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Preface

Based on the authors’ ground-breaking research, the book presents an ideol-

ogy, a novel multi-paradigm methodology, and advanced computational mod-

els for automated EEG-based diagnosis of neurological disorders that the au-

thors believe will be the wave of the future and an important tool in the prac-

tice of neurology. It is based on adroit integration of three different computing

technologies and problem solving paradigms: neural networks, wavelets, and

chaos theory. The book also includes three introductory chapters in order to

introduce the readers to these three different computing paradigms.

Epilepsy, the primary application focus of the book, is a common disor-

der affecting approximately 1% of the population in the United States and

is commonly accompanied by intermittent abnormal firing of neurons in the

brain leading to recurrent and spontaneous seizures (with no apparent ex-

ternal cause or trigger). At present, epileptic seizure detection and epilepsy

diagnosis are performed primarily based on visual examinations of electroen-

cephalograms (EEGs) by highly trained neurologists. While many attempts

have been reported in the literature none has been accurate enough to per-

form better than practicing neurologists/epileptologists. Effective algorithms

for automatic seizure detection and prediction can have a far-reaching impact

on diagnosis and treatment of epilepsy.

In this book, the clinical epilepsy and seizure detection problem is mod-

eled as a three-group classification problem. The three subject groups are: a)

healthy subjects (normal EEG), b) epileptic subjects during a seizure-free in-

terval (interictal EEG), and c) epileptic subjects during a seizure (ictal EEG).
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Epilepsy diagnosis is modeled as the classification of normal EEGs and inter-

ictal EEGs. Seizure detection is modeled as the classification of interictal and

ictal EEGs.

The approach presented in this book challenges the assumption that the

EEG represents the dynamics of the entire brain as a unified system and needs

to be treated as a whole. On the contrary, an EEG is a signal that represents

the effect of the superimposition of diverse processes in the brain. There is

no good reason why the entire EEG should be more representative of brain

dynamics than the individual frequency sub-bands. In fact, the sub-bands

may yield more accurate information about constituent neuronal activities

underlying the EEG and, consequently, certain changes in the EEGs that are

not evident in the original full-spectrum EEG may be amplified when each

sub-band is analyzed separately. This is a fundamental premise of the authors’

approach.

After extensive research and discovery of mathematical markers, the au-

thors present a methodology for epilepsy diagnosis and seizure detection with a

high accuracy of 96%. The technology presented in the book outperforms prac-

ticing neurologists/epileptologists. It has the potential to impact and trans-

form part of the neurology practice in a significant way.

The book also includes some preliminary results toward EEG-based di-

agnosis of Alzheimer’s disease (AD) which is admittedly in its infancy. But

the preliminary findings presented in the book provide the potential for a

major breakthrough for diagnosis of AD. The methodology presented in the

book is general and can be adapted and applied for diagnosis of other brain

disorders. The senior author and his research associates are currently extend-

ing the work to automated EEG-based diagnosis of AD and other neurological

disorders such Attention-Deficit/Hyperactivity Disorder (ADHD) and autism.

A second contribution of the book is presenting and advancing Spiking
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Neural Networks as the seminal foundation of a more realistic and plausi-

ble third generation neural network. It is hoped the fundamental research in

this area of neuronal modeling will advance in the coming years resulting in

more powerful computational neural network models not only for diagnosis of

neurological disorders but also many other complex and intractable dynamic

pattern recognition and prediction phenomena.

Hojjat Adeli

Samanwoy Ghosh-Dastidar
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Part I

Basic Concepts

1





1

Introduction

This book presents a novel approach for automated electroencephalogram

(EEG)-based diagnosis of neurological disorders such as epilepsy based on

the authors’ ground-breaking research in the past six years. It is divided into

four parts. Basic concepts necessary for understanding the book are reviewed

briefly in Chapters 2, 3, and 4. Chapter 2 introduces the readers to time-

frequency analysis and wavelet transform. Chaos theory is described in Chap-

ter 3. Chapter 4 presents the design of different classifiers.

At present, epileptic seizure detection and epilepsy diagnosis are performed

mostly manually based on visual examinations of EEGs by highly trained

neurologists. In epilepsy monitoring units, seizure detection is performed by

semi-automated computer models. However, such models require close hu-

man supervision due to frequent false alarms and missed detections. Epilepsy

diagnosis is more complicated due to excessive myogenic artifacts, interfer-

ence, overlapping symptomatology with other neurological disorders, and low

understanding of the precise mechanism responsible for epilepsy and seizure

propagation.

While many attempts have been reported in the literature none is accu-

rate enough to perform better than a practicing neurologist. In this book, the

clinical epilepsy and seizure detection problem is modeled as a three-group

classification problem. The three subject groups are: a) healthy subjects (nor-

mal EEG), b) epileptic subjects during a seizure-free interval (interictal EEG),

3
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and c) epileptic subjects during a seizure (ictal EEG). Epilepsy diagnosis is

modeled as the classification of normal EEGs and interictal EEGs. Seizure

detection is modeled as the classification of interictal and ictal EEGs. Part

II is devoted to automated EEG-based diagnosis of epilepsy starting with an

introduction to EEG and epilepsy in Chapter 5. Chapter 6 presents analysis

of EEGs in an epileptic patient using wavelet transform. Chapter 7 presents a

wavelet-chaos methodology for analysis of EEGs and EEG sub-bands. Chap-

ter 8 describes a mixed-band wavelet-chaos neural network methodology for

classifying EEGs obtained from the three subject groups. Chapter 9 shows

how the methodology can be further improved by employing a principal com-

ponent analysis (PCA)-enhanced cosine radial basis function (RBF) neural

network.

While EEG-based diagnosis of Alzheimer’s disease (AD) is still in its in-

fancy, the authors’ preliminary findings provide the potential for a major

breakthrough for diagnosis of AD. Part III deals with AD. Chapter 10 presents

a review of imaging, classification, and neural computational models for AD.

Chapter 11 reviews analyses of EEGs obtained from AD patients. Chapter 12

presents a spatio-temporal wavelet-chaos methodology for EEG-based diag-

nosis of AD with some preliminary results.

Part IV is devoted to a new and advanced concept, Spiking Neural Net-

works (SNN), referred to as the third generation neural networks. Spiking

neurons, their biological foundations, and training algorithms are presented

in Chapter 13. Chapter 14 presents an improved SNN and its application to

EEG classification and epilepsy diagnosis and seizure detection. Chapter 15

describes a new supervised learning algorithm for multi-spiking neural net-

works (MuSpiNN). Chapter 16 presents applications of MuSpiNN to EEG

classification and epilepsy diagnosis and seizure detection. Finally, some fu-

ture directions are noted in Chapter 17.



2

Time-Frequency Analysis: Wavelet

Transforms

2.1 Signal Digitization and Sampling Rate

A time series is defined as a series of discrete data points representing measure-

ments of some physical quantity over time. Following this definition, any signal

can be conceptualized as a time series (provided that the dependent variable

is time). However, since most real world signals are analog and continuous,

they have to be digitized or discretized to fit the definition of a time series.

To properly differentiate between the two, a continuous signal is denoted by

f(t) and the corresponding discretized time series is denoted by f [n], where

n is the sample number (n ∈ Z, where Z is the set of integers). The difference

between the two is illustrated in Fig. 2.1, which shows the continuous signal

f(t) = sin(t) plotted as a function of time and the corresponding discretized

time series f [n] = sin(nT ), where T is the sampling interval, sampled at every

one-second interval (T = 1 second). Since all signals considered in this book

are time-dependent and digitized, the terms signal and time series will be

used interchangeably unless specified otherwise.

An important concept in signal analysis is that of the sampling rate (or the

sampling frequency) which defines the number of samples or measurements

taken per second from the continuous signal to generate the discretized sig-

5
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(a)
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(b)

FIGURE 2.1
(a) A continuous signal f(t) = sin(t) plotted as a function of time and (b)
the discretized form of the same signal sampled at every 1 second interval
(sampling frequency = 1 Hz)
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nal. Numerically, the sampling rate is computed as the inverse of the sampling

interval. For instance, in Fig. 2.1(b), the sampling rate is 1 data point per sec-

ond (sampling frequency = 1 Hz). The significance of the sampling frequency

is illustrated in Fig. 2.2. Figure 2.2 shows the same continuous signal in Fig.

2.1(a) but with an additional blip between t = 1 and 2 seconds and its dis-

cretized form. However, despite this difference in the signals, it can be clearly

observed in Fig. 2.2(b) that the discretized time series is identical to that in

Fig. 2.1(b). This implies that enough samples were not selected from the sig-

nal shown in Fig. 2.2(a) for accurate characterization of the sharp blip in the

signal. In general, if a signal contains transient waveforms or high-frequency

components, it must be sampled at a higher rate.

It is clear that the selection of the sampling rate is very important for

accurate signal representation. According to the Nyquist-Shannon sampling

theorem in information theory, a signal can be completely characterized if it

is sampled at a rate that is greater than twice the highest frequency contained

in the signal. In other words, if the highest frequency component in a signal

has a frequency of fMax Hz, then the signal must be sampled at 2fMax Hz to

prevent information loss (similar to that demonstrated in Fig. 2.2). A corollary

of this theorem is that if the signal is sampled at 2fNyq Hz, then the maximum

useful frequency contained in the signal is limited to fNyq, which is called the

Nyquist Frequency .

2.2 Time and Frequency Domain Analyses

Time-domain analysis of any signal primarily involves an analysis of the mea-

surements or data points in time as they appear as part of the waveform. As a

result, time-domain measures are often the easiest to visualize. In time-domain
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FIGURE 2.2
(a) A continuous signal f(t) = sin(t) with an additional blip between t = 1
and t = 2 seconds plotted as a function of time and (b) the discretized form
of the same signal sampled at every 1 second interval (sampling frequency =
1 Hz)
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analysis, the numerical values of the measurements recorded at a series of in-

stants of times are of paramount importance. The most common time-domain

signal characteristics include statistical measures such as the mean, median,

and standard deviation. More advanced statistical measures are also employed

to better understand the temporal characteristics of the signal or how the sig-

nal changes with time. Such measures include the change in signal, the rate

of change of the signal, moving average, autocorrelation, and autoregression.

Although time-dependent signals are easy to visualize as a function of time,

certain characteristics of the signal such as component frequencies of the signal

cannot be obtained from a visual inspection. Moreover, signal manipulations

and computations such as convolutions and filtering are often much simpler to

perform in the frequency domain. This is not surprising because many of these

concepts are frequency domain concepts. As a result, many of the modern

signal processing techniques are based on frequency-domain measures. Some

signal processing techniques such as smoothing can be performed in the time

or frequency domain but the methods used may be different for each domain.

The Fourier transform has long been a staple of the signal processing

field and is used to express any signal in the time domain into the frequency

domain. The basic assumption is that any signal can be expressed as the sum of

a number of sinusoids with varying frequencies and amplitudes. This is further

extended to be applicable to real-world signals, which are usually not perfectly

periodic. Therefore, the Fourier transform decomposes the given signal into its

constituent frequency components. Assuming that both time and frequency

domain representations of the signal are continuous, the Fourier transform of

the continuous signal f(t) is expressed as:

F (ω) =

∞
∫

−∞

f(t)e−iωtdt, ω ∈ R (2.1)
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where R is the set of real numbers. The signal can be reconstructed using the

inverse Fourier transform as:

f(t) =
1

2π

∞
∫

−∞

F (ω)eiωtdω, t ∈ R (2.2)

The discrete-time Fourier transform (DTFT) is used to compute the

Fourier transform of the discretized time series f [n] as:

F (ω) =

∞
∑

−∞

f [n]e−iωn, ω ∈ R (2.3)

In this case, the time-domain representation is discrete but the frequency do-

main representation remains continuous. The time series can be reconstructed

as:

f [n] =
1

2π

π
∫

−π

F (ω)eiωndω, n ∈ Z (2.4)

The discrete Fourier transform (DFT) is the discretized form of the DTFT

evaluated at ω = 2πk/N and is expressed as:

F [k] =

N−1
∑

n=0

f [n]e−i 2π
N

kn, k = 0, 1, . . . , N − 1 (2.5)

where N is the number of samples in time series f [n]. In this case, both time

and frequency domain representations of the signal are discrete. The time

series can be reconstructed as:

f [n] =
1

N

N−1
∑

n=0

F [k]ei
2π
N

kn, n ∈ Z (2.6)

The most commonly used algorithm for computing the DFT is a computa-

tionally optimized algorithm known as the fast Fourier transform (FFT).
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2.3 Time-Frequency Analysis

2.3.1 Short Time Fourier Transform (STFT)

Real world signals are usually non-stationary and contain many transient

events. The infinite basis functions used in Fourier analysis are primarily suit-

able for extracting frequency information from periodic, non-transient signals.

Therefore, Fourier transforms are unable to appropriately capture the tran-

sient features in a signal. Moreover, Fourier coefficients of a signal are deter-

mined from the entire signal support. This implies that the frequency spectrum

of a signal as a result of the Fourier transform is not localized in time and the

temporal information cannot be extracted readily from the Fourier transform

coefficients. Consequently, if additional data are added over time, the Fourier

transform coefficients change. Any localized event in a signal cannot be easily

located in time from its Fourier transform.

The retention of only the frequency information of a signal and not the

time information is a major disadvantage. The short-time Fourier transform

(STFT) attempts to overcome this shortcoming by mapping a signal into

a two dimensional function of frequency and time (Gabor, 1946). STFT is

a time-frequency analysis method in which time and frequency information

is localized by a uniform-time sliding window for all frequency ranges. In

other words, only a small local window of the signal is analyzed using Fourier

transform. This window is then shifted along the signal to analyze the next

signal segment, and so on until the entire signal is analyzed.

Many window functions are available for use with STFT. A rectangular

window gives equal weights to all data points within the window. A special

case of the STFT is the Gabor transform (Gabor, 1946) in which a Gaussian

function is employed as the window and the center of the function is located
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on the time instant being analyzed. Using a Gaussian window means that

points within the window that are closest to the center of the window have a

greater weight as compared to points in the periphery. However, the precision

of this method is limited by the window size, which stays the same for all

frequencies.

2.3.2 Wavelet Transform

In the last two decades, many models have been developed that are based

on the wavelet transform. Wavelets can be literally defined as small waves

that have limited duration and zero average values. An example wavelet is

compared to a sine wave in Fig. 2.3. They are mathematical functions capable

of localizing a function or a set of data in both time and frequency. Wavelets

can be stretched or compressed and used to analyze the signal at various levels

of resolution. Stretched and compressed versions of the wavelet in Fig. 2.3

are shown in Fig. 2.4. Thus, the wavelet transform acts like a mathematical

microscope, zooming into small scales to reveal compactly spaced events in

time and zooming out into large scales to exhibit the global waveform patterns.

The root of wavelets can be traced back to the thesis of Haar in 1909

(Daubechies, 1992). In the 1930s, scale-varying basis functions were developed

in mathematics, physics, and electronics engineering, as well as in seismology

independently. The broad concept of wavelets was introduced in the mid 1980s

by Grossman and Morlet (1984). The wavelet transform is an effective tool

in signal processing due to attractive properties such as time-frequency local-

ization (obtaining features at particular times and frequencies), scale-space

analysis (extracting features at various locations in space at different scales)

and multi-rate filtering (separating signals with varying frequency content)

(Mallat, 1989; Daubechies, 1992; Meyer, 1993; Jameson et al., 1996; Burrus
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FIGURE 2.3
General forms of the sine function and a generic wavelet [Adapted from Hub-
bard (1998)]

 

 

 

FIGURE 2.4
A stretched (large scale) and compressed (small scale) wavelet [Adapted from
Hubbard (1998)]
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et al., 1998; Mallat, 1998; Rao and Bopardikar, 1998; Adeli and Samant, 2000;

Samant and Adeli, 2000; Ghosh-Dastidar and Adeli, 2003).

Similar to Fourier transform, wavelet transform can be discrete or contin-

uous. The continuous wavelet transform (CWT) can operate at every scale,

from the scale of the original signal to a maximum, which is determined on

the basis of need and available computational power. In CWT, the signal

to be analyzed is matched and convolved with the wavelet basis function at

continuous time and frequency increments. However, it must be remembered

that even in CWT the signal itself has to be digitized. Continuous time and

frequency increments merely indicate that data at every digitized point or

increment is used. The CWT is also continuous in the sense that during anal-

ysis, the wavelet is shifted smoothly over the full domain of the function being

transformed.

On the other hand, the discrete wavelet transform (DWT) uses dyadic

(powers of 2) scales and positions (based on powers of 2) making it compu-

tationally very efficient without compromising accuracy (Karim and Adeli,

2002b; Adeli and Ghosh-Dastidar, 2004; Jiang and Adeli, 2005a,b). As a re-

sult, the original signal is expressed as a weighted integral of the continuous

wavelet basis function. To avoid redundancy between the basis functions in

DWT, these basis functions are often designed to be orthogonal, i.e., the inner

product of any pair of basis functions is zero. In DWT, the inner product of

the original signal with the wavelet basis function is taken at discrete points

(usually dyadic to ensure orthogonality) and the result is a weighted sum of

a series of basis functions.

The basis for wavelet transform is the wavelet function. Wavelet functions

are families of functions satisfying prescribed conditions, such as continuity,

zero mean amplitude, and finite or near finite duration, and orthogonality.

This chapter covers a brief introduction to wavelet transforms. For a more
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detailed description, please refer to the literature (Chui, 1992; Strang, 1996;

Samant and Adeli, 2000; Karim and Adeli, 2002b).

If the signal f(t) is a square integrable function of time t, i.e.,
∑

∞

−∞
|f(t)|2dt is finite, then the continuous wavelet transform of f(t) is de-

fined as (Chui, 1992):

Wa,b =

∞
∫

−∞

f(t)
1

√

|a|
ψ∗

(

t− b

a

)

dt (2.7)

where a, b ∈ R, a 6= 0, and the asterisk (*) denotes the complex conjugate of

the function. The wavelet function is defined as:

ψa,b(t) =
1

√

|a|
ψ∗

(

t− b

a

)

(2.8)

where the factor 1/
√

|a| is used to normalize the energy so that the energy

stays at the same level for different values of a and b, i.e., at different levels

of resolution. Equation (2.7) can now be expressed in the general form of the

CWT as:

Wa,b =

∞
∫

−∞

f(t)ψ∗

a,b(t)dt (2.9)

The wavelet function ψa,b(t) becomes narrower when a is increased and dis-

placed in time when b is varied. Therefore, a is called the scaling parameter

which captures the local frequency content and b is called the translation pa-

rameter which localizes the wavelet basis function in the neighborhood of time

t = b. The inverse wavelet transform is used to reconstruct the signal as:

f(t) =

∞
∫

−∞

∞
∫

−∞

Wa,bψa,b(t)dadb (2.10)

Analyzing the signal using CWT at every possible scale a and translation
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b is computationally very intensive. Therefore, to make the computational

burden manageable, discrete wavelets are obtained in DWT by considering

discrete values of the scaling and translation parameters a and b based on

powers of two (dyadic scales and translations):

aj = 2j , bj,k = k2j for all j, k ∈ Z (2.11)

Substituting in Eq. (2.8) yields:

ψj,k(t) = 2−j/2ψ(2−jt − k) for all j, k ∈ Z (2.12)

The set of functions ψj,k(t) forms a basis for the square integrable space L2(R).

The set of basis functions ψj,k(t) is selected to be orthogonal. As a result, the

redundant information in CWT is discarded and the original signal can be

reconstructed from the resulting wavelet coefficients accurately and efficiently

without any loss of information (Strang, 1996) as:

f(t) =

∞
∑

j=−∞

∞
∑

k=−∞

Wj,kψj,k(t) (2.13)

It is clear that an infinite number of wavelets would be required to define

the original signal. To make the number of wavelets finite, the concepts of scal-

ing function and multi-resolution analysis need to be introduced (Daubechies,

1992; Burrus et al., 1998; Goswami and Chan, 1999). In essence, a finite num-

ber of wavelets are employed to represent the signal down to a certain scale

and the remainder of the signal is represented by the scaling function. Similar

to the original signal, the scaling function may be expressed as:

ϕ(t) =

∞
∑

j=−∞

∞
∑

k=−∞

Wj,kψj,k(t) (2.14)
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The general representation of the scaling function (Eq. 2.14) is the same as

that of the signal (Eq. 2.14) because the scaling function can be conceptualized

as a low-pass filtered version of the signal. The only difference is that the

scaling function employs an infinite number of wavelets up to a certain scale

j as described shortly from the perspective of multi-resolution analysis.

Multi-resolution analysis provides an effective way of implementing DWT

(Mallat, 1989) in which the square integrable space L2(R) is decomposed into

a direct sum of the subspaces Wj , where j lies in the range −∞ to ∞. The

square integrable space is expressed as:

L2(R) = . . .W−3 ⊕W−2 ⊕W−1 ⊕W0 ⊕W1 ⊕W2 ⊕W3 ⊕ . . . (2.15)

This implies that at the boundary condition j = −∞, the subspace covers

only the lowest resolution signal which is the null set {φ} and at j = ∞, the

subspace covers the original signal space L2(R) with every detail. If the closed

subspaces Vj are defined as:

Vj =Wj+1 ⊕Wj+2 ⊕Wj+3 ⊕ . . . for all j ∈ Z (2.16)

where ⊕ indicates direct sum, then the subspaces Vj are a multi-resolution

approximation of the square integrable space L2(R). Thus, the subspaces Wj

are the orthogonal complement of the subspaces Vj :

Vj−1 = Vj ⊕Wj for all j ∈ Z (2.17)

For the DWT, the scaling and wavelet functions are expressed as (Burrus

et al., 1998; Goswami and Chan, 1999):

ϕ(2jt) =

∞
∑

k=−∞

h0(k)
√
2ϕ(2j+1t− k) (2.18)
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and

ψ(2jt) =

∞
∑

k=−∞

h1(k)
√
2ϕ(2j+1t− k) (2.19)

where h0(k) represents the sequence of scaling function coefficients or the

scaling filter and h1(k) represents the sequence of wavelet function coefficients

or the wavelet filter.

Finally, the multi-resolution decomposition formula for DWT of the orig-

inal function f(t) is obtained as:

f(t) =

∞
∑

k=−∞

ckϕk(t) +

∞
∑

k=−∞

∞
∑

j=0

dj,kψj,k(t) (2.20)

where dj,k are the wavelet coefficients, and ck are the scaling coefficients. In

the right-hand side of Eq. (2.20), the first term represents an approximation

of the general trend of the original signal and the second term represents the

local details in the original signal. The wavelet coefficients dj,k multiplied by

the dilated and translated wavelet function can be interpreted as the local

residual error between successive signal approximations at scales j − 1 and j.

Therefore, the detail signal at scale j is computed as:

rj(t) =

∞
∑

k=−∞

dj,kψj,k(t) (2.21)

An efficient DWT filter algorithm can be implemented based on multi-

resolution analysis. The high-pass filter h1(k) corresponding to the wavelet

function ψj,k(t) extracts the signal details and the low-pass filter h0(k) cor-

responding to the scaling function ϕj,k(t) extracts the trend or coarser in-

formation in the signal. In the DWT filter implementation, the signal is first

down-sampled (reduced by half). Next, the down-sampled signal is convolved

with the high-pass filter to produce the detail wavelet coefficients and with

the low-pass filter to produce the shape approximating scaling coefficients.
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FIGURE 2.5
Level 1 wavelet decomposition

The purpose of the down-sampling is to avoid doubling the size of the sample

during convolution.

After a single level decomposition, two sequences corresponding to the

wavelet and scaling coefficients are obtained, as shown in Fig. 2.5. These

sequences represent the high and low resolution components of the signal.

However, such a single level decomposition may not always separate out all

the desirable features. Therefore, the low resolution components are further

decomposed into low and high resolution components after a second level of

decomposition (as shown in Fig. 2.6), and so on. This process forms an inte-

gral part of the multi-resolution analysis where the decomposition process is

iterated, with successive approximations being decomposed in turn, so that a

single original signal may be examined at different levels with multiple resolu-
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tions. Any of the components can be used to reconstruct complete or filtered

versions of the original signal, as shown in Fig. 2.7.

The following formula can be used when frequency information is needed

instead of the scales (Abry, 1997):

Fa =
Fc

Ta
(2.22)

where Fa is the pseudo-frequency in Hz corresponding to scale a, T is the

sampling period, and Fc is the center frequency or dominant frequency of

the wavelet in Hz, defined as the frequency with the highest amplitude in the

Fourier transform of the wavelet function. Third order Daubechies wavelet and

a sine function with the same frequency as the center frequency of the wavelet

(equal to 0.8 Hz) are shown in Fig. 2.8. Fourth order Daubechies wavelet and

a sine function with the same frequency as the center frequency of the wavelet

(equal to 0.71 Hz) are shown in Fig. 2.9.

2.4 Types of Wavelets

The most appropriate type of wavelet to be used for a signal depends on the

type of the signal. Haar’s wavelet is the simplest wavelet that uses square

wave functions, which can be translated and scaled to span the entire signal

domain.

The Daubechies family of wavelets (Daubechies, 1988, 1992) is one of the

most commonly used wavelets satisfying the orthogonality conditions, thus

allowing reconstruction of the original signal from the wavelet coefficients. The

Daubechies wavelet system, a higher order generalization of Haar’s wavelet,

was shown to have a superior smoothing effect on signals (Adeli and Samant,
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Signal reconstruction after level 1 wavelet decomposition
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FIGURE 2.8
Third order Daubechies wavelet (center frequency: 0.8 Hz, center period: 1.25
sec) and a sine function (0.8 Hz)
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FIGURE 2.9
Fourth order Daubechies wavelet (center frequency: 0.71 Hz, center period:
1.4 sec) and a sine function (0.71 Hz)
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2000; Samant and Adeli, 2000; Karim and Adeli, 2002a). Examples of wavelet

and scaling functions for the Daubechies family of orthogonal wavelets are

shown in Fig. 2.10. The Daubechies wavelet family is designed with maximum

regularity (or smoothness). The first order Daubechies wavelet is actually

the Haar wavelet. Daubechies wavelets are designed to have N/2 vanishing

moments where N is the number of wavelet coefficients.

Daubechies also proposed the Coifman wavelets or Coiflets , which are more

symmetric than the Daubechies wavelets. They are designed to have vanish-

ing moment conditions for both the wavelet as well as the scaling functions

(Daubechies, 1992; Burrus et al., 1998). The scaling functions of Coiflets have

N/3−1 vanishing moments whereas the wavelet functions have N/3 vanishing

moments. The filter coefficients for fourth order Coiflets are calculated using

the quadrature mirror filter approach (Wickerhauser, 1994), which computes

the coefficients of one filter as the mirror image of the other.

Harmonic wavelet transform is designed to achieve exact band separation

in the frequency domain. The 0th order harmonic wavelet is a complex wavelet

defined as the inverse Fourier transform of the following step function:

W (ω) =







1
2π for 2π ≤ ω ≤ 4π

0 otherwise
(2.23)

Therefore, the 0th order harmonic wavelet function can be written as

w(x) =
ei4πx − ei2πx

i2πx
(2.24)

Consider a band-limited step function in the frequency domain at scale j and

translated by k steps of size 1/2j expressed in the following form:

W (ω) =







1
2π 2

−je−iωk/2j for 2π2j ≤ ω ≤ 4π2j

0 otherwise
(2.25)
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FIGURE 2.10
Daubechies wavelet and scaling functions of different orders
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It can be shown that the discrete harmonic wavelet at a general level of decom-

position j is the inverse Fourier transform of Eq. (2.25) as follows (Newland,

1993):

w(2jx− k) =
ei4π(2

jx−k) − ei2π(2
jx−k)

i2π(2jx− k)
(2.26)

The result of the discrete harmonic wavelet transform can be represented

by a series of complex valued wavelet coefficients. The moduli of these com-

plex wavelet coefficients represent the energy of the original signal at dif-

ferent frequency bands or decomposition levels appearing at different times.

By investigating these complex wavelet coefficient moduli, the time-frequency

characteristics of the original signal can be obtained.

2.5 Advantages of the Wavelet Transform

Wavelet transform is particularly effective for representing various aspects of

signals such as trends, discontinuities, and repeated patterns especially in the

analysis of non-stationary signals. Wavelet-based time-frequency decomposi-

tion of the signal can be used in object detection, feature extraction, and

time-scale or space-scale analysis. Wavelet transform uses a variable window

size over the length of the signal, which allows the wavelet to be stretched or

compressed depending on the frequency of the signal (Mallat, 1989; Samant

and Adeli, 2001; Zhou and Adeli, 2003; Jiang and Adeli, 2004). In other words,

wavelet transform adapts the window size according to the frequency. At high

frequencies, shorter windows are used (fine resolution) and at low frequencies,

long windows are used (coarse resolution) to encompass the frequency content.

When wavelet transform is used to decompose a signal, the wavelet acts

as its own window at each scale. As expected, the time resolution improves as
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analysis scale decreases. Wavelet transform is powerful for analyzing transient

signals because both frequency (scale) and time information can be obtained

simultaneously. Larger time intervals (corresponding to smaller values of a) are

used for more precise extraction of low frequency information and shorter time

intervals (corresponding to larger values of a) for the precise time localization

of high-frequency information. Furthermore, if the wavelet basis function, Eq.

(2.8), has a finite duration, then the frequency information obtained from

the wavelet transform is localized in time. This results in excellent feature

extraction even from non-stationary signals with transient waveforms and high

frequency content (Petrosian et al., 1996, 2000b; Adeli et al., 2003, 2007;

Ghosh-Dastidar and Adeli, 2003; Adeli and Ghosh-Dastidar, 2004). Therefore,

for transient waveforms, wavelet analysis is superior to the Fourier transform

and is used for the models presented in this book.





3

Chaos Theory

3.1 Introduction

The concept of chaos, as applied to nonlinear systems, is an exciting research

topic of recent interest especially from the perspective of physiological signals.

Almost all natural or real-world systems are nonlinear in nature and evolve

with respect to some parameter such as time or space. As described in the

previous chapter, systems that evolve with respect to time can be represented

by a time series. Nonlinear systems often display behavior which looks random

but, in fact, may be attributed to deterministic chaos. Figure 3.1 shows such

a time series which, on the surface, looks random. In reality, the time series

is generated by the recursive quadratic equation xn+1 = rxn(1− xn), known

as the logistic map.

Deterministic chaos differs from random behavior in that it follows a set

of specific rules, sometimes governed by simple differential equations, which

determine the nonlinearity of the system. The predictability of the system

depends upon the identification or approximation of the governing rules. Ad-

ditionally, chaos in a system develops without external influence. A very small

initial perturbation in the system results in a completely different scenario

from the one in which there is no such perturbation (Williams, 1997; Smith,

1998). An example of this is shown in Fig. 3.2 where the logistic map (the

29
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FIGURE 3.1
A chaotic time series generated using the logistic map xn+1 = rxn(1 − xn)
with the parameter r selected as 4
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FIGURE 3.2
The logistic map with the parameter r = 4.0 is plotted for the initial conditions
x0 = 0.0100 and x0 = 0.0102 over a period of 100 time steps to demonstrate
the effect of a small change in initial conditions on the evolution of the system
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parameter r is selected as 4.0) is plotted for two slightly different initial con-

ditions, x0 = 0.0100 and x0 = 0.0102. The two cases evolve to very different

states (0.9976 and 0.0596, respectively) after 100 time steps, as shown in Fig.

3.2.

Signal analysis and processing deals mainly with extracting relevant fea-

tures from these real-world signals. In most cases, high frequency random

fluctuations are discarded as noise. Even though the existence of nonlinear-

ity is not sufficient proof for the existence of chaos, it is essential to analyze

the signal and the noise for chaotic properties because discarding chaos in an

evolving system may lead to an inaccurate analysis.

3.2 Attractors in Chaotic Systems

Nonlinear systems tend to gravitate toward specific regions in phase space

known as attractors. Attractors can be of different types - point, limit cycle,

toroidal, and chaotic (sometimes refered to as strange) depending on the be-

havior and state of the system. In general, the values of various parameters of

the governing rules underlying deterministic chaos determine the shape of the

attractor. In other words, a system is usually not chaotic for all parameter

values. Incrementing the value of the parameters (in the positive or nega-

tive direction) could move a system from its initial non-chaotic attractor to

a chaotic one. This transition usually shows characteristics such as period-

doubling, intermittency, and quasi-periodicity.

The period-doubling characteristic, seen often in chaotic systems, is shown

in the bifurcation diagram for the logistic map in Fig. 3.3. The bifurcation di-

agram represents the number of possible final states of x and their magnitudes

for different values of the parameter r. For instance, if r is in the range 1 to
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FIGURE 3.3
Bifurcation diagram for the logistic map showing the possible final outcomes
with changes in the value of r

3, x will converge to one final state (oscillations around this state are possible

prior to convergence for some values of r). These states are shown for r = 2.0

in Fig. 3.4 and r = 2.9 in Fig. 3.5. If r is in the range 3 to approximately

3.45, x will oscillate indefinitely between two possible final states (as shown

in Fig. 3.6 for r = 3.3). If r is approximately in the range 3.45 to 3.54, x will

oscillate indefinitely between four possible final states (as shown in Fig. 3.7 for

r = 3.5). The number of oscillations keeps doubling until around 3.57, beyond

which the attractor becomes chaotic. Figure 3.8 shows intermittency in the

evolution of the logistic map (r = 3.8284) where the attractor becomes chaotic

at certain times (t = 220 to 310, approximately in the plot) and non-chaotic

at others.

The Lorenz system consisting of three ordinary differential equations has

been extensively investigated and is probably the most commonly cited chaotic
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FIGURE 3.4
Logistic map for r = 2 showing convergence to one final state

0 10 20 30 40 50 60 70 80 90
-1

-0.5

0

0.5

1

1.5

2

t

x
(t

)

 

FIGURE 3.5
Logistic map for r = 2.9 showing some oscillation prior to convergence to one
final state
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FIGURE 3.6
Logistic map for r = 3.3 showing indefinite oscillations between two final
states
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FIGURE 3.7
Logistic map for r = 3.5 showing indefinite oscillations between four final
states
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FIGURE 3.8
The logistic map for r = 3.8284 showing intermittency in the evolution of
the system. The attractor becomes chaotic at certain times (t = 220 to 310,
approximately) and non-chaotic at others.

system in the literature. The solution of the three differential equations with

different parameter values yields different attractor shapes such as a point

attractor and a chaotic attractor, as shown in Figs. 3.9 and 3.10, respectively.

The characteristic butterfly-shaped attractor, also known as the Lorenz at-

tractor, can be clearly observed in Fig. 3.10. To further illustrate the possible

diversity in the attractor shape, two other chaotic attractors - the Hénon and

Rössler attractors - are shown in Figs. 3.11 and 3.12, respectively.

Attractors are graphically represented using phase space plots of the non-

linear system. One of the most common representations is the lagged phase

space plot where a signal is plotted against a lagged (or delayed) version of

the same signal to highlight patterns in the temporal evolution of the system.

The lagged phase space, using a lag of one time instant, for the logistic map

is shown in Fig. 3.13. The graph is a plot of xn+1 versus xn and highlights a
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FIGURE 3.9
A point attractor for the Lorenz system
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FIGURE 3.10
The chaotic attractor for the Lorenz system
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FIGURE 3.11
The Hénon attractor

-10
0

10
20

-20

-10

0

10

5

10

15

20

25

30

35

xy

z

 

FIGURE 3.12
The Rössler attractor
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FIGURE 3.13
The lagged phase space for the logistic map using an embedding dimension of
two and a lag of one time instant

pattern in phase space that is not evident from the time series representation

in Fig. 3.1. In this notation xn+1 represents the signal xn lagged by one time

instant. The embedding dimension is said to be two because the plot is in

two dimensions. Figure 3.14 shows a more detailed pattern in a lagged phase

space (embedding dimension of three and lag of one time instant). The graph

is a plot of xn+2 versus xn+1 versus xn. In this notation xn+2 represents the

signal xn lagged by two time instants (or the signal xn+1 lagged by one time

instant). The mathematical formalization will be discussed briefly in the next

section.

Phase space plots are usually unable to show the internal features of the

attractor. Moreover, often attractors have more than three dimensions, in

which case they do not have simple visual representations. Therefore, in addi-

tion to the phase space plots, related lower-dimensional representations such
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FIGURE 3.14
The lagged phase space for the logistic map using an embedding dimension of
three and a lag of one time instant

as Poincaré sections, return maps, next-amplitude plots, and difference plots

may be studied to obtain a more comprehensive understanding of the attrac-

tor. Poincaré sections are slices through the attractor which give a better

understanding of the trajectory at any particular cross-sectional plane. The

mathematical function that yields information on the next intersection of the

trajectory with the Poincaré section under consideration is called a return

map. The return map is based on the location of the previous intersection in

phase space. The next-amplitude plots are representative of the complete at-

tractor as opposed to only a slice through it and show the lagged phase space

of oscillation peaks (or local maxima). Finally, difference plots show lagged

data for differences in successive observations. They are very similar to lagged

phase space plots but the axes of the plots reflect the differences in successive

observations. For example, a difference plot may be plotted with xn+2−xn+1

as the y-axis and xn+1 − xn as the x-axis.
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3.3 Chaos Analysis

3.3.1 Measures of Chaos

The most important representation of a chaotic system is the governing rule

or map that determines how the system evolves forward in time. Two main

characteristics in the analysis of a system and therefore its attractor are com-

plexity and chaoticity. Complexity is a measure of the geometric properties

of the system and is characterized by the magnitude of the attractor dimen-

sion. Dimension can have different interpretations depending on the context.

In addition to the regular Euclidean, topological, and vector definitions, a

dimension can also be defined as the scaling exponent in a power law. As a

scaling exponent, the value of a dimension need not be an integer value. For

instance, an attractor embedded in a phase space of embedding dimension 2

would typically have a scaling exponent between 1 and 2. The most common

types of scaling exponent dimensions in chaos theory are similarity, capacity,

Hausdorff, information, correlation, and fractal dimensions (Bullmore et al.,

1992; Cao, 1997; Williams, 1997; Jiang and Adeli, 2003; Notley and Elliott,

2003). The correlation dimension characterizes the attractor at a fine resolu-

tion and is computationally efficient and is therefore used as the measure of

complexity in the applications presented in this book.

The chaoticity of the attractor is a measure of the convergence or diver-

gence of nearby trajectories in phase space. In a chaotic system two points

close together initially in phase space could have very different final outcomes,

as shown in Fig. 3.2. This behavior is known as the butterfly effect . There-

fore, a divergence in the trajectories could suggest the presence of a chaotic

attractor. On the other hand, if the trajectories converge, it would imply

a non-chaotic attractor. Measures such as the largest Lyapunov exponent,
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Kolmogorov-Sinai entropy, and mutual information and redundancy coeffi-

cients are typically used to quantify chaos in a system. Of these, the largest

Lyapunov exponent has been shown to be a reliable measure and therefore is

used in the applications in this book (Iasemidis et al., 1995).

3.3.2 Preliminary Chaos Analysis - Lagged Phase Space

A signal can be represented as a time series vector composed of individual

data points (for example, single voltage readings by an electrode at various

time instants) as:

X = {x1, x2, . . . , xN} (3.1)

where N is the total number of data points and the subscript indicates

the time instant. Assuming a selected time lag m, XT represents a time

series vector that contains all data points in X from time instant T to

N − m (i.e., xT , xT+1, . . . , xN−m) and XT+m represents a time series vec-

tor that contains all data points in X from time instant T + m to N (i.e.,

xT+m, xT+m+1, . . . , xN ), then the graph of XT+m versus XT is known as the

pseudo or lagged phase space with lag m and embedding dimension 2. Both

XT and XT+m are subsets of X and contain N −T −m+1 data points each.

Employing an embedding dimension of 3 would result in a lagged phase space

with XT+2m, XT+m, and XT as the three axes. The lagged phase space is im-

portant for identifying the temporal evolution of the signal. In order to create

the lagged state space, two parameters must be identified: the optimum lag

and the minimum embedding dimension.

In order to find the optimum lag, the signal can be tested for autocorre-

lation or mutual information which are measures of the extent of overlap be-

tween the information contained in XT and XT+m. An effective lagged phase

space requires the overlap to be minimal so as to avoid a direct relationship
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between XT and XT+m. By definition if XT and XT+m contain completely

overlapping information or are exactly identical such as at m = 0, then the

lagged phase space would be a straight line at a 45◦ angle. The optimum lag

m0 is termed so because it has to be large enough for XT and XT+m to yield

minimal overlapping information without being so large that the number of

data points in the signals compared becomes too small. Since the total number

of data points in the EEG signal is limited to N , for a given lag m, XT and

XT+m each contain N−m data points. If the value of m is too large, then the

size of the vectors XT and XT+m becomes very small and some important

features may be lost.

If the data have too much overlapping information, the cause of the overlap

should be removed. For instance, in a periodic signal there may be extensive

overlap between XT and XT+m even for large values of the lag m. In this

case, the periodicity must be removed from the signal. This can be achieved

with techniques such as standardization, filtering, and decomposition which

may be based on statistical methods or on more advanced signal processing

methods such as Fourier, wavelet, and fractal analyses.

The autocorrelation coefficient Rm for lag m is mathematically defined as:

Rm =

N−m
∑

i=1

(XT (i)−X)(XT+m(i)−X)

N
∑

i=1

(X(i)−X)2

(3.2)

where N is the number of observations and X is the mean of the observed

values of the physical feature X defined over time as:

X =

N
∑

i=1

X(i)

N
(3.3)
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Varying the value of m yields autocorrelation coefficients (Rm) for different

values of lag. These are graphically represented by plotting autocorrelation

versus lag in a correlogram. The optimum lag is the first local minimum on

the graph of Rm versus m.

The mutual information coefficient Im for lag m is mathematically defined

as (Williams, 1997):

Im =

NS
∑

i=1

NS
∑

j=1

P [XT (i),XT+m(j)] log2
P [XT (i),XT+m(j)]

P [XT (i)]P [XT+m(j)]
(3.4)

where NS is the number of probability states or bins, P [XT (i)] is the prob-

ability of XT belonging to the ith probability state, and P [XT+m(j)] is

the probability of XT+m belonging to the jth probability state. The term

P [XT (i),XT+m(j)] is the joint probability of XT belonging to the ith proba-

bility state and XT+m belonging to the jth probability state simultaneously.

As a standard practice in information theory, since the logarithm has a base of

2 the unit of the mutual information coefficient Im is a binary digit or bit. The

probability of XT belonging to the ith probability state P [XT (i)] is computed

as (Williams, 1997):

P [XT (i)] =
n(i)

N − T −m+ 1
(3.5)

where n(i) is the number of data points in XT belonging to the ith proba-

bility state and the denominator is the total number of data points in XT .

Other probability values are computed similarly. Varying the value ofm yields

mutual information coefficients (Im) for different values of the time lag. The

optimum lag is the first local minimum on the graph of Im versus m.

After the selection of the optimum lag, a common method for estimating

the minimum embedding dimension for the phase space of the signal is Cao’s

method (Cao, 1997). Next, the ith time-delay vector is reconstructed from the
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EEG signal X using the optimum lag value, m0, and the estimated minimum

embedding dimension, dM . The reconstructed time delay vector Yi(d) in the

lagged phase space has the following form:

Yi(d) = {xi, xi+m0
, . . . , xi+m0(d−1)} (3.6)

where i = 1, 2, . . . , N −m0(d − 1), d is the embedding dimension, and xi is

the ith data point in the EEG signal. The underlying principle of this method

is that if d is a true embedding dimension, then two points that are close to

each other in the d dimensional phase space will remain close in the d + 1

dimensional phase space. Any two points satisfying the above condition are

known as true neighbors (Cao, 1997).

The method is applied repeatedly starting with a low value of the embed-

ding dimension d and then increasing it until the number of false neighbors

decreases to zero, or equivalently, Cao’s embedding function defined as (Cao,

1997):

E(d) =
1

N −m0d

N−m0d
∑

i=1

ai(d) (3.7)

becomes constant. In Eq. (3.7)

ai(d) =

∥

∥Yi(d+ 1)−Yn(i,d)(d+ 1)
∥

∥

∥

∥Yi(d)−Yn(i,d)(d)
∥

∥

(3.8)

where i = 1, 2, . . . , N −m0d, and Yn(i,d)(d) is the nearest neighbor of Yi(d)

in the d dimensional space. The proximity of two neighbors for deciding the

nearest neighbor is based on a measure of distance computed using the max-

imum norm function denoted by ‖∗‖ in Eq. (3.8). The embedding function is

modified to model the variation from d to d+1 by defining another function,

E1(d), which converges to 1 in the case of a finite dimensional attractor as



Chaos Theory 45

follows (Cao, 1997):

E1(d) =
E(d+ 1)

E(d)
(3.9)

The minimum embedding dimension, dM , is identified from the graph of E1(d)

versus d as the value of d at which the value of E1(d) approaches 1. However,

in certain cases this may occur even with truly random signals. In order to

distinguish deterministic data from truly random signals, another function is

defined as (Cao, 1997):

E2(d) =
E∗(d+ 1)

E∗(d)
(3.10)

where E∗(d) is defined as:

E∗(d) =
1

N −m0d

N−m0d
∑

i=1

∣

∣xi+m0d − xn(i,d)+m0d

∣

∣ (3.11)

in which xn(i,d)+m0d is the nearest neighbor of xi+m0d. From an examination of

the graph of E2(d) versus d, a constant value of 1 for E2(d) for different values

of d indicates a truly random signal. The signal is found to be deterministic if

the value of E2(d) is not equal to 1 for at least one value of d. The embedding

dimension for the phase space is set to the minimum embedding dimension.

The lagged phase space is constructed based on the identified values of the

optimum time lag and the embedding dimension.

3.3.3 Final Chaos Analysis

Correlation Dimension (CD) of the Attractor

Given a finite signal represented by NC = N −m0dM points denoted by

Y1(dM ), . . . ,YNC
(dM ) in phase space, the correlation sum, Cǫ, for a measur-

ing circle of radius ǫ, is mathematically defined as (Williams, 1997):

Cǫ = lim
NC→∞

1

NC
2

NC
∑

i=1

NC
∑

j=1

G (ǫ− |Yi(dM )−Yj(dM )|) (3.12)
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where Yi(dM ) and Yj(dM ) are the lagged phase space locations of the ith

and jth points respectively for the selected embedding dimension dM . In gen-

eral, ǫ is the radius of the measuring unit. For an embedding dimension of 2,

the measuring unit is a circle whereas for an embedding dimension of 3, the

measuring unit is a sphere.

The function G is the Heaviside function which returns a positive count

only when the jth point lies within a distance of ǫ from the ith point, i.e.:

ǫ− |Yi(dM )−Yj(dM )| > 0 (3.13)

The correlation dimension (ν) is approximated from the slope of the plot

of the log of the correlation sum (Cǫ) versus the measuring radius (ǫ). The

mathematical relation is presented as:

Cǫ ∝ ǫν (3.14)

Given any finite signal represented by NC points in the phase space, there

can be a total of NC(NC − 1)/2 pairwise distances (represented mathemati-

cally as ‖xi − xj‖ where i 6= j). In the wavelet-chaos algorithm employed for

the applications in this book, the CD is computed directly using the Takens

estimator as (Cao, 1997; Borovkova et al., 1999):

ν = −





2

NC(NC − 1)

NC
∑

i=1

NC
∑

j=1

log

( |Yi(dM )−Yj(dM )|
ǫ

)



 (3.15)

Largest Lyapunov Exponent (LLE)

As discussed previously in Section 3.3.1, an important characteristic of a

chaotic system is trajectory divergence. Trajectory divergence is defined as the

change in the distance between two neighboring points in the lagged phase

space after a given time. Lyapunov exponents are measures of the rate of
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trajectory divergence in a system. As the system evolves from time zero to

infinity, local Lyapunov exponents are computed continuously as (Williams,

1997):

λi = loge |f ′(Yi(dM ))| (3.16)

where f ′(Yi(dM )) is the rate of divergence of two neighboring trajectories

at point Yi(dM ) in the phase space. The standard Lyapunov exponent (λ) is

computed as the mathematical average of the local Lyapunov exponents along

each dimension of the attractor as:

λ = lim
n→∞

1

n

n−1
∑

i=0

λi (3.17)

where n is the number of time steps of the evolving system.

The number of standard Lyapunov exponents is equal to the embedding

dimension of the attractor. For the system to be chaotic, the trajectories must

diverge along at least one dimension of the attractor which implies that at

least one of the standard Lyapunov exponents must be positive. As a result,

by definition, the LLE (λmax) must be greater than zero in a chaotic system.

A more direct method for computing the LLE is Wolf’s method (Wolf et al.,

1985; Rosenstein et al., 1993; Hilborn, 2001). According to Wolf’s method,

the average trajectory divergence, DT , of the attractor after a given time T

(known as prediction length) is expressed mathematically as:

DT =
1

NS

NS
∑

i=1

∣

∣

∣

∣

Yi+T (dM )−Y′

i+T (dM )

Yi(dM )−Yi
′(dM )

∣

∣

∣

∣

(3.18)

whereYi(dM ) andYi
′(dM ) are the neighboring points on separate trajectories

in the phase space, and Yi+T (dM ) is the location of the point that evolved

from Yi(dM ) along the trajectory. The prediction length, T , is measured in

increments of time used for the signal.
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The LLE (λmax) is subsequently computed as the slope of the graph of the

natural logarithm of trajectory divergence, DT , versus the prediction length,

T . This relationship is expressed mathematically as:

DT = D0e
Tλmax (3.19)

where D0 is the initial divergence. In the applications in this book, a modifica-

tion of Wolf’s method reported in Iasemidis et al. (2000a) is used in which the

parameters are adaptively estimated to better account for the non-stationary

nature of real-world signals.



4

Classifier Designs

4.1 Data Classification

The last two chapters focused on techniques for denoising signals and extract-

ing or highlighting meaningful information from the signals including higher

dimensional patterns that may not be evident from a visual inspection. In

general, the meaningfulness of the information is subjective and depends on

the problem being solved. Ultimately, the success of any strategy depends on

the achievement of the objectives. Therefore, the next step is to examine this

information in the context of these objectives. The strategy adopted in the

approaches presented in this book involves the classification or organization

of the data into meaningful groups.

Each meaningful feature extracted from the signal represents an aspect of

the signal and is used (alone or in conjunction with other such features) to

classify the signal. For this reason, such a feature is also called a classification

parameter. A set of such features constitutes the feature space. The number

of dimensions of the feature space is equal to the number of features. In other

words, the original signal space is transformed into the feature space, which

may be more suitable for signal classification. Assuming there are P features,

each signal is represented in this feature space by one P -dimensional data

point.

49
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The classification process can be unsupervised or supervised. Unsuper-

vised classification involves classifying the data points into groups solely on

the basis of the similarity (or closeness) of the data points to each other. No

information is available a priori regarding the groups themselves or the as-

signment of data points to the groups. Supervised classification, on the other

hand, involves training the classifier to recognize that certain data points be-

long to certain groups. The data is divided into two sets - training data and

testing data. The training data is presented to the classifier along with the

known group assignments. Generally, based on the presented information, the

classifier algorithm selects parameters and rules that appropriately model the

classification of the training data. The same rules and parameters are then ap-

plied to the testing data in order to classify them into the appropriate groups

and evaluate the accuracy of the classification method.

4.2 Cluster Analysis

Cluster analysis is an unsupervised learning algorithm. An important issue

in cluster analysis is defining the similarity or proximity between each pair

of points by a measure of distance such as the Euclidean distance, city block

metric, or the Mahalanobis distance (Dillon and Goldstein, 1984; Kachigan,

1984). The Mahalanobis distance is used to better account for any correlation

in the data.

If F represents the N × P matrix of data points in the P -dimensional

feature space, where N is the total number of data points, then the mean-

corrected data matrix (to center the data around the mean) may be expressed

as:

Fd = F− F (4.1)
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where F is the mean vector of size 1 × P . The Euclidean distance d(i, j)

between the ith and the jth points represented by F(i) and F̄(j) is defined

as:

d(i, j) = [F(i)− F(j)][F(i)− F(j)]T (4.2)

where the superscript T denotes the transpose of the matrix. The Mahalanobis

distance d(i, j) between the two points is defined as (Dillon and Goldstein,

1984):

d(i, j) = [F(i)− F(j)]C−1[F(i)− F(j)]T (4.3)

where C is the P × P sample covariance matrix expressed as:

C =
Fd

TFd

N − 1
(4.4)

The N ×N pair-wise distance matrix d (whether Euclidean or Mahalanobis)

is reduced to the similarity matrix Y which is a 1× C(N, 2) row vector con-

taining the distances between each pair of objects, where C(N, 2) represents

the number of distinct pairs that may be formed out of N objects.

In order to cluster the objects, the hierarchical single-linkage or nearest-

neighbor method is applied. This process is shown in Fig. 4.1. The two objects

closest to each other with respect to their proximity metric are paired together

in one binary cluster. If any of the remaining unclustered objects has lesser

distance to this cluster (characterized by the distance to the nearest object in

the cluster) than to the other unclustered objects, it forms a binary cluster

with the cluster in the previous step. Otherwise, it is paired with the closest

unclustered object into a separate binary cluster. If two clusters are closer

to each other than to any other unclustered object, then the two clusters

are grouped together in a bigger cluster. This process continues until all the

objects are clustered in one big cluster that contains all the smaller clusters.

This binary cluster tree is represented by a dendrogram, which hierarchically
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FIGURE 4.1
Example of the binary clustering process

summarizes the clustering stages, as shown in Fig. 4.2. This results in an

(N − 1) × 3 linkage matrix P where each row represents a link or a binary

cluster and contains the link characteristics: start node, end node, and link

length. The binary clusters formed at each stage are considered as nodes for

the next clustering stage and are numbered as N + 1, N + 2, . . . , 2N + 1.

Clusters at a particular level are said to be dissimilar if the length of a link

between clusters or objects at that level in the dendrogram differs from the

length of the links below it. The inconsistency coefficient of a link measures

this dissimilarity by comparing the link length with the average of the link

lengths at the same stage of clustering (which includes the link itself and

the links l levels below it in the hierarchy where l is known as the depth of

the comparison). For a link q − N , where q ∈ N + 1, N + 2, . . . , 2N + 1, the

inconsistency coefficient is mathematically defined as (Ghosh-Dastidar and
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FIGURE 4.2
Dendrogram for the binary clustering example shown in Fig. 4.1

Adeli, 2003):

IC(q −N) =
P(q, 3)−Pl(q)

σl,P(q)
(4.5)

where for a depth of l = 2 levels,

P2(q) =
P(q, 3) +P(P(q, 1)−N, 3) +P(P(q, 2)−N, 3)

r
(4.6)

in which r is the number of clusters excluding the original nodes and:

σl,P(q) =

[

[P(q, 3)−P2(q)] + [P(P(q, 1)−N, 3)−P2(q)]

r − 1

+
[P(P(q, 2)−N, 3)−P2(q)]

r − 1

]1/2

(4.7)

This results in an (N −1)×1 inconsistency coefficient matrix representing

the similarities or dissimilarities in the clusters formed at a given level. A high

inconsistency coefficient often implies class boundaries. Finally, the data set

is divided predominantly into two clusters having an inconsistency coefficient
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below the selected threshold level. Besides the major clusters, the clustering

process may highlight the existence of outliers which are usually grouped

separately.

4.3 k-Means Clustering

k -means clustering is a variation of the unsupervised clustering method. k -

means clustering is also an unsupervised clustering method but differs from

regular clustering in that the number of clusters is fixed at k. In that sense,

it is not completely unsupervised because a priori information is available

regarding the number of clusters. Since all the data points are to be divided

into k clusters, the process is initiated by an arbitrary selection of k points.

These k points form the seeds of the k clusters in the analysis.

At this initial stage, the cluster centroids are the points themselves (since

the cluster only contains one point). The next point closest in terms of the se-

lected proximity metric (termed nearest neighbor) to any one of these clusters

is paired with that cluster in one binary cluster. This cluster now contains two

points and a new centroid is computed. If any one of the remaining unclus-

tered points has a shorter distance to this cluster (defined by its proximity to

the centroid of the cluster) than to the other clusters, it forms a binary cluster

with the same cluster. Otherwise, it is paired with the nearest cluster. Addi-

tion of a point to a cluster changes the centroid of the cluster which may lead

to changes in cluster assignments. This process is repeated until the cluster

centroids stop changing and all points are divided into the predetermined k

clusters.
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4.4 Discriminant Analysis

The aim of discriminant analysis is to increase the separation between the

different groups of data points by mapping or projecting the input feature

space to a lower-dimensional output space where the intra-group variance is

minimized and the inter-group variance is maximized. Discriminant analysis

is a supervised classification process and requires training data (where the

group assignments for the data points are known). Assuming an underlying

normal distribution for the data, if the mean of the entire NTR×P training set

input, FR (consisting of NTR data points in the training set and P features),

is represented by the vector µR and the group mean of the input data points

belonging to the jth group, FRj
(consisting of Nj data points), is represented

by the vector µRj
, then the P × P intra-group variance matrix is computed

as (Fukunaga, 1990):

SW =

3
∑

j=1

Nj

NTR
[FRj

− µRj
][FRj

− µRj
]T (4.8)

where the superscript T denotes the transpose of the matrix. The P × P

inter-group variance matrix is computed as:

SB =

3
∑

j=1

Nj

NTR
[µRj

− µR]T [µRj
− µR] (4.9)

The maximization-minimization objective is achieved by maximizing the

sum of the eigenvalues of SW
−1SB (Fukunaga, 1990). This forms the basis

of linear discriminant analysis (LDA) where the class boundaries are hyper-

planes. This is the most basic form of LDA and is referred to as ELDA (E

stands for Euclidean) in this book. The Euclidean distance may not yield ac-
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curate results when parameters are statistically correlated. In such cases, to

account for correlation between the parameters constituting the feature space,

the Mahalanobis distance is used instead. This form of LDA is referred to as

MLDA in this book.

LDA is based on the assumption that the covariance matrices for differ-

ent groups are similar. Quadratic discriminant analysis (QDA) is employed

when the covariance matrices are considerably different. The QDA classifi-

cation function accounts for unequal covariance matrices, resulting in class

boundaries that are second order surfaces. The disadvantages of QDA include

an increased computational burden, the need for a larger training dataset, and

a greater sensitivity to deviations from normality and incorrect classifications

in the training set.

4.5 Principal Component Analysis

Principal component analysis (PCA) is another statistical method used pri-

marily to transform the input space, usually into a lower dimensional space.

In essence, the coordinate system is rotated using a linear transformation.

The axes (or components) of the new coordinate system are the eigenvectors

that describe the data set and therefore are linear combinations of the origi-

nal axes. The primary axis or principal component is selected to represent the

direction of maximum variation in the data. The secondary axis, orthogonal

to the primary axis, represents the direction of the next largest variation in

the data and so on. In the reoriented space, most of the variation in the data

is concentrated in the first few components. Consequently, the components

that account for most of the variability are retained whereas the remaining

components are ignored. As a result, dimensionality can be reduced without
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compromising the accuracy of data representation in any significant way (Lee

and Choi, 2003).

Unlike discriminant analysis, which can be used as a classifier or as a data

preprocessing step prior to classification, PCA is used primarily for data pre-

processing such as dimensionality reduction and noise elimination. Generally,

assuming that the training data is represented by the matrix FR, the following

steps are involved:

1. The centroid of the data points, denoted by the 1 × P vector µR, is

obtained, where P is the number of features.

2. The origin of the coordinate system is moved to the centroid of the data

points by subtracting µR from each point in FR.

3. The pairwise covariance between all parameters constitutes the columns

of the shifted training input is computed. This is represented by a P ×P

covariance matrix, denoted by cov(FR − µR). The covariance matrix is

symmetric and the diagonal elements of the matrix are the variance

values for the P features.

4. The eigenvectors and eigenvalues of the covariance matrix are computed,

resulting in P eigenvectors of size P × 1 and the P corresponding eigen-

values. The eigenvectors are mutually orthogonal and represent the axes

of the new coordinate system. The eigenvector corresponding to the

maximum eigenvalue is the principal component.

5. The importance of the eigenvector as a representation of the data vari-

ability decreases with a decrease in the corresponding eigenvalue. There-

fore, eigenvectors corresponding to the lowest eigenvalues are discarded.

The remaining PSEL eigenvectors are arranged column-wise in the order

of decreasing eigenvalues to form the P × PSEL eigenvector matrix, E.

How many eigenvectors to keep is found by trial and error.



58 Automated EEG-Based Diagnosis of Neurological Disorders

4.6 Artificial Neural Networks

Artificial neural networks (ANNs) are computational models of learning that

are inspired by the biology of the human brain. ANNs consist of neurons (also

called nodes or processing elements) which are interconnected via synapses

(also called links). From a functional perspective, ANNs mimic the learning

abilities of the brain and can, ideally, be trained to recognize any given set

of inputs by adjusting the synaptic weights. A properly trained network, in

principle, should be able to apply this learning and respond appropriately to

completely new inputs. ANNs, however, are based on highly simplified brain

dynamics, which makes them much less powerful than their biological coun-

terpart. Nevertheless, ANNs have been used as powerful computational tools

to solve complex pattern recognition, function estimation, and classification

problems not amenable to other analytical tools (Adeli and Hung, 1995; Adeli

and Park, 1998; Adeli and Karim, 2000; Adeli, 2001; Ghosh-Dastidar and

Adeli, 2003; Adeli and Karim, 2005; Adeli et al., 2005a,b; Adeli and Jiang,

2006; Ghosh-Dastidar and Adeli, 2006).

The most common application of ANNs is supervised classification and

therefore requires separate training and testing data. Since the learning is

usually performed with the training data, the mathematical formalization is

based on the training data. Two of the most commonly used neural net-

work architectures are discussed in this chapter. The selected architectures

are both feedforward architectures where information is transmitted across

neurons starting from the input layer across the network to the output layer.

These architectures form the basis of advanced architectures and models that

will be discussed later in this book. The input training matrix for the classi-
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fier is denoted by FR and the desired output vector by OR. The least mean

squares method is used to minimize the error function.

4.6.1 Feedforward Neural Network and Error Backpropaga-

tion

The layers of a feedforward ANN classifier are numbered from right to left

starting with l = 0 for the output layer. There can be any number of hidden

layers. Architectures with one and two fully connected hidden layers are shown

in Figs. 4.3 and 4.4, respectively. The total input to the jth node of any

layer l representing the layer that is l layers before the final output layer is

mathematically written as (Bose and Liang, 1996):

ilj =
∑

i

yl+1
i wl

ij − θlj (4.10)

where yl+1
i is the output of the ith node in layer l+1, wl

ij is the weight of the

connection from the ith node in layer l+1 to the jth node in layer l and θlj is

the node bias of the jth node in layer l. A simple input integration is shown

in Fig. 4.5 where i represents the input and w represents the weights. For

the sake of simplicity in this figure, only the subscript representing the input

neuron number is retained in the notation even though the input neurons are

not shown. The summation symbol
∑

denotes that the weighted inputs are

summed before transformation using the activation function f .

The input to each node in the hidden or output layer l is the same as the

output from layer l+ 1 represented in vector notation by the Nl+1 × 1 vector

Yl+1 where Nl+1 is the number of nodes in layer l + 1. The Nl × 1 weighted

input vector to the hidden layer l is expressed as:

Il = Wl
TYl+1 (4.11)
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FIGURE 4.3
A fully connected feedforward ANN with one hidden layer
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FIGURE 4.4
A fully connected feedforward ANN with two hidden layers
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FIGURE 4.5
Simple input integration by an ANN neuron

where Wl is the Nl+1 ×Nl weight matrix for layer l. If any bias is associated

with any of the nodes (to enable such nodes to fire preferentially or non-

preferentially compared to others), this equation is modified as:

Il = Wl
TYl+1 − θl (4.12)

where θl is the Nl × 1 bias vector for the nodes in layer l. Since the input to

the input layer is FR, the input to the hidden layer immediately succeeding

the input layer is computed as:

Il = Wl
TFR − θl (4.13)

The output of the jth node in layer l is computed using the log-sigmoid
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activation function as (Adeli and Samant, 2000):

Yl(j) =
1

1 + e−Il(j)
(4.14)

Another common activation function used in feedforward ANNs is the tan-

sigmoid function expressed as (Bose and Liang, 1996):

Yl(j) =
2

1 + e−Il(j)
− 1 (4.15)

The sum squared error in network output is computed as:

E =
1

2
[Y0 −OR]T [Y0 −OR] (4.16)

Neural network learning is an iterative process where the weights are ad-

justed in every iteration to minimize the value of the error function. Typically,

neural network learning is incremental where each iteration corresponds to one

training instance. Batch processing is also possible where the weights are ad-

justed once all the training instances have been presented. In that case, the

error functions and the error minimization algorithm must be adjusted ac-

cordingly. However, the concept remains essentially the same and therefore

only incremental training will be described in this section. At this point it

becomes necessary to denote the iteration number or the training instance

with the index k. As a result, the error function for the kth training instance

becomes:

E(k) =
1

2
[Y0(k)−OR]T [Y0(k)−OR] (4.17)

This error is propagated backwards throughout the nodes of each layer

and the required changes are made to the weights for each connection. The

network keeps updating the weights and biases using the gradient-descent

method until the error convergence condition is met. Checking for conver-
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gence implies checking for the minimum value of the error or performance

function by computing its negative gradient or the direction of steepest de-

scent. The computation of the gradient and updating of the weights occurs

after each training instance according to the generalized delta update rule,

which is expressed as (Bose and Liang, 1996):

δ(k) = W(k + 1)−W(k)

= −ηG(k) (4.18)

where W(k+1) denotes the new weight vector and W(k) denotes the current

weight vector for the network, η is the learning rate, and G(k) is the current

gradient of the error function. The gradient is defined as (Bose and Liang,

1996):

G(k) = ∇E(k)

=
∂E(k)

∂W
(4.19)

The simple BP algorithm suffers from a very slow rate of convergence

(Adeli and Hung, 1995). For faster convergence of the network, quasi-Newton

algorithms replace the fixed learning rate η with an adaptive learning rate

based on the current weights and biases. This modifies Eq. (4.18) to:

δ(k) = W(k + 1)−W(k)

= −H−1(k)G(k) (4.20)

where H−1(k) is the inverse of the Hessian matrix of the error function for
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the kth training instance. The Hessian matrix is expressed as:

H(k) = ∇2E(k)

=
∂2E(k)

∂W2 (4.21)

To reduce the large computational power required for calculating the Hes-

sian matrix for feedforward networks, the Levenberg-Marquardt algorithm

uses a numerical approximation of the Hessian matrix. Since the error func-

tion is a sum of squares, the Hessian matrix is approximated as:

H(k) = ∇E(k)
T∇E(k) (4.22)

and the gradient in Eq. (4.19) is modified to:

G(k) = ∇E(k)
T
E(k) (4.23)

Substituting Eqs. (4.22) and (4.23), the update rule of Eq. (4.20) is changed

to:

δ(k) = W(k + 1)−W(k)

= −
[

∇E(k)T∇E(k) + µnI
]−1 ∇E(k)

T
E(k) (4.24)

where the term µnI is added to ensure that the Hessian matrix is invertible.

The value of the parameter µn is initially selected as a random number be-

tween 0 and 0.1 and subsequently decreases in value whenever the value of the

error function decreases and vice versa (Hagan et al., 1996; Ghosh-Dastidar

and Adeli, 2003). This attempts to ensure that the error function avoids en-

trapment in local mimima and reaches the global minimum. The training of

the algorithm is stopped when the change in system error decreases to a preset
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value signifying convergence or when the value of µn exceeds a preset maxi-

mum. The weights of the connections and biases of the nodes at convergence

are said to be the weights and biases of the trained neural network. Once the

ANN is trained, the ANN is tested using the testing data FT.

4.6.2 Radial Basis Function Neural Network

The underlying feedforward methodology of the radial basis function neural

network (RBFNN) is similar to that of the backpropagation neural network

but there are three main differences. First, RBFNN has only one hidden layer

which can have a maximum of NTR nodes (equal to the number of training

instances). Second, the output from the output layer is usually computed

using a linear activation function instead of the sigmoid activation functions.

Third, the method of computation of the weighted inputs and outputs for the

hidden layer is different. The weighted input to the hidden layer is computed

as the vector of Euclidean distances between the P × 1 input vector for the

kth training instance, FR(k) (a row vector), and the Nl+1×Nl weight matrix

Wl of links connecting the Nl+1 input nodes to the Nl nodes in the hidden

layer. Since there is only one hidden layer, Nl+1 is equal to P and Nl is equal

to NTR. Therefore, the weighted input to the jth hidden node for the kth

training instance is expressed as:

Il(j) = [Wl(j)− FR(k)]T [Wl(j)− FR(k)] (4.25)

The activation function for the hidden layer is a Gaussian function in the

following form (Bose and Liang, 1996; Ghosh-Dastidar and Adeli, 2003):

Yl(j) = eIl(j) loge(0.5)/p
2

(4.26)
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where p is the spread of the RBF which affects the shape of the Gaussian

function. If the weight vector of the jth hidden node, Wl(j), is equal to the

input vector for the kth training instance, FR(k), the weighted input is 0

which results in an output of 1. The factor loge(0.5) in the exponent term is

used to scale the output to 0.5 (the average of the limits of 0 and 1) when

the weighted input is equal to the spread, p. The activation function can be

formulated by any function that has a value of one in the center and values

of zero (or asymptotically tending to zero) at the periphery. This includes a

triangular basis even though a triangular function is not differentiable at the

center.

RBFNN training also employs the least mean square error method. How-

ever, unlike the backpropagation neural network, each iteration involves the

addition of a hidden layer node, j. The input weight vector for this node,

Wl(j), is selected to be equal to the input vector of the training instance

k, FR(k), that produces the minimum mean square error. In essence, each

hidden layer node is trained to recognize a specific input. For this reason,

training accuracy of the RBFNN is always 100% and the maximum number

of hidden layer nodes is equal to the number of instances of training data.

However, this is usually not an optimal solution because it could result in a

large number of redundant hidden layer nodes (depending on the data) and

a large computational burden. Therefore, various optimization strategies are

usually incorporated to limit the number of hidden layer nodes, as discussed

further in Section 9.3 of this book.
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5

Electroencephalograms and Epilepsy

5.1 Spatio-Temporal Activity in the Human Brain

Human brain activity displays a wide range of activation patterns during both

normal and abnormal states. Normal states include physical states (such as

sleep, wakefulness, and exertion) as well as mental states (such as calmness,

happiness, and anger). Abnormal states, primarily observed in neurological

disorders and drug-induced imbalances, include seizures (in epilepsy) and de-

mentia (seen in Alzheimer’s disease and Lewy body disease). The list of possi-

bilities is endless. This variety is further compounded by three factors. First,

each state has varying degrees of magnitude which results in varying degrees

and, in some cases, regions of brain activation. Second, brain activity in any

state is modulated by high-level brain functions such as attention and cogni-

tive processing. Third, at any instant of time, the overall brain activity is not

due to any one mental state but rather to a superimposition of a number of

different states.

The brain processes underlying these states are very complex and require

a coordinated and efficient interaction between multiple areas of the brain. To

facilitate the efficient processing of such a vast number of states and their com-

binations, the brain is functionally organized such that different states yield

three primary types of activation patterns. Spatial patterns involve activation

71
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of different areas of the brain, whereas temporal patterns involve activation

of identical areas of the brain but at different times or in different sequences.

The third type is a combination of the above mentioned two types and there-

fore termed spatio-temporal patterns. Also, states that are functionally similar

often show similar spatio-temporal patterns but the magnitude of activation

of different areas of the brain is different.

Although there are a large number of activation patterns, there is signifi-

cant overlap in these patterns as a result of this efficient functional organiza-

tion. Therefore, it is very difficult to use these patterns to conclusively identify

the state. In fact, a complete spatio-temporal investigation of brain activity

using modalities such as functional imaging or electroencephalography (EEG)

is required before even attempting such an identification. A fast developing re-

search area is that of EEG-based non-invasive and practical diagnostic tools for

the investigation of various brain states, especially abnormal ones observed in

neurological disorders. The popularity of EEG-based techniques over imaging

techniques stems from two main advantages: 1) the relative inexpensiveness

of equipment compared with imaging techniques and 2) the convenience for

patients in clinical applications.

5.2 EEG: A Spatio-Temporal Data Mine

The EEG is a representation of the electrical activity generated during neu-

ronal firing (synchronous electrical discharges) by neurons in the cerebral cor-

tex. This electrical activity is recorded as electric potentials using special

electrodes which are either placed on the scalp directly above various key ar-

eas of the brain (scalp EEG) or surgically implanted on the surface of the

brain (intra-cranial EEG). The electrodes record the field potential , i.e., the



Electroencephalograms and Epilepsy 73

sum total of the electric potentials in the receptive (or recording) field of the

electrode. Scalp EEG electrodes are small metal discs with good mechanical

adhesion and electrical contact. In order to provide an accurate detection of

the field potentials, the electrodes are designed to have low impedance (less

than 5kΩ). In addition, a conductive gel is often used for impedance matching

between the electrode and the human skin to improve the signal-to-noise ratio.

Since the first human EEG recordings by Hans Berger were published in

1929 (Niedermeyer, 1999), the device for recording and displaying EEG signals

has evolved from simple galvanometers and paper strips to digital computers.

Nowadays, the signals from the electrodes are sensed and even amplified to

some extent prior to transmission to a digital computer. After the computer

receives the signals, software solutions are used to further reduce noise and

artifacts. After the post-processing is complete, one continuous graphical plot

is generated for each electrode to represent the change in the field potential

signal over time. A multi-channel EEG is a collection of such field potential

signals from every electrode and represents the spatial distribution of the

field potentials in the brain (Fisch, 1999). This makes the EEG an invaluable

tool for characterization of the spatio-temporal dynamics of neuronal activity

in the brain and therefore for the detection and diagnosis of neurological

disorders. A clinically recorded EEG from a normal adult is shown in Fig. 5.1.

Both intra-cranial and scalp EEGs have advantages and disadvantages.

Intra-cranial EEG has a high signal-to-noise ratio because the electrode is

implanted inside the brain and is therefore less susceptible to artifacts and

electromagnetic interference. Moreover, it records from a small receptive field

within the target site which allows 1) better exclusion of signals from outside

the target zone and 2) a higher spatial resolution. However, due to its invasive

nature, intra-cranial EEG is used primarily for research studies. Scalp EEG is

more common clinically because it is non-invasive. The most common configu-
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FIGURE 5.1
Normal adult EEG record for typical clinical diagnosis (courtesy Nahid Dadmehr, M.D.)
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ration for electrode placement is the standard 10-20 configuration (American

Clinical Neurophysiology Society, 2006). The electrode configuration and the

clinically defined electrode locations are provided in Fig. 5.2. The configu-

ration is so named to specify that the electrode spacing in the front-back

direction is 10% of the total front-back distance along the skull and in the

left-right direction is 20% of the total left-right distance along the skull. The

modified and expanded 10-10 configuration (the naming may be interpreted

in a similar manner) as specified by the American Clinical Neurophysiology

Society (ACNS) guidelines is shown in Fig. 5.3. Sometimes, variations of these

configurations are also employed, depending on preference and the nature of

the disorder under investigation.

An EEG contains a wide range of frequency components. However, the

typical frequencies of clinical and physiological interest lie in the range 0-30

Hz. Within this range, a number of approximate clinically relevant frequency

bands or rhythms have been identified as follows (Kellaway, 1990):

• Delta (0-4 Hz): Delta rhythms are slow brain activities typically pre-

ponderant only in deep sleep stages of normal adults. Otherwise, they

may be indicative of pathologies.

• Theta (4-7 Hz): Theta rhythms exist in normal infants and children as

well as during drowsiness and sleep in adults. Only a small amount of

theta rhythms appears in the normal waking adult. Presence of high

theta activity in awake adults suggests abnormal and pathological con-

ditions.

• Alpha (8-12 Hz): Alpha rhythms exist in normal adults during relaxed

and mentally inactive awakeness. The amplitude is mostly less than

50µV and appears most prominently in the occipital region. Alpha
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FIGURE 5.2
Standard international 10-20 configuration [adapted from American Clinical
Neurophysiology Society (2006)]

rhythms are blocked by opening of the eyes (visual attention) and other

mental efforts such as thinking.

• Beta (13-30 Hz): Beta rhythms are primarily found in the frontocentral

regions with lower amplitude than alpha rhythms. They are enhanced

by expectancy states and tension.

• Gamma (>30 Hz): Gamma rhythms, the high frequency band, are usu-

ally not of much clinical and physiological interest and therefore often

filtered out in EEG recordings.



Electroencephalograms and Epilepsy 77

Forehead 

FP1 FP2

FZ
F3

F8 

CZ C4 C3
T8T7 

PO4PO3

P8P7 

O1 O2

F1

F5

NZ

FPZ

AF7 AF8 
AF4AF3 AFZ

F9 F10

F7

F6 F4 F2

FT9 FT10FT7 FT8FC5 FC6 FC3 FC1 FC4 FC2FCZ

TP7 

PO7

OZ

TP8

PO8 

C5 C1 C2
C6 

PZ

CPZ

POZ

CP3
CP1CP5

CP4 CP6 CP2

P4 P6 
P2P3

P1P5

IZ 

A2A1 T9 T10

TP10TP9 

P10P9 

FIGURE 5.3
Modified and expanded 10-10 configuration [adapted from American Clinical
Neurophysiology Society (2006)]

EEGs contain a wealth of information which can be mined to yield tremen-

dous insight into the dynamics of the human brain. Conventional visual inspec-

tion of EEGs by trained neurologists includes the examination of the following

features: frequency or wavelength, voltage or amplitude, waveform regularity,

and reactivity to eye opening, hyperventilation, and photic stimulation. It also

includes the identification of the spatial range (local or generalized, unilateral

or bilateral) and temporal persistence (sporadic and brief or prolonged and

persistent) of the abnormalities. Although such features may be detected from
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a visual inspection by trained neurologists, automated algorithms in a clinical

setting do not fare well.

Moreover, other information such as complicated hidden patterns under-

lying the EEG waveforms is invisible and has to be extracted using advanced

mathematical and analytical tools. This is mostly uncharted territory and

many such invisible sources of information remain undiscovered. In recent

years, various paradigms have been applied to overcome these problems, iden-

tify new markers of abnormality, and automate the identification of markers

in EEG analysis (Iasemidis and Sackellares, 1991; Elger and Lehnertz, 1994,

1998; Iasemidis et al., 1994, 2003; Adeli et al., 2003).

5.3 Data Mining Techniques

Although EEGs contain a vast amount of information, not all EEG compo-

nents are useful. Very high frequency fluctuations can be attributed to electro-

magnetic interference. Artifacts in various frequency ranges may be generated

due to electrical events such as muscle movements, eye blinks, and heart beats,

to name a few. These components of the EEG can be characterized as noise

and need to be discarded. Signal analysis and processing techniques such as

time-frequency analysis and wavelet transforms are used to extract relevant

information.

Denoising the EEG using time-frequency and wavelet analysis attempts to

yield a clean signal which needs to be mathematically analyzed in order to

obtain features or markers of abnormality that can distinguish between normal

and abnormal states. Recent research has demonstrated that a spatio-temporal

investigation of the underlying non-linear chaotic dynamics of EEGs can yield

such markers. To discover the chaotic dynamics underlying the EEG, studies
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have been performed, with some success, on EEGs obtained from both (a)

normal states of the brain such as sleep (Molnar and Skinner, 1991; Roschke

and Aldenhoff, 1991; Niestroj et al., 1995; Zhang et al., 2001; Kobayashi et al.,

2001, 2002; Ferri et al., 1998, 2002, 2003; Shen et al., 2003) and meditation

(Aftanas and Golocheikine, 2002; Efremova and Kulikov, 2002), as well as

(b) pathological states such as schizophrenia (Roschke and Aldenhoff, 1993;

Paulus et al., 1996; Huber et al., 1999, 2000; Paulus and Braff, 2003) and

epilepsy (Iasemidis and Sackellares, 1991; Bullmore et al., 1992; Iasemidis

et al., 1994; Lopes da Silva et al., 1994; Elger and Lehnertz, 1994, 1998; Hively

et al., 1999; Andrzejak et al., 2001; Litt and Echauz, 2002; Adeli et al., 2003,

2007; Ghosh-Dastidar et al., 2007).

Although the wavelet transform can be used for denoising, in this book it

also forms the basis for a novel integrated wavelet-chaos methodology. This

methodology challenges the assumption that the EEG represents the dynamics

of the entire brain as a unified system and needs to be treated as a whole for

investigation of the chaotic dynamics. Chaos and wavelet analyses are adroitly

integrated to identify features that best characterize the state of the brain.

These features can be used to study differences in various brain states.

Due to the wide variety of features, the problem of EEG-based detection

and diagnosis of brain states and disorders may be approached as pattern

recognition problems where the pattern to be recognized or classified may be

spatial, temporal, or spatio-temporal sequences in these feature spaces. Vari-

ous methods such as cluster analysis, discriminant analysis, and even artificial

neural networks (ANNs) can be employed for this purpose. Besthorn et al.

(1997) report that linear discriminant analysis of EEGs yields more accurate

classification compared with k -means cluster analysis.

ANNs have evolved as a powerful tool for pattern recognition, classifica-

tion, prediction, and pattern completion. These networks are trained using
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real-world data and can provide approximate solutions to problems that are

not easily solved by conventional mathematical approaches. Studies have re-

ported that ANNs yield greater classification accuracy than traditional meth-

ods such as statistical, clustering, and discriminant analysis (Anderer et al.,

1994; Besthorn et al., 1997). ANN classification accuracy is further increased

if the EEGs are preprocessed with chaos analysis (Pritchard et al., 1994) or

wavelet analysis (Polikar et al., 1997; Petrosian et al., 2000a, 2001).

Chaos theory, time-frequency and wavelet analysis, and artificial neural

networks are computational tools that can be applied in complementary roles

toward the common goal of analysis of EEG waveforms. The application de-

pends on how the solution to the problem is conceptualized. For instance, in

the case of detecting EEG abnormalities, the problem can be approached as (1)

searching for an abnormal waveform using statistical similarities with known

waveforms such as a wavelet, (2) recognizing abnormal changes in the EEG

patterns using an artificial neural network, (3) quantifying changes in under-

lying non-linear chaotic EEG dynamics and using the quantifier as a marker

of abnormality, or in the case of a particularly difficult problem, (4) a judi-

cious combination of the above. Another instance of using the multi-paradigm

approach is when one tool is designed so as to enhance the performance of

another. For example, the time-frequency or wavelet analysis is employed for

the extraction of a feature that may be classified more accurately by a clas-

sification algorithm. In this book, the complementary roles of these methods

are investigated toward the long term goal of increasing the accuracy and

performance of automated detection and diagnosis algorithms.
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5.4 Multi-Paradigm Data Mining Strategy for EEGs

A novel multi-paradigm computational model for data mining and pattern

recognition of EEGs requires an adroit integration of chaos analysis, wavelets,

and artificial neural networks. In this book, various methodologies are explored

and applied to EEGs from subjects with two types of seizures: absence seizures

and seizures resulting from temporal lobe epilepsy (TLE). These two types of

seizures are fundamentally different from each other. The former is associated

with visually recognizable epileptic waveforms such as the 3-Hz spike and slow

wave complex. The latter is also associated with abnormal waveforms but these

waveforms cannot be characterized easily.

One goal is to assess the applicability of wavelet transforms for character-

ization of epileptic waveforms such as the 3-Hz spike and slow wave complex

observed in absence seizures as presented in Chapter 6. Another goal is to dis-

cover EEG markers of abnormality in TLE that cannot ordinarily be obtained

from a visual EEG inspection as presented in Chapters 7 to 9. Toward the

second goal, the temporal evolution of the brain state (as represented by the

EEG) in these disorders is investigated. Subsequently, a judicious combination

of various invisible as well as visible EEG markers is presented as a basis for

development of new in vivo automated detection and diagnosis tools.

Epilepsy diagnosis and seizure detection are modeled as a clinically sig-

nificant EEG classification problem. An automated computer model that can

accurately differentiate between normal EEGs from interictal EEGs can be

used to diagnose epilepsy in a clinical setting. A model that can accurately

differentiate between interictal and ictal EEGs can be used to detect seizures

in the environment of epilepsy monitoring units. In a clinical setting, the dis-

tinctions between these different EEG groups are often not very well defined.
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Therefore, for real-time applicability, it is imperative that the model be able

to identify EEGs obtained under the above mentioned conditions accurately

and consistently.

The goal of consistent and accurate classification is approached from two

different angles: 1) designing an appropriate feature space by identifying com-

binations of parameters that increase the inter-class separation and 2) design-

ing a classifier that can accurately model the classification problem based on

the selected feature space. Therefore, corresponding to the above mentioned

two angles, the research presented in this book is organized into the following

two phases:

1. Feature space identification and feature enhancement using wavelet-

chaos methodology

2. Development of accurate and robust classifiers

5.4.1 Feature Space Identification and Feature Enhancement

Using Wavelet-Chaos Methodology

The first phase, as presented in Chapters 7 and 8, is focused on identifying a

feature space that can maximize the separation between normal and abnormal

EEGs. The feature space consists of various features, defined as parameters or

waveforms in EEGs that may be used as markers of abnormality for diagnosis

of TLE. Visible features such as focal spikes can be characterized by specific

wavelets or other waveforms. Alternatively, certain features may be character-

istics of the underlying chaotic dynamics and therefore not detectable from a

visual inspection of the EEG.

The key to maximizing the usefulness of any feature is to maximize its

detectability (consistency and accuracy of detection). This is achieved in two

ways. One, computational methods are developed to amplify the features to be
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detected. Two, new features/markers are discovered that are inherently better

in terms of detectability. The objective is to develop new features by means

of quantification of differences in normal and abnormal chaotic dynamics un-

derlying the EEG in TLE. This phase is organized into the following tasks:

1. Denoising and artifact removal: EEG signals often contain various types

of artifacts (especially myogenic artifacts) and electromagnetic interfer-

ence which may lead to inaccurate analysis by masking transients that

may be predictive of the disorder under study. Filters based on time-

frequency and wavelet analyses are used to remove or minimize the pres-

ence of these artifacts to allow for more effective feature identification.

2. Sub-band analysis: Changes in EEG dynamics may exist in certain fre-

quency ranges but not others. Moreover, these changes may not show

up in the complete EEG. In this analysis methodology, the EEG is de-

composed into its physiological alpha, beta, gamma, theta, and delta

sub-bands using a wavelet-based approach. The methodology is investi-

gated with strategically selected frequency bands to isolate deterministic

chaos and other changes in each frequency band.

3. Chaos quantification: Parameters quantifying chaotic dynamics in EEG

time series include the correlation dimension (CD) and largest Lyapunov

exponent (LLE). Various combinations of these parameters obtained

from the entire EEG and EEG sub-bands are investigated as possible

feature spaces for accurate EEG representation.

4. Statistical analysis and the mixed-band feature space identification:

Parametric and non-parametric analysis of variance (ANOVA) tests (as

determined by the data distribution) are performed in order to assess

the statistical significance of the differences in the identified features.

On the basis of the statistical analysis, mixed-band feature spaces based
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on various EEG sub-bands are identified with the goal of increasing the

separation between normal and abnormal EEGs.

The wavelet-chaos methodology performs two primary functions:

1. Increasing the classification accuracy: The parameters obtained from the

wavelet-chaos analysis are based on chaotic nonlinear dynamics of the

brain. An extensive mixed-band analysis involving various combinations

of features from various sub-bands is performed in order to identify

features that are significantly different across the EEG groups.

2. Data reduction: The methodology maps each EEG dataset to a point

on the P -dimensional feature space with each selected parameter as a

coordinate axis, where P is the number of selected features.

5.4.2 Development of Accurate and Robust Classifiers

In the second phase, described in Chapters 8 and 9, new classification models

that maximize the classification accuracy and robustness are presented. The

classification strategies are presented as follows:

1. Evaluation of the mixed-band feature space: Combinations of various

wavelet-chaos features and classifiers such as k -means clustering, linear

and quadratic discriminant analyses, and backpropagation and radial

basis function neural networks are investigated to determine the combi-

nation that consistently yields the highest classification accuracy. This

provides a benchmark for evaluating the performance of new improved

neural network classifiers.

2. Development of improved radial basis function neural network classi-

fier: A new radial basis function neural network (RBFNN) classifier is

presented to increase the robustness of classification.
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3. Development of spiking neural network: Supervised learning using a

spiking neural network (SNN) is a new development in the field of arti-

ficial intelligence and is in its infancy. Only simplistic models have been

developed that have been used to solve very simple classification prob-

lems such as the XOR problem. The SNN, however, has great potential

because it mimics the dynamics of the biological neuron in greater de-

tail. The goal is to develop more powerful models of learning which could

lead to more accurate and robust classifiers. In this book, a new SNN

model and supervised learning algorithm are presented and applied to

the complicated EEG classification problem. Spiking neural networks

are, in themselves, a separate research topic and are therefore presented

separately in Part IV.

5.5 Epilepsy and Epileptic Seizures

Epilepsy is a common brain disorder that affects about 1% of the population in

the United States and is characterized by intermittent abnormal firing of neu-

rons in the brain which may lead to recurrent and spontaneous seizures (with

no apparent external cause or trigger). Approximately 30% of the epileptic

population is not helped by medications (Porter, 1993; National Institute of

Neurological Disorders and Stroke, 2004). Seizures can be categorized as gen-

eralized or partial depending on established conventions as explained below.

Generalized seizures occur due to simultaneous abnormal activity in multiple

parts of both brain hemispheres from the beginning leading to tonic-clonic ac-

tivity and loss of consciousness. Partial (or focal) seizures are more common

and initiate in one part of the brain, often leading to strange sensations, mo-

tor behavior, and even loss of memory. These seizures are further subdivided
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based on the part of the brain that contains the epileptogenic focus which

determines the exact symptoms. Partial seizures can sometimes spread from

the focus to other parts of the brain, leading to secondary generalized seizures.

Different parts of the brain are implicated in the generation of different

types of seizures associated with various types of epilepsy. For instance, pri-

mary generalized seizures such as absence seizures are attributed to generally

increased cortical excitability and disturbances in the thalamocortical path-

ways (Westbrook, 2000). On the other hand, partial seizures are attributed

to localized disturbances in various areas of the brain. Due to this reason,

there is no one area of the brain that can be implicated in the generation

of all epilepsies. However, in almost 33% of all patients with partial seizures,

the epileptogenic focus (or at least one of the foci) is located in the temporal

lobe (Devinsky, 2004). This condition is termed temporal lobe epilepsy. TLE

seizures are of primary clinical importance due to the frequency of occurrence

and difficulty of diagnosis and treatment.

TLE can be further categorized as mesial or neocortical based on the loca-

tion of the focus inside the temporal lobe. In mesial TLE, which is more fre-

quent, the epileptogenic focus is located in the mesial temporal lobe which con-

sists of the amygdala, hippocampal formation (HF), and the parahippocampal

gyrus. Out of these, the most common location of the focus is the HF and, in

some cases, the amygdala (Najm et al., 2001). In neocortical TLE, the focus

exists in the neocortical (lateral) temporal lobe. Due to the close proximity of

the two areas and extensive interconnectivity, abnormal neuronal discharges

spread easily from one area to the other, making it very difficult to distin-

guish between the two types and their symptoms (Kotagal, 2001). The HF is

implicated as the epileptogenic focus more frequently and therefore appears

to be more important than other areas in epilepsy.

Epilepsy is often described as a group of disorders with many types, sub-
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types, and cross-classifications. The two types presented as example appli-

cations in this book have been selected because of their clinical relevance.

Absence (petit mal) seizure is one of the main types of generalized seizures

and the underlying pathophysiology is not completely understood. The diag-

nosis is made by neurologists primarily based on a visual identification of the

3-Hz spike and slow wave complex. The significance of TLE is even greater

due to its predominance, difficulty of diagnosis, and significant personal and

societal impact. As a result, most of this part of the book is devoted to appli-

cation of the wavelet-chaos-neural network methodologies to TLE diagnosis

and seizure detection. The presented methodologies, however, are certainly

not limited to these two types of epilepsy. Rather, they are applicable to neu-

rological disorders in general. To illustrate this point, we describe a possible

application of the wavelet-chaos methodology to Alzheimer’s disease in Part

III.





6

Analysis of EEGs in an Epileptic Patient

Using Wavelet Transform

6.1 Introduction

Epileptic seizures manifest themselves as abnormalities in electroencephalo-

grams (EEGs) and are characterized by brief and episodic neuronal syn-

chronous discharges with dramatically increased amplitude. In partial seizures,

this anomalous synchrony occurs in the brain locally and is observed only in

a few channels of the EEG. In generalized seizures the entire brain is involved

and the discharges can be observed in every channel of the EEG. Wavelet

transforms are an effective time-frequency analysis tool for analyzing such

transient non-stationary signals. In this chapter, the applicability of wavelet

transforms is demonstrated for the analysis of epileptiform discharges in EEGs

of subjects with absence seizure. The excellent feature extraction and rep-

resentation properties of wavelet transforms are used to analyze individual

transient events such as the 3-Hz spike and slow wave complex.

Four channels of an EEG, F7-C3, F8-C4, T5-O1, and T6-O2 (Fig. 5.2),

recorded from a patient with two absence seizure epileptic discharges are

This chapter is based on the article: Adeli, H., Zhou, Z., and Dadmehr, N. (2003),
“Analysis of EEG Records in an Epileptic Patient Using Wavelet Transform”, Journal
of Neuroscience Methods, 123(1), pp. 69-87, and is reproduced by the permission of the
publisher, Elsevier.
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shown in Figs. 6.1 and 6.2 (data available online at: ftp://sigftp.cs.tut.

fi/pub/eeg-data/tv0003b0.recandtv0004b0.rec). It should be noted that

the four channels shown are actually the mathematical difference in the sig-

nals between pairs of electrodes. For instance, the F7-C3 channel represents

the C3 signal subtracted from the F7 signal. These modified channel config-

urations are called montages and are often used to highlight location-specific

changes in the EEG and minimize noise. The signals show the 3-Hz spike and

slow wave complex during the time period 3.5-7 seconds. Although these two

seizures may look similar in terms of displaying the raw EEG data, they may

have different underlying time-frequency structures not readily discernable

from the raw data by visual inspection. As such, both are analyzed in this

chapter.

Currently, the analysis of the EEG data is performed primarily by neurolo-

gists through visual inspection. Fourier analysis has also been used to analyze

EEGs (Gotman, 1990). Most studies on the characteristics of the 3-Hz spike

and slow wave complex have been based on simple visual inspection of data

recorded for different channels.

After visual inspection of the EEGs with absence seizure discharges, Weir

(1965) pointed out that a surface negative spike followed by a surface negative

slow wave oversimplifies the 3-Hz spike and slow wave complexes. He observed

four components including an initial surface positive transient wave followed

by a low voltage (25-50 µV) surface negative spike and a classical surface

negative spike lasting 4-60 ms. The first brief spike appears in the centrotem-

poral regions and the second in frontal areas. The fourth and final surface

negative wave is in conjunction with the declining initial positive transient

wave. In other words, there are two spikes between the first surface positive

transient wave and the last surface negative wave. Rodin and Ancheta (1987)

analyzed the 3-Hz spike and slow wave complex for five patients using com-
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FIGURE 6.1
EEG segment showing epileptic discharges during an absence seizure
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EEG segment showing epileptic discharges during a second absence seizure
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puterized topographic mapping and concluded that the maximal amplitudes

occur in frontal regions. They also observed that the occurrence of spikes in

one hemisphere randomly precedes the other by several milliseconds.

6.2 Wavelet Analysis of a Normal EEG

In this section, DWT is applied to part of a normal EEG and the results are

interpreted. The EEG was obtained from an online database (http://kdd.

ics.uci.edu/databases/eeg/eeg.html). It was recorded from 64 electrodes

placed on the scalp of a normal adult (representing 32 EEG channels, since

each channel represents the potential difference between pairs of electrodes)

who was exposed to one visual stimulus (pictures of objects). The EEG signal

was sampled at 256 Hz (sampling interval of 1/256 = 0.0039 seconds or 3.9

milliseconds). A one-second EEG for one of the channels is shown at the top

of the left column in Fig. 6.3 (identified by the letter s).

Third order Daubechies wavelet transform was applied to the EEG signal.

The results are shown in Fig. 6.3 with five different levels of approximation

(identified by a1 to a5 and displayed in the left column) and details (identi-

fied by d1 to d5 and displayed in the right-hand column). These approxima-

tion and detail components of the EEG are reconstructed from the wavelet

coefficients. Approximation a4 is obtained by superimposing details d5 on

approximation a5. Approximation a3 is obtained by superimposing details

d4 on approximation a4, and so on. Finally, the original signal s is obtained

by superimposing details d1 on approximation a1. The utility of the wavelet

transform as a mathematical microscope is clear. For example, the approxi-

mations at levels 3 and 4 show good overall trend information for the signal,

which is primarily due to an eye blink artifact, with the higher frequency in-
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formation retained in the details. Additional details are presented in the lower

scale levels 2 and 1.

Table 6.1 presents frequencies and periods for various levels of decompo-

sition for the third order Daubechies wavelet with a sampling frequency of

256 Hz. It can be seen from Table 6.1 that the components from level 5 de-

composition are approximately within the theta range (4-7 Hz), those from

level 4 decomposition are within the alpha range (8-12 Hz), and those from

level 3 decomposition are within the beta range (13-30 Hz). Lower level de-

compositions corresponding to higher frequencies have negligible magnitudes

in a normal EEG. The corresponding frequencies and periods for various lev-

els of decomposition for the third order Daubechies wavelet with a sampling

frequency of 200 Hz are summarized in Table 6.2.

TABLE 6.1
Frequencies and periods for various decomposition levels for the third order
Daubechies wavelet (sampling frequency of 256 Hz)

Level of decomposition (i) 0 1 2 3 4 5 6

Scale (2i) 1 2 4 8 16 32 64

Frequency (Hz) 204.8 102.4 51.2 25.6 12.8 6.4 3.2

Period (sec) 0.0049 0.098 0.0195 0.0391 0.0781 0.1563 0.3125

TABLE 6.2
Frequencies and periods for various decomposition levels for the third order
Daubechies wavelet (sampling frequency of 200 Hz)

Level of decomposition (i) 0 1 2 3 4 5 6

Scale (2i) 1 2 4 8 16 32 64

Frequency (Hz) 142.86 71.429 35.715 17.857 8.929 4.464 2.232

Period (sec) 0.007 0.014 0.028 0.056 0.112 0.224 0.448
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6.3 Characterization of the 3-Hz Spike and Slow Wave

Complex in Absence Seizures Using Wavelet Trans-

forms

In contrast to Fourier analysis, where only sinusoid functions are employed

as a basis for analysis, there exist families of functions that serve as wavelet

basis functions. Identifying and selecting the most appropriate wavelet basis

function for a given signal analysis problem should be properly investigated.

Issues to be considered in the selection process include interpretation of the

transformed data, desired level of resolution, accuracy, and computational

efficiency. In this chapter, Daubechies and harmonic wavelets are investigated

for the analysis of epileptic EEGs.

6.3.1 Daubechies Wavelets

Daubechies wavelets (Daubechies, 1988) of different orders (2, 3, 4, 5, and 6)

were investigated for the analysis of epileptic EEGs. This family of wavelets is

known for its orthogonality property and efficient filter implementation. The

fourth order Daubechies wavelet was found to be the most appropriate for

analysis of epileptic EEG data. The lower order wavelets of the family were

found to be too coarse to represent EEG spikes properly. The higher order

ones have more oscillations and cannot accurately characterize the spiky form

of the absence seizure epileptic EEG investigated in this chapter.

Figures 6.4 to 6.11 show the single channel EEGs containing absence

seizure epileptic discharges shown in Figs. 6.1 and 6.2 and their fourth or-

der Daubechies wavelet approximations and details. In these figures, it should

be noted that for the sake of displaying the details the vertical scales are

different for different levels of decomposition. Six different levels of approxi-
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mations (a1 to a6) and details (d1 to d6) are presented in the left and right

columns, respectively. The EEG is sampled at 200 Hz (200 data points per

second) to yield 2048 data points. In Figs. 6.4 to 6.7, the seizure starts at

approximately the 750th point and ends at the 1300th point. In Figs. 6.8 to

6.11, the seizure starts at approximately the 700th point and ends at approx-

imately the 1400th point. The original signal s is the sum of the first level of

approximation a1 and the first level of detail d1; the first level approximation

a1 is the sum of the second level approximation a2 and the second level detail

d2; and so on. Therefore, high frequency components are stripped from the

signal approximation layer by layer. By inspecting the details at each level,

the time-frequency feature of the original signal is obtained. A close inspection

of Figs. 6.4 to 6.11 indicates that the spike and wave trains manifested in the

EEGs are captured accurately in the transformed detail signals d5 and d3.

The former represents the epileptic slow wave with high amplitude and the

latter represents spikes effectively.

6.3.2 Harmonic Wavelet

Harmonic wavelet functions are suitable for analysis and characterization of

the EEGs because they can be used to precisely locate the frequency bands

of interest. The same EEG signals presented in Figs. 6.1 and 6.2 are analyzed

using the discrete harmonic wavelet transform. The resulting wavelet coeffi-

cient moduli or signal energies for six different resolution levels (j = 1 to 6)

are plotted in Figs. 6.12 to 6.19. In these figures also the vertical scales are

different for different levels of decomposition. As can be seen in these figures

and Table 6.3, the frequency range halves with each increment in the decom-

position level. In the absence seizure spike and wave complexes, most of the

energy of the spike is concentrated in level j = 3 with a frequency range of

12.5-25 Hz indicating the width of the spike in the frequency domain, while
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FIGURE 6.4
Fourth order Daubechies wavelet transform of the F7-C3 EEG channel for the
absence seizure 1 shown in Fig. 6.1
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FIGURE 6.5
Fourth order Daubechies wavelet transform of the F8-C4 EEG channel for the
absence seizure 1 shown in Fig. 6.1
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FIGURE 6.6
Fourth order Daubechies wavelet transform of the T5-O1 EEG channel for
the absence seizure 1 shown in Fig. 6.1
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FIGURE 6.7
Fourth order Daubechies wavelet transform of the T6-O2 EEG channel for
the absence seizure 1 shown in Fig. 6.1
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FIGURE 6.8
Fourth order Daubechies wavelet transform of the F7-C3 EEG channel for the
absence seizure 2 shown in Fig. 6.2
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FIGURE 6.9
Fourth order Daubechies wavelet transform of the F8-C4 EEG channel for the
absence seizure 2 shown in Fig. 6.2
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FIGURE 6.10
Fourth order Daubechies wavelet transform of the T5-O1 EEG channel for
the absence seizure 2 shown in Fig. 6.2
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FIGURE 6.11
Fourth order Daubechies wavelet transform of the T6-O2 EEG channel for
the absence seizure 2 shown in Fig. 6.2
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most of the slow wave energy is concentrated in level j = 5 with a frequency

range of 3.125-6.25 Hz indicating the frequency band of the low wave in the

frequency domain.

TABLE 6.3
Frequency ranges for various decomposition levels for harmonic wavelet (sam-
pling frequency of 200 Hz)

Level of decomposition (i) 1 2 3 4 5 6

Scale (2i) 2 4 8 16 32 64

Frequency (Hz) 50-100 25-50 12.5-25 6.25-12.5 3.125-6.25 1.5625-3.125

6.3.3 Characterization

Based on the examination of the results for both fourth order Daubechies

and harmonic wavelet decompositions of EEGs from a subject with absence

seizure, the following observations are made:

• Both high and low frequency components have greater amplitudes in the

frontal region (Figs. 6.4, 6.5, 6.8, and 6.9) than those for the occipital

region (Figs. 6.6, 6.7, 6.10, and 6.11).

• In frontal regions:

– High frequency oscillations appear in the early stage of the epileptic

discharge with an amplitude of about 1/4 of the 3-Hz spike and slow

wave complex, as demonstrated in the level 1 detail signals d1 in

Figs. 6.4 and 6.5.

– Low frequency waves occur in later stages of the same spike and

wave complex as can be seen in the level 6 detail signal d6 in Figs.

6.4 and 6.5.

– The same observations are made in Figs. 6.12, 6.13, 6.16, and 6.17
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FIGURE 6.12
Harmonic wavelet transform of the F7-C3 EEG channel for the absence seizure
1 shown in Fig. 6.1
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FIGURE 6.13
Harmonic wavelet transform of the F8-C4 EEG channel for the absence seizure
1 shown in Fig. 6.1
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FIGURE 6.14
Harmonic wavelet transform of the T5-O1 EEG channel for the absence seizure
1 shown in Fig. 6.1
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FIGURE 6.15
Harmonic wavelet transform of the T6-O2 EEG channel for the absence seizure
1 shown in Fig. 6.1
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FIGURE 6.16
Harmonic wavelet transform of the F7-C3 EEG channel for the absence seizure
2 shown in Fig. 6.2
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FIGURE 6.17
Harmonic wavelet transform of the F8-C4 EEG channel for the absence seizure
2 shown in Fig. 6.2
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FIGURE 6.18
Harmonic wavelet transform of the T5-O1 EEG channel for the absence seizure
2 shown in Fig. 6.2
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FIGURE 6.19
Harmonic wavelet transform of the T6-O2 EEG channel for the absence seizure
2 shown in Fig. 6.2
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by comparing the resolution level j = 6 signal (lower frequency, in

the delta range) with the level j = 5 signal (higher frequency, in

the theta range).

• In occipital regions:

– High amplitudes of low frequency transients are seen at both the

beginning and end of the first seizure (Fig. 6.6 d6, Fig. 6.7 a6).

In the second seizure, however, high amplitudes of low frequency

transients are seen at the beginning, in the middle, and at the end of

the seizure (Figs. 6.10, 6.11 a6) suggesting that the second seizure

is a summation of two successive shorter-duration seizures.

– Based on the fourth order Daubechies wavelet transform, high fre-

quency components are more intense in the right hemisphere (Figs.

6.7 d1 and 6.11 d1) than in the left one (Figs. 6.6 d2 and 6.10 d2).

The same observation is made using harmonic wavelets at decom-

position level j = 3 (frequency range of 12.5 to 25 Hz) when Figs.

6.14 and 6.18 are compared with Figs. 6.15 and 6.19, respectively.

• The frequency components of the signal in the ultra high frequency (50-

100 Hz) range (level j = 1 in Figs. 6.12 to 6.19) are low in amplitude

and can be ignored in clinical analysis. In fact, this frequency range is

usually filtered out by a high-pass filter when the signal is originally

sampled. The appearance of some signal in this frequency range may be

attributed to noise during recording.

• The two different spikes observed by Weir (1965), denoted as classical

and secondary, are demonstrated separately in harmonic wavelets. The

classical spike is observed in level j = 3; the secondary spike with a

smaller amplitude appears earlier in time and is observed in level j = 2

(Figs. 6.12 to 6.19).
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• An overall inspection of harmonic wavelets in Figs. 6.12 to 6.19 shows

that the shape and trend at higher levels of signal energy distribution

(levels 4, 5 and 6, with lower frequency content) over time precisely

echo the shape and trend in lower levels of signal energy distribution

(levels 2 and 3, with higher frequency content) suggesting a synchronous

firing of neurons during the seizure at different scales, but first at a high

frequency range followed by a lower frequency range.

6.4 Concluding Remarks

Through wavelet decomposition of the 3-Hz spike and slow wave epileptic dis-

charges in EEGs, transient features are accurately captured and localized in

both time and frequency context. The capability of this mathematical micro-

scope to analyze different scales of neural rhythms is shown to be a powerful

tool for investigating small-scale oscillations of the brain signals. However,

to utilize this mathematical microscope effectively, the best suitable wavelet

basis function has to be identified for the particular application. Fourth or-

der Daubechies and harmonic wavelets are experimentally found to be very

appropriate for analysis of the 3-Hz spike and slow wave complex in EEGs.

Wavelet analyses of EEGs obtained from a population of epileptic subjects can

potentially provide deeper insight into the physiological processes underlying

brain dynamics at seizure onset.

In the next few chapters, computational models will be presented for au-

tomated detection of epileptic discharges in other types of seizures that may,

in the future, be used to predict the onset of seizure. Accurate detection

of various types of seizure is a complicated problem requiring analysis of a

large set of EEGs. The final objective is to create a system for continuous
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EEG-based monitoring of hospitalized patients and an automated detection

or early-warning system for epileptic episodes. Such a system can also be

used for automated administration of medication through implantable drug

delivery systems.





7

Wavelet-Chaos Methodology for Analysis of

EEGs and EEG Sub-Bands

7.1 Introduction

Temporal lobe epilepsy (TLE) is characterized by intermittent abnormal neu-

ronal firing in the brain which can lead to seizures. Ictal brain activity (during

a seizure) differs significantly from the activity in the normal state with re-

spect to both frequency as well as pattern of neuronal firing. In contrast to

normal brain activity in which neurons fire about 80 times per second, neu-

rons may fire as fast as 500 times per second during a seizure. Further, the

spatio-temporal pattern of neuronal firing gradually evolves from a normal

state, first to a preictal (interictal) state and then to an ictal state (Iasemidis

et al., 1994; Lopes da Silva et al., 1994).

Normally, neurons in different parts of the brain fire independently of each

other. In contrast, in the interictal state, neurons start firing in multiple parts

of the brain in synchronization with the epileptogenic focus which leads to the

ictal state. Despite these differences, detection of seizures can be challenging

even from a visual inspection of the EEG by a trained neurologist for a variety

of reasons such as excessive presence of myogenic artifacts, interference, and

overlapping symptomatology of various mental states. Prediction of seizures

is even more challenging because there is very little confirmed knowledge of

119



120 Automated EEG-Based Diagnosis of Neurological Disorders

the exact mechanism responsible for the seizure. Overcoming these obstacles

by means of effective and accurate algorithms for automatic seizure detection

and prediction can have a far reaching impact on diagnosis and treatment of

epilepsy.

In recent years, a few attempts have been reported on seizure detection

and prediction from EEG analysis using two different approaches: (a) exam-

ination of the waveforms in the preictal EEG to find events (markers) or

changes in neuronal activity such as spikes (Gotman, 1999; Adeli et al., 2003;

Durka, 2003) which may be precursors to seizures and (b) analysis of the

nonlinear spatio-temporal evolution of the EEG signals to find a governing

rule as the system moves from a seizure-free to seizure state (Iasemidis et al.,

1994). Some work has also been reported using artificial neural networks (Adeli

and Hung, 1995) for seizure prediction with wavelet preprocessing (Petrosian

et al., 2000b). This chapter focuses on the second approach using a combina-

tion of chaos theory and wavelet analysis for non-linear dynamic analysis of

EEGs. The multi-paradigm approach presented in this chapter is based on an

integrated approach and simultaneous application of both chaos theory and

wavelets for EEG analysis.

The approach presented in this book challenges the assumption that the

EEG represents the dynamics of the entire brain as a unified system and

needs to be treated as a whole. On the contrary, an EEG is a signal that

represents the effect of the superimposition of diverse processes in the brain.

Until recently, very little research has been done to separately study the ef-

fects of these individual processes. Each EEG is commonly decomposed into

five EEG sub-bands: delta (0-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta

(13-30 Hz), and gamma (30-60 Hz). There is no good reason why the entire

EEG should be more representative of brain dynamics than the individual fre-

quency sub-bands. In fact, the sub-bands may yield more accurate information
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about constituent neuronal activities underlying the EEG and, consequently,

certain changes in the EEGs that are not evident in the original full-spectrum

EEG may be amplified when each sub-band is analyzed separately. This is a

fundamental premise of our approach.

Iasemidis and Sackellares (1991) were among the first to study the non-

linear dynamics of EEG data in patients with temporal lobe epilepsy and in

their subsequent studies concluded that the chaos in the brain was reduced

in the preictal phase (Iasemidis et al., 2000b, 2003). Bullmore et al. (1992)

performed a quantitative comparison of EEGs corresponding to normal and

epileptic brain activity using fractal analysis. Similar findings confirming the

reduction in complexity of neuronal firing during the preictal phase were also

reported by Elger and Lehnertz (1994, 1998). Lopes da Silva et al. (1994)

reported the synchronization of neuronal firing in different parts of the brain

during a seizure. Hively et al. (1999) also proposed additional measures using

chi-square statistics and phase space visitation frequency to quantify chaos in

EEGs and to detect the transition from non-seizure to epileptic activity.

It has been reported that during normal brain activity, the pattern of neu-

ronal firing represented by the EEG signal appears to be less organized and

has greater complexity and chaoticity. However, prior to a seizure, the pattern

of neuronal firing becomes more organized and is characterized by lower values

of the largest Lyapunov exponent and correlation dimension of the chaotic at-

tractor (Litt and Echauz, 2002; Iasemidis, 2003). There are conflicting reports

on the values of the correlation dimension during a seizure. Hively et al. (1999)

report values of correlation dimension greater than 6 during a seizure and be-

tween 1 and 2.6 otherwise, whereas Iasemidis et al. (2000b) report values in

the range of 2 and 3 during a seizure.

A major shortcoming of existing seizure detection algorithms is their low

accuracy resulting in high missed detection and false alarm rates. An inherent
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source of inaccuracy stems from the vast number of variables involved in the

physiological system (Iasemidis, 2003). For instance, it cannot be decided if

a false alarm is a true false alarm or just the precursor to a potential seizure

that was prevented from occurring by changes that returned the neuronal

pattern to the normal baseline. Another source of inaccuracy is that some of

the parameters often used in the existing algorithms such as the correlation

dimension and the largest Lyapunov exponent are obtained approximately

from multidimensional experimental data.

A robust parameter capable of quantifying changes in the brain dynamics

of epileptic patients, especially just before or during seizures, is key to accurate

seizure detection and prediction. The robustness of this parameter is defined

with respect to: 1) decreased sensitivity to physiological differences between

individuals and inherent inaccuracies in EEGs such as noise and electrode

artifacts, and 2) increased specificity to the particular disorder of interest,

for example, temporal lobe epilepsy (TLE). Another impediment to accurate

seizure detection is the lack of reliable standardized data. This reduces the

statistical significance of the results since most of the EEG analysis reported

in the literature is performed on a small number of data sets. In order to

obtain a reliable estimate of the efficacy of the epilepsy detection parameters

and algorithms, they should be tested on a relatively large number of data

sets.

7.2 Wavelet-Chaos Analysis of EEG Signals

In this chapter, a wavelet-chaos methodology is presented for analysis of EEGs

and EEG sub-bands for detection of seizure and epilepsy. It consists of three

stages: a) wavelet analysis, b) preliminary chaos analysis, and c) final chaos
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analysis as outlined in Fig. 7.1. The methodology is applied to three different

groups of EEG signals: (a) healthy subjects, (b) epileptic subjects during

a seizure-free interval (interictal EEG), and (c) epileptic subjects during a

seizure (ictal EEG). Each EEG is decomposed into the five constituent EEG

sub-bands: delta, theta, alpha, beta, and gamma using wavelet-based filters.

To identify the deterministic chaos in the system, the non-linear dynamics

of the original EEGs are quantified in the form of the correlation dimension

(CD, representing system complexity) and the largest Lyapunov exponent

(LLE, representing system chaoticity). Similar to the original EEG, each sub-

band is also subjected to chaos analysis to investigate the isolation of the

changes in CD and LLE to specific sub-bands of the EEG. Subsequently, the

effectiveness of CD and LLE in differentiating between the three groups is

investigated based on statistical significance of the differences.

In order to extract the individual EEG sub-bands a wavelet filter is em-

ployed instead of the traditional Fourier transform because of the reasons de-

scribed in Chapter 2. Similar to the signal decomposition described in Chapter

6, after a single level decomposition, two sequences are obtained representing

the high and low resolution components of the signal, respectively. The low res-

olution components are further decomposed into low and high resolution com-

ponents after a second level decomposition and so on. This multi-resolution

analysis using four levels of decomposition yields five separate EEG sub-bands,

which are subjected to subsequent chaos analysis. The process is explained in

detail in the next section.

Following the procedure outlined in Chapter 3, the optimum lag and the

minimum embedding dimension of the EEG are identified. Using these two

parameters, the lagged phase space of the EEG can be constructed. These

steps form the basis for the preliminary chaos analysis stage. The lagged

phase space is important for identifying the temporal evolution of neuronal
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firing as represented by the EEG signal. In the final chaos analysis stage of

the proposed wavelet-chaos algorithm, the CD is computed using the Takens

estimator and the LLE is computed using a modification of Wolf’s method

reported in Iasemidis et al. (2000a).

7.3 Application and Results

7.3.1 Description of the EEG Data Used in the Research

The data used in this research are a subset of the EEG data for both

healthy and epileptic subjects made available online by Dr. Ralph Andrze-

jak of the Epilepsy Center at the University of Bonn, Germany (http://www.

meb.uni-bonn.de/epileptologie/science/physik/eegdata.html). EEGs

from three different groups are analyzed: group H (healthy subjects), group

E (epileptic subjects during a seizure-free interval), and group S (epileptic

subjects during seizure). The type of epilepsy was diagnosed as temporal lobe

epilepsy with the epileptogenic focus being the hippocampal formation. Each

group contains 100 single channel EEG segments of 23.6 sec duration each

sampled at 173.61 Hz (Andrzejak et al., 2001). As such, each data segment

contains 4097 data points collected at intervals of 1/173.61 of a second. Each

EEG segment is considered as a separate EEG signal resulting in a total of

300 EEG signals or EEGs.

Example EEGs for groups H (H029), E (E037), and S (S001) are displayed

in Fig. 7.2. For the sake of visual clarity, the first six seconds of the three

unfiltered EEGs are magnified in Fig. 7.3 (this is what a neurologist would

normally read). The nomenclature in parentheses refers to the identifier num-
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FIGURE 7.2
Unfiltered EEGs for (a) group H: healthy subject (H029), (b) group E: epilep-
tic subject during a seizure-free interval (E037), and (c) group S: epileptic
subject during seizure (S001)
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FIGURE 7.3
Unfiltered EEGs (0-6 seconds) for (a) group H: healthy subject (H029), (b) group E: epileptic subject during a seizure-free
interval (E037), and (c) group S: epileptic subject during seizure (S001)
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ber (group and signal number) for the EEG signal which will be used in the

rest of the chapter.

7.3.2 Data Preprocessing and Wavelet Decomposition of

EEG into Sub-Bands

The five primary EEG sub-bands, delta, theta, alpha, beta, and gamma, span

the 0-60 Hz frequency range and higher frequencies are often characterized as

noise. Since the sampling frequency of the EEG is 173.61 Hz, according to the

Nyquist sampling theorem (Section 2.1), the maximum useful frequency is half

of the sampling frequency or 86.81 Hz. As such, from a physiological stand-

point, frequencies greater than 60 Hz can be classified as noise and discarded.

Moreover, unlike the Fourier transform, wavelet decomposition does not allow

the extraction of specific frequency bands without additional processing. Con-

sequently, to correlate the wavelet decomposition with the frequency ranges

of the physiological sub-bands, the wavelet filter used in this research (to be

described shortly) requires the frequency content to be limited to the 0-60

Hz band. Due to the above mentioned reasons, the EEG is band-limited to

the desired 0-60 Hz range by convolving with a low-pass finite impulse re-

sponse (FIR) filter. The energy of the frequency band eliminated by the filter

is negligible compared with that of the retained band in the range 0-60 Hz.

The band-limited EEG is then subjected to a level 4 decomposition using

fourth order Daubechies wavelet transform. After the first level of decompo-

sition, the EEG signal, s (0-60 Hz), is decomposed into its higher resolution

components, d1 (30-60 Hz) and lower resolution components, a1 (0-30 Hz).

In the second level of decomposition, the a1 component is further decom-

posed into higher resolution components, d2 (15-30 Hz), and lower resolution

components, a2 (0-15 Hz). Following this process, after four levels of decom-

position, the components retained are a4 (0-4 Hz), d4 (4-8 Hz), d3 (8-15
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Hz), d2 (15-30 Hz), and d1 (30-60 Hz). Reconstructions of these five com-

ponents using the inverse wavelet transform approximately correspond to the

five physiological EEG sub-bands delta, theta, alpha, beta, and gamma (Fig.

7.4). Minor differences in the boundaries between the components compared

to those between the EEG sub-bands are of little consequence due to the

physiologically approximate nature of the sub-bands. Each EEG and its five

sub-bands are subsequently subjected first to a preliminary and then to a final

chaos analysis stage.

7.3.3 Results of Chaos Analysis for a Sample Set of Unfil-

tered EEGs

In order to compute the optimum lag, m0, each EEG is tested for overlapping

mutual information. The analysis involves computing the mutual information

coefficients according to Eq. (3.4). The number of observations (N) is 4097

which is the number of data points in each EEG signal. When the number

of probability states, NS , is too small most data points are categorized as

similar resulting in high mutual information coefficients. On the other hand,

when NS is too large the analysis becomes meaningless as all the data points

are categorized as dissimilar and mutual information is completely lost. The

appropriate value of this number is selected, for computational efficiency, to

be a power of 2 and is determined by trial and error to be 128.

The optimum lag is at the first local minimum in the plot of the mutual

information coefficient versus the lag time. The values of the optimum lag

m0 for the three EEGs (H029, E037, and S001) were found to be 5, 7, and 4,

respectively. The minimum embedding dimensions for the EEGs are computed

using Cao’s method. The values of the modified embedding function E1(d)

(defined in Eq. 3.9) and E2(d) (defined in Eq. 3.10) for the three EEGs (H029,

E037, and S001) are shown in Fig. 7.5. The values of E1(d) in all cases in Fig.
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FIGURE 7.4
Level 4 decomposition of the band-limited EEG into five EEG sub-bands using fourth order Daubechies wavelet
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7.5 approach 1 indicating chaos in the three sample EEGs obtained from both

healthy and epileptic subjects. These figures also show that not all values of

E2(d) are equal to 1 and therefore the example EEGs all contain deterministic

chaos. Convergence is assumed to be reached when the variation of the values

of E1(d) in three consecutive steps is within 5% of the maximum of all values.

The minimum embedding dimensions, dM , for the three EEGs (H029, E037,

and S001) are obtained to be equal to 7.

The values of CD are obtained using the Takens estimator according to Eq.

(3.15). The radius (ǫ) is varied from 0 to 20% of the maximum attractor size,

i.e., the size of the lagged phase space. The maximum attractor size can be

defined as the radius of a measuring unit that is just large enough to capture

all the data points in the lagged phase space. The measuring unit is a circle

for an embedding dimension of 2 and a sphere for an embedding dimension of

3. In the case of a very small radius not enough points are captured for the

computation, whereas in the case of a large radius most of the available points

are captured. Both these situations lead to an incorrect selection of nearest

neighbors and yield inaccurate estimates of the CD. By trial and error, it

is observed that the method yields fairly consistent estimates of CD within

the range of 6-10% of maximum attractor size with highly variable estimates

beyond that range. Therefore, the maximum value of the radius is set to 10%

of the maximum attractor size. The values of CD for the three EEGs (H029,

E037, and S001) are 7.0, 6.8, and 5.5, respectively. The values of the CD are

less than or equal to the values for the minimum embedding dimension for all

three sample EEGs, which is consistent with the theory that the minimum

embedding dimension should be greater than the CD for any chaotic attractor

(Natarajan et al., 2004).

The values of LLE are computed using the modification of Wolf’s method
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as explained in Iasemidis et al. (2000a). The values of LLE for the three EEGs

(H029, E037, and S001) are 0.074, 0.037, and 0.067, respectively.

7.3.4 Statistical Analysis of Results for All EEGs

The chaos analysis presented in the previous section is repeated for all 300

band-limited EEGs (100 from each group H, E, and S) and for all five sub-

bands of each EEG. This is a rather large EEG data set that can yield statis-

tically significant results. The average values and standard deviations of the

two parameters, CD and LLE, are computed for the band-limited EEGs and

their sub-bands and summarized in Table 7.1 and Table 7.2, respectively. It is

observed from these results that neither parameter by itself yields a sufficient

method for quantification of the differences in the three groups. In some cases

the range of values of CD and LLE of one group overlaps the values of another

group. This indicates that a simple threshold applied to these parameters is

insufficient to distinguish between the groups. Even so, it is clear that some of

these reported variations are significant. Also, it should be noted that filtering

of the signal alters the parameters employed to find the embedded attractor

which may lead to a very different phase space behavior. Consequently, the

properties of the phase space and the attractor for the sub-bands are no longer

comparable directly to those for the original band-limited EEG.

From the CD values obtained from the band-limited EEGs (Table 7.1),

it is observed that group S (5.3) differs from the other two groups, H (6.9)

and E (6.7). However, the CD values for groups H and E do not appear to

be significantly different from each other. The low value of CD for group

S suggests a lowering of the complexity of the chaotic attractor during a

seizure. Examination of the delta and theta sub-bands yields very similar

values of CD for all three groups, H, E, and S (Table 7.1). The CD values

in case of the alpha sub-band for group E (4.7) differs from the other two
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TABLE 7.1
The average values of CD (with standard deviations in parenthesis) for band-
limited EEGs and their five sub-bands in (a) group H: healthy subjects (100
signals), (b) group E: epileptic subjects during a seizure-free interval (100
signals), and (c) group S: epileptic subjects during seizure (100 signals)

Signal Group H Group E Group S

N=100 N=100 N=100

Band-limited EEG (0-60 Hz) 6.9 (1.4) 6.7 (1.2) 5.3 (1.3)

Delta (0-4 Hz) 5.9 (1.2) 5.7 (1.3) 5.4 (1.4)

Theta (4-8 Hz) 4.0 (0.5) 4.3 (0.8) 4.2 (0.6)

Alpha (8-12 Hz) 4.0 (0.5) 4.7 (1.0) 4.2 (0.8)

Beta (12-30 Hz) 4.5 (0.6) 4.1 (1.1) 3.5 (1.1)

Gamma (30-60 Hz) 3.7 (0.5) 3.1 (1.0) 2.6 (1.0)

TABLE 7.2
The average values of LLE (with standard deviations in parenthesis) for band-
limited EEGs and their five sub-bands in (a) group H: healthy subjects (100
signals), (b) group E: epileptic subjects during a seizure-free interval (100
signals), and (c) group S: epileptic subjects during seizure (100 signals)

Signal Group H Group E Group S

N=100 N=100 N=100

Band-limited EEG (0-60 Hz)
0.089 0.041 0.070

(0.026) (0.015) (0.028)

Delta (0-4 Hz)
0.034 0.037 0.043

(0.007) (0.008) (0.012)

Theta (4-8 Hz)
0.096 0.082 0.080

(0.020) (0.017) (0.016)

Alpha (8-12 Hz)
0.106 0.078 0.086

(0.019) (0.017) (0.023)

Beta (12-30 Hz)
0.157 0.159 0.154

(0.037) (0.031) (0.033)

Gamma (30-60 Hz)
0.221 0.231 0.226

(0.064) (0.073) (0.066)
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groups, H (4.0) and S (4.2) which do not appear to differ significantly from

each other. This implies that if the alpha sub-band is considered to be a

representation of brain dynamics by itself, then the attractor of the alpha

sub-band, dubbed alpha attractor, has high complexity in epileptic patients

during seizure-free intervals. The CD values for the beta and gamma sub-bands

show considerable difference between all three groups. It is observed (Table

7.1) that both the beta and gamma attractors have the lowest complexity

during a seizure, highest complexity for a healthy subject, and intermediate

complexity for an epileptic subject during a seizure-free interval.

From the LLE values obtained from the band-limited EEGs (Table 7.2),

it is observed that all three groups, H, E, and S, appear to differ from each

other. The values suggest that the chaoticity of the chaotic attractor is highest

in a healthy subject, lowest in an epileptic subject during a seizure-free state,

and intermediate during a seizure. The LLE values for the alpha sub-band

show considerable difference between all three groups and the same trend as

in the case of the band-limited EEG. The LLE values in the case of the theta

sub-band for group H (0.096) differs from the other two groups, E (0.082) and

S (0.080), which do not appear to differ significantly from each other. This

implies that the theta attractor has high chaoticity in healthy subjects. Ex-

amination of the delta, beta, and gamma sub-bands yields very similar values

of LLE for all three groups, H, E, and S (Table 7.2).

In the ensuing discussions, one-way analysis of variance (ANOVA) is used

for all statistical significance analysis performed at the 99% confidence level.

Additionally, the significance of group differences is assessed using the method

of Tukey’s pairwise differences and the results are summarized in Table 7.3

along with p-values. Identical results are obtained using 99% confidence in-

tervals (CI) (α = 0.01) for both ANOVA and Tukey’s method of pairwise

differences. These results are consistent with the results discussed thus far in
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TABLE 7.3
The results of the statistical analysis summarizing the groups that are sep-
arable using CD and LLE applied to the band-limited EEGs and the five
physiological sub-bands. Consistent results are obtained using 99% confidence
intervals (α = 0.01) for both ANOVA and Tukey’s method of pairwise differ-
ences. The p-values from the ANOVA are included in parenthesis.

Signal Groups Differentiated By

CD LLE

Band-limited EEG (0-60 Hz)
S (from E and H) H, E, S

(p < 0.001) (p < 0.001)

Delta (0-4 Hz) -
S (from E and H)

(p < 0.001)

Theta (4-8 Hz) -
H (from E and S)

(p < 0.001)

Alpha (8-12 Hz)
E (from H and S) H, E, S

(p < 0.001) (p < 0.001)

Beta (12-30 Hz)
H, E, S

-
(p < 0.001)

Gamma (30-60 Hz)
H, E, S

-
(p < 0.001)

this section. The CD differentiates between all three groups when computed

based on the higher frequency beta and gamma sub-bands which have an iden-

tical pattern of high and low CD values (Fig. 7.6). Also, the statistical analysis

reveals that the CD of the alpha sub-band distinguishes group E from both

groups H and S, an observation not evident from Table 7.1 and Table 7.2.

However, the CD for the alpha sub-band shows higher complexity for group

E which is different from that noted in beta and gamma sub-bands (Table

7.3). This can be the reason why examination of the values of CD for the

band-limited EEG differentiates only group S (from both groups E and H)

but does not distinguish between groups E and H (Table 7.3). The CD of the

lower frequency delta and theta sub-bands yields no discernable information

at all (Table 7.3).
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Unlike the CD, the LLE differentiates between all three groups when com-

puted based on the intermediate frequency alpha sub-band. In the case of the

lower frequency sub-bands, the delta LLE distinguishes group S (from both

groups E and H) and theta LLE distinguishes group H (from both groups E

and S) (Table 7.3). However, as recorded in Table 7.2, the patterns of high

and low LLE values for these sub-bands are such that the effects do not con-

tradict each other. Consequently, the LLE of the entire band-limited EEG

also distinguishes between all three groups (Fig. 7.7). The LLE of the higher

frequency beta and gamma sub-bands yields no discernable information at all.

7.4 Concluding Remarks

It is important to investigate the possible sources of differences in chaos param-

eters. Since the EEG is an overall representation of brain dynamics, it opens

up the possibility that the observed changes in the parameters quantifying

chaos in the band-limited EEG are actually the result of the superimposition

of multiple processes underlying the EEG. One method of studying these un-

derlying processes is to study the component physiological sub-bands of the

EEG which can be assumed to represent these processes at a finer level.

The wavelet-chaos methodology presented in this chapter can be used to

analyze the EEGs and delta, theta, alpha, beta, and gamma sub-bands of EEGs

for detection of seizure and epilepsy. The non-linear dynamics of band-limited

EEGs are quantified in terms of the CD and the LLE of the attractor to

identify the deterministic chaos in the system.

The efficacy of CD and LLE as seizure and epilepsy detection parameters

is investigated using a large number of EEGs. Statistical analysis of the values

of these parameters shows that the LLE of healthy subjects, epileptic subjects
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during a seizure-free interval, and epileptic subjects during seizure are signif-

icantly different from each other. The CD, on the other hand, is only capable

of discriminating epileptic subjects during seizures from the other two groups.

Although it is observed that, statistically, the LLE of the band-limited EEG

can potentially distinguish between the three groups of subjects, it cannot be

concluded with certainty that it will. If, based on a large number of EEG seg-

ments, the average values of the LLE or CD for the three groups are distinctly

different, then better seizure detection can be expected but not guaranteed.

The discovery of multiple potential discriminating parameters can result in in-

creased accuracy for an effective real-time EEG epilepsy and seizure detection

system.

To investigate the changes in CD and LLE of the physiological EEG sub-

bands, a level 4 wavelet decomposition is performed to extract the delta, theta,

alpha, beta, and gamma sub-bands. The original EEG is decomposed into five

constituent sub-bands, each representing a subset of the processes underlying

the overall brain dynamics. This decomposition process alters the original

phase space and leads to new phase spaces that do not necessarily correspond

directly to that of the original EEG. In other words, each sub-band is assumed

to have its own chaotic attractor. Based on the statistical analysis of the

sub-bands it is concluded that changes in the dynamics are not spread out

equally across the spectrum of the EEG, but instead are limited to certain

frequency bands. The lower frequency sub-bands (delta, theta, and alpha)

show significant differences in terms of the LLE whereas the higher frequency

sub-bands (beta and gamma) show significant differences in terms of the CD.

When the statistical analysis is based on the entire band-limited EEG, one

may conclude that only the LLE (and not the CD) may be used as a discrim-

inating parameter between the three groups. However, when the statistical

analysis is performed on the EEG sub-bands, it is observed that the CD used
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within certain physiological sub-bands may also be employed to distinguish

between all three groups. The availability of multiple potential discriminating

parameters may result in increased accuracy of real-time EEG epilepsy and

seizure detection systems, and is discussed in the following chapters.





8

Mixed-Band Wavelet-Chaos Neural Network

Methodology

8.1 Introduction

Effective algorithms for automatic seizure detection and prediction can have

a far-reaching impact on diagnosis and treatment of epilepsy. However, pri-

marily due to a relatively low understanding of the mechanisms underlying

the problem, most existing methods suffer from the drawback of low accuracy

which leads to higher false alarms and missed detections (Iasemidis, 2003).

Moreover, to obtain a reliable estimate of the efficacy of the epilepsy detec-

tion parameters and algorithms, they should be tested on a relatively large

number of datasets. Due to the lack of reliable standardized data, most of

the EEG analysis reported in the literature is performed on a small number

of datasets which reduces the statistical significance of the conclusions. Such

algorithms often demonstrate good accuracy for selected EEG segments but

are not robust enough to adjust to EEG variations commonly encountered in

a hospital setting.

In order to improve the statistical significance, a large number of EEG

datasets belonging to three subject groups are used to investigate the perfor-

mance of the methodology: a) healthy subjects (normal EEG), b) epileptic

143
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subjects during a seizure-free interval (interictal EEG), and c) epileptic sub-

jects during a seizure (ictal EEG). The approach presented in the book is

based on the premise that EEG sub-bands may yield more accurate infor-

mation about constituent neuronal activities underlying the EEG. This was

investigated in Chapter 7. Until recently, very little research was conducted to

investigate the efficacy of combinations of measures selected from various phys-

iological EEG sub-bands for use as classification parameters. As explained in

Chapter 5, the problem of improving the classification accuracy is approached

from two different angles: 1) designing an appropriate feature space by identi-

fying combinations of parameters that increase the inter-class separation and

2) designing a classifier that can accurately model the classification problem

based on the selected feature space.

8.2 Wavelet-Chaos Analysis: EEG Sub-Bands and Fea-

ture Space Design

In Chapter 7, a wavelet-chaos methodology was presented for the analysis of

EEGs and EEG sub-bands to identify potential parameters for seizure and

epilepsy detection (Adeli et al., 2007). It was observed that when the values

of the CD and LLE are computed from specific EEG sub-bands, the resulting

differences in parameter values among the three groups are statistically signif-

icant (at the 99% confidence level). Although no attempt was made to classify

EEGs or detect seizure, based on the statistical conclusions it was theorized

that a feature space comprising certain parameters computed from the EEG

and its five sub-bands can enhance the accuracy of abnormality classification.

In this work, in addition to CD and LLE, the standard deviation (STD) of

the EEGs and EEG sub-bands is selected to characterize the signal variance.
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Although STD, by itself, cannot differentiate all three groups, it is expected

to increase the classification accuracy in combination with CD and LLE.

Prior to the wavelet decomposition, the input space consists of K EEGs

from each of the three aforementioned groups (a total of 3K EEGs). Each

EEG is represented as a time series vector, X = {x1, x2, . . . , xN} composed

of a series of N single voltage readings at specific instants of time (indicated

in the subscript). This nomenclature is identical to that used for the generic

time series in Chapter 2. Following the wavelet decomposition, each EEG is

decomposed into its five physiological sub-bands resulting in a total of six

signals (including the band-limited EEG). This increases the size of the input

space to 3K × 6(= 18K) signals (EEG and EEG sub-bands), each containing

N data points. After the wavelet-chaos analysis, the feature space for each

signal consists of three parameters: STD, CD, and LLE. The STD, CD, and

LLE values obtained from the band-limited EEG as well as its five sub-bands

yield a total of 6× 3 = 18 parameters.

The parameters STD, CD, and LLE are represented by the vectors (of size

3K) SD,CD, and LLE, respectively. Various combinations of these parameters

are investigated as feature spaces for input to the classifiers with the goal

of finding the most effective combination of parameters as well as the most

effective classifier. Thus, the dimension of the input space is reduced from

N×18K to P×3K, where P ∈ {1, 2, ..., 18} is the number of parameters used.

Each EEG is then represented as a P -dimensional data point in the reduced

input space, F, which is dubbed feature space. Therefore, the purpose of the

wavelet-chaos analysis is twofold. First, based on chaotic nonlinear dynamics

of the brain it yields parameters with significant differences across the three

groups of EEGs. This plays the role of feature enhancement and improves the

subsequent classification accuracy. Second, it reduces a huge input space into

a more manageable feature space.
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In this chapter, four types of classifiers are investigated for classifying the

EEGs into the aforementioned three groups: a) unsupervised k -means cluster-

ing, b) statistical discriminant analysis, c) radial basis function (RBF) neural

network (RBFNN), and d) Levenberg-Marquardt backpropagation (BP) neu-

ral network (LMBPNN). Three different variations of the discriminant analysis

are compared: linear discriminant analysis (LDA) using the Euclidean distance

(ELDA) and the Mahalanobis distance (MLDA), and quadratic discriminant

analysis (QDA). All three methods, ELDA, MLDA, and QDA, are explored

because of the lack of knowledge about a) the underlying distribution and

b) the required number of training datasets to achieve accurate classification

results. Based on these studies, an innovative multi-paradigm wavelet-chaos-

neural network methodology is presented for accurate classification of the

EEGs. An overview of the methodology for the three-class EEG classification

problem is presented schematically in Fig. 8.1.

8.3 Data Analysis

EEGs from the three groups are analyzed: group H (normal EEG), group E

(interictal EEG), and group S (ictal EEG). Each group contains K = 100

single channel EEG segments of 23.6 sec duration, each sampled at 173.61 Hz

(Andrzejak et al., 2001). As such, each data segment contains N = 4097 data

points collected at intervals of 1/173.61 of a second. Each EEG segment is

considered as a separate EEG signal resulting in a total of 300 EEG signals

or EEGs.

Testing the accuracy of all four classifiers with all different combinations

of the eighteen parameters (218 possible combinations) is a daunting task re-

quiring months of computing time on a workstation. To reduce the computing
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EEG classification problem
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time and output analysis to a more manageable one, the research is performed

in two phases: a) band-specific analysis and b) mixed-band analysis. In the

first phase, the six types of signals (EEG and the five EEG sub-bands) are

considered one by one. For each type of signal, the EEGs are classified based

on STD, CD, and LLE. Consequently, each signal is represented by a point in

a 1- to 3-dimensional feature space. This is dubbed band-specific analysis in

this research and the corresponding feature space is referred to as the band-

specific feature space. One objective of band-specific analysis is to identify the

classifiers that yield accurate classification and to eliminate the less accurate

ones. Another objective is to identify specific combinations of parameters that

may increase the classification accuracy of the selected classifiers.

In the second phase, the research is continued with the more promising

classifiers and combinations of eighteen parameters selected from the six types

of EEG and EEG sub-bands in the first step. As a result, each EEG is rep-

resented by a point in a 2- to 18-dimensional feature space. This is dubbed

mixed-band analysis in this research and the corresponding feature space is

referred to as the mixed-band feature space.

8.4 Band-Specific Analysis: Selecting Classifiers and

Feature Spaces

8.4.1 k-Means Clustering

The centroid of a cluster representing any of the three EEG groups is initially

selected randomly from the same group. The step is repeated for the remaining

two groups. Beyond this biased initialization step, no prior information about

group assignments of data points is utilized. The Euclidean distance is used
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TABLE 8.1
Average classification accuracy percentages using k -means clustering for var-
ious band-specific feature spaces computed from the band-limited EEG and
EEG sub-bands (NR = 100; standard deviations in parentheses)

Parameter Combination

Signal SD CD LLE [SD CD] [SD LLE] [CD LLE] [SD CD LLE]

Band-limited EEG
48.3 48.0 59.3 48.3 48.3 48.1 48.3

(0.0) (0.7) (0.1) (0.0) (0.0) (0.9) (0.0)

Delta (0-4 Hz)
52.3 40.3 45.9 52.3 52.3 40.3 52.3

(0.0) (0.0) (0.3) (0.0) (0.0) (0.0) (0.0)

Theta (4-7 Hz)
50.0 39.0 42.7 50.0 50.0 39.0 50.0

(0.0) (0.4) (0.6) (0.0) (0.0) (0.4) (0.0)

Alpha (8-12 Hz)
48.3 48.7 48.5 48.3 48.3 48.7 48.3

(0.0) (0.5) (0.3) (0.0) (0.0) (0.5) (0.0)

Beta (13-30 Hz)
49.3 44.0 36.3 49.3 49.3 44.0 49.3

(0.0) (0.0) (0.6) (0.0) (0.0) (0.0) (0.0)

Gamma (30-60 Hz)
48.0 49.2 37.1 48.0 48.0 48.9 48.0

(0.0) (0.3) (1.3) (0.0) (0.0) (0.2) (0.0)

as the proximity metric for the clustering process due to its simplicity. Once

the clustering is complete, the assignment of the data points is compared with

their known assignments to compute the classification accuracy. The sensitiv-

ity of k -means clustering to changes in starting points often leads to incorrect

conclusions about the clustering accuracy. To overcome this shortcoming, the

clustering process is repeated NR = 100 times, with new points from each

group selected randomly as initial points for every repetition. The average

classification accuracy percentages obtained in 100 repetitions are tabulated in

Table 8.1 (standard deviations are noted in parentheses). A maximum cluster-

ing accuracy of 59.3% is observed using LLE obtained from the band-limited

EEG (identified with boldface in Table 8.1).
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FIGURE 8.2
Classification accuracy of QDA using the feature space [SD CD LLE] for var-
ious training set sizes

8.4.2 Discriminant Analysis

In supervised classifications, for a given number of EEGs available, the dataset

has to be divided carefully between training and testing sets. If the training set

selected is too large, then the testing set becomes too small to yield meaning-

ful classification accuracy results. In this research, considering 100 EEGs are

available for each group, the size of the training dataset is varied from 20 to 50

EEGs (in increments of 10). Maximum classification accuracy was found when

the training size is 20 EEGs for all three classifiers (ELDA, MLDA, and QDA)

and input feature spaces. It was also found that the classification accuracy de-

creases with an increase in the size of the training dataset. As an example,

the classification accuracy of QDA using the feature space [SD CD LLE] is

plotted for training sizes of 20 to 80 EEGs in Fig. 8.2. The results for all three

classifiers and other feature spaces display a similar trend.
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To account for the effect of the training data on classification accuracy,

the classification is repeated NR = 100 times, each time with a new randomly

selected training dataset. The average classification accuracy percentages are

tabulated in Table 8.2 (standard deviations are noted in parentheses). The

accuracies of three types of classifiers based on discriminant analysis are com-

pared using various input feature spaces. Results obtained from the classifiers

trained by a dataset of 20 EEGs only are presented in this chapter (Table 8.2)

because this training size yields the highest classification accuracy, as men-

tioned previously. It is observed that, in general, the classification accuracy of

QDA is the highest, followed by MLDA and then ELDA, with a few excep-

tions. The exceptions are for the combinations that yield low accuracies and

consequently are of no interest in the rest of this research.

It is observed that feature spaces that are based on certain combinations

of parameters computed from the EEG or specific EEG sub-bands yield more

accurate results. In general, the feature spaces that show a higher classification

accuracy are [SD CD] when computed from the beta and gamma sub-bands,

[SD LLE] when computed from the band-limited EEG, and [SD CD LLE]

when computed from the alpha sub-band. These values are bold-faced in Table

8.2. Much lower classification accuracies are obtained from the delta and theta

sub-bands. The two highest values of the classification accuracy percentages

are obtained with QDA when the [SD CD] feature space is computed from the

gamma sub-band (85.5%) and the [SD LLE] feature space is computed from

the band-limited EEG (84.8%). These results validate the assertions made in

Chapter 7 (Adeli et al., 2007) that the CD computed from the higher fre-

quency alpha, beta, and gamma sub-bands and the LLE computed from the

band-limited EEG and alpha sub-band can be instrumental in differentiating

between the three groups.
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TABLE 8.2
Average classification accuracy percentages using a training dataset size of
20 EEGs and discriminant analysis (ELDA, MLDA, and QDA) for various
band-specific feature spaces computed from the band-limited EEG, and the
delta and theta sub-bands (NR = 100; standard deviations in parentheses)

Parameter Combination (Training Size = 20 EEGs)

Signal Classifier SD CD LLE [SD CD] [SD LLE] [CD LLE] [SD CD LLE]

Band-limited EEG

ELDA
47.3 36.1 52.9 47.6 79.6 68.6 81.1

(2.3) (1.3) (2.3) (2.0) (2.3) (1.9) (2.1)

MLDA
53.1 35.3 49.8 54.9 84.0 66.1 81.6

(2.4) (2.0) (4.1) (2.8) (2.2) (2.6) (2.7)

QDA
57.8 45.6 52.6 56.9 84.8 66.4 83.5

(3.1) (1.4) (2.7) (3.0) (3.1) (2.6) (2.7)

Delta (0-4 Hz)

ELDA
60.4 21.6 31.0 53.4 57.1 29.4 54.0

(2.0) (2.9) (2.7) (3.5) (3.2) (1.9) (3.4)

MLDA
58.9 21.0 28.8 55.5 60.1 27.8 57.4

(4.5) (3.0) (3.0) (4.1) (3.3) (2.6) (3.4)

QDA
62.3 24.5 30.3 60.5 64.1 29.1 63.9

(2.7) (2.8) (2.8) (3.4) (2.9) (2.1) (2.7)

Theta (4-7 Hz)

ELDA
53.6 21.8 31.0 53.8 59.1 34.4 56.6

(2.8) (4.3) (3.7) (3.7) (2.9) (3.6) (2.7)

MLDA
57.6 22.3 30.9 57.8 62.0 31.8 61.0

(2.2) (2.8) (3.7) (3.0) (4.2) (3.7) (4.0)

QDA
60.5 23.9 27.8 65.3 63.0 33.3 65.1

(2.6) (2.2) (3.5) (3.3) (4.0) (3.2) (3.0)

Alpha (8-12 Hz)

ELDA
60.1 34.1 33.4 67.3 66.4 38.0 68.4

(1.9) (2.1) (1.4) (1.8) (2.2) (1.9) (2.1)

MLDA
63.4 32.3 31.1 64.0 73.1 38.4 69.9

(3.5) (2.8) (1.9) (4.4) (2.8) (3.2) (3.3)

QDA
65.4 38.3 35.4 74.5 75.4 42.6 75.9

(2.4) (2.0) (2.0) (2.9) (1.8) (2.4) (2.4)

Beta (13-30 Hz)

ELDA
72.3 30.1 16.4 58.6 56.8 30.9 55.3

(2.0) (2.1) (1.9) (7.1) (7.7) (2.0) (5.2)

MLDA
74.6 27.9 17.3 73.0 69.5 31.0 72.0

(2.1) (3.0) (2.5) (3.6) (4.4) (2.7) (4.5)

QDA
75.4 31.8 17.8 80.9 74.6 33.3 80.1

(1.6) (2.0) (2.4) (2.8) (2.1) (1.6) (2.9)

Gamma (30-60 Hz)

ELDA
71.8 35.6 17.1 59.0 51.9 35.1 55.6

(2.7) (1.0) (2.9) (4.1) (9.8) (2.4) (4.6)

MLDA
74.5 32.0 15.9 71.1 68.8 29.6 68.4

(2.9) (3.0) (4.1) (5.0) (5.4) (4.5) (5.6)

QDA
81.0 36.6 17.1 85.5 78.8 37.6 83.6

(1.7) (1.7) (3.2) (1.2) (2.6) (2.4) (1.9)
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8.4.3 RBFNN

Two parameters of RBFNN architecture and formulation are investigated:

1) the number of nodes in the hidden layer and 2) the spread of the RBF,

p, with the goal of achieving optimum network performance. The number of

nodes in the hidden layer affects the training performance. Employing a large

number of nodes, for example, equal to the number of training instances is

computationally expensive but enables the network to be trained with 100%

accuracy. Training accuracy is defined as (1− training error)×100%. In many

cases, employing a smaller number of nodes yields sufficiently accurate results.

Therefore, training is started with a small number of nodes and is repeated

with an increasingly larger number of nodes. Training is terminated when any

one of two conditions holds: 1) training error decreases to 0.001 or 2) the

number of nodes is equal to the number of training instances.

The spread, p, has to be selected very carefully. In RBFNN, a specific

input is supposed to excite only a limited number of nodes in the hidden layer.

When the spread is too large, all hidden nodes respond to a given input which

results in loss of classification accuracy. On the other hand, when the spread is

too small, each node responds only to a very specific input. Consequently, the

node will be unable to classify any new input accurately. The optimum spread

for maximum classification accuracy is found by varying it from 0.5 to 5 in

increments of 0.5. The training and classification accuracies versus the spread

values are presented in Fig. 8.3. It is observed that for the most part the

classification training accuracy decreases whereas the classification (testing)

accuracy increases as the spread is increased. Both curves reach approximately

a plateau for larger values of the spread, say, equal to or greater than 4. The

reciprocal relationship may be attributed to the overtraining of the RBFNN

and its consequent inability to respond to new inputs appropriately.

The classification training-testing process is repeated NR = 10 times, each
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Variations of the RBFNN training and testing classification accuracies versus
the RBF spread

time with a new randomly selected training dataset. Since, typically, neural

network training requires significantly larger computational efforts compared

with k -means clustering or discriminant analysis, the number of repetitions is

reduced to ten. The average classification accuracy percentages for all band-

specific feature spaces using a training size of 40 EEGs and an RBF spread of 4

are tabulated in Table 8.3 (standard deviations are noted in parentheses). It is

observed that RBFNN requires a larger training size than the classifiers based

on discriminant analysis but yields less accurate results. Also, the standard

deviations of the results are much larger for RBFNN than for discriminant

analysis which implies greater dependence of RBFNN on the training data.

The two highest values of classification accuracy are obtained when the [SD]

feature space is computed from the gamma sub-band using a spread of 4 and

training sizes of 40 (76.5%) (shown by boldface in Table 8.3) and 50 (76.2%)
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TABLE 8.3
Average classification accuracy percentages using a training dataset size of
40 EEGs and RBFNN (RBF spread = 4) for various band-specific feature
spaces computed from the band-limited EEG and EEG sub-bands (NR = 100;
standard deviations in parentheses)

Parameter Combination

(Training Size = 40 EEGs, RBF Spread = 4)

Signal SD CD LLE [SD CD] [SD LLE] [CD LLE] [SD CD LLE]

Band-limited EEG
41.9 43.4 44.3 47.0 52.1 61.9 51.9

(12.3) (3.1) (2.9) (11.0) (6.7) (2.7) (11.8)

Delta (0-4 Hz)
53.8 38.9 40.8 41.0 47.7 41.3 48.1

(7.7) (1.8) (1.6) (7.7) (7.4) (3.6) (4.7)

Theta (4-7 Hz)
50.2 37.1 34.1 45.8 45.8 42.6 51.0

(11.5) (1.8) (0.9) (6.8) (9.8) (2.8) (4.1)

Alpha (8-12 Hz)
49.7 40.5 33.6 52.9 38.2 42.2 58.8

(9.5) (3.2) (1.6) (5.7) (6.9) (2.5) (7.9)

Beta (13-30 Hz)
58.5 37.1 33.1 59.1 49.5 39.8 64.8

(6.7) (3.4) (1.0) (6.8) (9.0) (3.4) (6.1)

Gamma (30-60 Hz)
76.5 39.5 34.1 55.3 66.8 42.2 51.2

(3.0) (4.6) (0.8) (4.9) (5.8) (3.4) (9.0)

(not shown in Table 8.3). Results obtained with other spread values in the

range of 0.5 to 5 are not shown in this book for the sake of brevity.

8.4.4 LMBPNN

LMBPNN is investigated in a manner similar to RBFNN in terms of the train-

ing dataset sizes and the number of classification training-testing repetitions.

Overall, a training size of 40 EEGs yields the best classification accuracy and

is therefore selected for all EEGs and EEG sub-bands. To accurately model the

complex dynamics underlying EEGs, the effect of the network architecture,

that is, the number of hidden layers and the number of nodes in the hidden

layer on the classification accuracy is investigated. This was performed in a

manner different from that of RBFNN due to basic differences in the archi-

tecture of the two neural networks. The number of nodes in the first and
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second hidden layers is increased in increments of 5 from 5 to 20 and 0 to 15,

respectively. Training is terminated when any one of three conditions holds:

1) training error decreases to 0.001, 2) training error gradient decreases to

0.01, or 3) number of training epochs reaches 100. Based on this parametric

study two hidden layers each with 10 to 15 nodes appeared to yield the best

classification results for all combinations of the parameters computed from

the six types of EEGs and EEG sub-bands. No other discriminatory patterns

were observed.

The average classification accuracy percentages for all band-specific fea-

ture spaces for a training size of 40 are summarized in Table 8.4 (standard

deviations are noted in parentheses). In general, it is observed that the feature

spaces that show higher classification accuracy are [SD CD] when computed

from the beta and gamma sub-bands and [SD LLE] when computed from the

band-limited EEG and the alpha sub-band. These values are identified by

boldface in Table 8.4. Much lower classification accuracy is obtained from the

delta and theta sub-bands. This observation is similar to that observed for

the case of QDA. The two highest values of classification accuracy are ob-

tained when the [SD LLE] feature space is computed from the band-limited

EEG (89.9%) and the [SD CD] feature space is computed from the gamma

sub-band (87.3%).

8.5 Mixed-Band Analysis: Wavelet-Chaos-Neural Net-

work

Figure 8.4 summarizes the maximum classification accuracy percentages of

all band-specific feature spaces for six different types of classifiers obtained in

phase one of this research. The results of the extensive band-specific analysis
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TABLE 8.4
Average classification accuracy percentages using a training dataset size of 40
EEGs and LMBPNN for various band-specific feature spaces computed from
the band-limited EEG and EEG sub-bands (NR = 100; standard deviations
in parentheses)

Parameter Combination (Training Size = 40 EEGs)

Signal SD CD LLE [SD CD] [SD LLE] [CD LLE] [SD CD LLE]

Band-limited EEG
64.8 47.2 56.7 63.8 89.9 72.1 86.9

(2.7) (3.3) (6.8) (3.2) (1.8) (3.4) (2.9)

Delta (0-4 Hz)
68.2 39.9 41.1 63.9 66.1 40.2 65.1

(8.5) (4.2) (2.1) (4.0) (6.3) (3.3) (8.0)

Theta (4-7 Hz)
69.4 39.2 48.2 72.8 71.6 43.8 73.8

(4.5) (2.5) (4.6) (4.4) (4.5) (3.9) (4.1)

Alpha (8-12 Hz)
74.3 42.8 42.1 79.9 80.5 48.7 79.4

(4.3) (2.9) (3.9) (3.3) (2.7) (5.0) (6.7)

Beta (13-30 Hz)
81.1 43.1 38.1 85.5 79.7 45.2 83.4

(2.0) (5.1) (3.9) (2.1) (2.7) (4.6) (1.8)

Gamma (30-60 Hz)
86.4 44.9 46.9 87.3 83.1 50.0 85.7

(2.0) (3.8) (3.4) (1.7) (2.6) (4.1) (2.7)

lead to the conclusion that QDA and LMBPNN yield the two highest classifi-

cation accuracies (85.5% and 89.9%, respectively). Moreover, both classifiers

have small standard deviations using various combinations of training/testing

datasets. Consequently, they are robust with respect to changes in training

data. In general, LMBPNN yields a higher classification accuracy than QDA,

but requires a larger training dataset size (40 EEGs versus 20 EEGs in the

parametric studies performed in this research). In phase two of the research,

QDA and LMBPNN are selected for further investigation using the 2- to 18-

dimensional mixed-band feature spaces described earlier.

Based on the band-specific analysis of phase one, two other important

conclusions are made. For LMBPNN, the following eight parameters yield

higher classification accuracies: STD computed from the band-limited EEG

and alpha, beta, and gamma sub-bands; CD computed from beta and gamma

sub-bands; and LLE computed from the band-limited EEG and alpha sub-
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FIGURE 8.4
Maximum classification accuracy percentages obtained from a) six
different types of classifiers for all band-specific feature spaces
and b) QDA and LMBPNN for the mixed-band feature space
[SD LLE αSD αCD αLLE βSD βCD γSD γCD].

band. The same parameters yield higher classification accuracies for QDA as

well, plus a ninth parameter, that is, CD computed from the alpha sub-band.

In the second phase, over five hundred different combinations of mixed-

band feature spaces consisting of promising parameters from the first phase

were investigated. This effort took weeks of workstation computing time.

For statistical consistency, the same number of training-testing repetitions

of NR = 10 was used for both QDA and LMBPNN. A training size of 40

EEGs yielded the highest classification accuracies for the mixed-band feature

spaces and was employed for both classifiers.

It was discovered that a mixed-band feature space consisting of all nine

aforementioned parameters [SD LLE αSD αCD αLLE βSD βCD γSD γCD]

results in the highest classification accuracy for both QDA and LMBPNN.

In this notation, the parameter prefix denotes the EEG sub-band from which
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FIGURE 8.5
Comparison of maximum classification accuracy percentages of
LMBPNN for different feature spaces. The mixed-band feature space is
[SD LLE αSD αCD αLLE βSD βCD γSD γCD].

the parameter is computed. Absence of a prefix indicates that the param-

eter is computed from the band-limited EEG. The classification accuracies

obtained using the nine-parameter mixed-band feature space for both QDA

and LMBPNN are also presented in Fig. 8.4.

The average classification accuracy percentages using QDA and LMBPNN

are 93.8% (with a standard deviation of 1.0) and 96.7% (with a standard de-

viation of 2.9), respectively. The classification accuracy of LMBPNN using

the nine-parameter mixed-band feature space is significantly improved com-

pared with using various band-specific feature spaces, as shown in the sample

results of Fig. 8.5. Band-specific feature spaces based on single parameters

yield low to very low classification accuracies (<65.0%) except for the STD

computed from the gamma sub-band which yields a classification accuracy of

86.4%. Band-specific feature spaces based on combinations of two and three
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parameters lead to more accurate classification (in the range of 65-90%). The

nine-parameter mixed-band feature space yields the highest classification ac-

curacy (96.7%). Such a high level of accuracy has not been reported previously

in the literature.

The training of the LMBPNN classifier with the nine-parameter mixed-

band feature space presented in the chapter is completed rather quickly. On

an Intel Pentium IV workstation (1700 MHz, 512 MB RAM), the classifier

training for ten repetitions is completed in approximately 30 seconds for 120

training instances (40 from each of the three subject groups). Using the trained

network to classify a new nine-parameter mixed-band input takes only a frac-

tion of a second on the aforementioned workstation.

8.6 Concluding Remarks

In this chapter, a novel wavelet-chaos-neural network methodology is pre-

sented for the analysis of EEGs for detection of seizure and epilepsy and

applied to three different groups of EEG signals obtained from healthy and

epileptic subjects. Four classification methods were investigated: k -means clus-

ter analysis, discriminant analysis, RBFNN, and LMBPNN. A disadvantage

of an unsupervised classification method such as k -means clustering is that

addition of new data changes the cluster centroids and, therefore, the clus-

ter assignments. k -Means clustering yielded the lowest classification accuracy

compared to other methods indicating low intra-cluster similarities and/or

low inter-cluster dissimilarities.

Discriminant analysis, in general, yields much higher classification accu-

racy than k -means clustering. QDA yields the best classification accuracy

followed by MLDA and then ELDA. The disadvantages of QDA, mentioned
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earlier, do not appear to have much of an impact on the classification process.

As compared to LDA, no significant increase in computational time or training

size was observed. QDA yielded higher classification accuracies for datasets

of the same size as LDA, and decreasing the training size did not alter this

trend. RBFNN training converges rapidly and yields a completely trained net-

work (100% training accuracy). It yields lower classification accuracies than

all three types of discriminant analysis as well as LMBPNN. LMBPNN yields

the highest value of classification accuracy among all classifiers both for band-

specific analysis (89.9%) as well as for mixed-band analysis (96.7%). A similar

improvement over band-specific analysis is also observed when mixed-band

analysis is employed with QDA.

Based on these analyses using the wavelet-chaos methodology, the nine-

parameter mixed-band feature space [SD LLE αSD αCD αLLE βSD βCD

γSD γCD] yields the most accurate classification results. When this feature

space is used as input to the LMBPNN classifier, a maximum classification

accuracy of 96.7% is achieved.

All three key components of the wavelet-chaos-neural network methodol-

ogy are important for improving the accuracy of EEG classification. Wavelet

analysis decomposes the EEG into sub-bands and is instrumental in creating

the mixed-band feature spaces with an improved accuracy over band-specific

feature spaces. The parameters used in these feature spaces are obtained by

statistical analysis (STD) and chaos analysis (CD and LLE). Although these

parameters are unable to classify the EEGs individually, their combinations

improve the classification accuracy significantly especially when multiple-

parameter mixed-band feature spaces are employed. Finally, the LMBPNN

classifier classifies the EEGs into the three groups more accurately than any

of the other classification methods investigated. This illustrates the point that

a judicious combination of parameters and classifiers can accurately discrim-
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inate between the three types of EEGs, which in turn could lead to increased

accuracy of real-time epilepsy and seizure detection systems.



9

Principal Component Analysis-Enhanced

Cosine Radial Basis Function Neural

Network

9.1 Introduction

In a clinical setting, a vast number of physiological variables contribute to and

affect the EEG. As a result, the distinctions between the different EEG groups

are not very well defined. For the computer model to be clinically effective,

it is required to be robust with respect to EEG variations across subjects

and various mental states. The ultimate objective is a comprehensive tool for

epilepsy diagnosis as well as real-time monitoring of EEGs for seizure detection

and, eventually, seizure prediction. Toward this end, the following classifier

characteristics are desirable: fast training, high classification accuracy for all

three groups, and low sensitivity to training data and classifier parameters,

that is, robustness, to be discussed later in this chapter. Although a high

classification accuracy is reported using LMBPNN in Chapter 8, the class

of RBFNN classifiers is investigated further, in this chapter, to increase the

robustness of classification.

The original feature space consists of K EEGs from each of the three

aforementioned groups (a total of 3K EEGs) where each EEG is composed

163
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of N voltage readings at specific instants of time. The wavelet decomposition

of each EEG results in a total of six signals (the band-limited EEG and its

five physiological sub-bands). This increases the size of the feature space to

3K × 6 = 18K signals (EEG and EEG sub-bands), each containing N data

points. Following the wavelet-chaos analysis described in Chapter 3, each EEG

is represented by nine parameters (or features) and therefore is reduced to

a nine-dimensional data point in the mixed-band feature space. Thus, the

dimensions of the feature space are reduced from 18K ×N to 3K × 9.

For supervised learning, the available input dataset denoted by a matrix

F of dimension 3K × 9 is divided into training input (FR) and testing input

(FT) sets. The training input consists of k training instances out of the 3K

available EEGs where each instance is represented by the nine aforementioned

features. The number of training instances, k, is called training size. An equal

number of EEGs (k ÷ 3) is selected from each group for training the neural

network. Therefore, the training and testing inputs are matrices of size 4k ×

9 (dimensions of FR) and (3K − k) × 9 (dimensions of FT), respectively.

The actual training and testing classifier outputs are denoted by CR with

dimensions k × 1 or k × 3 and CT with dimensions (3K − k) × 1 or (3K −

k) × 3, respectively (the number of columns in each matrix depends on the

output encoding to be described later). It should be noted that these matrices

have been transposed from their generalized forms described in Chapter 3 to

simplify matrix operations.

In this chapter, a new two-stage classifier is presented for accurate and

robust EEG classification based on the nine-parameter mixed-band feature

space discovered in Section 8.5. In the first stage, principal component anal-

ysis (PCA) is employed for feature enhancement by transforming the nine-

parameter feature space into a new feature space which is more amenable to

subsequent classification. PCA is usually used for dimensionality reduction
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to reduce the computational requirement, and in some cases, for denoising

(Zhukov et al., 2000; Lee and Choi, 2003). Although dimensionality reduc-

tion is also achieved in this work, that is not the primary objective. Rather,

the rearrangement of the input space along the principal components of the

data is used to improve the classification accuracy of the cosine radial basis

function neural network (RBFNN) employed in the second stage. The PCA-

enhanced cosine RBFNN classifier proposed in this chapter not only is a novel

methodology, but also the first such application in EEG classification. It will

be shown that the integration of the mixed-band wavelet-chaos methodology

(Ghosh-Dastidar et al., 2007) and the new PCA-enhanced cosine RBFNN

yields high EEG classification accuracy and is quite robust with respect to

changes in training data, a common concern in applications of supervised

learning. An overview of the proposed EEG classification methodology is pre-

sented schematically in Fig. 9.1.

9.2 Principal Component Analysis for Feature Enhance-

ment

The training input, FR, is subjected to PCA for the purpose of determining

the principal components. At this stage, the testing input is kept completely

separate so as not to contaminate the analysis. Following the steps detailed

in Section 4.5, the following five steps are performed to determine the axes of

the new reoriented input space (Smith, 2002).

1. The centroid of the k training instances, denoted by the 1 × 9 vector

µR, is found.
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FIGURE 9.1
Overview of the wavelet-chaos-neural network methodology for the three-class
EEG classification problem and architecture of the two-stage PCA-enhanced
cosine RBFNN classifier with one hidden layer
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2. The origin of the coordinate system is moved to the centroid of the

training instances by subtracting µR from each point in FR.

3. The pairwise covariance between all nine parameters constituting the

columns of the shifted training input is computed. This is represented

by a 9× 9 covariance matrix, denoted by cov(FR − µR).

4. The eigenvectors and eigenvalues of the covariance matrix are computed

resulting in nine 9×1 eigenvectors and the nine corresponding eigenval-

ues. The eigenvectors are mutually orthogonal and represent the axes of

the new coordinate system. The eigenvector corresponding to the max-

imum eigenvalue is the principal component.

5. Eigenvectors corresponding to the lowest eigenvalues are discarded. The

remaining n eigenvectors are arranged column-wise in the order of de-

creasing eigenvalues to form the 9×n eigenvector matrix, E. How many

eigenvectors to keep is found by trial and error, as described shortly in

this chapter.

Following PCA, the training and testing inputs (consisting of nine features)

are transformed into the new input space as follows:

FRX = FR ×E (9.1)

FTX = FT ×E (9.2)

The transformed training (FRX) and testing (FTX) input datasets consist

of n features (corresponding to the selected eigenvectors) and, therefore, are

matrices of size k × n and (3K − k)× n, respectively. Since n is smaller than

the original number of features (i.e., 9), FRX and FTX are smaller in size

compared with FR and FT, respectively.
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FIGURE 9.2
A simple two-dimensional example to demonstrate the effect of PCA on the
angular spread: data in the original coordinate system

The reorientation of the feature space is expected to increase the an-

gular separation between individual data points and lead to improved co-

sine RBFNN classification accuracy. Since the EEG feature space is nine-

dimensional and cannot be visualized, a simple two-dimensional example,

shown in Figs. 9.2 and 9.3, is used to illustrate this concept graphically. The

data plotted in Fig. 9.2 after transformation using PCA are shown in Fig. 9.3.

It is observed in Fig. 9.3 that the transformed data has approximately 60%

wider angular spread compared with the original data in Fig. 9.2 when viewed

from the origins of the respective coordinate systems, and thus will be more

amenable to accurate classification.
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FIGURE 9.3
A simple two-dimensional example to demonstrate the effect of PCA on the
angular spread: data transformed using PCA

9.3 Cosine Radial Basis Function Neural Network: EEG

Classification

In the last decade, RBFNNs have been applied to problems of function approx-

imation and pattern recognition in different fields with great success (Adeli

and Karim, 2000; Howlett and Jain, 2001a,b; Karim and Adeli, 2002a, 2003;

Adeli and Karim, 2005). Recently, neural network-based classifiers have also

been employed in the nascent field of automated EEG analysis and epilepsy

diagnosis (Lee and Choi, 2003; Güler et al., 2005; Mohamed et al., 2006;

Ghosh-Dastidar et al., 2007). However, in spite of the architecture simplicity

and guaranteed convergence of RBFNNs, these classifiers have not been inves-

tigated for seizure detection. Besides the incorporation of PCA, there are two
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FIGURE 9.4
Shapes of the basis functions (a) RBF and (b) TBF

primary differences between the RBFNN presented in this chapter compared

with a classical RBFNN. First, the commonly used Euclidean distance is re-

placed by an angular measure as input to the RBFNN hidden layer nodes.

Second, the radial basis function (RBF) for hidden layer nodes is replaced

by a triangular basis function (TBF). Although technically this changes the

classifier to a triangular basis function neural network, the name radial basis

function neural network is retained as it represents the entire class of neural

networks. The shapes of the two basis functions, RBF and TBF, are shown in

Fig. 9.4(a) and Fig. 9.4(b), respectively. As explained in the next section, the

cosine angular distance and the TBF are selected because they yield higher

classification accuracies as compared with the Euclidean distance and RBF.

The RBFNN classifier consists of one hidden layer in addition to the input

and output layers. The input layer consists of n nodes corresponding to the

n transformed features after PCA is performed. The hidden layer can have a

maximum of k nodes, equal to the number of training instances. Employing

such a large (k) number of nodes is computationally expensive but enables the

network to be trained with no training convergence error. In many cases, em-
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ploying a smaller number of nodes, Nh < k, yields sufficiently accurate results.

Therefore, training is started with a small number of nodes and is repeated

with an increasingly larger number of nodes until the desired training conver-

gence is achieved. The number of nodes in the output layer, r, depends on

the output encoding scheme to be discussed in the next section. The RBFNN

architecture with three output nodes (r = 3) is shown in Fig. 9.1.

The weights of the links connecting the n input nodes to the Nh nodes in

the hidden layer are represented by the n×Nh weight matrix W. The weights

of the links connecting the input layer to the jth hidden node are denoted by

the n × 1 column vector W(j). The n × 1 input column vector for the mth

training instance (1 ≤ m ≤ k) is denoted by FRX(m). The weighted input to

the jth node in the hidden layer for the mth training instance is computed as

the angle between the two column vectors FRX(m) and W(j) as:

I(j) = cos−1

(

W(j) · FRX(m)

|W(j)| |FRX(m)|

)

(9.3)

where the numerator is the dot product of the two vectors and the denominator

is the product of the magnitudes of the two vectors. The weighted input I is a

column vector of size Nh×1. Using a triangular basis transfer function shown

in Fig. 9.4(b), the output of the jth node of the hidden layer is computed as:

Y(j) =











1−
∣

∣

∣

∣

I(j)
2p

∣

∣

∣

∣

∀I(j) ∈ (−2p, 2p)

0 otherwise

(9.4)

where the spread, p, scales the output such that the output is 0.5 (the average

of the limits of 0 and 1) when the weighted input I(j) is equal to p. When

W(j) is equal to FRX(m), the weighted input is 0 which results in an output

of 1.

The input to the output layer nodes is computed as the weighted sum
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of the outputs from the hidden layer nodes. The error function employed for

training the neural network is the sum of squared errors (SSE), E, as follows:

E =

r
∑

j=1

[CR(j)−OR(j)]
2

(9.5)

where CR and OR are the actual and desired classifier outputs, respectively,

with dimensions k × r.

9.4 Applications and Results

9.4.1 Neural Network Training

Each iteration of RBFNN training involves the addition of a hidden layer node

j with the input weight vector, W(j), equal to the input vector, FRX(m), for

the training instance, m, that minimizes the error. Training is terminated

when any one of two conditions holds: 1) SSE is reduced to a limiting conver-

gence value determined by numerical experimentation to balance the training

and testing errors and avoid overtraining (Ghosh-Dastidar et al., 2007) or 2)

the number of nodes becomes equal to the number of training instances. A

limiting convergence value of 0.05 was obtained for the EEG data used in this

research.

9.4.2 Output Encoding Scheme

Two output encoding schemes are investigated in this work. In scheme 1,

there is only a single output node yielding one of the three values, -1, 0, and

1, representing the three EEG groups of signals, respectively (Ghosh-Dastidar

et al., 2007). The second scheme employs three output nodes corresponding
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to the three EEG groups. The node returns an output of 1 if the EEG belongs

to the corresponding group and zero otherwise. Therefore, the three correct

classifications are encoded as {1, 0, 0}, {0, 1, 0}, or {0, 0, 1}.

9.4.3 Comparison of Classifiers

In Chapter 8, the accuracy of various classifiers was investigated for the three-

group EEG classification problem based on the nine-parameter mixed-band

feature space. Six different classifiers were trained multiple times with a ran-

domly selected training input dataset out of the 300 available EEGs and the

average classification accuracies were computed. The Levenberg-Marquardt

backpropagation neural network (LMBPNN) classifier yielded the highest av-

erage accuracy of 96.7% with a standard deviation of 2.9% representing the

sensitivity to the training data. A classical RBFNN classifier (based on an

RBF and the Euclidean distance) yielded low classification accuracies in the

vicinity of 80% and a high standard deviation in the neighborhood of 8% but

required less training time.

Based on these observations, it appeared that either 1) the choice of pa-

rameters defining the RBFNNs (such as the spread) was sub-optimal or 2)

classical RBFNNs were unsuitable for the EEG classification problem. The

first issue is addressed by performing an extensive parametric and sensitivity

analysis to find the optimum RBFNN parameters for maximum classification

accuracy and minimum standard deviation. To account for the effect of the

training data on classification accuracy, the classification is repeatedNR = 100

times, each time with a new randomly selected training dataset. Next, a PCA-

enhanced cosine RBFNN neural network is presented which models the EEG

classification problem more accurately.

The new methodology is compared with seven other RBFNN classifiers cre-

ated by varying three characteristics: basis function (RBF or TBF), distance
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function (Euclidean distance abbreviated as Euc and angular cosine distance

abbreviated as Cos), and PCA (employed or not employed) as well as the

LMBPNN classifier. The RBFNN classifiers are tagged based on the combi-

nation of the aforementioned characteristics as follows: 1) classical RBFNN

(RBF+Euc), 2) RBF+Euc+PCA, 3) RBF+Cos, 4) RBF+Cos+PCA, 5)

TBF+Euc, 6) TBF+Euc+PCA, 7) TBF+Cos, and 8) PCA-enhanced cosine

RBFNN (TBF+Cos+PCA). The average classification accuracy percentages

for all nine classifiers using two different output encoding schemes are tabu-

lated in Table 9.1 (standard deviations are noted in parentheses). The highest

classification accuracy and lowest standard deviation are obtained for the

PCA-enhanced cosine RBFNN proposed in this chapter (noted in boldface

in Table 9.1). The results of Table 9.1 show that, for the RBFNN classifiers

(the first eight in Table 9.1), the second output encoding scheme yields consis-

tently higher classification accuracies by 2.8-5.3% and lower standard devia-

tions compared with the first scheme. It is noted that the LMBPNN classifier

exhibits behavior different from that of the RBFNN classifiers. Scheme 2 for

LMBPNN yields lower classification accuracies and higher standard deviations

compared with scheme 1. Therefore, it appears that scheme 2 is better suited

for the RBFNN classifiers only. Therefore, only the second output encoding

scheme is included in the remainder of the chapter for the RBFNN classifiers.

Using the output encoding scheme 2, the first two classifiers RBF+Euc

and RBF+Euc+PCA yield the lowest classification accuracies of 95.1%. If

either the Euclidean distance is replaced with the cosine distance (classifier

3) or the RBF is replaced with TBF (classifier 5), the classification accuracy

increases to 95.7%. When cosine distance and TBF are used (classifier 7)

the classification accuracy increases to 96.2%. Addition of PCA (classifier 8)

further increases the classification accuracy to 96.6%. The standard deviation

values for eight classifiers are in the range 1.4-1.7%. The standard deviation
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TABLE 9.1
The average classification accuracy percentages for eight classifiers (standard
deviations are noted in parentheses)

No. Classifier Output Encoding Scheme 1 Output Encoding Scheme 2

1 RBF+Euc 92.1 (2.5) 95.1 (1.7)

2 RBF+Euc+PCA 92.1 (2.4) 95.1 (1.6)

3 RBF+Cos 90.9 (2.3) 95.7 (1.6)

4 RBF+Cos+PCA 90.5 (2.3) 95.8 (1.6)

5 TBF+Euc 92.8(1.8) 95.7 (1.6)

6 TBF+Euc+PCA 92.8 (2.0) 95.6 (1.6)

7 TBF+Cos 93.0 (2.1) 96.2 (1.5)

8 TBF+Cos+PCA 92.8 (2.1) 96.6 (1.4)

9 LMBPNN 96.7 (2.9) 89.9 (4.0)

for classifier 8 is the lowest (1.4%) which leads to the conclusion that classifier

8 is the most robust to changes in training data. The classification accuracy

is comparable to the LMBPNN classifier but the sensitivity to the choice of

training data is reduced to half.

It is observed that employing PCA with the Euclidean distance-based

RBFNN does not improve the classification accuracy because the reorientation

of the feature space does not affect the Euclidean distance. Employing TBF

yields higher classification accuracies than using RBF. An extensive study

involving weeks of computational time was performed in which, in addition

to RBF and TBF, the following three activation functions were also inves-

tigated: Mexican hat wavelet, Morlet wavelet, and a truncated sinc (sinx/x)

function. The spread of these functions was defined in a manner similar to

TBF (Eq. 9.5) where, as explained earlier, an input equal to the spread re-

sulted in an output of 0.5. However, employing these functions resulted in

much lower classification accuracies (80-90%), and therefore they are not dis-

cussed in detail.

The first derivative of TBF is discontinuous at three points (I(j) = −1, 0,
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and 1 in Eq. 9.5). This affects the RBFNN node behavior in two ways. First,

at I(j) ≤ −1 and I(j) ≥ 1, the TBF function value becomes zero without the

smooth asymptotic transition observed in the other four activation functions.

Therefore, values of I(j) ≤ −1 and I(j) ≥ 1 do not contribute at all to

the output of the RBFNN node in the case of TBF whereas for the other

functions there is some small contribution. Second, inputs within the range

I(j) ∈ (−1, 1) have a much greater contribution to the output of the RBFNN

node in TBF than in the case of the other functions. This functional behavior

seems to fit the EEG data more accurately.

9.4.4 Sensitivity to Number of Eigenvectors

The input to the cosine RBFNN consists of n features corresponding to the se-

lected eigenvectors. As a result, the classifier is required to have n input nodes.

Generally speaking, a large value of n leads to a large number of input nodes

which exponentially increases the complexity of the neural network classifier

and the computational effort required. This is known as the dimensionality

curse (Bellman, 1961). As such, it is desired that the value of n be as small

as possible without compromising the classification accuracy. This is not a

significant issue in the current research because n is limited to a maximum

value of 9. The issue was studied nevertheless. The change in classification

accuracy of PCA-enhanced cosine RBFNN with the number of eigenvectors is

presented in Fig. 9.5. The classification accuracy increases with the number

of eigenvectors and plateaus at n = 5 with a value of 96.6%. It should be

noted that this does not imply that five out of the nine original features are

sufficient for the classification problem. Rather, it means that five or more

linear combinations of all nine features can model the classification problem

accurately.
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FIGURE 9.5
Variations in classification accuracy of PCA-enhanced cosine RBFNN with
the number of eigenvectors

9.4.5 Sensitivity to Training Size

For a given dataset a decision has to be made with regard to the sizes of the

training and testing data. The training size, k, affects the classification accu-

racy of the neural network and needs to be selected carefully. On the one hand,

if k is too small the classifier is unable to model the classification problem ac-

curately. On the other hand, if k is too large, the size of the remaining data

to be used as a testing set would be too small to test the model effectively.

In this work, the sensitivity of the PCA-enhanced cosine RBFNN is assessed

by increasing the training size from k = 60 (20 EEGs from each group) to

k = 240 (80 EEGs from each group) in increments of 30 (10 for each group).

The change in classification accuracy of PCA-enhanced cosine RBFNN with

training size is shown in Fig. 9.6. The classification accuracy increases rapidly

at first, but plateaus near 96.6% for training sizes greater than 150 EEGs.

A training size of 240 EEGs yields a slightly higher classification accuracy of
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FIGURE 9.6
Variations in classification accuracy of PCA-enhanced cosine RBFNN with
training size

96.7%. This value is not reported in Table 9.1 because using the large train-

ing size k = 240 EEGs results in a small testing dataset of only 60 EEGs. A

training size of k = 150 (50 EEGs from each group) is deemed sufficient to

model this problem. At the same time, the plateau in classification accuracy

for larger training sizes indicates that the model stabilizes beyond a certain

training size.

9.4.6 Sensitivity to Spread

The spread p of the RBF usually plays an important role in determining

the classification accuracy of RBFNN (Ghosh-Dastidar et al., 2007). In such

networks, a specific input is supposed to excite only a limited number of

nodes in the hidden layer. When the spread is too large, all hidden nodes

respond to a given input, which results in loss of classification accuracy. On

the other hand, when the spread is too small, each node responds only to a
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FIGURE 9.7
Classification accuracy versus spread for RBFNN

very specific input and therefore is unable to classify any new input accurately.

The effect of varying the spread from 10 to 100 in increments of 5 on the

classical RBFNN is illustrated in Fig. 9.7. It is observed that the classification

accuracy is very low for p = 10 and increases rapidly until p = 25. The

maximum classification accuracy (95.1%) is obtained in the range p ∈ (25, 60)

and then slowly decreases to 93.0% for p = 100. The classification accuracy

continues to decrease for values of p larger than 100 (not shown in Fig. 9.7).

Figure 9.7 shows clearly the classification accuracy depends on the choice

of the spread significantly. Two different approaches can be used to attack

this problem: 1) developing an algorithm to compute the optimum value of p

automatically for a given training input set and 2) designing a classifier that

is less sensitive to the spread. An inherent disadvantage of the first approach

is that the spread computation is dependent on the training data which makes

it sensitive to data outliers. Moreover, this approach relies on retrospective

data. In a prospective clinical application, the testing input is unknown and
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FIGURE 9.8
Classification accuracy versus spread for PCA-enhanced cosine RBFNN

unclassified and as a result, evaluation of the correctness of the spread by trial

and error is not possible. No method currently exists to accurately estimate

the spread. Therefore, the second approach is advanced in this research to

increase the reliability of the classification.

The effect of varying the spread on the PCA-enhanced cosine RBFNN

is illustrated in Fig. 9.8. There is very little variation in the classification

accuracy (95.8-96.6%) for a wide range of spread values (0 to 90). The classifier

was tested extensively with spread values in the range from 0 to 2 which is

the reason for the dense population at the beginning of the graph in Fig. 9.8.

The proposed PCA-enhanced cosine RBFNN is quite robust with respect to

variations in the spread.
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9.5 Concluding Remarks and Clinical Significance

A novel PCA-enhanced cosine radial basis function neural network classifier

is presented. The new two-stage classifier is integrated with the mixed-band

wavelet-chaos methodology, developed in Chapters 7 and 8, for accurate and

robust classification of three different groups of EEG signals obtained from

healthy and epileptic subjects (Ghosh-Dastidar et al., 2007).

In order to assess the clinical applicability of the proposed wavelet-chaos-

neural network methodology for epilepsy diagnosis and seizure detection, the

average classification accuracies for each group (H, E, or S) are tabulated in

Table 9.2 (standard deviations are noted in parentheses). The values reported

are obtained using the PCA-enhanced cosine RBFNN with the following char-

acteristics: TBF spread (p) = 1.0, training size (k) = 50, output encoding

scheme 2, and number of retained principal components (n) = 6. The training

and testing of the classifier is repeated NR = 10 times, each time with a new

randomly selected training dataset.

It is observed that the group-wise classification accuracies for normal EEGs

(group H), interictal EEGs (group E), and ictal EEGs (group S) are 98.4%,

97.0%, and 94.8%, respectively. A normal EEG is misclassified as an ictal EEG

0.6% of the time. The model is unable to classify a normal EEG into any of

the three groups 1% of the time. A normal EEG is never misclassified as an

ictal EEG and vice versa. An interictal EEG is misclassified as an ictal EEG

2.6% of the time and not classified at all 0.4% of the time. An ictal EEG is

misclassified as a normal EEG 1.0% of the time, an interictal EEG 3.0% of

the time, and not classified 1.2% of the time. From the perspective of seizure

detection, the false alarm rate is 2.6+0.6=3.2% and the missed detection rate

is 1.0+3.0+1.2=5.2%.
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TABLE 9.2
Group-wise distribution of the average classification accuracy (NR = 10) of
the PCA-enhanced RBFNN classifier (standard deviations are noted in paren-
theses). A percentage value at the intersection of row name and column name
in the table should be read as “The percentage of EEGs from group row name
that were classified as group column name is percentage value”. H, E, and S
represent the three subject groups and X represents data not classified by the
proposed model

H E S X

H 98.4 (2.3) 0.0 (0.0) 0.6 (1.3) 1.0 (1.7)

E 0.0 (0.0) 97.0 (3.3) 2.6 (3.1) 0.4 (0.8)

S 1.0 (1.1) 3.0 (1.4) 94.8 (2.3) 1.2 (1.7)

Practicing neurologists have the most difficulty in differentiating between

interictal and normal EEGs. For epilepsy diagnosis, when only normal and

interictal EEGs are considered, the classification accuracy of the proposed

model is 99.3%. This statistic is especially remarkable because even the most

highly trained neurologists do not appear to be able to detect interictal EEGs

more than 80% of the time.
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10

Alzheimer’s Disease and Models of

Computation: Imaging, Classification, and

Neural Models

10.1 Introduction

Old age is naturally associated with some loss of memory and cognition. The

clinical condition in which these symptoms become severe enough to ham-

per social and occupational functions is referred to as dementia. Alzheimer’s

disease (AD), the leading cause of dementia, is a neurodegenerative disor-

der that affects about 5 million people in the United States (Khachaturian

and Radebaugh, 1996). The majority of the victims are above the age of 65.

This late-onset type of AD is classified as senile dementia of the Alzheimer

type (SDAT) and it affects 7% of people above the age of 65 and 40% above

80 (Price, 2000). Early-onset cases of AD in people in their 40s and 50s are

less common and are classified as presenile dementia of the Alzheimer type

(PDAT). This chapter presents a review of research in imaging, classification,

and neural models of AD. This review does not distinguish between PDAT

and SDAT but refers to them collectively as AD. AD is considered to be a

complex disorder (Mayeux, 1996). In other words, no single factor is necessary

and sufficient to cause the disease. Multiple types of influences such as genetic,

185
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environmental, and dietary factors contribute to the progression of the disease

but the causes and underlying mechanisms are not known with any measure

of certainty.

Any kind of dementia, including AD, primarily causes memory impairment

(long-term or short-term) and at least one of the following classes of clinical

symptoms: impairment of cognition, impairment of judgment, change in per-

sonality, and altered behavior (American Psychiatric Association, 1994). The

early symptoms of AD are usually mild but subsequently progress in severity

with age. Attempts have been made to identify the transition from symptoms

of normal aging to AD. Recently, a transition state, mild cognitive impair-

ment (MCI), characterized by loss of short-term memory, has been identified

as a likely precursor to AD (Shah et al., 2000; Morris et al., 2001; Saykin and

Wishart, 2003). However, even though MCI increases the risk of developing

AD, there is no conclusive evidence of a direct connection or clearly defined

boundaries.

Diagnosis of AD poses a challenge even for trained neurologists for mul-

tiple reasons (Heyman, 1996; Price, 2000). First, the symptomatology of AD

is similar to that resulting from other dementias associated with cerebrovas-

cular diseases, Lewy body dementia, Parkinson’s disease, depression, nutri-

tional deficiencies, and drug reactions. Second, sometimes dementias may be

due to more than one of the above mentioned causes which makes diagnosis

even more complicated. Third, the lack of clearly defined boundaries between

symptoms of normal aging, MCI, and the onset of AD can lead to diagnostic

errors. Therefore, a person suffering from symptoms of probable AD is re-

quired to undergo a battery of clinical tests and a diagnosis is made based on

patient history and elimination of all other possible causes. Currently, there

is no single clinical test for diagnosis of AD even in its later stages, and most

recent research is focused on developing a noninvasive, sensitive, and specific
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in vivo test. In fact, at the present, AD can only be confirmed from a post

mortem autopsy of brain tissue from the presence of structures in the brain

such as neurofibrillary tangles and senile plaques (Khachaturian and Rade-

baugh, 1996).

Prediction or early-stage diagnosis of AD would require a more compre-

hensive understanding of the underlying mechanisms of the disease and its

progression. Researchers in this area have approached the problem from mul-

tiple directions by attempting to develop (a) neurological (neurobiological and

neurochemical) models, (b) analytical models for anatomical and functional

brain images, (c) analytical feature extraction models for electroencephalo-

grams (EEGs), (d) classification models for positive identification of AD, and

(e) neural models of memory and memory impairment in AD. The first four

approaches are correlated in the sense that any neurological change will lead

to physical changes that will be manifested in some form in brain images and

EEGs which can then be detected using classification techniques. The neural

models can provide an alternative method for understanding and explaining

these changes. These changes are called diagnostic markers if they occur dur-

ing the progression of AD or prediction markers if they occur before the advent

of AD.

10.2 Neurological Markers of Alzheimer’s Disease

AD is a neurodegenerative disease which, by definition, causes neuronal death

and dysfunction. It has been hypothesized that neuronal death occurs as a re-

sult of loss of neuronal synapses (Terry, 1996). This results in both anatomical

(structural) as well as physiological (functional) changes or markers in various

regions of the brain. Postmortem examination of brain tissue reveals that the
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frontal, temporal, and parietal lobes of the brain are affected the most. Since

AD is a progressive disease, the magnitude of these markers depends on the

stage of the disease. Further, the spatial and temporal distribution of these

markers is not uniform. For instance, the regions associated with memory are

affected earlier than others. It should be noted that in a highly complex system

such as the human brain, the dysfunction of a single region, type of cell, or

neurotransmitter cannot be conclusively identified as the sole factor responsi-

ble for these changes. Damage to one area of the brain spreads to other areas

via neuronal pathways in the brain resulting in the damage and dysfunction

of multiple other areas which may lead to a wide range of symptoms. There-

fore, it is very important that the entire system is treated as a whole and all

aspects are examined carefully before arriving at any conclusions.

From a gross external examination of the affected regions of the brain of

an Alzheimer’s patient, changes in certain structures in the affected regions

have been identified, in addition to the observations of generalized cortical

atrophy characterized by reduced gyri volume and increased sulci width. Neu-

ronal damage leads to atrophy of structures in the frontal, temporal, and

parietal lobes. In accordance with the heterogeneous symptomatology of AD,

the damage is localized to various sites within these lobes. These sites include

the neocortex, entorhinal cortex, hippocampus, amygdala, nucleus basalis, an-

terior thalamus, corpus callosum, and brain stem nuclei such as the substantia

nigra, locus ceruleus, and the raphe complex (Mirra and Markesbery, 1996;

Xanthakos et al., 1996; Price, 2000; Teipel et al., 2003). Ventricles (especially

the lateral ventricle) also appear to be enlarged which may be a primary

symptom or a secondary effect associated with atrophy of the periventricular

parenchyma. Another consistent feature seen in AD is the abnormal paleness

of the locus ceruleus, a nucleus of neurons containing neuromelanin. In some
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cases, the substantia nigra also loses its characteristic black color (similar to

that seen in Parkinsonism).

A microscopic examination of the affected regions yields neuropathological

structures such as neurofibrillary tangles and senile plaques that have been

commonly established to be markers of AD. Neurofibrillary tangles are left

behind in the affected regions after neuron death caused by abnormalities in

the neuronal cytoskeletal structure. The neuronal cytoskeleton is responsible

for maintaining the cell structure as well as for transportation and exchange

of molecules. In AD, an important microtubule-binding protein, tau, becomes

hyperphosphorylated which disrupts the normal axonal transport mechanisms

leading to impaired movement of various molecules and, eventually, neuron

death (Price, 2000; Avila et al., 2002).

Senile plaques, the other common marker of AD, are classified into two

sub-types - neuritic and diffuse plaques based on their structure (Mirra and

Markesbery, 1996). Neuritic plaques have a well defined spherical structure

with a periphery of neurites (axons or dendrites of damaged neurons, astro-

cytes, and microglia) surrounding a central dense core of amyloid protein. On

the other hand, diffuse plaques have a less defined, amorphous structure and

lack neurites. Diffuse plaques may be found in normal aging brain tissue to

some extent and there is some debate as to whether diffuse plaques may be

precursors of neuritic plaques or not (Selkoe, 1994; Mirra and Markesbery,

1996). Amyloid angiopathy, a related marker, involves the deposition of the

amyloid protein in cerebral blood vessels in AD patients. This has also been

detected to some extent in normal aging brains, but still may be important

as a potential diagnostic marker (Tian et al., 2003; de Courten-Myers, 2004;

Haglund et al., 2004).

The nature of the neuronal damage, in addition to being region specific,

is also cell specific. In other words, the damage is restricted to specific pop-
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ulations of neurons and specific neurotransmitters in specific regions of the

brain (Price, 2000). The primary cells affected in the neocortex and the en-

torhinal cortex are the glutaminergic pyramidal neurons and, to some extent,

interneurons. The pyramidal cells are severely affected in the CA1 and CA2

regions of the hippocampus. Damage to these areas is a critical factor respon-

sible for memory impairment, the primary symptom in AD. Another group of

neurons affected in AD are the cholinergic neurons in the basal forebrain (pri-

marily, the nucleus basalis, medial septal nucleus, and the diagonal band of

Broca) which project to the neocortex and hippocampus (Mirra and Markes-

bery, 1996; Price, 2000). Damage to these neurons destroys the activity of the

neurotransmitter acetylcholine in the destination regions resulting in memory

and attention deficits. However, whether this is one of the causes of the disease

or an effect is not known (Mesulam, 2004). Damage to the other sites such as

the amygdala, thalamus, and the brain stem nuclei is usually responsible for

disruption of behavior, emotions, and the associative aspects of memory.

Changes in cerebral blood flow, glucose metabolism, oxidative free radical

damage to mitochondrial DNA, neuroreceptor functioning, and neurotrans-

mitter activity have also been identified as potential markers for the study

of AD (Budinger, 1996). Studies have demonstrated reduced cerebral blood

flow or perfusion as a result of neuronal death (especially in the temporal

and temporoparietal regions) in AD patients as compared to a control group

of normal subjects (Reed et al., 1989; Pearlson et al., 1992; Bozzao et al.,

2001). There is also evidence of reductions in glucose metabolism (Hoyer,

1996; Planel et al., 2004) and increased oxidative free radical damage (Evans,

1993; Eckert et al., 2003; Baloyannis et al., 2004) in the same regions. Due

to abnormal neurotransmitter activity in the brains of AD patients, different

types of neurotransmitter receptors show abnormal behavior. Studies have

confirmed the decline in the density of nicotinic acetylcholine, serotonin, and
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α2-epinephrine receptors (Budinger, 1996) which reduces neurotransmitter

binding and therefore synaptic efficiency. The deficit of acetylcholine and ab-

normality in the concentrations of other neurotransmitters such as serotonin

and gamma-aminobutyric acid (GABA) that affect the synthesis and actions

of acetylcholine have also been shown to be important in AD. However, the

mechanism or the exact nature of interactions is still only partially known.

Other neurochemical markers such as reduction in N -acetylaspartate and in-

creased myoinositol have been reported (Block et al., 2002; Krishnan et al.,

2003; Waldman and Rai, 2003). However, these changes vary and there does

not seem to be a consensus on the spatial distribution and therefore studies

based on them are still in their preliminary stages.

10.3 Imaging Studies

10.3.1 Anatomical Imaging versus Functional Imaging

The primary reason for the popularity of imaging techniques for detection and

diagnosis of AD is the relative ease with which the neurological markers dis-

cussed in the previous section can be converted to visual markers. Anatomical

changes such as atrophy in the brain or ventricular enlargement can be quan-

tified by visual markers such as changes in volume or shape which are detected

using anatomical imaging techniques such as computer tomography (CT) and

magnetic resonance imaging (MRI). On the other hand, reduced cerebral ac-

tivity in affected regions due to neurodegeneration leads to altered cerebral

blood flow and biochemistry that are detected using functional imaging tech-

niques such as functional MRI (fMRI), positron emission tomography (PET),

single photon emission computed tomography (SPECT), and magnetic reso-
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nance spectroscopy (MRS). Recently, another potential marker, diffusion of

water, has been identified using diffusion-weighted MRI (Hanyu et al., 1997;

Sandson et al., 1999). Microscopic markers such as neurofibrillary tangles and

senile plaque cannot be visualized directly using imaging techniques. However,

the presence of these structures is associated with secondary effects such as

neuronal death, tissue atrophy, and reduced perfusion which can be measured

(Xanthakos et al., 1996; Petrella et al., 2003). As an alternative, some at-

tempts have been made to model the aggregation-disaggregation dynamics of

plaque formation (Cruz et al., 1997; Urbanc et al., 1999a,b).

Imaging and analytical techniques are used only as aids for diagnosis of

AD. A neurologist cannot confirm the presence or absence of the disease from

a brain scan alone because even the current state-of-the-art techniques lack

the required specificity to AD. One reason for this is the overlap between

the symptomatology of AD with other diseases, in which case, improving the

technology would not increase the accuracy of diagnosis of AD. Another rea-

son for low specificity is probable shortcomings in the imaging techniques,

and improving the image quality can potentially result in greater accuracy

and increased ability to distinguish between symptoms of AD and other neu-

ropathologies.

Compared to functional imaging methods, the advantages of anatomical

imaging include relative ease of use and low cost. However, neurological mark-

ers detected by anatomical imaging modalities are of the gross anatomical

type and become noticeable only in advanced stages of AD due to limita-

tions of resolution and existence of artifacts. On the other hand, functional

imaging modalities demonstrate greater sensitivity, especially for detecting

subtle changes in the earlier stages. However, so far, no single modality has

emerged as a preferred method based on diagnostic accuracy, at least in the

early stages of AD. All modalities suffer from a common drawback - noise.
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Various noise reduction methods based on novel techniques such as wavelet

transforms (Adeli et al., 2003; Turkheimer et al., 2003) and artificial neural

networks or ANNs (Adeli and Hung, 1995; El Fakhri et al., 2001) have been

proposed to resolve this problem.

10.3.2 Identification of Region of Interest (ROI)

Although these imaging techniques are based on different modalities, the ba-

sic approach to image analysis is the same and most studies rely on visual

image inspection. Different image parameters of the region of interest (ROI)

in an image such as area, shape, pixel intensity, and color represent different

physiological characteristics of the ROI. For instance, area in the image is a

measure of physical size, whereas intensity could be a measure of dynamic

properties such as flow, volume, and biochemical concentration. Also, area

representation using different imaging modalities has different implications.

For instance, in an MRI scan, area represents the physical size of a partic-

ular type of tissue whereas in a SPECT or fMRI scan, area represents the

area of increased perfusion due to cerebral blood flow. Visual inspection may

be performed by a trained radiologist/neurologist quickly but often is biased

depending on the examiner. To reduce this bias, attempts have been made

to quantify selected characteristics of the ROI in the images for automated

or semi-automated image analysis and diagnosis of AD. These attempts are

reviewed in the following paragraphs.

For the analysis of any image, first the ROI has to be identified. This

requires segmentation algorithms which divide the image area into segments

based on some common characteristic of proximity such as location, color, tex-

ture, pixel intensity, and brightness or any combination of these. Subsequently,

the characteristics of a segment can be quantified and used as a marker of the

disease. Segmentation can also be achieved by detecting the contrast-based
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boundaries between segments using edge detection techniques. A very com-

mon method uses threshold-based boundary detection in areas where there

is a high contrast. Areas of low contrast are demarcated usually by visual

inspection (Jack et al., 1990). Novel methods have been researched for image

segmentation as applied to medical images. Good results have been reported

with clustering techniques such as standard statistical cluster analysis (Burton

et al., 2002), wavelet-based clustering (Barra and Boire, 2000), and adaptive

fuzzy c-means clustering (Liew and Yan, 2003). Statistical pattern recognition

methods (Andersen et al., 2002) have also been devised for segmentation pur-

poses. Improved segmentation based on pattern recognition methods using su-

pervised and unsupervised ANNs was observed in MRIs (Reddick et al., 1997;

Deng et al., 1999; Perez de Alejo et al., 2003) and SPECT scans (Hamilton

et al., 1997). Grau et al. (2004) proposed an improved watershed transform,

purportedly more accurate for image segmentation. Once the ROI has been

segmented, the relevant characteristics of the ROI can be quantified depending

on the parameter being measured.

10.3.3 Image Registration Techniques

A major hindrance to accurate comparison of brain scans or parameter quan-

tification is the high potential for variability due to various factors. First, brain

scans show significant inter-subject differences because of the physical vari-

ations between the brains of any two individuals. Second, even for the same

individual, two brain scans can be different because of spatial factors such as

position, rotation, and angle of inclination of the head. Finally, inherent flaws

in the imaging modalities introduce geometric distortions in the images which

can also affect accuracy of the analysis. Therefore, comparison of brain scans

to identify changes requires that different brains be mapped onto a standard

or control template using scaling and spatial alignment (normalization or reg-
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istration) techniques (Ashburner et al., 1998; Slomka et al., 2001; Hill et al.,

2001).

Image registration relates the spatial location of features in one image to

that of the corresponding features in another image (Hill et al., 2001). A stan-

dard coordinate system is achieved by using either external markers such as

skull screws, stereotactic frames, dental adapters, and skin markers or inter-

nal information present in the image. Additional analysis may be performed

with intensity values at corresponding locations in the images. Image regis-

tration may be achieved by using different types of transformation functions

such as rigid, affine, projective, and curved function (Viergever et al., 2001).

A similarity function (a function of the ROI volume of the subject, standard

ROI volume, and the transformation function) such as robust least squares,

mutual information, or count difference is used to assess the success of the

registration. The transformed images form the basis for an accurate 2D or

3D comparison of markers such as atrophy or altered cerebral blood perfusion

(Radau et al., 2001).

10.3.4 Linear and Area Measures

Early researchers used changes in linear and area measures based on the 2D

cross-sectional scans to quantify atrophy. The goal is to find an effective mea-

sure that would eliminate the need for more expensive volumetric and func-

tional studies. Attempts have been made to quantify atrophy of different re-

gions of the brain for automated detection and diagnosis of AD (Frisoni et al.,

1996). Linear measures of regional frontal atrophy include the bifrontal index

(defined as the ratio of the maximum distance between the tips of the ante-

rior horns of the lateral ventricles to the width of the brain at the same level)

and maximum interhemispheric fissure width. Medial temporal lobe atrophy

has been quantified using linear measures such as the interuncal distance, de-
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fined as the distance between the unci of the temporal lobes (Dahlbeck et al.,

1991; Doraiswamy et al., 1993; Early et al., 1993), and minimum thickness

and width of the medial temporal lobe (Gao et al., 2003).

Hippocampal atrophy has been measured using the maximum height and

width of the hippocampal formation (Erkinjuntti et al., 1993; Huesgen et al.,

1993), mean hippocampal angle (Gao et al., 2003), width of the choroid fis-

sure, and width of the temporal horn (Frisoni et al., 2002). Area measures of

the temporal horn, interhemispheric fissure, and lateral ventricles (Desphande

et al., 2004) have also been employed as measures of atrophy. Different com-

binations of these linear and area measures such as ratios of the dimensions

of anterior and posterior parts of the same feature have also been studied

as attempts to quantify changes in shape. Similar measures have been used

to quantify dynamic/functional markers such as area of altered perfusion or

biochemistry (Mattia et al., 2003).

10.3.5 Volumetric Measures

Most imaging techniques yield 2D scans of the cross-section (also known as

slices) of the brain at specified locations. Since linear and area based param-

eters do not always correlate to an accurate estimate of the volume of the

structure, volumetric studies are performed, which is more time consuming.

A spatial sequence of slices along a given direction is required to reconstruct

a 3D image of the entire brain or a selected part of the brain. A common

method for measuring volumes of irregular structures is the point counting

method. The points are dubbed voxel, similar to pixel for an area. Since the

slices are at discrete intervals it is usually not possible to directly count vox-

els. Instead, the volume is approximated from the number of ROI pixels in

all relevant slices. The number of pixels in the ROI is multiplied by the area

of a pixel to obtain an approximation of the area of the ROI. The area is
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then multiplied by the slice thickness to obtain the volume of the ROI in one

slice (Bottino et al., 2002; Hampel et al., 2002). Subsequently, the volumes

of the ROI in all relevant slices are summed to get the total volume of the

ROI. Whole brain volume, cerebrospinal fluid volume, volumes of the tem-

poral, frontal, and parietal lobes, the cerebellum, corpus callosum, and the

amygdala-hippocampus complex and their ratios to measure relative changes

have been used by different researchers as markers of AD.

However, the boundaries of the aforementioned ROIs may not be clearly

defined. In such cases, voxel-based morphometry is used to quantify differ-

ences in two images based on a voxel by voxel comparison (Ashburner and

Friston, 2000; Rombouts et al., 2000; Baron et al., 2001; Burton et al., 2002;

Karas et al., 2003). Other methods such as deformation-based morphometry

based on changes in relative positions of features (Ashburner et al., 1998;

Janke et al., 2001; Thompson et al., 2004) and tensor-based morphometry

that identifies local differences in the shape of brain structures (Ashburner and

Friston, 2000) have also been employed with limited success. These methods

applied to sequential images can potentially provide insight into the changes

associated with the progression of AD. Another method, voxel-compression

mapping (Fox et al., 2001), has been developed to view neuronal degenera-

tion or shrinkage over time. However, all these methods are still in their early

experimental stages and their clinical value has yet to be established.

10.4 Classification Models

There is still no consensus about the specificity or sensitivity of markers based

on imaging or EEG studies. Due to the complex nature of AD and overlap of

the symptomatology with other neurological disorders, a single marker may
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not be sufficient for automated detection or diagnosis of the disease. Addi-

tionally, some markers are inherently complex and a simple threshold cannot

characterize the disease accurately. Diagnosis of the disease from imaging or

EEG studies involves detection of abnormalities by comparison with a healthy

human brain. In addition to these inter-individual comparisons, comparisons

can be longitudinal in which markers of AD are examined at various stages of

life of a patient with potential AD to quantify the rate of progression of the dis-

ease. The immense potential for variability not only between individuals but

also within the same individual coupled with the lack of defined boundaries

between normal and abnormal make this classification problem very difficult.

This difficulty becomes even more pronounced when the objective is to design

accurate automated classification algorithms for early detection of the dis-

ease. Early detection involves capturing very minute changes which may lead

to AD. However, so far, even visual inspection by a highly trained neurologist

cannot achieve this conclusively.

Due to the wide variety of markers and parameters, this problem may be

approached as a pattern recognition problem where the pattern to be recog-

nized may be a spatial, temporal, or spatio-temporal sequence of neuronal

firing. Alternatively, the pattern could be that of cortical atrophy as observed

in imaging studies. Traditional methods of statistical analysis of significance

have long been applied to prove that significant differences exist between pa-

tients with probable AD and normal healthy control subjects. Most imaging

and EEG studies on the subject of markers of AD employ parametric statis-

tical tests (such as t-test and analysis of variance) to identify the difference.

Recent imaging studies have used k -means cluster and k nearest neighbor anal-

ysis (Benvenuto et al., 2002) for distinguishing between the different groups

of test subjects. Studies have reported slightly better results with images pre-

processed with principal least squares analysis than with principal component
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analysis (PCA) when using a classifier based on linear discriminant analysis

(LDA) (Higdon et al., 2004). Besthorn et al. (1997) report that LDA of EEGs

yields more accurate classification compared with k -means cluster analysis.

A few applications of ANNs as a classification algorithm have also been

reported during the past decade. Pizzi et al. (1995) compared the accuracy

of three types of ANNs - backpropagation network, fuzzy backpropagation

network, and radial basis function neural network - and concluded that all

three types demonstrated greater accuracy than LDA when applied to infrared

spectroscopic images preprocessed with PCA. However, only the radial basis

function neural network showed the same accuracy when applied to images

not preprocessed with PCA. Good classification results were also reported by

deFigueiredo et al. (1995) using an optimal interpolative neural network on

SPECT images and Warkentin et al. (2004) using a backpropagation network

on cerebral blood flow values obtained from patients by the 133Xe (xenon-133

radio isotope) inhalation procedure.

ANNs have also been used to discriminate EEGs of patients with AD from

those of normal subjects. Studies have reported that ANNs yield greater clas-

sification accuracy than traditional methods such as statistical, clustering,

and discriminant analysis (Anderer et al., 1994; Besthorn et al., 1997). ANN

classification accuracy is further increased if the EEGs are preprocessed with

chaos analysis (Pritchard et al., 1994) or wavelet analysis (Polikar et al., 1997;

Petrosian et al., 2000b, 2001). A combination of methods such as chaos anal-

ysis, PCA, and discriminant analysis has been reported to yield comparable

or under certain conditions better results compared with those obtained using

ANNs (Besthorn et al., 1997). It is concluded that using a mixture of markers

and a combination of computational techniques can increase the accuracy of

algorithms for automated detection and diagnosis of AD. EEG studies are

discussed in detail in Chapter 11.
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10.5 Neural Models of Memory and Alzheimer’s Disease

In addition to the application of ANNs to imaging and EEG studies for clas-

sification and decision making, neural modeling has been used to study the

dynamics of the human brain and its dysfunction in various neurological dis-

orders such as AD. In order to understand the effects of AD on memory

function, neural models are developed to simulate various properties of mem-

ory. These neural models are subjected to various trigger conditions which can

potentially cause a breakdown in the model function. If the model dysfunction

matches the symptomatology of AD, then it can, in an ideal situation, poten-

tially explain three things: (a) the region of the brain responsible for AD, (b)

the trigger conditions responsible for AD, and (c) the mechanism responsible

for the spread of AD.

This section describes the current hypothesis about the hippocampal mod-

els of memory and their dysfunction in AD. Models of memory dysfunction in

AD are henceforth referred to as neural models of progression of AD. These

models are based on significantly different approaches to neural modeling as

described next.

10.5.1 Approaches to Neural Modeling

Neural models can be categorized as connectionist or biophysical. Both ap-

proaches have been used to simulate small scale networks in the brain with

the goal of understanding the underlying mechanisms of AD. The connection-

ist neural models employ simplified neural network dynamics that emphasize

the importance of synaptic connections and the role of neurons as simple

spatio-temporal integrators in associative memory formation (Hasselmo and

McClelland, 1999; Finkel, 2000). For this reason, they are used to model large
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scale processes in the brain. Two specific connectionist neural models of pro-

gression of AD have been proposed based on experimental evidence regarding

the effects of progression of AD on synaptic connections (Duch, 2000).

The biophysical neural models employ detailed biophysical properties of

a single neuron (known as a spiking neuron). These properties include the

physiological effects of neuromodulation such as bursting and spiking. Spik-

ing neurons are designed based on actual experimental data obtained on ion

channel properties. The ion channels transduce presynaptic neurotransmitter

action into membrane depolarization and repolarization which lead to firing of

action potentials (Traub et al., 1991, 1994; Pinsky and Rinzel, 1994; Migliore

et al., 1995; Wang and Buzsaki, 1996). These models are interconnected net-

works of spiking neurons which simulate the aggregation effects of the prop-

erties of individual neurons and associated phenomena. For this reason, the

biophysical neural models are referred to as biological analogs of the connec-

tionist neural models by Menschik et al. (1999). They can be used to simulate

memory dysfunction such as that seen in AD by manipulating neuron prop-

erties and parameters such as cholinergic neuromodulation, theta and gamma

oscillations, diversity of neuron types (for example, interneurons, bursting and

spiking pyramidal cells), and input patterns (Menschik and Finkel, 1998, 1999,

2000).

The connectionist neural models do not require as much simulation de-

tail as their biophysical counterparts which makes the latter computationally

intensive, especially for large networks. Therefore the biophysical models are

only used to model the behavior of a small set of neurons in the brain. Despite

the differences, it has been observed experimentally that both the connection-

ist and biophysical models demonstrate certain common behaviors depending

on manipulations of network parameters such as number of neurons, strength

of connections, and neuronal response to neurotransmitter actions.
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10.5.2 Hippocampal Models of Associative Memory

Various parts of the brain are affected during the late stages of AD. The

first changes, however, are noticed in the mesial temporal lobe which includes

the hippocampal formation (Finkel, 2000). The hippocampal formation is es-

pecially significant for memory function which is impaired in AD. Therefore,

studies have focused on hippocampal dysfunction as a possible explanation for

AD (Price, 2000). Neural models have been developed to simulate the func-

tion of the hippocampus with respect to memory formation. However, no one

model is sufficient for this purpose. Rather, different models reproduce differ-

ent memory properties and therefore it is hypothesized that multiple models

implemented simultaneously may result in improved performance (Hasselmo

and McClelland, 1999; Duch, 2000; Finkel, 2000).

One model, the attractor neural model, simulates memory properties such

as error correction and pattern completion (Hasselmo and McClelland, 1999;

Finkel, 2000). This model is based on the assumption that memory corre-

sponds to a stable spatio-temporal pattern or state of activated neurons. In a

given network, there may be more than one such stable state corresponding

to multiple memories. These stable states are termed fixed point attractors or

attractor states. Given a network containing N neurons, any activation state is

represented by a point in an N -dimensional feature space. Assuming that the

activation state of any neuron can be represented by one of two states (0 or 1),

the total number of possible memory states is 2N . If the network is activated

in an initial state similar to the attractor state, then the network gravitates

toward the attractor state. Though the final state of the network is always one

of the attractor states, the selection of the specific attractor state is dependent

on the initial state. Therefore, this model converges to the true memory even

when presented with incomplete or partially incorrect information about the

memory (Hasselmo and McClelland, 1999; Finkel, 2000).
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In the attractor neural model the memory patterns are stored as weights

of synaptic connections. Even though this model accurately simulates error

correction and pattern recognition, it suffers from a significant drawback with

respect to encoding (or storage) of a new input. A new input is also treated

as an incomplete or incorrect pattern and therefore gets contaminated by

previously stored patterns (Finkel, 2000). Hasselmo and McClelland (1999)

also comment on the basis of experimental studies that a significantly greater

effort is required for memory recall compared with recognition. These observa-

tions are not new and have led to the hypothesis that hippocampal processing

switches to different modes during the performance of different functions such

as encoding and recall (Finkel, 2000). The mode switching neural model is an

extension of the attractor neural model which tries to model the robustness of

memory with respect to storage of new memories without compromising the

advantages of the previous model.

10.5.3 Neural Models of Progression of AD

In AD, cell death is normally limited to no more than about 10% of the neu-

ronal population which does not account for the corresponding level of cog-

nitive deficit. Experimental observations have led to the conclusion that the

primary factor responsible is a 50% decrease in the number of synaptic con-

nections often represented by the total synaptic area per unit volume (Finkel,

2000). This phenomenon is termed synaptic deletion. The brain attempts to

compensate for the loss of synaptic connections by increasing the strength of

the remaining synaptic connections. This strategy, termed synaptic compen-

sation, is successful in limiting the cognitive deficits in the initial stages of

AD. However, in more advanced stages, the loss of synapses is too much to

be overcome by neuromodulation and therefore results in an increasing sever-

ity of cognitive deficits. Synaptic deletion and compensation form the basis
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of the synaptic deletion and compensation model (Horn et al., 1993, 1996;

Ruppin and Reggia, 1995; Reggia et al., 1997). Using this model it has been

demonstrated that, in a Hopfield type ANN architecture, the loss of synaptic

connections causes loss of memory and distortion of learned patterns. How-

ever, the rate of memory deterioration is significantly reduced by increasing

the strength of the remaining synaptic connections (or weights) by a constant

multiplicative factor.

Another phenomenon observed in associative networks is runaway synaptic

modification (Hasselmo, 1994, 1995; Siegle and Hasselmo, 2002). In associa-

tive models of memory, storage of one memory as a spatio-temporal neuronal

activation pattern is associated with the storage of other related memories.

Storage of a new memory activates similar patterns which may interfere with

previous associations if (1) there is overlap between patterns or (2) the memory

capacity is exceeded (Hasselmo, 1994). This interference results in a significant

increase in the number of associations that are stored by the network. This

increase often leads to a pathological increase in the strength of synaptic con-

nections which results in increased neuronal activity, high metabolic demands,

and eventually cell death. This phenomenon is referred to as excitotoxicity.

The runaway synaptic modification model has also been used to demon-

strate that separate mechanisms exist in the brain for memory encoding and

recall in order to minimize the interference-induced excitotoxicity. According

to this hypothesis, inhibitory and excitatory cholinergic neuromodulation is

the primary factor that controls the switching from one mode to the other.

In normal states, neuromodulation is sufficient to prevent runaway synaptic

modification. However, in pathological states (such as AD where cholinergic

neuromodulation is impaired) or beyond a certain level of memory overload

in healthy patients, runaway synaptic modification is inevitable (Hasselmo,
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1994; Reggia et al., 1997; Duch, 2000). The threshold level for AD patients,

however, is substantially lower than that for healthy subjects.

These neural models of memory and progression of AD have been used in

various combinations to explain the mechanisms underlying AD. Even though

current knowledge on the topic is constantly evolving, no mechanism has been

conclusively proposed as a complete explanation of the subject.





11

Alzheimer’s Disease: Models of Computation

and Analysis of EEGs

11.1 EEGs for Diagnosis and Detection of Alzheimer’s

Disease

The development of anatomical and functional imaging modalities such as

computer tomography (CT), magnetic resonance imaging (MRI), functional

MRI (fMRI), and positron emission tomography (PET) has contributed signif-

icantly to Alzheimer’s disease (AD) research and the understanding of the dis-

order. Although nothing conclusive has been established, imaging techniques

have gained popularity due to the relative ease with which neurological mark-

ers such as neuronal loss, atrophy of brain tissue, and reduced blood perfusion

can be converted to visual markers on brain images (Xanthakos et al., 1996;

Petrella et al., 2003).

Due to the expense of specialized experts and equipment involved in the

use of imaging techniques, a subject of significant research interest is detecting

markers in EEGs obtained from AD patients. EEG studies are non-invasive

and, in the case of AD, show comparable sensitivity and improved specificity

compared to imaging studies (Bennys et al., 2001; Benvenuto et al., 2002).

Since AD is a dysfunction of the cerebral cortex, abnormalities in field po-

207
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tentials (recorded by EEGs) in the cortex can be directly correlated to the

pathological changes in the structure and function of the cortical layers in AD

(Jeong, 2004). Additionally, longitudinal studies (along the lives of patients

with probable AD) have shown that the degree of abnormality associated with

AD has been found to be directly proportional to the degree of progression

of the disease (Coben et al., 1985; Dierks et al., 1991; Soininen et al., 1991;

Prichep et al., 1994).

The most commonly used markers of abnormality in EEGs from AD pa-

tients are based on time-frequency measures such as frequency and correlation

(representing the statistical similarity between two EEGs over time) which

have been extended to include spatial changes between different regions of the

brain. Recent research in this area is based on novel analytical techniques that

can be classified into the following categories: (a) time-frequency analysis, (b)

wavelet analysis, and (c) chaos analysis.

11.2 Time-Frequency Analysis

The most common marker of abnormality in EEGs seen in AD is a decrease

in the high frequency content of the EEG termed EEG slowing . EEG slowing

results from an increase in the power in low frequency bands and a decrease

in the power in the high frequency bands of the EEG. Power of a frequency

band is representative of the activity in that frequency band and is calculated

using the Fourier transform of the signal. Studies have established changes

in the four primary frequency bands of the EEG: alpha (8-12 Hz) (normal),

beta (13-30 Hz) (generally seen in anxiety states or as a result of medication

effects), delta (0-4 Hz), and theta (4-7 Hz) (pathological rhythms) at various

stages of the disease (Coben et al., 1985; Soininen et al., 1992; Miyauchi et al.,
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1994; Besthorn et al., 1997; Wada et al., 1997; Pucci et al., 1999; Huang et al.,

2000; Bennys et al., 2001; Stevens et al., 2001; Jeong, 2004). Earlier stages of

AD are characterized by an increase in theta activity and a decrease in beta

activity. As the disease progresses, these changes are followed by a decrease

in alpha activity. Increase in delta activity occurs at more advanced stages of

the disease. In this context, increase in activity is defined as an increase in the

absolute power in the frequency band in the EEG.

Recent studies have found that EEG slowing is more prominent in rapid

eye movement (REM) sleep than in wakefulness (Montplaisir et al., 1998;

Musha et al., 2002). The EEG slowing of different parts of the brain also

display significant differences (Pucci et al., 1999). Studies report increased

EEG slowing in the right postero-temporal region (Duffy et al., 1984), the

occipital region (Soininen et al., 1992), and the left frontal and temporal

lobes (Miyauchi et al., 1994). Wada et al. (1997) have found increased delta

activity in the frontal lobe and increased theta activity in the right parietal

and postero-temporal regions. They also confirm that, unlike normal controls,

AD patients lack a predominance of alpha activity in the posterior regions.

The spectral analysis of the various frequency bands is commonly per-

formed using fast Fourier transform (FFT) on artifact-free EEGs. In order

to study the EEGs in greater detail, sometimes the frequency band beta is

examined as two separate sub-bands, beta1 (13-21 Hz) and beta2 (21-30 Hz).

The same procedure is followed for the other bands if required. Different linear

combinations and ratios of the absolute power values for the four frequency

bands and their sub-bands have been employed as measures to detect EEG

slowing. Gueguen et al. (1991) employ the mean dominant frequency and the

ratio alpha/theta. Bennys et al. (2001) report increased accuracy with the

combinations (theta/alpha) + beta1 and delta + (theta/alpha) + beta. Alter-

natively, other measures such as relative power, defined as the ratio of absolute
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power for a frequency band to the total power for all four bands (Coben et al.,

1985; Leuchter et al., 1993; Stevens et al., 2001), and EEG spectral profiles

derived from spectral density plots (Signorino et al., 1995) have also been

suggested as indicators of EEG slowing.

Attempts have been made recently to come up with improved measures

that can detect and diagnose AD. Huang et al. (2000) argue that interpretation

of FFT analysis is affected by the choice of reference electrode and variability

in a large number of physiological parameters. In order to reduce this variabil-

ity, they suggest using the FFT-dipole approximation method (Lehmann and

Michel, 1990; Michel et al., 1993) that represents multi-channel EEG data by

one oscillating dipole source (as a function of phase angles) in the frequency

domain. The dipole source for any frequency band represents the centroid for

the brain electrical activity in that band. Under controlled conditions, the

conventional FFT is just as accurate as this method but Huang et al. (2000)

argue that it may perform better in a random patient population. Musha et al.

(2002) report satisfactory results using another measure termed mean alpha

dipolarity which is defined as the electric current dipole distribution of the

alpha band in the cortex.

Another marker of abnormality that has been studied but not as widely as

EEG slowing is reduced EEG coherence which implies reduced corticocortical

connectivity (Besthorn et al., 1994; Jeong, 2004). EEG coherence is defined as

the spectral correlation between two spatially distributed EEG signals for a

given frequency band. EEG coherence can be local or global. Local coherence

is a measure of the local differences in dynamics between two cortical areas and

is computed as the pairwise correlation between EEGs from two electrodes.

On the other hand, global coherence is a measure of average brain dynamics

and is computed as the average of all the local coherence values (Stevens et al.,

2001). However, coherence is sensitive to the distance between the electrodes
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and therefore, for meaningful comparisons, it should only be computed for

immediately adjacent electrodes. This is a disadvantage for research involving

study of the changes in corticocortical connectivity between distant parts of

the brain in AD.

The selection of the immediately adjacent electrode out of all the surround-

ing electrodes is also important. Besthorn et al. (1994) propose a spatially

averaged coherence scheme in which the EEG coherence for an electrode is

equal to the average of the coherence values obtained from pairwise compar-

isons of that electrode with all electrodes immediately adjacent to it. Dunkin

et al. (1995) perform a layout-based selection in which one electrode is com-

pared to the next one in a specific pattern. With respect to coherence studies,

Besthorn et al. (1994) have found significant differences in the alpha, beta,

and theta frequency bands, whereas other investigators report significant dif-

ferences in either the alpha (Locatelli et al., 1998) or theta band (Stevens

et al., 2001). Berendse et al. (2000) suggest using the same techniques with

magnetoencephalograms (MEGs) instead of EEGs because MEGs are less la-

bor intensive and yield comparable results. Additionally, it is much faster to

obtain MEGs with higher resolution for detecting small local changes due to a

large number of built-in detection coils. Comparable resolution for EEGs may

be achieved by employing a large number of electrodes which is very time

intensive.

Leuchter et al. (1994) suggest a measure dubbed cordance that combines

the absolute and relative power measures. For instance, low absolute but high

relative power yields a negative value and is termed discordance. Similarly, a

positive value of cordance is termed concordance. Based on comparisons with

imaging studies they suggest that cordance is sensitive to cortical deafferenta-

tion (loss of afferent inputs). Cook and Leuchter (1996) suggest that cordance

and coherence be used simultaneously to detect synaptic dysfunction in AD.
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Additionally, the photic driving response to light stimulation decreases in AD

patients possibly due to lesions in the occipital regions (Signorino et al., 1996;

Wada et al., 1997). To quantify the response of a frequency band, Signorino

et al. (1996) propose a measure termed power index , defined as the percentage

change in absolute power in the band due to eye opening. Henderson et al.

(2002) employ a simple metric based on zero-crossing intervals in EEGs and

report good classification results. Bispectral analysis has also been used to

measure the changes in phase coupled frequencies (Villa et al., 2000). Simeoni

and Mills (2003) propose a bispectral EEG analysis based on global coherence

and second-order phase coupling between the four EEG frequency bands to

quantify the progression of AD but do not report any conclusive evidence of

differences.

11.3 Wavelet Analysis

Most of the research involving time-frequency analysis of EEGs has focused

on standard FFT-based methods. Wavelet-based methods have some inherent

advantages over FFTs as described in Chapter 2 especially for applications

involving non-stationary transient signals such as EEGs. Recently, wavelet-

based filtering and feature extraction strategies applied to other neuropatholo-

gies such as epilepsy have shown promising results (Adeli et al., 2003, 2005b;

Petrosian et al., 1996, 2000a).

Very little work has been reported on wavelet transforms applied to EEG

in AD. Petrosian et al. (2000b, 2001) employ the second order Daubechies

wavelet to perform a multilevel decomposition of the EEG. The high fre-

quency components at every level along with the original EEG are input into

a recurrent neural network classifier for classification as AD or healthy. They
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report that the wavelet-based preprocessing (high-pass filtering) step improves

the classification accuracy as compared to classical methods. A method closely

related to the EEG, called evoked potential or event related potential (ERP)

has also been used to study AD. ERPs are segments of EEGs that are clearly

identified as resulting from the perception of external stimuli (such as light or

sound) and the subject’s response to it. Polikar et al. (1997) suggest a similar

multilevel decomposition of ERPs and a subsequent neural network classifier.

However, the neural network is trained with a subset of the wavelet coeffi-

cients (selected on the basis of highest amplitudes) to reduce the size of the

feature space and increase the robustness of the algorithm. Ademoglu et al.

(1997) employ spline wavelets in an attempt to accurately identify features

associated with abnormalities in the latency and amplitude of the P100 com-

ponent of the ERP (referring to a positive peak observed 100 ms after photic

stimulation).

11.4 Chaos Analysis

In the last decade, a lot of interest has developed in studying the nonlinear

dynamics of the brain by means of chaos analysis of EEGs. Chaos analysis

can quantify certain characteristics of the EEG that are not readily visible to

a naked-eye examination. Toward this end, studies have been performed on

EEGs obtained from both (a) normal states of the brain such as sleep (Mol-

nar and Skinner, 1991; Roschke and Aldenhoff, 1991; Niestroj et al., 1995;

Zhang et al., 2001; Kobayashi et al., 2001, 2002; Ferri et al., 1998, 2002, 2003;

Shen et al., 2003) and meditation (Aftanas and Golocheikine, 2002; Efremova

and Kulikov, 2002), as well as (b) pathological states such as schizophrenia

(Roschke and Aldenhoff, 1993; Paulus et al., 1996; Huber et al., 1999, 2000;
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Paulus and Braff, 2003) and epilepsy (Iasemidis and Sackellares, 1991; Bull-

more et al., 1992; Iasemidis et al., 1994; Lopes da Silva et al., 1994; Elger

and Lehnertz, 1994, 1998; Hively et al., 1999; Andrzejak et al., 2001; Litt and

Echauz, 2002; Adeli et al., 2007; Ghosh-Dastidar et al., 2007).

A marker of abnormality similar to local coherence, called mutual infor-

mation (MI) has also been studied as a measure of corticocortical connectivity

(Jeong et al., 2001b; Jeong, 2002). MI can be of two types: cross mutual in-

formation (CMI) and auto mutual information (AMI). Coherence is based on

the correlation function which measures linear dependence of EEGs from two

different electrodes whereas CMI is based on the MI function which measures

linear and nonlinear dependence. AMI is also based on the MI function but it

is a measure of the dependencies between a single-channel EEG and the same

EEG with some specified time delay. Jeong et al. (2001b) report a reduction

of inter-hemispheric CMI over frontal and antero-temporal regions suggesting

loss of corticocortical connections in AD. However, this reduction may be a

result of sensitivity to distance (as explained in the case of coherence).

Many researchers has focused on quantitative measures of EEG complex-

ity , another marker of abnormality. The most commonly used measure of

complexity is the dimension of the attractor, in particular, the correlation di-

mension, CD (Takens, 1981; Williams, 1997; Borovkova et al., 1999; Jiang and

Adeli, 2003). It is usually computed using a single-channel EEG and the same

EEG with specified time delays, called time-delay embedding (Takens, 1981),

to quantify the temporal evolution of the EEG from a specific location in the

brain. A high value of the dimension implies higher complexity. Studies have

claimed that the value of CD increases in mental states such as wakefulness

and cognitive task performance (Stam et al., 1996; Meyer-Lindenberg et al.,

1998; Molle et al., 1999; Jelles et al., 1999). CD also increases with increased

intelligence (with age) from adolescence to adulthood (Anokhin et al., 1996;
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Meyer-Lindenberg, 1996). Reduction in CD is caused by factors that cause

cognitive deficits such as sleep deprivation (Jeong et al., 2001c) and epileptic

seizures (Elger and Lehnertz, 1994, 1998; Adeli et al., 2007; Ghosh-Dastidar

et al., 2007). AD is also associated with neuronal loss which leads to cog-

nitive deficits and therefore it is not surprising that EEGs in AD patients

show lower complexity or reduced CD values (Pritchard et al., 1994; Besthorn

et al., 1995; Jelles et al., 1999; Jeong et al., 1998, 2001a). CD values obtained

from MEGs are significantly reduced in the delta and theta bands in AD (van

Cappellen van Walsum et al., 2003). Additionally, the responsiveness of CD

to photic stimulation is reported to be reduced mildly or non-existent in AD

patients (Pritchard et al., 1994).

Studies have also been performed using other measures of complexity.

Pritchard et al. (1994) examine a parameter, saturation correlation, defined

as the saturation value of the Pearson correlation computed incrementally for

estimated embedding dimensions (Bullmore et al., 1992; Cao, 1997; Jiang and

Adeli, 2003; Notley and Elliott, 2003; Natarajan et al., 2004). They found that

in AD patients the saturation correlation is low in the frontal midline regions

of the brain whereas in normal controls it is high in the frontal midline regions.

Jeong et al. (1998) report reduced values of the largest Lyapunov exponent

(Wolf et al., 1985; Rosenstein et al., 1993; Williams, 1997; Hilborn, 2001) in

AD patients. Jeong et al. (2001b) employ the rate of saturation of the AMI

with incremental time delays as a measure of complexity and report that this

rate is lower in patients with AD, implying a lower complexity as compared

to normal controls. Woyshville and Calabrese (1994) have found a significant

reduction in the fractal dimension in patients with AD. This hypothesis has

been questioned by Henderson et al. (2002) based on the possibility that nor-

mal human EEG is non-fractal in nature.

In addition to the usual definition of complexity based on the temporal
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evolution of the EEG, the concept of global complexity has been introduced to

study the spatio-temporal evolution of the EEG (Dvorak, 1990; Wackermann

et al., 1993). Instead of time-delay embedding applied to a single-channel EEG,

global complexity is based on spatial embedding on multi-channel EEGs. The

measures of global complexity are computed similarly to the measures of com-

plexity mentioned above. However, the new measures have the word global

added. For instance, correlation dimension is a measure of complexity and

global correlation dimension is a measure of global complexity. The changes

in global complexity have been studied in various mental states such as drowsi-

ness and sleep (Matousek et al., 1995; Szelenberger et al., 1996a,b; Sulimov

and Maragei, 2003), increased cognition under the influence of a nootropic

drug (a drug that enhances cognition, memory, and learning) (Wackermann

et al., 1993; Kondakor et al., 1999), schizophrenia (Saito et al., 1998; Lee et al.,

2001), and hypnosis (Isotani et al., 2001).

In patients with AD, studies report reduced values for the global correla-

tion dimension and the global largest Lyapunov exponent but no significant

differences were found in the values of the global Kolmogorov-Sinai entropy

(Stam et al., 1994, 1995; Yagyu et al., 1997). Kim et al. (2001) propose the use

of eigenvalue distribution using Karhunen-Loeve decomposition to distinguish

between AD patients and normal controls. They report that in severe AD the

three largest eigenvalues are much larger than the rest and consequently the

eigenvalue distribution decays rapidly whereas in normal controls the decay is

smoother. Despite some good results, there does not seem to be a consensus

as to which of the two markers of abnormality, coherence or global coherence,

models the dynamics of the EEG more accurately (Pritchard et al., 1996;

Pezard et al., 1999; Pritchard, 1999; Wackermann, 1999).

Another measure, termed neural complexity has been proposed to quantify

the relationship between functional segregation and integration in the brain
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(Tononi et al., 1994). This measure is an attempt toward explaining how the

brain binds together information processed by different functional modalities.

They hypothesize that the neural complexity is higher during the performance

of cognitive tasks (Tononi et al., 1996; Tononi and Edelman, 1998; Sporns

et al., 2000) such as perception of 3D images from random dot stereograms

(Tononi et al., 1998). This hypothesis is further supported by more recent

research (Burgess et al., 2003; Gu et al., 2003). Based on this argument, the

model predicts that in neuropathologies associated with cognitive deficits,

the neural complexity is reduced due to a decreased capability to process

information. While this happens to be the consensus among researchers so far,

the research by van Putten and Stam (2001) on human EEGs indicates the

opposite. They report an increase in neural complexity values during epileptic

seizure and hypoxic trauma (brain damage due to reduced oxygen supply)

when cognition is severely impaired. van Cappellen van Walsum et al. (2003)

report neural complexity values from broad frequency spectrum MEGs taken

from AD patients yield no significant differences compared to normal controls

but when the MEGs are split up into their four primary frequency bands, the

alpha, delta, and theta bands show increased neural complexity in the case of

AD patients.

A major concern in application of chaos theory to EEGs is the validity of

the hypothesis that the measures of complexity are quantifiers of nonlinear

dynamics (Jelles et al., 1999; Jeong, 2002, 2004). Usually, criteria such as fi-

nite correlation dimension and a positive Lyapunov exponent (Williams, 1997)

are used to determine if a system contains deterministic chaos or not. How-

ever, earlier studies demonstrated that these criteria could also be satisfied

by data containing colored noise (defined as noise containing more of specific

frequency ranges than others) instead of deterministic chaos (Osborne and

Provenzale, 1989; Pijn et al., 1991; Rapp et al., 1993). Attempts have been
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made to address this concern using surrogate datasets that are created from

the original EEGs by the phase randomization method of Theiler et al. (1992).

This method preserves the EEG power spectrum but destroys the non-linear

structure of the information to ensure that the surrogate dataset does not con-

tain deterministic chaos. Subsequently, measures of complexity are obtained

from both the original EEG as well as the surrogate dataset. The values of

the measures in the two cases will be significantly different only if the origi-

nal EEG contains deterministic chaos. However, there is no definite consensus

about the presence of deterministic chaos in EEGs as some studies have found

no evidence (Theiler et al., 1992; Pritchard et al., 1995; Palus, 1996; Theiler

and Rapp, 1996; Pereda et al., 1998; Jeong et al., 1999) while many others

have found significant evidence (Rombouts et al., 1995; Stam et al., 1995; Fell

et al., 1996; Ehlers et al., 1998; Jelles et al., 1999; Lee et al., 2001). Despite

these controversies, the current popularity of chaos analysis stems from its

usefulness in the classification of various mental states (as discussed earlier).

11.5 Concluding Remarks

Most of the strategies and techniques for detection and diagnosis of AD dis-

cussed in Chapters 10 and 11 are still in their early experimental stages.

Researchers have not yet found conclusive evidence regarding the specificity

and sensitivity of the neurological markers and diagnostic techniques based

on them. Similarly, there seems to be no consensus regarding the various hy-

potheses of progression of AD from the point of view of different disease states

(such as mild cognitive impairment, presenile dementia of the Alzheimer type,

and senile dementia of the Alzheimer type) and clear cut boundaries between

them. EEG and imaging studies are heavily dependent on the accuracy of
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the markers selected to quantify the progression of AD. With respect to neu-

ral models, simulations have been performed with small numbers of neurons

due to computational limitations and accuracy of the results has not been

conclusively established.

The problem is further magnified when the design and development of

algorithms for automated detection and diagnosis of AD are considered. Au-

tomated algorithms require a quantitative parametric representation of the

qualitative or visual aspect of markers of AD. Attempts have been made to

establish threshold values for these parameters to distinguish disease states

from normal states. However, in most cases simple thresholds are insufficient

for this purpose. We believe that a combination of computational paradigms

such as wavelet transforms, chaos theory, and artificial neural networks should

be used to solve the complicated automation problem of detection and diag-

nosis of AD.

The vast number of physiological parameters involved in the poorly under-

stood processes responsible for AD yields a large combination of parameters

that can be manipulated and studied. Many parameters and their combina-

tions have yet to be studied. As was observed in the case of epilepsy discussed

in Part II, dynamics that do not show up in full spectrum EEGs may show up

in specific sub-bands or some combination of sub-bands. Multiple parameters

such as trajectory divergence, entropy, and Lyapunov exponents quantifying

the system attractor can be included in the feature space in order to increase

the accuracy of classification algorithms.

A single modality of investigation (such as imaging study or EEG study)

also may not be sufficient. Instead, a combination of parameters from different

investigation modalities seems to be more effective in increasing the accuracy

of detection and diagnosis. Finally, in addition to exploring various combina-

tions of currently available modeling techniques, new mathematical models
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may also be required in order to simulate the dynamics of the brain and pro-

vide explanations for cortical processes that cannot be modeled by current

mathematical models. A possible application of the wavelet-chaos methodol-

ogy, presented earlier in Part II, is presented in Chapter 12 for extracting

relevant EEG-based features or markers in Alzheimer’s disease.



12

A Spatio-Temporal Wavelet-Chaos

Methodology for EEG-Based Diagnosis of

Alzheimer’s Disease

12.1 Introduction

As described in the previous chapter, a commonly used marker of abnormality

in EEG studies of AD is EEG slowing , which quantifies the impairment of

the temporal or the frequency aspect of the information processing ability

of the brain. Reduced values of similarity measures such as coherence (or

correlation) (Besthorn et al., 1994; Locatelli et al., 1998; Stevens et al., 2001;

Jeong, 2004) and mutual information (Jeong et al., 2001b) between EEGs

recorded from various regions of the brain have also been proposed as potential

markers of abnormality. These quantify the impairment of the corticocortical

connectivity or the spatial aspect of the information processing ability of the

brain which involves the proper assimilation of information by various brain

regions. Together, the spatio-temporal impairment of information processing

in the brain can be correlated to the symptoms of memory loss and cognitive

impairment in AD.

In the past decade, a different approach has been advocated for extracting

potentially more accurate markers of abnormality from EEGs. It has been

221
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hypothesized that the complexity of the human brain (directly proportionate

to the information processing capability) can be represented by the complex-

ity of the non-linear chaotic dynamics underlying the EEG (Pritchard et al.,

1991; Ikawa et al., 2000; Abasolo et al., 2005; Escudero et al., 2006). Stud-

ies based on a commonly used measure of complexity in chaotic systems, the

correlation dimension (CD), have claimed that the value of CD is increased

as a result of wakefulness and cognitive task performance (Stam et al., 1996;

Meyer-Lindenberg et al., 1998; Molle et al., 1999) and is decreased as a result

of factors that cause cognitive deficits such as sleep deprivation and epileptic

seizures (Elger and Lehnertz, 1998; Hively et al., 1999; Adeli et al., 2007). A

similar reduction in complexity is also observed in AD, where the neuronal loss

and reduction in corticocortical connectivity lead to simpler brain dynamics

compared to a healthy brain (Pritchard et al., 1994; Besthorn et al., 1995;

Jelles et al., 1999). A similar measure, neural complexity , has also been pro-

posed to quantify how well the brain binds together information (Tononi et al.,

1994, 1998; Sporns et al., 2000). In neuropathologies associated with cogni-

tive deficits, the neural complexity appears to be reduced due to a decreased

capability to process information (Burgess et al., 2003; Gu et al., 2003). The

largest Lyapunov exponent (LLE), a measure of EEG chaoticity , also appears

to be reduced, implying lower brain complexity in AD patients (Jeong, 2004).

It should be noted that there is a distinction between brain complexity and

mathematical complexity.

Although a decrease in EEG complexity in specific brain regions has been

found in AD, no investigations have been reported regarding the localization

of the decrease to specific EEG sub-bands. Similar to the findings in the

case of epilepsy, the authors hypothesize that the EEG sub-bands may yield

more accurate information about underlying neuronal dynamics (Adeli et al.,

2007). Changes that are not evident in the original full-spectrum EEG may be
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amplified when each sub-band is analyzed separately. In fact, the phenomenon

of EEG slowing involves changes in the power of specific EEG sub-bands which

appears to support this hypothesis.

In this chapter, a wavelet-chaos methodology is presented for spatio-

temporal analysis of EEGs and EEG sub-bands for diagnosis of AD. The

methodology is applied to two different groups of multi-channel EEGs: (a)

healthy subjects and (b) patients with a diagnosis of probable AD collected

under two conditions: (a) eyes closed and (b) eyes open. Each EEG is decom-

posed into the four EEG sub-bands implicated in AD: delta (0-4 Hz), theta

(4-7 Hz), alpha (8-12 Hz), and beta (13-30 Hz) using wavelet-based filters. The

non-linear chaotic dynamics of the original EEGs are quantified in the form of

CD and LLE. Similar to the original EEG, each sub-band is also subjected to

chaos analysis to investigate the localization of the changes in CD and LLE to

specific sub-bands of the EEG. Subsequently, the effectiveness of CD and LLE

in differentiating between the two groups is investigated based on statistical

significance of the differences. The eyes open and eyes closed conditions are

analyzed separately to evaluate the effect of additional information processing

in the brain resulting from visual input and attention. EEGs from multiple

electrode channels corresponding to multiple loci in the brain are investigated

using the wavelet-chaos methodology to discover areas of the brain responsible

for or affected by changes in CD and LLE.
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12.2 Methodology

12.2.1 Description of the EEG Data

The dataset used to investigate the methodology consists of multi-channel

EEGs from two different groups of subjects: healthy elderly subjects (con-

trol group) and patients with a diagnosis of probable AD. The control group

consists of 7 subjects (average age of 71) with no history of neurological or

psychiatric disorder. The AD group consists of 20 subjects (average age of

74) diagnosed with probable AD as per National Institute of Neurological and

Communicative Disorders and Stroke-Alzheimer’s Disease and Related Dis-

order Association (NINCDS-ADRDA) and Diagnostic and Statistical Manual

of Mental Disorders, Third Edition, Revised (DSM-III-R) criteria. The EEGs

are recorded using 19 electrodes in the standard 10-20 configuration, shown

in Fig. 12.1, with forehead as ground and linked mandibles as reference at a

sampling rate of 128 Hz. Each channel of data is recorded as the potential

difference between an electrode and a reference electrode.

For both groups, the EEGs are collected under two conditions: eyes open

and eyes closed. Eight-second EEG segments free from eye blink, motion, and

myogenic artifacts are extracted from the EEG recordings. The numbers of

such 8-second EEGs for each subject in the control and AD groups are 1 (total

of 7 × 1 = 7) and 4 (total of 20 × 4 = 80), respectively. The EEGs obtained

had previously been band-limited to the range of 1-30 Hz during the EEG

recording (online) and preprocessing (offline) stages and will henceforth be

referred to simply as the EEG. The range is sufficient to extract the four EEG

sub-bands implicated in AD: delta, theta, alpha, and beta. The reader should

refer to Pritchard et al. (1991) for further data acquisition details on a similar

but smaller dataset.
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FZ F4F3 F8F7 

CZ C4C3 T8T7 

PZ P4P3 P8P7 
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Mandibles 

(Cheek) 

FIGURE 12.1
Electrode loci in the modified 10-20 electrode configuration for 19-channel
EEG

The electrode configuration shown in Fig. 12.1 is the same as that shown in

Fig. 5.2 except for the renaming of four electrodes as per the recommendations

of the American Clinical Neurophysiology Society. To better conform to the

naming conventions (with respect to the corresponding lobes of the brain), the

T3, T5, T4, and T6 electrodes were renamed T7, P7, T8, and P8, respectively.

This modified configuration is used in this chapter.
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12.2.2 Wavelet Decomposition of EEG into Sub-Bands

To obtain the four EEG sub-bands, the EEG signal is decomposed into pro-

gressively finer details by means of multi-resolution wavelet analysis (as de-

scribed in Chapter 2). The EEG is subjected to a level 3 decomposition using

fourth order Daubechies wavelet transform, as shown in Fig. 12.2. After the

first level of decomposition, the band-limited EEG (1-30 Hz), denoted by s in

Fig. 12.2, is decomposed into its higher resolution, d1 (15-30 Hz), and lower

resolution, a1 (1-15 Hz), components. In the second level of decomposition,

the a1 components are further decomposed into higher resolution, d2 (8-15

Hz), and lower resolution, a2 (1-8 Hz), components. Following this process,

after three levels of decomposition, the components retained are a3 (1-4 Hz),

d3 (4-8 Hz), d2 (8-15 Hz), and d1 (15-30 Hz). Reconstructions of these four

components using the inverse wavelet transform approximately correspond to

the four physiological EEG sub-bands delta, theta, alpha, and beta. Minor

differences in the boundaries between these components and the boundaries

between the EEG sub-bands are of little consequence due to the physiologi-

cally approximate nature of the sub-bands.

12.2.3 Chaos Analysis and ANOVA Design

The chaos methodology is procedurally similar to that described in Chapter

7. The 19-channel EEGs collected under 2 conditions (eyes open and eyes

closed) from 7 healthy subjects and 20 AD patients yield a total of 19× 2 ×

(7 + 20) = 1026 EEGs. Similar to the original EEG, each sub-band is also

subjected to chaos analysis to investigate the localization of the changes in

CD and LLE to specific sub-bands of the EEG. As a result of the wavelet-

chaos methodology (Fig. 12.2), each EEG is quantified by ten parameters:

CD, LLE, δCD, δLLE, θCD, θLLE, αCD, αLLE, βCD, and βLLE. In this

notation, first described in Chapter 8, the parameter prefix denotes the EEG
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EEG
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FIR Filter 

Daubechies 4th 

Order Wavelet (db4) 

 

Band-limited EEG 

(s) (1-30 Hz) 

 
Beta (d1) 

(15-30 Hz) 

 
Alpha (d2) 

(8-15 Hz)

 

 
Theta (d3) 

(4-8 Hz) 

 
Delta (a3) 

(1-4 Hz) 

DECOMPOSITION 

LEVEL 1

LEVEL 2 

LEVEL 3 

Statistical Analysis (ANOVA) 

Chaos Analysis and Quantification 

FIGURE 12.2
Overview of the EEG preprocessing and wavelet decomposition for sub-band
extraction prior to chaos quantification and statistical analysis
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sub-band from which the parameter is computed. Absence of a prefix indicates

that the parameter is computed from the band-limited EEG. The five CD-

based parameters represent the complexity and the five LLE-based parameters

represent the chaoticity of the EEG and EEG sub-bands.

The statistical investigation is performed in three steps. First, for each of

the ten parameters, a repeated measures factorial three-way analysis of vari-

ance (ANOVA) is performed with three factors: one between-subjects factor

(subject group: healthy or AD) and two within-subjects factors (condition:

eyes open or eyes closed; electrode locus). To identify parameters that poten-

tially differentiate between healthy and AD subjects, main effects of the three

factors as well as their interaction effects are investigated. The investigation in

this step is not intended to localize differences in the parameter to any specific

electrode locus. To achieve such a specific localization, a parameter is selected

for further investigation only if the main effect of a between-subjects factor

(or an interaction effect involving the between-subjects factor) is significant

(significance level α = 0.05).

Second, the efficacy of the global complexity and global chaoticity com-

puted from the EEG and EEG sub-bands are investigated using a one-way

ANOVA for distinguishing between the two EEG groups. In this step, the

global complexity and chaoticity are estimated by averaging the values of the

parameters selected in the first step across all 19 loci. It should be noted

that this definition of global complexity is different from the one from the

literature discussed in Chapter 11 which takes into consideration the spatial

evolution of the EEG across loci. In the third step, the local complexity and

chaoticity in various brain regions are investigated to discover spatial pat-

terns that could not be obtained from the global parameters. To achieve this

goal, the one-way ANOVA is performed separately for each locus based on

the parameters selected in the first step. In the remainder of this chapter, the
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parameter name will be preceded by the word global or local to indicate the

source of the parameter. The electrode locus (Fig. 12.1) is used instead of

the word local wherever specific local parameters are discussed. It is pointed

out that the temporal aspect of the spatio-temporal analysis is implicit in the

wavelet-chaos methodology and not a separate statistical investigation.

12.3 Results

12.3.1 Complexity and Chaoticity of the EEG: Results of the

Three-Way Factorial ANOVA

In the literature, only the complexity and chaoticity of the entire EEG repre-

sented by the parameters CD and LLE, respectively, have been investigated

and reported to be reduced in AD. This assertion could not be corroborated

in this research. The three-way factorial ANOVA revealed no significant dif-

ferences (α = 0.05; p < 0.05) in CD and LLE for the AD subjects compared

with the healthy subjects regardless of the two within-subject factors - condi-

tion and electrode loci (i.e., no significant interaction effects were reported).

Therefore, CD and LLE were not investigated further for specific loci or con-

ditions.

The three-way factorial ANOVA revealed significant differences in θCD,

θLLE, and δLLE between the two groups (main effects p < 0.05). No signifi-

cant interaction effects were observed in θCD, implying that the differences in

the two groups were present regardless of the within-subject factors (condition

and electrode loci). Significant group × condition × electrode locus interac-

tion effects (in addition to the aforementioned main effects) were observed

in θLLE and δLLE, implying that in addition to the primary differences, the
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changes in spatial patterns (across electrode loci) between the eyes open and

eyes closed conditions may be different in the two groups, healthy and AD

subjects. Significant group × condition interaction effects were observed in

αCD and αLLE (although no main effects were observed), implying that al-

though the parameters were not different in the two groups (healthy and AD

subjects), the change in the parameters between the eyes open and eyes closed

conditions may be different in the two groups. In addition, significant group ×

electrode locus interaction effects were observed in αLLE, implying the possi-

bility of altered spatial distributions (across electrode loci) of the parameter

in the two groups. These observations warranted further investigation of the

five parameters θCD, θLLE, δLLE, αCD, and αLLE in order to localize the

changes to specific electrode loci and the eyes open or eyes closed condition.

12.3.2 Global Complexity and Chaoticity

The efficacy of global complexity and chaoticity for discriminating between

the two groups is investigated for both conditions: eyes open and eyes closed

individually using one-way ANOVA. For the eyes open condition, no significant

differences were observed in the global values of θCD, θLLE, δLLE, αCD, and

αLLE. For the eyes closed condition, the global θLLE and αLLE were found

to be significantly reduced, which could account for the significant group ×

condition interaction effects observed from the three-way factorial ANOVA.

A surprising finding was a significant increase in the global αCD, which will

be discussed shortly in this chapter.

12.3.3 Local Complexity and Chaoticity

To discover differences between the two groups of subjects with respect to

changes in spatial patterns of complexity and chaoticity in the eyes open and

eyes closed conditions individual one-way ANOVAs were performed for each
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electrode locus under the two conditions. In the eyes open condition, δLLE

and θLLE computed from a specific electrode locus in the right frontal area

(F4) were significantly reduced in AD subjects. In the eyes closed condition,

αLLE was significantly reduced in AD patients in the frontal midline (FZ)

and left occipital (O1) areas. θLLE was significantly reduced in the right

frontal (FP2) and left parietal (P7) areas and δLLE was significantly reduced

in the left parietal (P3) area. αCD was significantly increased at the C4 locus

(right central area). These findings could account for the significant group ×

condition, group × electrode locus, and group × condition × electrode locus

interactions observed from the three-way factorial ANOVA.

In Figs. 12.3 and 12.4, all loci where local parameters show significant

differences are shaded in gray. The light and dark shades of gray will be

explained in the following section. Overall, all changes are localized to the

right frontal and left parieto-occipital regions.

12.4 Discussion

12.4.1 Chaoticity versus Complexity

The distribution of significant parameters obtained from both eyes closed and

eyes open conditions is shown in Fig. 12.3, with the light gray circles represent-

ing chaoticity and the dark gray circles representing complexity. In general,

the LLE appears to be much more consistent in distinguishing AD patients

from healthy control subjects, which appears to imply that the EEG chaotic-

ity is reduced in AD subjects more consistently than EEG complexity. This

phenomenon may not have been discovered previously due to two possible

reasons. One, the method of computation of LLE used in our methodology
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FIGURE 12.3
Electrode loci showing the relative distribution of statistically significant pa-
rameters for chaoticity (light gray circles) and complexity (dark gray circle)
obtained from both eyes closed and eyes open conditions
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FIGURE 12.4
Electrode loci showing the relative distribution of statistically significant pa-
rameters (both chaoticity and complexity) in the eyes closed condition (light
gray circles) and eyes open condition (dark gray circles)
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is particularly suited to the characterization of non-linear dynamics of non-

stationary EEG-like signals (Iasemidis et al., 2000a; Petrosian et al., 2001;

Adeli et al., 2003, 2007; Ghosh-Dastidar and Adeli, 2007; Ghosh-Dastidar

et al., 2007, 2008). Two, the issue has not been studied previously from the

perspective of EEG sub-bands.

12.4.2 Eyes Open versus Eyes Closed

The wavelet-chaos methodology appears to be more effective for extract-

ing meaningful markers of abnormality from the eyes closed condition than

the eyes open condition. The relative distribution of significant parameters

(chaoticity and complexity) is shown in Fig. 12.4, with the light gray circles

representing the eyes closed condition and the dark gray circles representing

the eyes open condition.

From previous research (Pritchard et al., 1991), where only EEG com-

plexity was studied, there appeared to be some evidence that the differences

between the two groups are more significant in the eyes open condition than in

the eyes closed condition. In the earlier research, no significant differences were

found in the eyes closed condition possibly because 1) individual sub-bands

had not been investigated with respect to their underlying chaotic dynamics

and 2) the chaoticity was not studied as a marker. In our research, the oppo-

site was found to be true. For the eyes open condition, the CD appears to be

of little use for differentiating AD patients from healthy controls irrespective

of whether the global or local CD is employed. Another possible explanation

for this apparent contradiction may be that the conclusions of Pritchard et al.

(1991) are based on dimensional complexity which, although similar to the

CD, is not computed by the Takens method employed in our methodology.

The availability of markers of abnormality obtained from eyes closed EEG

has two advantages. First, there is no need for the patients to keep their eyes
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open and gaze steady during EEG recording to avoid eye blink and ocular

artifacts. This is of special interest for the care of AD patients who find it

very difficult to maintain such steady conditions. As a result, the process is

quite uncomfortable for the patient and the EEG is nevertheless characterized

by excessive artifacts. Second, due to the excessive artifacts in the eyes open

EEG, discrete artifact-free segments of the EEG often have to be patched

together to obtain EEGs of the desired duration. This requires significant

offline processing of the EEG. Moreover, the effects of the patching process on

the subsequent chaos analysis have not been studied in detail. These effects,

however, may be significant because of the implicit mismatch in characterizing

continuous brain dynamics by discontinuous EEGs.

Why is the eyes closed EEG more effective than the eyes open EEG

for distinguishing AD patients from healthy control subjects? We provide

two possible explanations for this. One, the wavelet-chaos methodology and

the sub-band analysis accurately characterize the nonlinear dynamics of non-

stationary EEG-like signals with respect to the EEG chaoticity. As a result,

new potential markers of abnormality were discovered. Two, the neurological

processes, especially those governing the observed decrease in EEG chaotic-

ity, in the eyes closed condition lead to differences between AD patients and

healthy control subjects. The eyes closed condition represents the internal

brain dynamics without the modulation associated with visual attention and

the resultant cognitive processing in the eyes open condition. It is possible

that exposure to external stimuli raises the chaoticity of the brain in AD to

(or close to) the level of a healthy brain of approximately the same age, thus

making the two groups indistinguishable on this basis.
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12.5 Concluding Remarks

Since the EEG is an overall representation of brain dynamics, it opens up the

possibility that the observed changes in the parameters quantifying chaos in

the EEG are actually the result of the superimposition of multiple processes

underlying the EEG. In this chapter, these underlying processes are investi-

gated using the component physiological sub-bands of the EEG which can be

assumed to represent these processes at a finer level.

It is found that when the statistical analysis is based on the entire EEG,

the LLE or the CD cannot be used as a discriminating parameter between

the two groups. However, when the statistical analysis is performed on the

EEG sub-bands, it is observed that the CD as well as the LLE from certain

physiological sub-bands and loci may be employed to distinguish between the

groups. As a result of this investigation, it is concluded that changes in the

dynamics are not spread out equally across the spectrum of the EEG, but

instead are limited to certain frequency bands. Moreover, the changes are not

globally spread over the entire brain but localized to specific electrode loci.

Eleven potential markers of abnormality were discovered using the wavelet-

chaos methodology, 2 in the eyes open condition (F4 δLLE and θLLE) and 9 in

the eyes closed condition (global θLLE, αCD, and αLLE; and FP2 θLLE, P7

θLLE, P3 δLLE, C4 αCD, FZ αLLE, and O1 αLLE). Other markers such as

the neural complexity in the eyes open condition dubbed dynamic responsivity

have been reported in the literature (Pritchard et al., 1991). These markers

may well represent different aspects of AD and can be used to complement

each other in clinical applications. The availability of multiple potential dis-

criminating parameters will result in increased accuracy of EEG classification
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for AD patients which could form the basis for automated diagnosis of AD in

a clinical setting.
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Spiking Neural Networks: Spiking Neurons

and Learning Algorithms

13.1 Introduction

Artificial neural networks (ANNs) are simplified mathematical approximations

of biological neural networks in terms of structure as well as function. In

general, there are two aspects of ANN functioning: (1) the mechanism of

information flow starting from the presynaptic neuron to the postsynaptic

neuron across the network and (2) the mechanism of learning that dictates

the adjustment of measures of synaptic strength to minimize a selected cost

or error function (a measure of the difference between the ANN output and

the desired output). Research in these areas has resulted in a wide variety

of powerful ANNs based on novel formulations of the input space, neuron,

type and number of synaptic connections, direction of information flow in the

ANN, cost or error function, learning mechanism, output space, and various

combinations of these.

Ever since the conception of the McCulloch-Pitt neuron in the early 1940s

and the perceptron in the late 1950s (Adeli and Hung, 1995), ANNs have been

evolving toward more powerful models. Advancement in the understanding of

biological networks and their modes of information processing has led to the

241
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development of networks such as feedforward neural networks (Rumelhart

et al., 1986), counter-propagation neural networks (Grossberg, 1982; Hecht-

Nielsen, 1988; Adeli and Park, 1995a; Sirca and Adeli, 2001; Dharia and Adeli,

2003), radial basis function neural networks (Karim and Adeli, 2002a, 2003;

Liu et al., 2007; Mayorga and Carrera, 2007; Pedrycz et al., 2008), recurrent

networks (Hopfield, 1982; Zhang et al., 2007; Schaefer and Zimmermann, 2007;

Panakkat and Adeli, 2007), self-organizing maps (Kohonen, 1982; Carpenter

and Grossberg, 1987), modular neural networks, fuzzy neural networks (Adeli

and Karim, 2000; Adeli and Jiang, 2003, 2006; Sabourin et al., 2007; Rigatos,

2008; Jiang and Adeli, 2008a), and spiking neural networks (Sejnowski, 1986;

Maass, 1996, 1997b; Iglesias and Villa, 2008; Grossberg and Versace, 2008).

Feedforward ANNs are the most common and utilize various mechanisms

for a forward transfer of information across the neural network starting from

the input node to the output node. The popularity of feedforward ANNs stems

from their conceptual simplicity and the fact that the primary (but not the

only) mode of information transfer in both real and artificial neural networks

is feedforward in nature (Adeli and Hung, 1994; Adeli and Park, 1995b; Adeli

and Karim, 1997; Adeli and Jiang, 2003). In fact, other modes of information

transfer often involve or are based on feedforward mechanisms to some degree.

Although ANNs have gone through various stages of evolution, until re-

cently, there had not been many attempts to categorize generations of neural

networks (Maass, 1997b). This is a particularly difficult task because ANN

developments have branched out in many directions and it would not be ac-

curate to label one advancement as more significant than another. In addition,

such a categorization is subjective and dependent on what is considered ad-

vancement. However, following Maass (1997b), if a single clearly identifiable,

major conceptual advancement were to be isolated, it would be the devel-

opment of the mathematically defined activation or transfer function as the
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information processing mechanism of the artificial neuron (Ghosh-Dastidar

and Adeli, 2009b).

13.2 Information Encoding and Evolution of Spiking

Neurons

Studies of the cortical pyramidal neurons have shown that the timing of in-

dividual spikes as a mode of encoding information is very important in many

biological neural networks (Sejnowski, 1986; Maass, 1996, 1997b). Biologically,

a presynaptic neuron communicates with a postsynaptic neuron via trains of

spikes or action potentials. Biological spikes have a fixed morphology and

amplitude (Bose and Liang, 1996). The transmitted information is usually

encoded in the frequency of spiking (rate encoding) and/or in the timing of

the spikes (pulse encoding). Fig. 13.1 shows biological synapses connecting a

presynaptic neuron to a postsynaptic neuron.

Pulse encoding is more powerful than rate encoding in terms of the wide

range of information that may be encoded by the same number of neurons

(Maass, 1997c). In fact, rate encoding can be considered to be a special (and

less powerful) case of pulse encoding because in pulse encoding the spike

timings are known, and the average firing rate can be easily computed based

on that information. However, in rate encoding the ability to encode complex

spike trains is reduced significantly because the temporal information about

individual spikes is lost.

The early first generation neurons developed in the 1940s and 1950s did

not involve any encoding of the temporal aspect of information processing.

These neurons acted as simple integrate-and-fire units which fired if the in-

ternal state (defined as the weighted sum of inputs to each neuron) reached
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FIGURE 13.1
Biological synapse connecting a presynaptic neuron to a postsynaptic neuron

a threshold. It did not matter when the threshold was exceeded. Translating

this assumption to a biological perspective, it implied that all inputs to the

neuron were synchronous, i.e., contributed to the internal state at exactly the

same time and therefore could be directly summed. However, unlike biological

neurons, the magnitude of the input was allowed to contribute to the internal

state. Arguably, this may have represented a primitive form of rate encoding

in the sense that a larger input (representing a higher firing rate of the presy-

naptic neuron) may cause the postsynaptic neuron to reach the threshold. For

the sake of simplicity, the mathematical abstraction avoided the modeling of

the actual spike train and the input from the presynaptic neuron approxi-

mated the average firing rate of the presynaptic neuron. The fire state for the

postsynaptic neuron was a binary-valued output which returned a value of 1
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if the neuron fired and 0 otherwise. This implied that the output from the

postsynaptic neuron was not based on rate encoding.

The second generation neurons developed from the 1950s to 1990s were

also based loosely on rate encoding and defined the internal state in a simi-

lar manner. However, they used a mathematically defined activation function,

often a smooth sigmoid or radial basis function (RBF), instead of a fixed

threshold value, for output determination (Maass, 1996). In the postsynap-

tic neuron, the activation function was used to transform the input into a

proportionate output which approximated the average firing rate of the post-

synaptic neuron. With this development, it became possible for the output to

be real-valued. In contrast to the first generation neurons, in this case even

the postsynaptic neuron could generate rate encoded information. This model

gained widespread acceptance as processing elements in feedforward ANNs.

This popularity was further increased due to Rumelhart’s backpropagation

(BP) learning algorithm (Rumelhart et al., 1986) developed for these ANNs

that enabled supervised learning. Since the BP algorithm was constrained by

its requirement of a continuous and differentiable activation function, a signif-

icant portion of the ensuing research focused on finding more appropriate con-

tinuous and differentiable activation functions. This model was significantly

more powerful than the one based on first generation neurons and could solve

complex pattern recognition problems (the most notable early example was

the XOR problem) (Hung and Adeli, 1993; Park and Adeli, 1997; Adeli and

Wu, 1998; Adeli and Samant, 2000; Sirca and Adeli, 2001, 2003; Dharia and

Adeli, 2003; Panakkat and Adeli, 2007; Jiang and Adeli, 2008b). However, the

computational power of the neuron still did not reach its full potential because

the temporal information about individual spikes was not represented.

In the past decade or so, to overcome this shortcoming, neurons that can

communicate via the precise timing of spikes or a sequence of spikes have
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been developed and adapted for ANNs. These neurons have been dubbed

spiking neurons . In the literature, these spiking neurons have been referred

to as third generation neurons (Maass, 1997b). Similar to the first generation

neurons, spiking neurons act as integrate-and-fire units and have an all or

none response. The spiking neuron, however, has an inherent dynamic nature

characterized by an internal state which changes with time. Each postsynaptic

neuron fires an action potential or spike at the time instance its internal state

exceeds the neuron threshold. Similar to biological neurons, the magnitude of

the spikes (input or output) contains no information. Rather, all information

is encoded in the timing of the spikes (i.e., pulse encoding), as discussed in

the next section.

13.3 Mechanism of Spike Generation in Biological Neu-

rons

In general, action potentials or spikes from various presynaptic neurons reach

a postsynaptic neuron at various times and induce postsynaptic potentials

(PSPs). The PSP represents the internal state of the postsynaptic neuron in

response to the presynaptic spike. Figure 13.2 shows an action potential from

the presynaptic neuron and the resulting PSP induced in the postsynaptic

neuron. Figure 13.2 shows the changes in the PSP based on the characteristics

of the synapse such as travel time or delay through the synapse, strength of the

synaptic connection, and other biological factors some of which are still not

completely understood. Multiple neurons, each with multiple spikes, induce

multiple PSPs over time. The PSPs are temporally integrated to compute the

internal state of the postsynaptic neuron over time. The postsynaptic neuron
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FIGURE 13.2
Spiking neuron response showing the action potential or spike (solid line)
and the postsynaptic potential (PSP) in (a) typical case (dotted line), (b) de-
layed response, (c) weighted response (negative weighted response is inhibitory
PSP), and (d) stretched response. All modified responses are shown with a
dashed line.

fires a spike when the integrated internal state crosses a threshold (Figs. 13.3

and 13.4). A spike train consists of a sequence of such spikes.

The effects of various presynaptic spike trains on the postsynaptic potential

and the postsynaptic output spike train are illustrated in Fig. 13.5. In the first

two cases, Fig. 13.5(a) and (b), each spike train is considered individually

whereas in the third case, Fig. 13.5(c), the combined effect of the two spike

trains shown is illustrated. Each spike train consists of a sequence of three

spikes. The first and the third spikes in the presynaptic spike trains occur at

the same time instant. The timing of the second spike, however, is different in

the two cases. From the perspective of rate encoding, both these spike trains
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FIGURE 13.4
Multiple superimposed PSPs also enable the neuron to reach the neuronal
threshold
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FIGURE 13.5
The effect of various presynaptic spike trains on the postsynaptic potential
and the postsynaptic output spike train. (a) and (b) show two spike trains
and their individual effects on the postsynaptic neuron, and (c) shows the
combined effect of the aforementioned two spike trains on the postsynaptic
neuron.
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are identical, i.e., the average firing frequency is identical (three per given

time period). This highlights the approximate nature and lower computational

power of rate encoding which makes it impossible to differentiate between the

two cases in Fig. 13.5(a) and (b).

In contrast, the timing of the spikes is considered in pulse encoding. Each

spike in the spike train induces a PSP at the time instant it reaches the

postsynaptic neuron. The PSPs are temporally integrated to compute the

internal state of the postsynaptic neuron over time, as shown in Fig. 13.5. The

internal states in the two cases are entirely different and their values exceed

the neuronal threshold at different times. This leads to different output spike

times from the postsynaptic neuron. An additional source of variation in the

PSP is the dependence of the internal state of the postsynaptic neuron on the

time of its own output spike. The internal state of a postsynaptic neuron in

response to a presynaptic spike is shown in Fig. 13.6. Had the threshold not

been exceeded the internal state of the neuron in Fig. 13.6 would have been

represented by the dashed line. The solid line in Fig. 13.6 shows the internal

state of the neuron when the threshold is exceeded. Immediately after the

firing of an output spike, the internal state of the neuron exhibits a sharp

decrease as a result of various biological processes. This phase is known as

repolarization (Fig. 13.6) (Bose and Liang, 1996; Kandel et al., 2000).

In the third case shown in Fig. 13.5(c), both presynaptic spike trains are

input simultaneously to the postsynaptic neuron by two presynaptic neurons.

In this case, the internal state of the postsynaptic neuron is not simply the

sum of the internal states in the first two cases. An additional factor needs to

be considered for the postsynaptic neuron. After the firing of a spike and the

resultant sharp decrease in the internal state of the neuron, the internal state

is kept at a value lower than the resting potential of the neuron (Fig. 13.6)

by various biological processes that are beyond the scope of this discussion.
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FIGURE 13.6
The internal state of a postsynaptic neuron in response to a presynaptic spike
(not shown in the figure) showing the action potential, and repolarization and
hyperpolarization phases.

This phase is known as hyperpolarization and is shown in Fig. 13.6 (Bose

and Liang, 1996; Kandel et al., 2000). As a result, it becomes difficult for the

neuron to reach the threshold and fire again for a certain period of time, known

as refractory period (Fig. 13.6). The internal state of the postsynaptic neuron

is obtained by the algebraic summation of the internal states in the first two

cases and modified during the repolarization and hyperpolarization phases.

The three processes of summation, repolarization, and hyperpolarization lead

to the postsynaptic neuron firing output spikes at times different from those

for the first two cases. In Fig. 13.5, the first spike in the third case occurs

earlier than the first spike in the first case because the postsynaptic neuron

in the third case exceeds the threshold value earlier. The three cases shown in

Fig. 13.5 highlight the importance of the timing of spikes in the presynaptic

spike train for encoding information.
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13.4 Models of Spiking Neurons

Spiking neurons can be modeled in many different ways. A number of de-

tailed mathematical or biophysical models have been developed to quantita-

tively characterize neuronal behavior based on detailed modeling of the neu-

ronal membrane potential and ion channel conductances (Hodgkin and Hux-

ley, 1952; Rinzel and Ermentrout, 1989; Hille, 1992; Ermentrout, 1996; Hop-

pensteadt and Izhikevich, 1997; Izhikevich, 2003). Networks of such neuronal

models have proved to be very valuable in studying the behavior of biological

neural networks, neuronal learning mechanisms such as long-term potenti-

ation and depotentiation, and neurotransmitter-based signaling (Izhikevich,

2007). Some such models have been discussed in Chapter 10 in the context of

Alzheimer’s disease. Izhikevich et al. (2004) employed a large network of spik-

ing neuron models described in Izhikevich (2003) with known firing patterns

in the cerebral cortex to study self organization in such a network. Recently,

Iglesias and Villa (2008) also investigated a large network of spiking neurons

described by a different neuron model and various biological processes, and

observed a similar pattern of self organization and preferential firing patterns

in the neural network.

Such detailed networks are important for studying the effects of various

spiking patterns especially in terms of network activation patterns, i.e., which

neurons are activated and whether certain neurons are activated more often

than others. The level of detail in such models, although ideal for reproducing

electrophysiological responses accurately, increases the complexity of the mod-

els, makes them difficult to analyze, and imposes a significant computational

burden (Abbott and Kepler, 1990; Kepler et al., 1992; Ghosh-Dastidar and

Adeli, 2007). As a result, these networks have not been used for real-world
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classification or pattern recognition tasks that have typically been the domain

of traditional ANNs. It may be argued that real-world data can be encoded as

spike trains and classified using such biologically plausible networks. However,

from the studies of self organization in such networks (Izhikevich et al., 2004;

Iglesias and Villa, 2008), it appears that there may be a biological preference

for certain spike patterns. In the opinion of the authors, appropriate bio-

logically plausible spike train encoding methodologies should be investigated

thoroughly for use with such networks.

The approach to designing such biophysical neuronal models is a bottom-up

approach. Various detailed neuronal characteristics such as properties of the

cell membrane, ion channels, mathematical formulations of learning such as

long term potentiation and depotentiation, Hebbian learning, and spike time

dependent plasticity (STDP) are modeled separately. These separate models

are integrated to obtain the overall characterization of neuronal dynamics. On

the other hand, phenomenological models represent a top-down approach in

which the overall behavior of the individual neuron is modeled mathemati-

cally. The precise details of neuronal behavior at the level of ion channels or

neurotransmitter molecules are not modeled explicitly. Sometimes, the details

are approximately derived but only as secondary phenomena. Spike response

models are examples of such phenomenological models that are simpler than

the detailed biophysical models and offer a compromise between computa-

tional burden and electrophysiological detail (Ermentrout and Kopell, 1986;

Rinzel and Ermentrout, 1989; Gerstner, 1995; Kistler et al., 1997; Izhikevich,

2001; Gerstner and Kistler, 2002). Therefore, spike response models are pre-

ferred for systemic studies of memory, neural coding, and network dynamics.
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13.5 Spiking Neural Networks (SNNs)

It is interesting to note that the phenomenological models can be further

simplified to lesser and lesser realistic models until a point is reached where

even the spikes are not modeled, which leads to the first and second genera-

tion neurons. Evidently, the computational burden reduces significantly and

so does the degree of biological realism. In some ways, the level of modeling

detail is a function of the available computing power. For instance, consider

the ANNs based on second generation neurons. For decades, the modeling of

the neurons was limited by the available computing power because the hard-

ware was unable to support large ANNs based on detailed neuronal models.

This limitation dictated the design of the learning algorithms. Subsequently,

even when advances were made in computing power, proportionate advances

were not made in the complexity of the neuronal models because the existing

learning algorithms were not compatible with the detailed models.

As a result, two distinct research areas emerged. The field of artificial neu-

ral networks focused on the behavior of large networks of neuron-like process-

ing units (i.e., the second generation neurons), which were primitive and over-

simplified formulations of biological neurons. However, it was demonstrated

that even such networks were capable of learning using pseudo-realistic learn-

ing algorithms such as backpropagation. ANNs were applied with great success

to pattern recognition, classification, and completion tasks in a wide variety of

areas. The other field became known as computational neuroscience. Within

this broad interdisciplinary field, the detailed biophysical and phenomeno-

logical models were primarily used in relatively smaller networks to study

electrophysiological processes, pattern generation, and the dynamic behavior

of small groups of neurons. There have also been studies involving very large
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numbers of interconnected biophysical neuron models. However, it has not

been possible to use such networks of detailed neurons in a manner similar

to ANNs for large real-world pattern recognition and classification tasks, as

mentioned in the beginning of this chapter.

Recent advances and the availability of computing power have increased

the overlap between the two fields. On the one hand, the processing units,

networks, and learning algorithms for ANNs have become biologically more

realistic. On the other hand, networks of biophysical neurons have become in-

creasingly larger in size and the biophysical models more detailed. The avail-

able computing power still limits the use of the detailed models in large bio-

physical neural networks for pattern recognition and classification tasks. As

the computing power becomes more readily available, suitable learning algo-

rithms are also being developed for such models. The development of spiking

neural networks (SNNs) was the next logical step toward achieving this goal

(Ghosh-Dastidar and Adeli, 2009b).

Simply stated, SNNs are networks of spiking neurons. The SNN architec-

ture is normally similar to that of a traditional ANN. The processing unit,

however, is a spiking neuron, which is typically modeled by a phenomenologi-

cal model such as a spike response model. As discussed earlier, the use of the

biophysical models in certain applications of SNNs is less common due to the

computational burden. Therefore, for the purpose of this book, a distinction

is made between SNNs that use phenomenological models and networks that

use biophysical models. Only research on the former is reviewed in the rest of

this book. Since the primary purpose of the SNNs is to learn, a discussion of

learning algorithms is also covered in this book.
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13.6 Unsupervised Learning

As discussed earlier in Chapter 5, unsupervised learning is based solely on

the characteristics of the data. The network learns the patterns in the data

without being guided by any external cues regarding a desired outcome. One

advantage of unsupervised clustering is the lower computational burden be-

cause the process eliminates the need for multiple iterations through a training

dataset, which is typically required for supervised learning algorithms such as

gradient descent and its variants. As a result, it is not surprising that most

initial applications of SNNs were restricted to applications of unsupervised

learning.

An early SNN model was presented by Hopfield (1995) where the stimuli

were represented by the precise timing of spikes and the spike pattern was

encoded in the synaptic delays. The neurons acted similar to an RBF neuron,

i.e., they fired when the input spike pattern was similar to the pattern encoded

as the center of the RBFs. Otherwise, the neuron did not fire. This similarity

was modeled by a distance function between the patterns. Similarity or dis-

similarity was decided by a fixed threshold. Soon after, an STDP-like learning

rule was presented for a similar RBF neuron that used the spike time differ-

ence between the presynaptic and postsynaptic spikes as the basis for learning

(Gerstner et al., 1996). Using a similar concept, Maass and Natschläger (Maass

and Natschläger, 1997, 1998a,b) modeled the temporal encoding of associative

memory using a Hopfield network composed of spiking neurons. In their work

they used a traditional recurrent network architecture. Using these models, it

was shown that unsupervised learning and self-organization were possible in

networks of spiking neurons (Natschläger and Ruf, 1998; Natschläger et al.,

2001).
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These models were further enhanced to analyze spatial and temporal pat-

terns in the input space and cluster the input data. It was demonstrated that

the clustering based on these models converged reliably even when the input

data were corrupted by noise (Natschläger and Ruf, 1998, 1999). For the sake

of simplicity, neurons in these models were restricted to the emission of a sin-

gle spike. Given this limitation, the connection between two SNN neurons was

modeled by multiple synapses (Natschläger and Ruf, 1998) in order to enable

the presynaptic neuron to affect the postsynaptic neuron by inducing PSPs of

varying magnitudes at various time instants.

Bohte et al. (2002b) employed a network similar to Natschläger and Ruf

(1998) and demonstrated that SNNs are capable of clustering real-world data.

They used a population encoding scheme to encode the data to improve the ac-

curacy of the SNN. Based on this encoding scheme, they proposed a multi-scale

encoding where each dimension of the input space was encoded by multiple

neurons with overlapping Gaussian fields. They reported good performance

of the network with the Fisher iris dataset and an arbitrary image segmenta-

tion application compared to traditional clustering methods such as k -means

clustering and self organizing maps. Bohte et al. (2002b) also reported an

increased robustness of their model with respect to noise in the data. They

extended their model to a multi-layer RBF SNN that performed hierarchical

clustering of the data. More recently, Gueorguieva et al. (2006) investigated

a similar network architecture with an STDP-based learning mechanism dis-

cussed earlier and arrived at the same conclusions regarding efficiency and

noise. Following the work of Bohte et al. (2002b), Panuku and Sekhar (2007)

present a variation of the learning algorithm in which the weights are adjusted

in stages, i.e., the weights between the input and hidden layers are adjusted

first and the weights between the hidden and the output layers are adjusted



258 Automated EEG-Based Diagnosis of Neurological Disorders

next. It is shown that this algorithm can effectively separate linearly separable

as well as interlocking clusters.

13.7 Supervised Learning

Although unsupervised learning was demonstrated in SNNs with a recurrent

architecture, until recently, spiking neurons were considered to be incompati-

ble with the error backpropagation required for supervised learning in purely

feedforward networks. This incompatibility was due to the lack of a continu-

ous and differentiable activation function that could relate the internal state of

the neuron to the output spike times. To demonstrate that BP-based learning

is possible in such a network, Bohte et al. (2002a) employed an SNN which

comprised spiking neurons based on the spike response model originally pre-

sented by Gerstner (1995). The architecture of Bohte et al.’s SNN model was

patterned after the one by Natschläger and Ruf (1998) where each connec-

tion between a presynaptic and postsynaptic neuron was modeled by multiple

synapses and the neurons were restricted to the emission of a single spike.

The learning algorithm presented for SNN by Bohte et al. (2002a), Spike-

Prop, was developed along the lines of the BP algorithm for traditional neu-

ral networks (Rumelhart et al., 1986). In SpikeProp, error backpropagation is

made possible by assuming that the value of the internal state of the neuron

increases linearly in the infinitesimal time around the instant of neuronal fir-

ing. In other words, around the instant of neuronal firing the internal state

is approximated by a finely discretized piecewise linear function. The learn-

ing and classification capabilities of SpikeProp were investigated by applying

it to the well-known XOR problem as well as three benchmark problems:

Fisher iris plant classification, Wisconsin breast cancer tumor (malignant or
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benign) classification, and Landsat satellite spectral image classification (New-

man et al., 1998). The SNN architecture, as shown in Fig. 13.7(a) is similar

to that of a traditional feedforward ANN. However, unlike feedforward ANNs

where two neurons are connected by one synapse only, the connection be-

tween two SNN neurons is modeled by multiple synapses, as shown in Fig.

13.7(b) (Natschläger and Ruf, 1998; Bohte et al., 2002a). Each synapse has a

weight and a delay associated with it. This means that a presynaptic neuron

can affect a postsynaptic neuron by inducing PSPs of varying magnitudes at

various time instants. The magnified connection in Fig. 13.7(b) displays the

temporal sequence of spikes (short vertical lines) from the presynaptic neuron,

the synaptic weights (proportionate to the size of the star shaped units in the

center), and the resulting PSPs (proportionate to the size of the waveform).

Subsequently, SNN was used with various learning algorithms such as

backpropagation with momentum (Xin and Embrechts, 2001; McKennoch

et al., 2006), QuickProp (Xin and Embrechts, 2001; McKennoch et al., 2006),

resilient propagation (RProp) (McKennoch et al., 2006), and Levenberg-

Marquardt BP (Silva and Ruano, 2005) to improve network training perfor-

mance. QuickProp is a faster converging variant of the original BP learning

rule (Rumelhart et al., 1986) that searches for the global error minimum by

approximating the error surface on the basis of local changes in the gradient

and weights (Fahlman, 1988). RProp is also a fast variant of the BP algorithm

where the weights are adjusted based on the direction of the gradient rather

than the magnitude. This strategy is specially effective or resilient when the

error surface is highly uneven and the gradient is not an accurate predictor of

the learning rate (Riedmiller and Braun, 1993). Compared with SpikeProp, the

aforementioned improved algorithms reportedly provide faster convergence by

20-80%. Some preliminary research has also been reported regarding the ad-

justment of other SNN parameters such as neuron threshold, synaptic delays,
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FIGURE 13.7
(a) Spiking neural network architecture; (b) multiple synapses connecting a
presynaptic neuron to a postsynaptic neuron
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and the time decay constant defining the shape of the PSP (Schrauwen and

van Campenhout, 2004).

More recently, McKennoch et al. (2009) presented an alternate model for

error backpropagation in an SNN that uses theta neurons as the processing

units. Theta neurons do not model the actual action potential in time do-

main, which is a discrete response. Instead, the response is transformed to a

phase plane formed by plotting the internal state against the recovery vari-

able (mathematical representation of the recovery state of the inactive ion

channels during the refractory period). Finally, the phase plane response is

expressed in terms of the phase with respect to time, which is a continuous

function (Gutkin and Ermentrout, 1998; Gutkin et al., 2003). Although the

theta neuron does not precisely model the postsynaptic spikes, the continuous

nature of the phase function makes it an attractive alternative in terms of

compatibility with the backpropagation algorithm (McKennoch et al., 2009).

SpikeProp is similar to the BP algorithm where the synaptic weights are

adjusted in either batch or incremental processing modes. In incremental pro-

cessing, the synaptic weights are updated after each training instance is ap-

plied. In batch processing, the weights are updated after all the training in-

stances have been applied. In both cases, a pass through all training instances

is defined as one epoch. SpikeProp has been applied mostly in the incremen-

tal processing mode (Bohte et al., 2002a; Moore, 2002) with one exception

(McKennoch et al., 2006). QuickProp and RProp have been applied in the

batch processing mode only.

Computationally, SNN training is usually at least two orders of magnitude

more intensive than the traditional ANNs for two reasons. First, multiple

weights have to be computed for multiple synapses connecting a presynaptic

neuron to a postsynaptic neuron. Second, the internal state of each neuron

has to be computed for a continuous duration of time, called the simulation
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time, to obtain the output spiking times (Fig. 13.5). The time resolution,

called the time step, employed for this computation along with the simulation

time results in a total of K× simulation time/time step computations per

connection between a presynaptic and a postsynaptic neuron (compared to

one computation for traditional ANNs). The parameter K is the number of

synapses per connection, as shown in Fig. 13.7(b). In addition, the number of

convergence epochs is another key factor that affects the actual computation

time (real time) required to train the network.

Another difficulty with SNN training is the highly uneven nature of the

error surface that can wreak havoc with the gradient descent-based learning

algorithms. Slight changes in the synaptic weights result in proportionate

changes in the postsynaptic potential. But slight changes in the postsynaptic

potential may result in disproportionate changes in the output spike times of

the postsynaptic neuron. To overcome this training difficulty various heuristic

rules are used to limit the changes of the synaptic weights.

These studies contribute to the current understanding of SNN behav-

ior. However, due to the increased computational complexity and computa-

tion time involved in training the SNN for complicated problems with large

datasets, the studies extending the original SpikeProp research suffer from

three shortcomings. First, extensive parametric studies have not been per-

formed on all algorithms. It is possible that algorithms claimed to be less

efficient were so as a result of sub-optimal parameter values. Second, only the

number of convergence epochs, and not the actual computation time or the

classification accuracy, has been investigated as a performance measure for

comparing the learning algorithms. Third, detailed studies are reported only

for the XOR problem and small subsets of a benchmark dataset, the Fisher

iris dataset.

The primary objective of the authors is to develop an efficient SNN model
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for epilepsy diagnosis and epileptic seizure detection, a complicated pattern

recognition problem where the patterns are unknown and have to be discov-

ered. SNNs represent the next generation of ANNs which model the dynamics

of the brain at a greater level of detail. SNN research is still in its infancy

and development in this area can potentially lead to more powerful models

of learning, and eventually, more accurate and robust classifiers. Toward this

objective, three learning algorithms are investigated: SpikeProp (using both

incremental and batch processing), and QuickProp and RProp in batch pro-

cessing mode only. Since the epilepsy diagnosis and epileptic seizure detection

problem requires a large training dataset, the efficacy of these algorithms is

investigated by first applying them to the XOR and Fisher iris benchmark

problems.

Three measures of performance are investigated: number of convergence

epochs, computational efficiency, and classification accuracy. For an apple-to-

apple comparison of the performance of the learning algorithms a computa-

tional efficiency measure is defined by dividing the time step by the simula-

tion time and the number of convergence epochs. The larger this number the

more efficient the algorithm and the less the required computation time for

training. Extensive parametric analysis is performed to identify heuristic rules

and optimum parameter values that increase the computational efficiency and

classification accuracy. The classification accuracy is evaluated only for the

Fisher iris and EEG datasets because they are large enough to be divided into

training and testing datasets. The SNN training is performed using randomly

selected datasets of various sizes in order to investigate their effect on classi-

fication accuracy. Algorithms that consistently perform poorly are discarded.

As a result, not all algorithms are tested on all datasets. RProp has not been

evaluated on the basis of classification accuracy. Moreover, this research is the
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first application of SNNs to the EEG classification problem for epilepsy and

seizure detection.

13.7.1 Feedforward Stage: Computation of Spike Times and

Network Error

In this model, each neuron in the SNN model is limited to the emission of

a single spike. Also, the network is assumed to be fully connected, i.e., a

neuron in any layer l is connected to all neurons in the preceding layer l + 1

(layers are numbered backward starting with the output layer, numbered as

layer 1). Consequently, a neuron j (∈ {1, 2, .., Nl}) in layer l is postsynaptic

to Nl + 1 presynaptic neurons, where Nl is the number of neurons in layer l.

Each presynaptic neuron i (∈ {1, 2, .., Nl+1}) is connected to the postsynaptic

neuron j via K synapses. The number K is constant for any two neurons. The

weight of the kth synapse k (∈ {1, 2, ..,K}) between neurons i and j is denoted

by wk
ij . Assuming that presynaptic neuron i fires a spike at time ti, the kth

synapse transmits that spike to the postsynaptic neuron at time ti+d
k where

dk is the delay associated with the kth synapse. The modeling of synapses is

identical for all neurons, and the kth synapse between any two neurons has

the same delay, dk.

The internal state of the postsynaptic neuron j in layer l at time t is

expressed as (Bohte et al., 2002a):

xj(t) =

Nl+1
∑

i=1

K
∑

k=1

wk
ijǫ(t− ti − dk) (13.1)

where ǫ represents the spike response function, i.e., the unweighted internal

response of the postsynaptic neuron to a single spike. This response can be

modeled using a number of different functions. Following Bohte et al. (2002a),

in this chapter, the so-called α-function (Gerstner, 1995) is selected as the
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FIGURE 13.8
The spike response function with various time decay constants (τ)

spike response model as follows:

ǫ(t) =







t
τ e

1−t/τ when t > 0

0 when t ≤ 0
(13.2)

where τ is the time decay constant that determines the spread shape of the

function (Fig. 13.8). The postsynaptic neuron fires a spike at the time instant,

tj , when the internal state of the neuron exceeds the neuron threshold, θ. The

α-function has a maximum value of 1 at t = τ . Other spike response models

(not investigated in the current work) may also be adapted provided that their

activation function can be adapted for error backpropagation.

In incremental processing mode, when the neuron j belongs to the output

layer (l = 1), the output spike time is used to compute the network error as

follows (Bohte et al., 2002a):

E =
1

2

N1
∑

j=1

(tj − tdj )
2 (13.3)
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where tdj is the desired spike time of the output neuron. In batch processing

mode, Eq. (13.3) is replaced by the cumulative error function over all training

instances expressed as:

E =
1

2

NT
∑

m=1

N1
∑

j=1

(tj − tdj )
2 (13.4)

where NT is the number of training instances.

13.7.2 Backpropagation Stage: Learning Algorithms

13.7.2.1 SpikeProp

The SNN is trained by backpropagating the error obtained using Eq. (13.3)

or (13.4) and adjusting the synaptic weights such that the network error is

minimized. The SNN version of the generalized delta update rule is employed

to adjust the synaptic weights. The weight adjustment for the kth synapse

between the ith presynaptic and jth postsynaptic neuron is computed as:

∆wk
ij = −η∇Ek

ij (13.5)

where η is the learning rate and ∇Ek
ij is the gradient (with respect to the

weights) of the error function for the kth synapse between the ith presynaptic

and jth postsynaptic neuron. The error gradient at the postsynaptic neuron

output spike time instant, t = tj , is computed as:

∇Ek
ij =

∂E

∂wk
ij

=
∂E

∂tj

∂tj
∂xj(tj)

∂xj(tj)

∂wk
ij

(13.6)

Since tj cannot be expressed as a continuous and differentiable function of

xj(tj), the term ∂tj/∂xj(tj) cannot be computed directly. Bohte et al. (2002a)
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overcome this problem by assuming that xj(tj) is a linear function of tj around

the output spike time instant, t = tj . Therefore, ∂tj/∂xj(tj) is approximated

numerically as −1/ [∂xj(tj)/∂tj)]. Solving Eq. (13.6), we obtain:

∇Ek
ij = ǫ(tj − ti − dk)δj (13.7)

The term δj for a postsynaptic neuron in the output layer is computed as

(Bohte et al., 2002a):

δj =
−(tj − tdj )

N2
∑

i=1

K
∑

k=1

wk
ijǫ(tj − ti − dk)

(

1

(tj − ti − dk)
− 1

τ

)

(13.8)

For a postsynaptic neuron j in a hidden layer l, the error has to be back-

propagated from the output layer for computing the first factor in Eq. (13.6)

as:
∂E

∂tj
=
∂E

∂th

∂th
∂xh(th)

∂xh(th)

∂tj
(13.9)

where the subscript h denotes the hth neuron in layer l−1 that is postsynaptic

to the postsynaptic neuron j in layer l. As a result, the term δj in Eq. (13.7)

is computed for a postsynaptic neuron in the hidden layer as (Bohte et al.,

2002a):

δj =

Nl−1
∑

h=1

δh

K
∑

k=1

[

wk
jhǫ(th − tj − dk)

(

1

(th − tj − dk)
− 1

τ

)]

Nl+1
∑

i=1

K
∑

k=1

wk
ijǫ(tj − ti − dk)

(

1

(tj − ti − dk)
− 1

τ

)

(13.10)

where δh is computed for the hth neuron using Eq. (13.8).

To increase the convergence rate, the addition of a momentum term to

the delta update rule has been suggested (Xin and Embrechts, 2001) that

modulates the weight adjustment on the basis of the weight adjustment in the



268 Automated EEG-Based Diagnosis of Neurological Disorders

previous epoch,
(

∆wk
ij

)

old
, as follows:

∆wk
ij = −ηǫ(tj − ti − dk)δj + α

(

∆wk
ij

)

old
(13.11)

where α is the momentum factor.

13.7.2.2 QuickProp

The QuickProp weight adjustment is computed as follows (Fahlman, 1988;

McKennoch et al., 2006):

∆wk
ij =



















ηQ
(

∆wk
ij

)

old
when

(

∆wk
ij

)

old
6= 0

−η∇Ek
ij when

(

∆wk
ij

)

old
= 0

(13.12)

where ηQ is the QuickProp learning rate computed adaptively based on the

magnitude of the gradient as:

ηQ =
∇Ek

ij
(

∇Ek
ij

)

old
−∇Ek

ij

(13.13)

in which
(

∇Ek
ij

)

old
is the gradient with respect to the weights in the previous

epoch.
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13.7.2.3 RProp

The RProp weight adjustment is computed as follows (Riedmiller and Braun,

1993; McKennoch et al., 2006):

∆wk
ij =















































−∆k
ij when ∇E > 0

+∆k
ij when ∇E < 0

0 when ∇E = 0

(13.14)

where the term ∆k
ij is defined as:

∆k
ij =















































η+
(

∆k
ij

)

old
when ∇Ek

ij ·
(

∇Ek
ij

)

old
> 0

η−
(

∆k
ij

)

old
when ∇Ek

ij ·
(

∇Ek
ij

)

old
< 0

(

∆k
ij

)

old
when ∇Ek

ij ·
(

∇Ek
ij

)

old
= 0

(13.15)

in which η+ and η− are the RProp learning rates.
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Improved Spiking Neural Networks with

Application to EEG Classification and

Epilepsy and Seizure Detection

14.1 Network Architecture and Training

14.1.1 Number of Neurons in Each Layer

The SNN architecture consists of an input layer, a hidden layer, and an output

layer (Fig. 13.7). The number of neurons in the hidden layer is selected by trial

and error. Since the SNN model is based on spike times, inputs to the SNN

have to be preprocessed to convert the continuous real-valued input features

(or classification variables) into discrete spike times. As a result, the number

of original features is converted into a new number of features for input to

the SNN. This is known as input encoding . Similarly, the number of neurons

in the output layer depends on the output encoding scheme selected for the

classification problem. In SNNs the inputs and outputs can be encoded in a

variety of ways. This variety, however, is limited by the assumption of only

one spike per neuron. The encodings for each one of the three classification

problems investigated in this research are discussed separately.

271



272 Automated EEG-Based Diagnosis of Neurological Disorders

14.1.2 Number of Synapses

The number of synapses,K, between two neurons is an important factor in the

SNN architecture. Bohte et al. (2002a) selected a value of 16 for K apparently

on a trial and error basis. Subsequent researchers continued using the same

number. Values other than 16 were explored to find out their impact on both

convergence and the classification accuracy. In general, it was observed that

decreasing the number of synapses resulted in reduced convergence rates and

classification accuracy whereas an increase in the number of synapses beyond

16 increased the computational effort but did not improve either convergence

or classification accuracy. Therefore, in this book a value of K = 16 is em-

ployed and this issue is not investigated further. Each presynaptic neuron

emits one spike and this spike is transmitted through the K = 16 synapses

sequentially with delays. In the literature, the delays associated with the 16

synapses are modeled by assigning them integer values from 0 to 15 ms (the

time unit is virtual and is used for modeling purposes only). In this chap-

ter, this range is modified to 1-16 ms because a delay of 0 ms is biologically

unrealistic.

14.1.3 Initialization of Weights

SNN training has been reported to be sensitive to the initialization weights

which need to be selected carefully. The weight initialization method used

in the applications discussed in the book is as follows (Moore, 2002; Ghosh-

Dastidar and Adeli, 2007). The neuron threshold for all spiking neurons in the

network is selected as θ = 1 and the weight initialization process and heuristic

rules (described shortly) are developed around this number (any value can be

chosen for threshold as long as the other parameters and heuristic rules are

developed around that value). All spike time inputs are set equal to zero and

all synaptic weights are set equal to one and the corresponding output spike



Applications of Improved SNNs 273

time is obtained by running the SNN model. Next, the weights of all synapses

are selected randomly as real numbers in the range 1-10 and normalized by

dividing them by the product of the average of all weights and the output

spike time for inputs equal to zero computed earlier. The purpose of this

normalization is to limit the range of the initial synaptic weights such that all

neurons fire within the simulation time, at least in the first epoch of network

training. To ensure the consistency of this method, results are reported in

this chapter for ten different sets of weights, dubbed seeds, initialized by this

method.

14.1.4 Heuristic Rules for SNN Learning Algorithms

In Ghosh-Dastidar and Adeli (2007) extensive parametric analysis was per-

formed to verify heuristic rules proposed in the literature and to identify new

heuristic rules with the goal of improving the convergence and classification ac-

curacy and increasing the computational efficiency using the XOR and Fisher

iris benchmark problems. These heuristic rules are enumerated as follows:

1. In order to prevent catastrophic changes in the synaptic weights, a lower

limit of 0.1 is imposed on the denominator of δj in Eqs. (13.8) and (13.10)

as suggested by Booij and Nguyen (2005).

2. If at any time during the training of a network, a neuron stops firing,

then its contribution to the network error becomes null. During back-

propagation of the error, the resulting weight change is very small which

may not be sufficient to restart the firing of the neuron even after several

epochs. This issue, referred to as the silent neuron problem, leads to a

reduction of the effective network size to a size possibly insufficient to

model the classification problem which ultimately affects convergence

(McKennoch et al., 2006). It appears that the QuickProp algorithm is
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especially susceptible to this silent neuron problem possibly because the

weight change in each epoch is directly linked to that in the previous one.

This may be mathematically inferred from Eq. (13.12). In this book, the

neuron is set to fire at the maximum internal state value if the thresh-

old is not exceeded during the simulation time. Based on this heuristic,

every neuron fires during the simulation time.

3. For QuickProp, the heuristic proposed by Fahlman (1988) for the tradi-

tional ANN, that is, defining a maximum growth factor (µ) as the upper

limit for ηQ, is used. Further, ηQ is multiplied by a factor 0 < β ≤ 1 to

keep the value of ηQ small (McKennoch et al., 2006).

For RProp, weight restrictions proposed by McKennoch et al. (2006) were

investigated. No improvement in convergence was observed and even, in some

cases, deterioration in convergence was noted. Therefore, no such weight re-

strictions have been used in the simulation results presented in the chapter.

SNN performance is affected by a large number of parameters that define

the spiking neuron, network architecture, and the learning algorithm such as

training size, training data, simulation time, time step, learning algorithm

learning rates, and the limiting convergence error. For an effective compari-

son of the SNN learning algorithms, it is imperative for the selected values of

the network parameters to be close to optimal. The selection of such optimum

values is achieved through extensive parametric analysis. Due to the excessive

computation time required for training SNNs with large datasets, it is not

possible to investigate all values of the aforementioned parameters with all

three learning algorithms. This is compounded by limitless options regarding

SNN architectures. Some parameters have previously been studied to some

extent and documented reasonably well in the literature. For other parame-

ters, a parametric analysis is performed in three stages corresponding to the

three classification problems: XOR, Fisher iris, and EEG (Ghosh-Dastidar
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and Adeli, 2007) classification problems. As the analysis progresses from a

simple problem to a complex classification problem, SNN architectures, pa-

rameter values, and learning algorithms that do not meet the goal of increased

computational efficiency and classification accuracy are removed from further

consideration.

14.2 XOR Classification Problem

14.2.1 Input and Output Encoding

The exclusive OR (XOR) problem has been used as a common benchmark for

the initial testing of different ANN models. The data consist of two binary

input features and one binary output. The dataset consists of four training

samples. If the two inputs are identical ({0,0} or {1,1}), the output is 0. If the

inputs are different ({0,1} or {1,0}), the output is 1. The problem is non-trivial

as the two classes are not linearly separable. At the same time, the small size

(4× 2) of the dataset allows fast training of classification models. The inputs

to SNN are discrete spike times. SNN outputs are also spike times. Following

Bohte et al. (2002a), an input value of 1 is encoded as an early spike time (0

ms) whereas a value of 0 is encoded as a late spike time (6 ms). Bohte et al.

(2002a) select an encoding interval (difference between the two spike times)

of 6 ms for this problem by trial and error.

Spikes at the input times 0 and 6 ms are transmitted from one layer to

the next layer with a minimum delay of 1 ms and a maximum delay of 16

ms introduced by the 16 synapses connecting each presynaptic neuron to a

postsynaptic neuron. As a result of the delays, the possible output spike times

are in the range from 0 + 2 × 1 = 2 ms to 6 + 2 × 16 = 38 ms. Bohte et al.



276 Automated EEG-Based Diagnosis of Neurological Disorders

(2002a) select the desired output spike times (tj) for SNN training toward the

middle of this range using a trial and error process. When a small (early) value

is selected for the desired output spike time, the delayed input spikes will not

have any effect on the output spike computation. When a large (late) value is

selected for the desired output spike time the simulation time becomes large

which reduces the computational efficiency. Following Bohte et al. (2002a) the

output values 1 and 0 are encoded as output spike times 10 ms and 16 ms,

respectively.

Bohte et al. (2002a) selected the time decay constant τ for the α-function

in Eq. (13.2) by trial and error. A small value of τ results in a narrow-shaped

PSP (Fig. 13.8). If the PSP is too narrow, PSPs resulting from presynaptic

spikes from various presynaptic neurons delayed by different synapses may

not overlap. In such a case, summation of the PSPs does not increase the

internal state and, as a result, the postsynaptic neuron does not fire. Too

large a value of τ results in very wide PSPs (Fig. 13.8) and the internal state

of the postsynaptic neuron takes longer to decrease to the resting potential

(Fig. 13.6). The increased width of the PSP leads to too much overlap between

subsequent PSPs. As a result, the postsynaptic neuron fires equally early for

both small and large values of synaptic weights thus becoming insensitive to

changes in synaptic weights during the SNN training. Bohte et al. (2002a)

observed that τ = 7 ms, a slightly larger value than the encoding interval,

models the XOR classification problem accurately. The same value is used for

the XOR problem in this chapter.

14.2.2 SNN Architecture

To fit the model to the data, the number of input and output neurons is

selected as 2 and 1, respectively. A problem with spike time encoding is that

the SNN treats both inputs {0,0} and {6,6} the same because there is no time
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FIGURE 14.1
SNN architecture for the XOR problem and the input and output encoding
of the four training samples

lag between the two input values. To overcome this problem, a third input

neuron that always fires at 0 ms, dubbed bias neuron, is added to the SNN.

As a result the inputs become {0,0,0} and {6,6,0} which are differentiable by

the SNN, as shown in Fig. 14.1. The number of hidden neurons is selected as 5.

This [3 5 1] architecture is selected to be the same as that reported in the SNN

literature in order to compare the results obtained with those published in the

literature and determine the improvements made by the heuristics presented

in this chapter.
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14.2.3 Convergence Criteria

Most results in the literature are reported for a limiting convergence mean

square error (MSE) value of 0.5 with the exception of Bohte et al. (2002a)

who reported a sum squared error (SSE) of 1.0 for the original SpikeProp algo-

rithm within 250 epochs. For both incremental and batch processing learning

algorithms, the MSE is equal to the SSE (computed according to Eq. 13.4),

averaged over all output neurons and training instances. For the XOR prob-

lem, since there are only four training instances and one output neuron, an

SSE of 1.0 is equivalent to an MSE of 1.0/(4× 1) = 0.25. In this research, an

MSE value of 0.5 is employed and the upper limit for the number of epochs is

set to 500. In the literature, non-convergent simulations have been excluded

from the statistics and reported separately. That should not be the case. For

example, an algorithm that converges in only 50% of the simulations is not

necessarily faster than another one that converges slower but in 100% of the

simulations. The simulations designated as non-convergent might represent

cases of very slow convergence. Therefore, excluding the non-convergent cases

yields a bloated estimate of the convergence rate.

14.2.4 Type of Neuron (Excitatory or Inhibitory)

Bohte et al. (2002a), Xin and Embrechts (2001), and others have reported

that the SNN training does not converge if any neuron in the hidden layer

has a mix of positive and negative weights, as shown in Fig. 14.2. They try to

solve this problem by designating some neurons to be exclusively excitatory

and some others to be exclusively inhibitory, as shown in Fig. 14.2. In this

model all synaptic weights of an exclusively excitatory neuron are required

to be positive. If the weight adjustment during network training leads to a

negative weight, the weight can either be made equal to zero or left unchanged

from the previous epoch to meet the requirement of positive weights. Simi-
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larly, all synaptic weights of an exclusively inhibitory neuron are required to

be negative. If the weight adjustment during network training leads to a pos-

itive weight, the weight can either be made equal to zero or left unchanged

from the previous epoch to meet the requirement of negative weights. Which

scheme (made equal to zero or unchanged) is used in the aforementioned pa-

pers is not spelled out. In Ghosh-Dastidar and Adeli (2007) both schemes were

investigated and a significant difference in their convergence was noted. The

latter scheme results in a faster convergence possibly because a fewer number

of weights are changed which prevents drastic changes in the output spike

times. Consequently, that is the scheme used in the results presented in the

next section whenever exclusively excitatory and inhibitory neurons are used.

Recent research indicates the aforementioned assertion regarding the effect

of a mix of positive and negative weights may not be correct (McKennoch

et al., 2006). This issue has been investigated in this research; the results are

presented in the next section.

14.2.5 Convergence Results for a Simulation Time of 50 ms

Table 14.1 summarizes the best SNN convergence results for the XOR problem

reported in the literature to date using three different learning algorithms

and the corresponding parameter values used. The same simulation time of

50 ms is used in all. A range of values is provided where the exact value has

not been reported. The computing times per epoch for the three methods

are close to each other. The computational efficiency measure defined earlier

is calculated for every algorithm and included in the last column of Table

14.1. Prior research summarized in Table 14.1 indicates that QuickProp and

RProp are computationally 4 to 10 times more efficient than SpikeProp. The

momentum factor, α in Eq. (13.11), was reported to improve convergence rates

by 20% (Xin and Embrechts, 2001; McKennoch et al., 2006) but this was not
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FIGURE 14.2
The synapses between two presynaptic neurons and a postsynaptic neuron
where (a) no presynaptic neuron is exclusively excitatory or exclusively in-
hibitory and (b) one presynaptic neuron is designated as exclusively excitatory
and the other one as exclusively inhibitory

substantiated by our extensive analysis. This result could not be corroborated

in this research. The use of the momentum factor increased the convergence

in some cases and decreased the convergence in other cases.

Ghosh-Dastidar and Adeli (2007) investigated the convergence for the

three learning algorithms using two different time steps and different learning

rates. The results are tabulated in Tables 14.2 and 14.3. A simulation time

of 50 ms is used in all cases, the same as that reported in Table 14.1. Table

14.2 summarizes the case where no restrictions are placed on the signs of the

weights (no exclusively excitatory or inhibitory neurons are used). Table 14.3

summarizes the results of the case where 4 of the 5 neurons are designated as

exclusively excitatory neurons and the fifth neuron is designated as an exclu-

sively inhibitory neuron. Each number in Tables 14.2 and 14.3 is the average of

values obtained in ten simulations performed using ten different weight seeds
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TABLE 14.1
The best SNN convergence results for the XOR problem reported in the literature to date using three different learning
algorithms and a simulation time of 50 ms

Training Time Learning Limiting No. of Computational

Algorithm Step Rates Convergence Epochs for Efficiency

MSE Convergence

Bohte et al. (2002a) SpikeProp 0.01 η = 0.01 0.25 250 0.8× 10−6

Moore (2002) SpikeProp 0.01 η = 0.01 0.5 121 1.7× 10−6

McKennoch et al. (2006)

SpikeProp 0.025 η = 0.05− 0.50 0.5 127 3.9× 10−6

QuickProp 0.025 η = 0.05− 0.20 0.5 29 1.7× 10−5

RProp 0.025 η+ = 1.3, η− = 0.5 0.5 31 1.6× 10−5
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for network initialization. It should be noted that when all neurons are des-

ignated as exclusively excitatory the number of convergence epochs increases

drastically. As such, this strategy is not used in SNN. The numbers of epochs

for convergence shown in Tables 14.2 and 14.3 in the case of QuickProp and

RProp are greater than those reported by McKennoch et al. (2006) because

different parameter values are used in this research. Comparable numbers are

obtained when the same parameter values are used.

The following three observations are made based on extensive parametric

studies performed in this research:

1. Effect of exclusively excitatory and inhibitory neurons : The SNN con-

vergence is slower in all cases when neurons are designated to be exclu-

sively excitatory or inhibitory (Table 14.3) compared with the case where

mixed signs are allowed for synapses (Table 14.2) with the exception

of the SpikeProp algorithm (in both batch and incremental processing

modes) only when a very low learning rate of 0.001 is employed.

2. Effect of time step: A small time step in the range 0.01-0.025 has been

used in the literature for simulation because SNNs could not be trained

accurately using larger values. However, the SNN can be trained accu-

rately using larger values of the time step in the range 0.1 and 1 provided

that proper heuristic rules (described earlier in the chapter) are incor-

porated into the learning algorithms and proper parameter values are

used. This is an important finding for the computational efficiency of the

algorithms. Computational efficiency of all three algorithms increases by

a factor of 4 to 40 when a time step of 1 is used compared with a time

step of 0.1 assuming all other parameters are kept constant. Using a

time step of 1 increases the computational efficiency by a factor of 200-

312 compared with a time step of 0.01 used by Bohte et al. (2002a) and
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TABLE 14.2
Comparison of SNN computational efficiencies (CE) of three learning algorithms for the XOR problem when no exclusively
excitatory or inhibitory neuron is used

Time η SpikeProp SpikeProp QuickProp RProp

Step (Batch) (Incremental) β = 0.1, µ = 1 η+ = 1.2, η− = 0.5

Epoch CE Epoch CE Epoch CE Epoch CE

1 0.001 180 1.1× 10−4 233 8.6× 10−5 85 1.1× 10−4 93 2.2× 10−4

1 0.01 58 3.4× 10−4 38 45.3× 10−4 62 3.2× 10−4 - -

1 0.1 124 1.6× 10−4 500 4.0× 10−5 147 1.4× 10−4 - -

0.1 0.001 183 1.1× 10−5 252 7.9× 10−6 80 2.5× 10−5 141 1.4× 10−5

0.1 0.01 53 3.8× 10−5 46 4.3× 10−5 84 2.4× 10−5 - -

0.1 0.1 500 4.0× 10−6 500 4.0× 10−6 179 1.1× 10−5 - -
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TABLE 14.3
Comparison of SNN computational efficiencies (CE) of three learning algorithms for the XOR problem when four exclusively
excitatory neurons and one exclusively inhibitory neuron are used

Time η SpikeProp SpikeProp QuickProp RProp

Step (Batch) (Incremental) β = 0.1, µ = 1 η+ = 1.2, η− = 0.5

Epoch CE Epoch CE Epoch CE Epoch CE

1 0.001 157 1.3× 10−4 117 1.7× 10−4 200 1.0× 10−4 426 4.7× 10−5

1 0.01 500 4.0× 10−5 500 4.0× 10−5 419 4.8× 10−5 - -

1 0.1 500 4.0× 10−5 500 4.0× 10−5 500 4.0× 10−5 - -

0.1 0.001 143 1.4× 10−5 98 2.0× 10−5 67 3.0× 10−5 194 1.0× 10−5

0.1 0.01 443 4.5× 10−6 500 4.0× 10−6 358 5.6× 10−6 - -

0.1 0.1 500 4.0× 10−6 500 4.0× 10−6 500 4.0× 10−6 - -
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Moore (2002) and by a factor of 14 to 136 compared with a time step

of 0.025 used by McKennoch et al. (2006).

3. Effect of learning rate, η, in SpikeProp and QuickProp: A learning rate

η = 0.01 results in faster convergence and increases the computational

efficiency by a factor of 3 to 10 compared with learning rates of 0.1

and 0.001 (Tables 14.2 and 14.3). This finding is consistent with the

literature.

14.2.6 Convergence Results for a Simulation Time of 25 ms

To find out whether the computational efficiency can be further improved by

reducing the simulation time, the value of the simulation time is reduced from

50 ms to 20 ms which is expected to be sufficient for temporal integration of

spikes considering the last output spike is at 16 ms. The three algorithms are

investigated using a time step of 1 ms and a limiting convergence MSE of 0.5.

For comparison purposes the learning algorithm learning rates and parameters

are kept the same as those in shown in Tables 14.2 and 14.3. Only one learning

rate value of η = 0.01 is employed for SpikeProp and QuickProp.

It is observed that SpikeProp with incremental processing converges in 38

epochs for a simulation time of 20 ms, resulting in a computational efficiency

of 1.3×10−3 compared with the same 38 epochs for a simulation time of 50 ms,

resulting in a computational efficiency of 5.3×10−4. The three batch process-

ing algorithms, SpikeProp with batch processing, QuickProp, and RProp, fail

to converge within the maximum set limit of 500 epochs. After several dozen

simulation runs and studying the behavior of individual spiking neurons it was

discovered that with the smaller simulation time of 20 ms the batch processing

algorithms are unable to recover from the silent neuron problem even with the

heuristic rule described earlier that forces the neuron to fire. It appears that

with a smaller simulation time, the learning algorithms lack the needed time
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to make the spike time adjustments required to bring the training back on

course.

Next, the simulation time for all three algorithms is increased to 25 ms and

its effect on the training convergence is studied. The following observations

are made:

1. SpikeProp with incremental processing, QuickProp, and RProp converge

in 39, 95, and 93 epochs, respectively. The corresponding computational

efficiencies are 1.0× 10−3, 4.2× 10−4, and 4.3× 10−4.

2. SpikeProp with batch processing still fails to converge and therefore

is removed from the remainder of this investigation. In the rest of the

chapter SpikeProp with incremental processing is referred to simply as

SpikeProp.

3. For RProp, when learning rates are selected as η+ = 1.3 and η− = 0.8 as

suggested by McKennoch et al. (2006) the number of convergence epochs

is reduced to 33 epochs and the computational efficiency is increased

from 4.3× 10−4 to 1.2× 10−3.

4. Optimum QuickProp Parameters : An extensive parametric analysis was

performed to obtain the optimum values of µ and β for convergence

using a time step of 1 ms and η = 0.01. The ranges investigated for

the two parameters µ and β are 0.5-4.5 and 0.05-1, respectively. The

fastest convergence of 28 epochs (computational efficiency of 1.4×10−3)

is achieved when µ = 2.5 and β = 0.1. The variation of number of

convergence epochs with β (using a constant value of µ = 2.5) and with

µ (using a constant value of β = 0.1) are shown in Fig. 14.3 and Fig. 14.4,

respectively, as examples. It is observed that not using β, i.e., assuming

β = 1, increases the number of convergence epochs significantly to 366

epochs from the optimum value of 28.
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Number of convergence epochs versus β (using a constant value of µ = 2.5)
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Number of convergence epochs versus µ (using a constant value of β = 0.1)
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14.2.7 Summary

In this research, the computational efficiencies of the three learning algorithms,

SpikeProp, QuickProp, and RProp, for the XOR problem are comparable

(1.0×10−3, 1.4×10−3, and 1.2×10−3, respectively) when optimum parameter

values are employed. This refutes other published works where SpikeProp is

reported to be 4-10 times less efficient than QuickProp and RProp (Table

14.1). It is noteworthy that the heuristic rules and optimum parameter values

found in this research improve the efficiency of all three algorithms, SpikeProp,

QuickProp, and RProp, by factors of 588, 82, and 75, respectively. The increase

in computational efficiency as a result of a reduced simulation time and an

increased time step becomes even more pronounced for real-world classification

problems involving large datasets, to be discussed next.

14.3 Fisher Iris Classification Problem

14.3.1 Input Encoding

The Fisher iris species classification problem consists of four flower features

(petal width, petal length, sepal width, sepal length) and three classes (three

species of the iris plant: Versicolor, Virginica, and Setosa) (Fisher, 1936; New-

man et al., 1998). The first two classes are not separable linearly. The dataset

consists of 150 samples. Unlike the XOR problem, the inputs are contin-

uous and real-valued and therefore cannot be encoded as easily. Following

Bohte et al. (2002a), a population encoding scheme is used for input encod-

ing. Briefly, each feature is encoded separately by M > 2 identically shaped

overlapping Gaussian functions centered at M locations. The spread of the

Gaussian function is (1/γ)(Imax − Imin)/(M − 2) where Imax and Imin are the
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maximum and minimum values for the encoded feature, respectively, and γ

is an adjustment factor. The center of the ith Gaussian function is located

at Imin + [(2i − 3)/2][(Imax − Imin)/(M − 2)] where i ∈ {1, 2, ,M}. A single

input feature value elicits M different responses in the range 0-1. This range

of values is converted linearly to the encoding range of 0-10 ms (each response

value is multiplied by 10) and rounded to the nearest time step selected for

the SNN. The input spike times are obtained by subtracting the result from 10

to encode a higher value with an earlier spike time and vice versa (similar to

the XOR problem). An example to illustrate this population encoding scheme

for converting a real-valued input Ia = 40 from a range of real-valued inputs

between Imin = 0 and Imin = 100 usingM = 4 Gaussian functions is shown in

Fig. 14.5. The input (Ia = 40) is transformed by the four Gaussian functions

into four real numbers 0.001, 0.332, 0.817, and 0.022. These four numbers are

multiplied by 10, rounded to the nearest time step (assumed equal to 1 in

this example), and the results are subtracted from 10 in order to obtain the

discrete SNN input spike times 10, 7, 2, and 10, respectively (Fig. 14.5).

In this research, first a linear encoding scheme was investigated where the

value for each input feature is converted proportionately to a spike time in

the range 0-10 ms and rounded to the nearest time step. However, for Spike-

Prop this scheme resulted in classification accuracies approximately 30-50%

lower than those obtained using population encoding. As a result, this scheme

was not investigated further with any other learning algorithm. Population

encoding where real-valued inputs are compressed to a small encoding range

of discrete spike times seems to represent the input to SNNs more accurately

and is therefore used in this book.

Due to the compression and discretization, two different input feature val-

ues close to each other may yield the same spike time response and, therefore,

may not be differentiable in the encoding process. This is not desirable when
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FIGURE 14.5
Population encoding scheme to convert a real-valued input Ia = 40 (range of real-valued inputs is from Imin = 0 to Imin = 100)
to M = 4 discrete input spike times {10, 7, 2, 10}
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the classes are not linearly separable. Population encoding transforms each

input feature value into M different spike times (instead of 1) which propor-

tionately increases the differentiability. As M increases, the number of SNN

input neurons and synaptic weights also increase. Therefore, a trade-off must

be made between the computational effort and differentiability.

Several different values of the input encoding adjustment parameter, γ, in

the range of 0.5 to 3.0 were investigated in this research. A value of γ = 1.5

yielded the best classification accuracies which corroborates the observations

made by Bohte et al. (2002a). Therefore, the same value of γ = 1.5 is used

in the simulations reported in the remainder of this chapter. The time decay

constant τ is selected slightly larger than the encoding interval (i.e., 10 ms)

as 11 ms.

14.3.2 Output Encoding

Two output encoding schemes were investigated in this research. In the first

scheme, the three classes are separately encoded by three output neurons,

which is the standard scheme also used by Bohte et al. (2002a) and Xin

and Embrechts (2001). The second scheme employs only one output neuron

(McKennoch et al., 2006) and the three classes are represented by the three

spike times: 15, 20, and 25 ms. Similar to the XOR problem, these values are

selected by trial and error toward the middle of the range of output spike

times, 0 + 2 × 1 = 2 ms to 10 + 2 × 16 = 42 ms. The actual SNN output

spike time is assigned to the class that has the closest representative spike

time. In this research it was observed that the latter scheme yields higher

classification accuracies for RProp and QuickProp by 8-10%. For SpikeProp,

however, both schemes yielded similar results. The latter scheme uses a lower

number of synaptic weights and, therefore, is employed in the remainder of

this chapter.
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14.3.3 SNN Architecture

As a result of population encoding, M input neurons are required per input

feature plus a bias neuron, resulting in a total of 4M + 1 input neurons. The

purpose of the bias neuron is discussed in Section 14.2.2. Two configurations

are investigated in this research. The first configuration employs 10 hidden

neurons and a value of M = 12 which results in 4 × 12 + 1 = 49 input

neurons, similar to Bohte et al. (2002a) and Xin and Embrechts (2001). The

other configuration employs 8 hidden neurons and a value of M = 4 which

results in 4 × 4 + 1 = 17 input neurons (Fig. 14.6), similar to McKennoch

et al. (2006). In this research, the latter configuration yielded slightly higher

classification accuracies by 1-2%. As such, the accuracies are considered com-

parable. The second configuration, however, is preferred because it uses fewer

synaptic weights, thus leading to a reduced computational requirement.

A configuration employing one exclusively inhibitory neuron in the hidden

layer was investigated with SpikeProp only. As observed in the case of the XOR

problem, SpikeProp converges within 500 epochs when a very low learning

rate of η = 0.001 is used but not when a value of η = 0.01 is used. This

configuration was not investigated further with QuickProp and RProp in this

research.

14.3.4 Convergence Criteria: MSE and Training Accuracy

Due to the rounding involved in the output encoding, MSE is not an accurate

measure of SNN training accuracy. Assuming that the SNN output for any

training instance is encoded as one of the three prescribed output spike times

of 15, 20, and 25 ms, an output spike has to be off by at least 3 ms in order to

be classified incorrectly. For instance, an output of 20 ms after the rounding

needs to be in the range 18-22 ms before the rounding. If it is off by 3 ms before

the rounding, i.e., 17 ms or 23 ms, then it would be classified incorrectly as 15



Applications of Improved SNNs 293

0 

6 

1 

20 

7 

3 

10 

B 
. 

. 
. 

. 

5 

0 

B Bias Neuron 

FIGURE 14.6
SNN architecture and an input-output encoding example for the Fisher iris
classification problem
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or 25 ms, respectively. Consider the following two cases: 1) output spikes for 4

out of, say, 100 training instances are off by 3 ms and 2) output spikes for 36

out of 100 training instances are off by 1 ms. Using Eq. (13.4) to compute the

total error over all training instances and dividing the result by the number of

training instances (=100), an MSE of (1/2)×4×32/100 = 0.18 is obtained in

the first case and (1/2)× 36× 12/100 = 0.18 in the second case. Although the

MSE values are identical, 4 spikes are classified incorrectly in the former case

(96% training accuracy) whereas none are classified incorrectly in the latter

case (100% training accuracy). Clearly, for an MSE of 0.18, the first case is the

worst case scenario in terms of the training accuracy. In other words, selecting

MSE = 0.18 implies that the network will yield a training accuracy of at least

96%.

In this work, the minimum desired training accuracy is selected as 95%.

The corresponding limiting convergence MSE is computed as (1/2) × (100 −

95) × 32/100 = 0.225. This ensures a training accuracy of at least 95%. A

rounded limiting convergence MSE of 0.25 (half of the 0.5 value selected for

the XOR case) is used.

14.3.5 Heuristic Rules for Adaptive Simulation Time and

SpikeProp Learning Rate

The simulation time was initially selected as 30 ms, somewhat greater than

the last desired output firing time of 25 ms. However, the batch processing

algorithms, QuickProp and RProp, failed to converge in some cases due to

the silent neuron problem. Increasing the simulation time to 35 ms solves

the problem but decreases the computational efficiency significantly due to

the large size of the dataset. Therefore, the strategy used in this research is

to keep the simulation time fixed at 30 ms and temporarily increase it to

35 ms whenever the network encounters the silent neuron problem. During
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this process of the network adjusting to silent neurons, the error values often

become very large. It is observed sometimes in such a situation that SpikeProp

takes a long time to converge. An adaptive error-dependent learning rate equal

to 1% of MSE with an upper limit of 0.05 is employed for faster convergence.

This heuristic also reduces oscillations at low MSE values where learning rates

less than 0.01 reportedly perform better (Bohte et al., 2002a).

14.3.6 Classification Accuracy and Computational Efficiency

versus Training Size

Table 14.4 summarizes the results of classification accuracy and computational

efficiency obtained with the three learning algorithms. Each simulation is re-

peated 10 times with 10 different initialization weight seeds and 10 randomly

selected training datasets. The training size is varied from 30 (10 training

samples in each class) to 120 (40 training samples in each class) in increments

of 30 (10 training samples in each class) to investigate the learning capabili-

ties of the learning algorithms. The same learning rates that yielded the best

performance for the XOR problem are used for the iris classification problem.

The only exception is the value of η for QuickProp which was reduced to

0.001 because the algorithm did not converge for training size, NT , greater

than 30 for larger values. It is observed that even with this reduced learning

rate QuickProp did not converge within 500 epochs for training sizes greater

than 90 (data not shown in Table 14.4). Figure 14.7 shows the classification

accuracies of the three learning algorithms versus the training size. Figure

14.7 and Table 14.4 show that RProp is consistently the most efficient and

accurate of the three methods.

SpikeProp with incremental processing behaves differently from the two

batch processing algorithms; its classification accuracy decreases with an in-
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TABLE 14.4
Classification accuracy (CA) and computational efficiency (CE) using various training sizes for the iris classification problem

Training SpikeProp QuickProp RProp

Size CA Epoch CE CA Epoch CE CA Epoch CE

30 92.7 37 7.7× 10−4 85.2 103 2.8× 10−4 90.3 31 9.2× 10−4

45 91.5 132 2.2× 10−4 91.4 53 5.4× 10−4 93.4 91 3.1× 10−4

60 91.9 111 2.6× 10−4 91.0 95 3.0× 10−4 94.8 42 6.8× 10−4

75 85.2 43 3.6× 10−4 92.3 52 5.5× 10−4 93.2 38 7.5× 10−4

90 86.2 84 3.4× 10−4 91.7 198 1.4× 10−4 93.5 40 7.1× 10−4

105 80.2 31 9.2× 10−4 - - - 94.7 48 6.0× 10−4

120 75.7 30 9.5× 10−4 - - - 94.7 49 5.8× 10−4
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FIGURE 14.7
Classification accuracy versus training size for the Fisher iris classification
problem using three learning algorithms

crease in training size (Fig. 14.7). However, it yields comparable accuracy at

low training sizes.

14.3.7 Summary

The input and output encoding schemes used in this research result in a

reduced number of synaptic weights by a factor of 4 and simulation time by a

factor of 2, and an increase in the time step by a factor of 100 compared with

Bohte et al. (2002a). The convergence rates in Table 14.4 (for a limiting MSE

of 0.25) are similar to those reported in literature (approximately 15 epochs

for a limiting convergence MSE of 0.7). Overall, the computational effort is

decreased by a factor of 2× 4× 100 = 800. The highest average classification

accuracy value of 94.8% is obtained using RProp. Due to the inconsistent
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performance and non-convergence of QuickProp, only SpikeProp and RProp

are investigated for the EEG classification problem.

14.4 EEG Classification Problem

14.4.1 Input and Output Encoding

The mixed band EEG classification problem consists of the nine features and

three classes as described in Chapter 8. None of the three classes is linearly

separable. The SNN model is applied to this complex problem with a large

dataset of 300 samples using SpikeProp and RProp. The same population

encoding scheme used for the iris classification problem is employed for this

problem to convert the continuous and real-valued inputs to discrete input

spike times. An issue to be decided is the number of Gaussian functions (M)

for encoding the input. A large number forM results in a proportionately large

number of SNN input neurons which increases the computational requirement.

In this research, four different values of M in the range 4 to 7 are investigated

with the goal of maximizing the classification accuracy. A value of γ = 1.5

is used for the adjustment factor in the spread computation of the Gaussian

function, the same value used for the iris classification problem.

Only one neuron is used in the output layer. The three classes are repre-

sented by the three spike times: 15, 20, and 25 ms. These values are selected

by trial and error toward the middle of the range of output spike times, 2 ms

to 42 ms. This range is the same as that for the iris classification problem

because the input ranges and the modeling of synaptic delays are identical.
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14.4.2 SNN Architecture and Training Parameters

As a result of population encoding, M input neurons are required for each

of the nine input features plus a bias neuron, resulting in a total of 9M +

1 input neurons. Corresponding to the four values of M investigated in this

research, the number of SNN input neurons (including the bias neuron) used

are 9 × 4 + 1 = 37, 9 × 5 + 1 = 46, 49 × 6 + 1 = 55, and 9 × 7 + 1 = 64.

Two different numbers of neurons in the hidden layer were investigated: 8 and

12. Use of the larger number did not improve the classification accuracies.

Consequently, the results presented in the chapter are for 8 hidden neurons.

Similar to the SNN model used for the iris classification problem, a simula-

tion time of 30 ms is selected. The simulation time is increased temporarily to

35 ms when the silent neuron problem is encountered. The same time step of 1

ms, time decay constant of τ = 11 ms, and SpikeProp learning rate of η = 0.01

are used as for the iris classification problem. It was found that the RProp

learning rates used previously (η+ = 1.3 and η− = 0.8) were too large for this

problem and the network did not converge for large training sizes. Therefore,

the values of the learning rates were reduced to η+ = 1.0 and η− = 0.7. The

results presented in the chapter are based on these values.

14.4.3 Convergence Criteria: MSE and Training Accuracy

The minimum desired training accuracy is selected as 95%. Since the output

encoding for the EEG classification problem is selected to be the same as that

for the iris classification problem, the limiting convergence MSE correspond-

ing to the desired training accuracy of 95% is 0.225, as explained previously.

Therefore, a rounded limiting convergence MSE of 0.25 is used. Further, for

the EEG classification problem, a higher value of MSE = 1.0 (desired mini-

mum training accuracy = 77.8%) is also used to study the trade-off between

classification accuracy and computational efficiency.
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14.4.4 Classification Accuracy versus Training Size and

Number of Input Neurons

The training size is varied from 3NT = 30 (NT = 10 EEGs in each class) to

3NT = 150 (NT = 50 EEGs in each class) in increments of 30 (10 EEGs in

each class) in order to investigate the variation in classification accuracy. The

variation of the classification accuracy versus the training size using Spike-

Prop is shown in Fig. 14.8 for two different numbers of input neurons, 55

(corresponding to M = 6) and 64 (corresponding to M = 7). In both cases it

is observed that the classification accuracy first increases and then decreases

with the training size. A larger accuracy is obtained with a larger number of

input neurons. Employing 64 input neurons yields the highest classification

accuracy of 89.5% with a training size of 90 EEGs. The classification accu-

racies using 55 input neurons for training sizes greater than 90 EEGs and 64

input neurons for training sizes greater than 120 EEGs are much lower than

the values shown in Fig. 14.8 and, therefore, not included.

RProp performs much better than SpikeProp for larger training sizes with

similar computational efficiencies. As the training size is increased, the clas-

sification accuracy increases and plateaus near 92% for training size greater

than 90 EEGs (Fig. 14.9). Increasing the number of input neurons does not

affect the RProp classification accuracy significantly (not shown in Fig. 14.9).

The decrease in classification accuracy with an increase in training size

observed for SpikeProp is surprising and undesirable. The behavior (also ob-

served for the iris classification problem) is consistent with that observed dur-

ing overtraining but this is not expected in this situation. It appears that the

incremental nature of weight updates in SpikeProp plays a role possibly in two

ways. First, in each epoch SpikeProp updates weights NT times (equal to the

training size). Therefore, as the training size increases, the number of updates

increases. In contrast, in RProp, the weights are updated once every epoch
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FIGURE 14.8
Classification accuracy versus training size using SpikeProp for the EEG clas-
sification problem

irrespective of training size. The increased number of weight updates repeat-

edly with the same training instances may lead to overtraining in SpikeProp.

Second, in SpikeProp each weight update is decided by the network error

from one training instance whereas in RProp the cumulative network error

from all training instances is employed. The latter may lead to the network

converging to a minimum that is more generalized and therefore yields good

generalization or classification accuracy.

14.4.5 Classification Accuracy versus Desired Training

Accuracy

It is noteworthy that for SpikeProp when the convergence MSE was increased

from 0.25 (minimum desired training accuracy = 95.0%) to 1.0 (minimum

desired training accuracy = 77.8%), the computational efficiency improved, as
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FIGURE 14.9
Classification accuracy versus training size using RProp (M = 5) for the EEG
classification problem

expected, due to a reduction in the number of convergence epochs. However,

the classification accuracy was reduced drastically to the range 30-50%. In

contrast, for RProp, the classification accuracy remained the same, around

92% using MSE = 1.0. However, the computational efficiency is doubled as

the number of convergence epochs is reduced by half to 28.

14.4.6 Summary

Using RProp with 46 input neurons (M = 5) and convergence MSE = 1.0

yields the highest classification accuracy of 92.5% and convergence rate of

28 epochs with a training size of 120 EEGs. Although RProp and SpikeProp

have comparable computational efficiencies, RProp yields significantly higher

classification accuracies, especially with larger training sizes. RProp is robust
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with respect to changes in training data and initialization weight seeds as

inferred from the low standard deviations of 1.9 and 1.6, respectively.

14.5 Concluding Remarks

In this research three classification problems, XOR, Fisher iris, and EEG were

investigated using three different SNN learning algorithms (SpikeProp, Quick-

Prop, RProp). SpikeProp was investigated with both incremental and batch

processing modes. Extensive parametric studies were performed to discover

heuristics and find optimum values of the parameters with the goal of improv-

ing the computational efficiency and classification accuracy of the learning

algorithms. Computational efficiency is increased by decreasing the simula-

tion time, increasing the time step, and decreasing the number of convergence

epochs. The result is a remarkable increase in computational efficiency. For

the XOR problem, the computational efficiency of SpikeProp, QuickProp, and

RProp is increased by a factor of 588, 82, and 75, respectively, compared with

the results reported in the literature.

For the small XOR problem, it is observed that the three learning algo-

rithms, SpikeProp (with incremental and batch processing modes), Quick-

Prop, and RProp, have comparable computational efficiencies. As more com-

plex real-world classification problems are explored, the size of the training

dataset increases, which leads to a deterioration of the convergence of the

batch processing algorithms except RProp. SpikeProp with incremental pro-

cessing and RProp have similar computational efficiencies for the more com-

plex iris and EEG classification problems. However, RProp yields higher clas-

sification accuracies and its classification accuracy increases with an increase
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in the size of the training dataset. An opposite trend is observed with Spike-

Prop, an undesirable trait.

Based on extensive analyses performed in this research it is concluded

that out of the three algorithms investigated RProp is the best learning al-

gorithm because it has the highest classification accuracy, especially for large

size training datasets, with about the same computational efficiency provided

by SpikeProp. The error surface for the SNN model is uneven, which can be

problematic for stable weight adjustments in learning algorithms. Improved

classification accuracy by RProp can be explained by the fact that its weight

adjustments do not depend on the magnitude of the gradients of the error sur-

face. The SNN model for EEG classification and epilepsy and seizure detection

uses RProp as the learning algorithm. This model yields a high classification

accuracy of 92.5%.



15

A New Supervised Learning Algorithm for

Multiple Spiking Neural Networks

15.1 Introduction

An important characteristic of a biological presynaptic neuron is its ability

to affect a postsynaptic neuron differentially over time by inducing PSPs of

varying magnitudes at various time instants. In a biological system, this abil-

ity is incorporated using a combination of two strategies: 1) multiple spikes

at different times (spike train) from the presynaptic neuron to the postsynap-

tic neuron and/or 2) multiple synapses between two neurons with different

synaptic weights and delays. The SNN model used by Bohte et al. (2002a)

and other researchers extending their work (Xin and Embrechts, 2001; Moore,

2002; Schrauwen and van Campenhout, 2004; Silva and Ruano, 2005; McKen-

noch et al., 2006; Ghosh-Dastidar and Adeli, 2007) is a simplified model in

which only the latter strategy, i.e., multiple synapses, was employed and each

presynaptic neuron was restricted to the emission of a single output spike.

This model will be referred to henceforth as the single-spiking SNN model.

Due to the single-spike restriction for the SNN neuron output, informa-

tion is primarily encoded with the time to first spike. The multiple synapses

(with different delays) per connection, however, enable the encoding to retain

305



306 Automated EEG-Based Diagnosis of Neurological Disorders

a temporal aspect. In reality, these multiple synapses perform the function of

modeling the spike train rather than modeling the biological aspect of the neu-

ronal connections. In the authors’ opinion, a more realistic implementation is

multiple synapses per connection where every synapse has the ability to trans-

mit spike trains (rather than single spikes). Ideally, the number of synapses

per connection would also be an adaptive and learnable parameter. The prob-

lem with this strategy of using spike trains is a familiar one. It appeared that

it would be impossible to extend the BP-based learning algorithms to such

a model. Kaiser and Feldbusch (2007) attempted to circumvent this problem

entirely by means of a compromise between rate encoding and pulse encoding

by using a rate encoding activation function over discrete time periods. Their

argument was that individual spikes can be modeled using an infinitesimally

small time period that would contain only a single spike.

New learning algorithms have recently been developed that directly adapt

the gradient descent based training algorithm for SNNs that convey informa-

tion in the form of spike trains instead of single spikes (Booij and Nguyen,

2005; Ghosh-Dastidar and Adeli, 2009a). In these models multiple synapses

per connection are no longer necessary because the spike trains inherently

introduce the temporal component of PSP induction. Multiple synapses are

used nevertheless because, together with spike train communication, they rep-

resent a general case similar to biological neurons. As mentioned earlier, if the

number of synapses is a learnable parameter, each pair of neurons in the net-

work can have a different number of synapses. The biological realism of SNN

learning would be further advanced as synapses between neurons are added

or removed as required by the learning process. The adaptive adjustment of

the number of synapses similar to the model proposed by Schrauwen and van

Campenhout (2004) holds significant potential and should be investigated fur-

ther.
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Booij and Nguyen (2005) argued that the SpikeProp algorithm and its

variants were, in principle, applicable to recurrent architectures (in addition

to simple feedforward architectures) for SNNs. The only restriction was that

the input neurons should not be postsynaptic to any neurons and the out-

put neurons should not be presynaptic to any neurons. They investigated the

ability of their learning algorithm to learn two benchmark classification prob-

lems. One was the classical XOR problem. The other was the classification of

Poisson spike trains. Two spike trains were generated using Poisson processes

(Booij and Nguyen, 2005). Varying degrees of random noise were added to the

two spike trains to create ten noisy versions of each spike train. The twenty

spike trains were divided into training and testing sets and input to the SNN.

Their learning algorithm achieved 89% accuracy in identifying the original

noise-free spike trains when presented with the noisy version as input.

In this chapter, a new supervised learning or training algorithm is pre-

sented for multiple spiking neural networks that is based on more plausible

neuronal dynamics (i.e., pulse-encoding spike-train communication) compared

to traditional rate-encoding based ANNs and single-spiking SNNs. The new

SNN model is called multi-spiking neural network (MuSpiNN ) in which the

presynaptic neuron transmits information to the postsynaptic neuron in the

form of multiple spikes via multiple synapses. The new learning algorithm for

training MuSpiNN is dubbed Multi-SpikeProp (Ghosh-Dastidar and Adeli,

2009a).

The output spike train of the ith presynaptic neuron input to the jth

postsynaptic neuron, the resultant PSPs, and the output spike train of the

jth postsynaptic neuron are shown in Fig. 15.1. In this figure, the superscript

(g) indicates the sequence of the particular spike, and the time of the gth

output spike of the presynaptic neuron i is denoted by ti
(g). For example,

the time of the first output spike of the presynaptic neuron i is denoted by
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FIGURE 15.1
The output spike train of the ith presynaptic neuron input to the jth post-
synaptic neuron, the resultant PSPs, and the output spike train of the jth
postsynaptic neuron

ti(g = 1) or ti
(1). The same notation is used for the postsynaptic neuron j

except that the subscript is changed to j.

The SNN model and learning algorithm discussed in this chapter differ

from those of Booij and Nguyen (2005) in three key aspects: 1) the dynamics

of the spiking neuron, 2) the learning algorithm, and 3) the heuristic rules

and optimum parameter values discovered by the authors that improve the

computational efficiency of the underlying SpikeProp algorithm by two orders

of magnitude, as summarized in Table 15.1 (Ghosh-Dastidar and Adeli, 2007).

The performance of MuSpiNN and Multi-SpikeProp is evaluated using three

different problems: the XOR problem, the Fisher iris classification problem,

and the EEG classification problem for epilepsy and seizure detection. For the

iris and EEG classification problems, a modular architecture is employed to

reduce each 3-class classification problem to three 2-class classification prob-

lems with the goal of improving the classification accuracy.
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TABLE 15.1
Computational efficiency of the SpikeProp learning algorithm for the single-spiking SNN reported in the literature for the
XOR problem using a simulation time of 50 ms. [computational efficiency = time step / (simulation time × no. of epochs for
convergence)]

Time Limiting No. of Epochs Computational

Step Convergence MSE for Convergence Efficiency

Bohte et al. (2002a) 0.01 0.25 250 0.8× 10−6

Moore (2002) 0.01 0.5 121 1.7× 10−6

McKennoch et al. (2006) 0.025 0.5 127 3.9× 10−6

Ghosh-Dastidar and Adeli (2007) 0.025 0.5 39 1.0× 10−3
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15.2 Multi-Spiking Neural Network (MuSpiNN) and

Neuron Model

15.2.1 MuSpiNN Architecture

The architecture of MuSpiNN is shown in Fig. 15.2(a). In contrast to tradi-

tional feedforward ANNs where two neurons are connected by one synapse

only, the connection between two MuSpiNN neurons is modeled by multiple

synapses, as shown in Fig. 15.2(b). In this aspect, the MuSpiNN model is sim-

ilar to the single-spiking SNN described by Natschläger and Ruf (1998) and

Bohte et al. (2002a), as discussed in Chapter 13 (Fig. 13.7). The fundamental

difference is in the ability of a MuSpiNN neuron to assimilate multiple input

spikes from presynaptic neurons and emit multiple output spikes in response.

In other words, information transmitted from one neuron to the next is en-

coded in the form of a spike train instead of a single spike. The magnified

connection in Fig. 15.2(b) displays the temporal sequence of spikes (short ver-

tical lines) from the presynaptic neuron, the synaptic weights (proportionate

to the size of the star shaped units in the center), and the resulting PSPs

(proportionate to the size of the PSP).

The network is assumed to be fully connected, i.e., a neuron in any layer

l is connected to all neurons in the preceding layer l+1 (layers are numbered

backward starting with the output layer, numbered as layer 1). Consequently,

a neuron j (∈ {1, 2, .., Nl}) in layer l is postsynaptic to Nl + 1 presynaptic

neurons, whereNl is the number of neurons in layer l. Each presynaptic neuron

i (∈ {1, 2, .., Nl+1}) is connected to the postsynaptic neuron j via K synapses.

The number K is constant for any two neurons. The weight of the kth synapse

k (∈ {1, 2, ..,K}) between neurons i and j is denoted by wk
ij . Assuming that

presynaptic neuron i fires a total of Gi spikes and the gth spike (g ∈ [1, Gi]) is
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(a) Spiking neural network architecture; (b) multiple synapses transmitting
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fired at time ti
(g) (Fig. 15.1), the kth synapse transmits the gth spike to the

postsynaptic neuron at time ti
(g) + dk where dk is the delay associated with

the kth synapse. The modeling of synapses is identical for all neurons, and

the kth synapse between any two neurons has the same delay, dk. Following

the same notation, the output of the postsynaptic neuron j is a sequence of

Gj spikes, in which the gth spike (g ∈ [1, Gj]) is fired at time tj
(g) (Fig. 15.1).

15.2.2 Multi-Spiking Neuron and the Spike Response Model

As long as the internal state of a biological postsynaptic neuron does not

exceed the neuron threshold (Fig. 15.3), the internal state is defined as the

sum of the PSPs induced by all input spikes from all presynaptic neurons and

synapses. Mathematically, the internal state of the postsynaptic neuron j in

layer l at time t is modeled as (Gerstner and Kistler, 2002):

xj(t) =

Nl+1
∑

i=1

K
∑

k=1

Gi
∑

g=1

wk
ijǫ(t− ti

(g) − dk) (15.1)

where ǫ represents the spike response function, i.e., the PSP or the unweighted

internal response of the postsynaptic neuron to a single spike. The three sum-

mations represent the weighted sum over all (Gi) input spikes from all (Nl+1)

presynaptic neurons to the jth neuron in layer l via all (K) synapses. Zero

internal state is called the resting potential (Fig. 15.3). Similar to the spike

response model for the SNN discussed in Chapter 13, the α-function described

by Eq. (13.2) is used as the spike response function (Bohte et al., 2002a; Gerst-

ner and Kistler, 2002). Booij and Nguyen (2005) use a different spike response

function defined as the difference of two exponential functions. The model

and the learning algorithm presented in this chapter can also incorporate that

function but no significant changes in the result are expected.

When the internal state exceeds the neuron threshold, θ, the neuron fires
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FIGURE 15.3
The internal state of a postsynaptic neuron in response to a presynaptic spike
(not shown in the figure) showing the action potential, and repolarization and
hyperpolarization phases.

an output spike at the time instant tj , and the internal state immediately

starts dropping to the resting potential of the neuron (Fig. 15.3). This is the

repolarization phase (Fig. 15.3). The duration of the repolarization phase is

known as the absolute refractory period in which the neuron cannot fire regard-

less of the number or frequency of the input spikes (Fig. 15.3). Subsequently,

the internal state is kept at a value lower than the resting potential by various

biological processes. As a result, it becomes difficult for the neuron to reach

the threshold and fire again for a period of time, known as the relative refrac-

tory period . This is the hyperpolarization phase (Fig. 15.3) (Bose and Liang,

1996; Kandel et al., 2000). Due to repolarization and hyperpolarization, the

internal state of a postsynaptic neuron depends not only on the timing of the

input spikes from all presynaptic neurons but also on the timing of its own
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output spikes. A more detailed discussion of the modeling of the internal state

of a postsynaptic neuron is presented in Chapter 13.

Since a single-spiking neuron is restricted to firing only one output spike,

the single-spiking SNN model of Bohte et al. (2002a) is unaffected by the tim-

ing of its own output spikes. Eqs. (15.1) and (13.2) are sufficient to represent

the dynamics of a single-spiking neuron but not for the multi-spiking neuron

in the new MuSpiNN model. To model the relative refractory period for the

multi-spiking neuron, a refractoriness term is added to the right-hand side

of Eq. (15.1). This refractoriness term ensures that the membrane potential

becomes negative after the firing of a spike, which makes it difficult for the

neuron to emit subsequent spikes for a period of time, as explained earlier.

Therefore, in this chapter the internal state of the postsynaptic neuron j in

layer l at time t is expressed as (Gerstner and Kistler, 2002):

xj(t) =

Nl+1
∑

i=1

K
∑

k=1

Gi
∑

g=1

wk
ijǫ(t− ti

(g) − dk) + ρ(t− tj
(f)) (15.2)

where ρ represents the refractoriness function and tj
(f) is the timing of the

most recent, the fth, output spike from neuron j prior to time t. For t < tj
(1),

the time of the first output spike, the refractoriness term is zero and Eq. (15.2)

is reduced to Eq. (15.1). Equation (15.2) is different from the corresponding

equation presented in the model of Booij and Nguyen (2005) where the re-

fractoriness term is summed over all output spikes from neuron j prior to

time t (instead of only the most recent one). That model assumes that at any

time t, the internal state of the neuron is affected by the refractoriness due to

all spikes prior to time t. This assumption is biologically unrealistic because

for a biological neuron, the ensuing refractoriness after every spike has to be

overcome before the neuron can spike again. Therefore, when the neuron does

spike the next time, it is implicit that the preceding refractoriness has been
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overcome and is of no further consequence. From this progression of events it

is clear that, at any time, no refractoriness is retained from any previous spike

except the most recent one, which is reflected in Eq. (15.2).

In this chapter, ρ is expressed as:

ρ(t) =







−2θet/τR when t > 0

0 when t ≤ 0
(15.3)

where τR is the time decay constant that determines the spread shape of

the refractoriness function. Figure 15.4 shows the refractoriness function for

three different values of τR. The function has a negative value in the range

t = 0 to ∞ with a minimum value of −2θ at t = 0. Its value increases

with time and approaches zero at t = ∞. Substituting Eq. (15.3) in Eq.

(15.2) ensures that at the instant of spike firing, tj
(f), the internal state of

the neuron decreases instantaneously from the threshold θ to θ − 2θ = −θ.

Subsequently, the internal state remains lower than the resting potential and

increases exponentially to the resting potential which accurately models the

relative refractory period and the hyperpolarization phase shown in Fig. 15.3.

The corresponding equation in Booij and Nguyen (2005) uses a coefficient of

−θ for the exponential term in Eq. (15.3) which reduces the internal state

to the resting potential (but not lower) at the instant of spike firing. At no

subsequent point in time does the internal state decrease to a value less than

the resting potential, which does not accurately model the relative refractory

period and the hyperpolarization phase (Fig. 15.3). Figure 15.5 shows the

mathematical model of the overall neuron dynamics represented by Eq. (15.1).

This model is an approximate representation of the dynamics of the biological

neuron shown in Fig. 15.3. The absolute refractory period observed in the

biological model (Fig. 15.3) is neglected in the mathematical model.
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The refractoriness function ρ for three different values τR = 10, 20, and 30.
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The mathematical model of the internal state of a postsynaptic neuron in
response to a presynaptic spike (not shown in the figure) showing the action
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15.3 Multi-SpikeProp: Backpropagation Learning Algo-

rithm for MuSpiNN

15.3.1 MuSpiNN Error Function

Supervised learning requires the availability of a set of actual or desired output

spike trains which is the desired output from MuSpiNN given a set of input

spike trains (one spike train per input neuron). A measure of the difference

between the computed and desired outputs is used to compute the network

error. MuSpiNN is trained by backpropagating the error (as explained shortly)

and adjusting the synaptic weights such that the network error is minimized.

Desired outputs for SNNs, unlike those for traditional neural networks, have to

be in terms of discrete spike times. The transformation of real-valued outputs

to discrete spike times is known as output encoding and it can be achieved in a

number of different ways, as described in Chapter 14. The appropriateness of

any particular output encoding depends on the specific problem application.

In this chapter, neurons in the output layer of MuSpiNN are restricted to

emitting a single output spike so that the error function is computed with

no additional difficulty. The availability of multiple output spikes at various

discrete times requires a more complicated error function. The complexity is

compounded by the fact that the number of spikes in the computed output

spike trains is variable and highly likely to be different from the number in

the desired output spike trains. Such an error function needs to be explored in

the context of the output encoding for selected problems, which is beyond the

scope of this book. As such, considering only one output spike, the network
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error is computed as follows:

E =
1

2

N1
∑

j=1

(tj − tdj )
2 (15.4)

where tj and tdj are the computed and desired spike times, respectively, for

the jth neuron in the output layer (l = 1).

15.3.2 Error Backpropagation for Adjusting Synaptic Weights

The generalized delta update rule is employed to backpropagate the error

and adjust the synaptic weights. The weight adjustment for the kth synapse

between the ith presynaptic and the jth postsynaptic neuron is computed as:

∆wk
ij = −η∇Ek

ij (15.5)

where η is the learning rate and ∇Ek
ij is the gradient (with respect to the

weights) of the error function for the kth synapse between the ith presynaptic

and jth postsynaptic neuron. The computation of the gradient is different for

the output layer and the hidden layers and is described separately for the two

in the following sections. For the sake of clarity, a neuron in the output layer

(l = 1) will be designated with the subscript j and a neuron in the hidden

layer immediately presynaptic to the output layer (l = 2) with the subscript

i. A neuron in the input or hidden layer presynaptic to the hidden layer l = 2

is designated by the subscript h. The subscripts of all other variables are

adjusted based on this nomenclature.
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15.3.3 Gradient Computation for Synapses Between a Neu-

ron in the Last Hidden Layer and a Neuron in the

Output Layer

Using the chain rule the error gradient at the postsynaptic neuron output spike

time instant, t = tj , is represented as the product of three partial derivative

terms:

∇Ek
ij =

∂E

∂wk
ij

=
∂E

∂tj

∂tj
∂xj(tj)

∂xj(tj)

∂wk
ij

(15.6)

The first, third, and second partial derivative terms are derived in that order,

which is the order of their complexity. The first partial derivative term on the

right-hand side is computed as:

∂E

∂tj
=

∂





1

2

N1
∑

j=1

(

tj − tdj
)2





∂tj

= (tj − tdj ) (15.7)

The third partial derivative term on the right-hand side of Eq. (15.6) is com-

puted as:

∂xj(tj)

∂wk
ij

=

∂

[

N2
∑

i=1

K
∑

k=1

Gi
∑

g=1

wk
ijǫ(tj − ti

(g) − dk) + ρ(tj − tj
(f))

]

∂wk
ij

(15.8)

Since the neurons in the output layer are permitted to fire only one output

spike, the refractoriness term in the numerator of Eq. (15.8) becomes zero.

Because the weight of any one synapse is independent of the weights of the

other synapses, the summations with respect to i and k vanish and Eq. (15.8)
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is reduced to:

∂xj(tj)

∂wk
ij

=

∂

[

Gi
∑

g=1

wk
ijǫ(tj − ti

(g) − dk)

]

∂wk
ij

(15.9)

Since the α-function, ǫ, is independent of the synaptic weights, Eq. (15.9) is

further simplified to:

∂xj(tj)

∂wk
ij

=

Gi
∑

g=1

ǫ(tj − ti
(g) − dk) (15.10)

Eq. (15.10) is a more generalized form of the one used by Bohte et al. (2002a),

which is limited to single input spikes from neurons presynaptic to the output

layer neurons.

The second partial derivative term in Eq. (15.6), ∂tj/∂xj(tj), cannot be

computed directly because tj cannot be expressed as a continuous and differ-

entiable function of xj(tj), as explained earlier. Bohte et al. (2002a) overcome

this problem by assuming that xj(tj) is a linear function of tj around the

output spike time instant, t = tj , and approximate the term ∂tj/∂xj(tj) as

−1/ [∂xj(tj)/∂tj ]. In this chapter, the authors arrive at the same solution but

offer a different or, perhaps, a clearer explanation of this approximation.

Consider an example graph of the internal state xj(t) versus time t shown

in Fig. 15.6(a). The internal state reaches threshold θ and fires an output

spike at time tj . Before reaching the threshold θ, the internal state xj(t) is

independent of the threshold. A decrease in θ leads to a decrease in the output

spike time tj (the neuron fires earlier) and vice versa. This is evident from Fig.

15.6(a) where output spike time tj occurs at the intersection of the dashed

line representing θ and the solid line representing the graph of xj(t). As a

result, if θ is considered as a variable parameter, any point (t, xj(t)) can be

represented by the point (tj , θ). Figure 15.6(b) shows the variation of tj with

θ. It is observed that if θ is reduced to θ1, tj is proportionately reduced to tj1.
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(a) Internal state, xj(t), versus time, t; (b) neuron threshold, θ, versus output
spike time, tj
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However, when θ1 is further reduced to θ2, tj1 is disproportionately reduced

to tj2. The threshold θ at which the spike time jumps is designated θjump in

this chapter.

Following the literature in SNN research, it is assumed that the value

of the threshold θ is not close to θjump. Based on extensive modeling and

simulations it has been found that limiting learning rates and weight changes

during learning contains the error function locally within the error surface and

avoids drastic jumps in spike times. This can be ensured by choosing a low

learning rate and developing heuristic rules to be discussed later. As a result,

the assumption of linearity holds around the spike time tj where the slopes of

the two graphs shown in Figs. 15.6(a) and (b) are identical, i.e.,

∂xj(t)

∂t

∣

∣

∣

∣

t=tj

=
∂θ

∂tj
(15.11)

The left-hand side of Eq. (15.11) is approximated instantaneously as

∂xj(tj)/∂tj for small changes in xj(t). As a result of the assumption of lin-

earity around time tj , the slope of the graph of θ versus tj is computed as:

∂tj
∂θ

=
∆tj
∆θ

=
1

∆θ/∆tj

=
1

∂θ/∂tj
(15.12)

where ∆tj represents an infinitesimal change in tj and ∆θ represents an in-

finitesimal change in θ. Moreover, to increase the output spike time tj , the

internal state of the neuron xj(tj) has to be decreased or, equivalently, the

threshold θ has to be increased. This opposite relationship between the in-

ternal state and threshold, with respect to the output spike time, is modeled
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as:
∂tj

∂xj(tj)
= −∂tj

∂θ
(15.13)

From Eqs. (15.11), (15.12), and (15.13), the second partial derivative term in

Eq. (15.6) becomes
∂tj

∂xj(tj)
=

−1

∂xj(tj)/∂tj
(15.14)

The denominator of Eq. (15.14) is computed as:

∂xj(tj)

∂tj
=

∂

[

N2
∑

i=1

K
∑

k=1

Gi
∑

g=1

wk
ijǫ(tj − ti

(g) − dk) + ρ(tj − tj
(f))

]

∂tj
(15.15)

Similar to the derivation of Eq. (15.9), since the neurons in the output layer

are permitted to fire only one output spike, the refractoriness term in the

numerator of Eq. (15.15) becomes zero. Because the output spike times trans-

mitted through one synapse are independent of the output spike times through

the other synapses, the summations can be placed outside the derivative and

Eq. (15.15) is rewritten as:

∂xj(tj)

∂tj
=

N2
∑

i=1

K
∑

k=1

Gi
∑

g=1

wk
ij

ǫ(tj − ti
(g) − dk)

∂tj

=

N2
∑

i=1

K
∑

k=1

Gi
∑

g=1

wk
ijǫ(tj − ti

(g) − dk)

(

1

(tj − ti
(g) − dk)

− 1

τ

)

(15.16)

Substituting Eq. (15.16) in Eq. (15.14), we obtain

∂tj
∂xj(tj)

=
−1

N2
∑

i=1

K
∑

k=1

Gi
∑

g=1

wk
ijǫ(tj − ti

(g) − dk)

(

1

(tj − ti
(g) − dk)

− 1

τ

)

(15.17)

In summary, the error gradient for adjusting the synaptic weights, ∇Ek
ij , is

computed using Eqs. (15.6), (15.7), (15.10), and (15.17).
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Figures 15.6(a) and (b) can be used to explain the reason for requiring low

learning rates and various heuristic rules to limit the changes of the synaptic

weights (Ghosh-Dastidar and Adeli, 2007). In the example shown, assume that

the weights need to be increased in order to increase the internal state of the

neuron (or, equivalently, decrease the threshold) and obtain an earlier spike

time. As long as the weight changes are small, the graph of θ versus tj remains

continuous and the assumption of linearity is not unreasonable. However, if

the changes in the weights are too large and lead to the region around θjump

in Fig. 15.6(b), a small change in θ leads to a disproportionate change in the

output spike time tj which jumps to a much earlier time. In this region, the

assumption of linearity does not hold, and SNN training fails.

15.3.4 Gradient Computation for Synapses Between a Neu-

ron in the Input or Hidden Layer and a Neuron in

the Hidden Layer

For a postsynaptic neuron i in a hidden layer l = 2, the error is backpropagated

from all neurons in the output layer, and the gradient is computed using the

chain rule as:

∇Ek
hi =

Nl
∑

j=1

∂E

∂wk
hi

=

Nl
∑

j=1

∂E

∂ti
(g)

∂ti
(g)

∂wk
hi

(15.18)

where the subscript h denotes the hth neuron in layer l+1 that is presynaptic

to the postsynaptic neuron i in layer l. The first partial derivative term in

Eq. (15.18) models the dependence of the network error in Eq. (15.4) on the

output spike times ti
(g) from the neuron i in the hidden layer l = 2 and is
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expanded using the chain rule as:

∂E

∂ti
(g)

=
∂E

∂tj

∂tj
∂xj(tj)

∂xj(tj)

∂ti
(g)

(15.19)

The first two partial derivative terms on the right-hand side are computed

according to Eqs. (15.7) and (15.17), respectively. The last partial derivative

term is computed as:

∂xj(tj)

∂ti
(g)

=

∂





Nl+1
∑

i=1

K
∑

k=1

Gi
∑

g=1

wk
ijǫ(tj − ti

(g) − dk) + ρ(tj − tj
(f))





∂ti
(g)

(15.20)

The output spike times, ti
(g), from neuron i in the hidden layer l = 2 are the

input spike times for neuron j in the output layer l = 1 and independent of

the output spike times for neuron j. Therefore, the refractoriness term in the

derivative vanishes. The summation with respect to i also vanishes because the

output spikes of any neuron in the hidden layer do not depend on the output

spikes of any other neuron in the same layer. Since the synaptic weights are

independent of the output spike times, the factor wk
ij is placed outside the

derivative and Eq. (15.20) is reduced to:

∂xj(tj)

∂ti
(g)

=
K
∑

k=1

Gi
∑

g=1

wk
ij

ǫ(tj − ti
(g) − dk)

∂ti
(g)

= −
K
∑

k=1

Gi
∑

g=1

wk
ijǫ(tj − ti

(g) − dk)

(

1

(tj − ti
(g) − dk)

− 1

τ

)

(15.21)

The negative sign in Eq. (15.21) appears because the derivative of the α-

function, ǫ(tj − ti(g)− dk), is calculated with respect to ti
(g) (unlike Eq. 15.16

where it is calculated with respect to tj).

The computation of the second partial derivative term in Eq. (15.18) is

more complicated than in a single-spiking model where the output spike time
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FIGURE 15.7
Recursive dependencies of the times of output spikes from the postsynaptic
neuron i on the weights of synapses connecting the presynaptic neuron h to
the postsynaptic neuron i

from any neuron depends on the internal state of the neuron i which, in turn,

depends only on the inputs and weights of the synapses to the neuron. In the

MuSpiNN model, the internal state of the neuron i, in addition to the afore-

mentioned dependencies, depends on the time of its own most recent output

spike. Figure 15.7 shows the recursive dependencies of the times of output

spikes from the postsynaptic neuron i on the weights of synapses connecting

the presynaptic neuron h to the postsynaptic neuron i where the variable rep-

resented by any node in the tree is dependent on the variables represented

by the nodes in the level immediately below. As a result of these recursive

dependencies, the error is backpropagated from output spike to output spike

starting from the last output spike. The second partial derivative term in Eq.
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(15.18) is computed recursively using the following set of equations:

∂ti
(g)

∂wk
hi

=
∂ti

(g)

∂xi(ti
(g))

[

∂xi(ti
(g))

∂wk
hi

+
∂xi(ti

(g))

∂ti
(g−1)

· ∂ti
(g−1)

∂wk
hi

]

(15.22)

∂ti
(g−1)

∂wk
hi

=
∂ti

(g−1)

∂xi(ti
(g−1))

[

∂xi(ti
(g−1))

∂wk
hi

+
∂xi(ti

(g−1))

∂ti
(g−2)

· ∂ti
(g−2)

∂wk
hi

]

(15.23)

...

∂ti
(1)

∂wk
hi

=
∂ti

(1)

∂xi(ti
(1))

[

∂xi(ti
(1))

∂wk
hi

]

(15.24)

Similar to the derivation of Eq. (15.17) from Eq. (15.14), the first partial

derivative term outside the brackets in Eq. (15.22), ∂ti
(g)/∂xi(ti

(g)), is com-

puted as:

∂ti
(g)

∂xi(ti
(g))

=
−1

∂xi(ti
(g))/∂ti

(g)

= −
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(g))/∂ti

(g)
]

−1

= −
[

∂

( Nl
∑

h=1

K
∑

k=1

Gh
∑

f=1

wk
hiǫ(ti

(g) − th
(f) − dk)

+ ρ(ti
(g) − ti
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(g)

]

−1
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(g)

+
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]

−1
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1
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− 1

τ

)

+
2θ

τR
ρ(ti

(g) − ti
(g−1))

]

−1

(15.25)
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Similar to Eq. (15.10), the first term within the brackets in Eq. (15.22) is

computed as:

∂xi(ti
(g))

∂wk
hi

=

Gh
∑

f=1

ǫ(ti
(g) − th

(f) − dk) (15.26)

The first partial derivative term of the second term within the brackets in Eq.

(15.22) is computed as:

∂xi(ti
(g))

∂ti
(g−1)

=

∂





Nl
∑

h=1

K
∑

k=1

Gh
∑

f=1

wk
hiǫ(ti

(g) − th
(f) − dk) + ρ(ti

(g) − ti
(g−1))





∂ti
(g−1)

(15.27)

The first term in the numerator does not depend on any previous output spike

times; thus Eq. (15.27) is reduced to:

∂xi(ti
(g))

∂ti
(g−1)

=
∂ρ(ti

(g) − ti
(g−1))

∂ti
(g−1)

=
2θ

τR
ρ(ti

(g) − ti
(g−1)) (15.28)

The error gradient for adjusting the synaptic weights is computed using

Eqs. (15.7), (15.17)-(15.19), (15.21)-(15.26), and (15.28).
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Applications of Multiple Spiking Neural

Networks: EEG Classification and Epilepsy

and Seizure Detection

16.1 Parameter Selection and Weight Initialization

The performance of the MuSpiNN model and the Multi-SpikeProp learning

algorithm is evaluated using three increasingly difficult pattern recognition

problems: XOR, Fisher iris plant classification (Fisher, 1936; Newman et al.,

1998), and EEG epilepsy and seizure detection (Andrzejak et al., 2001; Adeli

et al., 2007; Ghosh-Dastidar et al., 2007, 2008; Ghosh-Dastidar and Adeli,

2007). The classification accuracy is computed only for the iris and EEG

datasets because they are large enough to be divided into training and testing

datasets. The transformation of real-valued inputs and outputs to discrete

spike times (output encoding) is different for the three problems and therefore

is addressed for each problem separately.

The performance of SNNs is affected by three types of parameters that

define a) the spiking neuron (simulation time, time step, neuron threshold,

time decay constant τ for the α-function, and time decay constant τR for the

refractoriness function), b) network architecture (number of hidden layers, in-

put and output encoding parameters, number of neurons in the input, hidden,

329
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and output layers, and number of synapses connecting two neurons), and c)

the learning algorithm (learning rate and the convergence criteria). In Chap-

ter 14, an extensive parametric analysis was presented for selecting optimum

values of the aforementioned parameters for a single-spiking SNN model and

SpikeProp (Ghosh-Dastidar and Adeli, 2007). The goal was to maximize the

accuracy and efficiency of the model. Maximum computation efficiency and

classification accuracies were achieved when a learning rate in the range of

η = 0.001−0.014 and a time step of 1 ms were employed (the time unit is vir-

tual and is used for modeling purposes only). The simulation time employed

for the XOR problem was 25 ms and for the iris and EEG problem 35 ms.

The selection of these parameters has been described in detail in Chapter

14 (Ghosh-Dastidar and Adeli, 2007). In MuSpiNN, the underlying model is

similar to the SNN and the difference lies primarily in the biologically more

realistic learning algorithm capable of handling multiple spikes. Therefore, it

is expected that the same or similar values of parameters will be optimum.

The new MuSpiNN model is developed around the same optimum numbers

obtained for learning rate, simulation time, time step, number of hidden layers,

input and output encoding parameters, and number of neurons in the input,

hidden, and output layers. The optimum values of the remaining parameters

are obtained differently for the multi-spiking model. Parameter values are dif-

ferent for the three classification problems and, therefore, discussed separately

for each problem in the following sections.

Weights for MuSpiNN training are initialized in a manner similar to that

described for an SNN in Chapter 14. To increase the consistency of convergence

of the network training, all neurons are required to fire within the simulation

time, at least in the first epoch of network training.
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16.2 Heuristic Rules for Multi-SpikeProp

The improved SNN model presented in Chapter 14 employed two heuristic

rules that increased the computational efficiency and classification accuracy of

the model. The same heuristic rules along with a third new rule are employed

for MuSpiNN and Multi-SpikeProp as follows:

1. In order to prevent catastrophic changes in the synaptic weights, a lower

limit of 0.1 is imposed on the denominator in Eqs. (15.17) and (15.25),

as suggested by Booij and Nguyen (2005) for their equations, which are

different from the ones described in Chapter 15.

2. If at any time during the training of the network, a neuron stops firing,

then its contribution to the network error becomes null. During back-

propagation of the error, the resulting weight change is very small, which

may not be sufficient to restart the firing of the neuron even after several

epochs. This issue, referred to as the silent neuron problem, leads to a

reduction of the effective network size to a size possibly insufficient to

model the classification problem, which ultimately affects convergence

(McKennoch et al., 2006). In our model, the neuron is set to fire at the

maximum internal state value if the threshold is not exceeded during

the simulation time. Based on this heuristic, every neuron fires during

the simulation time.

3. Our mathematical model of neuron dynamics, represented by Eq. (15.2),

incorporates the relative refractory period but not the absolute refrac-

tory period (Figs. 15.3 and 15.5). As a result, in some situations dur-

ing the training of the network, the large weighted inputs to a neuron

offset the effect of the refractoriness function, resulting in an effective
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refractory period equal to 0 ms. In that case, the neuron starts firing

continuously, which causes all of its postsynaptic neurons to behave in a

similar manner, thus overwhelming the network and adversely affecting

convergence. This problem, dubbed the noisy neuron problem, was not

encountered for the SNN model, which is restricted to only one spike.

The problem is analogous to propagation of seizure in an epileptic brain

where abnormal neuronal discharges spread via a similar mechanism,

i.e., feedforward excitation, to various parts of the brain. In order to

overcome this problem, a new heuristic rule is added to model the ab-

solute refractory period by requiring that any neuron be unable to fire

again within 2 ms following an output spike.

16.3 XOR Problem

The encoding of the XOR problem for MuSpiNN is identical to that for SNN,

as described in detail in Section 14.2.1. The number of layers and neurons

in the neural network architecture is also kept unchanged. The number of

input and output neurons is selected as 3 (including the bias neuron) and 1,

respectively. The reason for the use of the bias neuron is explained in Section

14.2.2. Only one hidden layer comprising 5 neurons is used to model the XOR

problem.

The model is trained to a convergence mean square error (MSE) value of

0.5. The upper limit for the number of epochs is set to 500. The training is

repeated for ten different sets of initialization weights. The learning rate η

was selected as 0.005; the model did not converge for higher rates. This value

of the learning rate resulted in the fastest learning. The time decay constant

for the refractoriness function, τR, was selected as 80 ms by trial and error.
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FIGURE 16.1
Sample Multi-SpikeProp convergence curve for the XOR problem

Other values of τR in the range 0 to 100 ms were investigated. Although the

convergence was adversely affected for values lower than 20 ms, no consistent

pattern was observed for values greater than that. A sample Multi-SpikeProp

convergence curve for MuSpiNN is shown in Fig. 16.1.

Multi-SpikeProp converges in an average of 78 epochs, which is approx-

imately double the 38 epochs required by SpikeProp (Ghosh-Dastidar and

Adeli, 2007). However, Multi-SpikeProp requires only 4 synapses connecting

a presynaptic neuron to a postsynaptic neuron, compared with 16 synapses

required by SpikeProp. A number of synapses lower than 4 appears to be in-

sufficient to model the problem and leads to less consistent convergence. A
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larger number of synapses, say 6, leads to faster convergence (57 epochs) but

the computational effort and time are increased.

Our parametric studies indicate that the delays associated with the

synapses should be spread out in the whole range between the earliest in-

put spike (0 ms) and the latest output spike (16 ms). MuSpiNN converges

in 78 epochs when delays of 1, 5, 9, and 13 ms are employed for the four

synapses but fails to converge when delays of 1, 2, 3, and 4 ms or 1, 3, 5, and

7 ms are employed. The single-spiking SNN model and SpikeProp were also

investigated with the same sets of delays and 4 synapses for comparison with

MuSpiNN. It was observed that SpikeProp also failed to converge when delays

of 1, 2, 3, and 4 ms or 1, 3, 5, and 7 ms were employed. The consistency of

convergence improved when delays of 1, 5, 9, and 13 ms were employed for

the four synapses but the number of convergence epochs was much greater (in

excess of 200 epochs) than that required by MuSpiNN.

16.4 Fisher Iris Classification Problem

The selection of input encoding parameters and the number of neurons in

each layer for MuSpiNN and Multi-SpikeProp parameters are based on the

research using SpikeProp on the iris problem, as described in Section 14.3. For

input encoding using population encoding, a value of γ = 1.5 yielded the best

classification accuracies (Bohte et al., 2002a; Ghosh-Dastidar and Adeli, 2007).

The number of input neurons (equal to the number of population encoding

Gaussian functions,M) required per input feature is selected as four, resulting

in a total of 4M + 1 = 4 × 4 + 1 = 17 neurons (including one bias neuron)

in the input layer. The number of neurons in the hidden layer is selected as

eight. Based on the performance of the SNN for the iris problem discussed in
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Section 14.3 and MuSpiNN for the XOR problem, the time decay constant

τ is selected as 11 ms (slightly larger than the encoding interval of 10 ms),

the refractoriness function time decay constant τR as 80 ms, and the learning

rate η as 0.01. Four synapses are used to connect any presynaptic neuron to

a postsynaptic neuron with delays of 1, 5, 9, and 13 ms.

A modular structure composed of three MuSpiNN modules is employed

for solving the three-class classification problem. Figure 16.2 shows the MuS-

piNN architectures for (a) the original three-class classification problem and

(b) three two-class classification problems. In Fig. 16.2(b), each MuSpiNN

module is dedicated to one class and assigned the task of classifying the data

as either belonging to that class or not belonging to that class. If the data

belong to that class, the MuSpiNN module responds with an output spike at

15 ms, and otherwise at 20 ms. Therefore, the three-class classification prob-

lem in Fig. 16.2(a) is reduced to three two-class classification problems in Fig.

16.2(b). Three identical MuSpiNNs using parameter values discussed earlier

are used for the three modules. However, since the three modules are inde-

pendent of each other, it is not necessary to do so because the suitability of

the network architecture is, often, problem specific. Therefore, each module

may be designed individually to maximize the computational efficiency and

classification accuracy for the corresponding two-class classification problem.

One-fifth of the available data (30 training instances or samples) is used for

training the network. The MuSpiNN dedicated to identifying a specific class

is trained with 10 samples belonging to that class and 20 samples belonging

to the other two classes (10 each). A sample Multi-SpikeProp convergence

curve for each MuSpiNN module is shown in Fig. 16.3. It is observed that

the three networks converge to an MSE of 0.2 in an average of 11, 60, and

28 epochs. The corresponding classification accuracies of the test data for the

three classes are 100%, 94.5%, and 93.1%, which is higher than the 92.7%
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FIGURE 16.2
MuSpiNN architecture for (a) the original three-class classification problem
and (b) three two-class classification problems
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FIGURE 16.3
Sample Multi-SpikeProp convergence curves for MuSpiNN for the iris classi-
fication problem

classification accuracy obtained using the SNN with SpikeProp for the three-

class classification problem using similar network parameters and architectures

(discussed in Section 14.3). When half the available data (75 samples) are

used to train the network, similar classification accuracies are obtained but

the network needs to converge to a much lower MSE of 0.075.



338 Automated EEG-Based Diagnosis of Neurological Disorders

16.5 EEG Classification Problem

The same feature space composed of the nine EEG features described in Sec-

tions 8.5 and 14.4.1 is employed in order to accurately classify the EEGs into

the three linearly inseparable classes. The dataset consists of 300 samples. Sim-

ilar to the iris problem, the three-class classification task is divided into three

two-class classification tasks, each of which is solved by a separate dedicated

MuSpiNN trained with Multi-SpikeProp. All parameter values are selected to

be the same as those for the iris classification problem. The only difference

is the number of input features, i.e., nine instead of four. The same popula-

tion encoding scheme described for the iris classification problem is used with

M = 4 input neurons for each of the nine input features plus a bias neuron,

resulting in a total of 9M + 1 = 99 + 1 = 37 input neurons.

One-tenth of the available dataset (30 training instances or data points) is

used for training the network. The MuSpiNN dedicated to identifying a spe-

cific class is trained with 10 data points belonging to that class and 20 data

points belonging to the other two classes (10 each). A sample Multi-SpikeProp

convergence curve for each MuSpiNN module is shown in Fig. 16.4. It is ob-

served that the three networks converge to an MSE of 0.2 in an average of

53, 36, and 78 epochs. The corresponding classification accuracies of the test

data for the three classes are 90.7%, 91.5%, and 94.8%, which is significantly

higher than the 82% classification accuracy obtained with SpikeProp for the

three-class classification problem using similar network parameters and archi-

tectures (discussed in Section 14.4). When one-fifth of the available dataset

(60 training instances) is used to train the network to a lower MSE of 0.075,

similar classification accuracies are obtained for the first two classes but the
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FIGURE 16.4
Sample Multi-SpikeProp convergence curves for MuSpiNN for the EEG clas-
sification problem

classification accuracy of the last class increases to 97.1%, a significant im-

provement, although at additional computational cost.

16.6 Discussion and Concluding Remarks

A new multi-spiking neural network (MuSpiNN) and a new learning algorithm,

Multi-SpikeProp, for training the network have been presented in this chapter.

The traditional BP-based supervised learning proposed by Rumelhart required

a continuous and differentiable activation function for error backpropagation.
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The lack of such a function for SNNs led to a strongly held belief that BP-

based learning in SNNs is impossible. In 2002, Bohte et al. (2002a) developed

a new learning rule that allowed such an SNN to learn based on adaptation in

the timing of single spikes. Our novel network and learning algorithm advances

that development to a more general case: BP-based learning in neural networks

that can communicate via spike trains (i.e., multiple spikes instead of single

spikes).

The performance of the network and learning algorithm was investigated

using three different classification problems. It is found that MuSpiNN learns

the XOR problem in twice the number of epochs compared with the single-

spiking SNN model but requires only one-fourth the number of synapses.

MuSpiNN and Multi-SpikeProp were also applied in a modular architecture

to solve the three-class iris and EEG epilepsy and seizure detection problems,

resulting in an increase in the classification accuracy compared with the single-

spiking SNN and SpikeProp, especially in the case of the EEG problem. SNNs

demonstrate great potential for solving complicated time-dependent pattern

recognition problems defined by time series because of their inherent dynamic

representation.

The application of MuSpiNN and Multi-SpikeProp demonstrates the train-

ing of a neural network that employs neurons based on an increased degree of

biological plausibility compared to 1) traditional ANN neurons which simulate

spike train communication with approximate implementations of rate encod-

ing and 2) single-spiking SNN neurons (Bohte et al., 2002a). Although the

MuSpiNN model can reconstruct temporal sequences of spikes as the network

output, for the sake of simplicity we have restricted the output layer neuron

to a single spike. An output spike train would require the selection of ap-

propriate spike trains for representing the various classes and an appropriate

error function. Research into the appropriateness of output spike trains and
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the error function will be another subject of future research toward harnessing

the computational power of pulse encoding.

An obstacle to the use of more detailed neuronal models for such classi-

fication and pattern recognition tasks is imposed by the dynamics of the BP

algorithm, which usually requires a single activation function (representing

changes in membrane potential) for backpropagating the error term through

the neuron. The detailed models are usually based on multiple differential

equations that capture the behavior of different ion channels and currents that

affect the membrane potential. It remains to be seen if error backpropagation

is even mathematically possible in the face of such complexity. Alternatively,

biologically plausible learning mechanisms such as Hebbian learning and spike

time dependent plasticity (STDP) that have been used on such detailed mod-

els for demonstrating dynamics of small neuronal networks may need to be

adapted for classification and complex pattern recognition tasks.

The biological plausibility of the backpropagation learning algorithm itself

has been debated since its conception in the 1980s (Carpenter and Grossberg,

1987; Grossberg, 1988; Stork, 1989; Mazzoni et al., 1991). For the sake of dis-

cussion, consider a purely feedforward network where the flow of information

is unidirectional. In such a network, implementations of BP similar to Rumel-

hart et al. (1986) by themselves are biologically unrealistic in the local sense

that they do not directly model strengthening or weakening of a particular

synapse based on the activity of the pre- and post-synaptic neurons for that

synapse. However, the feedforward network and the BP learning algorithm

together can arguably be an abstract representation of a biologically plausi-

ble system where the presynaptic neurons in the network get excitatory or

inhibitory feedback based on the appropriateness of the final output from the

network (i.e., the size of the error function). This abstraction models learning

in a global sense because this feedback is an assumption that is external to
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the actual neural network. SpikeProp and Multi-SpikeProp have their origins

in Rumelhart’s BP concept, and therefore are only biologically plausible in

the systemic sense. However, the Multi-SpikeProp learning algorithm results

in the adjustment of individual spike times and could, in the future, be in-

tegrated with mechanisms such as STDP in order to increase the biological

plausibility of the model.

A general shortcoming of the SNN models is the computational burden,

which may be reduced by developing efficient learning algorithms. Addi-

tionally, the authors believe that the adaptive adjustment of the number of

synapses discussed earlier will be especially effective in reducing the number

of synaptic computations, without compromising the classification accuracy.

Another source of computational effort is the input encoding that increases

the number of features many fold. Novel methods of input encoding that do

not increase the number of features and, at the same time, represent the input

accurately must be explored. Another problem is the sensitivity of gradient

descent-based learning algorithms to the initial state of the SNNs. This has

been investigated and heuristic rules have been developed to ensure that the

SNN training converges to a global minimum despite the highly uneven error

surface (Bohte et al., 2002a; Moore, 2002; Xin and Embrechts, 2001; Booij

and Nguyen, 2005; Silva and Ruano, 2005; McKennoch et al., 2006; Ghosh-

Dastidar and Adeli, 2007). Although significant advances have been made in

this aspect, the issue has not been fully resolved.

To avoid the sensitivity of the learning to the initial SNN state, non-

gradient descent algorithms such as genetic algorithms (Hagras et al., 2004)

and evolutionary strategies have been proposed (Belatreche et al., 2003;

Pavlidis et al., 2005). Such algorithms have been used with considerable suc-

cess for traditional ANNs and are still being investigated for use with SNNs.

The learning algorithms presented by Hagras et al. (2004) and Pavlidis et al.
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(2005) adapt only the weights to reach an optimum solution. The optimization

objective usually involves minimization of a cost function (typically, a measure

of error). Belatreche et al. (2003, 2007) presented an evolutionary strategy-

based learning algorithm that adapts both synaptic weights and delays to

reach the the optimization objective and reported classification performance

comparable to Bohte et al.’s SpikeProp on the XOR and iris classification

problems. Jin et al. (2007) presented a Pareto-based multi-objective genetic

algorithm to simultaneously adjust the connectivity, weights, and delays of the

SNN. The two optimization objectives of this model were to minimize: (1) the

number of synaptic connections and (2) either the classification error or the

root mean squared error. Despite some promising results, it should be noted

that a known disadvantage of evolutionary algorithms is their prohibitively

large computational cost for large problems.

SNNs discussed thus far have been feedforward and recurrent networks.

These networks have been investigated mostly with regular and fully con-

nected architectures. Such architectures are not common in biological neural

networks. A biological network consists of many neurons and their synapses

which form the physical network. In reality, however, only a small percentage

of the neurons in the physical network contributes to the actual information

processing. These neurons activate whereas neurons that do not contribute to

the output remain silent. The network of activated neurons will be referred

to as the functional network. Biological learning within such a network is a

dynamic process. Silent neurons do not always remain silent and the activated

neurons are not required to activate every time. The neurons that comprise

the functional network often change based on the input.

This aspect of biological networks can be modeled using the reservoir

computing paradigm. It is possible that biological plausibility was less of a

motivation for this development than the search for more efficient supervised
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learning algorithms for recurrent ANNs (Paugam-Moisy and Bohte, 2009).

Similar to the traditional recurrent ANNs, these SNNs have the traditional

input and output neurons, some with recurrent connections. Between the input

and the output neurons, instead of a hidden layer of neurons in the traditional

sense, there is a set or reservoir of neurons. The architecture of the reservoir

is random with sparse connections. Based on the input to the network, the

input neurons activate a subset of neurons within the reservoir. This functional

network, i.e., the spatial activation pattern, is read by the output neurons,

which are called the readout neurons. It is important to note that in this

model, supervised learning occurs only at the synaptic connections between

the reservoir and the output layer, usually by means of algorithms such as

linear regression. Two examples of reservoir computing, as presented for SNN

models, are the Echo-State Network (Jaeger, 2001; Jaeger and Lukosevicius,

2007) and Liquid State Machines (Maass et al., 2002). For a comparison of

these models the reader should refer to Schrauwen et al. (2007) and Paugam-

Moisy and Bohte (2009).

Supervised Hebbian learning is another biologically plausible learning

strategy that has been proposed for SNNs (Legenstein et al., 2005). In this

strategy, similar to the other learning algorithms, the objective of the output

neurons is to learn to fire at the desired spike times. However, in order to

supervise the learning of the output neuron, the output neuron is constrained

by additional inputs so that it fires only at specific times and not at others.

This model was extended by Kasinski and Ponulak (2005) to a Liquid State

Machine network. In this model, the supervision is not imposed directly on the

input neuron. Rather, additional neurons outside the primary network receive

the desired signals and influence the synaptic learning in the network. This

model is dubbed Remote Supervision Method because the task of supervision
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is performed by the external neurons. This model was shown to have a high

learning ability and accuracy (Kasinski and Ponulak, 2005).

Researchers have demonstrated that SNNs have significant potential for

solving complicated time-dependent pattern recognition problems because of

dynamic representation inherent in spiking neurons. Moreover, SNNs have

been theoretically shown to have the ability to approximate any continuous

function (Maass, 1997a). The addition of the temporal dimension for infor-

mation encoding has the potential to result in compact representations of

large neural networks, another advantage for SNNs. Despite the interest in

supervised learning algorithms for SNNs, their widespread acceptance and

development are currently limited by the excessive computing times required

for training (Ghosh-Dastidar and Adeli, 2007). This is a problem even with al-

gorithms that are not based on gradient descent, especially when the network

size becomes large. This shortcoming may be eliminated in the near future

due to advances in computing technology in general as well as the develop-

ment of more efficient and accurate SNN learning algorithms. Some of these

algorithms have been discussed in this chapter. Combinations of such novel

strategies along with improved understanding of biological information pro-

cessing will contribute significantly to the development of SNNs as the next

generation neural networks.





17

The Future

This book presented a novel approach and powerful computational algorithms

for automated EEG-based diagnosis of neurological disorders. The primary ap-

plication area was epilepsy diagnosis and seizure detection. One reason for the

focus on epilepsy was the availability of EEG data. Some preliminary results

were also presented for diagnosis of Alzheimer’s disease (AD). The authors

could not present a complete method for AD diagnosis because sufficient data

were not available to test the models under development.

The book, however, presents a general approach and methodology that

the authors believe will be the wave of the future and an important tool in

the practice of neurology. The methodology is general and can be adapted

and applied for diagnosis of other neurological disorders. In fact, while the

authors were writing this book, the senior author and an associate developed

a methodology for EEG-based diagnosis of attention-deficit/hyperactivity dis-

order (ADHD) through adroit integration of nonlinear science, wavelets, and

neural networks. The selected nonlinear features are generalized synchroniza-

tions known as synchronization likelihoods. The methodology has been ap-

plied to EEG data obtained from 47 ADHD and 7 control individuals with

eyes closed. Using a radial basis function neural network classifier the method-

ology yielded a high accuracy of 96.5% for diagnosis of the ADHD. The senior

author and his associates are expanding the work for early diagnosis of AD as

well as diagnosis of autism.

347
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From a physiologic perspective, the temporal evolution of the EEG rep-

resents one aspect of brain dynamics. Spatial changes (across various key re-

gions in the brain) are equally important and should be investigated to obtain

a comprehensive understanding of the spatio-temporal dynamics in the brain.

Such analyses have the potential to yield additional quantifiable markers of

abnormality in neurological disorders, as was observed in our preliminary in-

vestigation of AD. For complex phenomena, a single modality of investigation

(such as imaging study or EEG study) may also not be sufficient and multi-

modal spatio-temporal studies may be more effective. For instance, a better

understanding of the changes in brain activity during the performance of var-

ious mental tasks (as obtained from fMRI studies) could identify linked areas

of the brain in which to focus EEG studies. In the future, as the field matures,

the effectiveness of a combination of various modalities should be investigated

for improving the efficacy of detection and diagnosis models.

A second contribution of the book is presenting and advancing spiking

neural networks (SNNs) as the foundation of a more realistic and plausible

third generation neural network. In addition to their application as classifiers

presented in this book, SNNs can be used for modeling populations of neurons

and their interactions, which could provide explanations for dynamics in the

cerebral cortex that cannot be modeled by current mathematical models. It

is hoped the research in this area will advance in the coming years, resulting

in more powerful computational neural network models not only for diagnosis

of neurological disorders but also for the solution of many other complex and

intractable time-dependent pattern recognition and prediction phenomena.
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