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Preface

Beyond Classical Physics is intended to be a sequel to the first-year level
Neoclassical Physics. 1 have followed the same pathway, emphasizing the
experimental underpinnings of our modern mathematical representations
of nature. The focus here is primarily on the microscopic world, where
experiments indicate that interactions of the constituents of matter are
vastly different from those we observe in macroscopic objects. This world
is best described by what we have come to call quantum theory.

As we progress through the text, we shall endeavor to illustrate some of
the historical contributions of the practitioners of the day. For example,
Albert Einstein provoked a signal change in how physics is practiced with
his development of a General Theory of Relativity but Einstein did not
work completely in isolation. This text is not intended to be a history of
the subject; indeed, we shall not attempt to provide attribution for every
equation or experiment. Following such a path would lead to a publica-
tion too ponderous to contemplate. Instead, my intent is to provide an
introduction to the state of physics at the beginning of the twenty-first
century.

When [ was a first-year graduate student, my electromagnetics instructor
Feza Glirsey made a point of telling the class that Freeman Dyson had
proved the renormalizability of quantum electrodynamics as a first-year
student. Recently, Gerard t'Hooft had just proven the renormalizability
of quantum chromodynamics at the one-loop level, also as a first-year stu-
dent.

“What,” he queried, “are you working on?”

As he scanned the room, no one was willing to make eye contact, so I
suppose that he concluded that ours was another class of misfits, without
a single distinguished intellect amongst the lot.

In retrospect and having sufficient time elapsed for Professor Glirsey’s
stinging rebuke to have softened, I have come to another interpretation:
Glrsey was seeking to challenge us to become relevant, to step beyond the
limitations of curriculum and seek the frontiers of knowledge. Students
have a natural tendency to follow the curriculum, learning whatever is set
forth in textbooks and required in the syllabus. Universities have become
complacent in their curriculum development, instead focussing on ad-
ministrative, accreditation goals that reward adherence to (least common
denominator) standards, not innovation. The result is that most students

vii



viii PREFACE

do not see the frontiers of physics research until they are well into their
graduate careers. It is a truly remarkable student who even knows what
renormalization means at the first-year graduate level, much less have
enough insight to contribute in a significant fashion. This is unfortunate,
because renormalization became integrated into the physics literature by
the 1950s. Physics has moved well beyond quantum electrodynamics.

I have chosen to include the use not only of Mathematica software but also
the numerical codes NWChem, that performs electronic structure calcu-
lations, and NAMD/VMD that provide molecular dynamics and visual-
ization/analysis capabilities. I recognize that these choices may seem to
introduce an insurmountable obstacle to progress but tutorials in their
use are available by their developers and the codes are freely accessible.
In fact, given adequate computational resources, these codes can be used
at the frontiers of research. These days, numerical simulation has risen
to new importance. Experiment, of course, provides the defining result
but often experiments need interpretation. Simulation, beyond ideal the-
oretical formulations, provides concrete, if flawed, results that can help to
explain experimental results and guide further experimentation.

I have had undergraduate students utilize these codes to good effect. It
takes discipline and hard work to become adept with these tools but stu-
dents are generally quite enthralled with the results that they can obtain.
They are brought to the precipice where they can begin to ask significant
questions of their own. This is not a small achievement.

While not a lengthy textbook, I expect that there is sufficient material to
fill two semesters, particularly if instructors require students to attempt
reading the original publications listed in each section. I have found this
to be an interesting exercise for students. Even if they do not fully (or
partly) comprehend the work, in many cases one finds that the original
paper does not mention explicitly the reason why it is cited. Attribution
follows reputation, in some instances. In any case, consulting the origi-
nal literature is still an important step along the pathway to becoming a
scientist. I believe it never too early to begin.

That said, I recognize that in so short a work that there are many areas
of physics that are not discussed. Again, my philosophy is that students
will benefit more from investigating fewer topics in more detail than in
pursuing a large quantity of topics, just to say that you’ve seen Bernoulli’s
law, in case it comes up in a subsequent class. I believe that if students
are properly prepared, they will have the tools to follow any topic that
subsequently fires their imagination.

As diligently as I have worked on this text, I admit that there are prob-
ably mistakes; I hope there are no blatant falsehoods. Nevertheless, all
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errors in the text are my responsibility and I apologize in advance for any
particularly egregious examples. This work, of course, would never have
been completed without the continual, and unflinching, support of my
wife Liz. She has endured the creation of this book without complaint,
even as | staggered through the effort. I cannot say thank you enough.

Katy, TX, USA Mark A. Cunningham
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Introduction

Some 2500 years ago, Greek philosophers contemplated the nature of the
universe. We know this from the manuscripts they wrote that have sur-
vived to the present day. Additionally, many of their works were also
translated into Arabic by scholars at the great library in Alexandria and
some of those translations survived the Dark Ages that befell Europe.
One early philosopher, Democritus' and his mentor Leucippus were the
founders of what is today termed the atomistic school. They were the ear-
liest Western proponents of the concept that matter could not be repeat-
edly divided into smaller bits endlessly: there must exist some fundamen-
tal components that cannot be subdivided. This stance was subsequently
vigorously opposed by Plato and his student Aristotle. As Aristotlian phi-
losophy was extraordinarily influential in Western civilization, the atom-
istic view fell into disfavor for centuries.

Today, we know for certain that matter is composed of atoms. We can enu-
merate the list of all possible atoms and we know a great deal of the prop-
erties of atoms and the larger, composite structures known as molecules.
We also know that atoms are themselves composed of parts, so use of the
Greek word atopoC for indivisible is somewhat unfortunate. These facts
have been established over the last century, due to careful and extraordi-
nary measurements combined with insightful mathematical representa-
tions of those experimental results, by a process that we call physics.

The Greek philosophers were guided by reason and intuition but gen-
erally sought theories that were in some sense ideal. For example, the
model of planetary motion developed by Claudius Ptolemy incorporated
the earth as the center of the universe, with the sun and planets occupying
circular orbits around the earth.> Stars decorated a celestial sphere that

!Democritus (Anuéxpitol) was born in Thrace in northern Greece around 460 BC. The his-
torical records for Leucippus (AeOkimmol) are vague but what records survive generally
refer to him and Democritus as master and pupil.

2Ptolemy (KAa0610C TTtolepiol) wrote his Mathematical Treatise (MaOnuatixij Lovra&il)
in Alexandria about 150 AD. It was later translated into Arabic and is known today as the
Almagest, from a translational corruption of the Greek word (peyaddtepr) meaning greatest.

© Mark A. Cunningham 2018 1
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2 INTRODUCTION

also revolved around the earth. Circles and spheres are, of course, ideal
shapes.

The Greek traditions were, in large measure, swept aside by Isaac New-
ton in 1687 in his Philosophiae Naturalis Principia Mathematica, in which
he argued for a scientific methodology that was based on measurement,
not speculation based on some perceived ideal. Our modern scientific
methodology has evolved largely from Newton’s ideas and has provoked
significant progress in our understanding of the natural world. Indeed,
physicists are no longer called natural philosophers as they are no longer
content with speculative debates about ideal principles. They have, in-
stead, become realists, basing their theories on experimental observation.

More precise measurements of planetary motion by Tycho Brahe and his
students in the late 1500s led Johannes Kepler to conclude in 1609 that the
orbit of Mars was, in fact, an ellipse centered on the sun. This highly in-
convenient fact signalled the death knell for the Ptolemaic universe. Cou-
pled with Galileo’s observations of four moons of Jupiter in 1610, it was
then clear that the geocentric universe and perfectly circular planetary or-
bits proposed by the Greeks did not agree with observational data. New-
ton ultimately resolved the issue with his gravitational theory described
in the Principia. Newton’s demonstration that an inverse square force law
produced elliptical orbits provided a relatively simple explanation of the
observed planetary motions.

In this text, we shall follow the development of physics from Newton on-
ward, focussing in particular on the most recent developments. Like Aris-
totle before him, though, Newton cast a large shadow upon the scientific
enterprise. For example, the enormous success of Newtonian mechan-
ics lent gravity to Newton’s opinions about other aspects of the natural
sciences. Newton considered himself an astronomer and spent a sizable
portion of his time trying to understand the nature of light. Newton’s
Opticks, published in 1704, expressed his ideas on the corpuscular theory
of light. This model held sway until James Clerk Maxwell’s synthesis of
a complete theory of electromagnetism in 1865 demonstrated that light
was governed by a wave equation.

The nineteenth and twentieth centuries saw the development of ever more
precise instruments, enabling scientists to investigate phenomena at ex-
traordinary length scales: detecting light emitted by stars thousands (and
millions) of light years away and uncovering the structures within the
cells that make up living organisms. In particular, what scientists found
as they investigated the microscopic world was that the Newtonian ideas
about forces and trajectories could not explain the phenomena they ob-
served: the microscopic world does not behave in a manner consistent
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with our experiences with macroscopic objects. A new framework was
developed that we call quantum mechanics that enabled a quantitative
description of the microscopic world and we shall discuss this new theory
in some detail.

1.1. Perception as Reality

A reasonable place to begin our discussion is to assess what we mean by
an observation. Of course, historically, we would have meant using our
eyes to look at some phenomenon. Tycho Brahe’s original data, compiled
with the use of a number of instruments of his own design, used Brahe’s
eyes, or those of an assistant, as the sensor. Galileo was the first to observe
celestial objects with a magnifying device but he also used his own eyes as
sensors. Many years later, in Ernest Rutherford’s darkened laboratory, his
assistants measured the behavior of a particle scattering by observing dim
flashes of light through a microscope as the o particles impacted a zinc
selenide crystal. Apparently, some of his assistants were not particularly
reliable as detectors.

Today, of course, we can construct highly sophisticated machinery and op-
erate it under the control of computers that do not require lunch breaks
or complain about working nights and weekends. Our new experiments
utilize sensors that have sensitivities far exceeding those of the human
eye. We can resolve time differences at this writing of about 1 as (1078 s),
roughly the time it takes light to traverse the width of a single atom. Such
precision has provided us with extraordinary information about the uni-
verse around us but we still must rely on converting these data into some
sort of visual representations that we can observe with our eyes. This
strategy is a sensible one, as our visual faculties are quite advanced. Tech-
nically, the information bandwidth that our brain is capable of processing
is vastly greater for visual inputs than aural or tactile ones.

So, a significant portion of the discussion in this text will be dedicated
to the development of different representations of our findings. Physicists
are inveterate drawers of pictures, which represent (vastly) simplified rep-
resentations of complex ideas and formulas. The challenge for students is
to recognize the meanings of these squiggles and scrawls and provide the
appropriate interpretation in terms of mathematical formulas. The pic-
tures are always intended as an aid to understanding, although that is
always a dubious prospect upon first encounter. Nevertheless, we are go-
ing to discuss a number of phenomena that do not possess any physical
form.

Consider this: suppose that you are producing an epic cinematic master-
piece. How do you convey to your audience that the room you are filming
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contains a very strong magnetic field? The field itself is invisible, silent,
odorless and tasteless. Humans have no senses that are directly affected by
magnetic fields. So, if the presence of the field is somehow key to the story,
how do you make it apparent to the audience that the field is present?

In physics class, we will most often depict a magnetic field by sketching
files lines on the board, affixing some arrowheads on the lines to indicate
the local field direction, as is indicated in figure 1.1. The field lines are a
representation of the magnetic field that we might find useful. Here the
student should recognize that the arrows associated with the magnetic
field lines are different physical quantities than the arrow associated with
the velocity vector. In print, we have emphasized this difference with dif-
ferent gray shadings. The student should also recognize that real magnetic
fields do not manifest themselves with convenient little arrows.

N
FIGURE 1.1. A particle of mass M B
and velocity v enters a region with o —:
a (nearly) uniform magnetic field B. ~ ;, Vv

S

Such an illustration does allow us to visualize the configuration of the
experimental apparatus. In a real experiment, of course, all of the equip-
ment would most likely be enclosed within a vacuum chamber and sealed
behind walls to mitigate any radiation hazards. Visitors to any physics
laboratory will undoubtedly be disappointed; there are few outward signs
of progress visible to the experimenters. Such is not the case for other hu-
man endeavors such as construction projects, where structures rise from
the ground and progress is readily apparent.

In 1972, Osheroff, Richardson and Lee were investigating the low-temper-
ature behavior of 3He with a device that slowly increased the pressure
on the liquid *He. (Here we use the standard notation that an atom X,
with a nucleus that contains Z protons and N neutrons and, thereby, an
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atomic mass A = Z+ N is denoted ?X. The Z value is implicitly defined by
the name of the element but is sometimes supplied as a convenience.) In
figure 1.2, we see the results of their experiment.

The pressure on the *He sample was slowly increased, reaching a maxi-
mum at point C, which is arbitrarily defined as the zero point in the figure.
At point D, the drive was reversed and the sample depressurized. Kinks in
the slope of the pressure vs. time curve at points A and B while the sample
is being pressurized indicate that there are two changes of phase within
the sample.3 There are equivalent kinks in the depressurization path at
points A" and B’ that appear at the same pressures and temperatures as for
points A and B. This is the experimental evidence for superfluid phases in
liquid *He.

1.8

2.65
3.0

4.0

pressure (102 atm)
temperature (mK)

5.0

1 1
0 10 20 30 40 50 6

time (min)

FIGURE 1.2. Compressional cooling of liquid *He reveals two phase
changes that have subsequently been interpreted as evidence for su-
perfluid phases. The kinks in the curve of pressure vs. time yielded a
Nobel prize for Osheroff, Richardson and Lee. Reprinted figure with
permission from: Phys. Rev. Lett. 78 (1972) 885. Copyright (1972)
American Physical Society.

Arguably, if you were to tell someone that you performed research in su-
perfluids, I believe that most people’s imaginings would evoke much more
spectacular results than kinks in a curve. Surely superfluids must some-
how coalesce into some sort of solid forms that would allow their remote
manipulation by alien beings. Perhaps drinking superfluids would convey
super powers to mere humans, enabling them to twist, contort and stretch
themselves into any desirable shape. Unfortunately, superfluid research
is much more mundane; superfluidity is an emergent phenomenon that
characterizes the collective behavior of the quantum system. Osheroff,

30sheroff, Richardson and Lee were awarded the 1996 Nobel Prize in Physics “for their
discovery of superfluidity in helium-3.”



6 INTRODUCTION

Richardson and Lee did not report any violent shaking of their apparatus
at points A and B. Neither did they mention any mysterious glow from
their apparatus that heralded their discovery. Publicly, none of the three
claimed any sort of super powers.

In figure 1.2, the pressure that is plotted as a function of time is actually
the (calibrated and) appropriately scaled voltage produced by some sen-
sor. The temperature indicated on the right-hand side of the figure is also
not that read from a thermometer but another voltage that has also been
scaled appropriately; at temperatures of a few milliKelvin, one cannot rely
on the mechanical expansion of metals to provide a suitable temperature
measurement. Devising measurement instrumentation is key to progress.

Physics is the process of constructing a suitable interpretation of the mea-
surements. The (repeatable) kinks (at A and B) in the pressure vs. time
curve illustrated in figure 1.2 undoubtedly signal some sort of change in
the material under study. The larger kink at D represents a change in the
measurement apparatus; an intervention by the experimenters. It’s cer-
tainly a more significant change in the curve but not one that arises from
the sample properties. As a result, one has to understand in detail how
experiments are conducted and strive to develop an interpretation of the
results. The process of physics inevitably involves developing a mathe-
matical representation of the ideas; without such a model, figure 1.2 has
no intrinsic meaning. Unlike images of tigers or trees that we can immedi-
ately recognize and sort into categories of threatening or non-threatening,
plots of data require interpretation.

Figure 1.2 notwithstanding, it can be said that everything we know about
the universe is due to scattering and spectroscopy. This is a bit of hyper-
bole but not altogether insensible. Light falls on the retinas of our eyes
and we interpret the resulting electrical signals in our brains. The light
may arrive at our eyes directly from some distant source like the sun or
stars but often reflects from some other object, like a house or a neighbor,
before reaching our eyes. Reflection, as we shall see, results from the in-
tegration of a vast number of individual scattering events. It is an average
property of the surface.

Spectroscopy is the energy-dependent measurement of scattering inten-
sity. In our initial discussions, we shall mean the intensity of light but
spectroscopic experiments can also be conducted with elementary par-
ticles. In that case, we would mean the intensity of electron or proton
fluxes at the position of the detector. The human eye has a modest spectro-
scopic capability: we can distinguish many different colors but the wave-
length resolution of our optical sensory system is not very precise. In fig-
ure 1.3, we plot the (normalized) spectral sensitivities of the three types of
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cone cells found in the retinas of our eyes that are responsible for bright
light/color vision, normally called photopic vision. There are also rod cells
present in the retina that enable us to see in low light conditions (scotopic
vision). There is only one kind of rod cell, with a sensitivity similar to that
of the M cells but with the peak shifted to 498 nm.

1
0.8
Figure 1.3. Human eyes con- ..
tain three types of cone cells. Z ©¢
Each type responds differ- % 0.4
ently as a function of wave- *
length and are termed short 02
(S), medium (M) and long (L). o

400 500 600 700 800

wavelength (nm)

The spectral sensitivities are determined by color-matching experiments
that were initially pioneered by Hermann GrafSmann in the 1850s. Sub-
jects were seated in front of a white screen onto which was projected a
pure color from a test lamp and a composite color obtained by adjust-
ing the intensities of light from three standard sources, nominally red
(700 nm), green (546.1 nm) and blue (435.8 nm), until the colors were per-
ceived to be identical.# Interestingly, not all colors can be reconstructed
in this fashion. In some cases, the red lamp was required to be placed on
the same side of the screen as the test lamp; this situation arises from the
significant overlap in the medium- and long-cone sensitivities observed
in figure 1.3.

The sensitivity functions provide an example of a typical sensor response,
which can be characterized as a convolution of what is called the instru-
ment factor and an input signal. Mathematically, we can write this as
follows:

(1.1) V()= jdéF(x—aué),

where x is the independent variable, such as wavelength or energy, F is the
instrument factor and I is the input signal. The convolution V represents
the output signal of the sensor, most often a voltage as a function of x.

4The Commission Internationale de I’Eclairage (CIE) was convened originally in 1913 to stan-
dardize all things relating to illumination. The 1931 convention in Cambridge promulgated
the color standards still in use today.
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Exercise 1.1.  We can demonstrate a useful property of Gaussian
functions: the convolution of a Gaussian distribution with another
Gaussian yields a Gaussian. Define a Mathematica function

F1[x_] :=PDF[NormalDistribution[xi,wi],x].

We can produce the convolution with the Convolve function. What

is the result of the convolution with a Gaussian with mean zero and
width W?

ExXErcISE 1.2. Approximate a spectrum with a series of narrow
Gaussians. Use xi=(2,5,5.5,7,9.2) with amplitudes (1,0.6,0.7,0.3,0.8)
and widths wi=o0.02. Plot the spectrum over the domain o <t < 10
and the convolution of the spectrum with Gaussians of widths rang-
ing from o.1 to 1. At what point is the doublet no longer resolved?
What happens to the spectrum for large values of W?

From the cone sensitivities, in 1931, the CIE determined corresponding
color matching functions, usually denoted as b, ¢ and 7. The RGB values
of any color are defined as

(1.2) R= jcb\ FNI), G= JdAg(A)I(A) and B= JdAE(A)I(A).

We can think of the RGB values as the components of a three-dimensional
vector in color space. Owing to the overlap of the cone sensitivity func-
tions, the red, green and blue vectors are not an orthogonal basis set and
the color-matching functions are not positive-definite, as illustrated in fig-
ure 1.4.

N

FIGURE 1.4. CIE color match-
ing functions for the RGB
color scheme. Note that the
red (r) curve is significantly
(and unphysically) negative
in the region below 520 nm.

color match

400 500 600 700

wavelength (nm)

For colors corresponding to wavelengths of light below about 520 nm, it
was necessary to move the red source to the same side of the screen as the
test lamp, corresponding to negative values of red (700 nm) intensity. One
cannot, of course, have negative values of intensity but the color matching
functions do explain why you perceive yellow (~580 nm) when red and
green sources are mixed.
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Exercise 1.3. One can view the RGB color space with the Mathematica
Graphics3D command:

Graphics3D[{Opacity[o.7],
{RGBColor[#],Sphere[#,0.05]}&/@Tuples[Range|o, 1,.2], 3]},
Axes — True,AxeslLabel — {"Red”,”Green”,”Blue”},
Lighting — ”"Neutral”]

The 1931 CIE convention defined an alternative color space, called
XYZ that does not require negative intensities in the color matching
functions. The XYZ coordinates are obtained via linear transforma-
tions of the RGB coordinates. They can be viewed with the following
command:

ChromaticityPlot3D[RGBColor[#]&/@Tuples[Range]o, 1,.2],3]]

Replace the RGBColor directive in the chromaticity plot with the di-
rective XYZColor. How does this change the plot?

The science of spectroscopy was pioneered in 1859 by Robert Bunsen and
Gustav Kirchoff, who utilized Bunsen’s newly developed flame source to
heat samples to high temperature, where the different samples produced
distinctly different colored flames. This phenomenon had been observed
previously but Bunsen and Kirchoff passed the light from their flame
through prisms, whereupon the two discovered that each element had a
spectrum that consisted of a series of specific colors, usually referred to as
lines, owing to the fact that the light from the source was initially passed
through a narrow slit to improve the precision of the measurements. Af-
ter passing through the prism, the incident light separated into a series of
narrow lines. Prisms rely on the refraction of light at interfaces and the
fact that the refractive indices n are wavelength-dependent, a phenom-
enon known as dispersion. At an interface between two different media,
such as air and glass or air and water, the path of a light ray is governed
by the following equation:

(1.3) n, sin@, =n, sin6,,

where the n; are the refractive indices of the two media and the 0; are the
angles measured to the normal to the surface of the interface. Equation 1.3
is generally called Snell’s law, after the Dutch astronomer Willebrord van
Roijen Snell who derived it in 1621 but didn’t publish the result, although
the phenomenon was studied by Claudius Ptolemy in the middle of the
second century.> We shall revisit Snell’s law subsequently but the de-
pendence of the refractive indices on wavelengths is small, limiting the

5Equation 1.3 first appears in print in Christiaan Huygens’ Dipotrica, published in 1703.
Only parts of a ca. 1154 Latin translation of an Arabic copy of Ptolemy’s Optics exists today.
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precision with which Bunsen and Kirchoff could determine spectra. Nev-
ertheless, in 1861, the two discovered the elements caesium and rubidium
from their emission spectra.

The practice of spectroscopy was greatly improved by the development
of diffraction gratings.® For normally incident light, with a grating spac-
ing of d, maxima in the diffracted pattern will occur when the following
relation is satisfied:

(1.4) dsinf =nA.

Here, 6 is the angle between the normal to the grating and a (distant)
viewing screen, n is an integer (known as the order) and A is the wave-
length.” As a result, the precision of a spectroscope can be controlled
directly by adjusting the grating spacing d, whereas years of investiga-
tions into various glasses had not yielded any significant control over the
weak dispersion that gave prisms their analytic power. The Australian
scientist Henry Joseph Grayson developed a series of precise ruling en-
gines to scribe lines with micrometer spacings on glass microscope slides.
Grayson’s intent was to provide precise length measurements to biologists
studying cells but his technology was readily adapted to spectral analysis.
By 1910, Grayson had achieved gratings with roughly 4700 lines/mm,
producing an extraordinary new tool for spectroscopists.

Exercisk 1.4. If you possess a diffraction grating ruled with 4700
lines/cm and can measure angles to a precision of 1°, to what preci-
sion can you measure the wavelength of light around 6oo nm? How
does your measurement improve if your angular precision is 1 arc-
minute or 1 arc-second?

With these new instruments, physicists were able to establish that, when
excited by electrical discharges or heated by flames, each element emitted
light at a specific set of wavelengths unique to that element. The relative
intensities at each of the wavelengths were also characteristic. For exam-
ple, in the visible spectrum of neon, illustrated in figure 1.5, there is a
strong peak at 692.94 nm and other strong peaks at 703.24, 717.39 and
724.51 nm. There are many other peaks in the visible range from 400-
800 nm, but the intensities of these four peaks account for the strong red
color that we associate with neon lamps.

b1n May of 1673, the Scottish mathematician James Gregory wrote a letter to his publisher
John Collins describing his observation that light passing through a bird’s feather split into
different colored spots. Gregory did not pursue his investigations, deferring the field of
optics to Isaac Newton, who was very active in researching optical phenomena and very
protective of his domain.

7Note that the order n in equation 1.4 is not related to the index of refraction n discussed
earlier. This will not be the last time we will encounter notational difficulties. Caveat emptor.
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1000 —
Figure 1.5. Emission spec- 750 -
trum of neon gas. Neon has a § sooF
characteristic red color, owing 2 C
to the cluster of strong lines = b
around 700 nm. The units M
of the intensity scale are arbi- ot
trary. 400 500 600 700 800
wavelength(nm)

Exercise 1.5. The data for figure 1.5 were obtained from the Atomic
Spectra Database (ASD) maintained by the US National Institute of
Standards and Technology (NIST). The database can be found by
searching for “strong lines neon” in a web browser. As of this date,
the database is found on the www.nist.gov site but searching should
find the database even at some date in the future when the agency is
renamed.

Collect the spectral data for Ne I (neutral neon) from the database
for the wavelength range 400-800o nm and reproduce figure 1.5. Ob-
tain spectral data for neutral helium and neutral argon. Plot their
spectra.

It is now possible to retrieve vast amounts of experimental information
about the universe we inhabit from carefully cultivated databases main-
tained by physicists in different repositories. In the previous exercise, we
demonstrated the existence of the Atomic Spectra Database, a repository
that is not a static catalog of experimental data but, instead, a dynamic
entity that is continually updated and collated. At present, it is to be ex-
pected that students will not understand the majority of notations and
remarks embedded within the pages; that is, of course, the purpose of
this text. Nevertheless, students should appreciate that physics has been
driven by the accumulation of vast quantities of data of ever-increasing
precision.

1.2. Classical Physics

We often date the onset of classical physics with Newton’s publication
of his Principia in 1687. This is a somewhat artificial boundary but re-
flects the importance of the philosophical principles Newton espoused.
The modern scientific method has evolved from those principles. For the
intrepid student, sifting through the pages of the Principia itself may not
prove as satisfying as one might initially hope. Newton’s language is quite
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difficult to follow, even in English translation. Calculus was not an estab-
lished mathematical discipline, so Newton argued his points through the
use of geometrical constructions. Geometry was an established discipline
at the time but there have been significant improvements in notation, such
as the use of vectors, that have made Newton’s gravitational theory much
more accessible.

Indeed, we now discuss Newtonian mechanics in introductory physics
classes; whereas historically, Newton’s ideas were only accessible to a few
of the world’s most sophisticated scientists. Over time, the procedures
Newton followed to construct his theory of gravitating bodies were ex-
tended to include many other physical phenomena. By the beginning of
the nineteenth century, Lagrange and Hamilton were providing new in-
sights into how one might generalize the process of deriving the equa-
tions of motion for any system. A brief timeline of some notable scientists
is provided in figure 1.6. We note that physicists use the generic term
equations of motion to describe the set of equations that define the time
evolution of the state of a system. This can include many phenomena and
is not restricted solely to systems in which physical objects are moving.

Boltzmann
Rayleigh
Gibbs
Maxwell
Riemann
Stokes
Hamilton
Poisson
Gauss
Fourier
Legendre
Laplace
Lagrange
d’Alembert
Euler
Leibniz
Newton
Huygens
Pascal
Descartes
I 1 1 1 1 1 1 I 1 1 1 I ]
1600 1700 1800 1900
year

Ficure 1.6. Lifetimes of selected mathematicians and physicists.
Newton and Leibniz are the founders of the calculus. Over the suc-
ceeding generations their initial ideas were expanded and system-
atized by others.
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An intrinsic difference between physics and mathematics is that physical
models are implicitly inexact; they represent an approximation of real-
ity. In geometry, two triangles are either congruent or they are not; there
are absolutes. In physics, we attempt to develop models that capture the
essence of a phenomenon and then we compare our results to (imprecise)
experimental data. For example, in fluid systems, we know ultimately that
the fluid is composed of small molecules. Yet, we talk about the properties
of a bulk fluid, mass density, for example, as if it were a continuous func-
tion. We take derivatives of the density even though, at some microscopic
level, we reach the atomic scale and the fluid is a jumble of individual
molecules, not a continous soup of matter. The mathematical limit of let-
ting some small parameter go to zero really isn’t defined for real fluids.
Nevertheless, treating fluids as continuous media seems to work reason-
ably well for macroscopic amounts of fluid.

There are, of course, some physical systems where the granularity of mat-
ter cannot be ignored. Consider the sand dunes pictured below.® Sand
grains are small, so one might be tempted to treat sand as a fluid and, in
some sense, sand does behave like a fluid: it can flow through an hour-
glass, for example. In many details, though, sand is not a fluid: it can
form stable mounds (dunes) that persist after the driving force (wind) is
removed. By contrast, water waves quickly dissipate without a driving
force. Fluids do not possess internal structure and thereby seek a mini-
mal (locally flat) level in a gravitational field.

Figure 1.7. The Curiosity
rover took this image of
dunes on Mars in late 2015
that features many striking
examples of the physics of
granular materials. Image
courtesy of NASA.

-

=

So, how can we treat sand? One can envision building a model that treats
each grain individually. One would then need to determine the force on

8For the faint-hearted students, steel yourselves. This is not going to be a lengthy essay on
dirt. It is, instead, a cautionary tale on emergent behavior.
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that grain due to its neighbors and, from there, determine how that grain
would subsequently move. Unfortunately, such a strategy leads to enor-
mous calculations, due to the vast number of grains in a dune and the
fact that the computational work will scale poorly, like some power of
the number of grains (N> or N3 or worse). Such calculations are really
intractable, so we shall have to devise an alternative approach.

As we are not particularly interested in individual sand grains but in the
behavior of many grains, we can utilize statistical methods, pioneered by
Gibbs and Boltzmann, to assess the properties of ensembles of grains.
This means that we will attempt to devise models that can reproduce
the major features that are visible in figure 1.7. For example, there are
large mounds separated by a relatively large distance and numerous rip-
ples with smaller amplitudes that are more closely spaced. Moreover, the
tops of the ripples and mounds form cusps, where the surface is smooth
and then changes shape abruptly. These features almost certainly depend
upon the wind velocity, particle size, and size distribution, and other
physical parameters associated with the grains. We will have to posit
some sort of attractive, short-range force acting between grains and the
exact form of this force will be empirically defined. That is, we will not be
able to derive it from some set of fundamental principles; we will have to
adjust the form of the force in order to reproduce experimental results.

We can apply the process of model construction, comparison with ex-
periment, conduct of additional experiments and model refinement re-
peatedly until we are satisfied. Satisfaction here is determined by vari-
ous measures: goodness of fit, for example, is a quantitative measure but
there are often non-quantitative assessments that come into play. We may,
for example, expend a good deal of effort on various modifications to the
mathematical model without significant improvement in the results and
simply accept that further progress will require more effort than is rea-
sonable. Knowing when to quit is an important skill that physicists need
to develop.

Classical physics is not defined solely by phenomena that are visible to
the human eye. Electromagnetic phenomena can be described classically,
at least in the realm where currents are composed of many charge carri-
ers, not single electrons. Maxwell’s equations provide us with a means
for determining the fields that arise as a result of charge distributions and
currents that is extraordinarily successful. Using Maxwell’s equations, we
can design and construct devices that transmit and receive radio waves,
thereby enabling communication over great distances. We can predict
the behavior of electrical circuits before they are fabricated, ensuring that
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they will ultimately perform as desired. So, even though we cannot per-
sonally detect the presence of a current flowing in a wire, we can under-
stand the consequences of its existence through the Maxwell equations.

Fortunately, we can use our experiences dealing with the portion of the
electromagnetic spectrum to which our eyes are sensitive, to help us un-
derstand the remainder. For example, when waves encounter an interface
between two different media, simple rules of behavior have emerged, such
as the angle of incidence (measured from the normal to the surface) is
equal to the angle of reflection. Mathematically, this phenomenon arises
from the requirement that the fields be continuous at the interface. In-
deed, this particular result is also true for acoustic waves and surface
waves on water.

Ficure 1.8. A thin beam of light,
entering from the upper left, im-

pinges upon a surface between two 6, | b
regions with different electromag- €4 | >
netic properties.  The reflected
b : €2H2

eam (upper right) makes the same
angle 6, with respect to the normal /
as the incident beam. The transmit- 02

ted (refracted) beam makes a differ-
ent angle 0,.

The experiment sketched in figure 1.8 forms the foundation of geometri-
cal optics and is one that is conducted in every introductory course. This
behavior supported Newton’s corpuscular theory of light for many years.
Because light has a very short wavelength compared to the beam size, the
ray approximation indicated by the figure provides an effective means of
understanding how light propagates through optical systems composed
of lenses and mirrors. For longer wavelengths, diffraction effects can be
significant and the ray approximation is less useful. Indeed, even for vis-
ible light, one can see diffraction effects if you look closely.

The French physicist Augustin-Jean Fresnel considered a simple example
of light emanating from a point source that encountered an opaque, semi-
infinite screen. For convenience, we will locate the source on the negative
x axis at a distance s away from the origin. An opaque, semi-infinite screen
is placed in the y-z plane at the origin, blocking a direct view of the source
for points in the negative z direction, as indicated in figure 1.9. The rel-
ative intensity of a beam measured some distance d beyond the screen is
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given by the following expression:
I, 2 2
(1'5) I(C)= ;[(S(C)"'Vz) +(C(C)+ 1/2) :|;

where the Fresnel functions S(z) and C(z) are defined as follows:

C C
(1.6) S(Q) :J dtsin(mct?/2) and C(Q) :J dt cos(mt>/2).

Here, the variable C is proportional to the distance from the edge:

/ ks
(1.7) C=z m,

where the wavenumber k is inversely related to the wavelength A: k =
271t/ A

Ficure 1.9. An opaque, semi-

infinite screen extends into the

lower y-z plane. For a source at 5
a distance s from the origin, the

intensity measured at a distance

d along the positive x-axis, is an
oscillatory function of z.

The oscillatory behavior observed in figure 1.9 is not what one might
naively expect. One might have anticipated that there would be a sharp
shadow line at the edge but the oscillations in the intensity are readily
observed. Indeed, observations of diffraction signalled the demise of the
corpuscular theory of light. This was a phenomena that required that light
be a wave.

Exercise 1.6. Plot the functions FresnelS and FresnelC over the
range o < C < 10. Plot the relative intensity I(C)/I, over the range
—2 < C < 10. How does this behavior differ from what you would
expect of a corpuscular description of light?

ExercISE 1.7. Suppose that you try to reproduce Fresnel’s exper-
iment with a laser pointer light source (A = 60oo nm) and a razor
blade as the opaque screen. If you place the laser pointer a few cm
from the blade and allow the light to fall on a blank sheet of paper
a few cm distant, what would be the spacing of the bright fringes in
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the diffraction pattern? How does the spacing change as you adjust
the distances s and 4 from equation 1.7?

The phenomena is more readily discerned if one places the viewing screen
at a large distance from the opaque screen. In the limit where the source
is also placed far from the opaque screen, we have a situation known as
Frauenhofer diffraction.” If we consider a narrow slit in an infinite opaque
screen, where the slit width a is comparable to the wavelength A (a/A = 1),
then the intensity can be determined as a function of 0, the angle from the
initial beam direction (x-axis). For normal incidence and a single wave-
length source, we find the following result:

(1.8) I(Q):Iosincz[];—asine],

where the wavenumber k is given by k = 27t/ and the sinc function is

defined as follows: .
sinx

sincx =
x
Exercise 1.8. The intensity of Frauenhofer diffraction is sharply
peaked at @ = o, with nulls in the intensity at specific values of ka.
Plot I(0) over the domain —7/2 < 6 < 7t/2. Study the behavior for
the domain 2 <a/)A < 10.

1.3. Quantum Physics

Waves, in most instances, do not interact directly. As a result, the patterns
produced by arrays of slots can be readily determined. A modest compli-
cation is that the intensity we observe is proportional to the square of the
field amplitude. Nonetheless, these calculations are not exceedingly dif-
ficult and the characteristic patterns generated by multi-slot interference
are further evidence of the wave nature of light. For two slits of width a,
with centers separated by a distance b, the intensity as a function of angle
is given as follows:

kb k
(1.9) 1(0) :Iocosz[j sin@}sincz[; sin@].

9Joseph von Frauenhofer was born into a family of glassmakers in 1787 and orphaned at age
11. Apprenticed to an optician, Frauenhofer came to the notice of Prince Elector Maximilian
Joseph IV of Bavaria when his master’s house burned to the ground. Under Maximilian’s
aegis, Frauenhofer was eventually able to conduct his own optical research, ultimately dis-
covering the dark absorption lines in the solar spectrum. Frauenhofer invented the diffrac-
tion grating spectrometer to explore the spectral lines in more detail but never published his
work, in order to avoid disclosing the trade secrets of glassmaking. He never contributed to
the theory underlying Frauenhofer diffraction and was not a part of the scientific community
during his lifetime.
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Note that this equation indicates that the Fresnel diffraction effects simply
multiply the interference effects.

1(9)

Ficure 1.10. The intensity of light
interfering from two slits (black
curve) is modulated by the diffrac-
tion envelope (gray curve) of a sin-
gle slit. Nulls in the intensity al-
low the determination of the slit
width and separation in terms of
the wavelength A, or vice versa.

—71/2 o /2

The intensity observed in a two-slit diffraction pattern is illustrated in
figure 1.10. The patterns that arise depend on the ratios a/A and b/,
where a and b are the slit width and separation, respectively, and A = 27t/k
is the wavelength.

Exercise 1.9. Plot the two slit diffraction intensity over the domain
-1t/2 < 6 < /2 for different values of a/A and b/A. How do the
patterns change as, for example, b/A changes from 100 to 10? How
do the patterns change as a/A changes from 3 to 10?

The initial use of quantization in physics can be traced to Max Planck’s
strategy for constructing a sensible probability distribution for electro-
magnetic energy in a box. Planck proposed that light came in discrete
units, so that instead of integrating over all frequencies, which led to di-
vergent integrals, one summed over the number of discrete units within
the box. The summation converges to a finite result and really amounts
to enforcing a high-frequency cutoff on the integration over frequency. In
any event, physicists began thinking about what came to be called pho-
tons.

One of the first experiments that tried to illuminate some of the prop-
erties of these photons was conducted by G. L. Taylor, a student of J. J.
Thomson.'® Under Thomson’s direction, Taylor studied the patterns pro-
duced by light diffracting around a thin needle. The light source was a
high-temperature gas flame collimated through a thin slit. Light passing
through the slit fell on the needle and then upon a photographic plate.
Taylor found that an exposure time of about 10 s achieved a particular
level of blackness in the developed plates. He then placed a piece of dark

1OTaylor’s “Interference Fringes With Feeble Light” was published in the Proceedings of the
Cambridge Philosophical Society in 1909.
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glass in front of the slit, to reduce the light intensity, and experimented
with exposure times to recover the same level of blackness in the devel-
oped plates. Taylor assumed that the exposure time was inversely propor-
tional to the intensity of the beam and then conducted a series of addi-
tional experiments, adding additional dark glass at each step. In the final
step, an exposure of over 2000 hours was required. Ultimately, Taylor
found no difference between any of the exposed plates. They all produced
a pattern akin to that seen in figure 1.10, with a few minor variations in
overall blackness that could be attributed to not correctly estimating the
exposure times.

We can utilize modern technology to update the Taylor/Thomson exper-
iment, with surprising results. In particular, we can replace the photo-
graphic emulsion with an image intensifier that can detect single pho-
tons. The image intensifier utilizes high voltages to convert production
of an initial photoelectron by an initial photon capture event into an ex-
ponential cascade of electrons. Thus, a single photon striking the surface
may result in 10'> electrons at the end of the amplification stage. Modern
devices encapsulate the cascade events within micrometer-scale channels,
preserving high spatial resolution of the initial detection event. The mi-
crochannel electrons are dumped into a charged-coupled device (CCD)
camera and the camera integrates the signals. There is a fair amount of
interesting physics taking place within the detection system but we shall
not stop to investigate it in detail at this moment.

Ficure 1.11. Single photons diffracting through a three-slit exper-
iment display particle-like properties, scattering in seemingly ran-
dom fashion (a). Counting more events (b) and (c) results in the
emergence of the expected diffraction pattern. Image courtesy of
Department of Physics, Princeton University.

a b e

The images depicted in figure 1.11 represent the results of single-photon
diffraction (in this case, through three slits). That is, the light intensity
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within the apparatus was reduced such that, on average, only a single
photon’s worth of energy was incident on the slit at any one time. As
a result, the image produced is the result of a single photon interfering
with itself, not other photons that would make up a classical wavefront.

Exerciste 1.10. The initial laser power used in the experiment por-
trayed in figure 1.11 was 1 mW. What is the energy contained in a
single photon with wavelength A = 632.8 nm? How many photons
per second are required to produce that initial power level? The ini-
tial laser beam was attenuated by a factor of 5x107"" before striking
the slits. What is the average time between photons in the atten-
uated beam? What is the average distance between photons in the
attenuated beam?

What we see is that, after passing the slits, each photon hits the detector in
some apparently random position.'" Only after many photons reach the
detector does a diffraction pattern begin to emerge. Apparently, diffrac-
tion is an emergent property of a statistically large number of individual
photons.

The essence of the new quantum theories that were being developed in the
early 19o00s was that microscopic particles were described by wave func-
tions that determined their state. Squaring the wave functions produced
the probability distribution of the particle. Such theories were remarkably
distinct from the completely deterministic theories pioneered by Newton;
they had more in common with the statistical mechanics theory pioneered
by Gibbs and Boltzmann. Indeed, the theoretical framework developed by
Gibbs needed no essential modifications to incorporate quantum ideas.
There were some physicists that were troubled by the reliance on a prob-
abilistic formulation of nature; Einstein, in particular, felt that determin-
ism should not be abandoned. Yet, in figure 1.11, we see direct evidence
of that probabilistic aspect in the behavior of photons.

Moreover, this behavior is not restricted to photons. In figure 1.12, we de-
pict the results of a single electron diffraction experiment conducted by
Tonomura and coworkers.'*> The experimental conditions were such that
only a single electron at a time was present in the apparatus and, after
passing through a biprism (equivalent to two slits), the electron struck
a microchannel plate very similar to that used by the Page group to de-
tect photons. The results are strikingly similar: as the first electrons are

11 Actually, the quantum efficiency of the detector was only about 30%, meaning that not
every photon that passes through the slits is detected. This does not appreciably alter the
conclusions.

12“Demonstration of single-electron buildup of an interference pattern” was published in
the American Journal of Physics in 1989.
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FiGure 1.12. Time se-
quence of single electron
scattering through a dou-
ble slit. (a) Initial electrons
scatter seemingly ran-
domly. (b—c) As more
electrons are counted,
the (d) classical double
slit  diffraction  pattern
arises. Image courtesy of
the American Institute of
Physics.

counted, there is an apparently random distribution. Then, as more elec-
trons are counted, a diffraction pattern emerges. The electrons interfere
with themselves in a fashion just like photons, with identical results.

The consequences of this observation are profound. Electrons are not par-
ticles in the sense of exquisitely small balls of some form or another; they
diffract, meaning that they are waves. As each entity, electron or pho-
ton, made its way through the apparatus, the encounter with the slits
resulted in a modification to the probability density function, such that
when the entities reached the detectors, there was a probability that the
entity would be detected at each point on the detector. That probability is
defined by the intensity plots that we have described above. We have seen
this sort of emergent behavior previously when discussing random walks.
The location of any individual walkers is essentially unknowable but the
distribution of many walkers becomes very predictable as the number of
walkers becomes large.

Exercise 1.11.  Use the RandomReal function to generate random
numbers in the range (o0,1). If the number is greater than one half,
take a step in the positive direction. Otherwise, take a step in the
negative direction. For each walker, take twenty steps. Plot the dis-
tribution for 100 walkers and 10,000 walkers.

This behavioral equivalence between electrons and photons is usually de-
scribed as wave-particle duality. The usual interpretation is that electrons
and protons display characteristics of both waves and particles, depend-
ing upon the circumstances. We shall have much more to discuss on the
matter going forward, but the results pictured in figures 1.11 and 1.12
demonstrate the futility of using macroscopic ideas to explain microscopic
phenomena. As we shall see, the attempts to describe atoms with some
sort of planetary model, which is an appealing analogy, cannot succeed.
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The microscopic world is vastly different from our personal perceptions
of the universe.

1.4. Mathematical Insights

In 1905, Albert Einstein published four papers that proved subsequently
to be of major importance in defining the direction of modern physics.
This accomplishment is even more remarkable when one realizes that
Einstein was the only member of his graduating class (19o0) at the Eid-
gendssische Technische Hochschule (ETH) in Ziirich who was not offered
a position to continue his studies as a research assistant.'> Einstein man-
aged to eventually find teaching positions in private schools before the
intervention of his friend Marcel Grossmann’s father secured Einstein a
position at the Swiss Patent Office in 1902. (The Patent Office had adver-
tised for a patent examiner, second class, but only offered Einstein a third
class appointment.) Despite the dubious beginning of his career, Einstein
was greatly enthusiastic about the post: it meant that he had the financial
means to marry Milena Maric, a fellow physics student he had met at the
ETH. Einstein’s father objected to the match, so the couple delayed their
marriage until after his death in 1903. Einstein continued at the Patent
Office until 1909, being promoted to examiner, second class in 1906.

Einstein’s 1905 submissions to Annalen der Physik included an explana-
tion of the photoelectric effect, provided a theoretical basis for Brownian
motion, defined what we today call special relativity and remarked on
mass/energy equivalence.'* Also in 1905, Einstein was awarded a doc-
torate degree from the University of Ziirich for his dissertation On a new
determination of molecular dimensions that he dedicated to Grossmann. It
is no small wonder that 1905 has come to be known as Einstein’s annus
mirabilis.

In 1908, Einstein’s Habilitation thesis Consequences for the constitution of
radiation following from the energy distribution law of black bodies was ac-
cepted by the University of Bern and Einstein became a lecturer there
briefly before accepting a professorship at the University of Ziirich in
1909. Einstein’s growing reputation as a theoretical physicist finally be-
gan to bring him more opportunities; he moved several more times before
moving to the University of Berlin in 1914, where he became the founding
director of the Kaiser Wilhelm Institute of Physics.

The early 1900s were heady years for physicists. The majority spent their
time working toward developing a consistent description of what we call

13Wayward students take heart!
14Einstein was awarded the Nobel Prize in Physics in 1921 “for his services to Theoretical
Physics, and especially for his discovery of the law of the photoelectric effect.”
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quantum phenomena. Einstein was notably silent in the ongoing discus-
sions. He was philosophically opposed to the idea that a successful phys-
ical theory could or should be built upon a statistical formulation. The
wave functions that had been introduced to describe quantum states were
interpreted (when squared) to be the probability of a state possessing a
particular property.

Instead, Einstein focussed on continuing the work that he started in 1905
with the Theory of Special Relativity. Suppose that we have two coordi-
nate systems: x = (ct,x,9,z) and x’ = (ct’,x’,v’,2); the Special Theory of
Relativity requires that the transformations between the two systems be
linear:

82X/ a2y/
Cox2 ox?
Einstein was interested in understanding what happened if you relaxed
that restriction: what happens if the transformations are nonlinear? There
was no compelling reason to study this particular question and, in truth,
there were many interesting experimental results being produced in the
quantum arena. Nevertheless, even as a student Einstein kept his own
counsel, much to the consternation of his instructors, and he demon-
strated a fierce independence that initially cost him the opportunity to
pursue physics professionally. So, it is not surprising that, while others
made names for themselves in the new quantum theories, Einstein con-
tinued along his singular path.

(1.10) o) et cetera.

We know from dimensional analysis that in the following linear transfor-
mation:
x" =at + bx,

the coefficient @ must have the units of a velocity and b is dimensionless.
Hence, the Special Theory of Relativity concerns observers in frames that
are, at most, moving with constant relative velocities. If we are to consider
transformations that are not linear, then we could have transformations
like the following;:

x'=at® + bt +cx,

where here the a coefficient has the units of an acceleration. In his studies
of a more complex set of transformations, Einstein understood that he
would have to cope with accelerating systems and he also understood that
this would yield a number of additional complications.

Take, for example, the simple situation of a rotating coordinate system, as
depicted in figure 1.13, as depicted in figure 1.13. If the riders on a merry-
go-round roll a ball back and forth between one another, the ball takes
what appears to be a curving trajectory from one rider to the next. Viewed
from a stationary spot above the merry-go-round, another observer will
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FIGURE 1.13. In a rotating frame of
reference (x’), a point that is fixed
in space (x,) will change its posi- X
tion over time.

see that the ball actually follows a straight-line path, just as one should
expect for an object that is not being accelerated.

To see how this occurs, let us choose two coordinate systems with the
same origin. A point in one system is defined by x = (x, ). In the rotating
system, a point is defined by x’ = (x’,9’). The angle 0 between the two
systems is a function of time: 6 = wt, where w is the angular velocity.
The relationship between the two coordinate systems is provided by the
rotation matrix:

x’ cos wt  sin wt||x
(1.11) = . .
v —sin wt cos wt ||y
Here, the coordinate systems coincide at time t = o and at integer multi-

ples of T = 271/w (known as the period) thereafter.

Suppose now that x is itself a (simple) function of time: x = x, + vt. It is
not difficult to show that trajectories in the rotating frame are curved. (We
do so in the following exercise.) Newton’s laws of motion require that an
object that is deviating from straight line motion is doing so as the result
of an acceleration created by an external force. As a result, observers in
an accelerating frame of reference will infer the presence of forces that do
not actually exist.

Exercisk 1.12. Define the following functions:
x1[t_]:=(xo + v+t) Cos[w t] + yo Sinf[w t]
yi[t_]:=-(xo + v=*t) Sin[w t] + yo Cos[w t].

Use the Mathematica function ParametricPlot to examine the tra-
jectories.

Manipulate]
ParametricPlot[{x1[t],y1[t]}/.{x0->1.5,y0->0.3,w->w1,
v->vi},{t,o,1},PlotRange->{{-4,4},{-4,4}}1,
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{w1,0,1},{v1,-1,1}]

What happens when w = o and you change the value of v? What is
the shape of trajectories when w is no longer zero? How does altering
the initial values x, and v, affect the results?

Einstein made a key discovery in 1907, when he published his notions on
an equivalence principle. One can observe, for example, that the force
F on a charged particle in an electric field E is given by the following
equation:

(1.12) F =gE,

where g is the charge of the particle, and the electric field can be, for
example, the field produced by other charged particles. This will give rise
to an acceleration of the particle:

F gE
(1.13) a= E = W
One can also recast Newton’s gravitational equations into the following
form:

(1.14) F = MG,

where M is the gravitational mass of an object and G is the gravitational
field of, say, other masses. The gravitational force will also give rise to an
acceleration:

_F_MG _
(1.15) a=_—=——-=G,
where in the last step, we have made the assumption that the gravitational

mass M of an object is the same as the inertial mass m.

Einstein reasoned that if you were placed inside of a box that was far from
any other masses and accelerated in some fashion, say with a rocket motor,
then you would be unable to differentiate between that acceleration and
the acceleration due to the gravitational force that arises when standing
on the earth’s surface. Einstein believed that this equivalence between
gravitational and inertial masses provided a key insight. As a result, he
became convinced that his search for a more general theory of relativity
would give rise to a new approach to describing gravity.

For the next several years, Einstein worked diligently on his theory of
gravity, but without making much progress. The situation changed when,
in 1912, Einstein moved back to Ziirich and began working with his old
classmate Marcel Grossmann. Part of Einstein’s struggle with the devel-
opment of this new theory was in trying to find a means to describe his
ideas in mathematical terms. Unfortunately, mathematicians are content
to live in an exceedingly abstract world, patterning their writings on those
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of Carl Friedrich Gauss, whose personal motto was pauca sed matura (few,
but ripe). When questioned (somewhat chastisingly) for the paucity of
words in his writings, especially any documentation of his motivating
ideas, Gauss answered that architects do not leave their scaffolding in
place when construction is complete; neither would he. As a result, math-
ematical papers are hard reading for physicists, even Einstein.

Such was Einstein’s situation in 1912: How does one extrapolate the ideas
of special relativity into a more general form and is there some sort of
mathematics that can be used? Fortunately, Marcel Grossmann was a pro-
fessor of mathematics at the ETH and willing to serve as Einstein’s guide
through the mathematical literature. Einstein, for his part, was mathe-
matically adept, a quality that should not be misinterpreted to mean that
he was a mathematician, for he was not.*>

This is a perpetual problem for physicists, particularly those engaged in
theoretical research at the frontiers. Mathematicians engage in absolutes:
one either proves a theorem or one does not. Physicists, on the other hand,
live in a world of approximation: fluid density is treated as a continuous
function, even though at some level the fluids are composed of individ-
ual molecules. Often, it is a problem of language. As physicists, we uti-
lize words like momentum and energy to mean specific things. So too do
mathematicians, who use words like group and algebra to mean specific
things.’® In the initial stages of discovery, though, there is often some
ambiguity about the choice of words and notation that should be used to
represent a concept.

In any case, Grossmann was willing to serve as Einstein’s translator in his
struggles to find the appropriate mathematical language to represent his
ideas. Grossmann recognized that the tensor calculus proposed by Elwin
Bruno Christoffel in 1864 might provide the mathematical structure that
Einstein needed. There were subsequent works by Tullio Levi-Civita and
Gregorio Ricci-Curbastro, who further developed Christoffel’s ideas but
their writings in the mathematical literature were too abstract for Einstein
to follow, so Grossmann spent a fair portion of 1912 educating Einstein
in the use of tensor calculus and the ideas of the differential geometry
developed by Gauss and Bernhard Riemann.

15The eminent mathematician David Hilbert told his biographer that the average schoolboy
on the streets of Géttingen knew more about four-dimensional geometry than Einstein but
it was Einstein who put together the new theory of gravity.

160ne of the goals of the influential Twentieth Century French mathematicians who founded
the Association des collaborateurs de Nicolas Bourbaki was to systematize the language of mod-
ern mathematics across all of its subdomains. Their efforts led to the discovery of surprising
relationships between what were previously considered disparate fields.
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Einstein and Grossmann wrote a series of papers in 1912 that almost cap-
tured what Einstein sought: a coherent, self-consistent theory of gravity
that arose from the geometry of spacetime. In fact, they even considered
what was to become the final theory but discarded it as being not quite
correct. Now, a hundred years or so after the fact, students may be puz-
zled by the fact that it took another three years for Einstein to finally com-
plete his mission. There is a Sidney Harris cartoon published some years
ago that depicts a puzzled Einstein standing before a chalkboard with
equations E = ma®> and E = mb?> crossed out. All that he had to do, one
supposes, is to take the next logical step.

In truth, Einstein’s struggles with his theory were more complex than the
cartoon would indicate but a visit he made to Goéttingen, where he had
been invited to lecture on his ideas by David Hilbert, finally provided
Einstein with the impetus to complete his work. Einstein presented six
two-hour lectures on his theory of gravity in late June and early July
before returning to Berlin. In recounting the results of his expedition
to friends, Einstein was cheerful: “I have convinced Hilbert and (Felix)
Klein.” Among the difficulties that Einstein had encountered was an ap-
parent failure of his theory to conserve energy. Einstein recognized this to
be a potentially fatal flaw.

As it happened, Hilbert had hired a young mathematician who also pos-
sessed some knowledge of physics and could therefore help him in his
own efforts to understand the subject: Emmy Noether.'” Upon her ar-
rival in Géttingen, Noether quickly solved two important problems: first,
identifying all of the invariants of an arbitrary vector or tensor field in
a Riemannian space and, second, proving that infinitesimal transforma-
tions of the Lorentz group give rise to conservation theorems. It is this
second result, known to physicists as Noether’s theorem, that symmetries
in the equations of motion give rise to conserved quantities, that stands as
one of the most important contributions to modern theoretical physics.

Noether’s work demonstrated that Einstein’s theory was consistent with
global conservation of energy, eliminating a significant barrier to his pro-
gram. For his own part, Hilbert became fascinated with Einstein’s use
of advanced mathematics to describe physical phenomena and set out
to see what he could contribute to the discussion. Hilbert corresponded
throughout November, 1915 with Einstein. Einstein, undoubtedly feeling
some urgency in his work now that Hilbert was also working on the prob-
lem, submitted four papers (one each Thursday) to the Prussian Academy

17Noether’s appointment at Gottingen was contentious, the faculty refused to allow a
woman to lecture. Hilbert famously replied, “I do not see that the sex of the candidate is
an argument against her admission as Privatdozent. After all, we are a university, not a bath
house.” Noether was finally permitted to submit her Habilitation in 1919.
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refining his ideas on the gravitational theory and stating the complete
set of field equations in the November 25th submission. Interestingly, on
November 20, 1915 Hilbert submitted a paper of his own to the Gottin-
gen Royal Society in which he derived Einstein’s gravitational theory from
the principle of least action. Hilbert’s paper was not printed until March
of 1916 and it seems likely that he modified it after Einstein’s final the-
ory was published in December. Hilbert never claimed priority for the
discovery of the field equations. His interactions with Einstein certainly
contributed to Einstein’s eventual formulation of the theory but it is quite
astonishing to discover that Einstein’s great work can be derived from a
higher principle.

Einstein’s principle of relativity is a guiding force in subsequent theoreti-
cal developments in physics. All fundamental theories must be consistent
with this principle. Noether’s contribution that there is a deep connec-
tion between symmetries in the equations of motion and experimentally
observed conserved quantities has also fundamentally changed how we
view the universe. There are certainly areas of physics where physics is
conducted in a manner that would be familiar to Newton and Laplace,
such as our earlier discussion of sand grains but fundamental laws of na-
ture at the microscopic scale appear to be governed by the deeper prin-
ciples uncovered by Einstein and Noether. We shall discover more of the
impact of these ideas in the subsequent chapters.
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On the Nature of the Photon

In 1864, the Scottish physicist James Clerk Maxwell undertook the task
of combining all that was then known about electric and magnetic phe-
nomena into a single, encompassing theory. Maxwell used as a template
the mathematical structure of the well-known theory of elastic media. In
this regard, Maxwell followed in the long tradition of applying estab-
lished mathematical tools to a new problem. Maxwell’s original papers
are somewhat difficult to read because they do not incorporate the mod-
ern vector notation invented by Oliver Heaviside. In this regard, it makes
Maxwell’s achievement even more compelling as he was able to under-
stand the mathematical structure present in the equations even without
the notational support that makes it more evident.

The principal modification that Maxwell made to the existing theories of
electric and magnetic phenomena was to add a term that he perceived was
necessary due to the symmetry of the equations. It is known as the dis-
placement current, for historical reasons, but the real impact of Maxwell’s
contribution was that it converted a system of equations that described
electrical and magnetic phenomena as separate entities into a single, com-
prehensive theory of electromagnetism. Indeed, as we shall encounter
shortly, the division of phenomena into electric and magnetic components
depends on the frame of reference. This makes the formulation inconsis-
tent with the principle of relativity and we shall see subsequently how to
remedy that problem.

In large measure, Maxwell’s equations form the most successful physi-
cal theory ever developed. To be sure, thermodynamics provided the
underpinnings for the industrial revolution and quantum electrodynam-
ics has demonstrated unprecedented agreement with high-precision mea-
surements. Nonetheless, electromagnetic phenomena form the heart of
all of our modern technology. We generate electrical power and distribute
it across the world. We build electrical motors that drive ubiquitous ma-
chinery and have mastered the generation of electromagnetic radiation
that cooks our food in microwave ovens and allows us to communicate

© Mark A. Cunningham 2018 29
M.A. Cunningham, Beyond Classical Physics,

Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-319-63160-8_2


https://doi.org/10.1007/978-3-319-63160-8_2

30 ON THE NATURE OF THE PHOTON

over vast distances. We use lasers to scan groceries at checkout counters
and send down images from satellites orbiting over the planet that enable
us to more accurately predict weather patterns. All of these disparate
phenomena can be modelled quite precisely with Maxwell’s equations.

Additionally, Maxwell’s equations have served as a template for essen-
tially all further developments in theoretical physics. As a theory of ab-
stract fields, Maxwell’s equations have been extended, generalized and
scrutinized in an effort to explain other physical phenomena, leading to
the development of the Standard Model of high-energy particle physics
and string theory beyond.

2.1. Maxwell’s Equations

Maxwell’s equations represent a classical field theory that links the exis-
tence and time variation of the field quantities to sources: charge distri-
butions and currents. We shall begin by stating Maxwell’s equations in
a modern, integral form, using the SI system of units. Units are always
problematic in dealing with electromagnetic phenomena. As a practical
matter, force has the dimension of (M -L-T~2), where M is a mass, L is a
length and T represents time. The Coulomb force (QE) requires a dimen-
sion for the electric field of (M -L-T72-Q7"). There are alternative unit
systems that can potentially simplify the equations by suppressing some
of the constants that arise but their use is not compelling.

Using vector notation, the equations can be written rather compactly. In
their integral form, Maxwell’s equations can be written as follows:

-
(2.1) d’r,n(r,)-D(t,,1,) :J d3r, p(t,,ry),
Jov Vv
i
(2.2) d*r,n(r,)-B(t,,1,) =0,
Joy
r d
(2.3) dl-E(t2,r2):——Jdzrln(rl)-B(tl,rl) and
Jos dt Js
r d
o) | LB = [ i) on) 4 [ @) D)
Jos S dt Js

Here, we have implicitly assumed that all vectors are three-dimensional.
The fields are functions of both time and space. These are quite formida-
ble expressions, so let us spend some time discussing their meaning.

The electric displacement D is related to the electric field E by what are
known as constitutive relations. In physical media, the presence of an
external electric field causes a number of different effects: charge separa-
tion in metals and polarization in insulators. For modest field strengths in
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most media, the two are simply proportional: D = €E, where € is known
as the dielectric permittivity. In general, the relationship can be more
complex, € may be a tensor, wherein any single component of the electric
displacement will depend upon all of the components of the electric field:

Di = eixEx + ei}/EJ/ + 6,'ZEZ,

Indeed, it is not necessary for D and E to be related linearly but we shall
defer discussions of that nature to later in the text. Similarly, the magnetic
induction B is often treated as having a linear dependence on the magnetic
field H: B = yH, where p is called the magnetic permeability. In vacuum,
€ and p are just constants, usually denoted as €, and y,.

FIGUrRe 2.1. A charge distribution
is located within the volume V.
Points r, lie within the volume. The
integral extends over the surface of
the volume JV. Points r, lie on the
surface, with local normal n.

In the first equation 2.1, known as Gauss’s law, we find that, if we inte-
grate (d3r,) over a (three-dimensional) volume V that contains a distri-
bution of charge p (known as the charge density), this will be equal to
the two-dimensional (d®r,) integral of the component of the electric dis-
placement D that is everywhere normal to the surface (dV) that bounds V.
An illustration of such a volume is depicted in figure 2.1. At the point r,
on the surface of the volume, there is the (outwardly directed) normal n.
The component of the displacement parallel to the normal that emerges
through the infinitesimal surface element (denoted by the small rectan-
gle) is then summed (integrated) over all such surface elements to obtain
the total flux.

There are several important assumptions captured in equation 2.1. First,
we have defined a continuous function p that defines the charge density
within the volume. As all charge ultimately arises from the charges on
individual electrons or nuclei, this is clearly an approximation but one
which serves generally well for macroscopic systems. We have also as-
sumed that the volume is finite, or mathematically, that the charge den-
sity has finite support. If we were to consider a universe with a constant
charge extending to infinity, then the charge density integral would di-
verge, leading to the loss of our ability to make any use of equation 2.1.
For the mathematically aware, there is also the implicit assumption that
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the surface dV is orientable, meaning that we can define a normal every-
where. Not all manifolds have this property and we are additionally limit-
ing ourselves to surfaces that are reasonably smooth, or at least piecewise
smooth. Indeed, most examples found in introductory texts restrict the
surfaces to spheres and cylinders.

Exercise 2.1. The volume element in spherical coordinates is given
by the following:
d3r=drdOder?sin0,

where r is the radial coordinate, 6 is the polar angle measured from
the z-axis and ¢ is the azimuthal angle measured from the x-axis. If
we have a charge distribution p(r) = p(r) that is independent of the
angular variables, i.e., is spherically symmetric, what is the result of
the integrating over 6 and ¢?

We can note that the right-hand side of equation 2.1 will vanish if the total
charge within the volume V vanishes. This does not mean that the charge
density must be everywhere zero, only that there are equal amounts of
positive and negative charge within the volume. In any case, it is also true
that any charge outside the volume V does not contribute to the right-
hand side integral. Consequently, any charge outside the volume does not
add to the net flux (left-hand side) through the surface of the volume.

In many instances, we will be interested in the fields due to just a single
charge or a few charges. In those cases, we can still utilize equation 2.1 as
a statement of Gauss’s law by utilizing the delta function 6(x) introduced
by Dirac. The delta function has the following property:

b
(2.5) j dx f(x)5(x — ) = £(c)

provided that a < ¢ < b. Strictly speaking, the delta function is known
to mathematicians as a distribution or a generalized function. Actually,
Dirac’s contrivance provoked a large amount of work by mathematicians
to demonstrate that such a function could even be defined in any sort
of sensible fashion. For students, the appearance of a delta function is
generally a godsend, evaluating a complex integral is reduced to writing
down the value of the integrand at the point x =c.

In the case of a single charge, located at the point r, = (x,,7,,2,), the
charge density will be given by the following expression:

p(ry) = Qo(x; —x6)0(v; —¥0)0(2, —20) = Qo3 (r, — o).
Inserting this expression into the charge density integral, we obtain:

j d3r1 P(f1) = Q:
1%
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provided that r, lies within the volume V, otherwise, the integral van-
ishes.

Turning now to the second Maxwell equation 2.2, we find a similar ex-
pression for the magnetic induction B but, in this case, the integral al-
ways vanishes. This result can be taken to mean that there is no magnetic
charge.

FIGURre 2.2. An oriented surface is
bounded by a closed loop dS. The
positive direction around the loop
is defined by the right-hand rule.
Points r, lie on the surface and
points r, lie on the boundary 0S.

The next equation 2.3 is known as Faraday’s law. It relates the time rate
of change of the magnetic flux through a surface S to the line integral of
the electric field around the perimeter JS. At some level, equation 2.3 is
the basis of our modern technology: the changing magnetic flux through
a surface defined by a metal loop gives rise to an electric field (and a cur-
rent by Ohm’s law) within the loop. This is the definition of an electrical
generator or a transformer, depending upon the application. If we, in-
stead, consider the induced current to be the source term, equation 2.3
provides the definition of an electric motor. These facts may not be ex-
plicit in the rather curious glyphs contained within the mathematics but
those outcomes can be obtained nonetheless.

In figure 2.2, we illustrate the relationship between the surface & and
its boundary dS. Points r; within the boundary of an oriented surface,
with local normal n(r,). Points r, on the boundary of the surface trace a
one dimensional path, where locally the direction dl is positive in a right-
handed sense.

The final equation 2.4 was originally proposed by Ampére but subse-
quently modified by Maxwell, who included the last term on the right-
hand side out of concerns of symmetry with the corresponding Faraday’s
law. In its final form, the Ampére-Maxwell law provides that the current
flow and the time rate of change of the electric flux through a surface S is
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proportional to the line integral of the magnetic field around the bound-
ary of the surface. It is actually the last term, known historically as the
displacement current, that provides the final clue as to the nature of light.

The student, at this point, will most likely not be suddenly awakened to
the secrets of the universe. How these equations depict the nature of elec-
tromagnetic phenomena is still opaque. In truth, mathematicians have
not provided extensive means for solving integral equations, although the
integral form can form the basis of numerical, finite element methods.
Rather than investigate that option here, we shall follow the path most
often used by physicists and convert the integral equations into a series of
partial differential equations.

We can make use of the following vector identities, that hold for suitably
well-behaved vector fields:

(2.6) jd%V-A:J d’rn(r)-A and
Vv aV

(2.7) szerA:J dl-A.
S aS

Here, A represents some vector field and V is a differential operator. The
vector n is the unit normal to the surface dV. In Cartesian coordinates,
the operator V has the following form:

0 d o
“[%'a—y'z]'

Note that we use the term operator and not vector. Because V is composed
of differentials, it really only has meaning when applied to functions.
Technically, mathematicians will call the differential operator a 1-form
but we will defer this discussion until later. As an example, V applied to
a scalar function f results in a vector that we call the gradient:

df df 0
(2.8) Vf(xv,2)= [a—{, a—J;, 8—{;}

It is possible to construct two other mathematical objects from the differ-
ential operator. The term V- A is called the divergence of the field A and is
a scalar function. The object V x A is called the curl of A and is a vector.
We'll discuss more about the mathematical underpinnings of the operator
subsequently but, for the present, we can simply state that we interpret
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these operations to mean the following:

9A, 9A, OA,
(29) V-A= Ox +8_y+ 0z and

[0A. 9A,] [0A, 0A. ] [9A, 0A,
(2.10) VXA:"[ % _¥]+ [az ‘W] Z[W‘a_y]'

Using the vector identities 2.6 and 2.7, we can rewrite Maxwell’s equations
as a series of differential equations:

(2.11) V-D=p,

(2.12) V:-B=o,

( ) VxE——a—B d
2.13 =-5; an
(2.14) VxH:]+aa—lt).

Here, we have suppressed an integration over an unspecified volume V,
assuming that equations 2.11-2.14 are true pointwise, precisely because
the volume is not specified. In truth, there is a formidable amount of
mathematics underlying our ability to switch back and forth between the
differential and integral forms of the Maxwell equations. Undoubtedly,
few students will have much appreciation for that fact at the moment and
few students will observe that equations 2.11-2.14 represent any sort of
real progress in understanding the meaning of Maxwell’s equations. In-
deed, solving coupled partial differential equations remains a formidable
challenge. Nevertheless, a good deal of progress has been made in con-
structing solutions and, with the advent of modern computers, numerical
approaches have extended the applicability to quite complex geometries.

It is nonetheless remarkable that we can derive two separate representa-
tions of the Maxwell equations. We have chosen to write them in a fashion
that emphasizes the operator nature of both the integration and differen-
tiation operators. We will see ultimately that the two are inverses of one
another but the fact that we have two representations means that, if we
cannot find a way to solve the integral equation, perhaps we can find a
way forward by considering the differential equation. This sort of strat-
egy has been used quite successfully, as we shall see.

Exercise 2.2.  Use Gauss’s law for magnetic fields, equation 2.2,
and the divergence identity, equation 2.6, to convert the separate
integrations into a single volumetric integration. Show that you can
recover equation 2.12.
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We can show an important result with modest effort, though. Consider
taking the curl of equation 2.13. We can make use of a vector identity:

VxVxA=V(V-A)—(V-V)A=V(V-A)-V?A.
We then find the following result:

Vx(VxE):—ng—?
V(V-E)—VzE:—i(VxB),

ot
where in the second step we have assumed that the order of differentiation
can be reversed. Let us now make the simplification that we are consid-
ering free space and that the constitutive relations between the fields are
simply proportional. That is, we assume that D = € E and B = y, H. Then
we can use equation 2.14 to write

[ JE

vEO V°E = at (II/IOJ+€OII/IO 8f)
PE _,. P dJ

(2.15) ooy ~V E=-V - o=

[¢]

Now in the absence of local sources p and J, equation 2.15 is just the ho-
mogeneous wave equation for each of the components of the electric field,
provided that we identify e u, = 1/c¢>, where ¢ is the velocity of light.
Note the particular importance of the displacement current in the estab-
lishment of the wave equation. In any case, this was a significant predic-
tion of Maxwell’s equations, one which was verified by Heinrich Hertz in
a series of experiments that he conducted during the years 1887-1889."

Exercisk 2.3. Expand the term VxV x A into Cartesian components
and show that the vector identity discussed above is correct.

Exercist 2.4. Take the curl of the Ampére-Maxwell equation 2.14
and derive a similar wave equation for the magnetic field, using the
same constitutive relations for the field.

Hertz’s apparatus was quite ingenious, making repeated use of Faraday’s
law; a basic representation of his early devices is illustrated in figure 2.3.
A battery was connected via a switch to a circuit composed of a trans-
former and capacitor, as depicted in figure 2.4. When the switch is closed,
a transient voltage pulse is created in what amounts to an LC circuit. That
pulse is amplified to high voltage through the transformer and applied to
the two arms of the antenna. If the voltage difference is large enough, a
spark leaps the gap between the two arms of the antenna, resulting in a

"Hertz published “Uber sehr schnelle electrische Schwingungen” in the Annalen der Physik
in 1887.
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Ficure 2.3. Hertz’s apparatus
included a battery (B) con-
nected to an induction coil
(C) and thence to a transmit-
ting antenna (T). The receiver
(R) was constructed of a metal
loop.

large current pulse along the antenna. This current pulse results in the ra-
diation of electromagnetic energy. If a changing magnetic field impinges
through the receiver, a current will be generated in the loop. For suffi-
ciently large currents, a spark will leap the gap.

Hertz found that, if he worked in a darkened room and allowed his eyes
to adapt sufficiently, that he could readily detect the small sparks ema-
nating from his receiver. He found that the waves could be blocked by
metal screens, that the waves bounced from metal screens with an angle
of reflection equal to the angle of incidence and, by orienting the receiver
in different directions, that the waves were polarized. That is, the elec-
tromagnetic fields were well described by the wave equation. Hertz was
gratified to confirm the predictions made by Maxwell but saw no particu-
lar use for the phenomenon. Commercialization would require the inter-
vention of others like Guglielmo Marconi and Alexander Graham Bell.

FIGURE 2.4. Hertz’s transmitter cir-
cuit can be modelled as a simple
RLC circuit, as depicted at right, §L
where the resistance arises from the
finite resistivity of the wires. C
[
I
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Exercise 2.5. The equation for the current I flowing in the circuit
as a function of time can be written as follows:
ai(r) 1 (!
—L—— —-RI(t)—= | dtl(t)+V(t)=o,
I RI=& | dni@ v

where V(t) is zero for times before t = o and V, thereafter. The
Laplace transform can be used to convert the differential equation
into an algebraic equation in the transform variable s.

Use the LaplaceTransform function on each of the terms in the
equation to derive the transformed equation. Note, use the variable
I1 for the current because I is reserved for the imaginary number
i. Show that the Laplace transform of the current is given by the
following:

f(s)= o

Ls2+Rs+1/C

Use the InverselaplaceTransform function to demonstrate that if
I(0o) = o, then
Vo

1= VR2 —4L/C

e—m[eﬁt _ e—/ﬁr],

where

R R 1]
a = Z and /J) = [4—L — R:| .

The behavior of the circuit depends upon the value of p. If 1/LC is
larger than R?>/4L, then the square root becomes imaginary and the
exponentials become oscillatory.

Plot the behavior of the system if V, =20V, R=1Q, L =3 mH and
C =47 nF for o <t <1 ms. What happens if you increase R?

2.2. Fields and Potentials

Maxwell’s equations expressed in their differential form remain just as
formidable as the integral form but physicists and mathematicians have
developed a number of methods for their solution. One of the most useful
is the integral transform, pioneered by Joseph Fourier and Simon Laplace,
among others. Mathematically, this strategy is based on the fact that one
can define a functional space and a basis of functions within that space.
Then, one can uniquely expand any function in terms of the basis func-
tions. The Fourier transform of some function F(x) is defined as follows:

(.16) F(k) = — dexF(x)e_ikx

2Tt
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and the inverse transform is defined as follows:

(2.17) F(x) = \/:_nfmdkﬁ(k)efk*‘.

Here we have adopted the physicist’s standard notation, wherein an over-
all factor of (1/2m) that is required to normalize the outcome is shared
between the forward and inverse transforms. Mathematicians often adopt
alternative definitions that avoid the square root and associate the factor
with either the forward or inverse transform. Students should be aware
that different texts may be using different definitions.

Fourier’s inversion theorem can be thus stated as follows:

F(x):ﬁj dkeikxj dCE(C)e ke

(2.18) - dCJ dk e F O F ().
2Tt —00 oo
We note that this can be true only if
] 1 (% (i
: S(x=0)=— | dke*0)
(2.19) (0= [ ke

We have discovered an integral representation of the Dirac delta function,
which will prove useful subsequently.

The utility of applying Fourier transforms to differential equations stems
from the following observation:

dF(x ) 1 d ikx
dx \/ﬁ dAJ Ak E(k)e

(2.20) dk ik)E(k)e'*~.

\/ﬁ
That is, the x-dependence of the Fourler transform lies solely within the
exponential. The transformed function F is a function of the transform
variable k and not a function of x. So, taking the derivative, so long as it
is possible to exchange the order of integration and differentiation, sim-
ply brings down a factor of (ik). Higher order derivatives are multiplied
by powers of (ik). As a result, differential equations become algebraic
equations in the transform domain. Those can be readily solved and all
that remains is an (often formidable) integral back into the spatial do-
main. Physicists often make use of Fourier transforms in the time do-
main, to remove the time-dependence of a system of equations. In this
case, the transform variable w has the dimension of inverse time, or fre-
quency. One then talks of working in the frequency domain and a specific
time-dependence can be recovered by performing the inverse transform
integration.
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The transforms can also be applied to vector equations. Suppose now that
we have a function of the vector r = (x,y,z). Then, we can transform each

component separately, with a (vector) transform variable k = (ky, ky, k,):

dk dk F k x+k y+k Z)
3/2

— 1kr
(2.21) chﬁkl-" k)e

Here, we have illustrated the three dimensional Fourier transform.

Exercise 2.6. Consider the function F(r) as defined in equation 2.21.
What is the partial derivative with respect to x? Compute the gradi-
ent of the function: VF(r), where

(d 9 0
“\ox"dy’ oz)
Write your answer in terms of the vector k.

In vacuum, the transformed Maxwell equations (suppressing the integrals
over dw d3k) become the following:

(2.22) ie,k-E=p,

(2.23) ink-H=o,

(2.24) ikxE=ipwH, and
(2.25) ikxH=J—-iwe,E.

In source-free regions, the first two equations 2.22 and 2.23 tell us that the
wave vector k is perpendicular to both the (transformed) electric E and
magnetic H fields, as depicted in figure 2.5. The second two equations tell
us that E and H are themselves perpendicular. The wave vector k defines
the direction of propagation of the wave. By convention, the polarization
of the wave is defined by the direction of the electric field.

Exercise 2.7. For a vector function F(r) = (F(r), Fy(r), F.(r)) show
that, in the transform domain, the divergence and curl operators
yield the following results:

V-F=(ik)-F and VxF = (ik)xF.

The transformed fields are often called plane wave solutions of Maxwell’s
equations. These fields have infinite spatial extent and so are not physi-
cally realizable but many sources can be treated approximately as plane
waves, particularly monochromatic (single frequency or small bandwidth)
sources. Indeed, many treatments of electromagnetic phenomena will
simply posit that there are solutions that have the spatial dependence
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Ficure 2.5. For plane waves, the

direction of propagation of the E
electromagnetic wave is defined by

the wave vector k. This direction

is orthogonal to both the electric E

and magnetic H fields.

exp(ik - r) and proceed from there. In fact, these treatments are skipping
over the derivation from the Fourier transform. While the exponential
terms are technically infinite, we anticipate that real fields will have fi-
nite support and the integrals will be finite due to the properties of the
transformed field E(k). We will come back to this point subsequently.

Even with the simplifications associated with integral transforms, we are
still left with a series of vector equations. One possible approach to deal-
ing with Maxwell’s equations utilizes an alternative formulation in terms
of potentials. One might ask the question, as regards equation 2.12, “What
sort of function has no divergence?” It is possible to construct one by sim-
ply taking the curl of any vector function. Similarly, one can use the fact
that the curl of the gradient of any scalar function also vanishes. In the
static case (w = o), we can use this result to solve directly for the electric
field in equation 2.13.

Exercise 2.8.  For some vector function F = (F, I, F,) show explic-
itly that V- (V x F) = o. Show also that for a scalar function F that

Vx(VF)=o.
More generally, the time-dependent electric field cannot be just the gradi-

ent of a scalar function. If we make the decision that we shall define the
magnetic induction B in terms of a vector potential A, then the choice

(2.26) B=VxA
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will automatically solve equation 2.12, for any choice of A. If we also
make the choice®

oA
(2.27) E __VV_E’

then for any choice of the scalar function V, equation 2.13 will also be
solved.

Exercise 2.9. Use the definitions of equations 2.26 and 2.27 and
demonstrate that the Ampére-Maxwell equation 2.14 leads to a wave
equation for the vector potential.

So, with these definitions of the potentials, we have a broad capability of
solving Maxwell’s equations, at least in source-free regions. We can look
for functions V and A that satisfy boundary conditions for any particular
problem and construct the electric and magnetic fields accordingly. We
note, though, that equations 2.26 and 2.27 admit some ambiguity in the
definitions of the potentials A and V. If these potentials provide solutions
E and B to Maxwell’s equations, then so do the modified potentials

9P

ot’

where ¢ is an arbitrary scalar field ¢ = ¢(¢,r). This transformation is
known as a gauge transformation3 and represents a non-obvious symme-
try of Maxwell’s equations. Modern theories of elementary particles are
all gauge field theories; we shall discuss this property in more detail sub-
sequently.

(2.28) A’=A+V¢$p and V'=V-

Exercise 2.10. Show that the modified potentials A” and V’ pro-
duce the same electric and magnetic fields as the potentials A and
V.

What we would like to do next is study how to devise solutions that in-
volve sources. In this case, the potentials provide a means for doing just
that. The mathematics is rather involved, so we will skip over the bulk of
the derivations. A general strategy for dealing with source terms involves
computing the Green’s function. Suppose that we have some differential
equation involving the function F(x). We can write this generically as fol-
lows:

2We use the symbol V for the electric potential, as is traditional and distiguish it from the
volume V by using a different font. Students will have to be constantly vigilant, as such
subtleties can be obscured when copying equations from the chalkboard.

3The term gauge is due to Hermann Weyl, who was studying the effects of scaling transfor-
mations on Lagrangian systems.
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where D represents all of the derivative operators and other functions
multiplying F and s is the source term. The Green’s function is defined as
the function that satisfies the differential equation with a delta function
source:

DG(x,x,) = 0(x —x;).

The function F now can be recovered by performing the following inte-
gral+:

(2.29) F(x) = Jd}q G(x, x)s(xy).

Now one might question how one goes about solving an equation where
the source term is singular but, recall, we have already derived an integral
representation for the delta function. If we work in the transform domain,
things are not as bleak as it might seem at first.

In any case, the potentials for Maxwell’s equations can be solved using
this strategy. We find that the potentials have a surprisingly simple form:

— 1 3 p(t1’r1>

(.30) V(= Jd ]
_ Ho 3 J(tlfrl)

(2.31) A(t,r) = —de BT

where t, = t+|r—r,|/c is the time at the source location. There are two pos-
sible solutions, known as the advanced (+) and retarded (-) solutions. We
think of the retarded solutions as being the physical ones and shall subse-
quently ignore the advanced solutions. Here we are invoking a causality
argument: the fields at some distance d = |r —r,| from the source cannot
know about changes in the source until the time that it would take light
to travel that distance. Using the advanced solution would give us knowl-
edge of the source motion prior to its actual motion.

We have utilized a fair amount of complex analysis to this point, by which
we mean complex numbers not just complicated formulas. It will take
time before students can become accustomed to talking about imaginary
numbers with a straight face. It is an equally disheartening experience to
try to explain to one’s colleagues that we are dealing with retarded solu-
tions; there is inevitable gleeful commentary that all of physics is retarded
and that all involved in the study of such an inane subject must have some
form of mental handicap. One should display forebearance.

4We're skipping over some details of other terms that generally can be forced to vanish
by assuming that the Green’s function and the source term vanish sufficiently fast at large
distances.
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FiGure 2.6. A charged particle fol-
lows the path r,(t;) as indicated by
the dark curve. The fields are mea-
sured at some distant point r.

2.3. Point sources

The results presented in equations 2.30 and 2.31 are deceptively sim-
ple. The integrands are actually singular at the source point r = r; and,
thus, actually performing the integrals requires some mathematical fi-
nesse. Even for the case of a single point source, where p = Q3(r —r,), it
is not as simple as just collapsing the integrals, owing to the fact that we
have to take into consideration the retarded time. Nevertheless, these in-
tricacies can be overcome, with the result that the potentials for a moving
point source can be written as follows:

-t 9
(2.32) V(t’r) - 4Tt€, |I‘—1‘1|—(1'—I‘])-V1/C and
(233) Altr) =t T

Tunr-r,|-(r—1,)-v,/c

where g is the charge and v, = dr,/dt, is the velocity of the point charge at
the retarded time. These are known as the Liénhard-Wiechert potentials.

Exercise 2.11. A complicating factor in the analysis of the Liénhard-
Wiechert potentials is that the time f, at the source point depends on
the position of the field point r. Consequently, derivatives of t;, with
respect to the spatial components of r do not vanish. We have

1
o= t- sl - p)+ (=22
What is the derivative with respect to x:

M _,
ox
What then is the result of applying the gradient operator Vt,?
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We can now recover the fields through equations 2.27 and 2.26. The alge-
bra is tedious but manageable. We obtain the following:

(234)
_ q |1‘—1‘1|
= e Trn - (=) v/
v2\[r-r, Vv, r-r, v,\ a,
1—— —— |+ (r-r)x|[——-—|x—=
{( Cz)(|r—f1| C) [(Ir—rll c) c2]}
(235)
r-r,
B(t,r):me(t,r).

Here, a, = d?r,/dt? is the acceleration of the charge.

Exercise 2.12. As a sanity check, set v, = o and a, = o in equa-
tion 2.34 and see if you recover Coulomb’s law.

These results are reasonably gruesome but we can make some immediate
observations. First, as we can see from figure 2.6, the vector r —r, pro-
vides the direction from the point charge to the field point at the retarded
time. Second, from equation 2.33, we see that the magnetic field is per-
pendicular to both that direction and the electric field. Recall that the
plane wave solutions we discussed previously also had the magnetic field
perpendicular to the electric field and the direction of propagation.

In deriving complicated results like those found in equations 2.34 and 2.35,
it is a very good strategy to conduct dimensional analysis throughout the

derivation, to avoid unfortunate algebraic mistakes. Upon completion, it

is also a good idea to check the dimensionality of your result. Dimen-

sionality is a bit difficult to assess in electromagnetics but we can recall

from Coulomb’s law that the electric field of a point charge has a factor of

(47€,)~" multiplying the charge divided by distance squared. We see just

such a term in the first part of equation 2.34. This means that the remain-

ing factor in the curly brackets must be dimensionless. In fact we have

organized the result in a fashion that makes this reasonably apparent.

Exercrsk 2.13. Express equation 2.34 dimensionally and verify that
the terms in the curly brackets are dimensionless and that the re-
maining term involving r scales like (L72).

Moreover, we can observe that the first term in the curly braces has no
dependence on the distance d = |r — r,|, only on the direction from the
source. As a result, this first term will have an overall inverse square
dependence on d. It is, thus, the modification of the Coulomb force law
that incorporates a moving (constant velocity) charge. The second term
in the curly braces is proportional to the acceleration of the charge and
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contains an additional factor of d, so that asymptotically the field will
scale inversely with d. This component is termed the radiation component
of the field.

To understand what we mean by the term radiation, we should say that
the Poynting vector S defines the energy flux of the electromagnetic field.
We’ll go into a bit more detail subsequently but the definition of the Poynt-
ing vector is as follows:

(2.36) S=ExH.

Energy conservation of the electromagnetic fields will be shown shortly to
take the following form:

ac d
_ 3 _ 2 2 2 .
(2.37) FTaRrT: d r [eOE +uoH ] J d’r;n(r;)-S,

where € is the total energy within the volume V and the last term in the
equation represents the energy flux through the boundary dV. Radiation
will be defined as the fields that propagate to infinity, that is only those
components that remain finite as the bounding surface dV is removed to
infinity.

If we take the bounding surface to be a large sphere, then the differential
elements for the surface integral will be

d’r, =r?sin6dOde,

which clearly scales like the distance squared. If we consider actually
computing the product E x H from equations 2.34 and 2.35, we should
note that we will obtain, from the product of the first term in the curly
braces with itself, a term that scales like d=4. Overall, this will scale like
d™? (due to the d coming from the differential element) and will vanish as
d — co. We will also obtain terms, from the product of the first term in the
curly braces with the second term, that scale like 473 and, overall, like 47"
and will likewise vanish. The only terms that can possibly remain will be
the one obtained from product of the second term in the curly braces with
itself, which is independent of d and, thus, can remain finite as d — oo.

Exercisk 2.14. Examine the terms in the Poynting vector dimen-
sionally and verify the assertions made in the discussion above.

We should note that our somewhat haphazard analysis of the previous
paragraph can be made rigorous, so the mathematically aware need not
be disheartened. Nevertheless, electromagnetics is the discipline where
all of the equations become difficult. Rather than mindlessly trying to
perform all of the integrals one encounters, it is generally better to try
to understand something about the integrals before trying to solve them.
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In this particular instance, we needn’t even perform the bulk of the inte-
grations as we are only seeking solutions that will remain finite at large
distances.

Ficure 2.7. When the acceleration is per-
pendicular to the direction of motion,
the radiation is predominantly in the for-
ward direction. Here, the velocity is o0.4c.

Using these results for the fields generated by an accelerated charge and
after another long algebraic effort, we can arrive at the following result for
the radiation field of a charged particle that is being accelerated perpen-
dicular to its velocity:

Hoq?a? [1 = (v /c)?cosO]? —[1 —(v,/c)*]sin” O cos? ¢
167¢ [1—(v,/c)cosO]5

where here a, is the magnitude of the acceleration, & measures the angle
between the field point and the velocity v, and ¢ is the angle between

the field point and the acceleration a,. The energy flux is illustrated in
figure 2.7.

(2‘38) |Srad| =

’

This radiation is known as synchrotron radiation and is a serious problem
that arises when constructing particle accelerators, particularly for elec-
tron beams. If we utilize magnetic fields to bend the electron beam into a
circle, a substantial portion of the energy injected into the electrons will
be radiated in the form of x-rays. From figure 2.7, we see that the radia-
tion is emitted in the direction of propagation, perpendicular to the (cen-
tripetal) acceleration. Initially considered a parasitic problem, there are
now synchrotrons built explicitly for the purpose of generating intense x-
ray beams for crystallography. In these machines, no one is doing physics
with the electron beams; they are, instead, studying the three-dimensional
structures of protein crystals and other novel materials.
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Exercise 2.15. Use the Manipulate function to study the behavior
of the radiation flux from equation 2.38 as a function of the velocity
(v,/c). Use the SphericalPlotgD function to plot S,.q4.

For the other special case of an acceleration that is collinear with the ve-
locity, we obtain the following result:

Uoq2az sin”> 6
16m2c [1—(v,/c)cosB]5"

The radiation in this case, depicted in figure 2.8, is symmetrical around
the direction of travel (no ¢ dependence) and is zero at 6 = o; it is known
as bremsstrahlung. As the velocity increases, the angle of maximum flux
continues to decrease, such that at extreme relativistic velocities, the max-
imum flux is directed at an angle that approaches zero.

(2'39) |srad| =

Ficure 2.8. When the velocity and accel-
eration are collinear, the radiation pat-
tern is symmetrical about the direction
of motion and is increasingly tilted into
the forward direction as the velocity in-
creases. Here the velocity is 0.4c.

Exercise 2.16. Use the Manipulate function to study the behavior
of the radiation flux from equation 2.39 as a function of the velocity
(v/c). Use the SphericalPlotgD function to plot S;,4. What happens
asv/c —1?

2.4. Relativistic Formulation

We’ve skipped over a number of details to get to this point but it is time
to confront some crucial issues directly. For example, we can ask what
happens when we apply a Lorentz transformation to Maxwell’s equations
and the answer is rather disappointing: the electric and magnetic fields
transform in a very complicated manner. Assigning students the task of
deriving those transformations is commonplace in introductory texts but
not terribly illuminating. We know that the fields are solutions to a wave
equation and that the wave equation is invariant under a Lorentz trans-
formation. So, let us instead make use of Einstein’s adventures into the
mathematical hinterlands and ask an alternative question: Is there some
way to write Maxwell’s equations that makes the question of Lorentz in-
variance obvious and straightforward.
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As Einstein discovered, the answer is yes. Yes, it is possible to do so but
it took Einstein a decade to fully comprehend the required mathematical
infrastructure. In Einstein’s defense, the mathematics was new and not
yet widely understood by anyone outside the mathematical community.
So, Einstein had to translate mathematics into physics, learning new vo-
cabulary and constructing useful examples. Mathematicians are concise
writers and often satisfied with existence and uniqueness proofs. Con-
structive proofs and nontrivial examples are often in short supply.

In any event, the appropriate language is provided by tensor calculus,
where tensors are the mathematical extension of vectors. Unfortunately,
the additional benefits of tensor calculus comes with a significant amount
of mathematical baggage that can be perplexing to physicists. We shall
endeavor to persevere. We are interested in using tensor calculus, which is
the extension of calculus to multidimensional objects and non-Cartesian
geometries. We will find the notation to be nearly impenetrable and the
motivation completely opaque but, if we hold fast to a few touchstones,
we will emerge with at least a modest appreciation for the underlying
mathematical structure.

If we look at the definition of some vector v in a space of N dimensions,
we usually begin by defining a basis e,,..., ey, where the e; are linearly in-
dependent. Actually, impressive works in modern geometry demonstrate
that we do not need to define a basis at all; everything can be done in a
fashion that is basis-independent. For the moment, we shall proceed in
a more or less straightforward fashion, one that should be reasonably fa-
miliar. In previous examples studied in physics class, we would normally
construct the e; to be orthonormal but this is not a requirement and, in
some cases, is not desirable. For example, in dealing with crystals, we
would want to choose a basis that aligns with the crystal axes. In other
cases, using a curvilinear coordinate system may prove to be advanta-
geous.

With respect to the basis formed by the e;, the vector v can be resolved
into components:

N
v = Zv,-e,» =(vy,...,UN)-
i=1

In order to determine the values of the components v;, we need to use the
dual vectors &;. In crystallography (and in three dimensions), these are
known as the reciprocal vectors and can be constructed as follows:

e, xe; y ey xe; e, xe,

(2.40) & =—"T7——, &=—7— and &=

e1'(ezxe3), e1’(ezxe3) el'(e2xe3).
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These dual vectors have the following property:
(2.41) é{‘ej:(Sj]',

where the ¢ function here is zero if i # j and one if i = j. Note that, in
Cartesian coordinates, the dual vectors are equivalent to the original basis
vectors but this is not generally true.

Exercise 2.17.  Use the definitions from equation 2.40 and show
that equation 2.41 is true.

Suppose now that we define a different set of basis elements e, where we
have scaled the original e; by some factor. This would occur, for example,
if we switch between using meters and centimeters as our units of mea-
sure. What happens then to the values of the vector components? If our
original coordinate values x; were provided in terms of meters, then the
new coordinate values x; will be one hundred times larger, reflecting the
change to units of centimeters. Mathematicians have termed this property
contravariant. That is, the values of the components v; scale inversely to
the change of scale of the basis vectors.

Consider now transforming a dual vector

N
V= E 7;6;.
i=1

If each of the basis elements is scaled by a factor, then the dual basis el-
ements will scale inversely to that factor. The components of the dual
vector will scale proportionally. That is, if our units change from meters
to centimeters, the components 1717 of the dual vector will also be one hun-
dred times smaller than the components 7; of the original vector. This
property is termed covariant.

Exercise 2.18. Consider the following basis vectors:
e, =(1,0,0), e,=(0.2,1,0) and e;=(0,1.3,1.8).

What are the reciprocal vectors €;? What are the components of the
vector v = 3X + 4y + 2.5Z in the e; basis? What are the components of
v in the reciprocal basis?

Repeat the analysis for the new basis e’ = e;/100.

In moving forward, we face a serious notational problem. We have hereto-
fore utilized a bold typeface to identify vectors but we don’t have a conve-
nient typographical mechanism for identifying multidimensional tensors.
In many matrix algebra classes, one will find that upper-case variables will
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be restricted to matrices and lower-case variables will be vectors. Conse-
quently, the following equation:

Ax=Db

can readily be interpreted to mean the multiplication of a matrix and a
vector that returns a vector. Unfortunately, we have already used E to
mean the vector electric field and A to mean the magnetic potential, so it
is a bit late to enforce the case-sensitive strategy.

Worse, tensors are not restricted to two-dimensional entities, so we do
not have a convenient typographical means of distinguishing one-, two-,
three- and four-dimensional objects by their typeface. The most common
notational convention used in physics explicitly expresses the equations in
component form, using superscript indices to denote contravariant com-
ponents and subscript components to denote covariant components. The
number of indices denotes the dimension or rank of the tensor. For exam-
ple, Rjk,m denotes a fourth-rank tensor with one contravariant index and
three covariant indices. Our matrix equation now reads as follows:

ZA,']'X]' = Z’J,‘.
j

This strategy does not lead to particularly elegant representations. Ein-
stein became so distressed over repeating all of the summation symbols
in his work that he invented a new convention: repeated indices are im-
plicitly summed:

Allx; = b,
All three of these equations are intended to mean the same thing.

Mathematicians have developed somewhat more elegant forms but are
generally much more abstract, making it difficult for non-experts to fol-
low. For this first time through the material, we shall hew to the physics
practice, using the component notation but we shall forego the use of the
Einstein summation convention. We'll leave it to the students to clean up
the formulas as we proceed. Note that a particularly unwieldy result of
this notational practice is that by the symbol v/, we can mean both the
ith component of a contravariant vector v or the vector itself. Alas, one
will often have to infer the meaning from context but we shall attempt to
clarify as necessary.

Let us briefly define mathematically what we mean by covariant and con-
travariant. If we have two separate coordinate systems x = (x*,...,x") and
y = (v%,...,v"V) then the contravariant vector whose components are v’ will
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transform as follows:
(2.42) =Y 2 i),

Similarly, the covariant vector whose components are denoted by v; will
transform as follows:

N D
(2.43) vily) = Zg—y,.vj(x).

It is a bit difficult to see amidst all the indices but there is an inverse
relationship between the coefficients:

o _[ai]
oxi oy

We won't expand further on this at the moment but it does formally de-
fine what we mean by tensors. We should note also that we have used a
notation in equations 2.42 and 2.43 where we think of the transformed
vector as an explicit function of the new coordinates y, where the original
vector was a function of the coordinates x. This strategy is not standard,
often the transformed vector is x’, but saves us from further decorating
the symbol v with a prime or tilde to denote that a transformation has
occurred.

Let us now revisit the Maxwell equations 2.11-2.14 and see what happens
if we recast them into tensor form. First, we note that we must work in
four-dimensional spacetime and will choose an invariant interval ds> =
c?dt* —dx*> —dy> —dz>. This choice makes timelike vectors positive and
spacelike vectors negative but students should beware that this choice is
by no means unanimous. Other authors will work with the signs reversed.
This will lead to differences in intermediate results but the same answers
eventually. There are also differences as to what to call the terms. Many
authors consider cdt = x°, the zeroth element of the position vector, which
has spatial components x', x> and x3. Others will place time into the
fourth position cdt = x4. As the Mathematica software utilizes indices
that run from 1 to N, we'll just call cdt the first element of the position
vector and the x-value will occupy the second.

The Maxwell equations represent first order differential equations for the
fields. The obvious choice for a four-dimensional derivative operator is
the following:

(2.40) d _[2 99 9
>4 oxi ~\cor' ox' 3y’ 9z’
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ExXErcISE 2.19. A more compact notation defines the differential
operator Jd; as

J;

0
oxi’
Convince yourself that J; is a covariant vector, hence the lower in-
dex.> Hint: refer to the definitions in equation 2.42 and 2.43.

If we now revisit equations 2.27 and 2.26, we would like to define a four-
potential from V and A. From equation 2.27, we know that the dimension
of the gradient of the potential V must be (V-m™"). Furthermore, we can
infer that the vector potential A must have dimension of (V-ss-m™"). As a
result, we can define a four-potential A that has consistent dimensions as
follows:

(2.45) Al = (V/c,Ax,Ay,AZ): (V/e,A).
The covariant potential will be given by the following:
(2.46) Ar=(V/e,~Ay -4y, —A:)=(V/e,-A).

What happens if we now apply the differential operator to the four poten-
tial? We find, in fact, the following:

rov/e 9A, 9A,  0A, ]
cot cot cot cot
V/e 9A, 9A 9A,
(247) % — T - ox _(9_\? - ox
Oy av/c dA A, 9A,
dy dy dy dy
v/e 9A, 9A,  0A,
oz oz oz oz |
Now, let us subtract the transpose of this object:
(2.48)
oV/e  IA, aVie A, gy OA; ]
© TTox T ot T oy 9z cor  cor
aV/ic  0A, 9A, 94, 9A,  0A.
Ay JA; | =ar T ox 0 "o 9z ox
oxi  Oxk | ovic oA, 0A,  9A, 0A, A,
o tTh x T 0 oz T
aV/ic A, 0A,  OA, 9A,  9A,
|or T2 ox T oz oy T oz ©

5The operator is also known to mathematicians as a 1-form. There is a veritable ocean of
mathematical literature on the extension of simple, ordered tuples (vectors) into more com-
plex entities (tensors).
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We shall define this last object to be the electromagnetic field tensor F.
We can recognize the components of the tensor:

o E/c E,/c E/c
8Ak 8Ai _ —EX/C o _Bz By
ox'oxk |-E/c B, o -B|

-E,/c -B

(2.49) Fiy =

Exercise 2.20. Write out the components of equations 2.26 and 2.27
and convince yourself that the identifications made in equation 2.49
are correct.

We haven’t yet shown that F is actually a tensor but it is not too difficult
to do so. We want now to take the four-divergence of the field tensor but,
to do so, we must apply one of the rules associated with tensors. To form
the equivalent of a dot product, we utilize the metric tensor g:

4

(2.50) iigikaibk = Zaib,- = iakbk.

i=1 k=1 i=1 k=1

Here, we note in the last two terms that the transformation of a vector
by the metric tensor converts it from a contravariant to covariant vector,
lowering the index. We can also define the conjugate metric tensor g’
that is the inverse of gjx. We can show

N .
Zgijgk] =of = oy
=

where here the delta function is one when i = k and zero otherwise.
Exercise 2.21. Formally, raising and lowering indices can be ac-

complished by utilizing the metric tensor g, where here we are using
the form:

i o o0 o

R o -1 (0] O
8§ii=&8 Tl o -1 o
o o o -1

If we define the contravariant vector x' = (ct,x,7,2), what is the co-
variant vector x;? We defined A’ = (V/c, Ay, Ay, A;). What is the co-
variant vector A;?
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The four-divergence of the field tensor is computed as follows:

o E/c E,/c E)/c

iig”aF [0 9 9 02]|-E/e o -B, B,

~ k=" 3,y 3.y 3

== ox!l ! |cot’ dx” Jdy’ Oz -E,/c B, o -B,
~EJc -B, By, o

[ OE, JE, = JE,
cox T y t oz
JE, 0B, + JB,

_| ot~ oy 0z

(2.51) =|oE, 9B, 9B,

Zor o2 T ox

JE, JB,  IB,

| 2ot ~ ox + dy

If we now recall that e p, = 1/c*, we can recognize these results as just
the component terms of the Maxwell equations 2.11 and 2.14. We are
lacking the source terms, though. If we define the four-current density J
as follows:

(2.52) ]i = (Cpr]xljy;]z);

then we can write Maxwell’s equations in the following form:
i iy

(2.53) ;’a—)ciﬂj = HoJ; and ;a_foij =o,

where we have made use of the dual electromagnetic tensor G:
o B, B, B,

-B, 0 E./c -Ey/c

-B, -E./c o E/c

-B, Ey/c -E/c o)

(2.54) Gix =

Exercise 2.22. Check the dimensionality of the components of the
four-current vector J'.

Exercist 2.23. Expand Maxwell’s equations 2.11-2.14 into compo-
nents and compare to the terms of equation 2.53. Convince yourself
that they are just different representations of the same terms.

EXERCISE 2.24. A more common expression of Maxwell’s equations
is given as follows:

8,~Fik = ,Mojk and 8,~Gik =0,

where we have used the Einstein summation convention and the
contravariant form of the field tensor and four-current. Write out
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the components and show that this results in the same equations
(up to an overall sign) as those in equation 2.53.

The purpose of this exercise has been to put Maxwell’s equations into ten-
sor form because it is in this form that Lorentz transformations have a
simple expression. The Lorentz transformations are just a special set of
coordinate transformations that consist of the rotation matrices that mix
the spatial components of a four-vector or four-tensor and boost matri-
ces that mix the time and space coordinates. In this representation, the
Maxwell equations 2.53 are manifestly invariant under Lorentz transfor-
mation. The components F;; will be altered but the form of the equation
does not change.

Exercist 2.25. Consider a Lorentz boost along the x-axis. This is
described by the following matrix:

coshC sinhC o o

B = sinhC coshC o o
k=1 o 0 1 ol

0 o o 1

What is the Lorentz transform of the four-current density /;? What
is the Lorentz transformation of the field tensor F;;?

Exercise 2.26. There are two scalar invariants that can be con-
structed from the field tensor F and its dual G. What are the values
of the following expressions:

ii#kak and ii#kcik?

i=1 k=1 i=1 k=1

2.5. Solitons

We have seen that Maxwell’s equations provide an accurate representa-
tion of electromagnetic phenomena, making numerous predictions that
have been repeatedly verified experimentally. Moreover, when cast into
tensor form, the equations are consistent with Einstein’s theory of special
relativity. The problem that we face in trying to develop a classical model
for the photon is that the properties of a photon are largely unspecified.
This is due primarily to the fact that photons classically do not interact
with one another. Hence, we cannot scatter a photon from another pho-
ton and learn anything about its structure. We can speculate that photons
are somehow pulses of electromagnetic energy that have finite spatial ex-
tent.
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The notion of a finite blob of electromagnetic energy arose initially when
the German physicist Max Planck considered the problem of blackbody
radiation from a statistical point of view. If one can construct the partition
function Z, which is quite literally the sum over all possible states, then
one can determine all of the interesting thermodynamic properties of a
system. Planck provided the ansatz that electromagnetic energy could be
dealt with in a similar fashion as was used to enumerate the distribution
of particles in a box: that is, the distribution of electromagnetic energy
within the box was given by the following formula:

()
_ —nhv/kT _ 1
(2.55) Z= Ze = hvkT

n=o
where hv is the energy of the photons, T is the absolute temperature and
k is a constant, now known as Boltzmann’s constant. From this result, we
can obtain the average number of photons 7 by noticing that

dZ _ n
ohv ~— kT’
From this, we obtain Planck’s result:
_ 1
(256) n= W

Planck’s suggestion turns out to solve a conundrum that arose when ear-
lier attempts at trying to explain the behavior of blackbody radiation tried
to integrate over the electromagnetic energy in the box. This strategy re-
sults in a divergent integral, whereas Planck’s summation was finite.

Exercise 2.27. Plot the function f(x) = 1/(exp(x)—1).

So, the introduction of the photon into physics literature was really a nu-
merical device that succeeded because it (subtly) introduced a frequency
cutoff into the partition function. This is not particularly obvious but was
later appreciated by Einstein in his annus mirabilis paper on the subject,
where he introduced the nomenclature Lichtquant to describe the quan-
tized portion of electromagnetic energy.

If asked to describe a photon, the image that undoubtedly springs to mind
is a small glowing ball that travels at the speed of light. That is often how
photons are depicted but can we be more quantitative about this picture?
Can we find solutions of Maxwell’s equations that are spatially confined
for all time? Some years ago, the physicist James Brittingham conducted
a search for just this, subject to the requirements that solutions

(1) satisfy the homogeneous Maxwell’s equations,
(2) have a three-dimensional pulse structure,
(3) have no charge,
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(4) move at light velocity in straight lines,
(5) are nondispersive and
(6) have finite energy.

If we assume propagation in the z-direction, there are well-known plane
wave solutions that are functions of z + ct and z — ¢t that represent left-
and right-propagating solutions, respectively. Brittingham looked for so-
lutions that were, instead, functions of the product f,(z +ct)f,(z —ct). He
discovered that the following function is a solution of the homogeneous
wave equation:

e—9C%/n

1 b .
. \\7) t, (’ - d ig(z+ct) -
(2.57) (t,C,2) P Jw quw(g)e ;

where = z, +i(z — ct) and w(q) is an arbitrary weighting function. An
example of such a solution is depicted in figure 2.9.

Ficure 2.9. The simple, rotation-
ally symmetric focus wave mode
has a Gaussian profile in the trans-
verse C-direction and falls off expo-
nentially in the z-direction.

Exercise 2.28. Define the integrand of the function W(t,(,z) in
Mathematica. (Ignore the weighting function w.) Use the D func-
tion to show that W is a solution to the wave equation in cylindrical
coordinates:

2 19 9 19

—t+-=—=+=——-—==|¥Y(,(z) =0

90T T o Tar e or| WeA=0
Exercise 2.29. Plot the function W(¢,(,z) over the domain —5 < ¢ <
5 and -5 <z < 5 for ¢ = 27w and z, = o.1. How does the function
change as t increases from o to 1 in steps of 0.1?

Brittingham termed the solutions focus wave modes and it has subse-
quently been demonstrated that these satisfy all of the original condi-
tions except finite energy. The focus wave modes are infinite-energy so-
lutions to Maxwell’s equations. So too, are the plane wave solutions that
we have discussed previously. We believe that real finite-energy solutions
can be constructed from superpositions of plane waves, so it may prove
that focus wave modes provide a new basis for studying pulse solutions
of Maxwell’s equations. That is, with suitable weighting of the focus wave
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modes or some other, undiscovered solutions, one may yet find a classical
description of the photon.

A revisit to figure 1.12, though, calls such a quest starkly into question.
Thompson’s initial diffraction experiment indicated that single photons
produce diffraction patterns that are independent of light intensity. As
a result, the photon wave function must have some broader spatial ex-
tent than defined by the characteristic wavelength, or else it wouldn’t be
able to diffract through spatially separated slits. On a larger scale, it is
well established that antennas radiate in patterns that can be described as
diffraction limited. That is, if the aperture of a radiating body has a char-
acteristic size of d, then the far field radiation will spread with an angle 6
that is of the order

’

e

(2.58) sin 0 ~

where A is the wavelength. Depending upon the shape of the aperture and
other details, there can be a proportionality factor that can range from one
to maybe four or so, but not orders of magnitude.

ExeRrcISE 2.30. Suppose that a 600 nm photon is emitted from our
sun (d = 7x10% m). What is the diffraction limit angle 6, from equa-
tion 2.58 assuming a proportionality factor of 1? At the earth-sun
distance (Rg = 1.5 x 10" m), what is the spatial extent of this pho-
ton? At the average Pluto-sun distance (Rp = 6 x 10> m), what is
the spatial extent? The nearest star is approximately 4 x 10'® m dis-
tant. When the photon arrives in that solar system (in just over four
years), what would be its spatial extent?

Without experimental data to constrain such speculations, physicists have
generally not pursued the idea of a classical photon. A number, though,
have investigated the general idea of a spatially bounded wavelike entity
and have based much of their efforts on the 1834 observation of a local-
ized disturbance in the Union Canal in Scotland. John Scott Russell noted
that a barge being pulled through the canal had a mound of water piled
in front of it that continued propagating down the canal even after the
barge had been stopped. Russell tracked the mound for a couple of miles
and reported his findings to the Royal Society and went on to conduct
experiments in a wave tank that verified his observations.

Russell’s wave of translation, as he called it, can be modelled with a one-
dimensional non-linear equation and is the first example of what we now
call soliton solutions. Solitons represent spatially bounded solutions of a
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non-linear system of equations that serve as models for elementary parti-
cles. The equation studied most frequently is the Korteweg-de Vries equa-
tion, developed to explain Russell’s observations. The equation was ini-
tially stated by the French mathematician Joseph Boussinesq in 1871 and
subsequently rediscovered by the Dutch mathematicians Diederik Korte-
weg and his student Gustav de Vries in 1897.°

aP(t, BP(t, 2P(t,
(2:59) P00 PO (s, 20 =

is the canonical form of the equation, where ¢(t,x) represents the wave
amplitude. One possible solution is given by the following:

(2.60) O(t,x) = —gsech2[\/z(x—ct—a)/2],

where the wave will propagate to the right with a velocity ¢ and 4 is an
arbitrary constant.

Exercise 2.31. Use the Animate function to plot the function ¢(t, x).
Use ¢ =1 and a = o and plot ¢ over the domain —20 < x <20 and for
the times o <t < 20.

ExErcise 2.32.  Suppose that you have two solutions to the Korteweg-
de Vries equation,

O (t,x)= —%sechz[\/a(x— o t)/2] and
O, (t,x) = —%sechZ[\/g(x - czt)/z].

Use the D function to demonstrate that each satisfies the Korteweg-
de Vries equation. Now show that the sum ¢, + ¢, does not.

Equation 2.60 can be found by explicitly trying to construct solutions of
the form ¢(t,x) = ¢(ct — x). A general solution for N propagating soli-
tons, each with a different characteristic velocity, was obtained in 1967 by
Clifford Gardner, John Greene, Martin Kruskal and Robert Miura who uti-
lized a technique now known as the inverse scattering transform.” Their
inverse scattering methodology has been systematized and expanded to a
host of other partial differential equations.

6Boussinesq published “Théorie de 1aAZintumescence liquide appelée onde solitaire ou de
translation, se propageant dans un canal rectangulaire” in the Comptes Rendus Hebdomi-
naires des Séances de I’Académie des Sciences in 1871. Korteweg and de Vries published “On
the change of form of long waves advancing in a rectangular canal and on a new type of long
stationary waves” in the Philosophical Magazine in 189s5.

7Gardner et al. published “Method for solving the Korteweg-de Vries equation” in the Phys-
ical Review Letters in 1967.
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We can construct the N-soliton solution as follows:

(1) Define an array P that contains the square roots of the soliton veloc-
ities ¢;
pP= {\/c_ . .,\/—CN}.
(2) Define the matrix M where the components are given by the follow-
ing:
Mg = o5y + 2Pk (PeBv=(BP482)-0-Qx
Py + By
where the Q; are relative phases of the different waves.
(3) The solution can be obtained from the following:

(2.61) P(t,x) = 28‘9; In[det M],

where det M is the determinant of the matrix M.

FiGURE 2.10. Two solitons of differ- x
ent velocities coincide at time zero.

Close inspection of the results indi-

cates a phase shift arises due to the

interaction.

An example of two solitons, with velocities ¢ = {1, 4}, is illustrated in fig-
ure 2.10. The soliton with the larger velocity also has the larger amplitude.
One can see from the figure that the two separate solitons pass through
one another, largely unaffected by the interaction. In fact, there is a phase
shift associated with the interaction.

Exercise 2.33. Use equation 2.61 to compute the two-soliton solu-
tion for P = {1,2}. Use the Animate function to plot the results over
the time interval —10 <t < 20 and for the domain —50 < x < 50.
Now add the single soliton solutions from equation 2.60 to the plot
and adjust their phases so that the initial pulses are aligned. What
happens after the interaction at t = 0?

The use of the Korteweg-de Vries equation to model simple bounded so-
lutions of a wave equation represents a common practice in physics: use
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a (highly) simplified model to test ideas and behaviors before tackling a
complex problem. The Korteweg-de Vries equation has non-trivial ana-
lytic solutions. If you want to solve the equation numerically, you can
test your solver against known solutions. If you are ultimately interested
in solving a more complex set of equations, you should have some idea
about the robustness of your solver based on your experience with a sim-
pler system.

In studying the problem of constructing solutions to the Korteweg-de
Vries equation, Gardner et al. found a general strategy for solving non-
linear partial differential equations that, in some sense, generalizes the
Fourier transform method. Their efforts have provided a significant new
tool for mathematical physicists, with applicability far beyond just the
Korteweg-de Vries equation.

Exercise 2.34. Construct a three-soliton solution for P = {1, 1.5,2}.
What happens if you alter the phases from the nominal Q = {o,0,0}?

So, to recount the major ideas of this brief sojourn through what we know
about electromagnetism, Maxwell’s equations describe the macroscopic
behavior of electromagnetic phenomena. They can be written in several
different mathematical representations, each of which harbors the possi-
bility of finding solutions. It is possible to write Maxwell’s equations in
a form that is manifestly invariant to Lorentz transform, meaning that
they are consistent with Einstein’s special theory of relativity. They have
formed the basis of modern technology and are quite useful from an engi-
neering perspective. If we begin to drill down into the microscopic world,
though, we are faced with the same problem of granularity that we men-
tioned in our discussion of sand dunes.

The constitutive relations D = €E and B = yH are the macroscopic proper-
ties that arise from the ensemble average over many individual photons.
Solutions to Maxwell’s equations are additive: if E; and E, are solutions,
then E, +E, is a solution. There are many radio stations broadcasting si-
multaneously: their signals can be detected and processed independently.
As a result, we do not have a classical description of a photon. That is a
construct that arises only when we take it in context with charged parti-
cles. This is a point to which we shall return subsequently.
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On the Nature of the Electron

The creation of cathode ray tubes in the late nineteenth century caused
a public sensation. Until that time, one obtained light by burning some-
thing: wood, oil or gas, typically. In a cathode ray tube, one found light
emitted from a glass cell without any form of combustion at all. Today, we
are significantly less impressed with electric lights and understand that
the cathode ray tubes actually contain a beam of electrons that impinges
upon atoms within the tube. These collisions excite the atoms to higher
energy states, which subsequently decay back to the ground state with the
emission of a photon.

Rutherford’s 1911 discovery that the atom has a positively charged nu-
cleus that is five orders of magnitude smaller than the nominal atomic
size generated a flurry of theoretical efforts to describe the properties of
atoms. The most obvious strategy was to consider the motion of an elec-
tron acting in the field of a central force. In this approach, one could
replicate the previous work on masses in a gravitational field, thinking
of the atom as a miniature planetary system of some form. There were
differences, though, that precluded an exact mapping of Newtonian grav-
ity onto the atomic problem. It was known that electrons displayed a
wavelike nature and what evolved was a strategy that focused on develop-
ing so-called wave functions. The interpretation of these wave functions
was that their square magnitude represented the probability of finding
an electron somewhere in space. If we consider the nucleus to be very
(negligibly) small, we should not be surprised that the early attempts at
modelling the atom utilized basis functions that exploited spherical sym-
metry. The natural set of basis functions in spherical coordinates are the
Laguerre polynomials L, (r) for the radial component of the wave function
and the associated Legendre polynomials Y},,(6, ¢) for the azimuthal and
polar coordinates.

Basis functions are defined by a set of indices (n, I, m):

fnlm(rf 0, (P) =L,(r)Y;,,(0, QO):
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where the indices must satisfy some constraints. For each value of #, a
positive integer, [ can take on integral values from o to n— 1. For each
value of I/, m can take on integral values from -/ to I. As a result, for
n =1 there is only a single function: f,,,. For n = 2, there are four (1+3)
functions: f,o0, fo1—1s fo10 and f,;; and for n = 3, there are nine (1+3+5)
functions.

Exercise 3.1. Plot the Laguerre polynomials L, for n = 1,2 and 3
over the range o < r < 10. Now plot the product of the Laguerre
polynomials with the weighting function e™".

Exercise 3.2.  Use the SphericalPlot3D function to study the be-
havior of the spherical harmonic functions Y},,(6, ¢). For each inte-
gral value of [, m can take on values of m=—-I[,-I+1,...,]—1,]. Note
that the SphericalHarmonicY function is complex; plot the real part.

If we examine the ionization energies of the (neutral) elements, as de-
picted in figure 3.1, we observe that the energy peaks at specific atomic
numbers. For these cases, the electron is more tightly bound to the nu-
cleus than in adjacent elements; this occurs at values of the atomic num-
ber of Z =2,10,18,36, 54,80 and 86. If we conduct a bit of speculative nu-
merology (hoping that the eigenfunctions that describe the electron wave-
functions are very close to the basis functions), then the n = 1 level should
be able to describe the state of a single electron. Adding the n = 2 level
functions should enable us to describe an additional four (4=1+3) elec-
trons. We could naively suggest that something special might happen at
magic numbers of 1 and 5 (=1+4). What we observe from the figure is that
the ionization energy peaks at twice the naive values: at 2 and 10 instead
of 1 and 5. We can infer that the data are suggesting that we can somehow
place two electrons in each level.

Ficure 3.1. The energy re-
quired to remove one elec-
tron from the neutral atom
of atomic number Z displays o
significant structure. Notably, P Ry _-"M_.'
the energy peaks for the no- ’ d . °

ble gas elements and mercury
(Z = 80). 2 18 54 86 VA
10 36 80

energy (eV)

Exercise 3.3. Thereafter, the numerology becomes a bit more com-
plex. Adding the n = 3 levels can provide us with another nine
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functions but we don’t see anything special at Z = 14 (=14+4+9) or
28 but there is another magic number at 18, which could corre-
spond to just the I = o and 1 levels from the n = 3 functions: 18
= 2[1+4+(1+3)]. The next magic number is 36, which we can obtain
from the n = 1,2 and 3 levels plus the / = 0 and 1 levels from n = 4:
36=2[1+4+9+(1+3)]. Can you obtain a plausible explanation for the
magic numbers 54, 8o and 86?

We can recall that Stern and Gerlach conducted an experiment to mea-
sure the intrinsic magnetism associated with free electrons and observed
that the electrons possessed an intrinsic magnetic dipole moment and that
it was quantized.' In passing through the (non-uniform) magnetic field,
the electron beam separated into two components. This property of elec-
trons is now known as spin, which is a rather unfortunate name. From
figure 1.12, we know that the electron is a wave, not a small ball of some
miniscule dimension. As a result, the intrinsic magnetic field does not
result from the rotation of a small charge density, as aesthetically pleas-
ing as that idea may be. In large measure, we do not understand why the
electron has spin but we know that it does.

3.1. Dirac Equation

When the British physicist Paul Dirac sat down to develop a new theory of
the electron, he mentioned this duplexity problem. Apparently, if we are to
describe the states of an electron in a central force, it is not sufficient to use
just the indices (n,1, m). We must augment them with an additional index
s to define the spin: (n,/,m,s). While groups headed by Erwin Schrédinger
and Werner Heisenberg were making progress in their development of a
quantum theory of atoms, what Dirac observed was that they were not
constructing models that were consistent with Einstein’s theory of relativ-
ity. As a result, the Schrédinger and Heisenberg models represented only
a low-velocity, limiting case of a more general theory. So, Dirac set out to
make a relativistic theory of the electron.

In order to have a theory that is compatible with Einstein’s Special The-
ory of Relativity, it must be invariant under Lorentz transformations. If
we utilize the tensor notation, we can attempt to write this new theory in
a form that is manifestly invariant. That is, we cannot ask the question:
How does the state of the system evolve in time? Time is simply the first
component in the four-vector that describes spacetime. Moreover, time
does not have a global definition, independent of the frame of reference:
only local values of time are meaningful. What we must ask instead is the

1Otto Stern and Walther Gerlach published “Das magnetische Moment des Silberatoms” in
the Zeitschrift fiir Physik in 1922.
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question: How does the system evolve along a spacetime path? Mathe-
matically, we must make the following replacement:

This is precisely what we did when we formulated the relativistic form of
Maxwell’s equations.

A reasonably obvious choice for a relativistic quantum theory was ex-
plored by Oskar Klein and Walter Gordon.> They made use of the fact
that the wave equation is Lorentz invariant and, hence, postulated that
the following equation could describe the electron:

a a 2.2
(3.1) [ZZ k&YI o mh_zc Y(x)=o,

i=1 k=1

where the wave function ¢ is a function of the four-vector x, m is the mass
of the electron and 7 is defined as Planck’s constant / divided by 27.3
Because all of the indices are summed away, the terms within the brackets
represent a scalar quantity and, thus, is manifestly Lorentz invariant.

Exercisk 3.4. Rewrite the Klein-Gordon equation 3.1 using short-
hand notation: Use the Einstein summation convention and the 0;
derivative operator. An additional simplification, common in parti-
cle theory, is to also use a unit system in which #i=1 and ¢ = 1. What
is this simplest form of the Klein-Gordon equation?

Exercise 3.5. Expand the Klein-Gordon equation into its explicit
components and show that you recover the wave equation, with an
additional mass term.

To derive a probabilistic interpretation of the wave function ¢, which is
assumed to be a complex function, let us multiply the Klein-Gordon equa-
tion 3.1 by the complex conjugate and then subtract the conjugate of the

2Klein and Gordon published separate papers in the Zeitschrift fiir Physik in 1926, as did
Vladimir Fock, and several others, including Louis de Broglie.
3The quantity h/27 occurs frequently, so the shorthand notation # is commonplace.
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whole expression:

i=1 k=1
L& 0 9 miel
ik *
—IP(X)[;;g ook T }‘P()
shuit A PN J .
(3-2) =) ) s "ﬁ[qj ()5 ) = plx) 50 <x>].

The result here is analogous to the charge conservation equation we know
from electromagnetics:

(3-3) L _V.J=o,

where the time rate of change of charge density within some volume must
equal the current flux through the surface of that volume. The time com-
ponent of equation 3.2 is just the following:

10|, .0 d .
(3-4) =5 ¥ (X)alP(X)—lP(X);lP (x) |-

We would like to interpret the quantity within the brackets as the prob-
ability density for the electron. Unlike the charge density p, that can be
negative, we require the probability density to be positive-definite. Unfor-
tunately, the expression in equation 3.4 is not always positive. Thus, we
would lose the probabilistic interpretation of the wave functions defined
by the Klein-Gordon equation.

Exercise 3.6. Use Mathematica to show that equation 3.2 is correct.
Hint: compute terms corresponding to the left-hand and right-hand
sides of the equation. Subtract and show that you obtain zero.

Exercise 3.7. Write out the components of equation 3.2 in terms of
the explicit time derivatives and the gradient V operator. Compare
the terms to those in equation 3.3.

There are other problems with the Klein-Gordon model. If we push a bit
further, we could also calculate some of the predictions for energy levels
in the hydrogen atom made by the Klein-Gordon equation. These do not
agree with the experimental data. So, the Klein-Gordon equation does not
represent the correct relativistic description of the electron.

In 1928, Dirac concluded that part of the difficulty with the Klein-Gordon
equation arose from the fact that the equation was second-order in time,
whereas the Schrodinger equation contained only a first-order derivative
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with respect to time. As the Schrodinger approach gave better agreement
with experimental data, Dirac attempted to derive a relativistically correct
equation that was a first-order equation for the wave function.*

As we have seen, if we want to develop a theory that is consistent with
Einstein’s theory of Special Relativity, we should use a tensor formulation.
Rather than consider the time evolution of the system, we must consider
the spacetime evolution. In this sense, the appropriate derivative operator
is the covariant vector d/dx’ but just the four-gradient applied to the wave
function does not lead to a reasonable description of the electron.

Dirac had the imaginative idea to construct a Lorentz scalar from the
four-gradient and another four-vector. He recognized that this new vector
could not simply be a constant vector, as the result of forming the inner
product of a constant vector with the four-gradient would not produce a
Lorentz scalar. Instead, Dirac suggested that the new four-vector must be
a vector of matrices. There is some ambiguity in the particular choices of
matrices: the size must be even but 2x2 matrices don’t work. Ultimately,
Dirac decided that 4x4 matrices would be adequate but it is possible for
the dimension to be larger. Dirac’s matrices can be written as follows>:

1 o o o] [0 o o —i
, o1 o o 3 o o i o
Yy = ’ Yo = . ’

o 0o -1 o0 o 1 o o

o o o —1] -7 o o o

o) o o 1] o o 1 o
o o 1 o o o o -1

2 _ 4 _

(3.5) Y o -1 o ol y -1 0 0 o©
-1 0 0 O o 1 o o

Dirac then proposed that the equation of a free electron would take the
following form:

4 4
(5:6) [thZ(V")H o —mc}%(x) =0,

i=1 §=1

where now i has four components:

4Erwin Schrédinger and Paul A. M. Dirac shared the Nobel Prize in Physics in 1933 “for the
discovery of new productive forms of atomic theory.”

5Recall that our indices run from 1 to 4 with time as the first index. Other authors use
different notation.
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Here, we have run headlong into another notational difficulty. We have
been reasonably consistent of late to use subscript and superscript indices
to mean contravariant and covariant. Each of the gamma matrices is a
constant matrix that does not transform under a Lorentz transformation;
that is, they do not depend on the choice of coordinate system. The four
gamma matrices together do transform as a Lorentz vector. Technically,
the gamma matrices, with the identity matrix and y5 = iy'y>y3y4, form
what is known to mathematicians as a Clifford algebra and the wave func-
tion is called a spinor. To distinguish these non-tensor indices, we have
used letters from elsewhere in the Latin alphabet. So, (y'),; means the
element of the rth row and sth column of the ith component of the con-
travariant four-vector . The sum over s in equation 3.6 is a matrix-spinor
multiplication, which results in a spinor.

Exercise 3.8. Rewrite the Dirac equation 3.6 using the Einstein
summation convention and the d; operator. The American physicist
Richard Feynman grew weary of even this compact notation, and
invented his own additional shorthand:

yioi=4.

Rewrite the Dirac equation, using ## = ¢ = 1 and the Feynman slash
notation.

From solutions ¢ (x) of the Dirac equation, one computes the probability
density by multiplying ¢ by its Hermitian conjugate, the transpose of the
complex conjugate:

Pi) = [Yi) Yl i) Pi)].

Dirac arrived at this particular choice for the gamma matrices by demand-
ing that the square of his equation recover the Klein-Gordon equation.
This ensured that his solutions would satisfy the Einstein mass energy for-
mula: E? = p?>c?> +m?c*. The gamma matrices are required to have specific
properties but are not uniquely defined.

Exercisk 3.9. Define the gamma matrices in Mathematica. What

are the matrix products (»')*? The gamma matrices anticommute.
Show that if i # k that y'yk = ki,

Exercise 3.10. Multiply the Dirac equation 3.6 on the left by the
following: (ifry?d;+mc). Use the properties of the gamma matrices to
demonstrate that the spinor (x) and, hence, each of its components
independently, satisfies the Klein-Gordon equation.
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We can recall that Dirac was concerned about the duplexity problem,
wherein there was an additional quantum number that described elec-
trons. He wanted to obtain a solution that incorporated the spin quan-
tum number in a natural fashion. To make the wavefunctions consistent
with Lorentz invariance, Dirac required that the wavefunction be a four-
component spinor. This is two components too many.

To see how Dirac chose to accommodate this issue, we can look at the
plane wave solutions of the Dirac equation. The four-dimensional Fourier
transform of (x) is just

(3.7) P(x) = (m) Jd“p eXp[ ZZgzkp X ] p),

i=1 k=1

where 1(p) is a function only of the transform variable p.® The sum in the
exponential is actually just Et —p,x—p,v —p.z, so our notation is certainly
not compact. Consider the first component of the derivative operator:

J d B d B %
81 ot cot’ cor’ cot|

where diag means a 4x4 matrix with only nonzero elements on the diago-
nal. When applied to the transform of ¢) from equation 3.7, we find

(3-9) 5
EE E E|:
iyt —— e (EtoPxX=pyy=p=2l/l _ _Qigol = = = = |piEt=pex=pyy-pz2)/h
my 5’ 198 c’c¢’ ¢ ¢

. d
(3-8) i

The first two components have positive energy and the second two have a
negative energy.
Exercise 3.11. Define the function
F(p) = ihe'Et=Pex=pyy=pa2)/
in Mathematica and apply the derivative operator d/dx’ to produce
a four vector. (Divide by F(p) to produce a matrix that contains only

the momenta, as in equation 3.9.) Now compute the 4 x 4 matrix M
that is defined in Equation 3.6.

Consider the four spinors:

—p- —pxtipy
1 ° E/c+mc E/c+mc
o 1 “Px'Py P
o 0o 7 _ | E/c+mc 7 _ | E/ctmc
71[)1 - - 4 lzb2 | px—ipy |’ 4}3 - ’ 1704 -
—E/ct+mc —E/c+mc 1 0
Pxtipy -pz
—E/c+mc —E/c+mc 0 1

6Here, we have used the momentum p as the transform variable instead of the more usual
wavenumber k, where p = k.
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Show that the matrix products of the momentum operator matrix M
with the spinors all vanish, provided that E> = m?c* + p>c>.

At first, Dirac proposed that we simply ignore the negative-energy solu-
tions as being unphysical. There is certainly precedent for this idea. We
have, in elementary kinematics, had occasion to discount the existence of
negative-time solutions that arise when computing the time it takes for a
ball to fall from some height. Perhaps Dirac’s negative energy solutions
fall into that same category of extraneous solutions that can or should be
ignored.

This initial interpretation of the Dirac equation 3.6 was called into ques-
tion by the discovery of the positron by Carl Anderson in 1932.7 After
completing his doctoral thesis in 1931, Anderson constructed a cloud
chamber and began an investigation of so-called cosmic rays. He and his
mentor Robert Millikan were able to distinguish the thin tracks of the
negatively charged electrons from the thicker tracks of positively charged
protons from the curvature of the tracks in a strong magnetic field.

What puzzled Anderson and Millikan was the existence of thin tracks of
positively charged particles that appear to have the mass of an electron.
Today, we call these particles antimatter and a host of antiparticles, in-
cluding antiprotons, have been observed. A potential reinterpretation of
the Dirac equation assigns the positron solutions to the negative-energy
solutions, thus accounting for all four of the spinor terms. While Dirac
did not predict the existence of antimatter, it appears that his equation
might be able to accommodate it without contrivance. We will revisit this
idea subsequently.

3.2. Gauge Theory

Equation 3.6 defines the spacetime evolution of the spinor wavefunction
of a free electron. What we would now like to do is consider the mo-
tion of an electron in an external electromagnetic field, with an eye to-
wards producing an initial model for the hydrogen atom. Here, we are
specifically thinking of treating the interaction of the electron with the
electromagnetic field of the hydrogen nucleus (proton) but possibly also
macroscopic fields produced by macroscopic sources. This turns out to be
relatively simple and provides a framework for additional interactions.

7Anderson published “The apparent existence of easily deflectable positives” in Science in
1932 followed by “The positive electron” in the Physical Review in 1933. He was awarded
the Nobel Prize in Physics in 1936 “for his discovery of the positron.” Anderson shared the
prize with Victor Franz Hess, who was cited “for his discovery of cosmic radiation.”
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We first remark that it was recognized very early in the development of
quantum theory that the wavefunctions are not uniquely defined. This is
due to the fact that all observable quantities, like the probability density,
are constructed from the square of the wavefunction:

(3.10) P(x) = [p(x)I” = ' (x)(x),

where the dagger here again means the Hermitian conjugate for the spinor
wavefunctions of the Dirac equation and just the complex conjugate oth-
erwise. Consequently, if we replace the initial wavefunction with one that
is multiplied by an arbitrary phase, 1(x) — (x)e’?, then the probability
density defined in equation 3.10 is unaffected.

In 1918, the German mathematician Hermann Weyl attempted to unify
Einstein’s new geometrical theory of gravity with electromagnetism, mo-
tivated by similarities of the mathematical structures of the two theories.®
What Weyl considered is what is now known as a local symmetry, where
the phase factor 6 is not simply a global constant, but is actually a function
of space 6 = 6(x). Again, even if 6 is a function of space, the probability
density will not depend upon 6.

There is, though, the question of whether or not the transformed wave-
function remains a solution of the Dirac equation. This is obviously sat-
isfied when O is a constant, but when 6 is a function of x, we find an
additional term in the Dirac equation due to the derivatives of 0:

(3.11) [zh ii rs = —mc}gb (x)e!™)
{thZ [ax’ zagij()} - mc}zps(x).

i=1 S=1

At first glance, one might conclude that the additional terms spoil every-
thing. The wavefunction i now solves an equation that is not the Dirac
equation but there is a bit of magic available.

If we use what physicists call minimal coupling, we can add the interac-
tion to the electromagnetic field by a modification to the derivative oper-
ator:

0 J e

(3:12) o o

8Weyl published his theory combining electromagnetism and gravity in 1918 in the Sitzungs-
berichte der Kéniglich Preussischen Akademie der Wissenschaften zu Berlin. Weyl investigated
the consequences of rescaling the metric tensor gjx — Agjx by a continous function A; this
has been rendered into English as a gauge transformation.
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where e is the fundamental (electron) charge and A; is the electromag-

netic potential. We shall provide further details of why this is possible
subsequently but, for the moment, we shall just state the result as fact.

If we now include this in our description of the electron, we can write the

following:
z€A~] - mc}tp (x)eie(x)
1 S

4 4
(3.13) {thZ
{zhzz [aﬂ ieAi+i%}—mc}gbs(x).

1=1 S=1
=1 S=1

Recall now that the electromagnetic fields obtained from the potentials
also had an ambiguity (see equation 2.28): replacing the potentials A;
with A; — d¢/dx' produces the same fields as the original potentials. If
we define 8 = —e¢/c, then the gauge transformation of the wavefunction
also produces a gauge transformation in the potentials. Consequently,
the spinor solutions are solutions of the Dirac equation, provided that we
utilize the appropriate, covariant derivative.

We should probably place some sort of gaudy marker in the margin of
the text at this point but we shall allow readers to perform that task in
whatever sort of fashion suits their personal taste. We have arrived at
a truly significant juncture. As we shall see, essentially all theories of
elementary particles are based on the ideas that we have just covered:

(1) the equations of motion are invariant under Lorentz transformations,

(2) particles are described by wavefunctions that are invariant to gauge
transformations,

(3) particles interact with fields that are also invariant to gauge transfor-
mations and

(4) these gauge invariances give rise to Noether’s conserved currents.

For Maxwell’s equations, we know that electric charge is conserved. This
is, of course, an experimentally observed property of matter, that charge
is neither created nor destroyed but, within the theory that describes elec-
tromagnetic phenomena, this property arises from the invariance of the
equations to the gauge transformations.

We are now in possession of a mathematical mechanism to provide for
other, experimentally observed conserved quantities. As the high-energy
particle experimental community continues to conduct experiments in
which various particles are forced to interact and the results of those in-
teractions are observed, we shall find that there are other such conserva-
tion laws observed. We can build a theory that contains those properties
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simply by introducing a gauge transformation, via the covariant deriva-
tive. We shall encounter the covariant derivative again later in the text
when we discuss Einstein’s general theory of relativity, as it arises when
we attempt to define derivatives that do not depend on the coordinate
system in curved spaces. Einstein struggled for a long time to understand
the nuances of these subtle, yet complex, ideas, so we shall postpone that
discussion for a time. Nevertheless, it was Einstein who brought tensor
calculus to physics and Weyl who recognized that the so-called minimal
coupling of the electromagnetic field was precisely the covariant deriva-
tive that Einstein used in his general theory of relativity.

At this point, we can utilize some of the mathematical advances developed
during the nineteenth century that will aid our progress. We have noted
previously that mechanical systems were characterized by an energy &
that is conserved and is generally made up of a kinetic 7 part that de-
pends on velocities v; and a potential i/ part that depends on positions x;.
The French mathematician Simon Pierre Lagrange found that one could
derive the equations of motion of a system by defining a new function
(now known as the Lagrangian) £ =7 —U. The equations of motion can
now be obtained from derivatives of the Lagrangian:

- or_aor_
314 <9x] dt 87/] —°

EXERrcISE 3.12. As a simple example, consider the one dimensional
harmonic oscillator. The kinetic energy of a mass m is just 7 =
1,mv> and the potential energy will be & = 14k(x — x,)?, where k
is the spring constant and x, is the equilibrium point. Use equa-
tion 3.14 to show that the following equation describes the motion

of the mass:
d?x
mﬁ +k(X—XO) = 0.

Moreover, there is an even more abstract principle at work, which was
identified by the Irish physicist William Rowan Hamilton. If we define
the action as follows:

b
(3-15) S:f dt L,

then the equations of motion can be derived from minimizing the action
with respect to the pathway from a to b:
oS
.16 - =
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We have used a notation in equation 3.16 where by 6 we mean a variation
in the action. This idea is, mathematically, essentially the same as the
notion of a derivative but with respect to a function of the coordinates, not
the coordinates themselves. What Hamilton proposed is that the observed
trajectory x(t) of a system, as it evolves from the time a to the time b, is
the one that minimizes the action S.

It is also possible to make all of this relativistically correct. We recognize
that time is not a relativistically invariant quantity, so we need to replace
the integral over time in equation 3.15 with an integral over d*x and the
Lagrangian becomes a Lagrangian density. As a Lorentz scalar, the La-
grangian density will be invariant under Lorentz transformations, as will
be the integral over spacetime.

The action that represents an electron in an electromagnetic field can be
written as follows:

(3-17)

S= jd4xihZ¢I(X){(Vi)r5

i,r,s

9 .e i
W + ZEAI':| — mC}lpS(X) - 1/4 ;{F%F k.

Here, the summations run, as before, over indices from one to four. The
Dirac equation can be recovered by considering the variation of S with
respect to ¥’ and Maxwell’s equations can be recovered by considering
the variation of the action with respect to the potentials A;, which will
then include the electron as a source term.

Equation 3.17 represents the action for quantum electrodynamics, one of
the most successful physical theories developed to date.? The American
physicist Richard Feynman developed a new approach to the formulation
of quantum mechanics, in what has subsequently been called the path
integral method. Feynman utilized an observation made previously by
Dirac, that the exponential of the Lagrangian function was “analogous” to
the propagator, or kernel function. That is, if one asks what is the electron
wavefunction at a time infinitesimally (e) later than some initial time ¢,
then we could write

Y(t+e,x)= J.dxeieﬂ/hgb(t,x).
Feynman recognized that, by taking a series of infinitesimal steps, the

wavefunction at some finite later time is just the integral of the Lagrangian,

9Sin-Itiro Tomonaga, Julian Schwinger and Richard P. Feynman were awarded the No-
bel Prize in 1965 “for their fundamental work in quantum electrodynamics, with deep-
ploughing consequences for the physics of elementary particles.”



76 ON THE NATURE OF THE ELECTRON

which is, of course, the action:

(3.18) Dty ) = [ dx (e, ).

The exponential of the action was not simply analogous to the propagator;
it was (proportional to) the propagator. This representation of quantum
mechanics, based on the action, had enormous aesthetic appeal to Feyn-
man, because it also demonstrated that one could construct a valid theory
without resort to computation of the electromagnetic fields. In this par-
ticular view, the fields are computational artifices; the only measurable
quantities involve particle paths and not any fields that might be present.

One might wonder how valuable an expression like that in equation 3.18
might be in practice, or even how to interpret the exponential of a com-
plicated function. What Feynman found was a natural definition in terms
of the series:

(3.19) eism:1+%$+%(%) SS+---.

This is a perturbation expansion, where one might implicitly assume that
the series would converge reasonably rapidly. To expedite his calcula-
tions, Feynman developed a pictorial representation of the series terms
that enabled him to perform the associated bookkeeping. Some examples
are illustrated in figure 3.2.

Ficure 3.2. The pictorial rep-
resentation of the terms in the e
series expansion of the expo- Y. V2
nential operator take the form

of solid lines, representing e B
electrons, interacting at ver- €

tices with the electromagnetic Y
field, represented by wavy
lines.

In Feynman’s approach, one defined the electron to be in some initial state
Y; and, after interaction with the electromagnetic field, was measured to
be in a final state. The operator that transformed the system from ini-
tial to final was the exponential of the action. This operator is a unitary
transformation, meaning that the magnitude of the wave function was
unchanged. This is an essential attribute if we are to interpret the wave-
function probabilistically. Feynman’s approach here was similar to that
of previous workers, like the German theorist Werner Heisenberg, who
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pioneered a matrix approach to quantum mechanics.'® Feynman used his
pictorial representations not only as a method of bookkeeping but also to
help him identify what he believed to be the physical picture represented
by the mathematics.

His work, though, relied strongly on a probabilistic interpretation of the
wavefunction, where other theorists, notably Schwinger and Tomonaga,
had adopted a more formalistic approach to developing a dynamical the-
ory of the electron. Schwinger, in particular, had developed a fully co-
variant theory using more formal mathematical tools. Initially, there was
some confusion over whose approach was better but, in 1949, the Ameri-
can physicist Freeman Dyson published two papers that reconciled affairs:
proving that the two approaches were mathematically equivalent.

3.3. Gyromagnetic Ratio

To this point, we have discussed some of the ingredients of the modern
theory of the electron but have not discussed why this complicated theory
is considered valid. We shall now rectify that situation. In 1922, the Ger-
man physicists Otto Stern and Walther Gerlach conducted an experiment
in which they found that a beam of neutral silver atoms passing through
an inhomogeneous magnetic field was separated into two components. If
we attribute any intrinsic magnetic field of a silver atom to that generated
by an unpaired electron, then Stern and Gerlach’s work can be interpreted
as measuring the magnetic dipole moment of an electron with the mass of
a silver atom instead of the mass of an electron. Subsequent experiments
in hydrogen replicated Stern and Gerlach’s original findings, without the
complications of 46 other electrons. The electron does appear to possess
an intrinsic magnetic dipole moment.

In Niels Bohr’s initial planetary model of the atom, electrons orbited the
nucleus with angular momentum L quantized to integral multiples of #.
The magnetic moment g of such an electron is given by

L
(3.20) m=g_—L=-gupz,

2m,

where g = efi/2m, is called the Bohr magneton. The factor g, unimagina-
tively called the g-factor, is present to account for the fact that the exper-
imental observations do not agree with Bohr’s simple model. In fact, the
experimentally measured moment was about twice the predicted value.

19Heisenberg was awarded the Nobel Prize in Physics in 1932 “for the creation of quantum
mechanics, the application of which has, inter alia, led to the discovery of the allotropic
forms of hydrogen.”
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An initial success of the Dirac equation was to produce a value of g =2
when calculating the first-order term in the perturbation expansion. Sub-
sequently, Schwinger provided the first calculation of the second-order
correction,

(3.21) 2+ 8

21 04—,

3 g T

where a = e?/(47e, hic) is called the fine-structure constant.

Exercise 3.13. Consider a small ring of radius R rotating with a
tangential velocity v that contains a uniformly distributed charge Q
and mass M. What is the angular momentum L of the ring? The
magnetic moment y for a ring is simply the product of the current I
and area A of the ring: p = IA. What is the gyromagnetic ratio p/L
for this classical ring? What would be the gyromagnetic ratio of a
sphere? (Hint: do NOT perform any integrals.)

Recent experiments by the American physicist Gerald Gabrielse and his
group members have established the value of g to extraordinary preci-
sion: better than a part per trillion. The experiments involve trapping a
single electron in external electromagnetic fields, thereby eliminating any
contributions from an atomic nucleus. Nominally, the experiment utilizes
a Penning trap, named after the Dutch physicist Frans Michel Penning
by the German-born physicist Hans Georg Dehmelt.'" Dehmelt modified
Penning’s vacuum gauge to serve as an ion trap, using a uniform magnetic
field along the z-direction and a quadrupole electrostatic field provided
by a cylindrically symmetric cavity. The electrostatic potential is illus-
trated in figure 3.3.

Ficure 3.3. The quadrupole elec-
trostatic potential in a Penning trap
is symmetric around the z-axis. The
isopotential surfaces form hyper-
bolas and the electrodes are bi-
ased negative (solid) or positive
(dashed).

1Dehmelt shared one-half of the Nobel Prize in Physics in 1989 with Wolfgang Paul “For
the development of the ion trap method.” The other half was awarded to Norman F. Ramsey
“for the invention of the separated oscillatory fields method and its use in the hydrogen
maser and other atomic clocks.”
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Exercise 3.14. For a classical charge in an electromagnetic field,
the Lorentz force law governs the motion. The electric field for the
Penning trap is obtained from the negative gradient of the potential
V = Vy(22 = (x> +v?)/2)/2d? and the magnetic field can be taken to be
constant in the z-direction: B = ZB. In Mathematica we can define
the equations of motion as follows:

eqs={ x'[t]==vx[t],y [t]==vy[t],z [t]==vz[t],
vx'[t]==gm(x[t] Vod/2 + vy[t] B),

vy [t]==gm(y[t] Vod/2 - vx[t] B),

vz’ [t]==-gm(z[t] Vod}

ics={ x[o]==1,y[o]==0,z[0]==0,
vx[o]==0,vy[o]==1,vz[0]==0.05}

Here, we have lumped the charge to mass ratio e/m into a parameter
qm, the potential strength V, and size d into the parameter Vod =
V,/d?. We can solve these numerically, as follows:

soln=NDSolve[Join[eqgs,ics]/.{gm->1,B->2,Vod->1},
{x,y,z,vx,vy,vz},{t,0,20}]

and plot them with
ParametricPlotgD[Evaluate[{x[t],y[t],z[t]}]/.soln,{t,0,20}]

Describe the resulting trajectory. How is the trajectory altered as the
parameters change?

One still requires four quantum numbers to define the electron states
within the potential but these are no longer the same as for a central force.
The classical motion of a charged particle in the trap field can be described
as harmonic motion in the z-direction and an epicycloidic motion in the x-
v plane. This epicycloidic motion can be thought of as being composed of
alarge-radius circular motion, called the magnetron motion, and a higher-
frequency, smaller radius motion called the cyclotron motion. We can as-
sign quantum numbers (¢, z,m,s) to the electron states within the cavity
field, corresponding to the three motions and the electron spin.

Introducing microwave or radio-frequency fields into the cavity can drive
transitions between the various energy levels that the electron can occupy.
For the cavities devised by Gabrielse and his team, the largest differences
between energy levels were determined by the cyclotron motion, param-
eterized by ¢, followed by the spin state s, as depicted in figure 3.4. An
additional radio-frequency potential applied to the electrodes provided a
mechanism for measuring the state of the electron.

It is remarkable that a signal from a single electron can be detected di-
rectly but this has, in fact, been accomplished. The trap itself is cooled to
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FIGURE 3.4. Thelevel diagram c=2
for the Penning trap is de- — __ Yo,

fined by quantum numbers ¢=1 =1___ Yo,
(¢c,z,m,s). For each level with he o ) F— =1

a given c and s, there are man- o oo

ifolds of states of different z c _S_ z m

and m.

4 K by immersion in liquid helium and the electrons are further cooled
within the trap to the order of 100 mK. Electrons within the trap can be
further manipulated to eject one at a time until only a single electron re-
mains. From their studies of the levels in what Gabrielse and team call
geonium, the best value of the g-factor is currently'?:

(3.22) g/2=1.00115965218073(28),

where the numbers in parentheses represent the experimental uncertainty
(1 standard deviation). This is a precision of 3 parts in 10'3, arguably the
most precise experimental number ever.

X

FIGURE 3.5. The anomalous g-
factor arises from radiative
corrections to the magnetic
moment like that illustrated
at right. In addition to the
coupling to the external field
(v,) there is an internal loop

(y1)-

The theoretical calculations of the g-factor produce a series in powers of
a/mt, one term is illustrated in figure 3.5. Schwinger, Tomonaga and Feyn-
man each calculated the first order term and the most recent calculation
by the Japanese physicists Tatsumi Aoyama, Masashi Hayakawa, Toichiro
Kinoshita and Makiko Nio are complete to tenth order (a/m)5. This last
result required the evaluation of 12, 672 Feynman diagrams, along with
an automated procedure for identifying and computing the integrals.'3
Their results lead to a theoretical prediction of the g-factor as follows:

(3.23) g/2 =1.00115965218178(77).

12This result was reported in Physical Review Letters in 2008.
13Aoyama et al. published their results in Physical Review Letters in 2012
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Stunningly, the theoretical prediction in equation 3.23 only differs from
the experimental measurement in equation 3.22 in the twelfth decimal
place. The difference is only about one standard deviation, so to the cur-
rent level of precision the experimental and theoretical results are in com-
plete accord.

The radiative corrections that give rise to the anomalous magnetic mo-
ment of the electron also manifest themselves in atomic spectra. In 1947,
the American physicist Willis Lamb utilized microwave techniques to mea-
sure the energy levels in hydrogen to high precision.’* Lamb’s experiment
demonstrated an extraordinarily innovative strategy to measure the fre-
quency shift in hydrogen. The low-lying energy levels in hydrogen are
depicted in figure 3.6. The spectroscopic notation labelling the levels is
derived from early measurements in alkali metals in which the spectral
lines had particular characteristics. These were defined to be sharp, prin-
cipal, diffuse and fundamental. Subsequently, the characteristics were
identified to be associated with the orbital angular momentum L but the
spectrographic identifications have been retained.

2
P3/z

Ficure 3.6. In the hydrogen
atom, the eigenstates are la- >
belled by the total angular 1 i

momentum J, which is the

sum of orbital L and spin

S. The ground state has two o 'S,/

magnetic substates m; = +1/. -

2
o Si/a

In hydrogen, it was anticipated that the total angular momentum (orbital
plus spin) would be the conserved quantity. In this regard, the Dirac
equation predicts that the 281/2 and 2P1/2 levels would have the same en-
ergy, as both have | = 5. In Lamb and Retherford’s experiment, molec-
ular hydrogen was dissociated in a tungsten oven and a jet of atomic hy-
drogen emerged from a small orifice. Shortly after emerging from the
slit, the hydrogen beam was impacted by an electron beam at approx-
imately right angles. The electron beam served to collisionally excite

14Lamb and his student Robert Retherford published their findings in the Physical Review.
Lamb later shared the 1955 Nobel Prize in Physics “for his discoveries concerning the fine
structure of the hydrogen spectrum.” Lamb shared the prize with Polykarp Kusch, who won
“for his precision determination of the magnetic moment of the electron.”
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higher-energy states in the atomic beam. These higher energy states de-
cay rapidly through electric dipole radiation (AL = 1) back to the ground
state, with the exception of the *S,/, state. This metastable state cannot
decay through electric dipole processes and, so, persists for some time
before decaying through weaker magnetic dipole or electric quadrupole
processes.

As a result, hydrogen atoms in the beam that were excited into the S, ,
state could survive to impact a metal foil beamstop, along with hydrogen
atoms in the 181/2 ground state. The metal foil was biased so that excited
state atoms ejected an electron upon impact, whereas ground state atoms
did not. Measuring the ejected electron current via a sensitive galvanome-
ter allowed Lamb and Retherford to measure the content of 281/2 excited
state atoms within the beam.

If the hydrogen beam is illuminated with microwave radiation, it is pos-
sible to drive transitions between the metastable 251/2 state and either of
the *P states. These states then decay rapidly, with the result that one
should see a decrease in the ejected electron current to the depopulation
of the *S, /, state. This is precisely what Lamb and Retherford observed.

FiGure 3.7. The energy levels of the
hydrogen atom shift in the presence d

of an external magnetic field. Tran- <

sitions between the 281/2(771]' =1) g K

level and the 2P3/2 level were pre- :/>5

dicted (gray curves) to have ener- g

giesa: (mj=3h),b:(mj=1h)and ° \
¢ :(mj = —1%) substates. Shifting s L

the theoretical curves by 4.135 meV
(black) reproduces the experimen-

tal measurements (dots). o oL 5 0'3

Applying an external magnetic field shifts the energy levels in hydro-
gen.'> Using the Dirac equation, we can predict the energy differences
for the n = 2 levels in hydrogen as a function of applied magnetic field B.
These are the gray curves in figure 3.7. Lamb and Retherford observed

15The Dutch physicists Pieter Zeeman and Hendrik Antoon Lorentz were awarded the Nobel
Prize in Physics in 1902 “in recognition of the extraordinary service they rendered by their
researches into the influence of magnetism upon radiation phenomena.”
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quenching of the ejected electron current at particular microwave fre-
quencies around 10 GHz (= 41.35 meV) that changed depending upon
the applied magnetic field but the experimental data did not agree with
the theoretical predictions. If they shifted the predicted energy levels by
about 1 GHz (4.135 meV), then the experimental results aligned with the
shifted theoretical curves. This effect is known as the Lamb shift and is a
consequence of the radiative corrections in quantum electrodynamics that
cause the S, , level to be higher than the *P,,, level by about 4 meV, as
depicted in figure 3.6.

Exercisk 3.15. An electric dipole antenna can be constructed from
a thin, center-fed wire of total length a. The energy propagating to
infinity is represented by the Poynting vector E x H. The total power
radiated can be calculated by integrating the Poynting vector over a
sphere at large distance from the origin and shown to be given by
the following:

(9a)” w?

12716, 3

where g here is representative of the maximal charge on the antenna
and w is the angular frequency. For a small current loop of radius a,
the radiated field is a magnetic dipole field, with a power given by
the following:

e =

(qwma?)? w*
p, =l X
127C€, €5
What is the ratio of radiated powers P,,/P,? What is the value of this
ratio at a frequency fiw = 10 eV, if we take a to be the Bohr radius

a=(4mexh?)/(mee)?
3.4. Mathematical Difficulties

An essential skill for practicing physicists is the ability to understand the
physical meaning of mathematical equations. That is, what do the various
entities represent? This ability is not so difficult to develop when deal-
ing with elementary mechanics; the variables represent the position (and
orientation) of some object as a function of time in a particular coordi-
nate system. In these cases, one can readily visualize the physical system.
For systems involving fields, there is no readily available means of visu-
alizing the fields, so developing a physical understanding of the system is
more challenging. For quantum systems, which are probabilistic at their
heart, ascribing a physical meaning to the mathematics can prove to be an
arduous task.

In truth, the Dirac equation has undergone several reinterpretations from
Dirac’s initial proposition that the equation represents the equation of
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motion for an isolated electron in an electromagnetic field. In developing
the equation, Dirac needed to utilize a four-component spinor to represent
the electron in its two spin states. The additional two components were
seen to have negative energies, so initially they were simply ignored. Over
time, it became difficult to reconcile that these available states would not
be utilized in nature, so a new interpretation arose: the negative energy
states were populated, giving rise to a vacuum state in which the electron
under consideration was actually propagating in the presence of (unseen)
negative-energy electrons. This interpretation conjures up the image of
the vacuum as a seething cauldron of (virtual) particles through which an
electron must propagate.

The subsequent discovery of the positron provided another possible inter-
pretation: the negative energy states represented positrons. As positrons
are not electrons, one could argue that the negative energy states were
simply not available to electrons, only to their antiparticles. One occa-
sionally reads that the Dirac equation predicts the existence of antimatter
but this idea stretches the historical record significantly. It was only in
retrospect that physicists tried to fit positrons into the negative energy
states. An early idea, attributed to the American physicist John Wheeler,
was that positrons could be considered to be electrons travelling back-
wards in time. While this idea was not taken particularly seriously, Feyn-
man adopted the notation in his pictorial representations: antiparticles
are drawn with the propagation direction inverted from those of parti-
cles.

In his Nobel Prize lecture, Feynman recounts some of the history of his
path to the theory of quantum electrodynamics. Initially, he was inter-
ested in resolving the problem of infinities that arise in classical electrody-
namics, before eventually moving into the study of a quantum-mechanical
description of the electron. We have introduced the results of these stud-
ies: the creation of a systematic approach to calculating so-called matrix
elements based on a path-integral formulation involving the action. Feyn-
man’s approach was focussed on evolution of the wavefunction and, so,
was not in concert with the latest developments in quantum field the-
ory produced by Tomonaga and Schwinger. In their manifestly covari-
ant approach, the wavefunction was replaced with an operator-valued
field. This second-quantization approach was tied to powerful new ideas
in mathematics and, thus, offered the possibility of understanding more
deeply the connections between the physical theory and the underlying
mathematical structure. As a result, Feynman’s more intuitive approach
was not immediately embraced by workers in the field.
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The discrepancies between Feynman’s approach and the operator method-
ology were quickly reconciled by Freeman Dyson.'® Despite their differ-
ent mathematical formulations, Dyson demonstrated that the two theories
were simply different mathematical representations of the same underly-
ing theory. Moreover, Dyson reconciled the problems with infinities that
arose in both theories.

e
Ficure 3.8. Possible higher-order
graphs include the emission and re- 4
absorption of a (virtual) photon by m
a propagating electron and sponta- =
neous pair (e*e”) production. ;

The perturbation series that arises from equation 3.19 can be organized
according to the number of vertices that appear in the diagrams. The
diagram in figure 3.8 contains four vertices and leads to integrals that
are divergent. What Dyson recognized was that one could reorganize the
different graphs in another fashion. For any graph, one can categorize the
graph by its connectivity. If, like in figure 3.8, there is a disconnected
portion (the e*e™ pair), then the disconnected portion can be eliminated
from contributing to the matrix element that defines the propagation of
the electron.

Dyson also realized that infinities that arise from terms like that repre-
sented by the emission and reabsorption of a photon by a propagating
electron, illustrated in the lower half of figure 3.8, serve to modify the
basic Green’s function, or propagator. If one reorganizes the calculations,
one obtains a fundamental graph, like the single-vertex graph illustrated
in figure 3.2, that contains an electron line entering and leaving and a
single photon. The electron lines should be interpreted not as the simple
propagator that arises from the first term in the perturbation series but
the sum of all of the contributions from various orders that modify the
fundamental. Reorganizing the sum of graphs not by the number of ver-
tices within the graph but by the number of lines entering and leaving the
graph, Dyson was able to demonstrate that observable quantities derived
from the theory were finite.

Dyson’s machinations have been given the name renormalization. Feyn-

man, among others, was skeptical about the validity of shuffling terms

16Dyson published two papers in 1949 in the Physical Review: “The radiation theories of
Tomonaga, Schwinger and Feynman,” and “The S matrix in quantum electrodynamics.”
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back and forth, believing that there might be some mathematical sleight-
of-hand at work. Nevertheless, renormalization is now an accepted prac-
tice within theoretical physics and serves as a prerequisite for putative
theories of new phenomena. That is, if a theory cannot be renormalized,
then it is unlikely to have any validity as a physical theory.

There have been different attempts to understand the physical need for
renormalization. Ostensibly, at very high momenta, or very short dis-
tances, one can have particle-antiparticle pair creation. This is true even
for a single electron at rest. Nominally, the electric field of a point charge
becomes infinite at the position of the charge; the process of renormaliza-
tion ensures that this fundamental infinity is shielded by a sea of virtual
pairs that soften the infinity and result in finite physical fields. Unfortu-
nately, no one as yet has discovered any clear pathway to eliminating point
charges from the theory. Feynman proposed replacing the delta functions
that define the particle position with some other sort of function, gaus-
sians say, that are finite at the origin and suitably narrow but this compli-
cates the calculations and the functions are not uniquely defined.

As a result, most physicists have simply moved on to other topics, consid-
ering the problem of quantum electrodynamics to be essentially solved.
There is a theory. It provides extraordinary agreement with experimental
measurements. This is enough.
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On Atoms

The experiments conducted by Ernest Rutherford’s students Geiger and
Marsden in 1911, in which they measured the scattering amplitude of a
particles from gold foils produced the surprising result that a particles
could be deflected to large angles from their original trajectories. Ruther-
ford interpreted these results to mean that atoms possessed a nuclear
structure, where the majority of the mass of an atom was concentrated
in a small, positively charged core that was surrounded by a cloud of neg-
atively charged electrons.” This discovery unleashed a firestorm of theo-
retical activity aimed at reconciling the obvious planetary models of the
atom with the large collection of spectroscopic data that continued to ac-
cumulate.

Earlier, in 1885, the Swiss mathematician Johann Balmer discovered a pat-
tern to four lines in the visible spectrum of hydrogen. He found that the
wavelengths could be determined from the following formula?:

hn?

n2—y4’

(4.1) A=

where 7 is an integer from the series n = 3,4,5,... and h is a constant
that Balmer established as h = 364.56 nm. From this formula, Balmer
predicted that there should be a line for n = 7 at 397 nm, which, indeed,
had just been observed by the Swedish spectroscopist Anders Angstrom.

A more general formula was obtained by the Swedish physicist Johannes
Rydberg, whose “Recherches sur la constitution des spectres d’émission
desélements chimique” was presented to the Royal Swedish Academy of
Science in November, 1889 and subsequently published by the Academy

'Rutherford published “The scattering of alpha and beta particles by matter and the struc-
ture of the atom,” in the Philosophical Magazine in 1911. Rutherford was awarded the Nobel
Prize in Chemistry in 1908 “for his investigations into the disintegration of the elements,
and the chemistry of radioactive substances.”

2Balmer published his “Notiz {iber die Spectrallinien des Wasserstoffs” in the Annalen der
Physik und Chimie. He was 60 years old at the time.
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the following year.3 In modern notation, the Rydberg formula can be writ-
ten as follows:
1 11

2 —=R|5-—=|,
(42) A [nf ni]
where R is now known as the Rydberg constant and n, > n, are principal
quantum numbers. Balmer’s formula could be seen to be a special case
of the Rydberg formula, where n, = 2. At the time, Rydberg’s formula
was considered something of a novelty. It provided some hints as to the
distribution of spectral lines but no real explanation of their reason for
existence.

As a result, Rydberg did not benefit significantly from his discovery. He
was, at the time of publication, an assistant lecturer (docent) at Lund Uni-
versity but had undertaken all of the responsibilities of the professor of
physics position vacated by the retirement of Karl Albert Viktor Holm-
gren in 1897. The chair position was a royal appointment that was ulti-
mately bestowed on the mathematician Albert Victor Backlund in 1900
by Backlund’s good friend, Oscar II. This appointment was a blow to Ryd-
berg, as Backlund’s application had not been recommended for review by
the referees and, ultimately, the University administration had supported
Rydberg’s candidacy. Rydberg took a position as an accountant at a local
bank to help support his family but was named an extraordinary profes-
sor in 1901. His promotion to full professor came, at last, in 1909 but
Rydberg received few accolades during his lifetime. He was never named
to the Swedish Academy of Sciences and never awarded a Nobel Prize; he
was, reportedly, nominated in 1917 but no prize was awarded that year.
Rydberg was elected a Fellow of the Royal Society of London shortly be-
fore his death in 1919.

4.1. Hydrogen

The first workable model that reconciled Rydberg’s spectroscopic formula
was provided by the Danish physicist Niels Bohr who envisioned a plan-
etary model for electrons, where the orbits were required to be quan-
tized.* Bohr’s model provided a definition of the Rydberg constant in

3Rydberg had, in fact, discovered his formula in 1887, evidenced by an appendix he at-
tached to a request for financial support from the Royal Academy. His “Recherches...” was
published in Kungliga Svenska Vetenskapsakademien, Handlignar.

4Bohr’s “On the constitution of atoms and molecules” was published in three parts in the
Philosophical Magazine in 1913. Bohr was awarded the Nobel Prize in Physics in 1922 “for
his services in the investigation of the structure of atoms and the radiation emanating from
them.”
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equation 4.2 in terms of other fundamental constants:

m,Z>e*

(4.3) PP

s

where Z is the nuclear charge.

Bohr’s model worked quite well for hydrogen but less well for heavier
atoms. So, work to define a comprehensive theory of the atom contin-
ued. Most efforts concentrated around adapting classical mechanics, a
well-studied mathematical theory. It should be no surprise that, when
confronted with new problems, physicists will initially attempt to under-
stand them within the framework of existing tools. This has proven to be
a successful strategy in many areas of physics. Sometimes, though, it is
necessary to recast things in a different light.

In our current discussion, this recasting was performed by the German
physicist Werner Heisenberg in a pivotal paper in 1925.5 In this remark-
able work, Heisenberg set forth the defining ideas underlying quantum
theory.

Heisenberg focussed on observables. A quantum system may exist in a
particular state but the state itself is not something that can be directly ob-
served. What Heisenberg recognized is that it is the transitions between
states that give rise to measurable quantities. So, he dispensed entirely
with notions like the position of the electron around the nucleus and, in-
stead, focussed on defining the means for computing the transition am-
plitudes.

Heisenberg began with the statement that the energy of an observed pho-
ton, like the ones described by Balmer and Rydberg, represented the dif-
ference in energies between two discrete states in the system:

(4.4) haw(n,n—a)=E(n)-E(n-a),

where the state labelled by the quantum number # decays to a lower state
n—a. Note that the frequency w(n,n — a) depends upon both the initial
and final states, not just on one or the other. Classically, if one wants to
ask about the position of an electron in the state n, then one would utilize
the Fourier transform:

(4-5) x(n )= ) Xg(me@inar,

a=—00

5Heisenberg’s “Uber quantentheoretische Umdeutung kinematischer and mechanischer
Beziehungeen,” was published in the Zeitschrift fiir Physik in 1925. Heisenberg was awarded
the Nobel Prize in Physics in 1932 “for the creation of quantum mechanics, the application
of which has, inter alia, led to the discovery of the allotropic forms of hydrogen.”
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Heisenberg, instead, suggests that such things could not ever be directly
observed but what could be observed would be the transition amplitudes
X(n,n—a) that depend on both the initial and final state. The observable
quantity |x(f)]*> would then be proportional to the following:

|x(t)|2 = Zyﬁ(”’” —ﬁ)ei‘”(”'”—ﬁ)f
B

(4.6) _ ZZX(H’ n— a)ei(u(n,n—a’)tx(n —a,n— lg)ei(u(n—a,n—ﬁ)t'
a /3

Rydberg and the Swiss physicist Walther Ritz had developed a principle
based on their observation of spectral lines that the lines in each element
contain frequencies that are the sum or difference of other lines. Viewed in
this context, we see that the Rydberg-Ritz combination principle implies
the following:

(4.7) wmn-p)=wnn-—a)+wn-a,n-_p).

As a result, the exponentials in equation 4.6 can be eliminated and we are
left with Heisenberg’s result for the combination of transition amplitudes:

(4.8) Y(n,n—ﬁ):ZX(n,n—a)X(n—a,n—ﬁ).

Heisenberg did not really derive equation 4.8, instead he simply stated
that it was “almost necessary.”

When he finished the paper, Heisenberg gave it to the German physicist
Max Born, who had supervised Heisenberg’s habilitation research and
was the chair in physics at Gottingen, for submission to the Zeitschrift
fiir Physik. Born very quickly recognized equation 4.8 as the definition
of matrix multiplication. With his former student Pascual Jordan, who
had also studied under the mathematician Richard Courant, Born began
to flesh out Heisenberg’s idea. They published “Ziir Quantenmechanik”
just two months after Born first received Heisenberg’s paper. Shortly
thereafter, Heisenberg returned to Géttingen from visiting Niels Bohr in
Copenhagen, whereupon he joined Born and Jordan in publishing “Zur
Quantenmechanik II” by the end of the year.® The identification that the
rules of quantum mechanics could be cast into a matrix form meant that

®Born was ultimately awarded the Nobel Prize in Physics in 1954 “for his fundamental re-
search in quantum mechanics, especially for his statistical interpretation of the wavefunc-
tion. Born shared the prize with the German physicist Walther Bothe who was cited “for the
coincidence method and his discoveries made therewith.”
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physicists could apply all of the mathematical tools that had been devel-
oped in the course of studying matrix algebras. Indeed, as Born and Jor-
dan demonstrated, and shortly thereafter Dirac,” the matrix formulation
provided a systematic framework for computing the transition elements,
now known as matrix elements. Computing energy levels could be cast
as a matrix eigenvalue problem, for which the mathematical groundwork
had already been established. Rapid progress ensued.

Exercise 4.1. Construct 3x3 matrices A = {A;;} and B = {B;}, where
i,k =1,2,3. Compute the products AB and BA. What are the values
of (AB),'k and (BA)ik?

Real, symmetric matrices and Hermitian matrices share the property that
they can be converted by a similarity transformation to be diagonal, with
real-valued elements.® (Hermitian matrices are those matrices that are
equal to the transpose of their complex conjugates: A;p = A};.) That is, for
a given matrix A, we can find a unitary matrix V where the following is
true:

(4.9) A=VTAV.

Here, the matrix A has the form A = diag(A,, A,,...,A,). The values A;
are known as the eigenvalues of the matrix and the columns of V are the
eigenvectors of A.

Exercist 4.2. Consider the following matrix:

3 1+i o
A=|1-i 2 0.4].
o 0.4 1

Use the Eigenvectors function to compute the eigenvectors of A.
(Note that the Mathematica function returns the eigenvectors as a
list. The matrix V is the transpose of the returned list.) Verify that
the eigenvalues are real by computing equation 4.9. Demonstrate
that V is unitary: V'V =1. Is VVT also equal to the identity ma-
trix? (Note: use the Chop function to suppress numerical noise in
the results.) Show that, for each eigenvector v;, we have Av; = A;v;.

Somewhat surprisingly, these results are also true for infinite-dimensional
matrices, although as a practical matter one cannot solve an infinite-di-
mensional system in finite time. Hence, we shall most often truncate the

7Dirac’s “The fundamental equations of quantum mechanics” was published in the Proceed-
ings of the Royal Society in 1925 and “On the theory of quantum mechanics” was published
in the same journal the subsequent year.

STechnically, a similarity transformation takes the form A’ = B"*AB, where the matrices A
and A’ are called similar. For unitary matrices, ut=u.
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matrices to some finite size. This truncation has consequences but we
shall defer discussion on this point for the time being.

The matrix formulation seems to be adequate to describe bound states
of the hydrogen atom, which can be characterized as having negative en-
ergy with respect to the energy of a proton and an electron separated to
large (infinite) distance. As depicted in figure 3.6, states identified by
lines in the hydrogen spectrum lie at distinct, discreet energies. There
are, though, states with positive energy in which the proton and electron
are not bound; for these states the quantum numbers are not integers but
can be real numbers. The Hungarian-American mathematician John von
Neumann, a student of Hilbert, ultimately provided a solid mathematical
foundation for quantum mechanics that encompassed both the discrete
bound and continuous unbound states.? Moreover, von Neumann recog-
nized that quantum states could be understood as vectors in an infinite-
dimensional Hilbert space. The key characteristic of a Hilbert space, that
extends the notion of a Euclidean space into functional spaces, is the ex-
istence of an inner product, i.e., one can compute a distance between two
points within the space.

Exercisk 4.3. The inner product of two vectors is a scalar computed
by summing the product of the components:

wy=Y o
i

Hilbert spaces provide for more elaborate definitions of the inner
product. For example, functions that vanish on the boundary of the
domain o < x <1 can expanded in a Fourier sine series:

(o]

f(x)= Zan sin(mnx).

n=1
The coefficients a,, can be obtained by computing the inner product
(an integral) with the basis functions:

a, = 2]1 dx f (x) sin(renx).

Consider the function f(x) =1 —16(x — 1/2)*. Compute the coeffi-
cients a,. Compute approximations to f(x) by summing 1, 5 and
11 terms. Plot the approximations and f(x). Plot the differences
between the approximations and the function.

9Von Neumann'’s Mathematische Grundlagen der Quantenmechanik was published in 1932.
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ExERcISE 4.4. Functions that possess vanishing derivatives on the
boundary of the domain o < x < 1 can be expanded in a Fourier
cosine series:

f(x)=a,+ Zan cos(mtnx).

The coefficients a, can be obtained from the orthogonality properties
of the basis functions:

aozjldxf(x) and anzzj.ldxcos(nnx)f(x).

Consider the function f(x) = 1+4(5x3 —6x*—3x5+4x%). Compute the
coefficients a,. Compute approximations to f(x) by summing 3, 7
and 11 terms. Plot the approximations and f(x). Plot the differences
between the approximations and the function.

Exercisk 4.5. The Laguerre polynomials L,(x) form a basis for the
domain o < x < co with a weighting function ¢™*. That is, functions
can be represented as a sum of Laguerre polynomials:
flx)= ZanLn(x)-
n=1

The coefficients a, can be obtained through the orthogonality of the L,:

a, = J-oodxe_an(x)f(x).

Show that L,(x) and L,(x) are orthogonal. Consider now the func-
tion f(x) = sin3x. Determine the coefficients 4,. Plot f(x) and the
approximations to f(x) obtained by summing 10, 20 and 40 terms.
Consider the domain o < x < 10.

It is likely that many students will be dismayed by the notion we have
expanded the definition of inner product to include integration, which is,
undeniably, much more complicated than multiplication. As Hilbert and
von Neumann were able to demonstrate, algebraically these operations
have the same mathematical structure and permit the expansion of the
concept from the field of real numbers to functions. Indeed, the whole
of quantum mechanics can be described as Hermitian operators acting on
states in a Hilbert space. The Hermitian bit is required if we want to ob-
tain real eigenvalues, i.e., observable quantities. While the mathematical
foundations are more complex, there are a host of new mathematical tools
at one’s disposal to help understand the structure of the theory without
forever being bogged down in calculational details.'®

1OPart of the somewhat tepid response to Feynman'’s original articles on quantum electro-
dynamics arose because he did not frame his theory in terms of operators on a functional
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These rather remarkable results demonstrate that the ideas of a coordinate
basis can be extended into functional spaces. This provides a systematic
strategy for solving partial differential equations, for example. The or-
thogonal function decompositions that we encountered in the previous
exercises are only possible because the sine, cosine and Laguerre polyno-
mial functions provide bases on particular domains. That means that any
(smooth) function on the domain can be expanded in terms of a unique
set of coefficients. This will, of course, be most useful if the number of
terms required for a particular accuracy is small.

In 1939, Dirac created a new notation, known as the bra-ket notation that
concisely denotes the concepts we are discussing. Vectors in the Hilbert
space are defined as kets: |a), labelled here by a single character but will
generally have many parameters that define the state. Dual vectors are
defined as bras: (f|. The inner product is concisely defined as (f|a). Stu-
dents will have to be wary that this notation implicitly involves integra-
tions over functional spaces. Nevertheless, in this notation, the matrix
elements of an (Hermitian) operator H will be defined as follows:

(4.10) Hg, = (BIH|a),

where we note that Hg, = H;ﬁ.
Schrodinger, whose initial development of the wavefunction led to early
successes in quantum theory is, in Dirac’s notation, simply given by the

following;:

(4.11) Pa(r) = (rla).

1 The connection to the work of Erwin

That is, the wavefunction (labelled by the quantum numbers «a) is sim-
ply the representation of the state |a) on the coordinate space. This rela-
tively simple connection explains why, despite the vastly different formu-
lations of quantum mechanics by Heisenberg and Schrddinger, one ob-
tains precisely the same results from both approaches. The Heisenberg
and Schrodinger methods are simply different mathematical representa-
tions of the same system of equations.

We haven't as yet discussed Schrédinger’s contributions to quantum the-
ory in any detail but his method provided a means for studying the time
evolution of the wave function ¢(t,r), using the Hamiltonian of the system
as the basis for his approach.'® Recall that the Lagrangian £ is defined as

space, as did Schwinger and Tomonaga. Dyson, nonetheless, recognized the connection and
provided impetus to using Feynman’s techniques as computational aids.

11We use a notation here that emphasizes the matrix element mathematical structure but a
and f are not, in general, integer indices.

12Schrédinger published “Quantisierung als Eigenwertproblem” in Annalen der Physik in
four parts in 1926. Schrédinger and Dirac were awarded the Nobel Prize in Physics in 1933
“for the discovery of new productive forms of atomic theory.”
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the difference between the kinetic and potential energies of the system:
L =T -U. The Hamiltonian H is the sum: H =7 + . Application of the
Hamiltonian operator in quantum mechanics obtains the energy of the
quantum state:

(4.12) (alHla) = &

Schrodinger further proposed that the Hamiltonian defines time evolu-
tion through the following equation:

., 0
(413) i (tx) = Hp(s 1),
This equation has a formal solution that can be written immediately:
(4.14) W(t,r) = e Ty (o, 1),

This result leads to the notion that the Hamiltonian is the (time) propa-
gator for the wavefunction. We can also see that, if we are to interpret
the wavefunction in a probabilistic sense, that the operation of the Hamil-
tonian operator will not affect the magnitude of the wavefunction: it is
clearly a unitary operator.

Schrodinger was able to compute the spectrum for the hydrogen atom
using his methodology by representing the electromagnetic field of the
proton as simply the Coulomb field of a point charge. He found that the
states would have the following energies:

m,Z>e4
2h2n?
Taking differences between states with different values of the principal

quantum number 7 yields the experimentally supported Rydberg formula
in equation 4.2.

(4.15) Eq=-

As Heisenberg had noted in his initial paper, and subsequently refined
with Born and Pascual, the use of matrix algebra meant that multiplica-
tion of transition amplitudes did not commute. If A and B are matrices,
then, in general, AB # BA. In particular, for the position x; and momen-
tum py, we find the following:

(4.16) XiPk = PkXi = i1 O

This remarkable formula encapsulates Heisenberg’s concept of observable
elements. This particular example indicates that, at the microscopic level,
quantum states cannot be, simultaneously, eigenstates of both position
and momentum. From a physical viewpoint, we can interpret this to mean
that, if we want to measure something about a quantum state, we must

interact with it via some external means: bounce a photon from it, for ex-
ample. The process of interaction, though, changes the internal quantum
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state, so there are limits to our ability to extract information about the pre-
cise state of the system. This limitation has been deemed the Heisenberg
uncertainty principle.

If we look a bit more closely at equation 4.16, we can notice that # is a
small number. So, in the limit of macroscopic positions and momenta,
we see that the position and momentum (almost) do commute; one can
simultaneously determine the position and momentum of a macroscopic
object. Niels Bohr called this property the correspondence principle. In
the limit of macroscopic objects, the quantum theory should reproduce
Newtonian mechanics. Heisenberg’s matrix formulation of quantum me-
chanics includes this principle implicitly.

4.2. Many-body Problems

The concept that quantum states can be described as vectors within a
Hilbert space and that observables are obtained through the action of
Hermitian operators has proven to be a very powerful approach to rep-
resenting quantum phenomena. We have seen that one can obtain the
energies of the hydrogen atom but it is also possible to study transitions
between the states. These arise primarily from electric dipole radiation
but can also be obtained through electric quadrupole or magnetic dipole
radiation, although at reduced intensities. Indeed, the relative intensities
of lines in the hydrogen spectrum are largely explained by computing the
matrix elements associated with these operators.

Moreover, as spectroscopists developed more precise instruments, it be-
came clear that spectral lines actually possessed structure, known today
as fine structure and hyperfine structure, that reflects transitions between
the the sublevels associated with the hydrogen energy levels depicted in
figure 3.6. The energies associated with these transitions depend upon
applied external fields. This is not terribly surprising. If we go back to
the Dirac equation, there is a direct coupling to the external potential A;
and, for large enough external fields, it is a reasonable conclusion that the
electron wavefunction will be affected.

Indeed, application of external fields provides us with a means for sys-
tematically exploring potential terms in the Hamiltonian. We’ve seen that
the central force provided by the proton yields an energy that depends
solely upon the principal (radial) quantum number n. Adding an addi-
tional electric or magnetic field will break the rotational symmetry and
give rise to terms that will be dependent upon the other quantum num-
bers. Quantum mechanics was generally quite successful in explaining
these effects in hydrogen.
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The list of elements extends significantly beyond hydrogen, though. To-
day, we entertain the idea that an atom is composed of a nucleus of charge
Ze and Z electrons. As Newton and others discovered in their studies
of the gravitational three-body problem, there are no analytic solutions
available to the equations of motion when the number of interacting bod-
ies exceeds two. Thus, even for helium, with just two electrons, one cannot
simply hope to find a quantum analog of a well-known, classical solution.

Exercisk 4.6. Singly ionized helium has only a single electron. The
n = 2,3,4 levels have energies of 40.81, 48.37 and 51.02 eV above the
ground state. Is this consistent with the Rydberg formula?

1 2
H He

3 4 5 6 |7 8 9 10
Li | Be B|C|N|O]|F |Ne

11 12 14 15 16 17 18

13
Na|Mg Al|Si| P | S |Cl|Ar

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

K|Ca|Sc|Ti|V |Cr|Mn|Fe |Co|Ni|Cu|Zn|Ga|Ge|As|Se |Br |Kr

37 38 39 |40 42 |43 |44 |45 47 49 |50 52 53 54

41 46 48 51
Rb|Sr| Y |Zr |Nb|Mo| Tc|Ru|Rh|Pd [Ag|Cd|In |Sn|Sb|Te| I |Xe

55 |56 72 |73 |74 |75 |76 |77 |78 |79 |80 |81 |82 |83 (84 |85 |[86
Cs|Ba Hf | Ta| W |Re |Os| Ir | Pt [Au|Hg| T1 |Pb | Bi | Po | At |Rn
87 88 104 |105 [106 |107 |108 [109 |110 [111 [112 |113 |[114 |115 |116 |117 |118

Fr |Ra Rf [Db|Sg |Bh |Hs |Mt|Ds|Rg |Cn|Nh| Fl |Mc|Lv | Ts |Og

57 |58 59 60 |61 62 |63 64. |65 66 |67 68 |69 |70 |71

La |Ce|Pr INd|Pm|Sm|Eu |Gd|Tb|Dy |Ho|Er [Tm|Yb|Lu

89 |90 |91 92 |93 |94 |95 96 |97 99 |[100 |101 |102 (103

98
Ac|Th|Pa| U [Np|Pu|Am|Cm|Bk |Cf | Es |[Fm|Md|No| Lr

FIGURE 4.1. The elements are aligned vertically into columns with
similar chemical properties. Hydrogen-like elements are on the left
and noble gases are on the right. Traditionally, the Lanthanide and
Actinide series are excised from the table to avoid having the width
extend too far to be printable.

A significant clue as to the structure of the wavefunctions of multi-electron
atoms comes from the periodic table illustrated in figure 4.1. Chemists
discovered that elements tended to combine in a manner that prescribed
integer relationships: CH,, NH; and OH,, for example. Elements that
reacted with similar integer relationships could be ordered into columns.
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All elements in the first column form molecules (hydrides) of the form
XH, where X is any of the elements.

The observed chemical relationships means that, in multi-electron atoms,
not all electrons can have the same quantum number as the hydrogen
ground state. Indeed, as we have mentioned earlier, a model that explains
the behavior is one in which electrons are distributed individually into the
quantum states defined previously, with the additional caveat that there
is a duplexity arising from the electron spin.

The most obvious way to describe multi-electron states is to use define
them as tensor products of single-electron states. Mathematically, such
a space is known as a Fock space, after the Russian physicist Vladimir
Aleksandrovich Fock.'3 Given states |a) in a Hilbert space for a single
electron, we can construct states for N electrons as products:

(4.17) W) = a)IB)--1v),

where, notionally, electron 1 is in the state |a), electron 2 is in the state |3),
etc. What is observed from the periodic table is that not all electrons can
be in the state |a). The Austrian physicist Wolfgang Pauli recognized that
this can be accomplished mathematically by requiring the wavefunction
to be antisymmetric under the exchange of particles.'#

In equation 4.17, we have ordered the states according to electron num-
ber but, in practice, electrons are indistinguishable. There is no means by
which we could select one electron from a pool of N electrons and iden-
tify it as the “third” one, according to our numbering scheme implied in
equation 4.17. A mathematical mechanism for enforcing the Pauli prin-
ciple is antisymmetrizing the wave function. Hence, we can write that
two-electron electron wave functions must have the form

(4.18) lap) = T (la)IB) - IB)lar)),

where the square root factor preserves the normalization. If we try to
place both electrons into the same state |a), the wavefunction vanishes

and the sign of the wavefunction changes upon exchange: |fa) = —|ap).
More generally, the N-electron wavefunction can be obtained from the

13Fock published his “Konfigurationsraum und zweite Quantelung” in the Zeitschrift fiir
Physik in 1932.

14pauli published “Uber den Zusammenhang des Abschlusses der Electronengruppen im
Atom mit der Komplexstruktur der Spektren” in Zeitschrift fiir Physik in 1925. He was
awarded the Nobel Prize in Physics in 1945 “for the discovery of the Exclusion Principle,
also called the Pauli Principle.”
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determinant of an N x N matrix:

L a) B e vi2)

(4.19) lap--vy=35| e

a(N) p(N) - v(N)

This construction is generally called the Slater determinant, after the Amer-
ican physicist John C. Slater, although the form had also been utilized by
Heisenberg and Dirac previously.

Exercisk 4.7. Suppose that an electron could occupy four different
states: |a), |B), |y) or [6). What are the possible antisymmetric states
available to two electrons?

Exercisk 4.8. Create a 4 x 4 matrix with elements a1,...,a4 through
di1,...,d4, representing the four states available to four electrons.
Compute the determinant. Identify terms in which particles 1 and 4
are exchanged, e.g., a1---d4 — a4---d1. Convince yourself that the
wavefunction is antisymmetric.

We can obtain significant insights into the nature of quantum phenomena
by studying the excited state spectrum of helium. We have noted that the
duplexity problem required the introduction of a new quantum number
that has been called (for better or worse) spin. The name itself evokes ro-
tation, so we might ask if the spin of the electron is in any way an angular
momentum? This is not to say that the electron is a small, rotating bead of
some form. Rather, does the electron field entity possess intrinsic angular
momentum?

We are constructing product states to describe multi-electron atoms. We
can guess that they might look something like those we utilized to de-
scribe the single-electron hydrogen atom and, historically, this was the
pathway followed. So, we have labelled the hydrogen states with the
quantum numbers n,[,m and s, with the s arising from the subsequent
need to explain the periodic table. What happens now when we try to
combine two electrons into a state?

As it happens, there is a significant body of mathematics devoted to this
question. It is related to addition theorems of the spherical harmonic
functions that we mentioned previously but it can also be obtained through
an understanding of group theory. If we ask what sort of states can be ob-
tained by combining two spin 1/, things, it turns out that there are five
possibilities:

(1) four spin singlets (s = o),
(2) two spin doublets (s = 1),
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(3) one doublet and two singlets,
(4) one triplet (s = 1) and one singlet or
(5) one quadruplet (s = 354).

If the spin is an angular momentum, then it will add to any orbital angu-
lar momentum present in the system. Traditionally, the total angular mo-
mentum is defined by the symbol J and the orbital angular momentum by
the symbol L. If the spin S is also an angular momentum, then we would
expect that the total angular momentum J = L + S, from Noether’s theo-
rem, would be a conserved quantity. What this means is that we would
expect the operator J to commute with the Hamiltonian operator, giving
rise to quantum states that can be labelled by j and the projection of J
upon some axis m;.

[¢] 1 2 3 o 1 1 1 2 2 2 3 3 3 L
25 — O 1 2 3 1 o 1 2 1 2 3 2 3 J
>t n=4
2 —_— == =—— = S S
S i S=1
— n=2
20 [~ £
A S=o0

FiGURE 4.2. Energy levels in helium can be labelled by the total an-
gular momentum J. Persistent transitions between levels are identi-
fied by the gray lines. The S = 0 and S = 1 manifolds of states are
separated to improve the visibility of the diagram.

The spectrum of helium is significantly more complicated than that of hy-
drogen, as can be seen from figure 4.2, where the low-lying states have
been assigned L, S and ] values. These states can all be described by the
promotion of a single electron from the 1s ground state into a hydrogen-
like excited state. What we observe is that the first excited state (19.8 eV)
has (L,S,]) = (o,1,1). In spectroscopic notation, this would be denoted
3S,. That is, it is a spin triplet with orbital angular momentum of zero
and total angular momentum of one. Indeed, application of an external
magnetic field can unambiguously determine that the state at 19.8 eV re-
solves into three components.
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Moreover, the transitions between states also conform to the single-particle
excitation model. For example, the first excited state S, cannot decay to
the ground state 'S, via electric dipole radiation; the transition is only
possible through a magnetic dipole mechanism. As a result, the 19.8 eV
line is greatly reduced in intensity to those electric dipole transitions in-
dicated in figure 4.2. In fact, early researchers were led to the conclusion
that there might be two forms of helium: called orthohelium and parahe-
lium, and we have emphasized the disjoint nature of the spectrum in our
representation in figure 4.2.

Exercisk 4.9. The neutral helium (He I) spectral lines can be ob-
tained through the NIST Atomic Spectral Database. What are the
relative intensities of the transitions from the |1s2p) states to the
|[1s1s) ground state?

ExErcisk 4.10. The helium spectrum indicates that the intrinsic an-
gular momentum of the two electrons can be coupled either to pro-
duce states with no intrinsic angular momentum or an intrinsic an-
gular momentum of 1%. These couple to the orbital angular momen-
tum of the state, producing multiplets of total angular momentum
J. ldentify the configurations of the states illustrated in figure 4.2.
What are the rules for coupling S = 1 intrinsic angular momentum
toan L = 2 (D) state? That is, what values of ] are available?

We have seen a glimpse of the difficulty in dealing with multi-electron
atoms. There are no analytic solutions available, only approximations. A
systematic scheme for dealing with the complexity was initially proposed
by the English physicist Douglas Hartree in 1928.'> Hartree called his
approach the self-consistent field method. Essentially, one begins with
(guesses) an initial configuration and then systematically computes up-
dates until the process converges. Hartree’s initial efforts were not terri-
bly successful until the method was improved to utilize antisymmetrized
states like those proposed by Slater. The method is now generally known
as the Hartree-Fock method.

The complexity arises from the fact that the Hamiltonian for the N-electron
problem contains N copies of the hydrogen Hamiltonian, plus the sum
over all of the electron-electron Coulomb repulsion terms:

N 1 e?
(4.20) Hy = ZHi +— Zﬁ’
i=1 470 oy Wi~ Tk

15Hartree published “The wave mechanics of an atom with a non-Coulomb central field” in
two parts in the Mathematical Proceedings of the Cambridge Philosophical Society in 1928.
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where the single-particle Hamiltonian, as defined by Schrddinger, is given
by the following expression:
h? 1 Ze?

(4.21) H; = _%Vi -

4T€, |I'7'| '

The total N-electron wavefunction is a vector in the infinite-dimensional
Fock space. Finite calculations require restrictions to a finite number of
representative basis states. For hydrogen-like atoms (first column in the
periodic table), the eigenstates of the multi-electron atoms are well de-
scribed by a relatively few hydrogen eigenstates. As one moves towards
the center of the periodic table, particularly for metallic atoms, the calcu-
lations become much more involved.

The advent of modern computers has given new life to the Hartree-Fock
method. As one might imagine, iterating complex calculations until they
converge is an activity in which humans do not excel. Fortunately, com-
puters have no sense of tedium and are quite capable of repetitious cal-
culations without algebraic error. A great deal of effort has gone into de-
vising efficient numerical techniques and robust basis functions to ensure
that the algorithm can converge to a solution. We shall discuss these cal-
culations in somewhat more detail when we investigate molecular phe-
nomena.

4.3. Density-Functional Theory

An alternative approach to understanding multi-electron atoms involves
using the electron density instead of the wavefunction. We have asserted
that the square of the wavefunction can be interpreted as the probability
density for finding an electron at some position r. Notionally, the electron
density is just the integral over the squared wavefunction:

(4.22) p(ry) J‘d3r2 Jd3rN [W(r,....rn)1%
where the density is subject to the following normalization:
(4.23) N= [ @rpm)

where N is the total number of electrons. As a matter of practice, the
function p is a function of three spatial dimensions where the wavefunc-
tions are functions of 3N dimensions, suggesting that the computational
effort associated with finding eigenstates could be greatly reduced.

The typical assumption in molecular physics is that one can simplify the
problem by separating the electronic and nuclear degrees of freedom.
This assumption rests on the notion that the nuclei are vastly heavier



§4.3 Density-FuncTiONAL THEORY 103

than the electrons and, thus, the electron density will equilibrate orders
of magnitude more rapidly than any apparent motion of the nuclei. Thus,
even if you want to study the impact of xenon atoms on a gold target, you
could successfully study this problem by a series of stepwise increments
of the xenon-gold nuclear distance and solving for the electron density at
each (fixed) location of the nuclei. This approach is known as the Born-
Oppenheimer approximation.

For molecules, we need to modify equation 4.21 to include the separate
nuclear contributions to the potential:
N N N

h Ze? 1 e?
2 H = - : ’
(4.24) om Vi 47'(60 Zzlr Rkl ATIE, ;Irf — 1|

i

where R represents the nuclear coordinates. The three terms on the right-
hand side are termed the kinetic 7, electron-nuclear potential V,, and
electron-electron potential V,,, respectively. Equation 4.24 describes the
electron energy &, the total energy of the system must include the nuclear-
nuclear repulsion term V,,,;:

4.2 W=H+
(4.25) 4neoiZ|R “RyI’

Note that there is no kinetic term due to the nuclear centers in equa-
tion 4.25; they are fixed in space in the Born-Oppenheimer approxima-
tion. In 1939, Feynman proved what is known as his electrostatic theo-
rem:

aw 1 ZZ-Zkez(Ri _Rk) Z,'€2 J\ T, —R,'
4.26) — =- - A3r,p(ry) ———.
(4-26) dR;  4Te, ;’ IR; — Ry 470€, 0l 1)|r1 -R;3

This is precisely the result that one would obtain from a classical calcu-
lation of the electrostatic potentials due to the nuclear point charges and
the electron density, lending further credence to the applicability of the
Born-Oppenheimer approximation.

Initial models based on the idea of utilizing the electron density were de-
veloped by Llewellyn Thomas and, independently, by Enrico Fermi in
the late 1920s but the idea was rejuvenated, particularly for molecular
physics, by the Austrian-American physicist Walther Kohn in the 1960s.'®
On sabbatical in Paris at the Ecole Normale Supérieure, Kohn proved two
remarkable theorems, together with Pierre Hohenberg. The first theorem
states that the electron density p(r) defines the potential V in the Hamil-
tonian up to an additive constant. The second theorem states that the

16Walther Kohn was awarded the Nobel Prize in Chemistry in 1998 “for his development of
the density-functional theory,” and shared the prize with John Pople, who was cited “for his
development of computational methods in quantum chemistry.”
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ground state electron density is defined by the minimum with respect to
variation of the density. Upon returning to his home institution in San
Diego, Kohn and his postdoctoral assistant Lu Sham then worked out the
details of how to construct the density-functional theory equations.

EXercISE 4.11. Physicists tire rapidly when forced to carry factors
of 1/4me, around everywhere. Define the dimensionless quantity
C =r/a,, where a, is the Bohr radius:
4Tte h?

A= ——>.
mye
Rewrite equation 4.24, substituting the dimensionless variables ev-
erywhere. Show that the equation takes on a simpler form.

Kohn and Sham demonstrated that the ground state of an N-electron sys-
tem could be determined from the energy as a functional of the density:

(4.27) £lp] = Jd%l ole)0(r,) + T{p] + Veclo)

where v is an effective potential, that can include external potentials. The
ground state density will be the density that minimizes the functional
derivative:

S(T [p]+Veelp])
op(r,)

subject to the constraining equation 4.23. The A in equation 4.28 is the
Lagrange multiplier used to enforce the constraint.

(4.28) A=v(r,)+

Exercise 4.12. Suppose that we seek the minimum of the function
f(x,v) subject to the constraint g(x,y) = o. This can be rewritten as
a function h(x,v,A) = f(x,v) — Ag(x,v). Minimization of the uncon-
strained function h with respect to x,  and A will minimize f and
enforce the constraint g. Consider the following script:

fi[x_,y_l:= x y*2 +y

gi[x_,y_]:= xr2+yr2 - 2

delfi1=Grad[f1[x,y],{x,y}]

delg1=Grad[g1[x,y],{x,y}]

soln=Solve[{delfi==1am delg1, g1[x,y]==0},{x,y,lam}]
ans=Table[f1[x,y]/.soln[[i]],{i,1,Length[soln]}]

mina=Min[ans]

locmin=Position[ans,mina]

Plot the functions f1 and g1. Compute the minimum. Is the con-
straint satisfied?
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Kohn and Sham begin by first solving the problem with the electron-
electron Coulomb interactions removed. That is, by solving for the wave-
functions of the following equation:

(4.29) [=V2 + veitlpi = €5,
where veg is the effective potential. The density for this approximation is
constructed from the ;:

(4.30) Muh}]wmwﬁ

where we sum over both spatial and spin coordinates. Then, the effective
potential can be updated:

(431) ver(en) = vl + [ a3r, Ly ),

[r, —1,]
Note here that the sum over electron-electron interactions has been re-
placed by the double integral over the electron density. The energy can be

obtained as follows:

(4.32) E=T,[p]+ Jd% Veg (T __Jda JdB ', lrn pr|2)+
2 1

&fjﬁ%wunmm»

Remarkably, the density functional approach can utilize much of the ma-
chinery already in place for computing wavefunctions of multi-electron
atoms. The key to its success resides in the mysterious exchange-correla-
tion terms.

Initially, physicists proposed using a local density approximation (LDA)
that includes a p#3 behavior. Subsequently, a generalized gradient ap-
proach (GGA) that admits non-local behaviors has been introduced. The
form of the exchange correlation potential is a topic of current research in-
terest but the recent popularity of the DFT methodology stems from work
by Axel Becke, who developed an empirical relationship based on a hy-
brid functional that includes both LDA and GGA components.'7 Becke’s
approach provided the ability to compute results with accuracies compa-
rable to high order quantum methods (scales like N®) for essentially the
cost of a low order Hartree-Fock calculation (scales like N3). Numerous
authors have expanded and refined the functions and the search for bet-
ter exchange/correlation functionals continues. We’ll take up performing
DFT calculations in a subsequent chapter.

17Becke published “A new mixing of Hartree-Fock and local density-functional theories” in
the Journal of Chemical Physics in 1993.
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FIGURE 4.3. The performance ELSE :
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Typical results for a collection of about 150 atoms and small molecules are
depicted in figure 4.3. The G2 method is an high-order quantum method
that was state of the art in about 2000. It has been supplanted by G3 and
G4 methods that are somewhat better. The Hartree-Fock method (HF) has
mean absolute deviations from experimental values of nearly 6.5 eV for
enthalpies of formation of small molecules. This is exceptionally poor.
The simple local density approximation has been improved by a number
of hybrid methods inspired by Becke’s work. The most successful has been
his three-point hybrid method that utilizes the Lee-Yang-Parr correlation
function (B3LYP). This provides accuracies only somewhat worse than the
G2 method but with computational times that scale like Hartree-Fock cal-
culations.

Before continuing our journey, we should take a moment to discuss one
of the key elements of density functional theory: the electron-electron
interaction. This is the double integral of the squared density. While we
often write such things without bothering to notice whether or not they
are meaningful, let us consider the fact that the denominator vanishes
whenr, =r,.

Exercist 4.13. Plot the function Exp[-x]Exp[-y]/Norm[x-y] over
the domaino<x<5ando<y<s.

In addition to dealing with potentially divergent terms, one also must
compute integrals like the following:

[ @rvwpm
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where the potential is not analytically known. This means that the inte-
grals must be evaluated numerically.

A great deal of work has been performed toward the efficient numeri-
cal computation of integrals. A standard approach for bounded intervals
utilizes what is known as Gaussian quadrature. Here, the integral is ap-
proximated by a finite sum:

| N
(4.33) f def() =) wif ()

where the w; are weights and the x; are points where the function is eval-
uated. These are typically the zeros of some special function.

In the density functional calculations, we are typically dealing with in-
finite integrals and the densities are generally falling exponentially from
the nuclear centers. An extension of Gaussian quadrature to such inte-
grals is known as Gauss-Laguerre quadrature. Here, we seek to approxi-
mate integrals of the following form:

(4.34) j dx f(x Zw flx

For the Nth order approximation, the x; are obtained from the zeros of

the Laguerre polynomial Ly(x). The weights are then defined as follows:
Xi

(N +1)?[Lysr (x1)>

If the function f is not known explicitly, then we can rewrite equation 4.34

as follows:

(4:36) [ gt Zw;g

This places the positive exponential in the sum, cancelling the exponential
behavior of g.

(4.35) wi =

Exercisk 4.14. Consider the function f(x) = sin7x/3 or g(x) = f(x)e™".
Compute the tenth order approximation of the integral. The x; can
be obtained from the NSolve function, using the Laguerrel func-
tion. Compute the weights and then compute the integral exactly
using the Integrate function. How close is the approximation?

Exercisk 4.15. The Gauss-Hermite quadrature is used for integrals

of the form
o N
J dxf(x)e™ =) wif (x;)
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Here, the x; are obtained from zeros of the Hermite polynomials and
the weights are defined as follows:

e = 2NTINIWR
©ON2[Hyo ()P

Compute the integral of the function f(x) = 3x* + 5x3, using the N =
8 approximation. How does it compare to the exact answer?

4.4. Heavy Atoms

Students may have noticed that we have abandoned all pretext of ten-
sor notation and relativistic invariance in our discussions of the density-
functional theory. This reflects the historical approach to multi-electron
atoms. Coping with multiple electrons is difficult enough without carry-
ing along all of the relativistic accoutrements. There would need to be a
justification from experiment to incorporate the additional complexity.

In figure 4.4, we illustrate a typical spectrum from an x-ray source with a
tungsten anode. Here, electrons are accelerated through a 35 kV potential
and allowed to strike a tungsten plate. The smooth background is due
to bremsstrahlung radiation caused by inelastic collisions of the electrons
with the tungsten nuclei. The spectrum is dominated by large peaks; the
largest arises from the n = 2 to n = 1 transition, known as the K, transi-
tion.

75

FIGURE 4.4. A typical spec-
trum obtained from high-
voltage (35 keV) electrons im-
pacting a tungsten anode in-
cludes a smooth background 25
due to bremsstrahlung and
characteristic peaks associ-

ated with the tungsten K- o
shell electrons.

counts (k)
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As a result of this characteristic behavior, this simple x-ray source can be
thought of as nearly monochromatic. This is fortuitous, as diffraction de-
pends on the frequency. Consequently, no diffraction patterns would arise
from a wide-band x-ray source. The Braggs would not have identified the
atomic lattice without this feature.
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In figure 4.5, we plot the experimental K,, energies, along with the ex-
pected value from the Rydberg formula. Note that the energies at large
atomic numbers deviate from the simple, non-relativistic formula. As a
result, we should investigate how to include relativistic effects into our
calculations. We note that the x-ray energies exceed 100 keV and that the
rest mass of the electron is 511 keV. This is a hint that relativistic effects
might be important.

ExErcise 4.16. What is y for a 100 keV electron? What is its veloc-
ity?
As a practical matter, both Hartree-Fock and DFT methods solve for elec-
trons in the presence of some potential v(r). So, it is reasonably straight-
forward to adapt the codes to include additional terms in the potential.
For example, the electron-nuclear interactions can be modified to include
the finite nuclear size:

Ze? r?
— — r<R
4T€, R3
(4.37) Vpe(r) = 5 ’
Ze* 1
— — r>R
ATIEG T

where R is the nuclear radius. We'll discuss this in more detail subse-
quently. Relativistic corrections can be added similarly:

pt Av 1 o1dv

(4.38) H—HO—§+§ 2Czrdrl-s.

Here the Hamiltonian H is the sum of the non-relativistic H,, and addi-
tional terms. The first additional term incorporates the relativistic mass-
velocity relationship (m = ym,) to first order. The second term provides
a non-local interaction between the electron and Coulomb fields and the
final term incorporates spin-orbit coupling, due to the interaction of the
electron’s intrinsic magnetic field in the field of the nucleus.
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A sketch of the absolute difference between predicted and experimental
energies of the K-shell levels is shown in figure 4.6. The black dots rep-
resent the best current theoretical approaches and the gray dots represent
the Rydberg formula. As can be seen from the figure, the results improve
by orders of magnitude but there is still room for improvement. This will
be left as an exercise for the students.

Exercisk 4.17. The NIST x-ray transitions energy database contains
x-ray data beyond just the K,, information presented. Plot all of
the x-rays for molybdenum and erbium. Plot the difference between
experimental results and theoretical predictions.



On the Nature of the Nucleus

Ernest Rutherford’s recognition that the high-angle scattering of alpha
particles from gold films could be explained if the atom possessed a nu-
clear structure revolutionized our understanding of the microscopic world.
In some sense, the electromagnetic force could be understood as the “glue”
that held atoms together: the negatively charged electrons swirling about
the positively charged nuclei. As the Coulomb force was, macroscopi-
cally, an inverse-square force, visions of tiny planetary systems were im-
mediately evoked. Such initial enthusiasm, as we have seen, was rapidly
dissipated as developing a mathematical description of the atom proved
more arduous than originally envisioned.

In addition to resolving the questions surrounding the nature of the atom,
physicists also began to investigate the nature of the atomic nucleus. The
principal tool at their disposal was scattering but the technical sophis-
tication of the experiments drastically improved over the simple lead-
selenide scintillator/human eyeball apparatus used by Rutherford and his
students. While scintillation materials remain an essential component
of the experimental toolbox, detection devices are now electronic and,
thus, vastly more precise, sensitive and reliable than humans. Ruther-
ford’s original experiments utilized beams of alpha particles obtained by
collimating the output of naturally radioactive materials. Physicists sub-
sequently learned to devise more intense beams and to accelerate them to
higher and more tightly controlled energies.

The discerning student may have noticed that in the previous discussion
of the atom that we have treated the nucleus as a point charge Ze, as did
Rutherford in his initial discussions. How then, can we discern if this is
the case or if the nucleus possesses a finite size? We can conduct scattering
experiments and utilize theoretical calculations to interpret the data.

5.1. Electron Scattering

For the case of simple, electron-electron scattering, we have depicted one
Feynman diagram for the process in figure 5.1. We identify the initial and
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final states by their momentum values. In most laboratory experiments,
this is indeed how initial states are prepared. Electrons are accelerated
to some energy and then directed towards a stationary target or coun-
terpropagating beam. The majority of electrons in the initial beam do
not interact with the target atoms and pass through to a beam stop. To
improve the detection signal to noise ratio, detectors are placed at some
angle from the initial beam direction. Depending on the detection system
employed, either the momentum of the exiting particles is measured di-
rectly (through the curvature of the trajectory in a magnetic field) or the
total energy of the particle is measured and the momentum inferred from
the Einstein kinetic formula: E> = p?c> + m?>c*. Depending upon the ex-
periment, there may or may not be any particular alignment or detection
of the electron spin in initial or final states.

Ficure s5.1. Electron scattering
Feynman diagram. The electrons
have momenta p, and p, in the
initial state, and possess momenta
py and p, in the final state, ex-
changing a photon of momentum

q.

Complicating the interpretation of the measurements are the realities as-
sociated with measurements in general: finite precision and potential bi-
ases that can affect accuracy. The targets are not individual protons but
gas cells containing molecular hydrogen; one must account for (or dis-
miss) the contributions of electron-electron scattering from any conclu-
sions about electron-nucleus scattering. We also know that detectors sub-
tend finite solid angles from the interaction point, meaning that momen-
tum measurements have finite precision. Additionally, it is not possible to
vary the transfer momentum g systematically. Instead, one must accumu-
late information in a statistical fashion, so that the precision will depend
upon the square root of the total number of scattering events. Thus, in
looking for events with a small probability of occurrence, one may have
to wade through a very large number of uninteresting results.

In any case, the output of a scattering experiment is a determination of
the cross section, which is related to the theoretical scattering amplitude.
Computing the scattering amplitude generally requires some form of ap-
proximation. Initial work utilized non-relativistic forms of the matrix el-
ements and then corrected for relativistic effects. Rutherford’s original
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formula for the cross-section was

(5.1) do\ [ Ze? 2

> dQ ), \8re,E| sin*0/2’

where 6 is the angle between the incident beam and the measured elec-
tron. This formula assumed a point source for the nuclear charge Ze. An
improved formula was produced by Mott, which accounted for electron

spin and nuclear recoil. Mott’s modification to the Rutherford formula is
a multiplicative factor:

(5.2) do\ _[(do cos>0/2
> dQ )y, \dQ ), 1+ (E/Me)sin? 6/2)
where M is the nuclear mass." More generally, the interaction current

that generates the scattering matrix element can be shown to have the
following form:

okl
(53) =y )Y S E g2,
I

2Mc?

where g is the momentum transfer, y¥ is a Dirac gamma matrix and « is
a constant. The term o' = i[y*,»']/2 uses a shorthand notation for the
commutator: [¥X,7'] = y¥y! =19k The functions F, and F, are known
as form factors. In the first-order approximation, the form factor F, is
obtained from the Fourier transform of a charge density?:

(5.4) Fy(q) = jd%p(r)ef‘“,.

Without loss of generality, we can choose the coordinate system to align
q along the z-axis. Then the angular integrals can be performed, with the
following result:

singr

(55) Filg)=am | dreep()

where g and r are the magnitudes of q and r, respectively.

Exercisk 5.1. Assume that q = (0,0, g) and that 0 represents the an-
gle between the vectors q and r. Write the integral in equation 5.4 in
spherical coordinates. If the charge density has no angular depen-
dence, show that equation 5.5 can be obtained by performing the
angular integrals.

!In the current context, convenient values for the constants are e2/47e, = 1.43996 MeV-fm
and hc =197.3269788 MeV-fm.

2Note: here we are following traditional usage, where there is a missing factor of (277)"3/2 in
the Fourier transform. We shall account for it in the definition of the inverse transform.
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Exercise 5.2. One possible choice for the charge density is a Gauss-

ian distribution:
1 6—}’2/25!2

(2ma?)?>
where a represents the nominal width of the distribution. What is
F(g) for the Gaussian distribution?

(r)=

Exercisk 5.3. Another possible choice for the charge density is an
exponential exp(—r/a), where a is the nominal width. What is the
required normalization factor for an exponential distribution? (We
require fd3rp = 1.) What is the form factor F(gq) for an exponential
distribution?

EXERCISE 5.4. Suppose that the charge inside the nucleus is uni-
formly distributed over a spherical volume of radius a. What is the
required normalization factor for the density? What is F(g) for a
uniform distribution?

FiGure 5.2. Form factors for differ-

ent charge distributions. A gauss-

ian distribution (black) is similar to  F(g)
the exponential distribution (gray).

The form factor for a uniform dis-
tribution (lightgray) is oscillatory

at large values of q.

o 1 !
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qa

From figure 5.2, we can see that the consequence of a nuclear charge dis-
tribution other than a point charge is to reduce the scattering amplitude at
large values of g. (Recall that the Fourier transform of the delta function
is one, independent of q.) So, we should be able to discern the existence of
a charge distribution from scattering experiments, particularly at higher
beam energies. Just such experiments were conducted by Richard Hofs-
tadter and his students at the electron accelerator at Stanford.3 Different
values of g can be found at different angles. We find that, for a given beam
energy &, that the transfer momentum is given by the following expres-
sion:

2& sin6/2
(5-6)

9=7=
he [1 +(2&/Mc?)sin® 6/2

]1/2’

3Hofstadter was awarded the Nobel Prize in Physics in 1961 “for his pioneering studies of
electron scattering in atomic nuclei and for his thereby achieved discoveries concerning the
structure of the nucleons.” He shared the prize with Rudolph Mgssbauer, who was cited “for
his researches concerning the resonance absorption of gamma radiation and his discovery in
this connection of the effect which bears his name.”
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where M is the nuclear mass.

Exercise 5.5. Plot the value of g (in units of fm™") for electron-
proton scattering. Consider angles between 20° and 150°, with elec-
tron beam energies of 100, 200 and 500 MeV.

0.001

Ficure 5.3. Electrons with a

beam energy of 550 MeV were 0.0001
scattered from a hydrogen gas
cell. The scattered electron
flux was measured as a func-
tion of angle from the beam
axis. The results are in good
agreement with an exponen-
tial model (black curve) of
the proton charge distribu-
tion and not the Rutherford
(gray) or Mott (light gray) 1x10”
models.
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The second term on the right-hand side of equation 5.3 represents scatter-
ing from the proton’s magnetic moment, which actually dominates at very
high energies. An expression for the differential cross-section of electron-
proton elastic scattering can be written as follows*:

(5.7)
do _(d heq |’ ’
%:(é)M{FI(fﬁ(chlzz) [2(F1(q2)+KF2(q2)) tan29/2+K2F22(q2)}}

The magnetic form factor F, is obtained from the integral over the pro-
ton’s magnetic moment distribution:

(5.8) F2=f dr 2 p(r) 2240
0 qr

Initially, Hofstadter and his students found reasonable agreement with
models that utilized the same distribution function for both form factors,
with an effective radius of about 2 = 0.7 fm. An example is depicted in
figure 5.3.

Exercise 5.6. Plot the Rutherford, Mott and Rosenbluth (equa-
tion 5.7) cross sections for beam energies of 200 and 500 MeV. Use

4American physicist Marshall Rosenbluth published his “High energy elastic scattering of
electrons on protons,” in the Physical Review in 1950.
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the distribution F, = F, = 1/(1 + a*¢”)* for the charge and magnetic
moment distributions, with ¥ = 1.79. How does the Rosenbluth re-
sult vary as the effective radius a varies from o to 1 fm? How does
the result vary if the magnetic radius is set to zero (point magnetic
dipole)?

The measured magnetic moment of the proton is y, = 2.7928473508(85)
nuclear magnetons, where a point (Dirac) proton should have a magnetic
moment of unity. The factor x in equation 5.7 is typically taken to be
the so-called anomalous moment: yj, — 1. As we note from equation 5.7,
the form factors F, and F, enter with different dependences on g and, as
we shall see subsequently, it will be possible to determine them indepen-
dently.

5.2. Nuclear Size

Hofstadter and his students also investigated heavier nuclei using the
electron spectrometer that they developed. One can, in principle, recover
the charge distributions by using the inverse Fourier transform:

1 .
. = 3qF T,
(5-9) ()= 5o Jd qFi(q)e
If we again assume no angular dependence in the charge distribution, this
leads directly to the following formula for the charge distribution:

1

(5.10) o(r) = J 4q4°F(q)

Y

singr
qr
As a practical matter, the cross sections depend upon the square of the

form factor and have a limited range of the transfer momentum g. This
limits the ability to precisely define the charge distributions.

Inversion of the scattering data represents another example of what spec-
troscopists call the phase problem. In general, the form factor will be a
complex function. In order for the inversion to be unique, one must obtain
both the magnitude and the phase of the form factor but the cross section
is proportional to the magnitude (squared). Consequently, the phase has
to be obtained through modelling or other means. The fact that experi-
mentally accessible momentum transfers are finite limits the spatial res-
olution of the reconstructed charge distribution: higher frequencies are
equivalent to shorter wavelengths.

Beyond just the technical difficulties of arranging to accelerate electrons
to ever greater energies, the analysis presented to this point has assumed
elastic scattering: that is, kinetic energy of the electron is converted into
kinetic energy of the nucleus but the total kinetic energy is conserved.
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As we can see from figure 5.4, this is not the only possible outcome for
energetic electrons. In this instance, Hofstadter and his students directed
188 MeV electrons at a carbon foil target. Looking at an angle of 80° from
the beam direction, they were able to measure the energies of scattered
electrons. The large peak at 185 MeV corresponds to elastically scattered
electrons. Subsequent peaks at lower energies represent the transfer of
initial kinetic energy of the electron into internal degrees of freedom of
the nucleus. This is an extraordinarily important observation. Nuclei,
that we believe to be composed of protons and neutrons, have excited
states that can be excited electromagnetically.

We have already suggested a model for the nucleus in which the atomic
number corresponds to the number of protons and the atomic mass corre-
sponds to the sum of the number of protons and neutrons. Such a model
accounts for the elements in the periodic table and the curious distribu-
tion of elemental masses, that arises from different isotopic content for
each chemical element. What we observe from figure 5.4 is that nuclei
appear to also exist in quantized states. A vast amount of experimen-
tal data has now been accumulated on the properties of nuclear matter.
These data are generally accessible through curated databases, like the
National Nuclear Data Center (NNDC) at Brookhaven National Labora-
tory (www.nndc.bnl.gov).

Exercisk 5.7.  Use the NuDat utility from the NNDC to obtain the
level structure for *>C. What are the three lowest excited states? Are
they visible in the cross sectional data presented in figure 5.4?
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A variety of different models were used to describe the nuclear charge
distribution. For example, the data for carbon were best described by the
distribution:

2

r 272
:|er/a’

(5.11) PC =po|1+

a2

where the factor of 4/3 in the term in brackets had some theoretical jus-
tification based on shell model ideas. For heavier nuclei, a Fermi dis-
tribution seemed to be adequate to describe the bulk of the experimen-
tal data. Other, more complex models were tried but the two-parameter
Fermi distribution gave good agreement with experimental data, compa-
rable to three- and four-parameter models. The Fermi distribution has the
following form:

Po

(5.12) Pr(r) = PR
where p, is the maximum charge density, c defines the nominal width of

the distribution and a defines the sharpness.

Exercise 5.8. Plot the Fermi distribution and the modified Gauss-
ian distribution, defined by the following expression:

Po

pG(r) = Py

Note that the parameters a and ¢ may have different values for the
modified Gaussian distribution.

TABLE 5.1. Parameters for nuclear charge distributions.”

z a (fm) ¢ (fm) z a (fm) ¢ (fm)
2C 6 o071 — 5In 49 0.523 5.24
4°Ca 20 0.568 3.64 1225b 51 0.568 5.32
51V 23 0.5 3.98 197 Au 79  0.523 6.38

59Co 59 0.568 4.09 209Bi 83 o0.614 6.47

“From Hofstadter’s “Electron scattering and nuclear structure,”
published in the Reviews of Modern Physics in 1956. Note that carbon
follows a Gaussian distribution; the other nuclei are described by the

Fermi distribution.

Exercisk 5.9. The normalization factor p, for the Fermi distribution
is defined by the following requirement:

471J drrpg(r) = Ze,
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where Z is the number of protons in the nucleus. Using the values
from table 5.1, determine p, for the elements listed.

)

Ficure 5.5. The best fits of ‘%
nuclear charge distributions o
for heavy nuclei follow a
nominal Fermi distribution.

0 5 10
r (fm)

As can be seen from figure 5.5, the charge distributions for heavier nu-
clei display a constant region at small radius before rolling smoothly to
zero. Other models that reduce the charge density at r = o are also consis-
tent with the data but the Fermi distribution has some modest theoretical
support. Note that the peak central density p, decreases with increasing
atomic number A.
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Electron-nucleus scattering also displays systematic effects. For example,
in figure 5.6, we display Hofstadter’s data for the scattering of 183 MeV
electrons from a variety of different nuclei. To emphasize the effects, we
have plotted the ratio of the experimental and Mott cross sections versus
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the somewhat curious abscissa A'/3sin0/2. The cross sections display dips
that can be interpreted as arising from diffraction effects: electrons inter-
fere with themselves as they pass by the nuclei, analogous to the patterns
we saw in figure 1.12. The dips are more prominent for lighter nuclei.
Additionally, by scaling the x-axis by the cube root of the atomic number,
the dips align. This indicates that the nominal nuclear size R scales like
R~1.2 fmA3.

5.3. Nuclear Structure

It should not come as a complete surprise that there is a shell model
for nuclei. Experimental evidence arises from observations of the nu-
clear masses. The masses of neutrons m, and protons m, are now well-
established and nuclear masses can also be obtained through mass spec-
troscopy to high precision. The binding energy for a nucleus is obtained
from the following simple formula:

BE(Z,N)=Zmpyc* + Nm,c* - Mc?,

where M is the nuclear mass. From the binding energies, one can define
the neutron S, and proton S, separation energies:

(5.13) Sp=BE(Z,N)-BE(Z,N-1) and S,=BE(Z,N)-BE(Z-1,N).

The separation energies are equivalent to the ionization energies we dis-
cussed previously in atomic systems. For each isotope, the separation en-
ergy is a measure of the energy required to remove a single nucleon from
the nucleus. In figure 5.7, we illustrate the neutron separation energies
for the isotopes of cobalt.
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What we observe from the figure is a distinct even-odd disparity. The sep-
aration energy is roughly 2 MeV greater in nuclei with even numbers of
neutrons than it is in nuclei with an odd number of neutrons. From this,
we can infer that the nuclear force that binds nucleons into the small vol-
ume of the nucleus includes a component that prefers pairs of nucleons.
This pairing force is an emergent property of the nuclear force. Indeed,
the ground states of all nuclei that have even numbers of protons and even
numbers of neutrons have total angular momentum zero and are positive
parity (o%).

From figure 5.7, we also observe that there is a distinct shift in the sep-
aration energy at N = 28. Like the shifts in the ionization energy that
heralded a shell structure for electrons in atoms, the shift in separation
energy implies that nucleons in the nucleus also possess a shell structure.
For nucleons, the magic numbers that determine shell closures are 2, 8,
20, 28, 50, 82 and 126. These are not the same magic numbers that we
encountered in atomic systems.

Exercise 5.10. Use the NuDat utility from the NNDC website to
obtain S, values for iron and copper isotopes. Is the feature at N =
28 visible in these data?

Exercise 5.11. Use the NuDat utility from the NNDC website to ob-
tain Sy, values for isotopes with N =24 and N = 31. Do you observe
a pairing force for protons? Is there a feature at Z = 28?

A model that explained the observed shell features in the nuclear sep-
aration energies was independently developed by the German-American
physicist Marie Goeppert-Mayer and the German physicist Hans Jensen in
1949.> One could obtain the observed magic numbers if the nuclear force
tavored high-spin states. This is in direct contrast to the electromagnetic
force that binds electrons to atoms, where the energetically favored states
possess low angular momentum.

A nominal level diagram is illustrated in figure 5.8. We note that labelling
of the states in the nuclear shell model differs from the practice in atomic
systems. Here, the first occurrence of each angular momentum level is
denoted with the index 1 and the angular momentum states are indicated
with lower-case letters. The nucleons (protons and/or neutrons) possess
half-integral spin and couple to eigenstates of the Hamiltonian that pos-
sess total angular momentum ] that is also half-integral. For example, the

5Goeppert-Mayer and Jensen shared half of the 1963 Nobel Prize in Physics “for their dis-
coveries concerning nuclear shell structure.” They shared the prize with the Hungarian
physicist Eugene Wigner, who was cited “for his contributions to the theory of the atomic
nucleus and the elementary particles, particularly through the discovery and application of
fundamental symmetry principles.”
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first shell above the ground state is defined by the 1p,,, and 1p,,, levels,
where the 1p,/, level is lower in energy. We can see that these assignments
agree with the experimental evidence from the fact that the ground state
of 9Be has j = 3/2, where the ground state of '3C has j = 1/2.

Exercise 5.12.  Use the NuDat utility to examine the spin assign-
ments for odd-mass nuclei adjacent (Z+1,N) and (Z, N +1) to nuclei
with magic numbers for both Z and N. Do these agree with the as-
signments from figure 5.8?

Another emergent property of the nuclear force is the quadrupole nature
of most nuclear excitations. In even-even nuclei, those with an even num-
ber of both protons and neutrons, not only does the ground state have
j = o but the first excited state has j = 2. These observations suggest that
the classical shape of larger nuclei is not spherical but spheroidal, par-
ticularly for high-spin excited states. One obtains just such behavior in
liquids: a spinning liquid drop will flatten into a spheroidal shape. When
spinning even faster, the liquid may neck down into more of a dumbbell
shape to increase its moment of inertia. A number of models based on
semiclassical ideas were used to describe nuclear phenomena, such as the
liquid drop model of Aage Bohr, Ben Mottelson and Leo Rainwater, but
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we will instead discuss a modern variant, known as the Interacting Boson
Model (IBM).

Exercise 5.13. Use the ParametricPlot3D function to plot the sur-
face defined by (cosusinv,sinusinv,acosv), where 0.5 <a<2,0<
u <2mand o <v < t. When a < 1, the spheroid is known as oblate.
When a > 1, the spheroid is known as prolate.

The IBM was introduced by the Japanese physicist Akito Arima and the
Italian physicist Franco Iachello in 1975.° Rather than taking the ap-
proach of previous groups, Arima and Iachello developed an algebraic
approach to nuclear structure. The IBM considers the nucleus to consist
of a static core and valence nucleons paired into either spin o (s) or spin
2 (d) bosons. States are defined as ¢ = |n5,ny,], M), where the quantum
numbers n; and ny; count the number of s- and d-bosons, respectively.
The total angular momentum | and z-projection M are also preserved by
the Hamiltonian. The most general Hamiltonian describing such a system
that includes two-body interactions can be written as follows:

(5.14) H=es"s+ey Zd;dk + Z alLllzl3l4(bZ x b;;)L by, x b14)L,
k LTI,

where st and s are the creation and annihilation operators for s-bosons
and d; and dy are the creation and annihilation operators for d-bosons
with M = k. The first two terms in the Hamiltonian are the number oper-
ators for s- and d-bosons, respectively. The last term in the Hamiltonian
sums over all boson operators (denoted by b), coupled to total angular
momentum L, with numerical weights a,L112]314.

The initial model (known historically as IBM-1) did not differentiate be-
tween neutrons and protons, although subsequent treatments became in-
creasingly sophisticated: treating neutrons and protons separately (IBM-
2) and then as part of isospin multiplets (IBM-3 and IBM-4). The notion of
isospin was originally introduced by Heisenberg in 1932 to explain sym-
metries observed in nuclei and was then systematized by Wigner in 1937.7
Just as electrons have two possible internal states that we have labelled
spin; Wigner recognized that the nucleons that make up nuclei can also
be considered to be two components of another internal property that has
come to be called isospin. The isospin symmetry is not exact but appears
to be an approximate symmetry of the nuclear system.

6Arima and Iachello published a series of papers on the “Interacting boson model of collec-
tive states” in the Annals of Physics beginning in 1976.

7Heisenberg’s “Uber den Bau der Atomkerne” appeared in the Zeitschrift fiir Physik and
Wigner’s “On the consequences of the symmetry of the nuclear Hamiltonian on the spec-
troscopy of nuclei” in the Physical Review.



124 ON THE NATURE OF THE NUCLEUS

In any case we shall restrict our discussion to the initial form of the IBM-1
Hamiltonian, as indicated in equation 5.14. The creation and annihila-
tion operators associated with the IBM-1 also possess a symmetry, that of
the Lie algebra u(6). The Lie algebra is associated with the unitary Lie
group U(6). A representation of the unitary Lie groups can be obtained
with unitary matrices U, where UTU = I. The Norwegian mathematician
Marius Sophus Lie found in the 189os that continuous transformations
could be studied most productively by considering infinitesimal opera-
tions; this strategy enabled a linearization of the mathematics and dis-
carding of terms of higher order. The group operator became the commu-
tator that we have introduced previously. Hermann Weyl introduced Lie’s
results into the physics literature in the 1920s.

Exercise 5.14. The (mathematical) algebra defined by the IBM Hamil-
tonian is specified by the generators:

(s"x5)°, (s"xd)}, (d'xs)? and (d"xd)f,

where the superscripts denote the total angular momentum L and
k represents the z-component. The last operator has five different
possible angular momentum couplings, from L = o to L = 4. The
unitary group U(N) has N> generators. How many generators exist
for the IBM?

Exercisk 5.15. The rotation group SO(3) can be represented by or-
thogonal matrices O, where OTO =I. One basis for the algebra so(3)
is given by the following matrices:

o o0 o o o 1 o -1 O
o o -1/, Ly =|lo o o| and L,=|1 o of.
o o

o 1 (¢]

(5.15) Ly=

Show that the following relation holds:
[Ly Ly] =L,

and that the relation also holds for cyclic permutations of {x, v, z}.

Exercisk 5.16. Elements in the SO(3) group can be obtained from
the generators by exponentiation:

(o]

(5.16) =exp(6;L;) Z Lf‘,
k=

where [ is the 3 x 3 identity matrix and Lf.‘ represents the matrix
product of k copies of L;. Show that equation 5.16 leads to the usual
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definition of the rotation matrix:

cos 93 —sin 93 o

sin 63 cos 93 ol.
o o 1

Rz(eg) =

Hint: compute the first eight terms in the series explicitly. What
pattern arises?

The coupling of two angular momenta into a final, total angular momen-
tum is a problem that was solved by the German mathematicians Alfred
Clebsch and Paul Gordan in their studies of invariants in group theory.
When we encounter product spaces of Hilbert spaces, the Fock spaces we
have discussed previously, it is the total angular momentum that is the
physical observable, not the individual angular momenta of the different
components. Using Dirac’s notation, two bodies in states specified by an-
gular momentum j; and z-component m; can be combined into a single
state of angular momentum via the following formula:
jl j2
(5.17) my=") ) iy fama ) my famaljm),
my==j; My==j,

which is the definition of the Clebsch-Gordan coefficient (j, m, j, m,|j m).

Exercise 5.17.  Use the ClebschGordan function to identify the
components of the (dJr X d)}( generators for k = —1,0,1 in terms of
the operators (dT)Zm and (d)3,, where m=-2,-1,0,1, 2.

Of particular interest in the IBM are what are known as dynamical sym-
metries. We know that nuclear states can be labelled by their angular
momentum, which indicates that the angular momentum operators L*> =
L3+L3+LZ and L, commute with the Hamiltonian. So, we are interested in
determining subgroups of U(6) that also contain the angular momentum
group SO(3). The IBM generators (d x d), form a basis of the o(3) algebra
and, correspondingly the SO(3) group. So, we are interested in subgroups
of U(6) that contains these generators. It turns out that there are three dif-
ferent decompositions of the original U(6) symmetry that contain SO(3)
as a subgroup.

First, the d-boson generators alone form an algebra that is u(s), with asso-
ciated Lie group U(s). The chain of subgroups can be written as follows:

U(6) > U(5) > O(5) 2 O(3).

This group clearly contains the 0(3) generators. Hence, for the choice
of Hamiltonian parameters in which only those multiplying (47 x d)! are
nonzero, we will find a U(5) symmetry. This is an example of a so-called
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hidden symmetry, where the Hamiltonian supports a larger (U(6)) sym-
metry than would be observed through experimental measurements (U(5)).

The u(6) algebra also supports two other subalgebras that contain o0(3).
One is spanned by the basis {(d" x cl);(,(sJr xd+dx s)i,(dT X d)i}, which
defines the algebra 0(6). The group chain is the following:

U(6) 5 0(6) 5 O(5) 5 O(3).

The final subalgebra is spanned by the basis {(d" x al);{,[sJr xd+d xs-—

\/7_/4(dJr x d)z]}, which defines the algebra su(3). The group chain can be
written as follows:

U(6) > U(3) 2 0(3).

Exercisk 5.18. The Lie algebra o(n) has n(n —1)/2 generators. Show
that the generators of the IBM subalgebra o(6) specified above at
least have the correct dimension.

In each of the different dynamical symmetries, the eigenstates take on
a particularly simple form, as do the transition amplitudes between the
states. We shall focus on the last dynamical symmetry, where the Hamil-
tonian is invariant under transformations involving the Lie group SU(3).
This case will ultimately prove to provide a description of what were
known historically as rotational nuclei. A consequence of the SU(3) sym-
metry is that the eigenvalues of the Hamiltonian can be written explicitly
in terms of the invariant operators of the group, leading to an analytic
expression for the energies. The invariant operators are also known as
Casimir operators after the Dutch physicist Hendrik Casimir. In this par-
ticular case, the energies of states in the SU(3) limit of the IBM take the
following form:

(5.18)  Esu) = e N+ N+, L(L+ 1) + 55 [A% + p® + Ap+3(A + p)]
where the ¢; and «; are free parameters, L is the total angular momentum
and the non-negative integers (A, ) characterize the SU(3) eigenstate. The

limits on A and y depend upon the number of bosons N in the following
fashion:

(5.19) U=0,2,4,... and A=2N-6l-2p,

where [ = 0,1,2,... The possible values of L are also dependent upon
A and u. The SU(3) states are labelled by an order number K but the
energies do not depend explicitly upon K, which can take values K =
0,2,4,...,min(A, y). The angular momentum can then take values

B 0,2,4,...,max(A, p) K=o

(5.20) L= .
K,K+1,K+2,...,K+max(A,pu) K>o



§5.3 NUCLEAR STRUCTURE 127

ExErcist 5.19. For the case of N = 1 bosons, A =2 -6/ -2u. The
requirement that A be non-negative implies that we must have [ = o
and y = o. Consequently, K = o and the only values of L that are
possible are L = 0,2. What are the possible values of the quantum
numbers A, p, [, K and L for N = 2, 3 and 4? Using equation 5.18,
what would be the energy levels for N = 2?

The nucleus '58Gd has been identified as a good example of the SU(3)
symmetry in nuclei, which are most often nuclei with many bosons, with
the shells approximately half occupied. Gadolinium nuclei possess 64
protons and this particular isotope contains g4 neutrons. The closest
magic numbers are 50 and 82, so the number of bosons required to de-
scribe this nucleus is N = (64 —50)/2 + (94 — 82)/2 = 13.

2000 (26,0) (22,2)

FiGure 5.9. Low-lying (posi-
tive parity) states in '58Gd
can be identified with eigen-
states of the SU(3) Hamilton-
ian. The bands are identi-
fied by their (A, u) character-
istics as well as by the total
angular momentum. Black
bands represent the experi-
mental levels and the gray
bands are values obtained
from the SU(3) approxima-
tion with &, = 435.146 eV,
K, = 11.9669 eV and «, =
—7.447368 eV.
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For a single nucleus, there is no means to separately determine both pa-
rameters ¢, and ¢,, so we have chosen ¢, = 0. The results of a fit to the
low-lying, positive-parity energy levels are depicted in figure 5.9. Gener-
ally, the structure of the levels is well described with a three-parameter
fit. Of course, there are some places where this simple model fails. For
example, the SU(3) model Hamiltonian does not depend upon the order
parameter K. If we look at the experimental results for the K = 2 and
K = o submanifolds of the (A, u) = (22, 2) states, we see that the energies of
the L = 2,4 and 6 states are not degenerate, as predicted by the model. We
can interpret these results to indicate that the actual Hamiltonian must
contain terms that break the SU(3) symmetry, or that the SU(3) symmetry
is only approximate. It is, of course, possible to improve the fits by using
the complete IBM Hamiltonian and by, subsequently, incorporating more



128 ON THE NATURE OF THE NUCLEUS

physics into the model: differentiating neutron and proton bosons, etc.
Additionally, by coupling single-particle states to the boson core states,
it is also possible to extend the IBM into an Interacting Boson-Fermion
Model, thus permitting studies of odd-mass nuclei. Such strategies per-
mit the systematic study of nuclei across the periodic table but are beyond
the scope of this text.

Exercise 5.20. Use the NNDC database to obtain the energy levels
of '7°Er for the (A, u) = (34,0) and (30,2) bands. Use the Least-
Squares function to find optimal values of ¢,, k; and «,. The matrix
M required for the fit will have three columns: {17, L(L+ 1), A*> + y> +
Apu+3(A+u)} and the solution vector b will contain the associated ex-
perimental energies. The solution vector will then be x = {e;, 1, x,}.
Use the ListPlot function to plot the experimental and theoretical
energies. The model also predicts (26,4) bands with K =0, 2 and 4.
What are the energies of states with L = o,...,6 for these bands? Are
there corresponding experimental levels?

The IBM represents an algebraic approach to nuclear physics that we will
see repeated shortly in our discussions of high-energy physics, with many
of the same group concepts arising. This may seem to rely on rather ad-
vanced mathematics but the group properties are well documented in this
modern era and not as difficult as one might first fear. We only investi-
gated the SU(3) chain of the IBM because, as we shall see, SU(3) will figure
prominently in the next topics. It is also possible to find similar examples
for both the U(5) and O(6) chains.

States in the U(s) limit are identified by the quantum numbers
IN,ng,v,ns,L, M).

The energies do not explicitly depend on the values of N, ns or M:

(5.21) Eu(s) = €ng +xyng(ng—1)+15,v(v +3) + k5 L(L+1).

The allowed values for the quantum numbers are obtained from the fol-
lowing relations:

N2>n;>v,
(5.22) A=(v—-3ns)=>o0 and
2A>L > A,

where L =21 — 1 is excluded.
States in the O(6) limit are identified by the quantum numbers
IN,o,v,ns,L, M).
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Energies are given by the following formula:
(5.23) Eoe) =K1 (N=0)(N+0+4)+1,v(v+3)+r5L(L+1)

Examples of both U(s)-like and O(6)-like nuclei have been found and
transitions between the different dynamical symmetries have been inves-
tigated.

Trying to tie the bosons directly to single-particle states in the nuclear
shell model has proven quite challenging. The quadrupole nature of the
nuclear force is an emergent property, one that arises from the interac-
tions of many nucleons. As a result, programs that have sought to derive
the IBM from first principles have not found much success. This is yet
another example of the difficulties encountered when dealing with many-
body problems. So, while the IBM can be dismissed as empirical, it never-
theless provides a framework within which it is possible to study nuclear
properties. Indirectly, then, it may shed some light on the nature of the
nuclear force, although for our purposes, it serves as an introduction to an
algebraic approach to theoretical physics.

5.4. Four Forces

In 1898, Ernest Rutherford left the formidable Cavendish Laboratory of
Trinity College, Cambridge, where he was studying with J.J. Thomson,
because the University refused him a promotion. Anxious to earn enough
money to wed and support his fiancé, Rutherford accepted an appoint-
ment as the Chair of a new Department of Physics at McGill University in
Montreal. Far from the epicenter of Thomson’s discovery of the electron,
Rutherford found himself without the equipment necessary to continue
those studies and launched instead into a study of uranium and thorium
salts. Rutherford’s initial experiments amounted to measuring the ionic
currents emitted from the radioactive elements, which he performed sim-
ply by placing the samples between two metallic plates and attaching the
plates to an electroscope, as illustrated in figure 5.10. Inserting thin foils
between the samples and the upper plate resulted in stepwise reductions
in the current. From these results, Rutherford inferred that the radiation
consisted of at least two components, that he named « and . Subsequent

investigations demonstrated that a particles were ionized He and that f

particles were electrons.®

Rutherford had discovered that the transmutation of elements from one
into another was possible, although the energy scales were such that chem-
ical mechanisms were not possible. The characteristic energy scale for

8Rutherford was awarded the 1908 Nobel Prize in Chemistry “"for his investigations into
the disintegration of the elements, and the chemistry of radioactive substances.”
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Ficure 5.10. Rutherford’s experiments utilized an electrometer E
that was constructed with a fine wire to which was affixed a mir-
ror M and which suspended a vane V. A constant voltage bias was
applied to the vane and two sectors of a quartered electrode B. The
current from the source S accumulated as a voltage on the remaining
two sectors of the quadrant electrode A, producing a torsion of the
wire and a deflection of the mirror.

chemical reactions is given by kT, where k = 8.617 x 1075 eV/K is the
Boltzmann constant and T is the absolute temperature (in Kelvin). Even
for reactions conducted in furnaces at 1000 K, the characteristic energy
is about 86 meV. For nuclear states, the characteristic energy is of order
1 MeV, about seven or eight orders of magnitude greater. No amount of
fire or secret ingredients would enable alchemists to transmute lead into
gold.

We have discussed some of the emergent behavior observed in heavy nu-
clei and note that in lighter nuclei, there is evidence that, to some extent,
the nuclear wave function possesses a significant component that behaves
like a particle clusters. Particularly for nuclei like *>C and 160, we can
observe states that resemble the behavior of three or four, respectively, a
particles in a cluster.

When physicists began to investigate 5 decay processes in more detail,
they found a further complication in our understanding of nuclear matter.
The discovery of the uncharged neutron provided a ready explanation for
the existence of multiple isotopes of the elements: the element is defined
by the number of protons and the number of neutrons defines the isotope.
The process of 5 decay seemed to indicate that, on occasion, a neutron
could decay into a proton and electron. We now know that the rest masses
of the electron and proton are less than the mass of the neutron, making
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such a decay energetically feasible. The problem arises when we try to
predict the behavior of such a decay.

If, for simplicity, we consider a neutron to be simply a bound electron
and proton, then conservation of momentum and energy dictates that the
electron and proton emerge in opposite directions and that the bulk of the
kinetic energy resides with the emitted electron. Yet, when one measures
the kinetic energy of emitted f particles, like those observed in the decay
of 21°Bi, illustrated in figure 5.11, one finds a continuous distribution of
electron energies, with a peak in the spectrum at low energies. Such a dis-
tribution apparently contradicts the established principle of momentum
conservation.

Exercise 5.21. Consider the (relativistic) dynamics of two-particle
decay in the rest frame of a free neutron. What are the energies of
the emitted electron and proton? Convince yourself that the electron
carries more kinetic energy. Recall that the relativistic kinetic energy
is given by & —mc>.

Indeed, some physicists entertained the notion that, in microscopic sys-
tems, momentum might not be conserved or was conserved in a statis-
tical sense. The dilemma was resolved in 1930 by Wolfgang Pauli, who
observed that the continuous distribution of electron energies could be
explained if the process was a three-body interaction in which one of the
decay products was unobserved. Pauli’s suggestion was rather fanciful:
he postulated the existence of a new particle that did not interact via the
electromagnetic or nuclear forces and whose sole purpose was to rescue
momentum conservation.

(5.24) n—ptt+e +7,

Today, the process is believed to occur via the path indicated in equa-
tion 5.24: a neutron decays into a positively charged proton, a negatively
charged electron and a neutral (anti-)neutrino.
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These assignments are made on the basis of two new conservation laws
that have emerged from numerous experiments: conservation of baryon
and lepton numbers. As we shall see shortly, the subnuclear world is
vastly more complicated than just neutrons and protons, with the various
particles subdivided into light (leptonic), medium (mesonic) and heavy
(baryonic) sectors based on mass. It seems necessary that, like charge,
the numbers of the different classes be conserved. Hence, the creation of
an electron (lepton) on the right-hand side of equation 5.24 requires the
creation of an antilepton.

The process described by equation 5.24 is one that is common in so-called
neutron-rich nuclei. In proton-rich nuclei, one can also observe the re-
verse reaction:

(5.25) pt+e” —n+v,
which is known as electron capture or even
(5.26) pt—n+e +v,

where a positron is emitted in the final state. We note that equations 5.24-
5.26 all conserve both baryon number and lepton number. Remarkably,
the nucleus ®4Cu admits all three possibilities, as illustrated in figure 5.12.
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FIGURE 5.12. The nucleus ®4Cu decays via =, p* and electron cap-
ture (ec).

The fraction of positron emission can be determined experimentally by
detection of the characteristic 511 keV y rays arising from electron-positron
annihilation events. About half of one percent of the time, the decay pro-
ceeds through the 2* first excited state of ®4Ni; these events are character-
ized by the observation of a characteristic 1346 keV y ray.
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Exercise 5.22. Use the NuDat utility of the NNDC website to study
the properties of the nucleus 37Ar. In particular, how does the nu-
cleus decay?

In none of the experiments conducted to determine these decay probabili-
ties were the neutrinos directly detected. This is not to say that the weakly
interacting neutrinos are invisible but the cross-section for their detection
is very small. Nevertheless, neutrinos have been observed and an obser-
vatory was constructed to utilize this weakly interacting property. The
American physicist Raymond Davis utilized a permutation of the electron
capture reaction in 37Ar as a probe of neutrinos generated in fusion re-
actions in the sun. Nominally, we would have the radioactive 37Ar decay
into the energetically favorable 37Cl, as follows:

(5.27) STAr+e” — ¥ Cl+v,,

where some 814 keV of energy are released in the process. This is just
equation 5.25, with some additional nucleons. What Davis recognized is
that the reaction will also run in the opposite direction, provided that the
incoming neutrinos had an energy above 814 keV.

Davis and his students set up shop in the Homestake Gold Mine in South
Dakota, using the 1480 m depth to shield his experiment from cosmic rays
other than neutrinos. The detectors were large tanks of perchloroethylene
(C,Cl,) through which Davis bubbled small amounts of helium gas, to
assist the migration of any 37Ar produced. Some 24% of chlorine consists
of the 37Cl isotope, with the remainder being 35Cl. The argon product has
a half-life of 35 days, so Davis collected the gas emanating from the tanks
and simply counted the decays to determine how many 37Ar atoms had
been produced and, thereby, the solar neutrino flux.

Exercise 5.23. Using the NNDC website, why did Davis not utilize
the more common 35Cl isotope in his studies?

Davis worked closely with American physicist John Bahcall, who had cal-
culated the flux. Nominally, the fusion reactions that power the sun were
assumed to be defined by the so-called pp-chain. The first step in the
chain is given by the following:

(5.28) pT+pt > He' »d +et + v,

where the unstable diproton generally decays back into two protons but
occasionally decays into a deuteron, positron and neutrino. Once deu-
terium (*H) is formed, there are a number of different pathways in the pp-
chain that result in the formation of as (*He). The predominant branch is
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expected to be the following:
(5.29) d*+p* - He+y
(5.30) ’He +°He — *He + 2p*.

There are other branches but the remarkable feature of neutrinos is that
they interact so weakly that the majority leave the center of the sun where
they are produced and arrive 1480 m below ground in the Homestake
mine in relatively pristine condition.

Because the nuclear reactions that define the various pp-chain steps are so
well understood, it came as something of a surprise to Davis and Bahcall
that Davis systematically found only about a third the number of neutri-
nos that Bahcall predicted. Davis’s experiments were revised and recon-
figured, using bigger tanks and better detectors. They studied potentially
abnormal argon chemistries to account for lower than expected detection
efficiencies and still the problem persisted.

Other detectors were constructed, notably the Kamiokande and Super-
Kamiokande experiments that utilized large water tanks and Cerenkov ra-
diation to identify neutrino interactions.® The measurements from these
other instruments confirmed Davis’s results from the Homestake exper-
iment: there are fewer solar neutrinos than nuclear physics predicts.*®
This was a puzzle that remained unsolved for 30 years.

9Russian physicists Pavel Alekseyevich Cerenkov, IIja Mikhailovich Frank and Igor
Yevgenyevich Tamm were awarded the 1958 Nobel Prize in Physics “for the discovery and
the interpretation of the Cerenkov effect.”

1%Davis and Japanese physicist Masatoshi Koshiba shared half of the 2002 Nobel Prize in
Physics “for pioneering contributions to astrophysics, in particular for the detection of cos-
mic neutrinos.” The Italian-American physicist Riccardo Giacconi was awarded the other
half “for pioneering contributions to astrophysics, which have led to the discovery of cosmic
X-ray sources.”
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Toward a Theory of Everything

We can continue our march towards the smallest things by simply contin-
uing the process of scattering energetic electrons from nuclei, or nucle-
ons. We've already noted that initial results of electron scattering demon-
strated that protons have internal structure, visible through resonances
in the scattering data. With increased energy, though, analysis becomes
more complicated. For example, the final state of the e, p* collision is
no longer just e7, p*; there are other constituents, so the mass M used in
equation 5.7 will no longer be the proton mass. Instead, M becomes a
dynamical variable, defining the mass of the final hadronic state, usually
denoted by W.

Operationally, the transfer momentum g can be determined from the fol-
lowing expression:

(6.1) g> = —4EE sin” 0/2,

where £ is the incident electron energy, £’ is the scattered electron en-
ergy and O is the laboratory scattering angle. The relativistically invariant
parameter W now becomes

1/2

(6.2) We? = M§c4+2Mpcz(€—€’)—qzcz] ,
where M, is the proton mass.

In 1969, a collaboration headed by the American physicists Jerome Fried-
man and Richard Taylor at the Stanford Linear Accelerator Center (SLAC)
and Henry Kendall from MIT repeated the electron scattering experi-
ments with 7 GeV electrons from the newly commissioned machine at
Stanford.What they observed was remarkable." Asillustrated in figure 6.1,
the ratio of the measured differential cross-section to the Mott cross-section

!Friedman, Kendall and Taylor shared the 1990 Nobel Prize in Physics “for their pioneering
investigations concerning deep inelastic scattering of electrons on protons and bound neu-
trons, which have been of essential importance for the development of the quark model in
particle physics.”

© Mark A. Cunningham 2018 135
M.A. Cunningham, Beyond Classical Physics,

Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-319-63160-8_6


https://doi.org/10.1007/978-3-319-63160-8_6

136 TowARD A THEORY OF EVERYTHING

would be expected to fall exponentially with increasing transfer momen-
tum. This was the result obtained by Hofstadter at lower energies, indi-
cating that the charge distribution of the proton had finite size.
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What Kendall et al. observed was that the cross-section ratio became
nearly constant at large values of M. Recall that for point charges, the
form factor is a constant. So, the results of the deep inelastic scatter-
ing experiments suggest that, at short distances, the proton appears to
be composed of point-like scattering centers.

6.1. Quarks

The discovery of the nucleus, and its component nucleons: protons and
neutrons, ushered in a new era in physics. There had to be a force acting
upon the nucleons that kept them restrained to an extraordinarily small
volume. Moreover, the force had to be of short range; otherwise, the nuclei
would all collapse into a single large nucleus—a result in direct conflict
with observation of discrete atoms. An early suggestion on the nature of
the nuclear force was provided by the Japanese physicist Hideki Yukawa,
who suggested that a potential of the form
gz e HT

(6.3) Vi =4

where g is the strength of the interaction (analogous to the electric charge)
and p determines the range, would have the requisite properties.”

2Yukawa’s “On the interaction of elementary particles. I.” was published in the Proceedings
of the Physico-Mathematical Society of Japan in 1935. Yukawa was awarded the 1949 Nobel
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Exercise 6.1. What is the (three-dimensional) Fourier transform
of the Yukawa potential? If the transform variable is k, then the
spatial component of momentum is given by p = #ik. In the “natural”
units preferred by high-energy theorists, where # = ¢ = 1, convince
yourself that y can be thought of as a mass.

Shortly after Yukawa’s publication, a negatively charged particle with mass
between that of the electron and proton was observed by Carl Anderson
and Seth Neddermeyer at Caltech in their cosmic ray studies and also by
Jabez Street and Edward Stevenson at Harvard.> Anderson dubbed the
particle a mesotron but it subsequently became known as the muon, as
expectations were that this was the mesonic particle Yukawa proposed to
mediate the nuclear force. Somewhat unfortunately, the muon was discov-
ered to decay solely to electrons and does not interact through the strong
nuclear force, as indicated in the following equations:

(6.4) pr—et v, +v, and g et v+,

Muons decay in approximately 2.2 us, independent of charge. The three-
body nature of the muon decay process was identified from the kinematics
of the final-state electrons.# A number of years later, in a definitive exper-
iment at the Alternating Gradient Synchrotron at Brookhaven National
Laboratory, the distinct neutrino types were established.

Leon Lederman, Melvin Schwartz and Jack Steinberger and their cowork-
ers conducted an experiment in which 13 GeV protons impacted a beryl-
lium target, producing showers of Yukawa’s mesons, which subsequently
decayed, predominantly into muons and, supposedly, muon neutrinos.
The debris from these collisions was passed through some 40 m of iron,
repurposed from dismantled navy warships, which served to screen out
everything but the neutrinos. These then passed through a 10-ton spark
chamber constructed of 25 mm-thick sheets of aluminum, separated by
10 mm gaps. High voltage pulses were applied across the plates, re-
sulting in sparks leaping between the plates where charged particles had
left ionization trails in their wake; these were recorded photographically.
A large, static magnetic field applied across the spark chamber permit-
ted the determination of the particle momentum. After eight months of
data collection, the experiment produced something like 10'4 neutrinos
and 51 spark chamber events. All of these particles were determined

Prize in Physics “for his prediction of the existence of mesons on the basis of theoretical
work on nuclear forces.”

3Neddermeyer and Anderson’s “Note on the nature of cosmic-ray particles” appeared in the
Physical Review in 1937, as did Street and Stevenson’s subsequent “New evidence for the
existence of a particle of mass intermediate between the proton and electron.”

4Jack Steinberger’s “On the range of the electrons in meson decay” was published in the
Physical Review in 1949.
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to be muons, produced by reactions analogous to those defined in equa-
tions 5.24—-5.26.> The Brookhaven experiment demonstrated that there
were two distinct classes of neutrinos: those associated with electrons and
those associated with muons.

Yukawa’s mesons were eventually discovered in photographic emulsions
pioneered by the British physicist Cecil Powell in 1947.® Powell and his
coworkers, notably Donald Perkins and Giuseppe Occhialini, exposed em-
ulsions at altitude—in airplanes or on mountain tops—to mitigate atten-
uation of the cosmic rays by the atmosphere and then spent days poring
over the developed films. They found several cases where the primary =
particle stopped in the emulsion, giving rise to a secondary meson y and,
presumably, a neutral particle.

As large accelerators came online and experimenters no longer relied on
random cosmic ray events, the constituents of the subatomic world be-
came rather more numerous than anyone expected. Not only were there
pions, the supposed Yukawa mesons, but an assortment of other strongly
interacting particles: ps, Ks, #s together with numerous excitations of
nuclear matter: As and Ns. There arose a consortium of high-energy
physicists: the Particle Data Group (www-pdg.lbl.gov) who undertook the
daunting task of collating and organizing the vast amount of data from all
of the different experimental groups. Unlike transitions between atomic
states, that are connected solely via electromagnetic interactions (pho-
tons), transitions between eigenstates of the nuclear force have multiple
pathways. Identifying the selection rules associated with decay pathways
provided physicists with a means for organizing and understanding the
relationships amongst the states.

Exercise 6.2.  Use the PDG Summary Tables to identify the decay
modes of the p(770) meson and the N(1440) baryon.

A decade after the discovery of the pion, physicists found themselves with
an abundance of “elementary” particles and embroiled in attempts to find
a means of classifying them. The picture that emerged from these at-
tempts is now known as the quark model. In a first step, in 1961, Ameri-
can physicist Murray Gell-Mann and, independently, the Israeli physicist
Yuval Ne'eman suggested a classification scheme of octets of mesons that

5Lederman, Schwartz and Steinberger were awarded the 1988 Nobel Prize in Physics “for
the neutrino beam method and the demonstration of the doublet structure of the leptons
through the discovery of the muon neutrino.”

6Powell was awarded the Nobel Prize in Physics in 1950 “for his development of the pho-
tographic method of studying nuclear processes and his discoveries regarding mesons made
with this method.”
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Gell-Mann called the Eightfold Way, in reference to the eponymous Bud-
dhist principles. Among the predictions of the Eightfold Way was the
existence of a previously unseen baryon: the ()7, that was subsequently
observed experimentally.” In 1964 Gell-Mann and, independently, George
Zweig suggested that the classification of particles could be understood if
the baryons and mesons were themselves composites, formed from even
more elementary particles that Gell-Mann named quarks, a name taken
from the James Joyce novel Finnegans Wake. The multiplets occupied by
the different particles arose from an underlying SU(3) group symmetry.

In this initial model, baryons were constructed from triplets of quarks
and mesons from quark-antiquark pairs. The SU(3) symmetry arose from
the three types of quarks, labelled u, d and s. The curious names arose
from an initial analogy to nuclear isospin, where protons and neutrons
were transformed into one another just as different spin states can be
transformed into one another: both transformations are described by an
su(2) algebra. Hence, one might consider the proton to be the isospin
“up” state and the neutron the isospin “down” state but for su(3) there
was need of a third “sideways” direction. Studies of the kaon particles,
originally discovered by George Rochester and Clifford Butler in 1947 in
cloud-chamber photographs, proved that their behavior was dissimilar
to that of other particles. The “strange” behavior evinced by K° decays,
which had two different lifetimes, provided an alternative name for the
third quark, which has subsequently been adopted in most discussions.

TaBLE 6.1. Quark quantum numbers. All quarks have half-integral
spin.

q B Q I 3 S q B Q I 3 S
u 1/3 2/3 /s (¢} E _1/3 _2/3 -1/, [¢)
d iy -y - d -1y i

s 15 =1 o -1 5 =1 1/y o 1

The quantum numbers associated with the quarks are listed in table 6.1.
Each quark has an intrinsic spin /4, like the electron, and a baryon num-
ber B of /5. The quarks themselves possess third-integral charges Q but,
magically, all composite particles will have integral charges. The isospin
I algebra is also embedded in the su(3) algebra, and the z-component I,
appears for the u and d quarks. The s quark carries another quantum

7Gell-Mann was awarded the Nobel Prize in Physics in 1969 “for his contributions and dis-
coveries concerning the classification of elementary particles and their interactions.”
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number, called strangeness S, that for the oddity of historical precedence
is unity for the antiquark.

We can now explain the multiplicity of mesons observed experimentally
as due to the different combinations of quark-antiquark pairs that can be
obtained from the elements of table 6.1. This is a combinatorial problem
that falls into the mathematical domain of group theory and, as a result,
there is a large body of mathematical tools at one’s disposal to help un-
derstand the results. If we look at mesons, we can construct nine different
combinations from the quarks listed in the table. These actually form in
the su(3) algebra an octet and a singlet. The singlet state is the symmetric

Ul +dd + ss combination.

ds us
FIGURE 6.2. The nine possi- du wii_dd ud
ble combinations of quarks ss
lead to different values of
charge and strangeness.

su sd

We can assign the four K mesons to the strange states (S # o) of the octet
and the three pions, and the eta meson to the S = o states of the octet. The
singlet state can be assigned to the #” meson.

Exercise 6.3. Use the PDG Summary Tables to obtain the masses
of the 7, K, 7 and 1" mesons. Assign each to a state defined in fig-
ure 6.2.

There are 27 different possibilities to generate baryons from triplets of
quarks, which separate into a singlet, two octets and a decuplet. The pro-
ton and neutron can be assigned to one of the octets, as indicated in fig-
ure 6.3. These are all particles with total angular momentum 1/,#% and
includes the ¥s and As along with the cascade hyperons (Z). Of course,
with three quarks in a baryon, it is also possible to obtain particles with
total angular momentum of 3/,#.

The combinatorial aspects of the quark model can be illuminated through
the use of a device known as the Young tableaux. These representations of
the permutation group can be visualized graphically as a two-dimensional
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FIGURE 6.3. One octet of dds uds uus
the possible combinations
of three quarks contains
the proton and neutron.
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array of boxes, or tableaux, with (in standard form) decreasing numbers of
boxes as you step down the columns. A tableaux with M boxes represents
a tensor product of M particles. So, for SU(3), the representation of a
single particle is just a single box:

(6.5) 3:D:++.

There are three possibilities for the contents of the box: 1,2, 3 0r u, d, s,
if we are talking about quarks. Hence the single box in SU(3) is a triplet
3. To construct the adjoint representation, used for antiparticles, one re-
places each column of the representation with a column of height N—c and
then rotates the resulting diagram around the vertical axis. For SU(3), the
adjoint of the triplet is the following;:

-]
(6.6) 3_H_++.

Rows of boxes are symmetric products and columns are antisymmetric.
Hence, when filling tableaux, the rule is that the index cannot decrease
when filling rows but must always increase when filling columns. For the
adjoint representation of the triplet, illustrated in equation 6.6, we also
find a triplet but it will be designated by 3, to distinguish it. These tableaux
correspond to the d(1,0) and d(o, 1) irreducible representations of SU(3).

Constructing tensor products can be reduced to stacking boxes. For ex-
ample, the quark-antiquark products are defined by the following:

(6.7) 3®§D®H@@
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Exercise 6.4. Fill the final tableaux in equation 6.7 according to the
rules and show that the following is true: 33 =1®8.

We are most interested in small multiplets like gg and qqg, so counting the
multiplicities is not terribly difficult. There is, however, a formula that can
be utilized for more complex situations. We first define the hook number
of a cell in a tableau as the number of boxes below and to the right of the
cell plus one. The hook factor 4 is the product of all the hook numbers:

2[1]

(6.8) — h=7-5-2-1-4-2-3-1-1=1680.

7
412
3
1

To determine the multiplicity of the SU(N) irreducible representation, we
need to calculate a second factor F. This is obtained by entering N in
the first cell and incrementing along the rows and decrementing down
the columns. For the tableau used in equation 6.8, we would obtain the
following:

(6.9)

N [N+1|N+2

N+3

N FoN(N+1)(N+2)(N+3)(N=1)N(N=2)(N = 1)(N —3).

N-2|N-1

N-3

The multiplicity is then m = F/h. Note that for this particular tableau that
N must be four or larger. Otherwise, the factor F will vanish.

Exercise 6.5. Construct the tableaux for the baryon representation
3®13®3 (gqq) of SU(3). Note that the construction is associative, so
that you can first construct the representations for 3 ® 3 and then
apply the final ®3 to that result. Use the equations 6.8 and 6.9 to
obtain the multiplicities.

The development of the quark model provided a framework for under-
standing the multitude of different particles that had been uncovered ex-
perimentally: nucleons had components and, thereby, could occupy dif-
ferent excited states. There were limitations to the model, though. The
SU(3) symmetry was not exact; the meson masses were not close to the
same. In the common vernacular, this is a broken symmetry. Moreover,
now that the pions were recognized not to be Yukawa’s mediators of the
nuclear force, there was still no resolution to the original problem of nu-
clear confinement.
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6.2. Electroweak Unification

We have previously discussed the role of spectroscopy in determining the
nature of atomic matter. The lines observed at particular wavelengths
indicate the differences in energy between different atomic states. The
relative intensity of those lines provides further information about what
are termed selection rules. Electric dipole (E1) transitions are the most
efficient but states can also be connected through electric quadrupole (E2)
or magnetic dipole (M1) transitions at reduced rates. As troublesome as
the atomic structure proved to be, the situation for nuclear spectroscopy
is more complex.

The energies associated with the excited states of nuclear matter are large
enough that particle creation events can occur, in addition to the emission
of electromagnetic energy. As a result, the final states of scattering events
can generally include a multitude of charged and uncharged particles in
addition to photons. Early spectrometers, like those employed by Hofs-
tadter and his students in their studies of inelastic scattering of electrons,
relied on the kinematic relationship between scattering angle 6 and final
state energy &', so there was no need to directly measure the energy of
the final state electron. One could simply integrate the electron current
present at a particular angle to provide an experimental estimate of the
cross-section. The nuclear final states were not directly observed.

The invention of cloud chambers and, subsequently, bubble chambers
provided experimenters with additional tools that enabled the direct vi-
sualization of charged particle trajectories through their ionization trails.®
Analysis of bubble chamber photographs was a tedious enterprise. As
physicists sought to understand the behavior of events with small total
cross-sections, experimenters had to sift through millions of photographs
for a few dozen “interesting” events. Physicists generally made poor scan-
ners, as they tended to find interesting features in every photograph. The
initial scanning duties were usually performed by non-physicists, who
were told to find specific features. Photographs with those features were
then submitted for detailed analysis.

An example of a strange interaction is depicted in figure 6.4, taken at
the Lawrence Berkely Lab bubble chamber on March 26, 1959. The light

8Ppatrick Maynard Stuart Blackett was awarded the Nobel Prize in Physics in 1948 “for his
development of the Wilson cloud chamber method, and his discoveries therewith in the
fields of nuclear physics and cosmic radiation.” Donald Arthur Glaser was awarded the No-
bel Prize in Physics in 1960 “for the invention of the bubble chamber.” Luis Walter Alvarez
was awarded the Nobel Prize in Physics in 1968 “for his decisive contributions to elemen-
tary particle physics, in particular the discovery of a large number of resonance states, made
possible through his development of the technique of using hydrogen bubble chamber and
data analysis.”
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7t~ track entering from the bottom of the image disappears. Subsequently,
two vertices are observed higher in the frame and both can be traced kine-
matically back to the end of the ©™ track. Another interesting feature of
the image is the spiral just above the higher vertex. From the curvature,
it is a negatively charged particle, with decreasing radius. It is the more
energetic of two electrons scattered by a different incident 7t~ and not part
of the strange interaction.

Exercise 6.6. Use the quark model to describe the events depicted
in figure 6.4. Why is the interpretation that a ¥° was produced ini-
tially, followed by a A°? Hint: consult the PDG particle tables. The
K° momentum is aligned with the end of the initial 7~ track and the
e* 7~ vertex. In which direction must the neutrino be emitted?

Exercise 6.7. Consider the decay of a £° to a A° and a photon, in
the rest frame of the ¥°. What is the photon four-momentum in the
final state, if the A° is emitted in the positive z-direction?

The interpretation of the photograph is as follows:
T +p oYX +Ke 5> +e +,
(6.10) l

Y+A° > p+1.
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TaBLE 6.2. Properties of light mesons.

mass (MeV/c?) lifetime (s) decay (fraction)

et 139.570 2.603x107% s

7t° 134.976 8.52 x107'7 2y

K* 493.677 1.238x107%  pFv,(0.63), ©H°(0.21),
7=t e (0.06), 1°e*v, (0.05),
7°u¥v,(0.03), T °n°(0.02)

K¢ 497.611 8.956 x1071° T(+T[__(O.69), 21°(0.31)

Ky 497.611 5.116 x1078 et v, (0.41), @ ptY,(0.27),

31°(0.19), rrTw®(0.12),
7ttt (0.002), 27°(0.0008)

Analysis of the interaction begins with careful measurement of the tracks
to determine particle momenta and, if the track curvature changes, the
rate of momentum changes. Several possible kinematic models are then
compared to identify which best satisfies the constraints of momentum
conservation.

What made the strange interactions so strange was, in large measure, the
fact that the decays pictured in figure 6.4 could be observed at all. A rough
estimate of the timescales associated with nuclear events can be obtained
by dividing the nuclear size by the velocity of light. This suggests that
nuclear events should be characterized by times of the order of 10723 s.
Yet, the strange particles leave tracks that are centimeters in length, sug-
gesting lifetimes on the order of 107'° s. Lifetimes and decay pathways
for the 7w and K mesons are listed in table 6.2.

Exercise 6.8. From the lifetimes listed in table 6.2, determine the
characteristic path length ct. Could all be visualized in bubble cham-
ber photographs?

The K mesons were originally thought to be part of an isospin triplet,
like the pions but it was quickly observed that there were two neutral K-
mesons, with significantly different lifetimes and decay pathways but pos-
sessing (nearly) the same mass. The K¢ has the shorter lifetime and decays
predominantly to two pions. The K has the longer lifetime and decays in
a variety of pathways involving pions and leptons or three pions. The two
pion decays noted at the end of the table were wholly unexpected. Cronin
and Fitch conducted an experiment at the AGS at Brookhaven in which
neutral K mesons were passed down a 17.5 m pipe before encountering
the detectors. Presumably, the K¢ mesons had all decayed by this point, so
only K mesons should have survived. What Cronin and Fitch observed
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was that about one in every five hundred events was characteristic of a
two-pion decay that should be attributable to K¢ decay. The conclusion
that Cronin and Fitch painstakingly demonstrated was that the forbidden
two-pion decay of the K|’ was not, in fact, forbidden.?

The Cronin-Fitch experiment fell close on the heels of another experiment
conducted by the Chinese-American nuclear physicist Chien-Shiung Wu
in collaboration with low-temperature physicists at the NIST laboratories
in Washington DC. The theorists Chen Ning Yang and Tsung-Dao Lee had
revisited the experimental support for the CPT theorem that was widely
held to guide the behavior of particle interactions. The ideas underlying
the CPT theorem were that the equations of motion would be invariant to
charge conjugation (swapping particles for anti-particles), parity (space
inversions) and time reversals. Lee and Yang found little experimental
evidence for the ideas and suggested to Wu that she investigate. To obtain
sufficient signal, it was necessary to conduct the experiment at cryogenic
temperatures. Wu and her colleagues quickly determined that parity was
violated in the 8 decays of ®°Co. The Cronin-Fitch experiment demon-
strated that the product CP is also not conserved.'®

The experimental results forced a retrenchment for particle theorists, as
the most popular ideas did not incorporate parity and charge conjugation
violations. We shall not try to disentangle the exact chronology of events
or the primacy of ideas but shall rather observe that the present state of
affairs is based on three fundamental ideas.

The first idea is that particles can be described by a non-Abelian gauge
field theory. Recall that quantum electrodynamics is an Abelian gauge
field theory: the gauge group is U(1) and the group action amounts to
multiplication by a complex number of unit magnitude. This can be rep-
resented by the following transformation:

W =e .
Application of two such transformations is independent of the order:
W = 960y = eilB+0)y, = Hi(O+D)y, — 4i0,idy,
This would not necessarily be the case for other groups, in particular the
SU(N) groups, where the group elements do not, in general, commute.

This problem was studied by Chen Ning Yang and Robert Mills in 1954
under the context of isospin symmetry.

9James Watson Cronin and Val Logsdon Fitch were awarded the Nobel Prize in Physics in
1980 “for the discovery of violations of fundamental symmetry principles in the decay of
neutral K-mesons.”

1%Yang and Lee were awarded the Nobel Prize in Physics in 1957 “for their penetrating
investigation of the so-called parity laws which has led to important discoveries regarding
the elementary particles.”
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In modern terminology, the generators t* of a Lie algebra satisfy the fol-
lowing commutation relations:

(6.11) [t9,t°] = i fobese,

where the coefficients f?¢ are known as structure constants. The indices
a, b and ¢ in equation 6.11 run from one to the total number of generators
and are placed as superscripts conventionally. These are not Lorentz in-
dices and the superscript notation does not indicate a Lorentz contravari-
ant. Yang and Mills demonstrated that one could define a field tensor Ff,
as follows:

0 0
(6.12) fk:WAZ_WA?_FngQbCAleC’
’ be

where the A? are gauge potentials, akin to the potentials of the electro-
magnetic field and g is a coupling constant, akin to the electric charge.

The equations of motion for the fields can be defined through the covari-
ant derivative:

(6.13) D,-:%+i§A,-+ig;t“A?.

This is just the minimal coupling that we described in equation 3.12, now
expanded to incorporate more complicated algebras. Where previously
we had noted that the minimal coupling was just the simplest way to cou-
ple particles and field, now this mechanism can be demonstrated to be
uniquely determined. The equations of motion for electrons or quarks
mimic the structure of the Dirac equation, with the addition of the new
gauge group defined by the Lie algebra, instead of just the electromag-
netic field. Indeed, the literature expressly utilizes notation like that in
equation 6.12 to reinforce the analogy to quantum electrodynamics.

Exercise 6.9. Use the definition of the covariant derivative in equa-
tion 6.13 to write the equation for a spinor field ¢, as in equation 3.13.

The second idea is that vector fields that arise in the Yang-Mills equa-
tions obtain mass through coupling to a scalar field. This mechanism
is often called the BEH mechanism after Robert Brout, Fran¢ois Englert
and Peter Higgs.'' The three modified an earlier suggestion by Jeffrey
Goldstone that incorporated a previously unobserved complex scalar field
¢ = (¢, + @,)/\2. The first component is presumed to have a non-zero

!1Englert and Higgs were awarded the Nobel Prize in Physics in 2013 “for the theoretical
discovery of a mechanism that contributes to our understanding of the origin of mass of
subatomic particles, and which recently was confirmed through the discovery of the pre-
dicted fundamental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron
Collider.” Brout had passed away in 2011 and was ineligible.
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vacuum expectation value (¢,) = v and to couple to the gauge field A{
through terms like the following:

(6.14) igZ%(P*wA? -~ ) frrgtalag,
i ikbc

The second term behaves like a mass (¢g*v?) multiplying the gauge fields
and the first term preserves gauge invariance. The BEH mechanism solves
the Yukawa problem of needing massive bosons to mediate the nuclear
force. The Yang-Mills fields would otherwise be massless, like the pho-
ton. Recent experimental measurements at the Large Hadron Collider at
CERN identified a bosonic entity with a mass of roughly 125 GeV that can
be interpreted as proof of the existence of the Higgs boson.

The final idea underpinning our current description of particle interac-
tions is symmetry breaking, wherein the vacuum state does not possess
all of the symmetry explicit in the Lagrangian. In the case of the weak
interactions, we’ll see this in more detail presently. Significant support to
these ideas was provided by Gerardus t"Hooft and his thesis advisor Mar-
tinus Veltman when they were able to prove that Yang-Mills theories that
obtained mass through the BEH mechanism are renormalizable.** Their
result meant that there was the possibility of deriving a coherent theory
in terms of gauge fields.

So, the picture of the weak interactions is that they are governed by the
Lie algebra su(2). There are three generators of su(2) that give rise to
three massive bosons through the gauge fields A}. These are historically
known as the W* and Z° bosons. A Feynman diagram for neutron decay
is illustrated in figure 6.5.

FiGure 6.5. A d quark in the w-
neutron emits a W~ boson
and converts into a u quark.
The W~ subsequently decays
into an electron and neutrino.

12¢’Hooft and Veltman were awarded the Nobel Prize in Physics in 1999 “for elucidating the
quantum structure of electroweak interactions in physics.”
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Here, the neutron is depicted as an assembly of udd quarks, one of the
d quarks is transformed into a u through the emission of a W~ boson.
Unlike the photon of the electromagnetic field, which is uncharged, the
bosons that mediate the weak interactions can carry electromagnetic charge.
In this instance, the W~ boson decays into an electron and (anti-) neutrino.

One might naively then think that a composite theory of weak interactions
coupled with electromagnetic interactions could be constructed from the
direct product of the su(2) algebra describing the weak interactions and
the u(1) algebra of electromagnetism. Indeed, the so-called electroweak
interaction theory is based on an SU(2)xU(1) gauge group but the exis-
tence of CP-violating reactions means that the separation into weak and
electromagnetic factors is more complex that one might initially guess.*3
We can suggest that the generators of SU(2) could be described by the
triplet (W~, W° W), in what might be called weak-isospin. The gener-
ator of U(1) is another neutral boson B°. CP-violating reactions can be
accommodated by mixing the neutral components of the direct product.
This is accomplished as follows:

Y| _|cosBy sinBy || B°
(6.15) [ZO} B [—sin@w COSQW:| [WO ’
where Oy is known as the Weinberg angle or weak mixing angle.

The physical photon that represents the electromagnetic interactions eme-
rges as a composite of the weak isospin neutral boson (W®) and the so-
called hypercharge boson (B°). The Weinberg angle can be established in
a number of ways experimentally; the most obvious is the relationship of
the Z° and W* masses: cos Oy = My /My, from which a nominal value of
sin® Oy = 0.23 can be obtained. The use of the direct product SU(2)xU(1)
gauge group also permits the use of the BEH mechanism to give mass to
the W* and Z° bosons while leaving the photon massless.

6.3. Standard Model

The development of the electroweak theory was a significant achievement
but there was still no resolution of the original problem that we set out to
resolve: developing a model for the strong nuclear force. Yukawa’s idea of
massive mediators of forces to provide strong, short-distance effects seems

13The Nobel Prize in Physics in 1979 was awarded to Sheldon Glashow, Abdus Salam and
Steven Weinberg “for their contributions to the theory of the unified weak and electromag-
netic interaction between elementary particles, including, inter alia, the prediction of the
weak neutral current.” The Nobel Prize in Physics in 1984 was awarded to Carlos Rubbia
and Simon van der Meer “for their decisive contributions to the large project, which led to
the discovery of the field particles W and Z, communicators of weak interaction.”
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to have worked for the weak nuclear force: the massive mediators had
been predicted and then observed experimentally. For the strong force,
the situation was different.

The quark model had provided a simplified description of the multitude
of baryons and mesons that had been observed but, unlike the massive
mediators of the weak force, no massive mediators of the strong force had
been observed and certainly no individual quarks had been observed. Ini-
tially, due to the fractional charges of the quarks, there was some resis-
tance to the idea that quarks existed. Certainly no fractionally charged
particles had ever been observed experimentally.

¢ chambers solenoid magnet toroid magnets

1Ar calorimeters

semiconductor tracker pixel detector

Ficure 6.6. The ATLAS detector installed on the LHC at CERN ex-
tends 44 m between the end y chambers and is 25 m in diameter.
The equipment has a mass of 7000 Mg. Image ©2008 CERN, with
permission.

There were significant improvements to experimental technology, driven
in large measure by the advent of digital computing. Bubble chambers
were supplanted by detectors that provided signals that could be directly
interfaced to computers. Moreover, as experimenters began investigating
interactions at higher energies, particle lifetimes decreased and multiplic-
ities increased. The advent of the multiwire proportional chamber pro-
vided position-sensitive detection of charged particles and several placed
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sequentially could provide enough information for computer analysis to
reconstruct the particle tracks.'#

Detectors have now evolved into behemoths massing thousands of met-
ric tons (Mg). The largest at present is the ATLAS detector at CERN,
illustrated in figure 6.6. The detector is composed of an inner detector
with a 2.1 m diameter and 6.2 m length composed of a number of high-
resolution, position-sensitive detectors. The pixel detector provides 8o
million channels of data, the semiconductor tracker provides another six
million channels of information on the position of charged particles and
photons in the immediate vicinity of the interaction region. The inner de-
tector is enclosed in a large solenoidal magnet that provides a longitudinal
field within the interaction region.

Beyond the inner detector is an array of liquid argon (lAr) and tile calorime-
ters that measure the energy deposited by electromagnetic and hadronic
particles, respectively. The remaining particles leaving the detector are
undoubtedly muons; these are identified by the y chambers surrounding
the calorimeters. The only undetected entities are neutrinos that generally
do not interact with the detectors.

Ficure 6.7. The ATLAS de-
tector recorded this event
on 14 Sep 2011. This z-
projection of the central por-
tion of the detector includes
four muon tracks (light gray)
and several hadron showers.
Image ©2011 CERN, with
permission.

An interesting event from the ATLAS detector is illustrated in figure 6.7.
The final state includes four muons (light gray, long tracks) that are as-
sumed to be the result of a pair of Z° bosons each decaying into u*u~
pairs. This is one possible decay pathway for the Higgs boson. The re-
maining particles dump their energy into the calorimeters. A histogram
of energy deposited in each sector indicates the location of hadronic jets.

The Large Hadron Collider (LHC) circulates bunches of approximately
10'" protons in two beam pipes that intersect in four stations along the

14Georges Charpack was awarded the Nobel Prize in Physics in 1992 “for his invention and
development of particle detectors, in particular the multiwire proportional chamber.”
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27 km circumference. At the ATLAS site, bunches cross 4 x 107 times
per second, generating 20-25 proton-proton interactions in each crossing,
or about 109 interaction events per second. Events are filtered in three
stages before being recorded for further analysis. Even with a 200,000-
fold reduction in event rate by the trigger system, the ATLAS collabora-
tion records over 3 PB (1 PB=10"5 bytes) annually. Even with this stag-
gering event rate, production of Higgs bosons is estimated to occur about
once every three hours. As yet, no fractionally charged particles have ever
been observed.

As a result of numerous experiments, theorists came to the conclusion
that quarks cannot be separated but it was not clear how to construct a
model of the strong interactions. While there was a clear prejudice that
the model would have to be a gauge field theory like the electroweak the-
ory, there were some issues. No one knew if such a theory could be renor-
malizable or if a perturbation theory could be constructed that would be
convergent.

One key idea that led to the modern theory is the concept of scale invari-
ance. Gell-Man and Low used the idea to study the behavior of the photon
propagator in quantum electrodynamics at high energy. They found that
the coupling parameter ¢ at some energy scale y was related to the cou-
pling at another scale M via the group equation:

M

where G is some unspecified function. The consequence of this group
equation is that the theory is self-similar; if one can obtain a solution at
any scale, it will be possible to reconstruct the theory at any other. It
happens then that much of the information about the nature of the scaling
transformations can be elicited from the variation of the coupling with
respect to scale. One defines a beta function:

0
(6.17) Blg) = a_i

d
(6.16) g() = Gﬂ[(ﬁ) G(g(M))],

that enables a perturbation reconstruction of the function G, thereby defin-
ing the theory at all scales. Kenneth Wilson provided a computational
pathway to implement the renormalization group and used the method
to solve a longstanding problem in magnetic materials.'> In the context
of magnetic materials, one can envision an array of spins located at the
lattice sites. At this most detailed scale, we consider the interaction of
neighboring atoms, which provides a natural length scale for the system.

15Wilson was awarded the Nobel Prize in Physics in 1982 “for his theory for critical phe-
nomena in connection with phase transitions.”
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For particle theory, there is no natural smallest length scale. This is the es-
sential problem that we faced in quantum electrodynamics that Freeman
Dyson resolved. What Wilson recognized was that there was a recursive
means to transform between scales. At larger scales, we can consider the
effective interaction of blocks of spins made from smaller blocks of spins.

The final key observation was made by David Gross and Frank Wilczek
and, independently, David Politzer who found that non-Abelian gauge
field theories could have the property that, in the limit as the energy scale
goes to infinity, the beta function becomes negative and the effective cou-
pling vanishes.'® This is known not to be true for quantum electrodynam-
ics, so it was quite surprising to find that asymptotic freedom would hold
for the strong interactions.

a, 04
Ficure 6.8. The strong ]
coupling coefficient a; 34
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Remarkably, we see evidence for asymptotic freedom in experimental data,
as illustrated in figure 6.8. The effective strong coupling factor a;, anal-
ogous to the fine structure constant & used in quantum electrodynamics,
can be estimated from results of measurements of cross-sections at differ-
ent energies.

If we look at the original Yukawa potential, we see that it is divergent
at short distances. The picture that emerges from asymptotic freedom is
that the quark couplings inside the proton essentially vanish as long as the
quarks remain close. Green and Wilczek proposed that nature presents an
exact SU(3) symmetry that they called the color symmetry; this symme-
try is distinct from the approximate SU(3) symmetry of the eightfold way.
All baryons are color triplets, composed of three quarks that are, individ-
ually, red, green and blue. The quarks exchange gluons, the mediators
of the SU(3) color interaction. The gluons are themselves colored and,

16Gross, Politzer and Wilczek were awarded the Nobel Prize in Physics in 2004 “for the
discovery of asymptotic freedom in the theory of the strong interaction.”
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TaBLE 6.3. Fundamental particles in the Standard Model.

quarks  u c t gauge bosons g
d s b weak bosons  W*,Z
leptons e U T photon Y
Ve Vy Vg scalar boson H

so, the individual quark colors do not remain constant but the baryon it-
self remains colorless. This theory is known as quantum chromodynamics

(QCD).

Overall, the non-Abelian gauge field theory that seems to describe high-
energy physics is based on the product of SU(3)xSU(2)xU(1). There is
an additional, approximate symmetry that encompasses the six known
quarks and three known generations of leptons.'” The table of funda-
mental particles is illustrated in table 6.3.

There is an organizing principle that the particles sort into three gener-
ations of quarks and three generations of leptons. Studies of the decay
of Z° bosons into xX pairs, where x is one of the fermionic constituents
of table 6.3 indicate that the total cross section can be explained almost
entirely by decays into charged particles. What remains, the invisible por-
tion of the cross section, can be assumed to be decays into vV pairs. As-
suming that no neutrino is favored over any other, the missing portion of
the cross section can be attributed to the decays into three neutrino chan-
nels. Now it is possible that there are other, massive neutrinos that are
kinematically forbidden but repeated searches for such sterile neutrinos
have not identified any evidence for their existence.

Exercisk 6.10.  Use the PDG Summary Tables to identify the princi-
pal decay modes of the Z°. What are the branching ratios for the £¢
decays for the three generations of leptons ¢ = (e, 4, T)?

There have been over three decades of physics experiments investigat-
ing the nuances of the Standard Model, all of which agree to the percent
level. All experiments conducted to date are in good accord with pre-
dicted values obtained from the Standard Model. The only experimen-
tal discrepancy of note involves the electromagnetic radius of the pro-
ton. As we discussed earlier, the proton radius can be obtained through

17Burton Richter and Samuel Chao Chung Ting were awarded the Nobel Prize in Physics
in 1976 “for their pioneering work in the discovery of a heavy elementary particle of a new
kind.” The Nobel Prize in Physics in 1995 was awarded “for pioneering experimental con-
tributions to lepton physics” to Martin L. Perl “for the discovery of the tau lepton” and
Frederick Reines “for the detection of the neutrino.”
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scattering measurements. It is also possible to investigate through preci-
sion measurements of the Lamb shift. Recent measurements of the Lamb
shift in muonic hydrogen—atoms in which a negative muon replaces the
electron—have obtained a distinctly different value.

Exercisk 6.11. The present PDG value for the proton charge radius
is r, = 0.8751(61) fm, where the uncertainty in the last two digits
(standard deviation) is listed in parentheses. The result of Lamb
shift measurements in muonic hydrogen is r, = 0.84087(39) fm. The
difference is small but statistically significant. How many standard
deviations separate the two?

6.4. Strings

The main pieces of the Standard Model fell into place roughly during the
1970s, with refinements taking place over the next few years. Develop-
ers of the theory and experimentalists who provided the data that defined
the behavior of the elementary particles were frequently rewarded by the
Nobel Prize committee members and one might conclude that there was
a great deal of satisfaction within the community. Indeed, the recognition
that a non-Abelian gauge field theory could be constructed that was renor-
malizable, that a host of technical details could be wrestled to ground and
that calculations agreed with experimental measurements did provoke a
large measure of satisfaction.

On the other hand, the fundamental symmetry of nature embodied in
the Standard Model is SU(3)xSU(2)xU(1), which seems a bit inelegant,
as does the model itself. The concept of an atom composed of protons,
neutrons and electrons is tidy. There are three constituents. There is one
coupling constant a that needs to be determined. Where we stand now in
our understanding of nuclear matter is that there are six kinds of quarks,
three generations of electron-like leptons, massive vector bosons, gluons
and a scalar Higgs field. This seems like a lot of fundamental entities.
So, physicists have not yet decided to call their construction the Standard
Theory, like Einstein’s Theory of Relativity, as there are about twenty free
parameters within the Standard Model that must be fixed by comparison
with experiment. Despite its successes, there is no general consensus that
the Standard Model has yet risen to the level of being called a theory.

Unsurprisingly, physicists have attempted to find further simplifications
and several programs seeking unifications of the four known forces: strong,
weak, electromagnetic and gravitational have been launched. In some
sense, the construction of the Standard Model followed Einstein’s logic in
determining his General Theory of Relativity. If you define the symmetry
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you wish to impose through the choice of gauge group, define the covari-
ant derivative (what mathematicians would call the connection) and pick
the number of dimensions in which you want to live, then construction of
the theory is a mathematically solved problem. Turning the mathematical
crank to obtain the equations of motion is, essentially, straightforward.
Solving those equations, of course, remains a nontrivial, often herculean,
task.

The important problem physicists face is that there are often no exper-
imental data to provide guidance. There are no accelerators capable of
reaching the energies necessary to probe more deeply into what might lie
beyond the Standard Model. There are a few very high energy cosmic
rays that are observed from time to time but the data rate of interesting
events is too low to provide answers within the academic lifetimes of fac-
ulty members. So, while there has been much speculation, there has been
little progress.

An obvious place to begin is to revisit the SU(3)xSU(2)xU(1) symmetry.
In 1975, Howard Georgi and Sheldon Glashow recognized that this sym-
metry could be embedded in the larger SU(5) group. In some sense, this
would be more aesthetically pleasing but a consequence of the embedding
is that the SU(5) model ultimately predicts proton decay. This is due to
the fact that, within the SU(5) model, quarks and electrons are just dif-
ferent members of a particular representation and there exist generators
that mix these states. A number of experiments have been conducted and
the current limits on the proton lifetime exceed 10?9 years for all channels
and 1033 years for specific decays like p — ¢* 7. Astrophysicists estimate
the age of the universe to be on the order of 1.3x10'° years, so protons are
stable on time scales that vastly exceed the age of the universe. Concisely,
SU(5) is not the gauge theory that defines elementary particles.

A number of other grand unified theories were proposed, based on other
Lie groups that contained the Standard Model group as a subgroup. In-
evitably, these theories predicted the existence of particles that have not
yet been observed and transitions (like proton decay) that have also not
been observed. Fixing these problems generally required some mathe-
matical sleight of hand to push the masses of the unobserved particles
beyond the energy range accessible to experiment.

An alternative approach that was subsequently abandoned was based on
an idea originally proposed by Jogesh Pati and Abdus Salam in 1974.'®
Suppose all of the particles in table 6.3 are themselves composite. Pati and
Salam coined the term preons to describe their “pre-quarks” and found

”

18pati and Salam’s “Lepton number as the fourth ‘color’
Review D.

was published in the Physical
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that as few as two preon types could explain the part of table 6.3 that was
known at the time. A number of subsequent studies also have postulated
that the fundamental particles of the Standard Model are composite. The
fundamental issue with these ideas is they require the existence of an ad-
ditional, stronger force that is required to bind the preons into leptons
and quarks. At the energies accessible to experimentalists, there has been
no definitive signature of the compositeness of the elements in table 6.3.

Prior to the ascendance of the Standard Model, a number of physicists
explored an approach to quantum theories known as the S-matrix. Origi-
nally proposed'? by John Wheeler in 1937 as a means of describing atomic
nuclei, Heisenberg proposed using the methodology as a basis for under-
standing particle behavior.”® The key idea of the S-matrix theory was that
the scattering amplitude between initial and final states could be defined,
quite abstractly, in terms of a matrix S that was unitary, preserved relativ-
ity and was analytic except at poles. This last condition arises as a result
of the properties of so-called analytic functions of a complex variable.

If one considers integrating a function f(z) along some closed contour
in the complex plane, the French mathematician Augustin-Louis Cauchy
demonstrated in 1825 that, for analytic functions, the integral will vanish.
Otherwise, the value of the integral is completely determined by singular
points of the function.

(6.18) é}gdzf(z):zniZRes(zj).
N j

In equation 6.18, the sum includes all of the singular points z; of the func-
tion f within the contour that encloses the boundary of some surface dS
in the complex plane. The residues (Res) of a function can be determined
from an analysis of the singularity. If the function f can be expressed
as the ratio of two functions f(z) = g(z)/h(z), then f is singular when h
vanishes. In this case, we have the following definition of the residue:
8(z;)
Res(z;) = —— L.
eS(Z]) (dh/dZ)Z/

In cases where the singularity is stronger than first order, the residues can
be obtained from higher derivatives of f:

n—1

(n—1)! zh—>n% dzh=1 [

Res(z;) = (Z—Zj)"f(z)],

9Wheeler’s “On the mathematical description of light nuclei by the method of resonating
group structure” was published in the Physical Review.

20Heisenberg’s “Die beobachtbaren Gréssen in der Theorie der Elementarteilche” was pub-
lished in the Zeitschrift fiir Physik in 1943.
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is the result for a pole of order n.

The Italian physicist Tullio Regge developed an approach to solving for
the S-matrix scattering amplitudes based, essentially, on the idea of al-
lowing the angular momentum to become a complex number.** For a
time, analyzing the Regge trajectories: behavior of poles in the complex
plane was a singular focus in theoretical physics. Ultimately, physicists
concluded that the S-matrix program wasn’t providing any additional in-
sights into the nature of the strong force and it was largely abandoned.
In 1968, though, the Italian physicist Gabriele Veneziano discovered that
Leonhard Euler’s beta function could serve as a description of an analytic
S-matrix, with an additional property of duality.>> Veneziano’s dual S-
matrix captured the attention of a number of theorists.

Exercise 6.12. The f function is defined as follows:

Sy = LOTW)

I(x+v)’
where T is the Euler Gamma function. Plot Gamma for the domain
—10 < x < 10. Plot the real and imaginary parts of the complex func-
tion Beta[x + I y,-3.2] for—10<x<10and -5<p<5.

By 1970, Yoichiro Nambu, Leonard Susskind and Holger Bech Nielsen had
found a physical interpretation of Veneziano’s theory: it was a quantum
mechanical theory that corresponded to a classical system of vibrating
strings. The strings could be open or closed, forming a loop upon them-
selves. A number of physicists contributed to the development of this
initial string theory but it didn’t lead to the desired grand unification.
First, it was discovered that to make the theory consistent, it had to exist
in a 25-dimensional space and it included solutions that travelled faster
than light. These tachyon solutions are harbingers of death, as they de-
stroy causality. While vastly popular in science fiction circles, they are
decidedly unwanted in physical theories.

The original string theory only contained bosons but fermions were added
to the theory by Pierre Ramond in 1970. To accomplish this, Ramond cre-
ated an algebra unlike any he had seen previously. We have noted that the
Lie algebras for bosons are defined by the commutation relations amongst
the generators: [a;,a;] = a;a; —a;ja; = o, for example. For fermions, the
generators anticommute: {a;,a;} = a;a; +a;a; = o. Ramond’s algebra had
both commuting and anti-commuting operators. Today this is known as
supersymmetry.

21Regge published “Introduction to complex orbital momenta” in Il Nuovo Cimento in 1959.
22Veneziano published “Construction of a crossing-symmetric Regge-behaved amplitude
for linearly rising Regge trajectories” in Nuovo Cimento.
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Ramond found that his strings could live peacefully in nine space dimen-
sions and that his theory did not have tachyon solutions. Over the next
several years, a number of key results were obtained. First, the theory was
found to be relativistically correct. Then, in 1972, Andrei Neveu and Joél
Scherk found that superstrings had loop states that correspond to gauge
bosons. Finally, in 1974, Scherk, John Schwarz and, independently, Tami-
aki Yonega found that some of the massless bosons of the supersymmetric
theory could be interpreted as gauge bosons for the gravitational force.
Hence, string theory is the fundamental theory that everyone sought.

The beauty that is often attributed to string theory arises from the natu-
ral way that gravitation arises from the theory that began as a statement
of strong interactions. Open strings correspond to particle/anti-particle
pairs and loops correspond to bosons. All interactions are described by
the breaking and joining of loops.

Despite large interest in the new theory, there were still concerns that the
theory might not work. It might not be renormalizable or have anomalies.
These fears were abated by work by Michael Green and John Schwarz in
1984, who demonstrated that anomalies cancelled in a supersymmetric
theory based on the group SO(32).?3 Their work spawned a resurgence of
interest in string theory but a decade of work ended with the status of the
theory still confused.

Physicists soon determined that there were five different superstring the-
ories that were internally consistent. All required nine spatial dimensions
for consistency, so six dimensions have to be hidden. The leading idea
is that they are wrapped up into an infinitesimal size that is unobserv-
able to us. This is an idea that dates back to an early discovery by the
Finnish theorist Gunnar Nordstrom in 1914 and rediscovered by the Ger-
man physicist Theodor Kaluza in 1921. Kaluza added a fifth dimension
to Einstein’s equations from his general theory of relativity.>* Einstein’s
metric tensor is extended into five dimensions:
2

(619) Sik = |:qb%lzk (P¢124l:|

The Christoffel symbols become five dimensional as well. One can then
follow Einstein’s methodology and recover not only the theory of general
relativity but the electromagnetic stress tensor and Maxwell’s equations.

23Green and Schwartz published “Anomaly cancellations in supersymmetric D-10 gauge
theory and superstring theory” in the Physics Letters B in 1984.

24Nordstrdm published “Uber die Mdglichkeit, das Elektromagnetische Feld und das Grav-
itationsfeld zu vereiningen” in the Physikalische Zeitschrift in 1914. Klein published “Zum
Unitédtsproblem in der Physik” in the Sitzungsberichte der Kéniglich Preufischen Akademie der
Wissenschaften in 1921.
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In taking up the work, Oskar Klein made the additional assumption that
the metric tensor was independent of the fifth degree of freedom?>:

ik
(6.20) % =0
This greatly simplified the resulting equations and, of course, made the
fifth dimension invisible.

The Kaluza-Klein theory falls just short of miraculous: it fails because the
ad hoc fifth dimension is not a dynamical variable like the four of space-
time. It has to be frozen in order to extract Maxwell’s equations inde-
pendently from the gravitational equations. Allowing it to be dynamical
results in processes that mix the electromagnetic and gravitational fields
in ways that have not been observed.

In a similar sense, the superstring theories require some sort of mecha-
nism that can render the extra six spatial dimensions invisible. In addi-
tion to supersymmetry, the six-dimensional space is assumed to be invari-
ant to conformal transformations; these requirements can be satisfied if
each point in the six-dimensional space is characterized by three complex
numbers. Such spaces are known as Calabi-Yau spaces, after the mathe-
maticians Eugenio Calabi, who first studied them, and Shing-Tung Yau,
who proved Calabi’s conjecture that the curvature of such spaces satisfies
a particular constraint only if a topological invariant of the space vanishes.

There was initial hope that there might only be a few Calabi-Yau spaces;
identifying the one required to make string theory work properly would
be tedious but the task wouldn’t take long. Unfortunately, there are many
Calabi-Yau spaces, possibly an infinite number but this is, as yet, undeter-
mined.

In 1995, physicist Ed Witten proposed that one could derive the five known
superstring theories from a larger, 11-dimensional supermembrane the-
ory. If you take one of the dimensions of the supermembrane theory to be
a circle and wrap one dimension of a membrane around that circle, you
now have what appears to be a one dimensional object (string) moving
through space. Witten found that there were five ways to wrap mem-
branes around the circle; each corresponded to one of the known super-
string theories. He called his invention M-theory but without identifying
what he intended M to mean. The strings, though in this representation,
are an emergent property of a larger system.

Witten’s conjecture spurred a so-called second revolution in string theory.
Eleven dimensions turns out to be the largest number of dimensions in

25Klein published “Quantentheorie und fiinfdimensionale Relativititstheorie” in the
Zeitschrift fiir Physik in 1926.
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which one could create a theory of supergravity. There was much spec-
ulation that this latest conjecture would provide a pathway to the final
theory. For a variety of reasons, this has not turned out to be the case.
Twenty years later, string theorists now speak of the landscape of 105°°
potential string theories that might be constructed without any particular
means of identifying which one of those might be relevant.

All of the string theories require supersymmetry for mathematical sta-
bility but supersymmetry requires that there be a number of particles
that are the supersymmetric partners of known particles. These have not
been observed. So, if they exist, they must have energies beyond what
we can generate in the largest accelerators. If there were a few dozen un-
explained bumps in the cross-sections obtained at the LHC, they would
provide guidance as to how to winnow the theories down to a tractable
number. As it happens, most theorists believe that unification will hap-
pen somewhere around the Planck mass:

e 1/2
(6.21) mp = [E} ~1.2x10"9 GeV/c?.

Such energies have only existed at the beginning of the universe, just after
the big bang.

Thus, theorists have turned to astronomical measurements to determine
if there might be clues embedded in the structure of matter in the uni-
verse that will provide guidance. As we shall discuss subsequently, cur-
rent astronomical ideas indicate that the universe is expanding and has
large-scale structure that must have arisen due to early time fluctuations
in the matter density. The expansion is potentially an indication that Ein-
stein’s cosmological constant is small and positive. As superstring the-
ory includes gravitation, the existence of a positive cosmological constant
might provide some direction but has not yet led to any resolution.

On a positive note, the struggles with superstring theory have brokered
something of a rapprochement between theoretical physicists and math-
ematicians. Physicists use mathematics but can be untidy in their ap-
proach. Mathematician are exacting but generally unconcerned about ap-
plications of their efforts. Einstein required the tutelage of Grossmann
to make sense of the dry mathematical derivations and, more recently,
string theorists have sought out mathematicians like Michael Atiyah, who
are interested in applications.

As we have mentioned, physicists would like to know if soliton solutions
are supported by Maxwell’s equations. How does one frame such a ques-
tion mathematically? Well, mathematicians have developed many ideas
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about the nature of mappings on manifolds in higher dimensions. In par-
ticular, the Atiyah-Singer Index Theorem provides an answer to the ques-
tion of how many solutions can exist for a particular set of differential
equations. The fields of differential geometry and analysis contain tools
to help understand such behaviors, as does the field of topology. Atiyah’s
other contributions to mathematics have led to illuminating the connec-
tions between such disparate fields and provide calculational tools that
even physicists can learn to use. In return, physicists have provided non-
trivial examples for mathematicians to consider; both fields can benefit
from the interchange.

At this point, there is no earth shattering resolution to the problems beset-
ting superstring theory. No one has found a means to construct a mean-
ingful theory or prove that the entire approach is infeasible. Meanwhile,
the Standard Model has held sway for thirty years. It is not elegant but
there is no compelling reason to abandon it.



VI

On the Nature of the Chemical Bond

To this point, we have been considering ever smaller length scales in our
efforts to understand the fundamental nature of matter. We shall now
pivot and begin considering larger entities. Most of the world around us is
not composed of individual atoms but is, instead, composed of molecules:
specific combinations of atoms that are bound in specific arrangements.
This is the world of chemistry.

In some sense, the fact that there is a scientific discipline called Chem-
istry is disappointing. One might well imagine that there should be a dis-
cipline called molecular physics where we simply use all of the quantum
mechanics that has been developed this far to calculate all of the prop-
erties of molecules that we require. As a practical matter, we will find
that calculating the properties of interest for chemical systems lies well
beyond the capabilities of current technology.

Chemical systems represent an inherently many-body problem. This is
problematic for anyone wishing to compute quantities like enthalpies of
formation or reaction rates. As a result, chemistry remains a science dom-
inated by experiment. For example, in 1985 Harold Kroto joined forces
with Richard Smalley and Robert Curl. Smalley and Curl had developed
a molecular beam spectrometer for use in their studies of metal clus-
ters, illustrated in figure 7.1. After leaving the exit port B, the gas un-
derwent free expansion, cooling the material and freezing the molecular
constituents. After another meter of travel, the gas entered a mass spec-
trometer to identify the constituents.

Kroto was interested in carbon species in the atmospheres of red giant
stars and, ultimately, convinced Smalley and Curl to abandon their pri-
mary research topics and spend some time investigating carbon. What
they observed was wholly unexpected: instead of some sort of smooth
distribution of carbon clusters, the group found their spectrum was dom-
inated by a single peak at 60 carbon atoms, with a smaller peak at 7o.!

IKroto et al. published “Cgo: Buckminsterfullerene” in Nature. Curl, Kroto and Smalley
were awarded the Nobel Prize in Chemistry in 1996 “for their discovery of fullerenes.”
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llaser

Ficure 7.1. High pressure he-

lium gas enters the apparatus

at A. Carbon is ablated from

a rotating disk D by laser
pulses and continues to react
through the tube until reach- g™
ing point B, where the gas is

free to expand.

After several tense days of trying to understand why carbon should clus-
ter in such a particular fashion, Smalley and coworkers finally established
the three-dimensional nature of their new molecule, that self-assembled
in the gas phase. The truncated icosahedral shape is reminiscent of a foot-
ball, with alternating panels of hexagons and pentagons, as pictured in
figure 7.2.

Ficure 7.2. The Cg, molecule
possesses icosahedral symme-
try. Each atom (dark spheres)
sits at the vertex of a penta-
gon and two hexagons. Atoms
are connected via (gray) tubes
to indicate nearest neighbors.
All sixty atoms are equiva-
lent.

Figure 7.2 represents one possible representation of the Cg, molecule,
known as a ball-and-stick representation, that emphasizes the network
of interactions between neighboring atoms. There are a number of differ-
ent representations of molecular structure—each has its own purpose—
but we need to recognize that, just as atoms are not clusters of grapes
surrounded by whirling electrons, molecules are not balls connected by
sticks. Chemists call these interactions chemical bonds and they form
the focus of our discussion.
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Of course, Curl, Kroto and Smalley did not visualize tiny footballs. Their
apparatus simply provided a large peak at the mass 720 Da, which corre-
sponds to sixty copies of '>C, and a smaller peak at 840 Da, correspond-
ing to C_,. Confirmation of their proposed structure required accumu-
lating enough Cg, to conduct infrared spectra, X-ray diffraction data and
NMR spectra. A team headed by physicists Wolfgang Krdtschmer and
Donald Huffman found a means to generate gram quantities of C¢, and
demonstrated convincingly in 1990 that the molecule possesses the three-
dimensional structure illustrated in figure 7.2. In the same year, Kroto
and his student Jonathan Hare succeeded in obtaining the NMR spectrum
of 3C and found it to contain just a single line, demonstrating the equiv-
alence of each of the sixty carbon atoms that comprise the molecule.?

Unfortunately, theorists had very little to say about the fullerenes, even
after their discovery. Sixty carbon atoms imply 360 electrons scattered
around sixty centers. Computers of the day were simply not fast enough
to provide any significant information, much less predict the existence
of such an unusual structure. Not surprisingly, we have subsequently
learned that three-dimensional structures of carbon are vastly more com-
mon that we could have imagined.

7.1. Electronic Structure

Chemistry began with the recognition by early researchers like Henry
Boyle, Joseph Priestly and Antoine-Laurent Lavoisier that elements com-
bined in particular combinations. Those combinations were related to the
elements’ positions within the periodic table, illustrated in figure 4.1. We
now recognize that the combinations result from the participation of so-
called valence electrons, those electrons that are not in closed shells. As
a result, all of the atoms in vertical columns in the table behave in simi-
lar fashion. For example, all elements in the first column form molecules
with a single hydrogen atom: H,, LiH, NaH, KH, etc. All elements in the
last column are chemically inert, and are known as the noble gases.

The combinations of elements that arise to form molecules can be deduced
from the simple rule that all atoms seek closed shells, either by donating
or accepting electrons. A representation of this behavior is known as the
Lewis dot notation. Dots, representing valence electrons, are displayed
around the elemental symbol. For second-row elements, the shell closes

2Kritschmer et al. published “Cg,: A new solid form of carbon” in Nature. Kroto et al.
published “Isolation, separation and characterisation of the fullerenes C6o and C7o: the
third form of carbon” in the Journal of the Chemical Society, Chemical Communications.
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with eight electrons; so, we can obtain the explanation for the chemical
formula for calcium chloride (CaCl,) as follows:

(7.1) «Car Cl: - :Cl:Ca:Cl:

Here, calcium contains two electrons beyond the closed shell and chlo-
rine is one electron short of a closed shell. By combining two chlorine
atoms with a single calcium atom, all of the atoms achieve closed shells.
Calcium does so by donating its two electrons and reverting to the previ-
ous closed shell. Each chlorine atom accepts an electron to complete the
current shell.

This simple idea can be used to explain many of the bonding patterns for
the lighter elements but is of less value when discussing heavier isotopes.
Shell closures involving eight electrons, as in equation 7.1, are graphically
simple but, when discussing shell closures of 18 electrons, the graphical
representation is not so simple. Metals can often have multiple oxidation
states. Iron, for example, can exist in both +2 and +3 oxidation states,
forming FeO and Fe,O,, respectively. Even for light atoms, though, be-
haviors can be complicated: nitrogen and oxygen can form multiple stable
molecules with different stoichiometries.

Exercise 7.1. Draw the Lewis dot diagrams for carbon, nitrogen
and oxygen. Use these to define the following molecules: CO,, CO,
N,O, NO and NO,,.

While a useful heuristic device for the lighter elements, the Lewis dot
method is not quantitative and not terribly predictive. Of course, the an-
swer is to compute the electron density utilizing a quantum approach but
such calculations are quite formidable. We have outlined the basic theo-
retical underpinnings of quantum chemistry calculations; the most acces-
sible are those based upon density-functional theory. There are, of course,
a vast number of technical details that we have omitted, so we shall not
attempt to construct a density-functional code here.

In this text, we shall utilize the NWChem software package developed at
Pacific Northwest Laboratories. It is freely available and was designed for
parallel architectures.3 There are a number of alternative codes but we
shall focus on NWChem for its scalability. We will restrict ourselves to
rather modest calculations but, given adequate computing resources, the
code is capable of handling hundreds of atoms and running on thousands
of processors.

3The code is available at www.nwchem-sw.org. M. Valiev, E.J. Bylaska, N. Govind, K. Kowal-
ski, T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, W.A. de
Jong published “NWChem: a comprehensive and scalable open-source solution for large
scale molecular simulations” in Computational Physics Communications in 2010.
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Students should be cautious about interpreting results obtained from sim-
ulations. The NWChem code is relatively user-friendly, as far as compu-
tational chemistry codes go, but there are many ways to make errors in
the input files that will lead to spurious results. Even then, as we have
seen, even relatively monumental calculations achieve only modest ac-
curacies; it is important to always refer to experimental data for ground
truth. Check to ensure that your results are reasonable, whatever that
means. Nevertheless, as we shall discover, computational results can be
utilized to help interpret sometimes ambiguous experimental results.

The beginning point for calculations is establishing an initial geometry of
the molecule you wish to investigate. If you put several carbon, oxygen
and hydrogen atoms into a box and shake it, there are potentially dozens
of different molecules that could be constructed. So, to start calculations
on a particular molecule, you need to begin with a starting structure that
is close to the actual structure. Otherwise, you may spend forever working
on molecules other than the one of interest. Fortunately, in this modern
era, there are several online databases that archive structural data. For
small molecules, we will make use of the Crystallographic Open Database
(COD), which provides a graphical interface for searching for structural
data. This can be quite useful for physicists because chemical names can
be quite baffling. If you can draw a picture of the molecule, translation
into the chemical name is done automatically in the background. As an
example, we shall investigate the properties of the carbon dioxide mole-
cule (CO,).

Exercisk 7.2.  Enter the COD website and use the graphical search
tool to construct a molecule with two double (=) bonds. Label the
outer atoms as oxygens. The central atom will be unlabelled but it is
assumed to be carbon. Searching for this structure will retrieve sev-
eral crystallographic information files (.cif). Select the most recent
and save it to your local computer.

As we have mentioned, crystallographers have discovered that there are
a finite number of ways in which crystal structures can exist in a three-
dimensional world. They are governed by what are known as point groups
that define the rotational symmetries of the crystal. Any crystal can be
decomposed into unit cells, with coordinate axes defined by the vectors
a, b and c. The information that defines a particular molecule is written
into a format that makes sense to crystallographers. These are crystallo-
graphic information files (.cif). The content of the .cif files includes the
coordinates of the atoms within the asymmetric unit in terms of fractions
of the axes vectors, which is a particularly compact way of specifying the
crystal. The complete crystal can be recovered by replication of the asym-
metric unit into the unit cell and thence into a larger assembly. At times,
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we must transform the .cif file into a more usable format. There are a
number of possible solutions but we shall utilize the Mercury utility pro-
vided by the Cambridge Crystallographic Data Centre.*

Exercisk 7.3. Enter the CCDC website and download the Mercury
installer and install Mercury on your computer. Load the CO, .cif
file. You should see two oxygen atoms and a carbon in the center.
Save the molecule as a .xyz file. Mercury provides a number of anal-
ysis capabilities. What is the carbon-oxygen bond length? What is
the angle formed by the three atoms, with carbon at the vertex?

We now have an initial set of coordinates for an NWChem calculation.
One can proceed in a number of different ways depending upon the local
NWChem installation. For example, there is a graphical interface called
ECCE that enables molecular construction, job submission and analysis
of results in a kinder, gentler fashion. For simplicity, we shall avoid that
pathway as ECCE only runs on Unix-based (Linux) machines. NWChem
is also happier on Linux architectures but Windows and Mac versions can
be compiled. So, below is an input script that will run a simple NWChem
job under Linux. The script file is named co2 and through some of the
early magic in the script will create a variable called JOBNAME that is
the name of the file. The script creates an input file named co2.nw and
ultimately runs a multiprocessor job with mpirun. The initial module
commands utilize the Linux module environment for path management.
These are not necessary if the mpirun and nwchem executables are visible
to the user through other means.

#!/bin/tcsh

#

# This script runs NWChem on a Linux machine

#

module load mpich

module load nwchem

#

setenv NWCHEM_PROCS 4

setenv NWCHEM_MEMORY "1200 mb"

setenv NWCHEM_SCRATCH /home/mark/nwchem/scratch

#

set procid="echo $$°

setenv JOBNAME ‘ps -p $procid | grep $procid | awk “print $54"°
setenv NWCHEM_ROOT ‘echo $JOBNAME | awk -F_ “print $1°
setenv NWCHEM_SUFFIX ‘echo $JOBNAME | awk -F_ “print $2"°
mkdir $NWCHEM_SCRATCH/$procid

4The CCDC website is www.ccdc.cam.ac.uk
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#

# Build the input file

#

cat « finis > $JOBNAME.nw
title "CO2 optimization"
start $NWCHEM_ROOT
permanent_dir $cwd
scratch_dir $NWCHEM_SCRATCH/$procid
memory $NWCHEM_MEMORY
print low

ecce_print $JOBNAME.ecce

charge o
geometry units angstrom

C 0.100000 0.000000 0.000000

01 0.608040 0.608040 0.608040

02 -0.608040 -0.608040 -0.608040
end

basis
* library "6-31++Gxx
end
dft
xc b3lyp
iterations 1000
direct
noio
end

"

task dft optimize
dplot
vectors $NWCHEM_ROOT.movecs
limitxyz units angstrom
-3.0 3.0 100
-3.0 3.0 100
-3.0 3.0 100
spin total
gaussian
output $NWCHEM_ROOT.cube
end

task dplot

finis

#

# Run the job

#

mpirun -np $NWCHEM_PROCS nwchem $JOBNAME.nw >& $JOBNAME .nwo
#

# Clean up scratch directory

rm -rf $NWCHEM_SCRATCH/$procid

The strategy of using a script to write the input files is a convenience
that is useful when running many NWChem jobs, particularly sequen-
tial operations. Naming files co2_o1, co2_02, co2_o03, etc., will help the
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user at least remember the sequence of events when revisiting the cal-
culations at a later date. The .nw file generated by the script is a text
file and can be viewed directly. When NWChem executes, it generates a
number of scratch files. These are stored in the directory specified by the
scratch_dir directive, which the script creates and then removes when
complete. The remaining output files will be placed into the directory
specified by the permanent_dir directive. The main output of NWChem
is directed into a file called co2.nwo.

Exercisk 7.4. Run the co2 script. (On Linux machines, this can be
accomplished via ./co2)

Note that the geometry is that obtained from the .cif file, with the mod-
ification that a small offset was made to the carbon atom. This avoids a
technical issue with the conversion of the .xyz coordinates into the inter-
nal coordinates of the molecule utilized by NWChem. The script specifies
arelatively large basis set and conducts a DFT calculation using the B3LYP
exchange correlation. These choices are a bit cryptic but should produce
a reasonably good description of the charge density without requiring ex-
traordinary compute times. (On the author’s laptop, this job runs in under
15 s.) The final task for the script is to utilize the dplot utility to write the
three-dimensional charge density to a file called co2.cube.

p

Ficure 7.3. The charge den-
sity p for CO, on a plane
through the nuclear centers is
strongly peaked at the nuclear
locations. The small asymme-
try is due to sampling on a
rectangular grid not aligned
with the nuclear locations.

y

The charge density obtained from the NWChem calculation is illustrated
in figure 7.3, in which a slice through the nuclear centers is displayed. The
density provided by NWChem is positive, reflecting a suppression of the
electron charge g = —e. The molecule, as can also be seen from the Mer-
cury plots of the crystal structure, is linear. There is a small asymmetry
present but this is due to the fact that the density is computed on a grid
that is not aligned with the nuclear centers.

We note that the charge density is strongly peaked at the nuclear centers.
This is rather different than the usual pictures of molecules presented
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elsewhere. As a sanity check, NWChem sums the values of the charge
density and estimates the volume integral by multiplying by the volume
element. In this instance, the integrated charge was 22.05¢, where we
would nominally expect a value of 22¢, given the atomic numbers of oxy-
gen (8) and carbon (6). From this result, we can conclude that the electron
charge density is largely confined within the 6 A cube in which the density
was computed.

We also note that the C-O distance determined by the x-ray crystallogra-
phy data is 1.053 A, whereas the NWChem calculation returned a value
of 1.169 A. We should recognize that the NWChem calculation computes
the distance in vacuum, where no other atoms interact with the mole-
cule, whereas the x-ray diffraction data are obtained from solid-phase
measurements. This sort of discrepancy may require close investigation
to determine whether it is a shortcoming of the calculation that can be
improved by using better methods or larger basis sets or whether it arises
from crystal-packing effects.

Exercisk 7.5. Repeat the CO, calculation but use the following ba-
sis sets: 3-21g*, 6-31g* and 6-311++g**. How does the geometry
change with the choice of basis set. Note that the first two basis sets
are smaller than we initially used and the last is significantly larger.

It is possible to use Mathematica routines to visualize the charge density.
The following code will read the .cube file.

ReadCube[filename_]| :=

Module[{atomList, atomZ, avec, bohrA, bvec, cdens, charge, coordList, cvec, dum,
fileid, go, head1, head2, molxyz, nAtoms, na, nb, nc, nextline, ufactor, xvec},
bohrA = 0.52917721067;

(*Read the headerx)

fileid = OpenRead[filename];

head1 = Read[fileid, String];

head2 = Read[fileid, String];

(*Read the number of atoms and grid originx)

go = 0, 0, O;

nextline = Read[fileid,String];

{nAtoms, go[[1]], go[[2]], go[[3]]} = ImportString[nextline,"Table"][[1]];
(*Read the a, b and ¢ vectors and scale from bohrs, if necessaryx)

avec = 0, 0, 0;

nextline = Read[fileid, String];

{na, avec[[1]], avec[[2]], avec[[3]]} = ImportString[nextline,"Table"][[1]];
ufactor = If[na > o, bohrA, 1.];

bvec = o, o0, 0;
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nextline = Read[fileid,String];

{nb, bvec[[1]], bvec[[2]], bvec[[3]]}
cvec = 0, 0, 0;

nextline = Read[fileid, String];

{nc, cvec[[1]], cvec[[2]], cvec[[3]]}
go = ufactor go;

avec = ufactor avec;

bvec = ufactor bvec;

cvec = ufactor cvec;

xvec = 0, 0, O;

(*Read the list of atoms: Z, charge,

atomList = {};

coordList = {};

Do[nextline = Read[fileid, String];
{atomZ, charge, xvec[[1]], xvec[[2]],
ImportString[nextline, "Table"][[1]];
If[atomZ>0,

ON THE NATURE OF THE CHEMICAL BOND

ImportString[nextline,"Table"][[1]];

ImportString[nextline, "Table"][[1]];

X,y,2%)

xvec[[3]]} =

atomList = Append[atomList, ElementData[atomZ, "Abbreviation"]];

coordList = Append[coordList, xvec];, dum=1], {nAtoms}];
(» Write a .xyz file into a string, scale the coordinates because thex)

(* default is pm.

We’ 1l use Angstroms.*)

molxyz = ExportString[{atomList, 100. ufactor coordList},
{"XYZ", {"VertexTypes","VertexCoordinates"}}];

(* Read the density and scale to e/A~3%)

cdens = Partition]

Partition[ReadList[fileid, Number, na nb nc], nc], nb]/bohrA~3;

Close[fileid];

{na, avec, nb, bvec, nc, cvec, go, molxyz,cdens}];

The ReadCube function requires the name of the .cube file. Its usage is as

follows:

{na,avec,nb,bvec,nc,cvec,go,molxyz,cdens} = ReadCube[”co2.cube”];

EXERCISE 7.6.

Read the coz.cube file with the ReadCube function.

The volume element is obtained from the triple product 4V = a-
(b x ¢) and the sum of the density can be obtained with the Flat-
ten and Total functions. Convince yourself that there are 22 elec-
trons present. The Mathematica function Import produces a three-
dimensional graphics element when the file type is a chemical .xyz
file. The returned variable molxyz contains a string image of such a
file. Use the ImportString function to visualize the molecule.

Exercisk 7.7.  Visualizing three-dimensional densities is problem-
atic. We can use the ListContourPlot3D function to contour the
density and use the PlotRange directive to display half of the im-

age.
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dmax=Max[Flatten[cdens]]

gmax=go+(na-1)avec+(nb-1)bvec+(nc-1)cvec

grange = Table[{go[[i]],gmax[[i]]},{i,1,3}]

prange=grange

prange[[1,2]]=0

ListContourPlotgD[cdens,

Contours->{0.00005 dmax, 0.0005 dmax, 0.005 dmax, o0.05 dmax, 0.5 dmax},
Mesh->None ,DataRange->grange,PlotRange->prange |

The code above will plot contours of the charge density for values of
half the peak, five percent of the peak, etc.

Exercist 7.8. The cdens variable is a three-dimensional array of
size na x nb x nc. Select a two-dimensional slice through the center
and plot with the ListPlotgD function.

Select the line through the center of the two-dimensional slice and
plot with the ListPlot function. What is the value of the density
between the atoms, as a percentage of the peak value?

Exercise 7.9. The integrated density should be just the number of
electrons. The numerical sum of the entire density matrix is close to
that value (when multiplied by the volume element). Subdivide the
volume into three parts and estimate the charge associated with each
atom. Do you find integral numbers of electrons on each nuclear
center?

As we begin our studies into the nature of the chemical bond, we will
make use of numerical simulation as a means of developing an under-
standing of the fundamental properties of chemical systems. To the extent
that the simulations accurately reflect the actual properties of the systems,
this affords us the opportunity to conduct studies that would be difficult
otherwise.> As with other venues in physics, it is crucial to tie these cal-
culations to experimental data to understand any systematic problems.

Using simulations, we can arrange to move the atoms in the simulation in
any particular fashion that we desire and conduct constrained optimiza-
tions to study the energy dependence associated with different geome-
tries. A particular complexity arises from the sheer size of the parameter
space; there are many degrees of freedom in any collection of atoms but
simulation enables us to vary them one at a time. The mechanism within
NWChem for constrained optimizations relies on the Z-matrix. The ge-
ometry defined by the Z-matrix is illustrated in figure 7.4.

5Larry Curtis and coworkers have published a number of comparisons of DFT calculations,
state-of-the-art quantum calculations and experimental data, most recently in 2005 in the
Journal of Chemical Physics. Their “Assessment of Gaussian-3 and density-functional theories
on the G3/05 test set of experimental energies” paints a somewhat dismal picture of the
current capabilities of even the best methods.
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FIGURE 7.4. An alternative way to
specify atom positions is the Z-
matrix. The Z-matrix defines
the atom distances, angles be-
tween three adjacent atoms (0,, 0,)
and dihedral angles (¢) defined as
the angle between the two planes

formed by four atoms.

The Z-matrix provides an alternative means of specifying the geometry.
The geometry block in the previous script could be replaced by the fol-

lowing:

geometry
zmatrix
01
Ci1 01 d1
X C1 one 01 ninety
02 C1 doc X  ninety
variables
d1  1.16941
t1 179.99801
constants
doc 1.06936
one 1.0
ninety go.
end
end

01 t1

This will force the distance between the carbon and the second oxygen to
remain constant when the other variables change to optimize the geom-
etry. We note the use of the dummy atom X to avoid an ambiguity that
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arises in specifying linear molecules. The dummy atom is placed an ar-
bitrary distance (1 A) away from the center atom at an angle of 9o°. The
01-C-02 angle is then specified as the dihedral angle.
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FiGure 7.5. The difference in 4 -
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energy between the optimized s
molecule and the molecule L o OO
with one of the C-O dis- i °
tances constrained shows a L o
sharp minimum at the opti- o b
o 1 2 3 4

mum distance. .
C-0 distance (A)

One of the difficulties associated with using NWChem, or any other such
code, is that it is not particularly user-friendly. In particular, the code uses
atomic units internally for efficiency. Distance units are bohrs and energy
units are Hartrees. These can be readily converted, as was done in the
ReadCube function. Additionally, the authors of such codes tend to be ver-
bose (even with the print low directive), so the output files can become
quite large. To find some of the more important lines, one can search for
the @ character. (On Linux systems, grep @ co2.nwo will search for all oc-
currences of @ within the file.) Final, optimized geometries can be found
in the vicinity of the word “converged.” It is possible to remedy some of
the tediousness associated with ferreting relevant information from the
output files via scripting but we will utilize brute force for now.

Exercise 7.10. Replace the geometry block in the original script file
with the Z-matrix specified above. Replicate the geometry block and
the task dft optimize directive several times. Change the value of
the constrained distance doc to obtain the energy as a function of
distance. See if you can replicate/extend figure 7.5.

What we observe from figure 7.5 is that there is an attractive interaction
between the oxygen atom and the oxygen-carbon molecule. There is a
sharp minimum in the energy at the distance of 1.17 A and beyond about
3 A the energy difference reaches a plateau. At this point, we can consider
that the carbon dioxide molecule has separated into a carbon monoxide
(CO) molecule and an oxygen atom. Hence, the attractive interaction has
a limited range. We also observe that the energy scale is measured in eV,
characteristic of chemical systems and six orders of magnitude smaller
than the characteristic energies we observed in nuclear systems.
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In a nutshell, this is why alchemists were doomed to failure in their quest
to transmute lead into gold. It is, of course, possible to strip three protons
from a lead nucleus to produce a gold isotope but the energy required to
do so far outstrips the energy available in any furnace. Chemical reactions
produce energies in the eV range, where nuclear reactions work in the
MeV range. We also note that, despite the fact that the charge densities
in figure 7.3 are very strongly peaked at the nuclear centers, there is a
significant energy barrier to decreasing the internuclear separation.

Exercise 7.11. Calculate the charge densities for the molecules
N,O, NO and NO,. Note that for calculations with an odd num-
ber of electrons, one must add the following directives to the dft
block:
dft

odft

mult 2

end

This will perform an open shell calculation with an unpaired elec-
tron. What are the intermolecular distances? Describe the molecular
shapes. Plot the charge densities.

7.2. Emergent Behavior

A key observation is that molecules possess a three-dimensional struc-
ture. This is found in the crystal structures and replicated to a greater or
lesser degree in the simulations. Of particular interest to chemists is the
structure of the carbon-carbon bond. We illustrate the structures of some
small hydrocarbon molecules in figure 7.6. Here, we see that in ethane
(C,Hy), the top structure in the figure, the hydrogen atoms are arrayed in
a tetrahedral configuration around the carbon atoms.

In terms of Lewis dot diagrams, we can represent the molecules as fol-
lows:

(7.2) H:G:G:H .C::C, H:C:::C:H
HH H H

but while this representation provides a reasonable explanation for the
stoichiometries, it does not represent the three-dimensional structures.
As we shall see, particularly in the case of biological molecules, the struc-
ture of a molecule is directly related to its function.
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Ficure 7.6. The carbon-carbon distance

changes as more electrons participate in

the binding interaction. The geome-

try of the hydrogen atoms (light gray) 1.33 A
around the carbon atoms (dark gray) also

changes from tetrahedral (top) to planar

(center) to linear (bottom).

The C—C distance in ethane (from our simulations) is 1.55 A. For the case
of ethene (C,H,), that distance decreases to 1.33 A. Chemists would de-
scribe ethene as possessing a double bond between the carbons. This is
also evidenced by the planar nature of the atoms surrounding the carbon.
A triply bonded carbon is depicted in the structure of ethyne (more com-

monly known as acetylene), in which the molecule is linear and the C-C
distance is reduced to 1.21 A.

Exercise 7.12. Calculate the structures for the three simple molecules
CH,, NH, and OH,. What are the bond lengths? What are the angles
H-X-H, where X is one of the heavy atoms?

Another characteristic of double bonds is that there is a significant bar-
rier to rotation of the molecule around the double bond. This can be seen
in figure 7.7, where we have plotted the differences between the energies
of the optimized structures and structures where the molecule has been
twisted around the C—C bond. For the ethene structure, the rotational en-
ergy displays a two-fold symmetry, minimal when the two planes defined
by the two CH, groups are aligned and maximal when they are at go°
to one another. The maximum energy is comparable to molecular bind-
ing energies, as per figure 7.5. On the other hand, for the ethane struc-
ture, the rotational energy displays a three-fold symmetry that is maximal
when the two CH, groups are aligned and minimal when they are rotated
by 60°, as indicated in figure 7.6. The maximum energy is only about
0.12 eV. As we shall see subsequently, the thermal energy in a system is
characterized by kgT, where kg is the Boltzmann constant and T is the
absolute temperature. At 300 K, we find kgT = 25.8 meV, suggesting that
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rotations around the C-C bond in ethane will be possible but generally
not possible in ethene.

Exercisk 7.13. The probability that a system can occupy a state is
proportional to the Boltzmann factor exp[-A&/kgT]. What are the
relative probabilities of rotating the ethane and ethene molecules at
300 K? At 1000 K?

FiGure 7.7. Energy differr < ° [
ences between the optimized % i o o C,Hg (x10) °
. d

structure and structures ro 3 | ® o C,Hy b
tated around the C-C bond . .
are significantly different. 2 e .
The maximu'm energy for the 110 %%, Lo° %o
single bond is about o0.12 eV, ® e

) ] oliil i  19ada® 1]
suggesting that rotations 90 -60 -30 O 30 60 90

around a single bond will be

. ] rotation angle (deg)
energetically permitted.

We have not considered rotations for the ethyne molecule (C,H,) as there
is no rotational degree of freedom around the C-C bond. From a quantum
perspective, there is no means for placing a dot on the side of one of the
hydrogen atoms to determine whether or not the system is rotating around
the axis defined by the C-C bond. It is possible to rotate the molecule
around an axis perpendicular to the C—C bond. Those rotations are, of
course, quantized.

Another characteristic of molecules is their vibrational spectrum. These
vibrational modes can be correlated with the classical mechanical modes
of a system of masses coupled by springs, although in a quantum system it
is somewhat misleading to take the analogy too literally. In general, there
are 3N — 6 vibrational modes in a molecule with N atoms. We subtract
three for translations of the center of mass and another three for rotations
about the center of mass. For linear molecules, this becomes 3N — 5 as the
one rotational degree of freedom around the axis defined by the molecule
is unobservable.

We'’ve plotted the computed energies of the vibrational modes of the hy-
drocarbon molecules in figure 7.8, along with the experimental values.
The root-mean-square deviations for ethane, ethene and ethyne are 8 meV,
3 meV and 11 meV, respectively. The general characteristics of the spectra
are reasonably well produced but it is not the case that the results are as
good as one might hope. Indeed, the calculations include a scaling factor
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Ficure 7.8. The experimental
(black) and calculated (gray)
vibrational levels for the three 0.25 — —
molecules are plotted. The
theoretical values were scaled

by 0.965.

of 0.965 which is generally accepted practice as the methodology system-
atically overestimates the vibrational frequencies.

This scaling of the frequencies is a shortcoming of the models that is
known but difficult to remedy. Studies of many systems indicate that dif-
ferent combinations of theoretical model and basis sets will require dif-
ferent scaling factors but for any particular combination, a single scaling
factor appears to suffice. This is not a particularly satisfactory state of
affairs. Further work is clearly required.

We note that NWChem reports the frequencies in units of cm™" but for
consistency, we have converted these values into electron volts. The high-
est frequencies are associated with vibrations of the hydrogen atoms. All
of the vibrational frequencies increase in energy as the bond type shifts
from single to double to triple. The (greatly exaggerated) displacements
can be visualized with use of the vibrational analysis module in NWChem.
After optimization, one can add the following block to the input script:

freq
animate
end
task dft freq

This analysis can be a lengthy one and the animate directive will lead
to the generation of a host of .xyz files that represent the various modes.
These can be visualized by utilizing the following Mathematica functions:
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ReadFreqXYZ[filename_] :=

Module[{atomList, atom, coordlList, dum, elem, fileid, frames,

nAtoms, molxyz, nextline, xvec},

fileid = OpenRead[filename];

nAtoms = Read[fileid, Number];

nextline = Read[fileid, String];

xvec = {0., 0., 0.}; atomList = {}; coordList = {};

Do[nextline = Read[fileid, String];

{atom, xvec[[1]], xvec[[2]], xvec[[3]]} = ImportString[nextline, "Table"][[1]];
dum = Select[Characters[atom], LetterQ];

If[Length[dum] > 1, elem = dum[[1]] <> dum[[2]], elem = dum[[1]]];

If[ StringPosition[elem, "X"] == {} && StringPosition[elem, "Bq"] == {},
atomList = Append[atomList, elem];

coordList = Append[coordList, xvec];, dum = 1], {nAtoms}];

Close[fileid];

molxyz = ExportString[{atomList,100. coordList}, {"XYZ", {"VertexTypes",
"VertexCoordinates"}}]1;

ViewFregXYZ[filelList_, linear_: False] :=

Module[{atom, contents, fileid, goodFiles, molframes, nActive,

nAtoms, nModes, nSteps, x, xmin, xmax, y, z},

fileid = OpenRead[ExpandFileName[fileList[[1]]]];

nAtoms = Read[fileid, Number];

Close[fileid];

contents = ImportString[ReadFregXYZ[ExpandFileName[fileList[[1]]]], "Table"];
{nActive} = contents[[1]];

xmin = Infinity; xmax = -Infinity;

Do[{atom, x, y, z} = contents[[2 + i]];

xmin = Min[xmin, x, y, z];

xmax = Max[xmax, x, y, z];, i, nActive];

If[linear, nModes = 3 nAtoms - 5, nModes = 3 nAtoms - 6];

goodFiles = Partition[fileList, Length[fileList]/(3*nAtoms)];

nSteps = Length[goodFiles[[1]]] - 1;

goodFiles = goodFiles[[-nModes ;; -1, 1 ;; nSteps]];

molframes =

Table[ImportString[ReadFreqXYZ[ExpandFileName[goodFiles[[i, j]]]], "XYZ",
ViewCenter -> {o.5, 0.5, 0.5}, ViewPoint -> {1.3, -2.4, 2.},

DataRange -> 100 {{xmin, xmax}, {xmin, xmax}, {xmin, xmax}}],

{i, 1, nModes}, {j, 1, nSteps}];

Manipulate[ListAnimate[molframes[[i]]], {i, 1, nModes, 1}]]

Note that ViewFreqXYZ takes an optional logical argument. Set it to True
if the molecule is linear. The function also sets some viewpoint informa-
tion to force the rendering engine to be consistent when rendering all of
the frames. These values can be adjusted to obtain different views.

Exercise 7.14. Conduct a frequency analysis of the ethane mole-
cule. The molecular vibrations can be visualized with the following
script:

SetDirectory["where you put the files"]

fileList=FileNames["freq.m-x"]

ViewFregXYZ[filelList]
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This will take some time to read the relevant files and produce a
table of graphics images. These are sorted by mode number and
rendered using the ListAnimate function.

ExErcise 7.15. A significant example of emergent behavior is the
structure of benzene (C H) that forms a six-membered ring. Con-
struct a Z-matrix for benzene and optimize its structure. A common
strategy for larger molecules is to first optimize the structure with
a small basis set (3-21g) before optimizing with the target basis set
(6-31++g**). (Run the optimization as two steps: first with the ba-
sis library 3-21g and then run a second job with the high-level basis
library but starting from the geometry of the first run.) This strat-
egy places the atoms in close proximity to their final positions and
minimizes the number of times that a DFT calculation has to be per-
formed with the full basis set. What is the structure of this aromatic
compound? How is the electron density distributed?

For lighter elements, there are distinct patterns to chemical bonding, re-
flected by the success of the Lewis dot methodology. If one wants to
study metals, the problems become more challenging. The DFT meth-
ods we have been utilizing scale approximately like N3, where N is the
total number of electrons, higher order methods are worse: scaling like
N® or N8. Consequently, moving from systems with 20-25 electrons to
something like Fe,O, with 76 electrons means that calculations will run

nearly 30 times longer.® With the advent of massively parallel comput-
ers, the scope of computational chemistry has been broadened to include
larger and larger molecules but a number of alternative approaches have
also been considered. For example, it is possible to use effective core po-
tentials and treat only the valence electrons. This reduces the number of
active electrons in iron, for example, by 10.

Exercise 7.16.  Consider the two molecules FeO and Fe,O,. (Note
that Fe, O, will be planar. It will be necessary to add dummy atoms
out of the plane to avoid geometry issues in the optimization.) Use
the 6-31++g** basis for oxygen and the 6-31g** basis along with the
associated polarization basis for iron for the structures. What are the
iron-oxygen distances? What are the angles defined by O-Fe-O and
Fe—-O-Fe?

6Part of the motivation for the initial development of NWChem was the requirement to be
able to study plutonium chemistry, without the need for access to plutonium, which is a
highly controlled substance. With g4 electrons, even a single plutonium atom in a model
made computations nearly intractable.



182 ON THE NATURE OF THE CHEMICAL BOND

basis
0 library “6-31++g*x”
Fe library “6-31g+x*”
Fe library “6-31g+* polarization”
end
We note that the calculation for iron (III) oxide will require significant
time on a desktop or laptop computer. This is rather disappointing as we
are generally going to be interested in the properties of bulk materials,
not just the gas-phase dynamics of a single molecule. As we shall see
going forward, it is possible to treat larger systems but only by sacrificing
accuracy. Further approximations will be necessary to overcome the poor
scaling properties of current methods.

7.3. Hydrogen Bonding

We have thus far concentrated on what chemists would call covalent bonds.
As we have seen in CO,, for example, the electron density does redis-
tribute itself around the nuclear centers. The relatively mobile valence
electrons effectively migrate to neighboring sites. There is a hierarchy of
such bonds, the strongest of which are called ionic bonds in which the
electron is considered to have completely migrated to the adjacent center.
As it happens, there is another binding mode available, one that is key to
the chemistry of biological processes: the hydrogen bond.

If one has access to large computing resources, it is reasonably straightfor-
ward to observe the phenomena by placing a couple of dozen or so water
molecules in close proximity and optimizing the structure. Unfortunately,
while that task is reasonably straightforward to state, it is rather formida-
ble in practice. Understanding the properties of bulk water remains a
current research topic, as numerical methods do not reach sufficient lev-
els of accuracy and efficiency to supplant experimental data. Engineers
have taken great pains to tabulate the properties of water in steam tables.
No computational method can, as yet, replicate these data.

So, we shall drastically simplify the problem and consider just two wa-
ter molecules. If we turn these loose in an optimization, it will likely not
converge as the molecules will rotate aimlessly. In order to constrain the
optimization, we first optimize a single water molecule. Then, constrain-
ing the O-H distances within each molecule to be the optimized value and
the H-O-H angles to also be the optimized value, we permit only the dis-
tance between molecules and the relative orientation to vary. The dihedral
angle between the first water molecule (1 in figure 7.9) and the hydrogen
of the second water molecule is fixed at 125.25°c. Further, the oxygen of
molecule 2 is constrained to be collinear with the hydrogen and oxygen
from molecule 1, as depicted in figure 7.9.
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FIGUre 7.9. The geometry of the water

duplex studied is depicted with the hy- Onon
drogen atoms shaded light gray and oxy- 2

gen atoms shaded dark gray. Only the don
separation doy and angle 0oy were var-

ied in the optimization.

Exercise 7.17.  Construct the Z-matrix for the water duplex prob-
lem. The optimized O-H distance is 0.96528 A and the optimized
angle is 105.72566°. The dihedral angle between the first water mol-
ecule and the hydrogen of the second is 125.25°. Compute the opti-
mum distance doy and angle 8oy for the water duplex.

Exercist 7.18. Use the Z-matrix from the previous exercise to in-
vestigate the energy dependence on the dihedral angle. Hold the
distance dopy and angle Ojop; fixed and vary the dihedral angle from
90° to 180°. What is the optimum angle?

Conventionally, one specifies the distance between the heavy atoms, even
though the calculations constrained the O-H distance. In figure 7.10,
we observe that the optimal distance is approximately 3 A and the well
depth is approximately o.25 eV. Hydrogen bonds are an order of mag-
nitude weaker than covalent bonds and have a restricted range; there is
little interaction beyond about 4 A. Nevertheless, hydrogen bonds play
a significant role in the properties of water. Indeed, as one undoubtedly
learned in elementary school, the formula for water is H,O but this is true
only in a macroscopic sense. In ice, each oxygen atom is tetrahedrally co-
ordinated by four hydrogen atoms. Two hydrogens are covalently bound
and two are hydrogen bonded. This crystal structure can be confirmed via
x-ray diffraction.

The picture for liquid water is more complex. Using extended x-ray ab-
sorption fine structure (XAFS) measurements, one can ascertain that the
coordination number of each oxygen in liquid water is 4.4, not 4, as would
be expected in a tetrahedral structure. The current interpretation is that,
as the solid melts into liquid, the crystal structure becomes disordered and
an additional water molecule may invade the interstitial space between
lattice water molecules. One suggestion is that liquid water may be char-
acterized by ring structures more than a diffuse tetrahedral alignment but
this remains an active area of research. Unfortunately, one requires pre-
cise (expensive) theoretical calculations of large numbers (poorly scaling)
of water molecules. The precision and size of the calculations to date have
not been able to reproduce the known properties.
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Ideally, one would like to put a large number of water molecules in a
box to study the hydrogen-bonding properties but, as we have seen, the
calculations scale poorly with increasing N. Moreover, there will be a
large number of molecules on the surfaces of the box that do not inter-
act in the same fashion as those in the bulk. So, to minimize the impact
of these on the final result, there is an incentive to increase the box size
further. Unfortunately, it is impossible to consider boxes of sufficient size
that one can make direct contact with experiment. Even a drop of water
contains something like 10'9 water molecules and a calculation involving
that number of molecules lies well beyond anything that is currently, or
likely ever, feasible. One might even question if the properties of a single
drop of water are representative of bulk water.

Ficure 7.11. The hydronium ion 1 0,
adopts a pyramidal geometry, as op-
posed to the planar water molecule 2.

Oxygens are rendered as dark gray and
hydrogens as light gray.

don L%
2 1

Things are not entirely hopeless, though. While not as quantitative as one
would like, simulations do provide insight into the microscopic behav-
ior of chemical systems. One property of water that chemists consider is
the pH, notionally, the concentration of protons within the water. Actu-
ally, a better description is the concentration of hydronium ions HSOﬂ as
protons are energetically favored to be bound to a water molecule rather
than floating freely. The proton is, however, quite likely to migrate from
one oxygen to another. The hydronium ion is illustrated in figure 7.11 in
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a model that also contains a water molecule that is aligned in a confor-
mation where one hydrogen from hydronium is hydrogen-bonded to the
water molecule.
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We can perform a series of calculations in which we vary the one O-H
distance. In practice, performing an unconstrained optimization of two
molecules will result in non-interesting, non-physical rotations. So, one
must add constraints to maintain the geometry but allow some flexibility.
In this instance, we note that the H-O-H angles for hydronium are some-
what larger than the corresponding angle in water. Additionally, the O-H
separations are slightly larger. To accommodate this, we can permit those
parameters to vary as the distance doy is increased. The results of this
simulation are depicted in figure 7.12. Note that the energy required to
surmount the barrier between the two states is only about o0.55 eV, much
lower than would be expected for a covalent bond.

Exercise 7.19. Construct a Z-matrix for the hydronium-water inter-
action. Restrict the non-transferring O-H distances to be identical
within each molecule but be different between the two molecules;
i.e., there are two distances d, and d,. Each molecule supports a dis-
tinct angle H-O-H 6, and 6,. Maintain a constant dihedral angle of
132° between the planes of the water molecules and the transferring
proton. Finally, constrain the O-O distance to 2.95 A.

Run a series of optimizations from dop = 1.0 A to 1.95 A, essentially
moving the proton from one oxygen to the other. See if you can
recover the results of figure 7.12.

Exercise 7.20. It is important to visualize the results of the cal-
culations, as it is quite easy to go astray when generating the input
files for the simulation. Construct a Mathematica function to read
the XYZ structure information written to the output .nwo file. Each
line consists of the atom index, atom name, charge and position. The
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ExportString function can write a proper .xyz file but the Import-
String function requires only element names and cannot process
numeric identifiers.

Cut and paste the optimized geometries from the output .nwo file
into a new file that can serve as input to your new ReadNWGeom func-
tion. Use the ListAnimate function to examine the proton transfer
process.

7.4. Chemistry

The previous exercise illuminates several of the problems that we face in
developing a model of chemical reactions. First, the parameter space is
quite large. We restricted the model calculations underlying the results
depicted in figure 7.12 to a very small subset of the total space. For ex-
ample, the intramolecular O-H distances were defined to be the same for
both of the hydrogen atoms but these can clearly be different. Addition-
ally, the O-0O distance was fixed throughout but it seems likely that this
distance would vary as the proton exchange takes place. As a result, the
pathway indicated is just one of a multitude of possible pathways between
the initial and final states. Additionally, the calculations represent the en-
ergetics of a gas-phase reaction whereas much of chemistry takes place in
solution, in the condensed phase as it is called.

Nevertheless, the example illustrates an essential part of chemistry: we
are interested in the pathways between initial and final states, not solely
in the endpoints of the system. The simplest model we can construct
for a chemical system is that depicted in figure 7.12, where the system
passes from the initial state to the final state through an intermediate
transition state. The concept of a transition state was first formulated by
the Hungarian-British chemist Michael Polanyi and his British colleague
Meredith Evans and, independently, by the Mexican-American chemist
Henry Ehring in 1935.7 This is a crude approximation of reality on many
levels but does explain why reactive molecules do not spontaneously com-
bine. For example, it is well known that the combination of hydrogen gas
and oxygen gas can form water vapor, accompanied by a prodigious re-
lease of thermal energy. Yet, mixing the two in a container does not yield
an explosion, at least at room temperature. This is due to the fact that
there is an ensemble of states along the pathway from initial to final that
are higher in energy than either initial or final states. As a result, the

7Evans and Polanyi published “Some applications of the transition state method to the calcu-
lation of reaction velocities, especially in solution” in the Transactions of the Faraday Society.
Eyring published “The activated complex in chemical reactions” in the Journal of Chemical
Physics.
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probability of occupying such a state is reduced by the Boltzmann factor
exp(~A&¥/kgT), where £* is the traditional notation for the energy of the
transition state.

Normally, at this juncture, we would begin an exposition on tying the
microscopic results that we have obtained thus far into a macroscopic de-
scription of the thermodynamics of chemical systems. Historically, this
was motivated by the fact that chemical observables are inevitably aver-
ages over large numbers of molecules. Consequently, one was forced into
a discussion of statistical thermodynamics and chemical potentials.

The situation changed in the late 1980s, when the Egyptian-American
chemist Ahmed Zewail and his students began utilizing ultrashort laser
pulses to study the femtosecond behavior of chemical bond reorganiza-
tions.® Their work was made possible by rapid advances in laser technol-
ogy that permitted stable laser pulses with full width at half maximum
intensity on the order of 50-100 fs. Zewail recognized that this time scale
is comparable to time it takes to form or break chemical bonds and so
provided a new window into studying transition states directly.

The Femtosecond Transition-state Spectroscopy (FTS) method pioneered
by Zewail utilized a pump/probe technique, sketched in figure 7.13. The
pump beam is generated via any of several steps of dye-lasers or nonlin-
ear, second-harmonic generation of an initial, infrared laser beam. In the
initial studies on iodine cyanide (ICN), the pump beam had a wavelength
of 306 nm, which corresponds to a photon energy of 4.05 eV, which is
sufficient to cause the dissociation of ICN into I and CN fragments. The
progress of the dissociation reaction is monitored via a probe pulse, which
in the case of ICN was resonant with CN at about 388 nm. The probe beam
can also be generated through sum/difference mixing of different source
beams, resulting in the ability to tune the beam across a relatively wide
bandwidth. The relative polarizations could be defined independently
and the arrival times of the two pulses was controlled by an actuator ca-
pable of submicron precision. The actuator adjusts the pathlength of one
of the two beams, shown as the probe beam in figure 7.13.

Exercise 7.21. What is the relative change in path length required
to obtain a 100 fs change in the arrival time of the laser pulse? Plot
the waveform of a pulse with a wavelength of 306 nm and a width
of 100 fs. (Assume a Gaussian profile for the amplitude.)

8Zewail and his students published “Femtosecond real-time probing of reactions” in several
parts in the Journal of Chemical Physics beginning in late 1988. Zewail was awarded the Nobel
Prize in Chemistry in 1999 “for his studies of the transition states of chemical reactions using
femtosecond spectroscopy.”
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Figure 7.13. The pump and
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detector (D) is placed out of
the beam/laser plane to im-
prove sensitivity. For ioniza-
tion experiments, a set of volt-
age grids (V1,V2) provide a
bias voltage to drive the ionic
current.

Autocorrelation experiments on the pump/probe beams demonstrated that
the widths of the laser pulses was below 100 fm. In order to gauge the time
resolution of their system, Zewail and his team utilized the multi-photon
ionization of N,N-diethylanaline (DEA). The ionization of DEA happens
promptly upon absorption of pump and probe photons. A set of voltage
grids provides a bias potential that allows collection of the ion current in
a photomultiplier tube. The gray points in figure 7.14 demonstrate the
rise time of the ionization current, illustrating the instrument factor that
we discussed earlier. The output signal is the convolution of essentially a
step function in current with the instrument sensitivity.

After confirming their time resolution, Zewail and team examined the dis-
sociation reaction of iodine cyanide (ICN) into iodine (I) and cyanide (CN)
fragments. Detection of the cyanide fragment was performed by using a
probe beam with a wavelength of about 388 A, that caused laser-induced
fluorescence that could be detected by the photomultiplier tube. Having
determined time zero of their experiment to be the midpoint between the
off- and on-levels of the DEA ionization curve, Zewail was able to deter-
mine that the dissociation reaction required 205+30 fs to complete. An
example of one experimental ICN run is also illustrated in figure 7.14.
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Moreover, by lengthening the wavelength of the probe signal, Zewail could
determine the progress of the reaction along a potential energy surface He
found that they could explain their results with a model based on treat-
ing the nuclear motions in a classical sense, thus validating the general
strategy employed in most electronic structure calculations. The Born-
Oppenheimer approximation presumes that the electronic structure equi-
librates instantaneously to accommodate nuclear motion. This is an over-
simplification but Zewail’s studies provide experimental support that, at
least at lower energies, this is a viable strategy.

Ficure 7.15. The difference
between energies of the ICN
optimized structure (dic =
2.01 A) and molecules with
the I-C distance constrained
to larger values (open circles) 2 R

suggests a dissociation energy o

of about 3.5 eV. The triplet ol N
state (gray dots) populated 2 4 6 8
by the laser pump pulse lies [-C distance (A)
above the dissociation energy.
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Exercise 7.22. Construct a model of the ICN system in NWChem.
Use the 6-311G* basis and the accompanying polarization basis for
the iodine atom. Use the 6-31++G** basis for carbon and nitrogen.
First compute the optimized structure and then control the I-C dis-
tance out to 7 A. How does the electron density evolve along the
pathway? What is the total charge around the iodine nucleus? Now
compute the triplet (mult 3) excited state and then control the I-C
distance as before. Hint: tighten the convergence criteria with the
following directive:
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driver
gmax 0.00015
grms 0.00010
xmax 0.00060
Xrms 0.00040
end

Subsequent studies have investigated a number of chemical processes at
the single-molecule level that can be directly compared to calculations
like those that we have performed with NWChem. Improving laser tech-
nologies have now permitted discussion of attosecond-scale resolution
of the bond-forming and bond-breaking processes that define chemistry.
The ability to study systems like ICN that possess relatively few internal
degrees of freedom has provided a tractable theoretical problem. We will
shortly dive into the realm of intractable theoretical problems but can
note that the chemical systems provide an arena in which quantum and
classical ideas are often juxtaposed. The electron densities certainly re-
quire a quantum treatment but nuclear motions can often be treated via
simple Newtonian mechanics.

What is compelling about the work of Zewail and his students is that they
provided experimental data that could be compared more directly with
theoretical results than was previously possible. They were able to effec-
tively watch single molecules evolve at a time scale that corresponded to
the natural time scale of bond breaking and bond formation. Previously,
access to the dynamics along the reaction pathways was simply inacces-
sible. One had to compute theoretical estimates of what was experimen-
tally available: ensemble averages of thermodynamic properties. These
are more difficult to compute and much more difficult to understand what
went wrong if there is disagreement between theory and experiment.



VIII

On Solids

Given the difficulties that we have encountered in our studies of molecu-
lar physics, it might seem that investigations of macroscopic objects like
crystals would be completely intractable. After all Avogadro’s number is
so large that even a piece of material the size of a grain of rice contains
something like 10'9 atoms. Coping with numbers of that size is clearly
beyond the capability of any computer in existence or planned for the
foreseeable future. Nevertheless, it is quite possible to deal with such sys-
tems by exploiting the symmetries available in crystals.

Here, we are discussing the spatial symmetry demonstrated by the atoms
in a crystal structure, not the invariance of equations in some more ab-
stract vector space. As the Braggs discovered in their early diffraction
studies, atoms in crystals sit at lattice sites that repeat endlessly. The num-
ber of different possibilities for crystal lattices was determined to be 14 by
the French physicist Auguste Bravais in 1848." This number arises from
the requirement for translational invariance.

As depicted in figure 8.1, one can define lattice vectors a, b and c that
serve as a basis for the lattice. All lattice points can be constructed from
integral multiples of the basis vectors. That is, we must have the following
relation:

(8.1) x=N,a+ N,b+ N,c,

where x is any lattice site and N,, N, and N, are integers. One can also
describe the lattice in terms of the magnitudes of the basis vectors: a,
b and ¢, respectively and the angles between the vectors a,  and y, as
indicated in the figure.

Exercise 8.1. Use the LatticeData function to plot the different
Bravais lattices. What are the lattice vectors corresponding to each

type?

IBravais published “Mémoire sur les systémes formés par des points distribués reguliére-
ment sur un plan ou dans l'espace” in the Journal de L'Ecole Polytechnique.
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B A
Ficure 8.1. The basis vectors a, b a*y b
and ¢ define the lattice sites. For
the cubic lattice, there are two
additional Bravais lattices: face-
centered (fcc) and body-centered

(bce).

fcc

cubic

bee

The Bravais lattices are subdivided into seven subgroups. These are listed
in table 8.1. The first three entries in the table all have orthogonal lattice
vectors but differ in the relative lengths. Trigonal crystals have constant
lattice vector lengths and equal, but not orthogonal, angles between the
vectors. The remaining types have lattice vectors that differ in length and
angles. All of the types, though, are prisms, with varying degrees of asym-
metry and skewness.

TaBLe 8.1. Crystal lattices are segregated into classes depending
upon the relationships of the lattice vectors.

cubic a=b=c a=pf=y=mn/2
tetragonal a=b=c a=p=y=m/2
orthorhombic a=b=c a=f=y=mn/2
trigonal a=b=c mw2<a=pf=y<2n/3
hexagonal a=b=c a=p=mn/2,y=27/3
monoclinic azbzc a=pf=mn/2zy
triclinic azb=#c azp+y

In dealing now with molecular crystals, we can envision replacing the
small spheres in figure 8.1 with replicas of the molecules. So, in addi-
tion to the basic lattice structures, there are potentially a number of other
symmetry operations that can be applied. There are, in fact, 230 different
crystallographic point groups. We shall not bother to list them all here.

The point groups arise from different symmetry operations like rotations
and reflections. For example, the simple cubic lattice is invariant under
rotations by 7t/2 around any axis. This is a four-fold rotational symmetry.

The molecular symmetry will affect the overall crystal symmetry. In fig-
ure 8.2, we illustrate a situation where there are molecules located at the
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Ficure 8.2. A simple molecule is placed
at hexagonal lattice points but alternates
in orientation. There is a three-fold rota-
tional symmetry.

vertices of a hexagon, which has six-fold symmetry. The molecules are
oriented alternately around the hexagon. Thus, the six-fold symmetry is
reduced to a three-fold symmetry. Rotating by 7t/3 produces a lattice that
is inverted along the vertical axis, not the same lattice.

There are 32 different point groups but the total number of possible crys-
tal symmetries is not 32x14 but 230, due to degeneracies. Our main point
is that the number is finite. Crystals only exist in a relatively small num-
ber of configurations despite being constructed from vastly larger num-
bers of atoms and molecules. There is a complex nomenclature for the
crystal structures but we shall not focus on those details here. In practice,
the Bravais lattice defines what is known as the unit cell. This is the trans-
lationally invariant part of the crystal lattice. The unit cell, in turn, can
be reconstructed from the asymmetric unit and copies of the asymmetric
unit made by the generators of the symmetry group. The asymmetric unit
is not defined uniquely; any of the symmetry-generated copies could also
serve as the asymmetric unit.

Exercise 8.2. Retrieve some .cif files from the Crystallography Open
Database. (COD ID 1507553 and 5000108 are reasonable first choices.)
Load the .cif files into the Mercury program. This provides the abil-
ity to examine the unit cell by selecting the Packing option in the
Display, or the Asymmetric Unit (default). Describe the symmetry
transformations that define the unit cell.

The list of symmetry groups includes cyclic groups of order 1, 2, 3, 4
and 6. The groups of order five and orders larger than six cannot be
used to generate unit cells that are translationally invariant. So, it seemed
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the problem was solved. Crystallographers improved their instrumenta-
tion and gained access to digital computers but all of the structures that
they observed fell neatly into one of the 230 possible crystal groups. Re-
markably, in 1974, British mathematician Roger Penrose found a means
of producing objects with five-fold symmetry but which did not possess
translational invariance.”. These objects can be constructed from simple
primitives that give rise to a long-range five-fold rotational symmetry but
the pattern does not simply repeat.

Exercise 8.3. Download the “Penrose Tiles” notebook from the
Wolfram Demonstrations Project website. This provides a simple
demonstration of the construction of the quasicrystal. The quasicrys-
tals do not have translational invariance but do demonstrate self-
similarity: the quasicrystal looks the same at different length scales.

Even more remarkably, the Israeli material scientist Dan Shechtman dis-
covered materials with five-fold (actually icosahedral) symmetry in 1982.3
While on sabbatical at the National Bureau of Standards laboratories (now
the National Institute of Standards and Technology (NIST)), Shechtman
observed ten-fold symmetry in a diffraction pattern from a sample of an
aluminum-manganese alloy, as depicted in figure 8.3. In particular, note
the pentagonal placement of the diffraction points. Other two-fold and
three-fold patterns from the same crystal led Shechtman to conclude that
the material possessed icosahedral symmetry. The icosahedron was a geo-
metric solid known to the Greeks but one cannot produce a crystal by
stacking icosahedra without leaving gaps.

Ficure 8.3. The electron
diffraction pattern of a sam- o
ple of an Al-Mn alloy displays ¢ 5 S
ten-fold symmetry. Image ¥ 5 =y . &
provided courtesy of Dan ' o ... ®
Shechtman, who acquired it "« T i RN
on April 8, 1982, while on B . . .
a guest appointment at the . 2 9 s
NIST laboratories. - g “ s 2 ¥ ’

2Penrose published “The role of aesthetics in pure and applied mathematics” in the Bulletin
of the Institute of Mathematics and its Applications

3Shechtman and his collaborators published “Metallic phase with long range orientational
order and no translation symmetry,” in the Physical Review Letters in 1984. Shechtman was
awarded the Nobel Prize in Chemistry in 2011 “for his discovery of quasicrystals.”
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Shechtman’s results were fiercely debated for years and publication of his
initial discovery was delayed for two years. A range of notable scientists,
including Nobel Prize winning chemist Linus Pauling, were quite vocal
about their disbelief of Shechtman’s discovery. Due to the relatively sim-
ple proof that crystals cannot have five-fold symmetry, Shechtman’s re-
sults were attributed to crystal defects, twinning, poor experimental con-
trols and fantasy. Nevertheless, Shechtman persisted and other groups
have subsequently produced icosahedral quasicrystals. The existence of
solid-phase materials with long-range order that possesses five-fold sym-
metry, but is not translationally invariant, is now well established, as can
be seen in figure 8.4.

FiGure 8.4. A quasicrystal of
a scandium-zinc alloy dis-
plays icosahedral symmetry.
Image courtesy of Paul C.
Canfield at Ames Laboratory
and Department of Physics
and Astronomy, lowa State
University.

The quasicrystal is an alloy of scandium and zinc, that is obviously macro-
scopic. It was obtained by Paul Canfield, Alan Goldman and coworkers at
Ames Laboratory, who were investigating rare-earth binary systems. The
icosahedral form, when illuminated with x-rays, produces diffraction pat-
terns like those depicted in figure 8.3. This is not an amorphous material
shaped into an icosahedron by grinding or other processing. It is another
example of Shechtman’s impossible quasicrystalline material.

8.1. Bulk Properties

Moving back to our original discussion of solid crystalline materials, the
Kohn-Sham equations that define the wavefunction or electron density
must now satisfy the additional constraint that the density be periodic.
(We shall avoid the complications that arise in quasicrystals in this discus-
sion.) Each unit cell is a replica of all of the other unit cells; this feature
will permit us to describe the properties of macroscopic-scale systems. In
our discussions to this point, the basis functions for the calculations have
been gaussians centered on the nuclear sites. These have proven to be re-
liable and robust for molecular simulations. They also have the property
that the electron density vanishes as the distance tends to infinity.
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In crystals, this last property is not necessary. All that is required is that
the density be continuous at the boundaries of the unit cell. This suggests
a Fourier transform approach (also called the plane-wave approximation)
may be successful in describing the electron density. Such a method was
proposed by the Swiss physicist Felix Bloch in 1929.# The wave functions
can then be expanded as follows:

(8.2) P(r) = Zeik”'ru(r),

n

subject to the additional periodicity constraint:
(8.3) (r) = P(r+ Nya+ Nyb + Nec).

The periodicity constraint is naturally satisfied if the wavenumbers k,, are
equal to 27t times the reciprocal vectors a, b and ¢.

As a result, solutions of the infinite crystal can be determined quite read-
ily, particularly for simple systems. The program NWChem is capable of
such calculations. Before entertaining such calculations, we need to de-
fine some vocabulary. Wigner and Seitz provided a mechanism for defin-
ing the volume occupied by a particular atom in the lattice, which corre-
sponds to determining the Voronoi cell.5 One selects a particular atom in
the lattice and then draws a plane perpendicular to the line joining that
atom and one of its neighbors, at the midpoint of the line. Repeating the
process for all of the neighbors ultimately results in a polygonal volume
element that contains the selected atom.

One can also do the same in the reciprocal lattice, as indicated in fig-
ure 8.5. The volume here is known as the Brillouin zone, after the French
physicist Léon Brillouin. Using the Bloch formalism, solutions can be de-
termined solely from their behavior in a single Brillouin zone. The partic-
ular polygon obtained depends upon the lattice vectors. For an fcc crystal,
the Brillouin zone is a truncated octahedron. Historically, the center of
the Brillouin zone is denoted I'. There are eight points L at the centers of
hexagonal faces and six points X at the centers of square faces. There are
24 points W at the vertices and 24 points U at the midpoints of the edges
of the square faces. Finally, there are 12 points K at the midpoints of the
shared edges of two hexagonal faces.

Exercise 8.4. The lattice vectors for an fcc lattice are a = (o, 1, 14),
b = (1,0, %4) and ¢ = (14, 1»,0). Calculate the reciprocal vectors. Use

4Bloch published “Uber die Quantenmechanik der Elektronen in Kristallgittern” in the
Zeitschrift fiir Physik.

5Eugene Wigner and Frederick Seitz published “On the constitution of metallic sodium” in
the Physical Review in 1933.



§8.1 BuLk PROPERTIES 197

Q S °
o Lo ..‘ or
WX e )

Ficure 8.5. The reciprocal lattice of an fcc crystal is depicted at left.
A series of planes dividing the lines joining other atoms in the lattice
at their midpoints defines a volume known as the Brillouin zone, a
truncated octahedron. The center of the Brillouin zone is known as
I' and other symmetry points are also identified at right.

the GraphicsgD function to display an array of wave vectors:
Ky = 27thd + 270kb + 27,

where —1 < h,k,] < 1. Use the InfinitePlane function to produce a
plane that intersects the line joining the origin (in reciprocal space)
and each lattice point, at the midpoint of the line. Set the P1otRange
to clip the top half of the resulting plot, to visualize the interior. Can
you see half of the truncated octahedron depicted in figure 8.5?

Exercise 8.5. The lattice vectors for a bee lattice are a = (15, 15, — 1),
b = (-, Y, %) and ¢ = (%A, —, ¥»). Compute the reciprocal lattice
vectors and determine the Brillouin zone, as in the previous exercise.

The different crystal lattices all have symmetry points like those displayed
in figure 8.5 but the names of the points differ. We shall not dwell on
the different names; those can be obtained readily through the crystallo-
graphic databases. Instead, we want to focus on the emergent behaviors
that arise due to the many-body interactions present in crystals. Solid-
state physics possesses a multitude of such behaviors so we will necessar-
ily restrict the discussion.

As a first step, let us consider the structure of diamond, which forms a
tetrahedral lattice (space group Fd3m). A .cif file defining the diamond
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lattice can be obtained from the American Mineralogist Crystal Struc-
ture Database (AMCSD). There are undoubtedly other sources that can
be found through a web search. In fact, the diamond lattice consists of
two fcc lattices, offset by a distance a( v/, vy, %/;). The x-ray diffraction data
indicate that the lattice parameter is a = 3.56679 A, which implies that
the average C—C distance is 1.544 A. This value is consistent with what we
found for the C-C distance in singly bound ethane.

Exercise 8.6. Use the Graphics3D function to visualize the tetra-
hedral lattice. Construct two fcc lattices from the basis vectors a =
(0,15, 14), b = (14,0, 1) and ¢ = (14, 15, 0) with an offset of (1/,, Yy, 7/,).
Demonstrate that each atom is tetrahedrally coordinated.

We can utilize the NWChem software to explore solid state systems, as it
contains an implementation of a pseudopotential plane wave method, in
which the valence electrons are treated as discussed above and the core
electrons are represented by a static potential. We should make a cau-
tionary note before proceeding that solid state calculations can be quite
time-consuming, both in terms of computational time and personal time.
As computational time scales like N3 or N4, even exploiting symmetry
will lead to large calculations. Additionally, finding things like an opti-
mized structure can be quite tricky and are at the forefront of research
efforts. Consequently, it is quite likely that students will find that they
can attempt a simple, theoretical calculation that turns out to lock up
their computers for hours on end. Access to more capable computational
facilities will be advantageous but not even the most powerful machines
can address all problems. Brute force can be helpful at times but one must
think seriously about what questions to ask.

The following excerpt from an NWChem script file demonstrates a calcu-
lation of the optimal lattice parameters for diamond.

geometry center noautosym noautoz print
system crystal
lat_a 3.56
lat_b 3.56
lat_c 3.56
alpha go.o
beta go.o
gamma 90.0
end
symmetry Fd-gm
C 0.0 0.0 0.0
end
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nwpw
ewald_rcut 3.0
ewald_ncut 8
Imbfgs
xc pbegb
dplot
vectors $NWCHEM_ROOT.movecs
density total $NWCHEM_ROOT.cube
end
end
driver
clear
maxiter 4o
end
set nwpw:cif_filename diamond.opt
set includestress .true.
task pspw optimize ignore
task pspw pspw_dplot

The geometry block includes a specification of the lattice parameters and
the point group. It is only necessary to specify a single atom position, as
all atoms will be carbon. The nwpw block specifies a number of parame-
ters specific to the pseudopotential implementation. Note that there is no
definition of basis vectors.

Exercise 8.7. Perform the calculation indicated by the script above.
Note that the script is not complete. The header can be obtained
from the previous examples. The pspw_dplot task will create a cube
file. Plot the electron density in the unit cell.

From the plane wave calculation, we obtain a lattice parameter a = 3.654 A
and a C—C distance of 1.582 A. This is a reasonable result—the bond dis-
tances are 0.04 A longer than the experimental values—not as precise as
one might hope but it can be improved somewhat by tinkering with the
parameters, although generally at the expense of significantly longer com-
putational times.

We plot a slice of the valence electron density from the pspw_dplot task in
figure 8.6. As the core electrons are represented by the pseudopotential,
the density does not peak at the nuclear center; this is an artifact of the
calculation. As we saw in the molecular calculations, the electron density
is strongly peaked around the nuclear centers and this would be the case
here as well.

Macroscopic properties of the crystals are determined through statistical
mechanics methods that connect the microscopic behavior of the system
with macroscopic observables. The partition function Zy of a system of N
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Ficure 8.6. The valence elec-
tron density peaks around
the nuclear centers. The to-
tal electron density, includ-
ing the core electrons, would
peak at the nuclear centers.

particles defined by the Hamiltonian H is given by the following relation:

(84) ZN(T): h3$N| jd3qu3Npe_H(qu)/kBT,

where q are the generalized coordinates and p are the conjugate momenta
of the particles. The Helmholtz free energy is then obtained from the
partition function directly:

(8.5) F(T,V,N) =~k T InZy(T).

Alternatively, one can consider what is termed the microcanonical ensem-
ble and consider the density of states QO defined as follows:

(8.6) Qy(E) :Jd3qu3Np6(E—H).

The entropy of a system at a particular energy E is proportional to the
density of states:

(87) S(E;V;N):kB In W

QN(E)A]

where A represents a small (infinitesimal) difference in energy. It can be
considered to be the experimental resolution. The partition function and
density of states can be connected in a fundamental way.

If we start with the following identity:

1:JdE5(E—H)
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and multiply both sides by the partition function, we obtain the following:

Zn(T) = mjdlf S(E —H)jdqu[preH/kBr

1 _
(8.8) :WJdEQN(E)e ElksT

where in the last step, we utilized equation 8.6 and enforced the action of
the delta function. Consequently, the partition function can be seen to be
the Laplace transform (with respect to 1/kgT) of the density of states.

Thus, a possible means for obtaining the partition function of a complex
system would be to utilize the density of states. Often this simply ex-
changes one difficult problem for another but the band modules within
NWChem can let us obtain an estimate of the density of states. Merci-
fully, because thermodynamic properties depend upon the logarithm of
the partition function, we can sometimes obtain reasonable results even
though our ability to calculate the exact density of states is limited.

Figure 8.7 represents an estimate of the density of states in diamond,
taken from a plane wave band calculation. The NWChem script utilized
the same geometry block as before, invoking the Fd3m symmetry. Instead
of using the pspw task, we use the band task, with an additional block spe-
cific to the density of states calculation:

task band optimize ignore
nwpw
virtual 26
dos-grid 5 5 5
end
task band dos
nwpw
virtual 16
brillouin_zone
zone_name fccpath
path fcc 1 gamma x w k gamma
end
zone_structure_name fccpath
end
task band structure

We note that specifying the number of virtual orbitals and the dos-grid
parameter causes the running time to jump significantly (about a factor
of ten) over that obtained with the default values. One can adjust those
values, or omit the block entirely, if computational resources are an issue.
The brillouin_zone block in the script is used to alter the path from the
default, as an example; it is not essential to the calculation of the band
structure.
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Exercise 8.8. Insert the script fragment above in place of the task
pspw optimize block in an NWChem script and compute the dia-
mond density of states and band structure. The output files (.dos
and .restricted_band) can be easily read through the Import com-
mand. The .dos file contains three columns: energy (Hartrees), den-
sity and cumulative density. Use the ListLinePlot function to re-
produce figure 8.7.

600

Ficure 8.7. The calculated
density of states (black line)
displays a gap in the region of
12.3-16.2 eV in which there
are no allowable states. The 200
(scaled) cumulative density

(gray line) depicts a nominal ol
square root dependence (light -10 © 20 30 40 50
gray line). energy (eV)
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The density of states obtained from the suggested calculation is depicted
in figure 8.7. Notably, there is a gap in the density of states for energies be-
tween about 12.3 eV and 16.2 eV. For these energies, there are no allowed
states. This is known as a band gap.

In figure 8.7, we also depict the cumulative (integrated) density of states
as the gray curve. Interestingly, a number of approximate models suggest
that the density of states should scale like the square root of the energy.
We have also included a curve depicting a square-root dependence on en-
ergy. While the curves do not coincide, we can infer that the square-root
model will capture the bulk of the energy dependence. This is quite com-
forting, because it is simple to calculate square roots and difficult to com-
pute densities of states. Provided that one is looking for explanations of
gross behaviors, it is quite reasonable to use a square-root model as an
initial description of a complex system.

It probably has occurred to most students that there is a tremendous
amount of information to absorb about calculations in the solid state.
Even depicting the charge density becomes problematic because we are
essentially dealing with a three-dimensional problem. One tool that solid
state physicists developed to cope with the vast amount of information is
the band structure plot. Essentially, one plots the band energies as a func-
tion of the wavenumber k along a path in the reciprocal space that follows
the symmetry points we indicated previously. Such a plot for diamond is
depicted in figure 8.8.
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Such “spaghetti plots” are rather formidable to interpret. With practice,
one can begin to make sense of the information but it is a lengthy pro-
cess. We note that in a similar vein one cannot interpret a musical score
without training, so it will take some effort to interpret the information in
the structure plot. We notice immediately the gap between energy levels
noted in the density of states plot (figure 8.7). We also note that near the
center of the Brillouin zone (I'), there is a large energy gap between the
filled levels (below o) and the unfilled levels (above o). This is character-
istic of insulating materials.

Exercise 8.9. NWChem is not particularly user friendly but, actu-
ally, is one of the more user-friendly computational chemistry codes.
Like most codes, the outputs are invariably in units of Hartrees and
Bohrs. The band structure calculation produces a file that con-
tains the values of k along the specified pathway and the energies
of the bands at each k-point. For the fcc Brillouin lattice, we have
K =(3%,38, %), L = ("%, 5, 4), W = (5, Yy, '-) and X = (5,0, 15).
Determine the numerical values for the key points along the path
depicted in figure 8.8. See if you can reconstruct the figure.
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states of silicon (gray curve)
displays a band gap like that 400
observed in diamond. For
nickel (black curve, offset by
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characteristic of metals.
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One significant emergent behavior found in materials is conductivity. If
one applies a small voltage to a conductor, an electronic current is gener-
ated in the material. If one applies a small voltage to an insulator, noth-
ing happens. This must be dependent upon the nature of the microscopic
structure of the materials and we see in figure 8.9 a possible clue.

Nickel is a metal and a conductor. We observe that the density of states
for nickel (offset by 400. in the figure for clarity) is always positive. We
can infer that application of a small voltage V to nickel will increase the
energy of electrons by a small amount: A€ = eV, where e is the electric
charge. There are available states with the energy £ + A€, so the electrons
are “promoted” to the so-called conduction band. These turn out to be
states that are delocalized from the lattice sites, giving the electrons the
mobility to move throughout the crystal.

Non-conducting materials are classed as insulators or semiconductors, on
a somewhat empirical basis, by the size of the band gap present in their
densities of states. Large band gaps are insulators and small band gaps
are semiconductors, like silicon.

Exercise 8.10. Silicon adopts the same crystal structure as dia-
mond. Compute the silicon density of states. (Repeat the diamond
calculations but replace C with Si.) Note that silicon has the same
number of valence electrons as carbon, so the computational re-
quirements will be somewhat larger than for carbon.

Exercise 8.11. Nickel forms a crystal lattice with Fm3m (Fm-3m)
symmetry. With 28 electrons, calculation times will be significantly
longer than for carbon. As a metal, the calculations are also techni-
cally more challenging. Add the following to the nwpw block:

smear fermi

scf anderson outer_iterations o kerker 2.0
monkhorst-pack 3 3 3

and add the following directives prior to the task band optimize
directive:

set nwpw:kbpp_ray .true.
set nwpw:kbpp_filter .true.

The Monkhorst-Pack method uses a 3x3x3 sampling in the Brillouin
zone to estimate integrals. Larger values than 3 will provide better
results but increase the computational time significantly. The kbpp
parameters provide for a more efficient, better numerically behaved
calculation. Details are available in the NWChem documentation.
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8.2. Surface States

For those students with access to adequate computational resources, it is
a straightforward exercise to investigate other simple systems like GaAs.
One can obtain .cif files of most simple minerals from the crystallogra-
phy databases, so good starting points are available but one quickly runs
into the issue of computational resources. For students with access, it
is possible to generate research-grade examples to study with NWChem,
which was designed explicitly to scale on large numbers of processors. Al-
though, it should be said, it is also straightforward to ask seemingly sim-
ple questions that are not computationally tractable, even on the largest
supercomputers. We won't follow that pathway here but there are whole
courses devoted to the study of solid state materials and suggest those are
more appropriate venues.

Instead, we shall turn our attention briefly to the problem of what hap-
pens at surfaces? At a surface, the regular bonding network of the unit
cell is disrupted and, as a practical matter, the trick that Bloch exploited
to describe the behavior of the bulk materials is no longer applicable. The
loss of translational symmetry is a distinct blow to theoretical efforts to
describe material properties.

In order to study surface properties, one needs a model that includes
enough atoms that a large portion of the interior of the model is equivalent
to the bulk. That is, one wants a model in which the surface states do not
dominate the behavior. Hence, there is a need to perform relatively large
calculations with thousands of atoms or resort to sophisticated means to
enforce periodic boundary conditions on one side of a large block and free
space on the other. Both approaches are used in research groups today and
lie beyond the realm of what we might hope to accomplish.

To obtain some hint as to the behavior of finite systems, let us build a
model of a small cluster of carbon atoms. This can be done with the Mer-
cury software by taking the diamond .cif file and selecting packing, which
generates a model with 192 carbon atoms. This is more than we can pre-
sume to treat given limited computing resources, so by selecting only the
carbon atoms within 3.7 A of the origin, we produce a cluster of 32 carbon
atoms, as depicted in figure 8.10. If we now conduct three minimization
steps (maxiter 3), in a pspw calculation, the cluster relaxes just a small
amount.

Actually obtaining the minimum energy structure for 32 carbon atoms is
a daunting problem. There is no particular numerical strategy available to
find a global minimum. In practice, there are numerous local minima that
can trap the conjugate gradient minimization algorithm into stopping be-
fore a global minimum has been determined. A number of strategies to



206 ON SoLips

Ficure 8.10. The initial cluster is indicated on the left and, after
three minimization steps, the cluster relaxes to the structure on the
right.

explore the parameter space have been developed to overcome this prob-
lem but all are computationally intensive. We’ll discuss some of them
subsequently. This is another case where experiment triumphs over our
meager theoretical efforts. Recall that Curl, Kroto and Smalley were in-
vestigating small clusters but were able to sort through vast numbers of
possible final states by the expedient method of allowing the 10'® carbon
atoms in the gas stream to conduct their own minimizations, in real time.

For our immediate purposes, we are not seeking a global minimum. What
will happen if we take one hundred or one thousand minimization steps
is that the 32-atom cluster will deform itself into a wide variety of curious
shapes because most (all) of the atoms are part of the surface. In order
to prevent those unwanted deformations, one needs to add many more
atoms to the simulation and we are back to intractable. In three steps,
none of the atoms has moved very far but the bonds have readjusted.
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In figure 8.11, we depict the different C-C distances after the minimiza-
tion steps. For the interior carbon atoms (leftmost in the plot), the dis-
tance remains at the 1.55 A distance characteristic of singly bonded car-
bon, as we found for ethane. Several of the surface atoms have distances
midway between doubly bonded (ethene = 1.33 A) and singly bonded.
None are approaching the triply bonded (ethyne) distance of 1.21 A. In
fact, the distance is quite close to the 1.40 A C-C distance we found in the
benzene ring. As we shall see subsequently, this distance is characteristic
of the aromatic bonds found in graphene.

Exercise 8.12. Set up the 32 carbon atom simulation as described
and optimize the structure for three steps. What bond distances do
you obtain?

Fortunately, determination of the actual nature of material surfaces has
been made much more tractable by the invention of a new form of spec-
troscopy by the German physicist Gerd Binnig. Binnig’s idea was to mea-
sure the electron tunneling current between a probe and crystal surfaces.
Tunneling is a quantum phenomenon that arises from the fact that the
electronic wave functions decrease exponentially away from a crystal sur-
tace. Thus, even though the wave function is small, there is some finite
probability that electrons could traverse the barrier, giving rise to a small
current. The current will flow only if the tip is sufficiently close to the
surface. Binnig and the Swiss physicist Heinrich Rohrer were able to con-
struct such a device by March of 1981.°

The pair used three piezoelectric devices to position the tip independently
in x, v and z. Measurements were made by scanning the probe in the x-p
plane. A feedback loop that sensed the tunneling current controlled the
position of the tip above the surface (z-direction). As the tip traversed the
sample, the tunneling current was kept constant and the applied voltage
was measured. Collecting many such scans allowed the production of im-
ages like those in figure 8.12, which represents a nickel surface cut along
the (110) plane.

It took Binnig and Rohrer over two years of development to achieve the
first scan results that demonstrated that they were actually measuring the
tunneling current. Along the way they struggled with a number of de-
sign issues like vibration isolation. A device based on magnetic levitation
was constructed and abandoned, with the first working apparatus simply

6Binnig and Rohrer were awarded the Nobel Prize in Physics in 1986 “for their design of
the scanning tunneling microscope .” They shared the prize with Ernst Ruska, who was
cited “for his fundamental work in electron optics, and for the design of the first electron
microscope.”
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Ficure 8.12. Three dimen-
sional rendering of the
nickel (110) surface obtained
through STM measurements.
Image originally created by
IBM Corporation.

suspended from a rubber band. More sophisticated schemes were imple-
mented subsequently.

We mentioned above that the device used piezoelectric devices for sample
manipulation but no one at the time had ever determined whether the de-
vices provided a linear distance response over the atomic-scale distances
that Binnig and Rohrer were attempting to sample. This was determined,
self-consistently, from the scanning data. Although the proportionality
constant relating the change in distance Ax to the change in applied volt-
age AV turned out to be smaller than originally thought, a linear voltage
ramp in the piezoelectric device produced a periodic change in the output
signals that matched the anticipated lattice spacing.

A more formidable problem turned out to be the generation and stability
of the probe tips. Originally envisioned as some sort of conical form with
a small radius of curvature at the end, Binnig and Rohrer quickly recog-
nized that the tip ends were rugose, resembling mountain ranges more
than smooth surfaces. A simplistic idealization is depicted in figure 8.13.
Nevertheless, at some point on the end of the tip, there is an island of
atoms that extend beyond others in the area and the tunneling current is
restricted to these atoms.

Indeed, the exponential dependence on distance means that the magni-
tude of the current from atoms two atomic layers removed from the tip
end is decreased by a factor of a million. Binnig and Rohrer were quick to
recognize that this is an important feature of their device: the tunneling
current is limited to an area on the scale of the atomic size. Moreover, by
changing the value of the tunneling current and the bias voltage of the
tip, they could sample different portions of the local density of states at
atomic scale. The Scanning Tunnelling Microscope (STM) that they devel-
oped was a new tool for spectroscopy on surface states.
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Ficure 8.13. The scanning tip
(light gray) positioned above a
crystal surface (dark gray) can
be biased to produce a tun-
neling current with an expo-
nential dependence upon the
distance h between the closest
atom in the tip and the sur-
face.

The initial experiments confirmed that the interactions of the tip with the
surface remodelled both the surface and the tip. Initially, this was an ob-
stacle to progress, as it was difficult to complete many (any) scans before
the tip geometry changed and an offset was introduced into the response
curves. Eventually, once the nuances of working with new equipment
were understood, it was recognized that the STM could be used in an ac-
tive role in surface studies, not just as a passive recorder of the system
properties. The STM could purposefully move atoms adsorbed onto the
surface and could investigate the bonding patterns of these adatoms to
the underlying surface atoms. Because the STM probed the local density
of states, it was possible to also tune those interactions to be sensitive to
atoms in the layer below the surface.

The technology provided a massive improvement over the information
available from low energy electron diffraction (LEED) experiments. Anal-
ogous to the information available from x-ray diffraction experiments,
LEED studies are more sensitive to surface properties but beam widths
are vastly larger than atomic scale, typically micrometer-scale, that pro-
duce average properties over a wide number of surface sites.

Ironically, some of the early criticism of STM methodology was that crys-
tal surfaces looked much like what people had anticipated. Given that
most new imaging technologies force significant changes to the prevail-
ing theories, general agreement with current thinking about surface states
was surprising. Additionally, the scanning surfaces like those produced in
figure 8.12 were thought to have been computer-generated; they were sim-
ply too good. Ultimately, physicists found that the information obtained
about surface bonding from the LEED measurements was also reproduced
through STM measurements, although on an atomic scale. This provided
the necessary closure that the STM results were, in fact, real.

Binnig went on to invent the atomic force microscope and built the first
working prototype with the American physicist Calvin Quate and the
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Swiss physicist Cristoph Gerber in 1986.7 By placing an STM tip on a can-
tilever, Binnig and colleagues created an atomic-scale profilometer. Stylus
profilometers had been in use for many years, measuring the micrometer-
scale features of surfaces. The AFM provides the ability to study sur-
faces with nanometer resolution. In their original implementation, Bin-
nig, Quate and Gerber used a second STM to control the cantilever posi-
tion but this has been supplanted by a simpler technique in which a light
beam is reflected from the cantilever surface, providing the needed posi-
tional sensitivity, as is sketched in figure 8.14.

Ficure 8.14. Placing a dia-
mond tip on the end of a
cantilever produces an instru-
ment capable of imaging the
surface features of insulators.
The tip position is sensed by a
laser beam reflected from the
cantilever surface.

The significant advantage of the AFM is that the sample need not be a
conductor, providing the means to investigate the atomic-scale structure
of a host of new materials, including biological materials because the can-
tilever can be operated immersed in fluid. The cantilever possesses a res-
onant frequency, typically in the kiloHertz range, that depends upon its
dimensions and the material properties of its constituents. As the tip ap-
proaches the surface of the sample, it interacts with the sample material
and the resonant frequency of the cantilever changes. There are a num-
ber of different operational modes for the AFM, categorized by whether
or not the tip is allowed to contact the surface. Each has advantages and
disadvantages for specific applications and this adaptability underlies the
widespread application of AFM methods.

Exercise 8.13. One means to study the behavior of small samples
is to use constraints on the atoms. This is accomplished in NWChem
via two means. The first is to fix atom positions and the second is to
harmonically constrain a two-atom distance. If we return to the 32
carbon simulation, add the following directive to the input script:

set geometry:actlist 1:15 17 19:25 29:31

7Binnig, Quate and Gerber published “Atomic force microscope” in the Physical Review Let-
ters in 1986. They were awarded the Kavli Prize in Nanoscience in 2016 “"for the inven-
tion and realization of atomic force microscopy, a breakthrough in measurement technol-
ogy and nanosculpting that continues to have a transformative impact on nanoscience and
technology.”
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This will fix the six atoms at the bottom of the cluster and permit the
others to move. What is the result of a 20-step optimization?

8.3. Nanoscale Materials

Chemists studied colloids for many years before the advent of the scan-
ning probe microscopes pioneered by Binnig and colleagues made their
debut. Interest in the behavior of nanometer-sized materials expanded
rapidly with the ability of researchers to directly probe and even manip-
ulate their samples. Along with the new measurement technology for the
field came a new name: nanotechnology. Departments, journals and grant
funding mechanisms were rapidly renamed as new discoveries prolifer-
ated.

As we have seen previously, the introduction of a new measurement tech-
nology can vastly remake the fabric of the scientific endeavor. Such was
the case with the scanning probe instruments. Not only could a number
of problems be answered that could not be addressed previously but a
host of new applications arose as well. For example, if one were to affix
a molecule to the AFM tip and place other molecules of interest on the
surface, then one could study the forces generated as the two molecular
species were brought together. This would provide insights into the de-
tails of the chemical binding process that were completely inaccessible
previously. This is not to say that previous generations of chemists didn’t
ponder these sorts of questions but only that they did not have the tools
at their disposal to investigate chemical reactions in this fashion.

One problem that we sidestepped earlier in the discussion was the deter-
mination of optimal structures of small clusters. This was essentially the
problem that Smalley, Curl and Kroto were investigating when they stum-
bled across the fullerenes. While one might argue that the study of small
clusters is not terribly interesting in and of itself, the result is that a wide
variety of new areas of research have derived from those early investiga-
tions. Beyond the fullerenes, chemists and physicists began investigating
carbon nanotubes and now graphene sheets.

Graphene is an allotrope of carbon, in which the carbon atoms form hexag-
onal arrays in two-dimensional sheets. The sheets are weakly connected,
so powdered graphite has long been utilized as a lubricant in mechanical
devices. The Russian physicists Andre Geim and his student Konstantin
Novoselov were interested in the properties of graphene and found an ex-
traordinarily simple means for obtaining samples: they simply applied
adhesive tape to a graphite block and removed the top graphene layer.®

8Geim, Novoselov and colleagues published “Electric field effect in atomically thin carbon
films,” in Science in 2004 and “Two-dimensional gas of massless Dirac fermions in graphene”
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This provided the means for studies of this remarkable two-dimensional
material.

Ficure 8.15. Carbon nan-
otube can be envisioned as
graphene sheets wrapped into
a cylinder (left). It is possible
for the tubes to contain a
helical pitch (right).

Prior to this work, others had investigated the properties of carbon nan-
otubes: graphene sheets rolled into a tube, as depicted in figure 8.15. The
electrical properties of the nanotubes depend upon both the diameter and
helicity. When the graphene sheet is formed into a circle, like poultry
fencing, the hexagons of one row can step up or down to the next row
(or subsequent rows) when the edges meet, as depicted in the right image
in the figure. This helicity can be detected in single-walled nanotubes as
the helicity causes the hexagons to deform slightly, breaking the six-fold
symmetry.

The nanotubes can be defined in terms of two indices n and m that count
the number of hexagons arranged azimuthally around the tube and the
vertical offset, respectively. When |n —m| = 3k, for k an integer, then the
nanotube is a metal. When |n — m| = 3k + 1, the tube is a semiconductor,
otherwise the tube will be semimetallic.

Exercise 8.14. The six-membered carbon rings that form the graphene
sheet are composed of equivalent carbon atoms. Choose one as the
origin and then select the two atoms that are two bond lengths away
from the origin. The vectors from the origin to those atoms form the
two-dimensional basis vectors a, and a, for the sheet. A nanotube
with indices (1, m) is defined by the rectangle with corners at the ori-
gin and na, + ma,. What is the structure of a nanotube with indices
(n,m)=(12,12)?

in Nature in 2005. They were awarded the Nobel Prize in Physics in 2010 “for groundbreak-
ing experiments regarding the two-dimensional material graphene.”
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Both graphene and carbon nanotubes are the subjects of intense scrutiny.
They possess interesting electrical properties that can be altered by chem-
ical modification. Fabrication of devices remains a particular area of in-
terest. While the properties of particular forms of nanotubes are known
through experimental and theoretical means, the ability to build, reliably
and repeatably (and cheaply), many copies is still a work in progress.

While NWChem is capable of nanotube simulations, it is unlikely that
most students will have access to the computing resources necessary to
march further along this pathway. Instead, we shall return to a more
tractable problem: that of defining the “optimal” structure of small clus-
ters. Numerically, this amounts to finding the structure with the lowest
energy but, while easily stated, it is not a particularly simple task. There
are many degrees of freedom within even small clusters, so typical strate-
gies that make use of the energy gradients to determine the optimization
pathway can be trapped within shallow, local minima and never find the
global minimum. Indeed, it is likely that there is an ensemble of minimum
energy states that are very close in energy but which may be structurally
quite different.

An alternative strategy to minimization of a cost function was developed
in analogy to a common practice in material science. Long used by met-
alworkers, the technique is known as simulated annealing. The process
proceeds by first heating the system to circumvent any energy barriers;
recall that barrier heights are proportional to exp(—£/kgT). The system is
then allowed to cool and, optionally, can be optimized through the usual
minimization strategies. The technique is predicated on the ability to con-
duct dynamics on the sample constituents.

A workable strategy for quantum molecular dynamics was provided by
the Italian physicists Roberto Car and Michele Parrinello in 1986.9 Prior
to the Car-Parrinello work, the most common approach to molecular dy-
namics utilized the Born-Oppenheimer approximation, in which nuclear
motions were decoupled from electronic structure. For each time step,
the nuclear positions and velocities were updated and then the electronic
structure was obtained by optimizing the density with respect to the new
nuclear positions. This is a sensible approach, given that nuclei are vastly
heavier than electrons, and works well for reasonable temperatures. Un-
fortunately, the optimization step is quite costly and limited the applica-
bility of quantum methods in solving dynamics problems.

9Car and Parrinello published “Unified approach for molecular dynamics and density-
functional theory” in the Physical Review Letters. The pair was awarded the Dirac Medal
by the Abdus Salam International Center for Theoretical Physics in 2009.
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Car and Parrinello avoided this difficulty by including the electronic struc-
ture calculations directly. They proposed a Lagrangian of the following
form:

dw(r, 1)
sutenf g,

_1 dr;|* p 3
(89) ‘CCP = ;;Ml [W:| +;Z‘jd r

where the summation over i is over the nuclei and the summation over
I is over the orbitals. The fictitious electron mass p is chosen to be large
compared to the nuclear masses, to prevent energy transfer and preserv-
ing the electrons in their ground state. The last term in equation 8.9 is the
standard Kohn-Sham Lagrangian for the electronic degrees of freedom, so
all of the tools developed for density functional theory can be utilized.

As a simple example, we can study the case of twelve boron atoms. Ini-
tially, the atoms are arranged in an icosahedral geometry. Theoretically,
there are several suggestions as to the optimal geometry that the cluster
should attain. Conducting simulations of the cluster should help pro-
vide some insight into the actual behavior. Note that this will likely de-
pend on details of the model, so a single calculation will not magically
reveal the secrets of the universe. The script below will scale the temper-
ature upwards for several cycles before rescaling the temperature back
downward. The times here are in terms of the atomic unit of time 7 =
2.418884326509(14) x 1077 5. The number of times steps is modest; re-
search efforts would extend the trajectory significantly but this is enough
for our objectives.

geometry

B 1.06848703 -1.06977718 -0.27191204
-0.41738004 -1.54046760 0.30786278
1.54044867 0.41755176 0.31097113
-1.53464475 -0.41595403 -0.30802728
0.41455946 1.53816406 -0.30497372
-1.06506013 1.06638042 0.26996858
0.69163266 -0.69066193 1.27228704
-0.26229140 -0.90393650 -1.22051191
0.89747884 0.25958856 -1.21386685
-0.69798902 0.69567491 -1.28227908
0.26356093 0.90344215 1.22217740
-0.89880225 -0.26000463 1.21830395
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nwpw
simulation_cell
boundary_conditions aperiodic
SC 20.0
end
cutoff 10.0
Imbfgs
Car-Parrinello
fake_mass 500.0
time_step 5.0
loop 10 100
scaling 1.0 2.0
emotion_filename b12.00.emotion
xyz_filename b12.00.xyz
end
end

task pspw energy
set cpmd:init_velocities_temperature 300.0

task pspw car-parrinello
unset cpmd:init_velocities_temperature
task pspw car-parrinello
task pspw car-parrinello
task pspw energy
task pspw car-parrinello
nwpw
Car-Parrinello
scaling 0.99 0.99
emotion_filename b12.01.emotion
xyz_filename b12.01.xyz
end
end
task pspw energy
task pspw car-parrinello
task pspw car-parrinello
task pspw car-parrinello

The simulation is a bit lengthy but produces some 400 frames of data.
The software is capable of several different output files than enable one to
investigate various parameters. The .xyz file contains a sequence of co-
ordinates and velocities for each time step. The emotion file contains the
output times and various energy information. For example, the kinetic en-
ergy associated with the fictitious electron mass is depicted in figure 8.16
for the heating phase of the simulation. Here, the energy can be seen to
increase in four steps. This is an indication that the electrons are moving
away from their ground state, so the purpose of the task energy directive
is to reset the electron density before beginning the cooling process.

Students may have noticed that there is a fair amount of craftsmanship on
display in these calculations. This is typical of the level of detail associ-
ated with research programs. There are nuances and distinct limitations
to all methods, including experimental methods. One must learn how to
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compensate for shortcomings and obtain consistent results. Like learning
to read music, learning to conduct scientific investigations will take time
and effort.
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ciated with the fictitious mass
from the initial portion of the
simulation rises in four steps.
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Exercisk 8.15. Run the Car-Parrinello simulation indicated by the
script. (Note: this is an example from the NWChem tutorial series,
so output files may be available on the website.) Plot the different
energies in the .emotion file. Extract the final frame from the large
.xyz file. Does the structure tend towards icosahedral?

Exercise 8.16. The .xyz files written by the dynamics routines also
include the atom velocity. As a result, the Import function fails.
Construct a module to read the .xyz files. Use the ListAnimate
function to display all of the structures on the path. Hint: NWChem
writes a blank comment line, which the Read function will ignore.
Also, at the end of the file, the Read function will return the param-
eter EndOfFile. The test SameQ[nextline,EndOfFile] will return
True if the nextline resulting from the file read has the value EndOf
File.

A more involved approach to annealing can be implemented by an expo-
nential decay method. Here the temperature is reduced with an exponen-
tial function exp(—t/7), where the time is in units of the atomic time. The
value in the script corresponds to 7 = 1 ps. The cooling loop runs for 5000
steps, corresponding to about 6 ns of simulation time. The script for this
option is indicated below:
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nwpw
simulation_cell
boundary_conditions aperiodic
SC 20.0
end
cutoff 10.0
Imbfgs
Car-Parrinello
Nose-Hoover 250.0 3500.0 250.0 3500.0
fake_mass 500.0
time_step 5.0
loop 10 1000
scaling 1.0 1.0
emotion_filename b12.10.emotion
xyz_filename b12.10.xyz
end
end

task pspw energy
set cpmd:init_velocities_temperature 3500.0

task pspw car-parrinello

unset cpmd:init_velocities_temperature
nwpw

Car-Parrinello
SA_decay 4.134d4 4.134d4
Nose-Hoover 250.0 3500.0 250.0 3500.0
loop 10 5000
emotion_filename b12.11.emotion
xyz_filename b12.11.xyz
end
end
task pspw car-parrinello
task pspw optimize ignore
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Exercise 8.17. From the annealing simulation, plot the final struc-
ture. Does it look like the original icosahedral structure?

Exercise 8.18. Another program that can be quite useful is the
molecular visualization code VMD, available from the developers
at the University of Illinois. VMD can cope with the .xyz files that
NWChem writes. Install VMD and use it to examine the Car-Parri-
nello simulation results. After reading the file, the default Draw-
ing Method is Lines. Change this to VDW and add a second rep-
resentation where the Drawing Method is Dynamic Bonds. As the
simulation evolves, the bonds will be redrawn based on the selected
distance.

Exercise 8.19. Repeat the second simulation but for the thirty-two
carbon atoms we used previously. Limit the number of steps to 3000
in the second Car-Parrinello step. Describe the resulting structure in
terms of single, double, etc., bonds. Is the final structure symmetric?
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Perusing the options available in the user documentation for NWChem is
a daunting task. There are many methods, not all are compatible. We have
examined a few examples but have not exhausted all possibilities. The
reason so many approaches are available is that each has advantages and
disadvantages. Each has a limited scope of applicability, some of which is
determined by the amount of cpu time that can be devoted to the enter-
prise. Sometimes, brute force is good enough. Often, one must be clever
to obtain sensible results in a reasonable time. It would be nice to simply
type in the coordinates and tell the model to go calculate the density of
states but, in reality, such an undertaking may not be computationally fea-
sible. Perhaps quantum computing may render our discussions irrelevant
but that subject will be taken up in a later chapter.

8.4. Superconductivity

One of the most remarkable examples of emergent behavior is supercon-
ductivity, first observed by the Dutch physicist Heike Kamerlingh Onnes
in 1911.'° Kamerlingh Onnes set out earlier in his career to complete the
liquefaction of all known gases and developed a laboratory to accomplish
that goal.

By 1908, he had succeeded in liquefying helium, the element with the
lowest boiling point. With no other elements left to liquefy, Kamerlingh
Onnes thought, at first, to press on to lower temperatures and form solid
helium but was held back by technical details. Along the pathway to lig-
uid helium, for example, Kamerlingh Onnes had developed the requisite
thermometry to determine temperature. He had calibrated the resistance
of platinum wires against other sources at higher temperatures and also
utilized a gaseous helium thermometer, capable of measuring tempera-
tures down to about 1.5 K. To go lower in temperature would have re-
quired construction of a new apparatus, so Kamerlingh Onnes paused in
his quest for lower temperatures and decided instead to study the behav-
ior of materials at low temperature.

Kamerlingh Onnes pragmatic decision to utilize the existing apparatus
quickly proved to be scientifically profitable. Lowering the temperature
in platinum had led to a lower resistance, and a low-temperature ther-
mometer. When Kamerlingh Onnes investigated the behavior of mercury
at low temperatures, he found that the resistance dropped by a factor of

19Kamerlingh Onnes published his results in the Communications of the Physics Laboratories
of the University of Leiden. Most were then reprinted in the Proceedings of the Koninklijke
Nederlandse Akademie van Wetenschappe. He was awarded the Nobel Prize in Physics in 1913
“for his investigations on the properties of matter at low temperatures which led, inter alia,
to the production of liquid helium.”
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a million over a very short temperature span, as indicated in figure 8.17.
At 4.2 K, the resistance dropped precipitously at lower temperatures and
then jumped back at higher temperatures. This is characteristic of crit-
ical behavior in many-body systems. The material property (resistance)
changes reversibly and abruptly at the transition temperature.

Kamerlingh Onnes quickly established that other metals had this prop-
erty that he termed supraconductivity. His naming of the phenomenon
didn’t stick, today we talk about superconductivity. Nonetheless, Kamer-
lingh Onnes found that lead becomes superconducting at about 6 K and
tin at 4 K. This enabled a number of new studies that avoided the many
tribulations associated with mercury. For example, one can form wires
from lead and tin but mercury has to be maintained within a glass capil-
lary tube and is subject to mechanical fracture.

In 1914, Kamerlingh Onnes constructed a small coil from lead wire and
applied a voltage, anticipating that he would be able to achieve very large
magnetic field strengths due to the extraordinarily large currents that
should flow in the superconductor. Unfortunately, at a rather low field
strength the lead transitioned back into the normal resistance state. This
was a blow to the intended program of established a high-magnetic field
laboratory but for Kamerlingh Onnes did notice that when he removed
the voltage source from the circuit that the current persisted. A ring of
supercurrent flowing in the lead coil could deflect a compass. Position-
ing a copper coil adjacent to the compass also generates a magnetic field
that can be arranged to cancel the deflection of the superconducting cur-
rent. For an hour or more, no noticeable change in the compass needle
was detected.

Over time, a number of additional superconductors were discovered and
additional properties were added to the list of physical phenomena. In
particular, the German physicists Fritz Walther Meifiner (Meissner) and
Robert Ochsenfeld discovered in 1933 that superconductors could not be
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penetrated by magnetic fields.'" The Meiiner effect forms the basis of
popular laboratory demonstrations in which a superconducting block lev-
itates above a magnet. The magnetic field of the magnet induces surface
currents in the superconductor that cancel the field within the supercon-
ductor. These induced currents generate the lifting force that levitates the
block.

An initial theory that explained the Meifiner effect was produced by the
German physicists (and brothers) Fritz and Heinz London in 1935. They
suggested that the magnetic field of the superconductor must satisfy the
following equation:

(8.10) V?H = x’H,
now known as the London equation. A solution is available immediately:
(8.11) H=H,e "7,

where « is the magnitude of the vector k and H, is a constant.

Exercise 8.20. Demonstrate that equation 8.11 is a solution to equa-
tion 8.10.

From equation 8.11, the constant x has the dimension of an inverse length
and 1/x is known as the London penetration depth. It marks the charac-
teristic rate of decrease of external magnetic fields into the superconduc-
tor. The London equations provide an explanation of the macroscopic be-
havior of superconductors but do not provide a microscopic justification
for the existence of superconductivity.

Despite considerable interest in developing such a theory, none were suc-
cessful until the 1957 work of John Bardeen, his postdoctoral assistant
Leon Cooper and student J. Robert Schrieffer. Bardeen and David Pines
had published an article in 1955 in which they concluded that electrons
in a crystal could feel a small attractive force, despite the fact that there
was significant Coulomb repulsion for free electrons.'> The motivation
for this work was the experimental observation of an isotope dependence
on the critical temperature in mercury. If superconductivity was simply
due to electronic interactions, then there should be no dependence upon
which mercury isotopes formed the lattice. It was plausible, then, that
electron-lattice interactions could provide the means for the supercon-
ducting state.

TMeiBner and Ochsenfeld published “"Ein neuer Effekt bei Eintritt der Supraleitfihigkeit”
in Naturwissenschaften.

12Bardeen and Pines published “Theory of the Meissner effect in superconductors” in the
Physical Review. Pines then left Illinois for a tenure-track position at Princeton.
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The next pivotal step was provided in a paper by Cooper in 1956, who
argued that electrons could form weakly bound pairs.'3 Cooper was con-
vinced that this explained superconductivity but Bardeen was dubious
that they had yet completed the entire picture. In the interim came the
announcement that Bardeen won the Nobel Prize for the invention of
the transistor, along with William Shockley and Walter Brattain.'* While
Bardeen was off drinking champagne, Schrieffer found a means to treat
the Cooper pairs coherently and this provided the missing step.

What Schrieffer recognized was that only electrons at the Fermi surface
would participate in the pairing interactions. In normal metals, electrons
are free to migrate into the conduction band when a small potential is
applied. By contrast, in superconductors, there is a small band gap that
prohibits promotion to the conduction band and, instead, allows the for-
mation of Cooper pairs. The kinetic energy of the Cooper pairs can be
written as follows:

hw
(8.12) Ex :4QOJ deg(e),

where (), is the density of states at the Fermi energy, ¢(¢) is the probability
that a Cooper pair exists with energy ¢ and fiw is a small (constant) energy
above the Fermi energy.

Interactions between Cooper pairs lead to an interaction energy given by
the following expression:

hw hw
’ ’ ’ 1/2
Ba3) &= [ de [ e -gellsters e
[} o
where V is the (assumed to be common) interaction strength.

The total energy £k + £ can be determined by varying g(¢), with the fol-
lowing result:

2Q(hw)?

e2/QoV _ 1

This is the prediction of the BCS theory.'> The product Q,V is indepen-
dent of isotopic effects, so the entire dependence on isotope is governed by
the (fiw)? behavior, which is in agreement with experimental observation.

(8.14) g]<+€[=—

13Cooper’s “Bound electron pairs in a degenerate Fermi gas” was published in the Physical
Review.

T4Shockley, Bardeen and Brattain were awarded the Nobel Prize in Physics in 1956 “for their
researches on semiconductors and their discovery of the transistor effect.”

15Bardeen, Cooper and Schrieffer published “Microscopic theory of superconductivity” as a
Letter to the Physical Review and an expanded “Theory of superconductivity” later in 1957.
The three were awarded the Nobel Prize in Physics in 1972 “for their jointly developed
theory of superconductivity, usually called the BCS-theory.”
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Remarkably, the Cooper pairs are not formed by adjacent electrons, the
individual electrons that participate in the pairing interaction are widely
separated, with a coherence length on the order of 100 nm. Additionally,
the behavior of the Cooper pairs in equation 8.14 reflects boson statistics.
A common derivation in introductory statistical mechanics courses is the
calculation of the average occupation number 7, for the state |a). For
fermions, the occupation number can only be o or 1, reflecting the Pauli
exclusion principle. As a result the occupation number has the following
form:
1

8.1 HF, =

(8.15) @ Sen/ksT 4 o
where i is the chemical potential, or the Fermi energy. For bosons there is
no restriction on the number of particles that can occupy the same state.
This results in the following formula for the occupation number:

1

8.16 [ —

( ) a e(e—y)/kBT —1

The difference is the sign in the denominator but this has an enormous
effect on the occupation number.

Exercise 8.21. Plot the occupation numbers from equations 8.15
and 8.16. Use units where y = 1kgT. Plot over the domain o < ¢ <
10kgT.

Ficure 8.18. Cubic perovskites
have space group Pm3m. The
faces of the cube are oxygen atoms
(gray) and the corners are occupied
by one metal (light gray) and the
center of the cube is occupied by a
second metal (dark gray).

The Cooper pairs are composite bosons, reminiscent of the bosons uti-
lized in the IBM theory discussed earlier. The pairing force, though, arises
through interactions of the electrons with the lattice through quanta known
as phonons. The resulting pairing force is small and, so, superconductiv-
ity was restricted to very low temperatures. This situation changed dras-
tically in 1986, when German physicist J. Georg Bednorz and his Swiss
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colleague K. Alexander Miiller were studying the low temperature prop-
erties of metal oxides. Much to their delight, the pair found a perovskite
material based on the rare earth elements barium and lanthanum that
demonstrated a critical temperature above 10 K.*® Adding copper to the
mix (Ba,La;_Cu;O,(3-p)) produced a samples that had a transition tem-
peratures in the 30 K range. The nominal perovskite structure is depicted
in figure 8.18.

The Bednorz/Miiller discovery provoked amazement in the superconduc-
tivity community. They were working with insulators not conductors and
the observation of superconductivity in an insulating material was aston-
ishing. They provoked a flurry of competition and set off a furious race to
drive the critical temperature to unforeseen heights. Without any partic-
ular theoretical guidance, experimenters depleted all stocks of rare earth
elements, which became unattainable at any price. In very short order, the
critical temperature of the copper perovskite superconductors rose above
the liquid nitrogen temperature of 77 K. A timeline for the advances in
critical temperature is provided in figure 8.19.

These discoveries signalled an extraordinary advance with commercial
applications looming in the future. Liquid helium is expensive and in
limited supply. Liquid nitrogen is ubiquitous and cheap. While commer-
cialization has not proceeded with the pace initially envisioned, there are
some applications. For example, the RF filters used in cell towers use high
temperature superconductors to improve the detector sensitivity.

At present, the mechanism for high temperature superconductivity is still
in dispute. The perovskite materials are complex and the superconduc-
tive state is not homogeneous but reflects the layered nature of the crystal
structure. The ceramic materials are brittle and difficult to characterize,
owing to the fact samples are generally composed of small grains of un-
aligned domains. Initially, there was great confusion in the field due to
the extraordinarily rapid pace and experimental limitations. Different ex-
perimental groups found vastly different critical temperatures for what
should have been the same material but was, in fact, different due to fab-
rication issues. In time, the discourse became somewhat more civilized
and two models for high temperature superconductivity have emerged as
the most viable description of the phenomenon. The first was put forward
by Philip Anderson, who suggested a model of the cuprate superconduc-
tors as a quantum spin liquid. The second model was developed by David
Pines and collaborators Phillippe Montoux and Alexander Balatsky, who

16Bednorz and Miiller were awarded the Nobel Prize in Physics in 1987 “for their important
breakthrough in the discovery of superconductivity in ceramic materials.” The award came
just a year after they published “Possible high T, superconductivity in the BaLaCuO system”
in the Zeitschrift fiir Physik B.
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FiGure 8.19. The highest known critical temperatures of supercon-
ducting materials has risen dramatically over time. Key tempera-
tures are the 4.2 K boiling point of helium, the 22 K boiling point of
H, and the 77 K boiling point of N, (light gray lines).

have suggested that the cuprates function as an antiferromagnet, where
the spin on each copper atom is antiparallel to the adjacent spins."'”

There is also a new class of superconducting materials based on iron ar-
senide compounds that were discovered in 2008. These have a crystal
structure that is even more complex than the perovskites but should pro-
vide another arena in which the models can be tested. The field of super-
conductivity remains an active research enterprise. One of the principal
difficulties retarding progress in the field is the lack of a definitive exper-
imental outcome that can differentiate the proposed models. This is often
the status of fields in their early stages of development.

'7Anderson’s “The resonating valence bond state in La,CuO, and superconductivity” ap-
peared in Science in 1987. Monthoux, Balatsky and Pines published “Toward a theory of
high-temperature superconductivity in the antiferromagnetically correlated cuprate oxides”
in the Physical Review Letters in 1991.
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Light and Matter

We began in Chapter 2 with a discussion of Maxwell’s equations that uni-
fied the treatment of electromagnetic phenomena. The coupled, vector
differential equations are quite formidable but it is possible to solve them
in a number of cases. Additionally, a number of numerical techniques
have been developed that permit solving the equations in cases in which
analytic solutions are not possible: for asymmetric geometries, for exam-
ple. Prior to Maxwell’s work, the nature of light was a subject of contro-
versy. Newton held that light possessed a corpuscular nature, based upon
his own observations that light rays travelled in straight lines until they
encountered a surface. At that point, his model broke down but he was
unwilling to consider an alternative theory.

Today, we recognize that Newton’s ray model of light can be interpreted as
a high-frequency approximation to Maxwell’s equations. When light from
a source strikes an object, we see that the object casts a shadow. Of course,
if we look more closely, we can see that light diffracts around the edges
and that the shadow does not have as sharp an edge as one might initially
assume. As a first approximation, though, one might well describe the
behavior of light beams with just a few simple rules. This is the approxi-
mation known as geometric optics. As Newton was a master of geometry,
we can see how this sort of theory would have held great aesthetic appeal.

9.1. Geometric Optics

The essence of geometric optics is conveyed by figure 1.8. When a light
ray (thin beam) strikes an interface where there is a discontinuity in the
constitutive properties, part of the beam is reflected and part is transmit-
ted, emerging at a different angle. The relationship between the incoming
and outgoing ray angles has been known for a long time. In 984, the Per-
sian scholar Abu Said al-Ala Ibn Sahl produced a manuscript On burning
mirrors and lenses that is the first known statement of what is today called
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Snell’s Law after the Dutch physicist Willebrord Snell." While the rela-
tionship was determined by experiment initially, a success of Maxwell’s
theory is that the relationship can be derived from the equations.

Even though we know that surfaces at the atomic scale are quite rough, the
wavelength of visible light is much greater than the atomic scale and thin
beams actually illuminate an area that encompasses tens of thousands of
atoms or more. Hence, we can utilize the approximation that there is a
step change in electromagnetic properties at a surface, like that of a lens
Or mirror.

From the first of the Maxwell equations 2.1, we can observe that, near
an interface and in a small area like that pictured in figure 9.1, the com-
ponent of the electric displacement D that is normal to the surface will
depend upon any surface charge 0. We can write the following expres-
sion:

(9.1) D, -n(r, + 9)AA-D, -n(r, —0)AA = 0 AA,

where we have made use of the fact that the normal component of D is
orthogonal to the sides of the tube. Taking the limit where 6 — o, equa-
tion 9.1 provides a boundary condition on the electric displacement. Be-
cause the differential area AA is arbitrary, it can be eliminated from the
equation. If we utilize the constitutive relations for the displacement, we
have a relationship for the electric fields at a boundary:

(92) 62E2(r2)-n(r2)—61E1(r2)~n(r2):cr.

Here, €; is the dielectric permittivity in medium 1.

FIGURE g.1. In the vicinity of
the point r, on the interface
between volumes 1 and 2, we
can construct a small tube
with cross-sectional area AA
that extends just above and
below the surface.

Similarly, Faraday’s equation 2.3 can be used to derive a boundary con-
dition on the component of the electric field parallel to the surface. At
a microscopic level, as depicted in figure 9.2, the path integral over the

1 The attribution to Snell is another historical curiosity. Snell discovered the relationship
in 1621 but never published his findings. After his death, the outline of a treatise on optics
was found amongst his papers. His work only became known when it was cited in 1703 by
Christiaan Huygens in his Dioptrica.
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small loop in the neighborhood of the point r, can be seen to produce the
following result:

(9.3) E-dl >E, dl-E,-6—E,-6—E, -dl+E,-6+E, -5,

where we have assumed that the normal vector is constant over the dimen-
sion of the loop. Note that all of the terms involving ¢ vanish, provided
that dl is suitably small. So, we are left with the following result:

E,-dl-E,-dl :—%[B2 ‘n(r,)odl +B, -n(rl)édl].

Now as we take the limit where 6 and dl vanish, the right-hand side van-
ishes and we are left with the following result, where here n(r,) is the
normal to the surface:

(9-4) E, —[E; 'n(r,)|n(r,) = E; - [E; -n(r,)|n(r,).
That is, the components of the electric field parallel to the surface are
equal.

Exercise 9.1. Justify the terms (especially signs) in equation 9.3.

F1IGURE 9.2. We can construct
a small loop in the vicin- Al n(r,)
ity of r, that runs parallel

to the surface at a height 9, 2 16
pierces the surface and then
returns in the opposite direc-
tion. Here the normal is de-
fined with respect to the loop,
not the interface between me-
dia.

Using the same strategy for the magnetic induction and magnetic field,
we can derive the following boundary conditions:

(9:5) joH, n(r,) = H, on(r,) and
(9-6) H, - [Hz 'n(r2)]n(r2) +n(r,)xK=H, - [H1 : n(rz)]n(r2):

where K is a current sheet embedded in the interface. The component of
the magnetic field normal to the surface is continuous at a boundary, as
is the component of the magnetic induction parallel to the surface, in the
absence of surface currents.

Exercisk 9.2. Following the derivations of the boundary conditions
on the electric field, justify the boundary conditions on the magnetic
field expressed in equations 9.5 and 9.6.
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If we work in the Fourier transform domain, then the fields in the medium
where the incident ray begins, call it medium 1, are the sum of incident
and reflected rays:

(9.7) E1 eik1~r _ EI eiklnl-r + ER eiklnR~r.

An illustration of the ray geometry is provided in figure 9.3. Note here
that both incident and reflected rays propagate with the same wavenum-
ber k, but with different directions n; and ng, respectively. In medium 2,
there is only the refracted ray:

(9.8) E, ek = ErelfentT,
We can recover Snell’s law by enforcing the boundary conditions on the
fields at the interface.

Ficure 9.3. The incident ray
strikes the boundary between
the two media (1 and 2) at
the point r,. A reflected
ray and refracted (transmit-
ted) ray are generated.

We can simplify the discussion a bit by assuming that the interface is pla-
nar, or at least has a small radius of curvature at the point r,. With this
assumption, the general problem of fields can be decomposed into two
components: one with E parallel to the surface and a second with H par-
allel to the surface. In either case, we will have a boundary condition that
has the following form:

(9:9) Fpeffamts 4 fp offinr Ty = Fopflont s

where F is one of the fields. Note that in equation 9.9, the only spatial
dependence is in the exponential factors, the transformed fields are func-
tions of the wave vectors k;. Consequently, for equation 9.9 to be correct
for all points on the surface r,, the exponential factors must all be equal:

(9.10) k;ny-r, =kng-r, =k,ny-r,.
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We can, for the moment, choose the surface to have a normal in the z-
direction and the surface to lie at the z = o plane. (This isn’t necessary but
simplifies the following discussion.) Then, equation 9.10 can be expanded
into the following:

(9'11) k1 (nl)xx+k1(nl)yy = kl(nR)xx+k1 (nR)yy = kz(nT)xx+ kz(nT)yy

Again, for this equation to hold, the terms in x and y must hold individu-
ally. Thus, we must have the following:

(9-12)  ki(np)y =k;(ng)y =k,(n7), and k, (nl)y =k, (nR)y = kz(nT)y
We note that, in a polar coordinate system centered on r,, we can write
n; -n(r,;) = cos@;. The remaining components of n; would be given by

(np), =sin6;cos @ and (ng), =sinOysin¢. Thus, for an arbitrary azimuthal
angle ¢, we must have that the following relations hold:

(9.13) k,sinB; =k, sinOR = k, sinOr.

The first equality can be simplified to state that the angle of incidence is
equal to the angle of reflection. The other equality provides Snell’s law:
the sines of the angle of refraction and angle of incidence are related by
the wave vectors. Recall that k> = w?pe + iwpo, where o is the bulk con-
ductivity of the medium. Hence, for conductive media, there is an imag-
inary component to the wave vector and waves in the conductor become
evanescent. The field falls off exponentially within the media with a char-
acteristic length, the skin depth, 6 = [2/a);40]1/2.

So, we can turn now to the problem of determining the reflected and
refracted fields given an incident field. We can accomplish this by en-
forcing the boundary conditions on the fields at the interface between
the media. As we mentioned, the problem can be decomposed into two
separate cases: either the incident electric (TE) or magnetic (TM) field is
parallel to the surface. The direction of the other field is governed by
Maxwell’s equations 2.22-2.25. Consider first the case of TE incidence.
For simplicity, let us continue to utilize a coordinate system in which
the normal to the surface is in the z-direction and let us, without loss
of generality, choose the polarization of the incident electric field to be
in the x-direction: E; = E;%x. From the orthogonality conditions on the
fields and the wave vector, this means that the wave vector can only have
y and z components: k; = k,(o,sin@,cos6y). From the results in equa-
tion 9.13, we also can show that the other wave vectors are of the form:
kg = k,(0,5in 6}, —cosOy) and kt = k,(o,sinO,cosO7). The incident mag-
netic field is obtained from Faraday’s law, equation 2.24, from whence we
obtain the following:

1

. Eik
k; x E; = =21 (0, cos Oy, —sin 6;).
W, W,

(9.14) H =
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We now need to determine the field strengths of the reflected and re-
fracted waves: Eg and E1. From the boundary condition on the electric
fields tangential to the surface, we obtain the following:

(9-15) Er+Eg = Lr.

From the boundary conditions on the tangential components of the mag-
netic field, we obtain the following:

(9.16) & EjcosO; - Ex cos@l] = k—z[ET cos QT].
W,

W,
After a suitably tedious amount of algebra, we are led, at last, to the Fres-
nel equations, named for the French physicist Augustin-Jean Fresnel:

(9-17)

Er _ kipscosOr—kyp, cosOp and E~_T_ 2k, ph, cos O;

E;  kipscosO+k,p, cosOp’

E;  kip,cosOp+k,p, cosOp

As we can see in figure 9.4, the coefficients are smoothly varying functions
of the incident angle. This is actually a bit misleading. From Snell’s law,
equation 9.13, we can deduce that the angle of refraction is given by the
following expression:

(9.18) O1 =sin™! [k—l sin 61}.

k,
Obviously, this equation is well defined when k,; < k, but what happens
when k; > k,? In this case, there will be angles 6; where the argument
in the square brackets is greater than one and for these values, the sin™
function becomes complex and the fields evanescent.

[ TE Ey

FIGURE 9.4. The normalized
reflection and refraction coef-
ficients are plotted as a func-
tion of incident angle. Ratios
of k,/k, = 1.5 and p,/pu, = 1.
were used in this example.

Exercise 9.3. Plot the real and imaginary parts of sin™ x for the
domain o < x < 5.

2Fresnel published his treatise Mémoire sur la diffraction de la lumiére in 1818, for which he
won the prize offered by the Académie des Sciences.
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Exercise 9.4. Consider a beam defined by the incident wave vector
k; = k,(o,5sin 6O}, cos O)) and that possesses an incident electric field
E; = Ei(cosa,sina cos 6y, —sinasin@;). Show that the incident field
can be decomposed into TE and TM components.

Exercisk g.5. Plot the scaled reflection and refraction coefficients

for k,/k, = 1.5 and p, = p, = 1. What happens when the ratio of

wavenumbers is reversed?
The solutions for transverse magnetic fields can be obtained similarly. We
note that the magnitude of the magnetic field is proportional to the elec-
tric field:

H= iE.
WH

Using this, we can again solve for the Fresnel equations for TM incidence:

(9-19) )
Er kyp, cosOp—k p,cosOr Er 2k, p, cos Oy
—_ == nd —= .
E; kyp, cosOp+k,p,cosOr Er  kyp,cosOr+k, p,cosOr

At first glance, the Fresnel coefficients appear similar but, as we note in

figure 9.5, there are significant differences.

FIGURE 9.5. For the same pa-
rameters used in generating
figure 9.4, the Fresnel coeffi-
cients for TM incidence dis-
play different behavior. The
reflected wave vanishesatthe -—osC 0+ o+ « o+ | o+ | |

Brewster angle Og. 0 /4 /2

For example, using the same parameters as before, the reflected wave co-
efficient changes sign at the angle O, known as the Brewster angle after
the Scottish cleric turned physicist David Brewster.3 Brewster noted that
unpolarized light (TE+TM) incident on a crystal became polarized (TE)
upon reflection when the sum of incident and refracted angles was 7/2.

Exercise 9.6. Show that, when ER = 0, the sum of the incident and
refracted angles becomes 61 + 01 = 1t/2, provided that the materials
are not magnetic (y; = 1). Hint: Use the sin™' addition formula:

sin'x+sin”'y = sinfl[x(l )24 9(1 —x2)1/2].

3Brewster published “On the laws which regulate the polarization of light by reflection from
transparent bodies” in the Philosophical Transactions of the Royal Society of London in 1815.
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Exercist 9.7. Plot the TM Fresnel coefficients for k,/k;, = 1.5 and
u; = 1. What happens if the ratio k,/k, is less than one?

The Fresnel equations provide the means for determining the behavior
of optical systems. Draw an incident ray and propagate it through the
system by drawing straight lines until it strikes and interface. Compute
the local normal and then generate reflected and refracted rays. Propagate
those until they strike interfaces and continue. While such a prescription
is quite tedious, it is just the sort of thing at which computers excel.

As a practical matter, there are subtleties associated with the fact that the
dielectric permittivity of glasses, for example, is not independent of fre-
quency. This frequency dependence is known as dispersion. The name
arises from the observation that prisms spread (disperse) incident light
into its spectral components. Dispersion is a useful feature when trying
to determine spectra but not a useful feature when trying to produce im-
ages. In lens applications, this frequency dependence leads to chromatic
aberration: the focal length depends upon the color. Much of the design
of lens systems for cameras and microscopes is predicated on minimizing
the effects of dispersion.

The phenomenon has its origins in the microscopic behavior of materi-
als. Electromagnetic energy incident on a material will predominantly
interact with the local electron population. In conductors, this will drive
currents proportional to the electron density. In insulators, where there is
a band gap, there is a more subtle response as the electron density adapts
to the external fields. A simple model for the dielectric response involves
resonance behavior. If we assume that electrons behave as harmonic oscil-
lators with some particular resonance frequency w, and that the electro-
magnetic fields oscillate with a frequency w, then the dielectric permittiv-
ity has the following form:

(9.20) €=¢€,

ne> n;
1+— E R
m, wF —w?* —iajw

where 7 is the number of electrons in a unit volume, n; are the fraction
with resonant frequency w; and a; is a (small) damping factor. Instead of
a single resonant frequency, there are many frequencies w; corresponding
to states within the matrix.

Exercise 9.8. Plot the real and imaginary parts of the function
fw,a)=[1-w?>—iaw]™" over the domain o < w < 3, for a = 0.03 and
o.1. What is the behavior above and below the resonance frequency
w = 1? What is the effect of alpha?
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Equation 9.20 provides a simple explanation for the general behavior of
dielectric media, in which the “dielectric constant” is not actually a con-
stant, but a slowly varying function of frequency. Beyond the issues with
dispersion, a problem that has plagued astronomers and opticians from
Galileo to Newton to modern days is the very limited range of dielectric
constants. All glasses have a dielectric constant in the neighborhood of 3—
5, resulting in an index of refraction of about 1.5. As a result, the amount
of focussing through lenses is quite restricted.

Exercise 9.9. Use values of k,/k, = 1.5 and y;, = y, = 1 and compute
the refracted paths for incident rays that are parallel to the centerline
of the lens. Consider cases where the offset from the centerline has
the values 0.05R...0.5R in steps of o.05R. For simplicity, consider
the case where R = 1 and the center of the lens is at (2,0).

FIGURE 9.6. Refraction
at an interface with a
curved surface leads to
converging rays. 1 2

In figure 9.6, we illustrate one incident ray striking a curved surface. In
this case, the surface is spherical, with a constant radius of curvature.
Such lenses are relatively easy to construct but making them larger does
not lead to better optical properties. The refracted rays do not converge
to a point but instead form a caustic surface. As a result, lens makers are
restricted to using lenses with radii of curvature that are large compared
to the lateral dimension of the lens.

If we place two curved surfaces back to back, as illustrated in figure 9.7,
then the initial beam of parallel rays converges but not to a point. Rays
far from the centerline are bent across the centerline at points short of
the radius of curvature. For rays near the axis, the effect is much less
pronounced. The caustic surface is the envelope formed from the rays on
the right of the lens. In an ideal lens, all of the rays would cross the axis
at a point. For real lenses, this cannot happen with spherical surfaces.

Exercise g.10. Construct a Mathematica function that can trace a
ray through two spherical surfaces. Each sphere has a center at some
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Ficure g.7. For a thick lens
with two curved surfaces, rays
from the periphery of the
lens cross the centerline (light
gray) before those from near
the axis.

distance c; along the x-axis and a radius of curvature R;. Incident
rays run parallel to the x-axis at a height y = h. Use the Circle and
Infiniteline functions to identify the intersections of the incident
ray with sphere 1 and then the refracted ray with sphere 2. Hint: use
the NSolve function.

For a series of rays, see if you can reproduce figure 9.7. What hap-
pens if you change the radii from 1 and/or move the centers of the
spheres from (2,0) and (0.35,0)?

The practice of geometrical optics is well established, as are the limita-
tions. In modern light microscopes, one utilizes not individual lenses
but lens assemblies with different coatings and indices of refraction to
minimize chromatic aberration. In telescopes, where light intensity from
distant sources is the limiting factor on image production, one utilizes
mirrors instead of lenses. This minimizes absorption of faint signals and
distortion due to dispersion.

9.2. Transformation Optics

Many investigators from Galileo and Newton and onwards have exper-
imented with different glass formulas to see if some magical addition
might make a material with a refractive index of 10 or 100. None have
as yet succeeded. In 1964, the Russian physicist Victor Veselago wrote
an interesting paper on the consequences of having negative values of the
permittivity and permeability.* One might first imagine that such cir-
cumstances would have no effect whatsoever. Recalling that k* = w?pe,
it seems that if both y and € were to change sign, then the signs would
simply cancel.

In fact, an inspection of our discussion of the boundary conditions on the
electric and magnetic fields displayed in equations 9.2 and 9.5 reveals a
remarkable result. The fields parallel to the surface are unaffected by the

4Vesalago published “The electrodynamics of substances with simultaneously negative val-
ues of € and p” in Uspekhi Fizicheskikh Nauk in 1964. It appears in English translation in
Physics Uspekhi in 1968
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change in sign of € and y but the normal components of the fields must
change signs. Indeed, from equations 2.24 and 2.25, we had originally
concluded that the vectors E, H and k formed a right-handed set of or-
thogonal vectors. If € and p are negative, then the vectors will remain
orthogonal but now have a left-handed sense.

This result is rather perplexing. We know that the Poynting vector is de-
fined as S = E x H and that this defines the flow of energy in the electro-
magnetic field. With negative values for € and y, we find now that the
wave vector k points in the opposite direction from the Poynting vector.
This situation is illustrated in figure 9.8, where medium 2 is presumed
to have negative values for the electromagnetic properties. The figure de-
picts TE incidence, where the electric field is parallel to the surface.

Ficure 9.8. A TE wave is in-
cident on the surface between Hy kg
two media. For a region Ex
(2) where p and € are nega- ~
tive, the refracted wave vector \ =% I
. . . o O\ 5\
points in the opposite direc kr~ No
tion from the Poynting vector. T \
Refracted rays are on the same
side of the normal as the inci- \‘l.fl
dent ray.

T
—
T

Exercise 9.11.  Construct a figure that represents a TM wave inci-
dent on a material with negative values of y and e. Where is the
refracted ray?

Remarkably, in figure 9.8, the refracted ray is on the same side of the
normal as the incident ray. This result is not a consequence of TE inci-
dence; it also holds for TM incidence. As Veselago discovered, the change
in refractive properties of what he called left-handed media bring about
significant changes to the optics of any systems that could utilize them.
At the time, there were no known media that possessed such properties,
so Veselago’s ideas remained dormant.

In the late 1990s, the British physicist John Pendry and his collaborators
began experimenting with periodic metallic arrays, demonstrating that a
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number of unusual effects could be obtained from an array of wires, for
example. In 1999, Pendry and team began utilizing split-ring resonators,
demonstrating that the small, metal rings had effective electromagnetic
properties that could be tuned to a wide variety of values, at least over a
modest bandwidth in the microwave region.> A sketch of the split-ring
geometry is provided in figure 9.9. Shortly thereafter, metamaterials with
negative values of y and e were fabricated and their behaviors were largely
what Veselago had predicted.

FicUure 9.9. Two metal rings deposited
on an insulating substrate form an effec-
tive LC circuit with a resonant frequency
w? =1/LC. The inductance L and capac-
itance C depend upon the ring geometry.

The ring sizes were chosen to be small compared to the microwave wave-
lengths studied but were readily fabricated with PC board technology.
The various diameters and gap spacings provided the ability to choose the
effective inductance and capacitance and provide a nearly arbitrary reso-
nant frequency. This gave experimenters the opportunity to utilize equa-
tion 9.20 explicitly to generate an effective dielectric constant of arbitrary
sign, at least within a reasonable bandwidth. There followed something
of a scramble to find applications of the new technology.

Interestingly, one of the keys to progress was initially set forth by the
French mathematician Pierre de Fermat in 1662. If we allow the dielectric
permittivity and magnetic permeability to become functions of space and
not just stepwise changing, then we can define the optical path of a ray as
follows:

B
(9.21) s:J dl-k.

A
Fermat’s observation was that the actual path taken by a light ray was the
one that minimized the path:

(9.22) 0s =o.

5Pendry and coworkers published “Magnetism from conductors and enhanced nonlinear
phenomena” in the IEEE Transactions on Microwave Theory and Techniques in 1999. Pendry,
Thomas Ebbesen and Stefan Hell shared the Kavli Prize in Nanoscience in 2014 “for their
transformative contributions to the field of nano-optics that have broken long-held beliefs
about the limitations of the resolution limits of optical microscopy and imaging.”
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Allowing the electromagnetic parameters to become arbitrary functions
of space makes equations 9.21 and 9.22 quite general.

Indeed, one can use Fermat’s principle to trace the paths of rays through
materials that possess a gradient in €, for example. Such curved path-
ways explain the shimmering visible in the distance over hot roadways.
The permittivity depends upon temperature, which is highest on the road
surface and decreases in the vertical direction. Rays of light from the sky
that occur at shallow enough angles will be bent back away from the road
surface.

One might then ask the following question: “how can we obtain a partic-
ular ray curvature?” That is, what distribution of permittivity and per-
meability will lead to a particular ray path? The answer to these sorts of
questions can be found through the language of differential geometry. We
have not yet spent much time discussing the geometry of curved spaces
but finding such a mathematical language occupied Einstein in his search
for a general theory of relativity.

We introduced tensor notation earlier to demonstrate that Maxwell’s equa-
tions could be made manifestly Lorentz invariant. That is, Maxwell’s
equations lead to a relativistically sensible theory. We did not, though,
explore the implications of such a treatment. What we find now is that
the minimal curve that Fermat described in 1662 is precisely the geodesic
in a curved geometry. The definition of the geodesic is the curve with the
shortest path between two points in space(time) that preserves the tan-
gent vector to the curve. In Cartesian coordinates, this is simply a straight
line. On the surface of a sphere, the geodesic is an arc of a great circle.

Ficure 9.10. If we consider a curve
from point a to b on a curved
surface, a natural coordinate sys-
tem can be defined as the direction
along the curve s, the normal to
the surface n and the cross product
s x n, that points to the right of the
curve.

What Einstein found in his studies of differential geometry is that, along
a path, one can define, locally, a Cartesian coordinate system. As we have
indicated in figure 9.10, at each point on the path from a to b, we can
define the tangent along the direction of the path s, and the normal to the
surface n. From these two, we can define a direction perpendicular, as in
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the figure. As we move along the pathway, the direction vectors change,
which brings us to the issue of how one might be able to define derivatives.
If we are at point a, for example, and take a small step in the s-direction,
this will take us off of the curve.

Mercifully, mathematicians have worked out the details of defining how
to move about the path. Because we are interested in the distance along
the path, we naturally will choose to work in a universe where a metric
can be defined. We introduced the metric tensor g in chapter 2, where the
differential element ds can be defined as follows:

(9.23) ds® = Zgijdxjdxk,
ik

where the infinitesimal elements dx/ are displacements.

In order to compensate for moving off of the path, as might happen if we
naively stepped off in the s-direction, we need what the mathematicians
call a connection. This is provided by the Christoffel symbols:

dgi 0 dg;
m_ LN Gim| O8Il 08k _ &)k
(9.24) ik =3 Z’g [axk MEN W }

The covariant derivative of a basis vector e is then defined as follows:

(9-25) Djex =) Tlle,.
m

This expression characterizes the fact that the intrinsic coordinate system
that we are using varies along the path.

For a vector field u, the covariant derivative becomes the following:

aum m. k
(9.26) Dju= Z[W+iju }em.
km
The Christoffel symbols are not tensors, even though we have used covari-
ant and contravariant indices. If we consider changing coordinate systems
from (x,,...,x,) to (v;,...,,), then it can be shown that the Christoffel
symbols transform as follows:

>xP Oy oxP Jx1 dy™
m _ A A r -
(9.27) [(y) = %ayjayk OxP +1pg(x) oyl ok oxT

Note that the first term on the right-hand side of equation 9.27 contains
second derivatives of the coordinates with respect to the new coordinates.
These all vanish in the theory of special relativity, where it was assumed
that all coordinate transformations were linear. The second term on the
right-hand side is precisely what we would obtain for a tensor with two
covariant indices and one contravariant index. The result of the covariant




§9.2 TRANSFORMATION OPTICS 239

derivative on a vector is to generate a second-rank tensor and the Christof-
fel symbols are the essential piece that ensures that happens.

ExercISE 9.12. As a simple example, compute the Christoffel sym-
bols for spherical coordinates:

(x,v,2) = (rsin@cos @, rsinOsin @, rcos O).

Hint: In Cartesian coordinates, all of the F]’]’g vanish, so equation 9.27
can be used directly.

We can now explain how all of this complexity is warranted in the cur-
rent discussion on optics. If we permit the constitutive equations to take
their tensor form, we have now the following forms for the components of
electric displacement and magnetic induction:

(9.28) Di=e, ZejkEk and B/ = yOZyijk.
k k

Here, we follow the usual notation and extract the vacuum factors of €,
and y, explicitly. The divergence equations can now be written as follows:

8€jkE
(9.29) € B =p and
oo
O pjxH
(9-30) Ho ;7 =0

The curl equations have the following form:

A QyikH
ijk 2 p -y 2 Tk
(9.31) Ze B Ey = Z 3 and
ik k
ik 0 ; de'kE
Jdjk Y _7i k
(9-32) Zé o k=T Z 5
ik k
Here ¢'/F is the antisymmetric Levi-Civita tensor and e/ is the dielectric

permittivity tensor.

What we can recognize from equations 9.29—9.32 is that the electromag-
netic permeability and permittivity tensors can be treated as an effective
metric tensor. If we can tune € and y into any sort of spatial depen-
dence we desire, then we can effectively create a curved geometry in which
electromagnetic waves will propagate. In particular, they will propagate
along geodesics of the curved space.
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As an example, consider the transform of the radial coordinate in the fol-

lowing expression:
3
+(2a—b)[ } r<b

r r>b.

2
.
—(aa—ab| L
(9:33) =)o Ba=2h) g

[Nal Y

As illustrated in figure g9.11, this transformation maps the radial coordi-
nate in the domain o < r < b into the range a < v’ < b and leaves the
coordinate unchanged elsewhere.

Ficure 9.11. The transform in ”_/

equation 9.33 maps the radial coor-
dinate r into the radial coordinate
r’, leaving a hole of radius a.

a b r

Figure 9.12 depicts the geodesics that arise in the transformed coordinate
system. Away from the center of the coordinate system, where r > b (gray
circle), the geodesics are straight lines, as we would find in a homoge-
neous medium. Inside the radius b, the geodesics curve, approaching the
inner radius a only tangentially. Light rays will follow these curved paths,
avoiding the central area.

Ficure g.12. The transformation in
equation 9.33 results in a mapping
of the usual coordinate space into 1 i
one with a hole of radius a. The
grid lines here are geodesics and
depict the paths of light rays. =

The concept of transformation optics arises from the observation that, if
the electromagnetic properties possess the spatial dependence defined in
equation 9.33, then Maxwell’s equations in real space will possess solu-
tions that have the properties of solutions in the transformed space. That



§9.2 TRANSFORMATION OPTICS 241

is, if metamaterials can be fashioned to have the appropriate values of p
and €, then one can direct electromagnetic energy in ways that were pre-
viously considered impossible.

Exercise 9.13. Plot the transformation defined in equation 9.33.
Use a = 2.5 and b = 4. How does this change if you modify a and b?
Now construct a function to plot the two-dimensional mapping of
the point (x,y) — (x,7’) using the transform. Use the ListLinePlot
function to draw a series of lines over the range —5 < x,7 < 5 using
steps of 0.201. (The line through the origin is tricky; we’ll avoid it.)
You should be able to reproduce the geodesics in the figure.

A proof-of-principle experiment was conducted by the American physi-
cist David Smith and his colleagues in 2006.° Smith and his students con-
structed several concentric layers of split-ring resonators, each layer tuned
to produce effective € and y values that performed a transformation like
that defined in equation 9.33. In figure 9.13, some of the results of the ex-
periment can be observed. In the leftmost panel, the fields were measured
within an empty scattering chamber, where the nominal wave direction is
toward the bottom of the page. The wave field is approximately what we
would expect of a plane wave propagating through the chamber.

In the center and right panels, a copper tube with the diameter indicated
by the inner circle was placed in the chamber surrounded by metama-
terial designed to have the appropriate y and € values at 10 GHz; this
material extended to the radius of the outer circle. The fields depicted in
the center panel are the scattered fields measured at 9 GHz, away from
the design frequency. This image has the incident field subtracted. There
are interference effects visible in the backward direction and diffraction
effects visible in the shadow of the tube. For an observer in the far field
of the tube, the scattered radiation will be detectable and the presence of
the tube can be inferred.

In the right panel, the frequency has been raised to 10 GHz, where the
metamaterial was designed to provide the correct y and € behavior. The
scattering is greatly reduced and is in good agreement with numerical re-
sults obtained by Smith and his students that simulated the actual param-
eter profile they implemented. This gives rise to the hope that more so-
phisticated metamaterials can be devised to more closely match the ideal
transformation specified in equation 9.33.

In the popular press, this demonstration has been called an invisibility
cloak, which is a rather large overstatement. In principle, it is true that, if

6Smith, Pendry and coworkers published “Metamaterial electromagnetic cloak at microwave
frequencies” in Science in 2006 and “Scattering cross-section of a transformation optics-
based metamaterial cloak” in the New Journal of Physics in 2010.
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FIGURE 9.13. Microwave field intensity inside a scattering chamber
(left panel) depicts nominal plane wave propagation (downward). A
copper tube (inner black circle) surrounded by metamaterial within
the outer black circle induces scattering and diffraction effects. At
9 GHz, away from the design frequency, scattering effects are large
(center panel). These are greatly reduced at the nominal 10 GHz
frequency (right panel). Image courtesy of David R. Smith, Duke
University.

there are no far-field scattering effects, anything within the radius 4 would
be unobservable. In practice, Smith and his students have found that the
scattering from the metamaterial is vastly greater outside the relatively
narrow frequency band in which the effective permeability and permit-
tivity have the desired values. At present, the bandwidth over which pa-
rameter values can be tuned is rather small. Extending that bandwidth is
the focus of numerous research groups.

Exercise 9.14. Conformal mapping is a strategy utilized in finding
solutions to the Laplace equation in curious geometries. It has fallen
from favor with the advent of numerical computation but also illus-
trates the use of coordinate transformations. Show that the following
transformation: .

z—i

Z+1
maps the upper half plane into the unit circle. Here, z = x + iy and

w=x"+1y".

Indeed, the advent of additive manufacturing processes has opened a new
pathway for constructing novel three-dimensional materials. Smith and
students utilized PC board technology to make split-ring resonators on
flat surfaces and then curled them into cylinders. With a three-dimensional
printer, one can create vastly more complex forms. It is likely that the
modest results depicted in figure 9.13 can be greatly improved, at least at
microwave frequencies. Constructing such devices that would be opera-
tional at optical frequencies is still speculative.



§9.3 Quantum OPTICS 243
9.3. Quantum Optics

The existence of a conformal symmetry within Maxwell’s equations was
unexpected and has given rise to numerous research programs devoted
to exploiting the phenomena. In addition to the electromagnetic cloak-
ing that we have discussed, subwavelength imaging has made significant
advances over the previous state of the art. That such fundamental new
behaviors of Maxwell’s equations have just been discovered begs the ques-
tion about what yet remains to be discovered.

What we have been discussing still lies within the province of classical
field theory and does not invoke any particular quantum mechanical de-
scription of matter. The electron cloud that exists within the material has
been reduced, on average, to net polarization and magnetization effects
that give rise to the bulk permittivity and permeability. A key element to
the success of the classical theory is the long wavelength of visible light
with respect to the lattice spacings. As electromagnetic energy impacts
matter, numerous lattice sites are illuminated and quantum effects are
difficult to disentangle. Presently, we do not have the capacity to com-
pute the electron charge density with enough precision to make a tidy
connection to Maxwell’s equations. Nevertheless, there are places where
quantum phenomena are visible.

Astronomers, for example, have observed correlations in photon counting
experiments that can be attributed to the quantum nature of light itself.
In 1954, British astronomers Robert Hanbury Brown and Richard Twiss
proposed a new interferometric technique and two years later reported on
the first implementation of their idea.” Essentially, Hanbury Brown and
Twiss proposed to use two spatially separated detectors to simultaneously
sample the incoming light from distant stars, amplify the output and then
correlate the outputs. This process would provide them with the ability to
create an observing platform with the effective aperture of the separation
distance and not limited by the size of the separate receiving antennas.
They noted that the electromagnetic intensity appeared to be correlated
in their results.

Exercise g.15. Correlation is a powerful technique in time series
analysis. Construct input signals from the following function:
f(t) =sin[m(t + 7)/3.4]sin[n(t + 7)/9.1].

Create a (discrete) input by taking values from o <t < 100 in steps
of o.1. Use values of 7 = 0 and 0.3. Now add two noise vectors to the
raw data by using the RandomReal function, and setting the width of

7Hanbury Brown and Twiss published “Correlation between photons in two coherent beams
of light” and “A test of a new type of stellar interferometer on Sirius” in Nature in 1956.
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the distribution to be around 0.8. Plot the (noisy) data. Can you see
a correlation? Now use the ListConvolve function to correlate the
data. How does the result compare to the original (noiseless) data?
What happens if the noise level is increased? How does the result
depend on the time offset?

The phenomenon was given firmer theoretical support by American physi-
cist Roy Glauber in 1963.% Glauber was able to demonstrate that the cor-
relation of the two signals was twice that obtained from a classical calcu-
lation by utilizing the quantum nature of photons. The expectation value
of the product of the two photon intensities can be written in terms of
creation and annihilation operators:

(1)) = (@ (x)a" (v)a(x)a(v))
(9-34) = (a'(x)a(x))a’ (v)a(v)) +(a’ (x)a(v) }a' (v)a(x)).

When the optical path lengths are equal x = y, one obtains a factor of two,
just as Hanbury Brown and Twiss had observed.

As Glauber found, the quantum nature of the photon/electron has to be
taken into account in order to provide a successful description of low-
intensity measurements. In particular, the coherence of electromagnetic
waves is intimately connected to the underlying quantum state of the sys-
tem. As detectors became more sensitive and applications now attempted
to measure single-photon interactions, the quantum nature of light be-
came manifest. This remains an active area of current research. Light in-
teracting with small samples can excite various resonance modes within
the material, in a fashion that is not particularly well described by a bulk
dielectric constant.

Developments in technology like those epitomized in the work of John
Hall and Theodor Héansch provided extraordinarily precise tools for the
study of light/matter interactions. Hall and Hansch utilized lasers ca-
pable of short bursts of light to create what is now termed a frequency
comb. Recall that, in the Fourier domain, short time-domain signals ex-
tend across a wide frequency band. The most extreme example is the delta
function, which requires all frequencies. Placing the laser source material
into a cavity of length L causes general reinforcement of the wave fields
within the cavity that are matched to the cavity length. These fields will

8Glauber published “Photon correlations” in the Physical Review Letters and an expanded
“The quantum theory of optical coherence” in the Physical Review. Glauber was awarded
half of the 2005 Nobel Prize in Physics “"for his contribution to the quantum theory of
optical coherence.” The other half was split between John Hall and Theodor Hénsch “for
their contributions to the development of laser-based precision spectroscopy, including the
optical frequency comb technique.”
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be separated in frequency by an amount Ay = ¢/2L. There are several tech-
niques available, like acoustic-optical modulation of the cavity mirror, to
reinforce the cancellation at frequencies other than those desired.

FIGURE 9.14. The frequency con-
tent of the output of a mode-locked
laser consists of a series of nar-
row (Gaussian) components sepa-
rated by a constant Av.

amplitude

|Av | frequency

A sketch of the structure of a mode-locked laser is depicted in figure 9.14.
Here, we illustrate an overall envelope of the intensity around the nominal
frequency of operation. Within the bandwidth of the laser, only selected
frequencies, separated by Av, are found. In the simplest implementation,
the bandwidth ranges over a factor of two in frequency (an octave). In this
instance, the laser pulse can be directed through a crystal in which two-
photon interactions provide a component with twice the frequency of the
input laser (2v). The comb also has a component v + N Av = 2v, for some
value of N. Adjusting the optics of the lasing system can ensure that those
two values are identically the same, to within the width of the Gaussian
components. Overall, pulse widths on the order of a few femtoseconds
are routinely available and efforts are underway to extend the technology
into the attosecond domain.

Exercise 9.16. Assume that the envelope of the laser pulse in the
time domain has a Gaussian profile with a width I" and that the cen-
ter frequency of the pulse is v,. What is the Fourier transform? How
does that change as a function of I'?

As a practical matter, laser technology has advanced to the point that the
SI system of units has been modified to utilize the new technology to de-
fine the base units. The velocity of light is defined as 299 792 458 m-s™*
and the meter as the distance light travels in 1 s. The physical artifact
defining the length of the meter has been retired, making laboratory stan-
dards more accessible. The second is now defined in terms of the fre-
quency of a particular hyperfine transition in '>3Cs: 9 192 631 770 such
transitions make up 1 s.

Such precision has enabled a number of detailed investigations into the
nature of the quantum world. For example, we have seen that the world
is composed of particles that possess a spin quantum number and that
the behavior of fermions with half-integral spin and bosons with integral
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spin are quite different at low temperatures. Additionally, it is possible
for fermions to couple into composite bosons, as we have seen in nuclear
physics and superconductivity. In the late 1980s, physicists were able to
produce atoms in highly excited states, particularly alkali atoms that look
effectively like large hydrogen atoms with a single valence electron. The
laser technology gave rise to the ability to selectively populate Rydberg
levels just below the ionization energy.

For odd-mass nuclei, the nuclear spin is half-integral and, coupled with
the half-integral spin of the electron, the total angular momentum of these
Rydberg atoms can be integral. They are effectively bosons. As a result,
we might expect curious behavior at low temperatures and a number of
groups worldwide began the hunt for what is called the Bose-Einstein
condensate. If these alkali atoms are bosons, then at low temperatures
they should occupy the same quantum state, a possibility forbidden to
fermions.

The first technical hurdle is to gather a (large) number of Rydberg atoms
into a small volume. This can be accomplished through optical trapping.?
Notionally, a laser beam with an energy just below a transition in the atom
of interest will not produce transitions unless the atom motion causes the
light to be blue-shifted enough for the transition to take place. After ab-
sorbing the photon, the atom will subsequently re-emit the photon in a
random direction. Over many such collisions, the atom’s momentum will
dissipate. In the hunt for Bose-Einstein condensation, researchers also
added a quadrupole magnetic field to the trap, creating a magneto-optical
trap.

The optical trapping process permits researchers to reach temperatures in
the pK range in the trapped atoms. To cool the atoms even further, one
utilizes evaporative cooling. In essence, the atoms in the cloud are illumi-
nated with radio frequency (rf) waves (=4 MHz), that can cause a spin flip
in the prepared atoms. The atoms with flipped spins are no longer kept
in the trap. By incrementally decreasing the frequency of the rf field, the
warmest of the remaining atoms can be systematically removed from the
trap. The result is a decrease in temperature into the 100 nK range. This
level of cooling was obtained in 1995 by Carl Wieman and Eric Cornell at
NIST, in an assembly of rubidium atoms and shortly thereafter by Wolf-
gang Ketterle at MIT using sodium.'® The achievement of a Bose-Einstein

9The Nobel Prize in Physics 1997 was awarded jointly to Steven Chu, Claude Cohen-
Tannoudji and William D. Phillips “for development of methods to cool and trap atoms
with laser light.”

1%Wieman and Cornell and coworkers published “Observation of Bose-Einstein condensa-
tion in a dilute atomic vapor” in Science. Ketterle and coworkers published “Bose-Einstein
condensation in a gas of sodium atoms” in the Physical Review Letters. The three were
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condensate was a decade-long trek through a host of technical obstacles.

Exercisk 9.17. The magnetic field from a current loop involves el-
liptic integrals and a representation is available in the Mathematica
documentation for the E1lipticE function. Define two functions
Br[r_,z_] and Bz[r_,z_] by cutting and pasting the results in the
example. Use the StreamPlot function to examine the magnetic
field lines produced by a coil of radius R = 1, located a distance 1.1
from the origin. A quadrupole magnet is composed of four coils
in opposition. Construct a quadrupole field from the sum of four
current loops and use the StreamPlot function to visualize the field
lines. Compute the magnitude of the field and plot it with the P1ot3D
function. Hint: two of the coils are oriented orthogonally to the first
pair, exchanging the sense of r and z.

FIGURE 9.15. The magnitude
of the magnetic field vanishes
in the center of an array of
current loops.

In figure 9.15, we illustrate the magnitude of the magnetic field of a quad-
rupole magnet. The field is created by two pairs of magnets, one pair with
north poles opposing and another pair, at go° from the first pair, with
south poles opposing. This creates a bowl-shaped region in which the
magnetic field vanishes in the center. Unfortunately, with no magnetic
field, there is also no confining force. As they had expected, when Wieman
and Cornell managed to finally capture enough rubidium atoms and cool
them sufficiently, the atoms dribbled out the bottom of the trap.

This situation was not unexpected but solving this particular issue had
not been the highest priority. Fortunately, Cornell proposed using a rotat-
ing magnetic field applied to the quadrupole magnets. The time orbiting
potential (TOP) field fluctuated faster than the cooled atom cloud could

awarded the 2001 Nobel Prize in Physics for “for the achievement of Bose-Einstein con-
densation in dilute gases of alkali atoms, and for early fundamental studies of the properties
of the condensates.”
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follow, enabling the attainment of the Bose-Einstein condensate. A signif-
icant question, of course, is how might one determine that a condensate
had been achieved? Like superfluid >He, there are no sparks that fly from
the chamber or intense vibration of the laboratory.

Exercise 9.18. Repeat the quadrupole magnet calculations, this
time with one of the magnets having a 20% larger field. What is
the shape of the resulting trap? Where is the minimum?

Initially, Wieman and Cornell simply illuminated the chamber and mea-
sured the absorption by whatever was in the middle. Production of the
condensed state should lead to narrower features. This is what they ob-
served, as illustrated in figure 9.16.
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With his apparatus, Ketterle was able to produce over one hundred times
the density observed by Wieman and Cornell and was able to study the
condensed state in more detail. Notably, Ketterle and his students ob-
served interference fringes in the optical density when two condensates
were allowed to mix. Interference is a property of wave phenomena, from
which we can infer that the collection of atoms in the condensate act like
waves, as we found earlier for electrons. For all of the limitations inherent
in quantum theory, there is no other ready explanation for the observation
of interference of the atoms than the atoms behave like waves and can be
described by wavefunctions.

9.4. Quantum Computing

Beyond just the creation of a relatively arcane new form of matter, the
technology developed along the pathway to Bose-Einstein condensation
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provides exquisite control over systems at extraordinarily low tempera-
tures. Despite the rather oxymoronic implications of the term laser cool-
ing, the technology has prompted an array of high-precision measure-
ments of the fundamental properties of matter. For example, in 2010,
Chin Wen Chou and collaborators at NIST used the technology to build a
clock based on *”Al* ions and achieved a precision of a part in 10'7. With
this level of precision, Chou and his colleagues could observe relativistic
effects at laboratory scale.'! Special relativity requires corrections propor-
tional to [1 —v>/c>]7/2, which is generally considered to be negligible at
terrestrial velocities. Nevertheless, Chou’s team were able to observe the
effects in ions with velocities on the order of 10 m/s and were able to de-
tect the general relativistic corrections associated with moving the clock a
meter higher in the laboratory.

Precise control over assemblies of atoms has launched research into the
development of quantum computers. At the heart of computing, as envi-
sioned by Alan Turing, is the concept of the state of the machine."> The
state can be represented by symbols or, in modern computers, by arrays
of bits that represent the symbols. Computation is the process of manip-
ulating the symbols by means of logical operations in a stepwise fashion.

The allure of quantum computing is that quantum states exist as super-
positions of many states. For example, two electrons must form an anti-
symmetric pair, represented by the following wavefunction:

1
(9:35) V=7 [l)IBy = 1B,

where we can take |a) to be the spin-up state and |3) to be the spin-down
state. That is each electron is simultaneously in both spin-up and spin-
down states. Only the process of measuring the spin of one of the elec-
trons determines the spin of the other.

One can envision encoding a particular problem into a (large) number of
quantum bits, which contain the superposition of many states. Opera-
tions on the bits through unitary transformations affects the phase of the
state but not the amplitude. Selecting a particular desired result by mea-
suring the values of some subset of the bits collapses the quantum state
into the desired solution. Assuming that preparation of the state can be
accomplished with a time dependence that is linear in the number of bits,

11Chou published “Optical clocks and relativity” in Science.

12Turing published “On computable numbers, with an application to the Entschei-
dungsproblem” in the Proceedings of the London Mathematical Society in 1936. The “decision
problem” proposed in 1928 by the German mathematician David Hilbert asks if a machine
could verify the truth of a mathematical statement solely through the use of the defining
axioms.
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then the quantum algorithm vastly outperforms other implementations
on a host of applications.

We have already seen in multi-body problems that there are emergent
phenomena, such as aromatic chemical bonds, that are difficult to obtain
from present-day calculations. Quantum computing, particularly applied
to the solution of quantum phenomena, is quite attractive. As we have
seen in some measure, larger basis sets can help with calculations of elec-
tron density but one must always truncate the basis somewhere. With a
quantum computer, we might be able to sidestep the sum over intermedi-
ate states because the coherent superposition of the bit elements is already
performing that summation implicitly.

Developing a practical quantum computer is a subject of ongoing research.
Pieces, such as stable quantum bits, have been demonstrated, although
maintaining the stability of the states is an ongoing subject of study. Quan-
tum computing derives its advantage from the coherence of the quantum
state. Decoherence will obviate that advantage.

One particularly interesting aspect to equation 9.35 is that each electron
is simultaneously in both spin up and spin down states. One might imag-
ine separating the electrons somehow to large distances, where the four-
vector describing the electrons is spacelike. Einstein and his collaborators
Boris Podolsky and Nathan Rosen entertained just such a thought in 1935
and came to the conclusion that quantum mechanics must somehow be in-
complete.’3 Their conclusion was motivated, in part, by an inconsistency
in how physical properties can be determined. In quantum mechanics,
eigenvalues of non-commuting operators cannot be simultaneously de-
termined. Yet, Einstein and his colleagues pointed out that, for objects
separated in space, the determination of the spin of one electron must in-
stantaneously determine the spin of the other. Einstein referred to this as
“spukhafte Fernwirkung,” which is routinely translated as spooky action
at a distance, although spukhafte could also be interpreted to mean mys-
tical or ghostly. In any case, this is inconsistent with information propa-
gating at the velocity of light.

In fact, Einstein was incorrect. Two recent experiments conducted at
NIST and in Vienna demonstrate that physical systems display just such
counterintuitive behavior.'* Both groups worked with entangled photon
states, in which nonlinear effects in a crystal generate two photons from

13Einstein, Podolsky and Rosen published “Can quantum-mechanical description of physi-
cal reality be considered complete?” in the Physical Review.

14Shalm et al. published “Strong loophole-free test of local realism” and Guistina et al.
published “Significant-loophole-free test of Bell’s theorem with entangled photons” in the
Physical Review Letters in 2015.
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an initial incident photon. The output photons exist in a superposition
of polarization states. Measuring the polarization of one photon deter-
mines the polarization of the other. When the polarization measurements
are conducted at spacelike distances, the outcome of each (distant) exper-
iment agrees with the other.

Entangled photons are also envisioned as the basis of secure communi-
cations. If two distant individuals exchange pairs of entangled photons,
each will be able to use the sequence to deduce the contents. In a sim-
plistic fashion, the two polarization states can be considered as o or 1 and
a string of os and 1s can be used to encode a message. Of course, one
recipient will receive the inverted message “o101” instead of “1010” but
they can readily deduce which interpretation to use. If another individ-
ual intercepts one of the signals, the act of measuring the polarization to
deduce the signal will cause the original quantum state to collapse. As a
result, the interception can be detected.

We are presently not close to a world populated by quantum comput-
ers or secure electronic messaging but there is progress on many fronts.
Researchers can trap individual atoms in linear and two-dimensional ar-
rays and prepare them into coherent states. These states can be manipu-
lated using a number of techniques that produce transformations akin to
Fourier transforms, for example.

One of the pedestrian motivations for quantum computing, particularly
favoring optical techniques, is reducing the power consumption of mod-
ern computers. The most expensive part of high-performance supercom-
puters is the air-handling system. The chips are small but are placed in
comparatively large boxes simply to provide room for capacious air flow
for cooling.

This thermal energy arises from the flow of currents through the myr-
iad of interconnects, whose resistance scales like the inverse of the cross-
sectional area. Additionally, flipping a bit from 1 to o requires work, if bits
are realized as small pools of electrons held in place by electromagnetic
fields. This is truly surprising but Ohm’s law works well over extraordi-
nary length and time scales, from the nanoscopic to the national power
grid.

One can formally prove that the ultimate computer will require kT In2 of
energy to flip a bit between one of two different states but modern com-
puters that rely on electronic currents consume far more than the ideal
minimum. As a result, a host of different methods to define a bit have
been investigated. It is possible to use either electron spins or nuclear
spins as embodiments of the states o and 1. We have significant experi-
ence with experimental methodologies for coaxing spin states into either
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up or down configurations. The difficulty is that bit density in present-
day electronic memory is quite high. Replicating that density with splin
lattices is quite challenging.

Modern memory systems also incorporate error detection/correction codes.
As feature sizes continue to decrease, the ability to make perfect arrays of
memory also decreases. Rather than rejecting chips with manufacturing
defects, it is possible to encode eight bits of information in more than
eight bits of physical storage. The coding schemes permit multiple-bit er-
rors to be detected and corrected. As a result, modern memory chips do
not have to be perfect to still function perfectly. Repeating this capability
in spin-lattices or multi-photon systems is difficult.

In fifty years, of course, this section will undoubtedly have to be revised.
Early automobiles were not reliable enough to supplant horse-driven wag-
ons and there weren't enough paved roads to entice most citizens to em-
brace modern technology. There are numerous groups exploring path-
ways to replace the current state-of-the-art technology with more capable,
cost-effective solutions.



Biological Systems

Advances in our understanding of optics have had great impact on the
study of biological systems. Beginning with the Dutch draper-turned-
optician Antonie van Leeuwenhoek whose microscopes made visible the
cellular structure of organisms in the late 1600s, the geometrical optics
that we have discussed played a fundamental rdle in the developing field
of biology. The wavelength limitations of visible light can be overcome
with electron microscope, providing considerably more resolving power.!
Further advances in cryo-electron microscopy have now brought the reso-
lution down to the nanometer scale and beyond, in fortuitous cases. This
is verging on the scale of atomic resolution within molecules that are com-
posed of millions of atoms.

Together with the advent of synchrotron sources of x-rays and powerful
computer systems, we now have the capacity to visualize the biologi-
cal machinery with unprecedented clarity. From these observations, we
know that cells are highly structured and that the chemical reactions that
take place within the cells are high regulated. These observations pro-
vide clues into cellular function, including a possible explanation for one
of the largest questions in biology: how can life exist, given that entropy
must continually increase?

10.1. Diffusion

At the microscopic level, the condensed phase is governed by diffusive
processes. These processes can be characterized by considering individ-
ual particle motion to be described by random walks in three dimensions.
As a result, the concentration of a drop of dye molecules in a glass of
water eventually moves to a state in which dye molecules are equally dis-
tributed throughout the volume. There is no additional force of nature

! As mentioned previously, the German physicist Ernst Ruska was awarded half of the Nobel
Prize in Physics in 1986 “for his fundamental work in electron optics, and for the design
of the first electron microscope.” Ruska shared the award with Binnig and Rohrer for their
development of STM.
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that directs this dispersion; systems simply proceed to the most probable
state and the most probable state is the one in which dye molecules are
evenly distributed.

In order to study this process in more detail, we shall now undertake the
use of a molecular dynamics code NAMD that uses a classical representa-
tion of molecular forces. The principal reason for using a specialty code
instead of implementing a dynamics code within Mathematica scripts is
that there is a tremendous amount of technical sophistication incorpo-
rated in modern molecular dynamics codes. In essence, the code simply
integrates Newton’s equations of motion to find the new positions of all
the atoms at the next time step. In practice, this is not simple. We shall
simply sidestep many technical issues and utilize the insights of our fore-
bears. Ultimately, we will need to understand the inner workings but can
put that aside for the time being.

In the 1970s, computers were not capable of solving quantum mechan-
ical problems of any sensible size, so an alternative strategy was devel-
oped. The quantum interactions were parameterized and the discipline
of molecular mechanics was created. Quantum calculations of the elec-
tron density or molecular orbitals were replaced by a vastly simplified
Hamiltonian that represents a chemically static picture of the condensed
phase. Unlike quantum calculations like those that we performed with
NWChem, molecules within the molecular mechanics framework do not
change over time. Covalent bonds are not formed or broken, although
hydrogen bonds are. Molecular mechanics provides a means for studying
the structural behavior of large systems; today, simulations of millions
of atoms are possible. Molecular mechanics does not offer the ability to
study the chemical transformations at work in biological systems but a
hybrid methodology in which a small portion of the atoms are treated
quantum mechanically and the remainder classically has also been devel-
oped.” This so-called QM/MM strategy does provide the ability to study
chemical processes but, at present, remains a technically difficult enter-
prise.

For the moment, we will stick to the classical treatment of molecular sys-
tems. There is no unique classical representation of a quantum system.
As we have seen, the electron density around any particular nuclear cen-
ter is not an integral multiple of the fundamental electron charge. In-
deed, as chemists have long known, different elements display different
electron affinities. As a result, there are several different strategies for de-
termining the parameterization of the quantum state. In the vernacular,

>Martin Karplus, Michael Levitt and Arieh Warshel were awarded the Nobel Prize in Chem-
istry in 2013 “for the development of multiscale models for complex chemical systems.”
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these parameterizations are known as force fields, which is not a particu-
larly descriptive, or good, choice but we have encountered odd choices of
nomenclature previously. As a technical note, it is not possible to simply
move from one force field to another. Each has its own philosophy and en-
forces internal consistency but is generally incompatible with other force
fields.

The choice we shall make here is to utilize the CHARMM force field devel-
oped originally by Martin Karplus and his students at Harvard. Among
the more popular choices, Arieh Warshel and Michael Levitt developed
the CFF force field and Peter Kollman and students developed the AM-
BER force field. All are roughly equivalent but one has to make a choice.
The CHARMM force field was developed purposefully for use in biologi-
cal macromolecules like proteins and nucleic acids, so we shall utilize that
work here. We note that NWChem also has a molecular mechanics imple-
mentation that uses the AMBER force field. Students could also utilize
these codes but the NAMD/VMD combination is likely to be found more
forgiving and friendly to the uninitiated.

FiGure 10.1. The Hamiltonian con-
tains terms including up to four- d;
body terms like those indicated at
right. Two-body interactions en-
force distances d;;. Three body

¢
terms enforce angles 0;;. There
are two types of four body interac-
tions that enforce dihedral angles  ¢;iy; biiki
¢ijki and so-called improper dihe- ' 4

drals (p,']'k[.

j ik

All of the force fields have terms up to four body interactions, like those
pictured in figure 10.1. They correspond to the following Hamiltonian
terms:

1 1
Hy =~ ZKZJ(|X[ =Xjl=dip)* + ZKQ(Q - 0ijx)?
1
(10.1) + Z’<¢[1 —cosn(p— i)+ S ZK@(V)— Pijk)’-

Here, the summations run over all atoms that are identified as bound to
one another. In the molecular mechanics methodology, one has numerous
atom types for each element but with a general preference for keeping the
number of types (relatively) small. This strategy recognizes that doubly
bound carbon atoms behave differently than singly bound carbons and
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that there may need to be subtypes within doubly or singly bound. Thus,
while all force fields begin with the bonded Hamiltonian terms specified
in equation 10.1, all of the force fields diverge thereafter.

In addition to the bonded interactions, all of the force fields contain Coulom-
bic interactions that arise from assigning each atom a static partial charge
that reflects their electron affinity. Hydrogen bonding is accounted for by

a Lennard-Jones potential as in the following expression:

Rij 12 R,‘j 6 qiq;j
oLl ) sy

]

where here the summation runs only over atoms that are not bound to one
another. The last term in equation 10.2 is, of course, the Coulomb inter-
action. There are other terms possible, including five- and six-body terms
and, recently, polarization effects have begun to be included in molecular
force fields, replacing the simple static charge model.

We shall not make use of these most recent enhancements. Again, this
represents a choice. One can make the argument that, if polarization is
an important component of what you intend to study, the best way to do
that is to use a (painful) QM/MM strategy. Polarization is handled auto-
matically within the quantum calculations, provided that they are of suffi-
ciently high order. Unfortunately, this requires significantly more compu-
tational resources and the QM/MM methodology does not exist currently
in a tidy package. There is a fair amount of standing on one foot and
holding one’s mouth just so, in order to get the calculations to work. The
classical representation of quantum phenomena through the force fields
is a vast simplification. Adding more terms will not necessarily make it
markedly better. One must use judgement.

Many man-years of effort have gone into the construction of the force field
parameters. Many quantum calculations of small molecules, including
structural optimization and computation of vibrational frequencies were
conducted. Structural information from crystallographic sources were
also included in fitting the parameters of the classical Hamiltonian. Hy-
drogen bonding parameters and partial charges were obtained through
simulations like that depicted in figure 7.9, in which a water molecule is
allowed to interact with the target molecule. There are still ambiguities
remaining, so the CHARMM force field developers made choices, like the
charge on methyl groups, that are maintained consistently.

Interestingly, the earliest force fields lumped methyl groups into a single,
methyl atom. This was done because the computational power available
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was not sufficient to handle all atoms independently. As more computa-
tional power became available, a significant effort was made then to re-
vise the force fields and incorporate all atoms independently, as was first
done for the CHARMMi1g parameterization. There is significant work
today to build so-called coarse-grained representations in which groups
of atoms are again consolidated into effective atoms, to handle very long
simulations of very big macromolecular assemblies, like the entire ribo-
some. For our purposes, we will utilize the CHARMM32 force field re-
lease, which include all atoms and support simulations with proteins and
nucleic acids. These are accessible from the CHARMM force field devel-
opment web site.

Performing a molecular mechanics simulation is vastly more complex than
the quantum simulations we conducted earlier.3 First one must provide
a list of molecules, their constituent atoms and the requisite parameters
from equations 10.1 and 10.2. If the parameters do not exist, they must
be either taken by analogy from some molecule already parameterized or
developed from scratch. For our initial simulation, we shall consider the
outcome of a small droplet of methanol in a water bath. The files prefixed
with meoh provide the requisite NAMD configuration files to conduct a
short simulation.

NAMD requires the following files as input:

1) a structure file that defines the molecules and their connectivities,
2) a parameter file that defines the force field parameters,
) a coordinate file that defines initial positions and
) a configuration file that defines what tasks NAMD is required to per-
form.

(
(
(3
(4

NAMD may also require other files, depending upon the tasks at hand.
In particular, NAMD is designed to be run in multiple steps. The basic
output is the list of atom positions at designated time intervals. NAMD
also writes intermediate files that can be used to restart from wherever
the previous simulation finished.

The structure file is obtained from the auxiliary program psfgen supplied
with NAMD/VMD. It utilizes a topology file provided by the CHARMM
developers that defines the molecular connectivities. This is complicated
by the fact that proteins and nucleic acids are polymers, with each amino
acid in a protein, for example, connected to an adjacent amino acid. The
coordinates are provided by .pdb files that are the lingua franca of the
Protein Database. The .pdb files contain the list of amino acids and their
constituents, the positions and other information about the structure.

3Scripts for all exercises are provided as supplemental material.
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Exercise 10.1. Install NAMD, download the CHARMM32 files and
conduct the simulations specified in the configuration files meoh_og,
meoh_o4 and meoh_os. The last 200 ps of the simulation represent
a constant temperature and pressure simulation of the diffusion of
methanol in water. Note that the numerical progression defines the
order. Files can be named anything but numerically increasing at
least encodes the sequence of events.

In the meoh example provided, a dozen methanol molecules are solvated
in a box of water about 40 A in size. Initially, the methanol molecules are
harmonically restrained to maintain their positions and the entire box of
water undergoes 1000 steps of conjugate gradient minimization to clear
bad contacts. Solvation is performed by superimposing a sufficient num-
ber of copies of a large box of equilibrated water over the desired volume.
Water molecules outside the target volume are deleted, as are those within
some prescribed radius from anything (methanol in this case) inside the
box. This solvation process can occasionally result in water molecules sit-
ting atop whatever was inside the box, leading to numerical crashes. The
initial minimization avoids that particular difficulty.

The minimization is followed by a short dynamics run (in meoh_o3) where
the volume is held constant and the harmonic restraints on the methanols
are maintained. The next simulation extends the trajectory again with
restraints on the methanols but here the pressure is held constant. Finally,
the so-called production run changes the time step to 2 fs and again holds
constant pressure and, at last, the methanol atoms are permitted to roam
freely. The harmonic restraint values are obtained from the occupancy
column of the .harm files, which are simply copies of the original .pdb file
with modified values of the occupancy column.

Exercise 10.2. The NAMD code utilizes the tcl language to parse
the configuration files. Some portions of the scripts are simply tcl
base language and other portions are specific keywords for NAMD.
The set command is a tcl primitive that sets a variable to a particular
value. See if you can decipher how the configuration files conduct
the sequence of events stated in the text.

The primary output of the NAMD runs are the trajectory (.dcd) files.
These contain the atom positions at designated time intervals (1 ps). The
reason for using molecular dynamics is to obtain estimates of the ensem-
ble properties. An alternative to molecular dynamics is Monte Carlo sam-
pling, where atoms are randomly moved at each trial and an average is
built up by weighting each sample by the Boltzmann factor exp[-E/kpT].
In principle, a suitably long time average is comparable to the ensemble
average—this is known as the ergodic principle. Because samples from
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adjacent time intervals are highly correlated, the trajectory files are sam-
pled much less frequently.

Exercise 10.3. Use VMD to view the simulation results. First, de-
fine a New Molecule by loading the meoh_o2.psf file. Then add
the original coordinates from the meoh_o2.pdb file to the molecule
and subsequent trajectory (.dcd) files. The final 200 steps contain
the production data. Add a new Representation, selecting one of
the methanol molecules and use the CPK drawing mode. Turn off
the display of the remaining atoms. Describe the trajectory of the
methanol.

FiGure 10.2. The oxygen atom po-
sition for two methanol molecules ab
is plotted as a function of time. One
of the molecules (gray) exited the
simulation domain; its periodic im-
age re-entered on the opposite side.

X

We can utilize the VMD code to visualize the trajectories and perform
analysis. One objective of the methanol simulation is to study the dif-
fusion process. In figure 10.2, we plot the trajectories of two methanol
molecules (specifically the oxygen position). What we observe is that by
the end of the simulation, the two molecules are quite distant, despite hav-
ing started only Angstroms apart. We also observe the effect of periodic
boundary conditions in the simulation. One of the methanol molecules
exited the simulation volume; its periodic image then entered from the
opposite side. This is denoted by the line stretching across the plot, which
can be seen to be an artifact of the boundary conditions not an error in the
coding or some other mysterious feature.

Exercise 10.4. The track_meoh. tcl script can be used with VMD
to extract the oxygen coordinates from the simulation data. In the
VMD window or the Tk Console, enter the following commands:

source track_meoh.tcl
track_meoh 3



260 BroLogicAL SysTEMS

The source command causes VMD to read the file that defines a
new procedure. Invoking the procedure causes VMD to read the co-
ordinates associated with the methanol molecule with RESID 3 and
write them to the file track_meoh_o3.dat. Plot the data for two of the
methanol molecules using Import to read the file and ListPoint-
Plot3D to view the trajectories.

If we now look into some of the details of the calculations, we notice that
the time steps during the production phase of the simulation were 2 fs.
This is an exceedingly short time but is one that is forced onto us by the
constraints of numerical stability. In order for the integration to be numer-
ically stable, we cannot take time steps that are longer than the period of
the fastest oscillator within the ensemble. This condition is comparable
to the Nyquist sampling theorem found in signal processing. Because our
simulations contain hydrogen atoms, the time steps are set by the vibra-
tional frequencies of the hydrogens. This is a major constraint on utility
of the simulations.

Biological systems are often characterized by processes that have millisec-
ond or even second, time scales. If our fundamental time step is 107"5 s,
then we are clearly going to need 10" to 10'5 steps, or more, to reach into
physiologically relevant times. (If a processor can take 10° steps per sec-
ond, we will need 10° to 109 s to conduct that many steps.) Much effort
has been expended to circumvent this issue and it remains a significant
obstacle to the utility of simulation.

If we ask what limits the computational speed, then we find that com-
putation of the Coulomb interaction dominates. The bonded interactions
actually take very little time to compute, largely because they are local.
The non-bonded interactions, in principle, require a double sum over all
atoms in the model. In practice, one utilizes a refinement of a method de-
vised by the German physicist Paul Peter Ewald for computing the poten-
tial in periodic systems.* Ewald’s strategy provides an efficient solution
in the Fourier domain, so part of the NAMD configuration file defines the
parameters for the discrete Fourier transforms that perform the Ewald
summation.

Additionally, cutoffs on electromagnetic interaction are enforced, in which
atoms beyond a particular radius are not included in the summations. As
the biomolecules are largely electrically neutral, this strategy accounts for
the fact that long-range electrostatic interactions are screened. For bio-
logical systems, the cutoff distance is typically 13 A and sets a weak con-
straint on the size of the simulation model. Generally, one would like to

4Ewald published “Die Berechnung optischer und elektrostatischer Gitterpotentiale” in the
Annalen der Physik in 1921.
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avoid direct interactions between the target molecule and its periodic im-
ages. Including a water buffer around the molecule of interest of sufficient
thickness can ensure that this does not occur. This is termed a “dilute”
approximation. Unfortunately, this can require ~10 A of water around
the protein, adding tens of thousands of water molecules, which then can
dominate the calculational effort.

An alternative is to utilize implicit water models, in which the bulk water
outside the molecule of interest is simply treated as an effective dielectric
constant. Liquid water possesses a large dielectric constant due to the fact
that the molecule possesses a static dipole moment in addition to its in-
trinsic polarizability. Application of an electric field to water can flip a
large fraction of the water into alignment with the field. A complication
arises, though, when water molecules are hydrogen-bonded to the mol-
ecule of interest. These water molecules are not free to follow external
fields and their effective dielectric constant is greatly reduced. Manag-
ing the transition between oriented water molecules adjacent to the mol-
ecule of interest and bulk water molecules that can be represented by a
dielectric constant is an ongoing research project. This balancing act also
impacts the ability to conduct simulations at constant pressure.

Ficure  10.3. The  water
molecules within 5 A of

the central water molecule .
taken from a step in the y .
simulation display structure. ' .\é
Four molecules within the So

selection are within hydrogen
bonding distance (3.2 A from
oxygen to oxygen).

The TIP3 parameterization of water utilized in the CHARMM force field
provides a reasonable representation of water, which is an extraordinar-
ily difficult substance to model properly. Even very high level quantum
calculations do not currently provide exact models of water behavior but
the TIP3 model captures much of the physical properties. Figure 10.3
represents one step from the simulation that demonstrates the fact that
there are networks of hydrogen bonding within the bulk water. In real
water, there are also proton transfer reactions taking place, which is not
contained within the static model of water used within CHARMM. Here,
the same two hydrogen atoms are permanently attached to each oxygen.
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Exercise 10.5. In VMD, select a water molecule from the simula-
tion. Create a representation of all atoms within 4 A of the molecule.
How many adjacent water molecules are in a conformation that sug-
gests they may be hydrogen bonded? How does that number change
at the next time step?

Examining individual water molecules within the simulation, one can
readily see that the water molecules generally have four other water mole-
cules within nominal hydrogen bonding distance. The participants change
as the simulation progresses; the hydrogen bonding network is not static.
It is possible to quantify this observation. VMD possesses several analy-
sis tools. One of them computes the radial distribution function g(r). In
general, the probability of finding N particles distributed with values in
the ranges r, to r, +dr, through ry to ry + dry can be obtained from the
partition function:
o—E/ksT

(10.3) P(ry,...,rx)dr,---dry = dr,---dry.

N

One can also define the probability of finding some subset m of those N
particles by integrating over the remainder:

1 =€
(10.4) P(rl,...,rm):%J‘drmﬂ---drl\]e /ksT

One can then define the correlation factor ¢g"'(r,,...,r,,) of m particles as
follows:

m _ N! V(4 drw o-E/keT
(10.5) 8 (flv--;rm)—ma gy rdrye :
Here, the first factor accounts for overcounting due to the fact that the
particles are identical.

When m = 2, the correlation factor can generally be demonstrated to be
solely a factor of the magnitude of the separation |r; —r,| and not the sepa-
rations independently. This is the two-particle correlation that we call the
radial distribution function. The radial distribution functions computed
from several simulations are illustrated in figure 10.4. At long distances,
g(r) — 1, depicting that there is no long range correlation. The reason
that g(r) is interesting is that crystallographers measure a structure factor
S(q) that is essentially the Fourier transform of g(r). Consequently, one
can compare computational results with experiment, although the com-
parison is not exactly straightforward.

Exercise 10.6. Select the Radial Distribution Function analysis tool
from the Extensions tab in VMD. Choose both selections to be name
OH2 and set the First frame to be 163 (starting with the production
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FiGURE 10.4. The radial dis-
tribution functions for water
oxygen atoms interacting 3
with other water molecules &
(OH2-OH2, black), and
methanol (OH2-OG, gray
and OH2-CB, light gray)
were computed with VMD.
The hydrogen bond from
the hydroxyl (OH) group of ol o/t 10 ]
methanol is comparable to )
that of water. The methyl distance (A)
group (CH;) does not form

hydrogen bonds and is, on

average, more distant.

OH2-OHz2
OH2-0G

o
9,
=
o

data). Compute g(r). Repeat for second selections of name 0G and
name CB. Plot the resulting distribution functions.

We note that there is a marked difference in the radial distribution factors
between the methyl carbons (CB) and the water oxygen (OH2) atoms. The
methyl group does not participate in hydrogen bonding and, as a result,
the average distance between the heavy (O-C) atoms is nearly 4 A. We
illustrate the difference in figure 10.5, where a snapshot of the molecules
surrounding one of the methanol molecules is taken from the production
portion of the simulation.

FiGURE 10.5. Water molecules e |
adjacent to the methyl group 4
of methanol are not aligned in
hydrogen bonding conforma-
tions. This is the essence of
hydrophobicity.

Here, we can observe that the hydroxyl group (OH) has water molecules
in the vicinity that are within hydrogen bonding distance but the methyl
group (CH;) does not. This is the essential difference between hydrophilic
and hydrophobic interactions. These differences are more apparent in
color in VMD than they are on the printed page.
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10.2. Molecular Structure and Recognition

One of the central dogmas of molecular biology is, succinctly, structure
equals function. That is, the chemical function of a molecule is directly
related to its three-dimensional structure. Remarkably, the origins of this
idea date at least to 1894 when the noted German chemist Emil Fischer de-
clared that enzymes must recognize their substrates like a lock and key.>
This observation was made well before the atomic model of matter was
an established fact. Fischer simply reasoned that enzymes select specific
molecules and conduct specific reactions. Altering the substrate in almost
any chemical manner will greatly reduce the reaction efficiency. Ergo,
there must be some geometrical constraints on potential substrates.

As we have seen, the geometry associated with atoms bound to carbon
differs depending on the bond type: single, double or triple. As we shall
see from crystal structures of enzymes and their substrates, the substrate
often fits within a small niche, tucked into place by a series of hydrogen
bonds with the enzyme. Indeed, at an atomic scale, Fischer’s suggestion
has been repeatedly validated.

Our knowledge of the structure of biological molecules comes, in large
measure, from x-ray diffraction experiments. As William Lawrence Bragg
found, if the wave vector of an incident x-ray is k, and it emerges with a
wave vector k, maxima in the diffracted beam will occur at points where
k —k, = ha + kb + [¢, where 4, b and ¢ are the reciprocal vectors of the
lattice. Formally, one can demonstrate that the diffraction pattern is the
magnitude of the Fourier transform of the charge distribution. Thus crys-
tallographers continue to fend with what is known as the “phase prob-
lem.” If one knew the phase of the Fourier transform in addition to the
magnitude, then one could perform the inverse Fourier transform and re-
cover the electron density. In practice, this is not a simple undertaking
but much progress has been made.

In 1946, the science had progressed sufficiently that Dorothy Crowfoot
Hodgkin was able to determine the structure of penicillin.® In dealing
with larger biomolecules, crystallographers also had to deal with the fact
that biomolecules are made up almost exclusively of hydrogen, carbon,

SFischer published “Einfluss der Configuration auf die Wirkung der Enzyme” in the Euro-
pean Journal of Inorganic Chemistry. Fischer was awarded the 1902 Nobel Prize in Chem-
istry “in recognition of the extraordinary services he has rendered by his work on sugar and
purine syntheses.”

6Crowfoot and colleagues published “X-ray crystallographic investigation of the structure
of penicillin” as a chapter in Chemistry of Penicillin, Princeton University Press in 1949.
Crowfoot was awarded the Nobel Prize in Chemistry in 1964 “for her determinations by
X-ray techniques of the structures of important biochemical substances.”
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nitrogen and oxygen. These are all low-mass atoms with relatively few
electrons.

The first protein structures to be solved were those of hemoglobin by Max
Perutz and myglobin by John Kendrew.” Perutz and Kendrew utilized a
technique in which diffraction data were acquired on a crystal and then
the crystal was soaked in a solution containing a heavy metal, like mer-
cury, and the measurements repeated. The metals can coordinate to spe-
cific locations within the protein and stand out like beacons amidst the
carbons and other light elements. Obtaining diffraction data from crystals
soaked with two different heavy metals, Perutz and Kendrew were able to
obtain guesses for their unknown phases and, ultimately, reconstruct the
molecules.

Exercise 10.7. Conduct an NWChem

optimization for the small molecule N- H CH
methylacetamide pictured at right. De- IlIfC 3
scribe the geometry of the nitrogen atom. s A
What is the distance between the carbon  H3C O

and oxygen?

Proteins are composed of some twenty amino acids, polymerized by what
are termed peptide bonds, like the one depicted in the exercise. From the
drawing, we anticipate that the carbon atom will be doubly bonded to the
oxygen, with a shorter bond length than that found in methanol, for ex-
ample. The nitrogen, as drawn, should have a pyramidal form. Instead,
the electron density is delocalized and the carbon-nitrogen bond becomes
aromatic. As can be seen in figure 10.6, the four central atoms (HNCO)
become planar, with the result that protein conformations are greatly lim-
ited. In particular, due to the aromatic nature of the C-N bond, rotations
around this bond are strongly suppressed. The amino acids terminate on
one end (N terminal) with an amino group (NHJ in solution) and on the
other with a carboxyl (COO™ in solution). Polymerization proceeds with
a condensation reaction that frees a water molecule.

As became apparent from the crystal structures, proteins possess struc-
ture but the initial structures did not have the spatial resolution to re-
solve precisely how the protein function arose. A significant improve-
ment in crystallographic technique was provided by Herbert Hauptman
and Jerome Karle who developed direct methods for determining the un-
known phase.® A variety of additional improvements are ongoing. Today,

7Perutz and Kendrew were awarded the Nobel Prize in Chemistry in 1962 “for their studies
of the structures of globular proteins.”

8Hauptmz:m and Karle were awarded the Nobel Prize in Chemistry in 1985 “for their out-
standing achievements in the development of direct methods for the determination of crystal
structures.”
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Ficure 10.6. The peptide bond is
an aromatic bond in which the four
inner atoms are planar. The bond
between the nitrogen (black) and
the outer carbon is rotatable (¢), as
is the bond between the C terminal
carbons ().

one typically will utilize a selenomethionine substitute for any sulfur-
bearing methionine residues in the protein. This avoids the problem of
soaking the crystals with heavy metal solutions and hoping for the metal
ions to be adsorbed. Indeed, the modern HKL3000 software currently de-
ployed at synchrotron laboratories can resolve structures nearly automati-
cally. Moreover, the software incorporates “best practices” and performs a
number of quality control tests on the resulting structures, enabling even
inexperienced graduate students to produce structures of quality compa-
rable to those produced by seasoned crystallographers.

Exercise 10.8. Download the 1TEM pdb file from the Protein Data-
base (rcsb.org). This can be performed within VMD through the
Extensions...Data tab or from the website itself. This is a 1.95 A
structure of the TEM-1 fS-lactamase from E. coli with a sacrificial
substrate bound in the active site. Use the NewRibbons Drawing
Method to identify the secondary structures in the protein backbone.
Use the CPK Drawing Method to render the substrate (resname ALP).
Identify all residues within 5 A of the substrate. Find the hydrogen
bonds that orient the substrate within the binding pocket. (Hint:
Type 2 while the mouse is in the graphics window. This will change
the mouse mode to measure distances. Heavy atom distances of
about 3 A suggest hydrogen bonding. Create a graphics represen-
tation using SURF Drawing Method to identify the binding pocket.
Change the substrate Drawing Method to VDW. Does the substrate
fit the binding pocket?

A typical difficulty encountered by crystallographers is that enzymes are
very efficient catalysts. As a result, the rate-limiting step in the chemical
process that converts reactants into products is the diffusion of the reac-
tants and, subsequently, products in and out of the active site. The crystal
structures obtained by crystallographers provide, essentially, the ensem-
ble averaged structure. So, even if the protein crystals are soaked with the
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reactant molecules, most of the time they are not coordinated within the
active site and do not appear in the structure.

Figure 10.7. The TEM-1 -
lactamase hydrolyzes penicillin
and is a major source of antibi-
otic resistance. Here, a substrate
analog (ball-and-stick) has been
covalently bound within the active
site. which is represented as the
niche within the protein surface.
Two water molecules (spheres) are
also observed.

Without actually capturing an image of the substrate in the active site, the
mechanisms associated with binding and subsequent chemistry remain
elusive. There are a number of strategies available to crystallographers
that can sidestep this problem, such as working at cryogenic temperatures
to reduce the chemical reaction rates. As another example, in figure 10.7,
chemist Shariar Mobashery and his students used a molecule similar to
that of the native substrate but which did not permit all of the requisite
chemistry to be conducted.? As a result, a fragment of the analog remains
covalently attached to the protein, providing confirmation of the active
site and support for the chemical mechanisms at work.

A detailed investigation of the structure in this example reveals that all
of the atoms within the substrate that can form hydrogen bonds are hy-
drogen bonded either directly to the protein or indirectly through water
molecules. This is most often what we mean by molecular recognition. A
hydrogen-bonding network forms that orients the target molecule within
the active site.

Not all cases of molecular recognition are quite so specific. Indeed, one
of the most challenging issues in antibiotic resistance is the emergence of
new enzymes that are capable of hydrolzying a large number of different
antibiotic agents. Such promiscuous behavior indicates that the binding
of substrates is significantly less specific. A recent example is the discov-
ery of a new enzyme NDM-1, named after the initial patient from New

9Mobashery and his students published “Crystal structure of 6a-hydroxymethyl-
penicillanate complexed to the TEM-1 S-lactamase from Escherichia coli: Evidence on the
mechanism of action of a novel inhibitor designed by a computer-aided process” in the Jour-
nal of the American Chemical Society in 1996.
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Delhi, that efficiently hydrolyzes a broad range of -lactam antibiotics.
We won’t discuss molecular evolution in any great detail but one of the
more interesting questions about enzymes involves gain of function or
loss of function mutations. One of the early crystal structures of a TEM-1
enzyme in complex with an antibiotic substrate was obtained from a mu-
tant copy of the enzyme that rendered it no longer able to hydrolyze the
substrate. Instead, the substrate was covalently bound to the substrate;
the missing amino acid was responsible for the chemical step that released
the hydrolyzed substrate. Being able to predict such changes in function
is a subject of great interest in current biomolecular research.

Exercise 10.9. Download the 4HL2 structure of NDM-1 in com-
plex with a hydrolyzed substrate. Describe the secondary structures
of the protein. Identify hydrogen bonds between the protein and
substrate. Use the SURF representation to visualize the binding sur-
face. NDM-1 is a metallo-enzyme that utilizes zinc ions to effect the
catalytic reaction.

The Protein Database now contains well over 100,000 structures, so one
might ask if it would be possible to find small molecules to fit within the
binding sites of any particular enzyme? A simple approach is to search
through comparable databases of small molecules and try to fit each into
the known structure. While the approach may seem simple, it is actually
a rather complex undertaking but has been applied with some success in
developing leads for new drugs. The basic approach is to simplify the ge-
ometry of the substrate molecule into an array of partial charges. The elec-
trostatic energy is then computed with the substrate oriented in a range of
angles with respect to the protein surface. A variety of scoring functions
have been devised to cull through the results to find any molecules fit well
enough for further study. The method is relatively rapid to apply but does
not have good accuracy. Often the best scoring compounds do not possess
the best predicted binding affinities.

Part of the reason for the limited success of the molecular docking ap-
proach is due to the fact that proteins are not rigid bodies. As the bio-
chemist Daniel Koshland pointed out in 1958, enzyme/substrate interac-
tions will invariably result in what he called an induced fit, where each
molecule shifts its structure to accommodate the other.’® Indeed, there
are many examples of substrates that appear to be completely enveloped
by protein, without any clear picture as to how they might have arrived at
their destination.

1OKoshland published “Application of a theory of enzyme specificity to protein synthesis”
in the Proceedings of the National Academy of Sciences USA.
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In most cases, this situation arises from what is called allosteric changes in
the protein structure, where loop sections of the backbone permit hinge-
like motion. In these systems, the protein opens to admit the substrate
and then closes to conduct the chemistry. This motion is often enabled
or disabled by binding of cofactors elsewhere on the protein and provides
a mechanism for regulating the amount of product that the enzyme is
permitted to produce.

Exercise 10.10. Download the 1CTS and 2CTS structures. These
two examples represent the enzyme citrate synthase in its open and
closed states, respectively. In order to see the difference more clearly,
use the RMSD Calculator tool under the Extensions/Analysis tab to
align the proteins. The substrate CIT is visible in both. How does
the structure change between open and closed states?

For the simple case of a binding pocket on the surface of an enzyme, we
can quantify what we mean by molecular recognition. If we consider an
enzyme E and its substrate S, the first step in the reaction is the formation
of what is termed the Michaelis complex:''

kCﬂt

(10.6) E+S%ES—>E+P.

Here the first term in equation 10.6 represents the enzyme and substrate
separately in solution. Each of these is characterized by a free energy,
typically the Gibbs free energy for situations of constant temperature and
pressure. The intermediate state, in which the substrate is aligned within
the active site of the enzyme by hydrogen bonds but has not been chem-
ically modified, also is characterized by a free energy. The probability of
forming that state is proportional to the Boltzmann factor:

(10.7) P o ¢ [9(ES)-GE+S)VksT

where here G is the Gibbs free energy: G = G(p,V) = E+pV-TS. Notionally,
from the Michaelis complex, the chemical reaction proceeds through a
transition state in which chemical bonds are reformed to the product state
and, ultimately, to the release of products back into solution as indicated
in the final step of equation 10.6. Here, details of the chemical pathway
are simply lumped into an overall rate of the catalyzed reaction k,;.

This simplified version of the catalytic process incorporates the concepts
that the rate of formation of the Michaelis complex k, competes with the
unbinding of the substrate and its release back into solution k, but that
the forward reaction into products is unidirectional. This is certainly not

!1The German chemist Leonor Michaelis and Canadian physician Maud Menten published
a mathematical treatment of enzyme kinetics in “Die Kinetik der Invertinwirkung” in the
Biochemische Zeitung in 1913.
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the case as enzymes, depending upon concentration of the reactants and
products can work effectively in either direction. What we have assumed
is that the free energy associated with the product state is so much lower in
energy than the reactant state, that the reverse reaction can be excluded.

Exercise 10.11.  Compute the probabilities of occupying an inter-
mediate state where the energy difference is kzT, 3kgT, 5kgT, 10kgT
and 30kgT.

Thus, in order to compute the binding affinity, we really need to compute
the free energy. This is precisely why we have introduced students to
the use of NAMD. We can estimate the ensemble averages through the
use of the molecular dynamics simulations. Unfortunately, conducting a
simulation to estimate the free energies associated with equation 10.6 is
quite difficult. There is a theoretical trick that can be employed to obtain
relative free energies.

Consider the binding of an alternative substrate S’ by the enzyme. Fol-
lowing equation 10.6, we can produce a complete thermodynamic cycle:

E+S — ES

(10.8) ! 1.
E+S — ES’

Experimentally, we can conduct the two horizontal reactions: take two
separate substrates and measure the binding affinities separately. Theo-
retically, we can conduct the two vertical reactions: mutate the original
substrate into the other substrate. This is known as an alchemical trans-
formation, which is only accessible in the computer world.

Following the free energies around the loop, we find that
G(ES)-G(ES')=G(E+S)-G(E+S').

The mechanism provided within NAMD to estimate these free energy dif-
ferences is known as a dual topology method. That is both substrates
are included in the simulations simultaneously but without interacting
with each other. Their interactions with the enzyme are controlled by
a visibility parameter A, where the effective substrate is given by Seg =
AS +(1-A)S’. Conducting a series of simulations at different values of A
permits an estimate of the free energy difference between initial and fi-
nal states to be computed. This alchemical free energy perturbation tech-
nique provides the best estimates of the relative binding affinities that can
be produced presently, because the problem of induced fit is handled in-
trinsically. As a matter of practice, it is quite difficult to obtain precise
values of binding affinities, in part because finite dynamics runs do not
guarantee adequate sampling of conformational space. Consequently, the
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technique, despite its advantages over molecular docking, has not yet seen
widespread use.

Exercise 10.12. The methodology of alchemical free energy per-
turbation calculations is quite involved. Mercifully, several example
cases are provided on the NAMD web site as tutorials. Download
the Alchemical Free Energy Perturbation tutorial from the NAMD
tutorial collection, and conduct the ethane to ethane example.

Our emphasis to this point on small molecules and hydrogen bonds can
be explained by the observation that the binding energy of one hydrogen
bond has a nominal value in the range of 60—300 meV (2-12 kgT). In the
middle of that range, we might naively expect a 5 kg T advantage for every
hydrogen bond made by the substrate with the enzyme. A single hydro-
gen bond difference can often explain significant differences in binding
affinity (see Exercise 10.11).

The picture becomes somewhat less clear when we move beyond small
molecule binding to proteins and begin to consider some of the macro-
molecular assemblies that arise in biological organisms. These large struc-
tures are composed of dozens (hundreds) of subunits that self-assemble
into the machinery that conducts some of the essential chemical transfor-
mations required by biological systems. We shall take as one example the
ribosome, which is an organelle responsible for most protein production
within the cell.

The central dogma of molecular biology is that genetic information is en-
coded within DNA. That primary information is transcribed into mes-
senger RNA (mRNA) which, in turn, is translated into protein in the ri-
bosome. That translation process utilizes the code listed in Table 10.1,
which is nearly universal across all species.’> Amino acids are first at-
tached to the ends of transfer RNAs (tRNAs), one for each amino acid by
a group of enzymes known as tRNA-synthetases. The tRNAs all end in
the nucleotide sequence CCA, with their respective amino acids attached
to either the 2’ or 3" hydroxyl of the terminal adenosine. Each tRNA has a
loop that contains the three-base anticoding sequence. The ribosome cap-
tures the mRNA and, in a multistep process, tRNAs are admitted to pro-
cessing center, their anticodon loops are compared to the coding segment
on the mRNA and, if a match is detected, the amino acid is chemically
attached to the nascent peptide chain.'3 The structure of the ribosome

12Francis Crick and coworkers published “General nature of the genetic code for proteins”
in Nature in 1961. Crick, James Watson and Maurice Wilkins were awarded the Nobel Prize
in Physiology or Medicine in 1962 “for their discoveries concerning the molecular structure
of nucleic acids and its significance for information transfer in living material.”

13The Nobel Prize in Chemistry in 2009 was awarded to Venkatraman Ramakrishnan,
Thomas Steitz and Ada Yonath “for studies of the structure and function of the ribosome.”



272 BroLoGICAL SYSTEMS

TaBLE 10.1. The four base pairs adenosine (A), cytosine (C), guanine
(G) and uracil (U) of RNA encode for the twenty amino acids, along
with punctuation. All proteins start with methionine, so AUG is the
start code.

GGU

GGC lycine
GCU GGA [ &7 UeU
GCC . GGG
GCA] alanine CAU o ggi .
GCG CAC } histidine uce serine
AGU AUU AGU
AGG AUC } isoleucine AGC
ggg arginine AUA ACU
CGA ggé ﬁgi ] threonine
o Uy leucine ACG
AAU } asparagine cucC UGG} tryptophan
AAC CUA

UAU

GAU } aspartic CUG UAC } tyrosine
GAC acid iﬁé} lysine GUU
UGU} cysteine GUC i
UGC AUG} methionine ~ GUA [ ‘&€
gﬁé} glutamine EJEJICJ} phenylalanine gﬁi
GAA} glutamic CCU UAG} STOP
GAG acid CCC . UGA

CCA proline

CCG

is known due principally to the herculean efforts of Vekatraman Ramakr-
ishnan, Thomas Steitz and Ada Yonath, whose x-ray diffraction studies
over a number of years provided increasingly precise descriptions of this
remarkable machinery.

Charging of the tRNA with its cognate amino acid is the responsibility
of the associated tRNA synthetase. A particularly intriguing example is
illustrated in figure 10.8, in which we display the structure of the valyl-
tRNA synthetase of Thermus thermophilus (RCSB id 1IVS). We have thus
tar focussed on hydrogen bonds as the means for molecular recognition
but, in 1958, Linus Pauling noted that there was a significant problem
associated with the fidelity of translation for small, hydrophobic residues
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FiGure 10.8. The tRNA
(black) ends in the
sequence CCA, with
the anticodon displayed
on a loop. The tRNA
synthetase (gray) recog-
nizes the tRNA through
its coding sequence and
catalyzes the attach-
ment of the cognate
amino acid to the termi-
nal adenosine (A7ys). A
valyl-adenalate analog
(VAA) also occupies an
active site.

like valine and isoleucine, that differ by a single methyl group.'# Pauling
reasoned that a methyl group provides a solvation energy of about 100-
120 meV, or about 5 kgT. As a result, the wrong amino acid should be
attached about once in every 100-200 trials. Experiment indicated that
errors occurred an order of magnitude less frequently.

Exercise 10.13. Download the 1IVS structure from the Protein
Database and open it in VMD. This structure contains two copies
(dimer) of the protein and tRNA. Additionally, a substrate analog
occupies a potential active site. Identify the secondary structures in
the protein. What is the extent of interactions between protein and
tRNA? The anticodon loop consists of the bases C34-A35-C36. What
residues in the protein interact with these bases?

The solution to Pauling’s dilemma was provided by the discovery of a sec-
ond, editing site in some of the synthetases, located in what is called the
head group at the top of the figure. In the 1IVS structure, the acceptor
stem of the tRNA occupies what is presumed to be the editing site and a
valine analog occupies what is presumed to be the active site responsible
for attaching valine to the tRNA. The editing step buys another factor of
30 or so in specificity, bringing the thermodynamic calculations into gen-
eral agreement with experimental measurements that point to errors in
translation of about one in 3000.

14Pauling’s remarks on “The probability of errors in the process of synthesis of protein
molecules” were published in the Festschrift Arthur Stoll, Birkhduser Verlag, 1958.
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A puzzle without a completely satisfactory resolution at present is the
specificity of the tRNA synthetases with their cognate tRNAs. It is cer-
tainly true that matching codon to anticodon loops provides a thermody-
namic advantage but there is a broad contact surface between protein and
tRNA. Molecular dynamics simulations suggest that the tRNA/protein in-
teractions are very dynamic at the interface, except in the codon/anti-
codon region. There does not exist a current technology that provides
good insight for such large interaction areas. Protein-protein and protein-
nucleic acid interactions govern the structures of large biomolecular as-
semblies and predicting their affinities lies beyond the reach of present
day tools.

10.3. Biomolecular Machines

In writing equation 10.6, we made the tacit assumption that the energy
of the product state was much lower, with respect to the transition state,
than the reactant state. In this case, the probability of the reverse reac-
tion in which product is converted back into reactants is considered to
be negligible. The attentive student has probably wondered if there are
not some desirable chemical reactions that are energetically unfavorable,
where the reaction must proceed uphill. In fact, there are many instances
of such unfavorable energetics. The charging of tRNA with its cognate
amino acid is one such example.

In order to overcome this difficulty, organisms universally utilize adeno-
sine triphosphate (ATP). By incorporating ATP hydrolysis as part of the
total reaction, the energetics can be shifted by 0.5 to 0.75 eV (20-30 kgT).
As aresult, even energetically unfavorable reactions can be converted into
a form where equation 10.6 is applicable. Depending on activity, the av-
erage human utilizes about their own weight in ATP daily, nearly 1000 kg
in times of extreme exertion. The bulk of the ATP is not synthesized de
novo but regenerated from ADP and phosphate in a large molecular ma-
chine known as the ATP synthase, pictured in the cryo-em image in fig-
ure 10.9."5

The F, motor segment can be found in the PDB file 1C17 and is composed
of two concentric rings of alpha helices formed by 12 copies of a single
protein. The helical motif is commonly found in membrane-spanning
proteins and is composed on the exterior surface largely of hydrophobic
residues that can be solvated in the highly hydrophobic membrane. The

15The Nobel Prize in Chemistry in 1997 was awarded to Paul Boyer and John Walker “for
their elucidation of the enzymatic mechanism underlying the synthesis of adenosine triphos-
phate (ATP).” The award was shared with Jens Skou “for the first discovery of an ion-
transporting enzyme, Na*, K* -ATPase.”
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FIGURE 10.9. Cryo-electron mi-
croscopy permits the reconstruc-
tion of the large-scale structure of p,
ATP synthase. The lower section

is embedded in the cell membrane

and called the F, component. - stator
The upper section, known as F,, axe
is connected to the F, segment
through the stator segment at the
right of the image. Image courtesy
of John L. Rubinstein, The Hospital
for Sick Children, Toronto.

Fo

F, motor is driven by a proton current. The cells use ion pumps to main-
tain ionic gradients that give rise to a potential difference across the cell
membrane. Free protons diffuse through the M chain and are coordinated
by glutamic acid residues. The protons are then passed to aspartic acid
residues about midway down the rotating core. Once the aspartic acid
is protonated, it is much less hydrophobic and the F, motor turns one
twelfth of a revolution.

Exercisk 10.14. Download the 1C17 structure and open it in VMD.
What are the secondary structures of the protein? Create a repre-
sentation in which aspartic (ASP) and glutamic (GLU) acids are vis-
ible. The ends of the helical domains are in solution in water. Does
the positioning of these hydrophilic residues make sense given that
the sides of the helices are embedded in hydrophobic lipids? Add
a membrane segment to the VMD plot using the Membrane Builder
utility under the Extensions/Modelling tab. Choose a 100x100 mem-
brane of either type. Fix either the membrane or the protein and
rotate/translate the other so that they are roughly aligned. Do the
protein helix lengths span the membrane?

Membrane proteins are quite difficult to study, as they do not crystallize
readily like globular proteins. This structure was solved through solution
NMR spectroscopy. The membrane-spanning helices generally require an
hydrophobic environment to stabilize their structure. Indeed, portions of
the stator that connect the F, and F, motors are still not resolved at the
atomic level. An additional portion of the stator is found in the 2A7U
structure, that was also solved using NMR spectroscopy. This portion of
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the protein connects the stator to the F, motor. A length of the stator can
also be found in the 1L2P structure.

FiGure 10.10. The F, motor con-
sists of three aff sequences, one of
which is not drawn to allow the
visualization of the central axle.
Molecules of ADP are bound at
the interface between a and p seg-
ments.

The F, motor segment depicted in figure 10.10 can be found in the PDB
file 1E7g and is composed of alternating a-f domains, chains A B C and
D E F respectively. The axle is formed by chains G H and I. As a motor,
the F, segment is powered by ATP hydrolysis into ADP. There are three
ADP molecules bound into active sites in the structure, in the A, B and
C chains. Binding of ATP would cause the adjacent chain to shift to en-
compass the molecule. This causes a rotation of the central axis and also
brings the catalytic power of the enzyme to bear, with the result that ATP
is hydrolyzed and the axle has revolved to the next interface.

=1 ad
FIGURE 10.11. The F, motor & 6 2
motion was observed through T:é 1 o
videotape. The motor pro- & - o
ceeds in a stepwise fashion 3 _ ‘-,'*,: @
(black dots), moving one third | — ~ ‘
of a revolution. The angular & &
distribution (gray dots) sepa- -:-m— :
rates into three separate lobes. S L L B B L BB
Image adapted from Yasuda et o 30 60 90
al., Cell 1998. time (s)

Ryohei Yasuda and colleagues were able to visualize the motion of the F,
motor in 1998.'® They created constructs of the a and f proteins that
contained several histidine residues at their ends. The histidines bind to

16yasuda and coworkers published “F;-ATPase is a highly efficient molecular motor that
rotates with discrete 120° steps” in Cell.
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nickel, so placing a solution of protein on a nickel-coated slide bound the
motor in place. They also modified the crown of the F, motor to include
a segment of the protein streptavidin and added the protein actin to the
solution. Actin self-assembles into long tendrils and binds to streptavidin.

In figure 10.11, we illustrate some of Yasuda’s results. When a weak solu-
tion of ATP was added to the microscope slide, the actin filaments would
revolve around the fixed motor locations. The filaments were roughly
1 ym in length, over a thousand times the size of the motor, and could be
imaged through a microscope. The researchers found that the end of the
filaments moved between three separate locations, 120° apart.

Exercisk 10.15. Download the 1E79 structure and open it in VMD.
Create ribbon representations of the chains and CPK representations
of the ADP molecules. Are all three of the af sectors of the motor
equivalent? Where is the axle located? What residues are responsi-
ble for coordinating the ADP?

As an ATP synthase, the F, motor works in the opposite direction from
that observed by Yasuda and coworkers, building ATP from ADP and
phosphate. It is powered by the rotation of the F, motor. Details of the
reactions remain an active research topic, despite our general understand-
ing of the gross features.

10.4. Molecular Toolkit

Many physics tools have been utilized in the study of the ATP synthetase.
X-ray crystallography and NMR spectroscopy have been utilized to pro-
vide atomic resolution. Cryo-electron microscopy has filled missing gaps
in the structure at the nanometer scale and, recently, AFM microscopy has
been utilized to study the motors.

One of the most widely used and versatile tools in biophysics is optical
tweezers. First reported by Arthur Ashkin from Bell Laboratories in 1970,
the device was first realized by Ashkin and coworkers in 1986.'7 The basic
principle of optical tweezers for micrometer-sized objects is illustrated in
figure 10.12, where we have assumed the object to be spherical.

As light traverses the sphere (k, — k; — ky), there is an overall momen-
tum change #iAk, on the light. This must, of course, be compensated by a

17Ashkin published “Acceleration and trapping of particles by radiation pressure” in the
Physical Review Letters in 1970 and realized his ideas with help from Steven Chu, among
others, in “Observation of a single-beam gradient force optical trap for dielectric particles”
published in Optics Letters in 1986.
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Ficure 10.12. Light with wave vec-
tor k, impacting a sphere at a dis-
tance C from the centerline will re-
fract and reflect. The light exiting
the sphere k¢ has a net momentum
shift Ap = hAk,.

momentum change in the sphere —fiAk,. If the illumination of the sphere
is uniform, symmetry demands that the net momentum transfers (in the
lateral directions, at least) will sum to zero, so the sphere will be unaf-
fected by the light. If instead, there is a variation with respect to C of the
intensity, then there will be a net momentum imparted to the sphere. This
momentum tends to push the sphere into the region of greatest intensity.
It is possible to arrange the laser intensity to be approximately Gaussian
in the C direction, resulting in the sphere nominally hovering around the
midpoint of the beam width.

Attentive students have probably noticed that the momentum transfer
hAk, from the reflected beam in figure 10.12 is larger than that of the
refracted beam and has a significant component in the direction of the
beam. Thus, even if the force on the sphere in the lateral direction is null,
there will be a significant force along the beam axis. There are two means
for compensating for this issue. In the first, one can use counterpropagat-
ing beams. In the second, one can bring the beam to a sharp focus. This
has the effect of providing an intensity gradient in the beam direction that
also serves to confine the sphere.

Exercisk 10.16. Redraw figure 10.12 and label all of the angles
where the beams intersect the spherical surface. We neglected re-
flection at the second interface in our discussion (as well as higher
order reflections). Draw the reflected wave at the exit point. Con-
sidering the Fresnel equations, what are the relative amplitudes of
reflected and transmitted rays?

A simplified view of an optical tweezers apparatus is illustrated in fig-
ure 10.13. The tweezers are created by light from the laser. The laser out-
put is expanded and then steered towards a dichroic mirror (M1) that re-
flects the light upward through the objective lens, which brings the beam
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|:| light
Ficure 10.13. The optical
tweezers are created by the PSD
laser field that is passed ]
through the objective lens
and focussed on the sample.
The laser field is expanded _
ple
through the condenser lens p

condenser

. objective
before being routed to the

position sensitive detector :l:l
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. . laser
illuminated by another light
source and imaged on the |:|
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to a tight focus at the sample location. The diverging beam is captured
by the condenser lens and reflected by a second dichroic mirror (M2) to a
position sensitive detector that is used to determine beam position.
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Dichroic mirrors have wavelength-dependent reflection and transmission
properties. Typical behavior of a dichroic mirror is illustrated in fig-
ure 10.14. By using laser illumination for the tweezers outside the signal
band, the two frequencies can be kept separate. Thus, in figure 10.13, the
laser beam used for the tweezers is entirely reflected by the mirrors, where
the alternate light source is passed unhindered.

Optical tweezers have been utilized in a host of different applications.
One of the most intriguing biological problems involves the molecular
motors kinesin and dynein that traverse microtubules. Microtubules are
long, fibrous filaments that are found in eukaryotic cells. In figure 10.15,
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FIGURE 10.15. Panel A represents an idealization of microtubule for-
mation, in which proteins first assemble into small units and then
sheets, before curling into a tube. Panel B depicts the cryo-em struc-
ture of a tubulin sheet. The fibers are rotated slightly from fiber to
fiber but all are aligned a8 in the same direction. Image courtesy of
Eva Nogales, Howard Hughes Medical Institute, University of Cali-
fornia, Berkeley and Lawrence Berkeley National Laboratory.

we illustrate the putative construction of a microtubule, that is presumed
to assemble into sheets that then curl into tubes, as depicted in panel A.
Eva Nogales and her coworkers constructed the cryo-em image of a tubu-
lin sheet depicted in panel B.'® The fibers are constructed of two proteins
in an af sequence, that stack in the fiber direction. Multiple fibers then
align into sheets that can curl to form tubes.

Each of the small beads visible in the cryo-em image is composed of a
pair of small tubulin proteins that stack in an a8 sequence, forming the
fiber. The precise process of forming the microtubule is not known but
the process shares some aspects of the conceptual drawing in figure 10.15.
Also not known precisely is how the tubules end. There are cap segments
that terminate the tubules but this remains an active research area. A
structure of the ap tubulin can be found in the PDB structure 1JFF. From
the crystal structure, it is apparent that the proteins conform tightly to
one another. Predicting this from separate structures

Exercise 10.17. Download the 1JFF structure and open it in VMD.
The a and j8 segments are in chains A and B, respectively. The pro-
tein association is enhanced by the binding of GTP at the interface.
Create a VDW representation of the GTP and identify its binding lo-
cation. What are the secondary structures of the proteins? What are
the interactions (hydrogen bonds) at the interface?

18K enneth Downing and Nogales published “Cryoelectron microscopy applications in the
study of tubulin structure, microtubule architecture, dynamics and assemblies, and interac-
tion of microtubules with motors” in Methods in Enzymology in 2010.
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Ficure 10.16. The a (dark) and
B (light) proteins stack into a
tightly bound state through hydro-
gen bonding across the protein-
protein interface.

The molecular motors kinesin and dynein traverse the microtubules in op-
posite directions. Their function is to transport materials across the cell.
Precisely how they accomplish this remains an area of active research. Ki-
nesin is composed of two components, each of which is formed by a head
group, a long a helix and a tail segment that attaches to the cargo mole-
cule. An example can be found in the PDB structure 3KIN.

Exercise 10.18. Download the 3KIN structure and open it in VMD.
The long a helices of the protein segments are truncated to a small
fraction of their length in order for the protein to crystallize. It is
known that the coils form a coiled coil, like two strands of rope
wrapped around one another. What is the secondary structure of
the protein? How do the head segments attach to the coil? Where
does ATP bind?

Each of the head segments is powered by ATP hydrolysis and the pair
swing along the microtubule chain, hand over hand, as it were. The com-
plete cycle is not fully understood but is does appear that the head groups
can form two different attachments to the microtubule: a weak attach-
ment in which both head groups are bound and a strong attachment in
which only a single head group can stay attached. The differences be-
tween weak and strong are due to conformational changes in the protein
induced by the presence or absence of ATP, ADP and phosphate in the
active site. There is an additional coordination of the C-terminal portion
of the kinesin protein with the tubulin protein that helps to stabilize the
structure but this is not always resolved in the crystal structures as it tends
to be disordered (or not ordered in the same way throughout the crystal).

Exercist 10.19. Download the 1BG2 structure of kinesin which de-
picts the conformational shift associated with ATP hydrolysis. Use
the RMSD tool to align the 3KIN and 1BG2 structures. What is the
difference in the structures? It will help to use the NewRibbons rep-
resentation.
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Figure 10.17. The a (dark) and g
(light) proteins of tubulin can in-
teract with kinesin (ribbon) to form
either a tightly bound or weakly
bound complex. Binding of ATP
(VDW representation), hydrolysis
into ADP and phosphate and the
release of phosphate and ADP pro-
voke changes in the kinesin struc-
ture.

The combined cryo-em/x-ray diffraction picture of the process is con-
tained in the PDB structure 2PN4, depicted in figure 10.17. Here, the
1JFF and 1BG2 structures were fitted into the cryo-em map of the com-
plex. Note that the C-terminal loop of kinesin also interacts with the «
tubulin.

Exercise 10.20. Download the 2P4N structure that depicts the in-
teraction between a kinesin head group and the tubulin proteins.
This structure was obtained by fitting the 1JFF and 1BG2 structures
into a 9 A cryo-em map of the structure. Where does the kinesin
bind?

The picture of this complex machinery that has been developed has uti-
lized several imaging technologies: x-ray and electron diffraction, cryo-
electron microscopy and NMR spectroscopy to define structures with res-
olutions that range from nearly atomic resolution (3 A) to 10 nm. The
high resolution provides details about the specific interactions that are
involved in protein-protein binding and the lower resolution images pro-
vide large scale structure.

Optical tweezers have been utilized to study the dynamics of the system
and to obtain further clues as to the nature of the mechanism. Steven
Block and coworkers conducted a series of investigations using an assay
in which kinesin tails were chemically attached to silica beads via long
linking chains.'® With low kinesin concentrations, the average number of
kinesin molecules per bead was less than one. Microtubules were fixed
to a microscope slide mounted on a piezo stage and the silica beads were
captured one at a time by the optical tweezers. The captured beads were
then moved to a nearby microtubule. If the bead began moving on its
own, it was clear that the kinesin head had contacted the microtubule and

19Brown and colleagues published “Direct observation of kinesin stepping by optical trap-
ping interferometry” in Nature in 1993.
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was translating via ATP hydrolysis. Drawing a picture of the experiment
is quite difficult: the silica beads have a diameter of about 500-1000 nm
and the kinesin motors are only a few tens of nanometers in length. The
image of an ant dragging a large boulder springs to mind. Nonetheless,
Brown found that the motors were capable of exerting more than 5 pN of
force.
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Brown and coworkers conducted a number of experiments to characterize
the kinesin motion, measuring the velocity, the length of travel before the
motor released from the filament and the force exerted by the motor. By
holding the beads fixed in the optical trap and translating the piezo stage,
Brown and his colleagues could apply a load to resist the kinesin motion.
As depicted in figure 10.18, individual beads made steps of approximately
8 nm in length. Their results are consistent with the microscopic picture
of the head groups of kinesin walking hand over hand along the length of
the microtubule, spanning one a8 dimer per step.

This work represents a remarkable achievement: studying the properties
of a single molecule and not deducing the properties of a single molecule
from the ensemble average of a host of molecules. This provides signif-
icant insight into the mechanical functioning of biological systems that
cannot be obtained through other means.

Other physics tools have also been applied to the study of biological sys-
tems. Atomic force microscopes can be used to image biological samples
and can provide images comparable in resolution to the cryo-em images
that we have discussed. AFMs have also been repurposed utilize the can-
tilever as a means of applying a force to rupture chemical bonds. With a
molecule tethered to a surface and the other end tethered to the AFM tip,
vertical tip motion can be utilized to exert a force to study, among other
topics, protein unfolding. Protein structure is key to its function and how
proteins achieve their folded state is a subject of current research. Among
the more popular theories, it has been proposed that folding proceeds
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through a series of checkpoints from unfolded to folded states. AFM stud-
ies have indicated that this idea is broadly true. There remain ensembles
of states around the checkpoints that effectively broaden the pathway.
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On Plasmas

In the preceding chapters, we have discussed matter at increasing sizes
and decreasing symmetry. In biological systems, physics tools have been
utilized to help identify the structure and mechanisms employed in the
machinery of living organisms. All of the discussion though, was cen-
tered on materials that are relatively commonplace terrestrially and have
omitted what may be the most common form of matter in the universe:
plasma. Because matter densities on the planet are high and the temper-
atures are not, most matter on the planet exists in the form of electrically
neutral gases, liquids and solids. There are, of course, ions intermixed but
typically at low densities and they are invariably interacting with solvent
molecules.

There are large charge imbalances in the upper atmosphere, partially pow-
ered by the flux of high-energy particles from the solar wind. A complete
understanding of the processes that lead to charge formation and separa-
tion is not yet at hand but the fact that it exists is evidenced by spectacular
lightning strikes. Views of the planet from space suggest that lightning is
a global phenomena, so perhaps the transient nature is not as firm a prin-
ciple as one might hope. Nevertheless, in most daily activities, we do not
often encounter plasmas.

Leaving the planet’s surface, we find that plasmas are quite common. Just
above the earth’s atmosphere are found circulating plasma sheaths known
as the Van Allen radiation belts.! American physicist James van Allen and
his coworkers attempted to launch three Geiger counters into orbit on Ex-
plorer rockets. The first and third were successful in reaching orbit. The
first payload simply telemetered data continuously back to earth but was
only detectable when the satellite passed over a ground receiving station.
The third version contained a magnetic tape recorder that recorded an en-
tire orbit’s worth of data that was replayed upon command from a ground
station.

James Van Allen and coworkers published “Observation of high intensity radiation by satel-
lites 1952 Alpha and Gamma” in Jet Propulsion in 1958.
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Van Allen and his colleagues were perplexed by the data from the first
mission, in which the measured count rate was frequently zero, but the
absence of a continuous record of count rate made the data quite difficult
to analyze. With the addition of the tape recorder on the third mission,
Van Allen was able to obtain records like those depicted in figure 11.1.
The explanation is that the zeroes are the manifestation of detector satu-
ration.

When a charged particle strikes the Geiger-Miiller tube, it causes a cas-
cade of charged particles that result in a sizeable voltage pulse. This
voltage pulse is further amplified through electronic circuits (tubes in
1958) and directed to a counting circuit that only counts pulses above a
threshold voltage. When the charged particle rate becomes very high, the
Geiger-Miiller tube cannot respond with pulses of the same amplitude;
the charged-particle cascades are effectively short-circuited by the arrival
of the next charged particle. Consequently, no pulses exceed the thresh-
old of the counting circuit. Ironically, zero counts in the detector has to
be interpreted as an extremely intense radiation field.

Ficure 11.2. The plasma den-
sity in the Van Allen belts is
nominally separated into two K
lobes. The NASA Van Allen a )
probes have detected that, on
occasion, there is additional
structure. Image courtesy of
NASA.

Since these early experiments, the Van Allen belts have been explored re-
peatedly. After van Allen’s initial discovery, it was found that there are,
nominally, two main lobes: an inner and an outer belt, as depicted in
figure 11.2. The inner belt is known to be composed primarily of protons
that are believed to result from the decay of neutrons generated in cosmic
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ray interactions with the atoms in the upper atmosphere. The outer belt
has a large component of energetic electrons but is understood to be more
dynamic. Notably, the Van Allen probes launched in 2012 have provided
a much more dynamic picture of the belts than had previously been as-
sumed. The Van Allen probes are two satellites that orbit in reasonably
close proximity but at a large enough distance that researchers can gain
insight into the physical extent of their observations. That is, over what
distances do the events they detect occur?

Electrons with energies up to 2 GeV have been detected in the outer belt,
which has been observed to bifurcate into two separate segments and later
rejoin. The mechanisms at work that can accelerate electrons to that en-
ergy appear to be local to the belt. In addition, the belts are not as sym-
metrical as depicted in figure 11.2, reacting to events in the solar wind. As
we shall see, plasmas are often more complex than we might first assume.

11.1. Fourth State of Matter

An operative definition of a plasma is a collection of charged particles that
are not bound. This states arises when electrons have enough kinetic en-
ergy that they exceed the binding energy of whichever nuclei are present
or the density of particles is so low that collisions that would lead to elec-
tron capture are infrequent. Because we are discussing charged particles
and unbound electrons, it will generally suffice to treat plasmas classically
through Maxwell’s equations. This offers great simplifications but we are
most concerned about collective effects that are most difficult to describe
from a single-particle perspective.

We might initially hope that we can be able to describe plasmas sim-
ply through their bulk dielectric permittivity and magnetic permeability.
Such an approach was highly successful in the treatment of dielectric ma-
terials like glasses. We were able to construct a reasonably complete the-
ory of ray tracing through lens systems. Indeed, there are some cases in
which we will be able to treat plasmas through a bulk dielectric; plasmas
are generally not magnetically permeable materials.

One such case is the earth’s ionosphere, where decreasing density at the
top of the atmosphere and the incident solar radiation create the neces-
sary conditions for a plasma to exist. In past years, when analog radio
signals were the norm, it was commonplace at night to receive broadcasts
from very distant sources. Radio tuners utilized relatively low-fidelity
LCR resonant circuits as the band-pass filter in the receiver and these ad-
mitted signals from a broad range of sources. Hence, the AM broadcast
band seemed filled to overcapacity after dark. It was recognized at the
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time that this was due in large measure to the reflection of radio waves
from an ionized layer at the top of the atmosphere. In recent years, there
has been an international effort to characterize the properties of the iono-
sphere. Known as the International Reference Ionosphere (IRI) project,
the members have made public the data and models developed.
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An example of the electron density as a function of height is depicted in
figure 11.3. Note that this is a logarithmic plot. The electron density peaks
here at an altitude of about 320 km above the earth’s surface and it is this
density that is responsible for the reflection of radio waves.

Exercise 11.1.  The IRI website (irimodel.org) contains links to on-
line executable that can evaluate the electron and ion densities. Plot
the electron and ion densities as functions of height, latitude and
longitude. Choose values that represent the latitude and longitude
of your own location.

An electric field applied to a plasma will cause charge separation: the
electrons will migrate in the direction opposite to the positively charged
ions. This migration will generate an electric field internal to the plasma,
E =o0/e,. Where o is the charge density. If there are n electrons per unit
volume, then in an infinitesimal slab of thickness 6x, we have o = —en dx.
The force acting on that slab will have the following form:

2 g 2
(11.1) L SR

dt? €
If the external field is oscillatory, then equation 11.1 can be seen to be the
harmonic oscillator equation with frequency w), given by the following:

2

e n

11.2 Wy = .
(11.2) P e

This is known as the plasma frequency.
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The dielectric permittivity can be thought of as arising from the polariz-
abilities of the different states associated with different species of atoms.
A simple model that captures this behavior can be written as follows:

(11.3) elw)=1+ en Z i

€oM, wj?—a)z—iij'

Here, the w; are the frequencies of the states in the atoms or molecules
and y; is a dissipative term that is generally small. The f; can be thought
of as the occupation probabilities for the different states.

For plasmas, this expression simplifies to the following;:
wp

(11.4) elw)=1-—.
w

The magnitude of the wave vector is obtained, as usual:

(11.5) k? = w?ep = €opo(w” — wp).

What we see from equation 11.5, is the magnitude of the wave vector be-
comes purely imaginary for frequencies below the plasma frequency. Re-
call that plane wave propagation carries the factor exp[ikx] for propaga-
tion in the x-direction, so waves no longer propagate into the plasma and
are instead attenuated.

Exercise 11.2.  From the Fresnel equations for TE incidence on
a planar layer, what happens when the propagation constant k, is
imaginary? The reflection coefficient R is the square of Eg/E;. What
is R for k, imaginary?

In this era of digital information transmission, one is not often inconve-
nienced by interference and sporadic signals interrupting evening broad-
casts but radio reflection from plasma interfaces does still present some
operational difficulties. Satellite transmissions are often victims of so-
called space weather. In particular, returning manned spacecraft are un-
able to communicate during some of the most hazardous portions of reen-
try. The kinetic energy of the vehicle is reduced from orbital velocity to a
few hundred kilometers per second by compressing and heating the atmo-
sphere surrounding it, thereby creating a plasma sheath that blocks radio
communications. Although this is now a distant memory, in 1969 Apollo
astronauts returned from the surface of the moon. After having ventured
from this planet and leaving footprints on another celestial body, their
return was widely televised. There was an uncomfortably long time that
broadcasters kept repeating that there was a communications blackout, it
was expected and, any time now, we should be hearing from the astro-
nauts. This pause was far longer than the networks would have preferred.
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It is one thing to build suspense but good television requires that the sto-
ryline keep advancing. Fortunately, all systems worked as advertised and
the astronauts reported back that they were swinging under parachutes;
people across the world breathed sighs of relief.

11.2. Magnetohydrodynamics

The present discipline of plasma physics owes much of its structure to
the Swedish physicist Hannes Alfvén, who began working on a coherent
theory of the auroras in the late 1930s.> Alfvén treated the plasma as a
charged fluid, bringing together ideas from both electromagnetic theory
and fluid dynamics. Today, the theory is known as magnetohydrodynam-
ics and represents a solid first step towards understanding the behavior
of an extraordinarily complex phenomenon.

FiGURE 11.4. The north pole of Sat-
urn is marked by an extraordi-
nary hexagonal feature, first im-
aged by Voyager in 1980, here by
Cassini in 2006. The bright feature
is the aurora. Image courtesy of
NASA/JPL/University of Arizona.

As can be seen in figure 11.4, the north pole of Saturn contains a remark-
able hexagonal feature. Surrounding that feature in this night image from
the Cassini spacecraft is the bright aurora created as cosmic radiation im-
pacts the upper atmosphere. Auroras are common features around plan-
ets with atmospheres and magnetic fields but even a glance at figure 11.4
will indicate that describing the features of the auroras will be a com-
plex undertaking. There is a great deal of structure within the auroras:
filaments and swirls that suggest there are interactions that occur over a
wide range of length scales.

2Alfvén was awarded the Nobel Prize in Physics in 1970 “for fundamental work and dis-
coveries in magnetohydro-dynamics with fruitful applications in different parts of plasma
physics.” He shared the award with Louis Néel, who was cited “or fundamental work and
discoveries concerning antiferromagnetism and ferrimagnetism which have led to important
applications in solid state physics.”
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We can, formally, begin with a description of all the different species that
make up the plasma in terms of distribution functions in phase space.
That is, there is some function ®;(x,v,) that describes the distribution of
particles of type j in space x with velocity v at a time t. We can obtain the
macroscopic charge density p, and current j by integrating over velocity
and summing over species:

(11.6) Zq]JzﬁvCD (x,v,t qun] x,t) and
(11.7) j(x, 1) = Z%Jd%v@(x,v,t),

]
where g; is the charge of species j and n; is the particle density in co-
ordinate space. Note that the mass densities can be similarly defined as
pj = mjn;. These terms are the sources of the electromagnetic fields, so
one might hope that invoking conservation in phase space would provide
us with an equation for the time evolution of the distribution functions.

We know that phase space is conserved, by which we mean that the fol-
lowing relations hold:

Jd Jdx 0 v, d

ot atox T o gy

d
(11.8) ECD]'(X,V, t)= Di(x,v,1).

The accelerations in equation 11.8 arise from the Lorentz force, so we can
incorporate Maxwell’s equations through the following:

(11.9)

0
5 X Vi i](waB) \% ]cbj(x,v,t):o.
Here, the gradient operators V, and V, affect the spatial and velocity
spaces, respectively.

Despite the rather appealing simplicity of equation 11.9, we need to admit
that it is completely intractable as a starting point for calculations. This
should serve as another cautionary note on the need to understand what
the equations really mean, not just that they are mathematically sound.
At a microscopic level, the distribution functions are actually sums over
all of the individual particles, so the functions that appear in the equation
must be some sort of ensemble average properties. The fields E and B
that arise from the microscopic distributions must also be averaged over
the ensemble, as computing them explicitly from the particle positions is
intractable. Thus we need to interpret the last term in equation 11.9 as
the dot product of the ensemble-averaged fields with the gradient of the
ensemble-averaged distribution.
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Unfortunately, that statement is not true. We have, explicitly,
<(E +vxB)-V,D(x,v, t)> # <E +Vx B> : (chp(x,v, t)>

where the angle brackets mean ensemble average. The dot products at the
microscopic scale involve signs that are lost when averaged. The problem
is akin to the one we encountered calculating the electron charge density
earlier. What are termed correlations are lost in the averaging process. As
a result, there is no straightforward derivation of equations that describe
the time evolution of a plasma. Every approach is an approximation, of-
ten a gross oversimplification, that can be justified on some premise or
another. Each approach has to be understood for what it contains and
what it does not.

The physical properties that define the plasma, at least within the approx-
imations of magnetohydrodynamics, are the particle densities n and the
pressure p. The use of a scalar pressure again points to the fact that we
are restricting ourselves to a macroscopic view of the plasma: the pres-
sure is an emergent, macroscopic property that arises out of an ensemble
average. The basic equations can be stated as follows:

(11.10) %-i-v‘nu:o,

( ) mn@+v —-jxB=

11.11 o7 pP-) =0,

(11.12) E+uxB=0j

(11.13) Uoj =VxB and
d(p

(11.14) E(rz—)’)_o

Here, we have suppressed indices for species, so the total density n =n, +
n; is the sum of electronic and ionic components, for example. There is
an overall fluid velocity u where it is implicitly assumed that the fluid
velocities of ions and electrons are comparable, on average. This condition
arises, in part, from the assumption that the plasma is essentially neutral:
n; =n,.

The first equation 11.10 represents the conservation of mass: the time
rate of change of fluid within some volume is balanced by the flux of fluid
entering and leaving. The second equation 11.11 represents momentum
conservation. The next two equations arise from a low-frequency approx-
imation to Maxwell’s equations and the final equation 11.14 is a state-
ment that processes within the plasma do not exchange thermal energy
with anything exterior to the plasma, i.e., the processes are adiabatic. The
superscript = cp/cy is the ratio of specific heats, generally taken to be
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5/3. These equations are valid for low frequencies and large scales but are
missing a lot of physics. There is no energy flow in or out of the plasma, for
example, so the model cannot support radiation or heating of the plasma.
Nevertheless, the model does provide a starting point for incorporating
such processes.

With a suitable rearrangement of terms, it is possible to demonstrate that
the energy density within the plasma is given by the following:

p nu®> B
+ +—.
y—1 2 2,

A parameter that can be used to characterize plasmas can be obtained
from the ratio of thermal to magnetic terms:

(11.16) b= zgzp.

Small values of 8 indicate that magnetic effects dominate the plasma physics,
where large values indicate that fluid dynamics dominates.

(11.15) E=

One might now surmise that there is an easy approach to solving the MHD
equations. We have, after all, made enormous simplifying assumptions
but there is more simplifying required. While it is possible to toss all of
the equations onto a computer and see what happens, Alfvén began by
considering small perturbations to a steady state solution. Consider then
that the magnetic field can be represented as two terms: B = B,+B,, where
B,/B, < 1. For bookkeeping purposes, one could also use a multiplicative
factor B = B, + ¢B,, where ¢ < 1. We also use the same strategy for the
velocity u = o+ u, and density n = n, + n, and then substitute back into
the MHD equations. If we keep only the small terms (linear in ¢), we are
left with a linearized version of the MHD equations:
on

— +n,V-u, =o

ot
du, R
" +v2Vn, +Byx(VxB,)=0

d
0B,
ot
Here, v; = \/ypo/n, is the speed of sound in the plasma. Equations 11.17

can be combined to provide a single equation in u,. We obtain the follow-
ing expression:

(11.17) mng

-V x(u; xB,) =o.

J%u,
ot?
where we have defined the Alfvén velocity as v, = B,/+/po M.

(11.18)

—v2V(Vou,)+ vy xVx[Vx(u, xvy)]=o,
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Exercise 11.3. Substitute the perturbation expansions into equa-
tion 11.10. (It might prove advantageous to utilize ¢ as a bookkeep-
ing aid.) What is the zeroth order equation? What is the first order
equation?

Equation 11.18 represents a complicated form of a wave equation for the
perturbed velocity u,. As students should now expect, we will utilize the
Fourier transform:

(11.19) u, (x, t) = % J‘ d3kJ‘dwﬁ1 (k,a)) ei(k.x—(ut)‘
4

Now we can convert the difficult differential equation into a difficult alge-
braic equation:

(11.20) —@?t, +(v2+v3) (k- KV k[ (v4 k), — (v -8, K~ (K-, )va ] = 0.

We can interpret the results of our progress best by considering two lim-
iting cases for equation 11.20.

First, consider the case where the direction of propagation k is perpendic-
ular to the magnetic field direction B,. Then, from the definition of v,
we have that v, -k = o. Then, we are left with the following:

(11.21) -t + (v +v3)(k-a,)k =o.

Taking the dot product with k, we find the following dispersion relation:
(11.22) w? = (v +v7)k>

The result is known as a magnetosonic wave that propagates with a veloc-
ity proportional to \/m

If we now consider the case where the direction of propagation is parallel
to the magnetic field direction, then equation 11.20 can be again sim-
plified. We note that k = (k/v4)v and can simplify the equation to the
following:

k2
(11.23) (V2K —w?)d, + [(vg +03) 5 - 2k2](VA i)V, =o.
A
Here, we find that there are two kinds of waves. If @, is parallel to vy,
then we obtain a dispersion relation as follows:
(11.24) w?> =v2k?,

which corresponds to a wave propagating with the velocity of sound in
the direction of the magnetic field.

The second type of wave, known as an Alfvén wave, occurs when 1, is
perpendicular to the magnetic field. Then @, - v4 = 0 and we find a wave
with a dispersion relation as follows:

(11.25) w? =v3k>.
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This corresponds to a disturbance propagating at the Alfvén velocity vy
and is a magnetohydrodynamic phenomenon.

Exercise 11.4. From the last of equations 11.17, what are the mag-
netic fields B, associated with each of the three kinds of waves?

FIGURE 11.5. Jameson con-
structed a toroidal box from
thin-walled stainless steel to
hold the sodium. A series-
connected set of copper sector
elements (gray) generate the
azimuthal B, field. The
B, field was generated by
a large electromagnet; the
pole pieces were large blocks
(black) containing the torus.

One of the early experiments designed to study Alfvén waves was con-
ducted by British physicist Antony Jameson in 1964.3 Jameson built a
torus from thin-walled stainless steel and filled it with sodium under an
argon atmosphere. Copper was wound circumferentially around the outer
diameter of the torus. This coil served both to heat the sodium to liquefy
it and as part of the mutual inductance measurement. A set of copper sec-
tors, gray elements in figure 11.5, were connected in series and were used
to generate an azimuthal B,. This assembly was sandwiched between two
large iron plates that formed the pole pieces of a large electromagnet. The
field of this magnet is a downward-directed vertical B,. An AC current
flowing in the copper sector windings induces voltages in a small pickup
coil suspended in approximately the center of the torus and the heater
windings. Jameson measured the mutual inductance of those coils as a
function of drive frequency. His results for the small coil are shown in
figure 11.6.

The mutual inductance peaks just above 50 Hz, consistent with the pre-
dicted behavior. The phase of the inductance sweeps through 180° at the
resonant frequency, confirming the existence of a resonance. The mag-
nitude of the mutual inductance is nearly ten times the value measured
without sodium in the torus, from which Jameson concluded that the
fields within the torus were greatly amplified by the presence of a stand-
ing Alfvén wave.

3Jameson published “A demonstration of Alfvén waves” in the Journal of Fluid Mechanics.
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11.3. Astrophysical Plasmas

The sun has long dominated the interest of humanity but a detailed scien-
tific description has only emerged in the relatively recent past. Due to the
high intensity of light emerging from the sun, it has taken time to develop
imaging technologies that are not overwhelmed by the radiation intensity.
The picture that has emerged is even more complex than one might have
imagined, even given that a roiling nuclear furnace in the interior is pro-
ducing the energy emitted.

Ficure 11.7. The solar corona
imaged by the NASA Stereo
A spacecraft on July 23, 2012
includes a large coronal mass
ejection. The black disk is an
artifact of the coronagraph.
The solar size is indicated by
the white circle. Image cour-
tesy of NASA.

The sun does not have a surface, per se, as energy propagating outward
from the interior creates a plasma that remains gaseous despite the grav-
itational force. (Actually, the gravitational acceleration at the nominal
solar surface is only about 28 times that at the earth’s surface.) Given the
high temperatures, the solar atmosphere is ionized. Solar rotation gives
rise to large electrical currents and, in turn, large magnetic fields.

The corona, of course, was known in antiquity, becoming visible during
eclipses. Today we are not limited to waiting for the infrequent occur-
rences of planetary alignment to visualize the corona. The Stereo satel-
lites, for example, launched by NASA in 2006 were placed in orbits at
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roughly 1 AU, but separated in phase from the earth, and provide simulta-
neous measurements of the sun from different aspects, thereby illuminat-
ing the three-dimensional nature of the observations. The coronagraphs
in each satellite provide nearly continuous monitoring of the corona, re-
vealing the dynamics of large scale events like the coronal mass ejection
depicted in figure 11.7.

The corona is a manifestation of the particle flux emanating from the sun,
that is given the name of solar wind. First anticipated in the late 1800s
from the observations that the tails of comets always point away from the
sun, details of the composition of the solar wind were not available un-
til the late 1900s when spacecraft began to sample the particle distribu-
tions beyond our atmosphere. Today, we know that the wind is composed
primarily of protons and electrons, with small admixtures of heavier el-
ements, with energies in the 1-10 keV range. The existence of the solar
wind confirmed the earlier speculation by German astronomer Ludwig
Biermann and others who were looking to explain the behavior of comet
tails.*

The energetics of the solar wind is still somewhat of a puzzle. We know
that a blackbody radiates with a characteristic spectrum and that the so-
lar spectrum is described reasonably well by a blackbody radiator with a
surface temperature in the neighborhood of 5800 K, as can be seen from
figure 11.8. Here, we used the Planck formula for the power spectral den-
sity:

_ 8mhc 1

(11.26) I(A) o kT 1

2.
Ficure 11.8. The power spec- ’
tral density at the top of & 2
the earth’s atmosphere (black) = 15
is compared to a blackbody 5 |
radiator at 5800 K (gray). 2
There are numerous absorp- = ©5
tion features in the experi- o

mental spectrum but the over-
all shape is well-described by
the Planck formula.
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wavelength (nm)

4Biermann published “Kometenschweife und solare Korpuskularstrahlung” in the
Zeitschrift fiir Astrophysik in 1951.
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Exercise 11.5. The standard solar spectrum can be obtained from
the National Renewable Energy Laboratory (nrel.gov) website. Use
the Planck formula from equation 11.26 to study the temperature
dependence. Note that there is an overall normalization not dis-
cussed in figure 11.8. What does a change of 200 K to the nominal
temperature do to the agreement? What about +500 K?

The temperature of the corona is vastly higher: more than 10° K. So, one
might well ask how the solar wind is heated to such astronomical tem-
peratures? The answer is still not entirely resolved but it is in some way
arising from the plasma interactions near the sun’s surface. We do know
that the simple MHD equations listed in equations 11.10-11.14 cannot
explain this acceleration because they do not include processes that are
physically relevant. More realistic results can be obtained with equations
that include these terms. For example, the momentum conservation equa-
tion 11.11 can be expanded as follows:

(11.27) p%+Vp—ij:pg+2pru+F.

Here the additional terms on the right-hand side of equation 11.27 take
into account the gravitational acceleration near the sun’s surface, the Cori-
olis force that arises from rotation of the sun and any other additional
forces that might come to mind.

Similarly, the equation of state 11.14 can be expanded:

Pr_d(p)_ > i’
(11.28) 7/_1E(p—y)_v'(1<VT)—p Q(T)+;+H.
Here, the additional terms represent thermal conduction, radiation, Ohmic
heating of the plasma and unspecified other enthalpic contributions. In-
corporating more challenging phenomena like the propagation of shock
fronts remains an area of current research.

What is understood, at present, is that the plasma near the sun’s surface
carries large scale currents that are largely embedded with the plasma mo-
tion. In the ideal MHD approximation, the fields are fixed to the flow but
in more realistic simulations, this situation is only approximately true. As
the sun rotates, the fluid motion is a complicated three-dimensional flow
forced by thermal energy percolating up from the interior and Coriolis-
induced shear due to rotation. In addition to the surface currents, there
is convective transport of material from the interior to the surface. These
currents give rise to large magnetic fields that twist out of the surface and,
through a still mysterious process, reconnect with significant energy re-
lease.
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FIGURE 11.9. Stereo A image
of the solar surface in the UV
(171 A). Image courtesy of
NASA.

An image of this process is provided in figure 11.9 that was taken by the
Stereo A satellite in December, 2006. The bright features in the right side
of the figure are interpreted to be magnetic flux tubes emerging from the
surface. These flux tubes are powered presumably by the solar dynamo
responsible for the sun’s magnetic field.> Solar physics is a challenging
enterprise, involving fluid mechanics in a rotating frame of reference.
Moreover, it remains challenging to provide laboratory-scale experiments
of simplified systems.

As one might imagine, producing plasmas with very high temperatures is
challenging. It is, of course, possible to do so by blasting solid surfaces
with intense laser beams but those pulsed sources create plasmas that are
parametrically far from those observed in the solar corona. More sus-
tained plasma experiments require large magnetic fields, to ensure that
10° K plasmas do not touch vacuum chamber vessels whose walls melt
near 103 K.

There are numerous astronomical plasmas outside our solar system that
are not terribly well understood, due to the inability to incorporate all of
the relevant physics at all relevant length scales. We have seen cosmic
rays, presumably from extragalactic sources with energies above 10°° eV.
It is quite difficult to imagine how particles could acquire such kinetic
energies. Particle accelerators on earth can achieve 10'3 eV through in-
teractions with electromagnetic fields but finding another seven orders of
magnitude is challenging. The mechanism that can produce such energies
is not understood.

5Paul Charbonneau published “Dynamo models of the solar cycle” in Living Reviews of Solar
Physics in 2009 and Yuhong Fan published “Magnetic fields in the solar convection zone” in
the same journal, both in 2009.
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Exercise 11.6. What is the velocity of a 1 kg mass that has an energy
of 10°° eV?

Astronomers have observed examples that can be interpreted as shock
waves propagating through stellar nebulas. We can imagine that the sorts
of magnetic reconnection events that drive coronal mass ejections on the
solar surface are somehow related. The solar flares produce MeV-scale
particles, so again there is some extrapolation required.

11.4. Fusion

Perhaps the most intriguing plasma experiments are those that have come
from the pursuit of nuclear fusion as an energy source. It is well known
now that the nuclear binding energy per nucleon peaks at iron. This ex-
plains why heavy elements like uranium can undergo fission reactions:
the daughter products are more tightly bound and the process results in
energy release. On the other end of the periodic table, lighter elements
can fuse into heavier ones, also with a release of energy. As a practical
matter, fission reactors are mechanically quite simple. If enough fissile
material is present, a chain reaction can be sustained. Thus a fission reac-
tor can be produced simply by stacking enough material in close proxim-

1ty.

Indeed, there is at least one site on earth where natural reactors ran for
several hundred thousand years. In 1972, French quality control engi-
neers at the Pierrelatte uranium enrichment plant noticed that a batch of
UF, contained somewhat less than the typical 0.72% 35U. As they investi-
gated the production pipeline to determine the source of the discrepancy,
they eventually found that ore mined from the Oklo facility in Gabon had
as little as 0.44% >>°U. Further investigations at the Oklo mine revealed
the presence of daughter products, with the conclusion that, roughly two
billion years ago, conditions at the site were right to permit sustained fis-
sion reactions to occur.

The practical downside of fission reactors is the production of long-lived
radioactive isotopes. The daughter products tend to be neutron-rich iso-
topes that will g decay for potentially long times but there are also heavy,
actinide isotopes produced through neutron capture that can have excep-
tionally long lifetimes.

Exercise 11.7. The IAEA website (www-nds.iaea.org) maintains a
portal to a variety of databases of nuclear data. What are the fis-
sion product yields for >3°U? What are the half-lives of the ten most
commonly produced isotopes?
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On the other hand, fusion of light isotopes generally produces stable iso-
topes plus neutrons. The neutrons, given time, will decay into protons but
can also be captured into heavy nuclei surrounding the reaction volume.
Mitigating the effects of the intense neutron bombardment produced by
a fusion reactor is still a research project but the radioactivity problems
associated with fusion reactors are not considered as distasteful as those
of fission reactors.

At this writing, no commercial fusion reactors are operating and the pos-
sibility of ever attaining controlled fusion remains dubious. Such a situ-
ation is not due to lack of effort but controlling plasmas has proven ex-
traordinarily difficult. Unlike fission reactors that are nominally simple
to construct because the nuclear fission reactions are initiated by neutron
capture, fusion reactions require two nuclei to be brought into close prox-
imity. There is a sizable Coulomb barrier to surmount for fusion to occur.
There was a spectacular flurry of interest provoked by the claims of cold
nuclear fusion, catalyzed by palladium somehow, in 1989 by the publica-
tion of Martin Fleischmann and Stanley Pons.® While other groups have
found the same “excess energy” in calorimetry experiments like those re-
ported by Fleischmann and Pons, they have not done so consistently and
there has never been the clear establishment of a nuclear signal. It is fair
to say that the electrochemistry of deuterium/palladium systems is not
fully understood but it does not appear likely that there is a shortcut to
fusion.

Exercise 11.8.  What is the Coulomb energy associated with two
deuterons separated by one deuteron diameter? The Boltzmann prob-
ability is proportional to exp[-E/kgT]. What temperature is required
to obtain a probability of 107, when & is the Coulomb barrier?

In the sun, the interior reaches very high density due to the gravitational
force and high temperatures exist both from the gravitational collapse and
ongoing fusion reactions. In a reactor, it is necessary to provide adequate
energy to overcome the Coulomb barrier and adequate density to ensure
that reaction rates are large enough to sustain the reactions. There have
been two principal pathways to achieve fusion in the laboratory. The first
is known as inertially confined fusion (ICF). Here, a small target is com-
pressed and heated by incident energy, predominantly from laser sources.
The principal difficulties for laser-initiated fusion include (i) reflection of
all laser power once a plasma exists around the target, (ii) the need to

6Fleischmann and Pons published “Electrochemically induced nuclear fusion of deuterium”
in the Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.
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illuminate the target uniformly and simultaneously from several direc-
tions and (iii) construction of a suitable laser system that can achieve ad-
equate cycling rates. Inertially confined fusion reactors would inevitably
be pulsed, with one target imploded per laser pulse. How this process
might be converted into a commercial reactor remains an unsolved chal-
lenge.

On the other hand, plasma-based reactors could, in principle, operate in a
continuous fashion. As the plasmas burn, additional feedstocks could be
introduced, although just how to do this in a stable fashion is problematic.
Indeed, all of the years of serious work on plasma physics has revealed a
host of instabilities that have had to be confronted one after another.

FIGURE 11.10. A plasma with e me

circular cross-section carries * j
a current j that generates a o
largely azimuthal B, mag- PR SRR

netic field (loops).

Consider that we have somehow managed to construct a plasma beam of
nominal circular cross-section and that it is propagating in the z-direction,
as indicated in figure 11.10. The current generates a nominally azimuthal
magnetic field. Ideally, there is a Lorentz force acting on the plasma gvxB
that is directed radially inward; this self-compression is known as a mag-
netic pinch. If the beam deviates from straight line motion, though, the
current obtains a component in the transverse direction. This, in turn,
leads to the generation of a field with a component in the z-direction and
the inward-directed field is lessened. As a result, the kink will continue
to increase its deviation from straight line motion. This is unfortunate,
as realizable fields will always contain imperfections. To some extent, the
kink problem can be mitigated by enclosing the plasma in a metal tube,
where image currents in the metal counteract the instability to a large ex-
tent. Realistically, though, the plasma will almost certainly have more of
a Gaussian density profile, not the simple circular cross-section pictured
in figure 11.10. Keeping the outer plasma regions from impinging on the
walls is challenging.

Exercise 11.9. Consider a plasma particle at the outer radius of the
tube, as indicated in figure 11.10. Draw the velocity and magnetic
field vectors for points in the kink region. What is the direction of
the Lorentz force on a positively charged particle?

A second instability that arises in cylindrical plasmas is the sausage in-
stability sketched in figure 11.11. Here, the radius of the plasma tube
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FIGURE 11.11. A second sig-
nificant instability occurs if
the plasma diameter varies
along the length. Constric-
tions create an increase in the
local current density, further
increasing the confining mag-
netic field.

has decreased in a small region. Consequently, the current density in the
vicinity of the constriction will increase, increasing the azimuthal field.
This increases the magnetic pressure on the plasma and will continue to
decrease the diameter of the plasma tube at the constriction site. This
phenomenon is known as the sausage instability, as the plasma tube will
rapidly take on the appearance of a string of sausage links.

Exercise 11.10. Consider a plasma particle at the outer radius of
the tube, as indicated in figure 11.11. Draw the velocity and mag-
netic field vectors for points in the neck region. What is the direction
of the Lorentz force on a positively charged particle?

An early example of the kink behavior was obtained by Alan Sykes and
coworkers at the Culham Laboratory in the UK, as depicted in figure 11.12.
The device utilized a plasma pinch in an attempt to reach high densities
but plasma instabilities prevented further progress.

Ficure 11.12. The plasma was con-
tained in a circular tube with mir-
rors to constrain the plasma to a
fraction of 27t. Onset of the kink in- ﬂ-‘/
stability led to device failure.

Today, the largest fusion program is the International Thermonuclear Ex-
perimental Reactor (ITER) currently under construction in St. Paul-lez-
Durance in southern France. The ITER is a large tokamak, a device in-
vented by Soviet physicists Igor Tamm and Andrei Sakharov in 1951. The
plasma is contained within a toroidal region by magnetic fields provided
by 18 D-shaped toroidal field magnets, each of which is roughly 14 m tall
and 9 m in width, as illustrated in figure 11.13. The azimuthal field pro-
duced by the toroidal field magnets peaks at a value around 5.3 T in the
center of the rings. Six poloidal field magnets, two of which are identified
in the figure, form closed circles around the toroidal magnets and serve
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to shape the field within the vacuum vessel and prevent the plasma from
reaching the walls. A central solenoidal magnet, approximately 11 m tall
with a 4 m diameter, is used to induce currents in the plasma. Addi-
tional trimming magnets for fine-tuning the fields within the tokamak
are not shown. All of these magnets are wound with superconducting
niobium-tin wire and are cooled to liquid helium temperatures. The in-
ternal plasma temperature will be over 150 million K, so it is critical that
the plasma not touch the walls.

FIGURE 11.13. Schematically,
the main magnets of ITER
consist of 18 toroidal field
(TF) magnets that generate
an azimuthal field. Several
are not displayed here to vi-
sualize the central solenoid
(SC). The six poloidal field
(PF) magnets form continu-
ous rings around the toroidal
magnets.

The central solenoid produces a field in the bore of approximately 11 T.
As we have seen previously, the field of a solenoid is uniform in the in-
terior and nearly zero outside the solenoid. One might well question the
purpose of the solenoid if it does not affect the fields within the plasma
region. The role of the central solenoid is to induce an azimuthal cur-
rent in the plasma, which will attain a peak value of 15 MA. Ultimately,
the plasma density will peak in the center of the D-shaped toroidal field
magnets, as indicated in figure 11.14.

Exercisk 11.11.  Use the expression for the magnetic field of a cur-
rent loop developed previously, and the locations of the poloidal
field magnets taken from figure 11.14 to calculate the poloidal mag-
netic field. Assume all magnets are carrying the same current. Use
the StreamPlot or StreamDensityPlot functions to visualize the
field. As a crude approximation, add another poloidal current at
the center of the plasma density. How does the sign of the induced
current affect the field patterns?

Everything about the ITER is extraordinarily large, although not excep-
tionally so given that the plant is expected to produce 500 MW of out-
put power. Other, non-nuclear, power plants of similar power production
capabilities have physical sizes that are crudely comparable but energy
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Ficure 11.14. The nominal plasma |
density within ITER is governed by 41
the poloidal field (PF) coils and the
six separate sections of the central
solenoid (CS). The gaps gn are mon-
itored to provide plasma control.
The crosses (between g1 and g2 and
adjacent to g5) mark points where [
the two magnetic separatrices inter- 4|
sect. The plasma is confined to the

interior with the density indicated

by the contours. Image courtesy of [ : L]
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densities, of course, that are vastly smaller. ITER’s size is based on the ac-
cumulated experimental evidence from a long series of tokamak designs
and represents the best guess at a prototype power production facility.
Currently, the general consensus among plasma physicists is that bigger
is better.

There are, nonetheless, others who cling to hope that future reactors can
be simpler. The energy from ITER will be generated from the burning of
deuterium and tritium:

(11.29) *H+3H — *He (3.5 MeV) + 1 (14.1 MeV).

This process leads to the production of an extraordinary neutron flux. The
neutrons are very penetrating and require shielding to avoid radiation
damage to the machinery.

A drawback to this approach is that deuterium is common but tritium is
not. Moreover, tritium is radioactive, which poses handling problems for
fueling the reactor. One portion of the ITER research program is to study
the possibility of breeding tritium from neutron capture reactions in a
lithium blanket surrounding the reactor. Lithium is relatively plentiful
and neutron capture on either isotope generally yields *He and a tritium
nucleus (and another neutron in the case of “Li). Designers believe that
this process can be self-sustaining, reducing the need to obtain tritium
from external sources.

12
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It is, of course, possible to run a reactor on deuterium alone but the en-
ergetics are not as favorable as the notional deuterium/tritium design. A
possible alternative is the following reaction:

(11.30) p+""'B—3*He (8.7 MeV).
Protons with a relative energy of 675 keV striking a boron target are res-

onant with an excited state of '>C that can decay to *He + ®Be or three a
particles. Using this reaction rather than the deuterium-tritium approach
of ITER might provide greater simplicity in a reactor. In particular, the
neutron flux will be greatly reduced and the charged « particles are not
capable of the same depth of penetration as neutrons. As a result, the
shielding requirements are greatly reduced. About 80% of boron consists
of the "B isotope, so it is not a rare quantity.

A number of other researchers remain (often passionately) convinced that
there must, somehow, be a better approach. As ITER struggles with cost
and schedule issues, a number of alternative magnetic field configurations
have been explored. Advocates exist for stellarators, mirror machines and
other approaches but beyond the energetic feasibility of fusion power,
there remain significant engineering issues that must be addressed before
the promise of “burning the oceans” can become reality.



XII

On Stars

After our travails in the previous chapter, where we were only able to
scratch at the surface of plasma physics, students may find it perplexing
that we know more about the workings of the interior of the sun than we
do the visible exterior. This rather surprising situation exists because we
can perform laboratory experiments that mimic the reactions that take
place within the sun and that statistical mechanics provides us with the
framework to compute the macroscopic observables. Moreover, because
there is always a logarithm involved in computing macroscopic proper-
ties, the sensitivity to details of the underlying microscopic models is re-
duced.

In trying to discuss the visible portions of the solar atmosphere, we were
forced to construct highly simplified models that, at the outset, were not
capable of explaining the majority of observations. Stunningly, we could
describe a few phenomena, like Alfvén waves, but calculations that can
approach a quantitative explanation of solar physics phenomena are still
being developed. There are some hopes that the next generation of large
computers will provide improvements but it is still very much a work in
progress.

On the other hand, much of the detail underlying the nature of the so-
lar furnace was summarized in a review article in 1957." A significant
amount of progress has been made since that time but it is telling that the
ability to conduct experiments to understand the individual reaction rates
led to stellar nucleosynthesis becoming a mature field much more rapidly
than plasma physics.

IMargaret Burbidge, Geoffrey Burbidge, William Fowler and Fred Hoyle published “Synthe-
sis of the elements in stars” in the Reviews of Modern Physics in 1957. Fowler was awarded
the Nobel Prize in Physics in 1983 “for his theoretical and experimental studies of the nu-
clear reactions of importance in the formation of the chemical elements in the universe.”
Fowler shared the prize with Subramanyan Chandrasekhar, who was cited “for his theoret-
ical studies of the physical processes of importance to the structure and evolution of the
stars.”
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308 ON Stars
12.1. Nuclear Fusion Cycles

In 1920, not long after Rutherford’s discovery of the nuclear nature of
the atom, British astronomer Arthur Eddingtion noted that Francis As-
ton’s precision measurements of atomic masses revealed that the mass of
four hydrogen atoms is greater than the mass of a *He atom.?> Eddington’s
suggestion contained the solution to a longstanding problem in astron-
omy. We know the luminosity of the sun and can compute the energy
flux, estimated to be of the order of 3.86 x 10>® W. The solar mass is about
1.99x103° kg, and the solar radius is 1.39x10% m. The gravitational poten-
tial energy released by assembling this material is given by the following:
3GM?

(12.1) TR

where G is the gravitational constant. From the values above, this is a
total gravitational energy of about 1.14 x 10%" J. At the observed rate of
energy release, this energy would be dissipated over about 9.5 million
years. As we believe that stars are much older, Eddington proposed that
fusion could be the source of stellar energy.

Exercisk 12.1.  Consider a sphere with a uniform density p. The
gravitational potential energy of the sphere can be computed by in-
tegrating over all the differential mass elements dm = pdV. Show
that the following result holds:

16
U=-—m>p>GR>,
15
where G is the gravitational constant. Show that you can recover
equation 12.1.

Hans Bethe provided a detailed model for the fusion engines in 1939.3
Depending upon the internal temperature of the star, Bethe found two
potential pathways for self-sustaining energy production. The first relies
on a chain of reactions built upon the nuclear weak interaction:

12.2) +p—d+et+v,.
( p+p e

This reaction is quite slow, with estimates that the half-lives of protons
within the sun are of the order of a billion years. The vast majority of the
time, two protons encountering one another in the center of the sun will
simply scatter elastically; proton excited states (N and A) are generally
inaccessible. The internal temperature of the sun is presumed to reach

2Eddington published “The internal constitution of the stars” in Nature in 1920.

3Bethe published “Energy production in stars” in the Physical Review in 1939. Bethe was
awarded the Nobel Prize in Physics in 1967 “for his contributions to the theory of nuclear
reactions, especially his discoveries concerning the energy production in stars.”
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over 15 million Kelvin but this is only about 1.3 keV in terms of particle

energies.

Whenever the deuterium production reaction succeeds, it is quickly fol-
lowed by *He production:

(12.3) p+d—>He

where the half-lives of deuterons in the solar interior is measured in sec-
onds due to the large proton capture cross-section of deuterium. From
this point onward, there are three main competing reactions. The first is
inelastic scattering of >He:

(12.4) *He +°He — *He + 2p,

which accounts for about 83% of solar energy production. The second
involves intermediate production of lithium through electron capture:

*He +*He — "Be+y
(12.5) L 7Be+e™ - 7Li+ v,
L 7Li+ p - ®Be* > 2 *He.
Finally, a reaction pathway that is more important at higher temperatures

than within our own sun involves the intermediate production of boron
via proton capture:

*He +*He — "Be+y
(12.6) L 7Be+p— "B+y
L 8Be* +e* + Ve
s 2% He.

One might wonder why we have excluded proton capture by *He as a
possible reaction pathway. This is energetically feasible but the proton
capture cross-section is small and this process has never been directly ob-
served.

Exercise 12.2. From the masses of the constituents, what is the
energy released in each of the steps of the p-p chain?

From his analysis, Bethe found that the temperature dependence of these
reactions should be relatively modest, so he found it difficult to explain
the vastly greater energy release in larger stars. Bethe found an alternative
pathway in which “He is constructed through a catalytic process involving
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'2C. The reactions involved can be summarized as follows:
p+7°C—-"BN+y
L B3Cret+ Ve
L BCtp—>"N+y
(12.7) L N+p—50+y
e+ v, + ON
L, N+p—*He+ °C.

Of particular interest in this chain is that it begins and ends with '*C,
meaning that '*C is not consumed in the process. This process is much
more dependent upon the temperature than the p-p cycle and is expected
to be the dominant energy source in massive stars. There are several vari-
ations on this pathway, where intermediates undergo proton capture re-
actions, for example, but the pathway illustrated in equation 12.7 is the
most significant.

Exercise 12.3.  What are the half-lives of the positron emission
steps in the CNO cycle?

A window into the nuclear physics underlying the stellar engine is pro-
vided by the neutrino production reactions. Despite the fact that the den-
sity of the solar interior is ten times that of gold, neutrinos have extraor-
dinarily small capture cross-sections. We have

(12.8) o(ve+n—p+e)=5x10 ¥ m>E2,

where € is in units of MeV. The mean free path is given by A = 1/no,
where 7 is the number density. For neutrinos that have energies of about
1 MeV, this corresponds to a mean free path of fifty or sixty light years in
water. Astonishingly, neutrinos generated within the solar interior leave
immediately without even a single scattering interaction. Conversely, the
photons emitted in the same processes possess mean free paths on the
order of a centimeter and undergo crudely 10>" interactions during the
several thousand years that it takes for them to reach the stellar surface.

It was confirmation of the relevant nuclear physics that Raymond Davis
and his students sought in their neutrino experiments that we discussed
in Chapter 5. By the time Davis began collecting data, there was wide-
spread agreement between the nuclear physics, and the internal equation
of state from the solar physicists that we understood the solar engine, at
least to within 20% or so. There were always refinements to be made. The
challenge in studying the cross-sections of the nuclear reactions is that
one has to extrapolate to low energies. For example, one step in the CNO
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cycle is the production of *N by proton capture on '>C. The cross section
for this reaction is depicted in figure 12.1.

FiGure  12.1. Experimental
cross-section  for  proton
capture in "2C peaks at the
558 keV resonance. In the
sun, the reaction proceeds
with proton energies in the
1-2 keV range.
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Exercise 12.4. Cross-section information can be obtained from the
TAEA website, using their EXFOR utility. Plot the cross sections for
other proton-capture reactions in the CNO chain.

In the sun, the gravitational pressure creates a very high density. In the
lab, densities are more modest, so to overcome the Coulomb barrier, one
must accelerate protons to at least 8o keV and then extrapolate down.
Those extrapolations involve uncertainties that were the subject of debate
until Davis found only a third of the expected neutrino flux. This called
into question all aspects of the models until the unexpected discovery of
neutrino mixing. Now that this exotic property of neutrinos has been con-
firmed through other means, it now appears that the models of the solar
interior are in generally good agreement with the experimental observa-

tions.

FiGure 12.2. Elemental abun-
dances established from so-
lar spectral intensities for the
light elements and meteor
concentrations for the heav-
ier elements are normalized
to silicon (10°). Abundances
show distinct even-odd sym-
metries and enhancements for
nuclei that involve multiple a

particles, like 2C and 160.
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Others after Bethe extended the fusion chains into heavier and heavier el-
ements. The observed elemental abundances are illustrated in figure 12.2.
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These are normalized to an abundance of silicon of 10°. The figure dis-
plays the total elemental abundances but more detailed results on iso-
topic abundances have also been collected. In one of the more gratifying
results in nuclear physics, the observed abundances are in general agree-
ment with model calculations. The began with efforts by William Fowler
and Fred Hoyle and continued with work by Donald Clayton and his stu-
dents more recently.*

12.2. Stellar Evolution

The concept that stars are formed of nuclear matter that burns in specified
ways immediately raises the question of what happens when the fuel is ex-
hausted? What Fowler, Hoyle, Clayton and others determined is that the
interior can be defined by an equation of state that relates internal den-
sity, pressure and temperature to the release of thermal energy through
fusion and gravitational collapse. These processes are in approximately
equilibrium states until the fuel is spent and the system adjusts. Depend-
ing on the total mass of the star, it can be possible to continue nuclear
fusion through heavier elements. Helium can be fused into carbon, oxy-
gen, etc. This process can continue until the star is mostly iron. At that
point, fusion becomes an endothermic process and can no longer compete
against the gravitational collapse.

These assertions are, of course, purely speculative. One cannot conduct
an experiment with a solar mass of material, partly because assembling
it is inconceivable but also because the time scales that we are discussing
are measured in at least millions of years, if not billions of years. So, we
can turn to astronomers for their help.

In the early 1910s, the Danish astronomer Ejnar Hertzsprung and the
American astronomer Henry Russell developed a graphical approach to
star classification based on the star’s intrinsic luminosity and surface tem-
perature or color.> Today, the Hertzsprung-Russell (H-R) diagram is a
standard tool of astronomers. For our purposes, it represents a statistical
sample of an ensemble of stars that we can assume represent stellar evo-
lutionary pathways. That is, it serves as a touchstone for our ideas about
stellar evolution based on the work in nuclear physics.

Figure 12.3 represents an H-R diagram obtained from data acquired by
the Hipparcos satellite. Hipparcos measured parallax for thousands of

4Philip Seeger, Fowler and Clayton published “Nucleosynthesis of heavy elements by neu-
tron capture” in the Astrophysical Journal in 1965.

5The first publication of a such a plot is credited to Hans Rosenberg, whose “Uber
den Zusammenhang von Helligkeit and Spektraltypus in den Plejaden” in Astronomische
Nachrichten in 1910.
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Ficure 12.3. The Hip-
parcos satellite mea-
sured  distances  to
nearby stars through
parallax, which per-
mitted  determination
of their absolute mag-
nitudes (luminosity).
Color index (B-V) is
nominally independent
of distance. Image
courtesy of ESA.
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stars in the immediate vicinity, providing an extraordinary opportunity to
determine the absolute magnitudes (luminosity) of stars. Astronomers are
beset by the difficulty of measuring distance. They can make exquisitely
precise measurements of relative intensity but cannot determine absolute
intensity without knowing the distance. The color index system UBV
involves measuring light intensity integrated over the bands U = 300-
400 nm, B = 350-550 nm and V = 480-650 nm. The color indices U-V
and B-V should be independent of distance, provided that there is no ab-
sorption along the pathway. This permits the assignment of spectral class
for even distant stars. Hipparcos provided orders of magnitude more data
on stellar distances than were previously available, permitting, among
other things, an independent check on the luminosities.

What can be seen from figure 12.3 is that stars are not uniformly scattered
across the diagram; they are clustered into bands. The band that extends
diagonally from lower right to upper left is known to astronomers as the
main sequence. In figure 12.4, we depict the evolutionary pathways for
the sun (black) and stars with masses that are multiples of one solar mass.
These are distributed by mass along the luminosity/surface temperature
plane and as the nuclear fuel is burned, the stars migrate along the indi-
cated paths. Provided that the (B-V) color index is a reasonable represen-
tation of the surface temperature, we can infer that the H-R diagram is a



314 ON Stars

snapshot that reflects not the evolution of a single star but an ensemble of
stars evolving according to the rules illustrated in figure 12.4.
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This is an important point: the distribution of stars along various bands
is consistent with the idea that individual stars evolve over time but not
proof that this actually happens. Stellar evolution is consistent with our
understanding of the nuclear physics at work inside stars but the time
scales involved are vastly longer than human existence.

The pathways drawn in figure 12.4 represent the evolution of stars of
given mass going forward in time. We have not addressed how the stars
arrived at their present condition and will defer that discussion until later.
That challenge turns out to be one area in which physicists have achieved
rather modest success, not surprisingly because star formation involves
plasmas and these are exceptionally difficult to understand. Instead, we
shall focus on the forward direction in time.

In 1931, the young Indian physicist Subramanyan Chandrasekhar exam-
ined the problem of the possible final state of stellar evolution.® Chan-
drasekhar examined the problem from the perspective of hydrostatic equi-
librium. There are two main components to the interior pressure, he rea-
soned, one comes from the mechanical pressure due to gravity and the
second comes from radiation pressure generated by fusion:

(12.9) Ptot = Pg *+ Prad = BPiot + (1 = B)Prots
where f simply reflects the fraction of the pressure due to gravitation.

From the final MHD equation, we can deduce that the following is true:

(12.10) Prot =K,

pV

6Chandrasekhar published “The density of white dwarf stars” in the Philosophical Magazine
and “The maximum mass of ideal white dwarfs” in the Astrophysical Journal.
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where «x is a constant, independent of time. If we assume that the pres-
sure is solely due to gravitation (5 = 1), equilibrium is obtained when the
following relation holds:

dpiot(7) _ GM(r)
(12.11) i . p(r),
where p is the mass density and M is the mass contained within the radius
r:

(12.12) M(r)=4ﬂjrdCC29(C)-

Combining equations 12.11 and 12.12 yields an integro-differential equa-
tion, for which there is little mathematical support in generating solu-
tions. We can convert this to a more tractable second-order differential
equation by instead considering the derivative of equation 12.11. Then
we obtain the defining equation for hydrodynamic equilibrium:

1 d 1r* dpio
= dr o dr
In cases where there is a simple relationship between the pressure and
density, like equation 12.10, there is a (non-obvious) change of variables
that permits the transformation of equation 12.13 to a previously solved
equation. As we have seen, mathematicians can be quite ingenious.

(12.13) +47mGp(r)=o.

Let us consider the following:

1+1/n
’

(12.14) p=A0" and pior =Kp
whereupon we note that n = 1/(1 — ). Substituting this ansatz back into
equation 12.13, we obtain the following:

(n+1)x  py|1 d ,d0O
(12.15) — v ey LS

Finally, we can redefine the radial coordinate to absorb the prefactor:

471G =

~ -1/2
(12.16) &= (}’Z+1)1\ /\1/141} r.

471G

This allows us to finally obtain the Lane-Emden equation:

L4 doE)
(12.17) E_zd_éé —dE +6 ((i)—O,

that has been studied extensively.

Three Lane-Emden functions are depicted in figure 12.5. First of all, we
notice that the functions are not positive-definite. Hence, their utility as
a description of the density can be called into question. Certainly, density
cannot be negative, so near the surface of the star equation 12.13 must
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numerically. These satisfy the
boundary conditions 6(o) = o S R R RN R R
and d6O(0)/d& = o.

Ficure  12.5. The  Lane- oS
Emden functions for n = 1 u
(gray), n = 2 (lightgray) and ¢ °F
n = 3 (black) can be computed o5 -
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need modification. Next, because we have normalized the functions at the
origin, we can assume that A can be interpreted as the density at the center

A=po.

Exercise 12.5. We can use the function NDSolve to numerically
solve equation 12.17. There is a technical issue that we will need to
confront. If we rewrite the Lane-Emden equation in canonical form:

d’0 2 do

dge T dE
we see that the term multiplying the first derivative is singular at
the origin. This singularity will cause NDSolve to fail but it is some-
thing of a benign infinity, known as a regular singular point. As an
expedient, let us choose initial conditions 6(0) = o and dO(9)/d& =1,
where ¢ is a small number, like 1075.

+0" =o,

Use NDSolve to compute solutions to the Lane-Emden equation for
n=3and 6 =105 and 6 = 107°. Plot the difference between the two
solutions. How sensitive is the result to the choice of 6?

Exercise 12.6. Use NDSolve to compute the Lane-Emden solution
for n = 3/2, which corresponds to y = 5/3. How does this differ from
the n = 3 solution? Note for a fractional exponent, the solution will
be complex if 6 < o. To avoid this issue, one can replace O(&)" with
sign[0(&)]abs[O(&)]".

Working back through the equations, Chandrasekhar found that he could
provide values for the other constants that we have introduced in terms
of physical parameters, like the mass of an hydrogen molecule. For the
equations to be self-consistent, he found that there were limits to the size
of the initial mass if the pressure arising from electron degeneracy were
to balance the gravitational pressure. In 1931, Chandrasekhar calculated
a value of 0.91 solar masses. Today, using three-dimensional codes and
better equations of state, the commonly accepted value is about 1.4 solar
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masses. Beyond such values, the star would be unstable to gravitational
collapse.

12.3. Black Holes

Chandrasekhar’s results were not received well by Eddington, whose dom-
inant personality dominated the field in those years. When confronted
with Chandrasekhar’s results, Eddington could not find a technical fault
in their derivation but felt strongly that nature would find a way to pre-
vent such collapses. As a result, Chandrasekhar wrote a monograph on
his work and then set it aside to pursue other research interests. As a con-
sequence, Chandrasekhar’s results were not widely discussed until many
years later.

Before continuing the discussion, we shall stop and review Einstein’s the-
ory of general relativity. One might anticipate that some relativistic cor-
rection or another could provide the missing mechanism that Eddington
needed to prevent stellar collapse. As we shall see, it was Chandrasekhar’s
insights that proved to be ultimately correct.

As we mentioned in the introduction, Einstein’s interests after the success
of his special theory of relativity were directed to the study of the more
challenging problem of motion in non-inertial frames. This includes sit-
uations for which the transformation between coordinate systems is not
linear, i.e.,

(12.18) —— #o.

Fortunately, Einstein’s friend from his university days, Marcel Grossmann
was available to serve as interpreter of the mathematical tools that Ein-
stein required: differential geometry. In any case, Einstein labored for a
decade or so to grasp the nuances of the mathematics that we shall reveal
here over the next few pages. In deference to Einstein, scientists have had
a century to digest his efforts; it is always more difficult for pioneers.

As Grossmann suggested, the relevant mathematical technology for Ein-
stein’s program was provided by tensor analysis, an extension of the ideas
of vector spaces. It is possible to construct theories without reference to
specific coordinate systems, although we will not pursue that avenue here.
It is possible to view physical processes as conserved flows in whatever
number of dimensions you think necessary, three, four, ten, twenty-six
or a million. The mathematical machinery exists to support at least the
derivation of the equations of motion, if not the complete solution.

As we have seen, the relevant way to describe the evolution of a system
in this methodology is to consider the evolution along the spacetime path
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defined by the following:
ds®> = Zgikdxidxk,
ik

where g is the metric tensor. Motion of a particle in a gravitational field
is obtained through the geodesic equation, obtained by requiring the co-
variant derivative to vanish:
( ) d>x! N - dxk dy!
12.1 —_— — —=0
9 ds? = Kods ds

Here, I“kil is the Christoffel symbol and represents the parallel transport
of the local Cartesian coordinate system in the (potentially) curved space-
time.

We have mentioned that it is the covariant derivative that specifies the
coordinate-independent evolution of a system. So, what might happen
if we need to obtain the second derivative of a vector, like computing
an acceleration from a position, for example. The German mathemati-
cian Bernhard Riemann found that, in general, the order of differentiation
matters. Recall that we defined the covariant derivative in chapter g, in
equation 9.26. Riemann determined that, in general, we must have the
following:

(12.20) DDAy, = DDAy, = ZRZImAw
n

where A, is some covariant vector. The fourth-rank tensor R is generally
known as the curvature tensor but it is also called the Riemann tensor in
honor of Riemann’s work. It is defined in terms of the Christoffel symbols:
ar  or)
n o _ km kl n4 n 4
(12.21) kim = 5,1 —W+Z[Fqlfkm—quFk1 .
’ q

Students may be aware of cases in which the order of integration matters
but there are never examples presented in early calculus courses where
exchanging the order of differentiation matters. In curved spaces, this is
not always the case.

In figure 12.6, we illustrate the notion of parallel transport on a curved
surface. Locally, one can define a Cartesian coordinate system that is
aligned with one tangent to the surface, another tangent that is orthogo-
nal to the first and the normal to the surface. A vector v at some point
a can be decomposed into components in this coordinate system: v =
v,ef +v,ef +vyef. If we now move to an adjacent point b, there is an-
other coordinate system defined by the tangent vectors and the normal. If

we try to reconstitute the vector as v = v,e + v,el + v3e§, we obtain the
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FiGure 12.6. A vector at a

point a can be decomposed ‘_r_ \V’
into components in the local CE
coordinate frame. Translation . l P

to neighboring points b or ¢ p br

is indicated by the black vec-

tors. The gray vectors are ob-
tained by using the compo-
nents of the vector in the new
coordinate system.

gray vector in the figure. If the vector field v is constant, then the field
at the point b is depicted by the black vector. The gray and black vectors
differ because the path is curved and our coordinate system can only be
defined locally.

What Riemann demonstrated was that, if one conducted a parallel trans-
lation of a vector around a closed loop, the existence of curvature would
yield a vector that was tilted with respect to the original. How tilted is
quantified in the curvature tensor.

The curvature tensor has a number of symmetries that can be demon-
strated from its definition:
k
(12.22) RYy,, =—Ry,., =-Rj .
That is, the Riemann curvature tensor is antisymmetric in its first two and

second two indices,

_ pl
(12'23) Zlm_Rmnk

but it is symmetric with respect to interchanging the first and second pairs
of indices.

Contracting the Riemann tensor on its first and third indices produces
another measure of curvature, the Ricci tensor:

(12.24) Ry = ZRZM.
n

Using equation 12.21, we see that the Ricci tensor is also defined in terms
of the Christoffel symbols:

arknm arknn n 9 n 4
(12.25) Rin=) =M=l y [0, =Tl
n n,q

It is a bit difficult to see the physical nature of the Ricci tensor. Mathe-
maticians might argue that it represents an averaging of the Riemannian
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curvature and physicists might argue that it estimates the difference in
a spherical volumetric element in a curved space from the volume that it
would have had in a Cartesian space. We’ll come back to this subsequently
but it provides a measure of curvature.

Exercisk 12.7. Show that the Ricci tensor is symmetric: R;x = Ry;.

Einstein now had one necessary ingredient in his possession: a measure
of the curvature. What he now wanted was to connect the curvature of
spacetime with the presence of mass. Here, the earlier work we discussed
on electromagnetics becomes quite useful. In order to demonstrate that
Maxwell’s equations were compatible with the concept of Lorentz invari-
ance, we rewrote them in a tensor form. We didn’t discuss it at the time
but it is possible to derive Maxwell’s equations through the principle of
least action, where the action is defined as follows:

_ _ 1 ikp k
(12.26) S_Jd4x£_Jd4x[—4yo ZF Fi ZAk] }

ik k

We have already seen that invariance of the Lagrangian density £ with
respect to gauge transformations leads to a conserved Noether current:
the conservation of electric charge given in equation 3.3. The Lagrangian
density is also invariant to translation and the resultant Noether current
is given by the following:

c 9A,,
(12.27) ZDI[; a(aAm/axi) axk _gikﬁ} =0,

i

where the term in brackets is known as the canonical stress-momentum-
energy tensor Tj. This form of the stress tensor has some deficiencies
that can be rectified by producing a similar tensor that is symmetric and
traceless, and maintains the property that the four-divergence vanishes.
The advantage is that the symmetric tensor corresponds to the Maxwell
tensor and the usual definitions of energy density in the fields. The point
is that the fact that the four-divergence of the stress tensor vanishes is a
manifestation of Noether’s theorem, although Maxwell was unaware of
this at the time of his development of the electromagnetic theory.

The symmetrized electromagnetic stress tensor is given by the following:

(12.28) Tk = ¢, Z[glmF”F’”k + Zgikp, FIm|)

Im 4
where we have reused the symbol T for the tensor. This discussion may
seem a bit misplaced and awkward but the stress tensor is widely utilized
in the mechanics of ponderous media. It provides the key link to Einstein’s
new gravitational theory.
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We begin with the equation of the geodesic. Any object will follow a
path, potentially a curved path, that minimizes the action. This is defined
mathematically by the equation 12.19. Curvature is embodied within the
Christoffel symbols which are defined within the Ricci tensor. The source
of that curvature is simply the stress-energy tensor:

(12.29) T = kR¥,

where « is some constant of proportionality. Einstein spent years devel-
oping this rather simple equation out of the need to ensure that it also
incorporates Newtonian gravity as a limiting case. We know that New-
ton’s theory of gravitation is quite good at predicting planetary motion.
As a result, whatever theory you develop has to recover F = -GM, M, /rZ,,
at least in the limit where the masses are relatively small.

A significant difficulty Einstein faced was that he was dealing with ten-
sor equations and there are many of them. The symmetric stress tensor
has 16 components but only ten of them can be independent, due to the
symmetry. Similarly, the Riemann curvature tensor has 20 independent
components, due to the antisymmetry properties that we have identi-
fied. Nonetheless, there are 20 equations for each of the components and,
by hand, one must be quite diligent to avoid algebraic errors. Einstein
adopted a number of quality control measures, as he gained facility with
performing the calculations, not unlike introductory physics instructors’
pleas to students to check their units. Progress was necessarily slow to
avoid algebraic errors.

Ultimately, Einstein settled on the following statement for his general the-
ory of relativity:

(12.30) Rik_égik[zgﬂle
jl
where G is the Newtonian gravitational constant and the term in brack-
ets is the scalar curvature R. The second term has a technical purpose: it
makes the four-divergence of the curvature vanish, in line with the van-
ishing four-divergence of the right-hand side. The third term has a cos-
mological purpose. Einstein left it out in his earliest work but recognized
that the left-hand side of equation 12.30 could also contain a constant
multiplier of the metric and still have a vanishing four-divergence. Sub-
sequently, Einstein referred to the so-called cosmological constant as his
greatest mistake, as he feared that it spoiled the ultimate symmetry of the
equation. The existence of this term provides an independent scaling of
the curvature of the universe, independent of the existence of local mass.

8nG
+Agik = ox ik

Exercise 12.8. Sometimes theorists will express equation 12.30 in
its scalar form: R = 8nGT, where ¢ = 1. Instead, let us expand the
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equation. Rewrite the left-hand side of equation 12.30 in terms of
the metric tensor and its derivatives. Do not leave out any summa-
tion signs.

With his new equations in hand, Einstein sought experimental verifica-
tion that he was on the right track. The one place in the solar system
where there was a discrepancy between observation and Newton’s theory
was the precession of the perihelion of Mercury. The difference is 43 arc-
seconds/century, noted by the French astronomer Urbain Le Verrier in
1843 from his analysis of the transits of Mercury dating from 1697 on-
ward.” Le Verrier was engaged in the precise determination of planetary
trajectories, deviations of the planet Uranus from Newton’s predictions
led to his discovery of the planet Neptune in 1846. His further studies
on Mercury simply ended with no resolution until Einstein applied his
new equations to the task. Remarkably, where two bodies in Newtonian
gravity follow trajectories that are ellipses fixed in space, Einstein found
that his theory predicted a small precession in the low field limit that was
precisely that observed for Mercury. Resolving this small detail was the
first significant victory for the new theory.

Einstein’s successful construction of his general theory of relativity is an
extraordinary accomplishment, unique in the history of theoretical physics.
He was not driven by an unexplained experimental result that blocked
further progress in understanding some physical phenomenon. He was
not working in the most popular program; indeed, Einstein worked mostly
in isolation, relying on a few colleagues for mathematical support. As a
result, he created a theory based only on his own vision that physical the-
ory should not depend upon the coordinate system. Along the way, he
found that such a theory provides a framework for a new, geometrical
approach to the understanding of gravitation but there was no particu-
larly compelling reason to find a new theory of gravity when so little was
known about quantum mechanics. Mathematicians sometimes wander
off into the academic hinterlands to uncover new truths but physicists do
not make such pilgrimages of discovery; they rely on experiment to guide
their efforts. As a result, Einstein is a phenomenon that should not be
emulated as a role model; his particular success has not been repeated.

In the small field approximation, the other notable success for Einstein’s
theory comes in providing a correction to the signal processing of the GPS
satellites. Clocks on the ground measure the local time, which is slower
than the clocks on satellites by about 45 us/day. Without correcting for
the effect of general relativity, the position error would accumulate at a

7Le Verrier’s “Détermination nouvelle de 14AZorbite de Mercure et de ses perturbations”
was published in the Annales de I’Observatoire de Paris in 1844.
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rate of about 10 km/day. If Einstein had not bothered to finish his work,
it is possible that some enterprising satellite engineer would have created
a correction table that ultimately came to the attention of some physicist
who constructed a modified version of Newton’s equations that included
this phenomenon. Possibly someone later would have then thought to
make the new modified theory relativistically invariant and maybe then
Einstein’s field equations would have emerged.

In any case, Einstein’s equations are generally quite difficult to solve in
general. First, there are many components, despite the relatively tidy
notation of equation 12.30. Second, the vast majority of physicists have
never encountered tensors or the abstract concepts associated with dif-
ferential geometry, so there is a significant mathematical barrier to sur-
mount. Despite these hurdles, the German physicist Karl Schwarzschild
obtained an exact solution for the metric tensor in the case of a spherical
star with no charge and no angular momentum.® The geodesic equation
becomes the following:

2GM}c2dt2 ~ [1 _2GM
c2r

-1
(12.31) d52:[1— } dr? —r*(d0? +sin*0dp?).
Here, M is the mass of the star and G is the gravitational constant. A
puzzling feature of the Schwarzschild solution is that it is divergent at
the origin r = 0 and when r = 2GM/c* = rg, known as the Schwarzschild
radius.

cr

Exercise 12.9. Plot the functions 1 —a/r and (1 —a/r)™". Let a be
initially 1. What happens if you change the value of a?

At the Schwarzschild radius, the time coordinate vanishes and the radial
coordinate diverges. This behavior is reversed at the coordinate origin.
Hilbert, among others, investigated this problem of singularities and, ulti-
mately, it has been found that there is no singular behavior at the Schwarz-
schild radius: this is a coordinate singularity, not unlike the coordinate
singularity that arises at the north pole of a spherical coordinate system.

A more troubling point is that for r < Rg, the signs of the first two terms
in the geodesic equation 12.31 are reversed. For points exterior to the
Schwarzschild radius, we have seen that trajectories are conic sections; in
particular, solutions with r constant are attainable. For points interior
to the Schwarzschild radius, such solutions are not possible. In fact, the
variable r must always decrease: trajectories fall into a real singularity at
r = o. This is the definition of a black hole. As it happens, Chandrasekhar

8Schwarzschild published “Uber das Gravitationsfeld eines Masspunktes nach der Einstein-
schen Theorie” in the Sitzungsberichte der Koniglich Preussische Akademie der Wissenschaften
in1916.
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was correct: stars of a certain size cannot ultimately sustain themselves
against gravitational collapse.

Exercise 12.10. Download the Geodesics in Schwarzschild Space
notebook from the Wolfram Demonstrations Project. The notebook
makes use of the fact that the angular momentum and energy are
still conserved quantities. By choosing different starting configura-
tions, you can track the trajectories.

Start with beginning positions of 20 or larger. Demonstrate that el-
liptical orbits precess.

Looking at trajectories with initial positions of 5 or less, is it possible
to stay outside the Schwarzschild radius?

These collapsed stars have been given the name black hole because no
trajectories can leave the Schwarzschild radius. Light emanating outward
from the vicinity of the black hole is increasingly red-shifted as it ap-
proaches rg and reaches a frequency of o at rg. Realistically, though, mat-
ter falling into the black hole will undergo tremendous acceleration and
the resulting plasma will certainly radiate. So, black holes will not be
black, exactly. Astronomers have subsequently searched for black holes
in a number of surveys, without necessarily knowing quite what the sig-
nature of a black hole might be.

Ficure 12.7. Adaptive optics
and artificial guide stars have
permitted high-resolution
imaging of the galactic center.
Observations over twenty
years have identified Keple-
rian orbits of stellar objects.
The mass of the wunseen
partner is approximately
four million solar masses.
This image was created by
Prof. Andrea Ghez and her
research team at UCLA and
was constructed from data
sets obtained with the W. M.
Keck Telescopes.

Keck/UC
Galactic Center Group 1995-2016

Perhaps the most compelling evidence for a black hole comes from obser-
vations of the center of the Milky Way galaxy by Andrea Ghez and her
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students. Ghez has utilized the Keck telescope and its adaptive optics
to provide astonishing images in the infrared of the central core of the
galaxy.? The Keck telescopes have 10-m, segmented mirrors, where the
shape of individual segments is controlled by actuators on the back of the
mirror. An artificial guide star is created by shining a laser up into the sky,
where sodium atoms about 100 km above the observatory are excited and
reradiate light back toward the telescope. Measuring the guide star image
deviation from a point source permits the telescope to compensate for at-
mospheric refraction of light from distant sources. As a consequence, the
Keck telescope can produce images of exceptional resolution, nearly free
from atmospheric blurring.

Over the course of twenty years, the Ghez team has tracked the motions
of stars within the central arc-seconds of the galaxy and have been able
to produce the orbital trajectories of several, as illustrated in figure 12.7.
These trajectories can all be described by ellipses, as one would expect
from both Einstein’s and Newton’s theories and, when one extracts the
mass of the unseen central object, the current best fit is 4.02 x 10° solar
masses.

The center of the galaxy is opaque to optical wavelengths, due to the
large amount of dust, so the precise nature of Sagittarius A* is still un-
certain. Nevertheless, analysis of Keplerian orbits, even with Einsteinian
modifications, is straightforward. There is something at the center of our
galaxy with a mass of four million suns. Schwarzschild would argue that
it must be a black hole and more sophisticated treatments that deviate
from spherical symmetry do not alter that conclusion.

Exercise 12.11. From Kepler’s third law, the period T of an orbit is
proportional to the semimajor axis a:

470°

T>=
G(M, +M,)

a?)

Stellar objects SO-38 and SO-102 have orbital periods of 19 and 11.5
years, respectively. Assuming a circular orbit, and that M, = 4 x
10° solar masses, what is the orbital radius and orbital velocity of
these objects?

The case for smaller black holes is a bit more complex. The most widely
accepted candidate is an x-ray source discovered in 1963 by US Air Force
sounding rockets. The x-ray source in the constellation Cygnus was stud-
ied in more detail by the NASA Uhuru x-ray observatory, launched in

9Ghez and coworkers published “High proper-motion stars in the vicinity of Sagittarius A*:
evidence for a supermassive black hole at the center of our galaxy” in The Astrophysical
Journal in 1998 and many additional works subsequently.
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1970, that demonstrated significant variation in x-ray flux over sub-second
time scales.’® Further Fourier analysis of the x-ray measurements, like
those depicted in figure 12.8, did not find any sort of periodic behavior.
The second-scale bursts appear to occur randomly.
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From the duration of the bursts, one can estimate the source size: d = ct,
where c is the velocity of light. If  ~ 1°s, then d ~ 3x10® m, or roughly half
the radius of the sun. This implies that Cygnus X-1 is a compact object.
The only sensible mechanism for aperiodic x-ray production around small
objects is matter infalling on a black hole. Further observations by NASA’s
Chandra x-ray observatory have lent further support to the identification
of the x-ray source as a black hole: the x-ray bursts have millisecond-scale
structure, for example.

Other strong-field tests of Einstein’s theory include gravitational lensing.
Einstein’s theory provides that light also travels along geodesics, which
was first studied by Eddington in 1919, who observed light from distant
stars that was deflected by the sun.'" Eddington’s results were in agree-
ment with Einstein’s predictions and the observations were even reported
in the popular press.

A more authoritative test of Einstein’s theory in the strong field was dis-
covered in 1979 by astronomers from the Kitt Peak observatory in Ari-
zona. A survey identified two nearly identical quasars separated by 6
arc-seconds that possessed very similar spectra, subsequently identified

19Giacconi and coworkers published “X-ray pulsations from Cygnus X-1 observed from
Uhuru” in The Astrophysical Journal in 1971.

1Eddington and colleagues published “A determination of the deflection of light by the
sun’s gravitational field, from observations made at the total eclipse of May 29, 1919” in the
Philosophical Transactions of the Royal Society in 1920.
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to possess a light curve in which one lags the other by just over 400 days.*?
There have been several subsequent examples of gravitational lensing that
have added to the general acceptance that Einstein’s theory provides a
good explanation of gravitation.

One of the most conclusive tests to date is the recent detection of gravity
waves by the LIGO experiment.'3 Einstein had found wave-like solutions
to his equations but was not convinced that they could ever be measured
directly. LIGO is an interferometer that has 4 km long legs, schematically
depicted in figure 12.9. Large test masses are vibration-isolated and sus-
pended in a long vacuum tube. Laser power is accumulated into the long
arms of the interferometer and a small amount is allowed to bleed back
through the mirrors M, and M,. A beam splitter routes the combined
signal to a detector. Interference between the two beams causes the inten-
sity on the detector to be nearly zero, unless a gravitational wave were to
lengthen one of the legs of the detector. This would give rise to a distinct
shift of the detector output. Two separate facilities are located in Hanford,
Washington and Livingston, Louisiana.

FiGure 12.9. The LIGO ex-
periment consists of a laser
interferometer that maintains
a circulating power of 100 kW
between distant (4 km) test
masses (M;). A low-intensity
laser (20 W) supplies power Mz [ ]

to both legs of the system

through a beam splitter. A |:| H Ss D |:|
change in length of either arm  Jager - M, M,
will produce a change in the
interference pattern at the de-
tector (D).

In October of 2015, shortly after the two facilities underwent a significant
upgrade in sensitivity, the Hanford detector recorded the signal depicted
in figure 12.10. Automatic processing software on the LIGO detectors rou-
tinely compares the outputs of the two detectors. A signal propagating at
the velocity of light could take as long as 11 ms to traverse the distance

12Walsh, Carswell and Weymann published “o957+561 A,B: twin quasistellar objects or
gravitational lens?” in Nature in 1979.

13Abbott et al. published “Observation of gravitational waves from a binary black hole
merger” in the Physical Review Letters in 2016.
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between the two facilities. So, the scanning software searches for similar-
ities within the 11 ms window. Within a few minutes of the signal arrival,
the scanning software had detected a matching signal from the Livingston
detector within the time window. Gravitational waves were real.

1 —

Ficure 12.10. The Hanford -
detector signal displays a
frequency chirp in the inter-
val between 0.35 and 0.45 s.
Within the noise limits, the
signal from Livingston is
identical but shifted earlier
by about 7 ms. Data courtesy
of the LIGO Scientific Col-
laboration through the LIGO
Open Science Center. time (s)

strain (10-21)

The fact is that the squiggly line in figure 12.9 is meaningless without
interpretation through Einstein’s theory. It is impossible to infer any par-
ticular meaning without the theory. The fact that an explanation is avail-
able demonstrates just how much progress has been made in solving Ein-
stein’s equations since Schwarzschild’s earliest solution. The advent of
modern computers has allowed the study of Einstein’s theory fully in
four-dimensional spacetime, without the restrictions imposed by spher-
ical symmetry and zero angular momentum.

The most plausible explanation of the LIGO signal is the merger of two
black holes, with masses of 36 and 29 solar masses, respectively. The re-
sulting black hole has a mass of 62 solar masses, meaning that about 3
solar masses of energy was radiated away by gravitational waves. This in-
terpretation is not at all obvious from an inspection of the data. It stems
from computation of a number of different processes that might give rise
to gravitational radiation. Each process has a characteristic radiation pat-
tern and the LIGO researchers seek those patterns in their data through
matched filters, a common signal-processing technique. After identify-
ing the chirp expected from the rapidly inspiralling black holes, further
calculations refined the masses to the values reported.

Exercise 12.12. Construct a signal vector from the chirped function
s(t) = e 3'sin[2m(t + 10t?)]. Take 128 samples of s from o <t < 1. The
matched filter is the negative of the time-reversed signal. Create
a noise vector with the RandomReal function of 1024 samples dis-
tributed from —o.2 to 0.2. The signal plus noise vector is the sum of
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the noise and (shifted by 150) signal vectors. Use the ListConvolve
function to perform the matched filter. This should produce a peak
at the position of the shifted signal. What happens if you increase
the noise intensity to 0.5? Can you still detect the signal?

12.4. Open Issues

It is hard to imagine a higher-field limit than the collision of two black
holes, so it appears that Einstein’s theory of general relativity is successful
over an extraordinarily large range of masses and distances. Increasing
computational power and sophistication has permitted the expansion of
modelling into the full four-dimensional spacetime. One can now calcu-
late, with some reasonable certainty, the result of black hole collisions and
the hydrodynamic models can incorporate convective processes within
the stellar mass. This is a vastly more realistic model than was available a
short time ago.

Nevertheless, there are difficulties when one asks the question how did we
get to where we are now? The models that start with an existing star in ba-
sic equilibrium that then burns up its fuel and evolves into something else
seem to do a pretty reasonable job of producing at least self-consistent re-
sults. When one tries to assemble a solar system or a star or a galaxy from
a dust cloud, the models are not successful. This was a real concern for
early researchers in computational astrophysics. If you start out with a
thousand gravitationally interacting masses in a box and add a little an-
gular momentum to the problem, you do not wind up with a big, rotating
blob in the center, you end up with an empty box; the masses scatter out
to infinity and are lost.

As a simple example, consider the following function:

VerletStep[x_, v_, a_, m_, delta_, first_] :=

Module[{x1 = x, v1 = v, a1t = a, m1 = m, del = delta, ifirst = first,
a2, aij, avec, dum, g, hdel, hdel2, Ntot, vmid, x2, v2},

Ntot = Length[x1]; hdel = o.5+del; hdel2 = o.5+delxdel; g = 0.1;

(» First time through compute a(t) *)

If[ifirst == 1, aij = Table[{o, o, o}, {i, 1, Ntot}, {j, 1, Ntot}];
Do[avec = -g (x1[[i]] - x1[[j]])/Norm[x1[[i]] - x1[[jl1]~3;

aij[li, jl1 =m[[j]] avec; aijllj, ill = -mi[[i]] avec,

{i, 1, Ntot}, {j, i + 1, Ntot}];

a1 = Table[Total[aij[[i, A1Ll]]], {i, 1, Ntot}], dum = o];
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(* x(t+del) = v(t)del + o.5del~2a(t) =)

x2 = Table[x1[[i]] + del v1[[i]] + hdelz2 a1[[i]], {i, 1, Ntot}];
(* v(t+del/2) = v(t) +o.5del a(t) =)

vmid = Table[v1[[i]] + hdel a1[[i]], {i, 1, Ntot}];

(*+ a(t+del) =)

aij = Table[{o, o, o}, {i, 1, Ntot}, {j, 1, Ntot}];

Do[avec = -g (x2[[i]] - x2[[j]])/Norm[x2[[i]] - x2[[j]1]~3;
aij[li, jl1 =m[[j]] avec; aijllj, ill = -mi[[i]] avec,
{i, 1, Ntot}, {j, i + 1, Ntot}];

a2 = Table[Total[aij[[i, A11]]], {i, 1, Ntot}];

(* v(t+del) = v(t+del/2) + o.s5del a(t+del) =)

v2 = Table[vmid[[i]] + hdel a2[[i]], {i, 1, Ntot}];

{x2, v2, a2, mi}]

This uses the velocity Verlet method to integrate one time step of the grav-
itational problem. It is not particularly efficient, as it includes a pairwise
sum over all of the particles. As cautionary note, setting the number of
particles to be a million will undoubtedly lock up any computer in exis-
tence; be realistic. To use the function, we can start with a (potentially
large) particle in the middle of a box and the remainder scattered around,
with an initial velocity and, potentially, a net angular momentum:

DustCloud[Motes_, Steps_, R_, V_, Mo_, L_: o] :=

Module[{M = Motes, Nsteps = Steps, rmax = R, vmax = V, Mstar = Mo, L1=L,
a1, m1, v1i, x1, xsave, z},

z = {o, o, 1};

x1 = Join[{{o, o, o}}, Partition[RandomReal[{-rmax, rmax}, 3 M - 3], 3]];
vi = Join[{{o, o, o}}, Partition[RandomReall[{-vmax, vmax}, 3 M - 3], 311];
Do[v1[[i]] = v1[[i]] + L1 Cross[z, x1[[i]]];, {i, 1, M}]

a1 = Table[{o, o, o}, {i, 1, M}];

m1 = Join[{Mstar}, Table[1, {i, 2, M}]];

xsave = Flatten[x1];

{x1, v1, a1, mi1} = VerletStep[x1, v1, a1, mi1, 0.04, 1];

xsave = Join[xsave, Flatten[x1]];

Do[{x1, v1, a1, m1} = VerletStep[x1, v1, a1, m1, 0.04, 0O];

xsave = Join[xsave, Flatten[x1]];, {i, 1, Nsteps}];

xsave = Partition[Partition[xsave, 3], M];

xsave |

To compute the results of fifty particles for 100 time steps, we just invoke
the function

pdata = DustCloud[s0, 100, 10, 0.1, 10, 0.5];

rx=10;

Manipulate[

Show[ListPointPlot3D[pdata[[i]], PlotStyle -> PointSize[lLarge],
PlotRange -> {{-rx, rx}, {-rx, rx}, {-rx, rx}}, BoxRatios -> 1,
AxeslLabel -> {x, y, z}], Graphics3D[Sphere[pdata[[i, 1]], 0.3]]],
{i,1, Length[pdata], 1}]

and use the ListPointPlotgD function to plot the data.
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Exercise 12.13. Study the behavior of a 5o-particle system for dif-
ferent values of the angular momentum L. What happens if the cen-
tral mass is larger?

Exercise 12.14. The simulation in VerletStep could be improved
if one incorporated collisions. The simplest mechanism is to assume
that if the distance between two particles is less than some value,
replace the velocity of the first particle with (m;v; + m;v;)/(m; + mj)
and the mass of the first particle with m; + m; and set m; = o. To
improve performance, one could then eliminate particles with zero
mass from the lists but this will cause issues due to the list lengths
changing throughout the simulations, so it is simpler to just do un-
necessary work. What happens if particles stick together? Does it
change things in a noticeable fashion?

A more realistic simulation would involve treating the initial nebula or
gas cloud as a fluid but, as we have seen, those sorts of calculations can be
quite involved, particularly if we are intending to include phase changes.
If the gas can condense into liquid and then solid forms, as might be ex-
pected in star formation, this is obviously going to be a significantly more
difficult problem.

Beyond just the phase problem, there is an additional problem with angu-
lar momentum. If star formation is triggered by some sort of density wave
propagating through a gas cloud, it is hard to imagine how that can tran-
spire without having some net angular momentum imparted to the cloud.
Like an ice-skater folding in their arms to increase their rotational veloc-
ity, as the gas cloud condenses down towards the notional center of local
mass, the rotational velocity of the gas will increase, thereby stopping the
collapse.

In order to avoid this difficulty, it is necessary to provide a loss mecha-
nism, whereby the kinetic energy within the gas is converted into some-
thing else. The most plausible alternative is magnetic fields: charged gas
will support currents that generate magnetic fields. Precisely how this en-
ergy can be decoupled from the collapse is not yet well understood. An
alternative suggestion is that turbulence within the gas might provide a
mechanism for abating the angular momentum but incorporating turbu-
lence in hydrodynamic simulations is also challenging.

With these caveats in mind, let us turn to two of the most contentious
problems facing astronomers. In 1970, astronomers Vera Rubin and Kent
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Ford published measurements of stellar velocities from the nearby An-
dromeda nebula.'# The pair subsequently studied a variety of spiral galax-
ies, measuring the so-called light curves of many galaxies, like the one
depicted in figure 12.11. What is puzzling about this result, which is very
similar to that obtained in other galaxies, is that the light curve is flat far
from the galactic center.
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If one thinks of the orbits of the planets within our solar system, the grav-
itational acceleration due to the sun provides the centripetal acceleration
that maintains the planetary orbits. We have:

GM _v? GM}”Z

(12.32) P p

or v= [
That is, a naive estimation of velocity at the outer edges of the galaxy disk
suggests that the velocity should fall like r~'/> instead of becoming con-
stant. Rubin and others have suggested that, in order to explain the light
curves, there must be a large halo of gravitational mass that surrounds

each galaxy. This dark matter is the subject of much current interest.

Let us try an alternative approach before joining the dark matter throng.
In Newtonian gravitation, the gravitational field G of a distributed source
can be obtained from the following equation:

(12.33) Glr) = —dom o(r.)

where G is the universal gravitational constant. This is analogous to the
distributed form of Coulomb’s law from electromagnetics. It is generally
not possible to perform these integrations analytically, so one must resort
to numerical simulation. This is why equation 12.32 is most often used as
justification for the existence of dark matter.

r,—r,
|I‘2 —1‘1|3’

14Rubin and Ford published “Rotation of the Andromeda nebula from a spectroscopic sur-
vey of emission regions” in The Astrophysical Journal.
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Let us choose a very simple model for the galaxy: a disk with thickness
h, radius R and a mass density p that is only a function of the radius.
Students should be forewarned: it is possible to insert equation 12.33 into
the Integrate function and press (shift-enter). Be prepared to wait a
very long time, even if you choose p to be a constant. The problem is that
equation 12.33 is singular when r, =r,. This is not a problem if we restrict
ourselves to the exterior of the mass distribution but it poses a problem
when we want to understand the value of the field within the disk.

Unfortunately, we cannot simply use symmetry. In studying a charged
sphere, we were able to compute the electric field inside the sphere by
using the fact that the electric flux through the surface was equal to the
charge enclosed. As the enclosing surface was a sphere, all points on the
surface are equivalent, so we know that the field inside scales like r/R3.
A Gaussian surface on our disk has two flat surfaces and the cylindrical
perimeter, the radial and longitudinal fields represent two unknowns and
we only have one equation.

Instead of assaulting equation 12.33 directly, let us incorporate the astro-
physical problem of light curves. That is, we want the centripetal accel-
eration v?/r to equal the gravitational acceleration at each point along the
radius. So, we can recast the problem into an integral equation for the
velocity:

(12.34) _do3r1 P(f1)K(f1:r2)=”(r2)-

Here, K is known as the kernel, which we know from equation 12.33,
and u is the centripetal acceleration, which we know from the light curve.
In this representation, we are interested for determining the unknown p.
By discretizing the problem, we can turn equation 12.34 into a matrix
equation that we can solve readily.

If we utilize cylindrical coordinates centered on the galactic center and
make life simple by restricting our observation points to the x-axis, i.e.,
r, = (r,0,0) then we can rewrite equation 12.33 as follows:

(12.35) \
():—GJ‘RdQ Qf io f/zdz () (r—Cycosqp,,—C;sing,,z 1).

s [r2—2r(:1 cos ¢, +C1 +z2]3/2

Before panicking, we can readily notice that both the y- and z-components
of the integrand are odd functions and, consequently, the integrals vanish.

Exercise 12.15. Plot the function z/(1 +22)3? over the domain —3 <
z < 3. What will be the integral of this function over the domain?
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So, we are left only with the x-component of the integral (which corre-
sponds to the radial direction by symmetry). It is possible to perform the
z, integration directly:

h/2 1 h
.36 d = .
(1230) L/z S e w PR @le s (har ]

Using this result in equation 12.35 we obtain the following;:

R 27T
dC1C1J d(Pl [r_C1COS(P1]
o

1
X [r2 —2rC, cos, + C2][(h/2)? + 12 — 21, cos @, + (2]V/2

(1237) G(r) =—<fchf

[¢]

If we were to make the usual assumption that # is negligibly small com-
pared to the radial dimension, then we can actually compute the azimuthal
integrals. If we pull out a factor of r> + 2 from the terms in the denomi-
nator, we can rewrite the integrand in a dimensionless way:

r—C,Ccos@,

(12.38) [r2+ C2]3/2[1 - Ecos g, ]2

where we have defined
2r(,
rr+ (3
The azimuthal integrals produce elliptic integrals that are, unfortunately,

singular at £ = 1. As aresult, we shall utilize the two-dimensional integral
from equation 12.37 instead.

(12.39) &=

Exercise 12.16. Plot the functions E1lipticE and E1lipticK over
the domain -1 <& < 1.

To determine the source term, it has been noted that galactic light curves
often follow a simple exponential behavior:

(12.40) v(r) = vmax[1 —exp (—1/R.)],
where R, sets the scale. For a galaxy like the one pictured in figure 12.11,

it appears that a reasonable value for R is about 0.2R.

Exercise 12.17. Plot the function f = 1 —exp(—r/R.) over the do-
main o < r < 1. Use the Manipulate function to vary R, from o.1 to
1. Do any of the curves resemble figure 12.11?

To perform the integration, we will utilize Gaussian quadrature. This is
a common numerical technique that utilizes the following estimate of the
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integral:

L N
(12.41) J: dx f(x) = Zwif(xi)’

where the weights w; and sample points x; depend on the order N of the
estimation. They can be obtained for an arbitrary interval [q, b] instead of
[-1,1] by scaling.

Exercise 12.18. Obtain the quadrature weights from the Gaus-
sianQuadratureWeights function. Compute the integral of f(x) =
tan™'[x/(1 + x?)] from o to 1. Use the Integrate function to obtain
the exact answer. Compute the integral using Gaussian quadratures
for N = 4,6 and 10. How does the Gaussian technique fare?

The following function will compute the density as a function of the ra-
dius. Note the Needs call loads the package that defines the quadrature
weights. Here we utilize the fact that the ¢, dependence is symmetric
and double the value of the integral from o to w. The choice of Gaussian
quadrature was motivated in part by the fact that the endpoints are not
evaluated, thereby avoiding any numerical issues at the boundaries.

Needs["NumericalDifferentialEquationAnalysis "]
GalaxyRho[Rc_,h_,Nr_,Nphi_]:=Module[{rc = Rc, hg = h, nr = Nr, np = Nphi,
cosp, Gr, h2, K, Kp, M, phi, r, rho, U},

h2 = (hg/2)~2;

phi = GaussianQuadratureWeights[np, o, Pi];

cosp = Table[Cos[phi[[i, 1]]], {i, 1, np}];

r = GaussianQuadratureWeights[nr, o, 1];

K = Table[o, {i, 1, nr}, {j, 1, nr}];

Do[Kp = Table[o, {i, 1, nr}];

Do[Kpl[k]] =

phillk, 2]] r[[i,1]]*(c[[]§, 111 - r[[i, 1]] cospllk]])/

(cllj, 11l~2 - 2 c[[j, 111 c[[i, 11] cosp[[kl] + r[[i, 1]]1~2)/
Sartlhz + r[[j, 1]1~2 - 2 r[[j, 11] rl[[i, 1]] cospllk]l+r[[i, 1]]~2];,
{k, 1, np}];

K[[i, j]] = 2 r[[i, 2]] Total[Kp], {i, 1, nr}, {j, 1, nr}];
Gr=Table[Total[K[[A11,j]]],{j, 1, nr}];

U = Table[(1 - Exp[-r[[i, 1]]/rc])~/c[[i, 111, {i, 1, nr}];
rho = LinearSolve[Transpose[K], U];

M = Total[Table[rho[[i]] r[[i,1]] r[[i, 2]],{i, 1, nr}]];

{M, Table[{r[[i,1]],rho[[i]]},{i,1,nr}],

Table[{r[[i, 1]], 1 - Exp[-r[[i, 1]]/rc]}, {i, 1, nr}],
Table[{r[[i,1]],Gr[[i]1]},{i,1,nc}]}]

Exercisk 12.19. Use the GalaxyRho function to determine the mass
density for R, = 0.1 and o.2. Try values of Nr=100 and Nphi=100.
Are your results sensitive to these choices? Plot the velocities and
densities.
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In figure 12.12, we have illustrated the densities that provide exponential
velocity curves with R. = 0.1 and o.2. Both densities are small at the ori-
gin, which seems inconsistent with the existence of a massive black hole.
This is due to numerical issues with the evaluation of the kernel for small
values of the radius that overestimate the gravitational field. Otherwise,
the density profiles are consistent with experimental results on the mass
distribution in galaxies. In any case, we can obtain flat light curves with
nothing more than Newtonian gravitation.

Exercise 12.20. The GalaxyRho function uses a value of the disk
thickness of & = 0.01. What happens if you alter the value of h?

Exercise 12.21. One can obtain the gravitational field of a disk by
utilizing the NIntegrate function that can cope with the singular
integrand in an explicit manner. The singular point can be included
in the domain: {x1,0,x2, 1} and the following directive included in
the call to NIntegrate:

Method->{"GlobalAdaptive","SingularityDepth"->2,
"SingularityHandler"->"DuffyCoordinates"}

Compare the field obtained from the quadrature method and that
obtained by the more sophisticated NIntegrate.

Consider the spiral galaxy NGC1309, pictured in figure 12.13. This im-
age is the negated, grayscale conversion of the original Hubble Space Tele-
scope image but will serve as a test case. We can find the pixel correspond-
ing to the center of the galaxy. Load the image with the Import function
and convert it to grayscale with the ColorConvert function. Clicking on
the image will provide access to the Coordinates Tool. Find the coordi-
nates of the bright point in the center.
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Ficure 12.13. The spiral
galaxy NGCi1309 was im-
aged by the Hubble space
telescope. Image courtesy of
ESA/NASA

The following function will sum the intensity of the (not negated) image
in bins that are radial to the center. The script assumes that an image file
has been imported through the Import function.

GalDens[image_, center_] :=

Module[{vals = ImageData[image][[Al1l, All]], ctr = center, ibin,
dens, Ni, Nj, Nd},

{Ni, Nj} = Dimensions[vals];

Nd = Floor]

Max[{Norm[{1, 1} - ctr], Norm[{1, Nj} - ctr], Norm[{Ni, 1} - ctr],
Norm[{Ni, Nj} - ctr]}]/10.];

dens = Table[o., {i, 1, Nd + 1}];

Do[ibin = Floor[Norm[{i, j} - ctr]/10.] + 1;
dens[[ibin]] = dens[[ibin]] + vals[[i, jl];, {i, 1, Ni}, {j, 1, Nj}l;
dens]|

The density obtained from the NGC1309 image is displayed in figure 12.14.
Radial bins were ten pixels wide and no attempt was made to eliminate
foreground objects from the sums. We see that the central density is small,
owing to the fact that the bin areas increase as the radius increases. While
these results are certainly influenced by the polar coordinate system and
poor dynamic range of the image, they also reflect the difficulty that as-
tronomers face when trying to equate luminosity with mass. Much of the
light emanating from the highly populated galactic core is absorbed by
dust and reradiated at much longer wavelengths. One can see something
akin to this effect when driving through fog: the headlights of approach-
ing vehicles are not apparent from a distance. They only appear dramat-
ically at uncomfortably short range. As a practical matter, obtaining a
meaningful correlation between observed galactic luminosity and galac-
tic mass is a contentious problem. Consequently, our inferred galactic
densities illustrated in figure 12.12 are not to be discounted.

Exercise 12.22.  Use the GalDens function to compute the radial
density of other galaxies. Many images are available from the Hub-
ble Space Telescope site.
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Real galaxies are, of course, not radially symmetric. Consequently, our
simple disk model will need to be improved in order to establish a more
direct comparison with experiment. More sophisticated analyses also yield
results that do not require a large halo of unknown matter surrounding
galaxies. So, one can wonder how dark matter has become ubiquitous
in the discussions of modern science. In some sense, this is a sociology
question. There are no experimental results available to physicists seek-
ing grand unified theories; accelerators are many orders of magnitude too
small. It is possible that many of these things might have been created
during the initial big bang and, if they are weakly interacting with nor-
mal matter, might still be present. Hence, if astronomers say there is a
halo of unknown stuff outside galaxies, there are numerous theorists with
unseen particles who are grasping for any data. This is not to say that we
understand the rotational curves in detail and we have all of the physics
in hand. There is much that we do not know but we can state without
question that the ubiquitous explanation that light curves demand dark
matter is incorrect.

As a final topic, we come to the question that has intrigued astronomers
for many years: is the universe open or closed? The answer to this ques-
tion has been emphatically debated for many years. The discovery of the
cosmic background radiation by Arno Penzias and Robert Wilson from
Bell Laboratories in 1965 provided significant support for the Big Bang
theory of the universe.'> The 3 K microwave flux that permeates space
can be interpreted as the remnants of the original energy density when
the universe was created.

15Penzias and Wilson published “A measurement of excess antenna temperature at 4080
Mc/s” in the Astrophysical Journal in 1965. They were awarded the Nobel Prize in Physics
in 1978 “or their discovery of cosmic microwave background radiation.” They shared the
award with Pyotr Kaptisa, who was cited “for his basic inventions and discoveries in the
area of low-temperature physics.”
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The biggest astronomy question is what will be the ultimate fate of the
universe? Will it collapse back upon itself or will it continue to expand
for infinity? Of course, one might argue that the answer to this question is
completely irrelevant, as it will have no impact whatsoever on the future
of human existence. The question, though, is tied to our general interest
in the nature of the universe and our rdle in it. As a result, there are some
who are passionately interested in the answer.

If we look at the question a bit more dispassionately, we can observe that
the fundamental problem facing astronomers is the lack of a distance
measurement. There is no doubt that instruments have evolved that en-
able us to measure ever fainter sources with ever increasing angular res-
olution with broader spectral range. Yet most astronomical assumptions
are keyed to the interpretation of the red-shift as a measure of distance.
This reflects the widely held notion of an expanding universe after the big
bang. Sources more distant will be red-shifted more. Unfortunately, there
are other sources of red-shift than motion. The interaction of light with
matter can produce frequency shifts, both red and blue, through quantum
effects not typically discussed in astronomy. There may even be significant
interactions with dilute gases that we have yet to uncover in laboratory-
scale experiments. As we mentioned earlier, Ray Glauber won a Nobel
Prize for work that indicated that low-intensity measurements require the
electron/photon interaction to be treated quantum mechanically, not clas-
sically. As we have also discussed, the picture of the photon as a small blob
of electromagnetic energy is incorrect; we do not really have a description
for a photon that has travelled light years.

Recent debate on the issue has been provoked by a 1998 publication by
Adam Riess and collaborators, who suggest that the measurement of a
particular type of supernova provides evidence for a nonzero cosmolog-
ical constant A.'® Riess and coworkers rely on the observation of a par-
ticular type of supernova, known as Type Ila that are presumed to arise
from the accumulation of mass on a white dwarf member of a binary sys-
tem. Recall that Chandrasekhar found a maximum limit to the mass of
so-called white dwarf stars but, if one is a member of a binary system, af-
ter the white dwarf formation more mass can be accumulated on the white
dwarf. When enough accumulates, the star blows off its exterior layers in
a brilliant flash.

Calculations suggest that there is a very small range of masses for which
this can occur, meaning that one could use the known brightness of the

16Rjess et al., published “Observational evidence from supernovae for an accelerating uni-
verse and a cosmological constant” in The Astronomical Journal. The 2011 Nobel Prize in
Physics was awarded to Saul Perlmutter, Brian Schmidt and Adam Riess “for the discovery
of the accelerating expansion of the Universe through observations of distant supernovae.”
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flash with the measured intensity to establish the distance. Type Ia su-
pernovae are characterized by a particular light curve, although recent
evidence suggests that there may be more variability in the class than
previously assumed. Using the light curve of the supernova to identify
its validity as a Type la variety, one can then determine the distance in-
dependently from the redshift z. As can be seen in figure 12.15, there is
significant scatter to the data but one can infer that roughly three quarters
of the energy density of the universe can be attributed to the cosmological
constant A, or something like it. This is an astonishing statement that we
know very little of the universe.

This is an unsettling proposition because we generally feel that we know
a lot about the universe. We have demonstrated within the pages of this
text that we have developed models that are quite successful in explaining
phenomena from the microscopic to the macroscopic. Only when we en-
counter the largest scales, do we seem to stumble. Of course, as aspiring
physicists, students must decide for themselves whether or not to concern
themselves with the problems of the universe. The difficulty, of course, is
that one cannot travel great distances to discover the ground truth. Those
experiments are completely impossible. Problems that can be addressed
within laboratories are ones that can be solved in an individual lifetime,
where it seems likely that the ultimate fate of the universe will continue
to inspire debate until the end of the universe.



Mathematical Bits

We make extensive use of complex numbers throughout the text. They
provide a succinct means of specifying a number of the concepts that we
discuss. As many students are likely to be unfamiliar with the concept,
we shall review a few of the more salient points from complex analysis.

Complex Numbers

Fundamentally, a complex number has two components called, somewhat
unfortunately, the real and imaginary parts. We can write a complex num-
ber z as z = x+iy or z = (x,v), where i = v/-1. In the second form, the
complex number z looks very much like a two-dimensional vector but
the space of complex numbers C is not equivalent to the space of two-
dimensional vectors IR>.

Addition of two complex numbers looks like addition of two two-dimen-
sional vectors:

(A1) Zi+2, = (X 10+ (X +10,) = (X +X,) + (V1 + ).

We define multiplication of complex numbers as follows:

(A.2) 2125 = (X +19) (X5 +105) = (30X = V1 05) + (X, 05 +X50;).

This is not how we might have thought to multiply two two-dimensional
vectors. In R?, we anticipate that the distance between two points would
be obtained through the dot product:

(A-3) d=[z-2,]" =[x} +97]7,

but this is not what we obtain if we multiply z, by itself. Instead, we must
multiply z, by the complex conjugate of itself:

(A.4) 2,2y = (xy +1y,)(x, —iy,) = X7 + 7.

Among the many advantages of complex numbers is the ability to easily
deal with harmonic functions. Consider the exponential function:

(A.5) e = coskx + i sinkx.
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Taking derivatives is straightforward:

d ; ikx
A6 — 'f% = e,
(A.6) P i
The x-dependence doesn’t change. Moreover, if we allow k to become
complex, the oscillatory sine and cosine functions become exponentially

damped:
(A7) ei(kr+ikx)x — eik,xe—kxx.

These properties provide significant advantages when performing the al-
gebra required to obtain solutions to differential equations.

Ultimately, the electric field is a real-valued triplet of numbers at each
point in space, so students may not see the advantage of coping with a
complex-valued triplet of numbers at each point in space but the advan-
tages can be found a posteriori. Perform simpler algebraic steps along the
path to solution and then take the real part of the result.

There are a number of powerful results in complex numbers, for example,
that can be employed. We can define functions of complex numbers:

(A.8) f(2) = ulx,v) +iv(x,v),
where u and v are real-valued functions of two real variables. The func-
tion f is differentiable if the limit exists:
Az) —
df(2) _ o flat82)-f()

A. =
( 9) dz Az—o Az

At first glance, this is just the same definition that students were provided
in their introductory calculus classes. Here though, the quantity Az is a
complex number, which means that we can take the limit as the real and
imaginary parts independently go to zero. For this to make mathematical
sense, the result cannot depend on the order of taking the limit. This con-
dition on differentiability means that not all functions are differentiable.
In particular, functions of z* are not.

Analytic functions are those that are differentiable and the sufficient con-
ditions for differentiability are that the Cauchy-Riemann conditions are
met:

dx Y dx dy
Here, we also note that the partial derivatives must exist and be continu-
ous.

(A.10) du(v,p) _dvlxy) L dvlvy)  dulxy)

Given the definition of analyticity, Cauchy was able to prove a remarkable
theorem: the integral of an analytic function along a closed contour in the
complex plane is identically zero, unless the function has singularities in
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the area enclosed by the contour. Cauchy’s residue theorem can be stated
as follows:

(A.11) 9Sdzf(z)=2m'ZRi,

where R; is the residue of f(z) at the singular point z;. For simple poles,
where f(z) « (z—2z;)7", then R; = (z—z;)f(z;). Recall that we have utilized
a number of infinite integrals in the text. One way to solve them is to add
a semi-circular contour at imaginary infinity. (I realize this sounds silly.)
If there is an % in the integrand, such a term will be zero, so adding it
to the integral does not alter the value of the integral. Now, though the
integral is a closed loop and can be evaluated at points where the integral
is singular. Consequently, a complicated integral can be converted to a
sum over a small number of terms.

FiGure A.1. Anintegral along .
the real axis (black) can be
converted into a contour inte-
gral by adding a path at infin- >
ity (gray). The integral is ob-
tained by computing the sum
of the residues at poles of the
integrand (dots).

Im(z)

A sketch of the idea is presented in figure A.1. Poles of the function often
follow a trajectory in the complex plane and can be found relatively easily
numerically. As points for large values of the imaginary part of z are ex-
ponentially damped, often integrals can be approximated by a few (one)
terms.

A potential issue that arises when attempting to convert real functions
into complex ones is that some functions can become multi-valued. This
is known technically as a branch point. Consider the function f(z) = z'/>.
If we use a polar representation of z = re'?, then the square root can be
seen to map the complex plane o < ¢ < 27 to a half plane 0 < ¢ < m.
The mathematician Bernhard Riemann envisioned the square root to be a
continuous function, if you followed it across the branch cut onto another
sheet. As a practical matter, one cannot integrate across a branch cut. The
integral must be diverted around any such obstacle.
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Exercise A.1.  Visualize the result of the square root using the
Plot3D function:

Plot3D[Im(Sart[x+Iy]],{x,~4,4},{y,~4,4}]

Plot the other half of the Riemann sheet by adding another function
to the plot: the square root of z* = x —iy.

We have plotted the imaginary part of the square root in figure A.2. There
is, by convention, a discontinuity along the negative real axis. Not all com-
puting languages support complex arithmetic but this choice of branch
cut is not universal. This can create difficulties when porting code from
one machine to another.

Im(zlh)
Ficure A.2. The complex
square root is discontinuous
(by convention) across the
negative real axis. - Re(z)
Im(z)

Quaternions

In 1843, William Hamilton devised an extension to complex algebra that
he called quaternions. Hamilton devoted most of his remaining years
to expanding the use of quaternions in mathematics and physics. Until
Gibbs and Heaviside devised vector notation, Hamilton’s quaternion ap-
proach was becoming more widely used. Today, it is a bit of an historical
anecdote but it turns out to be quite useful in computer graphics.

A quaternion is a four-dimensional object (not IR*) with three imaginary
components:

(A.12) i?=-1 and j>=-1 and k*>=-1.
These have the following relations:

ij=k jk=1i ki=j
(A.13) ji=-k kj=—i ik=—j.
Addition follows the same rules as with complex numbers:

(A.14) a+b= (ar,af,aj, ak) + (brrbirbjl bk) = (a, + br,a,' + b,‘,&l]‘ + bj,ak + bk)
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Multiplication becomes more complicated:
ab=a,b, —a;bj—a;b; —axby
(A.15) +i(abj+a;b, +a;by —agbj)
+jasbj—a;iby +ajb, +ab;)
+k(a, by +a;bj—a;b; +arb,).

In fact, multiplication of quaternions is not commutative: ab # ba. Quater-
nions also require a conjugate to define their magnitude:

(A.16) a = (arl_ai’_ajr_ak)
and
(A.17) la| = [aa*]"/> = [a*a]"/? = [a> + a; + ajz- +ai]1/2.

The Quaternions package within Mathematica software supports quater-
nion use. Quaternions are most often used in computing rotations for
computer graphics applications. This may seem like overkill but the usual
approach to rotations involves the rotation matrices that we have encoun-
tered previously. These are straightforward to specify for rotations about
any of the principal axes but become somewhat more challenging to com-
pute for an arbitrary axis of rotation. Additionally, the strategy based on
Euler angles has a coordinate singularity that causes a failure mode known
as gimbal lock.

Consider that you are standing at the north pole. Which direction is
south? Unfortunately, all directions are south, so codes using angular
variables to define the orientation of objects will have to devise schemes to
avoid such idiosynchratic behavior. With quaternions, this behavior does
not occur.

In addition to multiplications, quaternions support the definition of a
multiplicative inverse; quaternions form a division algebra; the space of
all quaternions is usually identified as H. Because multiplication is not
commutative, to define the inverse of a, we really must mean one of the
following:

(A.18) ajta=1 or aag =1,

where the left and right inverses need not be the same. If we multiply
each equation by a*/|al*, on the right and left, respectively, we obtain:

* *

a a
A1 a;'=— and ax' = —.
(A19) B DT

So, the left and right inverses are the same and, for quaternions with unit
magnitude, the inverse is the conjugate.
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This last property is the one that makes quaternions useful for computer
graphics calculations. We can specify a rotation by the similarity trans-
form:

1

(A.20) p'=apa~' =apa’,

if a has unit magnitude.

Quaternions can be thought of geometrically, as a scalar a, and a vector
v =ia; + ja; + kay. In this form, there are some curious properties:

(A.21) ViV, ==V, -V, +V; XV,.

The product of two quaternions with scalar components equal to zero
has a scalar component that is the usual dot product of the two vectors
(thought of as vectors in IR3) and a quaternion vector that corresponds to
the usual vector cross product. Maxwell utilized this in his original for-
mulation of his theory of electromagnetics.

Octonions

Physicists have explored numerous mathematical pathways seeking a bet-
ter representation for their ideas. Taking Hamilton’s ideas one step fur-
ther, John Graves found a means to again extend complex numbers, now
into eight dimensions. These are called octonions and while one can still
define a multiplicative inverse, multiplication is neither commutative nor
associative:

(A.22) ab#ba and a(bc)# (ab)c.

The basis vectors ¢;,{i = 1,..., 8} satisfy the following relations:
(A23) ;e :_51']'61 +gijkek1

where ¢;j is the antisymmetric tensor.

The octonions form a division algebra and the space of all octonions is
denoted O. There are no other division algebras beyond real numbers,
complex numbers, quaternions and octonions. Physicists have explored
the use of octonions to eliminate the need for spinors in the Dirac equation
but this has not led to any particular simplifications or improvements in
the ability to perform calculations.

Lie algebras

The German mathematician Wilhelm Killing classified all of the possible
Lie algebras in a series of papers beginning in 1888." There are three
infinite families:

(A.24) so(n) and su(n) and sp(n).

IKilling published “Die Zusammensetzung der stetigen endlichen Transformationsgrup-
pen” in four parts in the Mathematische Annelen.
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Elements of so(n) are n x n matrices, whose elements are real numbers
(R[n]). Similarly, elements of su(n) and sp(n) are taken from the com-
plex numbers (C[n]) and quaternions (IH[n]), respectively. These groups
arise naturally as isometries: transformations that preserve a particular
Riemannian metric.

Killing also found six other Lie algebras that did not fit the pattern and
called them the exceptional Lie algebras. French mathematician Elie Car-
tan constructed all of the exceptional Lie algebras and realized that two
52-dimensional algebras of Killing’s original six were actually the same.
So, there are five exceptional Lie algebras: g,, [, ¢¢, ¢, and cg. The ex-
ceptional groups are all tied to the octonions. Details are to be found else-
where but there are intriguing clues that these groups may prove useful
in defining physical theories.

Of course, there are subtle mathematical connections amongst many of
the tools in the physicists toolbox. Perhaps today’s students will find the
appropriate combination of tools that can blaze the trail towards better
theoretical descriptions of nature.
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