 	
 .x/ D g	˛�?F˛ˇ .x/�gˇ
 : (2.54b)

It is not difficult to calculate ?F˛ˇ and then ?F 	
 . The result (up to comple-
tion by virtue of its antisymmetry)

? F 	
 D

0
BB@
0 B1 B2 B3

0 �E3 E2

0 �E1
0

1
CCA (2.54c)

is interesting because it shows that replacing F �� by ?F �� means an ex-
change of electric field and magnetic induction according to the rule

F �� 7�! ?F �� W .E ;B/ 7�! .�B;E/ : (2.55)

In the vacuum where D D E and H D B, with our choice of units, and
in the absence of external sources, the replacement (2.55) is a symmetry of
Maxwell’s equations (2.1a–2.1d). This symmetry is called electric-magnetic
duality. It interchanges (2.1a) with (2.1c), as well as (2.1b) with (2.1d). This
duality is closely related to the Hodge duality that we studied in Sect. 2.2.2,
(2.16). We will return to this in Sect. 2.5.1 below.

2. Of central importance for the covariance of Maxwell’s equations was the pos-
tulate of the constancy of the speed of light, cf. Sect. 2.3.1. If this were not
valid the Maxwell equations would single out a special class of frames of ref-
erence whose elements can differ only by translations and rotations but not
by special Lorentz transformations. In the early era of electromagnetism this
class of frames was called the “ether”, its characteristic property being that
Maxwell’s equations hold in the form given above and that the speed of light
has the value (2.36). As is well known, the experiments of A. A. Michelson
and E. W. Morley disproved this hypothesis. No effects were found that would
show any comotion of light with a frame moving uniformly relative to the hy-
pothetical ether. The speed of light has the same universal value in all inertial
systems.

3. The full system of Maxwell equations are Lorentz covariant if and only if
the four-current density j.x/ is a four-vector field. As was emphasized previ-
ously this is a condition concerning the sources in (2.53). The reformulation of
Maxwell’s equations by means of the tensor fields F ��.x/ and F��.x/, and
of the current density j�.x/, in the differential equations (2.49a) and (2.53),
renders the covariance explicit.This observation is termed manifest Lorentz
covariance. In the equivalent differential equations (2.49a) and (2.53) covari-
ance is not evident.
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4. The conservation of the four-current density j.x/ now is manifest, too.
Indeed, calculating the (four-)divergence of the inhomogeneous equations
(2.53), one finds

@�@�F��.x/ D 0 :
The differential operator @�@� being symmetric in � and 
 is contracted with
the antisymmetric tensor field F��.x/. This is compatible with (2.53) only
if

@�j
�.x/ D @

@t
%.t;x/C r � j .t;x/ D 0 (2.56)

holds. Thus, the continuity equation is essential for (2.53) to hold true. It
guarantees the universal law of conservation of electric charge.

2.3.5 Gauge Invariance and Potentials

As anticipated in Sect. 1.6.3 the scalar potential ˚.t;x/ and the vector potential
A.t;x/ can be combined in the definition

A.x/ WD �˚.t;x/;A.t;x/�T : (2.57)

The representation of the electric field and the induction field by the potentials ˚
and A is equivalent to the representation of the field strength tensor in terms of the
four-potential (2.57)

F ��.x/ D @�A�.x/� @�A�.x/ : (2.58)

It is not difficult to verify this assertion: For 
 D 0 we have

F i0.x/ D E i .t;x/ D @iA0.t;x/� @0Ai .t;x/
D �@i˚.t;x/� 1

c
@tA

i .t;x/ ;

in agreement with (1.55b). Considering a space-space component, say � D 3 and

 D 2, one has

F 32 D B1.t;x/ D @3A2.t;x/ � @2A3.t;x/
D �@3A2.t;x/C @2A3.t;x/ D

�r �A.t;x/
�1
:

The components B2.t;x/ and B3.t;x/ are obtained in an analogous manner, in
agreement with the noncovariant representation (1.55a).

By definition, gauge transformations of potentials are space- and time-dependent
transformations which do not change the observable fields. Solving for the scalar
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and vector potentials they have the somewhat complicated form (1.57a) and (1.57b).
In a Lorentz covariant formulation their appearance is simpler, they read

A�.x/ 7�! A0�.x/ D A�.x/ � @��.x/ : (2.59)

The covariant derivative is related to the time derivative and the gradient in R3 by

@� D
�
1

c

@

@t
;�r

�
:

One sees at once that (2.59) is identical to the equations (1.57a) and (1.57b). As
�.x/ is a smooth function, its mixed second derivatives @�@��.x/ and @�@��.x/
are equal. Thus, they cancel in the difference on the right-hand side of (2.58) so
that the tensor field F ��.x/ stays invariant. For the same reason, the homogeneous
equations (2.49a) are fulfilled automatically when using the definition (2.58). Thus,
one has the choice: Either one works exclusively with observables, i.e. with the
fields E and B and imposes the homogeneous equations (2.49a), or one expresses
the field strength tensor in terms of potentials A�.x/. In this case the homogenous
equations are redundant.

The inhomogeneous equations in vacuum become

�A�.x/ � @��@�A�.x/� D 4�

c
j �.x/ : (2.60)

As one would have expected, the first term of the left-hand side contains the dif-
ferential operator � D @�@

� D .1=c2/@2t � � which is characteristic for the
wave equation. The second term on the left-hand side depends on the choice of
the gauge. The right-hand side, finally, is the source term. For example, if one uses
the Lorenz gauge (2.61) below, then (2.60) is precisely the inhomogeneous wave
equation.

I Remarks
1. As we just noted the covariance of Maxwell’s equations is guaranteed only if
F ��.x/ is a contravariant tensor field of degree 2 and j�.x/ is a contravariant
vector field with respect to Lorentz transformations. The four-potentialA�.x/
may be a Lorentz vector field. However, it is always possible to hide the man-
ifest Lorentz covariance without modifying the covariance of the Maxwell
equations and of its physical content. For example, instead of the Lorentz in-
variant condition

@�A
�.x/ D 0 (2.61)

(this is the Lorenz condition (1.58)), one may choose classes of noncovari-
ant gauges. One may wish to impose, for example, the Coulomb gauge (1.63)
and single out a special class of gauges by this choice. Lorentz covariance of
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Maxwell’s equations is then no longer manifestly visible, even though it is not
lost. One has made use of the freedom in the choice of gauge, though hiding
the covariance, for the purpose of emphasizing other properties of the theory.
In the case of the Coulomb gauges, for instance, this was the transversality
of electromagnetic waves. As no physical prediction of the theory is changed
by gauge transformations, the theory is the same, no matter which formula-
tion one has chosen and independently of the theory appearing in different
disguises.

2. As will become clear in a later section the gauge freedom (2.59), in
essence, means invariance of Maxwell theory under the group of local U(1)-
transformations,

U.1/ W˚
g 2 F.R4/ ; smooth function jg.x/ D ei˛.x/; ˛.x/ smooth, real



:

Here the term local means that to every point x 2 R4 of spacetime a copy of
the group

U.1/ D ˚
g 2 C

ˇ̌ jgj 2 D 1 ; i.e. g D ei˛; ˛ 2 Œ0; 2�	


is attached. This gauge group (which is Abelian) acts on the potentials A� by

A0�.x/ D A�.x/ � ig.x/@�g�1.x/ ; (2.62)

but acts also on the source terms in Maxwell’s equations. Equation (2.62)
is a special case of a transformation for more general, non-Abelian groups
that will be studied in Chap. 5. For the moment we just note that (2.62) with
˛.x/ D �.x/ reproduces the formula (2.59).

3. In case all charge and current densities are localized the continuity equa-
tion (2.56) implies that the time derivative of the integral of the charge density
over the whole space vanishes,

@0

•
d3x j 0.x/ D

•
d3x @0j

0.t;x/

D �
•

d3x @ij i .t;x/ D 0 :

This follows because the space integral, by Gauss’ theorem (1.6), can be
converted to a surface integral over a surface at infinity where the current
density vanishes by assumption. The total charge contained in space

Q WD
•

d3x j 0.t;x/ (2.63)
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is conserved. Although this is a beautiful and important result it seems to
single out a certain class of Lorentz systems for which the division into space
and time is fixed. Yet, the conservation law (2.63) of electric charge is Lorentz
invariant. This becomes plausible by the following argument:
Let ˙0 be the hypersurface x0 D const. in Minkowski space4. One says that
this surface is spacelike and we understand by this that any two points on ˙0
are spacelike relative to each other. This means that in each point x 2 ˙0
the positively oriented normal n.x/ (with respect to the time direction) to the
surface is timelike. In the special case of ˙0 one has n�.x/ D .1; 0/T for
all x. In the general case, one has n2.x/ � n�.x/n�.x/ D 1 for every space-
like hypersurface. To be spacelike is a property of a hypersurface which is
invariant under all ƒ 2 L"

C. Thus, the assertion that the normal n is timelike
remains true for all inertial observers who differ from one another by proper,
orthochronous Lorentz transformations.
It is not difficult to guess the four-dimensional variant of Gauss’ theorem (1.6)

ZZZZ
V

d4x @�F�.x/ D
•

�.V /

d��F�.x/ : (2.64)

In this formula �.V / is a piecewise smooth, closed hypersurface in
Minkowski space, V denotes the (four-dimensional) volume enclosed by
it, and F �.x/ is a smooth vector field. The integration on the right-hand side
contains d�� D n�.x/d� , where n�.x/ is the positive normal to the surface,
and d� is the surface element on �.V /.
The total charge (2.63) is given by the integral of the current density j.x/
over the space-like hypersurface˙0,

Q D
•

d3x j 0.x/ D
•

˙0

d��j�.x/ ; (2.63a)

�
d�� D n� d� ; n� D .1; 0; 0; 0/T ; d� D d3x

�
:

Consider now another space-like smooth hypersurface ˙ which differs from
˙0 only at finite distances in the way sketched in Fig. 2.2. Then the difference
˙ �˙0 DW �.V / is a piecewise smooth, closed hypersurface which encloses
a finite volume V . Gauss’ theorem in the form of (2.64) applied to �.V / and
V shows that the two integrals

Q0 D
•

˙

d��j�.x/ and Q D
•

˙0

d��j�.x/

4 Every smooth finite-dimensional surface that is embedded in a manifold with higher dimension
is called a hypersurface.
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Fig. 2.2 The three-dimensional hypersurface x0 D const.
is deformed locally and continuously to the spacelike hy-
persurface˙ such that˙ �˙0 encloses a finite volume

∑

∑0
0(x =const.)

differ only by the integral of @�j�.x/ over the volume V . This difference van-
ishes if and only if j�.x/ is a conserved current. In this case the charge (2.63a)
is independent of the choice of the space-like hypersurface ˙ . Therefore, in
spite of the apparent dependence on the splitting into space and time the defi-
nition (2.63) is Lorentz invariant.

2.4 Fields of a Uniformly Moving Point Charge

A special Lorentz transformation sort of “tumbles” electric and induction fields.
While the transformation behaviour of the tensor field F ��.x/ under L.v/ 2 L"

C
is straightforward and transparent, this is not obviously so for the fields E and B.
In order to clarify this matter and to work out its physical significance we study the
example of a particle with charge q which moves at constant velocity v with respect
to some inertial frame K (called a laboratory system, in short, in what follows). We
calculate the fields E.t;x/ and B.t;x/, as measured by an observer who keeps
a fixed position in the laboratory system.

Let the rest system of the particle be denoted by K0. It is chosen such that at
t D t 0 D 0 it coincides with the laboratory system. The observer B is at rest
relative to K, its spatial coordinates are .0; b; 0/; the charged particle sits at the origin
of K0, and, as seen from the laboratory system, moves with the constant velocity
v D v Oe1, i.e. along the 1-axis of K. This is sketched in Fig. 2.3. With ˇ D v=c and
� D 1=p1 � ˇ2 the coordinates of B are

x00 D �.x0 � ˇx1/ ; x02 D x2 ;
x01 D �.x1 � ˇx0/ ; x0 3 D x3 :

Inserting the laboratory coordinates x2 D b and x1 D 0 D x3 one has

B W �ct; 0; b; 0�ˇ̌
.rel. to K/ ;

B W �ct 0 D c� t; x0 1 D �v� t D �vt 0; x02 D b; x0 3 D 0�ˇ̌
.rel. to K0/

:

The special Lorentz transformation which links K to K0, and the formula which takes
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Fig. 2.3 An observer is assumed to be at rest relative to the inertial system K and has the posi-
tion (x1 D 0, x2 D b; x3 D 0/. He or she sees a charged particle moving at constant velocity
which at the coordinate time t D t 0 D 0 passes through the origin of K

the field strength tensor from one system to the other are, respectively,

L.�v/ D

0
BB@

� ��ˇ 0 0

��ˇ � 0 0

0 0 1 0

0 0 0 1

1
CCA

F 0	
 .x0/ D �	��
� F ��.ƒ�1x0/ :

As we will see in a moment it suffices to calculate the time-space components only.
With � D 0 they are for the three values of 
 , respectively,


 D 1 W F 001 D �E 01 D �0��1�F ��
D �00�11F 01 C�01�10F 10
D .�/2.�E1/C .�ˇ/2E1 D �E1 ;


 D 2 W F 002 D �E 02 D �0��2�F ��
D �00�22F 02 C�01�22F 12
D �.�E2/C .��ˇ/.�B3/ ;


 D 3 W F 003 D �E 03 D �0��3�F ��
D �00�33F 03 C�01�33F 13
D �.�E3/ � �ˇB2 :

Here we made use of

�12 D 0 D �13 ; �21 D 0 D �23 ; �31 D 0 D �32 :
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Thus, written more compactly, one obtains the formulae

E 01 D E1 ; (2.65a)

E 02 D ��E2 � ˇB3� ; (2.65b)

E 03 D ��E3 C ˇB2� : (2.65c)

By applying a little gimmick the transformation behaviour of the B fields can be
derived from the formulae (2.65a–2.65c). The tensor field ?F �� , equation (2.54c),
transforms in the same way as the tensor field F �� , but, at the same time, it arises
from the replacements (2.55). Therefore, one has

B 01 D B1 ; (2.65d)

B 02 D ��B2 C ˇE3� ; (2.65e)

B 03 D ��B3 � ˇE2� : (2.65f)

Finally, it is not difficult to generalize these formulae to an arbitrary direction of the
velocity v: The results (2.65a–2.65f) show that the components which are parallel
to v remain unchanged while the components perpendicular to v depend on the cross
product of the velocity and the other field, respectively. Therefore, one has

E 0
k D Ek ; B 0

k D Bk ; (2.66a)

E 0
? D �

�
E? C 1

c
v �B

�
(2.66b)

B 0? D �
�

B? � 1
c

v �E

�
: (2.66c)

Returning to the concrete example v D v Oe1 and referring to Fig. 2.3 one has
r 0 D p

b2 C .vt 0/2. In its own rest system K0 the particle creates the spherically
symmetric electric field

E D q

r 03 r 0 :

There is no induction field. At the position of the observer one has, in particular,

E 01 D � q

r 02
.vt 0/
r 0 ; E 02 D q

r 02
b

r 0 ; E 03 D 0 ;
B 01 D 0 D B 02 D B 03 :

As in the rest system B 0 D 0, it follows from (2.65e) or (2.65f) that B2 D �ˇE3
and B3 D ˇE2. One inserts this into (2.65c) or (2.65b) to obtain E 02 D E2=�

and E 03 D E3=� , respectively. This is used to calculate the fields in the laboratory
system K: At the position of B and with the given state of motion of the particle, the
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a b

Fig. 2.4 a The component E1 of the electric field in the direction of v, and b the component E2

perpendicular to v as a function of time, for two values of �

field components are

E1 D �q v� t�
b2 C .v� t/2� 3

2

; (2.67a)

E2 D �E 02 D q �b�
b2 C .v� t/2� 3

2

; (2.67b)

B? D �

c
v �E ; i.e. B3 D v

c
�E 02 D v

c
E2 ; (2.67c)

and, evidently, E3 D E 03 D 0. In order to illustrate this result it is useful to intro-
duce the dimensionless variable

u WD ct

b

and to express the fields in units of q=b2. Equations (2.67a) and (2.67b) then be-
come, with vt=b D ˇu and with ˇ2�2 D �2 � 1,

f1.u/ WD � E
1

. q
b2 /
D

p
�2 � 1u�

1C .�2 � 1/u2� 3
2

;

f2.u/ WD E2

. q
b2 /
D ��

1C .�2 � 1/u2� 3
2

:

Figure 2.4a shows the function f1 as a function of u, i.e. as a function of coordi-
nate time t . This function is odd, its maximum and its minimum are at umax=min D
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Fig. 2.5 The electric field at position B , divided
by E .0/, at a fixed time and as a function of '. The
direction of motion is the abscissa

�1=.p2.�2 � 1//, respectively, its absolute value being 2=.3
p
3/ in both positions.

Figure 2.4b shows the function f2.u/. This function has its maximum at u D 0. Its
value at time zero is f2.0/ D � , the width of this curve, i.e. the distance between
the two points at which it has decreased to half its value at u D 0, is found to
be

�u D 2
p
4

1
3 � 1p

�2 � 1 '
1:533p
�2 � 1 :

The larger the value of � , the more pronounced and narrow the “pulse” that the
observer sees in the 2-direction. The phenomena seen in the direction of flight
are the result of Lorentz contraction. This is seen most clearly if one calculates
the electric field at the position of the observer B , in the laboratory system and
at an arbitrary but fixed point in time. From the geometry of Fig. 2.5 one sees
that

E1

E2
D �vt

b
;
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i.e. E has the same direction as the position vector r. Regarding the denominator
of the expressions (2.67a) and (2.67b) one calculates

b2 C .v� t/2 D �2 �b2 C .vt/2�C b2 �1 � �2�

D �2r2
�
1C 1 � �2

�2
b2

r2

�
D �2r2 �1 � ˇ2 sin2 '

�
:

Thus, at the fixed time t the electric field at the position of B is

E .tfixed; r/ D qr

r3�2
�
1 � ˇ2 sin2 '

� 3
2

: (2.68)

The effect of Lorentz contraction can be read off this result: With E .0/ D qr=r3

being the field of the particle at rest one has

for ' D ˙�
2
W E.tfixed; r/ D �E .0/.tfixed; r/ ;

for ' D 0 and � W E.tfixed; r/ D 1

�2
E .0/.tfixed; r/ :

In the direction of motion (' D 0 or �) the spherically symmetric field appears
contracted when compared to the directions ' D ˙�=2 perpendicular to the mo-
tion.

2.5 Lorentz Invariant Exterior Forms
and the Maxwell Equations

As was shown in Sect. 2.2.2 for the case of a fixed division of spacetime into time
axis Rt and coordinate space R3, the association of simple exterior forms over
R3 to the fields and potentials of Maxwell theory proved useful in reformulating
Maxwell’s equations in a concise and transparent manner. On the basis of this ex-
perience it is suggestive to interpret the observables and the potentials of Maxwell
theory, written in covariant form, as geometric objects on Minkowski space R4. In
this Section we show that the field strength tensor, the Lorentz force, and the exter-
nal sources can be written as exterior forms which are even simpler than in the case
of R3 and which satisfy simple and natural equations. By the same token we show
that the apparent asymmetry between the electric field that was a one-form and the
induction field that was a two-form on R3, disappears. Finally, we provide the basis
for the generalization to non-Abelian gauge theories which are studied in Chap. 5.
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2.5.1 Field Strength Tensor and Lorentz Force

The tensor field F ��.x/ which in a given inertial system decomposes into observ-
able E -fields and B-fields according to (2.46), is defined on Minkowski space�
R4; g D diag.1;�1;�1;�1/�. Denoting the base one-forms over this space by

dx�, the base two-forms by dx� ^ dx� (� < 
) we define

!F WD
X
�<�

F��.x/ dx� ^ dx� : (2.69)

The sums on � and 
 are written explicitly because of the condition � < 
. If one
prefers to also apply the summation convention here one must add the factor 1=2. We
have inserted the covariant tensor field in (2.69) which is obtained by calculating –
now using the summation convention! –

F��.x/ D g�	F 	
 .x/g
� :

Like the coordinates the base one-forms

dx0 D c dt ; dx1 ; dx2 ; dx3

are ordered from 0 to 3, they refer to the chosen coordinate system. Note that we
simplified the notation somewhat by omitting the degree of the form above the sym-
bol. Obviously, the definition (2.69) indicates that one is dealing with a two-form.

Already at this point there is an important remark to be made: In contrast to the
representation of the field strength tensor by F �� , with its obvious recurrence to
a given frame of reference, the definition of the two-form !F is Lorentz invariant.
If, nevertheless, one sticks to the given frame in which, taking proper account of the
signs from the two factors g,

F��.x/ D

0
BB@

0 CE1 CE2 CE3
�E1 0 �B3 CB2
�E2 CB3 0 �B1
�E3 �B2 CB1 0

1
CCA (2.69a)

there follows5

!F D dx0 ^ �E1 dx1 C E2 dx2 C E3 dx3
	

� �B3 dx1 ^ dx2 C B1 dx2 ^ dx3 C B2 dx3 ^ dx1
	

D dx0 ^ 1
!E � 2

!B ; (2.70)

5 One should notice that on R3, the Euclidean space, one has Ei D E i and Bk D Bk . On R3

and with cartesian coordinates covariant and contravariant indices can be identified and need not
be distinguished.
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which contains the exterior forms defined in (2.26a) and (2.26b). This analysis ex-
plains at once why on R3 the field E is associated to a one-form, while the field B is
associated to a two-form. On Minkowski space, in turn, both kinds of fields are rep-
resented by two-forms. Therefore, it is appropriate to replace the definitions (2.26a)
and (2.26b) by the following:

!E � 2
!E WD

3X
iD1

Ei .t;x/ dx0 ^ dxi ; (2.71a)

!B � 2
!B WD 1

2

X
i;j;k

"ijkBi .t;x/ dxj ^ dxk : (2.71b)

In what follows we shall make use of either notation, the one defined in (2.69)
but also the ones of (2.71a) and (2.71b).

Being a two-form !F can act on up to two vector fields. Thus, one has with

u D u˛@˛ and v D vˇ@ˇ
!F .u; v/ D

X
�<�

F��
�
v�u� � u�v�� D 2X

�<�

F��u
�v�

D 21
2

X
�;�

F��u
�v� :

In turn, if one lets !F act on one vector field only, then one obtains a one-form

!F .u; �/ D
X
�;�

F��u
� dx� :

Multiplication of this form with q=c yields the one-form which is to be associated
to the Lorentz force (2.47) by way of the definition

!Lor WD
3X

�D0
K�.x/ dx� ; with K�.x/ D q

c

3X
�D0

F��.x/u
� : (2.72)

It is then not difficult to rewrite Maxwell’s equations in their manifestly covariant
form in terms of the two-form (2.69) and its Hodge dual. The Hodge star operation
in Minkowski space is a bit more subtle to handle, as compared to the case of a Eu-
clidean space and the definition (2.16), because of the characteristic signs of the
metric. We list here the duals of all base forms over Minkowski space

? dx� D 1

3Š
g��"��	
 dx� ^ dx	 ^ dx
 ; (2.73a)

?
�

dx� ^ dx�
� D 1

2Š
g��g�%"�%	
 dx	 ^ dx
 ; (2.73b)

?
�

dx� ^ dx� ^ dx	
� D g��g�%g	�"�%�
 dx
 ; (2.73c)

?
�

dx0 ^ dx1 ^ dx2 ^ dx3
� D det g D �1 : (2.73d)
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I Remark
In these formulae "˛ˇ�ı denotes the totally antisymmetric Levi-Civita symbol
in dimension four that was introduced in (2.50). Note the convention "0123 D
C1. The (inverse) metric which appears in the formulae (2.73a–2.73d) gives rise
to signs because while the time-time element is g00 D C1, the space-space
elements are gi i D �1. This also implies a sign change in the relation (2.18)
between the doubly dualized ??! and the original ! which is different from the
case of Euclidean spaces. Here it reads

? ?! D .�/k.n�k/C1 ! ; (2.74)

where the 1 in the exponent stems from the signature of the semi-Euclidian space
R.p;q/ (with p space coordinates and q time coordinates), with p C q D n,
and with the metric g D �

1; 1; : : : (q times);�1;�1; : : : (p times)
�
. The sig-

nature s is the codimension of the biggest subspace on which the metric is
definite. Consider the example of Minkowski space R.1;3/: The metric is g D
diag.1;�1;�1;�1/. Its restriction to the space part gjR3 is negative definite,
hence, s D 4 � 3 D 1.

Let us consider a few examples: The formula (2.73d) can be written, alterna-
tively, as follows

?
�

dx� ^ dx� ^ dx	 ^ dx

� D g�˛g�ˇg	�g
ı"˛ˇ�ı :

Similarly, the dual of the constant function 1 is

?1 D 1

4Š
"��	
 dx� ^ dx� ^ dx	 ^ dx
 :

From (2.73b) one obtains

?dx0 ^ dx1 D g00g11"0123 dx2 ^ dx3 D �dx2 ^ dx3 ;

?dx2 ^ dx3 D g22g33"2301 dx0 ^ dx1 D Cdx0 ^ dx1 ;

and from there

? ? dx0 ^ dx1 D �dx0 ^ dx1 ;

in agreement with (2.74) where k D 2 and s D 1. Starting from the for-
mula (2.73a) one has

?dx0 D g00"0123 dx1 ^ dx2 ^ dx3 D dx1 ^ dx2 ^ dx3 ;

?dx1 D g11"1023 dx0 ^ dx2 ^ dx3 D �"1023 dx0 ^ dx2 ^ dx3

D dx0 ^ dx2 ^ dx3 ;

?dx2 D g22"2013 dx0 ^ dx1 ^ dx3 D �dx0 ^ dx1 ^ dx3

D Cdx0 ^ dx3 ^ dx1 ;

?dx3 D g33"3012 dx0 ^ dx1 ^ dx2 D dx0 ^ dx1 ^ dx2 :
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(Note that the last three formulae show the cyclic symmetry in the space indices.)
Upon comparison with the formula (2.73c) one sees that the base three-forms as
well as the base one-forms do not change under the double star operation, in
agreement with (2.74) for n D 4 and s D 1, k D 1 and k D 3, respectively.

The star operation applied to !F , (2.69), using the rules (2.73b) derived above,
yields

?!F D� E1 dx2 ^ dx3 � E2 dx3 ^ dx1 � E3 dx1 ^ dx2

� B1 dx0 ^ dx1 � B2 dx0 ^ dx2 � B3 dx0 ^ dx3 :

This is seen to be the two-form (2.70), with the replacements

E 7�! �B ; B 7�! E :

If one compares this with (2.55) it is clear that “dual” and “dual” are identical i.e.
that

? !F D !.?F / : (2.75)

The two-form (2.69), constructed from ?F , is the same as the Hodge dual of
!F , (2.69).

Of course, the same construction can be applied to F��.x/, the tensor field of
the D and H fields, equation (2.52a). In analogy to (2.69) one defines

!F D
X
�<�

F��.x/ dx� ^ dx� : (2.76)

Both types of two-forms,!F and !F , appear in the Maxwell equations to which we
now turn.

2.5.2 Differential Equations for the Two-Forms!F and !F

The homogeneous Maxwell equations (2.49) or (2.49a) become very simple in the
language of exterior forms. They just say that !F is a closed form,

d!F D 0 : (2.77)

This is verified by applying the formula (2.15e) for exterior derivatives:

d!F D
�
� < 


�
@�F��.x/ dx� ^ dx� ^ dx�

D 1

2
@�F��.x/ dx� ^ dx� ^ dx� :
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The three indices �, �, and 
 must all be different. As the base three-forms are
linearly independent, the coefficient

@�F�� C @�F�� C @�F�� ;

which multiplies the base form dx�^ dx�^ dx� must vanish. This is the content of
the equation (2.49). As an alternative, one may calculate the dual of d!F by means
of (2.73c):

?d!F D 1

2
@�F 	
 .x/"��	
 dx� :

As the coefficient of every base one-form dx� must vanish this yields the homoge-
neous Maxwell equations in the form (2.49a).

In order to obtain the inhomogeneous equations (2.53) one starts by calculating
the exterior derivative of the dualized form ?!F ,

d
�
?!F

� D 1

4
@˛F��.x/g��g�%"�%ˇ� dx˛ ^ dxˇ ^ dx�

D 1

4
@˛F�%.x/"�%ˇ� dx˛ ^ dxˇ ^ dx� :

The indices ˛, ˇ, and � of the base three-form must all be different from one another.
In addition, as ˇ and � in the " symbol must also differ from � and from %; one must
have either � D ˛ or % D ˛. This becomes even more obvious if the last result is
subject once more to the star operation. Making use of the tensor

"˛ˇ�ı D g˛�gˇ�g�	gı
 "��	

and of the formula (2.73d), one has

? d ? !F D 1

4
@˛F�%.x/"�%ˇ�"˛ˇ�ı gı� dx� :

Each coefficient multiplying a one-form dx� must be considered separately. First
one notes that the sums over ˇ and � can be evaluated by means of the formula

"�%ˇ�"
˛ˇ�ı D "ˇ��%"ˇ�˛ı D �2

n
ı˛�ı

ı
% � ı˛% ıı�

o
: (2.78)

Upon inserting this formula one obtains four times the same term so that

? d ? !F D �@�F�%.x/g%� dx� :

This equation contains the operator (2.19a) with n D 4, k D 2, ı D �? d?, so that

ı !F D @�F�%.x/g%� dx� :
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If, conversely, one compares the three-form (2.28a) of the charge density and the
two-form (2.28b) of the current density one reckons that in the covariant formulation
both will appear as three-forms over Minkowski space, viz.

!j D 1

3Š
"�˛ˇ�j

�.x/ dx˛ ^ dxˇ ^ dx� : (2.79)

Taking the dual of this expression and making use of the formula

"�˛ˇ�"
˛ˇ�� D �"˛ˇ��"˛ˇ�� D 3Šı�� ;

one has
? !j D j�.x/g�� dx� : (2.79a)

From this and by comparison of coefficients of dx� it is clear that the inhomoge-
neous Maxwell equations (2.53) in exterior forms must be

ı !F D 4�

c
? !j : (2.80)

I Remarks
1. When one uses exclusively the geometric language in formulating electro-

dynamics in terms of exterior forms one simply writes F instead of !F , F
instead of !F , etc. In this notation one has

F � 1

2
F��.x/ dx� ^ dx� :

Covariance of Maxwell’s equations in the form (2.77) and (2.80) is obvious
because both are written in a coordinate-free way. Their independence of spe-
cific coordinates, in fact, means that Maxwell’s equations hold in all inertial
systems.

2. The homogeneous equations which are summarized in (2.77), do not make use
yet of the metric on Minkowski space. In turn, the inhomogeneous equations
which slumber in (2.80), depend on the Hodge star operation which assumes
a metric. In their axiomatic approach to electrodynamics Hehl and Obukhov
start from topological manifolds without presupposing the existence of a met-
ric.

3. As one easily verifies the mapping ı, like the exterior derivative d, when ap-
plied twice, gives zero, ı ı ı D ?d ? ı ? d? D 0. Therefore, by applying ı to
the inhomogeneous equations (2.80), one concludes

ı
�
?!j

� D 0 or @�j
�.x/ D 0 : (2.81)

This is the result found earlier: Current conservation follows from the inho-
mogeneous Maxwell equations. In other terms, only a conserved current can
be a source of Maxwell’s equations.
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2.5.3 Potentials and Gauge Transformations

The four-potential (2.57) can be written as an exterior form as well, by using the
covariant components A�.x/ D g��A

�.x/ in the definition of the following one-
form

!A WD A�.x/ dx� : (2.82)

Taking the exterior derivative, one finds

d!A D dA�.x/ ^ dx� D @�A�.x/ dx� ^ dx�

D
X
�<�



@�A�.x/ � @�A�.x/

�
dx� ^ dx� :

Comparison with the definition (2.69) shows that !F is the exterior derivative of
!A, viz.

!F D d!A : (2.83)

We rediscover here a known fact in a particularly simple form: If one introduces
potentials the homogeneous Maxwell equations are trivially fulfilled. Indeed, from
the property (2.15d) of the exterior derivative

!F D d!A H) d!F D d2!A D 0 :

Likewise, the gauge transformations (2.59) fit well into the framework of exterior
forms. Let �.x/ be a smooth function on Minkowski space. Its total differential
d� is a one-form that may be added to !A without modifying the Maxwell equa-
tion (2.77):

!A 7! !A0 D !A C d� H) !F 0 D d!A0 D d!A C d2�

D d!A D !F :

The exact form d� is closed. The gauge freedom in the choice of the potential
A�.x/ is equivalent to !A being determined only up to an arbitrary exact form.
(Note, when comparing to (2.59), that �.x/ is the same function as �.x/, up to
a sign.)

The action of the Laplace–de-Rham operator (2.19b) on a one-form of the kind
of (2.82) is calculated by means of the relations (2.73a–2.73d) as follows:

�LdR
�
A� dx�

� D d ı ı �A� dx�
�C ı ı d

�
A� dx�

�
D ��d ? d ?C ? d ? d

��
A� dx�

�
:

Using (2.73a) and (2.73d) the first term on the right-hand side leads to

� 1
3Š
@%@�A�g

�˛"˛�	
"
��	
 dx% :
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The contraction of the two "-symbols is obtained from (2.78),

"˛�	
"
��	
 D "�	
˛"�	
� D �2

�
ıˇ
 ı

�
˛ � ıˇ˛ ı�


�
ı
ˇ

D �2.4 � 1/ı�˛ D �3Š ı�˛ ;

so that the first term gives
@%@�A

�.x/ dx% :

For the second term one needs the formulae (2.73b) and (2.73c) for calculating

�1
2
@�@�A�g

� N�g� N�g N��" N� N�˛ˇ "
�˛ˇ N� dx� :

The contraction of the two "-symbols is given in (2.78), the second term yields two
contributions,

@�@�A� dx� � @�@�A� dx� :

Taking the sum of the two terms one obtains

�LdRA�.x/dx� D @�@�A�.x/dx� �
�
�A�.x/

�
dx� ; (2.84)

where � D @20 �� with � the well-known Laplace(–Beltrami) operator in R3.
From this calculation and from the inhomogeneous equation (2.80) follows the

equation of motion for !A:

ı!F D ı ı d!A D �LdR !A � d ı ı !A D 4�

c
? !j :

Inserting here the expansions (2.82) and (2.79a), respectively, for the one-forms !A
and ?!j in terms of base one-forms and comparing the coefficients multiplying
dx�, one finds the differential equation

�A�.x/ � @�
�
@�A�.x/

� D 4�

c
j�.x/ : (2.85)

Finally, by means of the inverse metric one raises the covariant index 
 in the three
terms of this equation and recovers the equation (2.60).

2.5.4 Behaviour Under the Discrete Transformations

In this section we study the behaviour of the exterior forms of Maxwell theory un-
der space reflection …, time reversal T, and charge conjugation C. Note that these
exterior forms are now defined over four-dimensional Minkowski space! Compar-
ing !E , (2.71a), with !E , (2.26a), one notices at once that these two forms differ
in their transformation behaviour under time reversal. In contrast, the two-form !B ,
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Table 2.2 In the covariant formalism the electromagnetic exterior forms behave under the three
discrete transformations as shown in the table

… T C …TC

!E C � � C
!B C � � C
!F C � � C
!F C � � C
!A C � � C
!j � C � C

(2.71b), does not differ from the two-form (2.26b) over the space R3. The trans-
formation behaviour of !E and of !B under …, T, and C is now the same. This
holds also for the two-form !F , (2.69), and, of course, also for !F , (2.76). These
observations are listed in the first four rows of Table 2.2.

Considering !A as defined in (2.82) and taking into account that the scalar po-
tential ˚.t;x/ is a genuine scalar, the vector potential A is a genuine vector field
over R3, and that B D r � A, it is clear that the one-form !A has the same
transformation properties as the first four two-forms. This is noted in the fifth row
of Table 2.2.

The three-form !j , (2.79), which for a given partition of Minkowski space into
time and space contains the charge density %.t;x/ and the current density j .t;x/,

has the same transformation behaviour as
3
! %, (2.28a), cf. Table 2.1. The re-

sult obtained there can be taken over directly to Table 2.2. One easily verifies
that the one-form ?!j which is its Hodge dual, is even under …, but odd un-
der T.

A common feature of all forms considered here is that they are invariant un-
der the combined transformation …TC. It is instructive to compare the results
with Table 2.1: The invariance under the combined transformation …TC rests in
an essential way on the fact that the exterior forms of Maxwell theory are defined
on four-dimensional Minkowski space. Invariance of Maxwell theory, as well as
of all other known theories of fundamental interactions, under the combined, so-
called “PCT” symmetry touches upon a deeply significant result of quantum field
theory.

2.5.5 * Covariant Derivative and Structure Equation

This section is merely a long remark which anticipates the more general framework
of non-Abelian gauge theories. Therefore, it might not be fully understandable at
this point and the reader might wish to come back to it at a later stage.
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On the spaces �k.M/ of exterior forms, k D 1; : : : ; n, define the following
differential operator:

DA WD dC i
q

„c !A (2.86)

D i


�i dC q

„c !A
�
:

The simple rewriting in the second line of (2.86) serves the purpose of preparing
a first intuitive understanding of this definition. Recall that in quantum mechanics
the spatial momentum p is replaced by the operator �i„r . Thus, by multiplying
DA with „, one sees that (2.86) is the natural generalization of the term

p � q
c

A

whose square appears in the Hamiltonian function for a charged particle in external
fields (see, e.g. [ME], Sect. 2.16), and which is prescribed by the principle of mini-
mal coupling. In differential geometry as well as in quantum physics one calls this
the covariant derivative.

When applied to an arbitrary exterior form ! the operatorDA shall act by

DA ! D d! C i
q

„c !A ^ ! : (2.86a)

Its action on functions (i.e. on zero-forms), in particular, reads

DA f D


@�f C i

q

„cA�f
�

dx� : (2.86b)

The operator DA is a linear combination of exterior derivative and exterior product
with the one-form !A. In other terms, very much like d, DA maps a k-form onto a
.k C 1/-form.

If one takes the square of the operator DA, i.e. if one applies DA twice succes-
sively on an arbitrary exterior form !, one finds a remarkable result,

DA ıDA ! D



dC i
q

„c !A
�
ı



dC i
q

„c !A
�
!

D
n

d ı dC i
q

„c
�

d!A ^C!A ^ d
�C 
i

q

„c
�2
!A ^ !A^

o
! :

The first term in the curly brackets gives zero because of d2 D 0 (cf. (2.15d)).
The third term vanishes as well by the asymmetry of the wedge product. As for the
middle term, using the graded Leibniz rule (2.15c), one has

d!A ^ ! C !A ^ d! D �d!A
� ^ ! � !A ^ d! C !A ^ d!

D �d!A
� ^ ! :
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From there and with (2.83) one obtains an important and most interesting result, viz.

D2
A D i

q

„c .d!A/ D i
q

„c !F : (2.87)

It is particularly noteworthy that the operator .d!A/ saturates in itself, that is to say,
the exterior derivative does not act further to the right – in contrast to the original
operator DA. The square of the covariant derivative DA yields the two-form (2.69)
of the field strengths, up to the factor iq=.„c/. In more mathematical terms (2.87)
tells us that D2

A acts linearly. This does not hold forDA.
These matters become a little more transparent if we replace the one-form !A

and the two-form !F by a one-form A and a two-form F , respectively, which are
defined as follows

A WD i
q

„c !A ; F WD i
q

„c !F : (2.88a)

With these definitions the structure equations above simplify to

DA D dC A ; (2.88b)

D2
A D .dA/C A ^A D .dA/ D F : (2.88c)

Equations of this type are well known in differential geometry. The one-form A,
defined here in a particularly simple case, is called the connection form. The oper-
ator DA D dC A is the covariant derivative, while F is called the curvature form
pertaining to the given connection. Indeed, one can show that F D D2

A may be in-
terpreted as a “round trip” along a small closed loop, in analogy to what one would
do in order to detect curvature in a hypersurface.



3Maxwell Theory as a Classical Field Theory

3.1 Introduction

Hamilton’s variational principle and the Lagrangian mechanics that rests on it are
exceedingly successful in their application to mechanical systems with a finite
number of degrees of freedom. Hamilton’s principle characterizes the physically
realizable orbits, among the set of all possible orbits, as being the critical elements
of the action integral. The Lagrangian function, although not an observable on its
own, is not only useful in deriving the equations of motion but is also an important
tool for identifying symmetries of the theory and constructing the corresponding
conserved quantities, via Noether’s theorem.

The variational principle and Lagrangian mechanics can be generalized to dy-
namical systems with infinitely many, nondenumerable, degrees of freedom. The
Lagrangian function is replaced by the Lagrangian density, the (generalized) co-
ordinates are replaced by time- and space-dependent fields. The Euler–Lagrange
equations are equations of motion for these fields, showing that Maxwell’s equations
are derivable from a variational principle. As in mechanical systems, the theorem of
Noether yields the relationship between invariance of the Lagrangian density under
transformations in space and time and the conservation laws.

3.2 Lagrangian Function and Symmetries in Finite Systems

To start with, we recall the notion of Lagrangian function in the mechanics of sys-
tems with a finite number of degrees of freedom with special emphasis on the
description of symmetries of a given theory. Readers who are familiar with this
topic may wish to skip this section.

Invariance of the Lagrangian function L.q1; q2; : : : ; qf ; Pq1; : : : Pqf ; t/ (up to
gauge terms) under a symmetry transformation implies that the Euler–Lagrange
equations pertaining to L are covariant, i.e. are form invariant with respect to that

153F. Scheck, Classical Field Theory, Graduate Texts in Physics,
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symmetry. This fact illustrates the central importance of the notion of Lagrangian
function: Indeed, it is often simpler to construct invariants which may be suitable
candidates for possible Lagrangian functions rather than to magically invent covari-
ant equations of motion. An elementary example may serve as an illustration for this
assertion.

Example 3.1 Force-free particle
A point particle of mass m in R3 which is not subject to any forces may be
described by the Lagrangian function

L.x; Px/ D Tkin D 1

2
m Px2 :

Obviously, this very simple Lagrangian function is invariant under the Galilei
transformations

t 7! t 0 D t C s ; s 2 R ; (3.1a)

x 7! x0 D Rx C a ; R 2 SO .3/ ; w; a real : (3.1b)

The corresponding Euler–Lagrange equations

d

dt

@L

@ Px �
@L

@x
D m Rx D 0

are covariant under transformations (3.1a) and (3.1b), meaning that if one of the
following equations is fulfilled then so is the other:

d2x.t/

dt2
D 0 ” d2x0.t 0/

dt 02
D 0 :

The equations of motion are the same in all inertial systems. Joining to (3.1a)
and (3.1b) also the special Galilei transformations

x 7! x0 D x Cwt ; w real (3.1c)

the Lagrangian function no longer stays strictly invariant,

L0.x0; Px0/ D L.x; Px/Cm Px � �R�1w
�C m

2
w2 ;

but is modified by an additive term which is seen to be the time derivative of
a function of x and t :

M.x; t/ D mx � �R�1w
�C t m

2
w2 :
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A gauge transformation of this kind (in the sense given to this notion in mechan-
ics) leaves the equations of motion unchanged, or, more precisely, these equations
stay covariant (cf. [ME], Sect. 2.10).

Invariance under time translations (3.1a) implies conservation of the energy,
which in this example is pure kinetic energy E D Tkin; invariance under trans-
lations in space implies the conservation of momentum p D m Px, and from
invariance under rotations follows the conservation of the angular momentum
` D x � p. (The centre-of-mass theorem is trivial here because we are con-
cerned with a single particle.)

3.2.1 Noether’s Theoremwith Strict Invariance

Here and in what follows a set of generalized coordinates of a mechanical sys-
tem with f degrees of freedom is denoted by q D .q1; q2; : : : ; qf /. Geometrically
speaking, these variables are coordinates of points in the manifold of motions Q.
In its simplest form, the theorem of E. Noether applies to autonomous systems as
follows.

If the Lagrangian function L.q; Pq/ is invariant under continuous transformations
which can be deformed continuously into the identity, i.e.

q 7�! q0 D hs.q/ with hsD0.q/ D q ; (3.2)

then the function I W TQ! R W .q; Pq/ 7! I.q; Pq/, given by

I.q; Pq/ D
fX
iD1

@L.q; Pq/
@ Pqi

dhs.qi /

ds

ˇ̌̌
ˇ
sD0

; (3.3)

is constant along solutions q D '.t/ of the equations of motion.
This integral of the motion is a composition of the (generalized) momenta pi D

@L=@ Pqi and of the generating function in its action on the coordinates qi . Note that
the transformation hs depends on one parameter only, i.e. in a group action such as
with SO(3) in (3.1b), one must consider one-parameter subgroups. In the case of the
rotation group, these are rotations about a fixed direction. In the simple example 3.1,
consider the (active) rotation about the direction On:

x 7! x0 D x cos s C On � x sin s � hs.x/ :

Here one has dhs.x/=dsj0 D On � x, so that the integral (3.3) is

m Px � � On � x
� D On � �x � .m Px/� D On � ` :
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As was to be expected, it is the projection of the orbital angular momentum onto the
given direction that is conserved.

A converse of the theorem of Noether is also well known from mechanics: Every
smooth dynamical quantity f .q; p/ whose Poisson bracket with the Hamiltonian
function vanishes generates a symmetry transformation of the system.

3.2.2 Generalized Theorem of Noether

As worked out in, e. g. [ME], Sect. 2.41, the theorem of Noether can be general-
ized in two ways. On the one hand, covariance of the equations of motion is also
guaranteed if the Lagrangian function is modified by a general gauge term,

L.q; Pq; t/ 7! L0.q; Pq; t/ D L.q; Pq; t/C d

dt
M.t; q/ ; (3.4)

where the function M depends only on q and t . On the other hand, and this is the
genuine generalization, the gauge function may also depend on Pq, provided one
makes sure that any new acceleration terms Rqi generated by the symmetry transfor-
mation add up to zero identically. As this is developed in detail in [ME], we retain
only the assumptions and the main result here.

One allows for general transformations of time and coordinates

t 0 D g.t; q; Pq; s/ ; (3.5)

q0 i D hi .t; q; Pq; s/ ; (3.6)

with functions g and hi being at least twice differentiable in their 2f C 2 variables.
The parameter s is taken from an interval of the real axis which contains the origin.
For s D 0, one must have

g.t; q; Pq; s D 0/ D t ; (3.7)

hi .t; q; Pq; s D 0/ D qi : (3.8)

As in the case of strict invariance, only the neighbourhood of s D 0 is relevant. One
defines the derivatives at s D 0,


.t; q; Pq/ D @g.t; q; Pq; s/
@s

ˇ̌
ˇ̌
sD0

; (3.9)

�i .t; q; Pq/ D @hi .t; q; Pq; s/
@s

ˇ̌
ˇ̌
sD0

; (3.10)
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and interprets these as the infinitesimal generators of transformations (3.5) and (3.6).
One shows that the integral of the motion given by (3.3) is replaced by the more
general function I W Rt � TQ! R:

I.t; q; Pq/ D L.t; q; Pq/
.t; q; Pq/
C
X
i

@L

@ Pqi
h
�i .t; q; Pq/� Pqi
.t; q; Pq/

i
�M.t; q; Pq/ ; (3.11)

which is invariant along solutions q D '.t/ of the equations of motion.
Examples for finite systems which illustrate the nature of this function are found

in [ME], Sect. 2.41, and in Boccaletti and Pucacco (1999).

I Remarks
1. Of course, in the case of strict invariance, the integral of motion given by (3.3)

is contained in the general formula (3.11). It suffices to take the generating
function 
 and the gauge functionM to be identically zero:


.t; q; Pq/ � 0 ; M.t; q; Pq/ � 0 : (3.12)

The functions �i , defined in (3.10), are identical to the second factor on the
right-hand side of (3.3).

2. Whenever the gauge term vanishes identically, M.t; q; Pq/ � 0, it is appropri-
ate to talk about strict invariance, as in Sect. 3.2.1, because in this case the
Lagrangian function stays unchanged. If there is a nonvanishing gauge term,
then one may talk about a quasi symmetry. Examples may be found in [ME],
Sect. 2.41.

3.3 Lagrangian Density and Equations of Motion
for a Field Theory

Hamilton’s variational principle can be generalized to systems with infinitely many,
nondenumerable degrees of freedom. Instead of the generalized coordinates q of
mechanics, such systems are described by classical fields  .i/.t;x/, which depend
on time and space (see, e. g., [ME] Chap. 7). To such a system, called a field theory,
one associates a Lagrangian density, which is a function of the fields and of their
time and space derivatives. The Lagrangian density may also have an explicit de-
pendence on time t and position x, and possibly on some external sources j .k/.x/,

L
�
t;x; j .k/;  .i/; @� 

.i/
�
; i D 1; 2; : : : ; N : (3.13)

Its integral over the whole space,

L D
•

d3x L ; (3.14)
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is the analogue of the Lagrangian function of mechanics with a finite number of de-
grees of freedom. This is the quantity which defines the action integral of Hamilton’s
principle. This action integral is a functional of the fields

I
�
 .1/; : : : ;  .N/

	 D
t2Z
t1

dt L D
t2Z
t1

dt
•

d3x L : (3.15a)

According to Hamilton’s principle, suitably generalized to a field theory, func-
tional (3.15a) is stationary for physical solutions. From this requirement follow the
Euler–Lagrange equations for the variational problem,

ıI
�
 .1/; : : : ;  .N/

	 D 0 (fixed boundaries t1 and t2/ ; (3.15b)

with the condition that the variations ı .i/ of the fields vanish on the hypersurfaces
t D t1 and t D t2. The equations read (using the summation convention in the
second term)

@L
@ .i/

� @� @L
@
�
@� .i/

� D 0 ; i D 1; 2; : : : ; N : (3.16)

The derivation of these equations is formally the same as for the Euler–Lagrange
equations in mechanics. We sketch it for the case of a single field  : One has

ıI Œ 	 D
t2Z
t1

dt
•

d3x

�
@L
@ 

ı C @L
@
�
@� 

� ı�@� �
�

D
t2Z
t1

dt
•

d3x

�
@L
@ 

ı C @L
@
�
@� 

�@��ı �
�

D
t2Z
t1

dt
•

d3x

�
@L
@ 
� @� @L

@
�
@� 

�
�
ı :

In the first step, it is assumed that the variation of a derivative of the fields ı.@��/ is
equal to the derivative @�.ı�/ of the variation. This is adequate if one assumes that
the fields are smooth functions and the variations are smooth as well. Going from
the second to the third step involves a partial integration – hence the minus sign –
and makes use of the assumption that ı vanishes on the hypersurfaces t D t1 and
t D t2. If this integral is required to be zero for all admissible variations ı , then
the integrand in the curly brackets of the third line must vanish. This is the Euler–
Lagrange equation for the single field  . If there are several fields, say N kinds,
then one obtains the equations of (3.16).



3.3 Lagrangian Density and Equations of Motion for a Field Theory 159

Of course, with regard to Maxwell’s equations, we have in mind Minkowski
space M 4 and covariance under the proper, orthochronous Lorentz group L"

C, pos-
sibly also the discrete transformations…, T and C. In this case, the fields are defined
as functions of x 2 M 4 D R4. The representation of point x by a time coordinate t
and by space coordinates x refers to a class of frames of reference in which the split-
ting into time axis and space R3 is fixed. The Lorentz covariance of the equations
of motion given by (3.16) is guaranteed if the Lagrangian density (3.13) is invariant
under Lorentz transformations.

I Remarks
1. In many cases, the  .i/.x/ fields are independent of each other. Index i

serves merely to distinguish different types of fields, such as electromag-
netic fields, from their external sources. There are cases, however, where
the fields are subject to subsidiary conditions such as the requirement that
the set f .i/g must describe a particle with spin. As an example, consider
a massive particle with spin 1. As the spin vector (this is the expectation
value of spin) has three components, we will need three different fields for
its description. Yet these fields are correlated by their properties under rota-
tions in space.1 As a natural candidate, one chooses a Lorentz vector field
V.x/ D .V 0.x/; V 1.x/; V 2.x/; V 3.x//T which, however, has four compo-
nents, not three. In this example, one would have

L D L
�
x; V ˛.x/; @�V

˛.x/
�
; i.e.

 .1/.x/ � V 0.x/ ;  .2/.x/ � V 1.x/ ;  .3/.x/ � V 2.x/ ;
 .4/.x/ � V 3.x/ :

In this case, the fields V ˛.x/ cannot be independent because otherwise they
would describe both spin 1, as required, and a spin 0 object. The second,
unwanted, part is eliminated by a subsidiary condition, viz.

@˛V
˛.x/ D 0 :

This divergence is a Lorentz scalar, and it seems plausible that it contains the
spin 0 part of the field which one wishes to exclude.

2. Functional (3.15a) and the variational principle given by (3.15b) seem to sin-
gle out the time axis as opposed to three-dimensional space. This does not
break the Lorentz invariance of the procedure, though. One can always re-
place the two surfaces t D t1 and t D t2 and their complement at infinity by
a closed, smooth three-manifold @˙ and take the integral in (3.15a) over the
volume˙ enclosed by it. (Note that we again use a geometric notation: @˙ is

1 Although spin is a quantum property and, hence, is described by self-adjoint operators OS D
f OSi g, i D 1; 2; 3, of quantum mechanics, its expectation values h OS i in quantum states are clas-
sical observables.
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the boundary of ˙ .) It is sufficient to require that the variations ı .i/ vanish
on @˙ to obtain the same equations of motion, (3.16), as before. Therefore,
these equations are indeed covariant.

Example 3.2 Real scalar field
As an example, consider a single real Lorentz scalar field �.x/ coupled to an
external scalar density %.x/.1 With these assumptions, the following Lagrangian
density is a scalar with respect to Lorentz transformations as well:

1

„cL.�; @��; %/ D
1

2

�
@��.x/@

��.x/ � �2�2.x/	 � %.x/�.x/ : (3.17a)

In this ansatz one should choose � D mc2=.„c/, for dimensional reasons – up
to a factor 2� this is the inverse of the Compton wavelength �C D h=mc of
a particle with mass m. The factor which multiplies L on the left-hand side is
introduced to provide L with the correct physical dimension.2 Note, however,
that this factor is irrelevant for the equation of motion because the latter is linear
in L.

The Euler–Lagrange equation (3.16) (there is only one in this example) reads
as follows. One calculates

1

„c
@L

@�
D ��2�.x/� %.x/ ;

1

„c
@L

@.@��/
D 1

2

@

@.@��/

�
@��.x/

�
g��

�
@��.x/

� D @��.x/
(noting that @��.x/ appears twice), then takes the four-divergence of the second
expression and inserts the two terms in (3.16). This gives the equation of motion

�
@�@

� C �2��.x/ D ��C �2��.x/ D �%.x/ : (3.17b)

There is a close analogy to the wave equation (2.60) if the Lorenz condi-
tion, (2.61), @�A�.x/ D 0, is chosen: The left-hand side of (3.17b) contains
the field �.x/ only; the right-hand side is the source of the field.

By comparing the Lagrangian density given by (3.17a) with the Lagrangian
function of point mechanics in its natural form, L D Tkin � U , one is led to
a physical interpretation of the three terms. The first term,

1

2
@��.x/@

��.x/ ;

1 More on this example is found in [QP], Sect. 7.1.
2 In quantum field theory, it is useful to provide the (quantized) scalar field � with the dimension
(length) �1. As one verifies, the density L then has dimension E=L3, i.e. energy/volume.
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or rather its integral over all space, is the analogue of the kinetic energy in the
mechanics of a point particle. The remaining two terms,

1

2
�2�2.x/C %.x/�.x/ ;

describe a mass term (which is new) and a coupling %.x/�.x/ whose integral is
the analogue of the potential energy in mechanics.

Example 3.3 shows that the formal analogy to mechanics with a finite number
of degrees of freedom extends even further. As one can talk about the energy con-
tent of a field, or of a set of fields, there must be an analogue of the Hamiltonian
function and, by the same token, a generalization of the momentum canonically
conjugate to a field. With reference to the definition p WD @L=@ Pq of mechan-
ics, one defines the momentum field �.i/.x/ canonically conjugate to the field
 .i/.x/ by

�.i/.x/ WD @L
@.@0 .i//

: (3.18)

The Hamilton density is obtained from the function

eH WD
NX
iD1

�.i/.x/@0 
.i/.x/ � L

�
t;x; j .k/;  .i/; @� 

.i/
�

(3.19)

by a Legendre transform with respect to the variables @0 .i/. This means
that (3.18) must be solved for @0 .i/ and that one must replace these variables in
QH. In the simplest case, the density L contains a kinetic term of the kind

Lkin D 1

2

NX
iD1



@� 

.i/.x/@� .i/.x/
�
;

so that the canonically conjugate momentum is found to be

�.i/.x/ D @0 .i/.x/ :
From the Lagrangian density (3.17a) of Example 3.3 the Hamilton density is
obtained from QH, (3.19), as follows:

H D 1

2

n
�2.x/C �r�.x/�2 C �2�2.x/oC%.x/�.x/ : (3.20)

Suppose the Lagrangian density given by (3.13) is autonomous, i.e. depends
only on the fields and their derivatives, but has no explicit dependence on time
and position or on external sources. We take the derivative of L by x˛ ,

@˛L
�
 .i/; @� 

.i/
� D g˛ˇ@ˇL� .i/; @� .i/� ;
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and compare it with the same derivative as obtained by the chain rule and by
using the equations of motion (3.16):

@˛L
�
 .i/; @� 

.i/
� DX

i

�
@L
@ .i/

@˛ .i/ C @L
@.@ˇ .i//

@˛.@ˇ 
.i//

�

D
X
i

��
@ˇ

�
@L

@.@ˇ .i//

�
C @L
@.@ˇ .i//

@ˇ

�
@˛ .i/

�

D @ˇ
 X

i

@L
@.@ˇ .i//

@˛ .i/

!
:

(Note that the index ˛ is fixed while ˇ is a summation index.)
Defining the tensor field

T �� WD
X
i

�
@L

@.@� .i//

�
@� .i/ � g��L� .i/; @0 .i/;r .i/� ; (3.21)

the preceding calculation tells us that this tensor field satisfies a continuity equa-
tion for all solutions of the equations of motion (3.16):

@�T �� D 0 : (3.22)

In Sect. 3.5.3, we will analyse in detail the analogue of this tensor field, (3.21),
for the case of Maxwell theory showing that the conservation law, (3.22), de-
scribes, among other features, the conservation of the energy and momentum
content of the fields. For the moment we return to Example 3.3. Starting from the
Lagrangian density given by (3.17a), one finds

T �� D @��.x/@��.x/� g��


1
2
@��g

��@�� � 1
2
�2�2.x/� %.x/�.x/

�
: (3.23a)

Calculating the components .� D 0; 
 D 0/ and .� D 0; 
 D i/, one finds

T 00 D .@0�.x//2 � 1
2
@��.x/@

��.x/C 1

2
�2�2.x/C %.x/�.x/

D 1

2

˚
�2.x/C .r�.x//2 C �2�2.x/
C %.x/�.x/ ; (3.23b)

T 0i D �.x/@i�.x/ : (3.23c)

The component T 00, (3.23c), is indeed identical to (3.20). The components T 0i
describe the momentum density whose divergence is related to the time derivative
of T 00 by the continuity equation (3.22). As a further important property we note

T ��.x/ D T ��.x/ I (3.24)

the energy-momentum tensor field is symmetric in � and 
.
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3.4 Lagrangian Density for Maxwell Fields with Sources

The tools we have at our disposal for the construction of a Lagrangian density
which is invariant under the proper orthochronous Lorentz group L"

C are as fol-
lows: the tensor field F ��.x/, (2.46), or its companion F��.x/, equation (2.52a),
the dual tensor field ?F ��.x/, equation (2.54c), the four-vector potential A�.x/,
equation (2.57), and the current density j�.x/, (2.51). Obvious invariants are

F��.x/F
��.x/ ;

�
?F

�
��
.x/F ��.x/ ; and j�.x/A�.x/ :

To analyse the physical content of these invariants, we calculate them in terms of
electric and magnetic fields within a fixed partition of spacetime into coordinate time
Rt and space part R3. In calculating, e. g. the contraction F��F �� , one takes F��
from formula (2.69a) and multiplies by the transpose of expression (2.46), F �� D
�F �� . The product F��F �� is then seen to be the trace of a product of two 4 � 4
matrices. In more detail, one has

F��F
�� D tr

8̂
<̂
ˆ̂:

0
BB@

0 E1 E2 E3

�E1 0 �B3 B2

�E2 B3 0 �B1
�E3 �B2 B1 0

1
CCA
0
BB@

0 E1 E2 E3

�E1 0 B3 �B2
�E2 �B3 0 B1

�E3 B2 �B1 0

1
CCA

9>>=
>>;

D �2�E2 �B2
�
; (3.25a)

?F��F
�� D tr

8̂̂
<
ˆ̂:

0
BB@

0 �B1 �B2 �B3
B1 0 �E3 E2

B2 E3 0 �E1
�B3 �E2 E1 0

1
CCA
0
BB@

0 E1 E2 E3

�E1 0 B3 �B2
�E2 �B3 0 B1

�E3 B2 �B1 0

1
CCA

9>>=
>>;

D 4B �E ; (3.25b)

j�A� D c%˚ � j �A : (3.25c)

Clearly, the products F��F�� etc. yield very similar formulae in which E is re-
placed by D and B is replaced by H .

Going back to Sect. 2.2.1, one sees that the L"
C-invariant (3.25a) is also invariant

under the three discrete transformations… (space reflection), T (time reversal) and
C (charge conjugation). This is also true for the third term, (3.25c). The term (3.25b),
however, is odd under…, being a pseudoscalar. It is odd under time reversal T, too,
but since it is even under charge conjugation, it stays invariant under the combined
transformation…CT, much like the two other terms.

Practical experience and a great number of experiments tell us that no parity-
violating effects are observed in electromagnetic processes. Therefore, the inter-
action which describes these processes must have a well-defined behaviour under
space reflection. A parity-violating effect, e. g. would be signalled by an observable
proportional to the scalar product of a momentum and an angular momentum, O D
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f .E/p � `, with f being a function of, for example, the energy.3 Parity-violating
terms of this kind, well known from weak interactions (ˇ-decay, neutrino reactions,
etc.), as illustrated by Fig. 3.1, have never been observed in purely electromagnetic
processes. When applied to Maxwell theory, this means that the Lagrangian density
cannot contain simultaneously the terms given by (3.25a) and (3.25c) on the one
hand and the term given by (3.25b) on the other.

On the basis of these considerations and with the expectation that the Hamilton
density that derives from L will definitely contain the interaction j�.x/A�.x/ be-
tween matter and radiation, it seems plausible that the Lagrangian density should be
a linear combination of the first and third terms, viz.

L D a1F��.x/F ��.x/C a2j�.x/A�.x/ : (3.26a)

The coefficients a1 and a2 are fixed by two requirements:
(i) The Lagrangian density, (3.26a), must yield Maxwell’s equations in the form of
the homogeneous equations of (2.49a) and the inhomogeneous equations of (2.53),
with the correct factor on the right-hand side of (2.53).
(ii) After transformation to the Hamilton density, the energy density must be com-
patible with the previously known expression (1.130), which applies to stationary
situations.
However, prior to this construction, one must identify the degrees of freedom of
Maxwell theory whose variations are used in Hamilton’s principle. One possible
choice could be the tensor field F��.x/, which contains the observable fields; an-
other could be the set of potentials A�.x/, which, being defined only up to gauge
transformations, are not observables. If one decides to choose the fields A�.x/ as
the field variables, then the observables F��.x/ must be expressed in terms of po-
tentials, as given in (2.58).

I Remark
The choice of the potentials as the dynamical degrees of freedom is somewhat
problematic because the four fieldsA�.x/ cannot be independent. Consider, as an
example, the class of gauges which guarantee the Lorenz condition @�A�.x/ D
0. In quantum theory, one learns that the photon carries spin 1, the Lorenz con-
dition is found to be the condition that eliminates the spin 0 part of the vector
field A�. Furthermore, as a consequence of the linear dependency of the fields
A�, one of them has a vanishing canonically conjugate momentum. This, in turn,
causes difficulties in the quantization of Maxwell theory, which must be studied
carefully (for more on this see, e. g. [QP]).

3 The precise statement is this: If an initial state which has a well-defined behaviour under space
reflection went over into another state which exhibits such a momentum-angular momentum corre-
lation, by the effect of electromagnetic interaction, the interaction would contain both parity-even
and parity-odd terms.
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Fig. 3.1 In ˇ decays of many nuclei, one observes
positrons whose spin is oriented almost completely along
the direction of their spatial momentum. The initial state,
being an atomic nucleus, is an eigenstate of parity. The
occurrence of a spin-momentum correlation of this kind
signals that weak interactions are not invariant under
space reflection

p

S

For the sake of simplicity, we treat Maxwell fields in a vacuum, outside the
sources which are assumed to be localized. The Lagrangian density is a function
of the four fields A
 .x/, 
 D 0; 1; 2; 3, and of their derivatives @	A
 .x/,

L
�
A
 ; @	A


� D a1F��g��g��F�� C a2j�A� (3.26b)

D a1
�
@�A� � @�A�

�
g��g��

�
@�A� � @�A�

�C a2j�A� :
(Note that the Lorentz index 
 attached to the arguments of L counts the fields in
analogy to the superscript .i/ of the fields .i/ in the general form of the Lagrangian
density given by (3.13), whereas on the right-hand side, � and 
 are summation
indices.) The partial derivative of L by A
 equals a2j 
 .x/. The partial derivatives
by the first derivatives @	A
 are best calculated by means of the chain rule:

@

@
�
@	A


� D @F��

@
�
@	A


� @

@F��
D �ı�	ı�
 � ı�
ı�	� @

@F��

(where � and 
 have fixed values and � and 
 are to be summed over). The par-
tial derivatives which are contained in the Euler–Lagrange equations (3.16) and the
equations of motion pertaining to the Lagrangian density (3.26b) are given by, re-
spectively,

@L
@A

D a2j 
 .x/ ;

@L
@
�
@	A


� D �ı�	ı�
 � ı�
ı�	� 2a1F ��.x/ D 4a1F 	
 .x/ ;
@L
@A

� @	 @L

@
�
@	A


� D a2j 
 .x/ � 4a1@	F 	
 .x/ D 0 :

In the second line use was made of the antisymmetry of the field strength tensor,
and the third line was obtained by inserting the first two lines into the equations
of motion, (3.16). In the vacuum and using Gaussian units, one has F�� D F �� .
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Comparison with the inhomogeneous equations (2.53) yields the first condition on
the coefficients in (3.26a), viz.

a2

4a1
D 4�

c
: (3.27a)

The second condition,

a2 D �1
c
; (3.27b)

from which one obtains the value of a1, follows from inspection of physical dimen-
sions and from the comparison with static or stationary situations. The product of
the current density j , (2.51), and the potential A, (2.57), has a dimension of c%˚ ,
i.e. h

c%.x/˚.x/
i
D length � energy

time � (length)3
:

This yields the desired dimension for L, which should be (energy)=
(length)3, only if one divides by c. By the same token, the term �a2j�A�, which
will appear in the Hamilton density, (3.19), after integration over the whole space,
yields the correct expression (charge) � (potential) of electrostatics. Thus, in the
system of units we are using here, we find that the constants a1 and a2 have the
values

a1 D � 1

16�
; a2 D �1

c
: (3.27c)

The Lagrangian density which follows from there,

L.A
 ; @	A
 / D � 1

16�
F��.x/F

��.x/ � 1
c
j�.x/A�.x/ ; (3.28)

yields the inhomogeneous Maxwell equations as its Euler–Lagrange equations.
Thus, Maxwell’s equations can indeed be derived by means of Hamilton’s varia-
tional principle.

I Remarks
1. We assumed that the tensor field of field strengths was expressed in terms of

potentials,
F��.x/ D @�A�.x/ � @�A�.x/ :

Therefore, the homogeneous Maxwell equations are fulfilled automatically.
2. Although in this book we do not make use of this possibility, we point out

that the choice of units can be simplified even further by introducing natural
units. In these units, the speed of light takes the value 1, c D 1, and fields and
sources are defined with specific factors, as compared to Gaussian units, as
follows. One chooses

F .nat/
�� .x/ WD 1p

4�
F .Gauss/
�� .x/ ; A.nat/

� .x/ WD 1p
4�
A.Gauss/
� .x/
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and

j
�

.nat/.x/ WD
p
4�j

�

.Gauß/.x/ :

In these units the Lagrangian density (3.28) becomes

L.A
 ; @	A
 / D �1
4
F .nat/
�� .x/F

��

.nat/.x/ � j�.nat/.x/A
.nat/
� .x/ :

In the literature, the kinetic term F��F
�� of the Lagrangian density is often

given with the factor �1=.16�/ or, alternatively, with the factor �1=4. This is
always the same term, only the units chosen are different.

3. The Lagrangian density, (3.28), is not only invariant under the group L"
C, it

is also invariant under space reflection (parity) … and under time reversal T.
Maxwell’s equations follow from (3.28) by an invariant variational principle,
and therefore they are covariant with respect to these transformations, mean-
ing they are form invariant. This is a nice illustration of the general principle
discussed above.

“invariant Lagrangian density”H) “covariant equations of motion”

In a next step, we calculate the canonically conjugate field momenta and the
Hamilton density, which follow from the Lagrangian density given by (3.28). First,
one obtains

�0.x/ D @L
@
�
@0A0

� D 0 ; (3.29a)

� i .x/ D @L
@
�
@0Ai

� D � 1

4�
F 0i .x/ D 1

4�
E i .x/ : (3.29b)

Here the first surprise appears: The fieldA0 has no associated conjugate momentum.
Leaving this feature as is, one calculates the Hamilton density following the model
of (3.19) and inserts the formula E i D �riA0 � @Ai=@x0 to find

H D �� i @A
i

@x0
� L

D 1

4�
E � �E C rA0

� � 1

8�

�
E2 �B2

�C 1

c
j�.x/A�.x/

D 1

8�

�
E2 CB2

�C 1

c
j�.x/A�.x/C 1

4�
E � rA0 : (3.30a)

The first of the three terms on the right-hand side (last line) is the electric and mag-
netic energy density known from Sect. 1.9.4, (1.130), with D D E and H D B.
The sum of the second and third terms in (3.30a) has a physical interpretation, too.
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This can be seen if one derives the Hamiltonian function by taking the integral of
the density over the whole space. Using partial integration one finds

1

4�

•
d3x E � rA0 D � 1

4�

•
d3x

�r �E�A0
D �

•
d3x %.x/A0.x/ ;

where the Maxwell equation (2.1c) was used. From this result and with j 0.x/ D
c%.x/ one has

H D
•

d3x H (3.30b)

D
•

d3x
n 1
8�

�
E2.x/CB2.x/

� � 1
c

j .x/ �A.x/
o
:

Besides the pure field energy, this expression contains the interaction between the
fields and the electric current in the source. If there is no external source at all,
j .t;x/ � 0, the total energy contained in the Maxwell fields is given by

H .0/ D 1

8�

•
d3x

˚
E2.x/CB2.x/



: (3.30c)

I Remark
In Sect. 1.9.4, we started from (1.129a), i.e. from the integral of j �A, to express
the energy content of magnetic fields by the integral of B � H . In (3.30b), in
turn, the two kinds of contribution appear on the same footing. This is not in
contradiction to the static situations considered in Sect. 1.9.4. The assumption
there was that the current density j .x/ is the source of the magnetic field. Here
the idea is that certain Maxwell fields due to some other sources interact with
matter in which there flows an (external) current density.

3.5 Symmetries and Noether Invariants

This section is devoted to gauge transformations and spacetime transformations,
applied to the fields and to their sources, which are such that the Lagrangian density
is either strictly invariant or changed by gauge terms only. This analysis exhibits
a close analogy to the results of Sects. 3.2.1 and 3.2.2, which applied to mechanical
systems. The invariance of the Lagrangian density, up to gauge terms, under one-
parameter groups of transformations implies the existence of constants of motion.
This is the central proposition of the theorem of E. Noether.
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The variational principle of Hamilton utilizes the functional of (3.15a), or, written
somewhat differently, the functional

I
�
 .i/

	 D
Z
˙

d4x L. .i/; @� .i/; : : :/ ; (3.31)

where the integral is to be taken over a four-dimensional volume ˙ in spacetime
whose surface @˙ is (at least piecewise) smooth. This functional must assume an
extremum under variations ı .i/.x/ of the fields which vanish on @˙ . A given
transformation representing a symmetry of the theory described by L either leaves
L strictly invariant or replacesL byL0 D LC@���.x/, i.e. adds a (four-)divergence
to it. An additive term of this kind, by Stokes’ theorem, is transformed into an inte-
gral over the surface @˙ , where the variations of the fields are assumed to vanish.
This means, in other terms, that L0 leads to the same equations of motion as L. We
illustrate these assertions by some specific examples which are relevant for Maxwell
theory.

3.5.1 Invariance Under One-Parameter Groups

Assume the Lagrangian density L. .i/.x/; @� .i/.x//, which describes a set of
fields  .i/.x/, i D 1; 2; : : : ; N , to be invariant under a one-parameter group of
transformations:

 .i/.x/ 7�!  .i/0 D h˛� .1/.x/; : : : ;  .N/.x/� ; (3.32a)

with h˛D0� .1/.x/; : : : ;  .N/.x/� D  .i/.x/ :
For ˛ close to zero, the variations of the fields are linear in ˛:

ı .i/ D  .i/0 �  .i/.x/ D d

d˛
h˛
�
 .1/.x/; : : : ;  .N/.x/

�ˇ̌ˇ̌
˛D0

˛ : (3.32b)

Note the similarity to the expansions of (3.5) and (3.6) around s D 0. As in (3.9) and
(3.10), the derivative of h˛ by ˛, taken at zero, is the generator of a one-parameter
group of transformations.

The variation ıL resulting from the variation ı .i/ of each of the fields is calcu-
lated as follows:

ıL D
NX
iD1

(
@L
@ .i/

ı .i/ C @L
@
�
@� .i/

�@�ı .i/
)

D
NX
iD1

(
@L
@ .i/

� @�
 

@L
@
�
@� .i/

�
!)

ı .i/ C @�
 
NX
iD1

@L
@
�
@� .i/

�ı .i/
!
: (3.33)
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In the first step, we used again ı.@� .i// D @�ı 
.i/. In the second term, we sub-

tracted and added a new term so as to introduce the left-hand side of the equations
of motion, (3.16), in the curly brackets. The argument then continues as follows: If
the Lagrangian density is strictly invariant under (3.32a) or (3.32b), and if  .i/ are
solutions of the Euler–Lagrange equations (3.16), then the following four-vector is
conserved:

J�.x/ D
NX
iD1

@L
@
�
@� .i/

�ı .i/ ; @�J
�.x/ D 0 : (3.34)

The examples which follow show that it is justified to call the dynamical quan-
tity (3.34) a “current” since either it is proportional to the electric current or it is
a physically meaningful generalization thereof.

One sees already at this point that the assumptions and the conservation law given
by (3.34) generalize to field theory the case of strict invariance of a Lagrangian
function.

Example 3.3 Complex scalar field
We take up Example 3.2 (but without the external source %.x/) and generalize to
the case where the scalar field is a complex field:

˚.x/ D �1.x/C i�2.x/ ; with �1.x/; �2.x/ real :

The Lagrangian density which describes this field, still without interaction, is
constructed in close analogy to (3.17a):

1

„cL
.0/.˚; @�˚; %/ D 1

2

�
@�˚

�.x/@�˚.x/ � �2˚�.x/˚.x/
	
: (3.35a)

It contains the field ˚ and its complex conjugate ˚� in such a way as to make
the Lagrangian density a real function. In contrast to Example 3.3, this model has
two degrees of freedom, �1 and �2. Instead of these two real fields, one might as
well vary the fields˚ and˚� independently to obtain the equations of motion. In
doing so, the present example of an interaction-free Lagrangian density, (3.35a),
yields the Klein–Gordon equation (3.17b) without external source,

�
�C �2�˚.x/ D 0

and, likewise, its complex conjugate.
The Lagrangian density given by (3.35a) is strictly invariant under what is

called a gauge transformation of the first kind or, in somewhat more geometric
terms, a global gauge transformation:

˚.x/ 7�! ei˛˚.x/ ; ˚�.x/ 7�! e�i˛˚�.x/ ; ˛ 2 R : (3.35b)
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These transformation formulae are needed only in the neighbourhood of the iden-
tity. Thus, by (3.32b),

ı˚.x/ D i˛˚.x/ ; ı˚�.x/ D �i˛˚�.x/ : (3.35c)

The corresponding conserved current as obtained from (3.34) is found to be

J�.x/ D
NX
iD1

@L.0/

@
�
@� .i/

�ı .i/

D „c
n�
@�˚�.x/

�
˚.x/ � ˚�.x/

�
@�˚.x/

�o
: (3.35d)

Clearly, the current J�.x/ is defined only up to a multiplicative constant. There-
fore, one can always transform it to a four-current density j�.x/, which has the
same physical dimension as the electric current density. If the field ˚ has the
dimension .1=length/, this could be

j�.x/ D ecJ�.x/ :

The invariance of the Lagrangian density, (3.35a), with respect to the transfor-
mations of (3.35b) yields the continuity equation @�j�.x/ D 0 and, therefore,
the conservation of electric charge.

3.5.2 Gauge Transformations and Lagrangian Density

In general, a gauge transformation (2.59), A0
� D A� � @��.x/, changes the La-

grangian density given by (3.28) as follows:

L0�A0

 ; @	A

0



� D L
�
A
 ; @	A


�C 1

c
j�.x/@��.x/ :

However, there is no harm in replacing the additional term

j�.x/@��.x/ by @�



j�.x/�.x/

�

simply because the current j�.x/ is conserved, @�j�.x/ D 0. The additional term
is seen to be a (four-)divergence which, in the action integral (3.31), gives a surface
term on @˙ . As the variations of the fields, by assumption, vanish on this surface,
the equations of motion do not change. This is an important result:
The coupling term j�.x/A�.x/ of the radiation field to matter is gauge invariant
only if the electromagnetic current density j�.x/ satisfies the continuity equation
@�j

�.x/ D 0.
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When, besides the Lagrangian density (3.28) for the Maxwell fields, one also has
a Lagrangian density that describes charged matter at one’s disposal, the invariance
under gauge transformations can be analysed even further. The following example
illustrates what we have in mind.

Example 3.4 Atoms in external fields
In atomic physics, one describes the electron in the framework of nonrelativistic
quantum mechanics and by means of the Schrödinger equation. We analyse its
interactions with Maxwell fields in a semiclassical approach, i.e. in experimental
situations where the electron is subject to external, classical (i.e. unquantized)
electric and magnetic fields. This is an appropriate description, for instance, when
one studies the orbital dynamics of electrons in particle accelerators and in beam
lines.

We assign to the Maxwell fields and to the electron each a Lagrangian density
with the choice that the interaction of the electron with the Maxwell fields is
contained in the Lagrangian density, which yields the Schrödinger equation with
external fields, L D LM C LE,

LM D � 1

16�
F��.x/F

��.x/ ; (3.36a)

LE D 1

2
i„� �@t � .@t �/ 

	 � e˚.t;x/ � 

� 1

2m


h
i„r � e

c
A.t;x/

i
 �
�
h
�i„r � e

c
A.t;x/

i
 
�
: (3.36b)

To familiarize ourselves with the Lagrangian density given by (3.36b), it is useful
to set the vector potential A equal to zero in a first step. With e˚.t;x/ D U.t;x/,
the Lagrangian density then reads

LE D 1

2
i„� �@t � .@t �/ 

	 � U.t;x/ � � „
2

2m

�r ���r � :

Varying, for example, the complex conjugate field  �, one must take the deriva-
tives of LE by  �, by .@t �/ and by .r �/:

@LE

@ � D
1

2
i„@t � U.t;x/ ;

@LE

@
�
@t �� D �12 i„ ;

@LE

@
�r �� D � „

2

2m
r :
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Inserting these expressions into the equation of motion (3.16) (with  .i/ D  �),
one obtains

@LE

@ � � @t
 

@LE

@
�
@t ��

!
� r

 
@LE

@
�r ��

!
D 0 ; giving

i„@t .t;x/� U.t;x/ .t;x/C „
2

2m
� .t;x/ D 0 :

This is the Schrödinger equation i„@t .t;x/ D Œ.p2=2m/ C U.t;x/	

 .t;x/, with p D �i„r . (Note that if one varies  instead of  �, the same
procedure yields the complex conjugate Schrödinger equation for  �.) Perform-
ing the same calculation for the more general Lagrangian density (3.36b), with
arbitrary potentials A and ˚ , one obtains the equation of motion

i„@t .t;x/ D 1

2m

h
�i„r � e

c
A.t;x/

i2
 .t;x/C e˚.t;x/ .t;x/ : (3.37)

Replacing again �i„r by p, the right-hand side is seen to be the Hamiltonian
function of a charged particle in external fields, familiar from classical mechan-
ics; cf., e. g. [ME], Sect. 2.16 (ii):

H D 1

2m

h
p � e

c
A.t;x/

i2 C e˚.t;x/ :
The substitution

p 7! p � e
c

A or � i„r 7! �i„r � e
c

A (3.38)

is called the rule of minimal substitution, and the specific coupling to the radia-
tion field generated by it is called minimal coupling.

A general gauge transformation, (2.59), when applied to the potentials,

˚ 7! ˚ 0 D ˚ � 1
c
@t�.t;x/ ; A 7! A0 D A C r�.t;x/ ; (3.39a)

modifies LE and hence L by terms which can be treated as was previously done,
at the start of this section. This would not be new compared to purely classi-
cal situations. However, when one performs a space- and time-dependent phase
transformation of the Schrödinger wave function, viz.

 .t;x/ 7!  0.t;x/ D ei˛.t;x/ .t;x/ ; (3.39b)

simultaneously with the gauge transformation given by (3.39a), then a very inter-
esting observation emerges. A phase transformation with a constant real phase ˛
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(see Example (3.35b)) leaves invariant all quantum mechanical expectation val-
ues and, therefore, all observables. This is the assertion, known from quantum
mechanics, that physical states are not described by a single wave function but
by what is called a unit ray fei˛ g, with ˛ 2 R. These phase factors are elements
of a Lie group U(1), which is parametrized by ˛ .mod 2�/ and whose only gen-
erator is the identity. In turn, (3.39b) shows something new: It contains a phase
factor which depends on a smooth function ˛.t;x/, i.e. a transformation which
at every point .t;x/ of spacetime provides a copy U.1/jx of the group U(1). The
difference between the two cases is quite obvious. Using a constant phase, one
transforms by ei˛ the wave function independently of time and over the whole
universe. In contrast, if ˛ is a function of time and space, one may perfectly
choose this function to be localized in the sense that it is different from zero, in
an essential way, only in a given time interval and in a finite spatial domain.

For the time derivatives and the gradients in the Schrödinger equation the
transformation given by (3.39b) implies the replacements

i@t 7! i@t 
0 D ei˛.t;x/

n
i@t �

�
@t˛

�o
 ; (3.40a)

r 7! r 0 D ei˛.t;x/
n
r C i

�r˛�o (3.40b)

(the parentheses emphasize the range of the action to the right of the opera-
tors @t and r ). Applying simultaneously the transformations given by (3.39a)
and (3.39b) in LE, (3.36b), the first two terms are substituted as follows:

1

2
i„� �0@t 0 � .@t �0/ 0	 � e˚.t;x/ �0 0

D 1

2
i„� �@t � .@t �/ 

	 � „�@t˛� � 

� e˚.t;x/ � C e

c

�
@t�

�
 � ; (3.40c)

whereas in the third term one hash
�i„r � e

c
A0
i
 0

D ei˛.t;x/
h
�i„r � e

c
A C „�r˛� � e

c

�r��i (3.40d)

and an analogous expression for the complex conjugate factor. The exponential
expfi˛.t;x/g cancels in all contributions to LE. Furthermore, if one chooses the
phase function ˛.t;x/ proportional to the gauge function �.t;x/, or more pre-
cisely, if one takes

˛.t;x/ D e

„c �.t;x/ ; (3.41)

then the second and fourth terms of the right-hand side of (3.40cc) cancel each
other, as do the last two terms on the right-hand side of (3.40d). In conclusion,



3.5 Symmetries and Noether Invariants 175

the simultaneous transformations given by (3.39a) and (3.39b) and supplemented
by relation (3.41) leave LE and, hence, L D LM C LE completely unchanged!

The example illustrates quite well why one talks about local gauge transfor-
mation. The transformations given by (3.39a) and (3.39b), which act simulta-
neously on the Schrödinger wave function and on the potentials of the Maxwell
fields, are elements of the local gauge group U(1). In that sense, U(1) is the gauge
group of Maxwell theory.

I Remark
In the older literature, the two types of gauge transformations were called gauge
transformations of the first kind (referring to global transformations) and of the
second kind (referring to local transformations). Nowadays, one rather uses the
nomenclature customary from differential geometry, even though this is not stan-
dardized. The group of global, rigid, U(1) transformations

G D
n

ei˛
ˇ̌
ˇ˛ 2 Œ0; 2�/o

is often called the structure group; the group of local gauge transformations

G D
n

ei˛.x/
ˇ̌
ˇx 2 R4; ˛ 2 F.R4/ .mod 2�/

o
;

with ˛ a smooth function on Minkowski space, is called the gauge group. As
explained previously, the gauge group provides a copy of the structure group at
every point x of spacetime. It does so in a smooth, i.e. differentiable, manner.

3.5.3 Invariance Under Translations

In this section, we return to the original form of Noether’s theorem. We study the
action of a translation in space and in time, first for a general Lagrangian density
without explicit dependence on x

L
�
 .i/.x/; @� 

.i/.x/
�
; i D 1; 2; : : : ; N ; (3.42)

and then for the Lagrangian density given by (3.28) of Maxwell theory. Given the
transformation

x� 7�! x0 � D x� C "a� ; (3.43)

one obtains up to the first order in " (the symbolCO."2/ is suppressed)

 .i/.x/ 7!  0.i/.x0/ D  .i/.x C "a/ D  .i/.x/C ı .i/.x/ ; with

ı .i/ D @ .i/

@"

ˇ̌
ˇ̌
ˇ
"D0

" D "a�@� .i/ : (3.43a)
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The corresponding variation of the Lagrangian density is

ıL D L
�
 0.i/.x0/; @� 0.i/.x0/

� � L
�
 .i/.x/; @� 

.i/.x/
�

D @L
@"

ˇ̌̌
ˇ
"D0

" D "a�@�L
�
 .i/.x/; @� 

.i/.x/
�
: (3.43b)

If the fields  .i/ are solutions of the equations of motion, one obtains according
to (3.33)

ıL D @�
 
NX
iD1

@L
@
�
@� .i/

�ı .i/
!
: (3.43c)

From expression (3.43b) for ıL and with (3.43a) for the variations ı .i/, one ob-
tains the equation

"a�

(
@�L � @�

 
NX
iD1

@L
@
�
@� .i/

�@� .i/
!)
D 0 ; or

"a�@�

(
�g��LC

 
NX
iD1

@L
@
�
@� .i/

�@� .i/
!)
D 0 :

As the components of translation vector a can be chosen arbitrarily, one concludes
that the tensor field

T �� WD
 
NX
iD1

@L
@
�
@� .i/

�@� .i/
!
� g��L� .i/; @˛ .i/� (3.44)

satisfies the four conservation laws

@�T
��. .i/; @˛ 

.i// D 0 : (3.45)

We rediscover here the same tensor field as in (3.21) and the same conservation
laws as in (3.22). However, we derived it here from a deeper principle: The con-
servation laws, (3.45), follow from the invariance under translations, (3.43), of the
theory defined by the Lagrangian density, (3.42). Before working out the physical
content of these conservation laws we repeat the same analysis for the specific case
of Maxwell theory. Let the Lagrangian density given by (3.28), without coupling to
external sources

L D � 1

16�
F��.x/F

��.x/ ; (3.46a)

be invariant under the translations given by (3.43). We vary the fields A	 .x/ in the
following way:

ıA	 D "a�F �	 .x/ D "a�
�
@�A	 � @	A�

�
: (3.46b)
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In this ansatz, the first term on the right-hand side is of the same nature as in the
general case of the transformation given by (3.43a). In the second term, a gauge
transformation was added with the gauge function � D ."a�A

�/. This is a per-
missible operation! The special feature, and the advantage of this ansatz, is that the
variation of the fieldA	 remains unchanged under any further gauge transformation,

A	 7�! A0
	 D A	 � @	�.x/ :

All potentials of a class of gauge-equivalent potentials are varied by the same
amount, (3.46b).

The variation of L is calculated as follows:

ıL D "a�@�
 

@L
@
�
@�A	

�F �	
!
:

Following the same arguments as previously, one obtains the equation

"a�@�

�
�g��LC @L

@
�
@�A	

�F �	
�
D 0 :

The partial derivative of L by the derivatives of the fields is given by

@L
@
�
@�A	

� D � 1

4�
F �	 :

Inserting L from (3.46a) yields the Maxwell tensor field:

T
��

M .x/ D 1

4�

n
F �	 .x/F �

	 .x/C 1

4
g��F˛ˇ .x/F

˛ˇ .x/
o
; (3.47)

where F �
	 D g	
F


� D �F �	 . The Maxwell tensor field obeys the conservation
laws

@�T
��

M .x/ D 0 ; .j ˛.x/ � 0/ ; (3.47a)

as long as there are no external sources.
If the fields contained in the field strength tensor F �� are assumed to interact

with some external sources j�, then one calculates the divergence @�T �� by means
of Maxwell’s equations as follows:

@�T
��

M .x/ D 1

4�

n
@�
�
F �˛F �

˛

�C 1

4
@�
�
F˛ˇF

˛ˇ
�o

D 1

4�

n�
@�F�˛

�
F ˛� C F�˛@�

�
F ˛�

�C 1

2
F˛ˇ@

�F ˛ˇ
o

D 1

c
j˛F

˛� C 1

8�
F�˛

n
Œ@�F ˛� C @�F �˛	C @�F ˛�

o
:
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In the first step, some indices were moved consistently from lower to upper, or upper
to lower, positions, and derivatives were worked out in accordance with the chain
rule. In particular, one should note that

@�
�
F˛ˇF

˛ˇ
� D �@��F˛ˇF ˇ˛� D �@� tr

�
F 2
�

D �2 tr
�
F.@�F /

� D 2F˛ˇ@�F ˛ˇ

due to the cyclic property of the trace, i.e. tr.F @�F / D tr..@�F /F /. In going from
the second to the third line, the inhomogeneous Maxwell equations were inserted,
and the term @�F ˛� was duplicated (with a factor 1=2). The two terms in square
brackets can be transformed by means of the homogeneous Maxwell equations so
that they are replaced by �@˛F �� D @˛F �� . The source term j˛F

˛� D �j˛F �˛
is taken to the left-hand side. On the right-hand side there remains

F�˛

n
@�F ˛� C @˛F ��

o
;

a term that vanishes because the expression in curly brackets is symmetric under
� $ ˛ and is contracted with the antisymmetric F�˛. As a result, one obtains the
important equation

@�T
��

M .x/C 1

c
F �˛.x/j˛.x/ D 0 : (3.47b)

When there is no external current density, j˛.x/ � 0, the Maxwell tensor field
T
��

M is conserved. If this is not so, then the second term on the left-hand side
of (3.47b) describes the exchange of energy and momentum between the radiation
field and matter. In that sense, (3.47b) is a balance equation. Further questions of
interpretation are dealt with in the next subsection.

Before turning to its interpretation, one reads off the following properties of the
Maxwell tensor field (3.47):

(i) The tensor field T ��M .x/ is symmetric. When expressing the field strengths
in terms of potentials, the Maxwell tensor field is seen to be invariant under
gauge transformations.

(ii) With g��g�� D 4, the trace of (3.47) is seen to be zero:

tr T ��M .x/ D g��T ��M .x/ D 1

4�

�
F �	F	� C 1

4
4F˛ˇF

˛ˇ

�
D 0 : (3.48)

In the absence of external sources, the Maxwell tensor field is a symmetric, traceless
tensor field of degree two.
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3.5.4 Interpretation of the Conservation Laws

As emphasized earlier, the tensor field given by (3.47) pertains to Maxwell theory
in the vacuum where there is no essential, physical, difference between E and D,
and between B and H , respectively. (Recall that with Gaussian units, they are pair-
wise equal.) When we stick to this case for a while and, yet, utilize balance equation
(3.47b), we have in mind a perturbative framework: The given radiation field in the
vacuum hits (external) charges and currents due to single particles or to localized
charge and current densities, which are such that their interaction with the Maxwell
fields can be treated like a perturbation. Maxwell fields and matter exchange energy
and momentum as described by balance equation (3.47b), but the back-reaction onto
the given fields remains small. This picture provides the basis for the quantized ver-
sion of the theory, i.e. quantum electrodynamics, which describes the interaction of
free quantized Maxwell fields with electrons and other charged elementary particles.

Electromagnetic fields in matter will be considered later by a suitable generaliza-
tion of the expression (3.47).

Maxwell Tensor Field in the Vacuum
The physical interpretation of the tensor field, given by (3.47), becomes more trans-
parent if we follow an experimentalist in his laboratory who measures electric and
magnetic fields and, in doing so, singles out a class of systems of reference in which
the partition of R4 into time axis Rt and three-dimensional space R3 is fixed. With
g��g�� D ı�� we have

�
TM.x/

��
�
D 1

4�

n
F �	 .x/F	�.x/C 1

4
ı��F˛ˇ .x/F

˛ˇ .x/
o
;

and when the explicit representations (2.46) and (2.69a) are inserted, the first term
on the right-hand side is the product of the two 4 � 4 matrices

F �	D

0
BB@

0 �E1 �E2 �E3
E1 0 �B3 B2

E2 B3 0 �B1
E3 �B2 B1 0

1
CCA ; F	� D

0
BB@

0 E1 E2 E3

�E1 0 �B3 B2

�E2 B3 0 �B1
�E3 �B2 B1 0

1
CCA:

The second term is the unit matrix multiplied by F˛ˇF ˛ˇ=4, a factor that was cal-
culated previously in (3.25a). As a result, the components .TM/

�
� are found to be

the following functions of the electric and magnetic fields:

.TM/
0
0 D

1

8�

˚
E2 CB2


 DW u.t;x/ ; (3.49a)

.TM/
0
i D �

1

4�

�
E �B

�i DW �cP i .t;x/ ; (3.49b)



180 3 Maxwell Theory as a Classical Field Theory

.TM/
i
0 D C

1

4�

�
E �B

�i DW 1
c
S i .t;x/ ; (3.49c)

.TM/
k
i D

1

4�

h
EkE i C BkB i � 1

2
ıki
�
E2 CB2

�i
: (3.49d)

The notations to the right of these equations hint at their interpretation as follows.
If the expressions obtained in Sect. 1.9.4 are also correct for time-dependent fields
(and this is indeed the case), then u.t;x/ is the energy density. The vector P D
.P 1; P 2; P 3/T is interpreted to be the momentum density. The vector S will be
found to be the flux density of energy, the energy flow. It is called the Poynting
vector. The space–space components .TM/

k
i in the last line, (3.49d), are the entries

of the Maxwell stress tensor.
Slightly rewritten, balance equation (3.47b) reads

@�.TM.x//
�
� C

1

c
F�˛.x/j

˛.x/ D 0 :

With the following decompositions into space and time coordinates

@� D
�
1

c
@t ;r

�
and j ˛ D ˚c%.t;x/; j .t;x/


and taking 
 D 0, one obtains the equation

@

@t
u.t;x/C r � S .t;x/CE.t;x/ � j .t;x/ D 0 : (3.50)

This equation relates the change in time of the energy density and the divergence of
the flux field S .t;x/, on the one hand, to the work per unit time and volume done
by the electromagnetic fields on the sources, on the other. The vector field

S .t;x/ D c

4�
E .t;x/ �H .t;x/ (3.51)

is called the Poynting vector field, and equation (3.50) is often paraphrased as Poynt-
ing’s theorem.

Integrate now over a finite volume V whose surface @V is piecewise smooth.
Then the term

•

V

d3x
@

@t
u.t;x/ D d

dt

•

V

d3x u.t;x/ D d

dt
Wfield

is the change in time of the energy content of the fields, whereas

•

V

d3x E.t;x/ � j .t;x/ D d

dt
Wmech
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is the change in mechanical energy of the particles enclosed by the volume. The
volume integral of the divergence of S .t;x/ becomes a surface integral over @V , so
that the integral form of (3.50) reads as follows:

d

dt

�
Wfield CWmech

� D �
“

@V

d� On � S .t;x/ ;

with d� the surface element and On the outward normal of the surface. This relation
between the change in time of the total energy and the surface integral on the right-
hand side shows that, indeed, the vector field S .t;x/ describes the energy flow.

The space components (
 D i ) of balance equation (3.47b) yield

� @
@t
P i C 1

4�

3X
kD1
rk

�
EkE i CBkB i � 1

2
ıki .E2 CB2/

�

� E i% � 1
c

�
j �B

�i D 0 :
One rewrites this slightly and introduces the space–space components of the
Maxwell tensor field to obtain an equation which is easier to interpret:

%.t;x/E i .t;x/C 1

c

�
j .t;x/ �B.t;x/

�i C @P i

@t
�

3X
kD1

@k.TM/
k
i D 0 : (3.52)

The first two terms remind one of the Lorentz force, and it seems appropriate to call
it the Lorentz force density. Together with the third term, one has here

@

@t

�
P imech C P ifield

�
:

The significance of the last term in (3.52) is better understood when one considers
the integral form of the balance equation: One integrates again over a finite volume
V whose surface @V is (piecewise) smooth so that, by Gauss’ theorem,

3X
kD1

•

V

d3x @k.TM/
k
i D

“

@V

d�
3X
kD1

.TM/
k
in
k :

The integrand represents the flux of the i th component of the momentum per unit
surface on @V , i.e. the force per unit of surface that acts on particles and fields in V .
This is what is called the radiation pressure.

Maxwell Tensor Field in Matter
The study of Maxwell fields inside electrically and magnetically polarizable matter
is considerably more complicated. Strictly speaking, the question of how to calculate
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the momentum density, the energy flow and the stress tensor in these cases can only
be answered if one has a concrete model describing the block of matter that one
investigates. In the simplest case with linear relationships between the fields and
with constant coefficients,

D D "E ; B D �H ;

(cf. Sects. 1.7.2 and 1.7.3), one may try to guess the shape of the tensor field, (3.47).
For this purpose, one repeats the individual steps of the derivation of balance

equation (3.47b), noting carefully where one used the inhomogeneous Maxwell
equations and where one used the homogeneous ones. Furthermore, one confirms
that the reasoning used in calculating the trace still holds, provided the relations
between fields D and E and between B and H , respectively, are linear and have
constant coefficients. (This was the assumption.) Then

@�
�
F˛ˇF ˛ˇ

� D �@��F˛ˇF ˇ˛� D �@��E �D CB �H � D F˛ˇ@�F ˛ˇ :

Thus, the tensor field given by (3.47) can be replaced by the following composition
of the two types of tensor fields:

T ��.x/ D 1

4�

n
F�	 .x/F �

	 .x/C 1

4
g��F˛ˇ .x/F ˛ˇ .x/

o
: (3.53)

Working out the individual components as in (3.49a–3.49d), one obtains

u.t;x/ D 1

8�

˚
E �D CH �B
 D 1

8�

˚
"E2 C �H 2



; (3.54a)

P.t;x/ D 1

4�c
D �B D 1

4�c
"�E �H ; (3.54b)

S .t;x/ D c

4�
E �H ; (3.54c)

T kj .t;x/ D
1

4�

�
"

�
EkEj � 1

2
ıkjE2

�
C �

�
H kH j � 1

2
ıkjH 2

��
: (3.54d)

Equations (3.50) and (3.52) as well as their interpretation remain unchanged.

I Remark
Given the interpretation of P in (3.54b) as the momentum density, it makes sense
to interpret

` WD 1

4�c
x � �D �B

� D "�

4�c
x � �E �H

�
(3.55)

as the angular momentum density of the radiation field.
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3.6 Wave Equation and Green Functions

In this section and in the next, we work out some general methods of solving
the wave equation and investigate how the solutions reflect the causal structure of
Minkowski spacetime. Concrete examples of applications to optics and selected os-
cillatory solutions are deferred to the next chapter.

Introducing potentials for the description of the tensor field F ��.x/,

F ��.x/ D @�A�.x/ � @�A�.x/ ;

and imposing the Lorenz condition (2.61), differential equation (2.60) is reduced to
the inhomogeneous wave equation

�A�.x/ D 4�

c
j�.x/ ; (3.56)

in which the current density j (as a manifestation of matter!) is the source term, up
to a factor. With a given partition of time and space, i.e. in a special class of systems
of reference, one has

j D �c%.t;x/; j .t;x/�T ; A D �˚.t;x/;A.t;x/�T ;
� D @�@� D @20 �� D 1

c2
@2

@t2
�� :

Thus, wave equation (3.56) has the general form

��.x/ D 4�F.x/ ; (3.57a)

where �.x/ is a field quantity, i.e. in the case of (3.56), a component of A or a com-
ponent of one of the physical fields, whereas F.x/ is a source term.

3.6.1 Solutions in Noncovariant Form

In a noncovariant notation, the inhomogeneous wave equation reads

�
�x � 1

c2
@2

@t2

�
�.t;x/ D �4�F.t;x/ : (3.57b)

A standard method of solving this equation goes as follows: One subjects the differ-
ential equation in x-space to a Fourier transformation such as to transform it into an
algebraic equation which can be solved in an elementary way. One starts from the
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ansatz4

�.t;x/ D 1p
2�

C1Z
�1

d! e�.!;x/e�i!t ; (3.58a)

F.t;x/ D 1p
2�

C1Z
�1

d! eF .!;x/e�i!t : (3.58b)

Thus, the Fourier transformation is performed in the time variable t and one expands
in terms of the base functions

'.!; t/ D 1p
2�

e�i!t ;

which are orthogonal and complete in the sense of distributions:

C1Z
�1

dt '�.!; t/'.!0; t/ D ı.! � !0/ (orthogonality) ; (3.59a)

C1Z
�1

d! '�.!; t/'.!; t 0/ D ı.t � t 0/ (completeness) : (3.59b)

By means of these formulae, one derives the inverse formulae of (3.58a) and (3.58b).
These are, respectively,

e�.!;x/ D 1p
2�

C1Z
�1

dt �.t;x/ei!t ; (3.60a)

eF .!;x/ D 1p
2�

C1Z
�1

dt F .t;x/ei!t : (3.60b)

The Fourier transform of differential equation (3.57b) is an algebraic equation; the
action of the second derivative by the time variable turns into the factor .!=c/2, so
that one has

˚
�C k2
e�.!;x/ D �4�eF .!;x/ ; with k WD !

c
: (3.61)

The differential equation (3.61), called an inhomogeneous Helmholtz equation, is
solved by the method of Green functions, in direct analogy to Sect. 1.8.1, (1.81)

4 We follow the generally accepted convention of denoting the Fourier components by a “tilde”.
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and (1.83). In the present context, this means that one should find a distribution
Gk.x;x

0/ which is a solution of

�
�x C k2

�
Gk.x;x

0/ D ı.x � x0/ : (3.62a)

Once this is achieved, one derives from it a Green function G.t;xI t 0;x0/ which is
a solution of the original differential equation

�
�x � 1

c2
@2

@t2

�
G.t;xI t 0;x0/ D ı.x � x0/ı.t � t 0/ : (3.62b)

This program is carried out in two steps.

Green Function of the Helmholtz Equation
If there are no special boundary conditions which may break the translational and
rotational invariance, the Green function Gk.x;x0/ can depend only on the differ-
ence r WD .x � x0/. Furthermore, it must be spherically symmetric in the variable
r,

Gk.x;x
0/ D Gk.r/ with r WD ˇ̌x � x0 ˇ̌ :

Inserting this into (3.61) and making use of the Laplace operator in spherical polar
coordinates, one obtains a differential equation in the variable r :

1

r2
d

dr



r2

dGk
dr

�
C k2Gk D ı.r/ ; where (3.61a)

1

r2
d

dr



r2

df .r/

dr

�
D d2f .r/

dr2
C 2

r

df .r/

dr
D 1

r

d2

dr2
�
rf .r/

�
:

As long as r 6D 0, we are left with the homogeneous differential equation

d2

dr2
�
rGk.r/

�C k2�rGk.r/� D 0 ;
whose general solution is easily seen to be

rGk.r/ D aC eikr C a� e�ikr ; with a˙ 2 R :

For r ! 0 and for a fixed value of k, the product .kr/ becomes small compared to
1, kr � 1. In this limit, radial equation (3.61a) goes over into the radial part of the
Poisson equation whose solution is known from (1.83):

lim
kr�1

Gk.r/ D � 1

4�

1

r
:
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By combining the two results and replacing r by jx � x0j one finds the desired
solution of (3.61a):

Gk
�ˇ̌

x � x0ˇ̌� D aCG.C/k

�ˇ̌
x � x0ˇ̌�C a�G.�/k

.
ˇ̌
x � x0ˇ̌/ ; (3.63a)

with aC C a� D 1 ;

G
.˙/
k

�ˇ̌
x � x0ˇ̌� D � 1

4�

e˙ikjx�x0j

jx � x0j : (3.63b)

Green Function of the Wave Equation
From the results given by (3.63a) and (3.63b), and by a twofold Fourier transforma-
tion, one obtains the corresponding Green functions for (3.62b). Transforming with
respect to the variable t , i.e. taking

G.t;x; t 0;x0/ D 1p
2�

C1Z
�1

d! eG.!;xI t 0;x0/e�i!t ; (3.64a)

the left-hand side of (3.62b) becomes

�
�x � 1

c2
@2

@t2

�
G.t;xI t 0;x0/ D 1p

2�

C1Z
�1

d!
�
�x C k2

	eG.!;xI t 0;x0/e�i!t ;

while on the right-hand side of (3.62b) the ı-distribution in .t � t 0/ can be replaced
by an integral representation,

ı.x � x0/ı.t � t 0/ D ı.x � x0/
1

2�

C1Z
�1

d! e�i!.t�t 0/ : (3.64b)

From this one obtains a differential equation for eG:

�
�x C k2

�eG.!;xI t 0;x0/ D 1p
2�
ı.x � x0/ei!t 0 :

Inserting the base solutions given by (3.63b) of (3.62a), one has

eG.˙/.!;xI t 0;x0/ D 1p
2�

ei!t 0G
.˙/
k
.
ˇ̌
x � x0ˇ̌/ ; .! D kc/ :

In a last step, one uses the inverse Fourier formula of (3.64a) and finds

G.˙/.t;x; t 0;x0/ D 1

2�

C1Z
�1

d!
�1

4�jx � x0j exp

(
i
h
�!.t � t 0/˙ !

c

ˇ̌
x � x0ˇ̌i

)
:



3.6 Wave Equation and Green Functions 187

Fig. 3.2 A signal emitted at time t 0 from the position
x0 causes an observable effect at time t in the detector
situated in x. Causality is respected by the use of the
retarded Green function G.C/: t is later than t 0, and
t � t 0 is the correct time of flight from the source to the
detector

(Detector)

(t',x')

(Source)

(t,x)

Here k was replaced by !=c. The integral over ! is

1

2�

C1Z
�1

d! exp

�
�i!

h
.t � t 0/� 1

c

ˇ̌
x � x0 ˇ̌i� D ı

�
t �

h
t 0 ˙ 1

c

ˇ̌
x � x0ˇ̌i� :

Thus, the Green functions for (3.62b) are given by

G.˙/.t;xI t 0;x0/ D � 1

4�jx � x0jı


t � �t 0 ˙ 1

c

ˇ̌
x � x0 ˇ̌	� : (3.65)

As an application, we construct solutions of the original inhomogeneous wave equa-
tion (3.57b) as follows:

� .˙/.t;x/ D �4�
C1Z

�1
dt 0
•

d3x0 G.˙/.t;xI t 0;x0/ F.t 0;x0/ : (3.66)

These formulae are well suited for an analysis of their physical interpretation. We
distinguish the two cases of interest.

The Retarded Green Function G .C/

In this case, the ı-distribution enforces the relation

t D t 0 C 1

c

ˇ̌
x � x0 ˇ̌ ; i.e. t > t 0 :

The signal which emanates from the source at the position x0 at time t 0 propagates
with the speed of light towards the observer at the position x and reaches that ob-
server at time

t D t 0 C (time-of-flight from x0 to x/ :

This Green function describes the intuitive causal relationship between cause and
effect, the signal reaches the observer after the correct retardation, as sketched in
Fig. 3.2. The distribution G.C/ is called the retarded Green function.
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0 T

F(t',x')

t'

Fig. 3.3 The signal of the source, plotted as a function of time, is active only in a finite time
interval .0; T / of the t 0-axis. Before and after that interval the source remains silent

Let F.t 0;x0/ describe a source which is localized in space and in time. This
means, specifically for the time variable, that the source depicted in Fig. 3.2 is absent
for all t 0 < 0 and for all t 0 > T > 0, as sketched in Fig. 3.3. If at time t D �1
a certain initial state �in.�1;x/ was present (“in” for incoming), i.e. a solution
of the homogeneous wave equation corresponding to (3.57b), the complete solution
of (3.57b) reads

�.t;x/ D �in.t;x/ � 4�
C1Z

�1
dt 0
•

d3x0 G.C/.t;xI t 0;x0/F.t 0;x0/ : (3.67)

Long before the source starts emitting there is an initial signal. The source emits
additional contributions only when t is equal to t 0Cjx � x0j=c. It contributes to the
total field � causally, i.e. in a properly retarded fashion.

The Advanced Green Function G .�/

In this case, t D t 0 � jx � x0j=c, the time at which the observer sees an effect is
earlier than the time at which the source emits. The source time t 0 is causally related
to the observer time t , and not t to t 0. Nevertheless, there is no reason to discard the
advanced distribution G.�/. The solution given by (3.67) provides the clue for the
explanation of this apparent contradiction, too: Indeed, it may happen that it is not
the incoming field that is given but the outgoing field �out, which will build up as
t ! C1. In this case, the complete solution of (3.57b) must have the form

�.t;x/ D �out.t;x/� 4�
C1Z

�1
dt 0
•

d3x0 G.�/.t;xI t 0;x0/F.t 0;x0/ : (3.68)

The distribution G.�/ ensures that whenever t 6D t 0 � jx � x0j=c, no contribution
comes from the source. This means, in particular, that the field � receives no further
contributions after the source has been shut down. All such contributions are already
contained in �out.

3.6.2 Solutions of theWave Equation in Covariant Form

In the preceding section, we chose to analyse the relevant equations in noncovariant
form to work out the causal structure of the connection between source and observa-
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tion. Of course, one can treat the differential equation (3.57a) in a Lorentz covariant
form from the start. That is the subject matter of this section.

We wish to construct distributions G.x; x0/ which satisfy the differential equa-
tion5

�xG.x; x
0/ D ı.4/.x � x0/ : (3.69)

Without any special boundary conditions, the distribution G.x; x0/ depends on the
variable z WD x � x0 only, so that one must solve the equation

�G.z/ D ı.4/.z/ : (3.69a)

Also in this case, it is advisable to consider the Fourier transforms, but now in all
four variables so that the differential equation (3.69a) is mapped to a purely alge-
braic equation in a single step.

We denote the Fourier transform of G.z/ by QG.k/, but normalize it in a way
somewhat different from formulae (3.58a) and (3.58b):

G.z/ D 1

.2�/4

Z
d4k eG.k/e�i.kz/ : (3.70)

Here .kz/ D k0z0 � k � z, where k is a wave number vector whose four indepen-
dent components are the integration variables (for the sake of clarity we write only
a single integral symbol). With this ansatz in (3.69a) and using the representation

ı.4/.z/ D 1

.2�/4

Z
d4k e�i.kz/

for the ı-distribution, one concludes

.2�/4�G.z/ D
Z

d4k e�i.kz/��k2�eG.k/ D
Z

d4k e�i.kz/ and

eG.k/ D � 1
k2

: (3.71)

The Green function as a function of z is calculated from (3.70) as follows:

G.z/ D � 1

.2�/4

Z
d4k

1

k2
e�i.kz/

D � 1

.2�/4

Z
d3k

Z
dk0 eik�z e�ik0z0

.k0/2 � k2
:

Let � WD jkj. The path of integration of the variable k0 runs through the two poles
of the integrand at k0 D � and at k0 D ��. To assign a well-defined value to

5 Compared to (3.62b), the other sign was chosen on the right-hand side. This choice, which entails
a sign change of the corresponding Green functions, does not limit the generality of the method.
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−χ−iε χ−iε

−χ+iε χ+iε

Im k0 Im k0

Re k0Re k0

a b

Fig. 3.4 a Position of poles of integrand of G.z/ for the choice of the upper sign in (3.72).
b Position of poles for the choice of the lower sign in (3.72)

the integral, one must deform this path in such a way that the poles lie above or
below the path. Depending on how one deforms the path, one obtains different Green
functions. Equivalently, one might as well leave the path as it is but move the poles
away from the real axis slightly. For example, one may choose

1

.k0/2 � �2 �!
1

.k0 � i"/2 � �2 D
1�

k0 � .� ˙ i"/
��
k0 C .� � i"/

�
with "! 0C : (3.72)

Depending on the choice of signs in (3.72) and Fig. 3.4, one obtains different Green
functions. Choosing the upper sign in (3.72) yields the advanced Green function,
whereas choosing the lower sign yields the retarded function. We verify this for the
case of the retarded function.

Obviously, as " is simply an arbitrarily small quantity which is sent to zero from
above, the integrand ..k0Ci"/2��2/�1 has the same effect as the integrand ..k0/2�
�2 C i"/�1, so that, specifically, one must calculate the integral

C1Z
�1

dk0
e�ik0z0

.k0/2 � �2 C i"
D lim

R!1

CRZ
�R

dk0
e�ik0z0

.k0/2 � �2 C i"
:

For negative values of z0, one completes the interval Œ�R;CR	 on the real axis
by the semicircle in the upper half-plane Im k0 > 0, which is drawn in Fig. 3.5a.
As R!1, the integrand goes to zero due to the exponential e�Im k0z0

, so that the
integral we wish to calculate is equal to the integral over the closed path of Fig. 3.5a.
As there are no poles inside the enclosed domain, by Cauchy’s theorem, the integral
is equal to zero.

For positive values of z0, the interval is completed by the semicircle shown
in Fig. 3.5b in the lower half-plane. The integral we wish to calculate is the inte-
gral over the closed path and, hence, equals �2�i times the sum of the residua of
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Im k0

Im k
0

Re k0
Re k0

a b

−R R
−R R

Fig. 3.5 a If z0 < 0, then the segment Œ�R;CR
 of the real k0-axis is supplemented by a
semicircle in the upper half-plane so as to obtain a closed path. b If z0 > 0, then one adds a
semicircle in the lower half-plane

the enclosed poles of the first order (the minus sign comes from the orientation of
the path). Therefore, in the limit "! 0C, one has

C1Z
�1

dk0
e�ik0z0

.k0/2 � �2 C i"
D �2�i

n e�i�z0

2�
C ei�z0

�2�
o
D �2�

�
sin.�z0/ ;

.z0 > 0/ :

The condition that the integral is only different from zero if z0 is positive is handled
by a Heaviside step function �.z0/. Introducing spherical polar coordinates in the
space R3� , one has

Gret.z/ D 1

.2�/2
�.z0/

C1Z
�1

d.cos �/

1Z
0

�2 d� ei�r cos � sin.�z0/

�

D 2

r.2�/2
�.z0/

1Z
0

d� sin.�r/ sin.�z0/ :

As the integral over � concerns an integrand which is even in this variable, it can be
extended to the interval .�1;C1/. It is equal to

1

2

C1Z
�1

d� sin.�r/ sin.�z0/ D 1

2

2

.2i/2

C1Z
�1

d�
�

ei�.rCz0/ � e�i�.r�z0/
	
:

However, as one must have z0 > 0 and as r is positive, only the second term of the
integrand contributes; it is equal to .�=2/ı.z0 � r/. As a result,

Gret.z/ D �.z0/ 1

4�r
ı.z0 � r/ ; (3.73a)
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or, inserting again z D x � x0,

Gret.x; x
0/ D �.x0 � x00/

1

4�jx � x0jı
�
x0 � x00 � ˇ̌x � x0ˇ̌� : (3.73b)

This distribution is different from zero only if x0 > x00 and x0 D x0 0 C jx �
x0j. This is the retarded Green function, indeed. It can be written in a manifestly
covariant form by utilizing the well-known formula

ı.a2 � b2/ D 1

2b

˚
ı.aC b/C ı.a � b/
 ;

which implies, with z D x � x0,

ı.z2/ D ı..z0/2 � z2/ D ı..z0/2 � r2/ D 1

2r

˚
ı.z0 � r/C ı.z0 C r/
 :

As the step function contained in Gret.x; x
0/ allows for positive values of z0 D

x0 � x0 0 only, only the first term of this formula contributes to the Green function,
so that one obtains

Gret.x; x
0/ D 1

2�
�.x0 � x00/ı

�
.x � x0/2

�
: (3.74a)

In an analogous manner, one confirms that the advanced Green function is given by
the same formula, provided one interchanges x0 and x00,

Gadv.x; x
0/ D 1

2�
�.x0 0 � x0/ı�.x � x0/2

�
: (3.74b)

I Remarks
1. The retarded Green function Gret.z/ is different from zero only on the for-

ward light cone in the space of variables z0 and z (Fig. 3.6a). As the proper,
orthochronous Lorentz transformations ƒ 2 L"

C leave the light cone invari-
ant as a whole, the distinction between the cases z0 > 0 and z0 6 0, when
multiplied by ı.z2/, is independent of the frame of reference one has chosen.
Despite the fact that the step function depends on the frame of reference, the
retarded Green function given by (3.74a) is invariant. For example, the action
of a special Lorentz transformation with z1 D z0 gives

z00 D �z0 � ˇ�z1 D �.1� ˇ/z0 :
However, as 1 � ˇ > 0, one has always sign z00 D sign z0.

2. The support of the advanced Green function, (3.74b), obtained by the choice
of the upper sign in (3.72) is the backward light cone of Fig. 3.6b. This Green
function is invariant under all ƒ 2 L"

C as well.
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a b

Fig. 3.6 a The retarded Green function is different from zero only on the forward light cone.
b The advanced Green function is different from zero only on the backward light cone

3.7 Radiation of an Accelerated Charge

An electrically charged particle, which in a reference system K moves along the tra-
jectory r.t/ in space, generates a pointlike charge density %.t;x/ as well as a current
density j .t;x/ which is proportional to its spatial velocity. Thus, these quantities
are given by the following coordinate expressions:

%.t;x/ D e ı.3/.x � r.t// ; (3.75a)

j .t;x/ D e v.t/ı.3/.x � r.t// : (3.75b)

Here e denotes the (obviously Lorentz invariant) charge of the particle and v.t/ D
Pr.t/ denotes its instantaneous spatial velocity.

The choice of a fixed frame of reference does not mean that the Lorentz co-
variance is broken. Rather, it represents what an observer sees or measures in his
frame of reference. Expressions (3.75a) and (3.75b) can equally well be written in
a covariant manner, and hence independently of the frame of reference, viz.

j ˛.x/ D e c
Z

d� u˛.�/ı.4/
�
x � r.�/� ; (3.76)

with c the speed of light, � the (Lorentz invariant) proper time, x a spacetime point
and r.�/ � ˚

r˛.�/



the world line of the particle. The Lorentz vector u.�/ D
dr=d� is the four-velocity of the particle. As on the right-hand side of (3.76) one
integrates over proper time, and as the ı-distribution is a Lorentz scalar, the vector
nature of j.x/ follows from the fact that the velocity u is a four-vector.

As a first step, we show that the covariant formula (3.76) does indeed represent
the physical quantities given by (3.75a) and (3.75b) when expressed in the frame K.
Let s be the coordinate time corresponding to the proper time � , i.e. the time which
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the observer in K reads on her clock. Then d� D ds=� , and the trajectory and the
velocity of the particles have the decomposition

r.�/ D �cs; r.s/�T ;
u.�/ D �c�; �v.s/

�T
:

Using the formula ı.c.t � s// D ı.t � s/=c, one calculates

j 0.t/ D ec
Z

ds

�
.c�/ı.1/.ct � cs/ı.3/.x � r.s//

D ec ı.3/.x � r.t// � c%.t;x/ :
The spatial components of the four-component current density are calculated in the
same way:

j k.t/ D ec
Z

ds

�
.�vk.s//ı.1/.ct � cs/ı.3/.x � r.s//

D e vk.t/ı.3/.x � r.t// ; k D 1; 2; 3 :
These are expressions (3.75a) and (3.75b), respectively, whose physical interpreta-
tion is more transparent than that of formula (3.76): The pointlike charge is located
where the particle sits at time t ; the current density that it creates at point r at time t
is proportional to the velocity of the particle in this position and at this time.

We insert the current density, (3.76), into the wave equation for the four-potential
A˛.x/, at the place of the source term, and we assume that there is no incident field.
Under this assumption and taking account of (3.69), (3.67) yields the solution for
the potential created by the particle:

A˛.x/ D 4�

c

Z
d4x0 Gret.x � x0/j ˛.x0/ : (3.77)

Upon insertion of expression (3.76) for the current density and formula (3.74a) for
the Green function, one has

A˛.x/ D 2e
Z

d�
Z

d4x0 �.x0 � x0 0/ ı.1/
�
.x � x0/2

�
u˛.�/ ı.4/

�
x0 � r.�/� :

The integration
R

d4x0 over the variable x0 is obvious and shows that x0 is replaced
by r.�/. Thus, this integration gives

A˛.x/ D 2e
Z

d� �
�
x0 � r0.�/� ı.1/�.x � r.�/2�u˛.�/ : (3.78)

Already this intermediate result, (3.78), can be analysed and interpreted in terms
of causality. For this purpose, we fix the point x where the potential is determined.
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From the integral on the right-hand side of (3.78) we analyse where and when the
particle contributes to the potential. The one-dimensional ı-distribution enforces
the condition .x� r.�//2 D 0, i.e. the source point r.
/ and the observer’s position
x must lie on a light cone relative to each other. Furthermore, the step function
makes sure that the time t0 at which the particle influences the potential A˛.x/ is
earlier than the time x0. Only if these two conditions are fulfilled are the source
(the particle flying by) and the effect (the potential A˛.x/) related in the correct
causal way. Expressed with respect to an arbitrarily chosen inertial system and as
illustrated by Fig. 3.7, the measuring point x with its coordinate time x0 D ct

always lies on the forward light cone of the world point where the particle was at
the earlier coordinate time t0.

For the calculation of the integral over � with ı.1/.x � r.�/2/ in the integrand,
one makes use of the auxiliary formula

ı
�
f .u/

� DX
i

1

jf 0.ui /jı.u� ui / ;

where the values ui are the simple zeros of f .u/. Obviously, nonvanishing contri-
butions come only from where the integration variable � is equal to the proper time

0. Furthermore, one has

d

d�

�
x � r.�/�2

ˇ̌̌
ˇ

D
0

D �2�x � r.
0/�
�

d

d�
r�.�/

ˇ̌̌
ˇ

D
0

D �2�x � r.
0/�
�
u�.
0/ :

This is inserted in (3.78), the result being what is called the Liénard–Wiechert po-
tential:

A˛.x/ D e u˛.
/

u.
/ � �x � r.
/�
ˇ̌
ˇ̌̌

D
0

: (3.79)

As expected, this potential is proportional to the four-velocity u.
/ of the particle.
The denominator contains the Lorentz scalar product of u and .x� r.
//; the whole
expression is to be evaluated at 
 D 
0 such that x lies on the forward light cone
of r.
0/. To work this out even more clearly, one may compute the space and time
components of the potential in the reference system K starting from (3.79). In such
a system, one has

u � .x � r/ D u0.x0 � r0/ � u � .x � r/ D �c2.tx � tr /� �v � .x � r/ :

The conditions .x � r.
0//2 D 0 and x0 > r0.
0/ yield

x0 � r0.
0/ D c.t � t0/ D ˇ̌x � r.
0/
ˇ̌ DW R ;
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Fig. 3.7 Seen from an inertial system of reference K,
the charged particle moves along the world line r.
/.
At coordinate time t0, its position is the world point
r.
0/. In this position, it can cause actions only which
lie on the forward light cone of r.
0/

Time

Space

where the spatial distance between r.
0/ and x (as it is defined in the system of
reference K) is denoted by R. With the definition On D .x � r.
0//=jx � r.
0/j,
there follows the coordinate expression in K

u � .x � r/ D �cR � �v � OnR D �cR
�
1 � 1

c
v � On

�
:

Finally, inserting the decomposition of the four-velocity u D .c�; �v/T , the time
and space components of A˛ D .˚;A/T are, respectively,

˚.t;x/ D e

R

1

1 � 1
c
v � On

ˇ̌
ˇ̌̌
ret

; (3.80a)

A.t;x/ D e

R

v
c

1 � 1
c
v � On

ˇ̌
ˇ̌̌
ret

: (3.80b)

The subscript “ret” indicates that the potentials ˚ and A are retarded, i.e. that these
formulae apply at the distance R from the particle and at the time

t D t0 C R

c
: (3.81)

This guarantees that the time-of-flight from where the particle passes by (the cause)
to the measuring point at which the potentials are computed (the effect) is correctly
implemented.

In a second step, one calculates the field strengths F �� D @�A� � @�A� from
A˛.x/ in (3.79), either by calculating the first derivatives by means of formula (3.79)
or by returning to the integral representation (3.78). We choose the second alterna-
tive. The variables x� appear in two places: once in the step function, once in the
ı-distribution.

(a) The derivative by x of the step function in the integrand gives a ı-distribution,
ı.x0�r0.�//. This means that from the original distribution ı.1/..x�r.�//2/ there
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remains only a spatial part, ı.1/.�R2/, which does not contribute as long as one
excludes the origin R D 0.

(b) The derivative of the ı-distribution in the integrand of (3.78) is calculated by
means of the following auxiliary calculations:

@�ı
�
f .x; �/

� D �@�f � d

df
ı.f / D �@�f � d�

df

d

d�
ı
�
f .x; �/

�
;

where f .x; �/ D ..x � r.�//2/. One has

@�f D 2�x � r.�/�� ; df

d�
D �2.x � r/ � dr

d�
D �2.x � r/ � u

and, hence,

@�ı
�
f .x; �/

� D � .x � r/�
.x � r/ � u

d

d�
ı
�
f .x; �/

�
:

Inserting these auxiliary formulae into (3.78) and performing a partial integration,
one obtains

@�A�.x/ D 2e
Z

d�
d

d�

�
.x � r/�u�
.x � r/ � u

�
�
�
x0 � r0.�/� ı.1/�.x � r.�/2� : (3.82)

The integration over � is carried out in the same way as in the transition from (3.78)
to (3.79). The result is

F ��.x/ D e

u.
/ � �x � r.
/�

� d

d


��
x � r.
/��u.
/� � �x � r.
/��u.
/�

u.
/ � �x � r.
/�
�ˇ̌ˇ̌
ˇ

D
0

: (3.83)

This is the tensor field of the electromagnetic fields which are created by a charge
in motion.

To gain some “feeling” for this important result, it is useful to calculate the elec-
tric field and the magnetic induction in a frame of reference K. (The reader is invited
to do this exercise!) One finds

E.t;x/ D E stat.t;x/CE acc.t;x/ ; (3.84)

where the two terms are given by the expressions, respectively,

E stat.t;x/ D e

R2

On � v
c

�2
�
1 � 1

c
v � On�3

ˇ̌
ˇ̌
ˇ
ret

; (3.84a)

E acc.t;x/ D e

R

On � �� On� v
c

� � Pv	
c2
�
1 � 1

c
v � On�3

ˇ̌
ˇ̌̌
ret

: (3.84b)
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The distance R and the unit vector On are defined as in (3.80a) and (3.80b). The
interpretation of the two parts of the electric field will be explained in a moment,
but first one notes the result for the magnetic induction:

B.t;x/ D On �E .t;x/ : (3.85)

The first part E stat in (3.84) is called a static field or velocity field because it is
present also when the particle moves uniformly along a straight line. This field, in
essence, is a static field because, although it contains the velocity, it does not depend
on the acceleration. The second term, E acc.t;x/, is called the acceleration field; it is
a function of Pv, the instantaneous acceleration, and it vanishes whenever the velocity
of the particle is constant.

For velocities which are small compared to the speed of light, jvj � c, the
Poynting vector field can be approximated as follows (for an application see [QP],
Example 1.2):

S .t;x/ D c

4�
E.t;x/ �B.t;x/ D c

4�
E � � On �E

� ' c

4�
E2.t;x/ On : (3.86)

In this approximation, only the acceleration field

E.t;x/ ' e

R

1

c2
On � � On � Pv�

ˇ̌̌
ˇ
ret

contributes to the Poynting vector. These formulae are derived from the results of
this section and from expression (3.49c) for the Poynting vector field. For example,
the power radiated to the element of solid angle d˝ , with � being the angle between
Pv and On, is found to be

dP

d˝
' R2 c

4�
E2.t;x/ D e2 Pv2

4�c3
sin2 � : (3.87)

Integration of this expression over the complete solid angle yields the total radiated
power

P ' 2e2

3c3
Pv2 : (3.88)

If the velocity is no longer small as compared to c, one finds a rather similar result,
viz.

P D 2e2

3c3
�6
�
Pv2 � 1

c2

�
v � Pv�2

�
: (3.89)

In either case, when jvj � c, but also when this is no longer true, the radiated
power is equal to zero if the particle is neither accelerated nor decelerated. Only an
accelerated charged particle radiates energy. If it moves with constant velocity, then
it does not radiate.



4Simple Applications of Maxwell Theory

4.1 Introduction

In this chapter, we select some characteristic examples from the great wealth of
electromagnetic and optical phenomena which are described by Maxwell’s equa-
tions. These case studies are restricted to the classical, nonquantized version of the
theory. The field of semiclassical interactions of quantum matter and classical radi-
ation field, as well as the full quantum field-theoretic treatment of Maxwell theory
is described in many monographs or textbooks, such as, for example, [QP].

4.2 PlaneWaves in a Vacuum and in Homogeneous Insulating
Media

In the simplest case, nonconducting media, as far as their electromagnetic prop-
erties are concerned, are homogeneous and isotropic. This means that they can be
described by scalar material constants, a dielectric constant " and a magnetic perme-
ability � so that the relationships (2.2) between displacement field D and electric
field E , and, similarly, between magnetic induction B and magnetic field H are
linear. In this section, we study harmonic solutions of the wave equation in sim-
ple media of this kind, including the vacuum, and we analyse the polarization of
electromagnetic waves.

4.2.1 Dispersion Relation and Harmonic Solutions

With the assumptions just mentioned and in the absence of any charge or current
densities, every component of the electric field E .t;x/ and every component of the
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induction field B.t;x/ satisfies a wave equation of the type of (1.45):

1

v2
@2

@t2
f .t;x/ ��f .t;x/ D 0 ; (4.1)

with the velocity modified by the properties of the medium,

v D cp
"�

: (4.2)

The function f .t;x/ stands generically for an arbitrary component of either E or B.
The reason that we have chosen a specific class of reference systems and that we did
not use the covariant form of the wave equation is that we are dealing here with the
observable fields. As was explained earlier, the mere fact that one measures electric
and magnetic fields entails a partition of the R4 of Maxwell theory into time axis
and space parts. On the other hand, as we are dealing with observables only, no
gauge condition must be taken into account. Wave equation (4.1) applies without
subsidiary conditions.

We demonstrate (4.1) for the example of the electric field. Take the curl of the
vector field r � E C .1=c/@B=@t , which, by (1.44b), should be zero. For the first
term one uses the identity (1.47c):

r � �r �E
� D r�r �E� ��E

and notes that the first term on the right-hand side is equal to zero by (1.44c). Indeed,
as there is no free charge density, one has

r �D D "r �E D 0 :
The curl of the induction field is calculated from (1.44d) with j .t;x/ � 0, yielding

r �B D �r �H D �

c

@D

@t
D �"

c

@E

@t
:

Inserting these results one obtains

�
��C �"

c2
@2

@t2

�
E.t;x/ D 0 :

This is wave equation (4.1), which applies to every component of E . The same
differential equation is obtained for B.t;x/ by taking the curl of (1.44d).

The wave equation (4.1), very much like the full set of Maxwell’s equations
without external sources, is a linear equation in the function f .t;x/. Therefore, the
superposition principle applies: With any two solutions f1.t;x/ and f2.t;x/ every
linear combination

c1f1.t;x/C c2f2.t;x/ with c1; c2 2 R or c1; c2 2 C (4.3)
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is also a solution of (4.1). The significance and the usefulness of complex coeffi-
cients instead of real ones will become evident later.

Even in the case of an isotropic and homogeneous medium, it may happen
that the permeability � and the dielectric constant ", and hence also the speed of
propagation v, are functions of the circular frequency ! of the radiation in focus.
Therefore, one distinguishes two cases as follows.

� and " Independent of the Frequency
Obviously, the vacuum belongs to this class of media: Using Gaussian units, both
constants are equal to 1, independently of the frequency of the harmonic oscillation.

A harmonic solution (a so-called pure “sine oscillation”), for example, has the
form

fk.t;x/ D e�i!t e˙ik�x with (4.4a)

k � jkj D !

v
D p�" !

c
: (4.4b)

The vector k is the wave vector; its modulus k is called the wave number. Replacing
the circular frequency by ! D 2�
, with 
 the frequency, and taking k D 2�=�,
with � the wavelength, one recovers the well-known relation v D �
. As an exam-
ple, choose the wave vector along the 3-axis, k D k Oe3. The general solution with
this wave number then reads

fk.t;x/ D cC eik.x3�vt/ C c� eik.x3Cvt/ :

Fundamental solutions of this kind can be combined linearly in a rather arbitrary
way such as, for instance,

g.x3 � vt/ D 1p
2�

C1Z
�1

dk Qg.k/eik.x3�vt/ ; (4.5a)

h.x3 C vt/ D 1p
2�

C1Z
�1

dk Qh.k/eik.x3Cvt/ ; (4.5b)

so that the general differentiable solution reads

f .t; x3/ D g.x3 � vt/C h.x3 C vt/ : (4.6)

Obviously, the two types of solutions, (4.5a) and (4.5b), are distinguished by their
direction of motion – they propagate either along the 3-axis or in the opposite direc-
tion.
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Media with Dispersion
In dispersive media, the product �" and, hence, the speed of propagation v are
functions of the circular frequency !. Every field function f such as the Cartesian
components E i or Bk , respectively, may be written in terms of its Fourier compo-
nents in the circular frequency !, viz.

f .t;x/ D
C1Z

�1
d! ef .!;x/e�i!t : (4.7)

The wave equation (4.1), which is a partial differential equation in space and time
coordinates, becomes a differential equation in the space components only:

h
�C �"!

2

c2

ief .!;x/ D 0 : (4.8)

This differential equation is the homogeneous version of the Helmholtz equa-
tion (3.61). In general, the wave number is no longer a linear function of the circular
frequency, so that one should write

k.!/ D p�.!/".!/ !
c
: (4.9)

The relation between the circular frequency and the wave number is called the dis-
persion relation. The detailed nature of this function is not a problem of Maxwell
theory but rather a question about the composition of the medium, i.e. about matter
with which the Maxwell fields interact.

Considering plane wave solutions of the kind of (4.4a), also called harmonic
solutions, the electric field and the induction field are taken to be

E c.t;x/ D e ei.k On�x�!t/ ; (4.10a)

Bc.t;x/ D b ei.k On�x�!t/ : (4.10b)

The index “c” is meant to indicate that the fields have been continued to the complex
plane whose real parts are the physical, i.e. observable, fields. In the ansatz (4.10a),
or (4.10b), the variable k D jkj with k D k On is the wave number which satisfies the
dispersion relation (4.9), while On is the direction of propagation of the plane wave.
Vectors e and b are constant vectors which may be real or complex and whose
properties and physical interpretation need to be clarified. Before turning to this
question, a remark about calculus with complex fields seems in order.

I Remark: Complex Maxwell fields
Maxwell’s equations without external sources are linear in the observables they
describe, i.e. in the electric and magnetic fields. All coefficients are real. This is
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seen most clearly in the covariant formulations (2.49a) and (2.53), in a vacuum,

"��	
@
�F 	
 .x/ D 0 ;
@�F

��.x/ D 0

or equally well in the original formulation of equations (1.44a)–(1.44d) with % D
0 and j D 0. Therefore, it is perfectly admissible to search for complex solutions,
E c.t;x/, Bc.t;x/, and to interpret the real parts of the complex fields as the
physically realized fields. Note that the method of complex fields is often applied
as a useful technique in electrical engineering, too.

There are applications such as optical oscillations dealt with in this chapter
where the method of complex fields is not only a technical trick but also useful
from a physical point of view. Two examples may illustrate this point.

Introducing complex fields, formula (3.54a) for the energy density and for-
mula (3.54c) for the energy flow are replaced respectively by

u.t;x/ D 1

8�

n
" .Re E c/

2 C � .Re H c/
2
o
;

S .t;x/ D c

4�
.Re E c/ � .Re H c/ :

Indeed, straightforward calculation of u.t;x/, for example, gives

u.t;x/ D 1

32�

n
"
�
E c CE�

c

�2 C � �H c CH �
c

�2o

D 1

16�

n
"
�
E�

c �E c
�C � �H �

c �H c
�o

C 1

32�

n
"
�
E2

c CE�2
c

�C � �H 2
c CH �2

c

�o
:

If the fields have the harmonic time dependence of equations (4.10a) and (4.10b),
then the first term on the right-hand side is independent of time, whereas the sec-
ond term is proportional to e˙2i!t . In typical applications to optics, the circular
frequency ! is large compared to 1. Furthermore, in many situations, only time
averages matter. In those cases, the second term does not contribute, and one has

hui D 1

16�

n
"
�
E�

c �E c
�C � �H �

c �H c
�o
; (4.11a)

where h i denotes the time averages.
An analogous formula applies to the energy flow, viz.

S .t;x/ D c

4�
Re E c � Re H c D c

16�

n�
E c CE�

c

� � �H c CH �
c

�o

D c

16�

n
E c �H �

c CE�
c �H c

o
C terms in e˙2i!t ;
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so that here, too, the time average is given by the first term:

hS .t;x/i D c

16�

n
E c �H �

c CE �
c �H c

o
: (4.11b)

Both expressions (4.11a) and (4.11b) have an intuitive form that is easy to inter-
pret.

We return to the ansatz (4.10a), (4.10b), and clarify the conditions on vectors e

and b imposed by Maxwell’s equations: As the induction field is always divergence
free, r �Bc D 0, one concludes with (4.10b):

r �Bc.t;x/ D b � r ei.k�x�!t/ D i .b � k/ei.k�x�!t/ D 0 :

When there are no external sources, one has also r � E c.t;x/ D 0. These two
equations imply the conditions

On � e D 0 ; and On � b D 0 : (4.12a)

Both the electric field and the induction field are transversal fields: Both are
perpendicular to the direction of propagation.

It remains to determine the relative orientation of the two fields. For that, one
returns to the homogeneous Maxwell equation (1.44b):

r �E c C 1

c

@Bc

@t
D 0 :

Inserting harmonic functions (4.10a) and (4.10b), one concludes

k On � e � !
c

b D 0 ;

or, making use of dispersion relation (4.9),

b D p�" On � e : (4.12b)

As On is a real unit vector, the vectors e and b must have the same phase. Thus,
they can also be chosen to be real without loss of generality. According to rela-
tion (4.12b), the electric field and the induction field are perpendicular to each other,
the direction of propagation On, field E and field B form a right-handed system of
vectors, as sketched in Fig. 4.1.

We give two examples, the 3-axis being chosen along the direction of propaga-
tion, i.e. On D Oe3.
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Fig. 4.1 Vector k defines the direction of prop-
agation of the plane wave. Electric field E and
induction field B are perpendicular to Ok. Unit vec-
tors n, E and B span a right-handed frame

(i) Let e D c1 Oe1, with c1 a complex constant number. Then one has b D p�" c1 Oe2.
(ii) Let e D c2 Oe2. There then follows b D �p�" c2 Oe1.

In example (i), the electric field oscillates along the 1-direction; in example (ii) it
oscillates along the 2-direction. In these cases, one talks about linear polarization.

The most general case is obtained by linear superposition, i.e.

E c.t;x/ D
�
c1 Oe1 C c2 Oe2

�
ei.k On�x�!t/ ; (4.13a)

Bc.t;x/ D 1

k

p
�" k �E c.t;x/ ; (4.13b)

with c1 ; c2 2 C : (4.13c)

If the two complex numbers (4.13c) have the same phase, i.e. if the ratio c1=c2 is
real, then (4.13a) is again a linearly polarized wave whose direction of polarization
is given by

Oe D Oe1 cos' C Oe2 sin ' with tan' D c2

c1
:

In turn, if the phases of c1 and c2 differ from each other, then the polarization is no
longer linear. This more general case, as well as the case where the light beam is
only partially polarized, must be studied in more detail.

4.2.2 Completely Polarized Electromagnetic Waves

The essential result of the preceding section is that the electric field has only two
possible orientations relative to the direction of propagation – in spite of the fact that
it is a vector field over R3 – so that one would expect three possible orientations.
(The same observation applies to the induction field.) Because of the transversality
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of electromagnetic fields and the linearity of Maxwell’s equations, the polarization
is described by a two-dimensional real vector space for which one may choose the
vectors

Oe1 D
�
1

0

�
and Oe2 D

�
0

1

�

as a basis.

I Remark
This property of the classical field theory of light appears in a different perspec-
tive in the quantized version of Maxwell theory. There one finds that light quanta
are massless particles which carry spin 1. However, in contrast to massive spin-
1 objects, this spin does not have three possible orientations, ms D ˙1 and
ms D 0, but only two: The spin points either in the direction of the momentum
p D „k or in the opposite direction. One says that the photon possesses a helicity
h D S � p=jpj which takes only the two values˙1. Helicity is the projection of
spin in the direction of the momentum. The two admissible values correspond to
left-circular and right-circular polarization in the classical theory. They will be
defined more precisely below.

As before and without loss of generality, let the 3-axis be chosen along k. As
we are interested in oscillations in time only, and in relative strength and relative
phase of the transversal components, it is sufficient to study the situation in a fixed
point, say x D 0. Expressed in terms of real, physical fields, the general case can be
written in the form

E.t;x D 0/ D "1 cos.!t/

�
1

0

�
C "2 cos.!t C ˛/

�
0

1

�
; (4.14)

which depends on the (real) amplitudes "i and the phase shift ˛. We show that,
in general, this corresponds to an elliptic polarization where the tips of the fields
move along an ellipse, and we calculate the position and the parameters of this
ellipse as functions of "1, "2 and ˛. When continued to the complex plane, one has
E D Re E c, where

E c.t;x D 0/ D ei!t

�
"1
"2 ei˛

�
: (4.15)

This is now a two-component vector with complex-valued coefficients. Therefore,
it may always be written as a sum:

E c D uC iv ; (4.16a)

where u and v are vectors with real coefficients. By choosing these two vectors
perpendicular to each other, u � v D 0, one has already found the principal axes of
the ellipse hidden in (4.14).
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Define u WD juj and v WD jvj. One calculates

E�
c �E c D u2 C v2 D "21 C "22 ; (4.16b)

E �
c �E c D 2i u � v D 2iuv Oe3 D 2i "1"2 sin ˛ Oe3 (4.16c)

to obtain the moduli of u and v:

u

v

o
D 1

2

�q
"21 C "22 C 2"1"2 sin˛ ˙

q
"21 C "22 � 2"1"2 sin ˛

�
: (4.16d)

These are the two semiaxes of the ellipse in the (real) .1; 2/-plane. One determines
from them the angle  , shown in Fig. 4.2, whose tangent equals v=u:

sin.2 / D 2 tan 

1C tan2  
D 2uv

u2 C v2 D
2"1"2 sin˛

"21 C "22
: (4.17)

The orientation of the semimajor axis in the .1; 2/-plane is found as follows. From
(4.16a) one has E c � u D u2 and E�

c � v D �iv2. On the other hand, these scalar
products are calculated by means of the components of the three vectors involved,
viz.

E c � u D uei!t
˚
"1 cos' C "2 sin ' ei˛



;

E�
c � v D v e�i!t˚�"1 sin' C "2 cos' e�i˛
 :

The product of these two scalar products is equal to �iu2v2 and, thus, is pure imag-
inary. Therefore, calculating the real part of this product from the representation in
terms of components one should find zero:

��"21 � "22� sin ' cos' C "1"2
�
cos2 ' � sin2 '

�
cos˛ D 0 :

This yields the desired formula for the angle enclosed by the semimajor axis and the
1-direction:

tan.2'/ D 2"1"2 cos˛

"21 � "22
: (4.18)

Various special cases can be identified in the results (4.16d), (4.17) and (4.18).

(i) If ˛ D 0, then v D 0; the polarization is linear and points along the '
direction with tan' D "2="1:

˛ D 0 W tan.2'/ D 2."2="1/

1 � ."2="1/2 D
2 tan'

1 � tan2 '
:

This confirms the result of the preceding section.
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Fig. 4.2 General case of elliptic polarization of a
harmonic solution of the wave equation. One has
tan D v=u; the angle � defines the orientation of
the semimajor axis relative to the 1-direction

2

1

E

φ
ψ uv

(ii) If ˛ D �=2 and if the amplitudes are equal, "1 D "2, then v D u,  D �=4,
while ' remains undetermined. In this case, the tip of E c moves along a cir-
cle in the .1; 2/-plane of Fig. 4.2, whose radius is "1 D "2, in a clockwise
direction. In this case, one says there is right-circular polarization.

(iii) The case ˛ D ��=2, "1 D "2, is closely analogous to case (ii): As before,
one has v D u, but D ��=4. The tip of E c moves in an anti-clockwise di-
rection along a circle with radius "1 D "2 in the .1; 2/-plane of Fig. 4.2. One
calls this case left-circular polarization. The rotating electric field, together
with the oriented 3-axis (which in Fig. 4.2 points towards the observer), de-
fines a sense of rotation – analogous to the motion of a standard corkscrew –
which is called positive helicity.
The opposite sense of rotation of the previous example (ii) is described as
negative helicity. In either case, this terminology refers to the quantized ver-
sion of electrodynamics and the properties of photons.

I Remark

In the quantum version of Maxwell theory, the two helicities˙1 are the allowed
states of a photon’s spin s D 1. They replace the projection quantum number
s3 of quantum mechanics of massive particles. There is an essential difference,
though: In the case of a massive particle which carries spin s, the spin projection
onto the 3-axis has a range of .2s C 1/ possible values, viz. ms D �s;�s C
1; : : : ; s, in accord with the quantum mechanics of angular momentum. In the
case of a particle which has no rest mass and which has spin s, these projection
quantum numbers are replaced by only two helicity states, h D Cs and h D �s.
This is a characteristic property of massless particles.

In the complex two-dimensional vector space that was introduced in the special
cases discussed above, these states correspond to the basis

OeC D � 1p
2

�
1

i

�
and Oe� D 1p

2

�
1

�i

�
; (4.19)
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which replaces the basis introduced in (4.14),

Oe1 D
�
1

0

�
and Oe2 D

�
0

1

�
: (4.20)

Of course, there is no compelling reason to choose the elements of these bases nor-
malized to 1. Also, the choice of signs is not fixed a priori. I have chosen the signs
in (4.19) such that they correspond to the convention in the choice of the spherical
basis in R3. Note, however, that the general case of elliptic polarization, using com-
plexified fields, can be described equally well by linear combinations of the base
vectors, (4.20), or of the base vectors, (4.19).

4.2.3 Description of Polarization

Laser beams, as a rule, are polarized. Likewise, the electromagnetic waves emitted
by simple antennas are polarized, but this is not so for many light sources of daily
life, including the light of the Sun. So how can we describe electromagnetic radi-
ation, on the basis of the results of the preceding section, which is either partially
polarized or not polarized at all?

In answering this question, the method of complex fields is very useful. Although
complete information about a fully polarized monochromatic wave is already
contained in the real formula (4.14), matters become more transparent if one com-
plexifies the electric field and hence embeds this field in the vector space V 2.C/.
In this space, for which one may use the “spherical” basis (4.19) or the “linear”
basis (4.20), hermitian 2 � 2 matrices

˚
H 2M2.C/

ˇ̌
H� D H




play a special role. This is so because they are diagonalizable and have real eigen-
values. They can be used as representations of observables in physics.

I Remarks
1. An n � n matrix with complex entries is said to be hermitian if it satisfies the

condition

H� D H ; i.e. H�
ik D Hki ; i; k D 1; 2; : : : ; n : (4.21)

The “dagger”, or cross, symbol denotes the transposed matrix whose entries
are replaced by their complex conjugates. The notion of a hermitian matrix is
the generalization of the notion of a symmetric matrix (whose entries are real)
to complex-valued matrices. A hermitian matrix is diagonalized by means of
a unitary transformation

0

H D UHU� with UU� D 1ln : (4.22)
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In dimension n D 2, this procedure is especially simple. Let the (necessarily
real) eigenvalues of H be denoted by �1 and �2. A unitary transformation
leaves the trace and the determinant of H unchanged, i.e.

det
�
UHU�

� D det H D H11H22 � jH12j 2 D �1�2 � P ;

tr
�
UHU�

� D tr H D H11 CH22 D �1 C �2 � S :

The two eigenvalues to be determined and whose product and sum are known
are the roots of the quadratic equation x2 � Sx C P D 0. Hence, they are
given by

�1 D 1

2

˚
H11 CH22 C

p
.H11 �H22/2 C 4 jH12j 2



; (4.23a)

�2 D 1

2

˚
H11 CH22 �

p
.H11 �H22/2 C 4 jH12j 2



: (4.23b)

2. In quantum mechanics, such a two-dimensional vector space over the complex
numbers C is used in the description of the spin of electrons or other fermions
with spin 1=2. This space may be visualized as the space spanned by the
eigenvectors of the 3-component s3 corresponding to the spin orientations
s3 D C1=2 and s3 D �1=2. Observables which act on the spin degrees
of freedom only are represented by two-dimensional hermitian matrices. The
reader who is familiar with these matters will find the following development
a rather natural one.

Every hermitian 2 � 2 matrix can be represented in a unique manner as a linear
combination of the unit matrix �0 D 1l2 and the three Pauli matrices

�1 D
�
0 1

1 0

�
; �2 D

�
0 �i
i 0

�
; �3 D

�
1 0

0 �1
�
; (4.24)

that is to say,

H D
3X

�D0
a��� D

�
a0 C a3 a1 � ia2
a1 C ia2 a0 � a3

�
; .H D H�/ :

One easily verifies that the vectors given by (4.20) are eigenvectors of �3 and
belong to the eigenvalues C1 and �1, respectively. The vectors of (4.19) are the
eigenvectors of �2 and correspond to the eigenvalues˙1 as well:

�
0 �i
i 0

��
1

i

�
D
�
1

i

�
;

�
0 �i
i 0

��
1

�i

�
D �

�
1

�i

�
:
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In a similar way, one verifies that the vectors

1p
2

�
1

1

�
and

1p
2

�
1

�1
�

are eigenvectors of �1 and belong to the eigenvaluesC1 and �1, respectively.
To relate the polarization of the wave to quantities which one can measure, it is

suggestive to calculate the expectation values of the matrices �� with vector (4.15).
Using the shorthand

E WD E c.t; 0/ D ei!t

�
"1
"2 ei˛

�

the scalar products of ��E with the complex conjugate E� of (4.15) are found to be

s0 WD
�
E�; �0E

� D "21 C "22 ; (4.25a)

s1 WD
�
E�; �1E

� D 2"1"2 cos˛ ; (4.25b)

s2 WD
�
E�; �2E

� D 2"1"2 sin ˛ ; (4.25c)

s3 WD
�
E�; �3E

� D "21 � "22 : (4.25d)

As an example, we verify equation (4.25c):

�
E�; �2E

� D e�i!t
�
"1 "2 e�i˛

� �0 �i
i 0

��
"1
"2 ei˛

�
e�i!t

D �"1 "2 e�i˛
� ��i"2 ei˛

i"1

�

D "1"2.�iei˛ C ie�i˛/ D 2"1"2 sin ˛ :

The four real parameters s0, s1, s2 and s3, which are called Stokes parameters,
provide a complete description of polarization: Three of them are independent. For
example, s0 is a measure of the wave intensity and is related to the other parameters
by

s0 D
q
s21 C s22 C s23 : (4.26)

The remaining three Stokes parameters may serve to extract the requested quantities
"1, "2 and ˛. Also, the angles  and ' defined in Fig. 4.2 can be expressed in terms
of Stokes parameters. Indeed, by (4.17) and according to (4.18), one has

sin.2 / D s2

s0
; tan.2'/ D s1

s3
: (4.27)

A few special cases follow.
(i) If ˛ D 0, then s2 D 0 and  D 0. This is the case of linear polarization in the
direction given by '.
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(ii) If ˛ D ˙�=2 and if the amplitudes are equal, "1 D "2, then one has s1 D 0 D
s3. The angle ' remains undetermined while  is equal to ˙�=4. This is circular
polarization which is left- or right-moving, depending on the sign of ˛. Regarding
parameter s2, one has

s
.C/
2

s0
D C1 for right-circular,

s
.�/
2

s0
D �1 for left-circular (4.28)

polarization. The Stokes parameter s2, when normalized to s0, corresponds to the
two helicity states of the quantized theory.

The usefulness and significance of the Stokes parameters (4.25a)–(4.25d) be-
come obvious in the description of unpolarized or partially polarized light. Indeed,
one can talk about polarized electromagnetic waves only if there exist fixed phase
relations between, e. g., harmonic solutions such as (4.4a). In turn, unpolarized
radiation of a given frequency may be thought of as the result of adding nearly
monochromatic wave trains whose phases are completely uncorrelated.1

Obviously, two waves whose Stokes parameters take opposite values have oppo-
site polarizations. Equation (4.28) provides an example. The states (s1 D s3 D 0,
s2 D ˙1) have opposite circular polarizations. Therefore, an unpolarized or par-
tially polarized state will be represented by an incoherent mixture of two opposite
polarizations, where the relative weights of the two components fix the degree of
polarization. An example may help to illustrate this.

The incoherent mixture of a beam with right-circular polarization with weight
wC and a beam with left-circular polarization with weight w�, both having the
same intensity, gives

s1 D 0 D s3 ; s2 D wCs.C/2 C w�s.�/2 D .wC � w�/s0 :

Referring to the direction of propagation, the degree of polarization is given by

P D wC �w�
wC C w�

:

Thus, a beam with wC D 0:7 and w� D 0:3 has a right-circular polarization of
40%. Another beam with wC D w� D 1=2 is completely unpolarized.

I Remark
The formal similarity to the description of the polarization of spin-1=2 particles
in quantum mechanics is striking. In both cases, optics and quantum theory, one
can introduce a density matrix which in the example just described is given by
% D diag.wC; w�/, under the assumption that the sum of the weights is normal-
ized to 1,wCCw� D 1. If, as before, left-circular and right-circular polarization

1 Such wave trains are modelled by wave packages, i.e. by superposition of plane waves with a
k-dependent weight function, arranged in such a way that the contributing wave numbers k0 lie in
the immediate neighbourhood of k.
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Fig. 4.3 Polarization vector � lies inside a ball with
radius 1. Its direction is the diretion of propagation, its
modulus the degree of circular polarization

R= 1
ζ

is defined with respect to the direction of propagation On but the 3-axis is not cho-
sen along that direction, then the density matrix reads

% D 1

2

h
1l2 C .wC � w�/ On � �

i
� 1

2

h
1l2 C � � �

i
:

The symbol � stands for the three Pauli matrices; the scalar product with vector
a is to be understood as a � � D a1�1 C a2�2 C a3�3. Given the vector � D
.wC � w�/ On, the direction of propagation is fixed at On, and its modulus j�j is
the degree of circular polarization. This vector is located in the centre of the ball
with radius 1 (Fig. 4.3). If its tip touches the surface of the ball, then the beam is
fully polarized. If it is inside the ball, then the beam is partially polarized or not
polarized at all.

4.3 Simple Radiating Sources

Localized oscillating charge and current densities provide the simplest models for
radiating sources. Localization means that the sources occupy a finite domain in
space. One then is interested mostly in the waves emitted by them in the outer space,
outside the sources. Because of the linearity of Maxwell’s equations, it is sufficient
to study harmonic solutions:

%c.t;x/ D %.x/e�i!t ; (4.29a)

j c.t;x/ D j .x/e�i!t ; (4.29b)

though in complexified form. Realistic source distributions are obtained from them
by Fourier analysis in the variable t .



214 4 Simple Applications of Maxwell Theory

The vector potential is calculated within the Lorenz gauge and using the retarded
Green function (3.65). It is found to be a time-harmonic function, too, viz.

A.t;x/ D 1

c

•
d3x0

Z
dt 0

j .t 0;x0/
jx � x0j ı

�
t 0 � t C 1

c

ˇ̌
x � x0ˇ̌�

D 1

c

•
d3x0 j .x0/
jx � x0j e

i.!
c
/jx�x0j e�i!t

� A.x/e�i!t : (4.30)

In going from the first formula to the second, the integral over t 0 was carried out:

C1Z
�1

dt 0 e�i!t 0ı

�
t 0 � t C 1

c

ˇ̌
x � x0ˇ̌� D e�i!t ei.!

c
/jx�x0j :

As the radiation is to be calculated outside the source, i.e. in vacuum where there
are no effects of any media, the dispersion relation is .!=c/ D k. Furthermore,
r �H � .1=c/ PE D 0, and therefore

PE.t;x/ D cr �B.t;x/ D i

k
r � PB.t;x/ :

Regarding the factors in the Fourier components of the fields which depend on x

only,
E c.t;x/ D E.x/e�i!t ; Bc.t;x/ D B.x/e�i!t

one must solve equations which depend on x only:

E.x/ D i

k
r �B.x/ ; (4.31a)

B.x/ D r �A.x/ : (4.31b)

The individual steps in the calculation are now clearly defined: Starting from the
given current density j .x/, one calculates the vector field A.x/ by means of equa-
tion (4.30). The physical fields are obtained from (4.31a) and (4.31b).

4.3.1 Typical Dimensions of Radiating Sources

Let the source be localized and let its typical extension be d . In the description and
the mathematical treatment of sources of this kind, the decisive parameter is the ratio
of the wavelength � D 2�=k to the dimension d . In particular, one must distinguish
the case where � is much greater than d from a situation where the two parameters
are of the same order of magnitude.
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Ordinary Atoms
The atoms we find in nature have spatial extensions of the order of magnitude of the
Bohr radius

aB D „2
e2me

� „c
. e

2

„c /mec2
' 5:3 � 10�11 m ;

with
e2

„c '
1

137
; mec

2 ' 0:511MeV ; „c ' 197:3 � 10�15 MeVm :

The typical radiation emitted by atoms lies in the visible range, and a good orien-
tation is provided by a wavelength on the order of 1000Å D 10�7 m. Thus, in this
case � 
 d , the emitted wavelength is much larger than the typical dimension of
the source. As a consequence, electric dipole transitions dominate in atoms and are
found with much higher intensity than those with higher multiplicities.

Muonic Atoms
The Bohr radius for muons is smaller than that of electrons by the ratio me=m�.
The binding energies in hydrogen-like atoms in which the electron is replaced by
a muon, and likewise in turn the transition energies, are larger by the reciprocal of
this value. The wavelengths of the emitted radiation are correspondingly smaller.
In general, the wavelength � will be barely larger than, or even comparable to, the
dimension d of the source. What held in electronic atoms is only marginally true in
muonic atoms: Though electric dipole transitions are important, higher multipoles
such as, e. g., electric quadrupoles are seen with sizeable intensities.

Atomic Nuclei
Atomic nuclei have spatial extensions on the order of magnitude d D
10�15 to 10�14 m, and transitions between different states of nuclei in which
� -rays are emitted correspond to energy differences of a few megaelectron volts.
Therefore, typical wavelengths are � D 2�.„c=E/ > 10�12 m, which is no longer
significantly larger than the typical dimension of the source. As in muonic atoms,
besides the dipoles, one observes higher multipolarities.

Classical Macroscopic Sources
In the case of macroscopic senders and their antennas, the wavelength, in general,
is large compared to their physical extension � 
 d . As we are talking here about
macroscopic scales where practical measurements may well fall short of these, one
must compare the distance r of the observer from the source, both with the typical
extension d and with the wavelength �. This is in contrast to the microscopic sys-
tems discussed previously where the observation is always done at distances which
are larger than the extension of the source. Therefore, we distinguish three different
situations:
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(A) d � r � �: The so-called near-field zone, or static zone, where an observer
sits at a distance at which the source looks pointlike to him yet close enough
to be still far from the first oscillation node;

(B) d � � � r : The far-field zone, or radiation zone, where the observer
sees the source as pointlike and is far enough to see the fully developed
wave;

(C) d � r ' �: The intermediate domain where the distance from the source is
comparable with the wavelength, also called the induction zone.

A radio receiver, in general, will be located in the far-field zone of a given radio
station. In turn, if one makes measurements in the vicinity of a long-wave radio
station, then one is located rather in the near-field zone or the intermediate domain
between near-field and far-field zones.

4.3.2 Description byMeans of Multipole Radiation

A very useful framework for calculating the radiation emitted by a given source
is provided by the method of multipole moments. In Sect. 1.8.4, this method was
developed for electrostatics. For the static problems discussed there we constructed
a set of base solutions of the Laplace equation using spherical harmonics. More
general solutions were obtained by expansion in terms of base solutions, as indicated
by (1.103). In the problems to be discussed in this section, the aim is to apply this
method to the Helmholtz equation (4.8), that is, to the differential equation

�
�C k2	ef .k;x/ D 0 : (4.32)

The procedure is similar to the case of electrostatics. One starts from a factoriz-
ing ansatz of the type of (1.95), with spherical harmonics Y`m.�; �/ in the angular
variables and with radial functions f`.r/, such that

ef .k;x/ D
1X
`D0

CX̀
mD�`

f`.k; r/Y`m.�; �/ :

One shows that the radial functions satisfy the ordinary differential equation

�
1

r2
d

dr

�
r2

d

dr

�
� `.`C 1/

r2
C k2

�
f`.k; r/ D 0 : (4.33)

As one verifies immediately, the previously known static solutions f stat
`
D r` and

f stat
`
D r�`�1 satisfy this differential equation if k2 D 0.
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For k 6D 0 one introduces the dimensionless argument z WD kr and derives
a differential equation which replaces (4.33), viz.

�
d2

z2
C 2

z

d

ddz
� `.`C 1/

z2
C 1

�
f`.z/ D 0 : (4.34)

This is a well-known differential equation of the theory of Bessel functions. A sys-
tem of fundamental solutions which is well adapted to the problem posed in this
section is given by

f
.1/

`
.kr/ D j`.kr/ ; (4.35a)

f
.2/

`
.kr/ D h.1/

`
.kr/ D j`.kr/C in`.kr/ : (4.35b)

Here j`.kr/ are the spherical Bessel functions, n`.kr/ the spherical Neumann func-
tions, for which the formulae

j`.z/ D .�z/`
�
1

z

d

dz

�` sin z

z
; (4.36a)

n`.z/ D �.�z/`
�
1

z

d

dz

�` cos z

z
(4.36b)

provide a useful representation. The function h.1/
`

denotes one of the two so-called
spherical Hankel functions. This class of special functions is used in treating prob-
lems with central fields in quantum mechanics (cf., e. g., [QP]). The functions
h
.1/

`
.z/ are called spherical Hankel functions of the first kind.2

Here are a few examples:

j0.z/ D sin z

z
; (4.37a)

j1.z/ D � d

dz

sin z

z
D sin z

z2
� cos z

z
; (4.37b)

j2.z/ D z d

dz

1

z

d

dz

sin z

z
D sin z

z

�
3

z2
� 1

�
� 3 cos z

z2
: (4.37c)

n0.z/ D �cos z

z
; (4.38a)

n1.z/ D �cos z

z2
� sin z

z
; (4.38b)

n2.z/ D �cos z

z

�
3

z2
� 1

�
� 3 sin z

z2
: (4.38c)

2 Another notation for spherical Hankel functions is h.C/

` , which differs from the one in the main

text by a factor i: h.C/

`
.z/D ih.1/

`
.z/.
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Of special importance for what follows is the behaviour of these functions at
r ! 0 and for r !1, which we list here:

.kr/� 1 W j`.kr/ � .kr/`

.2`C 1/ŠŠ ; n
.1/

`
� � .2` � 1/ŠŠ

.kr/`C1
; (4.39a)

h
.1/

`
� �i

.2` � 1/ŠŠ
.kr/`C1

; (4.39b)

where .2`C 1/ŠŠ D 1 � 3 � 5 � � � .2`C 1/ is the double factorial, and

kr 
 1 W j`.kr/ � 1

kr
sin


kr � `�

2

�
; n`.kr/ � � 1

kr
cos



kr � `�

2

�
;

(4.40a)

h
.1/

`
.kr/ � .�i/`C1

eikr

kr
: (4.40b)

The generalization of expansion (1.105) to Green functions with k 6D 0 reads as
follows:

eikjx�x0j

4�jx � x0j D ik
1X
`D0

j`.kr</h
.1/

`
.kr>/

CX̀
mD�`

Y �
`m. Ox0

/Y`m. Ox/ : (4.41)

As before, the notations r< and r> indicate that of the two radial variables r D jxj
and r 0 D jx0j, the smaller of them must be inserted into the Bessel function, and
the larger of them must be inserted into the Hankel function. As a shorthand, the
angular coordinates .�; �/ of x, and .� 0; �0/ of x0 are denoted by the unit vectors Ox
and Ox0, respectively.

One confirms that for k D 0 expansion (4.41) goes over into formula (1.105). In
this limit, one has .kr/� 1, so that one can insert estimates (4.39a) and (4.39b):

.kr/! 0 W eikjx�x0j

4�jx � x0j

� ik
1X
`D0

.kr</
`

.2`C 1/ŠŠ .�i/
.2` � 1/ŠŠ
.kr>/`C1

CX̀
mD�`

Y �
`m. Ox0

/Y`m. Ox/

D
1X
`D0

r`<

r`C1>

1

2`C 1
CX̀

mD�`
Y �
`m. Ox0

/Y`m. Ox/ :

This agrees with formula (1.105) of electrostatics.
We comment on the proof of (4.41) as follows. The left-hand side is a Green

function of the Helmholtz equation (4.32). Therefore, the radial functions contained
in (4.41) must be solutions of the differential equation (4.34), i.e. they must be linear
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combinations of spherical Bessel and Neumann functions. The limit k ! 0 tells us
which are the ones with the argument kr< and which are the ones with the argument
kr>. As the expansion in terms of spherical harmonics is unique, expression (4.41)
holds true.

Expansion (4.41) can be inserted into expression (4.30) for the vector potential.
For the domain outside the sources one obtains in this way

A.x/ D 4�ik

c

1X
`D0

h
.1/

`
.kr/

CX̀
mD�`

Y`m. Ox/ (4.42)

�
1Z
0

r 0 2 dr 0
Z

d˝ 0 j .x0/j`.kr 0/Y �
`m. Ox0

/ :

If the measuring point x is also allowed to lie inside the source, then the two cases
r > r 0 and r < r 0 must be distinguished, and the integral over r 0 must be split in
analogy to (1.106b). For instance, in expression (4.42), which applies to values of x

outside the source, the assignments

r> D r D jxj and r< D r 0 D ˇ̌x0 ˇ̌

must be chosen. The vector potential (4.42) is a sum of products of two factors each,
one of which depends on the measuring point x only, while the other factor,

1Z
0

r 02 dr 0
“

d˝ 0 j .x0/j`.kr 0/Y �
`m. Ox0

/ ; (4.43)

depends on the source distribution only. This shows that the factors given by (4.43)
are generalizations of the multipole moments (1.106d).

I Remarks
1. In the near-field zone d � r � �, the product kr is small compared to 1.

Therefore, in (4.30), one can approximate

eikjx�x0j ' 1

or, as regards the multipole expansion (4.42), replace the spherical Bessel and
Hankel functions by their approximations (4.39a) and (4.39b), respectively, so
that

A.x/ ' 4�

c

X
`;m

1

2`C 1
Y`m. Ox/
r`C1

1Z
0

r 02 dr 0
Z

d˝ 0 r 0 `j .x0/Y �
`m. Ox0

/ :

(4.44)
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The interpretation of these formulae in terms of physics is that retardation
effects are negligible in the near-field zone and that the conditions are nearly
static ones. Except for the harmonic time dependence, fields E and B are
static.

2. Also, in the far-field zone r 
 �, the conditions are simpler than in the inter-
mediate zone. For example, returning to expression (4.30), one has r 
 r 0,
and one can expand in terms of r 0=r

ˇ̌
x � x0 ˇ̌ ' r � On � x0 ; On D x

r
;

so that in the limit .kr/!1 one obtains

A.x/ ' eikr

cr

•
d3x0 j .x0/e�ik On�x0

D eikr

cr

1X
�D0

.�ik/�

�Š

•
d3x0 j .x0/. On � x0/� : (4.45)

As the wavelength is large compared to the spatial extension of the source,
�
 d , the product kd is small compared to 1. Therefore, the series in expres-
sion (4.45) above converges rapidly and is dominated by the first nonvanishing
term.

4.3.3 The Hertzian Dipole

As an application of the general decomposition (4.42), consider the term with ` D 0,
noticing that

h
.1/
0 .kr/ D eikr

ikr
; j0.kr/ D sin.kr/

kr
:

If the source is nearly pointlike, then the integral in (4.43) is dominated by values
of r 0 for which kr 0 � 1. Therefore, one can set j0.kr 0/ ' 1 so that one obtains

A.x/ ' 4�

c

eikr

r

•
d3x0 j .x0/

1

4�
:

(Note that Y00 D 1=
p
4� is inserted here.) By means of the continuity equation, the

integral over the current density is replaced by an integral over the charge density.
With harmonic time dependence the continuity equation yields

r � j .t;x/C @%.t;x/

@t
D 0 H) r � j .x/ � i!%.x/ D 0 :
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As the current density vanishes at infinity sufficiently fast, partial integration and
insertion of the last equation yield

•
d3x0 j .x0/ D �

•
d3x0 x0�r � j .x0/

�

D �i!
•

d3x0 x0%.x0/ :

The right-hand side contains the dipole moment (1.109c)

d D
•

d3x0 x0%.x0/ ; (4.46)

which is known from electrostatics. Thus, one obtains a particularly simple expres-
sion for the x dependent factor in the vector potential, viz.

A.x/ ' �ik
eikr

r
d ;

�
k D !

c
D 2�

�

�
; (4.47)

from which one then derives the magnetic induction Bc.x/ D r � A.x/ and the
electric field E c.x/ D .i=k/r �Bc.x/. After a short calculation, one obtains

Bc.x/ D k2 eikr

r



1 � 1

ikr

�
Ox � d ; (4.48)

E c.x/ D k2 eikr

r

� Ox � d
� � Ox C eikr

r3
.1 � ikr/

�
3 Ox. Ox � d/ � d

	
: (4.49)

Equipped with their harmonic time dependence the fields are

Bc.t;x/ D e�i!tBc.x/ ; E c.t;x/ D e�i!tE c.x/ :

Finally, the physically realized fields are the real parts thereof,

B.t;x/ D Re Bc.t;x/ ; E.t;x/ D Re E c.t;x/ :

Before turning to an interpretation of these solutions, we give here a few steps of the
calculation that leads from (4.47) to the complex fields of (4.48) and (4.49). First
one must calculate

Bc D r �A D �ik


r � d

eikr

r

�
:

With @f.r/

@xi D


@f.r/
@r

�
.xi=r/ and with Ox D x=r one derives

Bc D �ik Ox � d


� eikr

r2
C ik

eikr

r

�
� �ik Ox � d g.r/ ;
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where the following abbreviation is introduced:

g.r/ D � eikr

r2
C ik

eikr

r
:

Note that this is precisely the result given by (4.48).
The electric field follows from this by applying once more the curl operator,

E c D .i=k/r �Bc. This is calculated by means of the formula

�r � .a � b/
�
i
D "ikm"mnp@kanbp

– summed over all repeated indices – and of the identity

"ikm"mnp D ıinıkp � ıipıkn :

If the vector fields a and b depend on x, this gives

r � .a � b/ D .@ka/bk � .@nan/bC a.@kbk/� an.@nb/ :

Abbreviating the r-dependent factor by g.r/, as previously, one has in the case at
hand

r � . Ox � d g.r// D �dg.r/ � r� Ox � d g.r/
�r � Ox�

C Ox�r � d g.r/� � � Ox � rg.r/�d :

Finally, using the formulae

@

xi
xj

r
D 1

@r
ıij � x

ixj

r3
; r � x

r
D 2

r
;

which are known to the reader or else are easy to derive, the first two terms on the
right-hand side yield

�
dg.r/ � r� Ox � d g.r/

�r � Ox� D �g.r/
r

�
d � Ox� Ox � g.r/

r
d :

The third and fourth terms, taken together, give

Ox�r � d g.r/� � � Ox � rg.r/�d D �d � Ox� Ox @g.r/
@r
� d

@g.r/

@r

D � Ox � .d � Ox/@g.r/
@r

;

where the identity Ox � .d � Ox/ D d � Ox. Ox � p/ was inserted. Finally, using this
identity once more in the preceding terms, and inserting the explicit expression for
g.r/ and its derivative, the result for electric field (4.49) follows.
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Hertzian Dipole in the Far Zone
Far outside the source and at distances which are large compared to the wavelength
emitted by the Hertz dipole, only the first term on the right-hand side of (4.48)
contributes. One finds

Bc.x/ ' k2 eikr

r
Ox � d ; (4.50)

E c.x/ ' Bc.x/ � Ox : (4.51)

The electric field and the magnetic induction field, which are given by the real parts
of these expressions, respectively, oscillate in phase and their magnitudes are of the
same order. Both fields are perpendicular to the direction of propagation Ox and both
decrease like 1=r .

Hertzian Dipole in the Near Zone
Because we assumed the dipole to be pointlike, the variable r is still large compared
to the dimension d of the emitter, but at the same time it is small compared to the
wavelength. Thus, as for formula (4.44) the approximation j0.kr/ ' 1 is justified.
Hence, the fields are

Bc.x/ ' ik
1

r2
Ox � d ; (4.52)

E c.x/ ' 1

r3

�
3 Ox. Ox � d/� d

	
: (4.53)

As expected, the electric field is static, but for the harmonic time dependence. It
equals the field of a static electric dipole. The magnitude of the magnetic induction
is smaller by a factor of .kr/ than that of the electric field. Furthermore, the two
physical fields have a relative phase shift of �=2. Indeed,

E .t;x/ D Re
�

ei!tE c.x/
� / cos.!t/ ;

B.t;x/ D Re
�

ei!tBc.x/
� / � sin.!t/ :

It is instructive to calculate the power of a Hertzian sender. Enclosing the dipole
by a sphere with radius r (it is sufficient to choose this radius in the far zone),
the power radiated into the solid angle d˝ is equal to the surface element r2 d˝
multiplied by the mean value of the radial component of the Poynting vector

dW

d˝
D r2 . Or � hS i/ D r2c

16�
Or˚E �

c �Bc CE c �B�
c




D c

8�
k4 j. Or � d/ � Orj 2 D c

8�
k4d2 sin2 � : (4.54)

The total time-averaged power is given by the integral of this expression:

W D
“

d˝
dW

d˝
D c

8�
k4d22�

�
2 � 2

3

�
D c

3
k4d2 : (4.55a)
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The power radiated during one period of oscillation is given by

TW D 2�

ck
W D 16�4

3

1

�3
d2 ; (4.55b)

where we inserted the relation k D 2�=� between wavelength and wave number.

I Remarks
1. Harmonically oscillating sources cannot produce an electric monopole field.

The scalar potential

˚.t;x/ D
Z

dt 0
•

d3x0 %.t 0;x0/
jx � x0jı

�
t 0 � t C 1

c

ˇ̌
x � x0ˇ̌�

contains the term with ` D 0

˚monopole.t;x/ D q.t 0 D t � r=c/
r

D q

r
;

which is independent of time because the electric charge is conserved.
2. Similarly, the term with ` D 1 of (4.42) with a pointlike source is easy to

interpret. One uses the formula

h
.1/
1 .kr/ D .�i/

eikr

kr


 1
kr
� i
�

for the Hankel function. In integrating over the source, one can use the ap-
proximation

j1.kr
0/ ' kr 0

3
;

valid for .kr 0/� 1. Then one has

A.x/ ' 4�

3cr


1
r
� ik

�X
m

Y1m. Ox/
1Z
0

r 02 dr 0
“

d˝ 0 j .x0/r 0Y �
1m. Ox0

/ :

(4.56)
Except for a factor which contains some constants and the radial variable r ,
this is seen to be the scalar product of Ox, the unit vector in the direction of
propagation, and x0,

4�

3

X
m

Y1m. Ox/r 0Y �
1m. Ox0

/ D Ox � x0 ;

expressed once in spherical coordinates, once in Cartesian coordinates. Using
the identity .a � b/ � c D b.a � c/ � a.b � c/, one obtains the relation

1

c
. Ox � x0/j D 1

2c

�
. Ox � x0/j C . Ox � j /x0	C 1

2c
.x0 � j / � Ox : (4.57)



4.4 Refraction of Harmonic Waves 225

The first term on the right-hand side of (4.57) contains an electric quadrupole
density, and the second term contains the magnetic dipole density, by now
well known from (1.120a) whose integral over the source yields the magnetic
moment �, (1.120b). Isolating this term, one has

Amagn.x/ D ik Ox � �
eikr

r



1 � 1

ikr

�
: (4.58)

This magnetic dipole potential is the analogue of the Hertzian dipole, which is
an oscillating electric dipole. It is interesting to note that the potential has the
same form as the induction field, (4.48), of the electric dipole. The correspond-
ing physical fields formally resemble the fields given by (4.49) and (4.48),
respectively:

Bmagn
c .x/ D k2 eikr

r

� Ox � �
� � Ox C eikr

r3
.1 � ikr/

�
3 Ox. Ox � �/� �

	
;

(4.59)

Emagn
c .x/ D �k2 eikr

r



1 � 1

ikr

�
Ox �� : (4.60)

These expressions illustrate well the close relationship of the electric and the
magnetic dipole sender.

4.4 Refraction of Harmonic Waves

In this section, we study the refraction of a harmonic wave at the interface between
two isolating homogeneous media with dielectric constants " and "0 and with mag-
netic permeabilities� and�0, respectively. The 3-axis in R3 is chosen perpendicular
to the boundary plane. A plane wave with wave vector k incident on this plane splits
into a refracted beam in the neighbouring medium and a reflected beam in the first
medium.

4.4.1 Index of Refraction and Angular Relations

Without loss of generality we choose the 1- and 2-axes in the boundary plane such
that k lies in the .1; 3/-plane. With the well-known relation between wave number
k D jkj and wavelength �, and using (4.9), one has

k D 2�

�
; k D p�" !

c
:
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Thus, in the case of the vacuum,

!

c
D 2�

�0
: (4.61)

In a homogeneous medium, the same wave propagates with a wavelength � which
is related to the wavelength �0 in the vacuum by

� D �0 1p
�"

: (4.62a)

The index of refraction is inversely proportional to the velocity cM at which the
harmonic oscillation propagates in the medium:

n D c

cM
: (4.62b)

Taking the index of refraction of the vacuum as being equal to 1 and taking account
of the relations 
�0 D c and 
� D cM, one derives Maxwell’s relation

n D p�" : (4.62c)

Comparing the two media whose common boundary is the plane x3 D 0, one has

n D p�" ; n0 D p�0"0 :

At the interface with the neighbouring medium, the incoming wave splits into a
refracted wave and a reflected wave, which propagates in the original medium. De-
noting the wave vector of the refracted wave by k0 and that of the reflected wave
by k00, the electric field and the magnetic induction are, in complex form,

E c.t;x/ D e0 e�i.!t�k�x/ ; Bc.t;x/ D n Ok �E c.t;x/ ; (4.63a)

E 0
c.t;x/ D e0

0 e�i.!0t�k0 �x/ ; B 0
c.t;x/ D n0 Ok0 �E 0

c.t;x/ ; (4.63b)

E 00
c .t;x/ D e00

0 e�i.!00t�k00�x/ ; B 00
c .t;x/ D n00 Ok00 �E 00

c .t;x/ : (4.63c)

At this point, one needs to know the boundary conditions which must be fulfilled
at the interface. Exercise 4.1 shows the following: At the boundary, the tangential
components of fields E and H , as well as the normal components of fields D and
B, are continuous. This is possible only if the three phases in (4.63a)–(4.63c) at
x3 D 0 coincide for all times t and all values of x1 and x2. This implies an equality
of the frequencies, ! D !0 D !00 (note that we already made use of this in (4.62c)),
as well as the equality of the scalar products at the boundary

�
k � x�ˇ̌

x3D0 D
�
k0 � x�ˇ̌

x3D0 D
�
k00 � x�ˇ̌

x3D0 (4.64a)
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Fig. 4.4 A given wave in the .1; 3/-plane which comes
in under the angle ˛ relative to the 3-axis. The wave
vectors of both the refracted and the reflected waves lie
in the same plane

α

β

γ

3

k

1

k
k

'

''

and the relations

jkj D ˇ̌k00 ˇ̌ D k D n!
c
; (4.64b)

ˇ̌
k0 ˇ̌ D k0 D n0!

c
: (4.64c)

Having chosen the 1-axis such that k lies in the .1; 3/-plane, one concludes
from (4.64a) that k0 and k00 lie in that plane, too. With the notations of Fig. 4.4
one has

k D n!

c

�
sin˛; 0; cos˛

�T
;

k0 D n0!
c

�
sinˇ; 0; cosˇ

�T
;

k00 D n!

c

�
sin �; 0;� cos �

�T
:

A comparison with condition (4.64a) yields the following relations between the an-
gles ˛, ˇ and � :

˛ D � and n sin ˛ D n0 sinˇ : (4.65)

The reflected beam propagates under the same angle relative to the 3-axis as the
incoming beam but is oriented in the negative 3 direction. The second equation is
called Snellius’ law. The refracted beam deviates from the direction of the incoming
beam whenever the indices of refraction are not equal.

4.4.2 Dynamics of Refraction and Reflection

In detail, the boundary conditions for the fields are

Dn D D0
n ; Bn D B 0

n ; E t D E 0
t ; H t D H 0

t : (4.66)
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Fig. 4.5 The physical fields in the so-called
transverse-electric case where the electric field points
to the back, away from the observer

' '

''

''

Denoting the positive normal to the boundary plane by On D Oe3, one obtains the
following system of equations (following the same order as in (4.66)):

�
".e0 C e00

0/ � "0e0
0

	 � On D 0 ; (4.67a)�
k � e0 C k00 � e00

0 � k0 � e0
0

	 � On D 0 ; (4.67b)�
e0 C e00

0 � e0
0

	 � On D 0 ; (4.67c)
h 1
�

�
k � e0 C k00 � e00

0

� � 1

�0
�
k0 � e0

0

�i � On D 0 : (4.67d)

As the fields are transversal to their respective directions of propagation, one
needs to distinguish only two basic situations in a complete analysis of these equa-
tions: the case where E is perpendicular to the .1; 3/-plane, i.e. to the plane spanned
by k and On, and the case where E lies in this plane.

In what follows, let the absolute values of vectors e0, e0
0 and e00

0 be denoted by
e0, e0

0 and e00
0 , respectively.

The Transverse Electric Case
In a situation where the electric field is perpendicular to k and to On, i.e. points
“away” from the observer, i.e. to the back of Fig. 4.5, field B lies in the .1; 3/-plane.
By assumption, E D e0 Oe2. For the amplitudes, (4.67c) gives e0 C e00

0 � e0
0 D 0,

whereas (4.67d) yields the relation

r
"

�
.e0 � e00

0/ cos˛ �
s
"0
�0 e

0
0 cosˇ D 0 :

Boundary conditions (4.67a)–(4.67d) and the transversality condition

k0 �E 0 D 0 D k00 �E 00
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show that E 0 D e0
0 Oe2 and E 00 D e00

0 Oe2, i.e. that the electric fields of the refracted and
the reflected waves point in the same direction as the electric field of the incoming
wave.

One rewrites the second relation of (4.65) as

n0 cosˇ D
p
n02 � n2 sin2 ˛

and solves these equations for e0
0=e0 and for e00

0=e0. This gives

e0
0

e0
D 2n cos˛

n cos˛ C . �
�0
/n0 cosˇ

D 2n cos˛

n cos˛ C . �
�0 /
p
n0 2 � n2 sin2 ˛

; (4.68a)

e00
0

e0
D n cos˛ � . �

�0 /n
0 cosˇ

n cos˛ C . �
�0
/n0 cosˇ

D n cos˛ � . �
�0 /
p
n02 � n2 sin2 ˛

n cos˛ C . �
�0 /
p
n0 2 � n2 sin2 ˛

DW Rpara : (4.68b)

The second result simplifies when the two media have the same magnetic perme-
ability, �0 D �. Using once more the second relation of (4.65), one has3

Rpara.�
0 D �/ D e00

0

e0
D � sin.˛ � ˇ/

sin.˛ C ˇ/ : (4.69)

This is one of Fresnel’s formulae. Fresnel derived this and other formulae for re-
fraction and reflection in 1821.

The Transverse Magnetic Case
In this case, the electric fields lie in the .1; 3/-plane, as shown in Fig. 4.6. In partic-
ular, one has

E D e0.� Oe1 cos˛ C Oe2 sin˛/ ;

E 0 D e0
0.� Oe1 cosˇ C Oe2 sinˇ/ ;

E 00 D e00
0. Oe1 cos˛ C Oe2 sin ˛/ :

The boundary conditions (4.67c) and (4.67d) yield the equations

.e0 � e00
0/ cos˛ � e0

0 cosˇ D 0 ;
r
"

�
.e0 C e00

0/�
s
"0
�0 e

0
0 D 0 :

3 The subscript “para” (parallel) refers to the three electric fields of the incoming, the refracted and
the reflected waves.
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Fig. 4.6 The physical fields in the so-called
transverse-magnetic case where the electric fields
of the incoming, refracted and reflected beams lie in
the .1; 3/-plane

' '

''

''

These, in turn, as well as (4.62c) and (4.65), determine the ratio of the amplitudes:

Rtrans WD e00
0

e0
D . �

�0
/n02 cos˛ � n

p
n02 � n2 sin2 ˛

. �
�0
/n02 cos˛ C n

p
n02 � n2 sin2 ˛

; (4.70a)

e0
0

e0
D 2nn0 cos˛

. �
�0 /n02 cos˛ C n

p
n02 � n2 sin2 ˛

: (4.70b)

(The notation “trans” stands for transversal.)
In either case, the transverse-electric or the transverse-magnetic, the square of

the ratio e00
0=e0 is a measure of the intensity of the reflected wave as compared to the

incoming wave. To visualize these ratios, we consider a situation where �0 D � but
distinguish the cases n0 > n and n0 < n. As a shorthand we denote the ratio of the
indices of refraction by

r WD n0

n
: (4.71)

The squares of the ratios are

R2para D
 

cos˛ �
p
r2 � sin2 ˛

cos˛ C
p
r2 � sin2 ˛

!2
; (4.72a)

R2trans D
 
r2 cos˛ �

p
r2 � sin2 ˛

r2 cos˛ C
p
r2 � sin2 ˛

!2
: (4.72b)

The case r > 1:
First, one identifies the following special cases from the results given by (4.68b)
and (4.70a)

˛ D 0 W R2para D
�
1 � r
1C r

�2
; R2trans D

�
1 � r
1C r

�2
;

˛ D �

2
W R2para D 1 ; R2trans D 1 :
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Fig. 4.7 The ratios of the intensity of the reflected
beam to the intensity of the incident beam as a func-
tion of the angle of incidence, for the example n0 > n:
r D 2:4173 (diamond and sodium light at room
temperature). In this example, one has ˛B D 1:178

para

trans

B

, , , ,

,

,

,

While R2para grows monotonously in the interval .0; �=2/, the ratio R2trans has a zero
at an angle ˛B which is obtained from the equation

r2 cos˛ �
p
r2 � sin2 ˛ D 0 :

The angle ˛B is called the Brewster angle. One verifies that it is obtained from

˛B D arctan.r/ ; or sin2 ˛B D r2

1C r2 ; cos2 ˛B D 1

1C r2 : (4.73)

As we assumed r D n0=n > 1, the Brewster angle ˛B lies between �=4 and �=2.
From Snellius’ law (4.65) one concludes for ˛ D ˛B

sinˇj˛D˛B
D 1p

1C r2 D cos˛B

and, as all angles are in the interval .0; �=2/, one obtains the condition

ˇ D �

2
� ˛B : (4.74)

These results have the following interpretation:

(i) In the transverse-magnetic case in which the electric field oscillates in the
.1; 3/-plane, there is no reflected wave if the angle of incidence is ˛B.

(ii) If the electric field of the incoming wave has components both in the .1; 3/-
plane and in directions perpendicular to it, that is to say, if its (partial or
full) polarization is elliptic, then only the component of the reflected beam
perpendicular to the .1; 3/-plane survives. In this case, the reflected beam is
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Fig. 4.8 The ratios of the reflected intensity to the in-
cident intensity as a function of the angle of incidence,
here for n0 < n: r D 0:4137 (inverse of the value
in Fig. 4.7). In this example, one has ˛B D 0:392 and
˛G D 0:426

,

,

,

, , , ,

B

trans

para

fully and linearly polarized. The behaviour of R2para and ofR2trans as functions
of ˛ is shown in Fig. 4.7.

The case r < 1:
In this case, Snellius’ law (4.65) says that the angle ˇ is larger than the angle of
incidence ˛. Therefore, there must exist a limiting angle ˛G for which ˇ is equal to
�=2, viz.

˛G D arcsin r D arcsin

n0

n

�
: (4.75)

This is the case of total reflection. As before, there still exists a Brewster angle
which, however, is below �=4. The squares of the ratios of (4.68b) and (4.70a) (for
�0 D �) are shown in Fig. 4.8 as functions of the angle of incidence.

4.5 Geometric Optics, Lenses and Negative Index of Refraction

This section is devoted to additional examples of the application of Maxwell’s equa-
tions to optics: the limiting transition to geometric optics, a few formulae for thin
optical lenses, needed in subsequent sections, and new and surprising phenomena
which occur when the index of refraction takes negative values.

4.5.1 Optical Signals in Coordinate and in Momentum Space

As explained in Sect. 4.2, the homogeneous Maxwell equations are linear in all
four types of fields, E.t;x/, D.t;x/, B.t;x/ and H .t;x/. This means that the
superposition principle applies: With any two solutions, every linear combination
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of them is also a solution. Furthermore, the fields may be assumed to be complex,
provided one respects the rules of how to extract from them the observable fields
and their properties. As the wave equation (4.1) or (1.45) holds for every component
of a field, it will be sufficient in what follows to study this differential equation
for generic functions g.t;x/, irrespective of whether this is a scalar function or
a component of one of the vector fields or the vector potential.

In this analysis, an important tool is provided by Fourier transformation which
allows one to expand arbitrary signals localized in position or momentum space,
in terms of their harmonic components. In other terms, one expands such signals
in terms of solutions with fixed wave number, fixed frequency and a given di-
rection of propagation. In Sect. 3.6.1, we used Fourier transformation in the vari-
ables

t 2 Rt (time) ! ! 2 R! (circular frequency) ;

i.e. the time t was replaced by the circular frequency !, or, conversely, ! by t . In
the considerations that follow, one needs a Fourier transformation in the variables x

(position vector in R3) and the wave vector k:

x 2 R3x (space) ! k 2 R3k (wave vector) :

In other terms, one expands the measurable functions g.t;x/ 2 L1.R3/ in terms of
the base system of harmonic functions

fk.t;x/ D 1

.2�/3=2
ei.k�x�!.k/t/ ; x 2 R3x ; k 2 R3k : (4.76)

Here k is the vector whose direction indicates the direction of propagation of the
plane wave and whose modulus k D jkj specifies the wave number. For electro-
magnetic waves in vacuum, the dispersion relation reads

!.k/ D kc with k D 2�

�
and ! D 2�

T
D 2�
 : (4.77)

The dispersion relation yields the well-known relation between wavelength � and
frequency 
.

The simplest case is a Fourier transformation in one dimension, in which case
the base system given by (4.76) is replaced by

fk.t; x/ D 1

.2�/1=2
ei.kx�!.k/t/ ; x 2 Rx ; k 2 Rk : (4.78a)
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It has the following properties:

C1Z
�1

dx f �
k0.t; x/fk.t; x/ D ı.k0 � k/ (orthogonality) ; (4.78b)

C1Z
�1

dk f �
k .t; x

0/fk.t; x/ D ı.x0 � x/ (completeness) : (4.78c)

I Remark
Despite the fact that these formulae are completely symmetric in the space vari-
able x and the wave number k, so that one could adjust the notation by writing
f .t; k; x/ instead of fk.t; x/, it seems fully justified, from the perspective of po-
sition space, to talk about orthogonality in (4.78b). Indeed, if one imagines the
wave to be enclosed in a box and imposes periodic boundary conditions, then k
is no longer a continuous variable but an element of a discrete spectrum. Equa-
tion (4.78b) then becomes

C1Z
�1

dx f �
km
.t; x/fkn

.t; x/ D ımn :

Whereas in (4.78c) the integral on the left-hand side is replaced by the sum over
this spectrum, the right-hand side keeps its form, viz.

X
n

f �
kn
.t; x/fkn

.t; x0/ D ı.x0 � x/ :

The restriction to a box may be compared to the fixation of a vibrating string
between two bridges which are affixed at x D r on the sounding board and
at x D s on the wrest plank of a monochord: The variable x 2 Œr; s	 remains
continuous, but the frequencies belong to a discrete spectrum.

A measurable function g W R ! C W x 7! g.t; x/, i.e. a function for which the
norm kgk1 D

R C1
�1 dx jgj exists, can be expanded in terms of the basis given by

(4.78a):

g.t; x/ D 1p
2�

C1Z
�1

dk Qg.k/ei.kx�!.k/t/ : (4.79a)

As an example, consider the case !.k/ D kc and a given amplitude in k-space
chosen to be

Qg.k/ D ˛b e�.k�k0/
2b2=2 ; ˛ 2 C : (4.79b)
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Parameter b has a physical dimension length. It is contained in the factor in front
to yield a dimensionless number in (4.79a) – when multiplied by dk. The function
g.t; x/ then has the dimension of the (complex) amplitude ˛, whose dimension may
be what it may. Using the well-known integral

C1Z
�1

dx e�.px2C2qxCr/ D
r
�

p
e.q

2�pr/=p ;

in which p must have a positive real part, and where q and r may be arbitrary real
or complex numbers, one obtains

g.t; x/ D ˛ e�.x�ct/2=.2b2/ eik0.x�ct/ : (4.79c)

As expected, this is a function of x � ct only, g.t; x/ � g.x � ct/, and, hence, is
a solution of the wave equation in one dimension:

�
1

c2
@2

@t2
� @2

@x2

�
g.t; x/ D 0 :

A comparison of the amplitude given by (4.79b), which is defined on the space Rk ,
with the function g.t; x/ of (4.79c), defined on Rx , shows an important property
of Fourier transformation. Both amplitudes have the shape of a Gauss curve whose
width is determined by the length b and by its inverse, respectively. The modulus of
the amplitude given by (4.79b) has its maximum at k D k0 and decreases to half its
maximum value at

k D k0 ˙
p
2 ln 2

b
D k0 ˙ 1:177

b
: (4.80a)

The modulus of the solution given by (4.79c) has its maximum at x D ct and falls
to half its maximal value when

x � ct D ˙p2 ln 2 b D ˙1:177 b : (4.80b)

The amplitude given by (4.79c) represents a signal which is more localized the
smaller length b is chosen to be. Expression (4.79b) for its Fourier transformed
function shows that in this case the signal contains a broad spectrum of wave num-
bers. The narrower a signal is localized in x-space, the broader it is in k-space.
Of course, this correlation holds also for its converse: If one wishes to construct
a nearly monochromatic wave localized around the value k0, then it is necessarily
very broad in position space. A strictly monochromatic wave is not localizable at all
in x-space.
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4.5.2 Geometric (Ray) Optics and Thin Lenses

Geometric, or ray, optics neglects all diffraction phenomena and constructs light
paths through an optical arrangement of mirrors, lenses, prisms, etc. consisting of
segments of straight lines, following the simple rules of reflection and refraction. We
return for a while to the Helmholtz equation (3.61) or (4.8), i.e. in the terminology of
the preceding section, to a t $ ! Fourier transformation. In the quest for solutions
of the Helmholtz equation, consider a complex signal

u.x/ D a.x/eik0S.x/ ; (4.81)

where k0 D 2�=�0 is a given wave number, a.x/ is the amplitude and S.x/ is a real
function, still to be determined, which fixes the phase k0S.x/ of the solution given
by (4.81). The amplitude a.x/ is assumed to be slowly varying such that it may
be taken to be constant over the range of one wavelength �0. The two-dimensional
surfaces S.x/ D const. in (4.81) are the wave fronts, and their orthogonal trajec-
tories follow the gradient field rS.x/. Locally, in the neighbourhood of a point
x0, the signal is approximately a plane wave with wave number and direction of
propagation, respectively,

k D n.x0/k0 and Ok / rS.x/jxDx0
:

The function S.x/, which is called the eikonal, plays an important role in geometric
optics. The orthogonal trajectories of the surfaces of constant value of this function
determine the local wave vectors and, hence, are identical to the optical paths of
geometric optics. This is seen explicitly if one inserts the ansatz (4.81) into the
Helmholtz equation �

�C k2�u.x/ D 0 (4.82)

and makes use of the approximation just described. One calculates first

r


aeik0S

�
D eik0S Œ.ra/C ik0a.rS/	 ;

�


aeik0S

�
D eik0S

�
.�a/C 2ik0.ra/ � .rS/C ik0a.�S/ � k20a.rS/2

	
:

Insertion into the Helmholtz equation (4.82) with k D nk0 gives

k20a
�
n2 � .rS/2	C�a

C ik0 Œ2.ra/ � .rS/C a.�S/	 D 0 : (4.83a)
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With 1=k20 D .�0=.2�//2 the real part of this equation yields the equation

.rS/2 D n2 C
�
�0

2�

�2
1

a
.�a/ : (4.83b)

The assumption that the amplitude varies slowly on the scale of the wavelength
means that its second derivatives are small or, more precisely, that

�20�a.x/

a.x/
� 1 :

In this situation, the second term on the right-hand side of (4.83b) can be neglected
so that equation (4.83b) becomes the eikonal equation.

Eikonal equation

.rS.x//2 D n2.x/ : (4.83c)

The phase of the solution given by (4.81) of the Helmholtz equation is deter-
mined by the slowly varying index of refraction only.

In a somewhat different interpretation, one may say that this equation holds in the
limit �0 ! 0 and that it provides the basis for geometric optics. The eikonal equa-
tion (4.83c) expresses in a formula Fermat’s principle of optics. This also justifies
the somewhat qualitative definition of geometric optics as being the limit �0 ! 0

of wave optics. As a more precise definition, one says that geometric or ray optics is
applicable whenever the wavelength of diffracted light is small compared to typical
dimensions of the objects on which it scatters.

In geometric optics, with prisms and lenses, no more information about such
optical components is needed than their geometric shape and the index of refraction
n of the material they are made of. A simple example is provided by the plano-
convex lens. Assume its spherically curved side to have radiusR. If this lens is used
in a vacuum, then its focal distance f and the curvature radius r are related by the
equation

1

f
D n � 1

r
: (4.84)

Besides simple relations of this kind and other properties of lenses (aberration, astig-
matism, field of curvature, etc.), all of which can be obtained by construction of
straight light rays, there are also properties for which wave optics is essential. This
is what we deal with next, preparing at the same time the ground for the following
sections.
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(n)

z

Θ

Θ1

Fig. 4.9 Refraction of a light beam on a plane parallel block with (positive) index of refraction n

Figure 4.9 shows a plane parallel block of transparent material whose thickness
is d and which is made of a homogeneous material with index of refraction n. The
block is perpendicular to the z-axis. A light beam in the .x; z/-plane hits the block
under an angle � . Snellius’ law, given by (4.65), yields the angle under which the
refracted beam emerges, viz.

sin �1 D 1

n
sin � :

An amplitude which is characteristic for the incoming beam has the form

u.x/ D aeik�x D aeik0.x sin �Cz cos �/ ; z < 0 :

This could be, for instance, one of the components of the electric field E.t;x/ D
".k/ expfik � xg of a monochromatic wave. In the medium of the block, this
becomes

u.x/ D aeik1�x D aeink0.x sin �1Cz cos �1/ ; 0 6 z 6 d ;
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Fig. 4.10 Plano-convex lens made of a material with
index of refraction n

so that the transmission coefficient for the complex amplitude is given by

t.x; y/ WD u.x; y; z D d/
u.x; y; z D 0/ D eink0.x sin�1Cd cos �1/ : (4.85a)

In the case of paraxial beams, i.e. beams which are incident under a small angle �0,
one has

�1 ' �0

n
; sin �1 ' �1 ' �0

n
; cos �1 ' 1 � 1

2
�21 ' 1 �

�20
2n2

:

Expression (4.85a) is then replaced by the approximation

t.x; y/ ' eink0d exp

�
�i

�
k0d

2n
�20 � k0x�0

��
: (4.85b)

This is called the paraxial approximation. The result, given by (4.85a), may be
applied to the example of the plano-convex lens sketched in Fig. 4.10. Let d0 denote
the thickness of the lens at the origin d0 D d.0; 0/, and let d.x; y/ be its thickness
at x and y different from zero. The transmission coefficient given by (4.85a) is equal
to the product of its value for the horizontal layer d0 � d.x; y/ and its value for the
local thickness d.x; y/,

t.x; y/ D eik0.d0�d.x;y// eink0d.x;y// D eik0d0 ei.n�1/k0d.x;y/ :



240 4 Simple Applications of Maxwell Theory

For all points in the neighbourhood of the axis, one has .x2 C y2/ � R2. With
notations as in Fig. 4.10, and with a DpR2 � .x2 C y2/, one has

d.x; y/ D d0 � .R � a/ ' d0 � x
2 C y2
2R

:

Inserting this into (4.85b), one concludes

t.x; y/ ' eik0d0 ei.n�1/k0Œd0�.x2Cy2/=.2R/


D eink0d0 exp

�
�ik0

x2 C y2
2f

�
; (4.86)

where formula (4.84) for the inverse of the focal length was used. The first factor is
a constant phase, which is of no relevance for most applications. The second factor
modulates the wave fronts of a plane wave incident along the z-axis in a manner
depending on the point .x; y/. (Indeed, the planar wave fronts of a beam incident
on a double-convex lens turn into paraboloid waves, with one of the foci as their
centre.)

4.5.3 Media with Negative Index of Refraction

We return to Fig. 4.4 and consider once more the refraction of a light ray at the plane
interface that separates two media with indices of refraction n and n0. In Fig. 4.11,
a light ray shines from point A in the medium with index of refraction n to point B
in the neighbouring medium whose index of refraction is n0. In the initial medium,
the ray is incident under the angle ˛, relative to the normal to the interface. In the
second medium, it encloses the angle ˇ with that normal. The relative position of
the points A D .xA D �x; 0; zA D �a/ and B D .xB D xA C d; 0; zB D b/

is assumed to be given; their horizontal distance is d , and their vertical distance is
aC b. The domain of definition of the angles ˛, ˇ, etc. is chosen to be the interval
Œ��=2;C�=2	. The point S where the beam hits the boundary plane is taken to be
the origin of the frame of reference. Only the .1; 3/-plane of that system is relevant.
One has

sin ˛ D xp
x2 C a2 ; sinˇ D d � xp

.d � x/2 C b2 : (4.87)

In a medium with index of refraction n, light propagates at velocity c=n. Thus, the
time that light from A needs to reach B , via S , is equal to


 D tAS C tSB D n

c

p
x2 C a2 C n0

c

p
.d � x/2 C b2 : (4.88a)

Multiplying both sides by the speed of light c yields the optical path length:

� D n.AS/C n0.SB/ D n
p
x2 C a2 C n0p.d � x/2 C b2 � �.x/ : (4.88b)
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Fig. 4.11 Paths of minimal and maximal optical path length between the given points A in a
medium with index of refraction n and B in a medium with index of refraction n0. The axis
denoted by 1 is the x-axis, that denoted by 3 is the z-axis in the text

In the case of a more general path in a medium with a variable index of refraction,
this example is replaced by a path integral:

� WD
BZ
A

ds n.s/ : (4.89)

The following principle is applicable to the optical path length of ray optics:

Fermat’s principle
Within the domain of validity of ray optics, light takes its path through opti-
cal components in such a way that the optical path length (4.89) assumes an
extremum.

Applying this principle to example (4.88b) means that the derivative

d�.x/

dx
D n xp

x2 C a2 � n
0 d � xp
.d � x/2 C b2 D n sin ˛ � n0 sinˇ

must vanish. This is seen to be Snellius’ relation (4.65). Whether this extremum is
a minimum or a maximum follows from the second derivative, which is calculated
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making use of Snellius’ law and by means of the formulae

cos2 ˛ D a2

x2 C a2 ; cos2 ˇ D b2

.d � x/2 C b2 :

One finds

d2�.x/

dx2
D na2

.x2 C a2/3=2 C
n0b2

..d � x/2 C b2/3=2

D n

x
cos2 ˛ sin ˛

�
1C x cos2 ˇ

.d � x/ cos2 ˛

�
: (4.90)

If jn0j > n, then ˇ is smaller than ˛. Therefore, the ratio cos2 ˇ= cos2 ˛ is larger
than 1. In the first case of Fig. 4.11a, one has .d � x/ > 0, the curvature given
by (4.90) is positive, and the optical path length is a minimum. In the second case
of Fig. 4.11b, one has .d � x/ < 0, the modulus of the second term in the curly
brackets in (4.90) is larger than 1, and the curvature given by (4.90) becomes nega-
tive. The optical path length is a maximum. A glance at (4.87) shows that the angle
ˇ lies in the interval��=2 
 ˇ 
 0, and the refracted beam is now on the same side
of the normal to the boundary plane as the incoming beam. On the other hand, com-
parison with Snellius’ law shows that this is possible only if the index of refraction
n0 takes a negative value!

In what follows, we will see that there are indeed “metamaterials” which exhibit
the phenomenon of negative index of refraction in specific ranges of frequencies. We
will also give a qualitative explanation of how this comes about.4 For the moment
we simply note that the optical path length assumes a maximum if n > 0 and n0 < 0,
and we study the optical properties of plane parallel blocks made of a metamaterial
with a negative index of refraction.

For the sake of comparison, let us return for a moment to the example of the
plano-convex lens of Fig. 4.10 and investigate the optical properties of the lens for
a wave with given circular frequency!. Imagine a small dipole source on the optical
axis fixed in front of the lens. It emits a wave whose electric field has the form

E.t;x/ D eikzz
X
	

"	
1

2�

“
d2k exp

˚
ikxx C kyy � !t/



: (4.91)

The z-axis is chosen along the optical axis, and the polarization "	 is contained in
the .x; y/-plane transversal to the wave vector. In terms of a somewhat simplified

4 The basic idea that a simultaneous change of sign of the dielectric constant " and of the magnetic
permeability � would lead to new phenomena for electromagnetic waves was put forward in 1968
by V.G. Veselago (cf. V.G. Veselago, Soviet Physics USPEKxHI 10, 509). But it took until the
year 2000 before it became clear that this was not only a theoretical speculation but also a realistic
experimental option (see e. g. J.B. Pendry, Phys. Rev. Lett. 85 (2000) 3966; D.W. Ward, K. Nelson,
and K.J. Webb, Physics/0409083.
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description, the purpose of the lens, in the framework of wave optics, is to modify
the phases of the individual components of (4.91) by means of a transmission coef-
ficient, (4.86) or (4.85a), such that the field components behind the lens combine to
a focal point as an image of the pointlike source. Without going into the mechanism
of this reconstruction, one realizes immediately that there must be a restriction of
principle. The components of the wave vector must fulfill the dispersion relation

�
.k2x C k2y/C k2z

	
c2 D !2 : (4.92a)

The waves for which (4.92a) holds with real values of kz D
q
.!=c/2 � .k2x C k2y /

are said to be propagating waves. They are the only ones to which the qualitative
argument developed previously applies. Waves, in turn, for which .k2xCk2y / becomes
larger than .!=c/2 are called evanescent (i.e. “disappearing”) waves. For waves of
this kind, kz becomes pure imaginary:

kz D i
q
.k2x C k2y /� .!=c/2 : (4.92b)

Insertion into (4.91) shows that these waves decay exponentially with increasing z
and, hence, that they no longer contribute to the construction of the image. This is
why in optical imaging by lenses the resolution of the image is restricted to a maxi-
mal value of

ı`max ' 2�

kmax
D 2�c

!
D � ; (4.93)

even if one uses perfect lenses with maximal aperture.
The situation changes when one uses metamaterial with a negative index of

refraction, making use of the special features of the maximal optical path length
of Fig. 4.11. For the sake of simplicity, we assume that we have a cuboid of thick-
ness d made of a metamaterial with n D �1, as drawn in Fig. 4.12. In the vacuum
(n D 1), we place a light sourceQ at distance a in front of the cuboid. If the distance
a is smaller than the thickness d (this is assumed in Fig. 4.12), then the construc-
tion with the tools of geometric optics shows that rays emanating from source Q
are focused twice. The source has two images, one in B1 and another in B2. The
cuboid with a negative index of refraction acts like a lens. The real surprise, how-
ever, comes from the fact that this “lens” is not subject to the restriction, given by
(4.93), of ordinary lenses and, from the point of view of wave optics, is a genuine
perfect lens. The following argument sketches the proof of this important property.

Metamaterials, in fact, are microstructured objects whose dielectric function "
and permeability � can take complex values and, thus, in special cases can even be
" D �1 and � D �1. By Maxwell’s formula (4.62c) the index of refraction is given
by

n D ˙p"� ; (4.94a)

whereby for “normal” matter we took the positive square root. For negative values
of " or �, one must indeed insert the negative root. The impedance of the medium,
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Fig. 4.12 A block of metamaterial with negative index of refraction n D �1 focuses the beams
emanating from sourceQ at point B1 inside and at point B2 behind the block

defined by

Z WD
r
�

"
; (4.94b)

remains unchanged when " is replaced by �" and � is replaced by ��. Neither on
the boundary facing the source nor on the opposite boundary of the cuboid is there
any reflection. The light from the vacuum in front of the cuboid is transmitted to
the vacuum behind it, without any losses. These assertions can be further justified.
One starts by verifying by means of the formulae in Sects. 3.5.4 and 4.2.1 that in the
example of the cuboid, the energy flows in the positive direction if for propagating
waves (4.92a) is solved by the negative square root:5

k0
z D �

q
.!=c/2 � .k2x C k2y/ : (4.95a)

The transmission coefficient for propagating waves is then

t D exp
˚
ik0
zd

 D exp

n
�id

q
.!=c/2 � .k2x C k2y /

o
: (4.95b)

It is this change of sign in the phase which is responsible for the focusing of the
light in the cuboid and behind it.

But what happens to (formerly) evanescent waves whose amplitudes decreased
with increasing distance? The following analysis shows that such waves, in fact, are

5 As shown in the work of D.W. Ward et al., the phase velocity points in the negative z-direction,
but the group velocity points in the positive direction.
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amplified such that they are focused, too, and that there is no loss in the resolution
of the image.

Transverse-Electric Case
As a first example we consider the transverse-electric case as in Sect. 4.4.2 and
calculate the ratio, (4.68a), of the refracted amplitude, as well as the ratio, (4.68b),
of the reflected amplitude to the incoming amplitude for a wave in the vacuum
incident on the cuboid. This means that we must now set n D 1 and � D 1 in these
formulae. From equations (4.64b) and (4.64c)

ˇ̌
k0ˇ̌ � k0 D ˇ̌n0 ˇ̌ k D ˇ̌n0 ˇ̌ !

c
� ˇ̌n0 ˇ̌ jkj ;

and the factors cos˛ and cosˇ can be replaced by kz and k0
z , respectively:

ta WD e0
0

e0
D 2�0 cos˛

�0 cos˛ C n0 cosˇ
D 2�0kz
�0kz C k0

z

;

ra WD e00
0

e0
D �0 cos˛ � n0 cosˇ

�0 cos˛ C n0 cosˇ
D �0kz � k0

z

�0kz C k0
z

:

For simplicity, the permeability in the interior is denoted by � instead of �0 (in the
outer space the permeability is now equal to 1):

ta D 2�kz

�kz C k0
z

; (4.96a)

ra D �kz � k0
z

�kz C k0
z

: (4.96b)

Furthermore, it is necessary to let � (and likewise the dielectric function ") tend to
�1 in a limit.

When the wave from the interior hits the interface to the vacuum, one must set
�0 D 1 and n0 D 1 in (4.68a) and (4.68b). Furthermore, k and k0 are interchanged
so that one has

ti D 2k0
z

k0
z C �kz

; (4.97a)

ri D k0
z � �kz
k0
z C �kz

: (4.97b)

In calculating the transmission across the cuboid, one must add to the direct
passage all those scattering processes in which the light is reflected from the inner
boundaries twice, four times, etc. This series of processes yields a geometric series:
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From expression (4.85a) and using the abbreviation � D x k0
x C d k0

z , one has

T .TE/.x; y/ D tati ei� C tatir2i e3i� C tatir4i e5i� C : : :

D tati ei�

1 � r2i e2i�
: (4.98a)

Inserting formulae (4.96a), (4.97a) and (4.97b) and taking the limit (�! �1, "!
�1), this gives

lim
�;"!�1T

.TE/.x; y/ D lim
�;"!�1

4�kzk
0
z

.k0
z C �kz/2

� 1

1 � Œ.k0
z � �kz/=.k0

z C �kz/	2 e2i�
ei�

D lim
�;"!�1

4�kzk
0
z

.k0
z C �kz/2 � .k0

z � �kz/2 e2i�
ei�

D e�i� ; .� D x k0
x C d k0

z/ : (4.98b)

Note that we make use of the fact that kz and k0
z coincide in this limit.

In a similar way, one calculates the reflection coefficient which results from the
multiple scattering inside the cuboid:

lim
�;"!�1R

.TE/.x; y/ D lim
�;"!�1

�
ra C tati ei�

1 � r2i e2i�
ri e

i�
�

D lim
�;"!�1

n
ra C T .TM/ri ei�

o

D lim
�;"!�1 fra C rig D 0 : (4.99)

Thus, nothing is being reflected at all! Evanescent waves which, according to
(4.92b), become pure imaginary are amplified – in contrast to the case of ordinary
lenses treated earlier where they were exponentially damped. In the case of an ideal-
ized cuboid with index of refraction n D �1, both the propagating and the formerly
evanescent waves contribute to the resolution. Except for effects of the aperture and
of possible impurities of the surfaces of the cuboid, there is no obstacle of principle
against complete reconstruction of the image.

Transverse-Magnetic Case
The transverse-magnetic case is treated in an analogous manner. In equations (4.70a)
and (4.70b), n is replaced with 1, � with 1, and for simplicity � � �0, " � "0,
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n � n0 are written again. Then one obtains

ta D e0
0

e0
D 2n cos˛

" cos˛ C n cosˇ
D 2nkz

"kz C k0
z

; (4.100a)

ra D e00
0

e0
D " cos˛ � n cosˇ

" cos˛ C n cosˇ
D "kz � k0

z

"kz C k0
z

(4.100b)

ti D 2nk0
z

�.k0
z C "kz/

; (4.100c)

ri D k0
z � "kz
k0
z C "kz

: (4.100d)

In this derivation, we inserted the square of Maxwell’s relation (4.62c), i.e. n2 D "�.
The product tati which appears in the multiple scattering series is given by

tati D n2

�

4kzk
0
z

.k0
z C "kz/2

D " 4kzk
0
z

.k0
z C "kz/2

:

Thus, also in this case one obtains with n2 D �"

lim
�;"!�1T

.TM/.x; y/ D lim
�;"!�1

4"kzk
0
z

.k0
z C "kz/2 � .k0

z � "kz/2 e2i�
ei�

D e�i� ; .� D x k0
x C d k0

z/ : (4.101)

One confirms that here, too, the coefficient of reflection vanishes.
Clearly, the analytic solution given here applies to an idealized situation. Never-

theless, this case is realistic enough to exhibit the salient optical properties. Further
arguments and illustrations in the optics of metamaterials with a negative index of
refraction can be found, e. g., in a nicely illustrated article in Physics Today.6

4.5.4 Metamaterials with Negative Index of Refraction

Metamaterials, which are also called left-handed media, are microstructured mate-
rials composed of an array of wires and split ring resonators. To take an example,
there are metamaterials which react to microwaves with frequencies on the order
of 10GHz by a negative index of refraction. The first reports on the production of
such materials and on a proof of their optical properties were published in 2000.7

Without going into the technical aspects of experiments of this kind, let us describe
in a qualitative manner how one may understand the occurrence of complex-valued

6 John B. Pendry, David R. Smith, Physics Today, December 2003
7 D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84 (2000)
4184.
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material parameters " and � and, hence, of the possibility of negative indices of
refraction.

The index of refraction is a macroscopic property of a medium, whereas the elec-
tric and magnetic susceptibilities follow from the medium’s microscopic properties.
Relations between these quantities were obtained in Chap. 1. For example, accord-
ing to (1.73b), we have

".x/ D 1C 4��e.x/ :
Similarly, �, according to (1.78d), is given by

�.x/ D 1C 4��m.x/ :
If the incident light contains frequencies! in the immediate neighbourhood of a res-
onance !0 in the medium, the function �e depends on the frequency as follows:8

�e D �0!
2
0

.! � !0/2 C � 2!2
�
.! � !0/2 C i� !

	
: (4.102)

The frequency-dependent function ", and possibly also the magnetic permeability
�, is shifted to the complex plane. Expressing them in polar decomposition,

" D j"j ei'" ; � D j�j ei'� ;

the index of refraction, (4.62c), and the impedance, (4.94b), take the form

n D pj"j j�jei.'"C'�/=2 � jnj ei�n ; (4.103a)

Z D
s
j�j
j"j ei.'��'"/=2 � jZj ei�Z : (4.103b)

If the susceptibilities �e and �m exhibit resonances of the type given by (4.102),
then these quantities lie in the upper half of the complex plane. Therefore, the two
phases '" and '� are always in the interval Œ0; �	. As a consequence, the phase of
the complex index of refraction also lies in the interval Œ0; �	, whereas the phase of
the impedance lies in the interval Œ��=2; �=2	:

0 6 �n 6 � ; ��
2

6 �Z 6 �

2
:

The phase �n is larger than �=2, and the real part of n is negative only if both
susceptibilities are complex. In contrast, if only one of the susceptibilities shows
a resonance, for instance if '� D 0, the phases �n and �Z both take values in the
interval Œ0; �=2	, and the index of refraction has always a positive-semidefinite real
part. As it seems unlikely that in nature one would find materials for which �e and
�m have one or more resonances in the same range of frequencies, one understands
the need to manufacture composite metamaterials to satisfy this condition.

8 M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, 1954.
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4.6 The Approximation of Paraxial Beams

Laser light beams are nearly monochromatic and are strongly collimated. The di-
rection of propagation of a laser beam defines an optical axis from which no partial
beam deviates appreciably. The first property implies that the Helmholtz equa-
tion (3.61), or (4.82), which describes harmonic functions with fixed wave number
k D 2�=�, may be used for the analysis of laser beams. The second property is
made use of by constructing approximate solutions of this equation which describe
paraxial beams.

4.6.1 Helmholtz Equation in Paraxial Approximation

As in Sect. 4.5.2, we consider a typical harmonic function which propagates pre-
dominantly along the z-direction,

u.x/ D a.x/eikz ; (4.104)

and assume that its amplitude a.x/ varies little in the z-direction on the scale of
wavelength�. In this situation, we deal locally with a plane wave whose components
remain nearly parallel to the optical axis, i.e. to the z-direction. More technically
speaking, this assumption means that the second derivative of the amplitude by z
can be neglected:

@2zu.x/ D @2z


a.x/eikz

�

D ˚�k2a.x/C 2ik@za.x/C @2za.x/



eikz

' ˚�k2a.x/C 2ik@za.x/



eikz :

In this approximation, the Helmholtz equation .�C k2/u.x/ D 0 simplifies to�
@2x C @2y C 2ik@z

�
a.x/ ' 0 ; (4.105a)�

@2% C
1

%
@% C 2ik@z

�
a.x/ ' 0 ; (4.105b)

in Cartesian and in cylindrical coordinates, respectively. In the conversion to cylin-
drical coordinates, we have made use of the definition % D p

x2 C y2 from which
follow the formulae

@x D x

%
@% ; @y D y

%
@%

for the first derivatives and

@2x D
1

%

�
1� x

2

%2

�
@% C x2

%2
@2% ;

@2y D
1

%

�
1� y

2

%2

�
@% C y2

%2
@2%
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for the second derivatives. The approximate forms (4.105a) and (4.105b) of the
Helmholtz equation (4.82) hold for light bunches which contain primarily beams
remaining close to the beam axis. As will be shown in the next section, one can
construct physical solutions analytically which describe strongly collimated (laser)
beams.

4.6.2 The Gaussian Solution

A special solution of differential equation (4.105b), which is useful in the context
described above, is obtained from an outgoing (or incoming) spherical wave with
constant, possibly complex, amplitude a,

u.K/ D a1
r

eikr ; (4.106a)

by restricting the argument r to values close to the optical axis. As before, the optical
axis is the z-axis, whereas x and y are coordinates in planes perpendicular to the
z-axis. For values of jxj and jyj small compared to jzj, one has

r D
p
x2 C y2 C z2 D z

r
1C %2

z2
' z C %2

2z
:

The spherical wave then turns into a solution of the Helmholtz equation in paraxial
approximation, viz.

a
1

r
eikr ' a1

z
eikz eik%2=.2z/ DW eikza.0/.x/ : (4.106b)

Indeed, one easily verifies that

a.0/.x/ D a1
z

eik%2=.2z/ ; a 2 C (4.107)

is a solution of the approximate differential equation (4.105b): The derivatives are
found to be

@%a
.0/ D ika

%

z2
eik%2=.2z/ D ik

%

z
a.0/ ;

@2%a
.0/ D ik

1

z
a.0/ � k2 %

2

z2
a.0/ ;

2ik@za.0/ D
�
�2ik

z
C k2 %

2

z2

�
a.0/ ;

and one verifies that (4.105b) holds.
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Thus, in (4.107) we found a first, in fact rather simple, solution of the approx-
imate Helmholtz equation. From this, further solutions can be derived by means
of the following reasoning. Equation (4.105a) resembles the force-free Schrödinger
equation in two space dimensions if z is interpreted as the time variable and x and
y as the space variables. Much like classical autonomous systems, the Schrödinger
equation is invariant under time translations. To time translations in the Schrödinger
equation correspond translations in the variable z in (4.105a). Therefore, starting
from (4.107), new solutions are generated by the replacement

z 7�! z � � :

Choosing � to be a real number means shifting the origin of the z-axis from 0 to �.
Note, however, that � must by no means be restricted to the reals. For instance, if
one assigns to it a pure imaginary value,

� D iz0 with z0 2 R ;

this generates a particularly interesting solution, viz.

u.1/.x/ D a.1/.x/ ; with a.1/.x/ D a

z � iz0
eik%2=.2.z�iz0// :

The properties of this function are analysed as follows. In a first step, one decom-
poses the function .z � iz0/�1 in the first factor and in the exponent in terms of real
and imaginary parts:

1

z � iz0
� 1

R.z/
C i

2

kW 2.z/
: (4.108a)

The real functions R.z/ andW.z/, which are defined by this ansatz, are

R.z/ D z
�
1C z20

z2

�
; (4.108b)

W.z/ D
r
2z0

k

s
1C z2

z20
� W0

s
1C z2

z20
: (4.108c)

In a second step, one rewrites the first factor in a.1/.x/ in a way which is easier to
interpret:

a

z � iz0
D a

.�iz0/

1

1C iz=z0
� a.1/w.z/ ; (4.108d)

where the following abbreviations were introduced:

a.1/ D a

.�iz0/
; w.z/ D 1

1C iz=z0
:
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The functionw.z/ is complex as well and may be decomposed in terms of modulus
and phase:

w.z/ D
�
1C z2

z20

��1=2
e�i�.z/ ; �.z/ D arctan


 z
z0

�
: (4.108e)

Inserting these intermediate steps and the definitions expressed by (4.108a)–
(4.108e), the solution constructed in this way takes a form which is amenable to
direct interpretation:

u.1/.x/ D a.1/ W0
W.z/

e�%2=W 2.z/ eiŒkz��.z/Ck%2=.2R.z//
 : (4.109)

In this expression, a.1/ is a constant, but in general complex, amplitude, and the
constantW0 is given by

W0 D
r
2z0

k
D
r
�z0

�
I (4.110)

the functions R and W are given by (4.108b) and (4.108c), respectively, and the
phase �.z/ is given by (4.108e).

4.6.3 Analysis of the Gaussian Solution

The solution given by (4.109) is invariant under rotations about the z-axis. Thus, in
cylindrical coordinates, it depends on the variables % and z but not on the azimuth.
Its intensity as a function of % and z is given by

I.%; z/ D I0
�
W0

W.z/

�2
e�2%2=W 2.z/ ; I0 D

ˇ̌
ˇa.1/

ˇ̌
ˇ 2 : (4.111)

For fixed values of z, this is a Gaussian curve in the variable %, which is the nar-
rowest for z D 0 and whose width increases with increasing z. Figure 4.13 shows
the radial distributions I.%; z/=I0 for z D 0, z D z0 and z D 2z0 as functions of
the variable � D %=W0. It is the specific Gaussian shape of the solution given by
(4.109) which gave rise to its name.

Taking % to be zero and fixed, the ratio

I.% D 0; z/
I0

D 1

1C .z=z0/2

is a function of u D z=z0, as shown in Fig. 4.14.
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Fig. 4.13 The intensity distribution I.%; z/ in units of I0, as a function of the radial variable %
(normalized toW0) for the values z D 0, z D z0 and z D 2z0

The total optical power which, for fixed z, flows across a section perpendicular
to the z-axis is given by the integral

P D 2�
1Z
0

%d% I.%; z/

D 2�I0 W 2
0

W 2.z/

1Z
0

%d% e�2%2=W 2.z/ D 1

2
I0
�
�W 2

0

�
: (4.112)

As expected, this expression is independent of z.
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Fig. 4.14 Intensity distribution at % D 0, normalized
to I0, as a function of the variable u D z=z0
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Fig. 4.15 The function W.z/, normalized here to
W0, plotted as a function of u D z=z0, shows
the narrowing of the beam at z D 0 (waist line).
At the points z D ˙z0, i.e. at u D ˙1 in this
diagram,W.z/ grows up to

p
2 times its value at

z D 0

The parameterW0 determines the width of the beam at z D 0: We have I.%; 0/ D
I0 expf�2%2=W 2

0 g. The radius at which the intensity has decreased to half its value
at % D 0 has the value %H D .

p
ln 2=
p
2/W0.

Figure 4.15 shows the function W.z/=W0 in terms of the variable z=z0. This
figure illustrates two properties: The quantity W0 characterizes the radius of the
waist line of the beam at z D 0, and therefore it seems justified to interpret the
product .�W 2

0 / as the beam size. At z D ˙z0 (in Fig. 4.15 these are the points˙1),
the radius of the beam has increased to W0

p
2. The distance .2z0/ is called the

confocal parameter. Finally, one may calculate the angle between the asymptotes
of the curve W.z/ as a function of z and thereby estimate the divergence of such
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a beam. For z 
 z0 and using (4.108c) and (4.110), one has

W.z/ ' .W0=z0/z D z tan � ' z � ; .z 
 z0/ ;

tan � D W0

z0
D �

�W0
' � : (4.113)

Thus, the smaller the wave length � and the larger the diameter .2W0/ of the waist,
the smaller will be the divergence .2�/. To take an example, consider a He–Ne laser
with � D 6:33 � 10�7 m and with W0 D 5 � 10�5 m. Then one has � ' 0:23 deg. If
this laser beam is directed towards the Moon, i.e. if we choose z D 3:5 � 108 m, it
will have a diameter of W.z/ D 1:41 � 106 m on the Moon’s surface.

In studying the wave fronts of the solution given by (4.109), i.e. the surfaces of
equal phase ˚.%; z/ D const, the following observation is helpful. The total phase
of this solution

˚.%; z/ � kz � �.z/C k%2

R.z/
; (4.114a)

evaluated at % D 0, is
˚.% D 0; z/ D kz � �.z/ : (4.114b)

Besides the term kz from the plane wave, it contains a z-dependent shift which takes
the values

�.�1/ D ��
2
; �.0/ D 0 ; �.C1/ D C�

2

at ˙1 and at 0, respectively. This shape can be read from the perspective repre-
sentation in Fig. 4.16. Letting % increase and moving to a small distance from the
z-axis, one identifies immediately two limiting cases:
For z 
 z0 one has R.z/ ' z, and one recovers the approximate solution given by
(4.106b). The wave fronts ˚.%; z/ D const. are approximately the same as those of
the spherical wave given by (4.106a).
In turn, at z D 0, the function R becomes infinite, and the phase ˚.%; 0/ D 0 is
independent of %, i.e. the wave front is a section of a vertical straight line.

As also shown in Fig. 4.16, the functions R.z/, (4.108b), and �.z/, (4.108e),
change little when ˚.%; z/ is kept fixed. Thus, taking the function R.z/ to be con-
stant, one sees that the surfaces ˚.%; z/ D 2�c with constant c are paraboloids

z C %2

2R
' c�C � �

2�

whose curvature is determined by R:

d2z

d%2
' � 1

R
:

These paraboloids are axially symmetric about the z-axis. For positive z their cur-
vature is negative; for negative values of z it is positive. At z D ˙z0, the functionR
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Fig. 4.16 Three-
dimensional
representation of the
phase ˚.%; z/. For
% D 0 it runs from
��=2 to C�=2.
If one uses only
constant values of
˚.%; z/ D const.,
then z varies little
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has the smallest modulus, whereas the modulus of the curvature is the largest. This
clarifies the physical interpretation of the functionR.z/: It determines the curvature
radius of the wave fronts of the Gaussian beam.

4.6.4 Further Properties of the Gaussian Beam

Gaussian beams are of special interest for the optics of laser beams because in suit-
ably constructed optical instruments, a Gaussian beam goes over into a Gaussian
beam. We show this for the example of a thin double-convex lens (see Saleh and
Teich (1991) for more details).

Consider a beam of the type expressed by (4.109) which is concentrated about
z D 0. As sketched in Fig. 4.17, this beam is incident on a thin double-convex lens
which is located at zL 6D 0 and is held perpendicular to the optical axis. The double-
convex lens may be thought of as a combination of two plano-convex lenses with
equal and opposite curvature radii, one of which is oriented towards the right, the
other towards the left of the figure. Regarding formula (4.86) for the phase shift as
a function of % D p

x2 C y2, there is no modification. Only expression (4.84) for
the focal distance is replaced by

1

f
D 2.n� 1/

r
: (4.115)
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Fig. 4.17 A
Gauss beam
remains a
Gauss beam
after travers-
ing a thin
bi-convex lens

zL z'

w0 w'0

The phase, (4.114a), of the incident Gaussian beam receives an additional term from
the factor expf�ik%2=.2f /g of equation (4.86), so that the total phase of the trans-
mitted wave at z D zL is equal to

˚ 0.%; zL/ D kzL � �.zL/C k%2

R0.zL/

D kzL � �.zL/C k%2

R.zL/
� k%

2

2f
: (4.116)

One concludes from this thatR.z/ andR0.z/ at the location zL of the lens are related
by the well-known equation

1

f
D 1

R.z/
� 1

R0.z/
at z D zL

of ray optics. At the same point, the functionsW.z/ andW 0.z/ are equal:W 0.zL/ D
W.zL/.

If functions R and W are given at an arbitrary location z, it is not difficult to
calculate the distance to the waist and the beam radius W0 from these data. Let
u WD z=z0, and use definitions (4.108b), (4.108c) and (4.110) to obtain

W 2 D W 2
0 .1C u2/ D

�

�
z0.1C u2/ ; R D z0 1

u
.1C u2/ :

This shows that the ratio �W 2=.�R/ equals u. From this follow an equation for the
distance z and, by (4.108c), an equation which determines W0. These are, respec-
tively,

z D z0

u

.1C u2/
.1C 1=u2/ D

R

1C Œ�R=.�W 2/	
2
; (4.117a)

W0 D Wp
1C u2 D

Wq
1C Œ�W 2=.�R/	

2
: (4.117b)
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Analogous formulae hold for the image beam created behind the lens, viz.

�z0 D R0

1C Œ�R0=.�W 2/	
2
; (4.118a)

W 0
0 D

Wp
1C u2 D

Wq
1C Œ�W 2=.�R0/	2

: (4.118b)

The minus sign before z0 is due to the fact that the waist of the image beam lies
beyond the lens, i.e. to the right of it. Using these formulae it is now easy to relate the
parameters of the original beam and the transmitted beam. Using the abbreviations

r WD z0

z � f ; Ar WD f

jz � f j ; (4.119a)

one defines the magnification

A WD Arp
1C r2 : (4.119b)

The radius and the position of the waist of the transmitted beam are given by, re-
spectively,

W 0
0 D A W0 ; z0 � f D A2.z � f / : (4.120)

Points z0
0 and z0, where the curvature radii are minimal, are related by z0

0 D A2z0,
and the divergence of the transmitted beam is related to the divergence of the original
beam by .2� 0/ D .2�/=A, see (4.113).

It is instructive to study the limit of geometric optics in these formulae. If

z � f 
 z0 ;

then the lens is located far from the confocal parameter. Parameter r is small com-
pared to 1, and we haveA ' Ar . The beam is again approximately a spherical wave.
As for the parameters of the transmitted beam, the formulae of (4.120) simplify as
follows:

W 0
0 ' ArW0 ; (4.121a)

1

f
' 1

z0 C
1

z
; (4.121b)

A ' Ar D f

jz � f j : (4.121c)

We note once more this important result:
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A Gaussian beam traversing one or several lenses is mapped to a Gaussian beam.
As an example, consider a set-up in which the lens is located at z D 0, i.e. exactly

at the waist line of the incoming beam. The equations of (4.120) show that the image
beam is focused to a waist radius of

W 0
0 D

W0p
1C .z0=f /2

and that z0 D f=.1 C .f=z0/2/. In the limit of geometric optics, these equations
reduce to W0 ' �f and z0 ' f . In this limit, the focussing effect becomes even
more pronounced.

I Remarks
1. By combining two lenses, one behind the other, an incoming Gaussian beam

can be made broader or smaller, depending on the choice of focal lengths.
By arranging a sequence of parallel identical lenses, one obtains an optical
instrument which allows for the transport of a Gaussian beam over large dis-
tances without modification to its shape. Thus, such an arrangement serves
the purpose of beam transport in laser physics.

2. The Helmholtz equation in paraxial approximation has further, more general
solutions which are useful for the description of laser beams. One can even
make use of complete systems of functions such as, for instance, the Her-
mite polynomials known from quantum mechanics, for expanding solutions
in terms of these polynomials. For more information and details, see Saleh
and Teich (1991).



5Local Gauge Theories

5.1 Introduction

Despite being a principle of classical field theory, gauge invariance of electro-
dynamics revealed its deep significance and found its far-reaching interpretation
only in relation to quantum mechanics of electrons and the Schrödinger equation.
In this chapter, we study the generalization of the concept of a locally invariant
gauge theory to non-Abelian gauge groups constructed by following the model of
Maxwell theory. This generalization may seem a little academic at first glance be-
cause, besides the Maxwell field, it contains further massless gauge fields which
are unknown to macroscopic physics. However, it becomes physically realistic if it
is combined with the phenomenon of spontaneous symmetry breaking. Both con-
cepts, non-Abelian gauge theory and spontaneous symmetry breaking, initially are
purely classical concepts. At the same time, one lays the (classical) foundations
for the gauge theories of the fundamental interactions which nowadays are gen-
erally accepted and whose validity has been confirmed by numerous experiments.
This chapter describes the foundations for the construction of such a theory, within
a classical (i.e. nonquantum) framework. Only when introducing fermionic parti-
cles (such as quarks and leptons) does the quantization of gauge theories become
mandatory.

5.2 Klein–Gordon Equation andMassive Photons

A particularly simple example of a Lorentz covariant field theory which lives on
Minkowski space M D R4 is given by the Lagrange density (3.17a)

L.�.x/; @��.x// D 1

2

�
@��.x/@

��.x/� �2�2.x/	 � %.x/�.x/ : (5.1)

261F. Scheck, Classical Field Theory, Graduate Texts in Physics,
DOI 10.1007/978-3-642-27985-0_5, c� Springer-Verlag Berlin Heidelberg 2012



262 5 Local Gauge Theories

The constants „ and c that we introduced there had the purpose of assigning the cor-
rect physical dimension to the Lagrange density, viz. (energy/volume). However, as
the Euler–Lagrange equations are linear and homogeneous in L, the factor 1=.„c/
cancels out and may be dropped without loss of generality. The points of the space-
time continuum are denoted by x 2 R4. As before, the derivatives are decomposed
according to

@� D
�
@0;r

�T
; @� D g��@� D

�
@0;�r�T I

�.x/ is a Lorentz scalar field, i.e. a field which does not change under the action of
a Lorentz transformationƒ 2 L"

C,

x 7! x0 D ƒx W �.x/ 7! �0.x0/ D �.x/ :

The quantity %.x/, which is also scalar, represents an external source – in the same
sense as charge and current densities are external sources in Maxwell’s equations for
the radiation field. The constant � is a parameter with the dimension of an inverse
length. In quantum theory, � is the reciprocal of the Compton wavelength

1

�
D �

2�
D „
mc

(5.2)

of a particle with massm. In natural units where both the speed of light and Planck’s
constant take the value 1, c D 1 and „ D 1, the parameter � D m is simply the mass
without any other factor.

The Euler–Lagrange equations (3.16), of which there is only one in this example,
yield the equation of motion (3.17b)



�C �2

�
�.x/ D �%.x/ : (5.3a)

We repeat it here for the following reasons:
(i) By inserting a plane wave as in (4.4a) into the homogeneous version of equa-

tion (5.3a), 

�C �2

�
�.x/ D 0 ; (5.3b)

i.e. �.t;x/ D e�i!t eik�x, one obtains the dispersion relation

!2 � k2 � �2 D 0 : (5.4a)

Upon multiplication by „2 and using (5.2), this becomes a relation between the
energyE D „!, the momentum p D „k and the mass m

E2 D p2 C �mc2�2 ; (5.4b)
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which is simply the relation between energy and momentum of a free particle with
mass m, well known from special relativity.

(ii) It is not mandatory to postulate equation (5.3b) only for scalar fields. It could
be stipulated equally well for a vector field

V .t;x/ D v e�i!t eik�x ;

where v is a constant vector or, more generally, a four-vector field. The Klein–
Gordon equation then applies to each of the four components V �.t;x/ of the vector
field individually. A similar statement applies to tensor fields of any degree and, in
fact, also to spinor fields. Every component satisfies the Klein–Gordon equation on
its own.

(iii) A static solution of the inhomogeneous equation (5.3a) with the static source

%.t;x/ � %.x/ D gı.x/

is easily found. In a static situation, using � D .1=c2/@2=@t2 ��, (5.3a) reduces
to the time-independent differential equation

�
� � �2��.x/ D %.x/ D gı.x/ :

Without specific boundary conditions the solution reads

�stat.x/ D � g

4�

e��r

r
: (5.5)

This solution can be derived more directly by solving the corresponding algebraic
equation obtained by Fourier transformation and by calculating the inverse Fourier
transform of its solution (Exercise 5.1). Alternatively, it may be obtained from the
corresponding Green function of the Helmholtz equation (4.8) or (4.32) by analytic
continuation in the (initially real) wave number k:

k �! i� W � eikr

4�r
�! � e��r

r
:

A pointlike source whose “strength” is g and which is located in the origin creates
a field (5.5) which decreases exponentially with increasing distance. The rate of
decay is determined by the Compton wavelength corresponding to the mass m. The
larger the mass, the faster the fall-off of the solution. In turn, if the mass vanishes,
then the solution given by (5.5) takes the form of the Coulomb potential, which
falls off as 1=r . At the same time, the Klein–Gordon equation goes over into wave
equation (1.45).

Let us return to Maxwell theory and try to introduce a mass term of the kind
considered in (5.3a). The simplest way to do this is by modifying the Lagrange
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density (3.28) as follows:

LProca.A
 ; @	A
 / D� 1

16�
F��.x/F

��.x/ (5.6)

C �2

8�
A�.x/A

�.x/ � 1
c
j�.x/A�.x/ :

On the way to the Euler–Lagrange equations one calculates

@LProca

@A

D �1

c
j 
 C �2

4�
A
 .x/ ;

@LProca

@.@	A
 /
D � 1

4�
F 	
 .x/ :

For two of the three terms on the right-hand side these are the same calculations as
in Sect. 3.4. In the new term, which is proportional to �2, one must take into account
a factor of 2 because

A
 .x/A

 .x/ D A
 .x/g
�A�.x/ ;

where the sum must be taken over repeated contragredient indices. Thus, the equa-
tions of motion which replace the inhomogeneous Maxwell equations are

@	F
	
 .x/C �2A
 .x/ D 4�

c
j 
 : (5.7)

If one represents the field strength tensor by potentials,

F 	
 .x/ D @	A
 .x/ � @
A	 .x/ ;

and assumes that the potential satisfies the Lorenz condition @�A�.x/ D 0, there
remains the differential equation

�
�C �2�A
 .x/ D 4�

c
j 
 : (5.8)

The Lagrange density, (5.6), is called the Proca Lagrange density, after A. Proca,
who discussed this equation in the 1930s.

I Remarks
1. In comparing the Lagrange densities given by (5.1) for the scalar field and

(5.6) for the Proca vector field, there is a certain analogy: Both contain a mass
term which reads�.�2=2/�2.x/ in one case, and .�2=8�/A�.x/A�.x/ in the
other. Both Lagrange densities contain an interaction term with an external
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source given by the scalar density %.x/ in (5.1) and the current density j�.x/
in (5.6). It is suggestive to interpret the first term in (5.6),

� 1

16�
F��.x/F

��.x/ ;

as the kinetic term of the vector field, which in the case of Maxwell fields is
given by .1=8�/.E2 �B2/ (see (3.25a)). This term in the Lagrange density,
(3.28), of Maxwell theory, including its characteristic sign, yields the postive-
definite energy density, expressed by (3.49a), of the free Maxwell field.

2. If the photon had a nonvanishing mass, then equation (5.8) would be the
correct equation of motion for photons, replacing the wave equation. An in-
structive discussion of this equation of motion and its physical consequences,
including a list of original publications on this topic, is found in Jackson
(1999).

What matters for the subjects treated in this chapter is the loss of gauge invari-
ance of the Lagrange density LProca. Whereas the first and last terms in (5.6)
are gauge invariant, as shown in Sect. 3.5.2, this is not true for the mass term:
Under the action of a gauge transformation

A
 .x/ 7�! A0

 .x/ D A
 .x/� @
�.x/ ;

the quadratic term in the potentials becomes

A
 .x/A

 .x/ 7! A0


 .x/A
0 
 .x/

D A
 .x/A
 .x/ � 2A
.x/@
�.x/C @
�.x/@
�.x/ ;
which cannot be reduced to its original form. On the one hand, the physi-
cal significance of this result is that the potential A�.x/ acquires physical
reality – in contrast to Maxwell theory. On the other hand, it establishes a di-
rect relation between the masslessness of the photon, the infinite range of the
Coulomb potential and the gauge invariance of Maxwell’s equations. We note
the important result:
A genuine mass term in the Lagrange density of Maxwell theory is imcompat-
ible with gauge invariance.

5.3 The Building Blocks of Maxwell Theory

Maxwell’s theory of electromagnetic phenomena is the prototype of a gauge theory
and serves as a guide for constructing all other gauge theories which are relevant
for the description of fundamental interactions. Therefore, before turning to more
general gauge theories, it would be helpful to recall the building blocks that are used
in constructing Maxwell theory. We do this according to the following outline.
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The Underlying Spacetime
As far as is has been developed until this point, Maxwell’s theory presupposes a flat
Minkowski space M D R4 as the model of spacetime. This space has dimension 4
and is equipped with the metric

g D diag.1;�1;�1;�1/ : (5.9)

More precisely, Minkowski space is a flat semi-Riemannian manifold with index

 D 1. In fact, a better notation would be R.1;3/, in order to emphasize the special
role of the time variable. The definition of the notion of index is as follows:

I Definition 5.1 Index of a bilinear form On a vector space V with finite dimen-
sion n D dimV , let there be a nondegenerate symmetric bilinear form. The index
of the bilinear form is the codimension of the largest subspaceW of V ,


 D dimV � dimW ; (5.10)

on which the metric is definite, positive-definite or negative-definite.1

The metric of Minkowski space is a bilinear form of this kind. Given the signs as
chosen by (5.9), the metric is negative-definite on three-dimensional space. It would
be positive-definite had we chosen the convention g D diag.�1; 1; 1; 1/. In either
case, this subspace has dimension 3, and its codimension is 
 D dimM � 3 D
4 � 3 D 1, independent of the choice of convention for the metric.

The causal structure onM is determined by the Poincaré or the Lorentz group of
transformations,

x 7�! x0 D ƒx C a ; with ƒT gƒ D g :

Among others, this structure manifests itself in the retardation effects in the propa-
gation of electromagnetic signals.

The Variables
In the vacuum, the tensor fields F��.x/ of electromagnetic field strengths are the
essential observables of the theory. When matter is present, they are replaced by
the tensor fields F��.x/ and are supplemented by the charge and current densities
j�.x/ D .c%.x/; j .x//T of matter, which appear as the driving source terms in
Maxwell’s equations. The vector potentialA�.x/, though somewhat problematic, is
an important variable, too. It is contained in the Lagrangian describing the coupling
of the radiation field to matter, but it is not directly observable. It may be a four-
vector field, depending on the class of gauges one has chosen, but it may have a more
complicated transformation behaviour without disturbing the Lorentz covariance of
the theory.

1 The codimension of a subspace W of the finite-dimensional vector space V is codimW WD
dimV � dimW .
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Once the partition of Minkowski space R.1;3/ into a space part R3 and time axis
Rt is fixed, through the choice of a class of reference frames, the tensor field F��.x/
or F��.x/ is decomposed into the electric field quantities E.t;x/ or D.t;x/, re-
spectively, and the magnetic field quantities B.t;x/ or H .t;x/, respectively. These
are indispensable for testing the theory against experiment, but they have a com-
plicated transformation behaviour if the frame of reference is changed by a special
Lorentz transformation.

Gauge Transformations, Structure Group and Gauge Group
As noted in Sect. 3.5.2 and in a remark in Sect. 2.3.5, Maxwell theory is invariant
under global gauge transformations

G D U.1/ D ˚
ei˛
ˇ̌
˛ 2 R .mod 2�/



; (5.11a)

as well as under local gauge transformations

G D ˚ei˛.x/
ˇ̌
˛ 2 F.R.1;3// .mod 2�/



; (5.11b)

whereF.R.1;3// denotes the set of smooth functions on Minkowski space. The group
proper, i.e. the group given by (5.11a) in the case being discussed here, will be called
the structure group in the sequel. The infinite-dimensional group, (5.11b), which is
constructed from it is called the gauge group. It determines the explicit form of the
gauge transformations.

As was shown in Sect. 3.5.2, the structure group of Maxwell theory is a U.1/,
i.e. an Abelian, group. This group has one generator only, which we denote by 1l.

Geometric Structure of Maxwell Theory
From a geometrical point of view, the potential is a one-form A�.x/dx� over
Minkowski space. The action of a gauge transformation, (2.59), generated by the
function �.x/ is an affine transformation of the potential, viz.

A0

 .x/ D A
 .x/ � @
�.x/ :

Written in terms of exterior forms, this reads

!A0 D !A � d� ;

where !A D A�.x/dx� is defined as in (2.82). Obviously, this is an infinitesimal
transformation and shows that the potential is not only a one-form but also an ele-
ment of the Lie algebra of the gauge group.2

2 Of course, the sign of the gauge function �.x/ is not relevant because the gauge function is an
arbitrary smooth function. I have chosen the minus sign here in order to be in accord with standard
conventions as in Sect. 3.5.2 and with the signs in (3.39a).
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For the sequel it is useful to define the one-form for the potential as in (2.88a),
i.e. by inserting a reference charge q – e. g. the elementary charge e – and a factor i:3

A WD iq !A D iq A�.x/dx
� : (5.12)

By multiplying also the gauge function by these factors, the gauge transformation
has the same form as it did previously:

A 7�! A0 D AC d� ; with �.x/ D �iq �.x/ : (5.13)

Equations (2.88b) and (2.88c) for the covariant derivative and the curvature form
(two-form of field strengths), respectively, apply as previously. They are repeated
here:

D D d C A ; (5.14a)

D2 D .dA/CA ^A D .dA/ D F ;

.F D iq
X
�<�

F��.x/dx
� ^ dx�/ : (5.14b)

Example 3.4 of the Schrödinger equation coupled to the radiation field showed
that the term

� 1

2m

�
D ���D � (5.15)

remains invariant under local gauge transformations if, concurrently with transfor-
mation (5.13) of the potential, the wave function is transformed as follows:

 .x/ 7�!  0.x/ D g.x/ .x/ ; with g.x/ D eiq�.x/ D e��.x/ : (5.16)

This is a remarkable observation: The full theory, which yields the Maxwell equa-
tions and the Schrödinger equation for a charged particle, is gauge invariant if in
the kinetic energy of that particle the ordinary partial derivative is replaced by the
covariant derivative.

I Remarks
1. The preceding conclusion is not restricted to the Schrödinger equation be-

cause, evidently, it is only the kinetic energy, given by (5.15), which matters.
This form of the kinetic energy of a matter particle, however, is fairly general
(see e. g. (5.1)).

2. The gauge transformation g.x/, equation (5.16), which acts on the field  .x/
is an element of the gauge group G. Its infinitesimal form is obtained by ex-
panding g.x/ in terms of �.x/, viz.

g.x/ ' 1C iq�.x/ ; j�.x/j � 1 ;

3 The factors „ and c which appear there are not essential. In a quantized theory, they can be
reinserted at any stage. Alternatively, they may be replaced by 1 by the choice of natural units.



5.4 Non-Abelian Gauge Theories 269

so that the corresponding variation of  reads

ı D iq�.x/ .x/ : (5.16a)

At this level one returns to the Lie algebra Lie .G/ of the gauge group. As the
group U.1/ is Abelian, its Lie algebra has only one generator and the variation
ı , equation (5.16a), contains only one single term.

5.4 Non-Abelian Gauge Theories

The schematic summary of Maxwell theory with special emphasis on its gauge in-
variance and its geometric structure given above suggests one should try the same
construction with more general, non-Abelian groups replacing U(1). It is reported
that Wolfgang Pauli tried this idea by “gauging” the isospin introduced earlier by
Werner Heisenberg, i.e. the Lie group SU(2), but dismissed it for physical rea-
sons (described subsequently). In published form, this construction was proposed
by C.N. Yang and R.L. Mills in 1954.4 Therefore, one also talks about Yang–Mills
theory as a synonym for a local gauge theory.

In this section, we work out this concept following the model of Maxwell’s the-
ory. We construct a Lagrange density for a gauge theory and study its coupling to
matter fields in its simplest form.

5.4.1 The Structure Group and Its Lie Algebra

For the structure group G which is to replace the U(1) of Maxwell theory, only
a compact Lie group should be considered because compactness guarantees a (gen-
eralized) kinetic term in a Lagrange density which has the correct, physical, sign.

Without striving for too much mathematical rigour, one may characterize com-
pact Lie groups as follows. A (finite-dimensional) Lie group is a smooth manifoldG
of transformations which satisfy the group axioms and for which the product g2 �g1
of two elements g1 and g2 and the inverse g�1 of every element g are smooth func-
tions (i.e. are differentiable functions of the group parameters).

The example of the special orthogonal group SO(3) in three real dimensions, well
known from the theory of spinning tops and from nonrelativistic quantum mechan-
ics, illustrates the concept of structure group:

SO.3/ D ˚R 2M3.R/jRTR D 1l; det R D 1
 : (5.17)

The symbol M3.R/ denotes the set of real 3 � 3 matrices; the term “orthogonal”
denotes the property that the inverse of R equals the transposed matrix, and “special”

4 C.N. Yang and R.L. Mills, Phys. Rev. 96 (1954) 191.
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means the restriction to det R D C1. As it is defined over the reals, a more explicit
notation would be SO(3,R).

As a concrete example, every rotation may be characterized by three Eulerian
angles, �, � and  , as follows:

R D R.�; �;  /

D

0
BBBB@

�
cos� cos � cos 

�
sin� cos � cos � sin � cos 

� sin � sin 
	 C cos� sin 

	
�� cos� cos � sin 

�� sin� cos � sin sin � sin 
� sin � cos 

	 C cos� cos 
	

cos� sin � sin� sin � cos �

1
CCCCA ; (5.17a)

their domain of variation being

� 2 Œ0; 2�	 ; � 2 Œ0; �	 ;  2 Œ0; 2�	 : (5.17b)

The elements of the group SO(3) depend in a differentiable way on three parameters,
each of which is confined to a compact interval. In this case, the group itself is called
compact.5 In this connection, it is also important to recall the fact that a function
which is defined on a compact set is bounded.

I Remark
The Lorentz group provides a counterexample of a noncompact group which is of
paramount importance for physics: The special Lorentz transformations depend
on a parameter � which is defined in the infinite interval Œ0;1/. This group is
not compact.

Let G be a simple or semisimple compact Lie group. Examples which will be
studied in detail include the unitary group

U.2/ D ˚U 2M2.C/jU�U D 1l


; (5.18a)

as well as its restriction, the unitary, unimodular group

SU.2/ D ˚U 2M2.C/jU�U D 1l; det U D 1
 : (5.18b)

(Again, strictly speaking, these should be denoted U.2;C/ and SU.2;C/, respec-
tively.) Historically, it was the second of these which was used as a first example for
the construction of a gauge theory.

The structure group being the group of global gauge transformations, the iden-
tity must of course be contained in the domain of the parameters on which the

5 This is in agreement with the notion of compactness in set theory: Every infinite-dimensional
subset of a compact setM contains a series whose limit is an element of the set.
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group elements depend. In the example of rotation group SO(3), this is the ele-
ment R.� D 0, � D 0,  D 0/ D 1l. Had one chosen the full rotation group O(3),
which contains also orthogonal 3 � 3 matrices with detM D �1, one would have
had to restrict it to its subgroup SO(3), the so-called connection component of unity.
Generally, the connection component of unity is the subgroup whose elements can
be deformed to the identity 1l by continuous variation of the parameters.

The elements of such groups can be written as exponential series in the generators
and the parameters:

g D expfi
X

˛kTkg : (5.19)

They are smooth functions of the real variables ˛k . The generators Tk span the
Lie algebra g D Lie .G/, i.e. they form a basis of the Lie algebra. This algebra is
characterized by the commutators

ŒTi ;Tj 	 D iC kijTk ; i; j; k D 1; 2; : : : ; dim g (5.20)

(where the sum over the repeated indices k is to be taken). The structure constants
C kij are real. They are not fixed once and forever to some canonical form. Indeed,
by nonsingular linear transformations of the generators the structure constants can
take different forms. However, they have some general properties which are inde-
pendent of the special choice of basis of the Lie algebra: (i) They are antisymmetric
in indices i and j . (ii) From the Jacobi identity for the generators

�
ŒTi ;Tj 	;Tk

	C (two cyclic permutations of i; j; k/ D 0
follows an identity for the structure constants, viz.

Cmij C
l
mk C CmjkC lmi C CmkiC lmj D 0 ; (5.21)

where m is the summation index, all indices taking the values 1 to dim g. This rela-
tion, too, is called a Jacobi identity.

The freedom in choosing the basis of the Lie algebra can be utilized so as to
obtain structure constants which are antisymmetric in all three indices. This con-
struction will be given below, together with an example.

In many applications in physics, the representation theory of compact Lie groups
and of their Lie algebras is of central importance. A representation is a map of a
group into a (in general) complex vector space of dimension n,

% W G �! V W g 7�! U.g/ ;

which is compatible with the group axioms. At the same time, its Lie algebra is
mapped by

% W g �! V W Tk 7�! U.Tk/ ;

such that the U.Tk/ obey the same commutators as the generators. Thus, the gen-
erators, which initially are given in the defining representation only, are represented
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by finite-dimensional matrices Upq.Tk/, p; q D 1; 2; : : : ; n. (More precisely, a rep-
resentation is a homomorphism of g into the linear algebra gl.V / of a vector space
which preserves the commutators of the generators.) As the hermitian-conjugate
generators T�

k
obey the same Lie algebra, given by (5.20), as the generators Tk ,

ŒTi ;Tj 	� D ŒT�j ;T�i 	 D �iC kijT
�

k
D iC kjiT

�

k
;

one can represent the Tk by finite-dimensional, hermitian matrices.
Two classes of representations are especially important: the fundamental rep-

resentation, also called the defining representation, and the adjoint representation.
The defining representation is the faithful representation (i.e. different from the triv-
ial representation) whose dimension is the lowest. In the older literature, it was also
called spinor representation. The adjoint representation is defined by the structure
constants and, hence, has the dimension of the Lie algebra. Indeed, taking the .l;m/-
entry of the matrix U.Tk/ to be

U
.ad/
lm

.Tk/ D �iCmkl ;

one verifies by means of the Jacobi identity given by (5.21) that these matrices
satisfy the commutators given by (5.20) (cf. Exercise 5.6).

Before moving on in this summary, an example may help to illustrate these mat-
ters.

Example 5.1 Group SU(2) and its Lie algebra
Every element of SU(2) can be represented by means of two complex numbers u
and v whose absolute squares add up to 1:

U D
�

u v

�v� u�
�
; juj 2 C jvj 2 D 1 :

This is easily verified. One finds

U�U D
�
u� �v
v� u

��
u v

�v� u�
�

D .juj2 C jvj2/
�
1 0

0 1

�
D UU� D 1l2 ;

det U D juj2 C jvj2 D 1 :

By representing the goup element U as an exponential series U D expfiAg, with
A an element of the Lie algebra, the following properties are seen to be equiva-
lent:

U�U D 1l2” A� D A and det U D 1” tr A D 0 :
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The first of these follows from the Baker–Hausdorff–Campbell formula for the
product of two exponential series. Indeed, using this formula one has

U�U D e�iA�

eiA D expfi.A� A�/C 1

2
ŒA�;A	C : : :g :

This is equal to the unit matrix 1l if and only if A� D A. This result, i.e. A being
hermitian, implies the second equivalence. Every hermitian matrix can be diago-
nalized by a unitary transformation. But when A is diagonal, U is also diagonal.
In other terms, U is transformed into

U �! 0

U D
�

ei� 0

0 e�i�

�

when A becomes diag.�;��/.

Within the framework of the Lie algebra one recalls that every traceless hermitian
2 � 2 matrix can be written as a linear combination of the Pauli matrices, given
by (4.24), with real coefficients, viz.

A D
�

c a � ib
aC ib �c

�
D a�1 C b�2 C c�3 ; a; b; c 2 R : (5.22)

Thus the Pauli matrices, repeated here for the sake of convenience,

�1 D
�
0 1

1 0

�
; �2 D

�
0 �i
i 0

�
; �3 D

�
1 0

0 �1
�
; (5.23)

are a possible choice for the generators of SU(2) – up to a factor 1=2. Their com-
mutators are easily worked out to be

h
�i
2

�
;

�j
2

�i
D i"ijk


�k
2

�
; (5.24)

where "ijk D C1 .�1/ for even (odd) permutations of .1; 2; 3/, and "ijk D 0 in all
other cases. The structure constants are C kij D "ijk .

The trivial representation is one-dimensional, and all three generators are zero
and trivially satisfy the commutators given by (5.20).

The fundamental or defining representation is the genuine spinor representation.
It is two-dimensional. The vector space on which it is realized is spanned by the
eigenvectors �

1

0

�
and

�
0

�1
�

of �3. The generators are given by (half) the Pauli matrices, (5.23).
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The adjoint representation for this example is three-dimensional. Constructing
this representation following the rule given above, one finds

U.ad/.T1/ D �if"1lmg D �i

0
@ 0 0 0

0 0 1

0 �1 0

1
A D

0
@ 0 0 0

0 0 �i
0 i 0

1
A ; (5.25a)

U.ad/.T2/ D �if"2lmg D
0
@ 0 0 i

0 0 0

�i 0 0

1
A ; (5.25b)

U.ad/.T3/ D �if"3lmg D
0
@ 0 �i 0

i 0 0

0 0 0

1
A : (5.25c)

One verifies that indeed ŒU.ad/.T1/;U.ad/.T2/	 D iU.ad/.T3/, as well as the cyclic
permutations of this equation, hold true.

The group SU(2) is a simple group, that is, it is non-Abelian and has no invari-
ant subgroup. At the level of the Lie algebra, this means that this algebra has no
two-sided ideal and that every generator can be related to any other by means of
commutators. In other terms, there is no way of splitting the Lie algebra into two
subsets such that the structure constants C kij vanish whenever index i denotes an el-
ement of one of these subsets while index k refers to an element of the other subset.

I Remarks
1. We use consistently representations in which the generators are represented

by hermitian matrices. In the realm of quantum mechanics, there are good
reasons for this choice because hermitian matrices may represent physical
observables. In the mathematical literature, one uses almost always a nonher-
mitian definition of the generators. This means that in the exponential series
given by (5.19) and in the commutators given by (5.20), there is no factor i in
the exponent and on the right-hand side, respectively.

2. In classical mechanics, the generators of rotation group SO(3) whose Lie alge-
bra is the same as that of SU(2) are usually represented by real, antisymmetric
matrices, see e. g. Eq. (2.68) in [ME]. The relation to the generators as defined
here is as follows:

Ji D �iU.ad/.Ti / : i D 1; 2; 3 :

The commutators then read

�
J1; J2

	 D ��U.ad/.T1/;U.ad/.T2/
	 D �iU.ad/.T3/

D J3 (cyclically continued) :
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The vector space of the adjoint representation of a simple Lie group possesses
a natural metric. This is seen by defining the following tensor over the Lie algebra:

gij WD tr
�
U.ad/.Ti /U.ad/.Tj /

� D �C piqC qjp : (5.26)

This tensor g is symmetric, nondegenerate and positive-definite. Thus it has the
properties of a metric. Using the positivity one can find a transformation of the
generators such that g becomes diagonal and is equal to the unit matrix in dimen-
sion dim g:

g D diag.1; 1; : : : ; 1/ :

This metric is called the Killing metric. Defining new structure constants by

Cijk WD C pij gpk (summing over p) ; (5.27)

one shows by means of the Jacobi identity that the new structure constants are anti-
symmetric in all three indices. This is left as an exercise.

An important property of the Lie algebras of simple Lie groups is as follows:
By linear transformation, the generators can always be chosen such that one has

tr
�
U.Ti /U.Tj /

� D � ıij ; (5.28)

where the positive constant � depends on the representation but does not depend on
the generator Ti . The proof of this assertion is the topic of Exercise 5.2.

As an example, one verifies that in the fundamental representation of SU(2) one
has

tr
�
U.Ti /U.Tj /

� D 1

4
tr
�
�i�j

� D 1

2
ıij :

This follows, for example, from the formula

�i�j D 1l2ıij C i"ijk�k

and from the fact that the Pauli matrices are traceless, viz.

tr
�
�i�j

� D 2ıij C i"ijk tr
�
�k
� D 2ıij :

In the adjoint representation of SU(2), one has

tr
�
U.ad/.Ti /U.ad/.Tj /

� D 2ıij :
This is verified by means of the explicit expressions (5.25a)–(5.25c).
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5.4.2 Globally Invariant Lagrange Densities

It takes only a small step to generalize a Lagrange density of the kind studied in
the example given by (5.1) to a set of scalar fields ˚ D f�.1/; �.2/; : : : ; �.m/g,
which span a unitary, reducible or irreducible representation of the structure group
in such a way that the new Lagrange density is invariant under all (global) gauge
transformations g 2 G. Of course, it is also possible to combine different species of
fields in a globally invariant manner and thereby to obtain a globally gauge-invariant
theory. The U(1) Maxwell theory – though not yet interpreted as a gauge group –
and its coupling to the Schrödinger field provide an example.

The fields in examples of this kind may also be complex fields. However, these
must be combined such that the Lagrange density stays real. For example, in (5.1),
one must replace

@��@
�� � �2�2 by @��

�@�� � �2��� :

An example may illustrate this construction.

Example 5.2
Let the structure group be G D SO.3/. The fields ˚ D f�.˛/g, ˛ D 1; 0;�1, are
assumed to span the triplet representation of the rotation group. Likewise, the ex-
ternal source is replaced by a triplet of sources f%.˛/g which form an irreducible
representation of SO(3) as well. This means that under rotations of the frame of
reference, these triplets transform by the D-matrices D.1/.�; �;  /,

� 0̨ .x0/ D
C1X
ˇD�1

D
.1/

˛ˇ
.�i /�ˇ .x/ ;

where �i is an abbreviation for the three Eulerian angles �, � and  . In this
example, bilinear forms of the following kind:

X
˛

.�/1�˛�˛��˛ ;
X
˛

.�/1�˛@��˛@���˛ ;
X
˛

.�/1�˛%˛��˛

are invariant under rotations g 2 SO(3). If the Lagrange density is to be globally
gauge invariant, it can only contain terms of this kind.

Let us adopt the convention of denoting any globally invariant form by a pair of
symbolic round parentheses such as

�
˚;˚

�
;

�
@�˚; @

�˚
�

etc., (5.29)

their explicit expressions depending on the choice of structure group G. Thus,
in what follows the round parentheses in (5.29) stand for the generalized scalar
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product, i.e. for the coupling of the two entries to an invariant term under all trans-
formations g 2 G. The practical realization of this scalar product depends on the
structure group and on the representation one considers. In the case of the rotation
group, or the case of the group SU(2), and their irreducible representations of di-
mension .2j C1/, these are the Clebsch–Gordan coefficients for the coupling of the
two entries to J D 0.

To the list of requirements which a Lagrange density must satisfy, besides
Lorentz invariance, one now adds invariance under all transformations g 2 G. In
Example 3.4 (atoms in external fields), for instance, the free Lagrange densities

LM D � 1

16�
F��.x/F

��.x/ ;

LE D 1

2
i„� �@t � .@t �/ 

	 � U.t;x/ � � „
2

2m

�r ���r �

are invariant6 under the global U(1) transformation  7!  0 D ei˛ , but they are
not yet coupled.

5.4.3 The Gauge Group

Given a structure group G and a Lagrange density which is invariant under this
group, the aim is to construct a gauge group G of local gauge transformations.
For that purpose the parameters ˛k in (5.19) must be replaced by smooth func-
tions ˛k.x/ of space and time. From a physical point of view, this entails two new
features. On the one hand, it becomes possible to restrict gauge transformations to
a finite domain of space or time, i.e. to “rotate” the system under consideration lo-
cally and within a finite time interval, without transforming simultaneously other
physical systems located far from it. On the other hand, one endows every point
x 2 M of spacetime with a copy G.x/ of the structure group such that this copy
is attached to point x like an inner symmetry space. This construction is sketched
symbolically in Fig. 5.1. The copies G.x/ and G.y/ of the structure group with
x 6D y are disjoint spaces. Expressed in geometric terms, this construction is a prin-
cipal fibre bundle with spacetime M as base manifold and G, the structure group,
as typical fibre:7

P.M;G/ : (5.30)

It would take us too long to describe here the wonderful differential geometric de-
scription of principal fibre bundles and the zoo of geometric objects which can be

6 There is no Lorentz invariance in this example because  obeys a nonrelativistic equation of mo-
tion. Lorentz transformations are replaced by rotations in R3 with respect to which both Lagrange
densities are invariant.
7 A precise definition of a fibre bundle in differential geometry may be found, e. g., in [ME],
Sect. 4.7.
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Fig. 5.1 In each of the points x, y, z, : : : of the
spacetime manifold one finds a local copy of the struc-
ture group. The finite-dimensional structure group is
replaced by the infinite-dimensional gauge group, and
the whole setting becomes a principal fibre bundle

defined on them, so the interested reader is referred to the mathematical literature
which develops this geometry in the light of Yang–Mills theory. We note, however,
that once one becomes familiar with this framework, matters become considerably
more transparent than by defining the gauge group and gauge transformations purely
formally.

5.4.4 Potential and Covariant Derivative

Because the copiesG.x/ andG.xC dx/ of the structure group in the neighbouring
points x and x C dx, respectively, differ from each other, the representations ˚.x/
and ˚.x C dx/ live in disjoint vector spaces. Therefore, a given component �.x/i
in x cannot be compared directly with the same component �.xCdx/

i in the neigh-
bourhood. Asking the question which transformation takes �i in the representation
defined over the point x 2 M to the same component in the representation over
xC dx poses a geometric problem which pertains to the same category as the ques-
tion of parallel transport of vectors from the tangent space over x to the tangent
space over the neighbouring x C dx. Thus, it seems justified to talk about parallel
transport also in the problem posed here. Parallel transport is not given a priori.
Rather, at least for nonflat base manifolds, it must be defined appropriately.

LetN D dim g be the dimension of the Lie algebra of the structure groupG, and
let Tk denote its generators. One defines the generalized potential as follows:

A WD iq
NX
kD1

A.k/Tk ; .N D dim g/ : (5.31)

This definition contains a generalized “charge”, i.e. the coupling constant q whose
physical interpretation will have to be identified later, as well as a factor i. As the
objects A.k/ are assumed to be real, factor i renders the generalized potential A
hermitian. The quantities A.k/, of which there are as many as there are generators
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of the Lie algebra, are one-forms over R.1;3/,

A.k/ D A.k/� .x/dx� ; k D 1; 2; : : : ; dim g ; (5.32)

where the four coefficients A.k/� .x/, � D 0; : : : ; 3 are smooth real functions of
spacetime. The way potential A is defined in (5.31) is seen to have a double nature:
On the one hand, by (5.32), it is a one-form on spacetime; on the other hand, because
of its linear dependence on the generators, it is an element of the Lie algebra g. One
says that the potential given by (5.31) is a Lie algebra valued one-form.

It does not matter for this definition in which representation of the structure group
G the generators Tk are assumed to be given. It may be the adjoint representation,
but it might as well be, for example, the reducible or irreducible representation
spanned by the multiplet ˚ of scalar fields. In a specific physical context, this
representation is chosen, and when writing the latter in a matrix representation U,
equation (5.31) takes the form

U.A/ WD iq
NX
kD1

A.k/U.Tk/ : (5.33a)

This is a matrix whose entries are ordinary one-forms. The same definition, freed
of the specific matrix representation U.Tk/ and written in terms of the “genuine”
fields A.k/� .x/, then reads

A WD iq
NX
kD1

Tk
3X

�D0
A.k/� .x/dx� : (5.33b)

The geometric role of this potential emerges when showing that it acts as carrier
of parallel transport. Within our example of scalar fields, for example, the difference
between a given component in two neighbouring base points on M is given by

�
.xCdx/
i D �.x/i �

mX
jD1

Uij .A/�
.x/
j D

mX
jD1

˚
ıij � Uij .A/



�
.x/
j ; (5.34)

with m the dimension of the representation. At first, this is no more than an ansatz
which must be shown to yield what one expects.

It seems meaningful to require that a parallel transport commute with any local
transformation g.x/ 2 G. We now show that this is true provided the transformation
behaviour of A is as follows:

A 7�! A0 D gAg�1 C gd.g�1/ ; (5.35a)

or, writing the same transformation rule in terms of the components of the one-form,

A�.x/ 7�! A0
� D g.x/A�.x/g�1.x/C g.x/@�g�1.x/ : (5.35b)
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This affine transformation might be surprising at first because it mixes a conjugation
of the type

O 7�! ROR�1 ;

well known from transformations of operators (e. g. of quantum mechanics), and
a gauge transformation proper in the sense of Maxwell theory. Indeed, for the case
g.x/ 2 U(1), i.e. g.x/ D expfi˛.x/g, one has

gA�g
�1 D A� ; but g.x/@�g

�1.x/ D �i@�˛.x/ I

A0
�.x/ D A�.x/ � i@�˛.x/ is a local gauge transformation of Maxwell theory.
Given ansatz (5.34), one applies an arbitrary local gauge transformation g.x/ to

�.x/ and g.x C dx/ to �.xCdx/. Equation (5.34) describes a parallel transport if it
commutes with g 2 G, that is to say, if

U
�
g.x C dx/

��
1l � U.A/

� D �1l� U.A0/
�
U
�
g.x/

�

holds true. Obviously, this relation must be independent of the kind and the dimen-
sion of the representation. Therefore, it can be formulated quite generally for g and
A in abstract form:

g.x C dx/
�
1l �A� D �1l� A0�g.x/ : (5.36)

Expanding g.x C dx/ around point x to the first order,

g.x C dx/ ' g.x/C @˛g.x/dx˛ � g C dg ;

equation (5.36) yields the condition dg � gA D �A0g or, after multiplication by
g�1 from the right,

A0 D gA g�1 � �dg
�
g�1

D gA g�1 C gdg�1 :

In the second step, the derivative of gg�1 D 1l

d
�
gg�1� D d1l D 0 D �dg

�
g�1 C gdg�1

was used to replace �.dg/g�1 by gdg�1. This is the transformation behaviour
anticipated in (5.35a).

Starting from the potential given by (5.31) one constructs the covariant deriva-
tive, following the example expressed by (2.88b) of Maxwell theory:

DA WD dC A : (5.37)
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When specialized to the m-dimensional representation space spanned by the scalar
fields of the example above, this means, in concrete terms, the replacement

@�˚.x/ 7�!
n
@�1lC iq

NX
kD1

A.k/� .x/U.Tk/
o
˚.x/ : (5.37a)

The behaviour of the covariant derivative under a local gauge transformation is
straight conjugation and, hence, is simpler than the behaviour of the potential itself.
One has

DA0 D gDA g�1 while A0 D gAg�1 C gdg�1 : (5.38)

This is shown as follows. For the sake of simlicity, return to our model field ˚
subject to a local transformation˚ 0 D U.g/˚ . Then calculate

DA0˚ 0 D �1ldC U.A0/
�
U.g/˚

D �dU.g/
�
˚ C U.g/d˚

C U.g/
n
U.A/U�1.g/C �dU�1.g/

�o
U.g/˚

D U.g/
�

dC U.A/
	
˚

C
n�

dU.g/
�C U.g/

�
d
�
U�1.g/U.g/

� � U�1.g/
�

dU.g/
�	o
˚ ;

where in the last step one uses once more the identity

d.U�1.g/U.g// D 0 D .dU�1.g//U.g/C U�1.g/dU.g/ :

The whole term in the curly brackets of the bottom line is equal to zero, so that there
remains the relation

DA0˚ 0 D U.g/DA˚ D U.g/DAU�1.g/˚ 0 :

Both sides now contain the same field ˚ 0, and one concludes

DA0 D U.g/DAU�1.g/ : (5.39)

Of course, the field ˚ of the model is simply an auxiliary tool which may be
chosen arbitrarily. This means that (5.39) holds in all representations, thereby prov-
ing (5.38). The covariant derivative transforms under gauge transformations like an
operator. In particular, constructing a term .DA˚;DA˚/ in the manner desribed
above, this term is invariant not only under global but also under local gauge trans-
formations.
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5.4.5 Field Strength Tensor and Curvature

In a next step, and still following the example of electrodynamics, the covariant
derivativeDA is used to construct the curvature form given by (2.88c):

F WD D2
A D .dA/C A ^A : (5.40)

At variance with Maxwell theory is a new property here: In the case of non-Abelian
groups, the second term, the exterior product of A with itself, does not vanish. Writ-
ing all sums explicitly, as an exception, one obtains from (5.33b)

A ^A D �q2
NX

k;lD1
TkTl

3X
	;
D0

A.k/	 .x/A.l/
 .x/ dx	 ^ dx
 ;

D �q2
NX

k;lD1

�
Tk ;Tl

	 3X
�<�D0

A.k/� .x/A.l/� .x/ dx� ^ dx� ;

D �iq2
NX

k;l;mD1
CklmTm

3X
�<�D0

A.k/� .x/A.l/� .x/ dx� ^ dx� : (5.41)

The crucial aspect is the fact that A is an element of the Lie algebra. Ordering the
base two-forms dx	 ^ dx
 as usual, i.e. by increasing index, by exchanging the
indices � and 
 in the term with � > 
 , one sees that dx� ^ dx� is multiplied by
the factor X

k;l

A.k/� .x/A.l/� .x/
�
TkTl � TlTk

�
;

which does not vanish in a non-Abelian theory.
In view of the definition given by (5.33b), it is suggestive to decompose the two-

form of (5.40) in terms of tensor fields of the kind F��.x/ on spacetime and of base
two-forms, including in the definition the same factors as in (5.33b). Thus, we define

F D iq
NX
kD1

Tk
X
�<�

F .k/�� .x/ dx� ^ dx� : (5.42)

This definition, too, reveals a double nature: F is a two-form on spacetime but at
the same time takes values in the Lie algebra of the gauge group. The tensor fields
F
.k/
�� .x/, of which there are precisely N D dim g species, are direct generalizations

of the field strength tensor of electrodynamics. From the decomposition, (5.42), of
F and the decomposition, (5.33b), ofA, using the result given by (5.41), these tensor
fields are given by

F .k/�� .x/ D @�A.k/� .x/ � @�A.k/� .x/ � q
NX

m;nD1
CkmnA

.m/
� .x/A.n/� .x/ : (5.43)



5.4 Non-Abelian Gauge Theories 283

The first term on the right-hand side is familiar from Maxwell theory, cf. (2.58);
the second term is new. It contains the coupling constant (“charge”), the structure
constants of the group and the product of two vector potentials pertaining to different
generators, Tm and Tn. Already at this point one realizes that non-Abelian gauge
theories contain nonlinearities, in contrast to Maxwell’s equations.

Indeed, the field strength F describes a kind of curvature in the principal fi-
bre bundle P.M;G/ with base manifold R.1;3/ (spacetime) and typical fibre G
(structure group). To see this, recall the setting of ordinary Riemannian manifolds.
Whether or not a Riemannian manifold is curved is tested by parallel transport of
tangent vectors from p 2 M to q 2 M via different geodesics and by comparison
of the results. For a flat manifold such as, for example, Rn, the result is independent
of the path from p to q. This space has no curvature. On a curved manifold such as,
for example, the sphere Sn�1 in Rn, the result of parallel transport depends on the
choice of great circles and meridians along which one performs parallel transport of
tangent vectors. The difference between the results along different paths is a mea-
sure of the nonvanishing curvature. Another alternative is to study the behaviour of
tangent vectors on round trips by parallel transport from p to q along one path and
returning from q back to p along another path.

As in Riemannian geometry, a “round trip” can be organized by means of the
parallel transport given by (5.34). For the sake of simplicity, we do this locally, i.e.
in the immediate neighbourhood of the point x 2 R4, and in the way sketched in
Fig. 5.2. We perform parallel transport from x to z D xC dxC dy and back to the
start in x but choose the path to z different from the path back to x.

We express A by its componentsA�.x/, i.e. write (5.33b) as

A D A�.x/dx� ; with A�.x/ D iq
X

TkA.k/� .x/ : (5.44)

Equation (5.35b) is utilized without reference to the special representation spanned
by the fields �i . One calculates the difference of the parallel transport along one or
the other of the two paths drawn in Fig. 5.2 as follows:



1l�A�.x C dx/dy�

�

1l� A�.x/dx�

�

�


1l� A�.x C dy/dx�

�

1l�A�.x/dy�

�
:

ExpandingA�.xC dx/ and A�.xC dy/ around point x to the first order in dx and
in dy, this difference is found to be

D �dx� dy�


@�A�.x/ � @�A�.x/C A�.x/A�.x/ � A�.x/A�.x/

�

D �dx� dy�


@�A�.x/ � @�A�.x/C

�
A�.x/; A�.x/

	�
D �F��.x/dx� dy� :
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Fig. 5.2 One may move from x to z D x C dx C
dy via either y D x C dx or y0 D x C dy. The
two paths are combined into a nontrivial round trip
which starts at x and ends at the same point y' = x + dy

dy

dx

dx

dy

y = x + dx

z = x + dx + dy

In close analogy to (5.44), in the case of the potential, the quantities

F��.x/ D iq
NX
kD1

TkF .k/�� .x/ (5.45)

are (Lie algebra valued) coefficients of F . This result shows very clearly that F
describes a curvature indeed. Thus, in a geometrical picture, the tensor fields are
curvatures.

We note, furthermore, that the behaviour of F with respect to gauge transforma-
tions is again by conjugation. This behaviour was derived for the covariant derivative
in (5.38). Obviously, it also applies to the square ofDA and, via the definition given
by (5.40), to F ,

F 7�! F 0 D gFg�1 : (5.46)

These results and the covariant derivative of matter fields provide the basic tools for
the construction of gauge-invariant Lagrange functions.

5.4.6 Gauge-Invariant Lagrange Densities

On the basis laid down in the two preceding sections, it is not difficult to construct
Lagrange densities which are invariant under Lorentz transformations as well as
under a given gauge group G. Already at this level one realizes how far Maxwell
theory can take us as a model whose physical interpretation is well understood.

Suppose the following tools of the theory are given:

� A compact Lie groupG and the infinite-dimensional gauge group G over space-
time R.1;3/ which is built on G;
� A potential A, equation (5.33b), which is both an element of the Lie algebra g

and a one-form over Minkowski space R.1;3/;
� A set of (matter) fields ˚.x/ D f�1.x/; : : : ; �m.x/g which span a reducible or

irreducible representation ofG. Here, for the sake of simplicity, we assume these
to be scalar fields. However, a largely identical construction is possible also for
fields whose transformation behaviour under Lorentz transformations is more
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complicated. (We have in mind matter fields which describe particles in quantum
mechanics having nonvanishing spin.)

Starting fromA, equation (5.33b), one constructs the covariant derivativeDA, equa-
tion (5.37), and from the latter the curvature formF , equation (5.40). As can be seen
from (5.42), this object is a two-form taking values in the Lie algebra. Neglecting
the matter field ˚ for the moment and following the example of Maxwell theory,
the only possibility is to couple F with itself in a way that guarantees Lorentz in-
variance and gauge invariance. In fact, there are several ways of implementing this
prescription, all of which lead to the same result.

(i) The exterior product of the two-form F with its Hodge dual �F can be
integrated over the manifold M D R.1;3/. This is a typical geometric ap-
proach which we did not describe in the case of Maxwell theory, however,
and which we do not wish to work out further.8 Furthermore, as will be ex-
plained below, the trace over the adjoint representation of the Lie algebra
must be taken.

(ii) Guided by the example of Maxwell theory, use the two-form

F�� D iq
NX
kD1

TkF .k/�� .x/ (5.47a)

with F D F�� dx� ^ dx� by (5.42), to construct the Lorentz invariant
F��F

�� . To obtain an invariant under all gauge transformations g 2 G,
one must take the trace over the adjoint representation of G. Written more
explicitly, the Lie algebra-valued two-form F reads

F D F�� dx�^dx� D iq
NX
kD1

U.ad/.Tk/
X
�<�

F .k/�� .x/ dx�^dx� : (5.47b)

Therefore, a trace must be taken of the product of the two N � N matrices
U.ad/.Tk/ and U.ad/.Tl /. As both the potential A and the quantity F are
elements of the Lie algebra, one often writes tr.F��F ��/ for short.

(iii) A third possibility consists in defining scalar products of exterior forms on
Minkowski space. A natural choice well adapted to Lorentz covariance is

hdx�jdx�i D �1g�� ;
hdx� ^ dx�jdx	 ^ dx
 i D �2

�
g�	g�
 � g�
g�	� :

8 This geometric approach makes use, in an essential way, of the fact that �F ^F is a 4-form and,
hence, can be integrated over a manifold with dimension 4. The dimension of the base manifold is
essential in this context. Integration on arbitrary smooth manifolds is not developed in this book.
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Note, however, that scalar products are not really fixed by the geometry be-
cause the constants �1 and �2 may be chosen at will. Furthermore, as the
dx� one-forms are lengths, these constants must have physical dimensions,
viz. �

�1
	 D length�2 ;

�
�2
	 D length�4 :

Finally, as in the two alternatives described previously, one must take the
trace over the product of two generators in the adjoint representation.

By either of the three foregoing methods one arrives at the term tr.F��F ��/,
which is Lorentz and G-invariant. This term yields a generalized “kinetic” term in
the Lagrange density provided it obeys an important normalization condition. We
explain this normalization condition by means of (5.43), which we write as

F .k/�� .x/ D f .k/�� .x/ � q
NX

m;nD1
CkmnA

.m/
� .x/A.n/� .x/ ; (5.48a)

f .k/�� .x/ WD @�A.k/� .x/ � @�A.k/� .x/ : (5.48b)

The invariant I WD tr.F��F ��/ contains in a first term the contraction of the tensor
field f�� , defined in (5.48b), with itself,

NX
kD1

NX
lD1

tr
�
U.ad/.Tk/U.ad/.Tl/

�
f .k/�� .x/f

.l/��.x/ :

According to (5.28), the trace in this expression depends not on the generator but on
the group representation. This means that we must know the normalization of the
generators in the adjoint representation, i.e. we need to know the numerical value of
the constant �.ad/. The terms f .k/�� .x/f

.k/��.x/ take the same role as the Lagrange
density, (3.36a), of free Maxwell theory whose physical interpretation was worked
out in Sect. 3.4. It is this comparison which fixes the normalization of the invariant
tr.F��F ��/ in the Lagrange density: As in the Maxwell case, this term must appear
multiplied by �1=16� (using Gaussian units, or �1=4 using natural units). This
fixes the first part of the Lagrange density. It reads

LYM D � 1

16�q2�.ad/
tr
�
F��F

��
�
: (5.49)

The subscript “YM” stands for “Yang–Mills”, the Lie algebra-valued field F�� is
defined as in (5.47a) or (5.47b), division by q2 being due to the choice of having
inserted a factor q in the definition of F�� .

Finally, the coupling of the N Yang–Mills fields to matter is introduced by fol-
lowing the model of Maxwell theory. For simplicity, we discuss this aspect within
the example of the multiplet ˚ whose components span a representation of G and
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all of which are Lorentz scalar fields. How such a multiplet is to be coupled to a bi-
linear G-invariant term depends on the group and on the representation. As was
stated earlier, we abbreviate this scalar product by big round parentheses.

Regarding the matter terms in the Lagrange density, we assume that all the �k.x/
components pertain to the same mass parameter, (5.2). In this framework, the La-
grange density describing matter fields will initially be of the form of (5.1), viz.

L.0/˚ D
1

2

h�
@�˚.x/; @

�˚.x/
� � �2�˚;˚�i �W �

˚.x/
�
; (5.50)

where W.˚/ is a potential energy density, i.e. a kind of self-coupling among the
scalar fields �k which is globally gauge invariant.

The Lagrange density, (5.50), is globally gauge invariant but not locally gauge
invariant because the kinetic energy density .@�˚; @�˚/ is not gauge invariant. To
construct a gauge-invariant theory, two modifications must be applied to it. Firstly,
the ordinary derivative must be replaced by the covariant derivative (5.37),

d˚ ! DA˚ or

@�˚.x/!
n
1l@� C iq

NX
kD1

U.˚/.Tk/A.k/� .x/
o
˚.x/ :

Secondly, the gauge fields which are contained in A must be endowed on their own
with a “kinetic” term of the kind expressed by (5.49). Thus, the completed, locally
invariant theory is defined by a Lagrange density of the form

L D � 1

16�q2�.ad/
tr
�
F��F

��
�

(5.51)

C 1

2

h�
D�˚.x/;D

�˚.x/
� � �2�˚;˚�i �W �

˚.x/
�
:

It contains the physics of the gauge fields, of the original scalar fields, and their
coupling to the gauge fields in a gauge-invaraint manner. The Lagrange density,
(5.51), possesses a high degree of symmetry with respect to the gauge group G.

I Remarks
1. As has been emphasized repeatedly, the structure group, as the basis of

the theory, must be compact. Only in this case, the Killing metric (5.26)
is positive-definite. Recalling the calculation of the field energy (3.30a) of
Maxwell fields, one sees that the signs in (3.36a) and (5.49) are responsible
for the fact that the energy density, and thus the total energy content of free
Maxwell or Yang–Mills fields, is positive. If one had allowed for a noncom-
pact structure group, the Killing metric in its diagonalized form would have
contained positive as well as negative entries, i.e.

g D diag."1; "2; : : : ; "N / with "i D ˙1 :
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As a consequence, the kinetic energy of at least some of the vector fields in the
Yang–Mills theory would have the wrong sign, that is, they would be assigned
negative field energies.

2. By construction, the Lagrange density, (5.51), is invariant also under global
gauge transformations, i.e. under any element g 2 G of the structure group.
In some sense, this is a weaker form of gauge invariance.

5.4.7 Physical Interpretation

Starting from the Lagrange density as given by (5.51) and a decomposition of the
tensor field F�� , in a given frame of reference, into G-electric and G-magnetic
fields, one derives the generalized Maxwell equations for non-Abelian gauge theo-
ries. The equations of motion which one obtains have a similar structure as those of
electrodynamics. They are composed of a “radiation” part and a “matter” part, the
latter appearing as inhomogeneous or source terms. Non-Abelian gauge theories de-
scribe fundamental interactions whose ranges are microscopically small and, hence,
which play no role in classical, macroscopic physics. This means that, although
these theories are defined at the level of classical, nonquantum physics and, hence,
are closely related to the theory of Maxwell fields, they obtain their physical realiza-
tion in the framework of quantum field theory. The gauge potentialsA.k/� .x/, which,
strictly speaking, are not observables, are nevertheless helpful auxiliary quantities
in the quantization of the theory and in the interpretation of the gauge fields in terms
of vector bosons as carriers of fundamental interactions. This is in close analogy
to the photon, which is understood as the carrier of electric and magnetic interac-
tions. Therefore, it is sufficient to discuss the Lagrange density proper, including the
couplings it contains, instead of working out the Euler Lagrange equations.

Gauge Invariance andMassless Gauge Bosons
It is a striking property of the Lagrange density, (5.51), that none of the N fields
A
.k/
� possesses a mass term. As in Maxwell theory, cf. Sect. 5.2, any primordial

mass term
1

8�
�.k/ 2A.k/� .x/A.k/�.x/ (5.52)

would ruin gauge invariance. This means that, after quantization, locally gauge-
invariant, non-Abelian theories describe massless gauge bosons. This was why Pauli
rejected this construction. At that time, no massless gauge bosons other than the
photon were known.

This general statement and Pauli’s criticism are justified as long as one consid-
ers the physics of gauge fields in isolation. In this framework, there cannot be mass
terms of the kind given by (5.52) without losing local gauge invariance. Surprisingly,
the rescue from this apparent uselessness, from the perspective of fundamental in-
teractions of nature, comes from the interplay of pure gauge theory with matter
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fields and their self-interaction W.˚/, in the framework of spontaneous symmetry
breaking. If the pure Yang–Mills theory is supplemented by genuine physical scalar
fields, by arranging their potential energy such that it has an absolute minimum at
(infinitely many) ˚ D ˚ .0/ 6D 0, the Lagrange density remains gauge invariant and
describes vector fields some of which become massive. This phenomenon of spon-
taneous symmetry breaking means that the physical ground state has less symmetry
than the Lagrange density defining the theory. Thus, the gauge invariance is not lost;
it is “hidden” in the physically realized state. It is for this reason that one often calls
this phenomenon hidden symmetry.

The mechanism of spontaneous symmetry breaking was discovered in the mid-
1960s by Higgs, Kibble, Brout, and Engler.9 It was of paramount importance in the
development of the gauge theory describing electroweak interactions. We return to
this in somewhat more detail below.

Interactions of the Gauge Bosons
The generic Lagrange density, (5.51), differs from the Lagrange density of elec-
trodynamics by an aspect which is of central importance for physics. Compare the
Lagrange density LYM, equation (5.49), of pure Yang–Mills theory and LM, equa-
tion (3.36a), of electrodynamics without external sources, recalling the definitions
of the field strength tensors, (5.43) and (2.58), respectively. The Yang–Mills the-
ory is constructed from a non-Abelian group G, whereas Maxwell theory is a U(1)
gauge theory. The Euler–Lagrange equations of motion contain the derivatives of
the Lagrange density by the potentials and by the spacetime derivatives thereof:

@LYM

@A
.k/



and
@LYM

@
�
@�A

.k/



� :

Formally, the structure is the same as in Maxwell theory. However, in Yang–Mills
theory the equations of motion obtained are nonlinear. Indeed, writing the Lagrange
density, (5.49), somewhat more explicitly, taking the trace yields a Kronecker delta
ıkl for the generators so that there remain diagonal terms of the following kind:

F .k/�� F
.k/�� D �@�A.k/� � @�A.k/� ��

@�A.k/ � � @�A.k/��

� 2q�@�A.k/� � @�A.k/� � NX
m;nD1

CkmnA
.m/�A.n/ �

C q2
NX

m;nD1

NX
p;qD1

A.m/� A.n/� A.p/�A.q/ � :

9 P.W. Higgs, Phys. Lett. 12 (1964) 132 and Phys. Rev. 145 (1966) 1156; F. Engler and R. Brout,
Phys. Rev. Lett. 13 (1964) 321; G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Phys. Rev. Lett. 13
(1964) 585; T.W.B. Kibble, Phys. Rev. 155 (1967) 1554.
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The first term on the right-hand side is quadratic in the gauge potentials; it has the
same form as the kinetic term of Maxwell theory. The second term, which is pro-
portional to charge q, is cubic in the potentials. Upon insertion into the equations
of motion it leads to an interaction of the gauge fields among themselves, which
is new. The third term is proportional to q2 and contains the product of four gauge
potentials. It describes another interaction of the gauge fields – even without yet hav-
ing introduced any matter fields. This is an essential difference between the Abelian
U(1) theory of Maxwell’s equations and a non-Abelian gauge theory. The latter con-
tains cubic and quartic couplings of the gauge fields, leads to nonlinearities in the
equations of motion, and describes physically significant interactions among gauge
fields.

5.4.8 *More on the Gauge Group

In this book, we develop gauge-invariant classical field theories exclusively on
flat manifolds such as the well-known Minkowski space R.1;3/. However, there is
nothing to prevent our extending these constructions to more general differentiable
manifolds, i.e. studying electrodynamics or non-Abelian gauge theory on curved
spacetimes. For instance, one is confronted with this situation as soon as one in-
cludes the gravitational interaction, besides electromagnetic and other interactions
acting on microscopic scales (the so-called weak and strong interactions). The pres-
ence of masses and energy densities in the universe has the effect that spacetime
can no longer be the simple Minkowski space but must be a semi-Riemannian man-
ifold with index 1 which, loosely speaking, is more curved the higher the mass and
energy density is. On a local scale, the physics of Maxwell’s equations and of non-
Abelian interactions remains the same as on R.1;3/. However, on larger scales and
in the presence of gravitational fields, it changes. In this situation, one will have to
formulate classical gauge theory on semi-Riemannian manifolds which are not flat,
i.e. do not look like Minkowski space.

This perspective reaches far into differential geometry. In fact, historically, these
concepts were developed in mathematics and in theoretical physics, initially largely
independently, and it took some time before it was realized that the objects which
one studied had different names but were, in fact, by their very nature the same. It
would take us too far from the physical framework of classical field theory and go
beyond the scope of this book to work out in a mathematically rigorous manner the
differential geometric aspects of gauge theories. Therefore, I restrict this ad libitum
section to a few remarks which serve merely to pique the curiosity of mathematically
oriented readers and to invite them to read more about these matters.

Spacetime is assumed to be an orientable, connected Riemannian or semi-
Riemannian manifold. A Riemannian manifold is a pair .M; g/ consisting of
a smooth manifold M (in physics, as a rule, its dimension is dimM D 4) and
a metric g which is a nondegenerate, positive-definite or negative-definite bilinear
form on every tangent space. Its index, as defined earlier, is zero. The manifold is
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Fig. 5.3 The principal fibre bundle
.P !

�
M;G/ contains a fibre above

every point z of the base manifold,
i.e. an inner space where the structure
group acts freely. The base point x,
onto which the whole fibre is pro-
jected, does not feel this group action

P

called semi-Riemannian if the metric is no longer definite or, more precisely, if the
index 
 is different from zero and is the same on all tangent spaces. In physics, the
case of interest is 
 D 1. Such manifolds are also called Lorentz manifolds. Differ-
ential geometers like to assume, furthermore, that M is compact. This assumption,
for which there are good mathematical grounds, is not very convenient for physics
because physical spacetimes, in general, are not compact.

The arena for the construction of a Yang–Mills theory is the principal fibre bundle

P D


P !

�
M;G

�
; (5.53a)

whose base is spacetime M and whose typical fibre is structure group G. As
sketched in Fig. 5.3, map � is the projection from P to M , which maps every
point z of the fibre to the base point �.z/. This is a surjective mapping from P to
M . Locally, the principal fibre bundle P is isomorphic to the direct productM �G,

P Š M �G : (5.53b)

Globally, matters can be more complicated whenever more than one chart is needed
for the description of M .

The structure group acts within the fibres by free action from the right:10

Rgz D z � g ; z 2 P ; g 2 G : (5.54)

When defined in the framework of differential geometry, the gauge group G is the
group of those automorphisms of the principal bundle P which induce the identity
on basisM . In other terms, these are automorphisms,

 2 G ;  W P �! P ; (5.55)

10 The action from the right is the conventional choice in differential geometry. Unfortunately, it
is not in agreement with the practice in physics where one prefers to have symmetries act from the
left. Right action, then, occurs only with contragredient transformation behaviour.
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which commute with the right-action Rg and which map each fibre to itself, i.e. for
which

�
�
 .z/

� D �.z/ and  .z � g/ D  .z/ � g (5.55a)

hold true. As  2 G acts on the fibres only, one has

 .z/ D z�.z/ ; z 2 P ;  2 G ; (5.55b)

where � is a smooth, so-called Ad-equivariant map which maps P to the structure
groupG:

� W P ! G W z 7! �.z/ ; with

�.z � g/ D Ad g�1��.z/� D g�1�.z/g : (5.55c)

Relation (5.55b) defines a bijection � W P ! G, so that the gauge group G can be
identified with the set of these mappings. Thus, one has, for example, .�� 0/.z/ D
�.z/� 0.z/. Obviously, the gauge group is infinite-dimensional. It is represented in
every fibre by a copy of the structure group.

In a local perspective, the principal bundle P has the structure M � G, with
M the basis (spacetime) and G the structure group. Let x 2 M be a point of the
base manifold, and let � be the projection, as before. The fibre ��1.x/ over point x
is isomorphic to the structure group G. This may alternatively be interpreted and
applied as follows.

Let p 2 P be a point of P , p D .x; ��1.x//, with the two entries x on M , and
��1.x/ in the fibre. We write (5.54) in a somewhat different form and note that there
is an isomorphism between G and the fibre ��1.x/ over x, that is, for z 2 ��1.x/
and g 2 G the function

%p W G �! ��1.x/ 2 P W g 7�! %p.g/ D z � g

is the announced mapping of the structure group to the given fibre. Consider now
the corresponding tangent map in the group element e D 1l of G, i.e. the tangent
map restricted to g, the Lie algebra of G. This mapping maps the Lie algebra to the
tangent space TpP ,

Te%p W g ,! TpP :

In this process, g is embedded in the tangent space TpP . The subspace of TpP ,
which is identified in this manner

Gp WD Te%p.g/ ; (5.56)

is called the vertical subspace of TpP . Figure 5.3 illustrates this nomenclature.
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The local isomorphism given by (5.53b), in the perspective of the tangent spaces,
tells us that TpP is isomorphic to the following decomposition:

TpP Š T�.p/M ˚ g : (5.57)

The isomorphism of g and Gp, equation (5.56), is obviously canonical. This is not
true, however, for the rest: An isomorphism between T�.p/M and a subspace of TP
must be defined. The specific choice to be made here is equivalent to the definition of
a connection. The connection, in turn, defines the covariant derivative. The choice
of a connection on the given principal bundle P means that for every point p 2 P
one defines a subspaceQp 	 TpP which has the following properties:

(i) The tangent space in p is the direct sum of Gp and Qp:

TpP D Qp ˚Gp : (5.58a)

(ii) The action of the structure group on Qp satisfies the condition

Qp�g D TRg.Qp/ : (5.58b)

(iii) The subspaceQp is differentiable in p 2 P .

A space Qp defined in this way is called a horizontal subspace of TpP .
The mapping p 7! Qp is called a connection on P .

Condition (ii) guarantees that the decomposition given by (5.58a) is invariant
under the right action of the structure group:

Tp�gP D TRg.TpP/ D TRg
�
Qp ˚Gp

�
D TRg.Qp/˚ TRg.Gp/ D Qp�g ˚Gp�g :

The condition that the map p 7! Qp must be differentiable is needed for the con-
nection to yield a covariant derivative.

We can do no more than to sketch the remainder of this construction and to make
it plausible by means of qualitative arguments. In selecting the horizontal subspaces
in the points p 2 P in the way described above, the different tangent spaces be-
come comparable. For instance, one thereby determines where the identity 1l of G
is located in the respective tangent spaces. In terms of physics, one might say that
the inner symmetry spaces over points x of the base manifold become comparable
to each other.

The close relationship to a standard notion in differential geometry is obvious: the
definition of Riemannian manifolds. It is well known that tangent vectors from two
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different, disjoint tangent spaces TxM over x and TyM over y cannot be compared
directly unless the manifold is a Euclidean space, M D Rn. Only in this special
case is parallel transport of a tangent vector from TxM to TyM defined in a natural
way. In all other cases, the connection and, hence, the covariant derivative must be
defined within the framework of some general rules.

In the present case, the connection is a one-form on P and takes values in the Lie
algebra g. In a geometric language, one talks about a connection form like

! 2 ˝1.P ; g/ :

This is an element of the space of one-forms ˝1.P/, which at the same time is an
element of the Lie algebra. The relationship to what is called a gauge field, or gauge
potential, is established by local sections. Let

� W U 	M �! P (5.59)

be a differentiable section, and let ! be a connection form on P . Then the pullback
of ! to U ,

A.	/ WD ��! ; (5.60)

is a one-form on U which is defined by � , viz. A.	/ 2 ˝1.U; g/. This one-form is
the gauge field pertaining to the connection form !, the section � , and U 	 M . If
there are no global sections on M , meaning that the atlas for M consists of more
than one chart, then in every local domain Ui of the open covering fUig of M , one
must know the local representative !i such that the set f!ig yields a representation
of ! in a bundle chart. This is done by means of the bundle chart

˚ W ��1.Ui / �! Ui �G

and the so-called unit section

x 2 Ui 7�! �i .x/ WD ˚�1.x; 1l/

by calculation of !i WD ��
i !. Finally, making sure that in the transition from

chart Ui to chart Uj the one-forms !i and !j transform by the transition map one
obtains what is called a Cartan connection valid for the whole of M . The corre-
sponding gauge field, which obeys the equations of motion, is then given in terms
of charts.

The gauge theories described in this chapter are defined on M D R.1;3/. In
this case, the analysis reduces to the simplified construction worked out in previous
sections. However, already in describing a (hypothetical) magnetic monopole on
flat base space one needs a description of the sphere S2 in terms of charts. The
gauge potential is composed of at least two parts, valid on different charts, which
are combined by means of the transition mappings.
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5.5 The U(2) Theory of Electroweak Interactions

The U(2) gauge theory of electroweak interactions combines Maxwell theory with
the theory of weak interactions. Here we venture on a journey to the physics of ele-
mentary particles and to quantum field theory. We note, however, that the essential
features of this theory can be discussed and understood in the framework of classical
field theory, without dwelling on the techniques of its quantization. In this section,
we describe this theory as a concrete example of a non-Abelian gauge theory, along
the principles developed Sect. 5.4. Similarly, the mechanism of spontaneous sym-
metry breaking mentioned in Sect. 5.4.7 can be understood in this framework and is
illustrated by an important example from physics.

5.5.1 A U(2) Gauge Theory withMassless Gauge Fields

Every element of the unitary group U(2) in two complex dimensions can be written
in the form

U D ei˛

�
u v

�v� u�
�

with ˛ 2 R ; u; v 2 C and juj 2Cjvj 2 D 1 : (5.61)

The corresponding Lie algebra is spanned by four generators chosen to be

T0 D �0 D
�
1 0

0 1

�
; Ti D 1

2
�i ; .i D 1; 2; 3/ ; (5.62)

where �i are the Pauli matrices, (5.23). From (5.24) the commutators are

�
T0;Ti

	 D 0 ; (5.63a)�
Ti ;Tj

	 D i"ijkTk : (5.63b)

Thus, there is a generator which commutes with all others and which generates
a U(1) factor of the gauge group. This factor is manifest in (5.61) in the phase factor
expfi˛g.

The corresponding gauge group G, the potentials and the covariant derivative
are constructed as was described in full generality in Sects. 5.4.3 and 5.4.4. In the
adjoint representation, the numerical factor � from (5.28) equals 2. The Lagrange
density, (5.51), for the field strength tensor, (5.45), and for a multiplet of scalar fields
reads

L D � 1

32�q2
tr
�
F��F

��
�

C 1

2

h�
D�˚.x/;D

�˚.x/
� � �2�˚;˚�i �W �

˚.x/
�
; (5.64)
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where F�� and D� are given by

F�� D iq
3X
kD0

U.ad/.Tk/F .k/�� .x/ and (5.64a)

D�˚ D
˚
1l@� C iq

3X
kD0

U.˚/.Tk/A.k/� .x/


˚.x/ : (5.64b)

They contain the generator T0 of the U(1) factor as well as the generators .�k=2/ of
SU(2), both in the adjoint representation (gauge fields) and in another representation
decribing the multiplet ˚ .

Without the terms containing the scalar fields, the Lagrange density, (5.64), de-
scribes four, initially massless, gauge bosons, two of which can also be replaced by
the linear combinations

W .˙/
� .x/ WD 1p

2

�
A.1/� .x/˙ iA.2/� .x/

�
: (5.65)

This replacement is done in view of a later interpretation which assigns these new
gauge fieldsW .˙/

� to particles carrying electric charges˙1. By this redefinition the
generators T1 and T2 are replaced by the linear combinations11

TC WD T1 C iT2 ; T� WD T1 � iT2 : (5.66a)

In the defining representation of SU(2), this replacement means defining

1

2

�
�1 C i�2

� DW �C D
�
0 1

0 0

�
;
1

2

�
�1 � i�2

� DW �� D
�
0 0

1 0

�
: (5.66b)

The sum of the terms with k D 1 and k D 2 in the covariant derivative (5.64b)
becomes

U.˚/.T1/A.1/� .x/C U.˚/.T2/A.2/� .x/

D 1p
2

n
U.˚/.T�/W .C/

� .x/C U.˚/.TC/W .�/
� .x/

o
: (5.66c)

Of course, these new fields W .˙/
� have no mass terms either; otherwise the local

gauge invariance of the Lagrange density given by (5.64) would be violated.
At first, it seems more difficult to determine what the role of the two gauge fields

A
.3/
� .x/ and A.0/� .x/ could be in a theory defined by (5.64) and which is meant to

11 In quantum mechanics, these operators are called “raising and lowering operators”. Note that
using these linear combinations does not mean that one has complexified the Lie algebra of the
structure group or the structure group itself.
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describe the Maxwell fields and the vector fields of weak interactions. Maxwell the-
ory is a “genuine” gauge theory; its gauge group is G D U(1). This U(1), which, for
the sake of clarity, we mark by a subscript “e.m.” for “electromagnetic”, U.1/e:m:,
may be identical with the U(1) factor of U(2). However, it might also be constructed
from a linear combination of this part and the 3-component of SU(2). This cannot
be decided a priori. However, at this level, we may take into account empirical in-
formation which says that electromagnetic interactions are mediated by massless
photons but that weak interactions are due to the exchange of three massive vector
particles, W .C/, W .�/ and Z0, two of which are charged, while the third is electri-
cally neutral (as indicated by the superscripts .C/, .�/ and 0, respectively). The two
charged particles W .C/ and W .�/ are expected to be partners in a triplet, i.e. in the
adjoint representation of SU(2), whereas the neutralZ0 will be the heavy partner of
the photon.

With this remark in mind one, is led to try a general linear combination of the
initially massless gauge fieldsA.3/� andA.0/� and thus to construct new neutral fields,
viz.

A.�/� .x/ D A.0/� .x/ cos �W � A.3/� .x/ sin �W ; (5.67a)

A.Z/� .x/ D A.0/� .x/ sin �W C A.3/� .x/ cos �W : (5.67b)

With this ansatz one entertains the hope that the first of these, equation (5.67a),
might be the vector potential of Maxwell theory, and that the second, equation
(5.67b), might become the vector field describing the Z0 vector boson. The mix-
ing angle �W, named after Steven Weinberg, who introduced it in the theory of
electroweak interactions, remains a free parameter at this stage and will have to be
taken from experiment. We note that in the special case �W D 0, the U(1) field is
identical with the Maxwell field, whereas the Z0 field is the third partner of the two
W -fields, spanning the triplet representation of SU(2).

This model raises an important question: Can one arrange the theory defined by
(5.64) in such a way that it retains its full gauge invariance and yet the fields W ˙/

�

and A.Z/� receive mass terms?

5.5.2 Spontaneous Symmetry Breaking

The multiplet˚ D f�.1/; : : : �.m/g spans a representation of structure groupG, and
the action U.˚/.g/˚ of an element g 2 G on ˚ is well defined. Before returning to
the U(2) model, (5.64), proper, we discuss the more general case of a theory which
contains an arbitrary non-Abelian part and a multiplet of scalar fields and which is
defined by a Lagrange density of the kind given by (5.51). The self-interactionW.�/
in (5.51) or (5.64) is the crucial input for the phenomenon developed in this section.
We assume this part of the Lagrange density to have the following properties:
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Fig. 5.4 The function w.x/ D �ax2 C bx4

of the real variable x has an absolute minimum at
x D ˙p

a=.2b/. Replacing the real variable x by
the complex variable z D x C iy, one obtains the graph
of the function w.z/ by rotating this curve about the
ordinate. This generates a 2-surface which looks like a
sombrero or the bottom of a wine bottle

(i) The potentialW.�/ is invariant under the whole structure group:

W.U.g/˚/ D W.˚/ for all g 2 G :

(This is still invariance with respect to a global symmetry!).
(ii) The potentialW.�/ has an absolute minimum at ˚0 D f�.1/0 ; : : : �

.m/
0 g.

(iii) This minimum is degenerate, i.e. the configuration˚0 is not invariant under
the entire structure groupG.

When these assumptions are met, one talks about spontaneously broken symmetry.
What follows is an example satisfying all three assumptions. We denote the G-
invariant coupling of the multiplet ˚ to itself symbolically by round parentheses
.� � � ; � � � /. Let

W.˚/ D ��
2

2

�
˚;˚

�C �

4

�
˚;˚

�2 C C with � > 0 : (5.68)

As the factor multiplying the bilinear term has a negative sign whereas the quartic
term has a positive sign, we have the analogue of the one-dimensional function

w.x/ D �a x2 C bx4 with a; b > 0 : (5.69)

This function has a relative maximum at x D 0 and an absolute minimum at
x D ˙pa=.2b/ which is degenerate (Fig. 5.4). The absolute minimum of (5.68) is
reached when �

˚0; ˚0
� D �2

�
� v2 : (5.70)

Obviously, this minimum is degenerate since only the bilinear form given by (5.70)
is fixed, but not˚0. The configuration˚0, by itself, is not invariant under the action
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of structure group G. Inserting v2 from (5.70), the functionW.˚/ can equivalently
be written as

W.˚/ D �

4


�
˚;˚

� � v2�2 � �
4
v4 C C ; (5.71)

a form exhibiting more clearly the minimum and its degeneracy. In this classical
framework, the additive constant is irrelevant and may be dropped.

There appears a remarkable phenomenon in the framework of a local gauge the-
ory. As W.˚/ takes its absolute minimum at arguments which all have the same
modulus but which do not coincide with the origin ˚ D 0, in reality it is not the
field ˚ which is the dynamical field (with m components), but rather its difference
from ˚0,

�.x/ WD ˚.x/ � ˚0 : (5.72)

This phenomenon may be visualized qualitatively as follows. The energetically
favoured state of the system described by the Lagrange function (5.51) will be
at the minimum of the “potential” W.˚/ or in its immediate neighbourhood.12

In point mechanics, this situation is comparable to the potential energy U.z/ D
.1=2/m!2z2, with z D x � x0, of a harmonic oscillator where the back-driving
force is directed towards the point x0 6D 0, and not to the origin. Or, if one
wishes to take account of the degeneracy, it is comparable to a potential energy
of the kind U.x/ D �.x2 � x20/

2=4, where the force that follows from it, K D
��.x2 � x20/x, changes sign at jxj D jx0j. In both cases, z D x � x0 and
z D x � x0, respectively, are the physically meaningful variables.

Inserting (5.72) into the “kinetic” term (D�˚ , D�˚) in the Lagrange density
given by (5.51),13 one obtains a term

1

2

�
D�˚0;D

�˚0
� D 1

2

�
U.�/.A�/˚0;U.�/.A�/˚0

�
; with (5.73)

A� D iq
X
k

TkA.k/� .x/ ;

which is seen to have the form of a mass term for at least some of the hitherto
massless gauge fields! Note, however, that gauge invariance is not violated. Indeed,
gauge invariance means that (i) the fields F�� come in in the form of the first term
on the right-hand side of (5.51); (ii) the field ˚ , or the field � as defined by (5.72),
appears with the covariant derivative; and (iii) the mass term and the potential of
field ˚ are (globally) invariant under structure group G. All of these conditions are
fulfilled. Therefore, the Lagrange density is still gauge invariant. However, it prefers
a ground state which has less symmetry than the theory on which it is built.

12 As one sees, the notion of “potential” is used in two different meanings: on the one hand as
a gauge potential in the sense of electrodynamics, on the other hand as a potential or potential
energy of the scalar fields in the sense of classical mechanics. This should not be a serious source
of misunderstandings.
13 The quotation marks are meant to emphasize that this term contains more than the kinetic energy
of the scalar field.
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This kind of symmetry breaking is fundamentally different from an explicit per-
turbation of the original symmetry where the theory is defined by a Lagrange density

L D L0 C L0 ;

where the term L0 is small compared to L0, in a sense to be defined more precisely.
The Proca Lagrange density (5.6),

LProca D LMaxwell C L0 with L0 D �2

8�
A�.x/A

�.x/ ;

provides an example, if the hypothetical photon mass � is not zero but small. The
big primordial symmetry of LMaxwell is lost. Nevertheless, the influence of the per-
turbation L0 might possibly be estimated in the framework of perturbation theory.

With symmetry breaking as developed in this section, the original gauge invari-
ance is not lost. Only the state(s) of lowest energy has (have) less visible symmetry
than the Lagrange density. Therefore, one calls this kind of symmetry breaking
spontaneous symmetry breaking. As the symmetry is not really broken but acts “se-
cretly” in the physical states of the theory, L. O’Raifeartaigh coined the notion of
hidden symmetry (O’Raifeartaigh 1998).

The phenomenon of spontaneous symmetry breaking in a local gauge theory can
be analyzed more concisely on the basis of the theory’s group structure. In a sense,
it will become clear below how one can tune the pattern of spontaneous breaking.
In particular, one can fix the number of gauge fields which are to be provided with
a mass.

The assumptions listed at the beginning of this section contain the condition that
the minimum ofW.˚/ be degenerate: If there is more than one single configuration
˚0 D f�.1/0 ; : : : ; �

.m/
0 g, then there exists at least one element g 2 G of the structure

group for which
mX
aD1

U
.˚/

ab
.g/�

.b/
0 6D �.a/0 : (5.74a)

Such a g shifts the point˚0 to ˚ 0
0 for which the potential still assumes its minimum.

Expressing this element g by generators of the Lie algebra of G,

g D exp
˚
i
NX
kD1

˛kTk


;

(5.74a) is equivalent to the statement that there is at least one generator Ti whose
action on ˚0 does not yield zero,

U.˚/.Ti /˚0 6D 0 : (5.74b)
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One then carries out the following construction. The generators Tj are replaced by
linear combinations

Si D
NX
jD1

aijTj ; (5.75)

with a D faij g a nonsingular, constant matrix such that the new generators fall into
two classes, viz.:

a) A group of generators fS1; : : : ;SF g whose action on ˚0 gives zero:

Si˚0 D 0 ; i 2 .1; 2; : : : ; F /I and (5.75a)

b) A group of generators fSFC1; : : : ;SN g which shift ˚0 in a nontrivial way:

Sj˚0 6D 0 ; j 2 .F C 1; F C 2; : : : ; N / : (5.75b)

It is not difficult to verify that the elements of the first class (a) generate a subgroup
H 	 G of G. This subgroup consists of all elements of the form

h D exp
˚
i
FX
iD1

˛iSi


: (5.76)

All such h 2 H have in common that they leave invariant an arbitrarily chosen
position ˚0 of the minimum:

U.˚/.h/˚0 D
�
1lC

FX
iD1

˛iU.˚/.Si / : : :
�
˚0 D ˚0 ; h 2 H 	 G : (5.77)

Pictorially speaking, these are transformations which do not lead out of the bottom
of the bottle of W.˚/ at its lowest point. They do not change the energy of these
states of lowest energy. This means, however, that the subgroup H 	 G which is
spanned by the elements h remains a genuine symmetry. For this reason, one talks
of a residual symmetry.

In contrast, the remaining generators in class (b) shift a given ˚0 away from
the minimum. They act, in a pictorial description, against the walls of the poten-
tial, transversally to the set of points ˚0. For these generators the G-invariant mass
term, (5.73), is different from zero, so that certain linear combinations of the initially
massless gauge fields obtain nonvanishing masses.

The structure group G, which defines the basic symmetry of the theory, has the
Lie algebra g D Lie .G/ whose dimension is

dim g D N :
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The Lie algebra h D Lie .H/ of residual groupH has dimension

dim h D F :

This analysis reveals a remarkable result:

The number n� of those gauge fields which remain massless after sponta-
neous breaking of the primordial symmetry and the number nm of those which
become massive depend only on the dimensions of the Lie algebras of the
structure groupG and the residual group. They are

n� D dim h D F ; (5.78a)
nm D dim g � dim h D N � F : (5.78b)

These numbers are independent of the nature of the multiplet of scalar fields.

The number of gauge fields remaining massless is denoted by n� to remind us
that these are photonlike fields.

I Remarks
Within this classical framework, one need not fix the precise form of the potential
W.˚/. It is sufficient to know that W.˚/ has absolute minima and that it satis-
fies conditions (i) to (iii). Thus, at this stage, no explicit functional form must
be chosen for W.˚/. However, in the framework of quantized field theory, there
are further restrictions if one requires the theory to yield well-defined results at
all finite orders of perturbation theory. The requirement of what is called renor-
malizability does not allow for powers of ˚ higher than four. If this is taken into
account, then one is left with the specific form given by equation (5.68) which
satisfies all conditions including this additional requirement.

It should now be clear that the amount of spontaneous symmetry breaking can
indeed be tuned. The dimension of the Lie algebra g of the structure groupG yields
the total number N of vector fields. Without minimal coupling to scalar fields ˚
and without the self-interactions W.˚/, these vector fields remain photonlike, i.e.
massless. Keeping track of the conditions mentioned previously, the choice of the
potentialW.˚/ determines the pattern of spontaneous symmetry breaking,

G �! H 	 G ;

and hence the number of gauge fields remaining massless. The specific multiplet
spanned by the scalar fields ˚ D f�.1/; : : : ; �.m/g does not enter as long as it does
not violate the conditions on the potential.
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5.5.3 Application to the U(2) Theory

With these preparations we can now tackle the question raised at the end
of Sect. 5.5.2 and provide a conclusive answer. If the U(2) theory, (5.64), is to
describe electrodynamics and the weak interactions and if the photon is the only
gauge boson which stays massless, then the spontaneous symmetry breaking must
be adjusted such that in the end, only the group U(1)e:m: remains a true gauge
symmetry. The symmetry is broken spontaneously according to the pattern

G D U.2/ Š U.1/ � SU.2/ �! H D U.1/e:m: : (5.79)

In other terms, the original symmetry is “hidden” following the scheme of (5.79).
Note that the U(1)e:m: of electrodynamics, in general, is not identical with the U(1)
factor of the gauge group G D U(2).

Using ansatz (5.65) for the W fields and ansatz (5.67a) and (5.67b) for the fields
A
.�/
� and A.Z/� , or its inverse,

A.0/� .x/ D A.�/� .x/ cos �W C A.Z/� .x/ sin �W ; (5.80a)

A.3/� .x/ D �A.�/� .x/ sin �W C A.Z/� .x/ cos �W ; (5.80b)

and introducing the raising and lowering generators of (5.66a), the action of A on
˚ is given by

U.˚/.A�/˚ D iq
3X
kD0

A.k/� .x/U.˚/.Tk/˚

D iq

�
1p
2

h
W .�/
� .x/U.˚/.TC/CW .C/

� .x/U.˚/.T�/
i

C A.Z/� .x/U.˚/
�
T3 cos �W C T0 sin �W

�

C A.�/� .x/U.˚/
��T3 sin �W C T0 cos �W

��
˚ : (5.81)

More specifically, let ˚ span a unitary irreducible representation of SU(2). One
knows that such representations can be characterized by two numbers t and mt
which satisfy the following eigenvalue equations:

U.˚/.T 2/˚ D
3X
kD1

U.˚/.T 2
k/˚ D t.t C 1/˚ (5.82a)

U.˚/.T 3/˚ D mt˚ ; (5.82b)

where t takes the values .0; 1=2; 1; 3=2; : : :/, whereas mt , for a given value of t ,
takes the valuesmt D �t , �t C 1; : : : ; t � 1; t . This is the analogue of a representa-
tion of the rotation group, with t replacing the eigenvalue j of angular momentum
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and mt replacing the projection quantum number mj . The action of the genera-
tor T0,

U.˚/.T0/˚ D t0˚ ; (5.82c)

is not fixed. However, the following reasoning is helpful: As T0 commutes with all
other generators and as the action of the raising and lowering generators U.�/.T˙/
does not lead out of the multiplet, all components of ˚ must have the same value t0.

The last term on the right-hand side of formula (5.81) is particularly interest-
ing. Suppose the shift operation given by (5.72) is performed in the term of (5.81),
˚.x/ D �.x/C ˚0. This has both a desirable and an undesirable effect: The term
.D�˚;D

�˚/ of the Lagrange density, (5.64), contains, among others, (5.81) in the
form of a bilinear coupling to a scalar. As noted earlier, in particular, the constant˚0
yields quadratic terms with constant factors forW .˙/ and forZ.0/, i.e. the expected
mass terms for these vector fields. This is the desired property. At the same time,
however, the Maxwell field A.�/� .x/ appears multiplied by the factor

U.˚/
��T3 sin �W C T0 cos �W

�
˚0 ; (5.83)

which possibly is not zero. This is the undesirable feature. Setting the constant ˚0
to zero,˚0 D 0, is no solution because then also the first effect is lost. The only way
out of this dilemma is to choose the set of constant values ˚0 D f�.1/0 ; : : : ; �

.m/
0 g

such that for exactly one component, say the i th one, the entry is different from
zero, whereas it is zero for all others,

˚0 D
˚
0; 0; : : : ; �

.i/
0 D v 6D 0; 0; : : :



; (5.84)

and, furthermore, to fix the eigenvalue of U.˚/.T0/ for this component (and hence
for all other components) such that

t
.i/
0 D t .i/3 tan �W : (5.85)

With this choice a nonvanishing component �.i/0 will have the eigenvalue zero
of the linear combination given by (5.83). Denoting the value of this component
�
.i/
0 by v and inserting (5.84) into (5.81), the G-invariant scalar constructed from

U.˚/.A�/˚0 is given by



U.˚/.A�/˚0;U.˚/.A�/˚0

�

D q2
�
1

2



˚0;U.˚/

�
TCT� C T�TC

�
˚0

�
W .�/
� .x/W .C/�.x/

C

̊
0;
�
U.˚/.T3 cos �W C t .i/3 sin �Wtan �W/

	2
˚0

�
A.Z/� .x/A.Z/�.x/

�
:

In this construction, we have used the fact that all components of ˚ belong to the
same eigenvalue given by (5.85). Terms which are quadratic in TC or in T� do



5.5 The U(2) Theory of Electroweak Interactions 305

not contribute because ˚0 has only one nonvanishing component, �.i/0 , and because
U.˚/2.T˙/would link the i th component to the .i˙2/-d components, both of which
vanish.

Taking account of the relation

1

2

�
TCT� C T�TC

� D
3X
kD1

T2k � T23 D T 2 � T23 ; (5.86)

inserting (5.84) for ˚0 and noting that cos �W C sin �W tan �W D 1= cos�W, one
obtains



U.˚/.A�/˚0;U.˚/.A�/˚0

�

D q2v2
��
t.t C 1/� .t .i/3 /2

	
W .�/
� .x/W .C/�.x/ (5.87)

C 1

cos2 �W
.t
.i/
3 /2A.Z/� .x/A.Z/�.x/

�
:

This is a remarkable result. By construction, the Maxwell field remains massless.
In other terms, spontaneous breaking is adjusted in such a way that of the original
gauge group G D U(2) there remains only the residual gauge group H D Ue:m:.1/

as a gauge symmetry. As a result, the gauge group of Maxwell theory is found to be
generated by a linear combination of the U(1) generator T0 and the 3-component
T3 of the Lie algebra of SU(2), viz.

� T3 sin �W C T0 cos �W DW Te:m: : (5.88)

The remaining three gauge fields of the theory defined by (5.64) obtain nonvanishing
mass terms. The W .C/ and W .�/ fields have the same mass, which is proportional
to

m2W / 1
2
q2v2

�
t.t C 1/� .t .i/3 /2

	
; (5.89a)

whereas the Z field receives a mass proportional to

m2Z / q2v2 cos�2 �W.t
.i/
3 /2 ; (5.89b)

with the same numerical factors. This yields an important relation:

m2W

m2Z cos2 �W
D t.t C 1/� .t .i/3 /2

2.t
.i/
3 /2

: (5.90)

Once the parameter �W is fixed, the ratio of the two masses depends only on the
assignment of the multiplet ˚ to a representation of the structure group G.



306 5 Local Gauge Theories

I Remarks and Comments
1. In what may be called the standard model of electroweak interactions, one

chooses the ˚ field to be a doublet:

t D 1

2
; t

.i/
3 D

1

2
: (5.91)

With this choice the ratio given by(5.90) is equal to

% WD t.t C 1/� .t .i/3 /2

2.t
.i/
3 /2

D 1 : (5.92)

Note, however, that the choice of the multiplet for ˚ is not predicted by the
model. Experimentally, the quantity cos2 �W, with �W being the Weinberg an-
gle, is an empirical quantity, as are the masses of W and Z, which have been
determined in various experiments. The measured valuesmW ,mZ and sin �W

are in very good agreement with the ratio given by (5.92).
2. For other components � .j / 6D � .i/ of the dynamical scalar field, (5.72),
� D f� .1/; : : : ; � .m/g, the factor multiplying A.�/� .x/ in (5.81) is not zero.
These fields describe electrically charged particles. Therefore, this suggests
that one should interpret the product of coupling constant q and sin �W as a
negative elementary charge, though this must await a deeper justification in
the quantized version of the theory:

� q sin �W � �e : (5.93)

In the quantum theory of the standard model, the coupling constants respon-
sible for the weak interactions are also fixed (see e. g. Scheck (2012)).

3. It seems odd that the generator given by (5.88) of the U(1)e:m: depends on
the parameter �W, the ratio of the two terms in (5.88) being fixed by the re-
quirement of spontaneous symmetry breaking. This flaw is easily repaired by
means of a simple redefinition: The generators of the original U(1) and of
U(1)e:m: may be replaced by, respectively,

Y WD �2cos �W

sin �W
T0 ; (5.94a)

Q WD T3 C 1

2
Y : (5.94b)

The operator Q, by (5.83) and (5.93), then becomes the electric charge in units
of the elementary charge,

q
��T3 sin �W C T0 cos �W

� D e�T3 C 1

2
Y
�
;
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whereas Y is an alternative for the generator of the U(1) factor inG. Denoting
the eigenvalue of Y in the multiplet ˚ by the real number y, the requirement
given by (5.85) for �0 simplifies to

y.i/ D �2t .i/3 : (5.95)

In elementary particle physics, Y is called a weak hypercharge. The scalar
fields which correspond to the classical field ˚ are called Higgs particles.

4. As in the case of Maxwell’s equations, one may study the behaviour of the
gauge theory, (5.64), under space reflection, time reversal and charge reflec-
tion C. The result is that it is found to be invariant under all three discrete
symmetries. As C relates the fields W .C/

� and W .�/
� , it is not surprising that

the two must have the same mass term.

5.6 Epilogue and Perspectives

We conclude this chapter with a few more remarks and an outlook which may stim-
ulate the reader to further study and reading.

Local Gauge Theory in the Classical Framework
The concept of local gauge theory penetrates deep into the physics of fundamental
interactions and of elementary particles. The property of gauge invariance, which
was discovered in the framework of classical electrodynamics, has become very
important for all interactions known to us. The aspects of the standard model of
electroweak interactions which we developed in Sect. 5.5 are still classical to a large
extent. Non-Abelian gauge field theories need to be quantized when one introduces,
in a second step, fields for electrons, nucleons, quarks and other matter particles
and if one sets out to interpret the quantized fields in terms of particles with def-
inite properties. But even in this third step, one follows the example of Maxwell
theory, albeit in a technically more involved manner. Of course, one must investi-
gate whether the structures developed in a classical setting remain meaningful in the
corresponding quantum field theory or, if the need arises, how they are modified by
the process of quantization.

Spontaneous Symmetry Breaking in Other Areas
The phenomenon of spontaneous symmetry breaking is encountered also in other
areas of physics and in a diversity of manifestations. The case of a continuous
symmetry and invariance under a Lie gauge group described in this chapter ex-
hibits strongly geometric aspects. For example, it is of interest to study the space
of all gauge potentials, from the point of view of differential geometry, and the ac-
tion of the (infinite-dimensional) gauge group on them. Pure Yang–Mills theory,
in particular with self-dual field strengths (curvatures), is a rich field of reserach
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in mathematics which gave many results of a purely mathematical nature but also
many links to theoretical physics.

A particularly nice example for spontaneous symmetry breaking in a purely clas-
sical system is provided by a rotating star under the action of self-gravitation. The
star is modelled by an incompressible fluid, and the aim of the analysis is to find
its shape as a function of the angular velocity. This problem was first studied by
C.G.J. Jacobi, and a complete solution is found in a work of D.H. Constantinescu,
L. Michel and L.A. Radicati.14

Outlook
According to our present knowledge, all realistic theories describing weak, electro-
magnetic and strong interactions are local gauge theories of the kind described in
this chapter. Also, Einstein’s theory of general relativity, which is a purely classi-
cal theory, has many features of a geometric theory with a large amount of local
symmetry. In this case, the gauge group is the group of diffeomorphisms on a semi-
Riemannian manifold with dimension 4. General relativity, in many of its aspects,
bears strong resemblance to local gauge theories but differs from them in other
characteristic properties. This is one of the reasons why there is still no generally
accepted quantized version of general relativity and why it seems difficult to unify
gravitation with the other interactions in a geometric way.

In contrast to the local, non-Abelian gauge theories, general relativity is primar-
ily a theory describing macroscopic physics, viz. the physics of large assemblies of
masses and energies, and of physically viable universes. As such and in these ar-
eas, general relativity has been tested in various applications. It was found to be in
overwhelming agreement with observations and passed all tests.

14 D.H. Constantinescu, L. Michel, L.A. Radicati, Journal de Physique 40 (1979) 147.
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6.1 Introduction

The classical field theories developed in the preceding chapters all have in common
that they are formulated on a flat spacetime, i.e. on a four-manifold which is a Eu-
clidean space and which locally is decomposable into a direct productM 4 D R3�R
of a physical space R3x of motions, and a time axis Rt . The first factor is the three-
dimensional space as it is perceived by an observer at rest while the time axis
displays the (coordinate) time that he/she measures on his/her clocks. This space-
time is endowed with the Poincaré group as the invariance group of physical laws
and inherits the corresponding specific causality structure. In the case of small veloc-
ities, jvj � c, the Poincaré group is replaced by the Galilei group, and the causality
structure becomes trivial. Equations of motion that relate physical observables, must
be form invariant or, in other terms, must transform in a covariant way. The light
cone in every point x 2 M of spacetime classifies all events y into those that are
in causal relation with x, and those for which this does not hold. Flat spacetime is
singled out by the fact that all light cones are parallel, i.e. they are related by trans-
lations. Every observer, by the choice of a frame of reference, defines a globally
valid coordinate system which allows the observer to compare physical observables
in different world points x D .ctx ;x/T and y D .cty ;y/T .

While these concepts are overwhelmingly successful in the description of clas-
sical mechanics, of classical and quantum electrodynamics, but also of electroweak
and strong interactions in particle physics, and are brilliantly confirmed by many
experimental tests, they fail in the description of the gravitational interaction.
Strangely enough, gravitation which marked the beginning of the development of
mechanics, and thereby of the whole of theoretical physics, in its full beauty and its
vast scope, cannot be described on a globally flat space such as Minkowski space.
In this chapter we give plausibility arguments why this is so, and we develop the ge-
ometric foundations for Einstein’s equations for gravitation. These equations relate
the geometry of spacetime with the energy-momentum content of matter and (non-

309F. Scheck, Classical Field Theory, Graduate Texts in Physics,
DOI 10.1007/978-3-642-27985-0_6, c� Springer-Verlag Berlin Heidelberg 2012
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gravitational) radiation present in the universe. We study characteristic solutions of
Einstein’s equations and analyze their properties.

6.2 Phenomenology of Gravitational Interactions

Considering gravitational interaction at the same level as the other fundamental in-
teractions of nature, i.e. like macroscopic electromagnetic interactions as developed
in this book, their quantized form, the electroweak and strong interactions visible
at the scales of elementary particle physics, some of its properties are conspicuous.
In contrast to the other interactions, gravitation is always attractive1, it is universal
and it obeys an equivalence principle which does not apply to other interactions.

6.2.1 Parameters and Orders of Magnitude

Newton’s constant carries a physical dimension, viz.
(length3 � mass�1 � time�2). It has the numerical value

G D .6:67428˙ 0:00067/ � 10�11 m3 kg�1 s�2 : (6.1)

The force is attractive for all massive bodies. This is known from daily experience
with falling objects, from the motion of the planets of the solar system in finite
orbits, and from the choice of the branch of the hyperbola of the Kepler problem that
a comet moves along. Regarding antimatter the gravitational interaction with matter
is also attractive, as demonstrated and tested with antiprotons (the antiparticles of
protons).

In order to develop a feeling for the number (6.1) one may compare, for exam-
ple, the gravitational interaction between a proton and an antiproton with their static
electric interaction. The proton and antiproton have the same mass but equal and op-
posite charges. Thus, the gravitational force and the Coulomb force acting between
them, are, respectively, (in SI units)

F G D �Gm2P
1

r2
Or ; F C D ��Ce

2 1

r2
Or ;

where r and r D jrj denote the relative coordinate and its modulus, respectively.
The ratio of these forces both of which are attractive, is independent of the direction
and the distance. With mP D 1:6726 � 10�27 kg, e D 1:6022 � 10�19 C, and �C D
1=.4�"0/ D c2 � 10�7 it has the value

RGC WD Gm2P
�Ce2

D 0:81 � 10�36 : (6.2)

1 This is true in “reasonable” universes and away from singularities. In the neighbourhood of ro-
tating black holes there are spacetime regions where gravitation becomes repulsive.
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This number whose smallness might surprise the reader, shows that gravitation is by
far the weakest of the fundamental interactions. At the scales of microscopic particle
physics it plays no role, in general, and can often be neglected.2 Nevertheless, letting
some Meissen porcelain fall on the kitchen floor, or falling oneself from a cherry tree
can be catastrophic, because relatively large masses are involved and, in contrast to
Coulomb forces, the like sign of the forces does not allow for any compensation of
partial forces.

There are other ways of demonstrating the orders of magnitude. It is known that
the square of the elementary charge, Planck’s quantum of action, and the velocity of
light are combined to the dimensionless fine structure constant ˛ which character-
izes the strength of the electromagnetic interactions. With

e D 4:8032 � 10�10 esu and

„c D 197:33MeV fm D 3:16153 � 10�17 erg cm

(thus using Gaussian units), one has

˛ WD e2

„c D 0:0072973D
1

137:036
: (6.3a)

From the Newton constant G, equation (6.1), from „c, and using some reference
mass M , one defines by analogy the dimensionless quantity GM 2=.„c/. Inserting
the mass of the proton, as an example, one finds

˛G WD Gm2P
„c D 5:9 � 10

�39 : (6.3b)

This number is smaller than the fine structure constant (6.3a) by the same ratio (6.2).
Noting that G has physical dimension (energy � length=mass2) and that „c has

dimension (energy � length) one can form a quantity with the dimension of a mass.
This defines what is called the Planck mass

MPl WD
r„c
G
D 1:221 � 1019 GeV D 2:177 � 10�8 kg : (6.4)

When expressed in terms of the mass of the proton and of the ratio (6.2) one has
MPl D mP=

p
˛RGC. This is a value that should be measurable with a chemist’s

balance and which is larger by many orders of magnitude than typical masses in the
zoo of elementary particles. Alternatively one might wish to give a Compton wave
length corresponding to this mass, thus obtaining

�Pl D 2�„c
MPlc2

D .2�/1:62 � 10�35 m : (6.5)

2 This is not completely true. In horizontally mounted circular accelerators where charged particles
are transported over large distances one must take into account their free fall in the gravitational
field of earth.
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This quantity is called the Planck length. Its significance is not really clear. Never-
theless, one concludes that it is smaller by many orders of magnitude than typical
ranges of the weak or the strong interactions which lie rather in the range 10�18 m.
Presumably the Planck length (6.5) indicates the scale at which our model of space-
time in terms of a smooth manifold breaks down and where general relativity as
formulated at the classical level must be replaced by a quantized theory of gravita-
tion.

I Remark
Like the Coulomb interaction the gravitational interaction has infinite range.
Both, the Coulomb potential and the gravitational potential are proportional
to 1=r . If in the future one succeeds in quantizing gravitation the carriers of
this interaction will be gravitons, which are massless like the photons of quan-
tum electrodynamics. In contrast to photons which have spin 1, gravitons have
spin 2. Thus, the Planck length (6.5) is not to be understood as the range of this
force.

There are qualitative arguments which show that general relativity and quan-
tum theory may be incompatible at small distances of the order of (6.5). The idea
is the following: On a smooth manifold M one can localize events x 2 M with
arbitrary accuracy, at least in principle. Heisenberg’s uncertainty relation then im-
plies that this will involve arbitrarily large energy-momentum densities. These,
in turn, upon insertion into Einstein’s equations, cause locally strong curvatures
of spacetime which upset the assumption from which one started. Arguments of
this type lead to the conjecture that spacetime loses its character of a smooth
manifold at small distances and is replaced by something new such as, perhaps,
a space whose elements (points) no longer commute.

6.2.2 Equivalence Principle and Universality

Consider a mechanical system consisting of a sun with mass mˇ and a light planet
whose mass is so small that it practically does not perturb the field created by the
sun. If for a while mI denotes the inertial mass, and mG denotes the gravitational
mass of the planet, and if x and xˇ are the positions of the planet and the sun,
respectively, nonrelativistic Newtonian theory yields the force

Pp D mI Rx D � GmGmˇ
jx � xˇj2

x � xˇ
jx � xˇj : (6.6)

Experience tells us that inertial and gravitational masses are, in essence, the same
so that, by suitable choice of physical units, one can take them to be equal,

mI D mG : (6.7)
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The mass factors cancel in (6.6), and the resulting motion of the (light) planet is
independent of its mass. This empirical equality of heavy and inertial mass is called
weak equivalence principle. The same property is also an expression of the univer-
sality of gravitation: The motion of a test body in a given gravitational field does not
depend on its mass and on its inner composition.

The following simple example illustrates the universality of gravitation and, at
the same time, the equivalence principle:

Example 6.1 Test particle in a static homogeneous field
Consider a certain number of test particles in a homogeneous and static gravita-
tional force field K .i/ D mig, where mi denotes the mass of the i -th particle,
while g is the acceleration field which is independent of time and position. Fur-
thermore, the particles are assumed to be subject to internal forces Fj i . In an
inertial system K the equations of motion read

mi Rx.i/ D mig C
X
j 6Di

F j i :

We now replace the inertial system with an accelerated system K0 that is
uniformly accelerated with the acceleration field g so that the transformation
formulae for the time and space variables are

ty D tx ; y D x � 1
2

gt2x :

The same equations of motion then read

mi Ry .i/ D
X
j 6Di

Fj i :

What immediately strikes us is the fact that the gravitational field completely
disappeared from these equations. For example, if by appropriate measurements
one finds that the freely falling particles have vanishing acceleration two inter-
pretations are possible

(a) either there are no forces at all, the observer is located in an inertial system,
(b) or there is a static and homogeneous gravitational field but the frame of ref-
erence is not an inertial system. The frame falls freely with the particles.

As a matter of principle, there is no way to distinguish between the two interpre-
tations of the empirical result.

In general, the acceleration field g will depend on the position x where it is
measured, and possibly also on time. In this case it will no longer be possible, by
transformation to an accelerated frame, to make this field vanish globally.
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Example 6.2 Star-like field of a pointmass
Consider the spherically symmetric acceleration field outside a spherically sym-
metric mass distribution whose total mass is mˇ,

b.x/ D �Gmˇ
r2

Ox ; .r D jxj/ :

The test particles have very small masses,mi � mˇ, and fall along radial direc-
tions in the direction of the centre of the force field, but certainly not on parallel
orbits, cf. Fig. 6.1. An observer who falls freely in this field will realize that two
test particles (without mutual forces) do not have constant distance but rather ap-
proach each other in the course of time. However, depending on how accurately
he or she can measure orbits in the immediate neighbourhood, motions will look
similar to the ones in Example 6.1, in a strictly local perspective: The orbits of
free fall appear as practically parallel. By means of purely local measurements
one cannot decide whether the frame of reference is accelerated and falls freely,
or whether one is located in an inertial system where a genuine gravitation field
is acting.

These examples are helpful in developing our intuition for a more precise
formulation of the equivalence principle. Furthermore, they hint at a possible math-
ematical realization in terms of a geometry describing spacetime. Imagine an
arbitrary smooth gravitational field g.x/ is given which depends on position and
time. The following local property shall hold true:

I Definition 6.1 Strong equivalence principle In every point x of spacetimeM
one can always find a local inertial system such that in a sufficiently small neigh-
bourhood U 	 M of x the physical equations of motion take precisely the form
known from special relativity in unaccelerated frames of reference.

I Remarks
1. In a neighbourhood of any point x 2 U 	 M one can always define coor-

dinates which are such that the gravitational field is no longer felt. Locally

Fig. 6.1 Two test particles falling freely in the
gravitational field of a spherically symmetric mass
distribution, approach each other
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special relativity holds in the way we are used to. What “small” means with
regard to the neighbourhood depends on the gravitational field and on the ac-
curacy of local measurements. In our terrestrial neighbourhood the dominant
gravitational field is the one of the sun. A dimensionless parameter which
characterizes the red shift of sun light caused by gravitation is z D �˚N=c

2.
Here �˚N is the difference of the Newtonian potential at the position of the
earth and the position of the sun. Denoting by Mˇ and by Rˇ the mass and
the radius of the sun, respectively, whose numerical values are

Mˇ D 1:989 � 1030 kg and Rˇ D 6:960 � 105 km ;

and inserting the major half-axis of the earth’s orbit

1AU D 1:496 � 108 km

for the distance earth–sun (AU stands for astronomical unit), one obtains

z D �˚N

c2
D GMˇ

c2

�
1

Rˇ
� 1

1AU

�

' GMˇ
Rˇc2

D 2:12 � 10�6 : (6.8)

We are dealing here with a very small effect which shows that at the position
of the earth there is neither a strong nor a rapidly varying gravitational field.
Presumably, the neighbourhood alluded to in the equivalence principle where
special relativity remains applicable, is rather large. This estimate makes plau-
sible why (relativistic) mechanics, electrodynamics, and non-Abelian gauge
theories on flat Minkowski space are correct and why these theories are con-
firmed in applications to terrestrial experiments.

2. In local domains the metric and causal structure is the one of Minkowski
space and is characterized by the so-called flat metric g��.x/ ' ��� . The
latter notation ˜ is introduced for the sake of clarity, and will be distinguished
from the x-dependent full metric g.x/,

��� D

0
BB@
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1
CCA : (6.9)

In the large the metric structure of spacetime varies as a function of x, g.x/ D
fg��.x/g, depending on the mass and energy densities which are present in the
universe. Neither from a mathematical standpoint nor from a physical point
of view is it meaningful to insist on defining a globally valid and globally
applicable frame of reference.
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3. A more concise mathematical definition of the strong equivalence principle
(that we shall develop in Sect. 6.5.6 below) is the following: In every point x0
of spacetime one can construct a frame of reference such that

g��.x0/ D ��� and
@g��.x/

@x˛

ˇ̌
ˇ̌
x0

D 0 ; .˛ D 0; 1; 2; 3/ : (6.10)

Coordinates in this class are called Gaussian coordinates, or normal coordi-
nates.

4. The key to the construction of normal coordinates is provided by curves of
free motion across spacetime, i.e. the world lines along which test particles
move without disturbing the given gravitational field. Curves of free motion
are those for which the acceleration vanishes in every point of the orbit. From
the point of view of geometry these are curves whose length is an extremum.
These are called geodesics.
Consider then geodesics passing through the point x, and their tangent vectors
in x. These tangent vectors can be utilized to construct a frame of reference
for which the reduction (6.10) holds.

5. One more remark about the choice of ��� : In some texts on general rel-
ativity and a large part of the mathematical literature the choice Q��� D
diag.�1; 1; 1; 1/ is made instead of (6.9). As we know from special relativity
this convention is as good as the one chosen in this book. The only essential
feature is that the entry for precisely one coordinate has a sign different from
the others. There is only one time direction but there are three (or more) space
directions.

Riemannian geometry provides the framework for describing n-dimensional
spacetimes exhibiting a causal structure, with one time coordinate and n � 1 space
coordinates, and, in particular, allows one to formalize the strong equivalence prin-
ciple. An adequate model is a semi-Riemannian manifold .M; g/. It consists of a pair
of a smooth manifold M with dimension dimM D 4 and index 
 D 1, and a met-
ric g. (Recall the definition of the index in (5.10).) These are manifolds that are
equipped with a unique prescription for parallel transport, the requirement (6.10)
turns out to be a property that can be proved.

6.2.3 Red Shift and Other Effects of Gravitation

There are many well-understood experimental results showing that the spacetime of
our universe deviates from flat Euclidean space. Historically, the first effects of gen-
eral relativity to be known were the deflection of light rays passing close to the sun
and the perihelion precession of the planet Mercury. Deflection of light by the sun
will be calculated in Sect. 6.7.2 below. It shows that light rays, called null geodesics
in geometry, are influenced by large concentrations of masses. The precession of the
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perihelion of Mercury concerns a phenomenon in celestial mechanics that has been
known since about 1880: The planet Mercury whose Kepler orbit has the second-
largest eccentricity in the solar system, " D 0:2056, exhibits a precession of its
perihelion which cannot be explained in its full size by perturbations from the other
planets (in fact, mostly Venus, earth, and Jupiter). Celestial mechanics predicts 53100
per century. The observed shift is larger than that by about 4300, i.e. the perihelion is
advancing somewhat faster than predicted by classical mechanics.

Among other confirmed effects of general relativity we quote the following:

Example 6.3 Kinematic and gravitational Doppler effect
Like in nonrelativistic mechanics there is a kinematic Doppler effect in special
relativity theory (SRT). This effect is calculated in this example. By means of
simple plausibility arguments we show that there must be an additional, new
Doppler effect due to general relativity.

Consider two unaccelerated observers A and B in flat Minkowski space who
move apart with constant velocity v D v Oe1. Observer A sends two successive
signals travelling with the velocity of light and which are separated by the time
interval T in his/her coordinates. The signals propagate in the .x1; x0/-plane to
the right in Fig. 6.2, under 45ı. Observer B records these signals and notes that
in his/her coordinate time they are separated by the interval T 0. Setting T 0 D �T
one realizes easily that � determines the red shift of light which is defined, for
a spectral line of given wave length, by

z WD �D � �S

�S
D � � 1 : (6.11)

Index “S” stands for the “source”, and index “D” for the “detector”. The signals
are reflected at B back to A who measures the time interval T 00 between the first
and the second signal, as sketched in Fig. 6.2. As the two observers are equivalent
only their relative velocity matters. Therefore, one has T 00 D �T 0 D �2T . The
parameter � is easily calculated by choosing the trajectories of A and B such
that they intersect at the point O of Fig. 6.3. Both A and B take this point to
be the origin of their coordinate times. With the times T , T 0, and T 00 as shown
in Fig. 6.3, observer A concludes that the event a whose time coordinate, in
his/her frame, is

ta D 1

2
.T C T 00/ D 1

2
.1C �2/T ;

must be simultaneous with event b on the world line of B . This allows him/her
to calculate the distance from A to B at this time,

d
ˇ̌
.A/
D c

2
.T 00 � T / D c

2
.�2 � 1/T :
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x0=ct

T

A

B

T'

x1

T''

Fig. 6.2 Two unaccelerated observers who move apart with constant relative velocity v D v Oe1,
exchange two light signals

He/she can also determine the modulus of the velocity relative to B , about which
he/she knows that it has the value ˇc,

1

c
v
ˇ̌
.A/
D d

ta
D �2 � 1
�2 C 1 D ˇ :

If B is departing from A, as assumed in the example, there follows a redshift,
(i.e. � > 1),

�red D
s
1C ˇ
1 � ˇ D � C

p
�2 � 1 : (6.12a)
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Fig. 6.3 The same observers as in Fig. 6.2 have chosen
the intersection pointO of their world lines for the origin
of their coordinate times

T''

T

A
B

b

T'

a

O

In turn, if B approachesA there is a blueshift, (0 < � < 1),

�blue D
s
1 � ˇ
1C ˇ D � �

p
�2 � 1 : (6.12b)

One verifies that in either case �.�/ D .�2 C 1/=.2�/ and that �blue D 1=�red.
Note that these red and blue shifts occur already in flat Minkowski space. One
deals here with the special relativistic version of the Doppler effect known from
nonrelativistic kinematics.

Beyond this purely kinematic effect there is a red shift that is due to
gravitation. The following thought experiment may help to understand this phe-
nomenon. As a consequence of the equivalence principle, Definition 6.1, the
effects of a homogeneous gravitational field (in an inertial frame of reference)
cannot be distinguished from those observed in a uniformly accelerated frame
in a space without field. The source S and the detector D, placed vertically one
above the other in the field g D �g Oe3 as shown in Fig. 6.4, have the distance
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S

h

D

x3

γ

Fig. 6.4 A photon moves vertically and downwards in the earth’s gravitational field from the
sender S to the detector D which also falls freely

h. At time t D 0 when S emits a photon of given wave length �, this set-up is
supposed to be at rest. The photon reaches the detectorD after the time of flight
�t ' h=c. At this instant of time D is already falling with velocity v D �v Oe3
where v D g�t ' gh=c. The photon moves along the field and, therefore,
is blue-shifted. This shift can be estimated by means of (6.12b) in the weakly
relativistic case where one has

� D 1 � ˇp
1 � ˇ2 ' 1 � ˇ :

From the definition (6.11) one concludes

z ' �v
c
D �gh

c2
D ��˚N

c2
;

where �˚N is the difference of the Newtonian potential between source and
detector. Although this effect is estimated here from a kinematic shift, the equiv-
alence principle tells us that, in reality, it stems from the difference of the
gravitational potential between source and detector and, hence, that it is a new
effect.
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t

S D

t4

t2

t3

t1

x3

Fig. 6.5 The sender S emits two light signals at times t1 and t2, respectively. These signals are
detected in detector D at times t3 and t4, respectively

Another thought experiment which is closely related to the previous one, shows
that null geodesics, in the presence of gravitation, cannot be straight lines. Let x.
/
be a physical orbit in Minkowski space. In every point of this world line the velocity
is timelike or, at most, lightlike. On a comoving clock time intervals are calculated
by means of the formula

� D 1

c


2Z

1

d


r
���

dx�

d


dx�

d

;

�
��� D diag.1;�1;�1;�1/� : (6.13)

This formula can no longer be correct if there is a gravitational field in the back-
ground.

Example 6.4 Light rays in a gravitational field
In a static and homogeneous acceleration field g D �g Oe3 a source emits two
signals with (dominant) frequency 
S at times t1 and t2, respectively. Figure 6.5
shows the orbits of the two signals in a position vs. time diagram. They are
recorded by the detector at times t3 and t4, respectively. As the set-up is static
the two world lines shown in the figure must be parallel, independently of their
detailed functional form. Therefore, the time interval �t .D/ D t4 � t3 is the
same as �t .S/ D t2 � t1 for the source. The number of pulses emitted from S ,
N D 
S�t

.S/, is the same as the number of pulsesN D 
D�t
.D/ detected byD.

As the time intervals are equal also the frequencies are equal, 
D D 
S. There-
fore, no red or blue shift is predicted in the detector – in contrast to the result of
the preceding example. One concludes from this that the surface enclosed by the
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two world lines and the vertical line segments at S and at D must be embedded
in a space whose curvature does not vanish.

6.2.4 Some Conjectures and Further Program

The shape and geometric properties of spacetime are influenced by the mass and en-
ergy densities which are contained in it. A flat Euclidean space carrying the causal
structure of a Minkowski space can be realized only approximately, for instance, at
large distances from major local mass densities. In the presence of masses and other
fields carrying energy and momentum, spacetime is a manifold with nonvanishing
curvature. A globally defined frame of reference like in Minkowski space, cannot be
a meaningful definition. Nevertheless, one can “explore” the manifold of spacetime
by means of massive and massless test particles which do not modify the gravita-
tional field in an essential way. These particles move along geodesics, i.e. orbits
which correspond to free fall in a curved manifold, and, hence, yield information
about the shape of spacetime.

Gravitation is not just another interaction, for example like Maxwell theory on
flat space. It is contained in the geometry, and the structure of spacetime deter-
mines all effects of inertia and gravitation. The energy-momentum tensor field of
matter and of nongravitational fields plays the role of the source term in the equa-
tions which determine the metric field g.x/. This will turn out to be the essential
hypothesis.

The program of the following sections is based on these considerations: We
start by investigating models for the tensor field describing some given energy and
momentum densities. This tensor field which will be termed “matter”, drives the
gravitational field and its geometry. Next we collect and discuss the most impor-
tant geometric objects which live on smooth manifolds and which do not refer to
any kind of embedding space. One of the requirements will be that the universe
be describable “out of itself” and shall not be part of a fictitious larger embedding
space.

Equipped with this knowledge manifolds can be found which fulfill the equiv-
alence principle and, hence, which may serve as models for physical spacetime.
Semi-Riemannian geometry provides all the tools which are needed to formulate
Einstein’s equations.

6.3 Matter and Nongravitational Fields

We begin still within the concept of a flat Minkowski space and assume that matter
and radiation fields can be described by a Lagrange density of the type of (3.42).
The action of translations in space and in time yield the tensor field (3.44). If the
Lagrange density is invariant under translations then the energy-momentum tensor
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field fulfills the four conservation laws (3.45). This is the assertion of Noether’s the-
orem. As we explained in the example of Maxwell theory this tensor field, referring
to an arbitrarily chosen inertial frame, describes the energy and momentum densities
as well as their flux densities.

Two examples for a tensor field which describes the energy and momentum con-
tent in a manifestly covariant way are:
The tensor field (3.23a) for a real scalar field,

T
��
� .x/ D @��.x/@��.x/

� 1
2
���



@��.x/�

��@��.x/ � �2�2.x/ � 2%.x/�.x/
�
; (6.14)

and the Maxwell tensor field (3.47),

T
��

M .x/ D 1

4�

�
F �	 .x/�	
F


�.x/C 1

4
���F˛ˇ .x/F

˛ˇ .x/

�
: (6.15)

Both tensor fields are symmetric, T ��.x/ D T ��.x/. While the first of them,
(6.14), can be no more than a useful model on microscopic scales and certainly
is not suitable for describing macroscopic matter densities, the second, (6.15), is
relevant for classical macroscopic situations whenever there are high densities of
Maxwell fields. In order to describe the effective action of matter on the geometry
of the universe one needs simple models for the energy-momentum tensor field. The
following examples describe two such models.

Example 6.5 Energy-momentum tensor for dust
A swarm of noninteracting particles can be modelled by a cloud of dust whose
particles move with a common local velocity. It is assumed that there is no pres-
sure and no viscosity. With these assumptions there exists a local rest system
at every point x in which the energy density is %0.x/c2, with %0.x/ the mass
density. The dust moving with local velocity v, the density becomes % D %0�

2,
where the first factor � is due to the length contraction of the reference volume,
while the second one is due to the relativistic increase in mass. For T �� one
makes the ansatz

T �� D %0u�u� ; (6.16)

where u D .�c; �v/T is the velocity (2.41b). One convinces oneself that this
ansatz is well-founded by verifying its properties. One has T 00 D %c2 D
%0�

2c2, as expected. The tensor field is symmetric, T �� D T �� . The conser-
vation law @�T

�� D 0 is verified as follows. By the continuity equation,

@�T
�0 D c Œc@0%C r .%v/	 D 0 :
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Using this equation one calculates

@�T
�i D c@0.%vi /C r .%viv/

D % c@0vi C % v � rvi D % dvi

dt
D 0 :

The last step follows from the assumption that there are no external forces.

Example 6.6 Ideal fluid
Let %0 denote the mass density, p the pressure density, and u the four-velocity.
We assume the tensor field T to have the form

T �� D

 p
c2
C %0

�
u�u� � p ��� ; (6.17a)

and verify that it has the expected properties. In a local rest system K0 the energy-
momentum tensor field T.0/ has the entries

T 00.0/ D %0 c2 ; T 0i.0/ D 0 D T i0.0/ ; T ik.0/ D p ıik : (6.17b)

It is symmetric and it is conserved, i.e. it fulfills @�T
��

.0/
D 0. For 
 D 0 this

follows from @0T
00
.0/
C @iT i0.0/ D c2@0%0 D 0 and from the assumption that the

mass density is locally static. For 
 D k one has @0T 0k.0/ C @iT ik.0/ D @kp. This is
also equal to zero. Indeed, a nonvanishing gradient of the pressure would cause
a nonvanishing flow of the fluid – in contradiction to the assumption of a local rest
system with respect to which the situation is static. Finally, for u D .c; 0; 0; 0/T
the equation (6.17a) goes over into (6.17b).

It suffices then to verify by explicit calculation that the special Lorentz trans-
formation L.v/, when applied to T.0/, yields (6.17a),

L.v/T.0/LT .v/ D T :

Indeed, using (2.34) or (2.44), one has

T 00 D �2c2


%0 C p

c2
ˇ2
�
D �2c2



%0 C p

c2

�
� p ;

T i0 D �2c


%0 C p

c2

�
vi ;

T ik D p ıik C �2%0 vivk C 2p �2

.1C �/c2 v
ivk C p �4ˇ2

.1C �/2c2 v
ivk

D p ıik C

 p
c2
C %0

�
�2vivk :
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In the first and in the last lines use was made of the relation ˇ2 D .� � 1/.� C
1/=�2. These results are seen to be coordinate expressions of the tensor field
(6.17a).

Both models (6.16) and (6.17a) are easily extended to curved manifolds and both
of them are used in cosmological models built on Einstein’s equations. Two essen-
tial changes should be noted in these generalizations. Firstly, the flat Minkowski
metric ��� in (6.17a) is replaced by the x-dependent metric tensor field g��.x/.
Furthermore, all derivatives @� in the conservation equations on flat space are re-
placed by covariant derivatives D� which depend on the structure of the curved
spacetime. The conservation laws are modified in that there can be changes in the
energy-momentum densities. However, the total balance is restored by interaction
with the gravitational background. This is worked out in Sect. 6.5.2, in Sect. 6.5.3,
and in Sect. 6.6.1.

6.4 Spacetimes as Smooth Manifolds

The spacetime of classical gravitation is described by a four-dimensional smooth
manifold equipped with a special metric structure which contains the equivalence
principle (in its strong version). In this section we recapitulate the essential tools
and notions that one needs for the description of smooth manifolds and of the ob-
jects defined on them. For a more extensive presentation we refer to [ME], Chap. 5.
These definitions are followed by the definition and analysis of semi-Riemannian
manifolds which are used in the theory of gravitation.

6.4.1 Manifolds, Curves, and Vector Fields

A distinctive property of a smooth manifold M with dimension n is that, locally,
it looks like the Euclidean space Rn: It can be covered by a countable set of open
subsets U1, U2, : : : 	 M such that every point x 2 M is contained in at least
one Ui . For every subset Ui there is a homeomorphism 'i (i.e. a mapping which
is invertible and continuous in either direction) which maps Ui into an open neigh-
bourhood of the image y D 'i .x/ in a copy of Rn, viz. 'i W Ui ! '.Ui /, Ui 	 M
and 'i .Ui / 	 Rn. The original point on M is denoted by x. Its image in Rn is de-
noted by y, or, if the need arises, by y.i/ with 'i being the aforementioned homeo-
morphism.

This construction yields an atlas of charts, or local coordinate systems. Any two
charts overlap smoothly, that is to say, every transition mapping .'k ı '�1

i / is a dif-
feomorphism, which, by definition, links the image 'i .Ui / in the i -th copy of Rn

with the image 'k.Uk/ in the k-th copy of Rn. (Recall that a diffeomorphism is an
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invertible mapping which is smooth and whose inverse is also smooth.) As a fur-
ther assumption, let every chart that has smooth overlap with all other charts, be
contained in the atlas. This defines a differentiable structure .M;A/ consisting of
a manifold and a complete atlas or maximal atlas3.

I Remarks
1. In order to better visualize a differentiable structure .M;A/ it is helpful to

illustrate the definitions by drawings. In doing so it is particularly important
to keep track of the direction of the mappings 'i , '�1

i , and 'k ı '�1
i , i.e.

from where to where they point. Concrete examples of differentiable mani-
folds such as the torus T 2, the sphere S2, or the group SO(3), also provide
good illustrations. (These examples are worked out in [ME], Chap. 5.)

2. Note that here and in what follows we do not assume the manifold M to
be embedded like a hypersurface in a space of higher dimension. This cor-
responds to the idea that the physical universe is not placed in an ambient,
preexistent space, but exists by itself and its inner properties. Its geometry, its
metric properties must be describable exclusively by intrinsic properties. This
is an essential difference between the gravitational interaction and all other
fundamental interactions whose theory assumes spacetime to be given with
a specific causal structure.

3. The fact that the manifold is described by a “patchwork” of charts in Rn-
s does not contradict the previous remark. Charts are no more than imagined
artefacts – comparable to the concept of phase space in mechanics – which are
meant to facilitate the description ofM and whose use reflects our inability to
visualize at once a Moebius band, Klein’s bottle, or a mug with 27 handles.

4. As a rule, physical theories are formulated in terms of equations of motion
and, hence, assume that the manifold on which they are based carry a differen-
tiable structure. One must keep in mind, however, that, a priori, differentiation
onM proper is not defined. With no more than real analysis on Rn at our dis-
posal local charts are an essential tool.

Functions on Manifolds
The notion of a function on a flat space Rn is familiar from real analysis: The func-
tion f W Rn ! R is said to be smooth if f is differentiable infinitely many times.
The generalization of this notion to curved manifolds is straightforward and follows
this special case. A smooth function on an n-dimensional differentiable manifold is
a mapping

f W M �! R (6.18)

from M to the real axis for which .f ı '�1
i / is a smooth function on the open

neighbourhood 'i .Ui / 	 Rn for all Ui . Figure 6.6 illustrates this prescription.

3 As we consider only smooth manifolds in what follows we write manifold, for short, but always
have in mind smooth manifolds.
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Fig. 6.6 A function f maps an open subset Ui � M onto the real axis. Adding the inverse of
the chart map 'i , the composition .f ı ��1

i
/ is seen to be a function on Rn

Simple yet important examples are provided by the coordinate functions .f � ı
'i /, � D 0; 1; 2; : : : ; n � 1, by means of which Ui is mapped again onto the subset
'i .Ui / of Rn. More specifically the image y D 'i .x/ of x, via the mapping f � ı
'i .x/, is mapped to its �-th coordinate y� D f �.'i .x//

4 which, indeed, is a real
number. Expressed in symbols, one has

.f � ı 'i / W M ! R W x 7! y� D f �.'i .x// ; .� fixed/ : (6.19a)

In coordinates the image y D 'i .x/ of x 2M is given by

'i .x/ D
�
y0; y1; : : : ; yn�1� ; (6.19b)

4 The notation and the numbering of the coordinates is chosen here in view of semi-Riemannian
spacetimes. Books on differential geometry usually use Latin indices which run from 1 to n.
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i.e. by n real functions on M . In differential geometry the set of smooth functions
on the manifoldM is given a new symbol, viz.

F.M/ WD ff WM ! R j f is smoothg :

In what follows we shall make use of this notation.

Smooth Curves on Manifolds
A curve on a manifold may be associated in physics with the example of the orbit of
a particle in space and time. Considered as a mapping a curve might be thought of as
going the opposite way as compared to a function. A real parameter measuring, say,
proper time 
 2 R
 , determines the point x.
/ on M where the particle is found at
time 
 . As 
 runs along the real axis or an open interval I 	 R
 on the time axis,
the particle moves along its one-dimensional orbit in spacetime M . With this idea
in mind a curve � is understood to be a mapping

� W I 	 R �!M ; (6.20)

which assigns a point onM to every real number 
 in the open interval I on the real
axis, 
 2 I .

The curve � is said to be smooth if its image in Rn has this property,

.'i ı �/ W I 	 R �! 'i .Ui / 	 Rn :

See the image of the curve as sketched in Fig. 6.7.

Smooth Vector Fields
At every point x of an n-dimensional manifold there are two vector spaces attached
to it: The tangent space TxM of all tangent vectors in x, and its dual T �

xM , the
cotangent space, whose elements are the linear maps of tangent vectors to the real
numbers. The directional derivative of a smooth function f 2 F.M/ in the direction
of the tangent vector v 2 TxM provides a good guideline for the definition of
smooth vector fields. Denote this derivative by v.f /. This quantity is a real number.
One concludes that tangent vectors act on smooth functions, or, in symbols, v W
F.M/ ! R, and their images are elements of the real axis. Like all derivatives
directional derivatives are R-linear and satisfy the Leibniz rule. This example is
helpful in formulating a more abstract definition:

I Definition 6.2 Tangent vectors A tangent vector v 2 TxM is a real-valued
function v W F.M/! R which has the following properties

v.c1f1 C c2f2/ D c1v.f1/C c2v.f2/ ; c1; c2 2 R ; (6.21a)

v.f1f2/ D v.f1/f2.x/C f1.x/v.f2/ ; f1; f2 2 F.M/ : (6.21b)
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Fig. 6.7 A curve � on M has as its image the curve .'i ı �/ in Rn. Using this construction one
can tell whether � is smooth

The first property is called R-linearity, the second property is the product rule or
Leibniz rule.

Let 'i D .'0i ; '
1
i ; : : : ; '

n�1
i / be a chart for the open subset Ui 	 M of x 2 M

and let g 2 F.M/ be a smooth function. Define then

@g

@y�

ˇ̌̌
ˇ
x

� @�
ˇ̌
x
g WD @.g ı '�1

i /

@f �
.'i .x// ; (6.22)

� D 0; 1; : : : ; n � 1, where f � are coordinate functions as introduced above (see
also (6.19a)). Then

@�
ˇ̌
x
W F.M/! R W g 7! @�g.x/ (6.23)

is a tangent vector of M in the point x. The symbol @�jx is a useful abbreviation
for the operation that is defined more explicitly in (6.22). The set of these tangent
vectors .@0; @1; : : : @n�1/ spans a basis of the tangent space TxM . Like in the case
of M D Rn that we dealt with in Sect. 2.2.2, every tangent vector in x can be
expanded in terms of the base fields @�,

v D
n�1X
�D0

v�.x/@� � v�.x/@� :
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(It is understood that we use the summation convention of the theory of relativity.)
In contrast to the case of a flat space Rn a decomposition of this kind holds only
locally, even if the coefficients v�.x/ are taken to be functions of the point x 2 Ui .
So, strictly speaking, one should mark the base fields @� in (6.22) and in (6.23) such

that it is clear that they refer to the chart .'i ; Ui /, writing, for example @.i/� .
Conversely we have the transition maps .'k ı '�1

i / by means of which one con-
tinues to the neighbouring subsets Uk , step-by-step, until one has covered the whole
manifold. This leads us to the definition of vector fields on M which reads as fol-
lows:

I Definition 6.3 Smooth vector field A vector field V on the manifold M is
a function,

V W M ! TM W x 7! Vx ; (6.24)

which assigns to every point x a tangent vector in the tangent space TxM . The
vector field is smooth if its action on a smooth function f 2 F.M/

.Vf /.x/ D Vx.f / (6.24a)

is again a smooth function for all f 2 F.M/.

Vector fields are smooth mappings V W F.M/ ! F.M/ which map a smooth
function to another smooth function. As an example from physics one might think
of the flow of an ideal fluid in a given vessel. In every point of the interior the
vector field identifies a unique, well-defined vector which in the example is the
local velocity of the fluid. If one moves smoothly from the point of reference to its
neighbourhood the flow changes in a continuous and differentiable way.

Expressed in coordinates of a local chart .'i ; Ui / one has the decomposition

V D
n�1X
�D0

�
V'

�
i

�
@.i/� : (6.24b)

This is often written, in a somewhat simplifying notation, V DPV �.x/@�, or,
even shorter and using the summation convention, V D V �.x/@�. The coefficients
V �.x/ are smooth functions.

I Remarks
1. The set of all smooth vector fields on a differentiable manifold M is usually

denoted by the symbol V.M/ or by X.M/. In this chapter we use a third
notation which renders their tensor character more explicit, viz.

V 2 T10.M/ ;
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where Trs.M/ are the smooth tensor fields which are r-fold contravariant, and
s-fold covariant. This notation emphasizes that vector fields are contravariant
tensor fields of degree 1.
The objects which are dual to vector fields, i.e. the one-forms, are elements of
the space X�.M/ D T01.M/, i.e. they are covariant tensor fields of degree 1.

2. Smooth functions and smooth curves on manifolds are special cases of smooth
mappings between differentiable structures .M;A/ and .N;B/,

˚ W .M;A/ �! .N;B/ :

In the case of functions the target manifold is the space R equipped with what
is called the canonical differential structure. In the case of curves the starting
manifold is R, the target manifold is M . Any such mapping induces a well-
defined mapping between the corresponding tangent spaces.

The tangent vector field of a smooth curve � W R ! M on the manifold M is
an important example of a smooth vector field. On the real axis R there is only one
base field @ D d=du so that

d

du
.
/ 2 T
 .R/

is the unit vector in the point 
 which points in the positive direction. Its image is
the velocity vector P�.
/ in the point �.
/ on M whose action on a smooth function
f 2 F.M/ is calculated by means of

P�.
/f D d.f ı �/
du

.
/ : (6.25a)

Expressed in local coordinates .'i ; Ui / the following formula applies

P� D
n�1X
�D0

d.'�i ı �/
du

.
/ @�
ˇ̌
�.
/

: (6.25b)

One may ask a closely related question: Given a smooth vector field V 2 T10.M/, is
there a curve ˛ W I 	 R!M which satisfies the differential equation P̨ D V˛ , i.e.
for which at any time 
 2 I the velocity vector P̨ coincides with the tangent vector
V˛? This leads to the

I Definition 6.4 Integral curve of a vector field The curve ˛ W I !M is called
the integral curve of the vector field V 2 T10.M/ if P̨ D V˛, or, more precisely, if

P̨ .
/ D V˛.
/ (6.26)

holds for all 
 2 I .
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The equation (6.26) represents a dynamical system and is the general geometric
form of a typical equation of motion of physics. To quote an example let ˛ be a phys-
ical orbit of mechanics in phase space, ˛ D .q.t/; p.t//T , and V the Hamiltonian
vector field V D .@H=@p;�@H=@q/T so that the explicit form of (6.26)

� Pq.t/
Pp.t/

�
D
 

@H
@p

� @H
@q

!ˇ̌̌
ˇ̌
t

;

yields the well-known canonical equations of motion. The local velocity at the point
.q; p/ and at the time t coincides with the tangent vector calculated at this same
point and time.

I Remark
The existence and uniqueness theorem for ordinary differential equations of
first order guarantees that the integral curve which passes through the point
x0 D ˛.
0/ is determined uniquely. Without loss of generality one can set

0 D 0. Starting from this point and constructing the maximal extension of ˛
on M yields the maximal integral curve of the vector field through x0 D ˛.0/.
If every maximal integral curve is defined on the whole axis R
 , that is, if the in-
terval I in Definition 6.4 can be extended to the whole space R, the vector field
is said to be complete.

6.4.2 One-Forms, Tensors, and Tensor Fields

The definition of exterior one-forms for curved manifolds is very similar to the case
of flat spaceM D Rn, see Sect. 2.2.2a. At the point x 2M the form ! W TxM ! R
is a linear map from the tangent space into the real numbers. In every chart there
are base one-forms .dx0; dx1; : : : ; dxn�1/, dual to the base vector fields @�, � D
0; : : : ; n � 1. As before the duality relation reads

dx�.@�/ D @

@x�
x� D ı�� : (6.27)

As such, ! is an element of the cotangent space T �
xM in x. An arbitrary one-form

can be expanded in terms of base one-forms, like in (2.10),

! D
n�1X
�D0

!� dx� ; (6.28a)

where the factors !� are real coefficients. The difference as compared to the case of
an Rn is that although in (6.28a) one can replace these numbers by smooth functions
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!�.x/, thereby obtaining the smooth one-form on M

! D
n�1X
�D0

!�.x/dx� ; (6.28b)

this representation initially holds only in a local chart .'i ; Ui /. One obtains a well-
defined smooth one-form onM only if this local representation can be continued to
the whole manifold by means of a complete atlas. These considerations suggest the

I Definition 6.5 Smooth one-form A smooth one-form on the manifold M is
a function

! W M ! T �
xM W x 7! !x 2 T �

xM ; (6.29)

which assigns to every point x an element !x of the cotangent space T �
xM . The

one-form is said to be smooth if its action !.V / on a vector field V is a smooth
function for all V 2 T10.M/.

The action of a one-form ! D Pn�1
�D0 !�.x/dx� on a vector field V DPn�1

�D0 V �.x/@� follows from (6.28b) and (6.27),

!.V / D
n�1X
�D0

n�1X
�D0

!�.x/V
�.x/dx�.@�/ D

n�1X
�D0

!�.x/V
�.x/ :

One-forms are covariant tensor fields of degree 1, ! 2 T01.
The rules of the calculus with exterior products that we developed in Sect. 2.2.2,

remain unchanged. One constructs exterior forms of grade k, with k D 1; 2; : : : ; n

as we did in the case of Euclidean spaces, and expand them in terms of base k-forms
dx0 ^ dx1 ^ � � � dxn�1 in local charts.

The exterior derivative is a local operation. Therefore, it has the same properties
as for a flat space5 Rn.

Tensors with more than one index as well as tensors which carry both covariant
and contravariant indices appear in various contexts. Before we return to the tensor
fields on spacetime which are relevant for physics, we summarize the definitions
and mathematical properties of tensor fields. The characteristic property of tensors
as well as of tensor fields is their multilinearity. A tensor with r contravariant indices
and s covariant indices at the point x 2 M maps r one-forms and s tangent vectors
onto a real number,�

Trs
�
x
W �T �

xM
�r � .TxM/s �! R

W !1; : : : ; !r ; V1; : : : Vs 7!
�
Trs
�
x

�
!1; : : : ; !r ; V1; : : : Vs

�
:

This mapping is linear in all its arguments.

5 The Poincaré lemma on manifolds which are not singly connected, holds for star-like domains
only, see remark 3 in Sect. 2.2.2.
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If one lets the base point x move overM the right-hand side becomes a function.
The following definition is a straightforward generalization of smooth vector fields
(6.24) and of smooth one-forms (6.29):

I Definition 6.6 Smooth tensor fields A tensor field of the type .r; s/, i.e. a ten-
sor field which is r-fold contravariant and s-fold covariant, is a multilinear map

Trs W
�
T �M

�r � .TM/s �! F.M/ ; (6.30)

which assigns to every set of r one-forms from the cotangent space T �
xM and to

every set of s vector fields from the tangent space TxM a function

!1; : : : ; !r ; V1; : : : ; Vs 7!
�
Trs
�
x

�
!1; : : : ; !r ; V1; : : : Vs

�
: (6.30a)

The tensor field is said to be smooth if this function is a smooth function.

I Remarks
1. The set of smooth tensor fields of type .r; s/ over the manifold M is denoted

by Trs.M/. Its elements Tr0 2 Tr0.M/ are called contravariant tensor fields of
degree r , while the elements T0s 2 T0s .M/ are called covariant tensor fields of
degree s. If both indices are different from zero one talks about mixed tensor
fields.

2. Two important examples are T10 � V.M/ � X.M/, the smooth vector fields,
and T01 � X�.M/, the smooth one-forms. The set of smooth functions can
also be written F.M/ D T00.M/.
Addition of two tensor fields is meaningful only if they are of the same type
.r; s/.
The tensor product of Trs and Tr

0

s0 is again a tensor field and its type is .r C
r 0; s C s0/. If it is evaluated on r C r 0 one-forms and on s C s0 vector fields
one obtains



Trs ˝ Tr

0

s0

� 

!1; : : : ; !rCr0

; V1; : : : ; VsCs0

�

D Trs
�
!1; : : : ; !r ; V1; : : : ; Vs

�
� Tr

0

s0



!rC1; : : : ; !rCr0

; VsC1; : : : ; VsCs0

�
; (6.31)

i.e. the product of the two tensor fields both of which are evaluated on the
appropriate number of one-forms and of vector fields, respectively.

3. If one evaluates the mixed tensor field .r; s/ only on s vector fields but on no
one-forms,

Trs

0
B@�; : : : : : : ; �„ ƒ‚ …
r empty slots

; V1; : : : ; Vs

1
CA DW L
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the result is a contravariant tensor field of degree r . Thus, L is a map which is
linear in each component

L W .X.M//s �! .X.M//r :

In a similar way the object

G WD Trs

0
B@!1; : : : ; !r ; �; : : : : : : ; �„ ƒ‚ …

s empty slots

1
CA

is a map from .X�.M//r to .X�.M//s.
4. Like all tensor fields these mappings are not only linear but also F.M/-linear,

i.e. linearity is fulfilled not only if the arguments are multiplied by real num-
bers but also when they are multiplied by functions. One says that L, G, etc.
are F.M/-modules.

5. The contravariant tensor fields Tr0 and the covariant tensor fields T0s , in
general, have no special symmetry character. Symmetric and antisymmetric
tensor fields are subsets, and a few examples are discussed below. For in-
stance, the exterior forms � 2 �k.M/ of degree k are nothing else than
antisymmetric covariant tensor fields � 2 T0

k
.M/.

The following definition concerns a symmetric tensor field of central importance
for relativity theory and physics in general:

I Definition 6.7 Metric field Suppose the manifold is such that it admits a met-
ric. A metric onM is a smooth covariant tensor field g 2 T02.M/which is symmetric
and nondegenerate. In more detail this means: In every point x 2M one has

(i) g.v;w/jx D g.w; v/jx for all v;w 2 TxM ,
(ii) if g.v;w/jx D 0 for fixed v and for all w 2 TxM , then v can only be the

null vector, v D 0.

6.4.3 Coordinate Expressions and Tensor Calculus

Local coordinate expressions of tensor fields are obtained by evaluating them on
base one-forms and base vector fields in charts .'i ; Ui /. Let Trs be a tensor field
of type .r; s/, Trs 2 Trs.M/. In the domain of a chart one applies Trs to r base
one-forms and to s base fields thus obtaining the functions

t�1:::�r
�1:::�s

.x/ D Trs
�

dx�1 ; : : : ; dx�r ; @�1
; : : : ; @�s

�
: (6.32)

This is the form of tensors as one knows them from elementary tensor analysis.
Making use of the rule

dx�.@�/ D @�.x�/ D ı�� ;



336 6 Classical Field Theory of Gravitation

the tensor field, locally, is seen to be a linear combination of tensor products of r
base fields and s base one-forms,

Trs D
n�1X

�1����r D0

n�1X
�1����sD0

t�1:::�r
�1:::�s

.x/

�
@�1
˝ : : :˝ @�r

�˝ .dx�1 ˝ : : :˝ dx�s / : (6.33)

A few examples seem in order to illustrate these matters.

(i) A covariant tensor field of degree 2 has the representation

T02 D
n�1X
�;�D0

t��.x/dx
� ˝ dx� : (6.34a)

This is the general case when the tensor field is neither symmetric nor an-
tisymmetric. However, if the coefficients are antisymmetric, t�� D �t�� ,
then

T02 D
X
�<�

t��.x/ .dx� ˝ dx� � dx� ˝ dx�/

D
X
�<�

t��.x/dx� ^ dx� : (6.34b)

We rediscover here the coordinate representations of two-forms.
(ii) A coordinate representation of the metric has the same form (6.34a)

g.x/ D
n�1X
�;�D0

g��.x/dx� ˝ dx� ; (6.35a)

with symmetric coefficients, g��.x/ D g��.x/. The matrix fg��.x/g is
usually called the metric tensor. Except for the case of a flat space such
as M D Rn this expression holds only locally, i.e. in the charts .'i ; Ui /
of a complete atlas. The metric tensor is obtained by evaluating g on base
fields, following (6.32).

g .@	 ; @
 / D
n�1X
�;�D0

g��.x/dx
�.@	 /dx

�.@
 /

D
n�1X
�;�D0

g��.x/ı
�
	 ı
�

 D g	
 .x/ ; (6.35b)

with �; 
 D 0; : : : ; n � 1.
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The metric being nondegenerate is equivalent with the matrix fg��.x/g be-
ing nowhere singular. Thus, in every point x 2 M it possesses an inverse
which is denoted by g��.x/,

g��.x/g�
 .x/ �
n�1X
�D0

g��.x/g�
 .x/ D ı�
 : (6.36)

(On the left-hand side, as before, we have used the summation convention.)
(iii) On a chart a mixed tensor field of type .1; 3/ has the representation

T13 D
n�1X
�D0

n�1X
�;	;
D0

t
�

�	

.x/ @� ˝ dx� ˝ dx	 ˝ dx
 : (6.37)

Coordinate expressions like this one, or like in (6.33), (6.34a) and (6.35a),
are unique on the subset Ui . Using the transition maps .'k ı '�1

i / they can
be continued to other subsets that overlap with Ui and, hence, to the whole
(maximal) atlas. Therefore, expressions of the kind of (6.33) are valid and
useful representations of tensor fields.

Summations over pairs of covariant and contravariant indices are well known from
the theory of special relativity, to witness, expressions of the form a�b

�, ���T �� , or
others, where Lorentz vectors and tensors are combined to invariants. This operation
of contraction exists also for tensor fields on curved manifolds, in a coordinate-
free form. One proceeds as follows: For a tensor field which is given by the tensor
product of a vector field V and a one-form !, T11 D V ˝ !, contraction is defined
to be the action of ! on V . The result is a function on M ,

C.T11/ D C.V ˝ !/ WD !.V /.x/ :

In this case contraction converts the .1; 1/-tensor to a function, i.e. written in
symbols, C W T11 ! T00. For a tensor field of type .1; 1/ there is only one possi-
bility of contraction. Writing an arbitrary tensor field T11 in local coordinates, viz.
T11 D

P
t
�
� @� ˝ dx� , we have

C
�
T11
� D

n�1X
�;�D0

t�� .x/C
�
@� ˝ dx�

�

D
n�1X
�;�D0

t�� .x/ı
�
� D

n�1X
�D0

t�� .x/ :
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Thus, when worked out in terms of components, one obtains the prescription fa-
miliar from special relativity. This is also true for more general mixed tensor fields
Trs 2 Trs . However, one needs to know which covariant index is to be contracted
with which contravariant index. Suppose, for example, that for a given tensor field
T23 the first upper index is to be contracted with the third lower index. This means
that in the function

T23
�
!1; !2; V1; V2; V3

�
the one-form !1 and the vector field V3 should be contracted,

!1.V3/ D
n�1X
�D0

n�1X
�D0

!1�V
�
3 dx�.@�/ D

n�1X
�D0

!1�V
�
3 :

The tensor field T23 thereby becomes a tensor field with r D 1 and s D 2, C 13 .T
2
3/ 2

T12.M/. Calculating this new tensor field in coordinates, its expansion coefficients
are

�
C 13T23

��
	

.x/ D �C 13T23

�
.dx�; @	 ; @
 /

D
n�1X
�D0

T23



dx�; dx�; @	 ; @
 ; @�
�
D

n�1X
�D0

t
��

	
�
.x/ :

In components the rules of calculus are the same as in special relativity: One con-
tracts indices in an invariant way by taking an equal upper and lower index and by
summing over all values of this index.

At this point we know already a great deal about calculus of tensor fields: Addi-
tion – only tensor fields of the same type can be added –, multiplication by means
of the tensor product (6.31)), contraction, and their F.M/-multilinearity. What is
missing is a universal rule of how to take derivatives of tensor fields. For example,
the Lie derivative is a rule that allows one to differentiate a geometrical object along
the flux of a vector field. It is applicable equally well to functions, to vector fields,
to one-forms, or more generally, to tensor fields of type .r; s/. Here the aim is to
formulate rules for any such derivative, both in coordinates and in a coordinate-free
formulation. A derivative of this kind is generally denoted by D. However, it is un-
derstood that its explicit form depends on the type .r; s/ of the tensor field on which
it acts.

I Definition 6.8 Tensor derivation A tensor derivation D is a mapping of ten-
sor fields which does not change the type .r; s/,

D � Drs W Trs .M/ �! Trs.M/ ; (6.38)

and which has the following properties:
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(i) With S and T, two arbitrary smooth tensor fields, one has

D .S˝ T/ D .DS/˝ TC S˝ .DT/ ; (6.39a)

(Leibniz rule);
(ii) The derivation commutes with any possible contraction,

D .C.T// D C .DT/ : (6.39b)

I Remarks
1. The space of derivations and the space of vector fields are isomorphic. There-

fore, for a given derivation D there is a unique vector field V 2 T10 such that
Dg D Vg holds for all g 2 F.M/.

2. The tensor product of a function g with a tensor field Trs with .r; s/ 6D .0; 0/

is the ordinary product, g ˝ Trs D gTrs .
3. With g a function and Trs an .r; s/-tensor field the Leibniz rule takes the form

D.gTrs / D .Dg/Trs C gDTrs . Note that the symbol D on the left-hand side
and in the second term on the right-hand side means Drs , while in the first term
of the right-hand side it stands for D00 .

Return once more to Definition 6.6 which concerns the evaluation of Trs with
r arbitrary one-forms and s vector fields. Inserting coordinate representations in
a chart,

!i D
X

!i .x/� dx� ; Vk D
X

V �k .x/@�

one finds

Trs
�
!1; : : : ; !r ; V1; : : : ; Vs

�
D
X

t�1����r
�1��� ;�s

.x/ !1�1
: : : !r�r

V
�1

1 : : : V �s
s :

On the right-hand side the sum over all indices is taken, every covariant index is con-
tracted with a contravariant one. Thus, the right-hand side, in fact, is the combined
contraction of the tensor product

Trs ˝ !1 ˝ � � � ˝ !r ˝ V1 ˝ � � � ˝ Vs :

Taking then the derivation D of this tensor product and using the Leibniz
rule (6.39a), one obtains a sum of terms in which D moves successively “to the
right” and acts on each of the factors of the tensor product once. By the assumption
(6.39b) D commutes with all contractions. This yields a general formula which is
of great importance in practice.
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How to calculate a tensor derivation

D
�
Trs
�
!1; : : : ; !r ; V1 : : : ; Vs

�	
D �DTrs

� �
!1; : : : ; !r ; V1 : : : ; Vs

�

C
rX
iD1

Trs
�
!1; : : : ; .D!i /; : : : ; !r ; V1; : : : ; Vs

�

C
sX

kD1
Trs
�
!1; : : : ; !r ; V1; : : : ; .DVk/; : : : ; Vs

�
: (6.40)

On the left-hand side of this equation D is applied to a function, that is to say,
it is realized as D00 . In the first term of the right-hand side it is the derivation
Drs that acts, in the second group of terms it is D01 , while in the third group it
is D10 .

The importance of the universal formula (6.40) becomes evident if one realizes
that it allows one to deduce the explicit form of the derivation Drs for r > 0 and
s > 0 if one knows its action on functions and on vector fields. Indeed, knowing
D00 and D10 , one obtains D01 from (6.40): For an arbitrary one-form ! and for every
vector field V this equation yields

.D!/ .V / D D .!.V // � ! .DV / : (6.40a)

The left-hand side contains the derivation D01 one wishes to obtain. In the first term
on the right-hand side the derivative of a function is taken, that is, this term contains
D00, while the second term contains the derivation of V , that is, it contains D10 .

An important special case of (6.40) is the following: Apply the derivation to
a tensor field S1s , with an empty slot at the place of the first argument. Then
S1s .�; V1; : : : ; Vs/ is a vector field so that (6.40) yields

D
�
S1s .�; V1; : : : ; Vs/

�
(6.40b)

D .DS/ .�; V1; : : : ; Vs/C
sX
iD1

S .�; V1; : : : ; .DVi /; : : : ; Vs/ :

Before working out an example for a tensor derivation I quote here an important
lemma whose proof may be found, for example in [O’Neill 1983].
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Construction theorem for tensor derivations
Given a vector field V 2 T10.M/ and an R-linear function ı W T10.M/ !
T10.M/ which has the property

ı.fX/ D .Vf /X C f ı.X/ (6.41a)

for all functions f 2 F.M/ and for all vector fields X 2 T10.M/. Then there
exists a unique tensor derivation D with the properties

D00 D V W F.M/! F.M/ and (6.41b)

D10 D ı W T10.M/! T10.M/ : (6.41c)

Example 6.7 Derivative along a flow
In this example we review a tensor derivation which is of special importance for
physics and for geometry: The derivative along the flow of a given vector field
V . (See also, e. g. [ME], Sects. 5.5.5 and 5.5.6.)

I Definition 6.9 Lie derivative For every fixed vector field V 2 T10.M/ let
the action of the Lie derivative LV on functions f 2 F.M/ and on vector fields
X 2 T10.M/ be defined by the equations, respectively,

LV .f / D Vf for all f 2 F.M/ ; (6.42a)

LV .X/ D ŒV;X	 for all X 2 T10.M/ : (6.42b)

Expressed in words, the Lie derivative LV applied to a function is equal to the
action of the fixed vector field V on this function. When applied to a vector field
X it gives the commutator of V with X , ŒV;X	 D VX � XV . In the first case
(6.42a) Vf is again a function, in the second case (6.42b) the commutator ŒV;X	
is again a vector field.

By calculating the action ofLV on the vector field fX , with f a function, and
X an arbitrary vector field, one sees that the Lie derivative fulfills the assumption
(6.41a) of the construction theorem:

LV .fX/ D ŒV; fX	 D VfX � fXV
D .Vf /X C f VX � fXV D .Vf /X C f ŒV;X	
D .Vf /X C fLVX D LV .f /X C fLVX :
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In passing from the first to the second line the product rule for the action of V on
.fX/ was used.

Equation (6.40a) yields the action of the Lie derivative on an arbitrary smooth
one-form as follows

.LV !/ .X/ D LV .!.X// � ! .LVX/
D V .!.X// � ! .ŒV;X	/ : (6.43)

It is an easy exercise to express the coordinate-free formulae obtained above in
terms of local charts. In a given chart .'i ; Ui / and using the summation con-
vention, let V D v�@�, W D w�@� be two vector fields, and ! D !	 dx	

a one-form. The defining equations (6.42a) and (6.42b) yield

LV f D v�@�f ; (6.44a)

LVW D
�
v�@�; w

�@�
	 D ˚v�.@�w�/� w�.@�v�/
 @� ; (6.44b)

LV ! D
˚
v�
�
@�!	

�C !� .@	v�/
 dx	 : (6.44c)

As expected, (6.44a) gives the directional derivative of the function f in the
direction of V . In deriving (6.44b) use was made of the fact that the base fields
commute, Œ@�; @� 	 D 0. Finally equation (6.44c) is obtained by first calculating
the action of .LV !/ on an arbitrary vector field W ,

.LV !/ .W / D V .!.W //� ! .ŒV;W 	/
D v�@�.!	w	 / � !� .v	@	w� �w	@	v�/
D v�w	 .@�!	 /C w	!�.@	v�/ :

As this vector field is arbitrary, the last equation must hold for every component.
This gives (6.44c).

I Remarks
1. These formulae simplify even further for base vector fields and for base one-

forms in a chart

LV @� D
�
V; @�

	 D � �@�v�� @� ; (6.45a)

LV dx� D .@�v�/ dx� : (6.45b)

2. In a coordinate-free notation (6.45b) is contained in the formula

LV df D d .LV f / : (6.46)
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This formula is proved starting from the equation Xf D df .X/, with X
a vector field and f a function.

It remains to write down the Lie derivative of arbitrary tensor fields in the
coordinates of a chart. Starting from the general formula (6.40) for a tensor field
Trs 2 Trs.M/ and inserting the representation (6.32) or (6.33), one obtains

�
LVTrs

��1����r

�1����s
D v� �@�t�1����r

�1����s

�
� t�;�2����r

�1����s
.@�v

�1/ � : : : � t�1 ����r�1�
�1����s

.@�v
�r /

C t�1 ����r

��2����s
.@�1

v�/C : : :C t�1����r

�1����s�1�
.@�s

v�/ : (6.47)

Note that (6.40) is solved for the first term on its right-hand side and that the
formulae (6.44a), (6.45a), and (6.45b) were inserted. As a test, one verifies that
equations (6.44b) and (6.44c) are obtained as special cases of (6.47).

The construction theorem has an important corollary:

Comparison of two tensor derivations
If the tensor derivations D1 and D2 coincide on the set of smooth functions
F.M/ as well as on the set of smooth vector fields T10.M/ then they are equal,
D1 D D2.

6.5 Parallel Transport and Connection

In this section one learns how to move vectors by parallel transport and how to
take covariant derivatives of geometric objects in case the spacetime is curved. The
essential tool for this is a connection, for which semi-Riemannian geometry offers
a special and distinguished choice. We start with a summary of the properties of
a metric field, cf. Definition 6.7.

6.5.1 Metric, Scalar Product, and Index

The metric field g, cf. Definition 6.7, at every point x 2 M , is a mapping

g W TxM � TxM ! R W v;w 7! gx.v; w/ ;

with the property gx.v; w/ D gx.w; v/. As g and hence also g.v; w/jx is nondegen-
erate for all x, the metric defines a scalar product on the vector space TxM . This
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scalar product is denoted by gx.v; w/, or, alternatively, in “bra”- and “ket”-notation,
by

hvjwi � gx.v; w/ ; v; w 2 TxM : (6.48)

The scalar product of two vector fields V and W exists also globally, and is
denoted by the symbol hV jW i. This function defines the scalar product (6.48) at
every point x 2M . The following equivalence is often useful:

Metric equivalence
On a metric manifold the spaces X.M/ � T10.M/ and X�.M/ � T01.M/

are isomorphic, or, as one also says, the two spaces are metrically equivalent.
The isomorphism associates to the vector field V 2 T10.M/ the one-form
! 2 T01.M/ such that

!.W / D hV jW i for all W 2 T10.M/ (6.49)

holds true. The correspondence V  ! ! is the announced isomorphism.

It is easy to indicate the isomorphism (6.49) in charts. Using the summation
convention one has

! D !�.x/dx� ; V D g��!�.x/@� ; (6.50)

where g��.x/ denotes the inverse of g��.x/. This is verified by calculation as fol-
lows:

hV j@	 i D g��!�.x/ h@�j@	 i D g��g�	!�.x/
D ı�	 !�.x/ D !	 .x/ D !.@	 /.x/ :

The existence of a metric allows one to decide whether two tangent vectors are
orthogonal. One says that v 2 TxM and w 2 TxM are orthogonal if gx.v; w/ D 0.

The metric of a semi-Riemannian manifold is characterized by the fact that it
has a nonvanishing index. The index is defined in analogy to the index of a bilinear
form, see (5.10). Indeed, if the metric is restricted to a point x 2 M it acts like
a real bilinear form on the vector space TxM . Thus, the index is the codimension of
the largest subspace of TxM on which g��.x/ is definite, either positive-definite or
negative-definite.

A metric manifold .M; g/ with a constant nonvanishing index is generally called
a semi-Riemannian manifold. For the description of physical spacetime with dimen-
sion n one wishes to allow for only one time direction but n � 1 space directions,
i.e. written in symbols, TxM � R � Rn�1. The largest subspace Rn�1 on which
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the metric is definite for this choice has the dimension .n � 1/. Thus, the index
is


 D n � .n � 1/ D 1 :

Under these special circumstances, i.e. one time axis and .n � 1/ space axes, one
talks about the signature imprinted on the space, or, shorter but more specifically,
about the Minkowski signature. A manifold .M; g/ with dimM > 2 for which

 D 1, is called a Lorentz manifold.

We note that general relativity is studied not only with regard to the physical 1C3
dimensions but also to 1C 2, 1C 4, or even higher spatial dimensions.

6.5.2 Connection and Covariant Derivative

If one wishes to shift a smooth vector field X D X�.x/@� defined on M D Rn,
from the point x 2 Rn by parallel transport in the direction of the tangent vector
V 2 TxM , a simple and natural prescription comes to mind: At the point x let V act
on the component functionsX�.x/ and then use the so-obtained functions V.X�/jx
to construct the transported vector V.X�/@�, viz.

V.X�/@� �
n�1X
�D0

V.X�/@� D V �.x/@X
�

@x�
@� DW DV .X/ : (6.51)

This prescription generates a new vector field which is denoted by DV .X/, or,
for short, by DVX . The operation DVX is called the natural covariant derivative
of X with respect to the vector field V . In this case, that is to say still over Eu-
clidean or semi-Euclidean space, the covariant derivative has the following proper-
ties:

When DV acts on a linear combination of vector fields then one has, obviously,

DV .c1X1 C c2X2/ D c1DV .X1/C c2DV .X2/ : (6.52a)

If one replaces V by a sum V1 C V2, or multiplies V by a function f one has,
respectively,

D.V1CV2/X D DV1
X CDV2

X ; D.f V /.X/ D fDV .X/ : (6.52b)

However, if one multiplies the vector field X on which DV is acting, by a function
g one must apply the product rule in (6.51), i.e. one has

DV .gX/ D .Vg/X C gDV .X/ : (6.52c)
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In formula (6.52c) the product rule

@.gX�/

@x�
D @g

@x�
X� C g@X

�

@x�

or rule (6.21b) is applied.
On a manifold with nonvanishing curvature the simple formula (6.51) no longer

holds, there is no longer a natural definition of a covariant derivative. On the con-
trary, the tangent spaces TxM and Tx0M at two different points x and x0 6D x are
disjoint vector spaces whose elements cannot be compared without further tools at
our disposal. In other words, in the general case parallel transport is not defined in
an obvious way but requires an additional rule of how to implement it. Expressed
differently again, there are many possibilities to shift a tangent vector in x by paral-
lel transport! It is a question relating to the physics of gravitation whether it singles
out a specific connection compatible with the equivalence principle.

Example 6.8 Parallel transport on a sphere
Consider the three great circles on the sphere S2 which are drawn in Fig. 6.8,
and a tangent vector vA in the point A. Great circles are geodesics on S2. Now
transport the vector once along the path .a/ C .b/, and once along the path .c/
such that it includes always the same angle with the tangent of the geodesic along
which it moves. This is a prescription which fixes the connection.
Upon arriving at pointN by parallel transport, the original vector vA has differing
directions, v.a/C.b/N for path .a/C.b/, and v.c/N for path .c/, as shown in the figure.
This difference is an indication for and a measure of the curvature of the base
manifold. (In order to follow up how parallel transport works on vA it is useful
to decompose vA in a component tangent to the great circle .a/ and a component
tangent to the great circle .c/. These components are easy to follow.)

The symbolD, without the subscript V , denotes a linear connection, which maps
two vector fields, say V and X , onto a new vector field, say DV .X/. The example
of the flat manifold from which we started, shows that a connection must obey
a number of rules as follows,

I Definition 6.10 Connection A connectionD is a mapping

D W X.M/� X.M/! X.M/ ; (6.53)

which has the following properties: It is F.M/-linear in its first argument, i.e.

DV1CV2
.X/ D DV1

.X/CDV2
.X/ ; (6.54a)

D.gV /.X/ D g .DV .X// ; g 2 F.M/ : (6.54b)
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A
(a)

(c)

(b)

N

vA

vN
(a+b)

vN
(c)

Fig. 6.8 A tangent vector vA is shifted by parallel transport along two different paths from point
A to pointN , but always following great circles. As a result one finds two different images – a hint
to the curvature of the manifold M D S2

It is only R-linear in its second argument but obeys the Leibniz rule

DV .c1X1 C c2X2/ D c1DV .X1/C c2DV .X2/ ; (6.55a)

DV .fX/ D .Vf /X C fDV .X/ ; (6.55b)

with V;X;X1; X2 2 X.M/ and g; f 2 F.M/.

I Remarks
1. It is important to realize that a connection, in general, is not fixed by the pos-

tulates (6.54a)–(6.55b). Further requirements are needed to fix it uniquely. It
is the “miracle” of Riemannian and of semi-Riemannian geometry that there
exists a unique connection which, when applied as a tensor derivation to the
metric g, gives zero and which has vanishing torsion (see (6.59) below). Thus,
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one of the two additional requirements is Dg D 0. This special connection is
called a metric connection.

2. The covariant derivative DV is a tensor derivation in the sense of Defini-
tion 6.8, hence, it is type conserving. Tensor fields of type .r; s/ are mapped
onto tensor fields of the same type. The mappingD alone, in turn, leads from
type .r; s/ to type .r; s C 1/, D W Trs ! TrsC1.

3. Parallel translation is known and calculable if it is known for all base vector
fields. Taking V D @� and X D @� , the covariant derivative of X along V is
another vector field that may be expanded in terms of base vector fields,

D@�
.@�/ D � 	��.x/@	 ; �; 
 D 0; 1; : : : n� 1 : (6.56)

It is understood that we are using the summation convention on the right-hand
side, i.e. the sum over � is taken from 0 to .n � 1/. The coefficients � 	��.x/
are functions and are called Christoffel symbols of the connectionD.

4. It is instructive to calculate the covariant derivative DV .X/ in coordinates.
The covariant derivative of the vector field X D X	 .x/@	 by the base vector
fields @� gives

D@�



X	 .x/@	

�
D
�
@X	 .x/

@x�
C � 	��.x/X�.x/

�
@	 : (6.57a)

With V D V �.x/@� the coordinate representation of V , one has

DV .X/ D V �.x/
�
@X	 .x/

@x�
C � 	��.x/X�.x/

�
@	 : (6.57b)

Comparison with (6.51) shows that the Christoffel symbols on a flat manifold
M D Rn are zero.

5. There is a useful notation for derivatives which is often used: Ordinary deriva-
tives that describe parallel transport on flat manifolds are abbreviated by
a comma,

X	;� �
@X	 .x/

@x�
; (6.57c)

while covariant derivatives in coordinate expressions are abbreviated by
a semicolon,

X	I� �
@X	 .x/

@x�
C � 	��X�.x/ : (6.57d)

Note that this kind of derivative also appears in Rn when one uses curvilinear
coordinates.

6. These formulae, together with the general coordinate expression (6.33) for
tensor fields, yield useful formulae for the covariant derivative of tensor fields.
From (6.57b) follows

DV .@	 / D V �� ��	@� :
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The action on a base one-form is calculated from (6.40),

DV .dx
 /.@	 / D V dx
 .@	 / � dx
 .DV .@	 // D �V �� 
�	 :

The first term on the right-hand side vanishes because dx
 .@	 / is a constant
which gives zero when V is applied to it. In the second term the previous
formula is inserted and the duality relation dx
 .@�/ D ı
� is used. From the
coordinate representation (6.33) and with (6.40) solved for the first term on
the right-hand side, one obtains the following useful formula,

t�1:::�r
�1:::�s I� D t�1:::�r

�1:::�s ; �
C � �1

�	 t
	�2 :::�r
�1:::�s

C � �2
�	 t

�1	�3:::�r
�1:::�s

C : : :
� � 
��1

t�1:::�r

�2:::�s

� � 
��2
t�1:::�r
�1
�3:::�s

� : : : : (6.57e)

On the left-hand side the semicolon stands for the covariant derivative – as
defined in the preceding remark. On the right-hand side the comma stands for
an ordinary partial derivative (repeated indices are to be summed over).
Two examples may be useful to illustrate this somewhat involved master for-
mula. For a tensor field A of type .2; 0/ whose components are denoted by
A��.x/ we have

A�� I� D A��;� C � ��	A	� C � ��
A�
 : (6.57f)

For a .0; 2/-tensor field B whose components are B�� one has

B�� I� D B�� ;� � � 	��B	� � � 	��B�	 : (6.57g)

7. The action of the covariant derivative along the vector field V on a function
is the same as the directional derivative (see also the first remark following
Definition 6.8),

DV .f / � .DV /00 .f / D V.f / ; f 2 F.M/ : (6.58)

The action on functions and on vector fields determines the action on one-
forms, see (6.40a). By the construction theorem the covariant derivative is
a tensor derivation and, hence, can be applied to arbitrary smooth tensor fields
of type .r; s/. In particular, it can be applied to the metric g 2 T02.M/. We
make use of this below.

6.5.3 Torsion and Curvature Tensor Fields

For every linear connection (6.53) one defines a tensor field of torsion, also called
torsion for short, T 2 T12.M/ by its action on two vector fields. One should keep
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in mind that a general tensor field S12 of this type, when evaluated on a one-form
and two vector fields, yields a function, viz. S12.!;X1; X2/ 2 F.M/. However, if
the one-form is left out and is replaced by an empty slot then S12.�; X1; X2/ is again
a vector field.

I Definition 6.11 Torsion To every linear connectionD belongs a tensor field of
type .1; 2/ which is defined by the mapping

T W X.M/ �X.M/! X.M/

W X; Y 7�! T.X; Y / D DX .Y / �DY .X/ � ŒX; Y 	 (6.59)

for all smooth vector fieldsX and Y . HereDXY andDYX are the covariant deriva-
tives of Y alongX , and of X along Y , respectively, while ŒX; Y 	 is the commutator.

Furthermore, to the chosen linear connectionD one associates a tensor field of type
.1; 3/ which yields a vector field when it is applied to three vector fields but to no
one-form. It is defined as follows.

I Definition 6.12 Riemann curvature field For every linear connection there ex-
ists a tensor field of type .1; 3/, called the Riemann curvature field, which is defined
by its action on three arbitrary smooth vector fields X; Y;Z 2 X.M/:

R W X.M/ �X.M/ �X.M/! X.M/

W X; Y;Z 7�! R.X; Y;Z/ D ŒDX ;DY 	 Z �DŒX;Y 
Z : (6.60)

The resulting vector field is often written as R.X; Y;Z/, in case one wishes to ex-
ploit its symmetry properties, but also as R.X; Y /Z or RXYZ.

I Remarks
1. For a geometric interpretation of the torsion tensor we refer to [Nakahara

2003, Sect. 7.3]. The Levi-Civita connection that will be defined below, has
vanishing torsion. This is one of its defining properties. If this is so the
Christoffel symbols are symmetric in their lower two indices. This becomes
obvious if one inserts two base fields @� and @� in (6.59) and recalls that @�
and @� commute. One has

T.@�; @�/ D D@�
.@�/ �D@�

.@�/ D
�
� 	��.x/ � � 	��.x/

�
@	 :

If the torsion is equal to zero everywhere one concludes

� 	��.x/ D � 	��.x/ (holds when T � 0/ : (6.61)
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2. The tensor field (6.60), Riemann’s curvature field, can be interpreted more
directly by studying its restriction to planes in the tangent spaces TxM , i.e.
to two-dimensional subspaces. This yields the so-called sectional curvature
which is akin to the classical Gaussian curvature of a curve, see for example
[O’Neill 1983]. From a physical point of view this tensor field is relevant when
one studies neighbouring geodesics and calculates the forces which cause par-
ticles on such geodesics to approach each other or to move apart. Forces of
this kind which are “transverse” to orbits of free fall, are also called tidal
forces.

In Sect. 6.5.7 we return to the Riemann curvature tensor field, in its form needed for
general relativity, and analyze its properties.

6.5.4 The Levi-Civita Connection

On Riemannian and semi-Riemannian manifolds there exists a special connection
whose torsion field vanishes and which gives zero when applied to the metric. These
are its distinguishing features. Although we will continue to denote it by D, one
should keep in mind that one is talking about this special connection named after
Tullio Levi-Civita (1873–1941). It is defined as follows:

Levi-Civita connection
The Levi-Civita connection is defined on a Riemannian or semi-Riemannian
manifold .M; g/,

D W X � X �! X W V;W 7�! DV .W / :

It is F.M/-linear in its first argument (V ), cf. (6.54a) and (6.54b). In the sec-
ond argument (W ) it is R-linear, (6.55a), and obeys the Leibniz rule (6.55b).
Beyond these postulates which apply to any connection, it has two more prop-
erties which fix it uniquely: The torsion (6.59) calculated from it vanishes
identically, i.e. one has

T � 0 ; hence ŒV;W 	 D DV .W / �DW .V / : (6.62)

Furthermore, it obeys the Ricci condition: For any triple of vector fields X ,
V , andW one has

X hV jW i D hDX .V /jW i C hV jDX .W /i : (6.63)
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I Remarks

1. What we have summarized here is the content of a central theorem of Rie-
mannian geometry: The requirements (6.54a)–(6.55b), supplemented by the
additional conditions (6.62) and (6.63), fix the connection uniquely.

2. The Levi-Civita connection defines a tensor derivation as studied in Sect. 6.4
and, more specifically, in Definition 6.8. Thus, the Ricci condition (6.63)
may be interpreted as a condition on the covariant derivative of the met-
ric as follows. Evaluating the metric on two vector fields V and W yields
the function g.V;W / that can also be written as hV jW i, cf. (6.48). Apply
then the general formula (6.40) to the covariant derivative of this function
along X ,

DX .g.V;W // � DX hV jW i :

This gives

DX hV jW i D ŒDX .g/	 .V;W /
C g .DX .V /;W //C g .V;DX .W // :

The left-hand side shows the covariant derivative of a function. The first
term on the right-hand side contains the derivative of the .0; 2/ tensor field
g 2 T02.M/, while the second and third terms contain the action of DX on
vector fields. When applied to functions the action of DX is the same as
the action of the vector field X on this function, DX hV jW i D X hV jW i.
Furthermore,

g .DX .V /;W // D hDX .V /jW i and

g .V;DX .W // D hV jDX .W /i

are just different ways of writing these functions. Thus, the requirement (6.63)
is equivalent to the requirement that the covariant derivative of the metric
vanish,

.DXg/ D 0 ”
X hV jW i D hDX .V /jW i C hV jDX .W /i : (6.64)

Thus, another way of stating the Ricci condition is to require the Levi-Civita
connection to be metric. The covariant derivative of the metric shall be iden-
tically zero.
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6.5.5 Properties of the Levi-Civita Connection

Let us summarize once more the properties of the Levi-Civita connection:

The Levi-Civita connection is defined uniquely by the following properties:

(i) DV .W / is F.M/-linear in the vector field V , i.e. the relations (6.54a)
and (6.54b) apply;

(ii) In its argumentW it is R-linear only, i.e. fulfills (6.55a);
(iii) It satisfies the Leibniz rule (6.55b);
(iv) The corresponding torsion is identically zero, see (6.62);
(v) The Levi-Civita connection is a metric connection, DX .g/ D 0.

Equivalently, it fulfills the Ricci condition (6.64),

X hV jW i D hDX .V /jW i C hV jDX .W /i

for all vector fields X , V , and W .

From the five properties above one derives a formula which is useful for many cal-
culations. It reads as follows:

Formula of Koszul
For any three vector fields V , W , and X , using the bracket notation of (6.49),
one has

2 hDV .W /jXi D V hW jXi CW hXjV i � X hV jW i
� hV jŒW;X	i C hW jŒX; V 	i C hXjŒV;W 	i : (6.65)

Here ŒW;X	 is the commutator of the vector fields W and X which is again
a vector field.

Proof of the Koszul formula: Collect the first three terms on the right-hand side of
(6.65) in one group, the last three in another group, and calculate their sum. For the
first three one has, using (v)

V hW jXi CW hXjV i � X hV jW i
D hDV .W /jXi C hW jDV .X/i C hDW .X/jV i
C hXjDW .V /i � hDX .V /jW i � hV jDX .W /i :
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The remaining three terms are worked on making use of (iv), by replacing the com-
mutators with differences of covariant derivatives by means of (6.62),

� hV jŒW;X	i C hW jŒX; V 	i C hXjŒV;W 	i
D � hV jDW .X/i C hV jDX .W /i C hW jDX .V /i
� hW jDV .X/i C hXjDV .W /i � hXjDW .V /i :

Adding these intermediate results and taking account of the symmetry of the metric,
all terms but two cancel pairwise. The two terms that do not cancel are

hDV .W /jXi C hXjDV .W /i D 2 hDV .W /jXi :

This, indeed, is the left-hand side of the relation (6.65).

I Remarks
1. The Koszul formula (6.65) is useful in proving the existence and uniqueness of

the Levi-Civita connection. Uniqueness is easily shown: Suppose there were
two connectionsD0 6D D which fulfill the formula (6.65) for all vector fields
V , W , and X . As the metric is nondegenerate equation (6.65) implies that
D0
V .W / D DV .W / for all V andW .

The proof of its existence is a bit more involved. Denote the right-hand
side of the Koszul formula by !.V;W;X/. Keeping V and W fixed, X !
!.V;W;X/ is a one-form. As the spaces X.M/ and X�.M/ are isomorphic
there is a unique vector field Y such that for all X 2 X.M/ the equation
2 hY jXi D !.V;W;X/ holds. There is no objection against denoting the vec-
tor field Y that is constructed this way, by Y D DV .W /. If one then confirms
the five axions (i)–(v) the existence of the Levi-Civita connection is proved.
(The reader is invited to complete this proof!)

2. The Koszul formula may be used to derive in a few steps an important formula
for the Christoffel symbols. Replacing the three arbitrary vector fields by the
base fields V D @�, W D @� , and X D @� one obtains

2
˝
D@�

.@�/
ˇ̌
@�
˛ D @�g�� C @�g�� � @�g�� :

Here the chart representation (6.35a) of the metric

h@	j@
 i D g.@	 ; @
 / D g	


was inserted and use was made of the fact that the base fields commute. With
the definition (6.56) of the Christoffel symbols the left-hand side is equal to

2
˝
D@�

.@�/
ˇ̌
@�
˛ D 2� 
��g
� (summed over 
) :
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Multiply then this equation by the inverse g�	 of the metric tensor and take
the sum over �. This yields the formula

� 	�� D
1

2
g	�

˚
@� g�� C @� g�� � @� g��



: (6.66)

Thus, the Christoffel symbols are functions of the first derivatives of the met-
ric and they contain its inverse. On a flat spacetime, i.e. on a manifold with
constant metric they are identically zero.

3. The symmetry of the Christoffel symbols in the two lower indices � and 

is obvious from the coordinate expression (6.66), � 	�� D � 	��. One should
note, however, that the coordinate expression (6.66) refers to the base fields
@� which commute among each other, Œ@�; @� 	 D 0. There are other possibili-
ties to choose a local basis, for instance a vielbein, i.e. a comoving coordinate
system on geodesics, also called repère mobile, whose elements do not com-
mute.

4. A vector field V is called parallel if its covariant derivative DX .V / is equal
to zero for all X 2 X.M/. When applied to base fields @� this shows that the
Christoffel symbols measure the extent to which these are not parallel.

Example 6.9 Cylinder coordinates in R3

Nonvanishing Christoffel symbols appear even on flat space R3 in case one uses
curvilinear coordinates. This example discusses cylinder coordinates

y1 � r ; y2 � � ; y3 � z ;

which are related to cartesian coordinates by

x1 D r cos� ; x2 D r sin � ; x3 D z :

For the base fields one has

@y1 D cos� @x1 C sin � @x2 ;

@y2 D r .� sin � @x1 C cos� @x2/ ;

@y3 D @x3 :

In this new basis the metric tensor is

g11 D g.@y1 ; @y1/ D cos2 � g.@x1 ; @x1/C sin2 � g.@x2 ; @x2/

C 2 sin� cos�g.@x1 ; @x2/ D cos2 � C sin2 � D 1 ;
g22 D r2 ;
g33 D 1 ;
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and gij D 0 for i 6D j . Thus, the metric tensor and its inverse are, respectively,

gij D diag.1; r2; 1/ ; gij D diag.1; 1=r2; 1/ :

Inserting these formulae in the expression (6.66) the nonvanishing Christoffel
symbols are found to be

� 212 D
1

r
D � 221 ; � 122 D �r :

Among the covariant derivatives of base fields which are not equal to zero there
remain

D@�
.@�/ D �r@r ; D@�

.@r / D � sin� @x1 C cos� @x2 D D@r
.@�/ :

Of course, the base field @z D @x3 is parallel. Furthermore, one expects the
covariant derivativesD@z

.@r/ and D@z
.@�/ to be zero because the base fields @r

and @� do not change if one shifts them along the direction of @z .

6.5.6 Geodesics on Semi-Riemannian Spacetimes

We learnt in Sect. 6.5.2 and Sect. 6.5.4 that linear connections, among other useful
features, allow one to compare vectors from different tangent spaces. A case of spe-
cial interest is the test whether such vectors are parallel. This leads back to a remark
that we made in the preceding section: A vector field V is said to be parallel if its
covariant derivativeDX .V / vanishes for all X 2 X.M/.

Let ˛ W I !M be a smooth curve on the spacetime .M; g/, and let 
 2 I 	 R

be the “time” that parametrizes the curve. Then ˛.
/ is a one-dimensional manifold
and a submanifold ofM , as sketched in Fig. 6.9. The Levi-Civita connection which
is defined on M , induces the covariant derivative of an arbitrary vector field Z 2
X.˛/ on ˛ by the tangent vector field P̨ , PZ D D P̨ .Z/.

In a local chart both Z and P̨ may be decomposed as usual,

Z D Z�@� ; P̨ D a	@	 :

The coefficients a	 , � D 0; 1; : : : ; n � 1, are functions to be calculated from the
composition of the curve ˛ (which maps I 	 R
 toM ) and the coordinate function
'	 (which mapsM to Rn), a	 D d.'	 ı ˛/=d
 . In order to calculate PZ D D P̨ .Z/
one utilizes, in essence, a variant of the formula (6.57b). One has

PZ D dZ�

d

@� CZ�D P̨ .@�/ :
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Fig. 6.9 A smooth curve ˛ onM and elements of its
(one-dimensional) tangent spaces. The curve itself is
a one-dimensional manifold

M

α

The second term is transformed by making use of the F.M/-linearity of D and by
inserting the defining equation (6.56) of the Christoffel symbols:

D P̨ .@�/ D D.a�@� /.@�/ D a	D@�
.@�/ D a	� 
	�@
 :

Renaming the summation indices in the second term and inserting a	 D
d.'	 ı ˛/=d
 , one obtains

PZ D
�

dZ�

d

C � ��	

d.'� ı ˛/
d


Z	
�
@� : (6.67)

The vector fieldZ is said to be parallel along the curve ˛ if PZ D 0 holds everywhere
on the curve.

Consider now, as a special case, the tangent vector field of the given curve, i.e.
Z D P̨ . Its derivative PZ D R̨ is the acceleration field. This consideration shows
clearly how to define geodesics in this framework. Speaking in terms of physics in
general and mechanics in particular, geodesics are curves of free motion, that is to
say, orbits without acceleration. From the point of view of geometry geodesics are
curves whose length is extremal. That there is a relation between these two notions
is well known from mechanics.

I Definition 6.13 Geodesics A geodesic is a curve � W I ! M whose tangent
vector field P� is parallel. When written in terms of local charts, a geodesic satisfies
the differential equation of second order

d2

d
2
.'� ı �/C � ��	

d.'� ı �/
d


d.'	 ı �/
d


D 0 ; (6.68)

� D 0; 1; : : : ; n � 1 :

I Remarks
1. Strictly speaking, the second term of (6.68) contains the derivatives of the

functions .'� ı �/.
/ D '�.�.
// which are defined on Rn and where ' D
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.'0; : : : ; '.n�1// is the chart mapping on U 	 M . As this notation looks
complicated one shortens it by using the notation '�.�.
// � y�.
/. The
differential equations (6.68) for geodesics then take a form easy to remember,
viz.

Ry� C � ��	 Py� Py	 D 0 : (6.68a)

Following standard conventions of mechanics the dot stands for the derivative
by 
 .

2. Consider a massive test particle whose mass is so small that it does not modify,
for all practical purposes, the geometry of the given spacetime .M; g/. The
equivalence principle tells us that in every point x 2 M the equation of free
motion is the same as in flat space, i.e.

d2y�

d
2
D 0 : (6.69)

Except for a factor c that we choose to be 1 anyhow, the variable 
 is the arc
length for which d
2 D g�� dy� dy� , or

g��
dy�

d


dy�

d

D 1 : (6.70a)

One convinces oneself by means of a calculation (that we skip here) that the
condition (6.70a) is compatible with the differential equations (6.68a).

3. For a massless particle the equation of motion must be the same as (6.69).
However, as such a particle never finds a rest system and, hence, cannot be
assigned a proper time, the condition (6.70a) can no longer hold. Instead, one
replaces 
 by a parameter � which is chosen such that with d2y�=d�2 D 0

the condition

g��
dy�

d�

dy�

d�
D 0 (6.70b)

is fulfilled. In other terms, the equations of motion for a massive and for
a massless particle are the same. All that changes is the initial condition which
is given by (6.70a) in the first, massive case, by (6.70b) in the second, massless
case.

4. In semi-Riemannian geometry the equivalence principle is realized in the fol-
lowing way. In a given point x 2 U 	 M one associates to every tangent
vector v 2 TxM the geodesic which goes through x and which has initial
velocity v,

expx W TxM !M W v 7! expx.v/ D �v.1/ : (6.71)

This mapping is called exponential mapping. Regarding the geodesic pertain-
ing to the initial velocity 
v, one shows that

expx.
v/ D �
v.1/ D �v.
/ :
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Fig. 6.10 Geodesics passing through the point x 2 M
form a star domain. Also shown are the initial velocities
in the tangent space TxM at x. By choosing a base
system in TxM , the corresponding geodesics then yield
a normal system

M

x

TxM

This means that the exponential mapping maps straight lines through the ori-
gin of TxM onto geodesics onM 6 , (cf. Fig. 6.10). With fe�g an orthonormal
basis on TxM , i.e. if

˝
e�
ˇ̌
e�
˛ D ��� holds and if exp�1.x/ D '�.x/e� one

shows: The functions .'0; : : : ; 'n�1/ yield a chart for the subset U containing
x such that one has

g��.x/ D ��� ; � 	��.x/ D 0 : (6.72)

Special coordinates of this kind are called Gaussian coordinates or normal co-
ordinates. (For more details and a proof of the construction see, e. g. [O’Neill
1983].)
The result is rather intuitive because the force-free equation of motion has the
simple form (6.69) along any geodesic. Comparison with (6.68a) shows that
the Christoffel symbols at the point x are zero in Gaussian coordinates. Thus,
with this construction the equivalence principle becomes obvious and, hence,
finds its most accurate expression.

At every point of the semi-Riemannian manifold .M; g/ there exists a coor-
dinate system in which the metric tensor has the form of the flat metric,
g��.x/ D ��� , and in which the Christoffel symbols vanish, � 	��.x/ D 0.

6 The existence and uniqueness theorem for ordinary differential equations guarantees that this
mapping is a diffeomorphism for star-like domains of the kind sketched in Fig. 6.10. Thus, the
inverse of the exponential mapping exists and maps geodesics through the point x to straight lines
through the origin of the vector space TxM .
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6.5.7 More Properties of the Curvature Tensor

The Riemann curvature tensor field, constructed following definition (6.60), withD
the Levi-Civita connection, has a number of symmetry properties which are sum-
marized in what follows. In most cases it is sufficient to consider a neighbourhood
of the point x 2 M . Therefore, in the following relations lower case letters x, y,
v etc. denote tangent vectors of the space TxM , while capital letters refer to full
vector fields, as before. In detail one has

Symmetry properties of the Riemann tensor field

RXY D �RYX ; (6.73a)˝
Rxyv

ˇ̌
w
˛ D � ˝Rxywˇ̌v˛ ; (6.73b)

Rxyz C Ryzx C Rzxy D 0 ; (6.73c)˝
Rxyv

ˇ̌
w
˛ D hRvwxjyi ; (6.73d)

.DZR/ .X; Y /C .DXR/ .Y;Z/C .DYR/ .Z;X/ D 0 : (6.73e)

The first of these is obvious from the general definition (6.60). The remaining rela-
tions are specific for the Levi-Civita connection because they make use of the Ricci
condition (6.63) or (6.64) and of the requirement that the torsion vanish, cf. (6.62).
The proofs for the relations (6.73a)–(6.73e) in this beautiful coordinate-free form
can be found, for example, in [O’Neill 1983].

The relations (6.73c) and (6.73e) are called first and second Bianchi identity,
respectively.

The same symmetry relations can also be derived from a coordinate expression
of the curvature tensor field. For this purpose we evaluate definition (6.60) (with
D the Levi-Civita connection!) with three base vector fields, using the following
definition of the coefficients7

R@�@�
.@�/ D R
���@
 : (6.74)

The right-hand side defines the coefficients of R. The left-hand side is calculated by
means of (6.56): Noting that Œ@�; @� 	 D 0 and using (6.57a) (with X˛ D ı˛� ) one

7 It is important to keep in mind the order in which the indices are written. Some texts on general
relativity use a different definition of the coefficients.
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has

R@�@�
.@�/ D D@�

�
D@�

.@�/
� �D@�

�
D@�

.@�/
�

D @�� 	��@	 C � 	��� 
�	@
 �
�
�$ 


�
D ˚@�� 
�� C � 
�	� 	�� � ��$ 


�

@
 : (6.75)

Comparison with definition (6.74) then yields the

Riemann curvature tensor in coordinates:

R
��� D @�� 
�� � @�� 
�� C � 
�	� 	�� � � 
�	� 	�� : (6.76)

I Remark
While the Christoffel symbols depend only on the inverse metric and the first
derivatives of the metric, formula (6.76) shows that the Riemann curvature ten-
sor is determined by first and second derivatives of the metric. The equivalence
principle tells us that in Gaussian coordinates the first derivatives of the metric
vanish at the point x but it does not say that every curvature vanishes! In terms
of physics this means that the motion of a test particle along a geodesic looks
locally like free motion in flat space, but neighbouring geodesics, in general, are
not parallel. They may attract or repel each other.

We close this subsection by counting the number of independent entries of the
.1; 3/-tensorR
��� by making use of its symmetry properties. One way of doing this
is to express the formula (6.76) obtained above, in the form g�
R



��� � R���� ,

in terms of first and second derivatives of the metric only, inserting the coordinate
formula (6.66). This yields an expression for R���� whose symmetry properties
can be read off. (This is a useful exercise!) Here, as an alternative, we utilize the
symmetry properties in the form of (6.73a)–(6.73e).

Starting from the coordinate formula (6.74) one calculates expressions such as,
for example, Rxy.z/ and expands them in terms of the components of the three
tangent vectors. For instance, one has

˝
Rxyz

ˇ̌
w
˛ D R	���x�y�z�w	 D R	���x�y�z�w	 ;

where the first index of R was lowered by means of the metric tensor. The first rela-
tion (6.73a) shows that the .0; 4/-tensorR	��� is antisymmetric under the exchange
�$ 
. The relation (6.73d) tells us, in turn, that nothing changes if the pair .�; 
/
is interchanged with the pair .�; �/. Therefore, R	��� is also antisymmetric under
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the exchange � $ �. This is the relation (6.73b). These antisymmetries are usually
denoted by square brackets,

RŒ	�
Œ��
 :

The first Bianchi identity (6.73c), when expressed in coordinates, yields

R
��� .z
�x�y� C x�y�z� C y�z�x�/
D z�x�y� �R
��� CR
��� CR
���� D 0 :

As this holds for all tangent vectors, or vector fields, the sum over the cyclic permu-
tations of the indices .�; �; 
/ of R
��� and likewise of R
��� is equal to zero,

R
��� CR
��� CR
��� D 0 or

R
��� CR
��� CR
��� D 0 : (6.77)

Now, one counts components as follows: In dimension n antisymmetry Œ�; 
	 in the
indices � and 
 both of which are in the set .0; 1; : : : ; n � 1/, implies that there are

 
n

2

!
independent components.

The same conclusion follows from the antisymmetry Œ
; �	. Thus, a tensor RŒ	�
Œ��

with four indices and antisymmetries as indicated initially has

�
n
2

�2
independent

components. However, one still must subtract the conditions (6.77) from this num-
ber. For fixed 
 there are

�
n
3

�
possible choices for the triple .�; �; 
/. In total, i.e. for


 D 0; : : : ; n � 1, equation (6.77) contains

n

 
n

3

!

conditions. Subtracting the number of constraints from the number of independent
components one obtains the numberNR of independent entries of the Riemann cur-
vature tensor, viz.

NR D
 
n

2

!2
� n

 
n

3

!
D 1

12
n2.n2 � 1/ : (6.78)

This is an interesting result:

� In dimension n D 1 one has R D 0, there is no Riemann curvature tensor.
This might seem surprising at first. To a curve, for example, in the plane R2 one
does ascribe a curvature. However, for the Riemann curvature tensor one finds
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R1111 D 0 because it does not refer to an embedding space (such as, for example,
R2) but describes an intrinsic property of the one-dimensional manifold M . As
long as there is no embedding space, or as long as one does not know about an
embedding space, one does not perceive any curvature.
� In dimension n D 2 a .0; 4/-tensor without symmetries and without constraints

would have 16 components. The Riemann tensor, from (6.78), only has one single
componentR1212.
� In dimension n D 3, that is, with two space dimensions and one time axis, an

arbitrary .0; 4/-tensor has 81 components, the Riemann tensor has only 9�8=12D
6 components.
� In the case of a Lorentz manifold (s. Sect. 6.5.1) an unrestricted tensor of type
.0; 4/ has already 256 components while the Riemann curvature tensor has 16 �
15=12D 20 components.

The Riemann curvature tensor “blossoms out” with increasing dimension and one
will not be surprised to learn that general relativity in 3 D 2C 1 dimensions and in
4 D 3C 1 dimensions exhibit rather different properties.

6.6 The Einstein Equations

After this long journey through semi-Riemannian geometry for models of space-
times and with our knowledge of the energy-momentum tensor field for matter and
nongravitational fields from Sect. 6.3 we are well prepared to render more concrete
the conjectures made in Sect. 6.2.4 and to cast the program formulated there into
a theory of gravitation. As announced there we choose the source of gravitation to
be the tensor field which describes the energy and momentum content of matter and
of nongravitational fields. This tensor field as constructed over flat space in Sect. 6.3,
is of type .2; 0/, or, by metric equivalence, of type .0; 2/. It is symmetric and fulfills
a condition on its divergence. The geometric tools of the theory must be tuned to
these properties.

6.6.1 Energy-Momentum Tensor Field in Curved Spacetime

The tensor field T for energy and momentum is taken over from the expressions
derived in Sect. 6.3, with the following modifications. The flat metric ��� must
be replaced by the metric tensor g��.x/ everywhere, all ordinary partial deriva-
tives must be replaced by covariant derivatives. The tensor field T 2 T20.M/ is
still symmetric, i.e. its coefficients fulfill T �� D T ��. The condition that it be
divergence-free, in components, has the form

T ��.x/I� D 0 D T ��.x/I � : (6.79a)
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If one prefers a coordinate-free notation one may write this condition by means of
contractions (see Sect. 6.4.3) as follows. Take first D.T/ 2 T21 (note that this is of
type .2; 1/ as it is D, not DV that acts!), then contract with C 11 or C 21 (this is the
same because of the symmetry of the tensor),

div T D C 11 .DT/ D C 21 .DT/ : (6.79b)

It is easy to see that the result is a vector field, div T 2 X.M/. The tensor field T
has the components T �� , DT has components T ��I�, hence, is of type .2; 1/. After
contraction of one of the upper indices with the lower index this becomes a tensor
field of type .1; 0/, i.e. a vector field.

Analogous formulae apply to tensor fields B of type .0; 2/. Here one has DB 2
T03, and div B D C13.DB/ is of type .0; 1/, i.e. a one-form whose components read

.div B/� D g��B�� I� D B�� I� : (6.79c)

The metric g 2 T02 provides an example. Its covariant derivative DV .g/ vanishes
for all V ,

.div g/� D g��g�� I� D 0 :
As another example one may study Maxwell’s equations on a curved spacetime, see
for example [Straumann 2009].

6.6.2 Ricci Tensor, Scalar Curvature, and Einstein Tensor

By contraction of the upper index of the Riemann curvature tensor R 2 T13.M/

with the second lower index one obtains a symmetric tensor field R.Ricci/ 2 T02.M/,
called the

I Definition 6.14 Ricci tensor field

R.Ricci/ WD C 12 .R/ ; (6.80a)

whose components are given by

R.Ricci/
�� D R���� : (6.80b)

Expressed in local coordinates it reads

R.Ricci/
�� D @	� 	�� � @�� 		� C � 
��� 		
 � � 
	�� 	�
 : (6.80c)

(Note that we used the symmetry � 	�� D � 	�� .) The chart representation (6.80c)
follows from the coordinate representation (6.76) of the Riemann curvature tensor.
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By contracting the Ricci tensor field once more one obtains a function called
the

I Definition 6.15 Curvature scalar

S WD C


R.Ricci/

�
2 F.M/ ; (6.81a)

which can be expressed in terms of components of the metric and of the Ricci tensor
field, viz.

S D g��.x/R.Ricci/
�� .x/ : (6.81b)

I Remarks
1. The Ricci tensor is symmetric. This is seen by means of the following calcu-

lation
R.Ricci/
�� D g	
R
�	� D g	
R	�
� D R.Ricci/

�� :

Here we have interchanged the pairs .
; �/ and .�; 
/, the property (6.73d)
guaranteeing the invariance of the Riemann tensor.

2. There is only one independent contraction of the upper index with one of
the lower indices of the curvature tensor. Any other contraction than the one
chosen in Definition 6.14 yields the same tensor field, modulo a sign.

We proceed to prove a simple but important relation between the total derivative
of the curvature scalar and the divergence of the Ricci tensor. Evaluating the second
Bianchi identity (6.73e) with base vector fields Z D @� , X D @�, Y D @� , one has

R	
�� I� CR	
�� I� CR	
�� I� D 0 :
Now, choose � D �, sum over this index from 0 to n � 1,

R	
�� I	 CR	
�	 I� CR	
	� I� D 0 ;
and contract with g
�,

g
�
˚
R	
�� I	 CR	
�	 I� CR	
	� I�


 D 0 : (6.82)

The first of the three terms is a contraction of the Riemann tensor,

g
�R	
�� D g	�g
�R�
�� D �g	�g
�R
���
D �g	�.R.Ricci//�� D �.R.Ricci//	� :

Applying the covariant derivative by � the first term yields

�.R.Ricci//	� I	 D �



div R.Ricci/
�
�
:
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The second term gives the same result

g
�R	
�	 I� D �



div R.Ricci/
�
�
;

while the third term

g
�R	
	� I� D SI� ;

yields the covariant derivative of the curvature scalar. As S is a function, the co-
variant derivative is the same as the ordinary partial derivative, SI� D S;� . This
calculation gives the proof of two important results. Multiplying the above relation
between the partial derivatives of S and the divergence of the Ricci tensor with
dx� , it tells us that the exterior derivative of the curvature scalar is equal to twice
the divergence of the Ricci tensor:

dS D 2 div R.Ricci/ : (6.83)

An alternative, but equivalent result is that the Einstein tensor field, defined by

I Definition 6.16 Einstein tensor field

G WD R.Ricci/ � 1
2
gS ; (6.84)

is symmetric and has divergence zero. Indeed, one has

.div.gS//� D g	

�
g	�S

�
I
 D g	
g	�SI
 :

In the last step of these equations we have made use of the fact that the connection
is a metric connection, i.e. that g	� I
 D 0.

The Einstein tensor field (6.84), by construction, has the same properties as the
energy-momentum tensor field of matter and nongravitational fields: It is symmetric
and its divergence is zero. Conversely, the Einstein tensor field G contains the same
geometric information as the Ricci tensor field. This suggests one should try to relate
these two tensor fields, the Einstein tensor field and the energy-momentum tensor
field.

6.6.3 The Basic Equations

The basic equations to be constructed should relate, on the one hand, the Ein-
stein tensor field describing the geometry of spacetime, and, on the other hand, the
energy-momentum tensor field serving as a source term for the former. Clearly, in
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the limit of an almost flat metric and in nearly static situations the sought-after equa-
tions must contain the Newtonian mechanics, for instance in the form of Poisson’s
equation,

�˚N D 4�G% ; (6.85)

where˚N is the Newtonian potential, % is the mass density of matter, andG denotes
Newton’s constant. Let us assume that the metric tensor deviates but little from the
flat Minkowski metric,

g��.x/ D ��� C h��.x/ with
ˇ̌
h��

ˇ̌� 1 ; (6.86)

and let us assume, for the sake of simplicity, that the metric is static.
The motion of a massive particle is described by the geodesic equation (6.68a),

with � D 0; 1; 2; 3. For a particle that moves slowly one has (setting the speed of
light equal to 1, c D 1)

dx0

d

' 1 and

dxi

d

� dx0

d

; i D 1; 2; 3 :

Thus, the first derivatives dxi=d
 can be neglected as compared to dx0=d
 . The
second derivatives, a priori, are not negligible and can be calculated approximately
from the geodesic equation (6.68a). One has (with c D 1)

d2xi

dt2
' d2xi

d
2
D �� i��

dx�

d


dx�

d

' �� i00 :

The only Christoffel symbol that enters here is calculated in the approximation
(6.86) to first order in the variables h�� and with ��� D diag.1;�1;�1;�1/ as
follows:

� i00 D
1

2
gi�

˚
2@0g0� � @�g00




' 1

2
�i�

˚
2@0h0�.x/ � @�h00




D 1

2
@ih00.x/ � @0h0i .x/ :

The second term on the right-hand side is zero because we started from a static
situation. Therefore, the acceleration is seen to be

d2xi

dt2
' �� i00 D �

1

2
r ih00 bD �r i˚N :

This establishes the relation between the Newtonian potential ˚N of mechanics in
flat spacetime and the metric tensor in the Newtonian limit, viz.

g00.x/ ' 1C 2˚N � 1C 2

c2
˚N : (6.87a)
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In the same static limit of weak fields the Ricci tensor (6.80c) is given approximately
by (still with c D 1)

R
.Ricci/
00 '

3X
iD1

@i�
i
00 D

1

2
�h00 D 1

2
�g00 D �˚N :

All other components of R.Ricci/ are negligibly small. For �˚N, finally, one may
insert the Poisson equation (6.85).

In the case of weak, static fields, and for matter in a nonrelativistic state of
motion, the energy-momentum tensor simplifies such that only T00 is appreciably
different from zero. Using the results of Sect. 6.3 (taking c D 1 also there) one has

T00 ' % ;
ˇ̌
T��

ˇ̌� T00 for .�; 
/ 6D .0; 0/ :
Therefore, the Ricci tensor and the energy-momentum tensor must be related by

R
.Ricci/
00 ' �˚N ' 4�GT00 : (6.87b)

The essential postulate on which general relativity rests is the following: One
takes the Einstein tensor field (6.84) to be proportional to the energy-momentum
tensor field T,

G D ˛T ; (6.88a)

and makes use of the estimates of the Newtonian limit to determine the constant ˛.
Both tensor fields are symmetric and have divergence zero,

div G D 0 ; div T D 0 ;
or, expressed in local coordinates as in (6.79c),

G�� I� D R.Ricci/�
�I� �

1

2
SI� D 0 ; T �� I� D 0 :

The postulated equation (6.88a) is generally covariant. Calculating the contraction
of both sides of the ansatz (6.88a), noting that the contraction of the metric equals 4,

C .g/ .locally D g��.x/g��.x// D 4 ;
one obtains

C .G/ D C


R.Ricci/

�
� 1
2
S C.g/ D S � 2S D ˛C .T/ :

As the curvature scalar is S D �˛C.T/ � �˛ tr.T/, the Ricci tensor is seen to be,
using the notation g��T�� D tr.T/,

R.Ricci/
�� D ˛

�
T�� � 1

2
tr.T/g��

�
: (6.88b)
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In the limit discussed above only the 00-component of the equations (6.88b) differs
from zero in an essential way and one has

T00 � 1
2
g00 .tr.T// ' 1

2
T00 : (6.88c)

Combining equations (6.88c), (6.88b), and (6.87b), one concludes that the unknown
˛ must be given by ˛ D 8�G. The postulate (6.88a) and the above arguments then
lead to

Einstein’s equations
in coordinate-free form

G � R.Ricci/ � 1
2

g S D 8�G T ; (6.89)

or, expressed in local coordinates,

G�� � R.Ricci/
�� � 1

2
g��S D 8�GT�� : (6.90)

I Remarks
1. Reviewing once more the formulae (6.66) for the Christoffel symbols and

(6.76) for the Riemann tensor, as well as (6.80c) for the Ricci tensor in local
coordinates, one sees that Einstein’s equations (6.90) depend on the metric and
its first and second derivatives. If, indeed, the metric is the physically relevant
field then this observation fits well with the familiar framework of physics
according to which equations of motion usually are differential equations of
second order.

2. As we emphasized previously the energy-momentum tensor field which acts
as a source term in Einstein’s equations, contains not only the ordinary mat-
ter of the universe but also all nongravitational fields. The contribution of
a Maxwell field to energy and momentum is part of it, very much like the
contribution of massive objects moving in space and time.

3. If one asks whether Einstein’s equations are unique one finds a remarkable
answer. With an ansatz of the form A D ˛0T, where A 2 T02.M/ is supposed
to depend on g and the first and second derivatives thereof, and, of course, to
be divergenceless, one can show that A must have the form

A D GC�g ; � a real constant, (6.91)
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where G is the Einstein tensor field (6.84). The equations (6.89) are slightly
modified,

GC�g D ˛0T : (6.92)

The constant � which possibly enters here, is called the cosmological con-
stant. Taking the constant of proportionality ˛0 to be the same as before (the
relation ˛0 D 8�G applies to the case � D 0) and analyzing the equa-
tions (6.92) in the same static Newtonian limit as before, the Newtonian
potential is found to satisfy

�˚N D 4�G%C 1

2
� : (6.93a)

A cosmological constant� which is not equal to zero, corresponds to a static
homogeneous mass density in the universe

%eff D �

4�G
: (6.93b)

Such a “background density” should manifest itself in experiments and the
reader will not be surprised to realize that the cosmological constant continues
to be a subject of present-day research. As a remark within a remark let us
note that the flat metric g�� D ��� is a solution of Einstein’s equations only
if � D 0.

4. One might ask the question whether by using the Ricci tensor field, i.e. a con-
traction of the Riemann curvature field, one has given away some aspect of the
geometry of spacetime and whether there are stronger equations than (6.89)
relating geometry and matter. To this question I can offer only an incomplete
and somewhat indirect answer by the following remark.

5. The theory of gravitation as described by Einstein’s equations (6.89), (6.90),
fits into the framework of a classical field theory. We assume that genuine
(massive) matter and the Maxwell field (and, possibly, other radiation fields)
are described by a Lagrange density

L . ;D ; g/

where  stands symbolically for all nongravitational fields, D denotes the
covariant derivative constructed from the Levi-Civita connection, and g is the
metric. For the Maxwell field, for example, we have

LM D � 1

16�
F��F	
g

�	g�
 :

Regarding gravitation, the curvature scalar seems a natural candidate for con-
structing a Lagrange density from which to derive equations of motion for the
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metric. With these ideas in mind one writes down the actionZZZZ
U

!

�
� 1

16�G
S C L . ;D ; g/

�
; (6.94)

where U is a subset of M while ! denotes the volume element on space-
timeM . In the spirit of Hamilton’s principle discussed in Sect. 3.3, one varies
the fields  and the metric g. As one can show, the variation of the action
yields both the equations of motion of the fields  on curved spacetime and
Einstein’s equations for gravity, cf., for example, [Straumann 2009]. The in-
tegral (6.94) is called the Hilbert action.

6. A direct comparison of Maxwell theory and general relativity reveals the fol-
lowing interesting analogy: Gauge invariance of Maxwell theory in interaction
with charged matter is guaranteed only if the electromagnetic current den-
sity is conserved, see Sect. 3.5.2. One shows that invariance of the Hilbert
action under general diffeomorphisms � 2 Diff .M/ holds only if the energy-
momentum tensor field is covariantly conserved, i.e. if locally it fulfills the
condition T �

� I� D 0. Very much like in electrodynamics where both the
Maxwell fields A� and the particle fields  change under gauge transfor-
mations, a diffeomorphism

fg;  g 7! ˚
�g D ��.g/; � D ��. /



(6.95)

acts on the metric as well as on all other fields.
In general relativity the group of diffeomorphisms Diff .M/ on spacetime M
takes over the role of the gauge group of electrodynamics.

7. Equation (6.88b) with ˛ D 8�G leads to the following observation: If there is
no matter and no nongravitational field at all then T � 0. Thus, in a vacuum
Einstein’s equations take the simple form

R.Ricci/
�� D 0 : (6.96)

These are the equations that have to be solved if, for instance, one sets out to
determine the gravitational field created by a point-like mass distribution.

6.7 Gravitational Field of a Spherically Symmetric Mass
Distribution

As a most important example we discuss a static solution of Einstein’s equa-
tions (6.96) in a vacuum which describes the gravitational field outside a spherically
symmetric mass distribution8. Spherical symmetry means that the metric is invari-

8 An instructive, nontechnical discussion can be found in [Rindler 1977]. In section 7.6 of this
reference the general form of the metric for static fields is determined.
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ant under .t;x/ 7! .t;Rx/ with R 2 SO(3). The manifold which is to describe the
spacetime must have the structure

Rt �RC � S2 ; (6.97)

with S2 the unit sphere in R3 with its standard metric

d˝2 WD d� ˝ d� C sin2 � d� ˝ d� : (6.98)

The axis Rt describes the space of the Schwarzschild time, while RC describes the
space of the Schwarzschild radius.

6.7.1 The Schwarzschild Metric

A basis of one-forms is chosen as follows:

!0 D ea.r/ dt ; !1 D eb.r/ dr ; !2 D r d� ; !3 D r sin � d� ; (6.99)

with a.r/ and b.r/ two functions of the Schwarzschild radius r which must be
determined from (6.96). (They cannot depend on t because the solution is assumed
to be static. Also, a dependence on � and � would destroy the spherical symmetry!)

When expressed by these one-forms the metric takes the form

g D ��� !� ˝ !� ;
�
��� D diag.1;�1;�1;�1/� : (6.100)

A remarkable property of the basis (6.99) is that it defines a repère mobile, i.e.
a comoving frame of reference which is orthonormal and is optimally adapted to
the Schwarzschild spacetime. The rest of the calculation, though somewhat tedious
in its details, is straightforward, see, i.e. [Rindler 1977], or [Straumann 2009]. One
calculates the components of the Riemann curvature tensor in this basis, then, from
this, the components of the Ricci tensor, and, eventually, the curvature scalar. From
the Ricci tensor and the curvature scalar follows the Einstein tensor (6.84). The
result is

G00 D e�2b
�
2b0

r
� 1

r2

�
C 1

r2
;

G11 D e�2b
�
2a0

r
C 1

r2

�
� 1

r2
;

G22 D G33 D e�2b
�
a0 2 � a0b0 C a00 C a0 � b0

r

�
: (6.101)

All components not listed here are equal to zero.
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Einstein’s equations (6.90) in vacuum yield differential equations for the func-
tions a.r/ and b.r/. For example, the equation G00 C G11 D 0 yields a0.r/
C b0.r/ D 0 which is immediately integrated to

b.r/ D �a.r/ : (6.102a)

There is no integration constant to be added because the metric, for r ! 1, must
tend to the Minkowski metric ˜, so that

lim
r!1 a.r/ D lim

r!1 b.r/ D 0 (6.102b)

must hold. The equation G00 D 0, taken in isolation, allows one to determine b.r/.
One has

G00 D 0 D e�2b
�
2b0

r
� 1

r2

�
C 1

r2
; (6.102c)

or, multiplying by r2,

1 D �1 � 2b0r
�

e�2b D d

dr



r e�2b� : (6.102d)

From this one concludes r e�2b D r � 2m, with 2m an integration constant which
so far remains undetermined. Thus, the result is

e�2b.r/ D eC2a.r/ D 1 � 2m
r
; (6.102e)

and the metric (6.100) becomes the

Schwarzschild metric

g D
�
1 � 2m

r

�
dt ˝ dt � dr ˝ dr

1 � 2m=r
� r2 �d� ˝ d� C sin2 � d� ˝ d�

�
: (6.103)

I Remarks
1. In the Newtonian limit the constant of integration 2m can be expressed in

terms of the total massM of the localized, spherically symmetric mass distri-
bution. Re-inserting for a moment the velocity of light one has

g00 ' 1C 2

c2
˚N D 1 � 2

c2
GM

r
:
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Thus, the constant 2m which has the dimension of a length, is found to be

rS WD 2m D 2GM
c2

: (6.104)

This radius rS is called the Schwarzschild radius.
2. The example of our sun illustrates the relative order of magnitude of the

Schwarzschild radius in comparison with the matter radius of the sun. With
Mˇ D 1:989 � 1030 kg and with G from (6.1) one obtains

r
.ˇ/
S D 2:952 km ' 3 km ;

i.e. a number which is very small when compared to Rˇ ' 7 � 105 km.
In the case of the earth whose mass is M˚ D 5:9742 � 1024 kg one finds
a Schwarzschild radius of r .˚/S D 0:887 cm!

3. In the metric (6.103) only the .t; r/-submanifold deviates from the flat metric,
the component S2 remains unaffected. Therefore, the specific properties of
this spacetime will become most transparent by studying radial geodesics.

4. In the Schwarzschild spacetime the radius r D rS which is approached from
the outside plays a special role. The coordinate representation (6.103) of the
metric is no longer valid even though examination of the Einstein tensor
(6.101) (and likewise of the entries of the curvature tensor) shows that there
is no singularity at r D rS. These geometric quantities remain perfectly finite.
The correct mathematical interpretation shows that the Schwarzschild radius
is no more than a coordinate singularity. However, the interpretation from the
point of view of physics shows that the radius rS D 2m plays an important
role as an event horizon. One may approach the Schwarzschild radius from
exterior space but the local representation (6.103) is no longer valid when one
continues r to values which are smaller than rS.

6.7.2 Two Observable Effects

The solution (6.103) describes the gravitational field outside of a localized, spheri-
cally symmetric mass distribution. If the radius R of this distribution is larger than
the Schwarzschild radius rS we have a model for the field created by our sun. If,
however, the radius is smaller than rS then the mass distribution is no longer visible
and its boundary cannot be reached by any physical means. This second case pro-
vides a model for what is called a black hole. In the first case there appear general
relativistic effects already in the mildly curved spacetime of our solar system. These
are the subject of this section.

Perihelion Precession of a Planet
We study the geodesic equation (6.68a) of a massive test body in the field of a local-
ized spherically symmetric mass distribution, i.e. in the outer space defined by the
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Schwarzschild metric (6.103). Using orthogonal coordinates

y0 D t ; y1 D r ; y2 D � ; y3 D � (6.105a)

the geodesic equation reads

Ry� C � ��� Py� Py� D 0 :
One multiplies this equation by g��, takes the sum over �, but keeps the index �
fixed. Using formula (6.66) for the Christoffel symbols and with

g D diag
�
.1 � 2m=r/;�.1� 2m=r/�1;�r2;�r2 sin2 �

�
(6.105b)

one obtains the differential equation

g�� Ry� C 1

2

"X
�

@�g�� Py� Py� C
X
�

@�g�� Py� Py�
#

D 1

2

X
�

�
@�g��

� Py� Py� ; .� fixed!/ : (6.106a)

The dot stands for the derivative by the arc length, or eigentime, s. The two terms in
square brackets are equal and may be combined using the chain rule for differentia-
tion by this variable,

1

2

h
� � �
i
D
�

d

ds
g��

�
Py� ;

so that the left-hand side of (6.106a) is seen to be the derivative of g�� dy�=ds by s.
Thus, equation (6.106a) becomes

d

ds

 
g��

dy�

ds

!
D 1

2

3X
�D0

�
@g��

@y�

��
dy�

ds

�2
; � D 0; 1; 2; 3 : (6.106b)

This equation describes orbits of free motion of a test body (e. g. a light comet) in
the field of the given mass distribution (the sun) – assuming, of course, that its own
mass does not disturb this field appreciably.

Does this analysis yield the well-known Kepler motion, or something closely
related to it?

For � D 0, where y0 D t , and for � D 3, where y3 D �, equation (6.106b)
yields two conservation laws because its right-hand side vanishes (none of the com-
ponents of the metric tensor depends on t or on �!),

d

ds

�
g00

dt

ds

�
D 0 H)

�
1 � 2m

r

�
Pt � E D const. (6.107a)

d

ds

�
g33

d�

ds

�
D 0 H) r2 sin2 � P� � sin2 �L D const. (6.107b)
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Equation (6.106b) with � D 2 yields the differential equation

d

ds

�
r2

d�

ds

�
D r2 sin � cos � P�2 : (6.107c)

Indeed, choosing spatial polar coordinates such that the planet starts with � D �=2
and with initial velocity P� D 0, it will remain in this equatorial plane for all times.
Therefore, without loss of generality one can choose � D �=2. The motion of the
planet is characterized by the constants E and L which are defined by (6.107a) and
(6.107b), respectively. The constant E is interpreted as the energy per unit mass at
infinity, the constant L as the angular momentum per unit of mass.

It remains to derive the differential equation (6.106b) for � D 1, i.e. for the
variable r . The left-hand side of this equation reads

d

ds

� �1
1 � 2m=r Pr

�
D � 1

1 � 2m=r Rr C
2m

r2
1

.1 � 2m=r/2 Pr
2 ;

its right-hand side gives

1

2

X
�

�
@g��

@r

�
. Py�/2 D m

r2
Pt2 C m=r2

.1 � 2m=r/2 Pr
2 � r P�2

D m

r2
E2

.1 � 2m=r/2 C
m=r2

.1 � 2m=r/2 Pr
2 � L

2

r3
:

Subtracting these two expressions, putting the difference equal to zero, and multi-
plying the whole equation by 2 Pr , one obtains

�2m
r2

E2

.1 � 2m=r/2 Pr �
2 Pr Rr

1 � 2m=r C
2m

r2
Pr3

.1 � 2m=r/2 C
2L2

r3
Pr D 0 :

This is seen to be the time derivative of a constant function,

E2

1 � 2m=r �
Pr2

1 � 2m=r �
L2

r2
D C : (6.107d)

The constant C is obtained by noting that the expression on the left-hand side
of (6.107d) equals

X
�

g�� Py� Py� D
�
1 � 2m

r

�
Pt2 � 1

1� 2m=r Pr
2 � r2 P�2 ;

and also equals the invariant square of the four-velocity. We always normalized this
to c2 so that, in natural units (c D 1), the constant must be C D 1.
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Thus, one obtains an equation of motion of the form

Pr2 C U.r/ D E2 with U.r/ D
�
1 � 2m

r

��
1C L2

r2

�
(6.108)

which is already very close to the Kepler problem. In order to understand this we re-
turn to the original Kepler problem of nonrelativistic classical mechanics, cf. [ME],
Sect. 1.7.2. Remember that there one did not solve the equations of motion for r.t/
and �.t/ (the polar coordinates in the plane) directly but rather for the radius as
a function of the azimuth, r.�/. Furthermore, it was useful to consider the recipro-
cal �.�/ D 1=r.�/ for a while before returning to r.�/. In detail, one has

r D r.�/ ; r 0 � dr

d�
D PrP� ; Pr D r 0 P� D r 0 `

�r2
; (6.109a)

�.�/ WD 1

r.�/
; � 0 � d�

d�
D � 1

r2
r 0 : (6.109b)

From the laws of energy and angular momentum conservation one derives the dif-
ferential equation

� 02 C
�
� � 1

p

�2
D "2

p2
with (6.110a)

p D `2

A�
; "2 D 1C 2E`2

�A2
; A D Gm0M ; (6.110b)

and where� D m0M=.m0CM/ is the reduced mass. The massm0 of the test body
(the planet) is assumed to be negligibly small as compared to the mass M . Then

p D .`=�/2

G.M Cm0/ '
.`=�/2

GM
D L2

m
; (6.110c)

where we took .`=�/2 D L2 and inserted the formula (6.104) for half the Schwarz-
schild radius. Differentiating the differential equation (6.110a) once more by � one
obtains two differential equations

� 0.�/ D 0 ; (6.111a)

� 00.�/C �.�/ D 1

p
' GM

.`=�/2
D m

L2
; (6.111b)

which are to be understood as alternatives. The first of them describes circular orbits,
the second has the known solution

� .0/.�/ D 1

p
.1C " cos�/ ; (6.111c)
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in which the polar coordinates are chosen such that the perihelion is attained at
� D 0. The eccentricity is denoted as usual by the symbol ".

We leave the classical Kepler problem at this point and return to the calculation
of the geodesic motion (6.108). Inserting the formula Pr D r 0L=r2 and making use
of the definitions and formulae (6.109a) and (6.109b) there follows the differential
equation

� 02.�/C �2.�/ D E2 � 1
L2

C 2m

L2
�.�/C 2m�3.�/ : (6.112)

Once more, one takes the derivative with respect to � and thereby obtains the alter-
native differential equations

� 0.�/ D 0 ; (6.113a)

� 00.�/C �.�/ D m

L2
C 3m�2.�/ : (6.113b)

The first of these pertains to circular orbits. Regarding the second equation we note
that without the second term on the right-hand side it is identical with the Keplerian
equation (6.111b) provided one takes m D GM from (6.104) and identifies L D
`=m0 as the angular momentum per unit of mass.

In our solar system the additional term 3m�2.�/ of (6.113b), is a very small
perturbation. In the case of the planet Mercury one estimates this term by inserting
the unperturbed solution (6.111c) into the function 3m�2, expressing p in (6.110c)
by the major half-axis a and the eccentricity ". One has p D a.1 � "2/, hence

3m�2

.m=L2/
' 3m

p
D 3m

a.1 � "2/ DW � : (6.114)

Now take m D r
.ˇ/
S =2 D 1:476 km and use the orbital data of Mercury, a D

5:79 � 107 km and " D 0:2056, to estimate this ratio to be � ' 8 � 10�8. The small-
ness of this ratio makes it possible to calculate the modification of the Kepler orbits
by first-order perturbation theory. The idea is the following: One writes the solution
of (6.113b) that we wish to determine as the sum of the original Kepler solution
(6.111c) and an additional term ı.�/,

�.�/ D � .0/.�/C ı.�/ ; with � .0/.�/ D m

L2
.1C " cos�/ :

One then inserts this in (6.113b), but neglects the terms 6m� .0/ı and 3mı2. The
function ı then obeys the approximate differential equation

ı00.�/C ı.�/ D 3m3

L4

�
1C 2" cos� C "2 cos2 �

	

D 3m

p2

�
1C 2" cos� C "2 cos2 �

	
: (6.115a)
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One would like to arrange matters such that also the corrected solution of (6.115a)
has its initial perihelion at � D 0, i.e. that the first derivative ı0.�/ vanishes at
� D 0. The solution of (6.115a) which fulfills this condition reads

ı.�/ D 3m

p2

�
1C "� sin� C 1

2
"2 � 1

6
"2 cos.2�/

�
: (6.115b)

Its first and second derivatives are, respectively,

ı0.�/ D 3m

p2

�
" sin� C "� cos� C 1

3
"2 sin.2�/

�
;

ı00.�/ D 3m

p2

�
2" cos� � "� sin � C 2

3
"2 cos.2�/

�
:

In calculating the perihelion which follows the first, initial one, one must determine
the zero of the first derivative at � D 2� C��,

d

d�
.� .0/.�/C ı.�//

D "

p

�
� sin � C 3m

p



sin � C � cos� C "

3
sin.2�/

��
�D2�C��

ŠD 0 :

As the ratio 3m=p is very small one concludes �� � 2� . The equation obtained
just above yields in very good approximation

�� ' 3m

p
2� D 6�m

a.1 � "2/ � 2�� : (6.116)

Inserting the data of Mercury the precession of its perihelion after one complete
revolution is found to be

��.M/ D 5:0265 � 10�7 radian : (6.117a)

The period of Mercury’s orbit is 87:969 d (days). Thus, in the course of one century
its perihelion advances by the amount

��.M/ � 100 y � 365 d

87:969 d
D 2:08 � 10�4 rad � century�1

bD 42:9 00 � century�1 : (6.117b)

The observed advance of the perihelion is about 574 arcsec per century, see for
example [Boccaletti-Pucacco 2001].

Astronomical calculations which take into account the influence of the other
planets on the original Kepler ellipse of Mercury yield an amount of about 53100.
The difference of 4300 per century is in perfect agreement with the results (6.117b)
of general relativity9.

9 A detailed discussion of this important effect and of its experimental determination is found, for
example, in [Weinberg 1972].
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I Remarks
1. As perhaps the most important lesson one has learnt that according to gen-

eral relativity planetary motion is motion along geodesics, i.e. free motion in
the gravitational field of a large central mass. In the approximation described
above, the equations closely resemble those of the Kepler problem in flat space
but are not identical with them.

2. Instead of the geodesic differential equation (6.106a) or (6.106b) one can
solve a genuine problem of classical mechanics that leads to the same result.
This problem emerges if one recalls that the geodesic equations (6.68a) may
be read as the Euler–Lagrange equations pertaining to the Lagrange function

L D 1

2
g��.y/ Py� Py� D 1

2
c2 ; (6.118)

(see [ME] Section 5.7). Using the coordinates (6.105a) of the Schwarzschild
metric (6.103) and taking c D 1, one has

2L D
�
1 � 2m

r

�
Pt2 � Pr2

1 � 2m=r � r
2

 P�2 C sin2 � P�2

�
: (6.119a)

The Euler–Lagrange equation in the variables � and P� is identical with
(6.107c). As we argued before, without loss of generality the coordinates may
be chosen such that � D �=2 and P� D 0 for all times. The Lagrange function
then simplifies to

2L D
�
1 � 2m

r

�
Pt2 � Pr2

1 � 2m=r � r
2 P�2 : (6.119b)

In this Lagrange function the variables � and t are cyclic. Therefore, there are
two conserved quantities, viz.

� @L
@ P� D r

2 P� D L ; @L
@Pt D Pt

�
1 � 2m

r

�
D E : (6.120)

These are the constants of the motion that we already encountered in (6.107b)
and (6.107a), respectively.

Null Geodesics and Deflection of Light
Starting from the second remark above one can reduce the calculation of null
geodesics to a problem of mechanics. The only difference to the previous case is
that now one must take L D 0. The polar coordinates in the plane are again chosen
such that � D �=2 and P� D 0. One inserts the conserved quantities (6.120) into the
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analogue of (6.119b), thus obtaining

E2

.1 � 2m=r/ �
Pr2

1 � 2m=r �
L2

r2
D 0 ; or

Pr2 C L2

r2

�
1 � 2m

r

�
D E2 : (6.121)

In this case, too, it is useful to study the representation r.�/ of the radius as a func-
tion of the azimuth,

Pr D r 0 L
r2
;

whereby (6.121) goes over into the analogue of (6.112),

� 02.�/C �2.�/ D 1

b2
C 2m�3.�/ ;

�
b WD L

E

�
: (6.122a)

Differentiation by � yields two alternative equations, viz.

� 0.�/ D 0 or (6.122b)

� 00.�/C �.�/ D 3m�2.�/ : (6.122c)

In the second of these the term on the right-hand side is very small for scattering of
light by the sun. Comparing the quantity 3m�2.�/ with �.�/ for a light ray grazing
the edge of the sun one finds

3m�2.�/

�
D 3m

r
6 3r

.ˇ/
S

2Rˇ
' 1 � 10�5 :

Without this term the solution of (6.122a) and (6.122c) which starts with � D 0 and
whose impact parameter is b, reads

� .0/.�/ D 1

b
sin � :

This solution is represented by the dashed straight line in Fig. 6.11. The deviation
ı.�/ from this unperturbed solution satisfies the differential equation

ı00.�/C ı.�/ ' 3m

b2

�
1 � cos2 �

�
:

The solution of this differential equation which satisfies the same initial condition,
reads

ı.�/ ' 3m

2b2

�
1C 1

3
cos.2�/

�
:
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r
φ

φ∞

Fig. 6.11 A light beam is deflected by a massive ball. The figure shows a beam grazing the surface
of the ball

Thus, the full solution is given approximately by

�.�/ D � .0/.�/C ı.�/
' 1

b
sin � C 3m

2b2

�
1C 1

3
cos.2�/

�
: (6.123)

One can now calculate the deflection of a light ray incident from infinity with impact
parameter b that would follow a straight line if there were no perturbation. With
r ! 1, i.e. � ! 0, one has approximately sin� ' � and cos.2�/ ' 1, and
therefore

1

b
� C 3m

2b2
4

3
' 0 ; or �1 ' �2m

b
: (6.124a)

The total deflection of a light ray between �1 andC1 is found to be

� D 2�1 ' 4m

b
: (6.124b)

If one inserts here 2m D r
.ˇ/
S and takes the impact parameter to be the radius of

the sun, b D Rˇ, one finds � ' 1:700. This prediction is in good agreement with
measurements of light deflection by the sun (see e. g. [Will 2005]).

6.7.3 The Schwarzschild Radius is an Event Horizon

Upon approaching the Schwarzschild radius (6.104) from the outside one confirms
that all components of the Riemann curvature tensor remain finite. We did not cal-
culate this tensor explicitly here but one may infer this regular behaviour from the
components of the Einstein tensor given in (6.101). The physical interpretation is
that the tidal forces remain perfectly finite at r D rS. An observer traversing that
radius from outside-in will not notice anything special occurring to him or her. Ex-
pressed in mathematical terms, this radius can “only” be a coordinate singularity.
However, what happens there in reality? In order to answer this question one cal-
culates the geodetic orbit of a massive particle which moves in the radial direction
towards the origin, both in a comoving frame of reference, and from the perspec-
tive of an observer who is at rest relative to the origin, (i.e. the centre of the mass
distribution).
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For radial motion one has L D 0, i.e. one must solve the differential equation
(6.108) with U.r/ D .1 � 2m=r/ for the initial condition .r D R; Pr D 0/. The
energy parameter E is determined from (6.108), using the condition Pr D 0, giving
E2 D 1 � 2m=R. One thereby obtains a modified form of the differential equation
(recall that Pr is the derivative of r with respect to proper time s),

Pr2 D 2m

r
� 1C E2 or Pr2 D 2m

�
1

r
� 1

R

�
: (6.125)

With s the proper time of the freely falling observer, the second equation yields the
differential equation

ds D
�
2m

r
� 2m
R

��1=2
dr : (6.125a)

This is a differential equation with separable variables whose solution can be written
formally as a quadrature,

s D
Z

dr
1p

.2m=r/� .2m=R/ : (6.125b)

The solution which satisfies the initial condition given above, is a cycloid. We
parametrize this orbit by means of a parameter � which takes its values in the inter-
val Œ0; �	,

r D 1

2
R .1C cos �/ ; (6.126a)

s D
r
R3

8m
.�C sin �/ ; with 0 6 � 6 � : (6.126b)

This is verified as follows: Calculate dr and ds from (6.126a) and (6.126b), respec-
tively, and from there

Pr � dr

ds
D � sin �p

R=.2m/ .1C cos�/
:

The initial condition is obviously satisfied. Furthermore, by calculating

Pr2 � 2m
r
D 2m

R

sin2 � � 2 � 2 cos�

1C 2 cos�C cos2 �
D �2m

R
;

one sees that the differential equation (6.125) is fulfilled.
The orbit of free motion

begins at � D 0 W �r D R; s D 0� ;
it ends at � D � W �r D 0; s D �

2

q
R3

2m

�
:
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The freely moving observer reaches the origin r D 0 after some finite proper time.
At the moment of passage through the Schwarzschild radius r D rS D 2m his/her
proper time is obtained from (6.126b) with � � �S as obtained from (6.126a), viz.

�S D arccos

�
4m� R
R

�
:

The same motion looks completely different from the perspective of an observer
B0 at rest, that is, an observer who stays behind at the starting point r D R, so to
speak “at home”, while the voyager on the geodesic plunges towards the singularity
at r D 0. Let his/her coordinate time be denoted by t . Using the chain rule one
concludes

Pr D dr

dt
Pt D dr

dt

E

1 � 2m=r : (6.127)

It turns out that the following auxiliary variable is a useful definition:

r� WD r C 2m ln

�
r � 2m
2m

�
: (6.128)

One calculates its derivative by the coordinate time t ,

dr�

dt
D dr

dt

1

1 � 2m=r from which Pr D E dr�

dt

follows. Inserting this in (6.125) one obtains a relation which is sufficient for our
discussion, �

E
dr�

dt

�2
D 2m

r
C E2 � 1 :

Letting r tend to 2m from above the right-hand side of this relation is approxi-
mated by E2. Equation (6.128) shows that in this limit the function r� tends to
minus infinity, r� ! �1, while its derivative by the coordinate time tends to �1,
dr�=dt ' �1. From this one has approximately r� ' �t C c, with c a constant.
Using again definition (6.127) one concludes

2m

�
1C ln

�
r � 2m
2m

��
' �t C c

and from this, eventually, obtains the approximate solution

r.t/ ' 2mC const. e�t=.2m/ : (6.129)

The result (6.129) tells us that, as seen from the perspective of the observer who
stayed at home, the Schwarzschild radius is reached only after infinite time.
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It is also instructive to study the equation of motion for radially falling mass-
less particles. Equation (6.121) with L D 0 taken together with (6.127) yields the
relation

dr

dt
D ˙

�
1 � 2m

r

�
: (6.130)

This shows that the local light cones narrow more and more, the closer one ap-
proaches the Schwarzschild radius. As a consequence, the observer at rest will
eventually receive no more signals from the freely falling observer. Furthermore,
he or she has no means of seeing what happens beyond the horizon, at r < rS.

6.8 Some Concluding Remarks

1. With the perihelion precession and the deflection of light that we calculated from
the static Schwarzschild metric, we came to know two classic tests of general
relativity which historically belong to the first important successes of this the-
ory of gravitation. Both effects refer to a situation in which the gravitational
field is static and is weak in the sense that real spacetime deviates but little from
a flat Minkowski space. Nowadays there are a number of further tests which also
include systems with strong gravitational fields as well as time-dependent, oscil-
latory fields. A complete up-to-date summary is found in [Will 2005].

2. The discussion of the Schwarzschild metric of the preceding section is incom-
plete because in the form (6.103) given there it does not apply for values of the
radius r 6 rS.
Continuation to values below the Schwarzschild radius is perfectly possible by,
geometrically speaking, a change of charts. This continuation shows, however,
that the roles of the time and the radial variables are interchanged, that is to
say that a static solution is converted into a nonstatic one. By the same to-
ken, this continuation yields a model which can be used to describe a black
hole i.e. a spherically symmetric mass distribution which is so dense that its
Schwarzschild radius is larger than its geometrical radius.

3. There are a few more analytic solutions of Einstein’s equations. Among them
there are solutions that describe rotating black holes. Solutions of this class are
relevant for models that provide a basis for (classical) cosmologies. Of special
interest is the study of singularities of solutions and their possible relation to
quantum properties of the gravitational field.

4. Another important branch of general relativity concerns the analysis and ex-
perimental verification of gravitational waves. The direct comparison with
electromagnetic waves is particularly interesting, both with regard to their simi-
larities and to their differences.
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With these comments I leave the fascinating field of the theory of gravitation as
a classical field theory and refer to the many excellent monographs on this subject.
With the experience gained in this chapter and, in particular, the acquired knowledge
of the geometric foundations of general relativity, I sincerely hope, the reader is well
prepared for studying some of these monographs in greater detail.
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Some Historical Remarks

The history of classical and quantum field theory is a fascinating story of step by
step unification – unification of time and space in Special Relativity, unification
of electric and magnetic interactions in Maxwell’s theory which initially appeared
unrelated, unification of dynamics and geometry in General Relativity, and, more
recently, the unification of electromagnetic and weak interactions in the framework
of the Standard Model, to name but the most important.

Towards the end of the eighteenth century, the Age of Enlightenment, certain
electric phenomena and a few facts about magnetism were known but the two types
of phenomena seemed unrelated. Simple electrostatic experiments could be and
were performed by laymen and the action of stationary currents was known (from
Volta’s batteries). These phenomena appeared as curiosities which had no relevance
for daily life. Perhaps the only exception were the lightning rods invented by Ben-
jamin Franklin (1706–1790) but these were often rejected by ignorance or mistrust
because people thought they would attract lightnings rather than divert them. Mag-
netism, in turn, was well known in the form of natural magnetic material and was
ascribed healing power in medicine. Franz Anton Mesmer (1734–1815), the famous
doctor Mesmer, founded the lore of so-called animal magnetism, an early precursor
of hypnotherapy. Note, however, that even in his time this treatment was not taken
too seriously. No one less than Wolfgang Amadeus Mozart immortalized Mesmer
and the “Mesmer stones” in his opera Cosi fan tutte (1789/1790) in which Despina,
chamber maid of the ladies Fiordiligi and Dorabella, disguised as a medical doctor,
tries to cure the enamoured gentlemen Guglielmo and Ferrando by magnetism, viz

“Questo è quel pezzo di calamita, pietra Mesmerica,
ch’ebbe l’origine n’ell Allemagna
che poi si celebre in Francia fù.”

(W.A. Mozart, Cosi fan tutte, Act I, Scene 16.)1

1 “This is that piece of magnet, the Mesmer stone, which had its origin in Germany, and then
became so famous in France”.
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In the preface to his book “The present state of music in France and Italy 1771”
Charles Burney, the British musicologist (1726–1824) makes an interesting com-
parison between electricity and music,

“Electricity is universally allowed to be a very entertaining and surprising
phenomenon, but it has frequently been lamented that it has never yet, with
much certainty, been applied to any very useful purpose.
The same reflexion has often been made, no doubt, as to music. It is a charm-
ing resource, in an idle hour, to the rich and luxurious part of the world. But
say the sour and the wordly, what is its use to the rest of mankind? . . .
Music has indeed ever been the delight of accomplished princes, and the most
elegant amusements of polite courts: but at present it is so combined with
things sacred and important, as well as with our pleasures, that mankind
seems wholly unable to subsist without it.”

And, indeed, in this diary of this and subsequent journeys he points to the great
importance of music in 18th century life, from the noble people at European courts
to the farmers on their fields.
Coulomb’s law, i.e. the 1=r2-dependence of the force between two charges e1 and
e2, was discovered in 1785 (Charles Augustin Coulomb, 1736–1806), but it took
another 35 years before it became known in around 1820 that in reality electric
and magnetic phenomena are closely related. The Danish physicist Hans Christian
Ørsted (1777–1851) reported that electric currents circulating in conducting loops
align magnetic needles in their neighbourhood. This first step towards unification of
interactions attracted a great deal of attention and stimulated the subsequent quan-
titative investigations by Biot and Savart (Jean-Baptiste Biot, 1774–1862; Félix
Savart, 1791–1841) culminating in the law that bears their names. These investiga-
tions were followed by the series of famous experiments of André Marie Ampère
(1775–1836) who showed, among other effects, that small solenoids supporting
electric current, behave like linear magnets in the magnetic field of the earth, and
who first formulated the forces between current-carrying wires.

The great figures of the classical period of electrodynamics were Michael
Faraday (1791–1867) and James Clerk Maxwell (1831–1879), the first of them
primarily an eminent experimenter who discovered the key experiment of induc-
tion, the second of them the architect of the basic equations of electrodynamics in
their universal local form. The induction law of 1831 established the first direct and
explicit relationship between electric and magnetic fields but it needed Maxwell’s
concept of the displacement current (33 years later!), obtained from a nonstationary
application of the Biot–Savart law, before he could formulate a closed and consistent
theory of all electric and magnetic phenomena2.

2 I recommend, in particular, the essay by Res Jost Michael Faraday – 150 years after the discovery
of electromagnetic induction, in R. Jost, Das Märchen vom elfenbeinernen Turm, (Springer 1995)
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Maxwell’s equations, formulated in 1864, found their most exciting and influen-
tial application in the experiments carried out in 1888 by Heinrich Rudolph Hertz
(1857–1894) which proved the existence of electromagnetic waves. The tremen-
dous development from then until the present time, from early wireless telegraphy
to modern techniques of global positioning in ships, planes, and cars, and to mod-
ern telecommunications of all sorts, presumably is well known to the reader. So one
might be tempted to repeat the last sentence of the quotation from Burney, but with
modified subjects: . . . at present it is so combined with things sacred and important,
as well as with our pleasures, that mankind seems wholly unable to subsist without
it.

The history of the notion of vector potential which was essential for the discov-
ery of gauge invariance is less straightforward and transparent. In their historical
essay Jackson and Okun3 showed that first hints are found in the work of Franz
E. Neumann and Wilhelm Weber around the middle of the 19th century but it was
Gustav Kirchhoff (around 1857) and, about a decade or more later, Hermann von
Helmholtz who formulated equations which relate scalar and vector potentials and,
from a modern point of view, correspond to special choices of the gauge.

The Danish physicist Ludvig Valentin Lorenz (1829–1891) was the first who
wrote down retarded potentials of the kind of (4.30), i.e. in a notation in use today,

˚.t;x/ D
•

d3x0
Z

dt 0
%.t 0;x0/
jx � x0jı

�
t 0 � t C 1

c

ˇ̌
x � x0ˇ̌� ; (1a)

A.t;x/ D
•

d3x0
Z

dt 0
j .t 0;x0/
jx � x0j ı

�
t 0 � t C 1

c

ˇ̌
x � x0ˇ̌� ; (1b)

and who noticed that they fulfill the condition

r �A.t;x/C 1

c

@˚.t;x/

@t
D 0 : (2)

It seems as though the use of gauge transformations was familiar to him because he
noted the equivalence of these potentials to those of the class r �A D 0. It is a long-
standing habit to ascribe the condition (2) to the Dutch physicist H. A. Lorentz
(Hendrik Antoon Lorentz, 1853–1928). However, as L. V. Lorenz discovered and
made use of it about a quarter of a century before H. A. Lorentz, it seems appropriate
to correct this misassignment of many textbooks, without belittling the importance
and the great achievements of the latter.4

The unity of the spectra of all kinds of electromagnetic radiation started to
emerge with the proof of the interference of X-rays by W. Friedrich and P. Knip-
ping – following up an idea of Max von Laue. Nowadays we know that, though very

3 J. D. Jackson, L. B. Okun: Historical roots of gauge invariance, Rev. Mod. Phys. 73 (2001) 663.
4 Both names are found in what is called the Lorenz–Lorentz effect in optics. This effect con-
cerns the density dependence of the index of refraction. There is an analogue of this effect in the
interaction of negative pions with nuclear matter, called the Ericson–Ericson effect.



392 Some Historical Remarks

different in appearance, X-rays, visible light, infrared radiation, all belong to the
same spectrum of electromagnetic waves.

Of utmost importance, from a modern point of view, is the covariance of
Maxwell’s equations under the Lorentz group that is based on the principle of the
constancy of the speed of light in vacuum, and the discovery of special relativity by
Albert Einstein. The qualified symmetry between three-dimensional space and time
in special relativity, and the progress from Galilean space with its Newtonian abso-
lute time to Minkowski space, brought about a very specific unification of space and
time.

The notion of gauge invariance was coined in 1919 by Hermann Weyl
(Hermann Weyl, 1885–1955, German mathematician and physicist). In his at-
tempt to combine electrodynamics and gravitation he originally had in mind scale
transformations of the metric

g�� 7�! e�.x/g��

with real functions �.x/, i.e. a transformation by which coordinates were really
“gauged” in the old sense of the word. Vladimir Fock5 made an important discovery
which often is not fully appreciated but which represents another important step of
unification: The combination of U(1) transformations generated by real functions
�.t;x/ on the one side, and the action of phases

ei˛.t;x/ with ˛.t;x/ D e

„c �.t;x/

on wave functions of quantum theory, on the other, as worked out in Sect. 3.5.2,
equations (3.38) and (3.39b), and in Sect. 5.3, equation (5.16). Here, the fundamen-
tal gauge principle of classical electrodynamics, and the characteristic freedom of
phases of quantum theory, are combined into something new: A locally gauge invari-
ant theory of radiation and matter in which the covariant derivative plays a special
role in fixing the coupling between the two types of fields.

The next major step of unification is the combination of electrodynamics with the
other fundamental interactions in the framework of the so-called minimal standard
model of elementary particle physics. In Chapt. 5 I collected the relevant steps of
the development for the example of electrodynamics and the weak interactions on
a classical basis. They lead to the widely ramified field of modern quantum field the-
ory and to present-day research in elementary particle physics, for whose historical
development I refer to the appendix of [QP].

General relativity which in a precise sense brings together the geometry of space-
time with the nature of gravitation, is a very special kind of unification of formerly
unrelated notions. The other fundamental interactions are thought to be well de-
scribed when formulated on an inert, given Euclidean spacetime. This, as we have
seen, is not true for gravitation for which no consistent theory can be found on

5 V. Fock, Z. Physik 38 (1926) 242 and 39 (1926) 226.
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a preexisting, flat spacetime. In its essential aspects, general relativity is the work of
a single person, Albert Einstein. The genesis of this theory, the life of Albert Ein-
stein, and much more, can be found, e. g. in the excellent biography by Abraham
Pais [Pais 1982].
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Exercises Chapter 1
1.1 If in R3 the cartesian basis Oe1, Oe2, Oe3 is replaced by a spherical basis

Oe˙ WD � 1p
2

� Oe1 ˙ i Oe2
�
; Oe0 WD Oe3 ; (A.1)

the expansion of a vector reads V D PC1
mD�1 vm Oem. Write down the orthog-

onality relations for the base vectors Oem, the scalar product V � W , and work
out the difference between contravariant components vm and the corresponding
covariant components.

1.2 Show that the four-component current density (1.25) satisfies the continuity
equation.

1.3 Estimate the mass of a Uranium nucleus in micrograms, knowing that it
contains 92 protons and 143 neutrons.
Hint: mpc2 ' mnc2 ' 939MeV.

1.4 Calculate the electric field in volt per metre that a muon feels in the 1s-state
of muonic lead.
Hints: Bohr radius aB D „c=.Z˛m�c2/, m�c2 D 105:6MeV.

1.5 Prove the formula (1.48a), i.e.

3X
kD1

"ijk"klm D ıi lıjm � ıimıjl :

1.6 Prove the formula (1.52a) by means of the following construction: Consider
two concentric spheres with radii Ri and Ra, respectively, and Ri < Ra whose
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centre is x. Choose the reference point x0 in the domain between the two spheres,
and apply Green’s second theorem to the volume enclosed by the spheres, for the
functions  or � equal to 1=r (r D jx � x0j). Let then Ri go to zero, Ra to
infinity.

1.7 Determine the normalization factor N of the distribution

%Fermi.r/ D N

1C expf.r � c/=zg (A.2)

such that % integrated over the whole space gives 1.

1.8 Let � be the surface charge density on a given smooth surface F . Prove the
relation (1.87a).
Hint: Choose a small “box” across the surface such that its base and its lid are
parallel to the surface F and have the size d� while its height is small of third
order. Apply Gauss’ theorem.

1.9 Prove: On a surface which carries the surface charge density � the tangen-
tial component of the electric field is continuous, equation (1.87b).
Hint: Choose a closed rectangular path which cuts the surface such that the edges
perpendicular to the surface are much smaller than the edges parallel to the sur-
face. Calculate the electromotive force along that path.

1.10 Prove the properties (1.97g) and (1.97h) using the explicit expressions
(1.97a) for the spherical harmonics.

1.11 Derive the relation between the cartesian components Qik of the
quadrupole, equation (1.111c), i; k D 1; 2; 3, and its spherical components
q2�.

1.12 Show that the space integral of the electric field strength of a dipole is
proportional to the dipole moment,

•

V

d3x E Dipol.x/ D �4�
3

d : (A.3)

1.13 Given a capacitor consisting of two metallic plates and an electrically po-
larizable, insulating medium between them, consider the process of discharge
after short-circuiting the plates and calculate the displacement current in the
medium.

1.14 Construct the additional term F.x;x0/ in (1.90) which is needed for the
Dirichlet Green function to vanish on the sphere.

1.15 A point-like electric dipole d D d Oe3 is placed in the centre of a conduct-
ing sphere whose radius is R. Calculate the potential and the electric field inside
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the sphere. What is the field outside of the sphere? What is the charge density on
(the surface of) the sphere?

1.16 A point-like electric dipole is located in the point x.0/. Show: The poten-
tial that it creates as well as its energy in an external potential˚a can be described
by the effective charge density

%eff.x/ D �d � rı.x � x.0// :

1.17 A conducting sphere with total chargeQ is placed in a homogeneous elec-
tric field E .0/ D E0 Oe3. How does the electric field change by the presence of the
sphere? What is the distribution of the charge on (the surface of) the sphere?
Hint: Assume the potential to have the form

˚ D f0.r/C f1.r/ cos �

and solve the Poisson equation. Can you give plausibility arguments for this
ansatz?

1.18 Calculate the energy contained in the electric field of a spherically sym-
metric, homogeneous charge distribution (radius R, charge Q). Then calculate
the self-energy

W D 1

2

•
d3x %.x/˚.x/

of this charge distribution.

1.19 An electron located in the origin is assigned the charge distribution % D
.�e/ı.x/. One considers a sphere of radius R, its centre taken as the origin, and
calculates the energy of the electric field outside the sphere. How must the radius
be chosen if this energy is to be equal to the rest energy mec2 of the electron?
This radius is called the classical electron radius.
Answer: R D e2=.2mec2/ D ˛„c=.2mec2/.
1.20 A sphere with radius R is made up of a homogeneous dielectric material
with dielectric constant "1. The sphere is embedded in a medium which is ho-
mogeneous, too, and whose dielectric constant is "0. Furthermore, an external
electric field E D E0 Oe3 is applied to it. Calculate the potential inside and out-
side the sphere. Sketch the equipotential surfaces for the special cases ("0 � ",
"1 D 1) and ("0 D 1, "1 � "). In the second case let " become very large and
compare with the potential in Exercise 1.17.

1.21 Two positive charges q D .e=2/ and two negative charges �q are placed
in four points whose cartesian coordinates .x; y; z/ are as given here

q1 D q W .a; 0; 0/ ; q2 D q W .�a; 0; 0/ ;
q3 D �q W .0; b; 0/ ; q4 D �q W .0;�b; 0/ :
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Write down the charge distribution by means of ı-distributions. What is the
dipole moment of this distribution? Determine the quadrupole tensor Qij D”

d3x Œ3xixj � x2ıij 	%.x/ and the spectroscopic quadrupole moment

Q0 WD
r
16�

5

•
d3x %.x/r2 :

List also the moments q`;m for ` D 2 (spherical basis).

1.22 A spherical shell with radius R which carries a constant surface charge
density �, rotates with angular velocity ! about an axis through its centre. What
is the magnetic field it creates?
Hint: The surface current is given by the expression

K .�/ D �! � x D !�R sin � Oe� :

1.23 A hollow ball with inner radius r and outer radiusR, consists of a material
with high magnetic permeability�. This sphere is placed in an external induction
field B D B0 Oe3. Calculate the field lines in the presence of this ball. In particular,
study the special case �!1.
Hint: As there is no current density one may derive the fields H and B from
a magnetic potential ˚magn. Use the multipole expansion for this potential.

Exercises Chapter 2
2.1 By counting the base k-forms determine the dimension of the space�k.M/

of k-forms over the manifoldM .

2.2 Show: A symmetric tensor S�� of degree two contracted with another, an-
tisymmetric tensor A�� of degree two, gives zero.

2.3 With "˛ˇ�ı the Levi-Civita symbol in dimension four, find summation for-
mulae which correspond to the formulae (1.48a) and (1.48b).

2.4 Let A.t;x/ be a given vector potential which is not subject to any special
boundary condition. If one chooses the gauge function

�.t;x/ D 1

4�

•
d3y

1

jx � yjrx �A.t;y/

in order to replace A, what can be said about the divergence of the transformed
vector potential A0? In case there are no external sources what is the gauge func-
tion by means of which one obtains A0.t;x/ D 0 without leaving the class of
Coulomb gauges?
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2.5 Since energy and momentum are conserved, a free electron cannot radiate
a light quantum, e ! e C � . Prove this by using relativistic kinematics.

Exercises Chapter 3
3.1 Determine the physical dimensions of the quantities u.t;x/, (3.54a),
P.t;x/, (3.54b), S .t;x/, (3.54c), and T kj .t;x/, (3.54d).

3.2 Show: In R3 both ıij and "ijk are tensors which are invariant under rota-
tions R 2 SO(3). In Minkowski space what can you say about ı�� and about
"��	
 with regard to Lorentz transformations?

Exercises Chapter 4
4.1 Which boundary conditions hold for electric fields and for induction fields
at boundary surfaces? (See also Exercises 1.8 and 1.9).

4.2 A harmonically oscillating dipole source is described by the current density

j .t;x/ D �i! d ı.x/e�i!t :

Determine the corresponding charge density and the physical expressions for j

and %. Calculate the corresponding vector potential AE1, including its harmonic
time dependence. Calculate the electric field and the induction field.

4.3 Given two concentric rings made of a conducting material. The inner ring
whose radius is a, carries the homogeneously distributed charge q, the outer ring
with radius b carries the charge�q. Write down the charge density of this setup,
expressed in cylinder coordinates where the z-axis goes through the centre of the
rings and is perpendicular to the plane spanned by them.

4.4 The setup of Exercise 4.3 is assumed to rotate about the z-axis with angular
velocity !. Derive the current density and calculate the magnetic dipole moment.

Exercises Chapter 5
5.1 Solve the differential equation

�
� � �2��.x/ D g ı.x/ (A.4)
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in momentum space, i.e. by means of the ansatz

�.x/ D 1

.2�/3=2

•
d3k eik�xe�.k/ : (A.5)

5.2 In a given representation the generators of a compact, simple Lie group
have the property (omitting, for simplicity, the symbol U in U.T/)

tr
˚
Ti ;Tj


 D �ıij : (A.6)

Show that the constant �, though depending on the representation, does not de-
pend on i and j .

5.3 Construct a Lagrange density for the local gauge theory which is built on
the structure groupG D SO(3) and which contains a triplet of scalar fields.

5.4 A local gauge theory built on the structure group

G D SU.p/ � SU.q/ with p; q > 1 ;

allows for two independent “charges” (coupling constants). Show this by con-
structing the gauge potential and the covariant derivative.

5.5 A major study project might be this: Study the group theoretical aspects
of the publication on the self-gravitation of a rotating star quoted in Sect. 5.6.
Investigate analytically the bifurcations reported in this work and illustrate by
means of numerical examples.

5.6 Show that the matrices

M
.k/

lm
D �iC .m/

kl

fulfill the Lie algebra (5.20).

Exercises Chapter 6
6.1 The aim is to show that the .n� 1/-sphere Sn�1

R which has radius R and is
embedded in Rn, is a smooth manifold.
Let N D .0; : : : ; 0; R/ and S D .0; : : : ; 0;�R/ be the north and south poles of
the sphere, respectively. Let two charts be defined by the projection from N and
from S , respectively, of the points x 2 Sn�1

R onto the equatorial hypersurface
xn D 0. The first chart applies to the subset U1 D Sn�1

R nfN g, and the second
applies to U2 D Sn�1

R nfSg. Specify the maps 'i as well as their inverses for
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i D 1; 2. Derive the transition mapping from U1 to U2, show that this is a diffeo-
morphism on the intersection U1 \ U2.

6.2 Gravitational redshift: Calculate the relative change of frequency �!=!
of a photon which moves from the tip of a tower with height H to the ground.
Compare the shift �! for the example H D 22:5m with the natural line width
� of a spectral line in 57Fe for which !=� D 3 � 1012.
6.3 Let X; Y;Z 2 X.M/ be smooth vector fields on the manifold M , ŒX; Y 	
etc. their Lie brackets (commutators). Prove the Jacobi identity

ŒX; ŒY;Z		C ŒY; ŒZ;X		C ŒZ; ŒX; Y 		 D 0 :

Consider the example of M D R2 with X D y@x and Y D x@y . What is their
Lie bracket?

6.4 In general, tensor products do not commute. In order to illustrate this fact
consider the examples T .i/ 2 T02, i D 1; 2, with

T .1/ D dx1 ˝ dx2 ; T .2/ D dx2 ˝ dx1 :

Calculate the functions T .i/.X; Y / for

X D a1@1 C a2@2 ; Y D b1@1 C b2@2

with constant coefficients a1; : : : ; b2.

6.5 Another way to calculate the covariant derivative of tensor fields of type
.0; 1/ is the following. For the choice V D @� the covariant derivative DV of
a vector field X by V is known to be

X�I� D @�X� C � ���X� :

Use this formula to calculate X
 I� D g
�X
�I� and make use of the coordinate

expression of the Christoffel symbols.

6.6 The Christoffel symbols are not the components of a tensor field: The equa-
tions of motion of a free particle in Gaussian (or normal) coordinates at the point
x 2 M read

d2z�

d
2
D 0 with d
2 D ��� dz� dz� ;

while in any other coordinates they are

d2y�

d
2
C � ��	

dy�

d


dy	

d

D 0 :
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Prove the following formulae

g�� D �˛ˇ @z
˛

@y�
@zˇ

@y�
; � ��	 D

@y�

@z˛
@2z˛

@y�@y	
:

Derive the transformation formulae for Christoffel symbols under a diffeomorphism
fy�g 7! fy0�g. The above conclusion follows from the result.

6.7 The semi-Riemannian manifold .M; g/ is assumed to have dimension n. Show
that the contraction of the metric gives n and that for smooth functions f 2 F.M/

the divergence of f g is equal to the exterior derivative of f , div.f g/ D df .

6.8 A tensor field which is closely related to the Riemann tensor field R is the Weyl
tensor field. It is a function of the Riemann tensor field R, of the Ricci tensor field
R.Ricci/, and of the curvature scalar S . When written in components it is defined as
follows

C��	
 WD R��	
 C 1

6
S
�
g�	g�
 � g�
g�	

�

� 1
2



g�	R

.Ricci/
�
 � g�
R.Ricci/

�	 � g�	R.Ricci/
�
 C g�
R.Ricci/

�	

�
:

The tensor C��	
 has the same symmetry properties as R��	
 . Show: All its con-
tractions give zero. In dimension n D 4 it has ten independent components, in
dimension n D 3 it is identically zero.

IfM has dimension 4 and is endowed with a conformally flat metric, i.e. if g�� D
�2.x/��� holds with �.x/ a smooth function, the tensor field C is identically zero.
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Chapter 1 (selected solutions)
1.1 The spherical base vectors Oem, m D �1; 0;C1, have the following proper-
ties (please verify!):

Oe�
m D .�/m Oe�m Oe�

m � Oem0 D ımm0 : (1)

Expanding vectors in terms of these, V D PC1
mD�1 vm Oem, and recalling that V

is real, there follows

V D
X

vm� Oe�
m D

X
.�/mv�m� Oem : (2)

Equations (1) and (2) show that the basis which is dual to the basis f Oemg is given
by Oem D .�/m Oe�m and that one has V D P

vm Oem with vm D .�/mv�m. The
scalar product of two vectors reads

V �W D
CmX
mD�1

vm�wm D
C1X

mD�1
vmw

m : (3)

Indeed, one verifies the scalar product by calculating

X
vmw

m D 1

2
.v1 � iv2/.w1 C iw2/C v3w3 C 1

2
.v1 C iv2/.w1 � iw2/

D v1w1 C v2w2 C v3w3 :

This exercise shows that even in a Euclidean space one must distinguish covariant
from contravariant transformation behaviour whenever one uses a complex basis
instead of a real cartesian basis.
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1.2 With a specific partition into space and time components one has

@0j
0 D e @

@t
ı.3/

�
y � x.t/

� D e Px � rxı.3/�y � x.t/
�

D �e Px � ryı.3/
�
y � x.t/

�
;

@ij
i D e Px � ryı.3/

�
y � x.t/

�
:

The sum of these expressions gives zero.

1.3 Except for binding effects one has

Mc2 D 235 � 939MeV D 3:535 � 10�8 J :

Using the conversion formula (see, e. g. [QP] Appendix A.7) 1 eV c�2 D
1:78266 � 10�27 �g, one finds the approximate value M D 3:9 � 10�16 �g.

I Remark
This value is still very small as compared to the Planck mass

MPlanck WD
s
„c

GNewton
D 22:2 �g ;

which could be measured with a chemist’s balance.

1.4 The muonic Bohr radius is smaller by the factorme=m� than the one of the
electron. For the example of lead, i.e. with Z D 82, it is

a
.�/
B .Z D 82/ D „c

Z˛m�c2
D 3:12 � 10�15 m :

This value is smaller than the nuclear radius which is about 7 � 10�15 m. If instead
the entire charge of the nucleus were localized in its centre the magnitude of the
electric field at the position of the muon would be

jE j D Ze

r2
D 1:35 � 1012 V m�1 :

The realistic value which is smaller than this, can be estimated by a model of the
lead nucleus in which the charge distribution is homogeneous and has the radius
given above.

1.5 There are different ways to check the relation (1.48a).
(a) For fixed values of i and j also k is fixed. It cannot be equal to i or j . This
holds also for l andmwhich cannot be equal to k. As they must be different from
each other there remain the possibilities (i D l; j D m) and .i D m; j D l)
only. The first of these appears with the positive sign, the second appears with
the negative sign.
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x=0 x

V(F)

Fig. 1

(b) With f Oei g, i D 1; 2; 3 an orthonormal basis in R3, the first "-symbol equals
the scalar triple product . Oei � Oej / � Oek . Likewise the second "-symbol equals
Oek � . Oel � Oem/. As the sum

P
k j Oekih Oekj is equal to 1 the required expression is

equal to
. Oei � Oej / � . Oel � Oem/ :

This is the right-hand side of the equation that was to be proved.

1.6 The space between the two spheres of Fig. 1 defines the volume V.F /. Its
surface consists of the sphere with radiusRa whose normal points outwards, and
the sphere with radiusRi whose normal points inwards. With �.1=r/ D 0 in the
intermediate space and with �˚.x/ D �f .x/ Green’s second theorem yields

•

V.F /

d3x
f .x/

r
D
“

F

d�
n
�˚ 1

r2
� 1
r

@˚

@r

o
;

the centre of the rings being the origin. Both spheres contribute to the right-
hand side and we have d� D r2 d˝ . The second term vanishes both in the limit
Ra ! 1 and in the limit Ri ! 0. While for Ra ! 1 the first term vanishes,
too, for Ri ! 0 it gives 4�˚.0/. This is the answer that was to be proved.

1.7 In order to normalize the given distribution one must calculate the integral

I WD 4�
1Z
0

r2 dr
1

1C e.r�c/=z D 4�z3
1Z
0

x2 dx
1

1C e.x�x0/
(4)

where x D r=z and x0 D c=z. The domain of integration is split into the intervals
Œ0; x0/ and Œx0;1/, such that in either case the integrand may be written as a
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geometric series, viz.

x < x0 W 1

1C e.x�x0/
D 1C

1X
nD1

.�/n e�nx0 enx ;

x > x0 W 1

1C e.x�x0/
D

1X
n0D0

.�/n0

e.n
0C1/x0 e�.n0C1/x

D �
1X
nD1

.�/n enx0 e�nx ;

where in the last step n D n0 C 1 was substituted.
The following two integration formulae are useful for the sequel and are easily

derived:

I< WD
aZ
0

dx x2 ex D ea
�
a2 � 2aC 2�� 2 ;

I> WD
1Z
a

dx x2 e�x D e�a�a2 C 2aC 2� :

Using these formulae the required integral becomes

I D 4�z3
�
1

3
x30 C 4x0

1X
nD1

.�/nC1 1
n2
� 2

1X
nD1

.�/n 1
n3

e�nx0

�
:

The infinite sum in the second term can be found, e. g. in [Abramovitz-Stegun;
Eq. (23.2.19) and Eq. (23.2.24)]

1X
nD1

.�/nC1

n2
D �1

2
�.2/ D �2

12
;

where �.x/ is Riemann’s zeta function. As a result one obtains

I D 4�c3

3

�
1C


�z
c

�2 � 6
z
c

�3 1X
nD1

.�/n
n3

e�.nc/=z
�

(5)

and, from this, the formula given in the main text.
In charge distributions of atomic nuclei c, as a rule, is sensibly larger than z
(typical values are c D 6 fm, z D 0:2 fm), i.e. expf�c=zg � 1. If one neglects
the last term the distribution at r D c takes about half the value it has at r D 0.
The distance between the radii r0:9 and r0:1 where it is still 90% and 10% of
its value at r D 0, respectively, is given by t D 4 ln.3/z. This parameter is
customarily quoted as the surface thickness of the charge distribution.
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F

niˆ

nαˆ dσ

Fig. 2

F

–ds

ds

Fig. 3

1.8 The integral over the volume of the “box” in Fig. 2 gives 4� times the
surface charge density. The height being assumed to be small of third order, the
surface integral receives contributions only from the two end faces of the box
which differ by the direction of the normal. Thus, one obtains .E a �E i/ � On.

1.9 Choosing the closed path in Fig. 3 such that it cuts through the surface with
its short sides, one concludesI

E � ds D �E a �E i
� � Ot D 0 :

This shows the continuity of the tangential component.

1.10 At first, the expression (1.97c) for the Legendre functions of the first kind
holds only for m > 0. The following alternative representation6

Pm` .z/ D .�/m e�im�=2 .`Cm/Š
2�`Š

�
C�Z

��
d 

�
cos � C i sin � cos 

�`
cos.m / ; .z D cos �/

holds for all values of m. From this one obtains the symmetry relation

P�m
` .z/ D .�/mPm` .z/

.` �m/Š

.`Cm/Š : (6)

6 see e. g. N. Straumann, Quantenmechanik, Springer, Heidelberg 2002, Eq. (1.168). English
Translation in preparation.
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Inserting this into formula (1.97a) one obtains the symmetry relation (1.97g).
For the derivation of the relation (1.97h) notice that with z0 D cos.� � �/ D

� cos � D �z one finds

eim.�C�/ D .�/m eim� ;

Pm` .�z/ D .�/m.1 � z2/m=2.�/m
dm

dzm
P`.�z/ D .�/`�mPm` .z/ :

Here one has used the fact that the Legendre polynomials produce a sign .�/`
when z 7! .�z/. The composition of the two results yields the symmetry rela-
tion (1.97h).

1.11 The multipole moments are defined in (1.106d). Thus, one has

q22 D
•

d3x r2Y �
22. Ox/%.x/

D
p
15

4
p
2�

•
d3x r2 sin2 � e�2i�%.x/

D
p
15

4
p
2�

•
d3x

�
x1 � ix2

�2
%. Ox/

D
p
15

4
p
2�

•
d3x

˚
x1x1 � 2ix1x2 � x2x2
%. Ox/

D
p
15

4
p
2�

1

3

�
Q11 � 2iQ12 �Q22

�
:

The two other components are calculated in the same manner

q21 D �
p
15

2
p
2�

•
d3x x3.x1 � ix2/%.x/ D

p
5

2
p
6�

��Q13 C iQ23
�
;

q20 D
p
5

4
p
�

•
d3x

�
3x3x3 � r2�%. Ox/ D

p
5

4
p
�
Q33 :

In this calculation the symmetry Qj i D Qij and the definition (1.111c) were
utilized.

1.12 One calculates first the integral over the volume V of a ball with radius
R and centre at the position of the dipole. This integral is converted to a surface
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integral over the sphere by means of (1.6):

•

V

d3x ED.x/ D �
•

V

d3x r˚D.x/ D �R2
“

F.V /

d� ˚D.x/ On

D �R2 4�
3

•
d3x0

�
“

F.V /

d�
r<

r2>

X
�

Y �
1�. Ox/Y1�. Ox0/ On :

Here the multipole expansion (1.105) was used of which, by the integration over
the angular variables, only the term with ` D 1 contributes. Consider the unit
vector On, expanded in terms of spherical harmonics,

On D
C1X

mD�1
amY1m. Ox/ :

The surface integral over the sphere is then found to be


“

F.V /

d�
X
�

Y �
1�. Ox/ On

�
Y1�. Ox0/ D

X
m

amY1m. Ox0/ D On0
:

As the dipole is localized, one has r< D r 0 and r> D R so that

•

V

d3x ED.x/ D �R2 4�
3

1

R2

•
d3x0 %.x0/r 0 On0 D �4�

3
d :

This derivation shows that the formula to be proved holds for every localized
dipole distribution and, hence, for the point-like dipole as a special case.

1.13 The capacitor consists of two identical plates in parallel orientation, their
surface being F . In the initial state they carry the charges Cq and �q, respec-
tively. The normal component of the displacement field D D "E fulfills the
relation Dn D jDj D 4��, where � D q=F is the surface charge density (we
are considering the example of the positively charged plate). Short-circuiting the
plates causes a current

I D dq

dt
D F @�

@t
D F

4�

@Dn

@t

in the cable joining them. Thus, the current density of the displacement current
is

j v D
1

4�

@D

@t
:
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These relations hold for the vector fields proper because they are perpendicular
to the surface of the plates and, hence, are equal to their normal components.

1.14 This example illustrates the method of image charges. Choose two point
charges q.1/ and q.2/ on a straight line through the origin and define this to be
the 1-axis. The positions of the charges x.1/ D r .1/ Oe1 and x.2/ D r .2/ Oe1, re-
spectively, are images of each other with respect to the sphere with radius R and
centre the origin which means that r .1/r .2/ D R2 . Determine the charge q.2/

such that the potential vanishes on the sphere. The potential at jxj D R is

˚.x/jR D
�

q.1/

jx � r .1/ Oe1j C
q.2/

jx � r .2/ Oe1j
�

jxjDR

D q.1/

Rj Ox � .r .1/=R/ Oe1j C
q.2/

r .2/j.R=r .2// Ox � Oe1j :

In this formula the two absolute values in the denominators are equal, viz.ˇ̌̌
ˇ̌ Ox �

 
r .1/

R

!
Oe1
ˇ̌̌
ˇ̌ D

ˇ̌
ˇ̌� R

r .2/

�
Ox � Oe1

ˇ̌
ˇ̌ D 1 � 2r .1/

R
Ox � Oe1 C

�
r .1/

R

�2
:

Therefore, the potential vanishes for r D R if the second charge is chosen to be
q.2/ D �q.1/.r .2/=R/. One can now replace the point charge in the interior of
the sphere by the sphere with ˚ jR D 0. This solves the problem.

1.15 Place the dipole in the origin. In the absence of the sphere the potential it
creates would be ˚D.x/ D d r cos �=r3. The presence of the sphere causes an
additive term which is such that the potential on the sphere is a constant. Without
loss of generality one can choose this constant to be zero. Then the total potential
in the interior of the sphere is

˚ D d cos �
1

r2
C

1X
`D0

a`r
`P`.cos �/

D d cos �
1

r2
C a1r cos �

D dr cos �

�
1

r3
� 1

R3

�
:

Here use was made of the fact that only the term with ` D 1 contributes, the
boundary condition ˚.R/ D 0 fixes the coefficient a1 to be a1 D �d=R3. The
radial component and the �-component of the electric field are, respectively,

Er D �@˚
@r
D d cos �

�
2

r3
C 1

R3

�
;

E� D �1
r

@˚

@�
D d sin �

�
1

r3
� 1

R3

�
:



Selected Solutions of the Exercises 411

At r D R the �-component vanishes. The discontinuity of the radial component
follows from (1.87a),

.Er /a � .Er /i D .Er/a � d cos �
3

R3
D 4�� :

By (1.92c) the induced surface charge density on the sphere is

� D 1

4�

@˚

@ On
ˇ̌̌
ˇ
rDR
D �d cos �

4�

3

R3
:

(Only the interior contributes to the derivative. The normal of the surface is the
negative normal to the sphere, hence the minus sign.) One concludes .Er/a D 0.

1.16 The potential created by the dipole is calculated as follows:

˚.x/ D
•

d3x
%eff.x

0/
jx � x0j D �d �

•
d3x

rx0ı.x � x.0//

jx � x0j
D d �

•
d3x ı.x � x.0//rx0

1

jx � x0j D d � x � x.0/

jx � x.0/j3 :

This expression coincides with (1.88c). The energy in the external potential is

W D
•

d3x %eff.x/˚a.x/

D �d �
•

d3x
�rxı.x � x.0//

�
˚a.x/

D d �
•

d3x ı.x � x.0//rx˚a.x/ D �d �E a.x
.0// :

This is the known expression for the energy of the electric dipole in an external
electric field.

1.17 Without the external field, E0 D 0, the potential would be the potential
outside of a spherically symmetric charge distribution, ˚.r/ D Q=r ; in the ab-
sence of the sphere it would be ˚.x/ D �E0z D �E0r cos � . As potentials
are additive in the sources one is led to the suggested ansatz, i.e. the sum of a
spherically symmetric term and a term with the characteristic cos �-dependence
of the homogeneous field, viz.

˚.x/ D f0.r/C f1.r/ cos � :
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Inserting into the Laplace equation �˚.x/ D 0 one finds

�˚.x/ D 1

r2
d

dr

�
r2

df0
dr

�
C 1

r2
d

dr

�
r2

df1
dr

�
cos �

� f1

r2 sin �

d

d�

�
sin2 �

�

D
�
1

r2
d

dr

�
r2

df0
dr

��
C
�
1

r2
d

dr

�
r2

df1
dr

�
� 2f1
r2

�
cos � D 0 :

This differential equation holds for all r and all � . Therefore, the expressions in
the big square brackets must both be zero individually:

1

r2
d

dr

�
r2

df0
dr

�
D 0 ; (7)

1

r2
d

dr

�
r2

df1
dr

�
� 2f1
r2
D 0 : (8)

The first of these, equation (7), has the general solution f0.r/ D A=r C B . The
second differential equation (8) reads r2f 00

1 C 2rf 0
1 � 2f1 D 0, and its general

solution is f1.r/ D C=r2 CDr . Thus, the required solution has the form

˚.x/ D A

r
C
�
C

r2
CDr

�
cos � C B : (9)

The four constants are obtained from the boundary conditions:

a) For r ! 1 the term proportional to r cos � dominates. In this limit only the
given external field is felt so that one must have D D �E0.
b) On the sphere the potential must be constant,

˚.x/jrDR D
A

R
C
�
C

R2
�E0R

�
cos � D const. 8 � I

from which follows C D E0R3.
c) Gauss’ theorem yields the normalization condition

“

rDR
d� E � On D �

“

rDR
d�

@˚

@r
D 4�Q :

By (9) the same integral is equal to 4�A, giving A D Q.

Thus, the solution is

˚.x/ D Q

r
C E0

�
R3

r2
� r

�
cos � : (10)
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For the case Q D 0 the induced surface charge density is calculated to be

�.�/ D � 1

4�

@˚

@r
D 3

4�
E0 cos � :

(Sketch a plane cutting the equipotential surfaces which contains the z-axis, as
well as the electric field lines for the exampleQ D 0!)

I Remark
The justification for our ansatz is an intuitive one. A more systematic approach
makes use of the expansion of the potential in terms of spherical harmonics: By
the axial symmetry of the problem the most general ansatz is

˚.x/ D
1X
`D0

f`.r/P`.cos �/

with f` D r` or f` D r�`�1. The potential of the original homogeneous field is
axially symmetric and is proportional to P1.cos �/. The added sphere does not
modify the angular dependence and therefore causes an additive monopole term
only. Thus, the solution must have the form

˚.x/ D
�
A

r
CB

�
P0.cos �/C

�
C

r2
CDr

�
P1.cos �/

�
P0.cos �/ D 1 ; P1.cos �/ D cos �

�
:

The constants are determined as before.

1.18 With %.r/ D 3Q=.4�R3/�.R � r/ the potential and the field strength
inside and outside are, respectively,

r 6 R W ˚i.r/ D 3Q

2R3

�
R2 � 1

3
r2
�
; E i D Q

R3
r Oer ;

r > R W ˚a.r/ D Q

r
; E a D Q

r2
Oer :

Calculating the energy from the square of the electric field and integrating over
the whole space,

WE D 1

8�

•
d3x E2 D 1

2

1Z
0

r2 dr E2

D 1

2
Q2

�
1

R6

RZ
0

dr r4 C
1Z
R

dr r�2
�
D 3Q2

5R
;
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one obtains the same result as from the given formula, viz.

W D 1

2

•
d3x %.r/˚.r/ D 9Q2

4R6

1Z
0

r2 dr

�
R2 � 1

3
r2
�
D 3Q2

5R
:

1.19 The energy contained in the field outside the electron is equal to

Wa D 1

2
e2

1Z
R

dr
1

r2
D e2

2R
:

Putting this equal to mec2 one obtains the given value of R, i.e. the classical
electron radius.

1.20 It follows from Maxwell’s equations that on a surface carrying the charge
density � the tangential component of the electric field is continuous while the
normal component of the displacement field changes by the amount 4��. In the
problem at stake one has � D 0, so that the normal component of D is continu-
ous. Thus, the boundary conditions at r D R are

˚i D ˚a ;

"0
@˚a

@r
D "1 @˚i

@r
:

The spherical symmetry of the set-up is perturbed only by the external field which
is axially symmetric and whose potential is˚.r; �/ D �E0P1.cos �/. Thus, both
in the inner and the outer regions the problem must have the general solution

˚a D
�
A

r2
C Br

�
P1.cos �/ ;

˚i D
�
C

r2
CDr

�
P1.cos �/ :

Letting r go to infinity, r ! 1, one sees that one must have B D �E0; letting
r ! 0 one concludes that C D 0.

The boundary conditions fix the remaining two constants as follows

A D "1 � "0
"1 C 2"0E0R

3 ;

D D � 3"0

"1 C 2"0E0 :

The two special cases specified in the problem are as follows:
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a) "0 � ", "1 D 1: Here the potential is

˚a D
�
1 � "
1C 2"

R3

r3
� 1

�
rE0P1.cos �/ ;

˚i D � 3"

1C 2"rE0P1.cos �/ :

The field inside the sphere has the modulus

Ei D 3"

1C 2"E0 :

As " > 1 it is larger than E0.
b) "0 D 1, "1 � ": The potential now reads

˚a D
�
" � 1
"C 2

R3

r3
� 1

�
rE0P1.cos �/ ;

˚i D � 3

"C 2rE0P1.cos �/ :

The modulus of the field inside is

Ei D 3

"C 2E0

and hence is smaller than the external field.

Choosing in this case "
 1, one has

˚a '
�
R3

r3
� 1

�
rE0P1.cos �/ ; ˚i ' 0 :

The field on the inside goes to zero, and one recovers the situation dealt with in
Exercise 1.17 (with Q D 0).

1.21 The charge density created by the four point charges is

%.x/ D e

2
fŒı.x � a/C ı.x C a/	 ı.y/ı.z/

� Œı.y � b/C ı.y C b/	 ı.x/ı.z/g :

One verifies at once that both the monopole moment

q00 D 1p
4�
� total charge D 0 ;
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and all dipole moments

di D
•

d3x xi%.x/ D 0

are equal to zero. The entriesQij of the quadrupole tensor are calculated to be

Q11 D
•

d3x
�
2x2 � y2 � z2	%.x/ D e �2a2 C b2� ;

Q22 D
•

d3x
�
2y2 � z2 � x2	%.x/ D �e �2b2 C a2� ;

Q33 D
•

d3x
�
2z2 � x2 � y2	%.x/ D e ��a2 C b2� ;

Q12 D
•

d3x 3xy%.x/ D 0 ;
and, analogously, Q13 D 0 ; Q23 D 0 :

Thus, Q D e diag.2a2C b2;�2b2 � a2;�a2C b2/ and one confirms that Q has
trace zero.

The spectroscopic quadrupole moment is

Q0 D
•

d3x r2.3 cos2 � � 1/%.x/

D
•

d3x .2z2 � x2 � y2/ D Q33 D e.b2 � a2/ :

In the spherical basis the moments are found to be

q22 D
p
5

4
p
6�
.Q11 � 2iQ12 �Q22/ D

p
15

4
p
2�
e.a2 C b2/ ;

q21 D 5

2
p
6�
.�Q13 C iQ23/ D 0 ;

q20 D
p
5

4
p
�
Q33 D

p
5

4
p
�
e.�a2 C b2/ :

The moments q2;�1 and q2;�2 follow by the symmetry relations (1.107).

1.22 The current density is proportional to the surface charge density and to the
tangential velocity at the point of reference,

j .x/ D �!r sin �ı.r �R/ Oe� � j� Oe� :
From this one calculates a vector potential by means of the formula (1.116). The
unit vector Oe� is decomposed along the 1- and 2-directions, Oe� D � sin � Oe1 C
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cos� Oe2. Writing the integral for A.r; �; �/ in terms of spherical coordinates, one
has

A.r; �; �/ D �! 1
c

1Z
0

r 02 dr 0
Z

d˝ 0 r 0ı.r 0 � R/ sin � 0

� �� sin �0 Oe1 C cos�0 Oe2
�X
`;m

4�

2`C 1
r`<

r`C1>

Y �
`m. Ox0

/Y`m. Ox/ :

The calculation proceeds along the following lines: As the set-up is axially sym-
metric it is sufficient to calculate A for � D 0. Conversely, the integral over �0
which is proportional to Oe1, is equal to zero. This means that A.r; �; � D 0/ is
proportional to Oe2 and, hence, is equal to the component A� . In the integrand
make the replacement

sin � 0 cos�0 D
r
2�

3

��Y11. Ox0
/C Y1�1. Ox0

/
�

and calculate the angular integral. The induction field is obtained from the result
A D A� Oe� .

1.23 As there is neither a current density nor a time-dependent displacement
current the field H is irrotational. Thus, it can be represented by a gradient field
of a scalar magnetic potential ˚M. In the inner space, inside the smaller of the
two spheres, in the intermediate space, and in the outer space one writes down
multipole expansions of ˚M as follows,

˚
.inner/
M D

1X
`D0

a`r
`P`.cos �/ ;

˚
.inter/
M D

1X
`D0

�
c`

1

r`C1
P`.cos �/C d`r`P`.cos �/

�
; (11)

˚
.outer/
M D

1X
`D0

b`
1

r`C1
P`.cos �/C B0rP1.cos �/ :

In this ansatz we have made use of the fact that the potential must be regular in
r D 0 and that it goes over into the potential of the homogeneous field as the
argument goes to infinity, r !1.

The boundary conditions are: The potential must be continuous at r and at
R; at the two boundary surfaces the tangential component of H is continuous;
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furthermore, the normal component of B is continuous, i.e.

˚
.1/
M D ˚ .2/M ; (12a)

@˚
.1/
M

@�
D @˚

.2/
M

@�
; (12b)

�1
@˚

.1/
M

@r
D �2 @˚

.2/
M

@r
; (12c)

where the numbers 1 and 2 stand for any two neighbouring domains and where
�inner D �outer D 1 in the inner and in the outer spaces, while in the intermediate
space �inter D �. One sees easily that the first two conditions (12a) and (12b)
are equivalent. Therefore, it suffices to require continuity of the potentials only.
Like in Exercise 1.17 one realizes that only the terms with ` D 1 can contribute.
Denoting by r the radius of the smaller, by R the radius of the bigger sphere one
obtains the linear system of equations

a1r
3 D c1 C d1r3 ;

c1 C d1R3 D b1 � B0R3 ;
a1r

3 D � ��2c1 C d1r3	 ;
2b1 CB0R3 D �

�
2c1 � d1R3

	
:

The solution of this system of equations yields the coefficients in the ansatz (11),
viz.

a1 D 9�R3

2.�� 1/2r3 � .�C 2/.2�C 1/R3B0 ; (13a)

c1 D 3.�� 1/r3R3
2.�� 1/2r3 � .�C 2/.2�C 1/R3B0 ; (13b)

d1 D 3.2�C 1/R3
2.�� 1/2r3 � .�C 2/.2�C 1/R3B0 ; (13c)

b1 D B0R3 C 3R3 .� � 1/r3 C .2�C 1/R3
2.�� 1/2r3 � .�C 2/.2�C 1/R3B0 : (13d)

As a test of the result consider the case � D 1, for which the spherical shell is
no longer seen. From (13a) to (13d) one obtains a1 D �B0, c1 D 0, d1 D a1,
b1 D 0; any dependence on either r or R has disappeared.

The magnetic field is obtained by the generic formula

˚M D r˛ cos � ; H D �r˚M D ˛r˛�1 cos � Oer C r˛�1 Oe3 ;

the magnetic induction is B D �H .
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In the limit � ! 1 the coefficients a1, c1, and d1 go to zero, b1 goes to
B0R

3.

Chapter 2 (selected solutions)
2.1 The base-k-forms dxi1 ^ : : : ^ dxik are totally antisymmetric, the indices
i1 to ik can take all values from 1 up to the dimension n of the space. For fixed k
there are �

n

k

�
D nŠ

kŠ.n � k/Š
such base forms. This is shown as follows. In a first step one counts the number
of possibilities to choose k different indices from the set f1; 2; : : : ; ng. The index
i1 can take any value from 1 to n, and thus there are n possibilities; for i2 that has
to be different from i1, there are .n� 1/ possible choices; for i3 with i3 6D i1 and
i3 6D i2, there remain .n � 2/ possibilities; up to ik which can take .n � k C 1/
values. In total, the number of possible choices is

n.n � 1/.n� 2/ � � � .n � k C 1/ D nŠ

.n � k/Š :

As regards the ordering of k different indices there are kŠ ways to do this, viz. as
many as there are permutations of k elements. Only one of them fulfills the con-
dition i1 < i2 < � � � < ik. Therefore, one must divide the number just obtained
by kŠ, thus obtaining the dimension of the space �k.M/.

2.2 It suffices to consider two fixed values � and 
 different from each other.
Then one has

S��A
�� C S��A�� D S��A�� C S��

��A��� D 0 :
Equal values of � and 
 do not occur because A�� D 0. The sum over all values
of the two indices is the sum over all such pairs.

2.3 The indices ˛ and ˇ must be different from each other. Keeping ˛ and ˇ
fixed, the other four indices have values which are not equal to one of these. This
implies that one must have either � D � and 
 D 
, or � D 
 and 
 D �.
Taking the sum over ˛ and ˇ the term "˛ˇ	
"˛ˇ�� and the term "ˇ˛	
"ˇ˛�� give
the same result. Hence the factor 2. With "0123 D 1 one has "0123 D �1, giving
a minus sign in the following formula

"˛ˇ	
"˛ˇ�� D �2


ı	�ı



� � ı	� ı
�

�
:

This is the analogue of (1.48a). Take now � D � and sum over this index to
obtain

"˛ˇ�
"˛ˇ�� D �2.4� 1/ı
� D �6ı
� :
This is the analogue of (1.48b).
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2.4 One calculates the divergence of A0 D A C r�:

r �A0.t;x/ D r �A.t;x/C�x�.t;x/ D r �A.t;x/� r �A.t;x/ D 0 :

In the second step the equation �.1=x � y/ D �4�ı.x � y/ was used and the
integral over y was done. Any further transformation with a gauge function  
that satisfies the homogeneous differential equation � D 0, does not modify
this result.

A gauge transformationA00
� D A0

� � @� with

 .x/ D
x0Z
0

dt 0 A0.t 0;x/

leads to A00
0 D 0, as requested.

2.5 Perhaps the simplest argument is the following: The electron in the initial
state has the four-momentum pi which satisfies p2i D m2ec

2. In the final state
it has the momentum pf, the photon has the momentum k, with p2f D m2ec

2

and k2 D 0. This is in contradiction to energy-momentum conservation which
requires pi D pfCk: The conditionpf �k D 0 can only hold true if pf is lightlike,
i.e. if p2f D 0.

Chapter 3 (selected solutions)
3.1 The physical dimensions of the given quantities are

�
S
	 D MT3 D energy

surface� time
;

�
P
	 D ML�2T�1 D momentum

volume
;

�
u
	 D energy

volume
:

3.2 Rotations are represented by orthogonal3�3-matrices, i.e. one has RR�1 D
1l3. Hence X

i;j

RmiRnj ıij D
X
i

RmiR
T
in D ımn :

The transformation formula for the "-tensor

X
i;j;k

RmiRnjRpk"ijk D "0
mnp
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is the determinant of R whenever .m; n; k/ is an even permutation of .1; 2; 3/,
and is equal to minus this determinant if .m; n; k/ is an odd permutation. The
determinant is invariant, its sign can be represented by "mnp. Hence, "0

mnp D
"mnp .

Chapter 4 (selected solutions)
4.1 From Maxwell’s equations one derives the following boundary conditions:
Given a surface separating two different media “1” and “2” which carries the
surface charge density �, or in which flows the surface current density j ; then
the following relations hold for normal and tangential components of the fields,
respectively, �

D2 �D1

� � On D 4�� ; (14a)�
B2 �B1

� � On D 0 ; (14b)�
E2 �E1

� � On D 0 ; (14c)
�
H 2 �H 1

� � On D �4�
c

j : (14d)

Here On is the normal unit vector which is oriented such that it points from medium
1 to medium 2. Thus, when there are neither surface charge nor surface current
densities the normal components of the fields D and B are continuous, the tan-
gential components of E and the normal component of H are continuous.

4.2 This problem is closely related to Exercise 1.16. The charge density follows
from the continuity equation. The vector potential follows from (4.30). The elec-
tric field and the magnetic induction field are obtained by means of the standard
formulae.

4.3 and 4.4 The charge distribution is

%.x/ D q

2�

h1
a
ı.r � a/ � 1

b
ı.r � b/

i
ı.z/ ;

where r denotes the radial coordinate in cylinder coordinates. With v.x/ D
!jxj Oe� the current density reads

j .x/ D %.x/v.x/ D q!

2�

�
ı.r � a/ � ı.r � b/	ı.z/ Oe� :

The magnetic dipole moment follows from formula (1.120b):

� D 1

2c

•
d3x x � j .x/

D q!

4�c

1Z
0

r dr

C1Z
�1

dz

2�Z
0

d�
�
r Oer C z Oez

� � Oe�
�
ı.r � a/ � ı.r � b/	ı.z/
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D q!

2c

�
a2 � b2� Oer � Oe�

D q!

2c

�
a2 � b2� Oez :

Chapter 5 (selected solutions)
5.1 Inserting �.x/ into the differential equation (A.4) converts it to an alge-
braic equation �

k2 C �2�e�.k/ D �g 1

.2�/3=2
;

which is easy to solve. The original function which is defined over position space,
is obtained by the inverse transformation

�.x/ D � g

.2�/3

•
d3k

eik�x

k2 C �2 :

This integral can be calculated using spherical coordinates. The result is
�g e��r=.4�r/.

5.2 We assume � � �i to be dependent on the generator. By a suitable choice
of the basis of the Lie algebra one can choose the tr.TiTj / diagonal, i.e.

tr.TiTj / D �iıij :
We define then the following totally antisymmetric quantity, with k fixed:

Eijk WD tr

�
Ti ; Tj

	
Tk

�
D tr.TiTjTk/� tr.TjTiTk/ :

This quantity with fixed k can be computed by means of the commutators,

Eijk D i
X
n

Cijn tr
�
TnTk

� D i�kCijk :

Exchange the indices j and k to obtain Eikj D i�jCikj , again with fixed j .
Both Eijk and the structure constants Cmnp are antisymmetric. Comparison of
the last two formulae shows that �k D �j as long as the commutator ŒTj ; Tk	 is
not equal to zero. Note that in a simple group any two generators are related by
nonvanishing commutators. Therefore, all constants �i are equal and, hence, are
independent of i .

5.3 The adjoint representation of SO(3) is three-dimensional. The gauge fields
and the field strengths transform like vectors in R3. Therefore, the symbolic
scalar product in (5.49) is the Euclidean scalar product. A triplet of scalar fields
was treated in Example 5.2 so that it is straightforward to write down an SO(3)-
gauge invariant Lagrange density (5.51).
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5.4 If the structure group is the direct product of two simple Lie groups, every
generator of one group commutes with every generator of the other. Gauge po-
tentials, field strengths, and covariant derivatives of the gauge groups SU(p) and
SU(q) are independent of each other. Therefore, they can be defined with inde-
pendent coupling constants q1 and q2, respectively. Thus, according to (5.33b)
one has for SU(p) and SU(q)

A D iq1

NpX
kD1

Tk
3X

�D0
A.k/� .x/dx� .Np D p2 � 1/ ;

B D iq2

NqX
lD1

Sl
3X

�D0
A.l/� .x/dx

� .Nq D q2 � 1/ :

In the Lagrange density (5.49) there are no interaction terms between the gauge
bosons of one gauge group and those of the other, as all commutators ŒTi ;Sk	
vanish.

5.5 (See the reference quoted in Sect. 5.6 [Constantinescu, Michel, Radicati
1979].)

5.6 In the adjoint representation, using the summation convention for all paired
indices, one has

�
Uad.Ti /;Uad.Tj /

	
ac
D Ci2



C biaC

c
jb � C bjaC cib

�
:

Using the Jacobi relation (5.21) and the antisymmetry of the structure constants
the expression in round brackets on the right-hand side can be rewritten as fol-
lows:

C biaC
c
jb � C bjaC cib D C biaC cjb C C bajC cib D �C kjiC cka D CC kijC cka :

On the other hand, writing the above commutator more explicitly, one obtains

U ad
ab.Ti /U

ad
bc.Tj / � U ad

ab.Tj /U
ad
bc.Ti /

D C kijC cka D iC kij
��iC cka

� D iC kijU ad
ac.Tk/ :

This yields what had to be shown.

Chapter 6 (selected solutions)
6.1 The construction of an atlas and the proof that the transition maps are dif-
feomorphisms are analogous to the case S2R 	 R3. This example is worked out,
e. g. in [ME], Sect. 5.2.3.
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6.2 On the basis of the argument in example 6.3 in Sect. 6.2.3 one obtains
�!=! ' Hg=c2. This yields

�!

�
D �!

!

!

�
D 22:5m � 10ms�2

.3 � 108 ms�1/2
' 0:7% :

6.3 The left side of the supposed identity, when written out, reads

C WD XYZ �XZY C YZX � YXZ CZXY �ZYX
� YZX CZYX �ZXY CXZY � XYZ C YXZ :

The 12 terms cancel pairwise so that one finds C D 0, indeed.
For the given vector fields one has

XY D y@x.x@y/ D y@y C yx@x@y ;
YX D x@y.y@x/ D x@x C xy@y@x ;
XY � YX D y@y � x@x :

In this calculation one used the fact that the base fields commute.

6.4 Evaluating T .1/ and T .2/ on the two vector fields one finds

T .1/
�
a1@1 C a2@2; b1@1 C b2@2

� D a1b2 ;
T .2/

�
a1@1 C a2@2; b1@1 C b2@2

� D a2b1 :
In general, the answers are indeed different.

6.5 One has X	 I� D g	�X
�I� where X�I� is taken from the formula (6.57a).

The obvious equation

@�
�
g	�g

�

� D @� �ı
	� D 0 D @� �g	�� g�
 C g	�@� .g�
 / ; (15)

and the coordinate formula (6.66) are utilized in the following calculation. One
computes

g	�X
�I� D g	�

˚
@� .g

�
X
 /C � ���g�
X



:

In differentiating the first term on the right-hand side by means of the product
rule, one finds first the expected term g	�g

�
@�X
 D @�X	 . The other term as
well as the remaining terms must yield the Christoffel symbol (�� 
�	 ). This is
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verified as follows:

g	�
�
@�g

�

�C g	�� ���g�


D g	�
�
@�g

�

�C 1

2
g	�g

�˛
�
.@�g�˛/C .@�g�˛/ � .@˛g��/

	
g�


D g	�
�
@�g

�

� � 1

2
g	�.@�g

�˛/ı
˛ �
1

2
g	�.@�g

�˛/g�˛g
�


� 1
2
ı˛	 .@˛g��/g

�
 :

Up to here the relation (15) was used twice in order to shift the derivative to g�˛ .
If one applies the same trick to the first three terms of the expression obtained in
the last step, the first two can be combined so that one finds all in all

� 1
2
.@�g	�/g

�
 C 1

2
.@�g	�/ı

�
�g

�
 � 1
2
.@	g��/g

�


D �1
2
g�


�
@�g	� C @	g�� � @�g	�

	 D �� 
�	 :
In the last but one line the summation index 
 of the third term was replaced by
� and, finally, the formula (6.66) was inserted. This proves the formula for the
covariant derivative of a tensor of type .0; 1/.

One realizes that the proof is sensibly more transparent if one applies the
coordinate-free formula (6.40a) and introduces local coordinates there: Let V D
V �@� be a vector field, and ! D X� dx� a one-form. According to (6.40a) one
has

.DV !/ .W / D DV .!.W //� ! .DV .W // :
Choosing now V D @� andW D @	 one obtains



D@�

.X� dx�/
�
.@	 / D @�X	 � X� dx�

�
� 
�	@


�
D @�X	 � � 
�	X
 :

This is the same formula.

6.6 Consider two overlapping charts .U; '/ and .V;  / for the spacetime .M; g/
and let x 2 U \ V be a point in their intersection. Using local coordinates the
same point is represented by

'.x/ D ˚u0.x/; u1.x/; u2.x/; u3.x/
 ; and

 .x/ D ˚v0.x/; v1.x/; v2.x/; v3.x/

in two copies of R4. The transition maps . ı'�1/ and .' ı �1/ are diffeomor-
phisms so that v�.x/ D . ı '�1.u//�. The local representations of the metric
in these charts are related by

g D g�� du� ˝ du� D g0
˛ˇ dv˛ ˝ dvˇ :
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The differentials fulfill the linear relation dv˛ D .@v˛=@u�/du�, so that

g�� D @v˛

@u�
@vˇ

@u�
g0
˛ˇ : (16)

The comparison of arbitrary coordinates and of normal coordinates v˛ � z˛

yields the first of the formulae to be shown, viz.

g�� D @z˛

@u�
@zˇ

@u�
�˛ˇ : (17a)

For the inverse of the metric tensor this implies

g�� D @u�

@z˛
@u�

@zˇ
�˛ˇ : (17b)

Now one calculates the Christoffel symbols by means of the formula (6.66) and
expresses them in terms of normal coordinates as follows:

� ��	 D
1

2
g�


�
@g	


@u�
C @g�


@u	
� @g�	
@u


�

D 1

2

�
@u�

@z N̨
@u


@z
Ň �

N̨ Ň
�(

@

@u�

 
@z˛

@u	
@zˇ

@u

�˛ˇ

!

C @

@u	

 
@z˛

@u�
@zˇ

@u

�˛ˇ

!
� @

@u


 
@z˛

@u�
@zˇ

@u	
�˛ˇ

!)
:

The tensor ˜ is constant and may be taken out of the derivatives. Recalling that
all indices except �, � and � are summation indices one realizes that the three
terms in curly brackets can be combined to

� ��	 D
@u�

@z N̨

 
@u


@z
Ň
@zˇ

@u


!
@2z˛

@u�@u	
� N̨ Ň

�˛ˇ D @u�

@z˛
@2z˛

@u�@u	
; (18)

where the factor in parentheses is ıˇŇ so that only N̨ D ˛ contributes.

In (18) the z˛ are normal coordinates, u� are arbitrary coordinates. This formula
applies equally well to the transformation u 7! z.u/ as to the transformation
v 7! z.v/. From this one derives the transformation formula for Christoffel sym-
bols under the diffeomorphism u 7! v. One finds

� 0 

�� D

@v


@u�
@u�

@v�
@u	

@v�
� ��	 C

�
@v


@u	
@2u	

@v�@v�

�
: (19)

This affine transformation behaviour shows that the Christoffel symbols cannot
be components of a tensor field. Only antisymmetric combinations of them such
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as they appear in formula (6.80c) for the Ricci tensor or in formula (6.76) for the
Riemann tensor, can be tensors. In these cases the inhomogeneous terms cancel.

6.7 In order to show that the Weyl tensor has the same symmetry properties
as the Riemann tensor it is sufficient to verify this in the additional terms which
contain the Ricci tensor or the curvature scalar. The propertyC ��	
 D 0 is easily
confirmed by a little calculation. For other contractions use the symmetry prop-
erties.
Taking into account the symmetry properties of the Weyl tensor one sees that the
property

C ��	
 D 0 (20)

together with invariance under � $ 
 , in dimension n, yields n.n C 1/=2 con-
straints. The number of independent components of the Weyl tensor, using (6.78),
is

NC D NR � 1
2
n.nC 1/ D 1

12
n2.n2 � 1/� 1

2
n.nC 1/

D 1

12
n.nC 1/.nC 2/.n� 3/ : (21)

In dimension 4 it has ten independent components. In dimension 3 one has
NC D 0, the Weyl tensor vanishes.
In the case of a conformally flat metric take � D ef and calculate the Christoffel
symbols by means of (6.66). One finds

� 	�� D .@�f /ı	� C .@�f /ı	� � .@�f /�	���� :

This is used to calculate R, R.Ricci/, and S , and, eventually, the Weyl tensor. One
finds, indeed, that it vanishes.





Index

Acceleration field, 357
of charge in motion, 198

Action functional
for fields, 158

Addition theorem
for spherical harmonics, 77

Ampère’s law, 83
Angular momentum density

of the radiation field, 182
Approximation

paraxial, 239
Atlas, 325

complete or maximal, 326
Axial vector field, 99

Beam
paraxial, 239

Bessel functions
spherical, 217

Bianchi identities, 360
Biot–Savart law, 16
Black hole, 374, 385
Blue shift, 319
Bohr magneton, 86
Boundary condition

Dirichlet, 67
Neumann, 67

Brewster angle, 231

Charge conjugation, 101
Chart, 325
Christoffel symbols

of a connection, 348

Classical electron radius, 414
Codifferential, 39
Compactness

of a Lie group, 270
Conductivity, 95
Connection, 293, 343, 346

Levi-Civita–, 351
Construction theorem

for tensor derivations, 341
Continuity equation, 19
Contraction, 337
Coordinate system

local, 325
Coordinates

Gaussian, 316
Cosmological constant, 370
Cotangent space, 102
Covariance

Lorentz, 131
Covariant derivative, 293

for non-Abelian gauge theory, 281
Current density, 16
Curvature

Riemannian, 350
Curvature form

in non-Abelian gauge theory, 282
Curvature scalar, 365
Curve

on a manifold, 328

Decomposition theorem, 122
Derivative

covariant, 151
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exterior, 333
Diamagnetism, 54
Dielectric constant, 51

of vacuum, 25
Dipole

electric, 63, 221
Hertzian, 220
magnetic, 225

Dipole density
magnetic, 86

Dipole field
magnetic, 89

Dipole layer
electric, 64

Displacement current, 48
Duality

electric-magnetic, 131
Dynamical system, 332

Eikonal, 236
Eikonal equation, 237
Einstein tensor field, 366
Einstein’s equations, 369
Electrostatics, 49
Energy density

magnetic, 94
of electric field, 93
of Maxwell fields, 180

Energy-momentum
tensor field, 162

Energy-momentum tensor
for dust, 323
for ideal fluid, 324

Equipotential surfaces, 56
Equivalence principle

strong, 314
weak, 313

Ether, 131
Euler–Lagrange equations

for fields, 158
Exterior form
k-form, 105
closed, 107
exact, 107
functions as zero-forms, 107
one-form, 102
two-form, 105

Far zone
of oscillating source, 216

Faraday
law of induction, 12

Fermat’s principle, 237, 241
Fermi distribution, 60
Field gradient, 83
Field strength tensor, 127

for non-Abelian gauge theory, 282
Flux

magnetic, 12
Force

electromotive, 11
magnetomotive, 84

Fourier-Transformation, 233
Fresnel’s formulae, 229
Function

smooth, 326

Gauge
Coulomb-, 45
Lorenz-, 133
transversal, 45

Gauge group, 175, 267
Gauge potential

generalized, 278
Gauge transformation

for U.1/-field, 43
global, 170
in covariant notation, 133
local, 175
of the first kind, 170

Gauss
curve, 235
law, 7

Gauss beam
beam size, 254

Gauss’ law, 14
Gauss’ theorem

in dimension four, 135
Gaussian solution, 252
Generating function

for Legendre polynomials, 74
Geodesic, 316, 322, 357
Geometric optics, 236
Gradient

spacetime-, 19
Graviton, 312
Green function

method of, 66
retarded, 187

Green’s theorems, 10

Hankel functions
spherical, 217

Harmonic solutions
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of wave equation, 202
Helicity

of the photon, 206, 208
Helmholtz equation, 185

homogeneous, 202
Higgs particles, 307
Hilbert action, 371
Horizontal subspace, 293
Hysteresis, 55

Image charges
method of, 410

Index
of a bilinear form, 266
of manifold, 344

Index of refraction, 226
negative, 240

Induction
Faraday’s law, 12

Integral curve
maximal, 332
of a vector field, 331

Killing metric, 275

Lagrangian density, 157
for Maxwell fields, 166

Laplace equation, 57
Laplace–Beltrami operator, 40
Laplace–de Rham operator, 39
Left-handed media, 247
Legendre functions

of first kind, 71
Legendre polynomials, 72
Lens

plano-convex, 237
Lenz’s rule, 12, 34
Levi-Civita symbol

in dimension four, 128, 144
Liénard–Wiechert

potential, 195
Lie derivative, 341
Lie group, 269
Light deflection, 316
Lorentz force, 17

Magnetic moment, 86
Magnetostatics, 49
Manifold

semi-Riemannian, 316, 344
manifold

Lorentz, 345

Mapping
conformal, 61

Mass
gravitational, 312
inertial, 312

Maxwell relation
for index of refraction, 226

Maxwell stress tensor, 180
Maxwell tensor field, 177
Metamaterials, 242, 247
Method of images, 410
Metric

flat, 315
Metric field, 335
Metric tensor, 121, 336
Minimal coupling, 151, 173
Minimal substitution, 173
MKSA-system, 28
Momentum density

of Maxwell fields, 180
Momentum field

canonically conjugate, 161
Multipole moments, 79

Near zone
of oscillating source, 216

Neumann functions
spherical, 217

Noether
theorem of, 323

Noether-invariant, 157
Normal coordinates, 316

One-form
smooth, 333

Optical path length, 240
Optics

geometric, 236
ray, 236
wave, 237

Parallel transport, 278
of vectors, 346

Paramagnetism, 54
Paraxial beams, 249
Perihelion precession

of Mercury, 317, 379
Permeability

magnetic, 54
magnetic of vacuum, 25

Photon, 49
Planck length, 312



432 Index

Planck mass, 311
Poisson equation, 14, 56
Polarizability

electric, 50
magnetic, 53

Polarization
circular, 205
elliptic, 206
left-circular, 208
linear, 205
right-circular, 208

Potential
four-, 44
scalar, 42
vector, 42

Poynting vector, 180
Poynting vector field, 180
Poynting’s theorem, 180
Principal fibre bundle, 277
Proca Lagrange density, 264
Product

exterior, 104
Pseudoscalar field, 99

Radiation field, 33
Radiation pressure, 181
Radiation zone, 216
Ray optics, 236
Red shift, 317, 318
Residual symmetry, 301
Ricci condition, 351
Ricci tensor field, 364

Schwarzschild metric, 373
Schwarzschild radius, 374
Self energy, 92
SI-system, 28
Signature

of a vector space, 144
Snellius’ law, 227
Sources

in Maxwell’s equations, 33
Spherical harmonics, 71
Stokes parameters, 211
Stokes’ theorem, 9
Structure constants

of a Lie algebra, 271
Structure group, 175, 267

Superposition principle, 200
Susceptibility

electric, 51
magnetic, 54

Symmetry
hidden, 289

Symmetry breaking
explicit, 300
spontaneous, 289, 298, 300

System of units
Gaussian, 29
SI, or MKSA, 28

Tangent vector, 328
Tangent vector field, 331
Tensor derivation, 338
Tensor field

of electromagnetic field strengths, 127
smooth, 334

Tensors, 333
Tidal forces, 351
Torsion, 349
Total reflection, 232

Units
natural, 32, 166

Universality of gravitation, 313

Vector field
on manifold, 330
complete, 332
parallel, 357
smooth, 328, 330

Vector potential, 42
Velocity field

of charge in motion, 198
Volume form, 110

Wave equation, 183
in media, 200

Wave number, 201
Wave optics, 237
Wave vector, 201
Weinberg angle, 297
Weyl tensor field, 402

Yang Mills theory, 269
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