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Preface

Purpose and Emphasis

Mechanics not only is the oldest branch of physics but was and still is the basis for all
of theoretical physics. Quantum mechanics can hardly be understood, perhaps cannot
even be formulated, without a good knowledge of general mechanics. Field theories
such as electrodynamics borrow their formal framework and many of their building
principles from mechanics. In short, throughout the many modern developments of
physics where one frequently turns back to the principles of classical mechanics, its
model character is felt. For this reason, it is not surprising that the presentation of
mechanics reflects to some extent the development of modern physics and that today
this classical branch of theoretical physics is taught rather differently than at the time
of Arnold Sommerfeld, in the 1920s, or even in the 1950s, when more emphasis was
put on the theory and the applications of partial differential equations. Today,
symmetries and invariance principles, the structure of the space—time continuum, and
the geometrical structure of mechanics play an important role. The beginner should
realize that mechanics is not primarily the art of describing block and tackles, col-
lisions of billiard balls, constrained motions of the cylinder in a washing machine, or
bicycle riding. Although fascinating such systems may be, mechanics is primarily the
field where one learns to develop general principles from which equations of motion
may be derived, to understand the importance of symmetries for the dynamics, and,
last but not least, to get some practice in using theoretical tools and concepts that are
essential for all branches of physics.

Besides its role as a basis for much of theoretical physics and as a training
ground for physical concepts, mechanics is a fascinating field in itself. It is not easy
to master, for the beginner, because it has many different facets and its structure is
less homogeneous than, say, that of electrodynamics. On a first assault, one usually
does not fully realize both its charm and its difficulty. Indeed, on returning to
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various aspects of mechanics, in the course of one’s studies, one will be surprised to
discover again and again that it has new facets and new secrets. And finally, one
should be aware of the fact that mechanics is not a closed subject, lost forever in the
archives of the nineteenth century. As the reader will realize in Chap. 6, if he or she
has not realized it already, mechanics is an exciting field of research with many
important questions of qualitative dynamics remaining unanswered.

Structure of the Book and a Reading Guide

Although many people prefer to skip prefaces, I suggest that the reader, if he or she
is one of them, make an exception for once and reads at least this section and the
next. The short introductions at the beginning of each chapter are also recom-
mended because they give a summary of the chapter’s content.

Chapter 1 starts from Newton’s equations and develops the elementary dynamics
of one-, two-, and many-body systems for unconstrained systems. This is the basic
material that could be the subject of an introductory course on theoretical physics or
could serve as a text for an integrated (experimental and theoretical) course.

Chapter 2 is the “classical” part of general mechanics describing the principles of
canonical mechanics following Euler, Lagrange, Hamilton, and Jacobi. Most of the
material is a MUST. Nevertheless, the sections on the symplectic structure of
mechanics (Sect. 2.28) and on perturbation theory (Sects. 2.38-2.40) may be
skipped on a first reading.

Chapter 3 describes a particularly beautiful application of classical mechanics:
the theory of spinning tops. The rigid body provides an important and highly
nontrivial example of a motion manifold that is not a simple Euclidean space R,
where f is the number of degrees of freedom. Its rotational part is the manifold of
SO(3), the rotation group in three real dimensions. Thus, the rigid body illustrates a
Lie group of great importance in physics within a framework that is simple and
transparent.

Chapter 4 deals with relativistic kinematics and dynamics of pointlike objects
and develops the elements of special relativity. This may be the most difficult part
of the book, as far as the physics is concerned, and one may wish to return to it
when studying electrodynamics.

Chapter 5 is the most challenging in terms of the mathematics. It develops the
basic tools of differential geometry that are needed to formulate mechanics in this
setting. Mechanics is then described in geometrical terms, and its underlying
structure is worked out. This chapter is conceived such that it may help to bridge the
gap between the more “physical” texts on mechanics and the modern mathematical
literature on this subject. Although it may be skipped on a first reading, the tools
and the language developed here are essential if one wishes to follow the modern
literature on qualitative dynamics.
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Chapter 6 provides an introduction to one of the most fascinating recent
developments of classical dynamics: stability and deterministic chaos. It defines and
illustrates all important concepts that are needed to understand the onset of chaotic
motion and the quantitative analysis of unordered motions. It culminates in a few
examples of chaotic motion in celestial mechanics.

Chapter 7, finally, gives a short introduction to continuous systems, i.e. systems
with an infinite number of degrees of freedom.

Exercises and Practical Examples. In addition to the exercises that follow
Chaps. 1-6, the book contains a number of practical examples in the form of
exercises followed by complete solutions. Most of these are meant to be worked out
on a personal computer, thereby widening the range of problems that can be solved
with elementary means, beyond the analytically integrable ones. I have tried to
choose examples simple enough that they can be made to work even on a pro-
grammable pocket computer and in a spirit, I hope, that will keep the reader from
getting lost in the labyrinth of computational games.

Length of this Book

Clearly, there is much more material here than can be covered in one semester. The
book is designed for a two-semester course (i.e. typically, an introductory course
followed by a course on general mechanics). Even then, a certain choice of topics
will have to be made. However, the text is sufficiently self-contained that it may be
useful for complementary reading and individual study.

Mathematical Prerequisites

A physicist must acquire certain flexibility in the use of mathematics. On the one
hand, it is impossible to carry out all steps in a deduction or a proof, since otherwise
one will not get very far with the physics one wishes to study. On the other hand, it
is indispensable to know analysis and linear algebra in some depth, so as to be able
to fill in the missing links in a logical deduction. Like many other branches of
physics, mechanics makes use of many and various disciplines of mathematics, and
one cannot expect to have all the tools ready before beginning its study. In this
book, I adopt the following, somewhat generous attitude towards mathematics. In
many places, the details are worked out to a large extent; in others, I refer to
well-known material of linear algebra and analysis. In some cases, the reader might
have to return to a good text in mathematics or else, ideally, derive certain results
for himself or herself. In some cases, it might also be helpful to consult the
appendix at the end of the book.
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General Comments and Acknowledgements

This sixth English edition follows closely the eighth German edition (Volume 1 of a
series of five textbooks). As compared to the fifth English edition published in
2007, there are a number revisions and additions. Some of these are the following.
In Chap. 1, more motivation for the introduction of phase space at this early stage is
given. A paragraph on the notion of hodograph is included which emphasizes the
special nature of Keplerian bound orbits. Chapter 2 is supplemented by some
extensions and further explanations, specifically in relation to Legendre transfor-
mation. Also, a new section on a generalized version of Noether’s theorem was
added, together with some enlightening examples. In Chap. 3, more examples are
given for inertia tensors and the use of Steiner’s theorem. Here and in Chap. 4, the
symbolic “bra” and “ket” notation is introduced in characterizing vectors and their
duals. The present, sixth edition differs from the previous, fifth edition of 2007 by a
few corrections and some additions in response to specific questions asked by
students and other readers.

The book contains the solutions to all exercises, as well as some historical notes
on scientists who made important contributions to mechanics and to the mathe-
matics on which it rests. The index of names, in addition to the subject index, may
also be helpful in locating quickly specific items in mechanics.

This book was inspired by a two-semester course on general mechanics that I
have taught on and off over the last decades at the Johannes Gutenberg University
at Mainz and by seminars on geometrical aspects of mechanics. I thank my col-
laborators, colleagues, and students for stimulating questions, helpful remarks, and
profitable discussions. I was happy to realize that the German original, since its VIII
Preface first appearance in October 1988, has become a standard text at
German-speaking universities, and I can only hope that it will continue to be
equally successful in its English version. I am grateful for the many encouraging
reactions and suggestions I have received over the years. Among those to whom I
owe special gratitude are P. Hagedorn, K. Hepp, D. Kastler, H. Leutwyler, L. Okun,
N. Papadopoulos, J.M. Richard, G. Schuster, J. Smith, M. Stingl, N. Straumann, W.
Thirring, E. Vogt, and V. Vento. Special thanks are due to my former student R.
Schopf who collaborated on the earlier version of the solutions to the exercises.
I thank Maximilian Becker for carefully reading the whole book and for his
numerous suggestions for improving it. I thank J. Wisdom for his kind permission
to use four of his figures illustrating chaotic motions in the solar system, and
P. Beckmann who provided the impressive illustrations for the logistic equation and
who advised me on what to say about them.

The excellent cooperation with the team of Dr Thorsten Schneider at
Springer-Verlag is gratefully acknowledged. Last but not least, I owe special thanks
to Dorte for her patience and encouragement.



Preface ix

As with the German edition, I dedicate this book to all those students who wish
to study mechanics at some depth. If it helps to make them aware of the fascination
of this beautiful field and of physics in general, then one of my goals in writing this
book is reached.

Mainz, Germany Florian Scheck
November 2017
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Chapter 1
Elementary Newtonian Mechanics

This chapter deals with the kinematics and the dynamics of a finite number of mass
points that are subject to internal, and possibly external, forces, but whose motions
are not further constrained by additional conditions on the coordinates. (The math-
ematical pendulum will be an exception). Constraints such as requiring some mass
points to follow given curves in space, to keep their relative distance fixed, or the
like, are introduced in Chap.2. Unconstrained mechanical systems can be studied
directly by means of Newton’s equations and do not require the introduction of new,
generalized coordinates that incorporate the constraints and are dynamically inde-
pendent. This is what is meant by “elementary” in the heading of this chapter —
though some of its content is not elementary at all. In particular, at an early stage,
we shall discover an intimate relationship between invariance properties under coor-
dinate transformations and conservation laws of the theory, which will turn out to
be a basic, constructive element for all of mechanics and which, for that matter,
will be felt like a cantus firmus' throughout the whole of theoretical physics. The
first, somewhat deeper analysis of these relations already leads one to consider the
nature of the spatial and temporal manifolds that carry mechanical motions, thereby
entering a discussion that is of central importance in present-day physics at both the
smallest and the largest dimensions.

We also introduce the notion of phase space, i.e. the description of physical
motions in an abstract space spanned by coordinates and corresponding momenta,
and thus prepare the ground for canonical mechanics in the formulation of Hamilton
and Jacobi.

We begin with Newton’s fundamental laws, which we interpret and translate into
precise analytical statements. They are then illustrated by a number of examples and
some important applications.

cantus firmus: a preexisting melody, such as a plainchant excerpt, which underlies a polyphonic
musical composition.

© Springer-Verlag GmbH Germany 2018 1
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https://doi.org/10.1007/978-3-662-55490-6_1


http://dx.doi.org/10.1007/978-3-662-55490-6_2

2 1 Elementary Newtonian Mechanics

1.1 Newton’s Laws (1687) and Their Interpretation

We begin by stating Newton’s fundamental laws in a formulation that is close to the
original one. They are as follows:

I. Every body continues in its state of rest or of uniform rectilinear motion, except
if it is compelled by forces acting on it to change that state.
II. The change of motion is proportional to the applied force and takes place in the
direction of the straight line along which that force acts.
III. To every action there is always an equal and contrary reaction; or, the mutual
actions of any two bodies are always equal and oppositely directed along the
same straight line.

In order to understand these fundamental laws and to learn how to translate them
into precise analytical expressions we first need to interpret them and to go through a
number of definitions. On the one hand we must clarify what is meant by notions such
as “body”, “state of motion”, “applied force”, etc. On the other hand we wish to collect
a few (provisional) statements and assumptions about the space-time continuum in
which mechanical motions take place. This will enable us to translate Newton’s
laws into local equations, which can then be tested, in a quantitative manner, by
comparison with experiment.

Initially, “bodies” will be taken to be mass points, i.e. pointlike particles of mass
m. These are objects that have no spatial extension but do carry a finite mass. While
this idealization is certainly plausible for an elementary particle like the electron, in
studying collisions on a billiard table, or relative motions in the planetary system, it
is not clear, a priori, whether the billiard balls, the sun, or the planets can be taken to
be massive but pointlike, i.e. without spatial extension. For the moment and in order
to give at least a preliminary answer, we anticipate two results that will be discussed
and proved later.

(1) To any finite mass distribution (i.e. a mass distribution that can be completely
enclosed by a sphere of finite radius), or to any finite system of mass points, one can
assign a center of gravity to which the resultant of all external forces applies. This
center behaves like a pointlike particle of mass M, under the action of that resultant,
M being the total mass of the system (see Sects. 1.9 and 3.8).

(ii) A finite mass distribution of total mass M that looks the same in every direction
(one says it is spherically symmetric) creates a force field in the outer, mass-free
space that is identical to that of a pointlike particle of mass M located at its center
of symmetry (Sect. 1.30). A spherical sun acts on a planet that does not penetrate it
like a mass point situated at its center. In turn, the planet can be treated as a pointlike
mass, too, as long as it is spherically symmetric.

In Law I, motion, or state of motion, refers to the trajectory r(¢) of the mass point
in coordinate space R3, where r describes its position at a given time ¢. Figure 1.1
shows an example for an arbitrary trajectory in three-dimensional space. State of rest
means that 7(¢) = 0 for all times ¢, while uniform rectilinear motion is that motion
along a straight line with constant velocity. It is important to realize that motion is
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Fig. 1.1 Example of an orbit with accelerated motion. While the orbit curve is a coordinate inde-
pendent, geometric object, its description by the position vector r () depends on the choice of origin
and coordinates

always relative motion of (at least two) physical systems. For instance, a particle
moves relative to an observer (i.e. a measuring apparatus). It is only meaningful to
talk about the relative positions of particle A and particle B, or about the position of
particle A with respect to an observer, at any fixed time.

Experimental experience allows us to assume that the space in which the physical
motion of a mass point takes place is homogeneous and isotropic and that it has the
structure of a three-dimensional Euclidean space [E*. Homogeneous here means that
no point of IE? is singled out in any respect. Isotropic in turn means that there is no
preferred direction either (more on this will be said in Sect. 1.14). Thus the space
of motions of the particle is an affine space, in agreement with physical intuition:
giving the position x(¢) € E? of a particle at time ¢ is not meaningful, while giving
this x (¢) relative to the position y(¢) of an observer (at the same time) is. If we endow
the affine space with an origin, e.g. by relating all positions to a given observer, the
space is made into the real three-dimensional vector space R?. This is a metric space
on which scalar and cross products of vectors are defined as usual and for which base
systems can be chosen in a variety of ways.

In nonrelativistic physics time plays a special role. Daily experience tells us that
time appears to be universal in the sense that it runs uniformly without being influ-
enced by physical events. In order to sharpen this statement one may think of any
moving particle as being accompanied on its journey by its own clock, which mea-
sures what is called the particle’s proper time t. On his clock an observer B then
measures the time

1B =a®r 4 g® (1.1)

Here o® is a positive constant indicating the (relative) unit that B chooses in mea-
suring time, while ﬂ(B) indicates where B has chosen his origin of time, relative to
that of the moving clock.

Equation (1.1) can also be written in the form of a differential equation,

d*®
@ = (12
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which is independent of the constants «® and 8®. While (1.1) relates the proper
time to that of a specific observer, (1.2) contains the statement that is of interest here
for all possible observers. We conclude that time is described by a one-dimensional
affine space, or, after having chosen an origin, by the real line R. For the sake of
clarity we shall sometimes also write R, (“t” for “time”).

The trajectory r(¢) is often described in terms of a specific coordinate system. It
may be expressed by means of Cartesian coordinates,

r(t) = (x(®), y(0),z(0) ,
or by means of spherical coordinates
r(t) = (r(t)cosg (¢)sinf (), r(t)sing (¢t)sinf(t), r(t)cosb (t)) ,

or any other coordinates that are adapted to the system one is studying.
Examples of motions in space are:

1) r(t) = (vt +x0, 0, vt +20— gt2/2) in Cartesian coordinates. This describes,
in the x-direction, uniform motion with constant velocity v,, a state of rest in
the y-direction, and, in the z-direction, the superposition of the uniform motion
with velocity v, and free fall in the gravitational field of the earth.

(ii) r(1) = (x(t) = Rcos(wt + ¢p), y(t) = Rsin(wt + ¢), 0).
(i) r(1): (r(t) = R, @(t) = ¢o + w1, 0).

Examples (ii) and (iii) represent the same motion in different coordinates: the
trajectory is a circle of radius R in the (x, y)-plane that the particle follows with
constant angular velocity w.

From the knowledge of the function r(¢) follow the velocity

v(t)difir(t) = (1) (1.3)
T dr - '
and the acceleration

def d . ..
a(t) = av(t) =0(t) =F@). (1.4)

In Example (i) above, v = (v,, 0, v, — gt) anda = (0, 0, —g). In Examples (ii)
and (iii) we have v = wR (— sin(wt+¢y), cos(wt+¢y), 0) anda = v’ R(— cos(wt+
¢o), — sin(wt + ¢yp), 0), i.e. v has magnitude wR and direction tangent to the circle
of motion. The acceleration has magnitude w?R and is directed towards the center
of that circle.

21t would be premature to conclude that the space—time of nonrelativistic physics is simply R? x R,
as long as one does not know the symmetry structure that is imposed on it by the dynamics. We
return to this question in Sect. 1.14. In Sect.4.7 we analyze the analogous situation in relativistic
mechanics.
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The velocity vector is a tangent vector to the trajectory and therefore lies in the
tangent space of the manifold of position vectors, at the point r. If » € R?, this
tangent space is also an R? and can be identified with the space of positions. There
are cases, however, where we have to distinguish between the position space and its
tangent spaces. A similar remark applies to the acceleration vector.

1.2 Uniform Rectilinear Motion and Inertial Systems

Definition. Uniform rectilinear motion is a state of motion with constant velocity
and therefore vanishing acceleration, # = 0.
The trajectory has the general form

rit) =r’+ 0%, (1.5)

where r° denotes the initial position, v° the initial velocity, r® = r(t = 0), and
v? = v(r = 0). The velocity is constant and the acceleration is zero at all times:

v(@) = () =00,
at) =F1t)=0. (1.6)

We remark that (1.6) are differential equations characteristic for uniform motion.
A specific solution is only defined if the initial conditions r(0) = r°, v(0) = v° are
given. Equation (1.6) is a linear, homogeneous system of differential equations of
second order; v° and r° are integration constants that can be freely chosen.

Law I states that (1.5) with arbitrary constants r¥ and v° is the characteristic
state of motion of a mechanical body to which no forces are applied. This statement
supposes that we have already chosen a certain frame of reference, or a class of
frames, in coordinate space. Indeed, if all force-free motions are described by the
differential equation # = 0 in the reference frame Ky, this is not true in a frame K
that is accelerated with respect to Ky, (see Sect. 1.25 for the case of rotating frames).
In K there will appear fictitious forces such as the centrifugal and the Coriolis forces,
and, as a consequence, force-free motion will look very complicated. There exist, in
fact, specific frames of reference with respect to which force-free motion is always
uniform and rectilinear. They are defined as follows.

Definition. Reference frames with respect to which Law I has the analytical form
7(t) = 0 are called inertial frames.

In fact, the first of Newton’s laws defines the class of inertial frames. This is the
reason why it is important in its own right and is more than just a special case of Law
II. With respect to inertial frames the second law then has the form

mi(t) = K |
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where K is the resultant of the forces applied to the body. Thus Newton’s second law
takes a particularly simple form in inertial systems. If one chooses to describe the
motion by means of reference frames that are accelerated themselves, this fundamen-
tal law will take a more complicated form although it describes the same physical
situation. Besides the resultant K there will appear additional, fictitious forces that
depend on the momentary acceleration of the noninertial system.

The inertial systems are particularly important because they single out the group
of those transformations of space and time for which the equations of motion (i.e. the
equations that follow from Newton’s laws) are form invariant (i.e. the structure of the
equations remains the same). In Sect. 1.13 we shall construct the class of all inertial
frames. The following proposition is particularly important in this connection.

1.3 Inertial Frames in Relative Motion

Let K be an inertial frame. Any frame K’ that moves with constant velocity w
relative to K is also inertial (see Fig. 1.2).

Proof The position vector r(¢) with respect to K becomes r'(¢t) = r(t) — wt with
respect to K. Since w is constant, there follows #'(t) = ¥(¢r) = 0. All force-free
motions satisfy the same differential equation (1.6) in either reference system, both
of which are therefore inertial frames. O

The individual solution (1.5) looks different in K than in K': if the systems coincide
at ¢ = 0, the initial condition (#°, v°) with respect to the first is equivalent to the
initial condition (r°, v® — w) with respect to the second.

Fig. 1.2 If K is an inertial
system, then so is every K’ @
whose axes are parallel to

those of K and which moves
with constant velocity w @
relative to K

|
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1.4 Momentum and Force

In Law IT we identify “motion” with the momentum:
PO E mit) =mv , (1.7)

i.e. the product of inertial mass and momentary velocity. The second law, when
expressed as a formula, then reads?

d

—p®) =K@, 5, t 1.8

d ZP( ) (r,r, 1) (1.8a)
or, if the inertial mass is independent of the state of motion,

mr(t)=K(r, F, t) . (1.8b)

If the second form (1.8b) applies, the proportionality factor m, the inertial mass
of the body, can be determined, with respect to a sample body of reference mass m,
by alternatively exposing the body and the sample to the same force field and by
comparing the resultant accelerations: their ratio fulfills m/m; = [FV|/|F|.

The mass of macroscopic bodies can be changed by adding or removing matter.
In nonrelativistic physics at macroscopic dimensions mass is an additive quantity;
that is, if one joins two bodies of masses m | and m,, their union has mass (m; +m;).
Another way of expressing this fact is to say that mass is an extensive quantity.

In the realm of physics at microscopic dimensions one finds that mass is an
invariant, characteristic property. Every electron has the mass m. = 9.11 x 103! kg,
a hydrogen atom has a fixed mass, which is the same for any other hydrogen atom,
all photons are strictly massless, etc.

The relationship (1.7) holds only as long as the velocity is small as compared to
the speed of light ¢ ~ 3 x 108 m/s. If this is not the case the momentum is given by
a more complicated formula, viz.

m
L — 1.9
PO) = () (1.9)

where c is the velocity of light (see Chap.4). For |v| « ¢ the expressions (1.9)
and (1.7) differ by terms of order (9(|v|2/c2). For these reasons — mass being an
invariant property of elementary particles, and its role in the limit of small velocity
v — 0 — one also calls the quantity m the rest mass of the particle. In the older
literature, when considering the quotient m//1 — v2(¢)/c2, one sometimes talked
about this as the moving, velocity dependent mass. It is advisable, however, to avoid
this distinction altogether because it blurs the invariant nature of rest mass and hides

3We have interpreted “change of motion” as the time derivative of the momentum. Law II does not
say this so clearly.


http://dx.doi.org/10.1007/978-3-662-55490-6_4

8 1 Elementary Newtonian Mechanics

an essential difference between relativistic and nonrelavistic kinematics. In talking
about mass we will always have in mind the invariant rest mass.

We assume the force K (r, r, t) to be given a priori. More precisely we are talking
about a force field, i.e. a vector-valued function over the space of coordinates and, if
the forces are velocity dependent, the space of velocities. At every point of this six-
dimensional space where K is defined this function gives the force that acts on the
mass point at time ¢. Such force fields, in general, stem from other physical bodies,
which act as their sources. Force fields are vector fields. This means that different
forces that are applied at the same point in space, at a given time, must be added
vectorially.

In Law III the notion “action” stands for the (internal) force that one body exerts on
another. Consider a system of finitely many mass points with masses m; and position
vectors r;(t),i =1, 2, ..., n. Let F;; be the force that particle i exerts on particle
k. One then has F;; = —F};. Forces of this kind are called internal forces of the n-
particle system. This distinction is necessary if one wishes to describe the interaction
with further, possibly very heavy, external objects by means of external forces. This is
meaningful, for instance, whenever the reaction on the external objects is negligible.
One should keep in mind that the distinction between internal and external forces is
artificial and is made only for practical reasons. The source of an external force can
always be defined to be part of the system, thus converting the external to an internal
force. Conversely, the example discussed in Sect. 1.7 below shows that the two-
body problem with internal forces can be reduced to an effective one-body problem
through separation of the center-of-mass motion, where a fictitious particle of mass
W = mymy/(m; 4+ my) moves in the field of an external force.

1.5 Typical Forces. A Remark About Units

The two most important fundamental forces of nature are the gravitational force and
the Coulomb force. The other fundamental forces known to us, i.e. those describing
the strong and the weak interactions of elementary particles, have very small ranges
of about 10~!% and 10~'8 m, respectively. Therefore, they play no role in mechanics
at laboratory scales or in the planetary system.

The gravitational force is always attractive and has the form

r, —rg

Fki = —Gmimk (110)

lri —rel®

This is the force that particle k with mass m; applies to particle i whose mass is m;.
It points along the straight line that connects the two, is directed from i to k, and
is inversely proportional to the square of the distance between i and k. G is New-
ton’s gravitational constant. Apart from G, (1.10) contains the gravitational masses
(heavy masses or weights) m; and m; . These are to be understood as parameters char-
acterizing the strength of the interaction. Experiment tells us that gravitational and
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inertial masses are proportional to one another (“all bodies fall at the same speed”),
i.e. that they are essentially of the same nature. This highly remarkable property of
gravitation is the starting point for Einstein’s equivalence principle and for the theory
of general relativity. If read as the gravitational mass, m; determines the strength
of the coupling of particle i to the force field created by particle k. If understood as
being the inertial mass, it determines the local acceleration in a given force field.
(The third of Newton’s laws ensures that the situation is symmetric in i and k, so
that the discussion of particle & in the field of particle i is exactly the same.)

In the case of the Coulomb force, matters are different: here the strength is deter-
mined by the electric charges e; and ey, of the two particles,

r, —rg
Fii = kceiep———— (L.11)
[ri — 7l

which are not correlated (for macroscopic bodies) to their masses. A ball made of
iron with given mass may be uncharged or may carry positive or negative charges.
The strength as well as the sign of the force are determined by the charges. For sign
e; = sign ey it is repulsive; for sign e¢; = —sign ¢y it is attractive. If one changes the
magnitude of e, for instance, the strength varies proportionally to ¢;. The accelera-
tions induced by this force, however, are determined by the inertial masses as before.
The parameter k¢ is a constant that depends on the units used (see below).

Apart from these fundamental forces we consider many more forms of forces that
may occur or may be created in the macroscopic world of the laboratory. Specific
examples are the harmonic force, which is always attractive and whose magnitude is
proportional to the distance (Hooke’s law), or those force fields which arise from the
variety of electric and magnetic fields that can be created by all kinds of arrangements
of conducting elements and coils. Therefore it is meaningful to regard the force field
on the right-hand side of (1.8) as an independent element of the theory that can be
chosen at will. The equation of motion (1.8) describes, in differential form, how the
particle of mass m will move under the influence of the force field. If the situation is
such that the particle does not disturb the source of the force field in any noticeable
way (in the case of gravitation this is true whenever m << Mgoyce) the particle may
be taken as a probe: by measuring its accelerations one can locally scan the force
field. If this is not a good approximation, Law III becomes important and one should
proceed as in Sect. 1.7 below.

We conclude this section with a remark about units. To begin with, it is clear that
we must define units for three observable quantities: time, length in coordinate space,
and mass. We denote their dimensions by 7', L, and M, respectively:

t1=T, [rl=L, [ml=M,

the symbol [x] meaning the physical dimension of the quantity x. The dimensions
and measuring units for all other quantities that occur in mechanics can be reduced to
these basic units and are therefore fixed once a choice is made for them. For instance,
we have
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momentum: [p] = MLT™",

force: [K]1= MLT?,

energy = force x displacement: [E]= ML>T~?,

pressure = force/area: [b]= ML 'T2.

For example, one can choose to measure time in seconds, length in centimeters,
and mass in grams. The unit of force is then 1 gcms™2 = 1dyn, the energy unit is
1gem?s™2 = lerg, etc. However, one should follow the International System of
Units (SI), which was agreed on and fixed by law for use in the engineering sciences
and for the purposes of daily life. In this system time is measured in seconds, length
in meters, and mass in kilograms, so that one obtains the following derived units:

force: 1kgms ™ = 1Newton (= 10° dyn) ,

energy: lkgm?s~2 = 1Joule (= 107 erg) ,

pressure: 1kgm™!s™2 = 1 Pascal = 1 Newton/m? .

If one identifies gravitational and inertial mass, one finds the following value for
Newton’s gravitational constant from experiment:

G = (6.67428 £ 0.00067) x 107" m kg~ 's72 .

For the Coulomb force the factor «c in (1.11) can be chosen to be 1. (This is the
choice in the Gaussian system of electrodynamics.) With this choice electric charge
is a derived quantity and has dimension

le] = M'PLPT! (ke =1) .
If instead one wishes to define a unit for charge on its own, or, equivalently, a unit
for another electromagnetic quantity such as voltage or current, one must choose the

constant k¢ accordingly. The SI unit of current is 1 A. This fixes the unit of charge,
and the constant in (1.11) must then be chosen to be

=2 x 1077,

Kc =
47'[80

where gy = 107 /47 ¢? and c is the speed of light, see (4.1) below.

1.6 Space, Time, and Forces

At this point it may be useful to give a provisional summary of our discussion of
Newton’s laws I-III. The first law shows the uniform rectilinear motion (1.5) to be
the natural form of motion of every body that is not subject to any forces. If we send
such a body from A to B it chooses the shortest connection between these points, a
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straight line. As one may talk in a physically meaningful manner only about motion
relative to an observer, Law I raises the question in which frames of reference does
the law actually hold. In fact, Law I defines the important class of inertial systems.
Only with respect to these does Law II assume the simple form (1.8b).

The space that supports the motions described by Newton’s equations is a three-
dimensional Euclidean space, i.e. a real space where we are allowed to use the well-
known Euclidean geometry. A priori this is an affine space. By choosing an origin
we make it a real vector space, here R3. Important properties of the space of physical
motions are its homogeneity (“it looks the same everywhere”) and its isotropy (“all
directions are equally good”). Time is one-dimensional; it is represented by points
on the real line. In particular, there is an ordering relation which classifies times into
“earlier” and “later”, past and future.

Combining the momentary position of a particle and the time at which it takes on
that position, we obtain an event (x(t), t) € R® x Ry, a point in the combined space—
time continuum. This definition is particularly important for relativistic physics,
which exhibits a deeper symmetry between space and time, as we shall see later.

In comparing (1.2) and (1.8b) notice the asymmetry between the space and the
time variables of a particle. Let T again be the proper time as in (1.1), and ¢ the
time measured by an observer. For the sake of simplicity we choose the same unit
for both, i.e. we set «®) = 1. Equation (1.2) tells us that time runs uniformly and
does not depend on the actual position of the particle nor on the forces which are
applied to it. In contrast, the equation of motion (1.8) describes as a function of time
the set of all possible trajectories that the particle can move on when it is subject
to the given force field. Another way of expressing this asymmetry is this: r(¢) is
the dynamical variable. Its temporal evolution is determined by the forces, i.e. by
the dynamics. The time variable, on the other hand, plays the role of a parameter
in nonrelativistic mechanics, somewhat like the length function in the description
of a curve in space. This difference in the assignment of the variables’ roles is
characteristic of the nonrelativistic description of systems of mass points. It does not
hold for continuum mechanics or for any other field theory. It is modified also in
physics obeying special relativity where space and time hold more symmetric roles.

Having clarified the notions in terms of which Newton’s laws are formulated, we
now turn to an important application: the two-body problem with internal forces.

1.7 The Two-Body System with Internal Forces

1.7.1 Center-of-Mass and Relative Motion

In terms of the coordinates |, r, of the two particles whose masses are m and m5,
the equations of motion read

mify = Fo1, mofy=Fpp,=—Fy . (1.12)
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The force that particle “2” exerts on particle “1” is denoted by F»;. We will adopt this
notation throughout: F; is the force field that is created by particle number k and
is felt by particle number i. Taking the sum of these we obtain the equation m 7| +
moF, = 0, which is valid at all times. We define the center-of-mass coordinates

def 1
rs = ———(mr| +mprsy) ; 1.13
s m1+m2( 17 212) (1.13)

this means that #s = 0, i.e. the center of mass moves at a constant velocity. The
dynamics proper is to be found in the relative motion. Define

r e . (1.14)

By inverting (1.13) and (1.14) we have (see also Fig. 1.3)

4" il (1.15)
ry=rs+-———r, ro=rs— ———7r. i
l miy + my mip + m;

Inserting these in (1.12) and using ¥s = 0, we find that the equation of motion in the
relative coordinates becomes

[,L'f = F21 . (116)

The mass parameter

def MMy
mi + my

is called the reduced mass. By separating the center of mass we have reduced the
two-body problem to the motion of one particle with mass .

1.7.2 Example: The Gravitational Force Between Two
Celestial Bodies (Kepler’s Problem)

In the case of the gravitational interaction (1.10), (1.12) becomes

. mimy ry —rjp mymy r
mr; = -G 2 =-G 2 T
r r r r
(1.17)
. mimy ry —rj mymy r
myf; = —G— =+G—— -,
r r reor
where r = ry — r, and r = |r|, from which follow the equations of motion in

center-of-mass and relative coordinates
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Fig. 1.3 a Definition of
center-of-mass and relative
coordinates for the two-body
system. The relative
coordinate r is independent
of the choice of origin.

b Force and reaction force in
the two-body system. These
give rise to a central force in
the equation of motion for
the relative coordinate

-
3

. . mymy r
Fs=0 and ur=-G -

r2 o’

We can read off the behavior of the system from these equations: the center of mass
moves uniformly along a straight line (or remains at rest). The relative motion is
identical to the motion of a single, fictitious particle of mass p under the action of
the force

mymy r

-G

r2 r

Since this is a central force, i.e. one which always points towards the origin or away
from it, it can be derived from a potential U(r) = —A/r with A = Gmm,. This
can be seen as follows.

Central forces have the general form F(r) = f(r)F, where # = r/r and f(r) is
a scalar function that should be (at least) continuous in the variable r = |r|. Define
then

Ue) - Um) =~ [ s

where 7 is an arbitrary reference value and where U (ry) is a constant. If we take the
gradient of this expression this constant does not contribute and we obtain

VU(r) = dléfr)w =[OV +y 422

=—fr/r.

Thus, F(r) = —VU(r). In the case of central forces the orbital angular momentum
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def .
l=purxr

is conserved; both its magnitude and its direction are constants in time. This follows
from the observation that the acceleration is proportional to r: dI /dt = ur x ¥ = 0.

As a consequence, the motion takes place entirely in a plane perpendicular to /,
namely the one spanned by r° and v°. Since the motion is planar, it is convenient to
introduce polar coordinates in that plane, viz.

x(@)=r()cosp(), y@)=r()sing(t), (1.18)
so that the components of the angular momentum are

ly=1,=0, I, =ur*¢=1=const,
and, finally,

é=1/ur*. (1.192)

Furthermore the total energy, i.e. the sum of kinetic and potential energy, is conserved.
In order to show this start from the equation of motion for a particle in the force field
of a more general potential U (r)

ui = —VU(r) .

This is an equation relating two vector fields, the acceleration multiplied by the
reduced mass on the left-hand side, and the gradient field of the scalar function U (r)
on the right-hand side. Take the scalar product of these vector fields with the velocity
I to obtain the scalar equation

pi ¥ = —F-VUr) .

The left-hand side is the time derivative of (u/2)i>. On the right-hand side, and with
the decomposition r = (x, y, z), one has

iVU(r)_de)U(r) dydUu(r) dzaU(r)
T dr ox dr 9y dr 9z

which is nothing but the fotal time derivative of the function U (r(¢)) along smooth
curves r(¢) in R3. If these are solutions of the equation of motion, i.e. if they fulfill
ur -¥ = —i - VU(r), one obtains

d (1
wi ¥ +7-VU(@r) = 5(5’”2 + U(r)) =0, hence

dE 0 here E — . 2+ U(r)
— =0, where = —ur r).
dt 2“
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Thus, even though in general E(r, ) is a function of the position r and the velocity

F, it is constant when evaluated along any solution of the equation of motion. Later on

we shall call this kind of time derivative, taken along a solution, the orbital derivative.
For the problem that we are studying in this section this result implies that

E=1w?+U@) = iu(* +r*¢*) + U(r) = const . (1.20)

We can extract 7 as a function of  from (1.20) and (1.19):

— 2
i \/2(E MU(F)) _ MIZrZ ' (1.19b)

Equations (1.19a) and (1.19b) form a system of two coupled ordinary differential
equations of first order. They were obtained from two conservation laws, the con-
servation of the modulus of the angular momentum and the conservation of the total
energy of the relative motion. Although this coupled system is soluble, see Sect. 1.29
and Practical Example 6 below, the procedure is somewhat cumbersome. It is simpler
to work out a parametric form of the solutions by obtaining the radial variable as a
function of the azimuth, r = r(¢) (thereby losing information on the evolution of
r(t) as a function of time, though).

By “dividing” (1.19b) by (1.19a) and making use of dr/d¢ = (dr/dt)/(d¢/dt),
we find that

1 dr \/ZM(E —U@) 1

r2dp 2 P2
This differential equation is of a type that can always be integrated. This means that
its solution is reducible to ordinary integrations. It belongs to the class of ordinary
differential equations with separable variables, cf. Sect. 1.22 below, for which gen-
eral methods of solution exist. In the present example, where U (r) = —A/r, there
is a trick that allows to obtain solutions directly, without doing any integrals. It goes
as follows.

Setting U(r) = —A/r and replacing r(¢) by the function o (¢) = 1/r(¢), we
obtain the differential equation

do \/ZM(E—i-Aa) 5
_Se_ HET AT
de 12

where we have made use of do/d¢ = —r2dr/d¢.
It is convenient to define the following constants:

e ¢ 2EI?
pdg—, e 1+ —-.
An A2
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The parameter p has the dimension of length, while ¢ is dimensionless. Indeed, A
has the same physical dimension as an energy times a length. Likewise /> has the
dimension (energy x mass xlength?). Hence, 1% /(A ) is a length, ¢ is dimensionless.
Inserting these definitions the differential equation becomes

() +(-3) =5

— c——) =—.

de p p’

This equation is solved by substituting o — 1/p = (&/p) cos ¢. Rewritten in terms
of the original variable 7 (¢) the general solution of the Kepler problem is

p

r(@) = l+e&cos¢

(1.21)

Before proceeding to analyze these solutions we remark that (1.19a) is a con-
sequence of the conservation of angular momentum and is therefore valid for any
central force. The quantity r2¢ /2 is the surface velocity at which the radius vector
moves over the plane of motion. Indeed, if r changes by the amount dr, the radius
sweeps out the area dF = |r x dr|/2. Thus, per unit of time,

dF 1 l 1,.
— = |r xF| = — = —r’¢ = const . (1.22)
a2 w2

This is the content of Kepler’s second law (1609):

The radius vector from the sun to the planets sweeps out equal areas in equal
times.

We note under which conditions this statement holds true: it applies to any central
force but only in the two-body problem; for the motion of a planet it is valid to the
extent the interaction with the other planets is negligible compared to the action of
the sun.

In studying the explicit form of the solutions (1.21) it is useful to introduce Carte-
sian coordinates (x, y) in the plane of the orbit. Equation (1.21) is then turned into a
quadratic form in x and y, and the nature of the Kepler orbits is made more evident:
they are conics. One sets

x=rcos¢p+c, y=rsing,
and chooses the constant ¢ so that in the equation

rP=x—-c’+y =[p—ercosgl’ =[p—ex — o))
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the terms linear in x cancel. As long as ¢ # 1, this is achieved by the choice

&Ep
c= .
1 —g2

Finally, with the definition

def P

=1

the function (1.21) becomes

i.e. an equation of second order containing only the squares of x and y. Here two
distinct cases are possible.

(i) e > 1, ie. ¢* > a?. In this case (1.21") describes a hyperbola. The center of
the force field lies at one of the foci. For the attractive case (A and p are positive) the
branch of the hyperbola that opens towards the force center is the physical one. This
applies to the case of gravitational interaction (cf. Fig. 1.4). These concave branches
describe the orbits of meteorites whose total energy is positive. Physically speak-
ing, this means that they have enough kinetic energy to escape from the attractive
gravitational field to infinity.

The branch turning away from the force center is the relevant one when the force
is repulsive, i.e. if A and p are negative. This situation occurs in the scattering of
two electric point charges with equal signs.

(i) ¢ < 1, i.e. ¢ < a. In this case the energy E is negative. This implies that
the particle cannot escape from the force field: its orbits must be finite everywhere.
Indeed, (1.21") now describes an ellipse (cf. Fig. 1.5) with

Fig. 1.4 If in the Kepler y
problem the energy E (1.20)
is positive, the orbits of
relative motion are branches
of hyperbolas. The figure
shows the relevant branch in
the case of an attractive force
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Fig. 1.5 If the energy (1.20) |
is negative, the orbit is an

ellipse. The system is bound

and cannot escape to infinity a

.. . p A
semimajor axis a = —— = ———_ ,
1—¢2 2(—E)

semiminor axis b = \/m = ./pa =

l

V2u(=E)

The orbit is a finite orbit. It is closed and therefore periodic. This is Kepler’s first law:
the planets move on ellipses with the sun at one focus. This law holds true only for the
gravitational interaction of two bodies. All finite orbits are closed and are ellipses (or
circles). In Sect. 1.24 we return to this question and illustrate it with a few examples
for interactions close to, but different from, the gravitational case. The area of the
orbital ellipse is F' = wab = ma,/ap. If T denotes the period of revolution (the
time of one complete circuit of the planet on its orbit), the area law (1.22) says that
F = TI/2u. A consequence of this is Kepler’s third law (1615) which relates the
third power of the semimajor axis to the square of the period, viz.

3
a A G(my +m
T __ A onste Gmtm) (1.23)

T2 (2n)*n 2n)?
If one neglects the mutual interactions of the planets compared to their interaction
with the sun and if their masses are small in comparison with the solar mass, we
obtain:

For all planets of a given planetary system the ratio of the cubes of the semimajor
axes to the squares of the periods is the same.

Of course, the special case of circular orbits is contained in (1.21"). It occurs
when ¢ = 0, i.e. when £ = —/,LAZ/ZZZ, in which case the radius of the orbit has the
constant value a = I>/uA.

The case ¢ = 1 is a special case which we have so far excluded. Like the circular
orbit it is a singular case. The energy is exactly zero, E = 0. This means that the
particle escapes to infinity but reaches infinity with vanishing kinetic energy. The
orbit is given by
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y:+2px —2pc—p* =0,

where ¢ may be chosen at will, e.g. ¢ = 0. The orbit is a parabola.

So far we have studied the relative motion of two celestial bodies. It remains to
transcribe this motion back to the true coordinates by means of (1.15). As an example
we show this for the finite orbits (ii). Choosing the center of mass as the origin, one
has

ny mi

Si=—r, S5=——
mp +mp my + my

The celestial bodies 1 and 2 move along ellipses that are geometrically similar to the
one along which the relative coordinate moves. They are reduced by the scale factors
my/(my + my) and my/(m| + m;), respectively. The center of mass S is a common
focus of these ellipses:

= - () = — .

S = ,
19) my+my 1+ ecos¢ my+my 1+ ecos¢

(S =18:1).

Figure 1.6a shows the case of equal masses; Fig. 1.6b shows the case m| < m;.

Fig. 1.6 Upon a
transformation of the relative
motion of Fig. 1.5 to the real
motion of the two celestial
bodies, both move on
ellipses about the center of
mass S which is at one of the
foci. a shows the situation
for equal masses m| = ma; b
shows the case my > m.
Cf. Practical Example 1.1
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1.7.3 Center-of-Mass and Relative Momentum
in the Two-Body System

As we have seen, the equations of motion can be separated in center-of-mass and
relative coordinates. Similarly, the sum of the momenta and the sum of the angular
momenta can be split into parts pertaining to the center-of-mass motion and parts
pertaining to the relative motion. In particular, the total kinetic energy is equal to
the sum of the kinetic energies contained in the center-of-mass and relative motions,
respectively. These facts are important in formulating conservation laws.

Let P be the momentum of the center of mass and p the momentum of the relative
motion. We then have, in more detail,

def . . .
P= (m1 +ma)is = miiy +mafy = p; + p,

def

. 1
P = pur= m(mZPl —m1p2) )

or, by inverting these equations,

—p+ mi P- _ + ny P
Pr=p my + my > P2=7P my+my

The total kinetic energy is

2 2 2 PZ
PP

T\ + T, = SR ST ——
YT oy T 2ma 2, 2(my +mo)

(1.24)

Thus, the kinetic energy can be written as the sum of the kinetic energy of relative
motion, p?/2u, and the kinetic energy of the center of mass, P2/2(m1 + m5y). We
note that there are no mixed terms in p and P.

In a similar way we analyze the sum L of the angular momenta I} = mr; X 7
and I, = myr, X F,. One finds that

m3 mi
L=1l+1,= ] ]
o ars X Fsm o ma) r|:m1(m1 + my)? +m2(m1 +m2)2:|
=(m1 +m2)rs X I"s + ur x F= ls +lrel . (125)

The total angular momentum splits into the sum of the angular momentum Ig relative
to the origin O (which can be chosen arbitrarily) and the angular momentum of the
relative motion I;. The first of these, Is, depends on the choice of the reference
system; the second, /., does not. Therefore, the relative angular momentum is the
relevant dynamical quantity.
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1.8 Systems of Finitely Many Particles

These notions and definitions generalize to systems of an arbitrary but finite number
of particles as follows. We consider n mass points (m;, my, ..., m,), subject to
the internal forces F;; (acting between i and k) and to the external forces K;. We
assume that the internal forces are central forces, i.e. that they have the form

ry—r;

Fi = Fu(rit) (rie & 1ri — i) (1.26)

Tik

where Fj;(r) = Fy;(r) is a scalar and continuous function of the distance r. (In
Sect. 1.15 we shall deal with a somewhat more general case.) Central forces can be
derived from potentials

Uie(r) = — / ,- Fy(rhdr", (1.27)

ro

and we have F;; = —V U, (r), where

;= \/(xa) _ x<k>)2 + (0 — y<k))2 + (2 — Z(k))2 ,

and the gradient is given by

0 d d
Vi = , , .
ax® * y® * 57®

(Remember that Fj; is the force that i exerts on k.) The equations of motion read

mify=Fy+F3+ - +F, +K;,
myfy=Fp+Fn+ - +Fp+ Ky,

mnfn=F1n+F2n+"'+Fn—ln+Kn’ or (128)

n
mii:iZZFki—i-Ki, with Fy; = —Fy .
ki
With these assumptions one proves the following assertions.
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1.9 The Principle of Center-of-Mass Motion

The center of mass S of the n-particle system behaves like a single particle of
mass M = >_!_, m; acted upon by the resultant of the external forces:

n 1 n
MFg ZZKi ,  where rsdéfMZmiri . (1.29)
i=1 i=1

This principle is proved by summing the (1.29) over all particles. The internal
forces cancel in pairs because Fy; = —F;;, from Newton’s third law.

1.10 The Principle of Angular-Momentum Conservation

The time derivative of the total angular momentum equals the sum of all external
torques:

n

%(Zl,):i}m xK;. (1.30)
i

i=1

Proof For a fixed particle index i

. ri X (ry—r;)
mir; X F; = ZFik(rik)r+ +ri xK;.
kot ik

The left-hand side is equal to

d .
mia(r,» Xr,') = al, .
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Taking the sum over all i yields the result (1.30). The internal forces cancel pair-

wise because the cross product is antisymmetric while the scalar function Fj; (r;x) is
symmetric in i and k. (]

1.11 The Principle of Energy Conservation

The time derivative of the total internal energy is equal to the total power (work
per unit time) of the external forces, viz.

n

d
E(T +U) = Z(v,- -K;), where

i=1

T:%Zn:mf"'?zznlﬂ and (1.31)
i=1 i=1
u =Z Z Ui(rie) = U(r1, ..., 1) .
i=1 k=i+1

Proof For fixed i one has

mif; = =V, ZUik(rik) +K;.
ki

Taking the scalar product of this equation with 7; yields

. 1d . . .
m;r; -r; :Ea(m,rlz) =—ri~Vi;Uik(rik)+r,~-K,~ .

Now we take the sum over all particles

n

%(Z%mzr?):_z i’i~V,‘Uik(r,‘k)—|—Zi'i.Ki
: #i i=1

i=1 k=1
j

and isolate the terms i = a, k = bandi = b, k = a, with b > a, of the double sum
on the right-hand side. Their sum is

d

i'a'VuUab'f""b'VbUba:[ia'vu‘i":b'vb]Uab:gUaba
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because Uy, = U,,. From this it follows that

d n 1 . n n n )
a[zzmir?—i—z Z U,-k(rik):|:er-Kj. 0
i=1 j=1

i=1 k=i+1

We consider next an important special case: the closed n-particle system.

1.12 The Closed n-Particle System

A system is said to be closed if all external forces vanish. Proposition 1.9 reduces
now to

n
. . . def
Mrs=0, or Mrgs= E m;F; = P = const, and

i=I

1 _ .
rs(t) = MPt +rs(0) with P = Z:‘pl- = const .
1=
This is the principle of conservation of momentum: the total momentum of a closed

system is conserved.
Proposition 1.10 reads

n n
Zr,- X p;, = Zli = L = const .
i=1 i=1

The total angular momentum is also an integral of the motion.
Proposition 1.11 finally becomes

noo
T+U=Zzp—n;i+ZUik(rik) = E = const .
i=1 k>i

In summary, the closed n-particle system is characterized by 10 integrals or constants
of the motion, viz.

P, the total momentum; P = const Momentum Conservation
rs(t) — %Pt =rs(0) Center-of-Mass Principle

E =T+U = P + Ti1 + U  Conservation of Energy
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L = 37 l; = rs x P+l Conservation of
Angular Momentum

The quantities {rs(0), P, L, E} form the ten classical constants of the motion of the
closed n-particle system.

This remarkable result calls for questions and some comments:
(i) Perhaps the most obvious question is whether the existence of ten integrals of
the motion guarantees integrability of the equations of motion, and if so, for which
number n of particles it does so. The answer may seem surprising at this point:
a closed two particle system whith central forces is indeed integrable, the general
closed three particle system is not. In other terms, while the constants of the motion
guarantee integrability for n = 2, this is not true for n > 3. The reason for this
observation is that, in addition to be conserved, the integrals of the motion must
fulfill certain conditions of compatibility. We shall come back to this question in
Sect.2.37.
(i) Why are there just ten such integrals? The answer to this question touches upon
a profound relationship between invariance of a physical system under space-time
coordinate transformations and conservation laws. It turns out that the most general
affine transformation that relates one inertial system to another depends on the same
number ten of real parameters. This is what is worked out in the next section. Here
and in Chap. 2 it will become clear that there is a one-to-one correspondence between
these parameters and the ten integrals of the motion.

1.13 Galilei Transformations

It is not difficult to verify that the most general affine transformation g that maps
inertial frames onto inertial frames must have the following form:

r—>r'=Rr+wt+a with Re 03), detR=+1or —1,

g
t—>t =M+s with A=+1 or —1. (1.32)
g

Here R is a rotation, w a constant velocity vector, @ a constant vector of dimension
length. We analyze this transformation by splitting it into several steps, as follows.

1. A shift of the origin by the constant vector a:
rr=r+a.

2. Uniform motion of K’ relative to K, with constant velocity, such that K and K’
coincide at time ¢ = O:


http://dx.doi.org/10.1007/978-3-662-55490-6_2
http://dx.doi.org/10.1007/978-3-662-55490-6_2
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Fig. 1.7 Two Cartesian z' .z
coordinate systems that are

connected by a rotation about
the direction 7 by an angle ¢

r=r+wt.

3. A rotation whereby the system K’ is rotated away from K in such a way that
their origins are the same, as shown in Fig. 1.7, r’ = Rr. Let

r=(x=r,y=nz=n) r=x=r,y=r7=r).

When written in components, ' = Rr is equivalent to

3
r;:ZRikrk, i=1,2,3.
k=1

2

We must have r”> = r? (this is the defining condition for the rotation group), i.e.

3 3

3
Zri/”i, _ ZZZ Rix Rijrer, < Zrkrk , and thus

3
i=1 k=1 I=1 i=1 k=1

3 3
! |

E RixRiyy =38y, or E (R")i Ry =8y - (1.33)

iml

i=1

R is a real orthogonal 3 x 3 matrix. Equation (1.33) implies (detR)> = 1, i.e.
detR = +1 or —1. Equation (1.33) yields 6 conditions for the 9 matrix elements of
R. Therefore R depends on 3 free parameters, for example a direction 72 about which
K’ is rotated with respect to K and which is given by its polar angles (0, ¢) and the
angle ¢ by which K must be rotated in order to rearch K’ (see Fig. 1.7).

4. A shift of the time origin by the fixed amount s:

' =t+s.

Collecting all steps we see that the general transformation
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r r=Rr+wt+a
(5) = (") .34

with, initially, det R = +1 and A = +1, depends on 10 real parameters, viz.

g=glp, R, w,a,s).
——
R

There are as many parameters in the Galilei transformation as there are constants of
the motion in the closed n-particle system. The transformations g form a group, the
proper, orthochronous Galilei group Gl.“ In order to show this, we consider first the
composition of two subsequent transformations of this kind. We have

ri=RVr+wV+a®; 1 =1+sD,
r, = R(z)rl +wP +a®; n=1+59.

Writing the transformation from r( to r; in the same way,
ry = R(3)r0 +w +a®, =1+,

we read off the following relations
R® = R®.RD
w® = RPw" 4 @

a® =R®a® £ sOyp@ 4 4@ (1.35)
s® = @ 4 5O

which is again a Galilei transformation.
One now shows explicitly that these transformations do form a group by verifying
that they satisfy the group axioms:

1. There is an operation defining the composition of two Galilei transforms:
2(R?. 0, a® s@)gRV, wh, a® sV) = g(RD, w®, a®,s3) .

This is precisely what we verified in (1.35).

2. This composition is an associative operation: g3(g>g1) = (g3g2)g1. This is so
because both addition and matrix multiplication have this property.

3. There exists a unit element, E = g(1, 0, 0, 0), with the property g;E = Eg; =
g forall g; € GL.

4. Forevery g € Gi there is an inverse transformation g~ such that g - g=! = E.
This is seen as follows. Let g = g(R, w, a, s). From (1.35) one sees that g~ =
g(RT, —RTw, sRTw — RTa, —s) is its inverse. Indeed, one verifies

4The arrow pointing “upwards™ stands for the choice A = +1; that is, the time direction remains
unchanged. The plus sign stands for the choice det R = +1.
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g(RT, —R™w, sR"™w — R"a, —s5) g(R, w, a, s)
=g(R"R,R"w — R"w, R"a — sR™w + sRT™w — RTa, —s +s)
=g(10,0,0).

It will become clear later on that there is a deeper connection between the ten
parameters of the proper, orthochronous Galilei group and the constants of the motion
of the closed n-particle system of Sect. 1.12 and that it is therefore no accident that
there are exactly ten such integrals. We shall learn that the invariance of a mechanical
system under

(i) time translations t — t’ = t + s implies the conservation of total energy E of
the system;

(ii) space translations r — r’ = r + a implies conservation of total momentum
P of the system. The components of a correspond to the components of P in
the sense that if the system is invariant only under translations along a fixed
direction, then only the projection of P onto that direction is conserved;

(iii) rotations r — r’ = R(@)r about a fixed direction implies the conservation of
the projection of the total angular momentum L onto that direction.

The assertions (i—iii) are the content of a theorem by Emmy Noether, which
will be proved and discussed in Sect.2.19 and, in a somewhat more general form
in Sect.2.41.

Finally, one easily convinces oneself that in the center-of-mass motion the quantity

P
rs(0) =rs@) — Mt

stays invariant under the transformations r — r’ = r + wt.

We conclude this section by considering the choices det R = —1 and/or 1 =
—1 that we have so far excluded. In the Galilei transformation (1.34) the choice
A = —1 corresponds to a reflection of the time direction, or time reversal. Whether
or not physical phenomena are invariant under this transformation is a question
whose importance goes far beyond mechanics. One easily confirms that all examples
considered until now are indeed invariant. This is so because the equations of motion
contain only the acceleration ¥, which is invariant by itself, and functions of r:

P+ fr)=0.

By t — —t the velocity changes sign, ¥ +— —F. Therefore, the momentum p and
also the angular momentum I change sign. The effect of time reversal is equivalent
to reversal of motion. All physical orbits can be run over in either direction, forward
or backward.

There are examples of physical systems, however, that are not invariant under
time reversal. These are systems which contain frictional forces proportional to the
velocity and whose equations of motion have the form


http://dx.doi.org/10.1007/978-3-662-55490-6_2
http://dx.doi.org/10.1007/978-3-662-55490-6_2
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F+Kir+ f(r)=0.

With time reversal the damping caused by the second term in this equation would be
changed to an amplification of the motion, i.e. to a different physical process.

The choice det R = —1 means that the rotation R contains a space reflection.
Indeed, every R with det R = —1 can be written as the product of space reflection
(or parity) P:

1 0 0
P o -1 o).
0 0 -1

and a rotation matrix R with det R = +1, R = P - R. Note that P turns a coordinate
system with right-handed orientation into one with left-handed orientation.

1.14 Space and Time with Galilei Invariance

(i) The invariance of mechanical laws under translations (a) is a manifestation of the
homogeneity of the physical, three-dimensional space; invariance under rotations (R)
is an expression of its isotropy. Here we wish to discuss these relations a little further.
Imagine that we observe the motion of the sun and its planets from an inertial frame
K. In that frame we establish the equations of motion and, by solving them, obtain
the orbits as a function of time. Another observer who uses a frame K that is shifted
and rotated compared to Ky will describe the same planetary system by means of the
same equations of motion. The explicit solutions will look different in his system,
though, because he sees the same physics taking place at a different point in space
and with a different spatial orientation. However, the equations of motion that the
system obeys, i.e. the basic differential equations, are the same in either frame. Of
course, the observer in K may also choose his time zero differently from the one in
K, without changing anything in the physics that takes place. It is in this sense that
space and time are homogeneous and space, in addition, is isotropic. Finally, it is also
admissible to let the two systems K and Ky move with constant velocity w relative
to each other. The equations of motion depend only on differences of coordinate
vectors (x — x®)) and therefore do not change. In other words, physical motion is
always relative motion.

So far we have used the passive interpretation of Galilei transformations: the
physical system (the sun and its planets) are given and we observe it from different
inertial frames. Of course, one can also choose the active interpretation, that is,
choose a fixed inertial system and ask the question whether the laws of planetary
motion are the same, independent of where the motion takes place, of how the orbits
are oriented in space, and of whether the center of mass is at rest with respect to the
observer or moves at a constant velocity w.



30 1 Elementary Newtonian Mechanics

[Another way of expressing the passive interpretation is this: an observer located
at a point A of the universe will abstract the same fundamental laws from the motion
of celestial bodies as another observer who is located at a point B of the universe.
For the active interpretation, on the other hand, one would ask a physicist at B to
carry out the same experiments as a physicist whose laboratory is based at A. If
they obtain the same results and reach the same conclusions, under the conditions
on the relative position (or motion) of their reference frames defined above, physics
is Galilei invariant.]

(ii) Suppose we consider two physically connected events (a) and (b), the first of
which takes place at position x @ at time ¢, while the second takes place at position
x® at time #*. For example, we throw a stone in the gravitational field of the earth
such that at ¢ it departs from x ) with a certain initial velocity and arrives at x® at
time ¢”. We parametrize the orbit x that connects x® and x® and likewise the time
variable by

x=x(r) with x@=x(z,), x®=x(n),
t=t(r) with 1"=1(1,), " =1(w),

where 7 is a scalar parameter (the proper time). The time that a comoving clock
will show has no preferred zero. Furthermore, it can be measured in arbitrary units.
The most general relation between ¢ and t is then 7(t) = ot + 8 with o and
B real constants. Expressed in the form of a differential equation this means that
d?t/dr? = 0. Similarly, the orbit x () obeys the differential equation

d’x dr\?

02 + f(r) (dt) =0,
with df/dt = @ and where f is minus the force divided by the mass. The comparison
of these differential equations shows the asymmetry between space and time that
we noted earlier. Under Galilei transformations, ¢(t) = at + 8 becomes t'(t) =
ot + B + s; that is, time differences such as (1 — t?) remain unchanged. Time
t(t) runs linearly in 7, independently of the inertial frame one has chosen. In this
sense the time variable of nonrelativistic mechanics has an absolute character. No
such statement applies to the spatial coordinates, as will be clear from the following
reasoning.

We follow the same physical motion as above, from two different inertial frames
K (coordinates x, r) and K’ (coordinates x’, ¢). If they have the same orientation,
they are related by a Galilei transformation g € G/, so that

b b

e e e

('@ — x/(b))z _ (R(x(“) —x®) 4+ w( - tb))z

— ((x(“) — x(b)) + R_lw(t“ — tb))2 )
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(The last equation follows because the vectors z and Rz have the same length.) In
particular, the transformation law for the velocities is

v =R(v+R'w) and v =@ —w)’.

In observing the same physical process and measuring the distance between points
(a) and (b), observers in K and K’ reach different conclusions. Thus, unlike the time
axis, orbital space does not have a universal character.

The reason for the difference in the results obtained in measuring a distance is easy
to understand: the two systems move relative to one another with constant velocity
w. From the last equation we see that the velocities at corresponding space points
differ. In particular, the initial velocities at point (a), i.e. the initial conditions, are not
the same. Therefore, calculating the distance between (a) and (b) from the observed
velocity and the time difference gives different answers in K and in K'. (On the
other hand, if we chose the initial velocities in (a) to be the same with respect to K
and to K’, we would indeed find the same distance. However, these would be two
different processes.) The main conclusion is that, while it is meaningful to talk about
the spatial distance of two events taking place at the same time, it is not meaningful
to compare distances of events taking place at different times. Such distances depend
on the inertial frame one is using. In Sect.4.7 we shall establish the geometrical
structure of space—time that follows from these considerations.

1.15 Conservative Force Fields

In our discussion of the n-particle system (Sects. 1.8—1.12) we had assumed the
internal forces to be central forces and hence to be potential forces. Here we wish to
discuss the somewhat more general case of conservative forces.

Conservative forces are defined as follows. Any force field that can be represented
as the (negative) gradient field of a time-independent potential energy U (r),

F=-VU(r),

is called conservative. This definition is equivalent to the statement that the work
done by such forces along a path from r to r depends only on the starting point and
on the end point but is independent of the shape of that path. More precisely, a force
field is conservative precisely when the path integral

/ (F -ds) = —(U(r) = Uro)

0

depends on r and r( only. As already indicated, the integral can then be expressed
as the difference of the potential energies in r and r(. In particular, the balance of
the work done or gained along a closed path is zero if the force is conservative, viz.
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32
f(p-ds)zo,

for any closed path .

What are the conditions for a force field to be conservative, i.e. to be derivable from
a potential? If there is a potential U (which must be at least twice differentiable), the
equality of the mixed second derivatives 3>U /dydx = 8°U/dxdy (cyclicinx, y, z)
implies the relations

OF, OF,

=0 (plus cyclic permutations) .
ox dy

Thus the curl of F(r), i.e.

curl F =

def (0F, OdF, 0dF, 0dF, 0F, O0F,
(ay dz = 9z Ox  0x ay)’

must vanish. This is a necessary condition, which is sufficient only if the domain over
which the function U (r) is defined and where curl F vanishes is simply connected.
Simply connected means that every closed path that lies entirely in the domain can
be contracted to a point without ever meeting points that do not belong to the domain.
Let T be a smooth, closed path, let S be the surface enclosed by it, and let 72 be the
local normal to this surface. Stokes’ theorem of vector analysis then states that the
work done by the force F along the path t equals the surface integral over S of
the normal component of its curl:

j((F-ds)://df(curlF)-ﬁ.
T N

This formula shows the relationship between the condition curl F = 0 and the
definition of a conservative force field: the integral on the left-hand side vanishes,
for all closed paths, only if curl F vanishes everywhere.

We consider two examples, for the sake of illustration.
Example (i) A central force has vanishing curl, since

_df(or, o
(curlf(r)r)x =3 (Byz Bzy)

1
= d_f —(yz —zy) =0 (plus cyclic permutations) .
rr

Example (ii) The curl of the following force field does not vanish everywhere:

X
Fx=—BE, Fy=+BE, F,=0,
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where
— 2 2 —
o=x"+y- and B = const.

(This is the magnetic field around a straight, conducting wire.) It vanishes only
outside the z-axis, i.e. in R from which the z-axis (x = 0, y = 0) has been cut out.
Indeed, as long as (x, y) # (0, 0) we have

(curl F), = (curl F), =0,

1 2x2 1 2y?
(curlF)zzB E—F-FE—? =0.
For x = y = o = 0, however, the z-component does not vanish. An equivalent
statement is that the closed integral §(F - ds) vanishes for all paths that do not

enclose the z-axis. For a path that winds around the z-axis once one finds that

%(F-ds)=2nB.

This is shown as follows. Choose a circle of radius R around the origin that lies in
the (x, y)-plane. Any other path that winds around the z-axis once can be deformed
continuously to this circle without changing the value of the integral. Choose then
cylindrical coordinates (x = gcos¢, y = gsing, z). Then F = (B/0)és and
ds = o d¢pé,, where ey = —é, sing + é, cos ¢, and ¢ (F -ds) = B fOZ” d¢ = 2 B.
A path winding around the z-axis n times would give the result 2w n B.

Yet, in this example one can define a potential, viz.

U(r) = —Barctan (y/x) = —B¢ .
This function is unique over any partial domain of R? that avoids the z-axis. However,
as soon as the domain contains the z-axis this function ceases to be unique, in spite

of the fact that curl F vanishes everywhere outside the z-axis. Clearly, such a domain
is no longer simply connected.

1.16 One-Dimensional Motion of a Point Particle

Let g be the coordinate, p the corresponding momentum, and F'(q) the force. We
then have

1
g=—p: p=F(q) . (1.36)
m
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This is another way of writing the equation of motion. The first equation repeats the
definition of the momentum, F'(g) on the right-hand side of the second equation is
the force field (in one dimension).

The kinetic energy is T = mg*/2 = p?/2m. The function F(g) is assumed
to be continuous. In one dimension there is always a potential energy U(g) =
— q{i F(q’)dq’ such that F(q) = —dU(g)/dq. The total energy E = T + U is
conserved:

dE_ d(T+U)
dr ds o

0.

Indeed, calculating the derivatives of T and U one has

d(T +U) L.oLdu
o - Mdtag =q9md—Fi@}=0,

where use was made of the equation of motion m§ = F(q). Note that the time
derivative is not arbitrary but is taken along solutions g (t) of the equation of motion.
Such solutions are also called orbits of the system and, therefore, the time derivative
which is relevant here, is called the orbital derivative.

Take as an example the harmonic force F(q) = —kp, with « a real positive
constant, i.e. a force that is linear in the coordinate g and tends to drive the system
back to the equilibrium position gy = 0 (Hooke’s law),

In this example kinetic and potential energy are

1 p? 1
T=-mi*>=2" U@ =-«q?
ST =S (q) = 5Kq
Consider a particular solution of the equation of motion mg = —«gq, for instance the

one that starts at (g = —a, p = 0) attime r = 0,

q(t) = —acos(yk/mt), p(t) =avmksin(k/mt) .

The spatial motion which is actually seen by an observer is the oscillatory function
q(t) = —acos(y/k/mt) in coordinate space. Although this is a simple function of
time, it would need many words to describe the temporal evolution of the particle’s
trajectory to a third party. Such a description could go as follows: “The particle starts
atg = —a, where its kinetic energy is zero, its potential energy is maximal and equal
to the total energy U(q = a) = E = (1/2)ka?. It accelerates, as it is driven to the
origin, from initial momentum zero to p = a./mi at the time it passes the origin.
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At this moment its potential energy is zero, its kinetic energy Tyi, = E is maximal.
Beyond that point the particle is slowed down until it reaches its maximal position
g = a where its momentum vanishes again. After that time the momentum changes
sign, increases in magnitude until the particle passes the origin, then decreases until
the particle reaches its initial position. From then on the motion repeats periodically,
the period being T = 27 /m//x.”

The physics of the particle’s motion becomes much simpler to describe if one
is ready to accept a small step of abstraction: Instead of studying the coordinate
function ¢ (¢) in its one-dimensional manifold R alone, imagine a two-dimensional
space with abscissa g and ordinate p,

{R* , with coordinates (g, p)} ,

and draw the solutions (g(¢), p(¢)) as curves in that space, parametrized by time
t. In the example we have chosen these are periodic motions, hence closed curves.
Now, the actual physical motion becomes obvious and, in fact, quite simple: In the
two-dimensional space spanned by ¢ and p the particle moves on a closed curve,
reflecting the alternating behaviour of position and momentum, as well as of kinetic
and potential energies. Figures of this kind are shown below in Sect. 1.17.

These elementary considerations and the example we have given may be helpful
in motivating the following definitions.

We introduce a compact notation for the equations (1.36) by means of the follow-
ing definitions. With

def def def 1 def
x={xn=q. n=p}; f=[fléap, Fr=F@Q)} .

Egs. (1.36) are packed into one single differential equation for a two-component
variable

X =F(x,1). (1.37)

The solutions x; (t) = ¢(¢) and x,(t) = me(t) of this differential equation are called
phase portraits. The energy function E (g, p) = E(e(t), ¢(t)), when taken along
the phase curves, is constant.

The x are points of a phase space P whose dimension is dim [P = 2. One should
note that the abscissa g and the ordinate p, a priori, are independent variables that
span the phase space. The ordinate p becomes a function of ¢ only along solution
curves of (1.36) or (1.37). The physical motion “flows” across the phase space. To
illustrate this new picture of mechanical processes we consider two more examples.
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1.17 Examples of Motion in One Dimension

1.17.1 The Harmonic Oscillator

The harmonic oscillator is defined by its force law F(q) = —maw?q. The applied
force is proportional to the elongation and is directed so that it always drives the
particle back to the origin. The potential energy is then

U(g) = tma? (cf — qé) : (1.38)

where g can be chosen to be zero, without loss of generality. One has
¥=Fx) with xy=¢, xx=p, and

1 1
Fi=—p=—xy, Fr=F(@Q) =-mo’x,
m m
so that the equations of motion (1.37) read explicitly

1
X1 = —X2, Xop= —ma)2x1 .
m

The total energy is conserved and has the form

x5 15,
E=2—+§ma)x1=const.
n

One can hide the constants m and w by redefining the space, the momentum, and
time variables as follows:

1
a@Eovma@), 20 —=n0n, Zor.

Jm
This transformation makes the energy a simple quadratic form,
E = %[zf + z%] )
while time is measured in units of the inverse circular frequency w~! = T/27. One
obtains the system of equations

dZ(;(T) = 25(7) , dza(v) =—zi1(1) . (1.39)
T dT

It is not difficult to guess their solution for the initial conditions z;(t = 0) = 2,
22(t = 0) = 23. Itis
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Fig. 1.8 The harmonic
oscillator in one dimension:
71 is the (reduced) position,
2o the (reduced) momentum
variable. The upper part
shows the potential energy;
the lower part shows the
phase portraits for two
values of the energy

21(1) = (z?)z + (z2)2 cos(t — ¢),

(1) = — (z‘f)z + (z‘z’)z sin(t — @), where

) 0 2 2 0 2 2
sing = z,/ (Z?) +(Z(2)) , cosg =2,/ (Z?) +(zg) .

The motion corresponding to a fixed value of the energy E becomes particularly
clear if followed in phase space (z1, z2). The solution curves in phase space are
called phase portraits. In our example they are circles of radius +/2E, on which the
system moves clockwise. The example is completely symmetric in coordinate and
momentum variables. Figure 1.8 shows in its upper part the potential as a function
of z; as well as two typical values of the energy. In the lower part it shows the phase
portraits corresponding to these energies.

Note what we have gained in describing the motion in phase space rather than in
coordinate space only. True, the coordinate space of the harmonic oscillator is directly
“visible”. However, if we try to describe the temporal evolution of a specific solution
q(t) in any detail (i.e. the swinging back and forth, with alternating accelerations and
decelerations, etc.) we will need many words for a process that is basically so simple.
Adopting the phase-space description of the oscillator, on the other hand, means a
first step of abstraction because one interprets the momentum as a new, independent
variable, a quantity that is measurable but not directly “visible”. The details of the
motion become more transparent and are very simple to describe: the oscillation is
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Fig. 1.9 The plane
mathematical pendulum has
only one degree of freedom:
the deviation ¢ from the
vertical, or, equivalently, the
arcs = lg

F=-mgsiny

now a closed curve (lower part of Fig. 1.8) from which one directly reads off the time
variation of the position and momentum and therefore also that of the potential and
kinetic energy.

The transformation to the new variables z; = w+/mq and zo = p/./m shows
that in the present example the phase portraits are topologically equivalent to circles
along which the oscillator moves with constant angular velocity w.

1.17.2 The Planar Mathematical Pendulum

Strictly speaking, the planar pendulum is already a constrained system: a mass point
moves on a circle of constant radius, as sketched in Fig. 1.9. However, it is so simple
that we may treat it like a free one-dimensional system and do not need the full
formalism of constrained motion yet. We denote by ¢(#) the angle that measures the
deviation of the pendulum from the vertical and by s(¢) = l¢(¢) the length of the
corresponding arc on the circle. We then have

2

T = imi* = tmi*¢*

K ¢

U=/ mgsinga’ds’:mgl/ sing’dg’, or
0 0

U = —mgl[cosp — 1] .

‘We introduce the constants

=—¢°+1—cosp with o*=

def E 1 o def &
2 1

£E= — =
mgl 2w

AsinSect.1.17.1wesetz; = ¢, 7 = wt,and 7, = ¢/w. Thene = z%/2+1—cos 21,
while the equation of motion ml¢ = —mg sin ¢ reads, in the new variables,
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Ulgl|_ p

\/\/

Fig. 1.10 The potential energy U(q) = 1 — cos g of the plane pendulum, as well as a few phase
portraits p = 4/2(¢ — 1 + cosq), as a function of ¢ and for several values of the reduced energy
& = E/mgl. Note that in the text ¢ = z|, p = z». The values of ¢ can be read off the ordinate

dz dz )
=), 2= —sing (1) . (1.40)
dr dr

In the limit of small deviations from the vertical one has sinz; = z; + 0(zf) and

(1.40) reduces to the system (1.39) of the oscillator. In Fig. 1.10 we sketch the poten-
tial U (z;) and some phase portraits. For values of & below 2 the picture is qualitatively
similar to that of the oscillator (see Fig. 1.8). The smaller ¢, the closer this similar-
ity. For ¢ > 2 the pendulum always swings in one direction, either clockwise or
anticlockwise. The boundary ¢ = 2 between these qualitatively different domains
is a singular value and corresponds to the motion where the pendulum reaches the
uppermost position but cannot swing beyond it. In Sect. 1.23 we shall show that the
pendulum reaches the upper extremum, which is also an unstable equilibrium posi-
tion, only after infinite time. This singular orbit is called the separatrix; it separates
the domain of oscillatory solutions from that of rotating solutions.

Note that in Fig.1.10 only the interval ¢ € [—m, 4] is physically relevant.
Beyond these points the picture repeats itself such that one should cut the figure at
the points marked B and glue the obtained strip on a cylinder.

1.18 Phase Space for the n-Particle System (in RY)

In Sect. 1.16 we developed the representation of one-dimensional mechanical systems
in phase space. It is not difficult to generalize this to higher-dimensional systems such
as the n-particle system over R®. For this purpose we set
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def (1 def (1 de 1 def (2
PRINOREEN NONIIN U RE-Sc
def def def (1 det
X3 =27, xp = pV, X = p§ ... = p"

This allows us to write the equations of motion in the same compact form (1.37)
provided one defines

def 1 1 def 1 1 def 1
]: p)(()7 fzz_P;),---,fSnz_Pgn),
mi npy
def 1 def 1 def
-7:3n+1—-7:()a -7:311 -7:() ]_—6,':]_;(11)'
The original equations
jz(i) = F(i)(r(l), U LN AN A0 t) ,
O — Lpa)
m;
then read
(a1
The variable x = (x;, x2, ..., Xg,) summarizes the 3n coordinates and 3n momenta
r@ =0, y0 0) 0 pO =P, p ), i=1 0.

The n-particle system has 3n coordinates or degrees of freedom, f = 3n. (The
number of degrees of freedom, i.e. the number of independent coordinate variables,
will always be denoted by f.)

x is a point in phase space whose dimension is dimP = 2 f (= 6n, here). This
compact notation is more than a formal trick: one can prove a number of important
properties for first-order differential equations such as (1.41) that do not depend on
the dimension of the system, i.e. the number of components it has.

Remark: Very much like in coordinate space alone, in treating specific problems
of mechanics one should choose sets of coordinates in phase space which are opti-
mally adapted to the system one is studying. For instance, returning to the n-body
problem considered above, a good choice is the set of Jacobi coordinates for which
an interesting example may be found in Exercise 2.24 and its solution. The idea is
to introduce relative and center-of-mass coordinates and momenta for subsystems of
increasing particle number. Like in the two-body system this allows to identify the
physically relevant degrees of freedom and to separate them from the center-of-mass
motion. A system of relevance for celestial mechanics is the three-body problem
where one of the bodies is much heavier than the other two.
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1.19 Existence and Uniqueness of the Solutions of
x=F(x,1)

A striking feature of the phase portraits in Figs. 1.8 and 1.10 is that no two phase
curves ever intersect. (Point B of Fig. 1.10 seems an exception: the separatrix arriving
from above, the one departing towards the bottom, and the unstable equilibrium meet
at B. In reality they do not intersect because B is reached at different times in the
three cases; see below.) This makes sense on physical grounds: if two phase portraits
did intersect, on arriving at the point of intersection the system would have the choice
between two possible ways of continuing its evolution. The description by means
of (1.41) would be incomplete. As phase portraits, indeed, do not intersect, a single
point y € PP together with (1.41) fixes the whole portrait. This point y, which defines
the po~sitions and momenta (or velocities), can be understood as the initial condition
that is assumed at a given time ¢ = s. This condition defines how the system will
continue to evolve locally.

The theory of ordinary differential equations gives precise information about
the existence and uniqueness of solutions for (1.41), provided the function F(x, t)
fulfills certain regularity conditions. This information is of immediate relevance for
physical orbits that are described by Newton’s equations. We quote the following
basic theorem but refer to the literature for its proof (see e.g. Arnol’d 1992).

Let F(x,t) with x € P and r € R be continuous and, with respect to x,
continuously differentiable. Then, for any z € PP and any s € R there is a
neighborhood U of z and an interval I around s such that for all y € U there is
precisely one curve x(z, s, y) with ¢ in I that fulfills the following conditions:

.0

(i) 5-x(t.5.y) = Flx(t.s. ). 1]

(i) x(t=s,5y)=y, (1.42)
(i) x(z, s, y) has continuous derivatives in ¢, s, and Y-

y is the initial point in phase space from which the system starts at time ¢ = s.
The solution x (¢, s, y) is called the integral curve of the vector field F(x, t).

For later purposes (see Chap. 5) we note that F(x, r) = F,(x) can be understood
to be a vector field that associates to any x the velocity vector x = F,(x). This picture
is a useful tool for approximate constructions of solution curves in phase space in
those cases where one does not have closed expressions for the solutions. This can
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be done by graphical means by sketching the velocity field and drawing curves to
which this field is tangent. Alternatively, one may choose to perform a numerical
integration of the equation of motion thereby obtaining solutions as chains of small
arcs in phase space.

1.20 Physical Consequences of the Existence and
Uniqueness Theorem

Systems described by the equations of motion (1.41) have the following important
properties:

(i) They are finite dimensional, i.e. every state of the system is completely deter-
mined by a point z in P. The phase space has dimension 2 f, where f is the
number of degrees of freedom.

(ii) They are differential systems, i.e. the equations of motion are differential equa-
tions of finite order.

(iii)) They are deterministic,i.e. the initial positions and momenta determine the solu-
tion locally (depending on the maximal neighborhood U and maximal interval
I) in a unique way. In particular, this means that two phase curves do not
intersect (in U and 7).

Suppose we know all solutions corresponding to all possible initial conditions,
x(t,5,) =P 5(y) . (1.43)

This two-parameter set of solutions defines amappingof Ponto P, y — x = @, ((y).
This mapping is unique, and both it and its inverse are differentiable. The set @, ,(y)
is called the flow in phase space P. ~

Consider a system whose initial configuration at time s is y € P. The flow
describes how the system will evolve from there under the action of its dynamics.
At time ¢ it takes on the configuration x, where ¢ may be later or earlier than s. In
the first case we find the future evolution of the system, in the second we reconstruct
its past. As is customary in mathematics, let the symbol o denote the composition of
two maps. For example,

x>y =f@z=g0) or xrﬁzzg(f(x)).

With the times r, s, ¢ in the interval I we then have

@t,s o ?s,r = @t,r s (Ps,s =1,

9 ) def 0
_(Pz,s =F;o0 <Pm with F; = _@t,s
ot - - ot

s=t
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For autonomous systems, i.e. for systems where F does not depend explicitly on
time, we have

)S(t+rvs+rv _}J)Z.ZC(I,S,_Y), or @I‘H‘,&H“:@I,SE@tfs- (144)

In other words, such systems are invariant under time translations.

Proof Lett' =t +r,s' =s+r. As /9t = 3/9t’, we have
9 — ¢/ — _ I
E{C(t—i_r:t ss+r=s,y)=Fx@, s, y)

with the initial condition

x(s s y)=x@+rs+rny)=y.

Compare this with the solution of

0
5 X5 ) = Flx(t s, y) with x(s,5,y) =y
From the existence and uniqueness theorem follows
X +r, s+r y)=x(,5y). O

In principle, for a complete description of the solutions of (1.41) we should add
the time variable as an additional, orthogonal coordinate to the phase space P. If we
do this we obtain what is called the extended phase space P x R;, whose dimension
is (2f 4+ 1) and thus is an odd integer. As time flows monotonously and is not
influenced by the dynamics, the special solution (x(¢), t) in extended phase space
P x R; contains no new information compared to its projection x (t) onto phase space
P alone. Similarly, the projection of the original flow {¢,,S M, t} in extended phase
space IP x R, onto P is sufficient to give an almost complete image of the mechanical
system one is considering.

Figure 1.10, which shows typical phase portraits for the planar pendulum, yields
a particularly instructive illustration of the existence and uniqueness theorem. Given
an arbitrary point y = (g, p), at arbitrary time s, the entire portrait passing through
this point is fixed completely. Clearly, one should think of this figure as a three-
dimensional one, by supplementing it by a time axis. For example, a phase curve
whose portrait (i.e. its projection onto the (g, p)-plane) is approximately a circle
in this three-dimensional space will wind around the time axis like a spiral (make
your own drawing!). The point B, at first, seems an exception: the separatrix (A)
corresponding to the pendulum being tossed from its stable equilibrium position so as
to reach the highest position without “swinging through”, the separatrix (B), which
starts from the highest point essentially without initial velocity, and the unstable
equilibrium (C) seem to coincide. This is no contradiction to Theorem 1.19, though,
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because (A) reaches the point B only att = +o00, (B) leaves att = —oo, while (C)
is there at any finite .

We summarize once more the most important consequences of Theorem 1.19. At
any point in time the state of the mechanical system is determined completely by
the 2 f real numbers (g1, ..., g7 p1, ..., py). Wesay thatitis finite dimensional.
The differential equation (1.41) contains the whole dynamics of the system. The
flow, i.e. the set of all solutions of (1.41), transports the system from all possible
initial conditions to various new positions in phase space. This transport, when read
as a map from P onto P, is bijective (i.e. it is one to one) and is differentiable
in either direction. The flow conserves the differential structure of the dynamics.
Finally, systems described by (1.41) are deterministic: the complete knowledge of
the momentary configuration (positions and momenta) fixes uniquely all future and
past configurations, as long as the vector field is regular, as assumed for the theorem.’

1.21 Linear Systems

Linear systems are defined by 7 = Ax + b. They form a particularly simple class
of mechanical systems obeying (1.41). We distinguish them as follows.

1.21.1 Linear, Homogeneous Systems

Here the inhomogeneity 5 is absent, so that
X =Ax, where A={ay},
or, written in components,

)‘Ci = Zaikxk . (145)
k

Example. The harmonic oscillator is described by a linear, homogeneous equation
of the type (1.41), viz.

1

X1 =—x X1 o 1 Xy
p or ():( 2)( ) (1.46)
%y = —maw’x, X2 —mw*- 0 X2

SNote that the existence and uniqueness is guaranteed only locally (in space and time). Only in
exceptional cases does the theorem allow one to predict the long-term behavior of the system.
Global behavior of dynamical systems is discussed in Sect.6.3. Some results can also be obtained
from energy estimates in connection with the virial, cf. Sect. 1.31 below.
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The explicit solutions of Sect. 1.17.1 can also be written as follows:
0

x1(t) = xVcos T +x3/mwsint , x(t) = —x'mwsint + xJcos T .

Sett = w(t —s) and

Then
X(0)=x(t,s,y) =P 5(y) =M(t,5) -y, with
_ cosw(t — ) ﬁsinw(z—s)
M, s) = (—ma)sin w(—s5) cosw(t —s) ) ' (1.47)

One confirms that ¢, ; and M (¢, s) depend only on the difference (+ — s). This must
be so because we are dealing with an autonomous system. It is interesting to note
that the matrix M has determinant 1. We shall return to this observation later.

1.21.2 Linear, Inhomogeneous Systems

These have the general form
X=Ax+b. (1.48)

Example. Lorentz force with homogeneous fields. A particle of charge e in external
electric and magnetic fields is subject to the force

K="SixB+eE. (1.49)
c
In the compact notation we have

X] =X, X2=Y, X3=2, X4 =PDPx, X5=Dy, X6 = Pz .

Let the magnetic field point in the z-direction, B=Be,,i.e.F x B = (yB, —xB, 0).
Setting K = e¢B/mc we then have x = Ax + p, with

000 I/m 0 0 0
000 0 I/m 0 0
looo o 0 unm o
A=l 000 0o Kk o | t=¢Eg (1.50)
000 —K 0 0 E,
000 0 0 0 E.
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For a complete treatment of linear systems we refer to the mathematical literature
(see e.g. Arnol’d 1992). Some aspects will be dealt with in Sects.6.2.2 and 6.2.3
in the framework of linearization of vector fields. A further, important example is
contained in Practical Example 2.1 (small oscillations).

1.22 Integrating One-Dimensional Equations of Motion

The equation of motion for a one-dimensional, autonomous system reads mg =
K (q). If K(q) is a continuous function it possesses a potential energy

q
U(q)z—/ K(q"dq",
q0

so that the law of energy conservation takes the form
%qu + U(q) = E = const .
From this follows a first-order differential equation for g (¢):

dg 2

—=,/—(E-U . 1.51
=\ (E-U@) (L51)
This is a particularly simple example for a differential equation with separable vari-
ables whose general form is

dy  g()

dx — f(x)

(1.52)

and for which the following proposition holds (see e.g. Arnol’d 1992).

Theorem. Assume the functions f(x) and g(y) to be continuously differentiable
in a neighborhood of the points x¢ and yg, respectively, where they do not vanish,
f(xo) # 0, g(yo) # 0. The differential equation (1.52) then has a unique solution
y = F(x) in the neighborhood of x that fulfills the initial condition yy = F (xg) as
well as the relation

X / F(x) /
e _ / d (1.53)
x J&x) w &0

When applied to (1.51) this means that

ﬁ / " Jidq/ (1.54)
t—ty=.]— . .
2 Jg E—-U(q)


http://dx.doi.org/10.1007/978-3-662-55490-6_6
http://dx.doi.org/10.1007/978-3-662-55490-6_6
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Fig. 1.11 Example of L Ulg)
potential energy in one
dimension. From energy
conservation the kinetic
energy must vanish in A, B,
and C, for a given total
energy E. The hatched areas
are excluded for the position
variable ¢

that is, we obtain an equation which yields the solution if the quadrature on the right-
hand side can be carried out. The fact that there was an integral of the motion (here
the law of energy conservation) allowed us to reduce the second-order equation of
motion to a first-order differential equation that is solved by simple quadrature.

Equations (1.54) and (1.51) can also be used for a qualitative discussion of the
motion: since 7 + U = E and since T must be 7 > 0, we must always have
E > U(q). Consider, for instance, a potential that has a local minimum at g = g,
as sketched in Fig. 1.11. At the points A, B, and C, E = U (q). Therefore, solutions
with that energy E must lie either between A and B, or beyond C, g4 < q(t) < g5,
org(r) = qc.

As an example, we consider the first case. Here we obtain finite orbits; the points A
and B are turning points where the velocity ¢ passes through zero, according to (1.51).
The motion is periodic, its period of oscillation being given by T (E) = 2x (running
time from A to B). Thus

By

T(E) = @/ (1.55)

awE VE=U@)

1.23 Example: The Planar Pendulum for Arbitrary
Deviations from the Vertical

Figure 1.12 shows the maximal deviation ¢y < m. According to Sect.1.17.2 the
potential energy is U (¢) = mgl(1 — cos ¢). For ¢ = ¢ the kinetic energy vanishes,
so that the total energy is given by

E =mgl(1 — cosgy) = mgl(l — cos ¢) + sml*¢* .

The period is obtained from (1.55), replacing the arc s = /¢ by ¢:
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Fig. 1.12 Plane

[
mathematical pendulum for I m
an arbitrary deviation :
%o € [0, 7] I
I [
|
i
I
|
I
A
X
|
|
|
|
(4
T =2v2m/ ld(p/\/mgl(cosgo—cosgao) . (1.56)
0

With cos ¢ = 1 — 2sin?(¢/2) this becomes

l %o
T :2«/5\/j/ de//cos ¢ — cos ¢
8 Jo

! %o ) 5 ,
=2 g/o d(p/\/sm ((pO/Z) — sin®(¢/2) . (1.56")

Substituting the variable ¢ as follows:

adéf sin(g/2)
sin(go/2)

one obtains

dg = 2darsin(ge/2))V/1 — sin’ e / J1—sin? (go/2)sin’a |

0p=0—>a=0,

p=¢p > a=m/2,

and therefore

T :4\/§K[sin(¢o/2)] , (1.57)

where K (z) = oﬂ/ * da /v/1 — z2sin® & denotes the complete elliptic integral of the
first kind (see e.g. Abramowitz and Stegun 1965).
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For small and medium-sized deviations from the vertical, one can expand in terms
of z = sin(gy/2) or directly in terms of ¢y /2:
2 4
z 3z
~1+sin?a>= + sin*a—
2 8
~ 1+ % sin® & (%(pg (po) +3 3 sin® o L 16%

(1 —z%sin’ a)_l/z

The integrals that this expansion leads to are elementary, viz.

/2 TT 1 3 1
-.2n — — =
/0 sin xdx—zn!(n 2)(n 2)...2, n=1,2..).

Thus, one obtains
1+ ! + o
2 © et

1 9 1) ¢
~ 2|14 — — )2
2[ T 16%0 +(64 12)16 ’

and, finally,

T~om L 1+1 o — 1 75 (1.58)
~ LT .
g 1670 T 3072

The quality of this expansion can be judged from a numerical comparison of succes-
sive terms as shown in Table 1.1.

The behavior of 7' (1.57) in the neighborhood of ¢y = 7 can be studied separately.
For that purpose one calculates the time 7, that the pendulum takes to swing from
p=m—Atop =¢y =7 — ¢, where ¢ K A, cf. Fig. 1.13. Introduce x =7 — ¢
as a new variable and let 7@ = 27 ,/T/q. Then

K(2)

| 2

ta 1 A
= —In2— , 1.59
TO n\/_ /cos€ — cos x / N 52 T € (1.59)

where we have approximated cos x by 1 —x2/2. For ¢y — m,i.e.fore — 0, t, tends
to infinity logarithmically. The pendulum reaches the upper (unstable) equilibrium
only after infinite time.

Table 1.1 Deviation from the harmonic approximation

90 6% 071390
10° 0.002 3%x107°
20° 0.0076 1x10~*
45° 0.039 1.4 x 1073
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Fig. 1.13 The plane
pendulum for large
deviations, say @9 = 7w — &,
where ¢ is small compared to
1. In the text we calculate the
time 74 the pendulum needs
to swing fromg =7 — A to
the maximal value ¢p. One
finds that 74 goes to infinity
like —Ineg, as one lets ¢ tend
to zero

It is interesting to note that the limiting case E = 2mgl (unstable equilibrium or
separatrix) can again be integrated by elementary means. Returning to the notation
of Sect. 1.17.2, the function z; = ¢ now obeys the differential equation

I %2+(1—cos )=2, or dar _ 2(1 +coszy)
2 \de a)y=L ar ‘-

Setting u =) tan(z;/2), we find the following differential equation for u:

du/vu?+1=dr,

which can be integrated directly. For example, the solution that starts at z; = 0 at
time v = O fulfills

/du'/mz/ dr’, and hence ln(u—{—\/m):f,
0 0

With u = (e* — e77)/2, the solution for z; is obtained as follows:
z1(t) = 2 arctan(sinh 7) .
If we again choose z; = 7w — ¢, i.e. u = cote/2 =~ 2/e, we have u + Vu? + 1 =~

4/e and t(¢) =~ In(4/¢). The time to swing from z; = 0 to z; = 7 diverges
logarithmically.
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1.24 Example: The Two-Body System with a Central Force

Another important example is the two-body system (over R*) with a central force,
to which we now turn. It can be analyzed in close analogy to the one-dimensional
problem of Sect. 1.22.

The general analysis of the two-body system was given in Sect. 1.7. Since the
force is supposed to be a central force (assumed to be continuous), it can be derived
from a spherically symmetric potential U (). The equation of motion becomes

myma

uir = —=VU(r), with pu= (1.60)

—!
my + mo

r = ry — r; is again the relative coordinate and r = |r|. If the central force reads
F = F(r)r, the corresponding potential is U (r) = — fr Z F(r")dr’. The motion takes
place in the plane perpendicular to the conserved relative orbital angular momentum
l1 = r x p. Introducing polar coordinates in that plane, x = r cos g and y = r sin ¢,
one has 72 = 2 + r2¢2.

The energy of relative motion is conserved because no forces apply to the center
of mass and therefore total momentum is conserved:

P2
Ts+E = w—i—%(fz—}-rngz)—}-U(r) — const . (1.61)

Thus, with [ = |I| = ur2g,

2

1
E = —/Lf2+

> 2 + U(r) = const . (1.62)

def . . — . .
T, = ur?/2 is the kinetic energy of radial motion, whereas the term 12/2ur? =
ur2@?/2 can be read as the kinetic energy of the rotatory motion, or as the potential
energy pertaining to the centrifugal force,

1 L0 (1 . 2 A
Z=-V(=-u?$*)=—t—(=-ur?¢*) = —wr¢*r = —ﬁvrzr .

2 ar \2 r
From angular-momentum conservation

[ = ur’g = const , (1.63)

and from energy conservation (1.62) one obtains differential equations for r(¢#) and
@(1):
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dr 2 2 2

— = |—(E-U ——— = |—(E-U, 1.64

do 1 .

=, th 1.65

dr ur? e (1.65)
def I?

Uett(r) = U(")‘i‘ﬁ ) (1.66)

ur

where the latter, U ('), can be interpreted as an effective potential. When written in
this form the analogy to the truly one-dimensional case of (1.51) is clearly visible.
Like (1.51) the equation of motion (1.64) can be solved by separation of variables,
yielding r as a function of time ¢. This must then be inserted into (1.65), whose
integration yields the function ¢(#). Another way of solving the system of (1.64) and
(1.65) is to eliminate the explicit time dependence by dividing the second by the first
and by solving the resulting differential equation for r as a function of ¢, viz.

d 1
¢ . (1.67)
dr  r2/2u(E — Uetr)
This equation is again separable, and one has
r(e) dr
(1.68)

@ —go=1 .
ro P22 (E — Uer)

Writing E = T, + U (), the positivity of T, again implies that E > U (r). Thus,
if () reaches a point ry, where E = U (r1), the radial velocity r(r;) vanishes.
Unlike the case of one-dimensional motion this does not mean (for [ # 0) that the
particle really comes to rest and then returns. It rather means that it has reached a
point of greatest distance from, or of closest approach to, the force center. The first
is called perihelion or, more generally, pericenter, the second is called aphelion or
apocenter. It is true that the particle has no radial velocity at r; but, as long as / # 0,
it still has a nonvanishing angular velocity.

There are various cases to be distinguished.

1) r(t) = rmin = rp (“P” for “perihelion™). Here the motion is not finite; the
particle comes from infinity, passes through perihelion, and disappears again towards
infinity. For an attractive potential the orbit may look like the examples sketched in
Fig. 1.14. For a repulsive potential it will have the shape shown in Fig. 1.15. In the
former case the particle revolves about the force center once or several times; in the
latter it is repelled by the force center and will therefore be scattered.

(11) "min = rp < r(t) < rmax = ra (“A” for “aphelion”). In this case the entire
orbit is confined to the circular annulus between the circles with radii rp and r4. In
order to construct the whole orbit it is sufficient to know that portion of the orbit
which is comprised between an aphelion and the perihelion immediately succeeding
it (see the sketch in Fig. 1.16). Indeed, it is not difficult to realize that the orbit is
symmetric with respect to both the line SA and the line S P of Fig. 1.16. To see this,
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Fig. 1.14 Various infinite a)
orbits for an attractive

potential energy. P is the

point of closest approach

(pericenter or perihelion)

*
P
b)
P
Fig. 1.15 Typical infinite
orbit for a repulsive central
potential
P
*

consider two polar angles Ap and —Ag, with Ap = ¢ — @4, that define directions
symmetric with respect to SA, see Fig. 1.17, with

r(p) dr
Ap =1 .
ra P2N2U(E — Uesr)
One has

Uett (r) = Ueit (ra) + (Uett (r) — Uit (ra)) = E + (Uesr(r) — Uett (ra))

and therefore
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Fig. 1.16 Bound, or finite, orbit for an attractive central potential. The orbit has two symmetry
axes: the line SA from the force center S to the apocenter, and the line SP from S to the pericenter.
Thus, the entire rosette orbit can be constructed from the branch P A of the orbit. (The curve shown
here is the example discussed below, with @ = 1.3, b = 1.5)

Fig. 1.17 Two symmetric A
positions before and after cr
passage through the
apocenter C
2
r
rigl A
8¢ /A
S
dr
. (1.69)

r(p)
Ap = l/ ’
ra r2\/2,u(Ueff(rA) — Uest (r))

Instead of moving from A to C, by choosing the other sign of the square root in (1.69),
the system may equally well move from A to C,. From (1.67) this means that one
changes the direction of motion, or, according to (1.64) and (1.65), that the direction
of time is reversed. As r(¢) is the same for +A¢ and —Ag, we conclude that if
C = {r((p), @ = <pA+A<p} is a point on the orbit, sois C; = {r(go), 0= (pA—A(p}.
A similar reasoning holds for P. This proves the symmetry stated above.

We illustrate these results by means of the following example.

Example. A central potential of the type U(r) = —a/r“. Let (r, ¢) be the polar
coordinates in the plane of the orbit. Then

Fri

2
dr_ \/215 W) 1 (170,
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do l
Pl (1.71)
Since we consider only finite orbits for which E is negative, we set B L E We
introduce dimensionless variables by the following definitions:
def v det B
o(t) = —— ( ), T= Tt
The equations of motion (1.70) and (1.71) then read
d 2b 1
d_in = -5 -2, (1.70))
T e o
d 1
f = 171"

where we have set

pit @ (YEBY
B\ |

The value @ = 1 defines the Kepler problem, in which case the solutions of (1.70")
and (1.71") read

0(@) = 1/b(1 +ecos(p —¢p)) with & =+/1—2/b%.

The constant ¢y can be chosen at will, e.g. ¢ = 0. Figures 1.18, 1.19, 1.20, 1.21
and 1.22 show the orbit o (¢) for various values of the parameters « and b. Figure 1.18
shows two Kepler ellipses with b = 1.5 and b = 3. Figures 1.19 and 1.20 illustrate
the situation for @ > 1 where the orbit “advances” compared with the Kepler ellipse.
Similarly, Figs. 1.21 and 1.22, valid for ¢ < 1, show it “staying behind” with respect
to the Kepler case. In either case, after one turn, the perihelion is shifted compared
with the Kepler case (¢ = 1) either forward (« > 1) or backward (¢ < 1). In the

Fig. 1.18 Two Kepler
ellipses (@ = 1) with
different eccentricities. Cf.
Practical Example 1.4
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Fig. 1.19 Rosette orbit for A,
the potential U (r) = —a/r®
withe =13 and b = 1.5

Fig. 1.20 A rosette orbit as
in Fig. 1.19 but with
a=11,b=20

Fig. 1.21 Example of a
rosette orbit that “stays
behind”, with @« = 0.9,
b=2

former case there is more attraction at perihelion compared to the Kepler ellipse, in
the latter, less, thus causing the rosette-shaped orbit to advance or to stay behind,
respectively.

Remark: From the above exercise it seems plausible that finite orbits which
close after a finite number of revolutions about the origin are the exception rather
than the rule. For this to happen the angle ¢ between the straight lines SA and S P
of Fig. 1.16 must be a rational number times 27, ¢ = (n/p)(27), n, p € N, where
p is the number of branches P A of the orbit needed to close it, and 7 is the number
of turns about S. For example, in the case of the bound Kepler orbits we have p = 2
and n = 1. This is a very special case insofar as the points A, S and P lie on a straight
line, with A and P separated by S.
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Fig. 1.22 A rosette orbit as
in Fig. 1.21 but with
a=08,b=3

The following theorem answers the even more restrictive question as to whether
all finite orbits in a given central potential close: Bertrand’s theorem®: The central
potentials U(r) = a/r witha < 0and U(r) = br? with b > 0 are the only ones in
which all finite (i.e. bound) orbits close.

As we know in the first case, it is the orbits with negative energy which close;
they are the well-known ellipses or circles of the Kepler problem. In the second case
all orbits are closed and elliptical.

Remarks: The examples studied in this section emphasize the special nature of
the Kepler problem whose bound orbits close after one turn around the center of
force. The rosette-like orbit represents the generic case while the ellipse (or circle)
is the exception. This property of the attractive 1/r-potential can also be seen if
instead of the plane of motion in R? we study the motion in terms of its momentum
p = (px, py)". The solution (1.21) for abitrary orientation of the perihelion

p
1+ ecos(@(r) — o)’

r(t) =

when decomposed in terms of Cartesian coordinates (x, y) in the plane of motion,
reads

— p JE—
OR Sy G CIOREOR
() = P sin(@ (1) — o) -

1 4 & cos(¢(t) — o)

The derivatives of x(¢) and of y(¢) with respect to time are

o sing—g0 1
x(r) = P T ecos@ () _¢0)]2¢— p(r @) sin(¢ — ¢o) ,
— . 1 .

P recos@) — g0’ ~ p

6J. Bertrand (1873): R. Acad. Sci. 77, p. 849. The proof of the theorem is not too difficult. For
example, Arnol’d proposes a sequence of five problems from which one deduces the assertion,
(Arnol’d 1992).
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Upon multiplication with the reduced mass u, making use of the conservation
law (1.19a) for ¢, the modulus of the angular momentum, £ = /Lr2¢, and insert-
ing the definition p = £?/(A), one obtains

. Ap .
Px = px = ——- sin(¢ — ¢o) ,

A
Py =uy = T'u{cos(qb — o) + ¢} .

In a two-dimensional space spanned by p, and p, this solution is a circle about the
point

(0. eAn/0)) = (0. V/(Ap/€) +21E) .

where we have inserted the definition of the excentricity, ¢ = /1 + 2E¢%/uA2. The
radius of this circle is R = Au/¢. The bound orbits in the space spanned by p, and
py are called hodographs. In the case of the Kepler problem they are always circles.

This remarkable result is related to another constant of the motion, the Hermann—
Bernoulli-Laplace-Lenz vector, that applies to the 1/r potential. We will show this
in the framework of canonical mechanics in Exercise 2.31.

1.25 Rotating Reference Systems: Coriolis and Centrifugal
Forces

Let K be an inertial system and K’ another system that coincides with K at time r = 0
and rotates with angular velocity w = |w| about the direction ® = w/w, as shown in
Fig.1.23. Clearly, K’ is not an inertial system. The position vector of a mass point is
r(t) with respect to K and r'(¢) with respect to K, with r(¢) = r/(¢). The velocities
are related by

Fig. 1.23 The coordinate
system K’ rotates about the
system K with angular
velocity @
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vV=v-—wxr,

where v’ refers to K’ and v to K. Denoting the change per unit time as it is observed
from K’ by d’/d¢, this means that

d’ d d d n
—Fr=—r—@XxXr or —r=—r—+wxr,
dt dt dr dt

where

d/dt: time derivative as observed from K,

d’/dz : time derivative as observed from K’ .

The relation between dr /dt and d'r /dt must be valid for any vector-valued function
a(t), viz.
d/

d
5a=5a+wxa. (1.72)

Taking @ to be constant in time, we find that the relationship (1.72) is applied to the
velocity a(t) = dr/dt as follows:

d2 o d [dr . dr d /d + + d +
—r = — | — WX —=—\—r @ Xr @ X —r @ Xr
dr? dr \ dt dr dr \dr dr

2/ d
=—r+2wx —r+ox(®xr). 1.73
a2t Fr ( ) (1.73)
(If @ does depend on time, this equation contains one more term, (d'@/dt) x r =
(do/dt)y xr =w xr.)
Newton’s equations are valid in K because K is inertial; thus

2

d
m@r(t)zF

Inserting the relation (1.73) between the acceleration d%r / dr?, as seen from K, and
the acceleration d?r / dr2, as seen from K/, in the equation of motion, one obtains

2/ l

mﬁr:F—mex—r—mwx(wxr). (1.74)

When observed from K’, which is not inertial, the mass point is subject not only to
the original force F but also to the Coriolis force

C=-"2mwx (1.75)
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and the centrifugal force
Z=—mwx (wxr), (1.76)

whose directions are easily determined from these formulae.

1.26 Examples of Rotating Reference Systems

Example (i) Any system tied to a point on the earth may serve as an example of a
rotating reference frame. Referring to the notation of Fig. 1.24, the plane tangent to
the earth at A rotates horizontally about the component @, of @. In addition, as a
whole, it also rotates about the component @y, (the tangent of the meridian passing
through A). If a mass point moves horizontally, i.e. in the tangent plane, only the
component w, will be effective in (1.75). Thus, in the northern hemisphere the mass
point will be deviated to the right.

For vertical motion, to a first approximation, only wy, is effective. In the northern
hemisphere this causes an eastward deviation, which can easily be estimated for the
example of free fall. For the sake of illustration, we calculate this deviation in two
different ways.

(a) With respect to an inertial system fixed in space. We assume the mass point
m to have a fixed position above point A on the earth’s surface. This is sketched
in Fig. 1.25, which shows the view looking down on the north pole. The particle’s
tangent velocity (with reference to K!)is vp(R+h) = (R+h)wcos ¢. Attime r = 0
we let it fall freely from the top of a tower of height H. As seen from K, m moves
horizontally (eastwards) with the constant velocity vr(R + H) = (R + H)wcos ¢,
while falling vertically with constant acceleration g. Therefore, the height H and the
time 7 needed to reach the ground are related by H = % gT?. If at the same time
(t = 0) the point A at the bottom of the tower left the earth’s surface along a tangent,

Fig. 1.24 A coordinate
system fixed at a point A on
the earth’s surface rotates
about the south—north axis
with angular velocity

® = Wy + Wy
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Fig. 1.25 A body falling vy (R+h)
down vertically is deviated

towards the east. Top view of
the north pole and the Vr (R)
parallel of latitude of A

\
2/321):-3-3

it would move horizontally with a constant velocity vr(R) = Rw cos ¢. Thus, after
atime T, the mass point would hit the ground at a distance

Ay = (vr(R+ H) —vr(R))T = HoT cos ¢,

east of A. In reality, during the time that m needs to fall to the earth, the tower
has continued its accelerated motion, in an easterly direction, and therefore the real
deviation A is smaller than Ag. At time ¢, with 0 < ¢t < T, the horizontal relative
velocity of the mass point and the tower is (vT(R + H)—vr(R+ H — %gtz)) =
% gwt? cos ¢. This must be integrated from 0 to T and the result must be subtracted
from Ag. The real deviation is then

1 T
A:Ao——gwcosgo/ dr 1
2 0

! [ 1 3
= wCos ¢ dt | H— -gt") = zgwT cos¢ .
0 2 3

(b) In the accelerated system moving with the earth. We start from the equation of
motion (1.74). As the empirical constant g is the sum of the gravitational acceleration,
directed towards the center of the earth, and the centrifugal acceleration, directed
away from it, the centrifugal force (1.76) is already taken into account. (Note that
the Coriolis force is linear in @ while the centrifugal force is quadratic in w. In the
range of distances and velocities relevant for terrestial problems both of these are
small as compared to the force of attraction by the earth, the centrifugal force being
sizeably smaller than the Coriolis force.) Thus, (1.74) reduces to

d?r ~ ~ d'r ’
mﬁ = —mgey — 2mw | ® X ) (1.74)

We write the solution in the form r(t) = r©(t) + wu(t), where r@ () = (H —
%gtz)éV is the solution of (1.74") without the Coriolis force (w = 0). As w =
2m/(1day) = 7.3 x 1073 s7!is very small, we determine the function u(¢) from
(1.74) approximately by keeping only those terms independent of w and linear in .
Inserting the expression for r(¢) into (1.74’), we obtain for u(t)
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d/2
me U = 2mgtw(® x &) .
@ is parallel to the earth’s axis, e, is vertical. Therefore, (@ x e,) = cos gé., where
é. is tangent to the earth’s surface and points eastwards. One obtains

d/2
a2 ~ 2gt cos ge, ,

and, by integrating twice,
u~ %gt3 cos e, .

Thus, the eastward deviation is A =~ % gT3wcos @, as above.
Inserting the relation between T and H, we get

24/2
A:T\/_a)

g V2PH3? cosp ~2.189 x 107 H>? cos ¢ .

For a numerical example choose H = 160m, ¢ = 50°. This gives A ~ 2.8 cm.

Example (ii) Let a mass m be connected to a fixed point O in space and let it rotate
with constant angular velocity about that point, as shown in Fig. 1.26. Its kinetic
energy is then T = %mRza)z. If we now cut the connection to O, m will leave the
circle (O; R) along a tangent with constant velocity Rw. How does the same motion
look in a system K’ that rotates synchronously?

From (1.74) one has

d2/ d
mosr = med—t(xge’, - x1€y) + mo’r,

or, when written in components,

Fig. 1.26 A mass point X'y e
rotates uniformly about the 2 \\ A
origin 0. K’ is a coordinate \
system in the plane that X
rotates synchronously with -
the particle
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2/ ’ 27 ’
md—x’ =2mw—x, + mw’x, , m—x, = —2mw—x, + mw’x)
dr2” ' dr 2 R T e dr! 2

The initial condition at t = O reads

’
x' =R —x/ =0,

/

xy =0 d—txé =0.
With respect to K we would then have
x1(t) =R, x(t) = Rwt .
Therefore, the relationships
x| =xjcoswf + xpsinwt , xy = —x; sin wt + x; cos wt
give us at once the solution of the problem, viz.
x;(t) = Rcoswt + Rt sinwt , x5(t1) = —Rsinwt + Rwt cos wt .

It is instructive to sketch this orbit, as seen from K’, and thereby realize that uniform
rectilinear motion looks complicated when observed from a rotating, noninertial
system.

Example (iii) A particularly nice example is provided by the Foucault pendulum
that the reader might have seen in a laboratory experiment or in a science museum.
The model is the following. In a site whose geographical latitude is0 < ¢ <mw/2a
mathematical pendulum is suspended in the point with coordinates (0, 0, /) above the
ground, and is brought to swing in some vertical plane through that point. Imagine the
pendulum to be modeled by a point mass m sustained by a massless thread whose
length is . In the rotating system K, attached to the earth, let the unit vectors be
chosen such that e; points southwards, &, points eastwards, while e; denotes the
upward vertical direction. A careful sketch of the pendulum and the base vectors
shows that the stress acting on the thread is given by

X1 A X2 A I —x3 .
Z=Z|——e — — ,
( lel lez+ ] 83)

where we have normalized the components such that Z is the modulus of this vector
field, Z = | Z|. Indeed, I?> = xl2 +x§ + (I — x3)? so that the sum of the squares of the
coefficients in the parentheses is equal to 1. Inserting this expression in the equation
of motion (1.75) and denoting, for simplicity, the time derivative g—; with respect to
the rotating system K by a dot, the equation of motion reads
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mir=Z4+mg—-2m(@xXr)—mwx (& Xr).

For the same reasons as before we neglect the centrifugal force. With the choice of
the reference system described above one has

—Ccos ¢ —X; sin g
g=-gé3, w=ow 0 , @XF=w|xsing+x3cos¢ |,
sin ¢ — X COS @

where o is the modulus of the angular velocity, and ¢ the geographical latitude.
Writing the equation of motion in terms of its three components one has

Z ..
—Txl + 2mwx; sing ,

m)'c'l
mi, = 7%= 2mw (X sing + X3 cos @) ,

V4
mi; = 7(l —X3) —mg + 2mwx,cos ¢ .

These coupled differential equations are solved most easily in the case of small
oscillations. In this approximation set x3 =~ 0, X3 =~ 0 in the third of these and obtain
the modulus of the thread stress from this equation. It is found to be

Z =mg —2mwx, cos ¢ .
Next, insert this approximate expression into the first two equations. For consistency

with the approximation of small oscillations, terms of the type x; x; must be neglected.
In this approximation and introducing the abbreviations

> _ 8 :
a)0=7, a=wsing,
the first two equations become

X = —a)(z)xl + 20xy ,

.55‘2 = —a)(sz2 — 2(1)'61 .

Solutions of these equations can be constructed by writing them as one complex
equation in the variable z(z) = x;(f) + ix,(¢),

() = —wpz(t) — 2iai(t) .

The ansatz z(t) = Cel”’ yields two solutions for the circular frequency y, viz.

Vi=—-a+Jo?+e), p=-a—,/a’+aw}.
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Below we will study the solutions for these general expressions. The historical exper-
iment performed in 1851 by Foucault in the Panthéon in Paris, however, had para-
meters such that o« was very small as compared to w, @ < a)(z). Indeed, given the
latitude of Paris, ¢ = 48.5° and the parameters of the pendulum chosen by Foucault,
I = 67m, m = 28kg, and, from these, the period T = 16.4 s, one obtains

2 1
wy = — =0.383s"",
T
2 2
o= T sing = il sin(48.5%) = 5.45 x 10757 .
1 day 86400

Therefore y,, > —a £ wq and the solutions read
2(1) = (c1 +ic)e @™ 4 (¢35 + icg)e @ T

It remains to split this function into its real and imaginary parts and to adjust the
integration constants to a given initial condition. Suppose the pendulum, at time
zero, is elongated along the 1-direction by a distance a and is launched without
initial velocity, i.e.

x1(0)=a, x1(0)=0, x»0)=0, »0)=0,

the approximate solution is found to be

x1(1) = afcos(at) cos(wot) + (a/wo) sin(at) sin(wot)]
x(t) ~ a[— sin(at) cos(wot) + (o/wyg) cos(at) sin(wot)] .

As a result the pendulum still swings approximately in a plane. That plane of oscil-
lation rotates very slowly about the local vertical, in a clockwise direction on the
northern hemisphere, in a counter-clockwise direction on the southern hemisphere.
The mark that the tip of the pendulum would leave on the ground is bent slightly to
the right on the northern hemisphere, to the left on the southern hemisphere. For a
complete turn of the plane of oscillation it needs the time 24 /sin ¢ h. Rigth on the
north pole or on the south pole this time is exactly 24 h. For the latitude of Paris, it
is approximately 32h, while at the equator there is no rotation at all.

In order to better illustrate the motion of a Foucault pendulum for small amplitudes
let us also consider the case where « is not small as compared to the unperturbed
frequency wy. For the same initial condition as above, x;(0) = a, x;(0) = 0, x,(0) =
0 = x,(0), the solution now reads

x1(1) = a[cos(at) cos(@t) + (a/®) sin(at) sin(@?)] ,
x,(1) = a[—sin(ar) cos(@t) + (o/®) cos(at) sin(@t)] ,

where 5:,/w3+a2.

It is useful to calculate also the components of the velocity. One finds
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Fig. 1.27 A Foucault
pendulum, seen from above,
starts at the distance a in the
South, without initial
velocity. The mark it makes
on the horizontal plane is
bent to the right and exhibits
spikes at the turning points

)
X =—a—2 cos(at) sin(wt) ,
[0}

w2
% = a—2 sin(at) sin(@t) .
w

The two components of the velocity vanish simultaneously at the times
n—

:—717 n:0,1,2,....
2

This means that at these points of return both components go through zero and change
signs, the projection of the pendulum motion on the horizontal plane shows spikes.
Figure 1.27 gives a qualitative top view of the motion.

For a quantitative analysis we choose the circular frequency o comparable to
. In the two examples given next these frequencies are chosen relatively rational,
a/w = 1/4. (Clearly, this choice is not realistic for the case of the earth and the
original Foucault pendulum.) For a rational ratio «/@w = n/m the curve swept out
by the tip of the pendulum on the horizontal plane closes. In all other cases it will
not close. Figure 1.28 shows the solution given above for the initial condition

xO0) =1, %50)=0, x0) =0, &»0)=0,

It closes after four oscillations and exhibits the spikes discussed above.
Another solution is the following

x1(t) = asin(at) sin(wt) ,

Xx5(t) = a cos(at) sin(wt) .
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Fig. 1.28 Mark left on the
horizontal plane by a
pendulum that starts from
x1(0) = 1 without initial
velocity. The ratio of circular
frequencies is chosen
rational, «/w = 1/4

From this one finds the components of the velocity to be
%1 = a[a cos(at) sin(@t) + wsin(ar) cos(@1)] ,
Xy = a[—a sin(at) sin(wt) + w cos(at) cos(Et)] ,

which corresponds to the initial condition
x1(0)=0, x(0)=0, »0)=0, %0 =a.

This solution is the one where the pendulum starts at the equilibrium position and
is being kicked in the 2-direction with initial velocity a®. At the points of return
x? 4 x2 = a® sin®*(@t) is maximal. Thus, they occur at times t, = (2n + 1)7/(2®),
and one has

i1(ty) = aa(—)" cos((2n + 1)(@/@)(1/2)) ,
Xo(ty) = —ac(=)" sin((Zn + 1)(0{/5)(7[/2)) .
This means that the track on the horizontal plane exhibits no more spikes but is

“rounded off” at these points. This solution is illustrated by Fig. 1.29 for the case of
the same rational ratio of « and @ as in the previous example.
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Fig. 1.29 Mark swept out
by the pendulum when it
starts from the equilibrium
position and is kicked with
initial velocity @ in the
2-direction. The ratio of
circular frequencies is 0471
chosen rational and has the

same value as in Fig. 1.28 0.2
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1.27 Scattering of Two Particles that Interact via a Central
Force: Kinematics

In our discussion of central forces acting between two particles we have touched
only briefly on the infinite orbits, i.e. those which come from and escape to infinity.
In this section and in the two that follow we wish to analyze these scattering orbits in
more detail and to study the kinematics and the dynamics of the scattering process.
The description of scattering processes is of central importance for physics at the
smallest dimensions. In the laboratory one can prepare and identify free, incoming
or outgoing states by means of macroscopic particle sources and detectors. That is,
one observes the scattering states long before and long after the scattering process
proper, at large distances from the interaction region, but one cannot observe what is
happening in the vicinity of the interaction region. The outcome of such scattering
processes may therefore be the only, somewhat indirect, source of information on the
dynamics at small distances. To quote an example, the scattering of «-particles on
atomic nuclei, which Rutherford calculated on the basis of classical mechanics (see
Sects. 1.28 (ii) and 1.29) was instrumental in discovering nuclei and in measuring
their sizes.

We consider two particles of masses m| and m, whose interaction is given by
a spherically symmetric potential U(r) (repulsive or attractive). The potential is
assumed to tend to zero at infinity at least like 1/r. In the laboratory the experiment
is usually performed in such a way that particle 2 is taken to be at rest (this is the
target) while particle 1 (the projectile) comes from infinity and scatters off particle
2 so that both escape to infinity. This is sketched in Fig. 1.30a. This type of motion
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(b)

Fig. 1.30 a Projectile 1 comes from infinity and scatters off target 2, which is initially at rest. b The
same scattering process seen from the center of mass of particles 1 and 2. The asymmetry between
projectile and target disappears

looks asymmetric in the two particles because in addition to the relative motion it
contains the motion of the center of mass, which moves along with the projectile (to
the right in the figure). If one introduces a second frame of reference whose origin
is the center of mass, the motion is restricted to the relative motion alone (which
is the relevant one dynamically) and one obtains the symmetric picture shown in
Fig. 1.30b. Both, the laboratory system and the center-of-mass system are inertial
systems. We can characterize the two particles by their momenta long before and
long after the collision, in either system, as follows:

in the laboratory system:

p; before, p§ after the collision, i = 1, 2;

in the center-of-mass system:
q* and —q* before, ¢ and —q’* after the collision.

If we deal with an elastic collision, i.e. if the internal state of the particles does not
change in the collision, then p, = 0 and energy conservation together imply that

pi _ pt | P}

— . (1.77)
2m, 2my 2mo
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In addition, momentum conservation gives
P =D, +Dp>. (1.78)

Decomposing in terms of center-of-mass and relative momenta, and making use of
the equations obtained in Sect. 1.7.3, one obtains for the initial state

m
P = ﬁlPJrq*, (Mdéfmﬁmz)

my
=—=P—-q"=0; 1.79
Py= 47 q (1.79a)

that is,
M
P=—¢q* and p,=P.
ms

Likewise, after the collision we have

pi="tP g =" g
! M niy ’

/ m2 1% * 1%
=—P—q"=q"—q". 1.79b
Py= 7 9 =9 —q ( )
As the kinetic energy of the relative motion is conserved, ¢* and ¢’* have the same
magnitude,

*|_ /*|d£f *

lq lq

Let 6 and 6* denote the scattering angle in the laboratory and center-of-mass
frames, respectively. In order to convert one into the other it is convenient to consider
the quantities p, - p} and ¢* - ¢’*, which are invariant under rotations. With p; =
g*M/m, and p| = q*m;/m> + q™ one has

/ M my * * M * my *
p1~p1=—(—q2+q ~q/)=—q2(—+0059) )
mo \Mmy my ny

On the other hand,

cos b

) M
pi- P = Ipllpilcosd = —q*
m,

M m m\*
—q* |:1 +2-L cosO* + (—1) ] cos6 .
nyp nip my

From this follows

2
cos@:(@chosG*)/ |:1+2ﬂ0059*+(@):| ,
my my niy

m
_lq* + q/*
my
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or
m mi \
sinf = sin@*/ |:1 +2-L cos0* + (—1) :| )
I’H2 m2
or, finally,
sin 0*
tan0 = . (1.80)

(ml/mz) + cos 0*

In Fig. 1.30a the target particle escapes in the direction characterized by the angle
¢ in the laboratory system. By observing that the triangle ( D5, 4%, q/*) has two equal
sides and that ¢* has the same direction as p; one can easily show that ¢ is related
to the scattering angle in the center-of-mass system by

_71—9*

¢= 2

(1.81)

Several special cases can be read off the formulae (1.79) and (1.80).

(1) If the mass m of the projectile is much smaller than the mass m, of the target,
m) K my, then 6* ~ 6. The difference between the laboratory and center-of-mass
frames disappears in the limit of a target that is very heavy compared to the projectile.

(ii) If the masses are equal, m; = m,, (1.80) and (1.81) give the relations

0=02, 0+¢p=m/2.

With respect to the laboratory system the outgoing particles leave in directions per-
pendicular to each other. In particular, in the case of a central collision, 0* = m, and,
because of ¢* = —q*,

The projectile comes to a complete rest, while the target particle takes over the
momentum of the incoming projectile.

1.28 Two-Particle Scattering with a Central Force:
Dynamics

Consider a scattering problem in the laboratory system sketched in Fig.1.31. The
projectile (1) comes in from infinity with initial momentum p,, while the target (2)
is initially at rest. The initial configuration is characterized by the vector p, and by a
two-dimensional vector b, perpendicular to p;, which indicates the azimuthal angle
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Fig. 1.31 Kinematics of a

scattering process with two P,
particles, seen from the
laboratory system. The #
particle with mass m is at s
rest before the scattering 5
AN
_____________ LA U N P,
s
—_—_ s
—— ¢
B e SR —
m,

and the distance from the z-axis (as drawn in the figure) of the incident particle. This
impact vector is directly related to the angular momentum:

l=rxq*=%rxpl=%bxpl=bxq*. (1.82)

Its modulus b = |b| is called the impact parameter and is given by

M

ma|p,|

b:

1
) =—1. (1.83)
q

If the interaction is spherically symmetric (as assumed here), or if it is axially sym-
metric about the z-axis, the direction of b in the plane perpendicular to the z-axis does
not matter. Only its modulus, the impact parameter (1.83), is dynamically relevant.

For a given potential U (r) we must determine the angle 6 into which particle 1 will
be scattered, once its momentum p; and its relative angular momentum are given.
The general analysis presented in Sects. 1.7.1 and 1.24 tells us that we must solve the
equivalent problem of the scattering of a fictitious particle of mass u = mym,/M,
subject to the potential U (r). This is sketched in Fig. 1.32. We have

*2

E=Z—, I=bxgq". (1.84)

u

Let P be the pericenter, i.e. the point of closest approach. Figure 1.32 shows the
scattering process for a repulsive potential and for different values of the impact
parameter. In Sect. 1.24 we showed that every orbit is symmetric with respect to
the straight line joining the force center O and the pericenter P. Therefore, the two
asymptotes to the orbit must also be symmetric with respect to O P.” Thus, if ¢y is
the angle between O P and the asymptotes, we have

TThe orbit possesses asymptotes only if the potential tends to zero sufficiently fast at infinity. As
we shall learn in the next section, the relatively weak decrease 1/r is already somewhat strange.
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Fig. 1.32 Scattering orbits
in the repulsive potential
U(r)=A/r (with A > 0).
The impact parameter is
measured in units of the

characteristic length

PR /E, with E the energy

of the incoming particle. Cf.
Practical Example 1.5

SISTS YT
=TT N T

0" = |m — 2¢0| .

The angle ¢y is obtained from (1.68), making use of the relations (1.84)

_/oo ldr
= P E—Ur) -

_/oo bdr (1.85)
e 21— —2pU(r)jq* '

For a given U(r), ¢o, and hence the scattering angle 6* are calculated from this
equation as functions of ¢* (i.e. of the energy, via (1.84) and of b. However, some care
is needed depending on whether or not the connection between b and g* is unique.
There are potentials such as the attractive 1/r? potential where a given scattering
angle is reached from two or more different values of the impact parameter. This
happens when the orbit revolves about the force center more than once (see Example
(iii) below).

A measure for the scattering in the potential U (r) is provided by the differential
cross section do. It is defined as follows. Let 7y be the number of particles incident
on the unit area per unit time; dn is the number of particles per unit time that are
scattered with scattering angles that lie between 6* and 60* 4+ d6*. The differential
cross section is then defined by

1
do ™ —dn . (1.86)
no



74 1 Elementary Newtonian Mechanics

Its physical dimension is [do'] = area.
If the relation between b(6*) and 6* is unique, then dn is proportional to ny and
to the area of the annulus with radii  and b + db,

dn = ng2xb(0*)db ,

and therefore

db(6*)

do = 27b(0*)db = 2 b (0*
o =2nb(07) ”()de*

de* .

If to a fixed 0* there correspond several values of b(6*), the contributions of all
branches of this function must be added.

It is convenient to refer do to the infinitesimal surface element on the unit sphere
df2* = sin#*df*d¢* and to integrate over the azimuth ¢*. With dw = 27 sin 6*d6*
we then have

b6

db(6*
do = b

do*

- do . (1.87)
sin 6*

We study three instructive examples.
Example (i) Scattering off an ideally reflecting sphere. With the notations of Fig. 1.33
. Aa *
b= Rsin— = Rcos — .
2 2
Here we have used the relationship A« = & — 6%, which follows from the equality
of the angle of incidence and the angle of reflection. Thus

db R . 0* do R? (cos*/2)(sin6*/2) R?
=——sin — and — = — - = —.
do* 2 2 dw 2 sin 6* 4

Fig. 1.33 Scattering by an
ideally reflecting sphere of
radius R
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Integrating over dw we obtain the fotal elastic cross section
Otot = T R? ,

a result that has a simple geometric interpretation: the particle sees the projection of
the sphere onto a plane perpendicular to its momentum.

Example (ii) Scattering of particles off nuclei (Rutherford scattering). The potential
is U(r) = k/r with k = q1q2, where ¢, is the charge of the a-particle (this is a
Helium nucleus, which has charge g; = 2¢), while g, is the charge of the nucleus
that one is studying. Equation (1.85) can be integrated by elementary methods and
one finds (making use of a good table of integrals) that

bq*Z
Qo = arctan , or (1.88)
UK
*2
tan gy = 24— (1.88))
K

from which follows

’ 2tan2 _© 2cotzi
@0 = e 5

K
q*4

b =

and, finally, Rutherford’s formula

do K \2 1
10 =5) 5oy (1.89)

This formula, which is also valid in the context of quantum mechanics, was the key
to the discovery of atomic nuclei. It gave the first hint that Coulomb’s law is valid at
least down to distances of the order of magnitude 10~'? cm.

In this example the differential cross section diverges in the forward direction,
6* = 0, and the total elastic cross section o,y = f dw(do/dw) is infinite. The reason
for this is the slow decrease of the potential at infinity. U (r) = «/r can be felt even
at infinity, it is “long ranged”. This difficulty arises with all potentials whose range
is infinite.

Example (iii) Two-body scattering for an attractive inverse square potential. The
potential is U(r) = —a/r?, where a is a positive constant. For positive energy
E > 0 all orbits are scattering orbits. If 2> 2ua, we have

(0)

r dr/
ro pl P2 — r%
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with u the reduced mass, rp = /(12 — 2ua) /2 E the distance at perihelion, and
rl§°> = 1/4/2uE. If the projectile comes in along the x-axis the solution is

l
¢(r) = ———arcsin(rp/r) .
12 - 2uo (re/r)

We verify that for @ = 0 there is no scattering. In this case
@9 (r) = arcsin (rf(,o) / r) ,

which means that the projectile moves along a straight line parallel to the x-axis, at
a distance rli‘” from the scattering center. For « # 0 the azimuth at 7p is

l

== .

Therefore, after the scattering the particle moves in the direction

T
) .

/

VI2 = 2ua

It turns around the force center n times if the condition

/ ©)
TP TP rp T
arcsin— — arcsin— = — — > nn

VI2 = 2ua rp

is fulfilled. Thus, n = r}()()) /2rp, independently of the energy.
For I? < 2« the integral above is (for the same initial condition)

i b+ VB2
o) = T

.

where we have set b = /(2Qua — [2)/2E. The particle revolves about the force
center, along a shrinking spiral. As the radius goes to zero, the angular velocity ¢
increases beyond any limit such that the product ur?¢ = I stays constant (Kepler’s
second law.)

1.29 Example: Coulomb Scattering of Two Particles with
Equal Mass and Charge

It is instructive to study Rutherford scattering in center-of-mass and relative coordi-
nates and thereby derive the individual orbits of the projectile and target particles.
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Fig. 1.34 Scattering of two ¥
equally charged particles of

equal masses, under the

action of the Coulomb force.

The hyperbola branches are

the orbits with respect to the

center of mass. The arrows

indicate the velocities at

pericenter and long after the @

scattering with respect to the =
laboratory system
We take the masses to be equal, m; = my, = m, and the charges to be equal,

q1 = q2 = Q, for the sake of simplicity. The origin O of the laboratory system
is chosen such that it coincides with the center of mass at the moment of closest
approach of the two particles, see Fig.1.34. Let r; and r, be the coordinates of
the two particles in the laboratory system and r} and r; their coordinates in the
center-of-mass-system. If rs denotes the center-of-mass and r = r} —r3 the relative
coordinate, then

r1=rs+%r, r’f:—rj:%r, rzzrs—%r. (1.90)
The total momentum is P = p; = 2q*; the total energy decomposes into relative

and center-of-mass motion as follows:

PRI
TS Ty Tom
As u=m/2 and M = 2m, we have

*2
E =Es=1_.
m

The orbit of the center of mass S is

rs(r) = \/%tel : (1.91)

For the relative motion we have from Sect.1.7.2
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p

= , €10, 2¢9] ,
"= o1 Y [0, 2¢0]
212 1+ 4E,I? (1.92)
= . E = . .
P mQ? mQ*
and from (1.88")
g2 —1

1 .
cos@y = —, Ssingy =
£ €

Thus, in the center-of-mass frame rf = r; = r(¢)/2, with r(¢) from (1.92). Here
@ is the orbit parameter, its relation to the azimuth angles of particles 1 and 2 being

PI=T—¢, p=2T—¢.

This means, in particular, that the motion of the two particles on their hyperbolas
(Fig. 1.34) is synchronous in the parameter ¢.

It is not difficult to derive the velocities v{(¢) and v,(¢) of the two particles in
the laboratory system from (1.90)—(1.92). One needs the relation dg/dt = 21/ mr2.
From this and from

d E 1d E 1 d
%: ZrJFEE(rCOS(m): —r———(p(rcoscp)—(p, etc.

one finds the result

dx, 2,/5—Lsin<p=L(Z\/ez—l—sin(p),
m mp

dr

mp
dyl l
— = —( —cosyp) . (1.93)
der mp

For v,(t) one obtains

d)C2 l dy2

l
— =—singp, —=-—1- . 1.94
dr mp sme dr mp( cos ) ( )

Three special cases, two of which are marked with arrows in Fig. 1.34, are read off
these formulae.

(1) At the beginning of the motion, ¢ = 0:

E;
1)12(2 —,0), ‘U2=(0,0).
m



1.29 Example: Coulomb Scattering of Two Particles with Equal Mass and Charge 79

(ii) At the pericenter, ¢ = @g:

v,:mLm((ze—l)\/ez—l, 5—1), vzzL( 21, —(8—1)).

mpe

(iii) After the scattering, ¢ = 2¢:

2 _
UIZM(\/Ez—l, 1), vy = 2 (\/82—1,—(82—1).

mpe? mpe?

Thus, the slope of v; is 1/+/62 — 1 = 1/tan ¢, while the slope of v, is —+/€2 — 1 =
—tan ¢g.

Of course, it is also possible to give the functions x; (¢) and y; (¢) in closed form,
once ?(¢) is calculated from (1.65):

2 [ d /

mp ¢

1(p) = —— 7 -
2L Jgy (1—ecos(¢’ — ¢o))

(1.95)

(The reader should do this.) Figure 1.35 shows the scattering orbits in the center-
of-mass system for the case ¢ = 2/\/§, i.e. for g9 = 30°, in the basis of the
dimensionless variables 2x;/p and 2y; /p. The same picture shows the positions of
the two particles in the laboratory system as a function of the dimensionless time
variable

def 21

=1—

= mpz'

According to (1.95) this variable is chosen so that the pericenter is reached for r = 0.

The problem considered here has a peculiar property that one meets in asking
where the target (particle 2) was at time ¢t = —o0o. The answer is not evident from
the figure and one must return to (1.92). With dx,/dg = r? sin ¢/2p one finds from
this equation that

(¢0) — 2200) ”/% Sin g d
x (@) — x == Q.
270 ’ 2Jo (1—cosg—+/e2 —1sing)?

This integral is logarithmically divergent. This means that in the laboratory system
particle 2 also came from x, = —oo. This somewhat strange result gives a first
hint at the peculiar nature of the “long-range” potential 1/r that will be met again in
quantum mechanics and quantum field theory.
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Fig. 1.35 Coulomb °0-213
scattering of two particles
(my =ma, q1 = q2) with

¢@o = 30°. The hyperbola
branches are the scattering
orbits in the center-of-mass
system. The open points
show the positions of the two
particles in the laboratory
system at the indicated times

213 o
-104 o

_5.70 a
-260a
ag

0213

570 o

104 o

®
213 ¢
|

X

1.30 Mechanical Bodies of Finite Extension

So far we have exclusively considered pointlike mechanical objects, i.e. particles that
carry a finite mass but have no finite spatial extension. In its application to macro-
scopic mechanical bodies this is an idealization whose validity must be checked in
every single case. The simple systems of Newton’s point mechanics that we studied
in this chapter primarily serve the purpose of preparing the ground for a systematic
construction of canonical mechanics. This, in turn, allows the development of more
general principles for physical theories, after some more abstraction and generaliza-
tion. One thereby leaves the field of the mechanics of macroscopic bodies proper but
develops a set of general and powerful tools that are useful in describing continuous
systems as well as classical field theories.

This section contains a few remarks about the validity of our earlier results for
those cases where mass points are replaced with mass distributions of finite extension.

Consider a mechanical body of finite extension. Finite extension means that
the body can always be enclosed by a sphere of finite radius. Let the body be
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characterized by a time-independent (rigid) mass density o(x), and let m be its
total mass. Integrating over all space, one evidently has

/d3xg(x) =m. (1.96)

The dimension of o is mass/(length)?.
For example, assume the mass density to be spherically symmetric with respect
to the center O. Taking this point as the origin this means that

def
o(x) =o(r), r=Ix|.
In spherical coordinates the volume element is
d*x =sin6do dg r’dr .

Since o does not depend on 6 and ¢, the integration over these variables can be
carried out, so that the condition (1.96) becomes

oo
471/ r2dro(r) =m . (1.97)
0
Equation (1.96) suggests the introduction of a differential mass element
dm ¥ o(x)dx . (1.98)

In a situation where the resulting differential force dK is applied to this mass element,
it is plausible to generalize the relation (1.8b) between force and acceleration as
follows:

¥dm = dK . (1.99)

(This postulate is due to L. Euler and was published in 1750.) We are now in a position
to treat the interaction of two extended celestial bodies. We solve this problem in
several steps.

(1) Potential and force field of an extended star. Every mass element situated in x
creates a differential potential energy for a pointlike probe of mass m situated in y
(inside or outside the mass distribution), given by

G dmm X
_ 0 _ o(x) FEN

dU(y) = = —-Gmyg
lx — I lx — ¥yl

(1.100)

The probe experiences the differential force
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Gmoo(x) y—x
lx —yI> |y —x|

dK = —V,dU = — (1.101)

Either formula, (1.100) or (1.101), can be integrated over the entire star. For instance,
the total potential energy of the mass m is

U(y) = —Gm /|Q(_xiv| . (1.102)

The vector x scans the mass distribution, while y denotes the point where the potential
is to be calculated. The force field that belongs to this potential follows from (1.102),
as usual, by taking the gradient with respect to y, viz.

K(y)=-V,U(y) . (1.103)

(i1) Celestial body with spherical symmetry. Let o(x) = o(s), with s = |x|,
and let o(s) = 0 for s > R. In (1.102) we take the direction of the vector y as the

z-axis. Denoting by r & |y| the modulus of y and integrating over the azimuth ¢,
we find that

+1 o0
U= —2nGmo/ dz szdsL s zdit cosf .
- r2 452 —2rsz

The integral over z is elementary,

+1
2,2 - o _[2/rforr>s
/_1 de(r +5° = 2rsz) B rs“r sSI=r+9)l= [2/S forr <s°

One sees that U is spherically symmetric, too, and that it is given by

U(r) = —4rnGmy (%/ szdsg(s)—i—/ sdsg(s)) . (1.104)
0 r

For r > R the second integral does not contribute, because o(s) vanishes for s > R.
The first integral extends from O to R and, from (1.97), gives the constant m /4.
Thus one obtains

Gmom

Ur)=—- for r > R. (1.105)

In the space outside its mass distribution a spherically symmetric star with total
mass m creates the same potential as a mass point m placed at its center of
symmetry.
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It is obvious that this result is of great importance for the application of Kepler’s
laws to planetary motion.

(iii) Interaction of two celestial bodies of finite extension. If the probe of mass
m has a finite extension, too, and is characterized by the mass density oo (y), (1.102)
is replaced by the differential potential

dU(y) = —Goo(y)dy / W) g
lx — y|

This is the potential energy of the mass element o(y)d?y in the field of the first star.
The total potential energy is obtained from this by integrating over y:

- _G/d3 /d3 e®eo(y) (1.106)
lx — yl

If both densities are spherically symmetric, their radii being R and Ry, we obtain
again (1.105) whenever the distance of the two centers is larger than (R + Ry).

(iv) Potential of a star with finite extension that is not spherically symmetric.
Assume the density o(x) still to be finite (that is, o(x) = O for |[x| > R) but not
necessarily spherically symmetric. In calculating the integral (1.102) the following
expansion of the inverse distance is particularly useful:

o0
©)Yi,() - 1.107
|x—J’| ,Z l+1 t+1 Z ) Y1,(9) ( )
Here r. = |x|, r~ = |y| if |y| > |x|, and correspondingly r. = |y|, r~ =

|x| if |y| < |x|. The symbols Y;,, denote well-known special functions, spherical
harmonics, whose arguments are the polar angles of x and y:

(O, 0x) =%, (6,.0y) =5 .

These functions are normalized and orthogonal in the following sense:

b4 2
/ sin 6 d6 / dPY;, (0, $) Y10 (0. 8) = Srde (1.108)
0 0

(see e.g. Abramowitz and Stegun 1965). Inserting this expansion in (1.102) and
choosing |y| > R, one obtains

+1
q
/j‘l Yiu(y) . (1.109)

Uy) =

2l+1

where
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def 3 1
qip = /d xY[;(x)s o(x) . (1.110)

The first spherical harmonic is a constant: Y;—q,— = 1/+/4m. If o(x) is taken to
be spherically symmetric, one obtains

R /4 2
Qi = VA / s> dss’o(s) / sin 6 d@ / dpYoo Y,
0

=4 / 5% dso(5)8108,0 = \/E&o%o,

so that (1.109) leads to the result (1.105), as expected. The coefficients ¢;,, are called
multipole moments of the density o(x). The potentials that they create,

U (y) = — (1.111)

Gz iy 9

are called multipole potentials. In the case of spherical symmetry only the multipole
moment with / = 0 is nonzero, while in the absence of this symmetry many or all
multipole moments will contribute.

1.31 Time Averages and the Virial Theorem

Let us return to the n-particle system as described by the equations of motion (1.29).
We assume that the system is closed and autonomous, i.e. that there are only internal,
time-independent forces. We further assume that these are potential forces but not
necessarily central forces. For just n = 3, general solutions of the equations of
motion are known only for certain special situations. Very little is known for more
than three particles. Therefore, the following approach is useful because it yields at
least some qualitative information.

We suppose that we know the solutions r;(¢), and therefore also the momenta
p;(t) = mr;(t). We then construct the following mapping from phase space onto
the real line:

o= D i) pi() - (1.112)
i=1

This function is called the virial. If a specific solution has the property that no particle
ever escapes to infinity or takes on an infinitely large momentum, then v(¢) remains
bounded for all times. Defining time averages as follows:

+A

L f(t)dt (1.113)

def lim
A—o00 2A

(f) =
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the average of the time derivative of v(¢) is then shown to vanish, viz.

T4 du(r A) —v(=A
o) = tim — [ PO _ oy YA D
A—o00 2A J_4 dr A—00 2A
Since
0() = D miFi(t) = D 1) - ViU(ri(@), ..., ra(0)
i=1 i=1
we obtain for the time average
2(T)—<Zri-V,~U>=O. (1.114)
1

This result is called the virial theorem. It takes a particularly simple form when U
is a homogeneous function of degree k in its arguments ry, ..., r,. In this case
> ri-V;U = kU, so that (1.114) and the principle of energy conservation give

UT) —k{U)=0, (T)+(U)=E. (1.115)

Examples of interest follow.

(i) Two-body systems with harmonic force. Transforming to center-of-mass and
relative coordinates, one has

v(t) =mry-Fr+mary - Fo = Mrs-Fg+ ur-r .

The function v remains bounded only if the center of mass is at rest, s = 0. However,
the kinetic energy is then equal to the kinetic energy of the relative motion so that
(1.115) applies to the latter and to U (r). In this example U (r) = ar?, i.e. k = 2.
The time averages of the kinetic energy and potential energy of relative motion are
the same and are equal to half the energy,

(T) = (U) = 3E .

(ii) In the case of the Kepler problem the potential is U(r) = —«/r, where r
denotes the relative coordinate. Thus k = —1. For E < 0 (only then is v(¢) bounded)
one finds for the time averages of kinetic and potential energies of relative motion

(T)=—E; (U)=2E.
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Note that this is valid only in R3\{0} for the variable r. The origin where the force
becomes infinite should be excluded. For the two-body system this is guaranteed
whenever the relative angular momentum is nonzero.

(iii) For an n-particle system (n > 3) with gravitational forces some information
can also be obtained. We first note that v(¢) is the derivative of the function

n

wOE Y mirk),

i=I

which is bounded, provided that no particle ever escapes to infinity. As one can easily
show,

W(it)=2T+U=E+T.

Since T (t) is positive at all times, w(¢) can be estimated by means of the general
solution of the differential equation y () = E. Indeed

w(t) = 2EZ +w(0)t + w(0) .

If the total energy is positive, then lim,_, 1o, w(#) = 0o, which means that at least
one particle will escape to infinity asymptotically (see also Thirring 1992, Sect.4.5).

Appendix: Practical Examples

1. Kepler Ellipses. Study numerical examples for finite motion of two celestial
bodies in their center-of-mass frame (Sect. 1.7.2).

Solution. The relevant equations are found at the end of Sect. 1.7.2. It is convenient
to express m; and m; in terms of the total mass M = m; + m; and to set M = 1.
The reduced mass is then u = mm,. For given masses the form of the orbits is
determined by the parameters

p=— and ¢= |1+ (A1)

Ap A2’

which in turn are determined by the energy E and the angular momentum. It is easy
to calculate and to draw the orbits on a PC. Figure 1.6a shows the example m| = m,
with ¢ = 0.5, p = 1, while Fig. 1.6b shows the case m; = m,/9 with ¢ = 0.5,
p = 0.66. As the origin is the center of mass, the two stars are at opposite positions
at any time.

2. Motion of a Double Star. Calculate the two orbital ellipses of the stars of the
preceding example pointwise, as a function of time, for a given time interval Az.
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Solution. In Example 1 the figures show r(¢) as a function of ¢. They do not indicate
how the stars move on their orbits as a function of time. In order to obtain r(¢),
one returns to (1.19) and inserts the relative coordinate r (¢). Separation of variables
yields

2 réns d
194 %
thal —t, = — _ A2
mH T l /n (1 + £cos )2 (A-2)

for the orbital points n and 1 + 1. (The pericenter has ¢p = 0.) The quantity up?/1
has the dimension of time. Introduce the period from (1.23) and use this as the unit
of time,

- ©!2a32 B Apl?
=T Al/2 _n21/2(_E)3/2'

Then

WP~ _ (1 - 82)3/21
21
The integral in (A.2) can be done analytically. Substituting
def 1—¢ ]

X = tan—
1+¢ 2

one has
I=/ dy _ 2 /dx1+[(1+8)/(1_8)]X2
) (4ecosp)?  JT—¢? (14 x2)?

_ 2 / dx n 25/ x2dx
T2 ) 1+ T1—e) a+x22]

whose second term can be integrated by parts. The result is

2 [1—e ¢
| = ————arctan tan—
(1 —¢g2)3/2 1+e 2

& sin @ C. (A.3)
1—8214+¢ecosg
so that
Iny1 — In 1 I—¢ @
———— = —|arctan{ ,/ tan—
T T 1+¢ 2
. Dt
1
S T, A . (A4)
2 1+ecose

¢’l
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One can compute the function Af(A¢, @), for a fixed increment A¢ and mark the
corresponding positions on the orbit. Alternatively, one may give a fixed time interval
At/ T and determine succeeding orbital positions by solving the implicit equation
(A.4) in terms of ¢.

3. Precession of Perihelion. (a) For the case of bound orbits in the Kepler problem
show that the differential equation for ¢ = ¢(r) takes the form

d_¢_1/$ (A.5)
dr V@ —rp)ra—r)’ .

where rp and 75 denote pericenter and apocenter, respectively. Integrate this equation
with the boundary condition ¢(r = rp) = 0.

(b) The potential is now modified into U(r) = —A/r + B/r?. Determine the
solution ¢ = ¢(r) and discuss the precession of the pericenter after one turn, in
comparison with the Kepler case, as a function of B < 0 where |B| < [2/2u.

Solutions. (a) For elliptical orbits, E < 0, and one has

dp 1 1 1
dr — J2u(=E) r A 12
—r?——=r4+—
E 2uE

Apocenter and pericenter are given by the roots of the quadratic form (—r> — Ar/E +
I?2uE):

A
rap = = (%o (A.6)

lFe
(these are the points where dr/dt = 0). With
A? I

rpra = m(l — 82) = _Z[LE

we obtain (A.5). This equation can be integrated. With the condition ¢(rp) = 0 one
obtains

(2“”’ A — rp)} . (A7)

¢(r) = arccos |:
’

ra —Tp

Asp(ra)—e@(rp) = m,one confirms that the pericenter, force center, and apocenter lie
on a straight line. Two succeeding pericenter constellations have azimuths differing
by 2, i.e. they coincide. There is no precession of the pericenter.

(b) Let rp and rp be defined as in (A.6). The new apocenter and pericenter posi-
tions, in the perturbed potential, are denoted by r} and rp, respectively. One has
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(r—rp)(rA—r)+§= (r=rp)(ry—r),

and therefore

/o B
Iplry = Tpra — E . (AS)

Equation (A.5) is modified as follows:

do . 1 Tpra _ [rera YN
dr — r\V (r— rp)(ry — 1) a rpry \ (r —rp)(ry — 1)

This equation can be integrated as before under (a):

1 7 i
o) = r]:rf arccos [ - - (2rArP —ry — r{,)] . (A.9)
V rpra rh—Tp r

From (A.8) two successive pericenter configurations differ by

rpra _ 2l
rora JI2+2uB

This difference can be studied numerically, as a function of positive or negative B.
Positive B means that the additional potential is repulsive so that, from (A.10), the
pericenter will “stay behind”. Negative B means additional attraction and causes the
pericenter to “advance”.

2

(A.10)

4. Rosettelike Orbits. Study the finite orbits in the attractive potential U (r) = a/r?,
for some values of the exponent « in the neighborhood of o = 1.

Solution. Use as a starting point the system (1.70)—(1.71") of first-order differential
equations, written in dimensionless form:

d d 1
=2 — o 2% (), £ =, (A1)

dr dt o
From this calculate the second derivatives:
0 d (do\de 1 def d%o 2
—_— R —:—l—b 2—()1: s —_——— .
0 = 4o (dr) = Q3( e ) =80, 1 Q3f(Q)

Equation (A.11) can be solved approximately by means of simple Taylor series:
Cnt1 = n +hf (o) + 3h°g(0n) + O (1) .
1 1
Ont = on+ s =B f(en) + O (k7). (A.12)

n n
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for the initial conditions tp = 0, 9(0) = Ry, ¢(0) = 0. The step size h for the time
variable can be taken to be constant. Thus, if one plots the rosette pointwise, one can
follow the temporal evolution of the motion. (In Figs. 1.18, 1.19, 1.20, 1.21 and 1.22
we have chosen 4 to be variable, instead, taking 7 = hoo/ Ry, with hy = 0.02.)

5. Scattering Orbits for a Repulsive Potential. A particle of fixed momentum p is
scattered in the field of the potential U (r) = A/r, (with A > 0). Study the scattering
orbits as a function of the impact parameter.

Solution. The orbit is given by

p
1+ ecos(p — ¢o)

with ¢ > 1. The energy E must be positive. We choose ¢y = 0 and introduce the

impact parameter » = [/| p| and the quantity A &t A/E as a characteristic length of
the problem. The equation of the hyperbola (A.13) then reads

r(p) 2b% /)2

A 14+ /T+402 02 cosg

Introducing Cartesian coordinates (see Sect. 1.7.2), we find that (A.13") becomes

(A.13)

4xr 2 1

FEER T
This hyperbola takes on a symmetric position with respect to the coordinate axes, its
asymptotes having the slopes tangy and —tangyg, respectively, where

2b
@o = arctan =) - (A.14)

We restrict the discussion to the left-hand branch of the hyperbola. We want the
particle always to come in along the same direction, say along the negative x-axis.
For a given impact parameter b this is achieved by means of a rotation about the
focus on the positive x-axis, viz.

u=(x—c)cosgy~+ ysing ,
v=—(x—c)singy+ ycosg , (A.15)

where ¢ = /1 +4b%/A2/2 is the distance of the focus from the origin, and y =
+b,/4x2 /A% — 1. For all b, the particle comes in from —oo along a direction parallel
to the u-axis, with respect to the coordinate system (u, v). Starting from the pericenter
(xo/A = — % yo = 0), let y run upwards and downwards and use (A.15) to calculate
the corresponding values of x and y (see Fig. 1.32).
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6. Temporal Evolution for Rutherford Scattering. For the example in Sect. 1.29
calculate and plot a few positions of the projectile and target as a function of time,
in the laboratory system.

Solution. In the laboratory system the orbits are given, as functions of ¢, by (1.90)—
(1.92). Withg =7 — ¢, ¢, =21 — ¢

r + Lo B+ 2 ! ( in )
=r —r = —_ s — — COS @, SIn ,
! ) m 2 ecos(p — @) — 1 ¢ ¢
1 E. p 1 .
ro=rs——-r=,/—t(1,0) — = (cosp, —sing) . (A.16)
2 m 2 gcos(p — @) — 1

The integral (1.95) that relates the variables ¢ and ¢ is calculated as in Example 2.
Noting that here ¢ > 1 and making use of the formulae

1+1 E
arctanx:—l—ln +.x , mp oz e2—1,
2 1—ix [ m

we find that

Er p 1 14+u £ Sil’l((ﬂ - (PO)
E, . _»p | . (A7
,/m(w) 2(52_1n1—u+ /€2 — 1 ecos(p — @) — 1 (A7

where u stands for the expression

le+1 ©—o
u= tan .
e—1 2

Furthermore, we have

1 ) e2 -1
cos@y=—, singy=-—,
g

e
¢ © — Qo sin @ — sin ¢g esing —+/e2 —1
an = = .
2 Cos ¢ + cos ¢g 14+ ecose

Equation (A.17) gives the relation between ¢ and 7. Using dimensionless coordinates
(2x/p, 2y/p), one plots points for equidistant values of ¢ and notes the correspond-
ing value of the dimensionless time variable

def 2 [ E;
T = —/ — .
P m

Figure 1.35 shows the example ¢ = 0.155, ¢y = 30°. Alternatively, one may choose
a fixed time interval with respect to 7 (¢y) = 0 and calculate the corresponding values
of ¢ from (A.17).



Chapter 2
The Principles of Canonical Mechanics

Canonical mechanics is a central part of general mechanics, where one goes beyond
the somewhat narrow framework of Newtonian mechanics with position coordinates
in the three-dimensional space, towards a more general formulation of mechani-
cal systems belonging to a much larger class. This is the first step of abstraction,
leaving behind ballistics, satellite orbits, inclined planes, and pendulum-clocks; it
leads to a new kind of description that turns out to be useful in areas of physics
far beyond mechanics. Through d’Alembert’s principle we discover the concept of
the Lagrangian function and the framework of Lagrangian mechanics that is built
onto it. Lagrangian functions are particularly useful for studying the role symmetries
and invariances of a given system play in its description. By means of the Legendre
transformation we are then led to the Hamiltonian function, which is central to the
formulation of canonical mechanics, as developed by Hamilton and Jacobi.

Although these two frameworks of description at first seem artificial and unnec-
essarily abstract, their use pays in very many respects: the formulation of mechanics
over the phase space yields a much deeper insight into its dynamical and geometrical
structure. At the same time, this prepares the foundation and formal framework for
other physical theories, without which, for example, quantum mechanics cannot be
understood and perhaps could not even be formulated.

2.1 Constraints and Generalized Coordinates

2.1.1 Definition of Constraints

Whenever the mass points of a mechanical system cannot move completely inde-
pendently because they are subject to certain geometrical conditions, we talk about
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Fig. 2.1 A system of three 1 %
mass points at constant £
distances from one another 3
has six degrees of freedom
(instead of nine) a;
a
2

constraints. These must be discussed independently because they reduce the number
of degrees of freedom and therefore change the equations of motion.

(1) The constraints are said to be holonomic (from the Greek: constraints are given
by an “entire law”) if they can be described by a set of independent equations of the
form

fHri,ra, ..., r,t)=0; A=1,2,..., A, 2.1)
ri,..., I, being coordinates of n mass points, respectively.
Independent means that at any point (ry, ..., r,) and for all ¢, the rank of the

matrix {df;/dry} is maximal, i.e. equals A. As an example take the three-body
system with the condition that all interparticle distances be constant (see Fig.2.1):
fi=lri—r—-a3=0,
fr=lrn—ril—a =0,
fr=slr—ril—a=0.
Here A = 3. Without these constraints the number of degrees of freedom would be

f = 3n =9. The constraints reduce itto f =3n — A = 6.
(ii) The constraints are said to be nonholonomic if they take the form

Zw;(rl,...,rn)-drk=o, i=1,...,A (2.2)
k=1

but cannot be integrated to the form of (2.1). Note that (2.1), by differentiation, gives
a condition of type (2.2), viz.

D Vifilriry) - dre=0.
k=1

This, however, is a complete differential. In contrast, a nonholonomic constraint (2.2)
is not integrable and cannot be made so by multiplication with a function, a so-called
integrating factor. This class of conditions is the subject of the analysis of Pfaffian
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systems. As we study only holonomic constraints in this book, we do not go into this
any further and refer to the mathematics literature for the theory of Pfaffian forms.

(iii) In either case one distinguishes constraints that are (a) dependent on time —
these are called rheonomic (“running law”) constraints; and (b) independent of time
— these are called scleronomic (“rigid law”) constraints.

(iv) There are other kinds of constraints, which are expressed in the form of
inequalities. Such constraints arise, for instance, when an n-particle system (a gas,
for example) is enclosed in a vessel: the particles move freely inside the vessel but
cannot penetrate its boundaries. We do not consider such constraints in this book.

2.1.2 Generalized Coordinates

Any set of independent coordinates that take into account the constraints are called
generalized coordinates. For example, take a particle moving on the surface of a
sphere of radius R around the origin, as sketched in Fig.2.2. Here the constraint is
holonomic and reads x*> + y? 4+ z> = R?, sothat f =3n — 1 =3 — 1 = 2. Instead
of the dependent coordinates {x, y, z} one introduces the independent coordinates
g1="0,q9=¢.

In general, the set of 3n space coordinates of the n-particle system will be replaced
by a set of (3n — A) generalized coordinates, viz.

{ri,ro,...r.y = {q1.q2,...,q5}, f=12,...,3n— A, (2.3)

which, in fact, need not have the dimension of length. The aim is now twofold:

(i) determine the number of degrees of freedom f and find f generalized coordi-
nates that take account of the constraints automatically and that are adapted, in
an optimal way, to the system one is studying;

(ii) develop simple principles from which the equations of motion are obtained
directly, in terms of the generalized coordinates.

We begin by formulating d’ Alembert’s principle, which is an important auxiliary
construction on the way to the goal formulated above.

Fig. 2.2 A particle whose

motion is restricted to the m
surface of a sphere has only

two degrees of freedom
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2.2 D’Alembert’s Principle

Consider a system of n mass points with masses {m;} and coordinates {r;},
i=1,2,...,n, subject to the holonomic constraints

f)\(rlv""rnat):o7 )"21"-~5A- (2.4)

2.2.1 Definition of Virtual Displacements

A virtual displacement {5r;} of the system is an arbitrary, infinitesimal change of
the coordinates that is compatible with the constraints and the applied forces.! It is
performed at a fixed time and therefore has nothing to do with the actual, infinitesimal
motion {dr;} of the system during the time change dr (i.e. the real displacement).

Loosely speaking, one may visualize the mechanical system as a half-timbered
building that must fit in between the neighboring houses, on a given piece of land
(these are the constraints), and that should be stable. In order to test its stability,
one shakes the construction a little, without violating the constraints. One imagines
the elements of the building to be shifted infinitesimally in all possible, allowed
directions, and one observes how the construction responds as a whole.

2.2.2 The Static Case

To begin with, let us assume that the system is in equilibrium, i.e. F; =0,
i =1,...,n, where F; is the total force applied to particle i. Imagine that the con-
straint is taken care of by applying an additional force Z; to every particle i (such
forces are called forces of constraint). Then

F,=K,+Z;, (2.5)

where Z; is the force of constraint and K; the real, dynamic force. Clearly, because
all the F; vanish, the total virtual work vanishes:

n

iF,. Sri=0= Z[K,- +Z:]-6r; . (2.6)
i=1

i=1

"Here we make use of this somewhat archaic but very intuitive notion. Geometrically speaking,
virtual displacements are described by tangent vectors of the smooth hypersurface in R that is
defined by (2.4). D’ Alembert’s principle can and should be formulated in the geometric framework
of Chap. 5.
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However, since the virtual displacements must be compatible with the constraints,
the total work of the forces of constraint alone vanishes, too: Z'l' Z; - 6r; = 0. Then,
from (2.6) we obtain

> Ki-or;=0. (2.7)
i=1

In contrast to (2.6), this equation does not imply, in general, that the individual terms
vanish. This is because the §r; are generally not independent.

2.2.3 The Dynamical Case

If the system is moving, then we have F; — p;, = 0 and of course also > ", (F; —
p;) - 8r; = 0. Asthe total work of the forces of constraint vanishes, 2?21 (Z; - 6r;) =
0, we obtain the basic equation expressing d’Alembert’s principle of virtual displace-
ments:

D (Ki—p)-ori =0, (2.8)
i=1

from which all constraints have disappeared. As in the case of (2.7), the individual
terms, in general, do not vanish, because the §r; depend on each other.

Equation (2.8) is the starting point for obtaining the equations of motion for the
generalized coordinates. We proceed as follows.

As the conditions (2.4) are independent they can be solved locally for the coordi-
nates r;, i.e.

ri=ri(q,....qr, 1), i=1,...,n, f=3n—-A.

From these we can deduce the auxiliary formulae

8r,~ Bri

v, = i'i = — g - 29
; oo 1 29
av; or;
ovi _ o (2.10)
oG Oqk
s
ar,-
sri=> —8q . @2.11)
; 9qk
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Note that there is no time derivative in (2.11), because the §r; are virtual displace-
ments, i.e. are made at a fixed time. The first term on the left-hand side of (2.8) can
be written as

n f n

. def or;
E K; - or; = E Oidqr with Qp = E K, - —. (2.12)
i= k=1 i=1 4k

The quantities Q. are called generalized forces (again, they need not have the dimen-
sion of force). The second term also takes the form D ;_,{...}8¢qy, as follows:

Zn:i”"sr"zzn:mifi'&z Zm,Zr, &861/{
=t i=l i=1

The scalar products (¥; - 9r; /dq;) can be written as

. 8r, d /. or; R | 8r,
r;- = —\r; — —r;-
361k S dr gk dr aqk
Note further that

d Brl 0 . av;

= Fi=—
dr dgr  oqx 0qx

and, on taking the partial derivative of (2.9) with respect to ¢, that ar;/dq; =
9v;/9qy.
From these relations one obtains

" . 81),‘ av,'
S =3 [ (v ) - 5]

The two terms in the expression in curly brackets contain the form v - dv/dx =
(0v?/9x)/2, with x = g or g, so that we finally obtain

Z‘,p, 51, = Z[i [%(;%vz)} - aiqk(z’%v )} Sq - (2.13)

Inserting the results (2.12) and (2.13) into (2.8) yields an equation that contains only
the quantities d¢y, but not ér;. The displacements §g; are independent (in contrast
to the &r;, which are not). Therefore, in the equation that we obtain from (2.8) by
replacing all §r; by the d¢y, as described above, every term must vanish individually.
Thus we obtain the set of equations

d /0T oT
— —_— —_——_——= N k:l,..., N 214
ai (aqk) b & / @14)
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where T = >" | m; vi2 /2 1is the kinetic energy. Of course, very much like Qy, T must

be expressed in terms of the variables ¢g; and ¢; so that (2.14) really does become a
system of differential equations for the g (¢).

2.3 Lagrange’s Equations

Suppose that, in addition, the real forces K; are potential forces, i.e.
K.=-V,U. (2.15)

In this situation the generalized forces Q; are potential forces, too. Indeed, from
(2.12)

81‘,‘ 0
E VU(rl""’ n) = - U(qls--~’qf’t)’ (216)
3 qk 36]

under the assumption that U is transformed to the variables g;. As U does not depend
on the g, T and U can be combined to

L(qx, gx.t) = T(qx, gi) — U(gx, 1) (2.17)

so that (2.14) takes the simple form

d (0L) L _, o1
dr \ g Sqr .

The function L (g, gx, t) is called the Lagrangian function. Equation (2.18) are called
Lagrange’s equations. They contain the function L (2.17) with

U@gi,....q7, ) =U@1(q1,....q7,1),...Tx(q1, ..., q5, 1)),
2

, 1< " or. . o
T(qk: q) = zzmi (Z—Qk + o ) (2.19)

i=1 klaq

=a+ Zbqu + chkw]kql ;

k=1 =1
where

:_Z”: (ar,) 7

31‘,’ Bri
by = — = 2.20
‘ glm TRRT (2.20)
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= g Iq

The special form L = T — U of the Lagrangian function is called its natural form.
(For the reasons explained in Sect.2.11 below, L is not unique.) For scleronomic
constraints both a and all b; vanish. In this case T is a homogeneous function of
degree 2 in the variables ¢.

We note that d’Alembert’s equations (2.14) are somewhat more general than
Lagrange’s equations (2.18): the latter follow only if the forces are potential forces.
In contrast, the former also hold if the constraints are formulated in a differential
form (2.11) that cannot be integrated to holonomic equations.

2.4 Examples of the Use of Lagrange’s Equations

We study three elementary examples.

Example (i) A particle of mass m moves on a segment of a sphere in the earth’s
gravitational field. The dynamical force is K = (0, 0, —mg), the constraint is |r| =
R, and the generalized coordinates may be chosen tobe ¢; = 6 and ¢, = ¢, as shown
in Fig.2.3. The generalized forces are

ar
0 :K~a—:—RKzsin9:ng sinf
q1

0,=0.
These are potential forces, Q1 = —dU/dq,, Q2 = —3U/dq,, with U(qi, q2) =
mgR[1 + cos q1]. Furthermore, T = mR*[§} + 43 sin” ¢;]/2, and therefore

L = imR’[4] + ¢; sin> q1] — mg R[1 + cos q1] .

Fig. 2.3 A small ball on a
segment of a sphere in the
earth’s gravitational field.
The force of constraint Z is
such that it keeps the particle
on the given surface. As such
it is equivalent to the
constraint




2.4 Examples of the Use of Lagrange’s Equations 101

Fig. 2.4 Two pointlike
weights m| and my are
connected by a massless 0
thread, which rests on a -
wheel. The motion is

assumed to be frictionless

We now calculate the derivatives dL/dq; and d(dL/dq;)/dt:
oL aL

—=mqugsinqlcosq1+ngsinq1, — =0,
g1 0q2

oL 5. oL 2. ..o

— =mR°q, —/— =mR¢qsin"q

aql qu

to obtain the equations of motion
. [.2 g7 . _ d o,
9 —|gacosq + 5 singg =0, mR E(stln q1)=0.

Example (ii) Atwood’s machine is sketched in Fig.2.4. The wheel and the thread
are assumed to be massless; the wheel rotates without friction. We then have

T = (m +my)i*,
U=—-mgx —myg(l—x),
L=T-U.

The derivatives of L are dL/dx = (m; — my)g, 0L/3x = (m + my)x, so that the
equation of motion d(dL/dx)/dt = dL/dx becomes

. mp—mj
X=—"8
my + my

It can be integrated at once. If the mass of the wheel cannot be neglected, its rotation
will contribute to the kinetic energy T by the amount T = I (df/d¢)?/2, where I is
the relevant moment of inertia and d6 /d¢ its angular velocity. Let R be the radius of
the wheel. The angular velocity is proportional to x, viz. R(d6/dt) = x. Therefore,
the kinetic energy is changed to T = (m; + m, + I /R?)%?/2. (The rotary motion
of a rigid body such as this wheel is dealt with in Chap. 3.)

Example (iii) Consider a particle of mass m held by a massless thread and rotating
about the point S, as shown in Fig. 2.5. The thread is shortened at a constant rate ¢ per
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Fig. 2.5 The mass point m m
rotates about the point S. At
the same time, the thread
holding the mass point is
shortened continuously

unit time. Let x and y be Cartesian coordinates in the plane of the circle, ¢ the polar
angle in that plane. The generalized coordinate is ¢ = ¢, and we have x = (Ry —
ct)cosq,y = (Ry — ct)sing; thus T = m (%% + y%)/2 = m[¢*(Ry — ct)? + ¢?]/2.
In this example T is not a homogeneous function of degree 2 in ¢ (the constraint is
rheonomic!). The equation of motion now reads m¢ (R — ct)* = const.

2.5 A Digression on Variational Principles

Both conditions (2.7) and (2.8) of d’Alembert’s principle, for the static case and
dynamic case, respectively, are expressions for an equilibrium: if one “shakes” the
mechanical system one is considering, in a way that is compatible with the constraints,
the total (virtual) work is equal to zero. In this sense the state of the system is an
extremum; the physical state, i.e. the one that is actually realized, has the distinct
property, in comparison with all other possible states one might imagine, that it is
stable against small changes of the positions (in the static case) or against small
changes of the orbits (in the dynamic case). Such an observation is familiar from
geometric optics. Indeed, Fermat’s principle states that in an arbitrary system of
mirrors and refracting glasses a light ray always chooses a path that assumes an
extreme value. The light’s path is either the shortest or the longest between its source
and the point where it is detected.

D’Alembert’s principle and the experience with Fermat’s principle in optics
raise the question whether it is possible to define a functional, for a given mechan-
ical system, that bears some analogy to the length of path of a light ray. The actual
physical orbit that the system chooses (for given initial condition) would make this
function an extremum. Physical orbits would be some kind of geodesic on a manifold
determined by the forces; that is, they would usually be the shortest (or the longest)
curves connecting initial and final configurations.

There is indeed such a functional for a large class of mechanical systems: the time
integral over a Lagrangian function such as (2.17). This is what we wish to develop,
step by step, in the following sections.



2.5 A Digression on Variational Principles 103

In fact, in doing so one discovers a gold mine: this extremum, or variational,
principle can be generalized to field theories, i.e. systems with an infinite number of
degrees of freedom, as well as to quantized and relativistic systems. Today it looks
as though any theory of fundamental interactions can be derived from a variational
principle. Consequently it is rewarding to study this new, initially somewhat abstract,
principle and to develop some feeling for its use. This effort pays in that it allows
for a deeper understanding of the rich structure of classical mechanics, which in turn
serves as a model for many theoretical developments.

One should keep in mind that philosophical and cosmological ideas and concepts
were essential to the development of mechanics during the seventeenth and eigh-
teenth centuries. It is not surprising, therefore, that the extremum principles reflect
philosophical ideas in a way that can still be felt in their modern, somewhat axiomatic,
formulation.

The mathematical basis for the discussion of extremum principles is provided by
variational calculus. In order to prepare the ground for the following sections, but
without going into too much detail, we discuss here a typical, fundamental problem
of variational calculus. It consists in finding a real function y(x) of a real variable x
such that a given functional /[y] of this function assumes an extreme value. Let

c “ / / d
1[y1d=f/ dx f (). Y (0).2) ¥ = ¥, (2.21)

X1

be a functional of y, with f a given function of y, y’ (the derivative of y with respect
to x) and the variable x. x| and x; are arbitrary, but fixed, endpoints. The problem is to
determine those functions y(x) which take given values y; = y(x;) and y, = y(x3)
at the endpoints and which make the functional I[y] an extremum. In other words,
one supposes that all possible functions y(x) that assume the given boundary values
are inserted into the integral (2.21) and that its numerical value is calculated. What
we are looking for are those functions for which this value assumes an extremal
value, i.e. is a maximum or a minimum, or, possibly, a saddle point.
As a first step we investigate the quantity

def

I (o) = / fFOyx, o), y(x, o), x)dx , (2.22)

where y(x, @) = y(x) + an(x) with n(x;) = 0 = n(x,). This means that we embed
y(x) in a set of comparative curves that fulfill the same boundary conditions as y(x).
Figure 2.6 shows an example. The next step is to calculate the so-called variation of
I, that is, the quantity

e dI * af d af dy
R R B
da X oy dae 09y’ da
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Fig. 2.6 The curve y(x) that y
makes the functional /[y] an
extremum is embedded in a
set of comparative curves
assuming the same boundary
values as y(x)

Clearly, dy’/da = (d/dx)(dy/d). If the second term is integrated by parts,

2 9f d [dy 2 dy d [af af dy

dx o o\ = — dx — — a + A Ao

X 0y’ dx \do X doa dx \dy dy" da

the boundary terms do not contribute, because dy/do = n(x) vanishes at x; and at
Xx>. Thus

w o faf d af)d
51:/ a [ 4 ldy (2.23)
X dy dx 9y ] do

X2

X1

The expression

of 4 of ardf (2.24)
dy dx 9y’ by '

is called the variational derivative of f by y. It is useful to introduce the notation

(dy/da)da & 8y and to interpret §y as an infinitesimal variation of the curve y(x).
I (o) assumes an extreme value, i.e. 6/ = 0. As this must hold true for arbitrary
variations 4y, the integrand in (2.23) must vanish:

o _ 4 (%) =0. (2.25)
dy dx \ 9y

This is Euler’s differential equation of variational calculus. With a substitution of
L(g,q,t) for f(y,y, x), a comparison with (2.18) shows that it is identical with
Lagrange’s equation d(dL/9q)/dt — dL/dg = O (here in one dimension). This sur-
prising result is the starting point for the variational principle proposed by Hamilton.
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2.6 Hamilton’s Variational Principle (1834)

Postulate. To a mechanical system with f degrees of freedom g =

{q1,q2, ..., qf} we associate a C2-function of the variables q and q and of
the time 7,
L(g.q.1), (2.26)

called the Lagrangian function. Let

(1) = (@1(0), ..., 0r(1))

in the interval ; <t < 1, be a physical orbit (i.e. a solution of the equations of
motion) that assumes the boundary values ¢(t;) = a and ¢(t,) = b. This orbit
is such that the action integral

g1 = / dt L(q(), §(1), 1) (2.27)

1

assumes an extreme Value.2

The physical orbit, i.e. the solution of the equations of motion for the specified
boundary conditions, is singled out from all other possible orbits that the system
might choose and that have the same boundary values by the requirement that the
action integral be an extremum. For suitable choices of the boundary values (¢, a)
and (#, b) this will be a minimum. However, the example worked out in Exercise
2.18 shows that it can also be a maximum. Saddle point values are possible, too. We
return to this question in Sect.2.36 (ii) below.

2.7 The Euler-Lagrange Equations

A necessary condition for the action integral /[¢] to assume an extreme value, ¢ =
@(1), is that ¢ () be the integral curve of the Euler-Lagrange equations

6L oL d /0L
_:___(_‘)zo, k=1,...,f. (2.28)
dqr  Oqr  dr \9gy

2The name action arises because L has the dimension of energy: the product (energy x time) is
called action, and this is indeed the dimension of the action integral.
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The proof of this statement proceeds in analogy to that in Sect.2.5. Indeed, set
q(t,0) =¢@) +ay(r) with -1 <a <+1 and ¥ (1) =0=1Y (). If I is an

extremum for q = @(t), then

iI()
do “

=0 with I(a)déf/zdtL(g(t,a),q'(t,a),t)

a=0 I3

and with
d e 1oL dg AL dg
_,(a)z/ Z[ dge 9] ﬁ] .
do 4 o gy do qu do

With regard to the second term of this expression we note that partial integration in
the variable ¢ yields the difference of boundary values K (#,, «) — K (¢;, @) where
K (t, «) is the function

)= Z —= —qk(r @)

Now, by assumption, the end points and the values ¢(#;) and ¢(#) are held fixed so
that

d
—qi(t, o) = Y (1)
do
is zero for t = t; and for t = f,. Therefore, the boundary values vanish, K (¢, ) =
0 = K (2, o), while integration by parts of the second term gives

2 9L d R d (oLY\d
/dt qk:-/dt——_ﬂ.
f g, da n  dt \9qx/) da

Inserting this result one obtains

e[ () o=,

The functions v (¢) are arbitrary and independent. Therefore, the integrand must
vanish termwise. Thus, (2.28) is proved. U

Lagrange’s equations follow from the variational principle of Hamilton. They
are the same as the equations we obtained from d’Alembert’s principle in the case
where the forces were potential forces. As a result, we obtain f ordinary differential
equations of second order in the time variable, f being the number of degrees of
freedom of the system under consideration.

do



2.8 Further Examples of the Use of Lagrange’s Equations 107

2.8 Further Examples of the Use of Lagrange’s Equations

The equations of motion (2.28) generalize Newton’s second law. We confirm this
statement, in a first step, by verifying that in the case of the n-particle system without
any constraints these equations take the Newtonian form. The second example goes
beyond the framework of “natural” Lagrangian functions and, in fact, puts us on a
new and interesting track that we follow up in the subsequent sections.

Example (i) An n-particle system with potential forces. As there are no forces of
constraint we take as coordinates the position vectors of the particles. For L we
choose the natural form

le— .,
L=T—U=§;miri —U(ry,...,r,,t),

QE{CIIs---,CIf=3n}:{rlw--’rn}1

oL oU d oL .
=7 o =Miwik -

dac  dq drag W9

The notation m; ) is meant to indicate that in counting the ¢; one must insert the
correct mass of the corresponding particle, i.e. m for gy, g2, g3, thenm, for g4, gs, gs,
and so on. Written differently, we obtain m;#; = —V;U. Thus, in this case the Euler—
Lagrange equations are nothing but the well-known equations of Newton. Therefore,
the mechanics that we studied in Chap. 1 can be derived as a special case from the
variational principle of Hamilton.

Example (ii) A charged particle in electric and magnetic fields. Here we set ¢ =
q =1{q1, 92, g3} = {x, v, z}. The motion of a charged, pointlike particle under the
action of time- and space-dependent electric and magnetic fields is described by the
equation

mi = eE(q, 1) + fqa) x B(q.1) . (2.29)

where e is its charge. The expression on the right-hand side is the Lorentz force. The
electric and magnetic fields may be expressed in terms of scalar and vector potentials
as follows:

10
E(‘Ia t) = _Vq¢(q7t) - ; EA(qv t)

where @ denotes the scalar potential and A denotes the vector potential. The equation
of motion (2.29) is obtained, for example, from the following Lagrangian function
(whose form we postulate at this point):


http://dx.doi.org/10.1007/978-3-662-55490-6_1
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) 1. e.
L(g.q.1) = quz —e®(@, N+ -4 A1) (2.31)

Indeed, using the chain rule, one verifies that
3

9L 3D e on . 9A
—=—e—+=D G

0q; dqi ¢ g

d oL o, e dA . J0A AA

—_— ——=m i - —=m i —_ —_ R

dr 9, T o g T - T og T ot

so that from (2.28) there follows the correct equation of motion,

3
. a® 1 0A; e Z . | 0Ar  0A;
M= T0g o Te qk[___}
|: ] S 9gi gk

=€Ei+f(¢] x B); .
c

Note that with respect to rotations of the frame of reference the Lagrangian func-
tion (2.31) stays invariant, hence is a scalar while the equation of motion (2.29) is
a vectorial equation. Both sides transform like vector fields under rotations. Obvi-
ously, scalar, invariant quantities are simpler than quantities that have a specific, but
nontrivial transformation behaviour. We will come back to this remark repeatedly in
subsequent sections.

2.9 A Remark About Nonuniqueness of the Lagrangian
Function

In Example (ii) of Sect. 2.8 the potentials can be chosen differently without changing
the observable field strengths (2.30) nor the equations of motion (2.29). Let x be
a scalar, differentiable function of position and time. Replace then the potentials as
follows:

A(g,1) > Al(q.1) = A(q.1) + Vx(q.1),
19
<D(q,t)—><D/(q,t)=q§(q,t)—zax(q,t). (2.32)

The effect of this transformation on the Lagrangian function is the following:

.
L'q.q.0% Emtf —ed + gq A

dx

$q-Vy|=L( 't)+d(e ( t))
at q X - q?qa dt CX‘I» .

X e
:L(q’q’t)+_|:
C

We see that L is modified by the total time derivative of a function of ¢ and 7. The
potentials are not observable and are therefore not unique. What the example tells us
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is that the Lagrangian function is not unique either and therefore, that it cannot be
an observable. L’ leads to the same equations of motion as L. The two differ by the
total time derivative of a function M (q, t),

oo . d
L(q.q.1)=L(q.q,1) + EM(g,t) (2.33)

(here with M = ey /c). The statement that L’ describes the same physics as L is
quite general. As the transformation from L to L’ is induced by the gauge transfor-
mation (2.32) of the potentials, we shall call transformations of the kind (2.33) gauge
transformations of the Lagrangian function. The general case is the subject of the
next section.

2.10 Gauge Transformations of the Lagrangian Function

Proposition. Let M (g, t) be a C*-function and let

Then g(t) is the integral curve of §L'/8q, = 0,k =1, ..., f, if and only if it
is solution of §L/8q; =0,k =1, ..., f.

Proof Fork =1, ..., f calculate, the left-hand side being defined by 2.28,
SL’ SL | d 0 ]1dM
8qr  Squ dqr  dr dqx | dt
sL d[om o (oM. om SL
_OL A oM b (saoM . ML OL
Sqr  dr | dqx  Oqx \ = 04i ot Sqk

The additional terms that depend on M(q, 1) cancel. So, if §L/ég; =0, then
3L'/8q; = 0, and vice versa. O

Note that M should not depend on the g;. The reason for this becomes clear
from the following observation. We could have proved the proposition by means of
Hamilton’s principle. If we add the term dM (q, t)/dt to the integrand of (2.27), we
obtain simply the difference M (g,, 1) — M (q1, 11). As the variation leaves the end
points and the initial and final times fixed, this difference gives no contribution to
the equations of motion. These equations are therefore the same for L and for L’. It
is then clear why M should not depend on g: if one fixes t;, t, as well as ¢y, ¢», one
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cannot require the derivatives ¢ to be fixed at the end points as well. This may also
be read off Fig.2.6. '

The harmonic oscillator of Sect. 1.17.1 may serve as an example. The natural form
of the Lagrangianis L =T — U, i.e.

1[4

and leads to the correct equations of motion (1.39). The function

, 1 dz;\* 2 dzy
L = - — ) — -
2 |:(dr) apta dr

leads to the same equations because we have added M = (dz?/dt)/2.

Lagrange’s equations are even invariant under arbitrary, one-to-one, differentiable
transformations of the generalized coordinates. Such transformations are called dif-
Jfeomorphisms: they are defined to be one-to-one maps f: U — V for which both
f and its inverse f~! are differentiable. The following proposition deals with trans-
formations of this class.

2.11 Admissible Transformations
of the Generalized Coordinates

Proposition. Let G : g — Q be a diffeomorphism (which should be at least
C?), g = G~ lits inverse,

Qi =Gi(g,t) and gx =g (Q, 1), i,k=1,...,f.
In particular, one then knows that
det(dg;/00k) #0. (2.34)

Then the equations L /8g; = 0 are equivalent to L/8§Q; =0,k =1,..., f;
i.e. Q(1) is a solution of the Lagrange equations of the transformed Lagrangian

function
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_ dg1 .9
L:Log:L(gl(Q,r),...,gf(Qt)ZB—Z‘ka gl,...,

Zg‘é’; O + agf ,z) (2.35)

if and only if ¢ () is a solution of the Lagrange equations for L(q, g, 7).

Proof Take the variational derivatives of L by the Qy, § L /8 Q, i.e. calculate
d(ai)_zf:d(aL aq,) Zf:d(aL 3q,)
dr \8Qy/) dr \9q; 30y —/ dr \9q; 90

oL 0qg 0 d oL
_ [ i, Oar ___} . (2.36)
3g1 00x | 80 dr 3¢

In the second step we have made use of g, = >, (0g1/90%) Oy + dg;/0t, from which
follows 36]1/3 Or = 8g1/3 Ok.
Calculating

[ Z’:[aL dq 9L 8q1:|
3Qk dqr 00« 341 00k

and subtracting (2.36) yields

= Z 081 OL (2.37)
5Qk a0k dq;

By assumption the transformation matrix {dg;/d Oy} is not singular; cf. (2.34). This
proves the proposition. ]

Another way of stating this result is this: the variational derivatives 6L /dq; are
covariant under diffeomorphic transformations of the generalized coordinates.

It is not correct, therefore, to state that the Lagrangian function is “7 — U”.
Although this is a natural form, in those cases where kinetic and potential energies
are defined, but it is certainly not the only one that describes a given problem. In
general, L is a function of ¢ and ¢, as well as of time 7, and no more. How to
construct a Lagrangian function is more a question of the symmetries and invariances
of the physical system one wishes to describe. There may well be cases where
there is no kinetic energy or no potential energy, in the usual sense, but where a
Lagrangian can be found, up to gauge transformations (2.33), which gives the correct
equations of motion. This is true, in particular, in applying the variational principle
of Hamilton to theories in which fields take over the role of dynamical variables.
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For such theories, the notion of kinetic and potential parts in the Lagrangian must be
generalized anyway, if they are defined at all.

The proposition proved above tells us that with any set of generalized coordinates
there is an infinity of other, equivalent sets of variables. Which set is chosen in practice
depends on the special features of the system under consideration. For example, a
clever choice will be one where as many integrals of the motion as possible will
be manifest. We shall say more about this as well as about the geometric meaning
of this multiplicity later. For the moment we note that the transformations must
be diffeomorphisms. In transforming to new coordinates we wish to conserve the
number of degrees of freedom as well as the differential structure of the system.
Only then can the physics be independent of the special choice of variables.

2.12 The Hamiltonian Function and Its Relation
to the Lagrangian Function L

It is easy to convince oneself of the following fact. If the Lagrangian function L has
no explicit time dependence then the function

;

. . oL )

H(q,q) S qu—aqk —L(q.9) (2.38)
k=1

is a constant of the motion. Indeed, differentiating with respect to time and making
use of the equations 6L /8q; = 0, one has

dH < T.oL . d oL 9L . oL.
i qi
i=1

Take as an example L = m#*/2 — U(r) = T — U.Equation (2.38) gives H(r, ¥) =
2T — (T —U) =T + U = (m#*/2) + U(r). If we set mi = p, H goes over into
H(r, p) = p?>/2m + U(r). In doing so, we note that the momentum p is given by
the partial derivative of L by x, p = (0L/9x,9L/dy, dL/dz). This leads us to the
definition in the general case’

oL
J— ety (2.39)
0qx

3There are cases where one must take care with the position of indices: g’ (superscript), but
pj = dL/0q’ (subscript). Here we do not have to distinguish between the two positions yet. This
will be important, though, in Chaps.4 and 5.
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where py is called the momentum canonically conjugate to the coordinate q;. One
reason for this name is that, for the simple example above, the definition (2.39) leads
to the ordinary momentum. Furthermore, the Euler—Lagrange equation

5L 0L d(aL)_O
Sqr  dqr  dt \3gx)

tells us that this momentum is an integral of the motion whenever dL/dg; = 0. In
other words, if L does not depend explicitly on one (or several) of the gy,

L=LG1, Gk—1-Gks1s - Gf>G1s -5 Gks -G fs 1),

then the corresponding, conjugate momentum (momenta) is an (are) integral(s) of
the motion, p; = const. If this is the case, such generalized coordinates g, are said
to be cyclic coordinates.

The question arises under which conditions (2.38) can be transformed to the form
H(q, p,t). The answer is provided by what is called Legendre transformation, to
whose analysis we now turn.

2.13 The Legendre Transformation for the Case of One
Variable

Let f(x) be a real, differentiable function (at least C?). Let y = f (x), &4 f/dx
and assume that d? f/dx? # 0. Then, by the implicit function theorem, x = g(z), the
inverse function of z = d f (x)/dx, exists. The theorem also guarantees the existence
of the Legendre transform of f, which is defined as follows:

LH) = x—f — f) = 8@z~ fg) E L) (2.40)

Thus, as long as d? f/dx? # 0, L f (z) is well defined. It is then possible to construct
also LL f(z), i.e. to apply the Legendre transformation twice. One obtains

dg df dx dg dg
_E = _——_——— = _—— 77— = .
f@)= g(z)+z & dr dz x+zdz L=

Its second derivative does not vanish, because

d2 1

f()—— W#O
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Therefore, if we set Lf(z) = @ (z) = xz — f,
do
£Lf(z)z/3¢>=zd—Z—<D(z)=ZX—xz+f=f.

This means that the transformation

f—=Lf
is one-to-one whenever d? f/dx? # 0.
For the sake of illustration we consider two examples.

Example (i) Let f(x) = mx?/2. Then z = df/dx = mx and d° f/dx* = m # 0.
Thus x = g(z) = z/m and Lf(z) = (z/m)z — m(z/m)*/2 = z*/2m.

Example (i) Let f(x) = x*/a. Then z = x*~!,d? f/dx?> = (o — 1)x*~2 # 0, pro-
vided @ # 1, and, if o # 2, provided also x # 0. The inverse is

x=g(x) ="M

and therefore

o

Lf(z) =z7Y@Dz lz"‘/("“l) - lz“/("‘*l) = lz’s with g = .
o o B oa—1

We note the relation 1/« 4+ 1/8 = 1. As a result we have

_1 o L _lﬁ th 1 1_1
f(x)—ax? f(Z)_EZ wi 5+B_ )

If a Lagrangian function is given (here for a system with f = 1), the Legendre
transform is nothing but the passage to the Hamiltonian function that we sketched in
Sect.2.12. Indeed, if x is taken to be the variable ¢ and f (x) the function L(g, ¢, t)
of ¢, then according to (2.40)

L:L(qv C},Z) :q(qv p,l) i 2 L(q7 q(q7 P’f)at) = H(CI’ P»t) ’

where g (q, p, t) is the inverse function of
aL )
P = _(qv q, t) .
dq

The inverse exists if 2L /34> is nonzero. If this condition is fulfilled, § can be
eliminated and is expressed by g, p, and z. In the case studied here, the initial function
also depends on other variables such as g and ¢. Clearly their presence does not affect
the Legendre transformation, which concerns the variable . (However, in the general
case, it will be important to state with respect to which variable the transform is taken.)
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With the same condition as above one can apply the Legendre transformation to
the Hamiltonian function, replacing p by p(q, ¢, t) and obtaining the Lagrangian
function again.

The generalization to more than one degree of freedom is easy but requires a little
more writing.

2.14 The Legendre Transformation
for the Case of Several Variables

Let the function F(xy, ..., Xp; U1, ..., U,) be C* in all x; and assume that
3’F
det #0. (2.41)
0X0X;
The equations
oF
Vi=—1, Xy UL, . Uy, k=1,2,....m (2.42)
Bxk

can then be solved locally in terms of the x;, i.e.
Xi =Qi(Vly ey Ymy ULy Uy), I1=1,2,...,m. (2.42)

The Legendre transform of F' is defined as follows:

G(yl,...,ym;ul,...u,,)EEF:Zyk(pk—F. (2.43)
k=1

We then have

G G oF 3°G 3’F
— =¢r; — =—— and det det =1.
ayk 314,‘ au,- 8yk8yl 8x,~8xj

As in the one-dimensional case this transformation is then one-to-one. This result
can be applied directly to the Lagrangian function if we identify the variables
(x1...x,)with (g1 ...qy) and (u; ...u,) with (q; ...qy, t). We start from the func-
tion L(q, g, t) and define the generalized momenta as in (2.39):

def 0 )
Pk = a—.L(qu,f) .
qdk " -
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These equations can be solved locally and uniquely in terms of the g, precisely if
the condition

9’L
det{ ——=) #0 (2.44)
0q19q;

is fulfilled.* In this case g =g (g, p, 1) and the Hamiltonian function is given by

/
H(q,p.1)=LL(q,p.1) = Zpkc}k(q, p.t)—L(g.4q(q,p.1).1) .
k=1

With the same condition (2.44), a two-fold application of the Legendre transformation
leads back to the original Lagrangian function.

Is it possible to formulate the equations of motion by means of the Hamiltonian
instead of the Lagrangian function? The answer follows directly from our equations
above, viz.

. 0H ’H
gk = — , det #0, and
Pk ap;opi
oH oL .
= =—Dk.
94 dqk
We obtain the following system of equations of motion:

oH oH
D o= k=1,...,f. (2.45)

Gk=7—3 Dk=—7—
Opk G

These equations are called the canonical equations. They contain only the
Hamiltonian function H(q, p,t) and the variables ¢, p, t. We note that (2.45) is
a system of 2 f ordinary differential equations of first order. They replace the f dif-
ferential equations of second order that we obtained in the Lagrangian formalism.
They are completely equivalent to the Euler—Lagrange equations, provided (2.44)
holds.

2.15 Canonical Systems

Definition. A mechanical system is said to be canonical if it admits a Hamiltonian
function such that its equations of motion take the form (2.45).

“In mechanics the kinetic energy and, hence, the Lagrangian are positive-definite (but not necessarily
homogeneous) quadratic functions of the variables ¢ In this situation, solving the defining equations
for py in terms of the ¢; yields a unique solution also globally.
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Proposition. Every Lagrangian system that fulfills the condition (2.44) is canon-
ical. The converse holds also: if det(32H /oprdp;) # 0, then every canonical
system with f degrees of freedom obeys the Euler—Lagrange equations with
L(q,q,t) given by

f

L(c],cj,t)=£H(g,{},t)=2q'kpk(c_1, q.1)—H(g, p(g.q,1),1). (2.46)
k=1

Remarks: One might wonder about the specific form (2.40) or (2.43) of the Legendre
transformation which when supplemented by the condition (2.44) on the second
derivatives, guarantees its bijective, in fact diffeomorphic nature. The following two
remarks may be helpful in clarifying matters further.

1. For simplicity, let us write the equations for the case of one degree of freedom,
f =1, the generalization to more than one degree of freedom having been clarified
in Sect.2.14. Depending on whether the Lagrangian function or the Hamiltonian
function is given, one constructs the hybrid

-~ . .8L(C]’6}) .
H(q,q)=qT—L(q,q), or
~ 0H(q, p) .
L(q,p>=%p—ﬂ<q,p>,

i.e. auxiliary quantities that still depend on the “wrong” variables. If the first or the
second of the conditions

3*L(q.q) 40 3*H(q, p) 40
3G9q ’ dpdp

is fulfilled then the equations

aL . O0H
p= g q= p
can be solved for ¢ as a function of ¢ and p in the first case, for p as a function
of ¢ and ¢ in the second, so that the transition from L(q, ¢) to H(q, p), or the
inverse, from H(q, p) to L(q, ¢) becomes possible. An important aspect of Legendre
transformation is the obvious symmetry between L and H. The condition on the
second derivatives guarantee its uniqueness.
2. The condition on the second derivative tells us that the function to be trans-
formed is either convex or concave. In this connection it might be useful to consult
exercise 2.14 and its solution. In fact, for the Legendre transformation to exist, the
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weaker condition of convexity of the function (or its negative) is the essential require-
ment, not its differentiability. This weaker form is important for other branches of
physics, such as thermodynamics of equilibrium states, or quantum field theory.

2.16 Examples of Canonical Systems

We illustrate the results of the previous sections by two instructive examples.

Example (i) Motion of a particle in a central field. As the angular momentum is
conserved the motion takes place in a plane perpendicular to I. We introduce polar
coordinates in that plane and write the Lagrangian function in its natural form. With
X| = rcos ¢, X, = r sin ¢, one finds vE=r2+ r2¢2, and thus

L=T-U@)=imG+r*¢) —U() . (2.47)

Hereq =r,q = ¢, and p| = p, = mr, p, = p, = mr2¢. The determinant of the
matrix of second derivatives of L by the g; is

d’L
det( : ,):det(’" 02)=m2r27é0 for r#0.
aqjaqi 0 mr

The Hamiltonian function can be constructed uniquely and is given by

P, Py
H(q.p) = % + Zmiz +U(@) . (2.48)

The canonical equations (2.45) read as follows:

oH 1 _ 9H 1 p,
r = = —pr N (p = = — —, (2493)
ap, m ap, m r?
_ aH _ p, U |
== =0. 2.49b
P or _mr3 ar " ¢ ( )

Comparison with Example 1.24 shows that p, =/ is the modulus of angular
momentum and is conserved. Indeed, from the expression (2.47) for L, we note that
¢ is a cyclic coordinate. The first equation (2.49b), when multiplied by p, and then
integrated once, gives (1.62) of Example 1.24. This shows that H (g, p) is conserved
when taken along a solution curve of (2.45). o

Example (ii) A charged particle in electromagnetic fields. Following the method of
Example (ii) of Sect.2.8 we have

1
L= mi’ —ed(q.n) + Sq CAg.1) . (2.50)
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The canonically conjugate momenta are given by

oL . e
pi = =mq; +—-A;i(q,1) .
aq; c
These equations can be solved for ¢;,

) 1 e
gi = —pi — —Ai,
m cm

so that one obtains

or
1 e 2
Hg.p.0) =5 (p—=A@.0) +edq.n) .
2m c
Note the following difference:
) e
mqg=p—-A
c

is the kinematic momentum,

. oL
pi with p; = —
9g;

is the (generalized) momentum canonically conjugate to g;.

2.17 The Variational Principle
Applied to the Hamiltonian Function

119

2.51)

It is possible to obtain the canonical equations (2.45) directly from Hamilton’s vari-
ational principle (Sects. 2.5 and 2.6). For this we apply the principle to the following

function:

f
o« . def .
F(grl_)’q’?vt)é E pqu_H(gvl_”t)’
k=1

(2.52)



120 2 The Principles of Canonical Mechanics

takingtheq, p, ¢, p asfour sets of independent variables. In the language of Sect. 2.5,
(¢, p) corresponds to y, (¢, p) to y', and 7 to x. Requiring that

o)
8 / Fdt =0 (2.53)
a1

and varying the variables g; and p; independently, we get the Euler-Lagrange equa-
tions 8 F /éq; = 0, § F /Spx = 0. When written out, these are

d oF oF . oH
———=—, or pp=——, and
dr qu aqk BQk

d 0F oF . 0H
——=—, or O0=¢qg;— —.
dr apr  Opx Opk

Thus, we again obtain the canonical equations (2.45). We shall make use of this result
below when discussing canonical transformations.

2.18 Symmetries and Conservation Laws

InSects. 1.12 and 1.13 we studied the ten classical integrals of the motion of the closed
n-particle system, as derived directly from Newton’s equations. In this section and
in the subsequent ones we wish to discuss these results, as well as generalizations of
them, in the framework of Lagrangian functions and the Euler—Lagrange equations.

Here and below we study closed, autonomous systems with f degrees of free-
dom to which we can ascribe Lagrangian functions L(q, ¢) without explicit time
dependence. Take the natural form for L, o

L=T(q.{)—-U(@Q) . (2.54)

where T is a homogeneous function of degree 2 in the ¢;. According to Euler’s
theorem on homogeneous functions we have

7

2.55

> aql (2.55)
i=1
so that

Gi— L= Za—%q,—L T+U=E.

0 M\
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This expression represents the energy of the system. For autonomous systems, E is
conserved along any orbit. Indeed, making use of the Euler—Lagrange equations, one
ﬁnds that

dt dz(zp"”) ZaL‘I—Za—'Léj’

9q; 9q;
oL
= 3 (i) - g (Ziza) =0

Note that we made use of the Euler-Lagrange equations.
Remarks: In the framework of Lagrangian mechanics a dynamical quantity such as,
for instance, the energy which is a candidate for a constant of the motion, at first is a
function E(q, ¢) on velocity space spanned by ¢ and g. Likewise, in the framework
of Hamiltonian canonical mechanics it is a function E (g, p) on phase space that is
spanned by ¢ and p. Of course, such a function on either velocity space or phase
space, in general, is not constant. It is constant only — if it represents an integral
of the motion — along solutions of the equations of motion. In other terms, its time
derivative is equal to zero only if it is evaluated along physical orbits along which g
and ¢, or g and p, respectively, are related to each other via the equations of motion.
For this reason and as discussed in Sect. 1.16, this kind of time derivative is called
the orbital derivative, as a short-hand for time derivative taken along the orbit. The
important point to note is that in order to study the variation of a given function along
physical orbits we need not know the solutions proper. Knowledge of the differential
equations that describe the motion is sufficient for calculating the orbital derivative
and to find out, for instance, whether that function is an integral of the system.

Suppose that the mechanical system one is considering is invariant under a class
of continuous transformations of the coordinates that can be deformed smoothly into
the identical mapping. The system then possesses integrals of the motion, i.e. there
are dynamical quantities that are constant along orbits of the system. The interesting
observation is that it is sufficient to study these transformations in an infinitesimal
neighborhood of the identity. This is made explicit in the following theorem by Emmy
Noether, which applies to transformations of the space coordinates.

2.19 Noether’s Theorem

Let the Lagrangian function L(q, ¢) describing an autonomous system be invari-
ant under the transformation g — h* (g), where s is a real, continuous parameter
and where 1*=0(q) = g is the~identity (see Fig.2.7). Then there exists an integral
of the motion, gfven by

oL d

I(q, Q Y S(%)

2.56
P ag; ds ( )

s=0
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Fig. 2.7 A differentiable,
one-parameter
transformation of the orbits
in the neighborhood of the
identical mapping. If it
leaves the Lagrangian
function invariant, there
exists a constant of the
motion corresponding to it

K(g1o)

Proof Letq = ¢ (1) be asolution of the Euler-Lagrange equations. Then, by assump-
tion, q(s, 1) = @(s,t) = h*(¢(1)) is a solution too. This means that

d oL . oL . ‘
_—‘(¢(S,t), @(S,t)):_(@(s,t), @(S,[)), 14 =17'~'3f' (257)
dr 94; ag;

Furthermore, L is invariant by assumption, i.e.

f .
oL d®; dL do;
[— —_— 4 — —] =0. (2.58)

d .
—L(®(s,t), P(s, 1)) = -
ds (@05, 0, 25, 1) ; dg; ds dg; ds

Combining (2.57) and (2.58) we obtain

L rd oL\ d®, 9L d (do d
S L (L) aB OL (4] _ 4, 0
P dr \9g; ) ds dqg; dr \ ds dr
We study two examples; let the Lagrangian function have the form
1 n ‘2
L = EZmprp —U(ry,...,r,).
p=1

Example (i) Assume that the system is invariant under translations along the x-axis:
hr,—r,+se., p=1,...,n.
We then have
d n
s _ — v(p) —
ah (rp) |s:0_ e, and [ = Zmpx =P, .
p=1

The result is the following. Invariance under translations along the x-axis implies
conservation of the projection of the total momentum onto the x-axis. Similarly, if the
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Fig. 2.8 If the Lagrangian
function for a mass point is
invariant by rotations about
the z-axis, the projection of
angular momentum onto that o
axis is conserved

X

Lagrangian is invariant under translations along the direction 7, then the component
of total momentum along that direction is conserved.

Example (ii) The same system is now assumed to be invariant under rotations about
the z-axis, cf. Fig.2.8:

r,= (x(”), y<p)7 Z(p)) N r; — (x/(p)’ y/(p)’ Z/(p)) with

X' = xP coss + yPsins

YW = —xPsins + yP coss, (passive rotation)
7P = z(p),

Here one obtains

d
& lsmo= O =3 .0) = 1) xe:

and
n n
I = Zm,,i‘,, S(r, xe) = Zez S(mpF, xrp)=—I; .
p=l p=1

The conserved quantity is found to be the projection of the total angular momentum
onto the z-axis. More generally, if L is invariant under rotations about any direction
in space (the potential energy must then be spherically symmetric), then the total
angular momentum is conserved as a whole.

To which extent there exists an inverse to Noether’s theorem, that is to say under
which conditions the existence of an integral of the motion implies invariance of the
system with respect to a continuous transformation, will be clarified in Sects.2.34
and 2.41 below.
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2.20 The Generator for Infinitesimal Rotations
About an Axis

In the two previous examples and, generally, in Noether’s theorem 4° is a one-
parameter group of diffeomorphisms that have the special property that they can be
deformed, in a continuous manner, into the identity. The integral of the motion, 7,
only depends on the derivative of 2* at s = 0, which means that the transformation
group is needed only in the neighborhood of the identity. Here we wish to pursue the
analysis of Example (ii), Sect. 2.19. This will give a first impression of the importance
of continuous groups of transformations in mechanics.

For infinitesimally small s the rotation about the z-axis of Example (ii) can be
written as follows:

1 00 0 —1 0 x
Rey=4(0o 1 0)-=sf{1 0 o0 y | +0(s?)
0 0 1 0 0 0 z
= (1 —sd,)r +0(s?) . (2.59)

The 3 x 3 matrix J, is said to be the generator for infinitesimal rotations about the
z-axis. In fact, one can show that the rotation about the z-axis by a finite angle

cosp sing 0 )
r'=|—-sing cosg 0)r% R.(p)r (2.60)
0 0 1

can be constructed from the infinitesimal rotations (2.59). This is seen as follows.
For simplicity let us first study the example of 2 x 2-matrices describing rotations
in a plane (the (x, y)-plane, for instance). The matrix

def (0 —1
we (1 70)
has the properties M> = —1, M®> = —M, M* = +11, etc. or, more generally, M*" =
(_l)n]L M2n+1 — (_l)nM
Then, from the well-known Taylor series for the sine and cosine functions one
has

[ee]

o0
. _l)n (_l)n
AL cosg sing) _ 4 ( 2 M ST
—sing cos¢g z (2n)!<p z(2n+1)!¢

n=0 n=0

and, inserting the formulae for the even and odd powers of the matrix M,

00 1 00 1
A= M2n 2n __ M2n+1 2n+1 — -M ) 2.61
EO Qe EO Gnr 1 @ exp(—Mg) (2.61)
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It is then not difficult to convince oneself that the 3 x 3 matrix R, (¢) of (2.60) can
also be written as an exponential series, as in (2.61), viz

R.(p) = exp(—J.9) .

(2.62)
Indeed, consider the 3 x 3-matrix defined in (2.59)
0 —-1 0
J, 1 0 O
0o 0 0

and verify that its even and odd powers are

1
J = ()" |0
0

(=i ]

0

0 , J§n+l — (_)nJZ .
0

Inserting these formulae, one has

cosg sing 0

1 0 0 cosp — 1 sin ¢ 0
R.(p)=|—sing cosp 0] =(0 1 0]+ | —sing cosp—1 0
0 0 1 0 0 1 0 0 1
- 1
= I3x3 + Z (2]’[)’ ?n n_ r;) mJ§n+1(p2n+l = eXp(—Jzﬁﬂ) .

The result (2.62) can be understood as follows. In (2.59) take s = ¢/n with n a

positive integer, large compared to 1. Assume then that we perform n such rotations
in a series, i.e.

(11 - %Jz)n :

Finally, let n go to infinity. In this limit use Euler’s formula for the exponential
lim(1 + x/n)" = e¥, to obtain

Tim (11 _ %Jz)” = exp(—d.0) .

Clearly, these results can be extended to rotations about any other direction in space.
The appearance of finite-dimensional matrices in the argument of an exponential

function is perhaps not familiar to the reader. There is nothing mysterious about such
exponentials. They are defined through the power series

expfA} =1 +A+A22+. . + Ak + ...,
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where A, like any finite power A in the series, is an n x n matrix. As the exponential
is an entire function (its Taylor expansion converges for any finite value of the
argument), there is no problem of convergence of this series.

2.21 More About the Rotation Group

Let x = (x1, x2, x3) be a point on a physical orbit x(¢), x|, x, and x3 being its
(Cartesian) coordinates with respect to the frame of reference K. The same point,
when described within the frame K’ whose origin coincides with that of K but which
is rotated by the angle ¢ about the direction @, is represented by

3
x|k = (x], x5, x3) with x] = ZR,-kxk or x' =Rx. (2.63)
k=1

(This is a passive rotation.) By definition, rotations leave the length unchanged. Thus
x> = x2, or, when written out more explicitly,

(Rx) - (Rx) = xR"Rx L x?

or, in components and even more explicitly,

3 3 3
xz{ ZZ(Z Rthzl)xkxl ZZSklxkx, .

i=1 k=1 I=1 k=1 I=1

3

One thus obtains the condition

3
Z(RT)kiRil = ,
i—1

i.e. R must be a real, orthogonal matrix:
R'R=1. (2.64)

From (2.64) one concludes that (det R)?> = 1 or det R = +1.

We restrict the discussion to the rotation matrices with determinant +1 and leave
aside space inversion (cf. Sect. 1.13). The matrices R with det R = +1 form a group,
the special orthogonal group in three real dimensions

SOB3) = {R: R® - R’linear|detR = +1,RTR = 1} . (2.65)
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Fig. 2.9 Rotation of the
coordinate system about the
direction ¢ by the (fixed)
angle ¢

As shown in Sect.1.13, every such R depends on 3 real parameters and can be
deformed continuously into the identity R® = 1. A possible parametrization is the
following. Take a vector ¢ whose direction @ o @ /¢ defines the axis about which

the rotation takes place and whose modulus ¢ = |¢@| defines the angle of rotation, as
indicated in Fig.2.9:

R=R(p) with 9:90=90/p, ¢=lp|, 0<¢<2r7. (2.66)

(We shall meet other parametrizations in developing the theory of the rigid body in
Chap. 3.) The action of R(¢) on x can be expressed explicitly in terms of the vectors
x,® x x and @ x (¢ x x), for a passive rotation, by

X =R(@)x=(@ -x)p —@ x xsing —@ x (¢ X x)cos¢ . (2.67)

This is shown as follows. The vectors @, @ x x,and @ x (¢ x x) are mutually orthog-
onal. For example, if the 3-axis is taken along the direction @, i.e.if @ = (0, 0, 1), then
x = (x1,x2,%3), @ X x = (—x2,x1,0), and @ x (¢ x x) = (—x1, —x2,0). With
respect to the new coordinate system the same vector has the components

X]=X1C08¢ +x28ing, x)=—x;sing+xc08¢, x;=x3,

in agreement with (2.67). One now verifies that (2.67) holds true also when @ is
not along the 3-axis. The first term on the right-hand side of (2.67) contains the
information that the projection of x onto ¢ stays invariant, while the remaining two
terms represent the rotation in the plane perpendicular to ¢. Making use of the identity
ax (b xc)=b(a-c)—c(a-b),(2.67) becomes

x' =xcosgp — @ xxsing + (1 —cosp)(@ - x)P . (2.68)
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Fig. 2.10 Definition of the
angle o between the position
vector x and the direction
about which the rotation
takes place

We now show the following.
(i) R(¢@) as parametrized in (2.67) belongs to SO(3):

x?=(§-x)° 4 (@ x x)*sin* 9 + (@ x (@ x x))*cos” ¢
= x?[cos® & + sin® & sin” ¢ + sin® @ cos” @] = x2 .
Here o denotes the angle between the vectors ¢ and x (see Fig.2.10). If ¢ and ¢’
are parallel, then R(¢")R(®) = R(¢ + @’). This means that R(¢) can be deformed
continuously into the identity R(0) = 1 and therefore that det R(¢) = +1.

(i1) Every R of SO(3) can be written in the form (2.67). Consider first those vectors
x which remain unchanged under R (up to a factor), Rx = Ax. This means that

det(R—Al) =0
must hold. This is a cubic polynomial with real coefficients. Therefore, it always
has at least one real eigenvalue A, which is +1 or —1 because of the condition

(Rx)? = x2. In the plane perpendicular to the corresponding eigenvector, R must
have the form

cos¥ sin¥
—sin¥  cosV¥
in order to fulfill the condition (2.64). Finally, ¥ must be equal to ¢ becausedet R = 1
and because R can be deformed continuously into the identity. Thus, R(¢) must have
the decomposition (2.67).
2.22 Infinitesimal Rotations and Their Generators

Assume now that ¢ = ¢ < 1. Then, from (2.67) and (2.68), respectively,

X' =@ 1)@ — (@ xx)e—¢x (@ xx)+0() =x — (@ x x)e + O(e?).
(2.69)
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Writing this out in components, one obtains

0 —¢
X =x—-¢| ¢ 0 —@1 | x+0(?
) @1 0
0 0 0 0 0 1
=x—¢||0 O —=1}o+[ O O O}
0 1 0 -1 0 0
0O -1 0
+(1 0 O)@s|x+0@ED. (2.70)
0 0 0

This is the decomposition of the infinitesimal rotation into rotations about the three
directions ¢;, ¢, and ¢3. Denoting the matrices in this expression by

0 0 0 0 0 1 0 -1 0
JE (o o -1}, L¥ ([ 0o 0 0}, ¥ (1 o0 o],
0 1 0 -1 0 O 0 0 0
2.71)
and using the abbreviation J = (J1, Jz, J3), (2.70) takes the form
x' =[1—¢¢-Jdx +0(>) . (2.72)

Following Sect.2.20 choose ¢ = ¢/n and apply the same rotation n times. In the
limit n — oo one obtains

¥ = lim (11 ~%. J)nx — exp(—¢ - d)x . (2.73)
n—o00 n
Thus, the finite rotation R(¢) is represented by an exponential series in the matrices
J = (J1, J3, J3) and the vector ¢. J; is said to be the generator for infinitesimal
rotations about the axis k.

As before, the first equation of (2.73) can be visualized as n successive rotations
by the angle ¢ /n. In the limit of n going to infinity this becomes an infinite product of
infinitesimal rotations. By Gauss’ formula this is precisely the exponential indicated
in the second equation of (2.73). It is to be understood as the well-known exponential
series > > (1/n)A" in the 3 x 3 matrix A o (—o - J).

The matrices R(¢) form a compact Lie group (its parameter space is compact).
Its generators (2.71) obey the Lie algebra associated with this group. This means
that the commutator (or Lie product),

def

[Ji, Ji]l = Jdidie — Jdid;

of any two of them is defined and belongs to the same set {J;}. Indeed, from (2.71)
one finds that
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Wi, dal =d5, [Ji,d5]1 =4

together with four more relations that follow from these by cyclic permutation of the
indices. As the Lie product of any two elements of {J;, J», J3} is again an element
of this set, one says that the algebra of the J; closes under the Lie product.

Via (2.72) and (2.73) the generators yield a local representation of that part of
the rotation group which contains the unit element, the identical mapping. This is
not sufficient to reconstruct the global structure of this group. We do not reach its
component containing matrices with determinant —1. It can happen, therefore, that
two groups have the same Lie algebra but are different globally. This is indeed the
case for SO(3), which has the same Lie algebra as SU(2), the group of complex 2 x 2
matrices, which are unitary and have determinant 41, the unitary unimodular group
in two complex dimensions. The elements of the rotation group are differentiable in
its parameters (the rotation angles). In this sense it is a differentiable manifold and
one may ask questions such as: Is this manifold compact? (The rotation group is.)
Is it simply connected? (The rotation group is doubly connected, see Sect.5.2.3 (iv)
and Exercise 3.11.)

2.23 Canonical Transformations

Of course, the choice of a set of generalized coordinates and of the corresponding
generalized, canonically conjugate momenta is not unique. For example, Proposition
2.11 taught us that any diffeomorphic mapping of the original coordinates g onto
new coordinates Q leaves invariant Lagrange’s formalism. The new set describes
the same physics by means of a different parametrization. Such transformations are
useful, however, whenever one succeeds in making some or all of the new coordinates
cyclic. In this case the corresponding generalized momenta are constants of the
motion. Following Sect.2.12, we say that a coordinate Qy is cyclic if L does not
depend explicitly on it,

JL
— =0. (2.74)
90«
If this is the case, then also d H /9 Q. = 0, and
P = 0 _ 0 (2.75)
k= 20: =0, .

from which we conclude that P, = o = const. The canonical system described by

H(Q1, ..., Or1, Qks1s -+, Qs Py ooy Py, g, Py, oo Pyl t)

is reduced to a system with f — 1 degrees of freedom. For instance, if all Q; are
cyclic, i.e. if
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H=H(P,...,Pst),

the solution of the canonical equations is elementary, because
151- =0—> P=«a;=const, i=1,...,f, and

_0H
=37

def
= (1),

0i

Pi=a;

from which the solutions are obtained by integration, viz.

QiZ/Ui(l)dt+ﬁi, l=1,,f

fo

The 2 f parameters {«;, §;} are constants of integration.

This raises a general question: Is it possible to transform the coordinates and
momenta in such a way that the canonical structure of the equations of motion is
preserved and that some or all coordinates become cyclic? This question leads to the
definition of canonical transformations.

Diffeomorphic transformations of the variables ¢ and p and of the Hamiltonian
function H (g, p, t), generated by a smooth function of old and new variables in the
way described below

{g.p} > {Q. P}.
H(q,p.1)—> H(Q.P.1), (2.76)

are said to be canonical if they preserve the structure of the canonical equations
(2.45).% Thus, with (2.45) we shall also find that

. 0H . oH
Qi=—, P=

P ~30; - (2.77)

In order to satisfy this requirement the variational principle (2.53) of Sect. 2.17 must
hold for the system {g, p, H} as well as for the system {Q, P, H}, viz.

nl f
5/ > pigi— H(g. p. t)} dt =0, (2.78)
I |1

ol f
5/ > PO —H(Q,P,t)] dr=0. (2.79)
1 |

3See the precise definition in Sect. 5.5.4 below.
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Proposition 2.10 tells us that this is certainly true if the integrands in (2.78) and (2.79)
do not differ by more than the total time derivative of a function M:

f f
. d
iqi —H(q, p,t) = P,Q;—HQ,P,t)+ —M, 2.80
;pq (g.p.0) =2 PjQ;— H(Q.P.0+ (2.80)

j=1

where M depends on old and new variables (but not on their time derivatives) and,
possibly, time. There are four ways of choosing M, corresponding to the possi-
ble choices of old coordinates/momenta and new coordinates/momenta. These four
classes can be obtained from one another by Legendre transformation. They are as
follows.

(A) The choice

Mg, Q.0)=®(q, Q.1). 2.81)

In this case we obtain

do(q. Q. 1) ’

M L 00 . 9D
v _ 7 Pa+ 20, 2.82
dr dr o1 +jz_;[aqjq’+anQ’] (2:52)

As ¢ and Q are independent variables, (2.80) is fulfilled if and only if the following

equations hold true:

I e - 3D
=30 P, = H=H+—. (2.83)

pi T80, ot

The function @ (and likewise any other function M) is said to be the generating
function of the canonical transformation. The first equation of (2.83) can be solved

for Qi (q, p, 1) if

3P
det (aq,- 50, ) £0, (2.84a)

and the second can be solved for Qx(q, P, 1) if

det (BZ—Q)) £0 (2.84b)
00;00; ) '
(B) The choice
s
M(q.P.1)=5(q.P.t) = D Oulg. P.OPs. (2.85)

k=1
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This is obtained by taking the Legendre transform of the generating function (2.81)
with respect to Q:

f
(LD)Q) =D Qk% - ®(q. 0.1)=— [Z QP+ @] :
k=1

‘We then have

f
S@. P.0DE D Qg P.OP+P(q. Q. P.1).1) . (2.86)
k=1

With the condition (2.84b) Q, can be solved for q and P. From (2.83) and (2.86) we
conclude that

39S s - 39S
p=— =—, H=H+ —. 2.87
Pi= 5 Q=35 * o (2-87)

The same equations are obtained if the generating function (2.85) is inserted into
(2.80), taking into account that ¢ and P are independent.

(C) The choice

f
M(Q’ I]st):U(Q’ l]yf)‘f‘ZQk(Q» P’t)pk' (288)
k=1

For this we take the Legendre transform of @ with respect to ¢:

P

o T O

f
(LD)q) = D ai
k=1

f
= qipi— P(q. 0.1).

k=1 i
We then have

I
U(Qs ]]» t) d;f - qu(gv l?v t)Pk + ¢(q(~Qv P’ t)’ Qs t) (289)
k=1

and obtain the equations

U U ~ oUu
ka__, Pk:__ N H=H+— (290)
dpk 9Ok ot
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(D) The choice

f f
M(P.p.t)=V(P.p.t) = > Oulg(P.p. 1), P.OPc+ D qu(P. p.t)pi .
k=1 k=1

This fourth possibility is obtained from S, for instance, by taking its Legendre trans-
form with respect to g:

0S
LS = i— —S(q, P, t) = ipi— S,
(LS)(q) anqi (g, P.0Y=D qip
so that

f
def
V(P.p.) = =D qi(P.p.hpi+ S(q(P. p. 1), P.1) .

k=1
In this case one obtains the equations

A WL (2.91)
Qk— apka k_apka - 81‘. .

This classification of generating functions for canonical transformations may at first
seem rather complicated. When written in this form, the general structure of canonical
transformations is not transparent. In reality, the four types (A-D) are closely related
and can be treated in a unified way. This is easy to understand if one realizes that
generalized coordinates are in no way distinguished over generalized momenta and,
in particular, that coordinates can be transformed into momenta and vice versa. In
Sects.2.25 and 2.27 below we shall introduce a unified formulation that clarifies
these matters. Before doing this we consider two examples.

2.24 Examples of Canonical Transformations

Example (i) Class B is distinguished from the others by the fact that it contains the
identical mapping. In order to see this let

f
S(q, P)= 4iPi . (2.92)
i=1

We confirm, indeed, from (2.87) that

aS as ~

b ~ 9P
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Class A, on the other hand, contains that transformation which interchanges the role
of coordinates and momenta. Indeed, taking

f
®(q. Q) =D a0« (2.93)
k=1

we find that (2.83) gives p; = Q;, Pr = —qu., I:I(_Q, P)=H(=P, Q).

Example (ii) For the harmonic oscillator there is a simple canonical transformation
that makes Q cyclic. Start from
21
_p 2 2 _
H(q,p) = —+ -mw’q” (f=1) (2.94)
2m 2

and apply the canonical transformation generated by
®(q, Q) = tmwg*cot Q . (2.95)

In this case the quantities (2.83) are
0P

p_—zquCOtQ,
dq
0P 1 mwq?
00  2sin?Q

or, by solving for g and p,

[2P
q=,/—sinQ, p=+2mwPcosQ,
mw

and, finally, H = wP. Thus, Q is cyclic, and we have

. dH
P=——=0— P =qo =const,
00
. 0H
Q:a—Pza)—>Q=a)t+,3. (2.96)

When translated back to the original coordinates this gives the familiar solution

200 .
q(t) =/ — sin(wt + B) .
mw

As expected, the general solution depends on two integration constants whose inter-
pretation is obvious: « determines the amplitude (it is assumed to be positive) and
the phase of the oscillation.
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Whenever the new momentum P is a constant and the new coordinate Q a linear

function of time, P is said to be an action variable, Q an angle variable. We return
to action—angle variables below.

2.25 The Structure of the Canonical Equations

First, we consider a system with one degree of freedom, f = 1. We assume that it is
described by a Hamiltonian function H (q, P, t). As in Sect. 1.16 we set

& (q) , or X = (xl) with x; =¢, x»=p, (2.97a)
p X2
as well as®

oH oH
3_x1 aq

b, _ mdaﬁ(? @. (2.97b)
oH oH -
X, ap

The canonical equations then take the form

—Ji=H, (2.98)
or

¥ =JH, . (2.99)
The second equation follows from the observation that J=! = —J. Indeed,

P =—1 and J"'=J7'=-J. (2.100)

The solutions of (2.99) have the form
x(t,5,y) = @5(y) with &(y) =y, (2.101)
where s and y are the initial time and initial configuration, respectively.

For an arbitrary number f of degrees of freedom we have in a similar way (see
also Sect. 1.18)

The derivative of H by x; is written as H - More generally, the set of all derivatives of H by x
is abbreviated by H .


http://dx.doi.org/10.1007/978-3-662-55490-6_1
http://dx.doi.org/10.1007/978-3-662-55490-6_1

2.25 The Structure of the Canonical Equations 137

qi
763 0H /9q:
def | g5 def | 0H/0qy def Opsr Tpyy
X = 1, H,= 1, Jd= ’ . 2.102
- 14 : dH /0p, —lpwy Opxy ( )
P2 :
; dH/dp;y
Pr

The canonical equations have again the form (2.98) or (2.99) with

0 1
Jz(_ﬂ 0), (2.103)

where 1l denotes the f x f unit matrix. Clearly, J has the same properties (2.100)
asfor f = 1.

2.26 Example: Linear Autonomous Systems in One
Dimension

Before proceeding further we consider a simple example: the class of linear,
autonomous systems with one degree of freedom. Linear means that x = Ax, where

A is a2 x 2 matrix. Equation (2.98) now reads

—Ji=-JAx=H, . (2.104)

This means in turn that H must have the general form

H = %[aq2 + 2bgp + sz] = %[axl2 + 2bx1x, + cx%] . (2.105)
Thus

. . . 0 1 0H/ox1\ bx; + cx» ,

T=Ar=JH,= (—1 0) (8H/8x2) = (—ax1 —bxz) (2.105

and the matrix A is given by

A= (_’; _Cb)
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Note that its trace vanishes, TrA = 0. It is not difficult to solve (2.105") directly in
matrix form, viz.

x = expl(t — )ALy = &, () . (2.106)

The exponential is calculated by its series expansion. The square of A is proportional
to the unit matrix,

A’ = (_l; _2) (_l; _Cb) = (b* - ac) ((1) (1)) =—All.

Therefore, all even powers of A are multiples of the unit matrix; all odd powers are
multiples of A:

A2n — (_1)nAn]1 i A2n+1 — (_1)nAnA )
def

A = ac — b? is the determinant of A. For the sake of illustration we assume that A
is positive. We then have (see also Sect.2.20)

exp{(r — 5)A} = T cos (\/Z(t - s)) + A% sin («/Z(t - s)) . (2.107)

Thus, the solution (2.106) is obtained as follows, setting w o VA = ac — b
XY=0,,(y) =Pt —s)y

b
cosw(t —s)+ —sinw(t —s) £sina)(t—s)
— w w

y.

a . -

——sinw( —s) cosw(t —s) — —sinw( —s)
w w

It describes harmonic oscillations. (If, instead, we choose A < 0, it describes expo-
nential behavior.) The solution is a linear function of the initial configuration,
xi = Zzzl Pii(t — s)y* from which we obtain dx’ = Zizl Pixdy*. The volume
element dx'dx? in phase space is invariant if det(dx’/dy*) = det(P;;) = 1. This is
indeed the case:

w? w?

2 b2 acl .,
det(Py) =cos“w(t —s)— | — — — [sin“w( —s)=1.

(Recall the remark at the end of Sect. 1.21.1.) This “conservation of phase volume”
is sketched in Fig. 2.11 for the case a = ¢ = 1, b = 0, i.e. the harmonic oscillator. In
fact, this is nothing but the content of Liouville’s theorem to which we return below,
in a more general context (Sects.2.29 and 2.30).
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Fig. 2.11 Phase portraits for
the harmonic oscillator (units
as in Sect. 1.17.1). The
hatched area wanders about
the origin with constant
angular velocity and without
changing its shape

2.27 Canonical Transformations in Compact Notation

The 2 f-dimensional phase space of a Hamiltonian system carries an interesting
geometrical structure which is encoded in the canonical equations

_( 8H/dp
N (—aH/ag)

and in the canonical transformations that leave these equations form invariant. This
structure becomes apparent, for the first time, if the canonical transformations (A—
D) and the conditions on their derivatives are formulated in the compact notation of
Sect.2.25.

In Sect.2.23 (2.84a) we saw that the condition

.

=S

RRL
det <3qi3Qk> #0 (2.108a)

had to be imposed on canonical transformations of class A. Only with this condition
could the equation p; = d®/dg; be solved for Qk(g, p,1). Similarly, in the other
three cases we had the requirements

92 92U 92V
et £0, det £0, det £0. (2.108b)
94:0 Px 9 0x0p; 3 P.op;

From (2.83) one reads off the conditions

Bp,- 32@ aPk

30r  30idq;  dqi

(2.109a)
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Similarly, from (2.87),

ap; HEN a
9Pi _ _ 00k (2.109b)
0Py dPdq;  9q;
From (2.90) of class C,
9q; *U Py
= — =, (2.109¢)
00k 0Qdp;  Op;
and from (2.91) of class D,
0q; v Rl
i _ _ 00 (2.109d)
0Py 0 P dp; opi
Returning to the compact notation of Sect.2.25 we have
def def
X = {ql...Qf;pl ...pf} and y = {Ql Qf; Py Pf} . (2110)
Equations (2.109a)—(2.109d) all contain derivatives of the form
0Xo def A 1
= = , =M , a,p=1,...2f. 2.111
ayﬂ af 3)65 ( )aﬁ o ﬂ f ( )

Clearly, one has

o 0xq 0y 2l
a Oy -1
— = = My, (M=), 5 = 8up .
; dy, dxg ; 4 vB B

We now show that the diversity of (2.109) can be summarized as follows:

2f 2f
Mop = DD Jup gy (M), . (2.112)
n=1v=1
Taking account of the relation J~! = —J this equation is written alternatively as
—JM = JMHT .

We prove it by calculating its two sides separately. The left-hand side is

= _( O 1\(%a/3Q 9q/0P\ _ (—op/9Q —dp/dP
=7 \=1 o)\oprao apsar) =\ aq/00 aqsoP)°
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while the right-hand side is

w1 _ (3P/dq —00Q/dq
(M 1)T—(ap/ap —aQ/ap)'

The equations (2.109a)—(2.109d) tell us that these two matrices are in fact equal. Thus,
(2.112) is proved. This equation is rewritten as follows. Writing out the transposition
on the right-hand side, we obtain JM = —(M~1)TJT = +-(M~")TJ. Multiplying this
equation with MT from the left, we see that M obeys the equation

C.113)

no matter which type of canonical transformation is being studied.

What is the significance of this equation? According to (2.111) and (2.109a)-
(2.109d), M is the matrix of second derivatives of generating functions for canonical
transformations. The matrices M obeying (2.113) form a group that imprints a char-
acteristic symmetry on phase space. The matrix J, on the other hand, turns out to
be invariant under canonical transformations. For this reason, it plays the role of a
metric in phase space. These statements are proved and analyzed in the next section.

2.28 On the Symplectic Structure of Phase Space

The set of all matrices that obey (2.113) form a group, the real symplectic group
Sp, 4 (R) over the space R*/. This is a group that is defined over a space with even
dimension and that is characterized by a skew-symmetric, invariant bilinear form.
As a first step we shall verify that the M indeed form a group G.

(1) There exists an operation that defines the composition of any two elements M,
and M,, M3 = M;M,. Obviously, this is matrix multiplication here. M5 is again
an element of G, as one verifies by direct calculation:

M3JIM; = (M;M,)"J(M;M,) = M3 (M{JM)M, =J .

(2) This operation is associative because matrix multiplication has this property.
(3) There is a unit element in G: E = 1. Indeed, 1TJ1 = J.
(4) For every M € G there is an inverse given by

M!'=J"'MJ.

This is verified as follows:

(a) Equation (2.113) implies that (det M)?> = 1, i.e. M is not singular and has an
inverse.

(b) J also belongs to G since JTJJ =J71JJ = J.
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(c) One now confirms that M~'M = 1:
M 'M={ 'MIHOM=J""MIM) =J =1
and, finally, that MT also belongs to G:
MHTIM™ = MHMT = (MDHEM ') = MHWJ'M'd) =J.

(In the second step we have taken M” from (2.113); in the third step we have used
J~! = —J twice)

Thus, we have proved that the matrices M that fulfill (2.113) form a group. The
underlying space is the phase space R?/.

There is a skew-symmetric bilinear form on this space that is invariant under
transformations pertaining to G = Sp, ; and that can be understood as a generalized
scalar product of vectors over R?/. For two arbitrary vectors x and y we define

i 2f
e Y1 E 2y = D xiduy - (2.114)
i,k=1

One can easily verify that this form is invariant. Let M € Sp, ; and letx” = Mx, y" =
My. Then

[x', '] = [Mx, My] = x"M"JMy = x"Jy =[x, y] .

The bilinear form has the following properties, which are read off (2.114).
(1) It is skew-symmetric:

y,x]=—[x,y]. (2.115a)
Proof

yox]= YT =~y = Ty = —[x.y]. (2.115b)

(]

(ii) It is linear in both arguments. For instance,
[X, 21y1 + A2)2] = Ai[x, yil + Aalx, yol . (2.115¢)

If [x, y] = 0 for all ye R?/, then x = 0. This means that the form (2.114) is not
degenerate. Thus, it has all expected properties and, indeed, it is a scalar product.
The symplectic group Sp,, is the symmetry group of R?/, together with the
structure [x, y] (2.114), in the same way as O(2 f) is the symmetry group of the same
o . 2f
space with the structure of the ordinary scalar product (x, y) = > ;2| x;yx. Note,
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however, that the symplectic structure (as a nondegenerate form) is only defined for
even dimension n = 2 f, while the Euclidean structure (x, y) is defined for both even
and odd dimension and is nondegenerate in either case.

Consider now 2 f vectors over R>/, x(V .. x2/) that are assumed to be linearly
independent. Then take the oriented volume of the parallelepiped spanned by these
vectors:

X{l) “e xizf)

D, x@ . x@HLE gey : . (2.116)

(1) (2)‘)
Xap eee Xpf

Lemma. If 7(1),7(2),...,7(2f) denotes the permutation & of the indices
1,2,...,2f and o () its signature (i.e. o = +1 if it is even, 0 = —1 if it is odd),
then

(=Dl/2
D, x®D = x> o (@)D, TP T

f12f
L ET@FD 42D (2.117)

Proof When written out explicitly, the right-hand side reads

(_1)[.f/2]

1 2
W Z Jnlnzjn3n4... naf-1nay (ZU(JT)XT[() . 'Zcfjfz(ff))~

ny..naf

The second factor of this expression is precisely the determinant (2.116) if
{n1,...,n2r} is an even permutation of {I,2,...,2f}: it is minus that determi-
nant if it is an odd permutation. Denoting this permutation by 7’ and its signature by
o (1), this last expression is equal to

2
[x(l) x(2f) = 1)”/ ] z J G(JT )
A ey A f‘2f ' ()’ (2) « - - 71(2f Dr’2f)

We now show that the factor in brackets equals 1, thus proving the lemma. This goes
as follows. We know that J; ;. r = +1, J;1 s ; = —1, while all other elements vanish.
In calculating zn o (m)Jzyz@) - - - Jr@f-nrr) We have the following possibilities,

@ Jiivrdigizas - Jigip+p With 1 < i <2f, all iy being different from each
other. There are f! such products and they all have the value +1 because all
of them are obtained from J; ... Js>; by exchanging the indices pairwise.
The signature o (;r) is the same for all of them; call it o (a).

(b) Exchange now one pair of indices, i.e. J;, iy +7 .. Syt i, - - - Jis.ij+ - There are
f x f!products of this type and they all have the value —1. They all have the
same signature o (7) = o(b) and o (b) = —0o (a).
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(c) Exchange two pairs of indices to obtain J; ;47 ... Jitri - Jitfip - --
Jis.ip+r- There are [f(f —1)/2] x f! products of this class and their value
is again +1. Their signature is o (¢) = o (a); etc.

Thus, with the signature factor included, all terms contribute with the same sign
and we obtain

U+ f+f(f=D24...+1]= f127 .

It remains to determine o (a). In Jy p41J2 42 ... Jp2p (Which is +1) the order
of the indices (1, f+ 1,2, f +2,..., f,2f) is obtained from (1,2,... f, f +
L...,20)by(f— 1D+ (f—2)+...+ 1= f(f — 1)/2 exchanges of neighbors.
Thus o (a) = (—)/~D/2. As one easily convinces oneself this is the same as
(=721, O

The lemma serves to prove the following proposition.

Proposition. Every M pertaining to Sp, ; has determinant +1:
if MeSp,, then detM=+1.
Proof By the product formula for determinants we have

Mx®D, .. Mx®@P] = (det M[xD, ... x@)7].

As the vectors xV ... x@/) are linearly independent, their determinant does not
vanish. Now, from the lemma (2.117),

Mx® . Mx@O] =[x, x@0]

We conclude that det M = +1. O

Remarks: In this section we have been talking about vectors on phase space [P while
until now x etc. were points of IP. This was justified because we assumed the phase
space to be R?/ for which every tangent space can be identified with its base space.
If P is not flat any more, but is a differentiable manifold, our description holds in
local coordinate systems (also called charts). This is worked out in more detail in
Chap. 5

2.29 Liouville’s Theorem

As in Sect. 1.20 we denote the solutions of Hamilton’s equations by

@, (1) = (@} (@), .. 0l (@) (2.118)
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Also as before we call @, ;(x) the flow in phase space. Indeed, if x denotes the initial
configuration the system assumes at the initial time s, (2.118) describes how the
system flows across phase space and goes over to the configuration y assumed at
time 7. The temporal evolution of a canonical system can be visualized as the flow
of an incompressible fluid: the flow conserves volume and orientation. Given a set
of initial configurations, which, at time s fill a certain oriented domain U, of phase
space, this same ensemble will be found to lie in an oriented phase-space domain Uy,
at time ¢ (later or earlier than s), in such a way that U and U, have the same volume
V. = V, and their orientation is the same. This is the content of Liouville’s theorem.
In order to work out its significance we formulate and prove this theorem in two,
equivalent ways. The first formulation consists in showing that the matrix (2.119)
of partial derivatives is symplectic. This matrix is precisely the Jacobian of the
transformation dx — dy = (D®)dx. As it is symplectic, it has determinant +1. In
the second formulation (which is equivalent to the first) we show that the flow has
divergence zero, which means that there is no net flow out of U; nor into Uj.

2.29.1 The Local Form

The matrix of partial derivatives of @ being abbreviated by

ef a(piv
D@t,é‘(x)g (;@))9lvk= 17-"72f5 (2.119)

axk

the theorem reads as follows.

Liouville’s theorem. Let @, ;(x) be the flow of the differential equation
—dJx = H,. For all x, ¢ and s for which the flow is defined,

Do, (x) € Spy - (2.120)

The matrix of partial derivatives is symplectic and therefore has determinant
+1.

Before we proceed to prove this theorem we wish to interpret the consequences of
(2.120). The flux @, ;(x) is a mapping that maps the point x (assumed by the system
at time s) onto the point x, = @, ;(x) (assumed at time ). Suppose we consider
neighboring initial conditions filling the volume element dx; . .. dx; ;. The statement
(2.120) then tells us that this volume as well as its orientation is conserved under the
flow. Indeed, the matrix (2.119) is nothing but the Jacobian of this mapping.
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Proof We have —J[0®, ;(x)/0t] = H () o &, ;. Taking the differential of the
equation —Jx=H, by x, and using the chain rule, we obtain
—J[0D®, ((x)/9t] = (DH )(®, 1)D®P, ((x) and finally

%[(Depm(zc))TJ(qut,s(x))] = —(D®,,)"[DH, — (DH,)"|(D®,,) =0.
(2.121)

This expression is zero because DH , = (3> H/dx;0x;) is symmetric. Equation
(2.120) is obvious for ¢ = s. It then follows from (2.121) that it holds for all 7.
Thus, the theorem is proved. (|

The following converse of Liouville’s theorem also holds. Let @, ; be the flow
of the differential equation —Jx = F(x, ¢) and assume that it fulfills (2.120). Then
there exists locally a Hamiltonian function H (x, t) such that H , = F(x, t). This is
seen as follows. The equation analogous to (2.121) now says that DF — (DF)T = 0,
or that the curl of F vanishes: curl F/ = 0. If this is so, F can be written locally as a
gradient: F = H ;.

2.29.2 The Global Form

The statement of Liouville’s theorem can be made more transparent by the example
of a set of initial conditions that fill a finite oriented domain U, whose volume is V.
At time s we have

VS:/d%:v
U,

s

the integral being taken over the domain U, of phase space. At another time ¢ we
have

d
Vi =/ dy=/ dx det (—y) =/ dx det(D®, ;) ,
. Ju dx U,

because in transforming an oriented multiple integral to new variables, the volume
element is multiplied with the determinant of the corresponding Jacobi matrix. If we
take ¢ in the neighborhood of s we can expand in terms of (¢ — s):

@, (x) =x+ F(x,1)-(t —s) +O((t —s)*), where

)

oH oH
Fle.t) = JH, = ( )

o 9q

From the definition (2.119) the derivative by x is

D®, (x) = 1+DF(x,1) - (t — ) + Ot — 5)),
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or, when written out explicitly,

AP ((x)

dF' )
o =t o (=) + 0 =9

In taking the determinant, one makes use of the following formula:
det(l + Ae) = det(S;x + Aixe) = 1 + eTrA + O(e?) ,

where TrA = >, A;; denotes the trace of A and where ¢ is to be identified with
(t — 5). We obtain

JaF
det(DP,5(x)) =1+t =9) > —— +0(r —5)) .
i=1

The trace lei | OF"/dx" is a divergence in the 2 f-dimensional phase space. It is
easy to see that it vanishes if F = JH ,, viz.

2f ;
: oF' 0 (0H 0 oH

div F & —.=—(—)+—(——)=0.
- P ox! 8g Bp 8;] 861

This shows that V; = V,. As long as the flow is defined, the domain U; of initial
conditions can change its position and its shape but not its volume or its orientation.

2.30 Examples for the Use of Liouville’s Theorem

Example (i) A particularly simple example is provided by the linear, autonomous
system with f = 1 that we studied in Sect. 2.26. Here the action of the flow is simply
multiplication of the initial configuration x by the matrix P(¢ — s) whose determinant
is +1. In the special case of the harmonic oscillator, for instance, all phase points
move on circles around the origin, with constant and universal angular velocity. A
given domain U; moves around the origin unchanged, like the hand of a clock. This
is sketched in Figs.2.11 and 2.12.

Example (ii) The example of the mathematical pendulum is somewhat less trivial.
We note its equations of motion in the dimensionless form of Sect. 1.17.2,

d d
% = 2(1) f — —sinz (v,

where t is the dimensionless time variable T = wt, while the reduced energy was
defined to be
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Fig. 2.12 The harmonic oscillator. A circular domain of initial configurations wanders uniformly
about the origin. In the units introduced in Sect. 1.17.1 the period is t° = 27r. The four positions
shown here correspond to the times 7 = 0, 0.279, 0.47°, and 0.75¢°

3T

p

-3 =2

-3i

Fig. 2.13 The mathematical pendulum. A circular domain of initial configurations below the
separatrix (assumed at time v = () moves about the origin somewhat more slowly than for the
case of the oscillator, Fig.2.12. As the domain proceeds, it is more and more deformed. The posi-
tions shown here correspond to the times (in a clockwise direction): T = 0, 0.2579,0.57¢9, and <©.
(7Y is the period of the harmonic oscillator that is obtained approximately for small amplitudes of

the pendulum)
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-34

Fig. 2.14 Same as Fig.2.13 but with the uppermost point of the circular domain now moving
along the separatrix. The successive positions in a clockwise direction shown are reached at T = 0,
0.27%, 0.470, and 0.757°. The arrows indicate the motion of the point with initial configuration
(g =0, p = 1). The open points show the motion of the center of the initial circle

e =FE/mgl = %z% 4+ (1 —coszy) .

The quantity ¢ is constant along every phase portrait (the solution of the canonical
equations).

Figure 1.10 in Sect. 1.17.2 shows the phase portraits in phase space (z1, z2) (21
is the same as g, z; is the same as p). For example, a disklike domain of initial
configurations U, behaves under the flow as indicated in Figs.2.13, 2.14 and 2.15.
In dimensionless units, the period of the harmonic oscillator is ¥ = wT©® = 27.
The figures show three positions of the domain U, into which U; has moved at
the times k - (¥ indicated in the captions. As the motion is periodic, one should
think of these figures being glued on a cylinder of circumference 27, such that the
lines (r, p) and (—m, p) coincide. The deformation of the initial domain is clearly
visible. Itis particularly noticeable whenever one of the phase points moves along the
separatrix (cf. Sect. 1.23 (1.59)). This happens for ¢ = 2, i.e. for the initial condition
(g =0, p =2), for example. For large, positive time such a point wanders slowly
towards the point (¢ = 7, p = 0). Neighboring points with ¢ > 2 “swing through”,
while those with ¢ < 2 “oscillate”, i.e. turn around the origin several times. The
figures show very clearly that despite these deformations the original volume and
orientation are preserved.
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=3k

Fig.2.15 Same system as in Figs.2.13, 2.14. The center of the initial circular domain is now on the
separatrix. Points on the separatrix approach the point (¢ = w, p = 0) asymptotically, points below
it move around the origin, and points above “swing through”. The successive positions correspond
in a clockwise direction to T = 0, 0.179, 0.257¢°, and 0.57°

Example (iii) Charged particles in external electromagnetic fields obey the equation
of motion (2.29):

e
mr =-rx B+ ¢eE .
c

As we saw in the Example (ii) of Sect. 2.8, this equation follows from a Lagrangian
function such as the one given in (2.31). We showed in Example (ii) of 2.16
that the condition (2.44) for the existence of the Legendre transform of L is ful-
filled. A Hamiltonian function describing this system is given by (2.51). For an
ensemble of charged particles in external electric and magnetic fields we must
also take into account the mutual Coulomb interaction between them. This, how-
ever, can be included in the Hamiltonian function. Therefore, a system of charged
particles in external fields is canonical and obeys Liouville’s theorem. It is clear
that this theorem’s guaranteeing the conservation of phase space volume plays a
central role in the construction of accelerators and of beam lines for elementary
particles.
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2.31 Poisson Brackets

The Poisson bracket is a skew-symmetric bilinear of derivatives of two dynami-
cal quantities with respect to coordinates and momenta. A dynamical quantity is
any physically relevant function of generalized coordinates and momenta such as
the kinetic energy, the Hamiltonian function, or the total angular momentum. Let
g(q, p, t) be such adynamical quantity. The Poisson bracket of g and the Hamiltonian
function appear in quite a natural way if we calculate the total time change of g along
a physical orbit in phase space, as follows:

dg g .
E— Zaql z‘FZ—Pz

dpi
ad og 0H og OH 0
=_g+z 98 o1 98 °4 __g_|_{H gl .
at Bq, ap; ap; 8q,

i=1
In the second step we have made use of the canonical equations (2.45). In the third
step we introduced the bracket symbol {, } as shorthand for the sum in the sec-
ond expression. The Poisson bracket of H and g describes the temporal evolution
of the quantity g. Furthermore, as we shall discover below, the bracket { f, g} of
any two quantities is preserved under canonical transformations. We also wish to
mention that, both in form and content, the Poisson bracket finds its analog in
quantum mechanics: the commutator. In quantum mechanics, dynamical quanti-
ties (which are also called observables) are represented by operators (more pre-
cisely by self-adjoint operators acting on Hilbert space). The commutator of two
operators contains the information whether or not the corresponding observables
can be measured simultaneously. Therefore, the Poisson bracket is not only an
important notion of canonical mechanics but also reveals some of its underlying
structure and hints at the relationship between classical mechanics and quantum
mechanics.

Let f(x) and g(x) be two dynamical quantities, i.e. functions of coordinates and
momenta, which are at least C'. (They may also depend explicitly on time. As this
is of no importance for what follows here, we suppress this possible dependence.)
Their Poisson bracket { f, g} is a scalar product of the type (2.114) and is defined as
follows’:

op; dq;  9q; Op;

i (Of 02 Of @
(faln = Z(—f—g——f—g> : (2.122)
i=1

7We define the bracket such that it corresponds to the commutator [ f, g] of quantum mechanics,
without change of sign.
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We also have
{fa g}()f) - _[f,,\:a g,x]()f)
g
0q1
og
NE S AR s
dgi  dqp dpr apy ) \-1 0) ) 5
op1

(2.123)

0g

apy
This latter form reveals an important property of the Poisson bracket: it is invariant
under canonical transformations. Let ¥ be such a transformation:

X=(qt - sqp P1y-- o P> W) =(Q1(X), ..., 0r(x), P1(x), ..., Pr(x)).

From Sects.2.27 and 2.28 we know that DY (x) € Sp, . It is important to realize
that ¥ maps the phase space onto itself, ¥ : R? — R?/, while f and g map the
phase space R?/ onto the real numbers R. f and g, in other words, are prescriptions
how to form real functions of their arguments, taken from R/, such as f = ¢2,
g = (g% + p?)/2, etc. These prescriptions can be applied to the old variables (g, p)
or, alternatively, to the new ones (Q, P). We then have the following o

Proposition. For all f, g, and x

{foW,goW}(x) ={f. glo¥(x), (2.124)

provided ¥ (x) is a canonical transformation. In words: if one transforms the
quantities f and g to the new variables and then takes their Poisson bracket, the
result is the same as that obtained in transforming their original Poisson bracket
to the new variables.

Proof Take the derivatives

9 il
T f e =>

k=1

af
dyk

oY

y=w) 0%
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or, in compact notation
(fow),=D¥) (x)- fL(¥ X)) .

By assumption, ¥ is canonical, i.e. D& and (D¥)” are sympletic. Therefore

[(fo¥)., (goW) 1= [D¥) (x)f,(¥x)), DY) (x)g,(¥(x))]
=[fy(T(x), g (N =—{f.g}o¥(x). O

The proposition has the following corollary.

Corollary. If (2.124) holds identically, or if the weaker condition
{xi 0 W, xp 0 W) = {7, 3¢} 0 W (¥) (2.125)

holds true for all x and i, k, then ¥ (x) is canonical.

Proof From the definition (2.122) we have {x;, x;} = —J;;. By assumption, this is
invariant under the transformation ¥, i.e.

s Y} (@) = =[O ()&, . (DY) (x)8,] = —[em. 4] = —Jpun
where é,, and é,, are unit vectors in R2/. Thus,
DYHJDY) =J. O

Note that (2.125), when written in terms of q,p, Q, and P, reads

{0i, 0;}(x) = {gi,q;}(x) =0,
(P, Pj}(x) = {pi, pj}(x) =0, (2.126)
{P;, Q;}(x) ={pi,q;}(x) =6 .

We close this section with the remark that canonical transformations can be
characterized in four equivalent ways. The transformation ¥ : (¢, p) — (Q, P)
is canonical if

(a) it leaves unchanged the canonical equations (2.45), or

(b) it leaves invariant all Poisson brackets between dynamical quantities f and g,
or

(c) it just leaves invariant the set of Poisson brackets (2.126), or

(d) the matrix of its derivatives is symplectic, D¥ € Sp, Iz
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2.32 Properties of Poisson Brackets

It is possible to write the canonical equations (2.45) by means of Poisson brackets,
in a more symmetric form. Indeed, as one may easily verify, they read

={H,q}, pc=1{H, pi} (2.127)
or in the compact notation of Sect.2.27,
2f
oH
Z_[H)mxkx] Z-Ikl T

Let g(q, p,t) be a dynamical quantity, assumed to be at least C' in all its variables.
As above, we calculate the total derivative of g with respect to time and make use of
the canonical equations:

!
d g g . g .
— 1) = — —_ —
dtg(q p.1) ” + Ez ( qr + Pk)
==+ ({H, g}. (2.128)

This generalizes (2.127) to arbitrary dynamical quantities. If g is an integral of the
motion, then

ag
E_|_{H gl=0, (2.129a)

or, if g has no explicit time dependence,

{H.g}=0. (2.129b)
Obviously, the Poisson bracket (2.122) has all the properties of the symplectic scalar
product (2.115a), (2.115¢). Besides these, it has the following properties. The bracket

of g(q, p, 1) with gy is equal to the derivative of g by py, while its bracket with py
is minus its derivative by g:

g ag
{e.a} = Pyt {e. v} =———. (2.130)
Pk qi

Furthermore, for any three quantities u(q p, 1), v(q P, t), and w(q p, t) that are at
least C? we can derive the following identity:

Jacobi identity {u, {v, w}}+ {v, {w, u}} + {w, {u,v}} =0. (2.131)
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This important identity can be verified either by direct calculation, using the definition
(2.122), or by expressing the brackets via (2.123) in terms of the scalar product

(2.114), as follows. For the sake of clarity we use the abbreviation du/dx’ &ef u; for
partial derivatives and, correspondingly, u;; for the second derivatives 3%u/dx’dx*.
We then have

{u7 {U, w}} = _[u,x, {U’ w},x] = +[M,X’ [U,J(v w,X],X]
2f 2f 2f 2f
=202 2 2 uidwd/Ox (O Sy ) -
i=1 k=1 m=1 n=1

Thus, the left-hand side of (2.131) is given by
{u, {v, w}} + {v, {w, u}} + {w, {u, v}}
= Z wi Jik nn Uk Wy + VW) + Z Vi Jike Sn (Wit ~+ Wy i)

ikmn ikmn
+ Z Wi Jik Jon Ui Vn + U Vi) -
ikmn
The six terms of this sum are pairwise equal and opposite. For example, take the last
term on the right-hand side and make the following replacement in the indices: m —
i,i — n,k — m,and n — k. As these are summation indices, the value of the term
is unchanged. Thus, it becomes >, wy, Jum Jixthi Vi - AS Vg = Vi, DUt Ty = — Ty,
it cancels the first term. In a similar fashion one sees that the second and third terms
cancel, and similarly the fourth and the fifth.
The Jacobi identity (2.131) is used to demonstrate the following assertion.

Poisson’s theorem. The Poisson bracket of two integrals of the motion is again
an integral of the motion.

Proof Let {u, v} = w. Then, from (2.128)

4= Lt w)
—wW = —w w
dt ot ’
and by (2.131)
d d
szg{u,v}
u ov
8t,v]+[u, at] {w. (v, HY) — (o, (H, u})
Ju v
=1 H — H
8t+{ ,u},v]Jr[u, 8[Jr{ ,v}]
du ) [, v (2.132)
=1—,0 u, —i . .
dr dt

Therefore, if (du/dt) = 0 and (dv/d¢) = 0O, then also (d/d¢){u, v} = 0. O
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Even if u, v are not conserved, (2.132) is an interesting result: the time derivative of
the Poisson bracket obeys the product rule.

2.33 Infinitesimal Canonical Transformations

Those canonical transformations which can be deformed continuously into the iden-
tity form a particularly important class. In this case one can construct canonical
transformations that differ from the identity only infinitesimally. This means that
one can study the local action of a canonical transformation — in close analogy to the
case of the rotation group we studied in Sect.2.22.

We start from class B canonical transformations (2.85) (see Sect.2.23) and from
the identical mapping

f
Se =Y qPi:(q.p.H)— (Q=q,P=p H=H) (2.133)
k=1

of Example (i) in Sect.2.24. Let ¢ be a parameter, taken to be infinitesimally small,
and o (g, P) a differentiable function of old coordinates and new momenta. (For the
moment we only consider transformations without explicit time dependence.) We
set

S(q. P.&) = Sg +¢€0(q, P) + O(?) . (2.134)

The function

N
o(q. P)= - (2.135)
e=0

is said to be the generating function of the infinitesimal transformation (2.134). From
(2.87) we obtain

as do 2

0= 3_P, =di +83_P,- +0(e7) , (2.136a)
05 do 2
g 9q;

Here the derivatives do/d P;, do/dq; depend on the old coordinates and on the new
momenta. However, if we remain within the first order in the parameter &, then, for
consistency, all P; must be replaced by p;. (P; differs from p; by terms of order ¢.
If we kept it, we would in fact include some, but not all, terms of second order £2in
(2.136)). From (2.136) we then have
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do(q,
Sgi= Or —qr = #8 , (2.137a)
Pi
90 (g,
5p; = Pj — p; = _$8 . (2.137b)
J

This can be written in a symmetric form, using (2.130),

8gi ={o(g, ), gi}e , (2.138a)

opj = {a(g, p), pjle . (2.138b)

The equations (2.138) have the following interpretation. The infinitesimal canonical
transformation (2.134) shifts the generalized coordinate (momentum) proportionally
to ¢ and to the Poisson bracket of the generating function (2.135) and that coordinate
(or momentum, respectively). A case of special interest is the following. Let

S(q, P,e =dt) =Sg+ H(q, p)dr . (2.139)

With dt replacing the parameter ¢, (2.137), or (2.138), are nothing but the canonical
equations (taking 8¢q; = dq;, Spr = dpy):

dg; = {H,q;}dt, dp; = {H, p;}dt . (2.140)

Thus, the Hamiltonian function serves to “boost” the system: H is the generating
function for the infinitesimal canonical transformation that corresponds to the actual
motion (dg;, dp;) of the system in the time interval dz.

2.34 Integrals of the Motion

We may wish to ask how a given dynamical quantity f(q, p, ) behaves under an
infinitesimal transformation of the type (2.134). Formal calculation gives us the
anwer:

f
af af )

8o f(q.p) =D | =8k + 8
£, p) 2 (aqk G+ 50 oPk

B ( af do  If oo ) .
' \9qx dpr  Opr g1
= {o, fle. (2.141)
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For example, choosing ¢ = df, 0 = H, (2.141) yields with af/dt = 0

df—H 2.142
5_{ ’f}’ ( )

i.e. we recover (2.128) for the time change of f. In turn, we may ask how the
Hamiltonian function H behaves under an infinitesimal canonical transformation
generated by the function f(q, p). The answer is given in (2.141), viz.

8;H ={f Hle . (2.143)

In particular, the vanishing of the bracket { f, H} means that H stays invariant under
this transformation. If this is indeed the case, then, with {f, H} = —{H, f} and
(2.142), we conclude that f is an integral of the motion. To work out more clearly
this reciprocity we write (2.142) in the notation

Suf ={H, f}dt (2.142)

and compare it with (2.143). One sees that 6y H vanishes if and only if §5 f van-
ishes. The infinitesimal canonical transformation generated by f(q, p) leaves the
Hamiltonian function invariant if and only if f is constant along physical orbits.

We note the close analogy to the Noether’s theorem for Lagrangian systems
(Sect.2.19). We wish to illustrate this by two examples.

Example (i) Consider an n-particle system described by

> P
2m,~

H= + U@, ... ) (2.144)

i=1

that is invariant under translations in the direction a. Thus the canonical transfor-
mation

SWieeee i Pl D) = DT P kA D p; (2.145)
i=1 i=l1

leaves H invariant, a being a constant vector whose modulus is @ and which points
in the direction @. (The unprimed variables r;, p; are to be identified with the old
variables gy, px, while the primed ones are to be identified with Qy, Px.) From (2.136)
we have
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whichisr} =r; + ahere,with (k =1,..., f =3n), (i =1,...,n),and

/

Pk = — , whichis p;, =p;.

In fact it is sufficient to choose the modulus of the translation vector a infinitesimally
small. The infinitesimal translation is then generated by

=&'2Pi-

i=1

_8S

o = —
da

a=0

As H is invariant, we have {0, H} = 0 and, from (2.142), do/dt = 0. We conclude
that o na, the projection of total momentum onto the direction a, is an integral of the
motion.

Example (ii) Assume now that the same system (2.144) is invariant under arbitrary
rotations of the coordinate system. If we consider an infinitesimal rotation charac-
terized by @ = ¢@, then, from (2.72),

ri =11~ (¢-dlr; +0()

P§=[H—(¢-J)]pi+0(52)](i=1""’")‘

The generating function S(r;, p;) is given by
S=>ri-pi— > pi-(9-dr;. (2.146)
i=1 i=1

The notation is as follows: (¢ - J) is a shorthand for the 3 x 3 matrix

(@ - Dap = €[@1(I)ap + P2(I2)ap + P3(I3)as] -

The second term on the right-hand side of (2.146) contains the scalar product of the
vectors (¢ -J)r; and p;. First we verify that the generating function (2.146) does
indeed describe a rotation. We have

O and thus r; =r; — (¢ - Jd)r; ,

:a—[)k’

and

aS
Pk = 8_qk ., andthus p; = p; — pi(¢-J).

J; being antisymmetric, the second equation becomes p; = [11 + (¢ - J)]p!. If this is
multiplied with [1 — (¢ - J)] from the left we obtain the correct transformation rule
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p; =[1— (¢ - J)]p; up to the terms of second order in & (which must be omitted,
for the sake of consistency). Equation (2.146) now yields

_8S

= —
de

Y
i=1

£=0
From (2.69) and (2.72) this can be expressed as the cross product of ¢ and r;,
(@-Dri=9xr;,
so that, finally
pi @ - Dri=p, - (@xr)=¢-(rixp)=9¢-1;.
The integral of the motion is seen to be the projection of total angular momentum [l =
S 1 onto the direction ¢. As H was assumed to be invariant for all directions,

we conclude that the whole vector I = (I1, I, [3) is conserved and that

(H1}=0, a=1,2,3. (2.147)

2.35 The Hamilton-Jacobi Differential Equation

As we saw in Sect.2.23, the solution of the equations of motion of a canonical
system becomes elementary if we succeed in making all coordinates cyclic ones. A
special situation where this is obviously the case is met when H, the transformed
Hamiltonian function, is zero. The question then is whether one can find a time-
dependent, canonical transformation by which H vanishes, viz.

~ aS*
{q5 P H(Q5 p7t)} — {Q5 P»H = H+ ZO] . (2.148)
s = - sta,p.0) |~ ot

Let us denote this special class of generating functions by $*(¢, P, ). For H to

vanish we obtain the requirement

~ aS* aS*
H=H qi» pk = —,t )+ =0. (2149)
gk ot

This equation is called the differential equation of Hamilton and Jacobi. It is a partial
differential equation, of first order in time, for the unknown function S*(q, «, 1),
where @ = («y, ..., ay) are constants. Indeed, as H = 0, we have Pk = O,~ so that
the new momenta are constants, P, = ;. Therefore, $* is a function of the (f + 1)
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variables (qi, ..., qy, t) and of the (constant) parameters (o, ..., o). S* (g, a,t)
is called the action function.
The new coordinates Qy are also constants. They are given by

_S'g.an _
-G

0 B - (2.150)

Equation (2.150) can be solved for

gk = qi(@, B, 1) (2.151)

precisely if

925*
det £0. (2.152)
dodqy

If the function S*(q, «, ) fulfills this condition it is said to be a complete solution
of (2.149). In this sense, the partial differential equation (2.149) is equivalent to the
system (2.45) of canonical equations. Equation (2.149) is an important topic in the
theory of partial differential equations; its detailed discussion is beyond the scope of
this book.

If the Hamiltonian function does not depend explicitly on time, H (¢, p) is constant
along solution curves and is equal to the energy E. It is then sufficient to study the
function

S(q. @) < §*(q,a,1) — Et (2.153)

called the reduced action. It obeys a time-independent partial-differential equation
that follows from (2.149), viz.

H (qi, E) —E. (2.154)
aqx

This is known as the characteristic equation of Hamilton and Jacobi.

2.36 Examples for the Use of the Hamilton—Jacobi
Equation

Example (i) Consider the motion of a free particle for which H = p?/2m. The

Hamilton—Jacobi differential equation now reads

*

=0.

1 98
—(V,.S*(r, a, 1))*
2m( (r,a, )"+ o
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Its solution is easy to guess. It is
o>
S*(r,o, ) =a-r — —t+c.
2m
From (2.150) we obtain

o
B=V.,S"=r——t,
m

which is the expected solution r(t) = 8 + af/m. B and « are integration con-
stants; they are seen to represent the initial position and momentum, respec-
tively. The solution as obtained from (2.149) reveals an interesting property. Let
r(t) = (ri(t), r2(1), r3(t)). Then

1 08*
ri = —
m Bri

, 1=1,2,3.

This means that the trajectories r(¢) of the particle are everywhere perpendicular to
the surfaces S*(r, &, t) = const. The relation between these surfaces and the par-
ticle’s trajectories (which are orthogonal to them) receives a new interpretation in
quantum mechanics. A quantum particle does not follow a classical trajectory. It is
described by waves whose wave fronts are the analog of the surfaces S* = const.

Example (ii) Consider the case of the Hamiltonian function H = p?/2m + U (r).
In this case we turn directly to the reduced action function (2.153) for which (2.154)
reads

2L(VS)2 +U(r)=E. (2.155)
m

As E = p*/2m + U (r) is constant along solutions, this equation reduces to
(V8)?=p*.

Its general solution can be written as an integral

ri
S =/ (p-dr)+So, (2.156)
ro

provided the integral is taken along the trajectory with energy E.
Remarks:

(1) The generating function S*(q, «, t) is closely related to the action integral
(2.27). We assume that the Hamiltonian function H is such that the Legendre trans-
formation between H and the Lagrangian function L exists. Taking the time derivative
of $* and making use of (2.149), we find
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ds* o9S8* 05"
= Py .i —-H , Dt i .i
dr 8t+ - aq,»q [ @.p )+qu]
i i D=0S*/34
As the variables p can be eliminated (by the assumption we made), the right-hand
side of this equation can be read as the Lagrangian function L(g, ¢, ). Integrating
over time from #; to ¢, we have

S*(q(t),a,1) =/ dt'L(g,q.1') . (2.157)

o

In contrast to the general action integral (2.27), where g and ¢ are independent,
we must insert the solution curves into L in the integrand on the right-hand side of
(2.157). Thus, the action integral, if it is taken for the physical solutions ¢ (¢), is the
generating function for canonical transformations that “boost” the system from time
to to time ¢.

(ii) Consider the integral on the right-hand side of (2.157), taken between #; and 75,
and evaluated for the physical trajectory ¢ () which goes through the boundary values
a at time t;, and ) at time ;. This function is called Hamilton’s principal function.
We assume that the Lagrangian does not depend explicitly on time. The principal
function, which we denote by Iy, then depends on the time difference T :=t, — t,
only,

Ip=Io(a, b, 7) =/2dtL(<g>(t),€?(t)) .

It is instructive to compare this function with the action integral (2.27): In (2.27) I[q]
is a smooth functional, ¢ being an arbitrary smooth function of time that connects
the boundary values given there. In contrast to this, I is calculated from a solution
¢(t) of the equations of motion which goes through the boundary values (#1, @) and
(t2, b) and, hence, is a smooth function of a, b, and (, — 1;).

We consider now a smooth change of the initial and final values of the (generalized)
coordinates and of the running time 7. This means that we replace the solution ¢(¢) by
another solution ¢ (s, t) which meets the following conditions. ¢ (s, t) is differentiable
in the parameter s. For s — 0 it goes over into the original solution, ¢(s = 0, 1) =
¢(t). During the time t’ = 7 + 87 it runs from @’ = a + 8a to b’ = b + 8b. How
does Iy respond to these smooth changes? The answer is worked out in Exercise 2.30
and is as follows

Let p“ and p denote the values of the momenta canonically conjugate to ¢, at
times #; and f,, respectively. One finds

8]0 E 810 a 810 b

E:— . —.z—pi’ 8_bkzpk’
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or, written as a variation,

f f
810:—E8r—2pf8ai+2p26bk.

i=1 k=1

The function I, and these results can be used to determine the nature of the extremum
(2.27): maximum, minimum, or saddle point. For that purpose we consider a set of
neighboring physical trajectories which all go through the same initial positions a
but differ in their initial momenta p“. We follow each one of these trajectories over
a fixed time T = t, — #; and comp~are the final positions as functions of the initial
momenta h(p?), that is we determine the partial derivatives My = db;/dp}. The
inverse of this matrix M is the matrix of mixed second partial derivatives of Iy with
respect to a and b,

ap? 921,
M= Lo T
Bbk Bai 8bk

In general, we expect M to have maximal rank. Then its inverse exists and /j is a
minimum or maximum. However, for certain values of the running time 7, it may
happen that one or several of the b; remain unchanged by variations of the initial
momenta. In this case the matrix M has rank smaller than maximal. Such final
positions p for which M becomes singular, together with the corresponding initial
positions a, are called conjugate points. If, in computing Iy, we happened to choose
conjugate points for the boundary values, [ is no longer a minimum (or maximum).

A simple example is provided by force-free motion on S%, the surface of the sphere
with radius R in R3. Obviously, the physical orbits are the great circles through the
initial position a. If 4 is not the antipode of ¢, then there is a longest and a shortest arc
of great circle joining @ and p. If, however, a and p are antipodes then all trajectories
starting from a with momenta p® which have the same absolute value but different
directions, reach p all at the same time. The point b is conjugate to a, Iy is a saddle
point of the action integral (2.27).

As a second example, let us study the one-dimensional harmonic oscillator. We
use the reduced variables defined in Sect. 1.17.1. With (a, p) and (b, p”) denoting
the boundary values in phase space, t the running time from a to b, the corresponding
solution of the equations of motion reads

o(t) = ,1 [asin(t, —t) + bsin(t — 11)] .
SIn T

This trajectory is periodic. In the units used here the period is T = 2x. The boundary
values of the momentum are

—acost +b —a+bcost

Pl =¢(t) = , PP =gh) =

sint sint
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while the energy is given by

a* 4+ b* —2abcost

1
E=Z[¢*"0+¢ 0] =

2sin’ ©
- %[az + (p“)z] = % [b2 + (p(b))z] :

In a similar fashion one calculates the Lagrangian L = % [gbz(t) — goz(t)] as well as
the function I along the given trajectory

h . (@* + b* cost — 2ab
lo(a, b, T) =/ dt L(¢(1), (1)) = 75 :
" sint

One confirms that, indeed, 31y/dt = —E, 81y/da = —p®, d1y/db = p”. The matrix
M, which in this example is one-dimensional, and its inverse are
seen to be

ob . 1
M=—=sint, M = = — .
ap? dbda sint

921, 1

M~ becomes singular at T = 7 and at T = 277, i.e. after half a period T'/2 and after
one full period T, respectively.

Keeping the initial position a fixed, but varying the initial momentum p“, the final
position is given by b(p“?, t) = p“sint + a cos t. Expressed in terms of a, p® and
t the integral Iy becomes

Iy(a, p*, 1) = %sint [((p“)2 — az) cos T — 2ap® sin r] .

It is instructive to plot b(p?, t) as a function of the running time t, for different
values of the initial momentum p“. Aslongas0 < t < m these curves do not intersect
(except for the point a). When t = 7 they all meetin b(p“, 7) = —a, independently
of p®. At this point M~ becomes singular. Thus, the points @ and —a are conjugate
points. As long as 7 stays smaller than 7, the action integral / is a minimum. For
t = m alltrajectories with given initial position a, but different initial momenta p“, go
through the point b = —a —as required by Hamilton’s principle. As Iy(a, p®, T = )
is always zero, the extremum of [ is a saddle point.

2.37 The Hamilton-Jacobi Equation and Integrable
Systems

There are several general methods of solving the Hamilton—Jacobi differential equa-
tion (2.149) for situations of practical interest (see e.g. Goldstein 1984). Instead of
going into these, we address the general question of the existence of local, or even
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global, solutions of the canonical equations. We shall discuss the class of completely
integrable Hamiltonian systems and give a few examples. The general definition of
angle and action variables is then followed by a short description of perturbation
theory for quasiperiodic Hamiltonian systems, which is of relevance for celestial
mechanics.

2.37.1 Local Rectification of Hamiltonian Systems

Locally the Hamilton—Jacobi equation (2.149) possesses complete solutions, i.e. in
a neighborhood of an arbitrary point xo = (g0, po) of phase space one can always
find a canonical transformation whose generating function $*(¢, p, r) obeys the
condition (2.152), det(828*/dg;day) # 0, and which transforms the Hamiltonian
function to H = 0. This follows, for example, from the explicit solution (2.157) or
a generalization thereof,

(g.1)
S0 =S+ [ d'Ligd.r). 2.158)

(qo.10)

Here S;(qo) is a function that represents a given initial condition for $* such that
Po = 8S{§~ (9)/9qlq,- In the second term we have to insert the physical solution that
connects (qo, fo) with (g, t) and is obtained from the Euler-Lagrange equations
(2.28). Finally, ¢ and #, must be close enough to each other so that physical orbits
q(t), which, at t = 1, pass in a neighborhood of g, do not intersect. (Note that we
talk here about intersection of the graphs (¢, g (1)).) This is the reason the existence
of complete solutions is guaranteed only locally. Of course, this is no more than a
statement about existence of solutions for the equations of motion: it says nothing
about their construction in practice. To find explicit solutions it may be equally
difficult to solve the equations of motion (i.e. either the Euler-Lagrange equations
or the canonical equations) or to find complete solutions of the Hamilton—Jacobi
differential equation. However, without knowing the solutions explicitly, one can
derive fairly general, interesting properties for the case of autonomous systems. We
consider an autonomous Hamiltonian system, defined by the Hamiltonian function
H(q p) H is chosen such that the condition det(82H/8p, apr) # 01s fulfilled, i.e.
such that the Legendre transformation exists and is bijective. At first we note that
instead of (2.153) we can choose the more general form

$*(q.e. 1) = S(g.a) — Z(@r , (2.159)

where X («) is an arbitrary differentiable function of the new momenta (which are
conserved). Equation (2.154) is then replaced by

H (g, g) =XY(a). (2.160)
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As we transform to the new coordinates (Q, P = «), with all Q; cyclic, (2.160)
means that

A =HGQ.a),0)=2@). (2.160)

For example, we could choose ¥ (¢) = ay = E, thus returning to (2.154), with the
prescription that Py = a s be equal to the energy E. Without loss of generality we
assume that, locally, the derivative 9 H/dp s is not zero (otherwise one must reorder
the phase-space variables). The equation H(qi...qy, p1...ps) = X can then be
solved locally for p, viz.

Pr = —h(Q1 e df—1,49f5P1---Pf-1 2) .

Taking g, to be a formal time variable, T = g, the function /& can be understood
to be the Hamiltonian function of a time-dependent system that has (f — 1) degrees
of freedom and depends on the constant X'. Indeed, one can show that the following
canonical equations of motion hold true:

dg; oh dp; oh
a0 _ P o i=1,2,.., f—1.
dt op; dt 9g;

To see this, take the derivative of the equation

H(Q]...LIf_l,‘L';p]...pf_l,—h(ql...(Zf_l,l’;pl...pf_l,z))zE
with respect to p;, withi = 1,2, ..., f — 1,

o0H 0H 0

dpi  dpy Ipi

However, 0H/0p; =q;, 0H/dps =¢qy, and 0py/dp; = —0h/dp;, and hence
dq;/dt = q;/qs = 0h/dp;. In a similar fashion, taking the derivative with respect
to g;, one obtains

oH oH ( 3/’1)
— +— |\ = O )
dg;  dpy 0g;

from which the second canonical equation is obtained, with / the Hamiltonian func-
tion. The Hamilton—Jacobi differential equation for this formally time-dependent
system

0S*
at

qi-.-4f-1,T; 36]1 3qf,17
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locally always possesses a complete integral S*(qy...qs—1, @1 ...0p_1, X, 7). §*
being a complete solution means that

2 Q%
det( 9°5 )?so G, j=1,2,....f =1

8qj'80[i

Assuming that X' («) in (2.160) depends explicitly on oy, one can show that the
above condition is fulfilled also for i and j running through 1 to f (hint: take the
derivative of (2.160) by o ;). This then proves the following rectification theorem for
autonomous Hamiltonian systems.

Rectification Theorem. Let (¢, p) be a point of phase space where not all of
the derivatives d H/dg; and 0 H/dp; vanish,

oH oH
P 9q

(In other words, this point should not be an equilibrium position of the system.)
Then the reduced equation (2.160) locally has a complete integral S(g, @), i.e.
condition (2.152) is fulfilled.

The new coordinates Q; are cyclic and are given by Q; = 95*/d«;. Their time
derivatives follow from (2.160") and the canonical equations. They are

With the special choice X' («) = oy = E, for instance, we obtain

0; =0 for i=12.. f-1I

Qr=1 (2.161)
P =0 for k=1,2,...,f

and therefore

Qi=pi=const., i=12,...,f—-1, Qj=t—ty=—,
Pr=ay=const. k=1,2,...,f.

The significance of this theorem is the following: the flow of an autonomous sys-
tem can be rectified as shown in Fig.2.16, in the neighborhood of every point of
phase space that is not an equilibrium position. Viewed locally, a transformation of
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Fig. 2.16 Locally and
outside of an equilibrium P P
position a dynamical system
can be rectified
A
—7/_-—\—
o R P—,
1
s e ]
\ % o P
9% 95 Q

phase space variables smoothes the flux to a uniform, rectilinear flow, (e.g.) paral-
lel to the Q s-axis. Outside their equilibrium positions all autonomous Hamiltonian
systems are locally equivalent.® Therefore, interesting properties specific to a given
Hamiltonian (or more general) dynamical systems concern the global structure of its
flow and its equilibrium positions. We shall return to these questions in Chap. 6.

Example. The harmonic oscillator in one dimension. We shall study the harmonic
oscillator using the reduced variables defined in Sect. 1.17.1. For the sake of clarity
we write ¢ instead of z;, p instead of z,, and ¢ instead of 7. (Thus g = z; and p = 2,
carry the dimension (energy)!/2, while ¢ is measured in units of w~'.) In these units
H = (p* + ¢*)/2.Choosing the function on the right-hand side of (2.159) as follows:
Y (o) = P > 0, the corresponding Hamilton—Jacobi equation (2.160) reads

1asz+12_P
2\og) T2 T

Its integration is straightforward. Because 3S/dq = /2P — g2,

q
S(q, P) :/ V2P —q?dq with |g| < /2P .
0

We have
328 1
= £0
dqo P 2P — g2
and
28
p=—=vV2P—-q*,

dq

8This is a special case of the more general rectification theorem for general, autonomous, differen-
tiable systems: in the neighborhood of any point x( that is not an equilibrium position (i.e. where
F(xo) # 0), the system x = F(x) of first-order differential equations can be transformed to the
formz = (1,0,...,0),i.e.21 =1,2p =0 = ... = Z. For a proof see e.g. Arnol’d (1973).
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Fig. 2.17 For an oscillator
the rectification is global

Jq Q

dq’ = arcsin g

V2P

Because of the arcsin function, Q should be restricted to the interval (— %, %). How-
ever, solving for ¢ and p one obtains

p
.
V2F

0= S _/q 1
apP 0 /2P —q”?

q=~2PsinQ, p=+2PcosQ,

so that this restriction can be dropped. It is easy to confirm that the transformation
(g, p) — (Q, P) is canonical, e.g. by verifying that M = d(q, p)/9(Q, P) is sym-
plectic, or else that (PdQ — pdgq) is a total differential given by d(P sin Q cos Q).
Of course, the result is already known to us from Example (ii) of Sect.2.24. In the
present case the rectification is even a global one, cf. Fig.2.17. With units as chosen
here, the phase point runs along circles with radius ~/2P in the (g, p)-plane, with
angular velocity 1. In the (Q, P)-plane the same point moves with uniform velocity
1 along a straight line parallel to the Q-axis. As the frequency is independent of the
amplitude, the velocities on all phase orbits are the same in either representation (this
is typical for the harmonic oscillator).

2.37.2 Integrable Systems

Mechanical systems that can be integrated completely and globally are the exception
in the many varieties of dynamical systems. In this section we wish to collect a few
general properties and propositions and to give some examples of integrable systems.

The chances of finding complete solutions for a given system, loosely speaking,
are the greater the more integrals of the motion are known.

Example (i) Motion of a particle in one dimension, under the influence of a potential
U (g) (see Sect. 1.16). The system has one degree of freedom f = 1, the dimension
of phase space is dim P = 2, and there is one integral of the motion: that of the
energy.
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Example (ii) Motion of a particle in three dimensions, with a central potential U (r)
(see Sect. 1.24). Here f = 3 and dim P = 6. Integrals of the motion are provided by
the energy E, the three components /; of angular momentum, and, as a consequence,
the square of angular momentum 2.

Generally, the dynamical quantities g»(q, p), ..., gn(q, p) are integrals of the
motion if the Poisson brackets of the Hamiltonian function H and g; vanish,
{H, g} =0,fori =2,3,..., m. Each one of these functions g;(¢, p) may serve as
the generating function for an infinitesimal canonical transformation (cf. Sect. 2.33).
By the reciprocity discussed in Sect.2.33, H is left invariant by this transformation.
The question remains, however, in which way the other integrals of the motion trans-
form under the infinitesimal transformation generated by a specific g;. In Example
(ii) above, I3 generates an infinitesimal rotation about the 3-axis, and we have

(L,HY =0, {5,12}=0, {5,4h}=~L, {bL=1I.

In other words, while the values of the energy E and the modulus of the angular
momentum [ = /12 are invariant, the rotation about the 3-axis changes the values
of /| and /,. A solution with fixed values of (E, [ 2, I3, 11, I,) becomes a solution with
the values (E, I?, I3, I} ~ 1} — el, I}, >~ I, + ¢l,).

Thus, there are integrals of the motion that “commute” (i.e. whose Poisson bracket
{gi, gx} vanishes), as well as others that do not. These two groups must be distin-
guished because only the former is relevant for the question of integrability. This
leads us to the following

Definition. The linearly independent dynamical quantities gi(q, p) = H(q, p),
gz(g, p), ey &m (q, 1_7) are said to be in involution if the Poisson bracket for any
pair of them vanishes,

{¢i(q.p), &g, p}=0, i,k=12....m. (2.162)

In Example (ii) above, H,1 2 and/; (or any other fixed component/;) are in involution.
Let us consider a few more examples.

Example (iii) Among the ten integrals of the motion of the two-body system with
central force (cf. Sect. 1.12), the following six are in involution

2
Hao=2 vvw).P.P .15, 2.163)
2

H, being the energy of the relative motion, P the momentum of the center of mass,
and [ the relative angular momentum.

Example (iv) (This anticipates Chap. 3). In the case of a force-free rigid body (which
has f = 6), the kinetic energy Hy,] = @ - L /2, the momentum of the center of mass
P, and L? and L; are in involution (cf. Sect.3.13).

All quoted examples are globally integrable (in fact, they are integrable by quadra-
tures only). Their striking common feature is that the number of integrals of the
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motion equals the number, f, of degrees of freedom. For instance, the two-body
problem of Example (iii) has f = 6 and possesses the six integrals (2.163) in invo-
lution. If we consider the three-body system with central forces instead, the number
of degrees of freedom is f = 9, while the number of integrals of the motion that are
in involution remains the same as in the case of two bodies, namely 6. Indeed, the
three-body problem is not generally integrable.

Example (v) If, in turn, we manage to integrate a canonical system by means of
the Hamilton—Jacobi differential equation (2.149), we obtain the f integrals of the
motion (2.150): Oy = S*(q, «,1)/da, k =1,2,..., f, which trivially have the
property {Q;, Ox} = 0.

In conclusion, it seems as though the existence of f independent integrals of the
motion is sufficient to render the system of 2 f canonical equations integrable. These
matters are clarified by the following theorem of Liouville.

Theorem on Integrable Systems. Let {g; = H, g, . .., g} be dynamical quantities
defined on the 2 f-dimensional phase space [P of an autonomous, canonical system
described by the Hamiltonian function H. The g; (x) are assumed to be in involution,

{gi,ex} =0, i,k=1,...,f, (2.164)
and to be independent in the following sense: at each point of the hypersurface
S={xePlgx)=c¢c, i=1,...,f} (2.165)

the differentials dgy, ..., dg are linearly independent. Then:

(a) S is a smooth hypersurface that stays invariant under the flow corresponding to
H. If, in addition, S is compact and connected, then it can be mapped diffeo-
morphically onto an f-dimensional torus

T/ =8"x...x S" (f factors) . (2.165")

(Here S' is the circle with radius 1, cf. also Sect. 5.2.3, Example (iii) below).

(b) Every S! can be described by means of an angle coordinate 6; € [0, 27). The
most general motion on S is a quasiperiodic motion, which is a solution of the
transformed equations of motion

do; ,
E:w(’), i=1,...,f. (2.166)

(c) The canonical equations can be solved by quadratures (i.e. by ordinary integra-
tion).

The proof is clearest if one makes use of the elegant tools of Chap.5. As the reader
is probably not yet familiar with them at this point, we skip the proof and refer to
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Arnol’d (1988, Sect.49) where it is given in quite some detail. A motion @ in P
is said to be quasiperiodic, with base frequencies o'V, ..., @), if all components
of @(t,s,y) are periodic (the periods being 27 /") and if these frequencies are
rationally independent, i.e. with r; € Z, we have

;
> ro" =0 onlyif r=...=r;=0. (2.167)

i=1

Let us study two more examples.

Example (vi) Two coupled linear oscillators (cf. Practical Example 2.1). Here f = 2,
the Hamiltonian function being given by

1 1 1
H = 5= (pi + p) + sme (i + @) + 5meiq — )

The following are two integrals of the motion in involution related to H by g; + g» =
H:

g1 = L(Pl + ) + l17160(2)(611 + ¢,
dm 4

02 = ——(p1 = P2 + ~m(@2 + 207 (1 — 2)°
4m 470 ! '

This decomposition of H corresponds to the transformation to the two normal-mode
oscillations of the system, z;, = (g1 £ ¢2)/~/2, g1 and g» being the energies of
these decoupled oscillations. Following Example (ii) of Sect. 2.24, we introduce new
canonical coordinates {Q; = 6;, P; = I;} such that

H=g1+g2=a)011+‘/a)(2)+2w12 I .

Then 6; = wot + 1, 6 = /w§ + 2wi t + Bs. For fixed values of /; and I, the sur-
face S (2.165) is the torus 7. If the two frequencies 0V = wy, ©?® = ,/a)(z) + Zw%

are rationally dependent, i.e. if nio® = n0® with ny, ny positive integers, then
the motion is periodic with period T = 27/n;0V = 27 /n,0®. Any orbit on the
torus 72 closes. If, on the contrary, the frequencies are rationally independent, the
orbits never close. In this case any orbit is dense on the torus.

Example (vii) The spherical mathematical pendulum. Let R be the length of the
pendulum, 6 the deviation from the vertical, and ¢ the azimuth in the horizontal
plane (see Fig.2.18). We have

pi P
H=-—-%_+ +mgR(1 —cosb) ,
2mR?  2mR2sin%6 gR( )
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Fig. 2.18 Coordinates used
to describe the spherical
pendulum

where pg = mR>d0/dt, Py = mR? sin? Ad¢ /dt. The coordinate ¢ is cyclic. Hence,
Py = [ = const. There are two integrals of the motion g; = H, g» = py, and we
can verify that they are in involution, {g1, g2} = 0. Therefore, according to the the-
orem above, the system is completely integrable by quadratures. Indeed, taking
g1 =0, ¢ =¢, T =wt, pp =dq,/dt, and p, = sin? ¢;dg,/dr, and introducing
the parameters

E 2_ 8 2 r
E=——, ==, a' = ,
mgR R m2gR3
we obtain
1 2 1
£ == 2+—+(1—cosq1)z—p2+U(q1).
2 2sin’ g, 27!

The equations of motion read

d
Dy =426 - U@

dr

dp, a’cosq; .

— = ———— —singy ,
dr sin’ ¢ e
dg  a

dt ~ sin’¢q;

They are completely integrable. From the first equation we obtain

_ dg,
’_/JETF@S'



2.37 The Hamilton—Jacobi Equation and Integrable Systems 175

Combining the first and the third yields

_ dg,
©= “/ S 12 U @)

2.37.3 Angle and Action Variables

Suppose we are given an autonomous Hamiltonian system with (for the moment)
f =1 that has periodic solutions for energies E belonging to a certain interval
[Eo, E1]. Let I'r be a periodic orbit with energy E. Then the period T (E) of the
orbit I'g is equal to the derivative dF (E)/dE of the surface F(E) that is enclosed
by this orbit in phase space (see Exercises 2.1 and 2.27),

d dF(E)
I'g

The period T (E) being related to the circular frequency by w(E) = 2r /T (E) we
define the quantity

1 1
I(E)E —F(E) = —j{ pdq . (2.168)
2 27 Jr,

I(E) is called the action variable. Except for equilibrium positions, T(E) =
2rdI (E)/dE is nonzero. Hence, the inverse function E = E (I) exists. Therefore, it
is meaningful to construct a canonical transformation {g, p} — {6, I} such that the
transformed Hamiltonian function is just £(/) and [ is the new momentum. From
(2.154) and (2.87) this means that

p= 0S(q, ) 6= 0S(q, ) ’ H(

38
” = — g, _) —E(). (2.169)

dq

The new generalized coordinate 6 is called the angle variable. We then have
I = const € A, where the interval A follows from the interval [Ey, E] for E. The
equation of motion for 6 takes the simple form

. OE(I)

0 = = a)(’) = const .
al

Withthe (Q = 0, P = I)-description of phase space, the orbits lie in a strip parallel to
the 6 axis, whose width is A. Each periodic orbit has the representation (0 = ot +
6y, I = const), i.e. in the new variables it runs parallel to the abscissa. However, as
6 is to be understood modulo 2, the phase space is bent to form part of a cylinder
with radius 1 and height A. The periodic orbits lie on the manifold A x S! in P.
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For a system with more than one degree of freedom, f > 1, for which there are
f integrals in involution, the angle variables are taken to be the angular coordinates
that describe the torus (2.165). The corresponding action variables are

1
Li(ct, ..., cp) = 57{ > pida; ,
T

where one integrates over the curve in P that is the image of (6, = const for i # k,
6 € S'). The manifold on which the motion takes place then has the form

Ay x . Arx (S =A x--xApxTT. (2.170)

Example (vi) illustrates the case f = 2 for two decoupled oscillators. In Example
(vii) the quantities € (energy) and a (azimuthal angular momentum) are constants of
the motion, and we have

1 1
I(e.a) = gf prdgy = E]{\/z(s “ U@ dar .

1
12(8761):%]{ p2dgy =a.

Solving the first equation for €, ¢ = ¢(/[;, a), we obtain the frequency for the motion
in 6 (the deviation from the vertical),

. de(h,a) _

0 wi .
al,

2.38 Perturbing Quasiperiodic Hamiltonian Systems

The theory of perturbations of integrable quasiperiodic Hamiltonian systems is obvi-
ously fundamental for celestial mechanics and for Hamiltonian dynamics in general.
This is an important and extensive branch of mathematics that we cannot deal with
in detail for lack of space. We can only sketch the basic questions addressed in
perturbation theory and must refer to the literature for a more adequate account.

Consider an autonomous, integrable system for which there is a set of action-
angle variables. Let the system be described by Hy(I). We now add to it a small
Hamiltonian perturbation so that the Hamiltonian function of the perturbed system
reads

H©, 1, 1) = Ho(D) + wH (0.1, 1) . (2.171)



2.38 Perturbing Quasiperiodic Hamiltonian Systems 177

Here H, is assumed to be 2w -periodic in the angle variables 6, while u is a real
parameter that controls the strength of the perturbation.

To quote an example, let us consider the restricted three-body problem, which
is defined as follows. Two mass points P; and P, whose masses are m and m5,
respectively, move on circular orbits about their center of mass, under the action of
gravitation. A third mass point P is added that moves in the orbit plane of P; and P,
and whose mass is negligible compared to m and m; so that it does not perturb the
motion of the original two-body system. The problem consists in finding the motion
of P. Obviously, this is a model for the motion of the moon in the field of the sun
and the earth, of the motion of an asteroid with respect to the system of the sun
and Jupiter (the heaviest of the planets in our planetary system), or of the motion of
satellites in the neighborhood of the earth and the moon.

Thus, the general problem is defined as follows:

(@) H(9, I, ) is a real analytic function of § € T/, of [ € A x -+ x Ay, asin
(2.170), and of u € I C R, where the interval / includes the origin.
(b) H is periodic in the variables 6, i.e.

HO+2me, [, ) =HO. 1w, i=12...f,

where ¢; is the i-th unit vector.
(c) For v = 0 the problem has a form that is integrable directly and completely. The
condition det(3>H/d I01;) # 0 holds. The unperturbed solutions read

dHo (1)

l

L i=12,....f, with «®€a,.

i

0 (1) = 1489, (2.172)

10 = o®

The aim of perturbation theory is to construct solutions of the perturbed system for
small values of 1. We assumed H to be real and analytic in . Therefore, any solution
(2.172) can be continued in any finite time interval /, and for small values of u with,
say, |u| < uo(l;), where g is suitably chosen and is a function of the interval I;.
Unfortunately, the question that is of real physical interest is much more difficult: it
is the question whether there exist solutions of the perturbed system that are defined
for all times. Only if one succeeds in constructing such solutions is there a chance to
decide, for instance, whether the periodic motion of our planetary system is stable
at large time scales. In fact, this question still has no final answer.”

Perturbation theory makes use of two basic ideas. The first is to do a systematic
expansion in terms of the parameter 1 and to solve the equations generated in this
way, order by order. Let

9There is evidence, from numerical studies, that the motion of the planet Pluto is chaotic, i.e. that
it is intrinsically unstable over large time scales (G.J. Sussman and J. Wisdom, Science 241 (1988)
433). Because Pluto couples to the other planets, though weakly, this irregular behavior eventually
spreads to the whole system.
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0 =0 + 10" + 1207 + ... 00 =t + B,
L=12+u1’ + 212 + ... 10 =, (2.173)

and then insert these expansions in the canonical equations,
O ={H,60}, Ik={H I},

and compare terms of the same order 1". For instance, at first order 1! one finds
I, (09, 17)
(0)
al,
0H (0. 1)
900

We have to insert the unperturbed solutions 6’ and 7® on the right-hand side, for
consistency, because otherwise there would appear terms of higher order in . As
H, was assumed to be periodic, it can be written as a Fourier series,

f
@ 19) = D" Copom, (@) exp [ikaek“”]
my k=1

=" Conomy @) xp {i 3 miant + o) -

Equation (2.174) can then be integrated. The solutions contain terms whose time
dependence is given by

6" = (H1.0”) ~ : @174

[V = (1, 1"}y =

1 .
m eXp {1 kawkt] .

Such terms will remain small, for small perturbations, unless their denominator
vanishes. If, in turn, > mzwy; = 0,01 and IV will grow linearly in time. This kind
of perturbation is said to be a secular perturbation.

The simplest case is the one where the frequencies wy are rationally independent,
cf. (2.167). The time average of a continuous function F over the quasiperiodic flow
0O (t) = wt + B is equal to the space average of F on the torus 7/,'°

1T 1 def
rlinéo?/o FO@)dr = W/Tf 6, ...do,F(9) X (F) . (2.175)

Taking account of the secular term alone, one then obtains from (2.174) the approx-
imate equations

10Equation (2.175) holds for functions fi = exp{i >_k;60; (1)} with 6; (t) = w;t + B;, where it gives,
in fact, ( fx) = 0, except fork; = --- = ky = 0. Any continuous F' can be approximated by a finite
linear combination F = Y, Cy f.
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. 0 .
6" = — (H1) i"=o0. (2.176)
31

The second idea is to transform the initial system (2.171) by means of successive
canonical transformations in such a way that the transformed Hamiltonian function
H depends only on the action variables I, up to terms of increasingly high order in
the parameter (. This program requires a detailed discussion and needs advanced and
refined tools of analysis. Here we can only quote the main result, which is relevant
for questions of stability of Hamiltonian systems.

2.39 Autonomous, Nondegenerate Hamiltonian Systems
in the Neighborhood of Integrable Systems

The manifold on which the motions of an autonomous integrable system Hy (/) take
place is the one given in (2.170). We assume that the frequencies {w;} are rationally
independent (see (2.167)). For fixed values of the action variables [, = oy every
solution curve runs around the torus 7/ and covers it densely. One says that the
quasiperiodic motion is ergodic. After a sufficiently long time the orbit returns to an
arbitrarily small neighborhood of its starting point but does not close. This situation
is decribed by the term nonresonant torus."!

We now add a small Hamiltonian perturbation to this system so that it is described
by

H@.1,10) = Ho(D) + pHi (0.1, 1) . 2.177)

The question then is in which sense this system is stable. Does the perturbation
modify only slightly the manifold of motions of the system Hy([), or does it destroy
it completely?

The most important result that to a large extent answers this question is provided by
atheorem of Kolmogorov, Arnol’d and Moser that we wish to state here without proof
in admittedly somewhat qualitative terms.

Theorem (KAM). If the frequencies of an integrable, Hamiltonian system H,
are rationally independent and if, in addition, these frequencies are sufficiently
irrational, then, for small values of u, the perturbed system H = H, + 1 H, has
solutions that are predominantly quasiperiodic, too, and that differ only slightly
from those of the unperturbed system Hy. Most of the nonresonant tori of Hy are

UTf, in turn, the frequencies are rationally dependent, the tori are said to be resonant tori, cf.
Example (vi) of Sect.2.37.2. In this case the motion is quasiperiodic with a number of frequencies
that is smaller than f.
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deformed, but only slightly. Thus, the perturbed system possesses nonresonant
tori as well, on which the orbits are dense.

Here, sufficiently irrational means the following. A single frequency is sufficiently
irrational if there are positive real numbers y and « such that

’a) - ﬁ( > ym—® (2.1782)
m

for all integers m and n. Similarly, f rationally independent frequencies are suffi-
ciently irrational if there are positive constants y and « such that

1> riwi| = ylr ™, rel. (2.178b)

It is instructive to study the special case of systems with two degrees of freedom,
f = 2, because they exhibit many interesting properties that can be analyzed in detail
(see e.g. Guckenheimer and Holmes 1986, Sect. 4.8). The general case is treated, e.g.,
by Thirring (1989) and (Riissmann, 1979).

The KAM theorem was a decisive step forward in our understanding of the dynam-
ics of quasiperiodic, Hamiltonian systems. It yields good results on long-term sta-
bility, although with certain, and somewhat restrictive, assumptions. Therefore, the
qualitative behavior of only a restricted class of systems can be derived from it. An
example is provided by the restricted three-body problem sketched above (Riissmann
1979). Unfortunately, our planetary system falls outside the range of applicability of
the theorem. Also, the theorem says nothing about what happens when the frequen-
cies {w;} are not rationally independent, i.e. when there are resonances. We shall
return to this question in Sect. 6.5.

2.40 Examples. The Averaging Principle

2.40.1 The Anharmonic Oscillator

Consider a perturbed oscillator in one dimension, the perturbation being proportional
to the fourth power of the coordinate. The Hamiltonian function is
P 1
H="—+ —mwlq® + uq*, (2.179)
2m 2

or, in the notation of (2.177),
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In the absence of the anharmonic perturbation, the energy E® of a periodic orbit is
related to the maximal amplitude gmax by (¢max)> = 2E© /maw}. We take

def ¢ def 4EO®
x = and ¢ = H—7
dmax meO

so that the potential energy becomes

1
UQg) = —ma)oq —|—Mq —E(O)(l—i—sx)

We study this system using two different approaches.

(1) If we want the perturbed oscillation to have the same maximal amplitude
Gmax» i-€. Xmax = 1, the energy must be chosen to be E = E© (1 4 ¢). The aim is to
compute the period of the perturbed solution to order €. From (1.55) we have

I 12
T = 1— —
VE / ( 2F Rt £’ )

Gmax

2 +1 2 —-1/2
—/ dx (1 v ¢ x4) .
wo/1+¢J-1 l+¢ 1+c¢

In the neighborhood of ¢ = 0 one has

oo dx 2

He=0= ) e o

dT

de

1 x2dx 3 21
4 w( )

+1
= —— — | —=
e=0 wo[ 1 V1 —x2 1 A1 —x2

Thus, the perturbed solution with the same maximal amplitude has the frequency
o = wo(1 + 3¢/4) + O(e?). It reads

q(t) > gmax sin ((1 + 3&/Hwot + ¢o) . (2.180)

Comparing this with the unperturbed solution ¢ @ (f) = gmax sin(wot + ¢g), we see
that ¢ (¢) is in opposite phase to q(o) () after the time A = 41 /(3ewy). Thus, with
increasing time, the perturbed solution moves far away from the unperturbed one.
(ii) Let us analyze the same system but this time making use of the methods of
Sect.2.38. The action variable (2.168) of the unperturbed oscillator is given by

o= Ly ™y \/Zm(E(O) — mwiq?/2)
T 2% 1 o

—Gmax

) +1 (]
2k / dx\/l—xzzE—,
-1

TTwo wo
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and therefore we have Hy(1?) = E© = 1© . The angle variable 0¥ was deter-
mined in the example of Sect.2.37.1 (cf. also Sect.2.24, Example (ii)). We have

g% (1) = Gmax sin6©
with

210 ©
Gmax = m_a)o and 0" = wot + ¢ .

Inserting this into the perturbation yields
0)2
H09, 1) = M int 0O
m2w}

We now calculate the average of sin* 6 over the torus 7' = S':

2
/ i sin* 0 @de© = 3271 _ 3 .
0 8 4

The average of H, (2.175)isthen (H;) = 3 (1(0))2 /2m2w(2). Inserting this into (2.176)
we get

0 310
57 () =

6 (1) = , 1Y@0) =0. (2.181)

2,2
m=wy

To first order in the parameter p, which measures the strength of the perturbation,
we obtain according to (2.173)

1 3ul® 3

-0(t) ~wy+ —— = I1+-¢),

t () = o mza)(z) @0 4

I(T)~ 10, (2.182)

with ¢ as defined above. Clearly (2.182) is precisely our earlier result (2.180): the
frequency increases a little, but the action variable stays constant.

2.40.2 Averaging of Perturbations

The result (2.176) for the motion in first-order perturbation theory contains the aver-
age of H; over the torus (2.175). This average is the same as the time average (if
the frequencies are rationally independent). This is a special case of a more general
situation that may be described as follows. For the sake of simplicity we consider
the case f = 1. The unperturbed system has the period Ty = 27 /w. Take ¢ to be
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a time large compared to Ty, but still small compared to A >~ Ty/u, where p again
measures the strength of the perturbation. It is instructive to consider the example of
Sect.2.40.1, where A = 41 /(3ewy) is the time after which the perturbed system is
completely out of phase. Taking, for example, the solution (2.180) with ¢y = 0, we
have

(1) ~si 2m t) cos 2 t) +cos 2m t) sin 2 t
~sin | — — — in{—1z) ,
9 T, A T, A

which, for T) < t < A, is approximately

o . Znt n 2nt 27Tt . 27'rt n 3 . 2nt
~sin|{ — —tcos|{ —t) =sin| — —ewot cos | — .
1 TO A TQ TO 2 0 TO

Thus, the unperturbed solution is modified by a small term that is the product of a
term proportional to ¢ and of cos(2r¢/Tj), the latter being of comparatively rapid
oscillation. During the same time the action variable does not change, or changes
only to second order in the perturbation.

More generally, if the equations © = §© (1©), j© — ( are subject to a pertur-
bation such that the perturbed equations of motion read

0=00UD) +ufe.1 .
I =pg®, 1), (2.183)

where f and g are periodic functions in 6, then the change of the action variable
over time ¢ will be approximately

1 t
élzm[;/ g(9<0>(ﬂ),1<°>)dt’] .
0

Ast > Ty, thetermin curly brackets is approximately the time average, taken over the
unperturbed motion. Here, this is equal to the average over the torus 7''. Therefore,
one expects the average behavior of / (¢) to be described by the differential equation

. m 2
[=plg) = g/o dog, 1) . (2.184)

Returning to the special case of a Hamiltonian perturbation,
H=Hy(I)+unH 6,1),
the second equation (2.183) reads

S o
=%
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As H; was assumed to be periodic, the average of d H;/d6 over the torus vanishes
and we obtain the averaged equation (2.184),

I=0,

in agreement with the results of perturbation theory. These results tell us that the
action variable does not change over time intervals of the order of 7, with Ty < t < A.
Dynamical quantities that have this property are said to be adiabatic invariants. The
characteristic time interval that enters the definition of such invariants is ¢, with
t < A >~ Ty/ . Therefore, it is meaningful to make the replacement i = 5t in the
perturbed system H (0, I, t). For times 0 < ¢ < 1/n the system changes slowly, or
adiabatically. A dynamical quantity F (0, I, u) : P — Riscalled adiabatic invariant
if for every positive constant c¢ there is an 19 such that forn < npand 0 <t < 1/n

|F (@), I(2), nt) — F(0(0), 1(0),0)] < ¢ (2.185)

(see e.g. Arnol’d 1978, 1983).
Note that the perturbation on the right-hand side of (2.183) need not be
Hamiltonian. Thus, we can also study more general dynamical systems of the form

=pflx,tpm, (2.186)

where x € P,0 < u <« 1, and where f is periodic with period Ty in the time variable
t. Defining

def

i - / fx.r.0)dr .

we may decompose f into its average and an oscillatory part,
=) +8@, 1, 1) .

Substituting
X=Y+pSO. 1w

and taking the differential with respect to ¢ gives
Yk 98y dyi 08\ 9vi 08k
— + = Sk tu— ) — =Xk —pu—
ar MLy ar Z TR ) o ary

0S5k

= w(fi)(x) + pge(x, t, u) — vl
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If § is chosen such that 95, /9t = gx (Y, £, 0), and if terms of higher than first order

in u are neglected, then (2.186) becomes the average, autonomous system
y=n(f)), (2.187)

(see Guckenheimer and Holmes 1986, Sect.4.1). Let us return once more to the
example of Sect.2.40.1. In the first approach we had asked for that solution of the
perturbed system which had the same maximal amplitude as the unperturbed one.
Now we have learnt to “switch on” the perturbation, in a time-dependent fashion, by
letting ;« = nt increase slowly (adiabatically) from ¢ = 0 to 7. Our result tells us that
the adiabatically increasing perturbation deforms the solution with energy E© and
amplitude gpa Smoothly into the perturbed solution with energy E = E@(1 + ¢)
that has the same amplitude as the unperturbed one.

A final word of caution is in order. The effects of small perturbations are by
no means always smooth and adiabatic — in contrast to what the simple examples
above seem to suggest. For example, if the time dependence of the perturbation is in
resonance with one of the frequencies of the unperturbed system, then even a small
perturbing term will upset the system dramatically.

2.41 Generalized Theorem of Noether

In the original form of Noether’s theorem, Sect.2.19, the Lagrangian function was
assumed to be strictly invariant under continuous transformations containing the
identity. Invariance of L(q1, ..., gy, q1, - .., qy) withrespect to one-parameter sym-
metry transformations of the variables ¢; implied that the equations of motion were
covariant, that is, were form invariant under such transformations. This is one of the
reasons why the notion of Lagrangian function is of central importance: in many
situations it is far simpler to construct invariants rather than covariant differential
equations. The theorem in its strict form was illustrated by the closed n-particle
system with central forces. It was shown that

— its invariance under space translations yielded conservation of total momentum,

— its invariance under rotations in R?, yielded conservation of total angular momen-
tum.

— By extending the definition of independent generalized coordinates it was also
possible to demonstrate the relationship between invariance under translations in
time and conservation of energy, s. Exercise 2.17 and its solution.

Throughout this section, for simplicity, we drop the “under-tilda” on points of
velocity space or phase space and write g for (g1, ..., ¢qy), ¢ for (41, ...,4f), and
p for (pi,..., py).

In this section we discuss further versions of Noether’s theorem which generalize
the previous case in two respects. First we recall that covariance of the equations of
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motion is also guaranteed if the Lagrangian function is not strictly invariant but is
modified by an additive time differential of a function of ¢; and 7,

. . . d
L(g.q,1)— L'(q.4,1) = L(q,4.1) + d—tM(t, q) . (2.188)

The function M should be a smooth function (or, at least, a C>-function) of the
coordinates ¢; and possibly time but otherwise is arbitrary. As an example consider
the Lagrangian function of n freely moving particles,

1 n
. . )
Lxi,....x5,X1,...,X,) = Tiin = 5 E mix; .
i=1

Obviously, L is invariant under arbitrary Galilei transformations, the corresponding
Euler-Lagrange equations are covariant, i.e. if one of the two following equations
holds then also the other holds,

d%x; (1) d2x/(t")
a2 ez

i=1,2,...,n.

Thus, a general Galilei transformation (1.32) (barring time reversal and space reflec-
tions)

t>t =t+s, seR, (2.189a)

x—x=Rx+wr+a, ReSOQB), w,a real, (2.189b)

does not change the form of the equations of motion. However, it does change the
Lagrangian function, viz.

n 1 n
L'(x;, %) = L(x;, %;) + Zmi(RfCi) Sw+ 5 ;miwz

i=1
n 1 n

= L(x;, x;) + Zmiffi ‘ (R_lw) + Ezmiwz .
i—1 i—1

The new function L’ differs from L by the time differential of the function

Mxi,...,x,,1) = Zm[x; . (R’lw) + %t (Z:m,')w2 .
i=1 i=1

This is seen to be a gauge transformation in the sense of Sect.2.10 which leaves
the equations of motion unchanged. The example shows that Noether’s theorem can
be extended to cases where the Lagrangian function is modified by the gauge terms
introduced in Sect.2.10.

A further generalization of the theorem consists in admitting gauge functions in
(2.188) which depend on the variables ¢, g;, as well as on ¢; provided a supplementary
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condition is introduced which guarantees that any new acceleration terms §; caused
by the symmetry transformation vanish identically.'?

Given a mechanical system with f degrees of freedom, to which one can associate
aLagrangian function L(q, g, t) and coordinates (t, g, ..., g7, g1, ..., gr)onR, x
P (direct product of time axis and phase space), consider transformations of the
coordinates

1'=g(t.q.4.9) , (2.190a)
g =h'(t.q.q,s). (2.190b)

The functions g and i’ should be (at least) twice differentiable in their 2 f + 2
arguments. The real parameter s varies within an interval that includes zero, and for
s = 0(2.190a) and (2.190b) are the identity transformations

gt,q.4.s=0)=1, hi(t,q,4,5=00=¢q", i=1,2,...,f.

As for the case of strict invariance of the Lagrangian function only the neighbourhood
of s = 0 matters for our purposes. This means that g and 4’ may be expanded up to
first order in s,
a
St=1t —1 = a_g s+ 062 =1t q,4)s + O (2.191a)
S s=0
8 =q"—q'= =| s+06)=k(t,q,9s+ 06, (2.191b)
S [s=0
terms of order s and higher being neglected. The first derivatives defined in (2.191a)
and in (2.191b),

i . ahi(t’Q1qu)
) K (ta Q1 Q) = a— )
§ s=0

0g(t,q.q,s)

t(tqué): 9s

s=0

are the generators for infinitesimal transformations g and A, respectively.
An arbitrary smooth curve t — ¢(¢) is mapped by g and i’ toacurvet’ — ¢’(t').
To first order in s, their time derivatives fulfill the relation

dq/i B dq/i dt _ q.i—i-SI.(i

= — =1 T _ gty . 2.192
dr’ dr dt’ 1+stT g s —q') ( )

The action functional on which Hamilton’s principle rests, stays invariant, up to
gauge terms, if there is a function M (¢, g, ¢) such that

1 d
dt' L /l‘/,—/l‘/,l‘/
[ o )

1

B d L dAM(t,q, ) ,
_/,, dr L(q(t), aq(r),t) +S/n ar =L 4 06

12W. Sarlet, F. Cantrijn; SIAM Review 23 (1981) 467.
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for every smooth curve + — ¢(t). The integral on the left-hand side can be trans-
formed to an integral over ¢ from ¢, to f,,

& Lo dy
/ ar' - / dt( )
7 f dr

Then, for every smooth curve we must have

/

d dr
L /t/,—/l/,l‘/—
(q()dt’q() )dt

= (4, $q0,1) +s LD
this being an identity in the variables ¢, ¢, and g. To first order in s and with
5 = 1 4 st this equation yields

oL oL oL .. dM(t, q, ¢)

— 8t — 84" —6" L(t,q,§)t =s———"= . (2.193b
PP o +iaq,q+s(qq)r § ” ( )

(2.193a)

What we have to do next is to insert (2.192) and to calculate the total time derivatives
t,&%, and M(¢, q, ¢), obtaining

8¢ =s(k' —4't),
ot ot .; ot

i

T = 8t+ ﬁq + JCI )

. Ak

= Z kq +Z

. oM oM . oM ...

M=— —q' —q' .
ar T — g1 +lZaqtq

Collecting all terms in (2.193b) which are proportional to s, inserting the auxil-
iary formulae just given, comparison of coefficients in (2.193b) gives the somewhat
lengthy expression

EAROY -
+Z§L[(aai+Z]:§%q1+Z]:§—;q1)
-i'(5 +Zaqf" Za%"j)]
+L(t.q, q)( Zaqj ;%éﬂ)

oM oM oM ..,
_ (? n Z_q +> 2 ) : (2.193¢)
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At this point one imposes the condition on the terms containing accelerations ¢/ that
was formulated above. This yields a first set of f equations. Indeed, collecting all
such terms for every value of the index j, one obtains

ot oM

L(t.q. q)— Z (@ - an> =50 (2.194a)

j=1L...,f.

If these equations are fulfilled the lengthy equation (2.193c) reduces to one further
equation that will be important for identifying integrals of the motion. It reads

oL oL oL [ dk! ok’ . (0T it .

ot 2 +Za—¢[¥+zﬁq (G + g )]

+Lq. (2 +Z L) =My My (2.194b)

D\ 07T ) T T T gt '

Thus, one obtains in total (f + 1) equations which hold for arbitrary smooth curves
t — q(t). These equations simplify when ¢ (¢) = ¢(¢) is a solution of the Euler-
Lagrange equations for L,

awdg og =1L2,....f, q@t)=09@).

The strategy aiming at uncovering integrals of the motion is the following: Write
(2.193c¢), as far as possible, as a sum of terms which contain only fotal time deriva-
tives, and make use of the equations of motion, to replace where ever this is necessary,
g—qL, by ( 50 L) Note that those expressions in (2.193c) that are contained in round
brackets are already in the form of total time derivatives. Only the first two terms on
the left-hand side still contain partial derivatives. Repeating (2.193c), inserting the
equations of motion in the second term, it becomes

oL +Z(d 8L)i+ 9L di!

—T K —_——

ot dr g’ - ag' dr

8L dr dr  dM
—Z—q— L———=0. (2.195a)
dt dr

The sum of the second and third terms of this equation is a total differential. Collecting
the first and the fourth terms, and making use once more of the equations of motion,
one has

%t_zﬂqd_f

at g’
d aL L /d oL .. d
= _Z(dtaq) Zi:aq (dt ) Zﬁqd_:
_dL_ 4 oL
=T ( 2 it ) (2.195b)
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Inserting this in (2.195a) transforms this equation into one that contains indeed only
total derivatives with respect to ¢,

d d<[0L/, . d
L)+ EZ[@(K y z)} — M =0. (2.195¢)

i

This shows that the dynamical quantity / : R, x TQ — R,

I(Z?qu'):L(tquaq‘l)‘r(taq1q')
LT it o iy — g N , (2.196)
+,Z 5 [K (14,9 — 4 f(t,q,q)] M(.q,4)

is constant when taken along solutions g (t) = ¢(¢) of the equations of motions. We
call 1, (2.196), the Noether invariant.

The following examples serve the purpose of illustrating the nature of the Noether
invariant and its relationship to the symmetries of the mechanical system described
by the Lagrangian function.

Example (i) If the generating function t as well as the gauge function M vanish
identically,

t(t,q9,9) =0, M(t,q,9)=0, (2.197)

then one is back to the case of strict invariance, Sect.2.19. The invariant (2.196)
then is identical with the expression (2.56) for which several examples were given
in Sect.2.19.

Example (ii) Consider the closed n-particle system described by the Lagrangian
function

1 n
L= ;mkx“‘)z —UD, . x®y . (2.198)

Obviously, this function is invariant under translations in time. By choosing,
accordingly,

t(t,q,.¢)=—1, k'(t,q.¢)=0, M(t,q,4) =0 (2.199)

the Noether invariant (2.196) is found to be

. 0L
= —L+2 45 =T = )+ 2T = Tan + U = . (2.200)

Thus, invariance under time translations implies conservation of the total energy.
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Example (iii) For the same system (2.198) choose the generating functions and the
gauge function as follows,

t(t,q,9) =0, «“'t,q.9) =1, M@t,q,q) =) mx®", (2.201)

with £ numbering the particles from 1 to n. The number of degrees of freedom
being f = 3n the functions «’ are numbered by that index k and the three cartesian
directions. Inserting (2.201) into (2.196) the Noether invariant is found to be

F=1> mE® => " mx®' (2.202)

This is seen to be the 1-component of the linear combination

tMvg — Mrg(t) =tP — Mrs(t) , (M = ka)
k=1

of the center-of-mass’s momentum P and of its orbit rg() and is equal to the
I-component of Mr(0). This is the center-of-mass principle obtained earlier in
Sect. 1.12.

Remarks:

1. There are more examples for the use of the generalized version of Noether’s
theorem which apply to specific forms of the interaction. For instance, in the case of
the Kepler problem with its characteristic 1/r-potential, one can derive the conserva-
tion of the Hermann—Bernoulli-Laplace vector (usually called Lenz—Runge vector)
(see also Exercise 2.22 and its solution). This example is worked out in Boccaletti
and Pucacco (1998).

2. The theorem of E. Noether has a converse in the following sense. Taking the
derivative of the function I (g, ¢, t), (2.196), with respect to ¢/ and using (2.194a)
and (2.194b) one sees that

8q] = Z
The matrix of second, mixed partial derivatives that multiplies the right hand side,

A={an) = {5]

is well-known from the Legendre transformation from L to H. Assume its determi-
nant to be different from zero,

aq]aq k—gkr).
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D =detA#0,

(which is the condition for the Legendre transformation to exist!) so that A possesses
an inverse. Denoting the entries of the inverse by

AT ={AY} e ZA]kAk’
the initial equation can be solved for k¥,
K5t q,q) =2Akla—l +4*tt,q,q) (2.203a)
9 9 l aq-] 9 9 . .
Inserting this expression in (2.196) and solving for T one obtains

. 1 . . ol oL

1 3g' 9g*

Thus, to every integral of the motion / (¢, ¢, t) of the dynamical system described by
the Lagrangian function L(q, ¢, t) there correspond the infinitesimal transformations
(2.203a) and (2.203b). For all solutions + — ¢(¢) of the equations of motion these
generating functions leave Hamilton’s action integral invariant.

Note, however, that M (q, ¢, t), to a large extent, is an arbitrary function and that,
as a consequence, the function 7(q, ¢, t) ist not unique. For a given integral of the
motion there are infinitely many symmetry transformations.

3. There is a corollary to the statement given in the previous remark. Given an
integral I(q, ¢, t) = 1'9(q, ¢, t) of the motion for the mechanical system described
by L(q, g, t), an integral that corresponds to the transformation generated by

O =0, = K(O)i(t,q,Q) , with M = M(O)(t,q,Q) .
Then the transformations

t=1(t,9.9), « =xV,q,9)+1,q.9)q" .
together with the choice

M=M(1.q.4)+Lt.q.§)t(t,q,9)

lead to the same integral of the motion. The verification of this is left as an exercise.
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Appendix: Practical Examples

1. Small Oscillations. Let a Lagrangian system be described in terms of f gen-
eralized coordinates {g;}, each of which can oscillate around an equilibrium posi-
tion q?. The potential energy U(qi, ..., qr) having an absolute minimum U at
(q?, ey q?) one may visualize this system as a lattice defined by the equilibrium
positions (q?, cees q?), the edges of which can oscillate around this configuration.
The limit of small oscillations is realized if the potential energy can be approximated
by a quadratic form in the neighborhood of its minimum, viz.

f
1 0 0
Uqr,....qr) =~ Eikz_l win(qi — g (qr — qp) - (A.1)

Note that for the mathematical pendulum (which has f = 1) this is identical with
the limit of small deviations from the vertical, i.e. the limit of harmonic oscillation.
For f > 1 this is a system of coupled harmonic oscillators.

Derive the equations of motion and find the normal modes of this system.
Solution. It is clear that only the symmetric part of the coefficients u;; is dynamically

def .. .
relevant, a;; = (uix + ug;)/2. As U has a minimum, the matrix
A = {a;1}

is not only real and symmetric but also positive. This means that all its eigenvalues are
real and positive-semidefinite. It is useful to replace the variables g; by the deviations
from equilibrium, z; = g; — ¢°. The kinetic energy is a quadratic form of the time
derivatives of g; or, equivalently of z;, with symmetric coefficients:

1 ..
T = 3 Zk:fikZ;Zk .
i,

The matrix {#;;} is not singular and is positive as well. Therefore, one can choose the
natural form for the Lagrangian function

1 ..
L= 7 %(tikzizk — QaikZiZk) (A.2)

from which follows the system of coupled equations

/ f
D+ Y aiz; =0, i=1...f. (A3)
k=1 j=1
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For f = 1 this is the equation of the harmonic oscillator. This suggests solving the
general case by means of the substitution

Z = a el.Qt )

The complex form is chosen in order to simplify the calculations. In the end we shall
have to take the real part of the eigenmodes. Inserting this expression for z into the
equations of motion (A.3) yields the following system of coupled linear equations:

!
D (=% +aij)a; =0. (A4)
i=1

This has a nontrivial solutions if and only if the determinant of its coefficient vanishes,
det(a;; — 2%1;;) =0 .. (A.5)
This equation has f positive-semidefinite solutions
QF, I=1,...,f,

which are said to be the eigenfrequencies of the system.

As an example we consider two identical harmonic oscillators (frequency wy)
that are coupled by means of a harmonic spring. The spring is not active when both
oscillators are at rest (or, more generally, whenever the difference of their positions
is the same as at rest). It is not difficult to guess the eigenfrequencies of this system:
(1) the two oscillators swing in phase, the spring remains inactive; (ii) the oscillators
swing in opposite phase. Let us verify this behavior within the general analysis. We
have

T =3m(i+23),
1 202 2 1 2 2
U = smwy(zy + 23) + ymoi(z1 — 22)° .

Taking out the common factor m, the system (A.4) reads

(0 + of) — 27 —w} ar) _ /
( _w% (w(z) B w%) _o2)\a) = 0. (A4)

The condition (A.5) yields a quadratic equation whose solutions are
.lezw(z), .szzwg—i—Za)f.

Inserting these, one by one, into the system of equations (A.4"), one finds

for £, =uwy, aél) = ail) ,

for £, = ,/a)(z) + 2w% , aéz) = —afz) .
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(The normalization is free. We choose afi) =1/ \/5, i =1, 2). Thus, we indeed obtain
the expected solutions. The linear combinations above, i.e.

0, \/%Zai(])z,- = (a1 +22)Vm/2

0> & Vm VmY alz = (21— 2)Vm)2

decouple the system completely. The Lagrangian function becomes

Z(Q, 2 oh

It describes two independent linear oscillators. The new variables Q; are said to be
normal coordinates of the system. They are defined by the eigenvectors of the matrix
(a;j — $271;;) and correspond to the eigenvalues £27.

In the general case (f > 2) one proceeds in an analogous fashion. Determine the
frequencies from (A.5) and insert them, one by one, into (A.4). Solve this system
and determine the eigenvectors (afl), e, a;l)) (up to normalization) that pertain to
the eigenvalues £27.

If all eigenvalues are different, the eigenvectors are uniquely determined up to
normalization. We write (A.4) for two different eigenvalues,

Z(—qulij + aij)a;'q) =0, (A.62)
J
> (=22 +aa” =0, (A.6b)

(p) (q)

and multiply the first equation by a;" from the left, the second by a;*" from the left.
We sum the first over i and the second over Jj and take their difference. Both #;; and
a;; are symmetric. Therefore, we obtain

(Qi Z)Z (p)tlj 5‘1) —

As £27 # 27, the double sum must vanish if p # g. For p = ¢, we can normalize
the eigenvectors such that the double sum gives 1. We conclude that

Zai(p)t,-ja;q) = (Spq .
ij
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Equation (A.6a) and the result above can be combined to obtain
za(p)au (@) — 2 Z“(p)tu (@) Qia[zq ]

This result tells us that the matrices f;; and a;; are diagonalized simultaneously. We
then set

:Zﬁ@% (A7)
P

and insert this into the Lagrangian function to obtain
1<
=520, - 2,0} (A8)
p=I

Thus, we have achieved the transformation to normal coordinates.

If some of the frequencies are degenerate, the corresponding eigenvectors are no
longer uniquely determined. It is always possible, however, to choose s linearly inde-
pendent vectors in the subspace that belongs to £2,, = §2,, = --- = §2, (s denotes
the degree of degeneracy). This construction is given in courses on linear algebra.

One can go further and try several examples on a PC: a linear chain of n oscillators
with harmonic couplings, a planar lattice of mass points joined by harmonic springs,
etc., for which the matrices f;; and a;; are easily constructed. If one has at one’s
disposal routines for matrix calculations, it is not difficult to find the eigenfrequencies
and the normal coordinates.

2. The Planar Mathematical Pendulum and Liouville’s Theorem. Work out
(numerically) Example (ii) of Sect.2.30 and illustrate it with some figures.
Solution. We follow the notation of Sect. 1.17.2, i.e. we take z; = ¢ as the general-
ized coordinate and z, = ¢/ as the generalized momentum, where @ = /g/I is
the frequency of the corresponding harmonic oscillator and t = wt. Thus, time is
measured in units of (w) ', The energy is measured in units of mgl, i.e.

& Z 1 COS Z . A. 9
m gl 2 :

¢ is positive-semidefinite. ¢ < 2 pertains to the oscillating solutions, ¢ = 2 is the
separatrix, and ¢ > 2 pertains to the rotating solutions. The equations of motion
(1.40) yield the second-order differential equation for z;

d2
E%:—mmm. (A.10)
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First, one verifies that z; and z, are indeed conjugate variables, provided one uses T
as time variable. In order to see this start from the dimensionless Lagrangian function

def L 1 do 2 1 (dz; 2
52 (dt) (1 — cos @) A (1 —=coszy)

and take its derivative with respect to z; = (dz;/dt). This gives z, = (dz;/dt) =
(dg/dt)/w, as expected.

For drawing the phase portraits, Fig. 1.10, it is sufficient to plot z, as a function
of z1, as obtained from (A.9). This is not sufficient, however, if we wish to follow
the motion along the phase curves, as a function of time. As we wish to study the
time evolution of an ensemble of initial conditions, we must integrate the differential
equation (A.10). This integration can be done numerically, e.g. by means of a Runge—
Kutta procedure (cf. Abramowitz and Stegun 1965, Sect. 25.5.22). Equation (A.9) has
the form y” = —sin y. Let & be the step size and y, and y,, the values of the function
and its derivative respectively at t,. Their values at 7,,; = 1, + h are obtained by
the following series of steps. Let

ky = —h siny, ,
. h, h

kr = —h sin yn+§yn+§k1 , (A.11)
. . h

ks = —h sin{ y, + hy, + Ekz .

Then
Yas1 = Yu + hly, + £k +2k2)] + O |
Ynir = Yo+ tki + 2y + Lhks + O(hY) . (A.12)

Note that y is our z; while y’ is z; and that the two are related by (A.9) to the
reduced energy €. Equations (A.12) are easy to implement on a computer. Choose
an initial configuration (yo = z;(0), y; = z2(0)), take h = 7 /30, for example, and
run the program until the time variable has reached a given endpoint t. Using the
dimensionless variable 7, the harmonic oscillator (corresponding to small oscillations
of the pendulum) has the period 7®) = 27. It is convenient, therefore, to choose the
end point to be 7© or fractions thereof. This shows very clearly the retardation
of the pendulum motion as compared to the oscillator: points on pendulum phase
portraits with 0 < & <« 2 move almost as fast as points on the oscillator portrait;
the closer & approaches 2 from below, the more they are retarded compared to the
oscillator. Points on the separatrix (¢ = 2) that start from, say, (z; = 0, zo = 2) can
never move beyond the first quadrant of the (z;, z»)-plane. They approach the point
(r, 0) asymptotically, as T goes to infinity.
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In the examples shown in Figs.2.13, 2.14 and 2.15 we study the flow of an initial
ensemble of 32 points on a circle with radius » = 0.5 and the center of that circle,
for the time intervals indicated in the figures. This allows one to follow the motion
of each individual point. As an example, in Fig.2.14 we have marked with arrows
the consecutive positions of the point that started from the configuration (0, 1).

Of course, one may try other shapes for the initial ensemble (instead of the circle)
and follow its flow through phase space. A good test of the program is to replace the
right-hand side of (A.10) with —z;. This should give the picture shown in Fig. 2.12.



Chapter 3
The Mechanics of Rigid Bodies

The theory of rigid bodies is a particularly important part of general mechanics.
Firstly, next to the spherically symmetric mass distributions that we studied in
Sect. 1.30, the top is the simplest example of a body with finite extension. Secondly,
its dynamics is a particularly beautiful model case to which one can apply the general
principles of canonical mechanics and where one can study the consequences of the
various space symmetries in an especially transparent manner. Thirdly, its equations
of motion (Euler’s equations) provide an interesting example of nonlinear dynam-
ics. Fourthly, the description of the rigid body leads again to the compact Lie group
SO(3) that we studied in connection with the invariance of equations of motion with
respect to rotations. The configuration space of a nondegenerate top is the direct
product of the three-dimensional space R* and of the group SO(3), in the following
sense. The momentary configuration of a rigid body is determined if we know (i) the
position of its center of mass, and (ii) the orientation of the body relative to a given
inertial system. The center of mass is described by a position vector rs() in R?, the
orientation is described by three, time-dependent angles which span the parameter
manifold of SO(3).

Finally, there are special cases of the theory of rigid bodies which can be integrated
analytically, or can be analyzed by geometrical means. Thus, one meets further
nontrivial examples of integrable systems.

3.1 Definition of Rigid Body

A rigid body can be visualized in two ways:

(A) A system of n mass points, with masses my, ..., m,, which are joined by rigid
links, is a rigid body. Figure 3.1 shows the example n = 4.

(B) A body with a given continuous mass distribution o(r) whose shape does not
change, is also arigid body. The hatched volume shown in Fig. 3.2 is an example.
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Fig. 3.1 A finite number of
mass points whose distances
are fixed at all times form a
rigid body. The figure shows
the example n = 4

Fig. 3.2 A rigid body
consisting of a fixed,
invariable mass distribution

In case (A) the total mass is given by

MZZWL,'

i=

while for case (B) it is

M =/d3rg(r) ,

(cf. Sect. 1.30).
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m,
L
i
Z
P
4
%
3.1)
(3.2)

The two definitions lead to the same type of mechanical system. This observation
depends in an essential way on the assumption that the body has no internal degrees
of freedom whatsoever. If, to the contrary, the shape of the distribution o(r) of case
(B) is allowed to change in the course of time, there will be internal forces. One
expects the dynamics of an extended object with continuous mass distribution to be
quite different from that of the system shown in Fig. 3.1 when that object is not rigid.
This is the subject of the mechanics of continua, not dealt with here.

It is useful to introduce two classes of coordinate systems for the description of

rigid bodies and their motion:
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(i) a coordinate system K that is fixed in space and is assumed to be an inertial
system;

(i) an intrinsic (or body-fixed) coordinate system K which is fixed in the body and
therefore follows its motion actively.

Figure 3.3 shows examples of these two types of reference system. The inertial system
K (which we may also call the observer’s or “laboratory” system) is useful for a simple
description of the motion. The intrinsic, body-fixed system K in general is not an
inertial system because its origin follows the motion of the body as a whole and,
hence, may be an accelerated frame. It is useful because, with respect to this system,
the mass distribution and all static properties derived from it are described in the
most simple way. Take for example the mass density. If looked at from K, o(r) is a
given function, fixed once and for ever, irrespective of the motion of the body. With
respect to K, on the other hand, it is a time-dependent function o(r, t) that depends
on how the body moves in space. (For an example see Exercise 3.9.)

The origin S of K is an arbitrary but fixed point in the body; (it will often be
useful to choose the center of mass for S). Let rg(¢) be the position vector of S with
respect to the inertial system K. Another point P of the body has position vector
r(¢) with respect to K, and x with respect to K. As it describes P relative to S, x is
independent of time, by construction.

The number of degrees of freedom of a rigid body can be read off Fig.3.3. Its
position in space is completely determined by the following data: the position rg(z)
of S and the orientation of the intrinsic system K with respect to another system
centered on S whose axes are parallel to those of K. For this we need six quantities:
the three components of rg, as well as three angles that fix the relative orientation of
K. Therefore, a nondegenerate rigid body has six degrees of freedom.

(The degenerate case of the rod is an exception. The rod is a rigid body whose
mass points all lie on a line. It has only five degrees of freedom.) It is essential to
distinguish carefully the (space-fixed) inertial system K from the (body-fixed) system

Fig. 3.3 Coordinate system z
K fixed in space and intrinsic

system K, which is fixed in

the body and follows its K
motion

™
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K. Once one has understood the difference between these two reference systems and
the role they play in the description of the rigid body, the theory of the top becomes
simple and clear.

3.2 Infinitesimal Displacement of a Rigid Body

If we shift and rotate the rigid body infinitesimally, a point P of the body is displaced
as follows:

dr =drs+de x x, 3.3)

where we have used the notation of Fig. 3.3. The displacement drg of the point S is the
parallel shift of the body as a whole. The direction 7 = d¢/|d¢| and the angle |d¢|
characterize the rotation of the body, for a fixed position of S. The translational part
of (3.3) is immediately clear. The second term, which is due to the rotation, follows
from (2.68) of Sect.2.21 and takes account of the fact that here we are dealing with an
active rotation, while the rotation discussed in Sect.2.21 was a passive one — hence
the difference in sign. Alternatively, the action of this infinitesimal rotation can also
be understood from Fig.3.4. We have |dx| = |x| - |d¢|sin«, (2, x, dx) forming a
right-hand system. Therefore, as claimed in (3.3), dx = d¢ X x.

From (3.3) follows an important relation between the velocities of the points P
and S,

d d
v oo & and V & s , (3.4a)
dr dr

respectively, and the angular velocity

det d@
w=—.
dr

Fig. 3.4 Drawing of the
action of a small rotation of
the rigid body and from
which relation (3.3) can be
read off
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It reads

v=V+4+owxx. (3.5)
Thus, the velocity of P is the sum of the translation velocity of the body as a whole
and of a term linear in the angular velocity ®. We now show that this angular velocity
is universal in the sense that it characterizes the rotational motion of the body but
does not depend on the choice of S, the origin of K. In order to see this, choose

another point §’ with coordinate rg = rs + a. The relation (3.5) also applies to this
choice,

v=V +w xx'.
On the other hand we have r = rg + x’ = rs + a + x’, and hence x = x’ + a and
v =V 4+ o x a + w x x'. These two expressions for the same velocity hold for any

x or x’. From this we conclude that

V=V4+wxa, (3.6a)
0 =w. (3.6b)

This shows the universality of the angular velocity.

3.3 Kinetic Energy and the Inertia Tensor

From now on we place S, the origin of the intrinsic system K, at the center of mass
of the body. (Exceptions to this will be mentioned explicitly.) With the definition
(1.29) of the center of mass, this implies in case (A) that

> mix® =0 (3.7a)
i=l
and in case (B) that

/ d*xxo(x)=0. (3.7b)

We calculate the kinetic energy for both cases (A) and (B), for the sake of illus-
tration.
(1) In the discrete model of the rigid body and making use of (3.5) we find

l n iz 1 n 12
T:Eigl:miv() zzgm[(V—i—wxx())
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= % (Zm,) Viqv. Zm,-(w x x?) + % Zml(w X x("))2 ) (3.8)
In the second term of this expression one may use the identity
Vo(wxx?)=x?(V xw)
to obtain

V-Zm,-(w xx®) = (V x w)~2m,»x(i) =0.

This term vanishes because of the condition (3.7a).
The third term on the right-hand side of (3.8) contains the square of the vector
® x x¥, Omitting for a moment the particle index, we can transform this as follows:

(@ x x)2 = w’x’sin’a = w2x2(1 — cos? oc)

303
=o’x’— (w-x)’ = Z Za)" (xzé,w - xuxv)w" .
n=1v=1

The decomposition of this last expression in Cartesian coordinates serves the pur-
pose of separating the coordinates x” from the components of the angular velocity
. The former scan the rigid body, while the latter are universal and hence indepen-
dent of the body. Inserting these auxiliary results into (3.8) we obtain a simple form
for the kinetic energy,

3 3
1 2 1 v
T= MVt D> o hw (3.9)

pn=1 v=lI

where we have set

S Y [ 100 (3.100)

i=1

(i1) The calculation is completely analogous for the continuous model of the rigid
body,

1 3 2
T_E/d xo(x)(V +w x x)

1 3 3
= EV /d xo(x)+(V xw)/d xo(x)x

1
+ 2 / Fro()o [x°8,, — xux ] @ .
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The integral in the first term is the total mass. The second term vanishes because of
the condition (3.7b). Thus, the kinetic energy takes the same form (3.9), with J,,
now given by!

T / Exo@) [x%8, —xux] - (3.10b)

As a result, the kinetic energy of a rigid body (3.9) has the general decomposition
T = Tuans + Trot » (311)
whose first term is the translational kinetic energy
Tyans = M V? (3.12)
trans — 2 .

and whose second term is the rotational kinetic energy

Tt = 10w | . (3.13)

J = {J,,} is a tensor of rank two, i.e. it transforms under rotations as follows. If

3
/
Xy = X, = E R,vx,
v=1

with R € SO(3), then

3 3
T = Ty =D RusRug g - (3.14)

r=1 p=1

Being completely determined by the mass distribution, this tensor is characteristic for
the rigid body. It is called the inertia tensor. This name reflects its formal similarity
to the inertial mass (which is a scalar, though).

The tensor J is defined over a three-dimensional Euclidean vector space V. Gen-
erally speaking, second-rank tensors are bilinear forms over V. Inertia tensors belong
to the subset of real, symmetric, (and as we shall see below) positive tensors over
V. We shall not go into the precise mathematical definitions here. What is impor-
tant for what follows is the transformation behavior (3.14); that is, omitting indices

J =RJR"

In general, Jyww depends on time, whenever the x; refer to a fixed reference frame in space and
when the body rotates with respect to that frame (see Sect.3.11).
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3.4 Properties of the Inertia Tensor

In this and the two subsequent sections we study the inertia tensor as a static property
of the rigid body. This means we assume the body to be at rest or, equivalently, make
use of a coordinate system that is rigidly linked to the body and follows its motion.
The inertia tensor contains an invariant term that is already diagonal,

/ d*xo(x)x?8,,

and a term that depends on the specific choice of the intrinsic reference system,

_/d3x9(x)x/l.xv s

and that in general is not diagonal. The following properties of the inertia tensor can
be derived from its definition (3.10).

(1) J is linear and therefore additive in the mass density o(x). This means that the
inertia tensor of a body obtained by joining two rigid bodies equals the sum of the
inertia tensors of its components. Quantities that have this additive property are also
said to be extensive.

(ii) J is represented by a real, symmetric matrix that reads explicitly

x§+x32 — X1X2 — X1X3
3 2 2
J= /d xo(x) | —xox1 x5+ x S x2x32 . (3.15)
—X3X| —X3X2  X]+ X3

Every real and symmetric matrix can be brought to diagonal form by means of an
orthogonal transformation Ry € SO(3),

I 0

0 0

0 I

RyJR,' = J= , (3.16)

oo

where I, I, and I are the eigenvalues of J. Thus, by a suitable choice of the body-
fixed system of reference the inertia tensor becomes diagonal. Reference systems that
have this property are again orthogonal systems and are said to be principal-axes
systems. Of course, the same representation (3.15) holds also in a system of principal
axes. As the inertia tensor J is then diagonal, its off-diagonal entries vanish and it
reads

o , ¥ + 3 0 0
J= /d yoo)| O y; + ¥t 0 . (3.17)
0 0 y+y3
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This formula is useful in calculating the moments of inertia. But, more generally and
without doing such a calculation, it allows to derive the following general properties
and inequalities for the eigenvalues:

L[>0, i=123, (3.182)
L+L>5L, L+L>1L, L+1,>1. (3.18b)

Thus, the matrix J is indeed positive. Its eigenvalues I; are called (principal) moments
of inertia.

Diagonalization of the inertia tensor is a typical eigenvalue problem of linear
algebra. The problem is to find those directions (;)(i), i =1, 2, 3, for which

Jo = 1.o" . (3.19)

This linear system of equations has a nontrivial solution provided its determinant
vanishes,

det(J — ;1) =0. (3.20)

Equation (3.20) is a cubic equation for the unknown I;. According to (3.17) and
(3.18a) it has three real, positive semidefinite solutions. The eigenvector ®* that
belongs to the eigenvalue I, is obtained from (3.19), which is to be solved three
times, for k = 1, 2, and 3. The matrix Ry in (3.16) is then given by
a0 oM P
Ro= (o af &P ] . (3.21)
(?)53) c?)f) é)§3)
It is not difficult to show that two eigenvectors &7, ®*, which belong to dis-
tinct eigenvalues /; and I, respectively, are orthogonal. For this take the difference
®"36™ — »®Jo™ . With (3.19) this becomes

(:)(i)J(:)(k) _ é)(k)J(;)(i) — (Ik _ Ii)((:)(k) . (:)(i)) )
The left-hand side vanishes because J is symmetric. Therefore, if I, # I;, then
o . o" =0. (3.22)

It may happen that two (or more) eigenvalues are equal, I; = I, in which case
we cannot prove the above orthogonality. However, as the system (3.19) is linear,
any li binati A~ (i) A~ (k) A~ (D) ~ k) ;

y linear combination of @"’ and of ®"’, say @ ' cosa + @ sinc, is also an
eigenvector of J, with eigenvalue I; = I;. It is then clear that we can always choose,
by hand, two orthogonal linear combinations. The degeneracy just tells us that there

is no preferred choice of principal axes. We illustrate this by means of the following
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model. Suppose the inertia tensor, after diagonalization, has the form

C.o
I
oo
o x o
oo

with A # B. Any further rotation about the 3-axis has the form

cos sind 0
R=|—sinf cos® O
0 0 1

and leaves J invariant. Thus any direction in the (1,2)-plane is a principal axis, too,
and corresponds to the moment of inertia A. In this plane we choose two orthogonal
axes. Because B # A the third principal axis is perpendicular to these.

(iii) The inertia tensor and specifically its eigenvalues (the moments of inertia)
are static properties of the body, very much like its mass. As we shall see below,
the angular momentum and the kinetic energy are proportional to /; when the body
rotates about the corresponding eigenvector &,

A body whose moments of inertia are all different, I} # I, # I3, is said to be an
asymmetric, or triaxial, top. If two of the moments are equal, I} = I # I3, we talk
about the symmetric top. If all three moments are equal, I} = I, = I3, we call it a
spherical top.?

(iv) If the rigid body has a certain amount of symmetry in shape and mass distri-
bution, the determination of its center of mass and its principal axes is a lot easier.
For instance, we have the following proposition:

Proposition: If the shape and mass distribution of a rigid body is symmetric
with respect to reflection in a plane (see Fig. 3.5), its center of mass and two of
its principal axes lie in that plane. The third principal axis is perpendicular to it.

Proof As a first trial choose an orthogonal frame of reference whose 1- and 2-axes
are in the plane and whose 3-axis is perpendicular to it. For symmetry reasons, to
any mass element with positive x3 there corresponds an equal mass element with
negative x3. Therefore, f d3xx30(x) = 0. Comparison with (3.7b) shows that the
first part of the proposition is true: S lies in the plane of symmetry. Suppose now §
is found and the system (x, x», x3) is centered in S. In the expression (3.15) for J
the following integrals vanish:

/d3xg(x)x1x3 =0, /d3Q(x)x2x3 =0.

2This does not necessarily mean that the rigid body has a spherical shape.
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Fig. 3.5 A rigid body that is symmetric under reflection in the plane shown in the figure

This is so because, for fixed x; (or x;, respectively), the positive values of x3 and
the corresponding negative values —x3 give equal and opposite contributions. What
remains is

Ju Jio 0
J=|Ji Jn O
0 0 I

However, this matrix is diagonalizable by a rotation in the plane of symmetry (i.e.
one about the 3-axis). This proves the second part of the proposition. ]

Similar arguments apply to the case when the body possesses axial symmetry, i.e.
if it is symmetric under rotations about a certain axis. In this case the center of mass
S lies on the symmetry axis and that axis is a principal axis. The remaining two are
perpendicular to it. The corresponding moments of inertia being degenerate, they
must be chosen by hand in the plane through S that is perpendicular to the symmetry
axis.

Remark: In calculations involving the inertia tensor the following symbolic notations
can be very useful.

Let any vector or vector field @ over R? be written as |a). Its dual which when
acting on any other vector (field) |c) is denoted (a| and so looks like a kind of mirror
image of |a). With this notation an expression such as (a|c) is nothing but the ordinary
scalar product a - ¢. On the other hand, an object such as |b) (a| is a tensor which acts
on other vectors ¢ by |b) (a|c) = (a - ¢)b, thus yielding new vectors parallel to b. This
is to say that |a) = (a1, a2, a3)7 is a column vector while its dual (a| = (a;, a, a3)
is a row vector. Applying standard rules of matrix calculus, one has

aj 3
(bla) = (by by b3)|az] = Zbkak =b-a,
as k=1
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bl b1a1 blaz b1a3
b)(al = | by | (a1 ax a3) = [bray bray bras
b3 bsa; biay bsas

For example the definition (3.10b) written in this notation, becomes

J= /d3x o[ ()l — ) (x]

where 115 is the 3 x 3 unit matrix. This notation emphasizes the fact that J is an
object that acts on vectors (or vector fields) and yields as the result another vector
(or vector field).

In fact, this notation is the same as Dirac’s “ket” and “bra” notation that the reader
will encounter in quantum theory. In the older literature on vector analysis the tensor
|b)(a| was called dyadic product of b and a.

3.5 Steiner’s Theorem

LetdJ be the inertia tensor as calculated according to (3.15) in abody-fixed system
K with origin S, the center of mass. Let K be another body-fixed system which
is obtained by shifting K by a given translation vector @, as shown in Fig. 3.6.
Let J’ be the inertia tensor as calculated in the second system,

I, = / dx'o(x) [x8,, — x],x ]
with x’ = x + a. Then J’ and J are related by
Ty =T + M[a?8,, — aya,] . (3.23)

In the compact “bracket” notation introduced above, it reads J’' = J + J,, with
J, = M [(ala)1l; — |a)(al].

The proof is not difficult. Insert x" = x + a into the first equation and take account
of the fact that all integrals with integrands that are linear in x vanish because of the
center-of-mass condition (3.7b). In Fig. 3.6K has axes parallel to those of K. If K
is rotated from K by the rotation R, in addition to the shift, (3.23) generalizes to

3
Ty =D RuoRuc (Jor + M [a*8,; — aa]) . or (3.24)

o,7=1

J=RWJ+J,)R'.
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Fig. 3.6 The system K is
attached to the center of
mass S. One wishes to
determine the inertia tensor
with respect to another

body-fixed system K , which
is centered on the point S’

The content of this formula is the following. First, K is rotated by R™! to a position
where its axes are parallel to those of K. At this point, Steiner’s theorem is applied,
in the form of (3.23). Finally, the rotation is undone by applying R.

3.6 Examples of the Use of Steiner’s Theorem

Example (i) For a ball of radius R and with spherically symmetric mass distribution
o(x) = o(r) and for any system attached to its center, the inertia tensor is diagonal.
In addition, the three moments of inertia are equal, I} = I, = I3 = I. Adding them
up and using (3.17), we find that

R
3l = Z/Q(r)r2d3x = 87'[/ o(r)rtdr
0

and therefore

8z [ 4
I =— o(r)ridr .
3 Jo

We also have the relation

R
M= 4;7/ o(r)r’dr
0

for the total mass of the ball. If, furthermore, its mass distribution is homogeneous,
then

2
o(r) for »r <R, and I=§MR2.

=R

Example (ii) Consider a body composed of two identical, homogeneous balls of
radius R which are soldered at their point of contact 7. This point is the center of
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Fig. 3.7 A rigid body
consisting of two identical
balls that are tangent to each
other. The primed axes are
principal axes

Fig. 3.8 The children’s top Ax
is an example of the
application of Steiner’s
theorem

mass and, obviously, the (primed) axes drawn in Fig. 3.7 are principal axes. We make
use of the additivity of the inertia tensor and apply Steiner’s theorem. The individual
ball carries half the total mass. Hence its moment of inertia is [o = M R*/5. In a
system centered in 7 whose 1- and 3-axes are tangent, one ball would have the
moments of inertia, by Steiner’s theorem,

M
I{=I§=10+7R2; L=1I.

The same axes are principal axes for the system of two balls and we have

M 7
I = L =2(10+7R2) = gMRz,

2 2
h=2l=MR*.

Example (iii) The homogeneous children’s top of Fig.3.8 is another example for
Steiner’s theorem, in its form (3.23), because its point of support O does not coincide
with the center of mass S. The mass density is homogeneous. It is not difficult to
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show that the center of mass is at a distance 3#/4 from O on the symmetry axis.
The inertia tensor is diagonal in the unprimed system (centered in ) as well as in
the primed system (centered in Q). The volume is V = 7 R?h/3, and the density is
0 = 3M /m R?h. Using cylindrical coordinates,

xXp=rcosg, x)=rsing, xj=z,

the moments of inertia are easily calculated within the primed system. One finds that
I =1= Q/dS)C/ (x +x7) =M (SR + 1),
I = Q/d3x’ (xF +x3) = SMR*.

The moments of inertia in the unprimed system are obtained from Steiner’s theorem,
Viz.

L=L=1I—Ma, with a=2n,
and thus
L=L=2M(R*+1h*) and L=1;=2MR*.

Example (iv) Inside an originally homogeneous ball of mass M and radius R a
pointlike mass m is placed at a distance d from the ball’s center, 0 < d < R. The
inertia tensor is an extensive quantity, hence the inertia tensors of the ball and of the
point mass add. Let a be the distance of the ball’s center to the center of mass S,
and b be the distance from the point mass to S. With these notations also shown in
Fig.3.9a and making use of the center of mass condition mb — Ma = 0 one finds

a=md/m+ M), b=Md/im+ M)=M/m)a.

A system of principal axes is obvious: Let the line joining the ball’s center and the
point mass be the 3-axis (symmetry axis), then choose two orthogonal directions in

Fig. 3.9 a A point mass is

added to a ball of m
homogeneous mass density
thus changing the original
spherical top into a a
symmetric top

b In the same homogeneous

ball a hole is cut out that

makes the top a symmetric

but no more a spherical one

(2)
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the plane orthogonal to the 3-axis through the center. Using Steiner’s theorem one
has

2
~MR*,
5

2
L=5hL= gMR2 + Ma® + mb?

I

2 M
= MR*+M(1+ —)a*.
5 + ( + m )a
In view of an application to a toy model to be discussed in Sect.3.18, we add the

following remark. Define the ratios

a d m+ M
a:—’ 8:—:
R m

o .

A condition that will be of relevance for the analysis of that model will be
l—a)h<Li=h<(+4+a)l;. ()
In the example worked out here this condition reads

2 m+ M
5 m

2
22
“=5

which says, when expressed in terms of §, that this parameter should be less than
2/5. Note that it is the upper limit in () which gives this bound.

Example (v) Consider the same ball (M, R) as in the previous example but suppose
that this time a small hollow sphere is cut out of it whose center B is at a distance
d from the ball’s center and whose radius is r, cf. Fig.3.9b. Referring to that figure
the center of mass now lies below the center of the ball. The mass of the ball which
is cut out is

F\3
m= (—) M
R
As in example (iv) let @ and b denote the distances from the ball’s center to the

center of mass S, and from the center of the hollow sphere to S, respectively. Then
d = b — a, and the center of mass condition reads

Ma + (—m)b=0.
(Remember that the mass and the inertia tensor are extensive quantities. The minus

sign stems from the fact that one has taken away the mass of the hole!) Choosing
principal axes like in the previous case the moments of inertia are
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2 2
I ==MR>—Zmr?,
5 5
2 2 2 2, 2
11=12=§MR + Ma —gmr —mb” .

It is interesting to follow up the inequality (x) also in this example. Inserting the
formulae for the moments of inertia it reads

2

—otg(MR2 —mr2) < Md> —mb* < oz%(MR2 — mrz) .

The middle part is seen to be negative,

M —m
Ma®> — mb> = —Ma? ,
m

so that the inequality should be multiplied by (—1). This yields

2 mr? M —m 2 mr?

—(1— )> a>——(1— )

5 M R? m 5 MR?
Comparison to example (iv) shows that here the lower bound of (x) gives the essential
restriction. Converting again to § = d/R one finds

§ < 2/5(1 - r5/R5) :

This result will be useful in discussing the toy model of Sect. 3.18 below.

Example (vi) As a last example we consider a brick with a quadratic cross section
(side length a;) and height a3 whose mass density is assumed to be homogeneous.
If one chooses the coordinate system K shown in Fig.3.10, the inertia tensor is
already diagonal. With o9 = M /ajazas one finds I} = M (a3 + a3)/12, cyclic in
1,2,3. The aim is now to compute the inertia tensor in the body-fixed system K/,
whose 3-axis lies along one of the main diagonals of the brick. As a; = a,, we find
I, = I,. Therefore, as a first step, one can rotate the 1-axis about the initial x3-axis
by an arbitrary amount. For example, one can choose it along a diagonal of the cross
section, without changing the inertia tensor (which is diagonal). In a second step, K
is reached by a rotation about the x}-axis by the angle ¢ = arctan (a1v/2/a3)

B B cosp 0 —sing
K—K', R;= 0 1 0
Ry sing 0 cos¢

According to (3.24) the relation between the inertia tensors is J’ = RJRT. J' is
not diagonal. One finds that
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Fig. 3.10 A brick with
homogeneous mass density,
as an example of a
symmetric rigid body

M 4a* + a*a? + a?
J/, = I, cos? Lsin¢p=— 113 3
n=heosgthsintg =g = T2

, M
.122 = 12 = E(a%+a32) N
M 2a% + 4d*a?
JL = I sin® Lcos?p = — —L L3
33 181 ¢+ 3 d) 12 2a12+a§
J1/2=O=Jz/1 212/3:%2’
K (a% — alz)ala3\/§

J,.=J,= (I, — ) singcos ¢ =
i3 =75 = (I = I)sing cos¢ 12 2a} + a3

The x}-axis is a principal axis; the x{- and x}-axes are not, with one exception:
if the body is a cube, i.e. if a; = a3, J| 5 and J3/ , vanish. Thus, for a homogeneous
cube, any orthogonal system attached to its center of gravity is a system of principal
axes. For equal (and homogeneous) mass densities a cube of height a behaves like
a ball with radius R = a/5/16r >~ 0.630a. In turn, if we require the moments
of inertia to be equal, for a cube and a ball of the same mass M, we must have
R = a/5/2+/3 ~ 0.645a.

3.7 Angular Momentum of a Rigid Body

The angular momentum of a rigid body can be decomposed into the angular momen-
tum of its center of mass and the relative (internal) angular momentum. This follows
from the general analysis of the mechanical systems we studied in Sects. 1.8—1.12.
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As we learnt there, the relative angular momentum is independent of the choice of
the laboratory system and therefore is the dynamically relevant quantity.

The relative angular momentum of a rigid body, i.e. the angular momentum with
respect to its center of mass, is given by

L= Zmiri X I (3.252)
i=1

if we choose to describe the body by the discrete model (A). For case (B) it is,
likewise,

L= / dro(x)x x . (3.25b)

From (3.5) we have X = w x x. Adopting the continuous version (B) from now on,
this becomes

L= /d3xQ(x)x X (0 X x) = /d3xg(x)[x2w — (x - o)x] .

The last expression on the right-hand side is just the product of the inertia tensor and
the angular velocity w, viz.

(3.26)

Indeed, writing this in components and making use of (3.10b), we have

3
L,=> / Ero@)[x%8, — xux, ], - (3.26)
v=1

The relation (3.26) tells us that the angular momentum is obtained by applying
the inertia tensor to the angular velocity. We note that L does not point in the same
direction as w, cf. Fig.3.11, unless w is one of the eigenvectors of the inertia tensor.
In this case

L=lo, (o). (3.27)
Fig. 3.11 The momentary % P
=Jw

angular velocity @ and the
angular momentum L of a
rigid body, in general, do not
point in the same direction

€4
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Thereby, the eigenvalue problem (3.19) receives a further physical interpretation: it
defines those directions of the angular velocity @ for which the angular momentum
L is parallel to . In this case, if L is conserved (i.e. fixed in space), the top rotates
about this direction with constant angular velocity.

The expression (3.13) for the rotational energy can be rewritten by means of
relation (3.26):

T =3 L (3.28)

i.e. 2T,y is equal to the projection of @ onto L. If @ points along one of the principal
axes, (3.28) becomes, by (3.27),

T = 310", (0ll0®) . (3.29)
This expression for T;,, shows very clearly the analogy to the kinetic energy of the
translational motion, (3.12).

To conclude let us write the relationship between angular momentum and angular
velocity by means of the “bracket” notation,

2= [ & [twlx s = Jo)ix[Jlo) = d]a)

This formula shows very clearly the action of the 3 x 3-matrix J on the column
vector |w) and may be more transparent than the expression (3.26') in terms of
coordinates.

3.8 Force-Free Motion of Rigid Bodies

If there are no external forces, the center of mass moves uniformly along a straight
line (Sect. 1.9). The angular momentum L is conserved (Sects. 1.10-1.11),

d
—L=0. 3.30
” (3.30)

Similarly the kinetic energy of the rotational motion is conserved,

d 1d
- — (@) =

—Trot = -L)=0. 3.31
g =3 (- L) (3.31)

N =
&=

(This follows from conservation of the total energy (Sect.1.11) and of the total
momentum. The kinetic energy of translational motion is then conserved separately.)
We study three special cases.
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Fig. 3.12 The rigid rod as
an example of a degenerate
rigid body

(i) The spherical top. The inertia tensor is diagonal, its eigenvalues are degenerate,
Iy =1, = I = 1.Wehave L = [;». As L is constant, this implies that @ is constant
too,

1
L =const = w = 7L=const.

The top rotates uniformly about a fixed axis.
(ii) The rigid rod. This is a degenerate top. It is a linear, i.e. one-dimensional, rigid
body for which

L=L=1I,
=0,

where the moments of inertia refer to the axes shown in Fig.3.12. As it has no
mass outside the 3-axis, the rod cannot rotate about that axis. From (3.27) we have
L] = I(,()l, Lz = 10)2, L3 =0.

Therefore, leaving aside the center-of-mass motion, force-free motion of the rod
can only be uniform rotation about any axis perpendicular to the 3-axis.

(iii) The (nondegenerate) symmetric top. This is an important special case and we
shall analyze its motion in some detail, here and below, using different approaches.
Taking the 3-axis along the symmetry axis, we have I} = I, # I3. Suppose L, the
angular momentum, is given. We choose the 1-axis in the plane spanned by L and
the 3-axis. The 2-axis being perpendicular to that plane, we have L, = 0 and hence
wy = 0. In other words, @ is also in the (1, 3)-plane, as shown in Fig.3.13. It is then
easy to analyze the motion of the symmetric top for the case of no external forces.
The velocity X = @ x x of all points on the symmetry axis is perpendicular to the
(1, 3)-plane (it points “backwards” in the figure). Therefore, the symmetry axis rotates
uniformly about L, which is a fixed vector in space. This part of the motion is called
regular precession. It is convenient to write @ as the sum of components along L
and along the 3-axis,
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Fig. 3.13 Example of a symmetric body; I} = I # I3

€l

Fig. 3.14 a The angular velocity  is written as the sum of its component @; along the symmetry
axis and its component @, along the angular momentum b The symmetry axis (x3) of the symmetric
top and the momentary angular velocity precess uniformly about the angular momentum, which is
fixed in space

®=w + Wy . (3.32)

Clearly, the longitudinal component @y is irrelevant for the precession. The compo-
nent @, is easily calculated from Fig.3.14a. With wp, = @y | and w; = @, sin 6,
aswell asw; = L/, and L; = |L]|sin @, one obtains

o= (3.33)

Because the symmetry axis (i.e. the 3-axis) precesses about L (which is fixed in
space) and because at all times L, w, and the 3-axis lie in a plane, the angular velocity
® also precesses about L. In other words, @ and the symmetry axis rotate uniformly
and synchronously about the angular momentum L, as shown in Fig. 3.14b. The cone
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traced out by @ is called the space cone, while the one traced out by the symmetry
axis is called the nutation cone.

In addition to its precession as a whole, the body also rotates uniformly about its
symmetry axis. The angular velocity for this part of the motion is

L3 _ |L|cos6

3.34
L L (3.34)

w3 =

Note that the analysis given above describes the motion of the symmetric rigid body
asitis seen by an observer in the space-fixed laboratory system, i.e. the system where
L is constant. It is instructive to ask how the same motion appears to an observer
fixed in the body for whom the 3-axis is constant. We shall return to this question in
Sect. 3.13 below.

3.9 Another Parametrization of Rotations: The Euler
Angles

Our aim is to derive the equations of motion for the rigid body. As we stressed in the
introduction (Sect.3.1), it is essential to identify the various reference systems that
are needed for the description of the rigid body and its motion and to distinguish them
clearly, at any point of the discussion. We shall proceed as follows. Attime ¢ = 0, let
the body have the position shown in Fig. 3.15. Its system of principal axes (below, we
use the abbreviation PA for ‘principal axes’) K, at # = 0, then assumes the position
shown in the left-hand part of the figure. We make a copy of this system, call it K,

b i t¢0

Fig. 3.15 Two positions of a rigid body, at time r = 0 and at ¢ % 0. The coordinate system K,
which is fixed in the body, is translated and rotated
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keep that copy fixed, and use this as the inertial system of reference. Thus, at t = 0,
the body-fixed system and the inertial system coincide. At a later time ¢ let the body
have the position shown in the right-hand part of Fig.3.15. Its center-of-mass, by
the action of the external forces, has moved along the trajectory drawn in the figure
(if there are no external forces, its motion is uniform and along a straight line). In
addition, the body as a whole is rotated away from its original orientation.

Choose now one more reference system, denoted KO, that is attached to S, its axes
being parallel, at all times, to the axes of the inertial system K. The actual position
of the rigid body at time 7 is then completely determined once we know the position
rs(t) of the center of mass and the relative position of the PA system with respect
to the auxiliary system K. The first part, the knowledge of rg(¢), is nothing but
the separation of center-of-mass motion that we studied earlier, in a more general
context. Therefore, the problem of describing the motion of a rigid body is reduced
to the description of its motion relative to a reference system centered in S, the center
of mass, and whose axes have fixed directions in space.

The relative rotation from Ky to K can be parametrized in different ways. We may
adopt the parametrization that we studied in Sect.2.22, i.e. write the rotation matrix
in the form R(¢(¢)), where the vector ¢ is now a function of time. We shall do so in
Sects.3.12 and 3.13 below.

An alternative, and equivalent, parametrization is the one in terms of Eulerian
angles. It is useful, for example, when describing rigid bodies in the framework of
canonical mechanics, and we shall use it below, in Sects. 3.15-3.16. It is defined as
follows. Write the general rotation R(#) € SO(3) as a product of three successive
rotations in the way sketched in Fig.3.16,

R(7) = Rs(y)R, (B)Rs, () . (3.35)

Fig. 3.16 Definition of
Eulerian angles as in (3.35).
The second rotation is about
the intermediate position of
the 2-axis
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The coordinate system is rotated first about the initial 3-axis by an angle «. In a
second step it is rotated about the intermediate 2-axis by an angle 8, and lastly it is
rotated about the new (and final) 3-axis by an angle y.

With this choice, the general motion of a rigid body is described by six functions
of time, {rg(t), a(t), B(t), y(¢)}, in accordance with the fact that it has six degrees
of freedom. Both parametrizations, i.e. by means of

{rs@®), Re()} with @) = {¢:1(1), ¢2(1), ¢3(1)} , (3.36)

which is the one developed in Sect.2.21 (2.67), and the one just described, i.e. by
means of

{rs®, 6;(0} with 6,(t) = a(1), 62(1) = B(1), 63(1) =y (1), (3.37)

are useful and will be used below. We remark, further, that the definition of the
Eulerian angles described above is the one used in quantum mechanics.

3.10 Definition of Eulerian Angles

Traditionally, the dynamics of rigid bodies makes use of a somewhat different defi-
nition of Eulerian angles. This definition is distinguished from the previous one by
the choice of the axis for the second rotation in (3.35). Instead of (the intermedi-
ate position of) the 2-axis 1, the coordinate frame is rotated about the intermediate
position of the 1-axis &,

R(t) = R3(¥)R: (0)R;,(®) . (3.38)

Figure 3.17 illustrates this choice of successive rotations. For the sake of clarity, we
have suppressed the two intermediate positions of the 2-axis. The transformation
from one definition to the other can be read off Figs.3.16 and 3.17, which were
drawn such that K and K have the same relative position. It is sufficient to exchange
1- and 2-axes in these figures as follows:

Figure3.16 Figure3.17
(2¢-axis) — (1p-axis)
(1p-axis) —>  —(2p-axis)

keeping the 3-axes the same. This comparison yields the relations
& =a+3F(mod2r), 0=, ¥=y—75(mod2r). (3.39)
It is easy to convince oneself that the intervals of definition for the Eulerian angles

0<a<2mr, 0<B<m, and 0<y <2m (3.40)
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Fig. 3.17 Another definition
of Eulerian angles, following
(3.38). Here the second
rotation is about the
intermediate position of the
1-axis

allow us to describe every rotation from K, to K. If one chooses intervals for @, 6,
and ¥,

0<® <27, 0<O<m, and 0<VY <27, (3.40")

it is clear that the additive terms 27 in (3.39), must be adjusted so as not to leave
these intervals (see the Appendix on some mathematical notions).

3.11 Equations of Motion of Rigid Bodies

When the rigid body is represented by a finite number of mass points (with fixed
links between them), the formulation of center-of-mass motion and relative motion
follows directly from the principles of Sects. 1.9 and 1.10. If one chooses a repre-
sentation in terms of a continuous mass distribution this is not true a priori. Strictly
speaking, we leave here the field of mechanics of (finitely many) particles. Indeed, the
principle of center-of-mass motion follows only with Euler’s generalization (1.99),
Sect. 1.30, of (1.8b). Similarly, for finitely many point particles the principle of angu-
lar momentum is a consequence of the equations of motion (1.28). Here it follows
only if the additional assumption is made that the stress tensor (to be defined in the
mechanics of continua) is symmetric. Alternatively, one may introduce this principle
as an independent law. It seems that this postulate goes back to L. Euler.
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Let P = MYV denote the total momentum, with V = rg(¢), and let F be the
resultant of the external forces. The principle of center-of-mass motion reads

d " )

—P=F, where F=)» F" . 3.41

dr ; ( )
If, in addition, F is a potential force, F = —V U (rs), we can define a Lagrangian,

L=iMi§+To—U(rs) . (3.42)

Here, it is important to keep in mind the system of reference with respect to which
one writes down the rotational kinetic energy. Choosing Ky (the system attached to
S and parallel to the inertial system fixed in space), we have

Tt = 20(O)I(D(1) . (3.432)

Note that the inertia tensor depends on time. This is so because the body rotates with
respect to K. Clearly, T; is an invariant form. When expressed with respect to the
PA system (or any other body-fixed system), it is

Tt = 2@(1)J@(1) . (3.43b)

J is now constant; if we choose the PA system, itis diagonal, J,,,, = 1,8, In (3.43a)
the angular velocity @(?) is seen from Ko, and hence from the laboratory, while in
(3.43b) it refers to a system fixed in the body. As we learnt in studying the free motion
of the symmetric top, the time evolution of the angular velocity looks different in a
frame with axes of fixed direction in space than in a frame fixed in the body.

In order to clarify the situation with the two kinds of system of reference, we
consider first the simplified case of a rotation about the 3-axis. Here we have to study
only the transformation behavior in the (1, 2)-plane. Consider first a given point A,
with fixed coordinates (x;, x,, x3) with respect to K. If described with respect to
K, cf. Fig.3.18, the same point has the coordinates

Fig. 3.18 Rotation of the
body-fixed system about the
3-axis N Ky = -+ A

..e
>l B, T g R s
|
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X] = X1 COS¢Q + xp8ing ,
Xy = —Xx18ing + xpcos ¢, (3.44a)

)23:)63.

These equations express the passive form of rotation that we studied in Sects.2.21
and 2.22. Take now a point P, fixed on tlf 1-axis of K, and assume that this latter
system rotates uniformly with respect to Ky. We then have

p=¢pt)=wt; P:x;=a, xx=0=Xx3;
and, by inverting the formulae (3.44a),

X] = X1 CoSwt — Xy sinwt
Xp = X1 Sinwt + Xp cos wt (3.44b)

X3 = X3,

so that the point P moves according to (P: x| = a coswt, x, = asinwt, x3 = 0).
This is the active form of rotation. Turning now to an arbitrary rotation, we replace
(3.44a) by

3
R(¢) = exp (— > ‘piJi) : (3.45a)
i=1

where J = {J;, J,, J3} are the generators for infinitesimal rotations about the cor-
responding axes (cf. (2.73) in Sect.2.22). Equation (3.44b) is the inverse of (3.44a).
Hence, in the general case,

;
(R(@) ™" = (R(p)" = R(~¢) = exp (Z <p,»J,-) : (3.45b)
i=1

The vectors w (angular velocity) and L (angular momentum) are physical quantities.
They obey the (passive) transformation law

@ =Rw, L=RL, (3.46)
w and L referring to Ko, @ and L referring to K. The inertia tensor J  with respect
to K (where it is constant) and the same tensor taken with respect to Ky (where it

depends on time) are related by

J=RJRT, J() =RT(")JR(). (3.47)
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This follows from the proposition (3.24), with @ = 0. Clearly, T is a scalar and
hence is invariant. Indeed, inserting (3.46) into (3.43b), we obtain (3.43a),

Tr = 3(Rw)J(Rw) = Jo(R"JR)w = Lol .

The equation of motion describing the rotation is obtained from the principle of
angular momentum. With reference to the system Ko, it tells us that the time change
of the angular momentum equals the resultant external torque,

d
—L=D. (3.48)
dr

Thus, adopting the discrete model (A) for the rigid body, we have

L=> mx"xi?, (3.49)
i=1

D=> x"xF". (3.50)
i=1

In summary, the equations of motion (3.41) and (3.48) have the general form

MF¥s(t) = F(rs, s, 6;, 6;, ), (3.51)
L=D(rs. fs, 6, 0. 1), (3.52)

where (3.51) refers to the inertial system of reference and (3.52) refers to the system
Ky, which is centered in S and has its axes parallel to those of the inertial system.

3.12 Euler’s Equations of Motion

In this section we apply the equation of motion (3.52) to the rigid body and, in
particular, work out its specific form for this case. Inverting the second equation of
(3.46) we have

L=R"0)L =Jdt)o() .

Differentiating with respect to time, we obtain

L:jw+3d)
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and, by means of (3.47), also
Jir) = %[RT(t)JR(t)] =R"JR+R'JR.

If we again replace J by J in this last expression, this becomes
J(r) = (R"R)J + J(RTR) .

We now study the specific combination of the rotation matrix and the time deriv-
ative of its transpose that appears in the time derivative of J(¢). Let us define

def

20 R ORM) =R OR(Q) . (3.53)

The transpose of this matrix, 27 = R'R, is equal to —$2. This follows by taking
the time derivative of the orthogonality condition RTR = 1I, whereby

R'R+R'R=0,
and hence
2+27=0.

Thus, we obtain

J=oJ+Je"=eJ-Je =(2,J], (3.54)
where [,] denotes the commutator, [A, B] oo AB — BA. In order to compute the
action of 2 on an arbitrary vector, one must first calculate the time derivative of
the rotation matrix (3.45a). The exponential is to be understood as a shorthand for
its series expansion, cf. Sect.2.20. Differentiating termwise and assuming ¢ to be
parallel to @, one obtains

d 3 . 3
3 Re®) =- [Z ¢ (,)J,} R(e(1) = — [; widi] R. (3.55)

i=1

From Sect.2.22 we know that the action of (Z?:1 w;J) on an arbitrary vector b of
IR? can be expressed by means of the cross product, viz.

3
(Za)lJ,)b =wxb.
i=1
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Obviously, an analogous formula applies to the inverse of R,

LR () = (i wiJ,-) R (p(1)) .

dr pn
Therefore, taking b = RTa, we have

R"(1)a = w x (R"a) , (3.56a)
and from this

2(a = R"Ra = o x (RTRa) =wXxa. (3.56b)
This gives us

i =do+do=@)—Ii2)w+do

=R2Jo+Jo=wx Jw) +do=w x L +Jo, (3.57)

where we have used the equation 2@ = 0, which follows from (3.56b). It remains
to compute @,

d .
o=-—(R"®)=R"™0+R &.
dt
The second term vanishes because, by (3.56a),
Ro=wx(R®)=wxw=0.
Thus, ® = RT@. Inserting (3.57) into the equation of motion (3.52), we obtain
L=wxL+JR'@=D.
This form of the equations of motion has the drawback that it contains both quantities
referring to a system of reference with space-fixed directions and quantities referring
to a body-fixed system. However, it is not difficult to convert them completely to the
system fixed in the body: multiply these equations with R from the left and note that

R(w x L) = Rw x RL = @ x L. In this way we obtain Euler’s equations in their
final form,

Jo+a@xL=D]|. (3.58)

All quantities now refer to the body-fixed system K. In particular, J is the (con-
stant) inertia tensor as computed in Sect. 3.4 above. If the intrinsic system K is chosen
to be a PA system, J is diagonal. Finally, we note that L = Jé. This shows that the
equations of motion (3.58) for the unknown functions @(¢) are nonlinear.
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Remark: Because of its antisymmetry, the action of the matrix £ on any vector
a is always the one given in (3.56b), with @ to be calculated from the rotation
R(r) = exp{—S}, with S = > ¢; (¢)J;. We have

_pT _ is -s
2 =R (HR(1) = (dte )e

. 1. 1 .
:(S+—SS+—SS+...)(11—S+...)
2 2
. 1 .
=s+§[s,S]+0(<p2).

Making use of the commutators [J;, J;] = Zk &;jkJx one derives the identity

[S. S1=[S(), S(9)] = S(p x §),

from which one computes w. If we make the assumption (as we did in Sect.2.22
and also in this section above) that ¢ = ¢ iz and ¢ have the same direction, then S
commutes with $ so that @ and ¢ coincide.

One may, of course, also consider a situation where both the modulus and the
direction of ¢ change with time. In this case ¢ and ¢ are no longer parallel, and S
and S no longer commute. It then follows from (3.56b), from Sa = ¢ x a, and from
the calculation above that

.1 .
w=<p+§<p><¢+0(<02).

In very much the same way one shows that

| .

w=¢—§¢><¢+0(<02).

In deriving Euler’s equations the difference to the situation where ¢ and ¢ are
taken to be parallel is irrelevant because we may always add a constant rotation such
that the modulus ¢ of ¢ is small, and @ ~ ¢ (see also Sect.5.7.4).

3.13 Euler’s Equations Applied to a Force-Free Top

As a first illustration of Euler’s equations we study the force-free motion of rigid
bodies. If no external forces are present, the center of mass, by (3.51), moves with
constant velocity along a straight line. The right-hand side of Euler’s equations (3.58)
vanishes, D = 0. If K is chosen to be the PA system, then J;; = I;§;; and L = Ly,
so that (3.58) reads

Lo+ @xL); =0.
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More explicitly, because (@ x L), = Ly @3 — Loz dy = (I — L), @5 (with
cyclic permutation of the indices), the equations of motion read

Loy = (L — I)ands |
Loy = (I — I)asé |
Loy = (I — L)@@ . (3.59)

(i) The asymmetric or triaxial top. Here I} # I, # Iz # I;. The (3.59) being non-
linear, their solution in the general case is certainly not obvious. Yet, as we shall see
below, their solution can be reduced to quadratures by making use of the conserva-
tion of energy and angular momentum. Before turning to this analysis, we discuss a
qualitative feature of its motion that can be read off (3.59). Without loss of generality
we assume the ordering

L <h<I. (3.60)

Indeed, the principle axes can always be chosen and numbered in such a way that the
1-axis is the axis of the smallest moment of inertia, the 3-axis that of the largest. The
right-hand sides of the first and third equations of (3.59) then have negative coef-
ficients, while the right-hand side of the second equation has a positive coefficient.
Thus, the stability behavior of a rotation about the 2-axis (the one with the interme-
diate moment of inertia) will be different, under the effect of a small perturbation,
from that of rotations about the 1- or 3-axes. Indeed, in the latter cases the rotation
is found to be stable, while in the former it is unstable, (see Sect.6.2.5).

def _ .
We now set x (1) = w3 (t) and make use of the two conservation laws that hold for
free motion:

3
2T = Z I;&} = const , (3.61)

i=1

3
L> = (Iid;) = const . (3.62)
i=1
Taking the combinations
L* = 2T 1y = L(L— 11)65% + (5 — 11)x2 ,
L? 2Tl = =1 (L — )@} + (15 — b)x*
we deduce the following equations:
1
-2 2 2 2
=———— |L° 2Ty, — I3(Is — I = — ,
w] (L —1) [ otd2 3( 3 2)x ] oy + X
5 1

I ¢ _ B 2 _ B 5
“ = LI, — 1) [L* = 2Ty — Is(1s = 1h)x*] = o — pox” .
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With the convention (3.60), all differences of moments of inertia are written so as to
make the coefficients «g, o2, By, B> positive. Inserting these auxiliary relations into
the third equation of (3.59) yields the differential equation

1) = (I = 1)y (Bo — Box?) (—at0 + aax?) (3.63)
for x (7). It can be solved by separation of variables and hence by ordinary integration

(quadrature). Clearly, @ (¢) and @, (¢) obey analogous differential equations that are
obtained from (3.63) by cyclic permutation.

(ii) The symmetric top. Without loss of generality we assume

L=L#I and I} #0, I #0. (3.64)
The solution of the (3.59) is elementary in this case. First, we note that

135)3 =0, i.e. @3 =const.
Introducing the notation

o & L -1
0 = w3
L

(= const) (3.65)

we see that the first two equations of (3.59) become

w] = —a)()(z)z and 5)2 = a)()(I)l ,
their solutions being
@1(t) = wi cos(wot +7), @2(1) = wy sin(wot + 7) . (3.66)

Here w, and t are integration constants that are chosen at will. wy, in turn, is already
fixed by the choice of the integration constant @3 in (3.65). As a result, one obtains

@ = (w) cos(wpt +7) , wysin(wof +7) , @3)

and @ = w? + @?. The vector @ has constant length: it rotates uniformly about the
3-axis of the PA system. This is the symmetry axis of the top.
As to the angular momentum with respect to the intrinsic system, one has

l_,l =lho, cos(a)ot + r) ,
iz =lhow, Sin(a)()t + ‘L') s
Ly = Ly,

L’ =1 + 25 . (3.67)
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This shows that L rotates uniformly about the symmetry axis, too. Furthermore, at
any time the symmetry axisf, @ and L lie in one plane.

It is not difficult to work out the relation of the constants of integration w , w3 (or
wp) to the integrals of the motion that are characteristic for motion without external
forces: the kinetic energy 7T} and the modulus of angular momentum. One has

3

_ - IVE
2T = Zl,-wf = hot + Loy =1, [a’i + mw(ﬂ ;
i=1

2
2 72 2 2 2-2 2| 2 I3 2
L"=L =lio] +oy=1j [wL"‘mwo]v

from which one obtains

1
2 2
= ——[L* - 21T 3.68
wy I, — 1) [ 3 rot] ( )
2 L —1 2
W =7 [211 T — L?] . (3.69)
143

Finally, one may wish to translate these results to a description of the same motion
with respect to the system K of Fig.3.15. Because there are no external forces, this
is an inertial system. Denoting the symmetry axis of the top by f (this is the 3-axis
of K), the same unit vector, with respect to Ko, depends on time and is given by

fo)=R'()f .

Since L, @, andf are always in a plane, so are L = RTI_,, W= RTd),f. Being
conserved, the angular momentum L is a constant vector in space, while @ and f
rotate uniformly and synchronously about this direction.

As shown in Fig.3.19, we call ;, 9, the angles between L and @ and between @
andf, , respectively, and let

0% 0, +6,.

Fig. 3.19 For a free |
symmetric top the angular
momentum L is conserved
and hence fixed in space.

™~

The axis of symmetry f , the
angular velocity @, and L
always lie in a plane. f and ®
perform a uniform
precession about L
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Fig. 3.20 The two types of motion of the axis of symmetry f and the angular velocity @ about the
angular momentum L

We show that cos 8 and cos 6, must always have the same sign. This will help us to
find the possible types of motion. We have

2Tot

2T, =L -w and cosfy = —— .
rot 1 |L||(x)|

As T is conserved and positive, cos 8; is constant and positive. Thus

<0 <

[SIE]
[SIE]

Furthermore, making use of the invariance of the scalar product, we have

A

w-f=®-f= l@| cost = @3 = L3/ I
:L.f:/I3 :L.f/13 =|L|cos8/I5 .

It follows, indeed, that cos @ and cos 6, have the same sign, at any moment of the
motion. As a consequence, there can be only two types of motion, one where this
sign is positive (Fig. 3.20a) and one where the sign is negative (Fig. 3.20b), 6, being
constrained as shown above, — % <60 < % Figure 3.20 shows the situation for /3 >
I, = I, i.e. for a body that is elongated like an egg or a cigar. If I5 < I} = I, i.e.
for a body that has the shape of a disc or a pancake, the angular momentum lies
between @ and the symmetry axis of the top. Finally, we can write down one more
relation between the angles 6 and 6,. Take the 1-axis of the intrinsic system in the
plane spanned by L andf (as in Sect. 3.8 (iii)). Then we have

L/Ly =tanf = 1,&,/(I3&3) = (I/1;)tan 6, .
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(iii) A practical example: the Earth. To a good approximation the Earth can be
regarded as a slightly flattened, disklike, symmetric top. Its symmetry axis is defined
by the geographic poles. Because its axis of rotation is slightly inclined, by about
0.2”, with respect to the symmetry axis, it performs a precession motion. Neglecting
the external forces acting on the Earth, we can estimate the period of this precession
as follows. We have

I =L <L with (I5—1)/1; ~1/300. (3.70)
The frequency of precession is given by (3.65). Thus, the period is

T 2 2nl 1
wo  (Z—1I)as

Inserting 27 /w3 = 1 day and theratio (3.70) one gets T =~ 300 days. Experimentally,
one finds a period of about 430 days and an amplitude of a few meters. The deviation
of the measured period from the estimate is probably due to the fact that the Earth is
not really rigid.

In fact, the Earth is not free and is subject to external forces and torques exerted on
it by the Sun and the Moon. The precession estimated above is superimposed upon
a much longer precession with a mean period of 25 800 years (the so-called Platonic
year). However, the fact that the free precession estimated above is so much faster
than this extremely slow gyroscopic precession justifies the assumption of force-free
motion on which we based our estimate.

3.14 The Motion of a Free Top and Geometric
Constructions

The essential features of the motion of a free, asymmetric rigid body can be under-
stood qualitatively, without actually solving the (3.63), by means of the following
constructions. The first of these refers to a reference system fixed in space; the sec-
ond refers to the intrinsic PA system and both make use of the conservation laws for
energy and angular momentum.

(i) Poinsot’s construction (with respect to a space-fixed system). The conservation
law (3.61) can be written in two equivalent ways in terms of quantities in the reference
system fixed in space,

2Tt = @(t) - L = w(t).](t)w(t) = const . (3.71)
As L is fixed, (3.71) tells us that the projection of @(¢) onto L is constant. Thus, the

tip of the vector w(¢) always lies in a plane perpendicular to L. This plane is said to
be the invariant plane. The second equality in (3.71) tells us, on the other hand, that
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Fig. 3.21 The tip of @(7) = A
wanders on the invariant L
plane and on a P A

time-dependent ellipsoid

tangent to that plane 30

4

the tip of w(¢) must also lie on an ellipsoid, whose position in space changes with
time, viz.

3

> T (D (t) = 2T -

i.k=1

These two surfaces are shown in Fig.3.21. As we also know that

3
2T = D L}
i=1

the principal diameters a; of this ellipsoid are given by a; = /2T,y /1;. For fixed
energy, the ellipsoid has a fixed shape,

—2

3
Z o7 m/] ) (3.72)

i=1

When looked at from the laboratory system, however, the ellipsoid moves as a whole.
To understand this motion, we note the relation

3
Tror _ =
= J = Jim m = Li s

k.l=1

which tells us that L = V,T;;. Thus, at any moment, L is perpendicular to the
tangent plane to the ellipsoid at the point P. In other words, the invariant plane is
tangent to the ellipsoid. The momentary axis of rotation is just @(¢). Therefore, the
motion of the ellipsoid is such that it rolls over the invariant plane without gliding. In
the course of the motion, the point P traces out two curves, one on the invariant plane
and one on the ellipsoid. These curves are somewhat complicated in the general case.
In the case of a symmetric body with, say, I} = I, > I3, they are seen to be circles.
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(ii) General construction within a principal-axes system. Using a PA system, we have
L; = I;®;, so that the conserved quantities (3.61-3.62) can be written as follows:

.
L;

2 Tior = 1.

) (3.73)

i=1

L? = Z L. (3.74)

The first of these, when read as an equation for the variables Ly, Ly, L3, describes
an ellipsoid with principal axes

ai = 2T d; , i=1,23. (3.75)

With the convention (3.60) they obey the inequalities a; < a; < a3. From (3.60) one
also notes that

2oy < L' = L? < 2T, 15 . (3.76)

The second equation, (3.74) is a sphere with radius

R=+VL? and a; <R <a;. (3.77)

Taking both equations together, we conclude that the extremity of L (this is the
angular momentum as seen from the body-fixed PA system) moves on the curves
of intersection of the ellipsoid (3.73) and the sphere (3.74). As follows from the
inequalities (3.76), or equivalently from (3.77), these two surfaces do indeed intersect.
This yields the picture shown in Fig. 3.22. As the figure shows, the vector L performs
periodic motions in all cases. One also sees that rotations in the neighborhood of the
1-axis (principal axis with the smallest moment of inertia), as well rotations in the
neighborhood of the 3-axis (principal axis with the largest moment of inertia) are

momentum L, as seen from a
reference system fixed in the
body, moves along the
curves of intersection of the
spheres (3.74) and of the
ellipsoids (3.73)

Fig. 3.22 The angular ] !
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stable. Rotations with L close to the 2-axis, on the other hand, look unstable. One is
led to suspect that even a small perturbation will completely upset the motion. That
this is indeed so will be shown in Sect. 6.2.5.

3.15 The Rigid Body in the Framework of Canonical
Mechanics

The aim of this section is to derive once more the equations of motion of rigid
bodies, this time by means of a Lagrangian function that is expressed in terms of
Eulerian angles. In a second step we wish to find the generalized momenta that are
canonically conjugate to these variables. Finally, via a Legendre transformation, we
wish to construct a Hamiltonian function for the rigid body.

(i) Angular velocity and Eulerian angles. In a first step we must calculate the com-
ponents of the angular velocity @ with respect to a PA system, following (3.35), and
express them in terms of Eulerian angles as defined in Sect. 3.10. A simple, geomet-
ric way of doing this is to start from Fig.3.16 or 3.23. To the three time-dependent
rotations in (3.35) there correspond the angular velocities @, , @g, and @, . Here, w,
points along the 3-axis, g along the axis S, and w, along the 3-axis. If 1,2, and 3
denote the principal axes, as before, and if (w,); denotes the component of w,, along
the axis i, the following decompositions are obtained from Fig. 3.23:

(wp), = Bsiny , (wp), = Bcosy , (a)ﬂ)3 =0, (3.78)

Fig. 3.23 Construction that
helps to express w by the
time derivatives of the
Eulerian angles. Definition
asin Fig.3.16
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(@a); =6cosp, (@), =—dsinp, (3.79)

from which follows

(@), = —d@sinBcosy , (w.),=dsinBsiny, (3.79b)
and finally
(@), =0, (@),=0. (0);=7. (3.80)

Thus, the angular velocity ® = w, + wg + @, is given by @ = (1, @3, @3)T with

@) = PBsiny —asinfcosy ,
@, = Bcosy + asinBsiny , (3.81)
w3 =dacosf+y.
It is easy to translate these results to the definition of Eulerian angles as given in
Sect. 3.10. The transformation rules (3.39) tell us thatin (3.81) cos y must be replaced
by — sin ¥ and sin y by cos ¥, giving
w1 =6 cosW¥ + @ sind sin ¥ s
@ = —0sin¥ + dsinb cos ¥ , (3.82)
@y = Dcosh + .
The functions w; () obey the system of differential equations (3.58), Euler’s equa-

tions. Once they are known, by inverting (3.82) and solving for @, 6, and ¥, one
obtains the following system of coupled differential equations

@ = [@1 sin¥ + @, cos W]/ sin6 |

0 = d1cosW — @nsin¥ (3.83)

¥ = @3 — [@ sin ¥ + @ cos W] cot 6 .
The solutions of this system {@ (), 6(z), ¥ (¢)} describe the actual motion com-
pletely.

Making use of (3.82) we can construct a Lagrangian function in terms of Eulerian
angles. Its natural form is

L=T-U, (3.84)

where the kinetic energy is given by

T =To =

NI*—‘

3
Z =—11(QCoslI/+d>sm6?s1nl1/)2

1 ) ) ..
+ 512(—9 sin¥ + @ sinf cos¥)? + 513(4/ + dcosh). (3.85)
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Note that we use the second definition of Eulerian angles (see Sect. 3.10 and Fig. 3.17)
and that we assume that the center-of-mass motion is already separated off.

The first test is to verify that L, as given by (3.84), yields Euler’s equations in the
form (3.59) when there are no external forces (U = 0). We calculate

JL 0T 0dws _
—.=—_—.=I30)3,

o dw; oY

JL 0T dw; n 0T dw, (1 I)_ _
_— = — _— = — wiwy .
AW o, oW | dan W e

Indeed, the Euler-Lagrange equation (d/d¢)(dL/d ¥)=0L /oY is identical with
the third of (3.59). The remaining two follow by cyclic permutation.

(i) Canonical momenta and the Hamiltonian function. The momenta canonically
conjugate to the Eulerian angles are found by taking the partial derivatives of L with
respect to <15, é, and ¥ . The momentum pw 1s the easiest to determine:

oL . . _
o défﬁ = (W +dcosh) =Ls =L -&;
= L;sinfsin® — L,sinf cos® + L3cosb . (3.86)

In the last step, €3, the unit vector along the 3-axis, is written in components with
respect to Ko (whose axes are fixed in space). The momentum p¢ is a little more
complicated to calculate,

3

det OL — 07T OJw; 1161 sin 6 sin @ + Lan sin 0 Wt La 9
= — = _— — = w1 S1n ¢ S1n wy SIN U COS w3 COS
Po 9 i=1aa_)ia(p 1@ 202 33
=L- 2730 =Lj3. (3.87)

Here, we made use of the equation L; = I;&; and of the fact that (sin § sin ¥, sin 0
cos ¥, cos @) is the decomposition of the unit vector e3, along the principal axes.
Finally, the third generalized momentum is given by

oL - = A
pgdéfﬁlecoslI/—Lzsinlllszg, (3.88)

where é; is the unit vector along the line S& of Fig.3.17. One verifies that
*T
det { ——— ;é 0 s
00,00,

which means that (3.86-3.88) can be solved for the @;, or, equivalently, for the L;.
After a little algebra one finds

- 1

L = — (qu—pq, cos@) sin¥ + pgcos¥ ,
sin 0

- 1

L, = — 5 (pq; — Py COS 9) cos¥ — ppsin¥ | (3.89)
sin

L3=[71p.
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With T = (3 E? /1;)/2 this allows us to construct the Hamiltonian function. One
obtains the expression

1 ( 9)2 (sin2 14 N cos? llf)
- — py COS
2sinzg PP TP I b
1, (cos’¥ sin®W¥
— 3.90
2P9 ( 2 + A ( )
sin ¥ cos ¥ ( 9) 1 1 n 1 iy
- — py COS - — = — .
2sing Lo\Pe T P¥ L b 2L Py

We note that pg is the projection of the angular momentum onto the space-fixed
3p-axis, while py is its projection onto the body-fixed 3-axis. If the potential energy
U does not depend on @, this variable is cyclic, so that pg is constant, as expected.
The expression (3.90) simplifies considerably in the case of a symmetric top for
which we can again take I; = I, without loss of generality. If U vanishes, or does
not depend on ¥, then V¥ is also cyclic and py is conserved as well.

(iii) Some Poisson brackets. If the Eulerian angles are denoted generically by {®; (1)},
the Poisson brackets over the phase space (with coordinates ®; and pg,) are given
by

af g df ag
{f.8)(®i, po,) Z (8po,. 26, ~ 26, 8p0i) : (3.91)

The components of the angular momentum with respect to the systems K and K,
have interesting Poisson brackets, both within each system and between them. One
finds

{Ll, Lz} = —Lj3 (cyclic), (3.92)
{il, Zz} =41, (cyclic) (3.93)
{L;, L;} =0 foralliand;. (3.94)

Note the remarkable signs in (3.92) and (3.93). Finall_y, one verifies that the brackets
of the kinetic energy with all L;, as well as with all L;, vanish,

(L. T}=0={L;. T}, i=123. (3.95)
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Fig. 3.24 The symmetric X3
children’s top in a
gravitational field

L

X

3.16 Example: The Symmetric Children’s Top
in a Gravitational Field

The point of support O does not coincide with the center of mass S, their distance
being

os=1.
Therefore, if I} (= I») is the moment of inertia for rotations about an axis through
S that is perpendicular to the symmetry axis (the 3-axis in Fig. 3.24), then Steiner’s
theorem, Sect. 3.5, tells us that

I =0L=1I+MP
is the relevant moment of inertia for rotations about an axis through O that is also
perpendicular to the symmetry axis. /; and I] were calculated in Sect. 3.6 (iii) above.
Since I] = I, the first two terms in Ty (3.85) simplify, so that the Lagrangian
function for the spinning top in the earth’s gravitational field is given by

L=1 (I +MP) (6> + &*sin’0) + 1 15(¥ + & cos0)* — Mgl coso . (3.96)

The variables @ and ¥ are cyclic, the momenta conjugate to them are conserved,

Py = Ly = I3(lf/ + @ cos 6) = const , (3.97a)
po = L3 = (Il' sin® @ + I5 cos® 9) & + ;¥ cos® = const . (3.97b)

As long as we neglect frictional forces, the energy is also conserved,

E = %11’(9'2 + @7 sin® 9) + %13(117 + & cos 9)2 + MglcosO =const. (3.98)
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From (3.97) we can isolate @ and ¥, viz.

. Ls — Lsycos® . L .
P=— ——FS—, ¥=——Pcosh. (3.99)
I sin“ 6 I3
Inserting these expressions into (3.98) we obtain an equation of motion that contains
only the variable 6 (). With the new abbreviations
def I:%
E'=E——= — Mgl, (3.100)
213

det (L3 — L3 cos6)?

Ut (0) = 20 SnZ 0 — Mgl(1l —cos9) . (3.101)

Equation (3.98) becomes the effective equation
E' = 11107 + U (0) = const (3.102)

to which one can apply the methods that we developed in the first chapter. Here, we
shall restrict the discussion to a qualitative analysis.

From the positivity of the kinetic energy, the physically admissible domain of
variation of the angle is determined by the condition E’ > Uy (6). Whenever L
differs from L3, Ue tends to plus infinity both for & — 0 and for 6 — m. Let

u(t) ™ cos (1) (3.103)

and therefore 6% = i/ (1 — uz). Equation (3.102) is then equivalent to the following
differential equation for u(¢):

i’ = fu), (3.104)
where
Fa)E (1= )[(E'/I)) +2Mgl(1 —w) /1] = (Ls — Lau)' /17 . (3.105)

Only those values of u(¢) are physical which lie in the interval [—1, +1]and for which
f(u) = 0. The boundaries u = 1 or u = —1 can only be physical if in the expression
(3.105) L3 = Ljor L3 = —L3. Both conditions of motion (the top standing vertically
in the first case and being suspended vertically in the second case) are called sleeping.
In all other cases the symmetry axis is oblique compared to the vertical.

The function f (u) has the behavior shown in Fig. 3.25. It has two zeros, u; and 5,
in the interval [—1, +1]. For uy < u < u,, f(u) > 0. The case u; = u, is possible
but arises only for very special initial conditions. The motion in the general case
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Fig. 3.25 Graph of the

function f(u) (3.105) with f(u)/fmax
u = cos 0(t). See also

Practical Example 1 of the

Appendix A 1

Fig. 3.26 Symmetric
children’s top in the
gravitational field. The figure
shows the nutation of the
extremity of the symmetry
axis

S

@
g
¢

&

u; < up can be described qualitatively quite well by following the motion of the

symmetry axis on a sphere. Setting u &f L3/ L3, the first equation (3.99) gives

. l_,guo—u

_Lyup—u 3.106
Il 1—u? ( )
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Thus, whenever u; # u,, the extremity of f moves on the unit sphere between the
parallels of latitude defined by

0; = arccosu; , i=12.

Depending on the position of u relative to #; and u,, we must distinguish three
cases.

(i) ug > uy (or ug < uy). From (3.106) we see that ® always has the same sign.
Therefore, the motion looks like the one sketched in Fig. 3.26a.
(i) uy < ug < u». Inthis case @ has different signs at the upper and lower parallels.
The motion of the symmetry axis f looks as sketched in Fig. 3.26b.
(iii) g = uy orug = u,. Here @ vanishes at the lower or upper parallel, respectively.
In the second case, for example, the motion of } is the one sketched in Fig. 3.26c¢.

The motion of the extremity of f‘ on the sphere is called nutation.

3.17 More About the Spinning Top

The analysis of the previous section can be pushed a little further. For example, one
may ask under which condition the rotation about the vertical is stable. This is indeed
the aim when one plays with a children’s top: one wants to have it spin, if possible
vertically, and for as long as possible. In particular, one wishes to know to what
extent friction at the point of support disturbs the game.

(i) Vertical rotation (standing top). For § = 0 we have L3 = L. From (3.101) one
finds that U (0) = 0 and therefore E' =0 or E = l_% /(213) + Mgl. The rotation
is stable only if U (6) has a minimum at & = 0. In the neighborhood of 6 = 0 we
have

Uerr = [L3/81 — Mgl /2] 6* .
The second derivative of U is positive only if Z% > 4MglI| or
@3 > 4MglI] /13 . (3.107)

(i) Including friction. The motion in the presence of frictional forces can be
described qualitatively as follows. Consider a top in an oblique position with
pw = L3 > pe = L3. The action of friction results in slowing down py contin-
uously, while leaving pe practically unchanged until the two are equal, py =
po. At this moment the top spins vertically. From then on both pg and py
decrease synchronously. The top remains vertical until the lower limit of the sta-
bility condition (3.107) is reached. For w; below that limit the motion is unsta-
ble. Even a small perturbation will cause the top to rock and eventually to topple
over.
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3.18 Spherical Top with Friction: The “Tippe Top”

The tippe top is a symmetric, almost spherical rigid body whose moments of inertia
I) = I and 53 # I, fulfill a certain inequality, see (3.112) below. It differs from a
homogeneous ball essentially only in that its center of mass does not coincide with
its geometrical center. If one lets this top spin on a horizontal plane in the earth’s
gravitational field and includes friction between the top and the plane of support,
it behaves in an astounding way. Initially it spins about the symmetry axis of its
equilibrium position such that its center of mass is below the center of symmetry.
The angular momentum points in an almost vertical direction and, hence, is nearly
perpendicular to the plane. By the action of gliding friction, however, the top quickly
inverts its position so that, in a second stage, it rotates in an “upside-down” posi-
tion before eventually coming to rest again. After this rapid inversion the angular
momentum is again vertical. This means that the sense of rotation with respect to a
body-fixed system has changed during inversion. As the center of mass is lifted in the
gravitational field, the rotational energy and therefore the angular momentum have
decreased during inversion. When the top has reached its upside-down position, it
continues spinning while its center of mass is at rest with respect to the laboratory
system. During this stage only rotational friction is at work. As this frictional force
is small, the top remains in the inverted position for a long time before it slows down
and returns to the state of no motion.

Although this toy was apparently already known at the end of the nineteenth
century, it was thought for a long time that its strange behavior was too complicated
to be understood analytically and that it could only be simulated by numerically
solving Euler’s equations. This, as we shall see, is not true. Indeed, as was shown
recently, the salient features of this top can be described by means of the analytic tools
of this chapter and a satisfactory and transparent prediction of its strange behavior
is possible. This is the reason why I wish to add it to the traditional list of examples
in the theory of spinning rigid bodies.

The analysis is done in two steps: In a first step we prove by a simple geometric
argument that in the presence of gliding friction on the plane of support, a specific
linear combination of L3, i.e. the projection of the angular momentum onto the verti-
cal, and of L3, its projection onto the top’s symmetry axis, is a constant of the motion.
On the basis of this conservation law and of the inequality for the moments of inertia,
see (3.112) below, one shows that the inverted (spinning) position is energetically
favorable compared to the upright position.

In a second step one writes the equations of motion in a specific set of variables
which is particularly well adapted to the problem and one analyzes the dynamical
behavior as a function of time and the stability or instability of the solutions.

We make the following assumptions: Let the top be a sphere whose mass distri-
bution is inhomogeneous in such a way that the center of mass S does not coincide
with its geometrical center Z. The mass distribution is axially symmetric, but not
spherically symmetric, so that the moments of inertia referring to the axes perpen-
dicular to the symmetry axis are equal, but differ from the third, I; = I, # I3. By a
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3

Fig. 3.27 A geometric description of spherical top whose mass distribution is inhomogeneous

suitable choice of the unit of length, the radius of the sphere is R = 1. The center of
mass is situated at a distance « from the center Z, with 0 < o < 1, as sketched in
Fig.3.27. There are three types of frictional force that act on the instantaneous point
of support A in the plane: rolling friction which is active whenever the top rolls over
the plane without gliding; rotational friction which acts when the top is spinning
about a vertical axis about a fixed point in the plane; and gliding friction which acts
whenever the top glides over the plane of support. We assume that the support is such
that the force due to gliding friction is much larger than those due to the other two
kinds of friction. Indeed, it turns out that it is the gliding friction that is responsible
for the inversion of the spinning top. Finally, for the sake of simplicity, we assume
that during the initial phase in which we are interested the rotational energy Ty is
much larger than the gravitational energy U = mg (1l — cos ).

3.18.1 Conservation Law and Energy Considerations

The instantaneous velocity of the point of support A is the sum of the center of mass’s
horizontal velocity (51, s») (i.e. the component parallel to the plane) and of the relative
velocities which stem from changes of the Euler angles. From Fig.3.27 we deduce
that a change of ¥, i.e. a rotation about the body-fixed 3-axis, causes a linear velocity
of A in the plane whose magnitude is vy = ¥ sin 0, while a change of the angle @,
i.e. a rotation about the space-fixed 3p-axis, causes a velocity whose magnitude is
vy = @ asinf. Both act along the same direction in the plane, say 7. In contrast,
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a change in the angle 6 gives rise to a velocity with magnitude vy = 6(1 — « cos 0)
in the direction # perpendicular to 7. Although it is not difficult to identify these
directions in Fig.3.27 it is sufficient for our discussion to know that the velocities
related to ¥ and to & have the same direction, while that due to 6 is perpendicular
to this direction.

The effect of friction is described phenomenologically as in (6.28) below by
introducing dissipative terms R, Ry such that

Do =—Ro , Pv =—Ry , (3.108)

(and an analogous equation for py). As we know the canonical momenta pg and
py are the projections L3 and L3, respectively, of the angular momentum onto the
3p-axis and the 3-axis, respectively. Therefore, Ry and Ry are external torques,
equal to the cross product of the distance to the corresponding axis of rotation and
the frictional force. As the force is the same in both of them, independently of its
detailed functional dependence on the velocity, and as these torques are parallel, their
ratio is equal to the ratio of the distances,

Ro/Ry = asinf/sinf = «. (3.109)

As aconsequence, while bot.h po = Lyand py = L5 decrease with time, the specific
linear combination L3 — oL3 = 0 vanishes. This yields the integral of the motion

A:= L3 — aL3 = constant. (3.110)

We note in passing that this conservation law, which provides the key to an under-
standing of the tippe top, has an amusing history that can be traced back® to 1872!
In fact, the quantity A is the projection of the angular momentum L onto the vector

o = AS. Indeed, from (3.86) and (3.87) we have
r=1L- (e, —ozf]) =L .o, where i) = R (1)é5.

Suppose the top is launched such that the conserved quantity (3.110) is large in
the following sense

A>/mgl, (3.111)

with m the mass of the top. Suppose, furthermore, that the mass distribution is chosen
so that the moments of inertia fulfill the inequalities

l-—a)h<i<(+a)l. (3.112)

3St. Ebenfeld, F. Scheck: Ann. Phys. (New York) 243, 195 (1995). Note that the vector o equals
—a in this reference and that the choice of convention for the rotation R(¢), while consistent with
earlier sections of this chapter, is the inverse of the one employed there.
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The first of these means that the gravitational energy can be neglected in comparison
to the rotational energy; the second assumption (3.112) implies that the top has lower
energy when it rotates in a completely inverted position (S above Z) than when it
rotates in its normal, upright position.

When the top has stopped gliding, its center of mass having come to rest, but
rotates about a vertical axis in a (quasi) stationary state, we can conclude that

§1=5=0, 6=0, ¥+ad=0; (3.113)
with s(¢) denoting the trajectory of the center of mass.

Inserting I} = I, # I3 into the expression (3.85) for the kinetic energy of rotation
one finds

Tror = %11 (6% + &*sin?0) + %13 (& + o 0059)2 .

From this follow the generalized momenta

oL

Ly = py = ﬁ =@ (11 sin? 0 + I5 cos® 9) + Iglfl cosf, (3.114a)
— oL . .
L3=m=a—(l.,=13 (¥ + @ cosh) . (3.114b)

Inserting here the second and third of conditions (3.113), the rotational energy
becomes

1 .
Tt = 5F(z)cp2 with F(z = cos) = I;(1 — 22) + Li(z — )2

The third of conditions (3.113), when inserted in (3.114a) and (3.114b), allows one
to re-express the constant of the motion A in terms of the same function, viz

=@ (I;sin’ 0 + L(cosf — a)’) = DF(2),
so that the kinetic energy can be written in terms of A and the function F,

kz
T2FQ@)

rot

(3.115)

The rotational energy assumes its smallest value when F'(z) takes its largest value.
With the assumption (3.112) this happens, in the physical range of 8, for z = —1,
i.e. 0 = . As the function F(z) increases monotonically in the interval [1, —1],
the top’s rotation in the completely inverted position is favored energetically over
rotation in the upright position.
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3.18.2 Equations of Motion and Solutions with Constant
Energy

Assuming that the forces due to rotational and rolling friction can be neglected,
the possible asymptotic states of the spinning top are clearly those in which gliding
friction has ceased to be active. These asymptotic states have constant energy. Except
for the trivial state of rest, they can only be one of the following: Rotation in the upright
or in the completely inverted position, or rotation about a nonvertical direction,
changing with time, whereby the top rolls over the plane without gliding. Let us call
the former two rotational, and the latter tumbling motion.

The simple energy consideration of Sect.3.18.1 leaves unanswered a number of
important questions. Given the moments of inertia /; and I3, which of the allowed
asymptotic states are stable? In the case where an asymptotic state is stable, which
initial conditions (i.e. when launching the top) will develop into that state under the
action of gliding friction? Finally, in what way will simple criteria such as (3.112)
be modified when the gravitational force is taken into account?

In fact, these questions touch upon the field of qualitative dynamics, which is the
subject of Chap.6 (cf. in particular, the notion of Liapunov stability). A complete
analysis of this dynamical problem can be found in the reference just given in footnote
3, an article that should be accessible after having studied Chap. 6. Here we confine
ourselves to constructing the equations of motion in a form that is well adapted to
the problem, and to report the most important results of the analysis.

As described in Sect.3.9 it is useful to introduce three frames of reference: the
space-fixed inertial system K, the system K, which is centered on the center of mass
and whose axes are parallel, at all times, to those of K, and a body-fixed system K
whose 3-axis is the symmetry axis of the top. In writing down the inertia tensor we
make use of the following symbolic notation: We write any vector a as |a) and the
object which is dual to it as <a|. An expression of the form <b|a) is then just another
way of writing the scalar product b - a, while |b)(a| is a tensor which, when applied
to a third vector c¢ yields a vector again, viz.

b)alc)=(a-c)b.
In this notation the inertia tensor with respect to the system K reads

L -1

J:Il[ll—i-

s
while its inverse reads*

_ 1 L-1L .
J 1:]—][]1— 2 |eg)(e§|] .

*In order to become familiar with this notation and calculus the reader should verify that (¢;|J|é;) =
diag(ly, 11, I3), and that J~! is indeed the inverse of J.
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Hence, in the frame of reference Ko it has the form

~ L-1 ...
J(t)=11[11+ 311 LiaYalt (3.116a)

where ) is the representation of the unit vector &5 with respect to Ko, i.e.
A —1 ~ T N
n=R" " ()e=R"(r)e;.

An analogous formula holds for its inverse

- 1 L—1 ...
J ](t)zl—[]l— 31 1|11)(17|]. (3.116b)
1 3

The angular velocity @ may be taken from (3.56b). Alternatively, making use of
(3.116b), it may be expressed in terms of the angular momentum L = J - w:

1 L—1
() = - [L(t) —~ 313 1Iﬁ)(fnL)] : (3.117)

The time derivative of # follows from (3.56a), the time derivative of L is given
by the external torque N (with respect to the system Ko), and the acceleration §(¢)
of the center of mass is given by the resulting external force F (in the system K).
Therefore, the equations of motion are

d 1

Eﬁzwxﬁzzfo], (3.118a)
d

d_tL =N@,L,s), (3.118b)
m§ =F(,L,s). (3.118¢)

(We recall that s(¢) is the trajectory of the center of mass and s its velocity in the
space-fixed system K.)

If we demand that the top remain on the plane at all times (no bouncing), then
the 3-component s3 of the center of mass coordinate is not an independent variable.
Indeed, the condition is that both the 3-coordinate of the point A and the 3-component
of its velocity v = § — @ X @ are zero at all times. One easily shows that this implies
the condition
o

$3+ I (830|fo7)=0, (3.119)
1
which in turn expresses §3 in terms of 7) and L. The third equation of motion (3.118¢)

must be replaced with
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m§|,2 = PI‘],Q F s

where the right-hand side denotes the projection of the external force F onto a
horizontal plane parallel to the plane of support.

The external force F acting on the center of mass S is the sum of the gravitational
force Fy = —mges,, the normal force F, = g,e5,, and the frictional force Fy =
—gg:0. In contrast, the point A, being supported by the plane, experiences only the
normal force and the frictional force, F = F, + Fj,, so that the external torque
is given by

N =—0 x FY = (af) — &3,) x (gn3, — girD) -

This leads immediately to the final form of the equations of motion

d 1

5ﬁ=wxf7=l—1Lxﬁ, (3.120a)
d A . .

EL = (o —e3)) x (gne3, — &arV), (3.120b)

msy, = —gud. (3.120c)
The coefficient g, in the normal force follows from the equation 53 = —g + g,/m

if one calculates the left-hand side by means of (3.119). For this one must take the
orbital derivative of (3.119) which means replacing the time derivatives of L and of
1 by (3.120b) and (3.120a), respectively. The result reads

mgl [1 4+ a(nsL* — L3L3)/(g1})]

- : . - S (3.121)
I + ma?(1 —n3) + map [(n3 — a)és, — (1 —an)i] - v

&n

Here n3 = 1) - €3, is the projection onto the vertical. Regarding the frictional force
we have assumed gf = gy, with p a (positive) coefficient of friction.

Equations (3.120a-3.120c) provide a good starting point for a complete analysis

of the tippe top. One the one hand they are useful for studying analytic properties of
the various types of solutions; on the other hand they may be used for a numerical
treatment of specific solutions (cf. practical example 2 below). Here we report on
some of the results, taken from the work quoted in footnote 3, and refer to that article
for further details.
(i) Conservation law: It is easy to verify that the conservation law (3.110) also
follows from the equations of motion (3.120a). The orbital derivative of A (i.e. the
time derivative taken along orbits of the system by making use of the equations of
motion) is given by

dr dL d

P TR
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The second term vanishes because, on account of (3.120a), do'/df = —ad#j/dt is
perpendicular to L. The first term vanishes because the torque N is perpendicular to
0.

(ii) Asymptotic states: The asymptotic states with constant energy obey the equations
of motion (3.120a) with » = 0, the second and the third equation being replaced by

while (3.121) simplifies to

1 +a(nsL? — LsLs)/(g1?)
1+ ma2(1 —n3)/1, '

The solutions of constant energy have the following general properties:

(a) The projections L3 and L5 of the angular momentum L onto the vertical and the
symmetry axes, respectively, are conserved.

(b) The square of the angular momentum L? as well as the projection 7 - &3, =13
of 7 onto the vertical are conserved.

(c) Atall times the vectors é5 , #), and L lie in a plane.

(d) The center of mass remains fixed in space, § = 0.

The types of motion that have constant energy have either n3 = +1 (rotation in
the upright position), or n3 = —1 (rotation with complete inversion), or, possibly,
—1 < n3 < +1 if these are allowed. The latter are tumbling motions whereby the
top simultaneously rotates in an oblique (time dependent) orientation and rolls over
the plane without gliding. Whether or not tumbling motion is possible depends on
the choice of the moments of inertia.

(iii) When does the spinning top turn upside-down? The general and complete answer
to the question of which asymptotic state is reached from a given initial condition
would occupy too much space. Here, we restrict ourselves to an example which
corroborates the results of Sect.3.18.1. For a given value of the constant of the
motion (3.110) we define the following auxiliary quantities

12
A= 13(1—a)—11+mi#(1—a)4,
meal?
B:=5L(l+a)—1I — gﬂ (14 a)*.

A detailed analysis of orbital stability (a so-called Liapunov analysis) for this example
yields the following results: If A > 0 the state with 3 = 4-1 is asymptotically stable
and the top will rotate in the upright position. If, however, A < 0 this state is unstable.
Furthermore, if B > 0 then a state with n; = —1 is asymptotically stable; if B < 0
then it is unstable. Whenever A is sufficiently large, cf. (3.111), the third terms in
A and B can be neglected. The two conditions A < 0 and B > 0, taken together,
then yield the inequalities (3.112). In this situation rotation in the upright position
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is unstable, whereas rotation in a completely inverted position is stable. No matter
how the top is launched initially, it will always turn upside-down. This is the genuine
“tippe top”. In the examples (iv) and (v) of Sect. 3.6 two simple models for such a
top were described.

The other possible cases can be found in the reference quoted above. Here is what
one finds in case the initial rotation is chosen sufficiently fast (i.e. if A is large in the
sense of (3.111)):

(a) For I} < I3(1 — «) both, rotation in the upright position and rotation in the
inverted position, are stable. There also exists a tumbling motion (with constant
energy) but it is unstable. This top could be called indifferent because, depending on
the initial condition, it can tend either to the upright or to the inverted position.

(b) For I} > I;(1 4+ «) the two vertical positions are unstable. There is exactly one
state of tumbling motion (i.e. rotating and rolling without gliding) which is asymp-
totically stable. Every initial condition will quickly lead to it.

Appendix: Practical Examples

1. Symmetric Top in a Gravitational Field. Study quantitatively the motion of a
symmetric spinning top in the earth’s gravitational field (a qualitative description is
given in Sect. 3.16).

Solution. It is convenient to introduce dimensionless variables as follows. For the
energy E’ (3.100) take

e M E Mgl . (A.1)

Instead of the projections L3 and L3 introduce

def L3 5 def Ls
JI Mgl JI Mgl

The function f (1) on the right-hand side of (3.104) is replaced with the dimensionless
function

(A2)

def

o 1L fw) =2(1=u?)(e+1—u)— (L — ku)’ (A3)
el : :

As one may easily verify, the ratio I{/Mgl has dimension (time)>. Thus,

0¥ V' Mgl/I is a frequency. Finally, using the dimensionless time variable t et t,

(3.104) becomes

du '\
(E) =p(u) . (A4)
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Vertical rotation is stable if L3 > 4Mgl1{, i.e.if & > 2. The top is vertical if A = 1.
With u — 1, the critical energy, With_regard to stability, is then &g (A = A1) = 0.
For the suspended top we have A = —A, u — 1, and the critical energy is

Eerit. (A = _X) =-2.

The equations of motion now read

2 2
(d—“) — o) or (%) _ o (A5)

dr dr) ~ 1—u?
and
49 _ 3% =" it R (A6)
_— = W1 Up= — = — . .
dr 1 —u? 0 Ly A

Curve A of Fig.3.25 corresponds to the case of a suspended top, i.e. A = —A and
ug = —1. We have chosen ¢ = 0, A = 3.0. Curve C corresponds to the vertical top,
and we have chosen ¢ = 2, A = A = 5. Curve B, finally, describes an intermediate
situation. Here we have taken ¢ =2, A = 4, A = 6.

The differential equations (A.5) and (A.6) can be integrated numerically, e.g. by
means of the Runge—Kutta procedure described in Practical Example 2.2. For this
purpose let

do
de
do
dr

and read (A.11) and (2.12) of the Appendix to Chap. 2 as equations with two compo-
nents each. This allows us to represent the motion of the axis of symmetry in terms
of angular coordinates (6, @) in the strip between the two parallels defined by u
and u,. It requires a little more effort to transcribe the results onto the unit sphere
and to represent them, by a suitable projection, as in Fig. 3.26.

2. The Tippe Top. Under the assumption that the coefficient of gliding friction
is proportional to g,, the coefficient that appears in the normal force, numerically
integrate the equations of motion (3.120a-3.120c) with the three possible choices
for the moments of inertia.

Solution. The assumption is that gi = ug,. Let v = ||v]| be the modulus of the
velocity. In order to avoid the discontinuity at v = 0 on the right-hand side of (3.120c)
one can replace v by

v

? — tanh(M||v||) TR
v
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where M is a large positive number. Indeed, the factor tanh(M ||v||) vanishes at zero
and tends quickly, yetin a continuous fashion, to 1. Itis useful to introduce appropriate
units of length, mass, and time such that R = 1, m = 1 and g = 1. Furthermore, the
coefficient of friction u should be chosen sufficiently large, say © = 0.75, so that
the numerical solutions quickly reach the asymptotic state(s). Compare your results
with the examples given by Ebenfeld and Scheck (1995) footnote 3.



Chapter 4
Relativistic Mechanics

Mechanics, as we studied it in the first three chapters, is based on two fundamental
principles. On the one hand one makes use of simple functions such as the Lagrangian
function and of functionals such as the action integral whose properties are clear and
easy to grasp. In general, Lagrangian and Hamiltonian functions do not represent
quantities that are directly measurable. However, they allow us to derive the equations
of motion in a general and simple way. Also, they exhibit the specific symmetries
of a given dynamical system more clearly than the equations of motion themselves,
whose form and transformation properties are usually complicated.

On the other hand, one assumes a very special structure for the space-time mani-
fold that supports mechanical motion. In the cases discussed up until now the equa-
tions of motion were assumed to be form-invariant with regard to general Galilei
transformations (Sect. 1.13; see also the discussion in Sect. 1.14). This implied, in
particular, that Lagrangian functions, kinetic and potential energies, had to be invari-
ant under these transformations.

While the first “building principle” is valid far beyond nonrelativistic point
mechanics (provided one is prepared to generalize it to some extent, if necessary), the
validity of the principle of Galilei invariance of kinematics and dynamics is far more
restricted. True, celestial mechanics as well as the mechanics that we encounter in
daily life when playing billiards, riding a bicycle, working with a block-and-tackle,
etc., is described by the Galilei-invariant theory of gravitation to a very high accu-
racy. However, this is not true, in general, for microscopic objects such as elementary
particles, and it is never true for nonmechanical theories such as Maxwell’s theory
of electromagnetic phenomena. Without actually having to give up the general, for-
mal framework altogether, one must replace the principle of Galilei invariance by
the more general principle of Lorentz or Poincaré invariance. While in a hypothet-
ical Galilei-invariant world, particles can have arbitrarily large velocities, Poincaré
transformations contain an upper limit for physical velocities: the (universal) speed of
light. Galilei-invariant dynamics then appears as a limiting case, applicable whenever
velocities are small compared to the speed of light.
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In this chapter we learn why the velocity of light plays such a special role, in
what way the Lorentz transformations follow from the universality of the speed
of light, and how to derive the main properties of these transformations. Today,
basing our conclusions on a great amount of experience and increasingly precise
experimental information, we believe that any physical theory is (at least locally)
Lorentz invariant.! Therefore, in studying the special theory of relativity, within the
example of mechanics, we meet another pillar on which physics rests and whose
importance stretches far beyond classical mechanics.

4.1 Failures of Nonrelativistic Mechanics

We wish to demonstrate, by means of three examples, why Galilei invariant mechan-
ics cannot be universally valid.

(1) Universality of the speed of light. Experiment tells us that the speed of light, with
respect to inertial systems of reference, is a universal constant. Its value is

c=12.99792458 x 108 ms™" . 4.1

Our arguments of Sect. 1.14 show clearly that in Galilei-invariant mechanics a uni-
versal velocity and, in particular, an upper limit for velocities cannot exist. This is so
because any process with characteristic velocity v, with respect to an inertial system
of reference K|, can be observed from another inertial system K;, moving with con-
stant velocity w relative to K;. With respect to Kj, the process then has the velocity

V=v+w, 4.2)

in other words, velocities add linearly and therefore can be made arbitrarily large.

(ii) Particles without mass carry energy and momentum. In nonrelativistic mechanics
the kinetic energy and momentum of a free particle are related by

1
E=T=—p*. (4.3)
2m

In nature there are particles whose mass vanishes. For instance, the photon (or light
quantum), which is the carrier of electromagnetic interactions, is a particle whose
mass vanishes. Nevertheless, a photon carries energy and momentum (as proved by
the photoelectric effect, for example), even though relation (4.3) is meaningless in
this case: neither is the energy E infinite when | p| is finite nor does the momentum
vanish when E has a finite value. In the simplest situation a photon is characterized

ISpace inversion P and time reversal T are excepted because there are interactions in nature that are
Lorentz invariant but not invariant under P and under T.


http://dx.doi.org/10.1007/978-3-662-55490-6_1

4.1 Failures of Nonrelativistic Mechanics 259

by a circular frequency w and a wavelenght A that are related by wA = 2mc. If
the energy E, of the photon is proportional to w and if its momentum is inversely
proportional to A, then (4.3) is replaced with a relation of the form

I, =E, =alplc, (4.4)

where the index y is meant to refer to a photon and where « is a dimensonless number
(it will be found to be equal to 1 below). Furthermore, the photon has only kinetic
energy, hence E,, (total energy) = T, (kinetic energy).

Further, there are even processes where a massive particle decays into several
massless particles so that its mass is completely converted into kinetic energy. For
example, an electrically neutral 7 meson decays spontaneously into two photons:

0 (massive) — y + y (massless) ,

where m (%) = 2.4 x 10728 kg. If the ¥ is at rest before the decay, the momenta of
the two photons are found to add up to zero,

while the sum of their energies is equal to m(r%) times the square of the speed of
light,

T0 + 12 = c(1p)| + |py) ) = mx)c? .

Apparently, a massive particle has a finite nonvanishing energy, even when it is
at rest:

E(p=0)=mc*, 4.5)
This energy is said to be its rest energy. Its total energy, at finite momentum, is then

E(p) =mc*+T(p), (4.6)
where T'(p), at least for small velocities |p|/m < c, is given by (4.3), while for
massles particles (m = 0) it is given by (4.4) with o = 1.

Of course, one is curious to know how these two statements can be reconciled.

As we shall soon learn, the answer is provided by the relativistic energy-momentum
relation

E(p) = v (mc?)? + p*c*, 4.7)

which is generally valid for a free particle of any mass and which contains both (4.3)
and (4.4), with @ = 1. If this is so the kinetic energy is given by
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T(p) = E(p) — mc* = V(mc?)? + p>c? —mc? . (4.8)

Indeed, for m = 0 this gives T = E = | p|c, while for m # 0 and for small momenta
lpl/m L ¢

1 p262 )/
T(p) ~mc* {1+ = —1t =, 4.9
(p) = me [ + 2 (mc?)? 2m 4.9)

which is independent of the speed of light ¢!

(iii) Radioactive decay of moving particles. There are elementary particles that are
unstable but decay relatively “slowly” (quantum mechanics teaches us that this is
realized when their lifetime is very much larger than Planck’s constant divided by the
rest energy, T > h/2mwmc?). Their decay can then be studied under various exper-
imental conditions. As an example take the muon p, which is a kind of heavy, and
unstable, electron. Its mass is about 207 times larger than the mass of the electron,?

m(u)c? = 206.77Tm(e)c? . (4.10)

The muon decays spontaneously into an electron and two neutrinos (nearly massless
particles that have only weak interactions),

u—>e+v+vv. “4.11)

If one stops a large number of muons in the laboratory and measures their lifetime,
one gets®

1@ (n) = (2.197019 + 0.000021) x 10°s . (4.12)

If one performs the same measurement on a beam of muons that move at constant
velocity v in the laboratory, one gets

() =yt @), where y =E/mc* =1 —v*/c?)~V2. (4.13)
For example, a measurement at y = 29.33 gave the value

() = 64.39 x 1075 ~ 293tV () .
This is an astounding effect: the instability of a muon is an internal property of the
muon and has nothing to do with its state of motion. Its mean lifetime is something

like a clock built into the muon. Experiment tells us that this clock ticks more slowly
when the clock and the observer who reads it are in relative motion than when they

2These results as well as references to the original literature are to be found in the Review of Particle
Properties, Chin. Phys. C40, 100001 (2016) and update (2017) and (on the web) http://pdg.lbl.gov.

3].Bailey et al., Nucl. Phys. B 150 (1979) 1.


http://pdg.lbl.gov
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are at rest. Relation (4.13) even tells us that the lifetime, as measured by an observer
at rest, tends to infinity when the velocity |v| approaches the speed of light.

If, instead, we had applied Galilei-invariant kinematics to this problem, the life-
time in motion would be the same as at rest. Again, there is no contradiction with
the relativistic relationship (4.13) because y ~ 1 + v?/2¢?. For |v| < c the nonrel-
ativistic situation is realized.

4.2 Constancy of the Speed of Light

The starting point and essential basis of the special theory of relativity is the following
experimental observation that we formulate in terms of a postulate:

Postulate I. In vacuum, light propagates, with respect to any inertial system and
in all directions, with the universal velocity ¢ (4.1). This velocity is a constant
of nature.

As the value of the speed of light c is fixed at 299792458 ms~! and as there are
extremely precise methods for measuring frequencies, and hence time, the meter is
defined by the distance that a light ray traverses in the fraction 1/299 792 458 of a
second. (This replaces the standard meter, i.e. the measuring rod that is deposited in
Paris.)

The postulate is in clear contradiction to the Galilei invariance studied in Sect. 1.13.
In the nonrelativistic limit, two arbitrary inertial systems are related by the transfor-
mation law (see (1.32))

xX=Rx+wt+a,
f=a4s, (h==+l1), (4.14)

according to which the velocities of a given process, measured with respect to two
different intertial systems, are related by v/ = v + w. If Postulate I is correct, (4.14)
must be replaced with another relation, which must be such that it leaves the velocity
of light invariant from one inertial frame to another and that (4.14) holds whenever
|v] < ¢ holds.

In order to grasp the consequences of this postulate more precisely, imagine the
following experiment of principle. We are given two inertial systems K and K'. Let
a light source at position x 4 emit a signal at time #4, position and time coordinates
referring to K. In vacuum, this signal propagates in all directions with constant
velocity ¢ and hence lies on a sphere with its center at x 4. If we measure this signal
atalater time 75 > f4, at a point x  in space, then obviously |xp —x 4| = c(tg —14),
or, if we take the squares,

(xp—x4)° =t —14)>=0. (4.15)


http://dx.doi.org/10.1007/978-3-662-55490-6_1
http://dx.doi.org/10.1007/978-3-662-55490-6_1
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Points with coordinates (x, ¢) for which one indicates the three spatial coordinates
as well as the time at which something happens at x (emission or detection of a
signal, for instance) are called world points or events. Accordingly, the propagation
of a signal described by a parametrized curve (x(¢), t) is called a world line.

Suppose the world points (x4, 74), (x5, t) have the coordinates (x’,,t,) and
(x', 1), respectively, with regard to the system K'. Postulate I implies that these
points must be connected by the same relation (4.15), i.e.

(X —x')? = Aty —1t)* =0
with the same, universal constant c. In other words the special form
2 —-("*=0, (4.16)

relating the spatial distance |z] = |xp — x 4| of two world points A and B to the
difference of their time coordinates z = c¢(t5 — t4), must be invariant under all
transformations that map inertial systems onto inertial systems. In fact, we confirm
immediately that there are indeed subgroups of the Galilei group that leave this form
invariant. These are

(i) translationst' =t + s and x’ = x + a, and
(ii) rotations ' =t and x’ = Rx.

This is not true, however, for special Galilei transformations, i.e. in the case where
the two inertial systems move relative to each other. In this case (4.14) reads ' = ¢,
x' = x + wt, so that (x/, — x;)> = (x4 — xp + w(ty — 13))%, which is evidently
not equal to (x4 — x z)>. What is the most general transformation

(t,x) 7(;’, x') 4.17)

that replaces (4.14) and is such that the invariance of the form (4.16) is guaranteed?

4.3 The Lorentz Transformations

In order to unify the notation let us introduce the following definitions:

def
= er,

def
(xl, x2, x3) =x.

It is customary to denote indices referring to space components only by Latin letters

i, j, k,... .If onerefers to space and time components, without distinction, one uses

Greek letters p, v, o, ... instead. Thus

x*: wu=0,1,2,3 denotes the world point ()c0 =ct, x', x2, x3) , and

x': i=1,2,3 denotesits spatial components.
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One also writes x for a world point and x for its spatial part so that

=0 x) .
Using this notation (4.15) reads

(% —x0? = (xp—x4)>=0.

This form bears some analogy to the squared norm of a vector in n-dimensional
Euclidean space R", which is written in various ways:

xg = i (x’.)2 = Zn:i:xi&kxk = (x,%)g . (4.18)

i=1 i=1 k=1

(The index E stands for Euclidean.) The Kronecker symbol §;; is a metric tensor
here. As such it is invariant under rotations in R”, i.e.

R'SR=3.

A well-known example is provided by R3, the three-dimensional Euclidean space
with the metric

Sik =

SO =
—_ O O

0
1
0

In four space-time dimensions, following the analogy with the example above,
we introduce the following metric tensor:

1 0 0 0
0 -1 0 0
— oMV —
sgw=8"=|0 o _{ o (4.19)
0 0 0 -1

303
Z Z (xf — x%) guv (xp —x3) =0. (4.20)

Before we move on, we wish to stress that the position of (Greek) indices matters:
one must distinguish upper (or contravariant) indices from lower (or covariant)
indices. For instance, we have

=0 %), (4.21a)
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(by definition), but

3
6 E D gt =00 -x). (4.21b)
n=0

For example, the generalized scalar product that appears in (4.20) can be written in
several ways, viz.

@) =G =22 =D gui’ =D =D i’ (4.22)
i v

7Y

Note that the indices to be summed always appear in pairs, one being an upper index
and one a lower index. As one can sum only a covariant and a contravariant index, it
is useful to introduce Einstein’s summation convention, which says that expressions
such as A, B® should be understood to be

3
Z AyBY .
a=0

Remarks: The bra and ket notation that we used in Chap.3 is very useful in the
present context, too. A point x of R*, or likewise a tangent vector a = (ay, a)T, is
represented by a four-component column,

=60, 0= ()

Objects which are dual to them are written as row vectors but contain the minus sign
that follows from the metric tensor g = diag (1, —1),

ol =%~y ®=(@"-b).

Taking scalar product in the sense of multiplying a 1 x 3-matrix and a 3 x 1-matrix
yields the correct answers

(ylx) =yx"—y-x,
(bla) =b°a"—-b-a,

for the Lorentz invariants which can be formed out of them. The “bra-ket” notation
emphasizes that (b| is the dual object that acts on |a), very much in the spirit of linear
algebra.

The metric tensor defined in (4.19) has the following properties:

(i) It is invariant under the transformations (4.17).
(ii) It fulfills the relations g,s8”” = 84 , where 8, is the Kronecker symbol, and
8ap = gaugwgvﬂ = gaﬁ~
(iii) Its determinant is detg = —1.


http://dx.doi.org/10.1007/978-3-662-55490-6_3
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(iv) Its inverse and its transpose are g~' =g =g".

The problem posed in (4.17) consists in constructing the most general affine trans-
formation

xH (A—>)x’”“ sxt = AR X+ at (4.23)
a

that guarantees the invariance of the form (4.15). Any such transformation maps
inertial frames onto inertial frames because any uniform motion along a straight line
is transformed into a state of motion of the same type.

Inserting the general form (4.23) into the form (4.15) or (4.20), and in either
system of reference K or K':

(= X gu(xp — x3) = 0= (xf — x{)gap(x) —x)

we note that the translational part cancels out. As to the homogeneous part A, which
is a 4 x 4 matrix, we obtain the condition

A(Lgm/\fv =agu (4.24)
where « is a real positive number that remains undetermined for the moment. In fact,
if we decide to write x as a shorthand notation for the contravariant vector x* and A
instead of A%,

x={xt}, A={AY},
then (4.23) and (4.24) can be written in the compact form

X' =Ax+a. (4.23)

ATgA = ag. (4.24")
Here x is a column vector and A is a 4 x 4 matrix, and we use the standard rules for
matrix multiplication. For example, let us determine the inverse A~ of A, anticipat-
ing that @ = 1. It is obtained from (4.24’) by multiplying this equation withg~' = g
from the left:

Al = gATg ) 4.25)
Writing this out in components, we have

_ def
(A% = g™ A%, gup(= Af)

a matrix that is sometimes also denoted by Ag'.
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Because g is not singular, (4.24) implies that A is not singular. Indeed, from
(4.24),

(detAd)? = o* .

What do we know about the real number « from experience in physics? To answer
this question let us consider two world points (or events) A and O whose difference

z &f x4 — xo does not necessarily fulfill (4.15) or (4.16). Defining their generalized

. def . . N
distance tobe d = (%)% — (z)2, we calculate this distance with respect to the inertial
system K':

dE ) -@)P=al@) - @) 1=ad.

Taking, for example, rotations in R3 that certainly fulfill (4.15), we see that this
means that the spatial distance +/z2, as measured from the second system of refer-
ence, appears stretched or compressed by the factor /. More generally, any spatial
distance and any time interval are changed by the factor /&, when measured with
respect to K’, compared to their value with respect to K. This means either that any
dynamics and any equation of motion that depend on spatial distances and on time
differences differ in a measurable way in different frames of reference or that the
laws of nature are invariant under scale transformations x* — x'* = /ax".

The first possibility is in contradiction with the Galilei invariance of mechanics.
This invariance, which is well confirmed by experiment, must hold in the limit of
small velocities. The second possibility contradicts our experience, too: the laws
governing the forces of nature, as far as they are known to us, contain parameters
with dimension and are by no means invariant under scale transformations of spatial
and/or time differences. In fact, this is the main reason we choose the transformation
(4.23) (which is still to be determined) to be an affine transformation. In conclusion,
experience in physics suggests we take the constant « to be equal to 1,

a=1. (4.26)

Another way of formulating this conclusion is by the following:

Postulate II. The most general affine transformation x +— x’ = Ax + a,
y = y’ = Ay+a must leave invariant the generalized distance 7> = (z°)? — z?
(where z = y — x), independent of whether z” is zero or not.

This postulate, which is based on experience, can be obtained in still another way.
Our starting point was the notion of inertial frame of reference, with respect to which
free motion (i.e. motion without external forces) proceeds along a straight line and
with constant velocity. In other words, such a frame has the special property that
dynamics, i.e. the equations of motion, take a particularly simple fom. The class of
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all inertial frames is the class of reference frames with respect to which the equations
of motion have the same form. By definition and by construction the transformation
x" = Ax + a (4.23) maps inertial frames onto inertial frames. As the dynamics is
characterized by quantities and parameters with dimensions and as it is certainly not
scale invariant, since, furthermore, Postulate I must hold true, transformations (4.23)
must leave the squared norm z*> = z/g,,z" invariant. Postulate II already contains
some empirical information: very much as in nonrelativistic mechanics, lengths and
times are relevant, as well as the units that are used to measure them and that are
compared at different world points. The following postulate is more general and
much stronger than this.

Postulate of Special Relativity. The laws of nature are invariant under the group
of transformations (A, a).

This postulate contains Postulate II. It goes far beyond it, however, because it says
that all physical theories, not only mechanics, are invariant under the transformations
(A, a). Clearly, this is a very strong statement, which reaches far beyond mechanics.
It holds true, indeed, also in the physics of elementary particles (space reflection
and time reversal being excepted), at spatial dimensions of the order of 10~'3m and
below. In fact, special relativity belongs to those theoretical foundations of physics
whose validity is best established.

According of Postulate II the generalized distance of two world points x and y is
invariant, with respect to transformations (4.23), even when it is nonzero:

(v —x)7 = (" = x)gup(y’ —x”) = invariant .

Note that this quantity can be positive, negative, or zero. This can be visualized by
plotting the vector z = y — x in such a way that the spatial part z is represented,
symbolically, by one axis (the abscissa in Fig.4.1), while the time component z° is
represented by a second axis, perpendicular to the first (the ordinate in the figure). The

Fig. 4.1 Schematic z0
representation of
four-dimensional
space—time. z° is the time
axis, z symbolizes the three
space directions
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surfaces z> = const are axially symmetric hyperboloids, or if z> vanishes, a double
cone, embedded in the space-time continuum. The double cone that is tangent, at
infinity, to the hyperboloids, is called the light cone. Vectors on this cone are said to
be lightlike; vectors for which z2 > 0, i.e. (z°)? > z?2, are said to be timelike; vectors
for which z2 < 0, i.e. (z°)? < z?, are said to be spacelike. (These definitions are
important because they are independent of the signature of the metric tensor g. We
have chosen the signature (4, —, —, —) but we could have chosen (—, +, 4, +) as
well.) InFig. 4.1 the point A is timelike, B is lightlike, and C is spacelike. Considering
the action of the transformation (A, a), we see that the translation (1l, @) has no effect,
since a cancels out in the difference y — x. The homogeneous part (A, 0) shifts the
points A and C on their respective paraboloids shown in the figure, while it shifts B
on the light cone. We give here typical examples for the three cases:

timelike vector  (z°, 0) with 2% = v/22, (4.27a)
spacelike vector (0, z',0,0) with z! =+ —z2, (4.27b)
lightlike vector (1, 1, 0, 0). 4.27¢)

These three cases can be taken to be the normal forms for timelike, spacelike,
and lightlike vectors, respectively. Indeed, every timelike vector can be mapped, by
Lorentz transformations, onto the special form (4.27a). Similarly, every spacelike
vector can be mapped onto (4.27b), and every lightlike vector can be transformed
into (4.27¢). This will be shown below in Sect.4.5.2.

The world points x and y lie in a four-dimensional affine space. Fixing an origin
(by choosing a coordinate system, for example) makes this the vector space R*.
The differences (y — x) of world points are elements of this vector space. If we
endow this space with the metric structure g,,, (4.19) we obtain what is called the
flat Minkowski space-time manifold M*. This manifold is different, in an essential
way, from Galilei space—time. In the Galileian space-time manifold the statement
that two events took place simultaneously is a meaningful one because simultaneity
is preserved by Galilei transformations (however, it is not meaningful to claim that
two events had happened at the same point in space, but at different times.) Absolute
simultaneity i.e. the absolute character of time, as opposed to space, no longer holds
with regard to Lorentz transformations. We return to this question in more detail in
Sect.4.7.

4.4 Analysis of Lorentz and Poincaré Transformations

By definition, the transformations (A, a) leave invariant the generalized distance
(x —y)? = (x° - y9)2 — (x — y)? of two world points. They form a group, the inho-
mogeneous Lorentz group (iL), or Poincaré group. Before turning to their detailed
analysis we verify that these transformations indeed form a group.

1. The composition of two Poincaré transformations is again a Poincaré transfor-
mation:
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(A2, a2)(Ay, a1) = (A2Ay, Arar + a2) .

The homogeneous parts are formed by matrix multiplication, the translational
part is obtained by applying A, to a; and adding a,. It is easy to verify that the
product (A, A;) obeys (4.24) with o = 1.

2. The composition of more than two transformations is associative:

(A3, a3)[(Az, a2) (A1, a1)] = [(A3, a3)(Az, a2)[(Ay, ay) ,

because both the homogeneous part As;A,A; and the translational part
A3Ara; + Asa; 4 ajz of this product are associative.

3. There exists a unit element, the identical transformation, which is given by E =
(A=1,a=0).

4. As g is not singular, by (4.24), every transformation (A, ) has an inverse. It is
not difficult to verify that the inverse is given by (A4, a)~' = (A~!, =A™ a).

By taking the translational part to be zero, we see that the matrices A form a
group by themselves. This group is said to be the homogeneous Lorentz group (L).
The specific properties of the homogeneous Lorentz group follow from (4.24) (with
o = 1). They are:

1. (detA)? = 1.Because A isreal, this implies that either detA = +1 ordetA = —1.
The transformations with determinant +1 are called proper Lorentz transforma-
tions.

2. (AOO)2 > 1. Hence, either AOO > +1 or AOO < —1. This inequality is obtained
from (4.24) by taking the special values u = v = 0, viz.

3 3
A%8or Ay = (AD? =D (A =1, or (AD> =1+ D (A))*.
i=1

i=1

Transformations with AO0 > 41 are said to be orthochronous. They yield a
“forward” mapping of time, in contrast to the transformations with AO0 < -1,
which relate future and past.

Thus, there are four types of homogeneous Lorentz transformations, which are
denoted as follows: Ll, Li, Li, Lf. The index + or — refers to the property
detA = +1 and detA = —1, respectively; the arrow pointing upwards means
AO0 > 41, while the arrow pointing downwards means AO0 < —1. Special examples
for the four types are the following.

(1) The identity belongs to the branch Ll:

eLl. (4.28)

SO o
S O = O
o= O O
- O O O
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(ii) Reflection of the space axes (parity) belongs to the branch L'

p— A (4.29)

—1

(iii) Reversal of the time direction (time reversal) belongs to L'

T= eL!. (4.30)

(iv) The product PT of time reversal and space reflection belongs to Li:

-1
PT = - i eLy. (4.31)

—1

At this point, we wish to make a few remarks relevant to what follows. The four
discrete transformations (4.28)—(4.31) themselves form what is called Klein’s group,

{E,P, T.PT}. (4.32)

Indeed, one can easily verify that the product of any two of them is an element of
the group.

It is also clear that two arbitrary transformations belonging to different branches
cannot be made to coincide by continuous deformation. Indeed, as long as A is real,
transformations with determinant +1 and those with determinant —1 are separated
discontinuously from each other. (Likewise, transformations with AOO > +1 and with
AO0 < —1 cannot be related by continuity). However, for given A € Ll , we note that
the product AP is in L', the product AT is in L', and the product A(PT) is in Li.
Thus, if we know the transformations belonging to Ll (the proper, orthochronous
Lorentz transformations), those pertaining to the other branches can be generated
from them by multiplication with P, T, and (PT). These relations are summarized
in Table4.1.

Finally, we conclude that the branch Li is a subgroup of the homogeneous Lorentz
group. Indeed, the composition of two transformations of LI_ is again element of Ll.
Furthermore, it contains the unit element as well as the inverse of any of its elements.
This subgroup Ll is called the proper, orthochronous Lorentz group. (In contrast to
Ll, the remaining three branches are not subgroups.)
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Table 4.1 The four disjoint branches of the homogeneous Lorentz group

Ll(detA=1,4%>1) Li(detA=1,4%<-1)

Examples: E, rotations, special Examples: PT, as well as all A(PT)
Lorentz transformations with A € Ll

Ll (detA=—1,4%>1) LY (detA =—1,4% < —1)

Examples: P, as well as all AP with A € Ll Examples: T, as well as all AT with A € LI_

4.4.1 Rotations and Special Lorentz Tranformations
(“Boosts”)

The rotations in three-dimensional space, well-known to us from Sect.2.22, leave
the spatial distance |x — y| invariant. As they do not change the time component of
any four-vector, the transformations

1 0 0 0
AR =R | © R (4.33)
0

with R € SO(3) leave invariant the form (z°)> — (z)?. Thus, they are Lorentz trans-
formations. Now, obviously R% = +1, and detR = detR = +1, so they belong to
the branch Ll. Thus, extending the rotations in three-dimensional space by adding
a lin the time—time component, and zeros in the time—space and the space—time
components, as shown in (4.33), we obtain a subgroup of Ll.

We now turn to the relativistic generalization of the special Galilei transformations

X=x—-vt, t'=t. (4.34)

Their relativistic counterparts are called special Lorentz transformations, or boosts.
They are obtained as follows.

As we know, boosts describe the situation where two inertial systems of reference
K and K’ move relative to each other with constant velocity v. Figure 4.2 shows the
example of uniform motion along the spatial 1-axis, v = ve;. The space components
that are transverse to the 1-axis are certainly not changed, i.e.
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0! 1 '
B
- -
Vaveg
Fig. 4.2 K and K’ are inertial systems that move at a constant velocity relative to each other. At

t = 0 or, v = 0, the two systems coincide

Regarding the remaining components of the four-vector z, this implies that the form
(z%)? — (z)? must be invariant.

@ - H? = "+ 2HE° -2 = invariant .

Thus, we must have

Y 0 0 1 0 _ s _L 0_ 1
P+l =fwE+), (= Z)_f(v)(Z Z)

with the conditions f(v) > 0 and lirr(l) f(v) = 1. Furthermore, the origin O’ of K’

moves with velocity v, relative to K. Thus, the primed and unprimed 1-component
of O are, respectively,

1 1 1 1 v
n_ 2 Yo, ! ) =0, =20,
Z 2(f f)z +2(f+f)z z Cz
from which follow
v
(fP=D+- (S +1)=0,

and, finally,
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1= (/o)
f) = w0 (4.35)

At this point let us introduce the following (universally accepted) abbreviations:
def V] def 1

ﬂ - — b y = T *
c /1— p2
Using this notation, z! and z° are seen to transform as follows:
Z"° _Y(r+1f f=1f 2°
7! 2\fF=1/f F+1/f )\
(e 0
-v8 v J\Z')"
where 0 < 8 < 1, y > 1. Including the 2- and 3-components, the special Lorentz
transformation (boost) that we are out to construct reads

(4.36)

v —vp 00
— 0 0

T I G S @37
0 0 0 1

It has the properties L9 > +1 and det L = +1, and therefore it belongs to LI_.
Without loss of generality we could have parametrized the function f (v) (4.35) by

f () = exp(=i(v)) . (4.38)
As we shall show below (Sect.4.6), the parameter A is a relativistic generalization

of the (modulus of the) velocity. For this reason it is called rapidity. Using this
parametrization, the transformation (4.37) takes the form

coshA —sinhA 0 O
A —sinh A coshA 0 O
L(—ve)) = 0 0 1 ol (4.39)
0 0 0 1
where A and |v| are related by
lv|
tanhA = — = f. (4.40)
c

If the velocitiy v does not point along the direction of the 1-axis, the transformation
(4.37) takes the form
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v
4 —V?
L(—-v) = oo y5 ik | (4.41)
—y— 8!k + e
c 1+y 2

This more general expression is derived by means of the following steps. The matrix
(4.37) that describes the case v = ve; is symmetric. It transforms the time and the
1-coordinates in a nontrivial way but leaves unchanged the directions perpendicular
to v. In particular, we have

1
=y —-B1=y [zo—zv-z} ,

1
v
M =y[-pL + 1=y [—?zo +zl} )

If v has an arbitrary direction in space, one could, of course, rotate the coordinate
system by means of a rotation R in such a way that the new 1-axis points along
v. The boost L would then have precisely the form of (4.37). Finally, one could
undo the rotation. As L is symmetric, so is the product R ~'LR. Without calculating
this rotation explicitly, we can use the following form for the boost that we wish to
construct:

v
14 —y— . .
L(—v) = o 'C with T =718
_,y_ le
C

For vanishing velocity T'* becomes the unit matrix. Therefore, we can write 7% as
follows:

i 2k

: ; v'v
Ttk — Stk +ta—0o .

6‘2

We determine the coefficient ¢ by making use of our knowledge of the coordinates
of O/, the origin of K’, in either system of reference. With respect to K’ we have
1 3
/= _V_UIZO + Z leZk -0.
¢ k=1

As seen from K, O’ moves at a constant velocity v, i.e. = vkzo/c. From these
equations follows the requirement

ZT”‘ﬁ=l l—i—av—2 viéyv—i
- c ¢ c? ¢’
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or 1 +ap? = y, and, finally, a = y%/(y + 1). This completes the construction of
(4.41).

4.4.2 Interpretation of Special Lorentz Transformations

First, we verify that the transformation (4.41) becomes the special Galilei transfor-
mation (4.34) whenever the velocity is small compared to c. We develop matrix
(4.41) in terms of B = |v|/c, up to first order, viz.

ok
L(-v) = ( Lo il C) +O8).

—vi/c

Neglecting the terms of order O(8?%), we indeed obtain ¢’ = ¢ and z = —vt + z.
Thus, the transformation rule (4.34) holds approximately for (v/c)> <« 1. This is
an excellent approximation for the planets of our solar system. For example, the
earth’s orbital velocity is about 30kms ™', and therefore (v/c)?> ~ 10~8. Elementary
particles, on the other hand, can be accelerated to velocities very close to the speed
of light. In this case transformation (4.41) is very different from (4.34).

An instructive way of visualizing the special Lorentz transformation (4.41) is to
think of K’ as being fixed in an elementary particle that moves at a constant velocity
v with respect to the inertial system K. K’ is then said to be the rest system of the
particle, while K could be the laboratory system.

Transformation (4.4 1) describes the transition between laboratory and rest system;
it “boosts” the particle from its state of rest to the state with velocity v. To make this
clear, we anticipate a little by defining the following four-vector:

0% e, yn?T . (4.42)

(A more detailed reasoning will be given in Sect. 4.8 below.) The generalized, squared
norm of this vector is w?> = y2c?(1 — v?/c?) = 2. If we apply the matrix (4.41) to
w, we obtain

L(—v)w = o© (4.43)

with @@ = (c, 0). Thus, this vector must be related to the relativistic generalization
of velocity or of momentum. We see that L(—v) transforms something moving with
velocity v to something at rest (velocity 0), hence the minus sign in the definition
above. We shall say more about the interpretation of w later and return to the analysis
of the Lorentz transformations.
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4.5 Decomposition of Lorentz Transformations
into Their Components

4.5.1 Proposition on Orthochronous, Proper Lorentz
Transformations

The structure of the homogeneous, proper, orthochronous Lorentz group Ll is clar-
ified by the following theorem.

Decomposition Theorem. Every transformation A of Ll can be written, in a
unique way, as the product of a rotation and a special Lorentz transformation
following the rotation:

1 0

A=L@w)R with R = (0 R

) . ReSOQ). (4.44)

The parameters of the two transformations are given by the following expres-
sions:

v je= Al AY (4.45)

. . 1 .
R*¥= A, — ——— Al AT . (4.46)
1+ A%

Proof As a first step one verifies that the velocity defined by (4.45) is an admissible
velocity, i.e. that it does not exceed the speed of light. This follows from (4.24) (with
a=1):

ATgA =g (4.47)
or Alffg/lvAv.[ = gor - (447/)

Choosingo =t =0,theno =i, t = k,and then 0 = 0, T = i, we find that (4.47)
yields the following equations, respectively,
3

(A =D (A)* =1, (4.482)

i=1

3
AN~ ALAL = 8y (4.48b)
j=1
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3
AGAG =" AL, =0, (4.48¢)
Now, from (4.48a) we indeed find that

U2 _ Z(AiO)Z (A )2

2 (A (A)2 -

Comparison with the general expression (4.41) for a boost then gives

LYw) = A% ; L%w) =Lij(w) = A,

L (v) = 8%+ Al Ak (4.49)

1+ A%
As a second step we define

def

REYLTw)A =L(—-v)A (4.50)

and show that R is a rotation. This follows by means of (4.48a) and (4.48c) and by
doing the multiplication on the right-hand side of (4.50), viz.

RO = A% A0 — ZAJAJ_

At the same time we calculate the space—space components of the rotation,
i Ad i A0 1 Al AL AY
Rk_Ak_AOAk+m 0 D ALY
0 j

Inserting (4.48c) in the right-hand side yields assertion (4.46).

As a third and last step it remains to show that the decomposition (4.44) is unique.
For this purpose assume that there are two different velocities v and v, as well as two
different rotations R and R of SO(3), such that

A=L0)R=LO®R
holds true. From this we would conclude that

L»)AR'=1=L(—v)L@RR".
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Taking the time—time component of this expression, for example, we would obtain

3
1= ZLOV(—v)L"O(i) = [1 — év : 5} /\/(1 —v2/c2) (1 —v?/c?) .
v=0

This equation can be correct only if v = v. If this is so then also R = R. Thus the
theorem is proved. O

4.5.2 Corollary of the Decomposition Theorem and Some
Consequences

Note the order of the factors of the decomposition (4.44): the rotation R is applied first
and is followed by the boost L(v). One could prove the decomposition of A € Li,
with a different order of its factors, as well, viz.

A =RL(w) with R = ((1) g) , ReS0(@3), (4.51)
where the vector w is given by
i e A()
el S (4.52)
c A%

and where R is the same rotation as in (4.46). The proof starts from the relation
AgAT =g, (4.53)
A% AT, =", (4.53)

which is the analog of (4.47) and which says no more than that if A belongs
to Ll, then its inverse A~' = gATg also belongs to Ll. Otherwise the steps
of the proof are the same as in Sect.4.5.1. One verifies, by direct calculation,
that v = Rw. This is not surprising because, by comparing (4.44) and (4.51),
we find

L(v) = RL(w)R~! = L(Rw) . (4.54)

The decomposition theorem has several important consequences.

(i) The decomposition is useful in proving that every timelike four vector can
be mapped to the normal form (4.27a), every spacelike vector to the normal form
(4.27b), and every lightlike vector to the form (4.27¢c). We choose the example of a
timelike vector, z = (2°, z) with z2 = (z%)> — (z)? > 0. By arotation it assumes the
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form (z°, 2!, 0, 0). If z° is negative, apply PT to z so that z° becomes positive and
hence z° > |z!|. As one verifies by explicit calculation, the boost along the 1-axis,
with the parameter A as obtained from

e =0 —z1)/(0 +z2),

takes the vector to the form of (4.27a).

(ii) The group Li is a Lie group and contains the rotation group SO(3) as a sub-
group. The decomposition theorem tells us that Li depends on six real parameters:
the three angles of the rotation and the three components of the velocity. Thus, its
Lie algebra is made up of six generators. More precisely, to the real angles charac-
terizing the rotations there correspond the directions of the boosts and the rapidity
parameter A. This parameter has its value in the interval [0, oo]. While the manifold
of the rotation angles is compact, that of A is not. Indeed, the Lorentz group is found
to be noncompact. Therefore, its structure and its representations are not simple and
must be studied separately. This is beyond the scope of this book.

(iii) It is not difficult, though, to construct the six generators of Ll. We already
know the generators for rotations, see Sect.2.22. Adding the time—time and space—
time components they are

0 0 O

, (4.55)
W)

=N eleolE=]

where (J;) are the 3 x 3 matrices given in (2.71). The generators for infinitesimal
boosts are derived in an analogous manner. The example of a special Lorentz trans-
formation along the 1-axis (4.39) contains the submatrix

pder (coshi  sinhA i A2 i A2
" \sinhA coshA (2n)V — 2n 4 1)!

. 0 1
with K=(1 O)'

The latter matrix (it is the Pauli matrix o 1) has the following properties:

KZn =1 K2n+1 — K .
Therefore, we have

o0 )\2"+1

)L2n 2 2n+1 | _
Z[(z TR TR TR Sl UL
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Alternatively, writing this exponential series by means of Gauss’s formula for the
exponential,

A k
k—00 k

we see that the finite boost is generated by successive application of very many
infinitesimal ones. From this argument we deduce the generator for infinitesimal
boosts along the 1-axis:

K, = (4.56)

S o OO
[l e e Re)

0 1
1 0
0 0
0 0

It is then easy to guess the analogous expressions for the generators K, and Kj for
infinitesimal boosts along the 2-axis and the 3-axis, respectively:

0 0 1 0 0 0 0 1
NI S A
0 0 0 O 1 0 0 0
By the decomposition theorem every A of Ll can be written as follows:
A =exp(—¢ - J) exp(w - K) , (4.58)

where d = (J1,J2,d3), K= (K{,K;,K3), and A = arctanh |w|/c.

(iv) It is instructive to compute the commutators of the matrices J; and K; as given
by (4.56), (4.57), and (2.71). One finds that

Wi, ]l =didy —dod; =Js, (4.59a)
[Ji,Ki]=0, (4.59b)
Wi, Kl =K; [Ki, ] =K;, (4.59¢)
[Ki, Kol = —Js . (4.59d)

All other commutators are obtained from these by cyclic permutation of the indices.

One can visualize the meaning of relations (4.59a)-(4.59d) to some extent by
recalling that the J; and K generate infinitesimal transformations. For instance,
(4.59a) tells us that two infinitesimal rotations by the angle ¢; about the 1-axis and
by the angle ¢, about the 2-axis, when inverted in different order, give a net rotation
about the 3-axis, by the angle ¢;¢>,

R™'(0, ,0)R ' (¢1,0,0) R(0, &2, 0) R(g1, 0,0) = R(0, 0, & - &) + O(e?)
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(The reader should work this out).

Equation (4.59b) states that a boost along a given direction is unchanged by a
rotation about the same direction. Equation (4.59¢c) expresses the fact that the three
matrices (K;, Ky, K;) transform under rotations like an ordinary vector in R? (hence
the notation in (4.58)).

The commutation relation (4.59d) is the most interesting. If one applies a boost
along the 1-axis, followed by a boost along the 2-axis, and then inverts these trans-
formations in the “wrong” order, there results a pure rotation about the 3-axis. In
order to see this clearly, let us consider

L~ 1+ 0K + 383K, Lo~ 14K, + 133K3
with A; < 1. To second order in the A; we then obtain
L;lLfleLl ~ 10— MK, K]=14+ A A0d3 . (4.60)

Here is an example that illustrates this result. An elementary particle, say the elec-
tron, carries an intrinsic angular momentum, called spin. Let this particle have the
momentum p, = 0. The series of Lorentz transformations described above eventu-
ally bring the momentum back to the value p, = 0. However, the spin is rotated a
little about the 3-axis. This observation is the basis of the so-called Thomas preces-
sion, which is discussed in treatises on special relativity and which has a number of
interesting applications.

4.6 Addition of Relativistic Velocities

The special Galilei transformation (4.34), or the special Lorentz transformation
(4.41), relates the inertial systems Ky and K’, the parameter v being the relative
velocity of the two systems of reference. For example, one may think of K’ as being
fixed in a particle that moves with velocity v relative to an observer who is placed
at the origin of Ky. We assume that the absolute value of this velocity is smaller
than the velocity of light, c. Of course, the system of reference K can be replaced
with any other one, K;, moving with constant velocity w relative to Ky (Jw| being
assumed smaller than c, too). What, then, is the special transformation (the boost)
that describes the motion of K, the particle’s rest system, as observed from K;?

In the case of the Galilei transformation (4.34) the answer is obvious: K’ moves
relative to K; with the constant velocity # = v + w. In particular, if v and w are
parallel and if both |v| and |w| exceed c/2, then the magnitude of u exceeds c.

In the relativistic case the law of addition for velocities is different. Without loss
of generality let us take v along the 1-axis. Let A be the corresponding rapidity
parameter,
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v v N I+v/c
—=—-, or &= ,
c c 1—-v/c

so that the transformation between Ky and K’ reads

coshA sinhA

0
L(v = vé)) = Smé“‘ CO%“ (1) (4.61)
0

0 0

- o O O

A case of special interest is certainly the one where w is parallel to v and points
in the same direction, i.e. the one where one boosts twice along the same direction.
L(w = we;) has the form (4.61), with A being replaced by the parameter ., which
fulfills

1
tanh p = k , or et= Ttw/e .
c I1—w/c

The product L(wé;)L(ve,) is again a special Lorentz transformation along the 1-
direction. Making use of the addition theorems for hyperbolic functions one finds

cosh(A + ) sinh (A 4+ w)
sinh (A + ) cosh(A + w)
0 0
0 0

L(wél)L(vél) = = L(uél) .

o= O O
- o O O

From this follows the relation

i l+u/c  [(I+v/c)(1+w/c)
“Vil-u/e NA—=-v/eo)d —w/ec)’

which, in turn, yields the rule for addition of (parallel) velocities, viz.

u_vfetwje (4.62)
c l4+ovw/c?

This formula has two interesting properties.
(1) If both velocities v and w are small compared to the speed of light, then

u=v+w+0@ww/c?) . (4.63)

Thus, (4.62) reduces to the nonrelativistic addition rule, as expected. The first rela-
tivistic corrections are of order 1/c?.
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(ii) As long as v and w are both smaller than c, this holds also for u. If one of
them is equal to c, the other one being still smaller than c, or, if both are equal to c,
then u is equal to c. In no case does u ever exceed c.

When v and w do not point in the same direction matters become a little more
complicated, but the conclusion remains unchanged. As an example, let us consider
a boost along the 1-axis, followed by a boost along the 2-axis. This time we choose
the form (4.37), or (4.41), noting that the parameters y and 8 are related by

yi=1/J1=2 or Byi=yyP—1. i=12. (4.64)

Multiplying the matrices L(v,é,) and L(v;e) one finds that

ViV2 Bt B2 0

0 0
A = L(vsty)L(vey) = | VP " 4.65
(vae2)L@ier) B viveBiBr 2 0O (4.65)

0 0 0 1

This transformation is neither a boost (because it is not symmetric) nor a pure rotation
(because AY is not 1). Being the product of two boosts it is an element of Ll.
Therefore, it must be a product of the two kinds of transformations, one boost and
one rotation. The decomposition theorem (Sect.4.5.1) in the form of (4.44), when
applied to A, gives

A =Lu)R(9)

with u' /e = A’y /A% = (Bi/y2, B2, 0), while (4.46) for the rotation give, making
use of (4.64),

R'=RZ=m+n)/(0+yr), R =1,
R? = —R"=—/(y} =D} = D/A+y1yn), RP=R¥=0=R"=R".

Thus, the rotation is about the 3-axis, ¢ = &3, the angle being

¢ = —arctan /(7 — D(y; — 1)/ + 12)
= —arctan [,81,82/ (\/1 - B+ \/l - ,822)] . (4.66a)

For the velocity u one finds

2.2
(&Y =g+ -ppp =01 (4.66b)

c Yivs

so that, indeed, |#| < c. We note that if v and w have arbitrary relative directions
the parameter y pertaining to u is equal to the product of yy, y», and (1 + v - w/c?).
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Whenever both y; are larger than 1, then y is also larger than or equal to 1, and hence
the parameter § pertaining to u is smaller than 1. In other words, |u| never exceeds
c.

These somewhat complicated relationships simplify considerably when all veloc-
ities are small compared to the speed of light. In Sect.4.4.2 we already checked that
the nonrelativistic limit of a special Lorentz transformation L(v) yields precisely the
corresponding special Galilei transformation. If in (4.65) both v; and v, are small
compared to ¢, we obtain

u>~ve +une,

2
— arctan [m_:z (1 +0 (v—’z))} ~0.
c c

The two velocities add like vectors; the rotation about the 3-axis is the identity. The
induced rotation in (4.66a) is a purely relativistic phenomenon. Locally, i.e. when
expressed infinitesimally, it is due to the commutator (4.59d) that we discussed in
Sect.4.5.2 (iv).

¥

4.7 Galilean and Lorentzian Space-Time Manifolds

While translations (in space and in time) and rotations (in space) are the same within
the Galilei and Lorentz groups, the special transformations are different, in an essen-
tial way, in the two cases. As a consequence, the space—time manifolds equipped
with the Galilei group as the invariance group, or alternatively the Lorentz group,
inherit a very different structure. This is what we wish to show in this section.

We start with the example of a special (or boost) transformation with velocity
w = fBc along the 1-axis, understood to be a passive transformation. In the case of
the Galilei group it reads, setting x* = ct,

X0 =x0, X2 =2,

o= xl = Bx0, xB =13 (4.67)

(Of course, (4.67) is independent of the speed of light. ¢ is introduced here in view
of the comparison with the relativistic case.) In the case of the Lorentz group it reads

X’OI)/[)CO—,BXI] , x/2:x2’
n 0 17 /3 _ 3 (4.68)

x" =y[-Bx"+x'],x"=x".

The coordinates x* refer to the inertial system K; the coordinates x'* refer to K’,

which moves, relative to K, with the velocity w = Scé;. Suppose we are given three

mass points A, B, C, to which no forces are applied and whose coordinates at time
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t =0are x = (0,0,0), x® = x© = (A, 0, 0), with respect to the system K.
A is assumed to be at rest; B moves with the velocity v = 0.1 cé;; C moves with
the velocity w = Bcé, in the same direction as B. We choose 8 = 1/+/3 =~ 0.58.
All three of them move uniformly along straight lines in the (x!, ¢)-plane. After time
t = A/c, for example, they have reached the positions A, By, C, respectively,
indicated in Figs.4.3a, b. If one follows the same motions by placing an observer in
the system of reference K, then in a Lorentz invariant world the picture will be very
different from the one in a Galilei invariant world.

(1) According to the nonrelativistic equations (4.67), the positions of the three mass
points with respect to K’ and at #' = 0 coincide with those with respect to K. After
the time r = A /c they have reached the positions A}, B}, C{, respectively, shown in
Fig.4.3a. The figure shows very clearly that time plays a special role, compared to
space. Events that are simultaneous with respect to K are observed by an observer
in K’ at the same times, too. As was explained in Sect. 1.14 (ii) it is not possible to
compare spatial positions of points at different times without knowing the relation
(4.67) between the two systems (e.g. comparing Ay with A;, Ay = Ag with A}).
However, the comparison of positions taken on at equal times, is independent of the
system of reference one has chosen, and therefore it is physically meaningful. To
give an example, if an observer in K and another observer in K’ measure the spatial
positions of A and C at time t = t' = 0, as well as at any other time r = ¢/, they
will find that A and C move uniformly along straight lines and that the difference of
their velocities is w = Bceé;.

(i) If the two systems of reference are related by the Lorentz transformation
(4.68), instead of the Galilei transformation (4.67), the observer in K’ sees the
orbits AgA), B\B}, C{C; as shown in Fig.4.3b. This figure leads to two impor-
tant observations. Firstly, simultaneity of events is now dependent on the system
of reference. The events Ag and By = Cy, which are simultaneous with respect
to K, lie on the straight line x° = —px’!, when observed from K’, and hence
occur at different times. (Similarly, the events A, B; and C; are simultaneous with
respect to K. In K’ they fall onto the straight line x© = —x"" 4+ (1 — B?).) Sec-
ondly, Fig.4.3b shows a new symmetry between x° and x!, which is not present
in the corresponding nonrelativistic Fig.4.3a. The images of the lines + = 0
and x' = 0, in K/, are symmetric with respect to the bisector of the first quad-
rant. (As we assigned the coordinates (4, 0) to By, (0, A) to Aj, their images B
and A}, respectively, have symmetric positions with respect to the same straight
line, too.)

More generally, what can we say about the structure of Galilean space—time and
of Minkowskian space—time? Both are smooth manifolds with the topology of R*.
The choice of a coordinate system is usually made with regard to the local physical
processes one wishes to describe and may be understood as the choice of a “chart”
taken from an “atlas” that describes the manifold. (These notions are given precise
definitions and interpretations in Chap.5.)

(i) Galilei invariant space—time. In a world where physics is invariant under Galilei
transformations, time has an absolute nature: the statement that two events take place
at the same time is independent of their spatial distance and of the coordinate system
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Fig. 4.3 Three mass points 4
moving uniformly, but with ct ct
different velocities, along
straight lines. They are
observed from two different
inertial systems K and K'.
(a) K and K’ are related by a
special Galilei
transformation. (b) K and K’
are related by a special
Lorentz transformation

\ .
i I P
b ofA B, \ C x!
0~ 0 ku+
/f‘a_\
Q) R \
|
B; Co

one has chosen. Call Pg the (four-dimensional) Galilean space—time; M = R, the
(one-dimensional) time manifold. Suppose first that we choose an arbitrary coordi-
nate system K with respect to which the orbits of physical particles are described by
world lines (¢, x(¢)). Consider the projection

m:Pg—>M:({,x)—~1t, (4.69)
which assigns its time coordinate ¢ to every point of the world line (¢, x) € Pg.
Keeping ¢ fixed, the projection 7 in (4.69) collects all x that are simultaneous. If x’
and ¢’ are the images of these x and the fixed ¢, respectively, under a general Galilei
transformation

' =t+s, ¥ =Rx+wt+a, (4.70)

then the projection defined in (4.69) again collects all simultaneous events,

a:{,xY—1t.
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Thus, the projection has a well-defined meaning, independent of the specific coor-
dinate system one chooses. Consider now an interval I of R, that contains the time
t. The preimage of I with respect to 7 has the structure (time interval) x (three-
dimensional affine space),

I a7 e g, isomorphic to I x E. “4.71)

In the terminology of differential geometry this statement and the properties that
has mean that Pg is an affine fibre bundle over the base manifold M = R,, with
typical fibre E°. (We do not give the precise definitions here.)

The world line in (4.69) refers to a specific (though arbitrary) observer’s system
K, the observer taking his own position as a point of reference. This corresponds to
the statement that one always compares two (or more) physical events in Pg. The
projection (4.69) asks for events, say A and B, which are simultaneous, i.e. for which
t4 = tg. This suggests defining the projection in a truly coordinate-free manner as
follows. Let x4 = (t4,x4) and xp = (¢g, xp) be points of Pg. The projection
declares all those points to be equivalent, x4 ~ xp, for which t4 = 5.

What else can we say about the structure of Pg? If in (4.70) we exlude the special
transformations, by taking w = 0, then there would exist a canonical projection onto
three-dimensional space that would be the same for any choice of the coordinate
system. In this case Pg would have the global product structure R, x E>. A fibre
bundle that has this global product structure is said to be trivial. However, if we admit
the special transformations (w # 0) in (4.70), then our example discussed earlier
and the more general case illustrated by Fig.4.4 show that the realization of the
projection is not independent of the system of reference one has chosen. Although
the bundle

Ps(m : Ps — M =R, Fibre F = E%) 4.72)

has the local structure R, x E3, it is not trivial in the sense defined above.

(ii) Lorentz invariant space—time. The example given by (4.68) and Fig.4.3b shows
clearly that the space—time endowed with the Lorentz transformations does not have
the bundle structure of Galilean space—time. Neither the projection onto the time
axis nor that onto three-dimensional space can be defined in a canonical way, i.e.
independently of a coordinate system. On the contrary, space and time now appear
as truly equivalent, Lorentz transformations mixing space and time in a symmetric
way.

Not only spatial distances but also time differences now depend on the inertial
system one chooses. (There is a correlation between spatial and time distances,
though, because (x (1) — x(z))2 — (x(ol) — x?z))2 must be invariant.) As a consequence,
moving scales look shorter, while moving clocks tick more slowly. These are new
and important phenomena to which we now turn.
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Fig. 4.4 In Galilean t'
space—time Pg, time has an 4
absolute character. However,
the projection onto the

spatial part of Pg depends on o o
the system of reference one 251 iy
chooses

v
>4

4.8 Orbital Curves and Proper Time

The example illustrated by Fig.4.3b reveals a surprising, and at first somewhat
strange, property: a given process of physical motion takes different times, from
its beginning to its end, if it is observed from different systems of reference. In order
to get rid of this dependence on the system of reference, it is helpful to think of the
moving objects A, B, and C as being equipped with their own clocks and, if they
are extended objects, with their own measuring scales. This is useful because then
we can compare their intrinsic data with the data in other systems of reference. In
particular, if the motion is uniform and along a straight line, the comoving systems
of reference are inertial and the comparison becomes particularly simple.

In the case of arbitrary, accelerated motion, the best approach is to describe the
orbit curve in a geometrical, invariant manner, by means of a Lorentz-invariant orbital
parameter. In other words one writes the world line of a mass point in the form x(7),
where 7 is the arc length of this world line. 7 is an orbital parameter that is independent
of any system of reference. Of course, instead of the dimension length, we could give
it the dimension time, by multiplication with 1/c. The function x(t) describes the
spatial and temporal evolution of the motion, in a geometrically invariant way. If T
is given the dimension of time, by multiplication with an appropriate constant with
dimensions, one can understand t to be the time shown by a clock that is taken
along in the motion. For this reason, t is called the proper time. Figure 4.5 shows an
example of a physical world line in the space-time continuum.

Note, however, that the world line x(t) cannot be completely arbitrary. The
particle can only move at velocities that do not exceed the speed of light. This is
equivalent to the requirement that there must exist a momentary rest system at any
point of the orbit. If we choose an arbitrary inertial system of reference, x (t) has the
representation x(t) = (x°(t), x(t)). Given x(t) the velocity vector X = (x°, x)7
is defined by
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Fig. 4.5 Example of a
physically allowed world

line. At any point of the orbit
the velocity vector is
timelike or lightlike (i.e. in
the diagram its slope is
greater than or equal to 45°)

(7). (4.73)

/tdjfdu

In order to satisfy the requirement stated above, this vector must always be timelike (or
lightlike), i.e. (%92 > %2. If this is fulfilled, then the following statement also holds
true: if ° = dx®/dr > 0 holds in one point of the orbit, then this holds everywhere
along the whole orbit. (Figure 4.5 shows an example of a physically possible orbital
curve in space—time.) Finally, one can parametrize the orbital parameter 7 in such a
way that the (invariant) norm of the vector (4.73) always has the value c:

W =itg i = (4.74)

For a given value of the parameter T = tp, x at the world point (g, x(7p)) can be
brought to the form x = (c, 0, 0, 0) by means of a Lorentz transformation. Thus,
this transformation leads to the momentary rest system of the particle, and we have

0
Wl e dr=lad—a (att =1 . (4.75)
dr c
Note that x is precisely the vector @ of (4.42) and that the transformation to the rest
system is precisely the one given in (4.43).

The result (4.75) can be interpreted in the following way. If the particle carries a
clock along its orbit, this clock measures the proper time t. Read as a geometrical

. . . def .. . .
variable, 7 is proportional to the length of arc, s = c7. This is so because the invariant
(squared) line element ds? is given by

ds? = c?dt? = dxtg,,,dx" = c*(dr)* — (dx)* . (4.76)

This expression emphasizes again the role of g,, as the metric tensor.
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4.9 Relativistic Dynamics

4.9.1 Newton’s Equation

Let K be an inertial system of reference and let a particle move with (momentary)
velocity v relative to K. Further, let K be the rest system of the particle, the axes of
K being chosen parallel to those of K. The relation between the two systems is then
given by the special Lorentz transformation (4.41), with velocity v, as indicated in
the following:

L(—v)
Ko = K. 4.77)
L(v)

In trying to generalize Newton’s second law (1.8) to relativistic dynamics, we must
take care of two conditions.

(i) The postulated relation between the generalized acceleration d’x(t)/dz? and
the relativistic analog of the applied force must be form invariant with respect
to every proper, orthochronous Lorentz transformation. An equation of motion
that is form invariant (i.e., loosely speaking, both sides of the equation transform
in the same way), is also said to be covariant. Only if it obeys this condition will
the equation of motion describe the same physics, independent of the reference
system in which it is formulated.

(ii) In the rest system of the particle, as well as in cases where the velocities are
small compared to the speed of light, |v| < c, the equation of motion becomes
Newton’s equation (1.8).

Let m be the mass of the particle as one knows it from nonrelativistic mechanics.
The observation that this quantity refers to the rest system of the particle suggests
that we should regard it as an intrinsic property of the particle that has nothing to do
with its momentary state of motion. For this reason, this quantity is said to be the rest
mass of the particle. In the case of elementary particles the rest mass is one of the
fundamental properties characteristic of the particle. For example, the electron has
the rest mass

me = (9.109 382 15 + 0.00000045) x 10~ kg ,

while the muon, which otherwise has all the properties of the electron, is characterized
by its rest mass being heavier, viz.

my, 2~ 206.77m. .

Very much like proper time 7, the rest mass m is a Lorentz scalar. Therefore, with
the following form for the generalized equation of motion:
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2

m%x”(r) = f*, (4.78)

the left-hand side is a four-vector under Lorentz transformations. Condition (i) states
that f# must be a four-vector as well. If this is so, we can write down the equation of
motion (4.78) in the rest system K, where we can make use of the second condition
(i1). With respect to K and by (4.75), dtr = dr. Hence the left-hand side of (4.78)
reads

d? “D) d d? ©. %)
—xH(T = —cC, —X | = .
mdtzx m dtc’ dtzx m(0, ¥

Condition (ii) imposes the requirement
'k, =(0,K),

where K is the Newtonian force. We calculate f* with respect to the inertial system
K, as indicated in (4.77):

3

=D LA flk, - (4.79)

v=0

Writing this out in space and time components, we have

I G
f—K—i—H_ycz(v Ky,
1 1
ff=y-w-K)y=-(-f), (4.80)
C C

where we have used the relationship 82 = (y2 — 1)/y2. Thus, the covariant force
f" is nothing but the Newtonian force (0, K'), boosted from the rest system to K.
4.9.2 The Energy—Momentum Vector

The equation of motion (4.78) obtained above suggests defining the following rela-
tivistic analog of the momentum p:

d

=m—x"(1). (4.81)
T

When evaluated in the rest system this takes the form

P!k, = (mc,0) .
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If it is boosted to the system K, as in (4.79), it becomes
p"lk = (ymc, ymv) . (4.82)

The same result can be obtained in an alternative way. From (4.76) we see that dt
along an orbit is given by

dr = /(dn)? — (dx)?/2 = /1 — B2dr = dt )y .

Equation (4.81), on the other hand, when evaluated in K, gives

d

po = mya(ct) =mcy , (4.82a)
d

p=myLx=myv. (4.82b)

The Lorentz scalar parameter m is the rest mass of the particle. It takes over the
role of the well-known mass parameter of nonrelativistic mechanics whenever the
particle is at rest or moves at small velocities. Note that the nonrelativistic relation
p = mv is replaced by (4.82b), i.e. the mass is replaced by the product of the rest
mass m and y . For this reason the product

1

V11— vz/czm

is sometimes interpreted as the moving, velocity-dependent mass. It is equal to the
rest mass for v = 0 but tends to (plus) infinity when |v| approaches the speed of
light, c. As stated in Sect. 1.4 it is advisable to avoid this interpretation.

The time component of the four-vector p#, when multiplied with ¢, has the dimen-
sion of energy. Therefore, we write

mw) = my =

1
pt = (—E, p) with E =ymc®, p=ymv. (4.83)
¢

This four-vector is said to be the energy—momentum vector. Clearly, its squared norm
is invariant under Lorentz transformations. It is found to have the value

1
pPP=p.p=0p" -p'= ;Ez — p=m2.

This last equation yields the important relativistic relationship

E =/ p3c? + (mc?)? (4.84)

between the energy E and the momentum p of a free particle. This is the relativistic
generalization of the energy—momentum relation we anticipated in (4.7). If p = 0,
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Fig. 4.6 A positively charged pion at rest decays into a (positively charged) muon and an (electri-
cally neutral) neutrino

then E = mc?. The quantity mc? is called the rest energy of the particle with mass
m. Thus, E always contains this contribution, even when the momentum vanishes.
Consequently, the kinetic energy must be defined as follows:

T E_me. (4.85)

The first test, of course, is to verify that the well-known relation 7 = p2 /2m is
obtained from (4.85) for small velocities. Indeed, for 8 < 1,

2 2 242
SN PR S W1
2m 4m2c? 8m3c?

Clearly, only a complete dynamical theory can answer the questions raised in
Sect.4.1. Nevertheless, the relativistic equation opens up possibilities that were not
accessible in nonrelativistic mechanics, and that we wish at least to sketch. Any the-
ory of interactions between particles that is invariant under Lorentz transformations
contains (4.84) for free particles. The following consequences can be deduced from
this relation between energy and momentum.

(i) Even a particle at rest has energy, E (v = 0) = mc?, proportional to its mass.
This is the key to understanding why a massive elementary particle can decay into
other particles such that its rest energy is converted, partially or entirely, into kinetic
energy of the decay products. For example, in the spontaneous decay of a positively
charged pion into a positively charged muon and a neutrino,

7t (m, =273.13m.) — uf’(mﬂ =206.77Tme) + v(m, >~ 0) ,

about one fourth of its rest mass, namely ((m, —m,,)/mz)my 2, is found in the form
of kinetic energy of the u* and the v. This is calculated as follows. Let (E4/c, q),
(Ep/c, p), and (Ex/c, k) denote the four-momenta of the pion, the muon, and the
neutrino, respectively. The pion being at rest before the decay (cf. Fig.4.6) we have

E
q" = (Tq,q) = (mzc,0), E,=,/(m.,c*)?*+p>c; Ex=|lklc.
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By conservation of energy and momentum

g" =p"+k*, k=—p, and

mrrC2 =/ (mMCZ)Z + P2C2 + |plc.

This allows us to compute the absolute value of the momentum p or k, viz.

2 2

m2 —m;,
Ip| = k| = o €= 58.30 mec .

Mz

Therefore, the kinetic energy of the neutrino is 7" = Ej = 58.30 m.c?, while that
of the muon is

TW = E,— m“c2 = 8.06 m.c? .

Thus, TW + TW = 66.36 mec? ~ 0.243 m, c2, as asserted above. The lion’s share
of this kinetic energy is carried away by the neutrino, in spite of the fact that muon
and neutrino have equal and opposite momenta. On the other hand, the muon shares
the major part of the total energy, namely £, = 214.8 mec?, because it is massive.

(ii) In contrast to nonrelativistic mechanics, the transition to vanishing rest mass
poses no problems. For m = 0 we have E = |p|c and p* = (|p|, p). A particle
without mass nevertheless carries both energy and momentum. Its velocity always
has magnitude c, cf. (4.82), no matter how small p is. However, it does not have a
rest system. There is no causal way of following the particle and of “catching it up”
because the boosts diverge for |v| — c.

We already know an example of massless elementary particles: the photons. Pho-
tons correspond to the elementary excitations of the radiation field. As they are
massless, one is led to conjecture that the theory of the electromagnetic radiation
field cannot be based on nonrelativistic mechanics. Rather, this theory (which is the
subject of electrodynamics) must be formulated within a framework that contains
the speed of light as a natural limit for velocities. Indeed, Maxwell’s theory of elec-
tromagnetic phenomena is invariant under Lorentz transformations. Neutrinos some
of which have nonvanishing though very small masses, can often be treated as being
massless.

We now summarize the findings of this section. The state of a free particle of
rest mass m is characterized by the energy—momentum four-vector p* = (E/c, p),
whose norm is invariant and for which

1

= —2E2—p2=m202.
c

We note that this four-vector is always timelike, or lightlike if m = 0. If, as shown

in Fig.4.7, we plot the time component p° as the ordinate, the space components
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Fig. 4.7 Schematic [
representation of energy and P
momentum of a particle. The
points (p° = E/c, p) lie on
the upper half of the
hyperboloid

Of

(symbolically) as the abscissa, p* is found to lie on a hyperboloid. As the energy
E must be positive, only the upper part of this hyperboloid is relevant. The surface
obtained in this way is said to be the mass shell of the particle with mass m. It
describes either all physically possible states of the free particle, or, alternatively, a
fixed state with energy—momentum p* as observed from all possible inertial systems
of references.

4.9.3 The Lorentz Force

A charged particle traversing external electric and magnetic fields at velocity v expe-
riences the Lorentz force (2.29) or (1.49) that we discussed in the context of nonrel-
ativistic dynamics. Here we wish to derive the corresponding relativistic equation of
motion (4.78) in a covariant formulation.

With respect to an inertial system of reference, where ¥ = (yc, yv)” andd/dt =
yd/dt, the spatial part of (4.78) reads

d d 1
ygpzmyg(yv)zye (E—i—zva) . (4.86)

First we show that its time component follows from (4.86) and is given by
d
my—(yc)=ySE-v. (4.87)
dr c

This is seen as follows. Calculating the scalar product of (4.86) and v /c, its right-hand
side becomes ye/cE - v. Thus, one obtains
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vd d
= myza(yv) = mcyﬂa(yﬁ)

ﬁ
|
&y
<
|

1d ) 1d, 5, ,
mcz E(Vﬁ) _mci a()’ B9,

where we set 8 = v/c. As

2
2 n2 ,3 2
= = —1,
v°B g7
we find

¢ 1d , d

-L-v=mc- —y~  =mcy—

Ye Qa’ V'

which proves (4.87). Next we show that (4.86) and (4.87) can be combined to a
covariant equation of motion, with u = x:

d
mau“ = SF’“’MU . (4.88)

This means that the relativistic form of the Lorentz force is
e
K" = -F"u, . (4.89)
c

Here, F*¥ is a tensor with respect to Lorentz transformations. It is antisymmetric,
F"" = —F" because, with u,u" = const., (4.88) implies that u, F*'u, = 0. In
an arbitrary inertial system it is given by

0 —-E' —E* —E3
E! 0 —-B> B?
E* B 0 —B!
E3 —B?> B! 0

FH = (4.90)

The requirement that F**¥ yield the Lorentz force fixes this tensor uniquely. To prove
this, we note that u, (with a lower index) is u, = g,,u° = (yc, —yv) and work
out the multiplication on the right-hand side of (4.89). This indeed gives (4.86) and
(4.87).

The relativistic Lorentz force has a form that differs from the Newtonian force
of Sect.4.9.1. It is not generated by “boosting” a Newtonian, velocity-independent
force but is the result of applying the tensor (4.90) to the velocity u*. This tensor,
which is antisymmetric, is said to be the tensor of field strenghts. Its time—space and
space—time components are the components of the electric field,

FiO— _FY — gi (4.91a)
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while its space—space components contain the magnetic field according to
F?' = —F'2 = B3 (and cyclic permutations). (4.91b)

The covariant form (4.88) of the equation of motion for a charged particle in elec-
tric and magnetic fields shows that these fields cannot be the space components of
four-vectors. Instead, they are components of a tensor over Minkowski space M*,
as indicated in (4.90) or (4.91). This means, in particular, that electric and magnetic
fields are transformed into each other by special Lorentz transformations. For exam-
ple, a charged particle that is at rest with respect to an observer generates a static
(i.e. time-independent), spherically symmetric electric field. If, on the other hand,
the particle and the observer move at a constant velocity v relative to each other,
the observer will measure both electric and magnetic fields. (See e.g. Jackson 1998,
Sect.11.10.)

4.10 Time Dilatation and Scale Contraction

Suppose we are given a clock that ticks at regular and fixed time intervals At and
that we wish to read from different inertial systems. This idea is meaningful because
precise measurements of time are done by measuring atomic or molecular frequen-
cies and comparing them with reference frequencies. Such frequencies are internal
properties of the atomic or molecular system one is using and do not depend on the
state of motion of the system.

For an observer who sees the clock at rest with respect to his inertial system, two
consecutive ticks are separated by the space—time interval {dx = 0, dr = At}. Using
this data, he calculates the invariant interval of proper time with the result

dr =/ (dr)? — (dx)?/c? = Ar .

Another observer who moves with constant velocity relative to the first observer,
and therefore also relative to the clock, sees that consecutive ticks are separated by
the space—time interval {At', Ax’ = vAt’}. From his data he calculates the invariant
interval of proper time to be

dt’ = /(A2 = (Ax')2/c2 = /1 - B2Ar .

As proper time is Lorentz invariant, we have dt’ = dr. This means that the second
observer (for whom the clock is in motion) sees the clock tick with a longer period,
given by

At

Ny

At = (4.92)
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This is the important phenomenon of time dilatation: for an observer who sees the
clock in motion, it is slower than at rest, i.e. it ticks at time intervals that are dilated by
a factor y. In Example (iii) of Sect. 4.1 we discussed a situation where time dilatation
was actually observed. The experiment quoted there confirms the effect predicted
in (4.92) with the following accuracy: the difference At — At’/y is zero within the
experimental error bar

tOw) = w/y

— -3
T =(0.240.9) x 1072 .

Another, closely related effect of special Lorentz transformations is the scale or
Fitzgerald-Lorentz contraction that we now discuss. It is somewhat more difficult
to describe than time dilatation because the determination of the length of a scale
requires, strictly speaking, the measurement of two space points at the same time. As
such points are separated by a spacelike distance, this cannot be a causal, and hence
physical, measurement. A way out of this problem would be to let two scales of equal
length move towards each other and to compare their positions at the moment they
overlap. Alternatively, we may use the following simple argument.

Suppose there are two landmarks at the space points

x® =(0,0,0) and x® = (L,0,0),

where the coordinates refer to the inertial system K. Because we want to measure
their spatial distance, we ask an observer to make a journey from A to B, as shown
in Fig. 4.8, with constant velocity v = (v, 0, 0), and, of course, v < c. As seen from
Ky he departs from A at time ¢t = 0 and reaches the landmark B at time ¢t = T,
B having moved to C during this time in our space—time diagram (Fig.4.8). In the
case of Galilei transformations, i.e. for nonrelativistic motion, we would conclude
that the distance is

Lo=[x® — x| =Ty .

In the relativistic, Lorentz-invariant world we find a different result. When the traveler
reaches C, his own, comoving clock shows the time T = Ty/y, with y = (1 —
v2/c?)~1/2, Thus, he concludes that the length separating A and B is

L =vT =vTy/y = Lo/y . (4.93)

In other words, the scale AB that moves relative to the traveling observer (with
velocity —v) appears to him contracted by the factor 1/y. This is the phenomenon
of scale contraction, or Fitzgerald—Lorentz contraction.

One easily understands that scales oriented along the 2-axis or the 3-axis, or
any other direction in the (2,3)-plane, remain unchanged and do not appear con-
tracted. Therefore, the phenomenon of scale contraction means, more precisely, that
an extended body that moves relative to an inertial system appears contracted in the
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Fig. 4.8 An observer t
traveling at constant velocity

determines the distance from

Ato B.Hefinds L = Lo/y

direction of its velocity v only. The spatial dimensions perpendicular to v remain
unmodified.

The book by Ellis and Williams (1994) contains an elementary but well illustrated
discussion of time dilatation and scale contraction as well as the apparent paradoxes
of special relativity. Although it was written for laymen, as Ruth Williams told me,
it seems to me that this book is not only entertaining but also useful for the reader
who wishes to get a better feeling for time and space in special relativity.

4.11 More About the Motion of Free Particles

By definition, the state of motion of a free particle is characterized by its relativistic
energy—momentum vector (4.83) being on its mass shell,

p*=E?/c? — p? =m?? . (4.94)

We wish to describe this relativistic motion without external forces by means of the
methods of canonical mechanics. As we are dealing with free motion in a flat space,
the solutions of Hamilton’s variational principle will be just straight lines in the
space—time continuum. Therefore, we assume the action integral (2.27) to be given
by the path integral between two points A and B in space—time, where A and B are
timelike relative to each other:

B
I[x] = K/ ds, with (x® —x*)2>0. (4.95)
A
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As we showed in Sect.2.36, the action integral is closely related to the generating
function S*, which satisfies the equation of Hamilton and Jacobi. Assuming the
solutions to be inserted in (4.95), we have

B
S*=K / ds . (4.96)
A

Here the quantity K is a constant whose dimension is easy to determine: the action
has the dimension (energy x time) and s has the dimension (length). Therefore, K
must have the dimension (energy/velocity), or, equivalently, (mass x velocity). On
the other hand, I or $* must be Lorentz invariant. The only invariant parameters, but
those with dimension, are the rest mass of the particle and the velocity of light. Thus,
up to a sign, K is the product mc. In fact, as we show below, the correct choice is
K = —mec.

With respect to an arbitrary, but fixed, inertial system we have ds = ¢ dt =

V1 —1v%/c%cdt, with v = dx/dz. Thus,

(B (B

1:—mc2/ \/1—v2/c2dtz/ Ldt .
1(A)

£(4)

This yields the (natural form of) the Lagrangian function whose Euler-Lagrange
equations describe relativistic free motion. Expanding this Lagrangian function in
terms of v/c, we find the expected nonrelativistic form

L=—-mc*/1—v2/c2 >~ —mc* + imv*, (4.97)

to which the term —mc? is added. The form (4.97) for the Lagrangian function is
not quite satisfactory because it refers to a fixed inertial system and therefore is not
manifestly invariant. The reason for this is that we introduced a time coordinate. The
time variable, being the time component of a four-vector, is not invariant. If instead
we introduce some other, Lorentz-invariant parameter T (we give it the dimension
of time), then (4.95) reads

1 dxe dx
I = —mc / dr,/ 2, (4.98)
/A dr dr

so that the invariant Lagrangian function reads

dx® dx, ;
Liyy = —mc,| e —mevVx2? (4.99)
dr dr

where % = dx®/dt. One realizes again the %2 must be positive, i.e. that x must be
timelike. The Euler—Lagrange equations that follow from the action (4.98) are
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8Linv d aLinv _
axe  dr 9x*

and hence
d mcx,
dt /%2
Here the momentum canonically conjugate to x¢ is

8Linv ).Ca
= —— = —Mmc—— . 4.100
P 5 mc N ( )

It satisfies the constraint

P —m =0 (4.101)

If we now attempt to construct the Hamiltonian function, following the rules of
Chap. 2, we find that

HZ).Capa—Lim,szI:—).Cz/V).Cz—i-V)ETZ:I =0.

The essential reason the Hamiltonian function vanishes is that the description of
the motion as given here contains a redundant degree of freedom, namely the time
coordinate of x. The dynamics is contained in the constraint (4.101). One also realizes
that the Legendre transformation from L, to H cannot be performed: the condition
for this transformation to exist,

det O Lin, £0
(&) e —— )
axPax«
is not fulfilled. Indeed, calculating the matrix of second derivatives, one obtains

82Linv _ mc .2 ..
aiPoxe | (x|t Bep T Xetp

The following argument shows that the determinant of this matrix vanishes. Define

def .o o
Ay = X"8ap — XoXp .

The homogeneous system of linear equations Agguf = 0 has a nontrivial solution
precisely if det A = 0. Therefore, if we can find a nonvanishing uf # (0,0,0,0)
that is solution of this system, then the determinant of A vanishes. There is indeed
such a solution, namely u? = cx?, because for any x# # 0
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Agpi? = 7%y — ¥y = 0.

For the first time we meet here a Lagrangian system that is not equivalent to a Hamil-

tonian system, in a canonical way. In fact, this is an example for a Lagrangian (or

Hamiltonian) system with constraints whose analysis must be discussed separately.
In the example discussed above, one could proceed as follows. At first one ignores

the constraint (4.101) but introduces it into the Hamiltonian function by means of a

so-called Lagrangian multiplier. With H as given above, we take

H = H+A¥U(p), with W(p) < p? —m2e?;

A denoting the multiplier. The coordinates and momenta satisfy the canonical Poisson
brackets

{xavxﬁ}ZOZ{Pa,Pﬁ}; {pa,xlg}za%'

The canonical equations read
X ={H', x"} = (A, x"}W(p) + M{¥(p), x*}
— )\'{pZ _m2c2’xa} — A{pZ’xa} — kaa ,
p* ={H', p*} = {», p"}¥(p) =0,

where we made use of the constraint W(p) = 0. With p* and x“ being related by
(4.100), we deduce . = —+/x2/2mc. The equation of the motion is the same as
above, p, = 0.

4.12 The Conformal Group

In Sect.4.3 we argued that the laws of nature that apply to massive particles always
involve quantities with dimensions and therefore cannot be scale invariant. As a
consequence, the transformation law (4.23) must hold with condition (4.24) and the
choice ¢ = 1. In a world in which there is only radiation, this restriction does not
apply because radiation fields are mediated by massless particles (quanta). Therefore,
it is interesting to ask about the most general transformations that guarantee the
invariance of the form

2 =0 with z=x4 —xp and xA,xBeM4.

The Poincaré transformations that we had constructed for the case « = 1 certainly
belong to this class. As we learnt in Sect.4.4, the Poincaré transformations form a
group that has 10 parameters. If only the invariance of z> = 0 is required, then there
are two more classes of transformations. These are the dilatations
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x* =Aix* with A eR,

which depend on one parameter and which form a subgroup by themselves. Obvi-
ously, they are linear.

One can show that there is still another class of (nonlinear) transformations that
leave the light cone invariant. They read (see Exercise 4.15)

IR k. £ 5l (4.102)
T4 2(c-x)+ 22 ’

They depend on four real parameters and are said to be special conformal transfor-
mations. They form a subgroup, too: the unit is given by ¢* = 0; the composition of
two transformations of the type (4.102) is again of the same type, because

iz 2
i with o (c, x) = +2(c - x) 4 x?,
o(c,x)
7 __ x2
o(c,x)’
and
e _ X"+ x?dH _ xH 4 x2(c* +d™)
o(d,x’) o(c+d, x)
Finally, the inverse of (4.102) is given by the choice d* = —c**. Thus, one discovers

the conformal group over Minkowski space M*. This group has
10+1+4=15

parameters. It plays an important role in field theories that do not contain any massive
particle.



Chapter 5
Geometric Aspects of Mechanics

In many respects, mechanics carries geometrical structures. This could be felt very
clearly at various places in the first four chapters. The most important examples are
the structures of the space—time continua that support the dynamics of nonrelativistic
and relativistic mechanics, respectively. The formulation of Lagrangian mechanics
over the space of generalized coordinates and their time derivatives, as well as of
Hamilton—Jacobi canonical mechanics over the phase space, reveals strong geomet-
rical features of these manifolds. (Recall, for instance, the symplectic structure of
phase space and Liouville’s theorem.) To what extent mechanics is of geometric
nature is illustrated by the fact that, historically, it gave important impulses to the
development of differential geometry. In turn, the modern formulation of differential
geometry and of some related mathematical disciplines provided the necessary tools
for the treatment of problems in qualitative mechanics that are the topic of present-
day research. This provides another impressive example of cross-fertilization of pure
mathematics and theoretical physics.

In this chapter we show that canonical mechanics quite naturally leads to a descrip-
tion in terms of differential geometric notions. We develop some of the elements of
differential geometry and formulate mechanics by means of this language. For lack of
space, however, this chapter cannot cover all aspects of the mathematical foundations
of mechanics. Instead, it offers an introduction with the primary aim of motivating
the necessity of the geometric language and of developing the elements up to a point
from where the transition to the mathematical literature on mechanics (see the list
of references) should be relatively smooth. This may help to reduce the disparity
between texts written in a more physics-oriented language and the modern math-
ematical literature and thus to encourage the beginner who has to bridge the gap
between the two. At the same time this provides a starting point for catching up with
recent research developments in modern mechanics.

As afinal remark, we note that studying the geometric structure of mechanics, over
the last decades, has become important far beyond this discipline. Indeed, we know
today that all fundamental interactions of nature carry strong geometric features.
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Once again, mechanics is the door to, and basis of, all of theoretical physics. In
studying these geometric aspects of the fundamental interactions, we will, at times,
turn back to mechanics where many of the essential building blocks are developed
in a concrete and well understood framework.

5.1 Manifolds of Generalized Coordinates

In Sect.2.11 we showed that every diffeomorphic mapping of coordinates {g} onto
new coordinates {¢'}

gi(},i+%

ot

(5.1)

M-
|

G:lgy g} qi =81 1), q=

leaves the equations of motion form invariant. This means, except for purely practical
aspects, any choice of a set of generalized coordinates {g} is as good as any other
that is related to the first in a one-to-one and differentiable manner. The physical
system one wishes to describe is independent of the specific choice one makes,
or, more loosely speaking, “the physics is the same”, no matter which coordinates
one employs. It is obvious that the transformation must be uniquely invertible, or
one-to-one, as one should not loose information in either direction. The number of
independent degrees of freedom must be the same. Similarly, it is meaningful to
require the mapping to be differentiable because we do not want to destroy or to
change the differential structure of the equations of motion.

Any such choice of coordinates provides a possible, specific realization of the
mechanical system. Of course, from a practical point of view, there are appropriate
and inappropriate choices, in the sense that the coordinates may be optimally adapted
to the problem because they contain as many cyclic coordinates as possible, or, on
the contrary, may be such that they inhibit the solution of the equations of motion.
This comment concerns the actual solution of the equations of motion but not the
structure of the coordinate manifold into which the mechanical system is embedded.

In mechanics a set of f generalized coordinates arises by constraining an initial
set of degrees of freedom by a number of independent, holonomic constraints. For
instance, the coordinates of a system of N particles that are initially elements of an
R3N are constrained by A = 3N — f equations, in such a way that the f independent,
generalized coordinates, in general, are not elements of an R/. Let us recall two
examples for the sake of illustration.

(1) The plane mathematical pendulum that we studied in Sects. 1.17.2 and 2.30,
Example (ii) has one degree of freedom. The natural choice for a generalized coordi-
nate is the angle measuring the deviation from the vertical, g = ¢. As this coordinate
takes values in the interval [—m, 4], with ¢ = 7 and ¢ = —7 to be identified, it
is an element of the unit circle S'. The coordinate manifold is the S', independent
of how we choose ¢g. (For instance, if we choose the arc ¢ = s = ¢, s is defined on
the circle with radius /. This circle is topologically equivalent to S'.)
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(i1) The coordinate manifold of the rigid body (Chap. 3) provides another example.
Three of the six generalized coordinates describe the unconstrained motion of the
center of mass and are therefore elements of a space R3. The remaining three describe
the spatial orientation of the top with respect to a system of reference whose axes have
fixed directions in space. They are angles and belong to the manifold of the rotation
group SO(3). As we learnt earlier, this manifold can be parametrized in different
ways: for instance, by the direction about which the rotation takes place and by the
angle of rotation (72, @), or, alternatively, by three Eulerian angles (6, 6>, 05), using
one or the other of the definitions given in Sects. 3.9 and 3.10. We shall analyze the
structure of this manifold in more detail below, in Sect.5.2.3. Already at this point it
seems plausible that it will turn out to be rather different from a three-dimensional
Euclidean space and that we shall need further tools of geometry for its description.

Actual solutions of the equations of motion q(t 1o, qo) =&, (qo) (cf. Sect. 1.20)
are curves in the manifold Q of coordinates. In this sense Q is the physical space
that carries the real motion. However, in order to set up the equations of motion
and to construct their solutions, we also need the time derivatives dg/df = ¢ of
the coordinates as well as Lagrangian functions L(g, g, 1) over the space M of
the ¢ and the g. The Lagrangian function is to be inserted into the action integral
1 [q], functional of q (1), from which differential equations of second order in time
follow via Hamilton’s variational principle (or some other extremum principle). For
example, for f = 1 the physical solutions can be constructed piecewise if one knows
the velocity field. Figure5.1 shows the example of the harmonic oscillator and its
velocity field (cf. also Sect.1.17.1). More generally, this means that we shall have
to study vector fields over M, and hence the tangent spaces T Q of the manifold Q,
for all elements x of Q.

A similar remark applies to the case where, instead of the variables (¢, ¢), we
wish to make use of the phase-space variables (¢, p). We recall that p was defined
to be the partial derivative of the Lagrangian function by q,

Fig. 5.1 Velocity field in the g
space of coordinates and

their time derivatives for the

one-dimensional harmonic

oscillator
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Fig. 5.2 Physical motion
takes place in the coordinate
manifold Q. The Lagrangian
function and the Hamiltonian
function are defined on the
tangent and cotangent
spaces, respectively

difBL
Pr= g

(5.2)

L being a (scalar) function on the space of the ¢ and the ¢ (it maps this space onto
the real numbers), i.e. on the union of tangent sbaces T Q, definition (5.2) leads to
the corresponding dual spaces T, Q, the so-called cotangent spaces.

These remarks suggest detaching the mechanical system one is considering from
a specific choice of generalized coordinates {g} and to choose a more abstract formu-
lation by defining and describing the manifold Q of physical motions in a coordinate-
free language. The choice of sets of coordinates {g} or {g'} is equivalent to describing
Q in terms of local coordinates, or, as one also sa~ys, in terms of charts. Furthermore,
one is led to study various geometric objects living on the manifold Q, as well as
on its tangent spaces 7, Q and cotangent spaces 7. Q. Examples are Lagrangian
functions that are defined on the tangent spaces and Hamiltonian functions that are
defined on the cotangent spaces, both of which give real numbers.

Figure 5.2 shows a first sketch of these interrelationships. As we shall learn below,
there are many more geometric objects on manifolds other than functions (which are
mappings to the reals). An example that we met earlier is vector fields such as the
velocity field of a flow in phase space. In order to awake the reader’s curiosity, we
just remind him of the Poisson brackets, defined on 77 Q, and of the volume form
that appears in Liouville’s theorem.

An example of a smooth manifold, well known from linear algebra and from
analysis, is provided by the n-dimensional Euclidean space R”. However, Euclidean
spaces are not sufficient to describe general and nontrivial mechanical systems, as
is demonstrated by the examples of the coordinate manifolds of the plane pendulum
and of the rigid body. As we shall see, the union of all tangent spaces

def

TQ ={T:Q|x € 0} (5.3)
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and the union of all cotangent spaces

def

T"Q ={T;Qlx € 0} (5.4)

are smooth manifolds. The former is said to be the tangent bundle, the latter the
cotangent bundle. Suppose then that we are given a conservative mechanical system,
or a system with some symmetry. The set of all solutions lie on hypersurfaces in 2 f -
dimensional space that belong to fixed values of the energy or are characterized by
the conserved quantities pertaining to the symmetry. In general, these hypersurfaces
are smooth manifolds, too, but cannot always be embedded in R2/. Thus, we must
learn to describe such physical manifolds by mapping them, at least locally, onto
Euclidean spaces of the same dimension. Or, when expressed in a more pictorial
way, whatever happens on the manifold M is projected onto a set of charts, each of
which represents a local neighborhood of M. If one knows how to join neighboring
charts and if one has at one’s disposal a complete set of charts, then one obtains a
true image of the whole manifold, however complicated it may look globally.

The following Sects.5.2-5.4 serve to define and discuss the notions sketched
above and to illustrate them by means of a number of examples. From Sect.5.5 on
we return to mechanics by formulating it in terms of a geometric language, preparing
the ground for new insights and results. In what follows (Sects. 5.2-5.4) we shall use
the following notation:

Q denotes the manifold of generalized coordinates; its dimension is equal to f,
the number of degrees of freedom of the mechanical system one is considering.

M  denotes a general smooth (and finite dimensional) manifold of dimension
dim M = n.

5.2 Differentiable Manifolds

5.2.1 The Euclidean Space R"

The definition of a differentiable manifold relates directly to our knowledge of the
n-dimensional Euclidean space R". This space is a fopological space. This means
that it can be covered by means of a set of open neighborhoods that fulfills some quite
natural conditions. For any two distinct points of R” one can define neighborhoods of
these points that do not overlap: one says the R" is a Hausdorff space. Furthermore,
one can always find a collection B of open sets such that every open subset of R” is
represented as the union of elements of B. Such a collection B is said to be a basis.
It is even possible to construct a countable set of neighborhoods {U;} of any point p
of R” such that for any neighborhood U of p there is an i for which U; is contained
in U. These {U;} can also be made a basis, in the sense defined above: thus the space
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R" certainly has a countable basis. All this is summarized by the statement that R”
is a topological, Hausdorff space with a countable basis.

It is precisely these requirements that are incorporated in the definition of a mani-
fold. Even if they look somewhat complicated at first sight, these properties are very
natural in all important branches of mechanics. Therefore, as a physicist one has a
tendency to take them for granted and to assume tacitly that the spaces and manifolds
of mechanics have these properties. The reader who wishes to define matters very
precisely from the start is consequently advised to consult, for example, the mathe-
matical literature quoted in the Appendix and to study the elements of topology and
set theory.

The space R"” has more structure than that. It is an n-dimensional real vec-
tor space on which there exists a natural inner product and hence a norm. If
p=(pi,p2,--.,pn) and g = (q1,q2, - .., gn) are two elements of R”, the inner
product and the norm are defined by

def . def
p-g= D pigi and |p| = pp, (5.5)
i=1
respectively. Thus R” is a metric space. The distance function
def
d(p.q) = |p—ql (5.6)
following from (5.5) has all properties that a metric should have: it is nondegenerate,

i.e. d(p, q) vanishes if and only if p = ¢g; it is symmetric d(q, p) = d(p, g); and it
obeys Schwarz’ inequality

d(p,r) =d(p.q)+d(q.r) .
Finally, we know that on R” one can define smooth functions,

ffUCR'"- R,
which map open subsets U of R" onto the real numbers. The smoothness, or C*
property, of a function f means that at every point # € U all mixed partial deriva-

tives of f exist and are continuous. As an example consider the function f’ which
associates to every element p € R” its ith coordinate p;, as shown in Fig.5.3,

fi:R”—>R:p=(p1,...,p,-,...,pn)r—>p,-, i=1,2,...,n. 5.7)

These functions f7(p) = p; are said to be the natural coordinate functions of R".
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Fig. 5.3 The coordinate .
functions f and f/ assign IR
to each point p of R" its
coordinates p' and p/,

: o e P
respectively ]

Fig. 5.4 The chart mapping
¢ maps an open domain U of
the manifold M
homeomorphically onto a
domain ¢(U) of R", where

n =dim M

R" (¢,U)

L)

[
l

5.2.2 Smooth or Differentiable Manifolds

Physical manifolds like the ones we sketched in Sect.5.1 often are not Euclidean
spaces but topological spaces (Hausdorff with countable basis) that carry differen-
tiable structures. Qualitatively speaking, they resemble Euclidean spaces locally, i.e.
open subsets of them can be mapped onto Euclidean spaces and these “patches” can
be joined like the charts of an atlas.

Let M be such a topological space and let its dimension be dim M = n. By
definition, a chart or local coordinate system on M is a homeomorphism,

p:UCM— oU)CR", (5.8)
of an open set U of M onto an open set ¢(U) of R”, in the way sketched in Fig. 5.4.

Indeed, applying the mapping (5.8) followed by the coordinate functions (5.7) yields
a coordinate representation in R”
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IR" R"

? @ (U)

Fig. 5.5 Two overlapping, open domains U and V on M, by the mappings ¢ and v, respectively,
are mapped onto the open domains ¢(U) and v (V') in two copies of R”. Their region of overlap on
M is mapped onto the hatched areas. The latter are related diffeomorphically through the transition
mappings (¢ o ) or (Y 0 9™ 1)

d(v)

AN

xi=flog or g(p)=('(p),....x"(p) eR" (5.9)

for every point p € U C M. This provides the possibility of defining a diversity of
geometrical objects on U C M (i.e. locally on the manifold M), such as curves,
vector fields, etc. Note, however, that this will not be enough, in general: since these
objects are to represent physical quantities, one wishes to study them, if possible,
on the whole of M. Furthermore, relationships between physical quantities must be
independent of the choice of local coordinate systems (one says that the physical
equations are covariant). This leads rather naturally to the following construction.

Cover the manifold M by means of open subsets U, V, W, ..., such that every
point p € M is contained in at least one of them. For every subset U, V, ... choose
a homeomorphism ¢, ¥, .. ., respectively, such that U is mapped onto ¢(U) in R",
V onto ¥ (V) in R”, etc. If U and V overlap partially on M, then also their images
@(U) and ¥ (V) in R" will overlap partially, as shown in Fig.5.5. The composed
mapping ¢ o ¥ ! and its inverse ¥ o ¢! relate the corresponding portions of the
images ¢(U) and (V) (the hatched areas in Fig.5.5) and therefore map an open
subset of one R” onto an open subset of another R”. If these mappings (¢ o ¥ ~')
and (¢ o ¢~ 1) are smooth, the two charts, or coordinate systems, (¢, U) and (¥, V)
are said to have smooth overlap. Obviously, this change of chart allows one to join
U and V like two patches of M. Assuming this condition of smooth overlap to be
trivially true, in the case where U and V do not overlap at all, provides the possibility
of describing the entire manifold M by means of an atlas of charts.

An atlas is a collection of charts on the manifold M such that

Al. Every point of M is contained in the domain of at least one chart.
A2. Any pair of two charts overlap smoothly (in the sense defined above).

Before we go on let us ask what we have gained so far. Given such an atlas, we
can differentiate geometric objects defined on M. This is done in the following way.
One projects the objects onto the charts of the atlas and differentiates their images,
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which are now contained in spaces R”, using the well-known rules of analysis. As
all charts of the atlas are related diffeomorphically, this procedure extends to the
whole of M. In this sense an atlas defines a differentiable structure on the manifold
M. In other words, with an atlas at hand, it is possible to introduce a mathematically
consistent calculus on the manifold M.

There remains a technical difficulty, which, however, can be resolved easily. With
the definition given above, it may happen that two formally different atlases yield
the same calculus on M. In order to eliminate this possibility one adds the following
to definitions Al and A2:

A3. Each chart that has smooth overlap with all other charts shall be contained in the
atlas.

In this case the atlas is said to be complete (or maximal). It is denoted by A. This
completes the framework we need for the description of physical relationships and
physical laws on spaces that are not Euclidean R” spaces. The objects, defined on
the manifold M, can be visualized by mapping them onto charts. In this way, they
can be subject to a consistent calculus as we know it from analysis in R”.

In summary, the topological structure is given by the definition of the manifold M,
equipped with an atlas; the differential structure on M is fixed by giving a complete,
differentiable atlas A of charts on M. Thus, a smooth, or differentiable, manifold is
defined by the pair (M, A). We remark, in passing, that there are manifolds on which
there exist different differentiable structures that are not equivalent.

5.2.3 Examples of Smooth Manifolds

Let us consider a few examples of differentiable manifolds of relevance for mechan-
ics.

(1) The space R" is a differentiable manifold. The coordinate functions
(f', f%, ..., f™ induce the identical mapping

id: R" - R"

of R" onto itself. Therefore they yield an atlas on R” that contains a single chart.
To make it a complete atlas, we must add the set ¥ of all charts on R” compatible
with the identity id. These are the diffeomorphisms @ : U — & (U) C R"” on R".
The differentiable structure obtained in this way is said to be canonical.

(i) A sphere of radius R in R?. Consider the sphere

S2E = x% ) e Rx? = (¢ + ()2 + (1) = RY} .
We may (but need not) think of it as being embedded in a space R*. An atlas that

describes this two-dimensional smooth manifold in spaces R? must contain at least
two charts. Here we wish to construct an example for them. Call the points
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Fig. 5.6 One needs at least
two charts for the description
of the surface of a sphere.
Here these charts are
obtained by stereographic
projection from the north and
south poles, respectively

N=(0,0,R), §=(0,0,-R)
the north pole and south pole, respectively. On the sphere Si define the open subsets

U:S2— (N} and V& $2_(s5}.

Define the mappings ¢ : U — R?, v : V — R? onto the charts as follows: ¢ projects
the domain U from the north pole onto the plane x> = 0 through the equator, while
Y projects the domain V from the south pole onto the same plane (more precisely,
a copy thereof), cf. Fig.5.6. If p = (x!, x?, x) is a point of U on the sphere, its
projection is given by

(xl,xz).

¢p) =53

Taking the same point to be an element of the domain V, we see that its projection
onto R? is given by

w(p) = R+x3<x1,x2>.

Let us then verify that (¥ o ¢~!) is a diffeomorphism on the intersection of the
domains U and V. We have

pUNV)=R>—{0}=wWUNV).

Let y = (y', y?) be a point on the plane through the equator without origin
y € R? — {0}. Its pre-image on the manifold is

p=¢ () =0G"=n" =000,
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where A = (R — x®)/R, x3 being obtained from the condition A’u? + (x3)?> = R?,
and where we have set u? = (yl)2 + (y2)2. From this one finds

, u?—R?
X = —
u2+ R2

and A = 2R? / (u? + R?), from which one obtains, in turn,
p=0¢"'(»= ;(2R2y1 2R*y*, R(u® — R?))
u’>+ R? ’ ’ :

Applying the mapping ¥ to this point and taking account of the relation
R/(R + x?) = W? + R2)/2u2, we find on R? — {0}

R2
-1 _ 1 .2
Yoo (y)——uz(y Y-

Clearly, this is a diffeomorphism from R? — {0} onto R? — {0}. The origin, which
is the projection of the south pole by the first mapping, and is the projection of the
north pole by the second, must be excluded. Hence the necessity of two charts.

(iii) The torus 7™. m-dimensional tori are the natural manifolds of integrable
mechanical systems (see Sect.2.37.2). The torus 7™ is defined as the product of m
copies of the unit circle,

7" =8"x S" x---x 8" (m factors) .

For m = 2, for instance, it has the shape of the inner tube of a bicycle. The first S'
goes around the tube, the second describes its cross section. The torus 72 is also
homeomorphic to the space obtained from the square {x, y|0 <x < 1,0 <y < 1}
by pairwise identification of the points (0, y) and (1, y), and (x, 0) and (x, 1). An
atlas for T2 is provided, for example, by three charts defined as follows:

o, B = @@, eP) e T2, k=1,2,3,

where o, 1 € (0,27), az, B2 € (—7m, +7), a3, B3 € (—7/2,37/2).

Readers are invited to make a sketch of the torus and to convince themselves
thereby that 72 is indeed covered completely by the charts given above.

(iv) The parameter manifold of the rotation group SO(3), which is the essential
part of the physical coordinate manifold of the rigid body, is a differentiable manifold.
Here we wish to describe it in somewhat more detail. For this purpose let us first
consider the group SU(2) of unitary (complex) 2 x 2 matrices U with determinant 1:

{U complex 2 x 2 matrices [U'U=1, detU=1}.
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These matrices form a group, the unitary unimodular group in two complex dimen-
sions. U' denotes the complex conjugate of the transposed matrix, (U") ,, = (U,,)*.
It is not difficult to convince oneself that any such matrix can be written as follows:

_ a b . 2 2
U_(—b* a*) provided |a|”+ |p|"=1.

With the complex numbers a and b written as a = x' 4 ix? and b = x> + ix*, the
condition det U = 1 becomes

(xl)Z + (x2)2 + (x3)2 + (x4)2 =1.
If the x' are interpreted as coordinates in a space R*, this condition describes the unit

sphere S* embedded in that space. Let us parametrize the coordinates by means of
angles u, v and w, as follows:

x!' = cosu cosv,

x? =cosu sinv u €[0,7/2],
x3 =sinu cosw v, w € [0, 27),
x* =sinu sinw.

such as to fulfill the condition on their squares automatically. Clearly, the sphere S*
is a smooth manifold. Every closed curve on it can be contracted to a point, so it is
simply connected. We now wish to work out its relation to SO(3).

For this purpose we return to the representation of rotation matrices R € SO(3) by
means of Eulerian angles, as defined in (3.35) of Sect. 3.9. Inserting the expressions
(2.71) for the generators and multiplying the three matrices in (3.35), one obtains

cosy cosffcosa cosycosfBsinae —cosy sinf

—sin y sin« +sin y cos«
R(o, B,y) = | —siny cos Bcosa —siny cos Bsina siny sin 8
—cos y sinw +cos y cos o
sin B cos o sin 8 sin o cos B

In the next step we define the following map from S° onto SO(3):
f:8 = S0@3)
by

v + w (mod 2)
2u
v — w (mod 2)

14
B
o
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As o and y take values in [0, 27) and B8 takes values in [0, 7], the mapping is
surjective. We note the following relations between matrix elements of R and the
angles u, v, w:

R33 = cos(Ru) ,

R31 = ,/1 - R%x COS(U - w) s R13 = —mcos(v + w) s
R32: /1—R§3Sin(v—w), R23=‘/1—R§3Sin(U+W).

(The remaining entries, not shown here, are easily derived.)

Consider a point x € S3, x(u, v, w) and its antipodal point x’ = —x, which
is obtained by the choice of parameters u’ = u, v/ = v + w(mod 27), w = w +
7t (mod 27). These two points have the same image in SO(3) because Yy’ = v’ + w’ =
v+ w + 27 (mod 27) = y 4 27 (mod 27); similarly, ' = o 4 27 (mod 27 ), while
B’ = B. Thus, the manifold of SO(3) is the image of S3, but x and —x are mapped
onto the same element of SO(3). In other words, the manifold of the rotation group
is % with antipodal points identified. If opposite points on the sphere are to be iden-
tified then there are two distinct classes of closed curves: (i) those which return to
the same point and which can be contracted to a point, and (ii) those which start in
x and end in —x and which cannot be contracted to a point. This is equivalent to
saying that the manifold of SO(3) is doubly connected.

As a side remark we point out that we have touched here on a close relationship
between the groups SU(2) and SO(3) that will turn out to be important in describ-
ing intrinsic angular momentum (spin) in quantum mechanics. The manifold of the
former is the (simply connected) unit sphere S°.

5.3 Geometrical Objects on Manifolds

Next, let us introduce various geometrical objects that are defined on smooth mani-
folds and are of relevance for mechanics. There are many examples: functions such
as the Lagrangian and Hamiltonian functions, curves on manifolds such as solution
curves of equations of motion, vector fields such as the velocity field of a given
dynamical system, forms such as the volume form that appears in Liouville’s theo-
rem, and many more.

We start with a rather general notion: mappings from a smooth manifold M with
atlas A onto another manifold N with atlas 3 (where N may be identical with M):

F:M,A) — (N,B). (5.10)

The point p, which is contained in an open subset U of M, is mapped onto the point
F(p) in N, which, of course, is contained in the image F (U) of U.

Let m and n be the dimensions of M and N, respectively. Assume that (¢, U) is
a chart from the atlas A, and (¥, V) a chart from B such that F (U) is contained in
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V. The following composition is then a mapping between the Euclidean spaces R™
and R":

VoFogp i) CcR" — y(V)CR". (5.11)

At this level it is meaningful to ask the question whether this mapping is contin-
uous or even differentiable. This suggests the following definition: the mapping F
(5.10) is said to be smooth, or differentiable, if the mapping (5.11) has this property
for every point p € U C M, every chart (¢, U) € A, and every chart (¢, V) € B,
the image F(U) being contained in V.

As we shall soon see, we have already met mappings of the kind (5.10) on several
occasions in earlier chapters, although we did not formulate them in this compact
and general manner. This may be clearer if we notice the following special cases
of (5.10). (i) The manifold from which F starts is the one-dimensional Euclid-
ean space (R, ), e.g. the time axis R,. The chart mapping ¢ is then simply the
identity on R. In this case the mapping F (5.10) is a smooth curve on the mani-
fold (N, B), e.g. physical orbits. (ii) The manifold to which F leads is R, i.e. now
the chart mapping ¥ is the identity. In this case F is a smooth function on M,
an example being provided by the Lagrangian function. (iii) Initial and final man-
ifolds are identical. This is the case, for example, for F being a diffeomorphism
of M.

5.3.1 Functions and Curves on Manifolds

A smooth function on a manifold M is a mapping from M to the real numbers,
f:M—->R:peMw— f(p)eR, (5.12)

which is differentiable, in the sense defined above.

An example is provided by the Hamiltonian function H, which assigns a real
number to each point of phase space IP, assuming H to be independent of time. If H
has an explicit time dependence, it assigns a real number to each point of P x R;,
the direct product of phase space and time axis. As another example consider the
charts introduced in Sect. 5.2.2. The mapping x' = f o ¢ of (5.9), with the function
f" as defined in (5.7), is a function on M. To each point p € U C M it assigns its
ith coordinate in the chart (¢, U).

The set of all smooth functions on M is denoted by F(M).

In Euclidean space R” the notion of a smooth curve y () is a familiar one. When
understood as a mapping, it leads from an open interval / of the real axis R (this can
be the time axis RR,, for instance) to the R”,

y: ICR—->R":1el— y(r)eR". (5.13a)
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Here, the interval may start at —oo and/or may end at +oo. If {¢;} is a basis of R”,
then y () has the decomposition

y(@ =Y vy (e . (5.13b)
i=1

On an arbitrary smooth manifold N smooth curves are defined following the general
case (5.10), by considering their image in local charts as in (5.11),

y: ICR—>N:tel— y(t)eN. (5.14)

Let (i, V) be a chart on N. For the portion of the curve contained in V, the com-
position ¥ o y is a smooth curve in R" (take (5.11) with ¢ = id). As N is equipped
with a complete atlas, we can follow the curve everywhere on N, by following it
from one chart to the next.

We wish to add two remarks concerning curves and functions that are important
for the sequel. For the sake of simplicity we return to the simpler case (5.13a) of
curves on Euclidean space R”".

(1) Smooth curves are often obtained as solutions of first-order differential equa-
tions. Let 7y be contained in the interval 7, and let pg = y(7p) € R" be the point on
the curve reached at “time” tj. If we take the derivative

_ dy(7)

r@=—g-"":

then

n
. . def
y () = DV (10)er = vy,

i=1

is the vector tangent to the curve in pg. Now, suppose we draw all tangent vectors v, in
all points p € y (7) of the curve. Clearly, this reminds us of the stepwise construction
of solutions of mechanical equations of motion. However, we need more than that:
the tangent vectors must be known in all points of an open domain in R", not just
along one curve y (7). Furthermore, the field of vectors obtained in this way must
be smooth everywhere where it is defined, not just along the curve. y () is then one
representative of a set of solutions of the first-order differential equation

&(T) = Vo) - (5.15)

As an example, consider a mechanical system with one degree of freedom: the
one-dimensional harmonic oscillator. From Sect. 1.17.1, let

q 1
acz( ) H=-(p"+4.
p 2
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Fig. 5.7 The vectors tangent
to all possible smooth curves
through a given point y of
R" span a vector space, the
tangent space TyR"

The equation of motion reads ¥ = JH , = Xy, with

_(9H/p\_( P
= (—GH/BQ) N (—Q)'

x is a point in the two-dimensional manifold N = R?; the vector field Xy is said to
be the Hamiltonian vector field. The solutions of the differential equation X = Xy
(5.15)

—qo sin(t — t9) + po cos(T — 7o)

H(T) = rn(Fo) = ( qo cos(t — ) + po sin(t — To))

are curves on N, each of which is fixed by the initial condition

x(19) = %o = (‘”’).
Po

(ii) Let y be an arbitrary, but fixed, point of R”. We consider the set 7,R" of all
tangent vectors at the point (i.e. vectors that are tangent to all possible curves going
through y), as shown in Fig.5.7. As one can add these vectors and can multiply them
with real numbers, they form a real vector space. (In fact, one can show that this
vector space T,R" is isomorphic to R”", the manifold that we consider. Therefore, in
this case, we are justified in drawing the vectors v in the same space as the curves
themselves, see Fig.5.7.)

Consider a smooth function f(x) on R" (or on some neighborhood of the point y)
and a vector v = > v'e; of TyR", and take the derivative of f(x) at the point y, in
the direction of the tangent vector v. This is given by

YRR

5.16
2.V gy (5.16)

x=y

This directional derivative assigns to each function f(x) € F(R") a real number
given by (5.16),

v:FR") > R: f—v(f).
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This derivative has the following properties: if f(x) and g(x) are two smooth func-
tions on R”, and a and b two real numbers, then

V1. v(af +bg) = av(f) +bv(g) (R — linearity) , (5.17)
V2. v(fg) = v(H)gy) + f(Nv(g) (Leibniz'rule) . (5.18)

5.3.2 Tangent Vectors on a Smooth Manifold

Thinking of a smooth, two-dimensional manifold M as a surface embedded in R3,
we can see that the tangent vectors at the point y of M are contained in the plane
through y tangent to M. This tangent space Ty, M is the Euclidean space R?. This is
true more generally. Let M be an n-dimensional hypersurface embedded in R"*!,
T, M is a vector space of dimension 7, isomorphic to R". Any element of 7, M can
be used to form a directional derivative of functions on M. These derivatives have
properties V1 and V2.

In the case of an arbitrary, abstractly defined, smooth manifold, it is precisely
these properties which are used in the definition of tangent vectors: a tangent vector
v in the point p € M is a real-valued function

v:F(M)— R (5.19)
that has properties V1 and V2, i.e.
v(af +bg) = av(f) +bv(g) , (VD)

v(fe) =v(fg(p) + f(pv(g) . (V2)

where f, g € F(M) and a, b € R. The second property, in particular, shows that v
acts like a derivative. This is what we expect from the concrete example of Euclidean
space R". The space T, M of all tangent vectors in p € M is a vector space over
R, provided addition of vectors and multiplication with real numbers are defined as
usual, viz.

(w1 +v2)(f) = vi(f) +v2(f)
(av)(f) = av(f), (5.20)

for all functions f on M and all real numbers a. This vector space has the same
dimension as M.

In general, one cannot take a partial derivative of a function g € (M) on M
itself. However, this is possible for the image of g in local charts. Let (¢, U) be a
chart, p € U apointon M, and g a smooth function on (i.e. the i -th partial derivative)
M. The derivative of g o ¢! with respect to the natural coordinate function f? (5.7),
which is taken at the image ¢(p) in R”", is well defined. It is
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e‘a o -1
w280 ) (i) . (5.21)

0; .
, of

0
(§) =5
p X

The functions note that x was defined in (5.9)

3
FM)—>R:gm 5| | i=1,2.. ..n, (5.22)
p axlp

xt

p

have properties V1 and V2 and hence are tangent vectors to M, atthe point p € U C M.
The objects defined in (5.22) are useful in two respects. Firstly, they are used

to define partial derivatives of smooth functions g on M, by projecting g onto a

Euclidean space by means of local charts. Secondly, one can show that the vectors

81'1)7 82'}77 R 8n|p

form a basis of the tangent space T, M (see e.g. O’Neill 1983), so that any vector of
T, M has the representation

v="> v(x)dl, (5.23)
i=1

in local charts, x’ being the coordinates defined in (5.9).

We now summarize our findings. A vector space T), M is pinned to each point p
of a smooth, but otherwise arbitrary, manifold M. It has the same dimension as M
and its elements are the tangent vectors to M at the point p. If (¢, U) is a chart on
M that contains p, the vectors 9;|,,i =1, ..., n, defined in (5.22), form a basis of
T,M,i.e. they are linearly independent and any vector v of 7, M can be represented
as a linear combination of them.

5.3.3 The Tangent Bundle of a Manifold

Allpoints p, g, r, . .. of asmooth manifold M possess their own tangent spaces 7}, M,
T,M,T.M, ... Although these spaces all have the same dimension they are different
from each other. For this reason one usually draws them, symbolically, as shown in
Fig. 5.8, in such a way that they do not intersect. (Had they been like tangents to M,
they would seem to intersect.)

One can show, without too much difficulty, that the (disjoint) union of all tangent
spaces

™™ME | 1,M (5.24)

peM
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Fig. 5.8 The set of all
tangent spaces at the points
P.q, - ..of the manifold M,
is the tangent bundle 7 M of
M

is again a smooth manifold. This manifold 7 M is said to be the fangent bundle, M
being the base space and the tangent spaces T, M being the fibres. If M has dimension
dim M = n, the tangent bundle has dimension

dmTM =2n .

Figure 5.8 exhibits symbolically this fibre structure of 7M. Very much like the basis
itself, the manifold 7 M is described by means of local charts and by means of a
complete atlas of charts. In fact, the differentiable structure on M induces in a natural
way a differentiable structure on 7' M. Without going into the precise definitions at this
point, qualitatively we may say this: each chart (¢, U) is a homeomorphic mapping

from a neighborhood U of M onto the R". Consider then TU &y pev TpyM, ie.
the open subset 77U of T M, which is defined once U is given. The mapping ¢ from
U to R" induces a mapping of the tangent vectors in p onto tangent vectors in ¢(p),
the image of p ;

To ¥ TU = o(U) xR".
This mapping is linear and it has all the properties of a chart (we do not show
this here, but refer to Sect.5.4.1 below, which gives the definition of the tangent
mapping). As a result, each chart (¢, U) from the atlas for M induces a chart
(Te, TU) for T M. This chart is said to be the bundle chart associated with (¢, U).
A point of T M is characterized by two entries

(p,v) with peM and veT,M,

i.e. by the base point p of the fibre 7, M and by the vector v, an element of this vector
space. Furthermore, there is a natural projection from T M to the base space M,

7:TM—>M:(p,v)—~p, peMveTl,M. (5.25)

To each element in the fibre T7), M it assigns its base point p.
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Lagrangian mechanics provides a particularly beautiful example for the concept
of the tangent bundle. Let Q be the manifold of physical motions of a mechani-
cal system and let u be a point of Q, which is represented by coordinates {g} in
local charts. Consider all possible smooth curves y (t) going through this point,
with the orbit parameter always being chosen such that u = y(0). The tangent vec-
tors v, = y(0), which appear as {g} in charts, span the vector space T,Q. The
Lagrangian function of an autonomous system is defined locally as a function
L(q,q), where g is an arbitrary point in the physical manifold Q, while g is the
set of all tangent vectors at that point, both being written in local charts of TQ.
It is then clear that the Lagrangian function is a function on the tangent bundle,
as anticipated in Fig.5.2,

L:TQO—R.

It is defined in points (p, v) of the tangent bundle 70, i.e. locally it is a function of
the generalized coordinates ¢ and the velocities ¢. It is the postulate of Hamilton’s
principle that determines the physical orbits g () = @ (t) via differential equations
obtained by means of the Lagrangian function. We return to this in Sect.5.5.

As a final remark in this subsection, we point out that 7 M locally has the product
structure M x R". However, its global structure can be more complicated.

5.3.4 Vector Fields on Smooth Manifolds

Vector fields of the kind sketched in Fig.5.9 are met everywhere in physics. For
a physicist they are examples of an intuitively familiar concept: flow fields of a
liquid, velocity fields of swarms of particles, force fields, or more specifically within
canonical mechanics, Hamiltonian vector fields. In the preceding two sections we
considered all possible tangent vectors v, € T, M in a point p of M. The concept of
a vector field concerns something else: it is a prescription that assigns to each point
p of M precisely one tangent vector V,, taken from T, M." For example, given the
stationary flow of a liquid in a vessel, the flow velocity at each point inside the vessel
is uniquely determined. At the same time it is an element of the tangent space that
belongs to this point. In other words, at every point the flow field chooses a specific
vector from the vector space pertaining to that point.

These general considerations are cast into a precise form by the following defin-
ition.

Tn what follows we shall often call V). i.e. the restriction of the vector field to T), M, a representative
of the vector field.
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Fig. 5.9 Sketch of a smooth
vector field on the manifold
M

VF1. A vector field V on the smooth manifold M is a function that assigns to
every point p of M a specific tangent vector V, taken from the vector space
T,M:

V:M—>TM:peMw—V,eT,M. (5.26)

According to (5.19) tangent vectors are applied to smooth functions on M and
yield their generalized directional derivatives. In a similar fashion, vector fields
act on smooth functions,

V.:FM)— FM),

by the following rule: at every point p € M the representative V), of the vector
field V is applied to the function, viz.

def

VHp) =Vp(f), [feFM). (5.27)

This rule allows us to define smoothness of vector fields, as follows.
VF2. The vector field V is said to be smooth if V f is smooth, for all smooth
functions f on M.

The vector field V leads from M to T M by assigning to each p € M the element
(p, V,)of T M. Applying the projection 7, as defined in (5.25), to this element yields
the identity on M. Any such mapping

o.M—>TM

that has the property m o 0 = idy, is said to be a section in T M. Hence, smooth
vector fields are differentiable sections.

In achart (¢, U), i.e. in local coordinates, a vector field can be represented locally
by means of coordinate vector fields, or base fields. For every point p of an open
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neighborhood U C M, the base field 9;],, according to (5.22), is defined as a vector
field on U:

0 :U—>TU:peclUr d,. (5.28)

As the functions (g o ¢ '), which appear in (5.21), are differentiable, it is clear that
d; is a smooth vector field on U. As in Sect.5.2.2 let us denote the chart mapping by
o(p) = x'(p), ..., x"(p)). Any smooth vector field V defined on U C M has the
local representation

V= Z(fo)a,- (5.29)
i=1

on U. Finally, by joining together these local representations on the domains of charts
U, V, ...of acomplete atlas, we obtain a patchwise representation of the vector
field that extends over the manifold as a whole. The base fields on two contiguous,
overlapping domains U and V of the charts (¢, U) and (¥, V), respectively, are
related as follows. Returning to (5.21) and making use of the chain rule, one has

n

dgop™) _ 3 Adgoy ) da(rop™)
afi — 8fk afi :

Denoting the derivatives (5.21) by 9, |p and 8;/’ » i.e. by indicating the chart mapping
@ or Y as a superscript, we find in the overlap of U and V

n kool
o] (9) = Zﬁb(g)% . (5.30)
k=1

The matrix appearing on the right-hand side is the Jacobi matrix J ., of the tran-
sition mapping (¥ o ¢ 1).

The set of all smooth vector fields on M is usually denoted by X' (M) or V(M).
We already know an example from Sect.5.3.1: the Hamiltonian vector field on a
two-dimensional phase space. If x! = g and x> = p denote local coordinates, then

Xy=—0 ——0,,
H apl 8qz

so that v = Xy (x) gives the vector field of that example.

According to (5.19) a tangent vector v of 7, M assigns to each smooth function
f areal number. In the case of a vector field this statement applies to every point p
of M, cf. (5.27). When we consider this equation as a function of p, we see that the
action of the field V on the function f yields another smooth function on M,
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VeVM):feFM)— VfeFM)
f(p) = Vo (f). (5.31)

This action of V on functions in F (M) has the properties V1 and V2 of Sect.5.3.2, i.e.
V acts on f like a derivative. Therefore, vector fields can equivalently be understood
as derivatives on the set F(M) of smooth functions on M.

Starting from this interpretation of vector fields one can define the commutator
of two vector fields X and Y of V(M),

Z=[x.Y]¥ xy —vx. (5.32)

X or Y, when applied to smooth functions, yield again smooth functions. Therefore,
as X(Yf) and Y (Xf) are functions, the action of the commutator on f is given
by

Zf = X(Yf) — Y(X[) .

One verifies by explicit calculation that Z fulfills V1 and V2, and, in particular, that
Z(fg) = (Zf)g + f(Zg). In doing this calculation one notices that it is important
to take the commutator in (5.32). Indeed, the mixed terms (X f)(Yg) and (Yf)(Xg)
only cancel by taking the difference (XY — Y X). As a result, the commutator is
again a derivative for smooth functions on M, or, equivalently, the commutator is
a smooth vector field on M. (This is not true for the products XY and Y X.) For
each point p € M (5.32) defines a tangent vector Z, in T,M given by Z,(f) =
X, (Yf) = Yp(XP).

The commutator of the base fields in the domain of a given chart vanishes,
[0;, 9x] = 0. This is an expression of the well-known fact that the mixed, second
partial derivatives of smooth functions are symmetric. Without going into the details,
we close this subsection with the remark that [X, Y] can also be interpreted as the
so-called Lie derivative of the vector field Y by the vector field X. What this means
can be described in a qualitative manner as follows: a vector field X defines a flow,
through the collection of solutions of the differential equation &(t) = Xy (), as in
(5.15). One can ask the question, given certain differential-geometric objects such as
functions, vector fields, etc., how these objects change along the flow of X. In other
words, one takes their derivative along the flow of a given vector field X. This special
type of derivative is said to be the Lie derivative; in the general case it is denoted
by Ly. If acting on vector fields, it is Lx = [X, Y]. It has the following property:
Lix,yy = [Lx, Ly], to which we shall return in Sect.5.5.5.

2The precise statement is this: the real vector space of R-linear derivations on F (M) is isomorphic
to the real vector space V(M).
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5.3.5 Exterior Forms

Let y be a smooth curve on the manifold M,
y={L. ...y} ICR—> M,

that goes through the point p € M such that p = y (r = 0). Let f be a smooth
function on M. The directional derivative of this function in p, along the tangent
vector v, = y(0), is given by

d
dfy,(vy) = Ef(y(r)) . (5.33)
=0

This provides an example for a differentiable mapping of the tangent space 7, M
onto the real numbers. Indeed,

df, : T,M — R

assigns to every v, the real number d f(y(t))/dt|;—o. This mapping is linear. As
is well known from linear algebra, the linear mappings from 7,M to R span the
vector space dual to 7), M. This vector space is denoted by 7,7 M and is said to be the
cotangent space (cotangent to M) at the point p. The disjoint union of the cotangent
spaces over all points p of M,

U mm ©rem (5.34)
pEM

finally, is called the cotangent bundle, in analogy to the tangent bundle (5.24). Let
us denote the elements of 77 M by w,,. Of course, in the example (5.33) we may take
the point p to be running along a curve y (), or, more generally, if there is a set of
curves that cover the whole manifold, we may take it to be wandering everywhere
on M. This generates something like a “field” of directional derivatives everywhere
on M that is linear and differentiable. Such a geometric object, which is, in a way,
dual to the vector fields defined previously, is said to be a differential form of degree
1, or simply a one-form. Its precise definition goes as follows.

DF1. A one-form is a function
w:M—)T*M:pn—)w,,eT;M (5.35)
that assigns to every point p € M an element w), in the cotangent space T, M.

Here, the form w), is a linear mapping of the tangent space T, M onto the reals,
i.e. w,(v,) is a real number.
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Since w acts on tangent vectors v, at every point p, we can apply this one-
form to smooth vector fields X: the result w(X) is then a real function whose
value in p is given by w,(X,). Therefore, definition DF1 can be supplemented
by a criterion that tests whether the function obtained in this way is differentiable,
viz. the following.

DF2. The one-form w is said to be smooth if the function w(X) is smooth for
any vector field X € V(M).

The set of all smooth one-forms over M is often denoted by X* (M), the notation
stressing the fact that it consists of objects that are dual to the vector fields, denoted
by X(M) or V(M).

An example of a smooth differential form of degree 1 is provided by the differential
of a smooth function on M,

df :TM —> R, (5.36)

which is defined such that (d f)(X) = X (f). For instance, consider the chart map-
ping (5.9),

o(p) = (x"(p),....x"(p)) ,

where the x’(p) are smooth functions on M. The differential (5.36) of x’ in the
neighborhood U C M, for which the chart is valid, is

dx' :TU - R.

Let v = (v(x'), ..., v(x")) be a tangent vector taken from the tangent space 7, M
at a point p of M. Applying the one-form dx’ to v yields a real number that is just
the component v(x’) of the tangent vector,

dx'(v) = v(x") .

This is easily understood if one recalls the representation (5.23) of v in a local chart
and if one calculates the action of dx’ on the base vector 0 ilp (5.22). One finds,
indeed, that

i 9 i_ i
dx'(3j1p) = T dx' =345 .

J
X p

With this result in mind one readily understands that the one-forms dx’ form a basis
of the cotangent space Ty M at each point p of M. The basis {dx'|,} of T M is
the dual of the basis {9;],} of T,M. The one-forms dx!, ..., dx" are said to be
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base differential forms of degree I on U. This means, in particular, that any smooth
one-form can be written locally as

o= Zw(a,-)dx" . (5.37)
i=1

Here w(9;) at each point p is the real number obtained when applying the one-form
w onto the base field 9;; see DF1 and DF2. The representation is valid on the domain
U of a given chart. As the manifold M can be covered by means of the charts of a
complete atlas and as neighboring charts are joined together diffeomorphically, one
can continue the representation (5.37) patchwise on the charts (¢, U), (¥, V), etc.
everywhere on M.

As an example, consider the total differential of a smooth function g on M,
where M is a smooth manifold described by a complete atlas of, say, two charts.
On the domain U of the first chart (¢, U) we have dg(d;) = dg/dx’, and hence
dg =>" (dg/dx")dx". Similarly, on the domain V of the second chart (¥, V),
dg(9;) = dg/dy’ anddg = >"7_ (dg/dy")dy'. On the overlap of U and V either of
the two local representations is valid. The base fields on U and those on V are related
by the Jacobi matrix, cf. (5.30), while the base forms are related by the inverse of
that matrix.

Let us summarize the dual concepts of vector fields and one-forms. As indicated
in VF1 the vector field X chooses one specific tangent vector X, from each tangent
space T, M at the point p of M. This representative X, acts on smooth functions in
a differentiable manner, according to the rules V1 and V2. The base fields {9;} are
special vector fields that are defined locally, i.e. chartwise. The one-form w, on the
other hand, assigns to each point p a specific element w,, from the cotangent space
T;M. Thus, w), is a linear mapping acting on elements X, of 7, M. As a whole,
(X) is a smooth function of the base point p. The set of differentials dx’ are special
cases of one-forms in the domains of local charts. They can be continued all over the
manifold M, by going from one chart to the next. The set {dx'|,} is a basis of the
cotangent space 7,y M that is dual to the basis {9;|,} of the tangent space T), M.

5.4 Calculus on Manifolds

In this last of the preparatory sections we show how to generate new geometrical
objects from those studied in Sect.5.3 and how to do calculations with them. We
introduce the exterior product of forms, which generalizes the vector product in R3,
as well as the exterior derivative, which provides a systematic generalization of the
notions gradient, curl, and divergence, familiar from calculus in the space R?. We
also briefly discuss integral curves of vector fields and, thereby, return to some of
the results of Chap. 1. In this context, the central concepts are again those of smooth
mapping of a manifold onto another (or itself) and the linear transformations of the
tangent and cotangent spaces induced by the mapping.
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5.4.1 Differentiable Mappings of Manifolds

In Sect.5.3 we defined smooth mappings
F:(M,A) — (N,B) (5.38)

from the manifold M with differentiable structure A onto the manifold N with
differentiable structure B. Differentiability was defined by means of charts and in
Euclidean spaces, as indicated in (5.11). It is not difficult to work out the transforma-
tion behavior of geometrical objects on M, under the mapping (5.38). For functions
this is easy. Let f be a smooth function on the target manifold N,

f:N—>R:geN— f(g)eR.

If g is the image of the point p € M by the mapping F, i.e. ¢ = F(p), then the
composition (f o F) is a smooth function on the starting manifold M. It is said to
be the pull-back of the function f, i.e. the function f on N is “pulled back™ to the
manifold M, where it becomes (f o F). This pull-back by the mapping F is denoted
by F*,

F*f=foF:peM— f(F(p)eR. (5.39)

Thus, any smooth function that is given on N can be carried over to M. The converse,
i.e. the push-forward of a function from the starting manifold M to the target manifold
N is possible only if F is invertible and if F~' is smooth as well. For example, this
is the case if F is a diffeomorphism.

By (5.38), vector fields on M are mapped onto vector fields on N. This is seen as
follows. Vector fields act on functions, as described in Sect.5.3.4. Let X be a vector
fieldon M, X, its representative in 7), M, the tangent space in p € M, and g a smooth
function on the target manifold N. As the composition (g o F) is a smooth function
on M, we can apply X, toit, X ,(g o F). If this is understood as an assignment

(Xp)g:8€F(N)— X,(goF)eR,

then (X ), is seen to be a tangent vector at the pointg = F(p) on the target manifold.
For this to be true, conditions V1 and V2 must be fulfilled. V1 being obvious, we only
have to verify the Leibniz rule V2. For two functions f and g on N the following
equation holds at the points p € M and g = F(p) € N, respectively,

Xr(fge) =X({(foF)(gokF))
=X(foF)g(F(p)+ f(F(p)X(goF)
= Xr(fgl@) + f(@XF(g) .
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TF[pJN

Fig.5.10 The smooth mapping F from M to N induces a linear mapping d F (or T F') of the tangent
space T, M onto the tangent space T, N in the image ¢ = F(p) of p

This shows that (Xr), is indeed a tangent vector belonging to 7, N. In this way, the
differentiable mapping F induces a linear mapping of the tangent spaces, which is
said to be the differential mapping dF corresponding to F'. The mapping

dF :TM — TN : X — Xp (5.40a)
is defined at every point p and its image g by?
dF, : T,M — T,N : X, — (Xr)q, q=F(p). (5.40b)

Its action on functions f € F(N) is
de(X)(f) =X(foF),Xe VM), feF(N).

In Fig.5.10 we illustrate the mapping F and the induced mapping dF. As a
matter of exception, we have drawn the tangent spaces in p and in the image point
q = F(p) as genuine tangent planes to M and N, respectively. We note that if F
is a diffeomorphism, in particular, then the corresponding differential mapping is a
linear isomorphism of the tangent spaces. (For an example see Sect.6.2.2.)

Given the transformation behavior of vector fields, we can deduce the transforma-
tion behavior of exterior differential forms as follows. Let w € X*(N) be a one-form
on N. As we learnt earlier, it acts on vector fields defined on N. As the latter are
related to vector fields on M via the mapping (5.40a), one can “pull back” the form
won N to the starting manifold M. The pull-back of the form w, by the mapping F,
is denoted by F*w. It is defined by

(F*w)(X) = o(dF (X)), X eV(M). (5.41)

Thus, on the manifold M the form F*w acts on X and yields a real function on M
whose value in p € M is given by the value of the function w (dF (X)) ing = F(p).

3Below we shall also use the notation T F, instead of dF, a notation which is customary in the
mathematical literature.
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5.4.2 Integral Curves of Vector Fields

In Sects. 1.16, 1.18-1.20, we studied the set of solutions of systems of first-order
differential equations, for all possible initial conditions. In canonical mechanics,
these equations are the equations of Hamilton and Jacobi, in which case the right-
hand side of (1.41) contains the Hamiltonian vector field. Smooth vector fields and
integral curves of vector fields are geometrical concepts that occur in many areas of
physics. We start by defining the tangent field of a curve « on a manifold M. The
curve o maps an interval I of the real t-axis R, onto M. The tangent vector field on
R; is simply given by the derivative d/dt. From (5.40a), the linear mapping der maps
this field onto the tangent vectors to the curve @ on M. This generates the vector field

0 doo L
dr
tangent to the curve o : I — M. On the other hand, for an arbitrary smooth vector
field X on M, we may consider its representatives in the tangent spaces T, ;)M over
the points on the curve. In other words, we consider the vector field X, ) along the
curve. Suppose now that the curve « is such that its tangent vector field & coincides
with X . If this happens, the curve « is said to be an integral curve of the vector
field X. In this case we obtain a differential equation for «(7), viz.

& =Xoa or &(t)=Xyn forall tel. (5.42)

When written out in terms of local coordinates, this is a system of differential equa-
tions of first order,

i(xioa):Xi(xloa,...,x”oa), (5.43)

dr
which is of the type studied in Chap. I; cf. (1.41). (Note, however, that the right-
hand side of (5.43) does not depend explicitly on 7. This means that the flow of this
system is always stationary.) In particular, the theorem of Sect. 1.19 on the existence
and uniqueness of solutions is applicable to the system (5.43).

Let us consider an example: the Hamiltonian vector field for a system with one

degree of freedom, i.e. on a two-dimensional phase space (see also Sects.5.3.1 and
5.34),

The curve {x! o a, x? 0 a}(t) = {q(7), p(7)} is an integral curve of X if and only
if the equations
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dg O0H dp oH
—=— and —=-——
dr ap dr aq

are fulfilled. If the phase space is the Euclidean space IR?, its representation in terms of
charts is trivial (it is the identity on R?) and we can simply write (t) = {g(7), p(7)}.

The theorem of Sect. 1.19 guarantees that for each p on M there is precisely one
integral curve « for which p is the initial point (or initial configuration, as we said
there) p = «(0). Clearly, one will try to continue that curve on M as far as this is
possible. By this procedure one obtains the maximal integral curve «, through p.
The theorem of Sect. 1.19 tells us that it is uniquely determined. One says that the
vector field X is complete if everyone of its maximal integral curves is defined on
the entire real axis R.

For a complete vector field the set of all maximal integral curves

®(p, 1) = a,(1)

yields the flow of the vector field. If one keeps the time parameter t fixed, then
@ (p, t) gives the position of the orbit point in M to which p has moved under the
action of the flow, for every point p on M. If in turn one keeps p fixed and varies
7, the flow yields the maximal integral curve going through p. We return to this in
Sect.6.2.1.

In Chap. 1 we studied examples of flows of complete vector fields. The flows of
Hamiltonian vector fields have the specific property of preserving volume and ori-
entation. As such, they can be compared to the flow of a frictionless, incompressible
fluid.

5.4.3 Exterior Product of One-Forms

We start with two simple examples of forms on the manifold M = R, Let K =
(K', K%, K?) be a force field and let v be the velocity field of a given physical
motion in R3. The work per unit time is given by the scalar product K - v. This can

. . def S
be written as the action of the one-form wg = Z?zl K'dx' onto the tangent vector
v, ViZ.

wg(@)=> Kv' =K v.

In the second example let v be the velocity field of a flow in the oriented space R>.
We wish to study the flux across some smooth surface in R*. Consider two tangent
vectors ¢ and s at the point x of this surface. The flux (including its sign) across the
parallelogram spanned by ¢ and s is given by the scalar product of v with the cross
product ¢ x s,
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D,(t,s) = vl(tzs3 — t3s2) + vz(t3sl — t1s3) + v3(t1s2 — tzsl) .

This quantity can be understood as an exterior form that acts on fwo tangent vectors.
It has the following properties: the form @, is linear in both of its arguments. Fur-
thermore, it is skew-symmetric because, as we interchange ¢ and s, the parallelogram
changes its orientation, and the flux changes sign. A form with these properties is
said to be an exterior two-form on R3.

Two-forms can be obtained from two exterior one-forms, for instance by defining
a product of forms that is bilinear and skew-symmetric. This product is called the
exterior product. It is defined as follows. The exterior product of two base forms dx’
and dx* is denoted by dx’ A dx*. It is defined by its action on two arbitrary tangent
vectors s and ¢ belonging to 7, M,

(dx’ A dx¥)(s, ) = s't5 — 55t . (5.44)

The symbol A denotes the “wedge” product. As any one-form can be written as a
linear combination of base one-forms, the exterior product of two one-forms w and
0, in each point p of a manifold M, is given by

(wAN0),(v,w) = w,(v)0,(w) —w,(w)d,(v)

w, (V) w,(w)
=det| * P . 545
(9,,<v> ep<w>) 64
Here v and w are elements of 7, M. To each point p the one-forms w and 6 assign
the elements w, and 6, of T M, respectively. The exterior product w A 6 is defined
at each point p, according to (5.45), and hence everywhere on M.

In much the same way as the coordinate one-forms dx’ serve as a basis for all

2 . L
one-forms, every two-form w can be represented by a linear combination of base
two-forms dx? A dx* (withi < k),

n
2 .
o= > wopdx’ Adx*, (5.46)
i<k=1
the restriction i < k taking account of the relation dx* A dx’ = —dx’ A dx*. The

. . . . 2 .
coefficients in (5.46) are obtained from the action of @ onto the corresponding base
vector fields,

Wi = O 0) . (5.47)

The exterior product can be extended to three-forms, four-forms, and forms of higher
degree. For example, the k-fold exterior product is given by

(Wi Aws A Aap) (P, 0@ v®) = det(w; WD) . (5.48)
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It is linear in its k arguments and it is totally antisymmetric. Any k-form can be
expressed as a linear combination of base k-forms

dx" Adx2 A Adx®, with iy <ip <« - <if. (5.49)
There are (Z) such base forms. In particular, if k = 1 or k = n, there is precisely one
such base form. On the other hand, for k > n, at least two one-forms in (5.49) must
be equal. By the antisymmetry of the base forms (5.49), any form of degree higher
than n vanishes. Thus, the highest degree a form on an n-dimensional manifold M
can have is k = n. For k = n the form (5.49) is proportional to the oriented volume
element of an n-dimensional vector space.

The examples show that the exterior product is a generalization of the vector
productinR?. In a certain sense, it is even simpler than that because multiple products
such as (5.48) or (5.49) pose no problems of where to put parantheses. The exterior
product is associative.

5.4.4 The Exterior Derivative

In the preceding paragraph it was shown that one can generate two-forms as well
as forms of higher degree by taking exterior products of one-forms. Here we shall
learn that there is another possibility of obtaining smooth forms of higher degree: by
means of the exterior derivative, or Cartan derivative.

Let us first summarize, in the form of a definition, what the preceding section
taught us about smooth differential forms of degree k.

DF3. A k-form is a function
k .1k k
w:M— (T°M)":pr w,, (5.50)

that assigns to each point p € M anelement of (T;M )k, the k-fold direct product

ko, - . .
of the cotangent space such that @, is a multilinear, skew-symmetric mapping
from (T, M )* onto the real numbers, i.e. it acts on k vector fields

wy(X1, ..., X) €R (5.51)

and is antisymmetric in all k¥ arguments.

The real number (5.51) is a function of the base point p. Therefore, in analogy to
DEF?2 of Sect.5.3.5, one defines smoothness for exterior forms as follows.
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DF4. The k-form clz() is said to be smooth if the function ZB(X 1, ..., Xy) is differ-
entiable, for all sets of smooth vector fields X; € V(M). Locally (i.e. in charts)
any such k-form can be written, in a unique way, as a linear combination of the
base forms (5.49),

o= > wpude" AL A (5.52)

i]<[2<~~-<[k

. . . k .
The coefficients are given by the action of @ onto the corresponding base vector
fields 8,'] Yy a,’k.

Functions on M can be understood as forms of degree zero. As we showed in
Sect.5.3.5, the well-known total derivative converts a function into a one-form.
Indeed, in a local representation we had

0 .
dg=> Eaxi, (5.53)

where dg/dx' are the partial derivatives, i.e. the result of the action of the one-form
dg onto the base fields 9;, while the dx' are the base one-forms.

The Cartan or exterior derivative generalizes this step to smooth forms of arbitrary
degree. It maps smooth k-forms onto (k + 1)-forms, this mapping being linear,

d: 605 . (5.54)

It is defined uniquely and has the following properties:

CDL1. For functions g on M, dg is the usual total derivative.
CD2. The action of d on the exterior (or wedge) product of two forms of degree
k and [ is

AGAD) = ([d@) A=) dAdD) .
CD3. The form LIZ) being represented locally as in (5.52), the action of the exterior
derivative on this form is

k . .
do = Z dwj, i Adx A Adx

I <--<ig
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Here, dw, . ;, is the total differential and is expressed in terms of base one-forms,
as in (5.53).

This exterior derivative is a local and linear operator. Property CD2 can also be
described by saying that d is an antiderivation (with respect to the exterior product
A), in the sense that it obeys the Leibniz rule CD2 with extra signs that depend on
the degree of the first form. A remarkable property of the exterior derivative is that
the composition of d with itself gives zero,

dod=0. (5.55)

We prove this assertion for the case of smooth functions g € F(M). We have dg =
> (dg/dx")dx and, according to CD3,

(dod)g =d(dg) = > d(dg/dx") A dx’

2
_ z(z+z) LA RPN
i

k<i k>i

If we exchange dx* and dx’ in the second sum in the brackets on the right-hand side,
and if we relabel the indices by exchanging k and i, we obtain, using the antisymmetry
of the wedge product,

9 9 ‘
(dod)g=Z( & i )dxk/\dx’=0.

— axkaxi  dxigxk

This vanishes because the second, mixed partial derivatives of smooth functions are
equal. The fact that (5.55) holds for any k-form follows from this result and from the
product rule CD2.

5.4.5 Exterior Derivative and Vectors in R3

To illustrate the general and somewhat abstract definitions of the preceding sections,
we consider the manifold M = R3, i.e. the three-dimensional Euclidean space of
physics. For a smooth function f(x) the exterior derivative gives

3
df =D (3f/dx")dx' .
i=1

This is the well-known total differential of f. When applied to the base field 0, it
gives
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df (@) = of/ox* .
This generates the triple {3f/dx", f/0x?, 3f/dx3} = V f, which represents the gra-
dient of f in R?.

The exterior product of two forms (]Z) and c{) is an exterior form of degree (k + /).
Functions have to be understood as zero-forms. Thus, the exterior product of two
functions f and g is the ordinary product. In this case, rule CD2 is nothing but the
product rule for differentiation:

V(fg)=(Vg+ f(Vg).
Consider now the one-form

3
0a = > ai(x)dx’ . (5.56)
i=1

Its exterior derivative is

1 da, day | ) da;  daz 1 3
da)az(—ﬁ—l—@)dx A dx —+ _ﬁ_‘_ﬁ dx Adx

ax3  9x2

If {a;(x), ax(x), as(x)} are understood to be the components of a vector field a(x),

da, 0
n (—ﬂ + ﬂ) dx Adxd (5.57)

the coefficients of the two-form dci)a are seen to be the coefficients of the curl of
a(x). These identifications are specific for the dimension 3 of the space M = R? and
do not hold in general.

The three-dimensional Euclidean space admits a metric (see Sect.5.2.1). Fur-
thermore, it is orientable because three linearly independent vectors define an ori-
ented volume of the parallelepiped they span. Therefore, if (e, e,, €3) is a set of
orthonormal vectors in the tangent space T, [R®, we can assign to each k-form w an
(n — k)-form, i.e. a (3 — k)-form, denoted *w, through the definition

(x0) (€rs1s - e3) L wier,....er), 0<k<n=3. (5.58)

This assignment is said to be the Hodge star operation. In R? it assigns to every
three-form a zero-form (a function), to every two-form a one-form, and vice versa.
For example, we obtain

wxdx! = dx? A dx® (cyclic permutations) (two-form),
wxdx? A dx® = dx! = #(xdx!) (cyclic permutations) (one-form),
sdx! Adx2 Adx3 =1 (zero-form).

Assigning the one-form (5.56) to the vector field a(x), its exterior derivative is given
by (5.57). Applying the star operation to this two-form yields the one-form
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3
c:)b &ef * dc:)a = Zbi (x)dx1 = (8_4121 — %) dx’ + cyclic permutations ,
P ox 0x?

where we have set by = da3/dx?> — da,/dx> (and cyclic permutations). Thus, we
obtain again a form of the type (5.56) whose coefficients are the components of curl
a(x). This result is due to the dimension of the space R3: the star operation turns
a two-form into a one-form, and vice versa. The space of one-forms has dimension
(). the space of two-forms has dimension (). For n = 3 we have () = (;) =3,
i.e. these dimensions are equal and the two spaces are isomorphic. On the basis of this
observation let us work out the relation between the exterior product of Sect.5.4.3
and the vector product in R3. For two vectors @ and b construct the one-forms w,
and wp, respectively, following the pattern of (5.56). Take their exterior product and
apply the star operation to it. This gives the one-form

* (cl)a A (i)b) = (a1br — axby)* (dx' A dx?) + (cyclic permutations)
= (a1by — azbl)dx3 + (cyclic permutations)
1
= Wgxp - (5.59)
This formula explains in which sense the A-product generalizes the ordinary vector
product.
Finally, to a given vector field a(x) we can also associate the following two-form:

c%)a o a 1dx2 Adx® + (cyclic permutations). (5.60)

Taking its exterior derivative, we obtain a three-form whose coefficient is the diver-
gence of a,

2 day dan das 1 2 3
(@ W-’_ﬁ) dx! Adx? Adx?. (5.61)

Of course, the star operation can be applied to the two expressions (5.60) and (5.61),
giving the results

2 1 2 .
*w, = w, and * (dw,) =diva.

The dimension n = 3 is essential if one wishes to interpret the vector product a x b
as another vector. This isomorphism does not hold in dimensions other than 3. Note,
however, that the cross product @ x b in R? is a vector of a different nature than
a or b. For example, a = r (position vector) and b = p (momentum vector) are
odd with respect to space reflection, while their vector product I = r x p (angular
momentum vector) is even. A vector that is even under space reflection is said to be
an axial vector.
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A final remark: one may be surprised that the one-form (5.56) can be used to
describe a vector field, even though vector fields have the coordinate representation
> a'(x)d;. The reason for this is that R* admits a metric that acts on vector fields:
g(v, w) with g(9;, 9) = gix. Interpreting the metric g(v, w) as a mapping from w
to v shows that it generates an isomorphism between X™* (M) and X' (M).

5.5 Hamilton-Jacobi and Lagrangian Mechanics

In Sects. 5.1 and 5.3.3 we described qualitatively the manifolds of generalized coordi-
nates as well as their tangent and cotangent bundles on which the Lagrangian function
and the Hamiltonian function are respectively defined (cf. Fig.5.2). In this section
we examine these relations in more detailed and precise terms. We study geometric
objects that live on the manifolds sketched in Fig. 5.2 and most of which are already
known to us from Chap. 2. In particular, we define and study the so-called canonical
two-form on phase space, which describes the symplectic structure of phase space
(cf. Sect.2.28), as well as all consequences following from this structure (such as
Liouville’s theorem, Poisson brackets, etc.). We study the Hamiltonian vector fields,
(i.e. the canonical equations in a geometric language), and the geometric formulation
of Lagrangian mechanics, as well as the relation between these two descriptions.

5.5.1 Coordinate Manifold Q, Velocity Space TQ, and Phase
Space T* Q

In Sect.5.3.3 we remarked that Lagrangian functions L(g, cj, t) are functions on the
tangent bundle 7Q of the coordinate manifold Q, i.e. L € F(T Q),

L:TQO—R. (5.62)

In wr1t1ng this down we have used a local coordinate expression. Indeed, {g} =
{q',...,q') represents the point u € Q in a chart, f = dim Q being the number
of degrees of freedom, while {¢} = {¢', ..., ¢/} gives the local components of an
arbitrary tangent vector v, = > ¢'d; € T, Q. One should not be confused by the
notation: the {g} are the tangent vectors to all possible curves y (r) passing through
u € Q.Only if we are given the solutions q = ®(1, fy, qo) of the equations of motion
(which follow from the Lagrangian function) do their tangent vectors generate the
velocity field corresponding to real physical motion.

According to (5.62) L is to be understood really as a function on the manifold
TQ. It is not a mapping of the kind studied in Sect.5.3.5, which assigns to each
tangent vector, an element of 7Q, a real number (in other words, it is not a one-
form). Let us analyze this in a little more detail. First, we confirm that 7Q, the
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tangent bundle of the smooth manifold Q, is again a smooth manifold of dimension
dim 7 Q = 2dim Q. Therefore, it is possible to define smooth functions on 7Q. (The
general prescription is this. Let M be a smooth manifold of dimension m. With
(¢, U), a local chart of (M, A) belonging to the complete atlas .4, we construct
the corresponding differential, or tangent, mapping T ¢, following the definition
(5.402). With U C M, T ¢ maps the domain TU = U x T,M,u € U, of T M onto
@(U) x R™. One then shows that T A = {(Tp, TU)} is a complete atlas for the
manifold TM.)

In the simplest case a Lagrangian function has the local form (the so-called natural
form)

L="Tag. 9~ V@), (5.63)

where V is a potential, while Ty, is the kinetic energy whose general form could
be

f
1 L) -k
Tin = 5 ; q'gin(@)q (5.64)

Here, the tensor g;;(g) is the matrix representation of a metric and may depend on
the base point g. For a single particle in R3 we have gik = i, withi, k = 1,2, 3. Of
course, a potential that does not depend on velocities, say V (1), is initially defined
to be a function on Q. However, from Sect. 5.4.1, it can easily be transported to 7TQ.
Indeed, if m : TQ — Q is the natural projection (5.25), then the pull-back of the
function V (u)

7*V=Vonm

is a function on 7Q. The action of 7*V on elements v, of T, Q is very simple:
projects onto the base point u, i.e. just cuts out the vector component of v,,.

The kinetic energy (5.64), in turn, is defined on 7Q from the start, in a nontrivial
way. To understand this better, we first give a precise definition of the metric. So far
we have dealt with the set of smooth vector fields X' (M) and with the set of smooth
one-forms X* (M), cf. Sects.5.3.4-5.3.5. The former are also called contravariant
tensors of rank 1 and one may write equivalently

X(M) =T M) . (5.65a)
The latter are also said to be covariant tensors of rank 1 and one writes correspond-
ingly

X*(M) =T (M) . (5.65b)
We have further considered geometric objects that can be understood to be tensors
of higher rank. For example, the two-forms we generated by taking the exterior

21 1 . .
product of two one-forms, @ = w, A wp, are smooth, bilinear mappings from the
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product TM x T M to R. Therefore, they are contravariant tensors of rank 2 that, in
addition, are antisymmetric. In general, a tensor 7, with r contravariant indices and
s covariant indices is defined to be a multilinear mapping of r copies of 7*M times
s copies of 7'M onto the real numbers, viz.

(T, : (TEMY (T,M)* > R. (5.66)

A tensor field of type (’Y) assigns to each point p € M a tensor (5.66), in much the
same way as the vector fields (5.26) and the one-forms (5.35) did, both of which are
special cases of this general definition. The set of all smooth tensor fields of this type
is denoted by 7 (M).

Here we wish to define the metric, which is another special tensor field. Loosely
speaking, a metric serves to define the norm of vectors and the scalar product of
vectors (thereby specifying, in particular, orthogonality of vectors). Furthermore, by
means of the metric tensor a vector (which is a contravariant rank-1 tensor) is turned
into a covariant object (i.e. a covariant tensor of rank 1). In either case, the metric acts
on vectors, i.e. on elements of the tangent space. Keeping this in mind, the following
definition will be plausible.

ME. Definition of metric. A metric on a smooth manifold M is a tensor field g
from Tzo (M) (the smooth covariant tensor fields of rank 2), whose representative
at every point p of M is symmetric and nondegenerate. This means that

1) gp(vp, wp) = gp(wy, vp) forall v,, w, € T,M and at each point p € M,
and

(ii) if g, (vp, wp) = O forafixedv, € T,M,butall w, € T,M, then v, = 0, at
every point p € M.

We can treat the metric as a mapping. In analogy to (5.26) and (5.35) we have
geTX(M): M — T*M x T*M : p+> g, , where (5.67a)
g TyM xT,M - R:v,wr g,(v,w) . (5.67b)

Locally, i.e. in local charts, the metric can be applied to base fields, yielding the
so-called metric tensor

(3. ) = g (p) . (5.68)

The requirements ME(i) and ME(ii) then imply that (i) gix(p) = gk (p), and (ii) the
matrix {g;x (p)} is nonsingular. Its inverse is denoted by g’*. Using the decomposition
(5.29) of vector fields in terms of base fields, we have

gp(v,w) = > vigu(pwt, (5.69)
i,k=1
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where v’ and w* are the components of v, and w,, respectively, in a local repre-
sentation of T}, M. The same statement can be phrased differently: locally the metric
tensor can be written as a linear combination of tensor products of base one-forms
as follows*:

g = gu(p)dx’ ®dx* . (5.70)
ik

Equipped with this knowledge we readily understand the structure of the form
(5.64) of the kinetic energy, which is a function on 7Q. Let v, € T, Q be represented
locally by v, = zqfa,». Then, obviously, Ty, = g, (vy, v,). In fact, we may say
much more than that. If g,, (5.67a), is applied to only one vector field, a mapping
from T M to T*M is obtained,

gp:TM — T"M : w+> g,(e, w) (dotdenotes vacancy) .

In other words, g, (e, w) is a one-form and g, (e, w) e wy,, Which, upon application
toavectorv € T, M, yields the real number g, (v, w). Thus, the metric assigns to each
vector field X € X' (M) the smooth one form g (e, X) € X*(M), and vice versa. This
is precisely what happens when one introduces (in charts) the generalized momenta
pi = 0L /34", which are canonically conjugate to the g. Using (5.63) and (5.64) one
obtains

pi = 3_; = Zk:gik(p)é" =g (07 Zé"ak) : (5.71)

The transition from the variables {g’, ¢/} to the variables {¢', p;} that we studied
in Chap. 2 in reality means that one goes over from a description of mechanics on
the tangent bundle TQ to a description on the cotangent bundle 7* Q. If there exists
a metric on Q then there is the isomorphism sketched above, which allows one
to identify the two pictures. In general, however, this canonical identification is not
guaranteed. In any case, whether or not a metric exists, 7Q and 7* Q are two different
spaces. Therefore, the transition from the Lagrangian formulation of mechanics to
the Hamiltonian formulation is more than a simple change of variables. Very much
like Q and TQ, the cotangent bundle 7* Q is a smooth manifold. In mechanics 7* Q
is the phase space. In local charts it is described by coordinates {g’, pi}, where p; has
the character of a one-form, see (5.71). The Lagrangian function is defined on 7Q, the
Hamiltonian function on 7*Q (cf. Fig.5.2). The two representations of mechanics
are related by the Legendre transformation £, as explained in Chap. 2.

4Using well-known techniques of linear algebra one can show that at each point p € M one can
find a basis such that gy is diagonal, i.e. g = > 7_, &;dx’ ® dx', with &; = +1. If all &; are equal
to +1, the metric is said to be Riemannian. In all other cases it is said to be semi-Riemannian.
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Fig. 5.11 The cotangent

bundle M % 7% is the
phase space. M being a
smooth manifold itself, it
possesses a tangent bundle
TM =T(T*Q). g and ‘[5
are the canonical projections
from TQ and T*Q to Q,
respectively, while 7y is the
projection from 7M to M.
TM and TQ, in turn, are

ﬁfgg?nzycﬁfets?frﬁtng to [(T@,TU) t (T, T"U)
K. R' x TR' R'x R™
(q',g") (a',p;)
ll (p,U)
R’ (q")

The general case (without assuming a metric on Q) is treated by Abraham and
Marsden (1981): mechanics on 7Q and its formulation on 7* Q are related by means
of the so-called fibre derivative. We cannot go into this more general treatment without
introducing further mathematical tools. We point out, however, that the restricted case
discussed above exhibits all essential features.

5.5.2 The Canonical One-Form on Phase Space

The Hamiltonian function is defined on the manifold M & T*Q, which plays a
central role in mechanics. Figure5.11 shows in more detail the manifolds Q, TQ,
T*(Q, and, in addition, the tangent bundle 7'M of the phase space. We shall return
briefly to Lagrangian mechanis (on 7Q) in Sect. 5.6 below. Here, our goal is to work
out more clearly the geometric-symplectic structure of mechanics in phase space,
well known to us from Chap. 2, and to understand it from a higher level. One possible
approach is provided by what is called the canonical one-form 6, on phase space,

6p:M—T*M:meM— Bp), € TM, (5.72)

which is defined as follows. Let « be an arbitrary smooth one-form on the coordinate
manifold Q:

«:Q—->TQ:ueQ—a,el Q. (5.73)
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The form 6y is to be defined on M = T*(Q. As « provides a mapping from Q to
M, we can use it to pull back 6 from M to Q. This yields the one-form («*6y),
which lives on the base manifold Q. With this remark in mind we state the following
definition.

C1F. The canonical one-form 0y is the unique form on M = T*Q whose pull-
back onto Q by means of an arbitrary one-form « (5.73) yields precisely this «.
Expressed in a formula, the canonical one-form 6, fulfills

(@*0p) =« forall a e X*(Q). (5.74)

This requirement fixes 6, uniquely.

Remark: In view of its specific role as defined by the rule (5.74) the one-form 6,
is also called the tautological form.

As shown in Fig.5.11, a chart (¢, U) of the domain U C Q induces a chart
(T, TU) for TU C TQ, as well as a chart (T*p, T*U) for T*U C M = T*Q.
A point u € U has the image {g¢'} = {¢'(u)}, which belongs to the neighborhood
U = ¢(U) in Rf A tangent vector v, € T, Q, with base point u, has the image
{g" =o' (u), v/ = T¢'(v) =¢'} in U’ x R/. Similarly, each one-form w, € T'Q
has the image {¢',a; = p;} in U’ x (R/)*. Thus, the local representation of o,
(5.37) reads

f f
o, = Zaj(q)dq/ = z pidg’ . (5.75)

When expressed in local form, the defining (5.74) is in fact very simple: (6p),, being
a one-form belonging to 7,*M = T,5(T* Q) it must have the general local form

@) = D oidg + D thdpi,
i p

where o; and t¥ are smooth functions of (g, p). The condition (5.74) requires that
these functions be

0i(q,2(q)) = 0i(q, p) = pi.

(g, a(q) =" @q.p) = 0.
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Thus, the local form of the canonical one-form is the same as «,, (5.75)

O =D pidg' | me M =T*Q. (5.76)

Note, however, that 6, is defined on the phase space M = T*(Q, i.e. that (6),, is an
element of 7, M, in contrast to the arbitrary one-form «, which lives “one storey
below”.

Remark. The canonical one-form is the key to the geometric formulation of
mechanics on phase space. Starting from the definition given above and making use
of Fig.5.11, one can work out the following pattern. Let u be a fixed point on the
base manifold Q, v, a tangent vector from 7, Q, and «,, a one-form from 7, Q. Then

- a, (v,) is a real number. Using the definition (5.74) we can write it alternatively
asr = (a*6p), (v,). Now, as @ maps the basis Q onto 7* Q, the corresponding tangent
mapping 7'« maps 7Q onto T M, the base point u being fixed. Let w, € T,, M be the
preimage of «,, by the projection ty,1.e. w, = rﬂ}l (ay,). Thenwe have w, = Ta(v,),
while the same real number r is also given by

r= (90)m=a“ (w,) =a, 0 T'Ca(wu) .

This last equation can be used to define 6, (Abraham and Marsden 1981, Sect. 3.2.10).
With this alternative but equivalent definition the derivation of the local form (5.76)
is a bit more tedious.

One can understand that 6, is indeed unique by noting that condition CI1F is to
be fulfilled for all «,. These forms span the space 7, Q completely. As the v, are
arbitrary, too, their preimages w, span the complete space 7, M.

Loosely speaking, C1F is a prescription that says that arbitrary one-forms on Q
should be interpreted as a specific one-form on 7* Q. It is canonical and characteristic
for the cotangent bundle insofar as one-forms live on 7*Q and are pulled back by
mappings (in contrast to vector fields, which are mapped “forward”). The local
representation (5.76) is sufficient because one can always join together the charts of
a complete atlas and describe 6 in this way, on the whole of M = T* Q. Of course,
the definition given in (5.74), or the one described briefly in the remark above, are
completely free of coordinates.

Let F =1 o ¢! be the transition mapping from the chart (¢, U) to the chart
(¢, V). In the overlap of the images of U and of V, F maps the point {g} = ¢(u) to
the point {Q} = ¥ (u). This is the same point in R/, but it is expressed in terms of
different coordinates. A tangent vector v, € T, Q whose coordinate image is {¢} in
the first case and {Q} in the second is transformed by means of the tangent mapping
T F, while one-forms are pulled back according to (5.41). As to the canonical one-
form, we note that it keeps its local form (5.76). Indeed, we have
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f k
1Y

pi = E — P,
il

and therefore
Z pidg’ = Z Z P, 8—deq" = Z PdO* . (5.77)
i l i k aqi k

This result is obvious because the definition (5.74) fixes 6y on the whole of T*Q
and because the local form (5.76) holds in each chart. The following assertion is
somewhat less obvious.

Proposition. Let F : Q — Q be a diffeomorphism on the base manifold Q.
With o a one-form on Q the pull-back of «,, € T, Q is then defined in either
direction, so that F induces a diffeomorphism 7*F : T*Q — T*Q. The pull-
back of the canonical one-form is given by

(T*F)*6p = 6y . (5.78)

In this sense it is invariant.

Abraham and Marsden (1981, Theorem 3.2.12) provide a proof that does not make
use of coordinates. In coordinates, the proof, in essence, follows from the calculation
done in (5.77).

5.5.3 The Canonical, Symplectic Two-Form on M

The canonical two-form is defined to be (minus) the exterior derivative of the canon-
ical one-form 6, of C1F (5.74), viz.

C2F. & —do, . (5.79)

This is a closed form, dwy = —d o d6y = 0. Its representation in local coordinates
follows from the local form (5.76) of 6. It reads

f
(@))m = > dg' Adp; . meM. (5.80)

i=l1
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This form is of special importance because it exhibits the symplectic structure of
phase space. This will be clear from the following observations and propositions.

As a two-form on M, wy is a bilinear mapping from TM x TM to the real
numbers. It acts on pairs (w@, w®) of vector fields on M, i.e. (w),, is applied
to pairs (w'®, w®)) of tangent vectors from 7,,M, where w'® and w? are the
representatives in 7, M of w® and w®, respectively. In charts any such vector field
has the form

U
w= > w—+ > W—, (5.81)

peralCL e %
so that
f ' '
(w())m (wlsf)’ wr()f)) — Z(w(a)l ,J)l(b) _ lz)i(a)w(b)l) . (582)
i=1
If we agree on ordering coordinates such that ' = dg’, withi =1, ..., f, form the
first set of base forms, and n”f =dp;,i =1,..., f, form the second set, and if we

write (wp) in the general form

(@) = Zwikni At (5.82)
ik

it is easy to see that its coefficients w;; are given by

wip = ( 09 Ve
B e VEVRUSYY

This matrix is nothing but the matrix J of (2.102). As J is regular, one sees that
(wo)m 1s nondegenerate and skew-symmetric. As this holds at each point m € M,
the canonical two-form wq is nondegenerate and skew-symmetric on the whole of
M. Thus, the form wy must be closely related to the canonical equations (2.99).
Before we turn to this relationship we wish to point out an interesting property of
the cotangent bundle M = T*Q.

Taking the k-fold exterior products of (wy),, with itself yields forms of degree 2k.
For example, for k = 2 and k = 3, respectively,

f
S dg" Adp, Adg" Adp,
i1,ir=1
= 21 Z dg" A dg™ Adp;, Adp;,
i1 <ip

(a)())m N (U)O)m A (U)O)m = _3'2 dqil A dqiz A dqi3 A dpi1 A dpiz A dpi3 .

i1 <iy<i3

(@0)m N (@o)m
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The form of highest degree that can be constructed in this way has degree 2 f. It
reads

(@) A+ A (@0)w = fU)YPdg" Adg? A-- AdgT Adpr - Adpy

f—fold
(5.83a)

where [ f/2] is the largest integer smaller than or equal to f/2. This f-fold product
generates the oriented volume form

ger (=17

= —f!
on T*Q, whose value in the point m is proportional to the expression (5.83a). This is
an important result. On the cotangent bundle of a smooth manifold there always exist
the canonical forms 6, and @, and thus also the volume form (5.83a). The cotangent
bundle of a manifold Q is always orientable, even if its base manifold Q is not.
At the same time, we have established the basis for Liouville’s theorem. Only the
result (5.83a) enables us to talk about flows on phase space that preserve volume and
orientation. As a consequence, the specific properties of phase space that we studied
by means of the canonical equation (2.99), in the more “pedestrian” approach of
Chap. 2, rest on an underlying, deeper geometric structure. The following subsection
is devoted to a short discussion of this structure. (As this is a digression, the reader
may wish to skip it on a first reading and move on directly to Sect.5.5.5.)

wo A -+ Awy (f factors) (5.83b)

5.5.4 Symplectic Two-Form and Darboux’s Theorem

Very much like the metric on a Riemannian or semi-Riemannian manifold the canon-
ical two-form is a covariant tensor of rank 2 on the manifold M. Like the metric it is
nondegenerate. While the metric pertains to the set of symmetric tensors, @, belongs
to the set of antisymmetric forms of degree two.

Let M be a smooth manifold of dimension dim M = n, and let w be a covariant
tensor (a general one, at first),

weTX(M): M — T*M xT*M : p+s (w), . (5.84)

w is said to be nondegenerate if (w), has this property at every point p € M. T,M
is a vector space of dimension n, T,M x T, M has dimension 2n, and (), maps
T,M x T,M onto the real numbers.

One proves the following assertions.

(a) If (w), is symmetric and nondegenerate, i.e. if the matrix wy = (@), (9;, %)
is regular, then there is an ordered basis of 7, M and an ordered basis of T;M , dual
to the former, such that this matrix is diagonal, its eigenvalues being &; = 1 (cf.
Footnote 4 to (5.70)).
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(b) If (w), is antisymmetric and if the matrix {w;;} has rank r, then r is an even
integer and there is an ordered basis of T, M and its dual in 7y M such that

r/2
(@) = D dx' Adx't/?,

i=1

i.e. such that the matrix {w;;} has the form

0O 1 O
{wopt=|-1 0 0
0O 0 O

with 1 being the unit matrix of dimension /2. In this case w can be nondegenerate
only if the dimension n of M is even; the rank r is then equal to r = 2n.
This latter assertion is followed up by the following proposition.

Proposition. Let w be an antisymmetric two-form on the manifold M (following
the pattern of (5.84)). The form w is nondegenerate if and only if M has even
dimension, n = 2k, and if the k-fold exterior product w A - - - A @ is a volume
formon M.

Expressed differently, this says that if there exists a nondegenerate, skew-
symmetric two-form on M, then M is orientable. If this is true, (5.83b) provides
an oriented volume form, viz.

(-1
© = T (2k)!

oA--- Ao (k-fold) (5.85)

with k given by dim M = n = 2k.
The relation to the symplectic group that we studied in Sect.2.28 becomes clear
by way of the following definitions and assertions.

SYF. Every nondegenerate, skew-symmetric two-form o on a vector space V of
even dimension n = 2k is called a symplectic form. In the case treated above, we
hado = (w)p,and V =T, M.

SYV. The pair (V, o) is said to be a symplectic vector space if dim V = 2k and if o
has the property SYF.

SYT. Symplectic transformations are defined to be transformations between vector
spaces that preserve the symplectic structure SYV, i.e. if (V, o) and (W, 1) are
symplectic vector spaces, then

F:V—->W

is symplectic precisely if the pull-back of T onto V equals o, F*t = o.
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The vector spaces V and W need not have the same dimension. However, if they
do have the same dimension n = 2k, F preserves the oriented volume. This is seen
by showing that F*§2; = §2,, where £2; and §2,, are the standard n-forms (5.85) on
W and V, respectively. Symplectic transformations have the following property. The
symplectic mappings of a symplectic vector space (V, o) onto itself,

F:(V,o0)— (V,0), Fo =0,

form the symplectic group Sp>(R). In order to show this, let us choose that basis
{e'} of V for which o has the canonical form

{oi} = (_(;1 g) =J.

In this basis the transformation F is represented by the matrix {F}}, i.e. ¢’ =
> i_, Fiek. The condition F*o = o says that o (¢", ¢’/) must be equal to o (¢', e/),
i.e. that FTJF = J. This is precisely (2.113) and tells us that the matrix F pertains to
Spay(R).

Note that the definitions and assertions given above apply to the representative
(w), of w over the base point p € M. They are extended to w, and thus to the whole
of M, by means of the following theorem.

Darboux’s Theorem. Let @ be a nondegenerate two-form on the manifold M
whose dimension is therefore even, dim M = n = 2k. The form w is closed, i.e.
dw = 0, precisely if for each point p € M there exists a chart (¢, U) such that
¢(p) = 0 and such that in every point p’ € U C M with

e(p) = ' (P, X (P ()
 admits the local representation
k
o= dx' Adxtt (5.86)
i=1

on the neighborhood U.

For the proof of this theorem, as well as of the other assertions of this section, we
refer to Abraham and Marsden (1981).

We close this digression with some definitions and remarks that serve the purpose
of generalizing definitions SYF, SYV, and SYT to arbitrary manifolds.
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S1. A symplectic form on a manifold M of even dimension dim M = n = 2k is
a nondegenerate, skew-symmetric, closed two-form w,

do=0. (5.87)

S2. A pair (M, w), with w having property S1, is said to be a symplectic manifold.

S3. Those charts where (5.86) holds true (whose existence is guaranteed by
Darboux’s theorem) are said to be symplectic charts. Their local coordinates are
called canonical coordinates.

S4. A smooth mapping F that relates two symplectic manifolds (M, o) and
(N, 7) is said to be symplectic if F*t = o. The symplectic mappings are the
canonical transformations of mechanics if the starting and the target manifolds
are identical.

These notions belong to what is called symplectic geometry. As far as mechan-
ics is concerned, the importance of symplectic geometry should be clear from our
discussion. In fact, it seems to be relevant for many more parts of physics and there-
fore leads directly into modern research. In this connection we refer the reader to
Guillemin and Sternberg (1990).

5.5.5 The Canonical Equations

In Chap. 2, Sect. 2.25, we showed that the canonical equations (2.45) could be written
in the form (2.99), viz.

i =JH, = (Xy)x (5.88)

Here, x is a point in phase space, while H, and J are defined as in (2.102). We
realize that (5.88) is a local representation in charts. As indicated by the subscript
x, the Hamiltonian vector field on the right-hand side of (5.88) (cf. the definition in
Sect.5.3.1) is a coordinate expression in charts. On the basis of the results obtained in
Sect.5.5.3 itis clear that the canonical two-form will serve the purpose of formulating
the canonical equations of motion in a coordinate-free manner, i.e. directly on 7 Q,
the cotangent bundle of the coordinate manifold Q.

Let M = T*Q, as before. Vector fields on M assign to each p € M an element
of the tangent space 7, M at that point,

XeXM):M—>TM:pr>X,.

In charts X, has the local form (5.81). Equation (5.88) defines the Hamiltonian vector
fields in charts, i.e. componentwise. Thus, in the notation of (5.88),
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. OH ——  oH
Xu)' =7—, Xae=—-T7%- (5.89)
op; dq

These partial derivatives of H also appear in the exterior derivative dH. As H is a
function on M, its exterior derivative is equal to the total differential. When expressed
locally, we have

f f
oH . oH
dH =" —dg'+ > —dp;. (5.90)
paril = P
As we know, the Hamiltonian vector field is
oH
() -0
(Xn)k =010 s |
api

or (Xy), = J(dH),, where the subscript x is meant to indicate that we still compare
coordinate expressions.

As J~! = —J, we can also write —J(Xy)y = (dH),. From this we can abstract
the coordinate-free definition of the Hamiltonian vector field as follows. J is
nothing but the local matrix representation (5.82') of the canonical two-form wy.
Such a two-form w acts on pairs of vector fields. In analogy to the case of the
metric, one may instead take w to act on only one vector field, e.g. w(V,e)
with the dot denoting a vacancy (it stands for the missing second argument). As
such it maps the tangent bundle 7M onto R, i.e. it operates like an exterior form
of degree 1. With this remark in mind, the following definition becomes readily
understandable.

HVF. Let (M, ») be a symplectic manifold, i.e. dim M = 2 f is even and w has
properties S1. The Hamiltonian function H is assumed to be given as a smooth
function on M = T* Q. The Hamiltonian vector field Xy is defined through the
condition

]w(xH, o) =dH \ (5.91)

The triple (M, w, Xy) is said to be a Hamiltonian system.

With Y € X (M) an arbitrary vector field on M, we have from (5.91)

w(Xy, Y) =dH(Y) .
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As w is nondegenerate, this equation fixes Xy uniquely. Indeed, if there were two
different vector fields Xy and X}, for the same function H, thenw (Xy — Xy, ¥) =0
for all Y. This is possible only if Xy — X}; vanishes identically. On the other hand,
dH (Y) cannot be zero for all Y, unless H = 0. Hence, for each H there is a unique
Xy. In local coordinates the defining (5.91) yields precisely the expressions (5.89).
This is verified by direct calculation,

f f
wp(Xn, ) = D (Xu)'dp; — D (Xu)xdg* .

i=1 k=1

Comparing with dH (5.90) yields (5.89). The definition (5.91) is independent of
coordinates, however, and it is not restricted to the case of finite dimension.

The integral curves of the vector field Xy, i.e. the solutions of the differential
equation

y®) = (Xwya » (5.92)

describe the possible physical motions of the system defined by the Hamiltonian
function H. When expressed in local coordinates, (5.92) becomes (5.88) and hence
the local form of the canonical equations of motion (2.45).

If H has no explicit time dependence and if () is a solution of (5.92), then

d .
EH(J/(I)) =dH(y) =dHXu(y(®))) = o(Xu(y), Xu(y)) =0.
This is the well-known fact that H is constant along solutions of the equations of
motion.

It is not difficult to formulate once more Liouville’s theorem, Sect.2.29, using
the tools and results developed so far. When phrased in geometric terms it reads as
follows.

Liouville’s Theorem. Let (M, w, Xy) be a Hamiltonian system, i.e. let the
nondegenerate, closed two-form w and the Hamiltonian vector field Xy be given
on a manifold with even dimension. Denote by @, the flow of the vector field
Xy (this is the set of all integral curves corresponding to all possible initial
conditions). For all 7 the flow @, is symplectic, i.e. @ w = . As a consequence,
the oriented volume £2,, (5.85) is conserved.

In Sect.2.29 we proved this theorem in two equivalent ways. The proof in terms
of geometry is instructive in several respects. The reader who wishes to skip it, on a
first reading, should move on immediately to Sect. 5.5.6. The proof makes use of the
Lie derivative and of the fact that the symplectic form w is closed. The Lie derivative
Ly, which refers to a smooth vector field X, is obtained from the following geometric
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picture. The vector field X defines (at least locally on M) the flow @, i.e. the set of
all solutions of the differential equation (5.42). Consider an arbitrary differentiable
geometric object 7' on M such as a function, another vector field, a k-form or an (g)-
tensor field. We ask the question in which way the object T changes differentially,
along the lines of the flow @, of the vector field X. For a function the answer is very
simple. At the point p € M this is just the directional derivative

dfy(X,) € (Lxf), .

described in (5.33). The same derivative can also be written as

d D _ 4 ¥
/@) =)

where @,_o(p) = p and where the right-hand side is to be understood as in (5.39).
If T is another vector field 7 =Y, its Lie derivative is given by the commutator

[X, Y] e xY, as explained in Sect. 5.3.4. (One may define Lx to be a differential
operator on the smooth tensor fields on M, with the condition that it operate on
functions and on vector fields as described above, see Abraham and Marsden (1981).
The following definition is equivalent to this.)

By the existence and uniqueness theorem for differential equations of the type
(5.42) the flow @, of X is a (local) diffeomorphism of M. Therefore, the geometric
object T can be transported forward or backward along that flow (cf. Sect.5.4.1). In
particular, it can be differentiated along the flux lines of @, .

Consider now the special case T = « being an exterior k-form on M, X a vector
field, and @, its (local) flow. According to what we said above, the Lie derivative
fulfills the identity

d

—QPFu =PI Lya . (5.93)
dr

The Lie derivative Ly, at the point ¢ = @.(p), pulled back to the point p, is the
derivative with respect to the orbit parameter 7 of the pull-back of the form «. Like
o, Lxa is a k-form. Functions are to be read as zero-forms for which Ly f = d f(X).
One can show that the Lie derivative can be expressed by means of the exterior
derivative. If the vector field X is inserted in the position of the first argument of the
form «, then o (X, e(k — 1)e) is a (k — 1)-form (positions 2 to k are vacant). Taking
the exterior derivative of the latter yields again a k-form, d(« (X, e(k — 1)e)). If, in

5For this reason V.I. Arnol’d (1978) calls the Lie derivative the fisherman’s derivative. The fisherman
sees only the river in front of him. He sees all kinds of objects floating by on the river and takes
their differential along the lines of the river’s flow.



5.5 Hamilton—Jacobi and Lagrangian Mechanics 357

turn, we differentiate o first we obtain the (k 4 1)-form deo. Inserting X into this
(k + 1)-form leads again to a k-form, namely (do)(X, o(k)e).> We then have

Lya = (da)(X, e(k)e) + d(x(X, e(k — 1)e)) . (5.94)

(The proof goes by induction, see e.g. Abraham and Marsden (1981).) With the
identities (5.93) and (5.94) Liouville’s theorem follows immediately. Inserting the
symplectic form w, as well as the Hamiltonian vector field Xy, we obtain

d
ad);‘a) =@/ Ly,

= &/[(do)(Xy, o, o) + d(w(Xn, »))] .

The first term vanishes because w is closed. The second vanishes, too, because
d(w(Xy,e)) =dodH = 0, by the definition (5.91). Finally, as @, is the identity,
we obtain @ w = w, for all # for which the flow is defined. This proves the theorem.

5.5.6 The Poisson Bracket

An essential ingredient in the proof of Liouville’s theorem is the fact that the sym-
plectic two-form w is closed. In this section we establish (once more) the relationship
between this form and the Poisson bracket, with the aim of understanding better the
significance of dw = 0. (In Sect.2.32 we showed that the Poisson bracket of two
dynamical quantities is identical to the symplectic, skew-symmetric scalar product
of their derivatives, hence the comment “once more”.)

The dynamical quantities f and g that are to be inserted in the Poisson bracket
(2.122) are smooth function on the phase space M = T*Q. M is a symplectic mani-
fold. Following the example of the Hamiltonian function (which is a smooth function
on M, too), we can assign to f and g vector fields X r and X, respectively, by means
of the definition (5.91). As w is nondegenerate, the vector fields are uniquely fixed
by the equations

w(Xy, o) =df and (X, e) =dg. (5.95)
The Poisson bracket of f and g is nothing but the expression
def
{f, 8} = 0(Xg, Xy) . (5.96)

To see this, let us interpret (5.96) as a definition and let us verify that locally (i.e. in
charts) it is the same as (2.122). From (5.95) we have the local representation of X ¢,

%This prescription is called the inner product: ixa(Yy, ..., Yi) def a(X, Y, ..., Y;) is said to be
the inner product of X with «. The indentity (5.94) then reads Lxo = ix(da) + d(ixa).
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pooq

and an analogous one for X,. Inserting these into w, we find, according to (5.82),
that

_ O (Y _(_98\3f _
w(Xg’Xf)—@( aq) ( aq) ap—{f,g},

i.e. precisely the expression (2.122). While the latter form is formulated in charts,
the definition (5.96) is free of coordinates on M.

The properties of Poisson brackets, well known to us from Chap.2, can also be
formulated and proved in a manner that is independent of coordinates. One has the
following.

(1) The Poisson bracket can be expressed in terms of Lie derivatives, viz.

{f. 8} =Lx,g=dg(Xy) = —Lx, [ =—df(Xp) . (5.97)

(The reader should verify this in local form.)

Comparing this with the definition (5.93) of the Lie derivative yields assertions
(ii) and (iii).

(ii) The quantity f is constant along the flow of X, if and only if { f, g} = 0. The
same statement holds with f and g interchanged. For example, let ¥, be the flow of
X,. Then, from (5.93)

d d
SN = (o) = WLy f =W {f.g).
T dr

This is zero if and only if the Poisson bracket vanishes.
(iii) Let @, be the flow of the Hamiltonian vector field Xy, g being a dynamical
quantity as above. In the same manner as in (ii) one shows that

d
5(80@) ={H,god,}. (5.98)

If g does not depend explicitly on time, this is identical with (2.128). As we know, the
canonical equations themselves can be written in the form of (5.98), cf. (2.127). What
we have gained compared to Chap. 2 is this: the definition (5.96), the expressions
(5.97), and the equations of motion (5.98) are formulated in a way independent of
coordinates (without charts). Furthermore, they are not restricted to finite dimensions.

There are many more properties of Poisson brackets that can be derived using the
geometric formulation. As we studied them in some detail in Chap. 2, though using
a local representation, we restrict the discussion to a few characteristic examples.
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The smooth functions F (M) on the phase space (which form a real vector space),
together with the Poisson brackets, generate a Lie algebra. In order to see this, we
must verify that { f, g} is bilinear, that { f, f} vanishes, and that the Jacobi identity
holds true, viz.

{filg, My +1{g. {h, Y+ {h.{f. 81} =0. (5.99)

In local form, this identity was obtained by direct calculation, cf. Sect.2.32 (2.131).
In a coordinate-free framework one proceeds as follows. Define a Poisson bracket
for one-forms d f, dg (instead of functions, as above), by

{df, dg} € w((X), X1, 0) . (5.100)

This Poisson bracket is again a one-form and we have d{ f, g} = {d f, dg}. The last
equation establishes the relation to the Poisson bracket of functions. (Abraham and
Marsden 1981 provide a proof.) With this result, and on the basis of the defini-
tion (5.100) as well as (5.95), we conclude that the vector field X, defined by
(X1}, ®) = d{f, g} equals the commutator of X ; and X,, X7 = [X, X,].
In a second step we write out the individual terms of (5.99), making use of (5.97):

{f7 {gs h}} = LXf(LXgh) s
{g,{h, f}} = —Lx,(Lx,h),
(h {f.g)} = —Ly, h =Ly, LyJh .

In the last expression we made use of the property Ly ., = [Ly, Ly ] of the Lie
derivative. Adding the three terms indeed yields the identity (5.99). We have only
sketched this proof here, because we had something else in mind: for the definition
(5.96) of the Poisson bracket, together with the definition (5.95) of the vector fields
corresponding to the functions f and g, it was essential that the canonical two-form
was closed. Finally, then, this is the reason the algebra of the smooth functions F (M),
with the composition {, }, is a Lie algebra.

The following proposition is of interest in the light of the discussion in Sect. 2.32.

Proposition. Let (¢, U) be a chart taken from the atlas for the symplectic manifold
(M, w), chosen such that points u € U are represented by ¢', ..., ¢/, p1,..., Dy

This chart is symplectic (i.e. the canonical two-form becomes w = Zlf:l dg' Adpy)
if and only if the following Poisson brackets are fulfilled:

tq'. ¢y =0=1{pi. pj}. (p;.q'} =8} . (5.101)

Proof (a) If the chart is symplectic one verifies (5.101) by direct calculation. (b) We
assume these equations to hold and determine the matrix representation £2 = (w;) of
w in the domain of this chart (¢, U). £2 is regular and hence has an inverse (6%) = X.
From (5.97) and (5.96) we have

¢, ¢") =dg' (X)) = X' =0, ik=1,... f.
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In a similar fashion one shows that {p;, pi} = o+/**/ and {¢', ps} = ok =
—o**+ /i By assumption

_(0-1\ _ o
2_(]1 0)_ J=J7',

where J is defined as in (2.102). We conclude that £2 = J and hence that the chart
is symplectic. O

Finally, the invariance of Poisson brackets under canonical transformations
(2.124) is rediscovered in the following form. Let F be a diffeomorphism connect-
ing two symplectic manifolds, F : (M, w) — (N, o). This mapping is symplectic
precisely if it preserves the Poisson brackets of functions and/or one-forms, i.e.

(F*f, F*g} = F*{f, g} forall f,ge F(N).

In this case F'* preserves the Lie algebra structure on the vector space of the smooth
function.

5.5.7 Time-Dependent Hamiltonian Systems

The preceding Sects.5.5.1-5.5.6 gave an introduction to the mathematical founda-
tions of the theory of Hamiltonian and Jacobi. They should be sufficient to study the
theory of time-dependent systems as well, without any major difficulties. We restrict
our discussion to a few remarks and refer to the more specialized, mathematical
literature on mechanics for more details.

If the Hamiltonian function depends explicitly on time, H : M x R, — R, then
also the corresponding Hamiltonian vector field depends on time, i.e. assigns
to each point (m, t) of the direct product of phase space and time axis, a tan-
gent vector in 7, M x R. The manifold M x R, cannot be symplectic because
its dimension is odd. However, the canonical two-form @ has maximal rank on
M x R;, namely 2 f, where f = dim Q. In a local chart representation of (m, t) €
UxR,UcCM,viz.(q",...q7, p1,..., ps, 7), the canonical two-form reads

wly = qui N dp;

according to Darboux’s theorem, provided the chart is a symplectic one. As @ was
given by w = —d6, we have locally

d@® — > pidg') =0.

The form in parentheses is closed. Hence, locally, according to Poincaré’s lemma, it
can be written as the exterior derivative of a function, i.e.
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9=Zpidqi+dt.

Note that the exterior product & A df A --- A dO, with f factors df, is a volume form
on M x R;.

It is not difficult to generalize the time-independent situation discussed in the
previous sections to the case of time-dependent Hamiltonian vector fields. For every
fixed t € R, such a vector field

X MxR—>TM
is a vector field on M. One associates with it a vector field X on M x R,
X MxR—>TMxR)=ZTM x TR,
(= means isomorphic) through the assignment
(m,t) — (X(m,1),(t,1)).
Regarding the integral curves of X, we can say the following. Let y : I — M be an
integral curve of X going through the point m. Then y : I — M x R is the integral

curve of X, passing through the point (m, 0), precisely if y () = (y(¢), t). This is
easily verified. Write

y(@) = @), 7).
This is an integral curve of X provided
70 = '), 7)) = X)),
i.e. provided
Y =X(y@),r) and T'(t)=1.

However, as 7(0) should be equal to 0, we conclude that t(¢) = ¢. The flux of X is
expressed in terms of the flux of X, viz.

D.(m,s) = ((t +5), D, (m)) .

Let M be the phase space and let H be a time-dependent Hamiltonian function on
M x R. Then H (m, t), for fixed ¢, is a function on M,

Hm) S Hm,0): M > R,
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whose vector field Xy is determined as before. Define the vector field
Xg:MxR—TM: (m,t) — Xy, (m)

as well as the corresponding vector field Xy, to be constructed as above. The corre-
sponding integral curves of Xy move across M x R, those of Xy move across M.
The latter are identical with the phase portraits introduced in Chap. 1.

The canonical equations of motion hold in every symplectic chart. Soy : I — U,
with I C Rand U C M, is an integral curve of Xy if and only if the equations

d .
a[q’(y(t))] =0H(y(1),1)/0p;

d
E[Pi()/(f))] = —03dH(y(1),1)/9q;

are fulfilled.

5.6 Lagrangian Mechanics and Lagrange Equations

On the one hand, the Lagrangian function is defined as a smooth function on the
tangent bundle 7Q of the coordinate manifold Q, L : T Q — R. As we know from
Chap. 2, on the other hand, it appears in the expressions for the Legendre transforma-
tion from Lagrangian mechanics, formulated on 7Q, to Hamilton—Jacobi mechanics,
which lives on 7*Q, and vice versa. The geometric approach shows very clearly
that this is more than just a simple transformation of variables. The formulation of
Hamilton and Jacobi is characteristic for the cotangent bundle 7* Q. The aim of this
section is to show that Lagrangian mechanics is rather different from this, also as far
as its geometric interpretation is concerned. The main difference is that on the tangent
bundle one can define differential equations of second order (i.e. the Euler—Lagrange
equations well known to us), in a natural way, while this is not possible on 7*Q.

5.6.1 The Relation Between the Two Formulations of
Mechanics

When expressed in local coordinates, the first step of the Legendre transformation is
the assignment

L . AL
oL {q'.q'} — [q,@d:“pj]. (5.102)
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Fig. 5.12 The Lagrangian TQ
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Going back from the charts to the original manifolds 7Q and 7*Q, (5.102) says that
we assign to an element of 7, Q, for fixed base point # € Q, an element of 7, Q
by means of derivatives of the Lagrangian function. In other words, the fibre 7, QO
over u € Q of the tangent bundle 7Q is mapped to the fibre T, Q of the cotangent
bundle over the same base point. This mapping is linear and makes use of the partial
derivatives of the Lagrangian function within the fiber 7, Q (in charts: ¢ is fixed, the
derivatives are taken with respect to ¢). Thus, let v, be an element of T, Q, the fibre
of TQ in u. Denoting the restriction of the Lagrangian function to this fiber by L,,
the mapping @1, (5.102) corresponds to the assignment

& :T,0—>T0:v,— DL,(v,), (5.103)

where D denotes the derivatives of L. The precise definition of D on manifolds
would lead us too far from our main subject. Therefore, the following, somewhat
qualitative remarks that clarify matters in charts may be sufficient. Let (¢, U) be
a chart taken from the atlas for Q and (T, TU) the induced chart for 7Q. L
denotes the restriction of the Lagrangian function to the domains of these charts.
Then L% o To~! is a function on R/ x R/, as shown schematically in Fig.5.12.

Denoting the derivatives with respect to the first and the second arguments by D,
and D», respectively, we have

aL

DILYoTe ! = [a_] , (5.104a)
ql
aL

D)LY oTy™ ! = [a_] . (5.104b)
ql

The derivative DL, of (5.103) leaves the base point # unchanged. Hence it is of the
type (5.104b).

@ being a mapping from 7Q to T* Q that is induced by the Lagrangian function,
the canonical forms C1F (5.74) and C2F (5.79) can be pulled back from 7*Q to TQ.
If @, is a regular mapping,’ it is symplectic, so that canonical mechanics on 7*Q
can be pulled back to TQ. If, furthermore, @ is a diffeomorphism, then the two
formulations of mechanics are completely equivalent. As we know from Chap.2,

7A mapping @ : M — N is said to be regular in the point p € M if the corresponding differential,
or tangent, mapping from 7, M to T ® )N is surjective.
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this is true if and only if (in charts) the matrix of the second derivatives of L with
respect to g is nowhere singular, i.e. if

der (L £0 (5.105)
€ - .
3Gkagi

holds on the domain of definition of the problem. Strictly speaking, one should
distinguish the cases where @ is regular from those where, in addition, it is a
diffeomorphism. In the first case, the condition (5.105) holds only locally while in
the second it holds on the domain of al/ charts. For what follows we assume that L
is chosen such that @y, is a diffeomorphism.

5.6.2 The Lagrangian Two-Form

The canonical two-form wy, defined by (5.79), can be pulled back to TQ by means
of @r.. This yields what is called the Lagrangian two-form

oL € dray . (5.106)

The pull-back of wy, the canonical two-form on 7*(Q, to @y on TQ is defined as
described in Sect.5.4.1 (5.41). Very much like wq the form wy is closed,

da)L=0.

This follows because the exterior derivative of the pull-back of a form d(F*w) is
equal to the pull-back F*(dw) of the exterior derivative of the original form (see also
Exercise 5.11).

Furthermore, the operation of pull-back commutes with the restriction to open
neighborhoods on the manifold, on which a given form is defined. For F : M — N

k .
and w an exterior k-form on N, one has

k k
(F*0)|yeu = F* (@ |rwycn) -

Therefore, the expression of e in charts can be computed from the local represen-
tation (5.80) of wy. Let U be the domain of a chart on Q and T U the corresponding
domain on 7Q. Then we have in the domain of the chart (¢, U)

oLlry = (Pfwo)lru = Pf (wolr+v)
=@/ (qui A dpi)

= > d(@7q) Ad(®]p)) .



5.6 Lagrangian Mechanics and Lagrange Equations 365

Here we have used the equality F*(o A t) = (F*o) A (F*1) for two exterior forms
o and 7, as well as the fact that the exterior derivative commutes with F*. The last
expression for @y contains the functions ¢’ and py, pulled back to TQ, for which we
have

oL
‘qu =q", D pr = R T
Thus we find
= dqg' Ad
wLlry = Z q Bq

The exterior derivative of the function d L /4" is easily calculated with the rules of
Sect.5.4.4. Thus, we obtain

9%L . 9%L
wLlry = _dg' Adg* + dg' A dg (5.107)
= agkag’ 9g'agk

The same result is obtained from the pull-back to 7Q of the canonical one-form

(5.74), 6. < &#0,. In charts it reads

JL
OLlry = Z —df]

Taking the negative exterior derivative, w;, = —df, yields again the expression
(5.107).

Thus, if the mapping @y, is regular, or even a diffeomorphism, then @ is sym-
plectic: it maps the symplectic manifold (7*Q, wy) onto the symplectic manifold

(TQ,wp).

5.6.3 Energy Function on TQ and Lagrangian Vector Field

In discussing the Legendre transformation in Chap. 2, we considered the function

L
E(g.4.0)=> ¢ F—L(q g.1). (5.108)

which led to the Hamiltonian function, after transformation to the variables ¢ and
p (taking account of the condition (5.105)). For autonomous systems this was the
expression for the energy, the energy then being a constant of the motion. Given the
Hamiltonian function and the canonical two-form w, the Hamiltonian vector field
was constructed following the definition HVF (5.91). A similar construction can be
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performed on 7Q. For that purpose we first define the function E on the manifold
TQ, its chart representation being given by (5.108) above. Withu € Q, v, € TQ,
the first term on the right-hand side of (5.108) is given a coordinate-free meaning by
the definition

W:TQ - R:v, > & (v,) - v, (5.109a)

According to (5.103), @1 (v,) is a linear mapping from 7, O to R, i.e. itis an element
of T, Q, which acts on v, € T Q. One verifies easily that, in charts, W is indeed
given by the first term on the right-hand side of (5.108). W is said to be the action.

The energy function, understood to be a smooth function on 7Q, is then defined
by

E¥w_L. (5.109b)
We follow the analogous construction on phase space, Sect. 5.5.5. We take the exterior
derivative of E and define the Lagrangian vector field by means of the Lagrangian
two-form wy , as follows.

LVF. Given the function £ = W — L on TQ, as well as the two-form w;, =
Dl'wy, with @1 being a regular mapping (or even a diffeomorphism), the
Lagrangian vector field Xg is defined uniquely by

In local form E is given by (5.108) and therefore

oL ., .. L
dE[ry :%:(a_qia'kjw] YL ) Zc] kaq
oL .
—Zﬂqu—ga—wqu
. 9L oL
‘Zq ka 7d +Z(q aqkag k)d ‘

ik Bq

It is instructive to write out explicitly the local form of (5.110) as well as the vector
field Xg. For the sake of simplicity, we do this for the case of one degree of freedom,
f = 1. The general case is no more difficult and will be dealt with in the next section.
Let d and 9 denote the base fields 3/d¢g’ and 8/94', respectively. Then, in coordinates,
the Lagrangian vector field is Xg = vd + 99, while another, arbitrary vector field
reads Y = wd + wd. From (5.107) we have

2
wL(Xg,Y) = 8—622(1)111 —w) ,
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while the action of dE on Y gives the local result

. 0%L BL) LO°L _

dE(Y) = _ o oW,
) ("aqaq 2g )" T og”

Inserting these expressions into the equation o (Xg, Y) = dE(Y) and comparing
the coefficients of w and w, we obtain

Lo oL . 9 aL) 92L
V=4, V=\ 7" "9 7+ -0 -
1 og  Taq 9q)/ 8

It is seen that the condition (5.105) is essential.
We now follow the pattern of (5.92) and try to determine the integral curve of the
Lagrangian vector field Xg,

c(t) = (XB)ew) -

Here ¢ : I — Ris a curve on TQ. In charts c¢(?) is (38) and obeys the differential

equations

gty =v=gq,

i) = b oL . 9 oL 9L
=V = —_— g — — —_—
1 oq  19q04) /) 9

While the first of these just tells us that the time derivative of the first coordinate is
equal to the second, the second equation has a somewhat surprising form. True, it is
obtained from the Euler-Lagrange equation

by taking the derivative with respect to ¢ and by solving for ¢g. However, it is a
differential equation of second order and therefore, geometrically speaking, it is
different from the canonical equations (5.92). Let us consider this new feature in
more detail.

5.6.4 Vector Fields on Velocity Space TQ and Lagrange
Equations

A smooth vector field X that is defined on the tangent bundle 7Q of a manifold Q
leads from 7Q to T (T Q), the tangent bundle of the tangent bundle,

X:TQ = T(TQ).
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Fig. 5.13 A vector field on T(TQ)
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Let 7y denote the projection from 7Q to Q and Tty the corresponding tangent
mapping. The composition 77y o X maps 7Q onto 7Q, as shown in Fig.5.13. If this
composition produces just the identity on 7Q, i.e.if Tty o X = id7 ¢, the vector field
X defines a differential equation of second order. This follows from the following
proposition.

Proposition. The smooth vector field X has the property
TtgoX =idrg (5.111)

if and only if each integral curve ¢ : I — T Q of X obeys the differential equa-
tion

(tgoc) =c. (5.112)

Proof For each point v, € T Q there is a curve going through that point such that
¢(t) = X(c(r)),witht € 1.T19 o X istheidentity on TQ precisely if Tt o ¢(7) =
c(7) holds true. Working out the left-hand side, we obtain

Ttrgocé(t) =TrgoTce(r,1) =T (tgoc)(t,1) = (19 00)*(1),

which proves (5.112). m]

From a physicist’s point of view the integral curves c of X are not exactly the solu-
tions one is looking for. Rather, we are interested in the orbits y on the base manifold
Q itself. These are the physical orbits in the manifold of generalized coordinates (the
ones one can “see”), i.e. the orbits that we denoted by @ ;(qo) in earlier sections. It
is not difficult, however, to obtain these curves from ¢ (intégral curve of X on TQ)

and from 7y (projection of 7Q on Q). Indeed, y &ef Tgoc: I — Qisacurve on
QO,sincec: I — TQandtp: TQ — Q. A curve of this kind that is associated to
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the vector field X is said to be a base integral curve. The condition (5.112) can be
written as ¥ = ¢, which means the following: the vector field X defines a differential
equation of second order if and only if each of its integral curves is equal to the
derivative of its corresponding base integral curve y = 79 o c.

In charts the Lagrangian vector field Xg reads

XE = ZUiBi + Zl_)iéi

with 8 & /047, 3 < 8/847, cf. Sect.5.6.3. Then v/ = §', while the components
v =1'(q, ¢) fulfill the differential equations

dz . .
@q’(t) =0v'(q(n),4@)) . (5.113)

As before, (3) is the local representation of the point ¢(¢) or y(¢). Of course, in

charts one obtains the well-known Euler—Lagrange equations. In order to show this
for the general case (f > 1), calculate w (Xg, ¥) as well as dE(Y), for an arbitrary
vector field

Y:Zwiai—i-zwif_)i .

One finds that
2L . .
oL(Xg, Y) = —'wt — v
%‘4 8qk8 i
9L i—k =k
+; 035 0q ww" —v'w (5.114)
and, similarly,
dE(Y) =4 L 0t > (4 PL 0L ) (5.115)
T agraq " T\ agkaq  ag

We insert v = ¢ in (5.114) and set it equal to (5.115). The terms in w* cancel, while
the comparison of the coefficients of w* yields the equations

oL ’L . 2L
L I
dg* i8q‘8qk iaq’aqk
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Finally, inserting the result (5.113), these equations become

agk — dr agk

3

i.e. the set of Euler—Lagrange equations, as expected.

5.6.5 The Legendre Transformation and the Correspondence
of Lagrangian and Hamiltonian Functions

We had assumed the mapping @1, (5.103) from T, Q to 7,7 Q to be a diffeomorphism.
Locally this means that the condition (5.105) is satisfied everywhere. As we learnt in
Chap. 2, Sect.2.15, we can then go over from Lagrangian mechanics to Hamilton—
Jacobi mechanics and vice versa, as we wish. In this section we want to clarify this
relationship using the geometric language.

With @1 a diffeomorphism, geometric objects can be transported between 7Q and
T*Q at will. For example, if X : TQ — T (T Q) is a vector field on TQ, then

YETd oXod[' : T"0 > T(T*Q)

is a vector field on the manifold 7* Q. Here, T @, is the tangent mapping correspond-
ing to @r. It relates T(T Q) with T(T* Q). As @y, is a diffeomorphism, 7@ is an
isomorphism. In this case one has the following results.

(i) Proposition. Let the Lagrangian function be such that @1 is a diffeomor-
phism. Let E be the function on 7Q defined by (5.109b). Finally, define the
function

HYEod':T*0 >R

on T*Q. Then the Lagrangian vector field Xg and the vector field Xy, which
corresponds to H, by the definition (5.91), are related by

TdLoXgod ' =Xy . (5.116)
&1, maps the integral curves of Xg onto those of Xy. The two vector fields,

Xg on TQ and Xy on T*Q, have the same base integral curves (i.e. the same
physical solutions on Q).

Proof 1tis sufficient to establish the relation (5.116) because the remaining assertions
all follow from it. Let v € T Q, w € T,(T Q), let v* be the image of v by &, and
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w* the image of w by the tangent mapping 7@y , i.e. w* = T, @ (w). At the point v
we then have

wo(TPL(XE), w*) = wL(Xg, w) = dE(w) = d(H o &) (w) .
On the other hand, at the point v* = @y (v), we know that
wo(TPL(Xg), w*) = dH (w*) = wo(Xy, w*) .

The assertion (5.116) now follows because w* is arbitrary, 7 @y, is an isomorphism,
and wy is not degenerate. It is then also clear that the integral curves of Xg and Xy
are related by @1 . Finally, denoting the projections from 7Q and from 7% Q to Q by
T and by 75, respectively, we know that 7o = 7, o @r. Hence, the base integral
curves are the same. O

(i1) The canonical one-form wy (5.74) is closely related to the action W, (5.109a).
With H = E o &, !, one has

Bo(Xp) = Wod, . (5.117a)

Conversely, if 6, oo D[y is the pull-back of the canonical one-form on 70, then

Oo(Xg) =W. (5.117b)

In charts this is easy to verify. For example, (5.117a) is equivalent to the statement
that 6y(Xy) o @ is equal to W. We have

oH
f0(Xi) =D pio—
o(X1) ,- p o,

so that, indeed

oL
0o(Xu) 0 1 =Zi‘,a—q,,.q =W.

(iii) A transformation analogous to (5.103) can also be defined for the inverse
direction, i.e. going from 7*Q to TQ. Let H be a smooth function on 7*Q. In

analogy to the definition (5.103) let us define the transformation
Oy T"Q—->T"Q=TQ. (5.118)

If this mapping @y is a diffeomorphism,® one can define the quantities

EHoay, wHawoay', LY w-E (5-119)

8Asis easy to guess, this is true if det(azH/é)pk dp;) vanishes nowhere.
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Fig. 5.14 If the condition
(5.105) is fulfilled, the
mapping @, is a
diffeomorphism. Its inverse
@y is defined by (5.118). A
Lagrangian formulation of
mechanics on 7Q and a
Hamiltonian formulation on
T*Q then correspond
bijectively

in analogy to (ii) above. This yields a Lagrangian system on 7Q with L the Lagrangian
function. For this L we again construct the mapping @1, (5.103). It then follows that
o = @ﬁl, or @1, o @y =idy+p and @y o @, = idr. This leads to the following
theorem.

Theorem. The Lagrangian functions on TQ for which the corresponding map-
pings @, are diffeomorphisms, and the Hamiltonian functions for which the
corresponding @y are diffeomorphisms, correspond to each other in a bijective
manner.

The proof, which is simple, makes use of the tools introduced above, see e.g.
Abraham and Marsden (1981). Thus, under the assumptions stated above, there
is a one-to-one correspondence between the two descriptions of mechanics. The
relationship between them is illustrated once more in Fig.5.14.

Note that most systems studied in nonrelativistic mechanics have this property.
As a counterexample, however, we remind the reader of the relativistic description
of a free particle, Sect.4.11: in this case the Lagrangian function did not have the
regularity required for @, to be a diffeomorphism.

5.7 Riemannian Manifolds in Mechanics

A Riemannian manifold (M, g) is a differential manifold M equipped with a met-
ric g. Differential or smooth manifolds are defined in Sect.5.2.2; the metric is
a smooth tensor field of type 7,)(M), and its properties are summarized in def-
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inition (ME) in Sect.5.5.1. As can be seen from (5.67b), or from (5.69), the
metric defines a scalar product on T, M, the tangent space attached to the point
p € M. This scalar product is often written in the “bra” and “ket” notation, i.e. by
making use of the symbols (... | and | .. ), such that

gr(v,w) = (v|w), v,weT,M. (5.120)

The phase space of a Hamiltonian system is a symplectic manifold, cf. the defini-
tion (S2) in Sect.5.5.4. Symplectic manifolds are very different from Riemannian
manifolds: While all symplectic manifolds look the same locally, this is not true
for Riemannian manifolds. The first statement is the content of Darboux’ theorem
(Sect.5.5.4) which may be expressed in more physical terms by the statement that
locally and outside of equilibrium positions, any Hamiltonian vector field can be
rectified (cf. Sect.2.37.1).°

In this section we show that for certain systems of Lagrangian mechanics the
coordinate manifold Q can be interpreted as a Riemannian manifold with the metric
as defined by the kinetic energy; and that solutions of the Euler—Lagrange equations
are nothing but geodesics of Q. In this way we discover another illustration and
example of the geometrical nature of mechanics; at the same time we prepare the
ground for general relativity, which is a geometrical theory, in an even deeper sense.

In what follows we first introduce the notions of parallel transport and affine
connection that one needs in order to define parallel vector fields and to write down
the geodesic equation. We then show that geodesics are solutions of Euler-Lagrange
equations and conclude with a beautiful application of this somewhat formal chapter.

5.7.1 Affine Connection and Parallel Transport

To begin with, let M simply be a Euclidean space R”, equipped with the metric
defined in (5.5) and (5.6). Let W = > W'9; and V = > V'9; be smooth vector
fields on M, V,, € T, M the local representative of V at the point p. We now ask the
question of how W at p will change in the direction of V. The answer is simple in
this case: At the point p we let V act on the functions (the components) W' (p) and
use the result to construct the vector field > V(W')d;. This is the local and natural
expression for the covariant derivative of W with respect to V

Dy (W) =D V(W)

i=I
n

W
=S vy, (5.121)

axk
ik=1

9The global properties of symplectic manifolds are the subject of an important research field of
mathematics. The present state of the art is described in the book by Hofer and Zehnder (1994).
This book should be readily accessible for the mathematically minded reader.
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Obviously this expression is linear in W. Regarding its dependence on V it is also
possible to calculate the covariant derivative along the sum of two vector fields, viz
Dy, v,W = Dy,W + Dy, W, as well as along the vector field f - V, where f is a
smooth function on M, viz DsyW = f(DyW). However, letting Dy act on the
vector field (f - W) is a different matter; one finds

Dy(fW) =D V(fWH0; = (V) D Wi+ f D VW),
i=1 i=1 i=1

= (VAW + fDyW.

This formula expresses a generalized product rule, or Leibniz rule.

In case of a smooth manifold M which is not R” the formula (5.121) no longer
holds, and there is no obvious and natural definition of a covariant derivative. Asking
the question of how a vector field W changes along the direction of another vector
field means that we have to compare elements of two distinct tangent spaces, say
W, e T,M with W, € T,M. In order to make such a comparison possible we first
need to know how to transport W), in a parallel fashion from 7, M to T, M (by means
of a vector space isomorphism). Only then can one compare the result of the parallel
transport with W,. As parallel transport, in general, is not given in a canonical way,
an explicit rule is necessary. It needs to be constructed in a manner consistent with
what we know from the flat space R". Fixing the rule of parallel transport on a smooth
manifold means choosing what is called a connection. The example studied above
suggests the following defining properties of a connection D:

CONN. A connection D on a smooth manifold M is a mapping
D : VM) x V(M) — VM), (5.122)

which has the following properties:
(1) Itis F(M)-linear in the first argument, that is to say
DV|+V2 W = DV] W + sz w s (51233)

Dy W = f(DyW); (5.123b)

(ii) itis R-linear in its second argument, that is

Dy (MW + 1 Wa) = A1 Dy (W1) + A Dy (Wa)
M. ER: (5.124)

(iii) it obeys the Leibniz rule

Dy(fW)= (VAW + fDyW, feFM). (5.125)
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The vector field Dy W is called the covariant derivative of W along V and with
reference to the connection D.

Clearly, the parallel transport is fixed if its action on all base vectors is known.
Therefore, if in a local chart we choose V = 0; and W = 9;, the result is again a
vector field which can be expanded along base fields,

Dy, (3;) = > Tkoy. (5.126)
k=1

This equation defines the Christoffel symbols Fl’]‘ of the connection D. For example,
if one computes the covariant derivative of a vector field W along the base field 9;,
(5.125) and (5.126) yield the following local expression

awk <
Dai(E Wkak)z > WJFE INAUER T (5.127)
k J

k

One of the central theorems of Riemannian geometry is the following: Among
the set of connections on a Riemannian manifold M there is a special, uniquely
determined connection which, in addition to (5.123)—(5.125) has the properties

[V,W]=DyW — DyV, (5.128)

X(VIW) = (Dx|W)+(VIDxW) forall X, V, W € V(M) . (5.129)

This special connection is called the Levi—Civita connection.

The first of the additional properties (5.128) says that the commutator (5.32) of
the vector fields V and W equals the difference of the covariant derivative of W along
V and of V along W. By applying (5.128) to two base fields 9; and 9; we see that
the Christoffel symbols are symmetric in their lower indices,

k _ ik
1“1,1. = rjl., (5.130)

Indeed the left-hand side vanishes because the base fields commute; the right-hand
side, according to (5.126), gives (5.130).1°

10The condition (5.128) expresses the fact that the Levi-Civita connection has vanishing torsion.
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As it also possesses the property (5.129) the Levi—Civita connection is said to be
metric. Indeed, the covariant derivative can also be applied to other smooth objects
defined on M such as the metric g. One can show that (5.129) is equivalent to the
condition Dg = 0, which says that the covariant derivative of the metric along any
smooth vector field vanishes.

In local coordinates the Christoffel symbols can be expressed in terms of deriva-
tives of the metric tensor g;; as well as by its inverse g€”. We skip this calculation
and simply quote the result

1 agm 8gmi 8gi‘
Fk 2 km J J
) ~ § (axi dx/ 8x’”) ' (>-131)

The symmetry (5.130) is obvious in this explicit formula.

5.7.2 Parallel Vector Fields and Geodesics

A smooth curve « : I C R, — M on the manifold M is itself a smooth, one-
dimensional manifold. Consider a smooth vector field Z € V(«) on this submanifold
of M. Let t be the parameter describing the curve, let the dot denote the derivative
with respect to T and let ¢ be its tangent vector field. The derivative of Z with respect
to T can then be computed as follows,

. dzk dzx dix' o )
Z=> —3 Z¥Dy(8,) = - k== 27"t 4.

This is the rate of change of Z as one moves along the curve. In particular, if Z=0
the vector field Z is said to be parallel. Given a tangent vector z € Ty ()M to the
point & (7o) on the curve we can now state precisely how to perform parallel transport
of a given vector along the curve «. In particular, for every smooth curve o : I — M
there is a unique parallel vector field Z such that at T = 19 it equals a given tangent
vector, say Z(1p) = z.

A case of special interest is when Z = «, i.e. where Z is the tangent vector field
of a curve «. Obviously, 7 is then none other than the acceleration &. Geodesics,
from the point of view of physics, describe motion of free fall on the manifold,
i.e. motion with vanishing acceleration. Geometrically speaking they are curves on
the manifold which link arbitrary points p and g such that the length of the arc pq is
extremal. An elementary example is provided by the unit sphere in three dimensions,
M = S?, where the geodesics are the great circles. The geodesic distance between
any two points A, B € S? is either a minimum (if the smaller segment of the great
circle joining them is chosen), or a maximum (if the larger segment is chosen). If A
and B are antipodes, the geodesic length corresponds to a saddle point (cf. Sect. 2.36).

These remarks illustrate the geometrical definition of geodesics.
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Geodesics on a smooth Riemannian manifold are smooth curves y : I — M whose
tangent vector field yis parallel.

This definition and our previous remarks allow us to write down a differential
equation for geodesics in local coordinates. It reads

e ! d d
pts oy>+jZkak<y>5(xfoy)d—r<x 0y)=0. (5.132a)

Here, the functions (x’ o y) are coordinate functions on the curve y . As their meaning
is obvious and as there is no real danger of confusion one simplifies the notation by
writing just x’ for short. The geodesic equation then takes the simpler form

4> rip;miit=o0. (5.132b)
Jjk

5.7.3 Geodesics as Solutions of Euler—Lagrange Equations

As we have seen, geodesics describe force-free, unaccelerated motion on a given
manifold. They are curves whose length is an extremum and, therefore, they are
solutions of Euler-Lagrange equations. This is the content of the following theorem

Theorem on geodesics. Let (Q, g) be a Riemannian manifold and
1
L:TQ—R, Lk = §(v|v)

a Lagrangian function. A curve y is a solution of the Euler-Lagrange equations
if and only if it is geodesic on Q.

Proof: In local coordinates the Lagrangian function reads
1 i1 .
L(v) = 3 lzj:gij(Q)U vi=2 ,Zj:gij(qm q’ -

Lagrange’s equations (2.18) yield

d . 1 8gjk Ny
el Zgi/qj _ _Z_iqjq =0. (5.133)
dr \ < 24 9q
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We calculate the time derivative in the first term
d .j gl]
d_l Zgijq Zgqu +Z 5
J

multiply the entire equation from the left with the inverse g’ of the metric tensor,
and sum over i to obtain the differential equation

.. i (98 lag'k)
q+§ g (___+ q’q
k laql

ijk 36]

li agu 0gik  0gjk\ .-«

e 2 (G g )= o
ijk

In the second step we have written the first term of the expression within brackets

twice by making use of its symmetry in j and k. In its second form, upon inserting

the formula (5.131) for the Christoffel symbols, the differential equation becomes

precisely the geodesic equation (5.132b). This proves the theorem.

Remark: With L = T = g;x¢'¢*/2 and with T the kinetic energy, (5.133) shows
that the geodesic equation has the form of (2.18). The integral

A= / ar > sulg()gigh = / "4 VAT (5.134)

T ik T

is the length of the curve with boundary values y (7;) = a and y (12) = b. As long
as T does not vanish these geodesics are curves whose length X is extremal because
asT #0

5.7.4 Example: Force-Free Asymmetric Top

We wish to conclude this chapter by illustrating these general results by means of a
particularly beautiful example'': We show that Euler’s equations (3.59) are geodesic
equations on the Riemannian manifold M = SO(3), with the metric being determined
by the inertia tensor J.

We start by recalling that by using S(¢) = 21.3:1 ¢;J; the rotation matrix (3.45a)
can be written as an exponential series in S and that the action of the latter on any
vector equals the cross product of ¢ with that vector (cf. Sect.2.22). Thus, in symbols

V1. Arnol’d: Ann. Inst. Fourier 16, 319 (1966).
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R(p) = exp{—S(¢)} and S(@)x =¢ xx.

The action of the matrix 2 (t) = R” (t)R(7), (3.53), on a vector in the laboratory
system is that given in (3.56b). Clearly, these formulas can be rotated to the body-
fixed system,

22X =wxx, wherew = Ro, 2 = RQR" . (5.135)

The Lagrangian function is equal to the kinetic energy expressed in the body-fixed
system,

1
L=T=§6-J-6. (5.136)

Let R(7) be a smooth curve on the manifold M = SO(3) which assumes the
boundary values R(7;) = R; and R(7;) = R, and which is such that the length
(5.134) is an extremum. We show that any such geodesic obeys Euler’s equations
(3.58) for vanishing external torque.

Let R(7) be a geodesic, Ry € SO(3) a constant, fixed rotation. We compute

T
[%G%Mﬂfymﬁﬁn=[%RﬁﬂIQKR@)=RV0R@%

From this we conclude that §2, and hence also @ as well as @ remain unchanged. This
means that if R(7) is a geodesic, so is (RgR(7)). Therefore, it is sufficient to discuss
the special geodesic which goes through R(t = 0) = 11. In this case R(O) = 2(0).
We compute £ in the neighborhood of ¢ = 0 as follows

2 =ReR'=R(@®R (1)
= (H—S+-~-)<S+%SS+%SS+~--)
=S—§&$+Ow%
and use the identity (cf. Sect.3.12)
[S, 81 = [S(9), S(9)] =S(9 x ¢) .

Note that ¢ and ¢ here are independent variables and need not have the same direction.
We conclude that

— 1
9=&@—5&¢x@+0w%.
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On the other hand (5.135) implies that 2 = S(@) and we conclude that

| .
w:¢—§¢x¢+(’)((p2). (5.137)

Inserting (5.137) into (5.136) and keeping track of the symmetry of the inertia tensor
we have

L, .1 .
T=5¢-3:-9=30-3-(9x0)+0(p".
In calculating, in a next step, the derivatives with respect to ¢ and to ¢ it is useful
to rewrite the second term of 7' by using the identities a - (b x ¢) = b - (¢ X a) =
c-(axb)witha= (@ -)HT =J-¢,b=¢,and c = ¢. To first order we find

Ml 39)+0@) = o x J@) + OW).
0@ 2 2

In much the same way one finds

d a7 =, 1
EB__J«)__(J@ x¢+0() =Jo+ o xJ®) + 0.

Thus, taking ¢ = 0 one recovers the geodesic equation
—— - —=JotoxJw) =0. (5.138)

This equation is identical to Euler’s equations (3.58), with D = 0. Thus, Euler’s
equations of motion have a simple geometrical interpretation which is helpful in
visualizing their content:

The spinning top without external forces follows geodesics of the smooth manifold
SOQ3).
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Chapter 6
Stability and Chaos

In this chapter we study a larger class of dynamical systems that include but go beyond
Hamiltonian systems. We are interested, on the one hand, in dissipative systems, i.e.
systems that lose energy through frictional forces or into which energy is fed from
exterior sources, and, on the other hand, in discrete, or discretized, systems such as
those generated by studying flows by means of the Poincaré mapping. The occurrence
of dissipation implies that the system is coupled to other, external systems, in a
controllable manner. The strength of such couplings appears in the set of solutions,
usually in the form of parameters. If these parameters are varied it may happen that
the flow undergoes an essential and qualitative change, at certain critical values of
the parameters. This leads rather naturally to the question of stability of the manifold
of solutions against variations of the control parameters and of the nature of such a
structural change. In studying these questions, one realizes that deterministic systems
do not always have the well-ordered and simple behavior that we know from the
integrable examples of Chap. 1, but that they may exhibit completely unordered,
chaotic behavior as well. In fact, in contradiction with traditional views, and perhaps
also with one’s own intuition, chaotic behavior is not restricted to dissipative systems
(turbulence of viscous fluids, dynamics of climates, etc.). Even relatively simple
Hamiltonian systems with a small number of degrees of freedom exhibit domains
where the solutions have strongly chaotic character. As we shall see, some of these
are relevant for celestial mechanics.

6.1 Qualitative Dynamics

In the preceding chapters, we dealt primarily with fundamental properties of mechani-
cal systems, with principles that allowed the construction of their equations of motion,
and with general methods of solving these equations. The integrable cases, although
a minority among the dynamical systems, were of special importance because they
allowed us to follow specific solutions analytically, to appreciate the significance and
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the power of conservation laws, and to study the restrictions that the latter impose
on the manifold of motions in phase space.

On the other hand, there are questions to which we have paid less attention so
far; for example: What is the long-term behavior of a periodic motion that is subject
to a small perturbation? What is the structure of the flow of a mechanical system
(i.e. the set of all possible solutions) in the large? Are there structural, characteristic
properties of the flow that do not depend on the specific values of the constants
appearing in the equations of motion? Can there be “ordered” and “unordered” types
of motions, in a given system? If yes, can one define a quantitative measure for the
lack of “order”? If a given system depends on external control parameters (strength
of a perturbation, amplitude and frequency of a forced vibration, varying degree of
friction, etc.), are there critical values of the parameters where the flow of the system
changes its structure in the large?

These questions show that, here, we approach the analysis of mechanical systems
in a somewhat different spirit. The equations of motion are assumed to be known
(even though they may depend on control parameters that can be varied). We con-
centrate less on the individual solution but, instead, study the flow as a whole, its
stability, its topological structure, and its behavior over long time periods. It is this
kind of analysis we wish to call qualitative dynamics. Quite logically, it leads one
to investigate the stability of equilibrium positions and of periodic orbits, to study
attractors for dissipative systems (i.e. manifolds of lower dimension than the original
phase space, to which the system tends, for large times, under the action of dissipa-
tion), to study bifurcations (i.e. structural changes of the flow at critical values of the
control parameters), and to analyse the pattern of disordered motion if it occurs.

6.2 Vector Fields as Dynamical Systems

The dynamics of a very great variety of dynamical systems can be cast in the form
of systems of first-order differential equations, viz.

$xX@0) = Fx@), 1). (6.1)

Here, ¢ is the time variable, x(¢) is a point in the configuration space of the system,
and F is a vector field that is continuous and often also differentiable. The space of the
variables x may be the velocity space, described locally by generalized coordinates
g" and velocities ¢, or the phase space that we describe locally by the ¢’ and the
canonically conjugate momenta p;. There are, of course, other cases where the x
live in some other manifold: an example is provided by the Eulerian angles that
parametrize the rotational motion of rigid bodies.
As an example, let the equation of the motion be given in the form

V+ A, 0y + 0,0 =0.
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It is easy to recast this in the form of (6.1), by taking

Oy, 05,

so that x; = x, X, = — fix, — f». The pattern (6.1), of course, is not restricted to
Lagrangian or Hamiltonian systems. It also describes systems with dissipation, that
is systems where either mechanical energy is converted to other forms of energy or
where energy from external sources is fed into the system. Thus, (6.1) describes a
large class of dynamical systems, defined on the space of x variables and the time
axis R,. This equation is a local expression of the underlying physical laws. For
instance, it relates the acceleration at every point of space and at each time ¢ with
the given field of forces. In this sense it determines the dynamics locally, “in the
small”. The temporal evolution of the system, starting from an arbitrary but fixed
initial configuration, will be known only when we have the complete solution of the
differential equation (6.1) that obeys this initial condition. As an example, consider
the Kepler problem (Sect. 1.7.2) for a given initial position r( and initial velocity 7 of
the relative coordinate. Take Ty = ,u,i‘é /2 to be smaller than |U (rg)| = A/ro (where
A = Gmmy)andtakel = |ry X 7o|u to be different from zero. The specific solution
that assumes this initial configuration is the Keplerian ellipse with parameters /% /A
and

e =1+ 2(Ty + U(ro)I2/nA? .

This specific solution, though, gives little information on the general dynamics of
mass points in the field of the gravitational force ¥ = —VU. Only when we know
the solutions for all allowed initial configurations do we learn that, besides ellipses
and circles, the Kepler problem also admits hyperbolas and parabolas as the typical
scattering orbits. In other words, the diversity of the dynamics hidden in an equation
such as (6.1) will come to light only if one knows and understands all solutions, i.e.
the complete flow of the vector field F.

These remarks apply to a system whose law of motion is given once and for
all. In the case of real physical systems, this assumption is true only in exceptional
situations, for the following reasons.

(1) It may happen that the force law is not known exactly. Its explicit form may
contain one or several parameters that one wishes to determine from the observed
motions. Here is an example: if one doubts the long-range character of the Coulomb
potential between two point charges e; and e, one might assume U (r) = eje/r”
with ¢ = 1 4 ¢, with the idea of studying the dependence of the corresponding
dynamics on the parameter ¢ (see also Practical Example 1.4).

(ii) The vector field F on the right-hand side of (6.1) describes the influence of
an external system that might be varied. An example is an oscillator that is coupled
to an external oscillation of variable frequency and variable amplitude.

(iii) It may be that the differential equation (6.1) contains a predominant force
field for which all physically allowed solutions are known. In addition, it contains
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further terms that describe the coupling of the system to other, external systems, the
coupling being weak enough so that they may be taken to be small perturbations of
the initial, soluble system. This is the situation that we studied in Sect.2.38-2.40.

In all cases and examples quoted above, the vector field F' contains additional
parameters that can be varied and that may have a decisive influence on the manifolds
of solutions. For example, it may happen that the solutions of (6.1) change their
structure completely once the parameters cross certain critical values. Stable solutions
can turn into unstable ones, a periodic solution, by the bifurcation phenomenon, can
double its frequency, etc.

From these remarks it is clear that the task of studying deterministic dynamic
systems on the basis of their equation of motion (6.1) is a very ambitious one. When
formulated this generally, this field of differentiable dynamics, by far, is not a closed
subject. On the contrary, there are only relatively few rigorous results and a number
of empirical results based on numerical studies. Therefore, studying this branch of
mechanics leads one very quickly into the realm of modern research in this field.

6.2.1 Some Definitions of Vector Fields and Their Integral
Curves

In this section we take up the tools introduced in Chap. 5 and discuss some concepts
that are important for studying vector fields as dynamic systems. The local form
of (6.1) is sufficient for an understanding of most of what follows in subsequent
sections. Therefore, the reader who is not used to the geometrical language may skip
this section. On the other hand, if one wishes to learn more about the subjects touched
upon in this chapter, some knowledge of the content of Chap. 5 is mandatory, as the
specialized literature and the research in this field make extensive use of the concepts
and methods of topology and differential geometry.

In reality, (6.1) is a coordinate expression of the differential equation (5.42) for
integral curves of a smooth vector field F on the manifold M. In physics, typically
M is the phase space T*Q or the velocity space T Q, i.e. the cotangent or tangent
bundles of the coordinate manifold, respectively.

The curve @, : I — M is an integral curve of F if the tangent vector field @,
coincides with Fg, (1), the restriction of F to points along the curve @,,,

Gu(t) =Fo,0y, telCR,, FeXM). (6.2)

[ is an open interval on the time axis R, that contains the origin ¢t = 0. The integral
curve @,, is chosen such that it goes through m at time zero. (We adopt the notation
of Sect. 1.19 because we shall use results from there.)

In the coordinates of the chart (¢, U) we obtain the differential equation (5.43),
ie.
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Fig. 6.1 During time 7, the

flow of a vector field ‘
transports a domain V to

V' = @,(V). The figure also '

shows the orbits along which
the points of V move during

this time __ ‘

d . .
a;@‘o®m)=a7%xko¢mJ), (6.3)

or, in a somewhat simplified notation, (6.1).

Somewhat more generally, we have the following. For each m( of M there is an
open neighborhood V on M, an open interval I on the time axis containing the origin
t = 0, and a smooth mapping

d:VxI—>M, (6.4)

such that, for every fixed m € V, the curve @ (m, t) is the integral curve @,,(t) =
@ (m, t) of F that goes through m at time t = 0, @ (m, t = 0) = m. The theorem of
Sect. 1.19 guarantees the existence and uniqueness of this integral curve. @ is said
to be the local flow of the vector field F and the integral curves @,, : [ — M are
said to be the flux or flow lines of ®@. Keeping the time variable in @ (m, t) fixed and
letting m wander through V, we obtain the flow fronts

®,(m) < & (m, 1) 6.5)

of the flow @. This local manifold of solutions may be visualized as shown in Fig. 6.1.
Given a fixed time ¢ € I, each point of the domain V flows along a certain section
of its integral curve @,,. The domain as a whole moves on to @,(V).

If Iy is the maximal allowed interval on the time axis for which @, exists, @,,
is unique and is said to be the maximal integral curve through m. Applying this
reasoning to every point of M yields a uniquely determined, open set 2 C M x R,
on which the maximal flow ®@ : 2 — M of the vector field F is defined. This leads
to the following.

Definition A vector field F is said to be complete if 2 = M x R;, i.e. if its maximal
flow is defined on the whole manifold and for all times.

The Hamiltonian vector field of the harmonic oscillator provides an example of a
complete vector field,

b= xiy = (2 _2HN
(f):(XH)—(ap, aq)—(’” q) - (6.6)
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Its maximal flow

cost sint
D(m=(q,p),1) = (_ o Cost) (Z)

is defined on the whole phase space (this is the example of Sect.5.3.1 with 7, = 0).
In practice there are examples of vector fields that are not complete. For instance,
in the Kepler problem the origin of the potential must be cut out of the orbit plane
because of its singularity at this point. The corresponding Hamiltonian vector field
then ceases to be complete on R?. Similarly, in relativistic mechanics and in general
relativity there are vector fields (such as velocity fields of geodesics) that are not
complete. For a complete vector field, @ is a global flow,

. MxR, - M, (6.7)

that may be interpreted in yet another way. As in (6.5) let us keep the time fixed. The
flow (6.7) then generates a smooth mapping of M onto itself,

& M= M:m—s &m) =L dm, 1), (6.8)

which has the following properties. For r+ = 0 it is the identical mapping on M,
@ = idy,. Taking the composition of (6.7) with itself, twice or several times, one
obtains

¢[+S=¢[O¢S for l‘,SER,.

For each ¢, @, is a diffeomorphism of M. The inverse of @; is @_,. In this way we
obtain a one-parameter group of diffeomorphisms on M, generated by the flow @ and
the assignment ¢ — @,. Thus every complete vector field defines a one-parameter
group of diffeomorphisms. Conversely, a group @ : M x R — M that depends on
a real parameter defines a complete vector field.

6.2.2 Equilibrium Positions and Linearization of Vector
Fields

Suppose the laws of motion of a physical system are described by the local (6.1) or,
more generally, by an equation of the form of (6.2). A set of differential equations
of this kind is called a dynamical system (although, strictly speaking, only the set
of all solutions to these equations describes the dynamics). For what follows, we
treat dynamical systems in the simplified form of (6.1), i.e. in the form of differential
equations on R”. For manifolds that are not Euclidean spaces this means that we work
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in local charts. Exceptions regarding dynamical systems on more general, smooth
manifolds will be mentioned explicitly.

A point x is said to be an equilibrium position of the vector field F if F'(x) = 0.
Equivalently, one also talks about a singular or critical point of the vector field. For
an autonomous system, for example, (6.1) becomes

X(1) = F(x(1)) . (6.9)

At a critical point x, the velocity vector vanishes so that the system cannot move out
of this point. However, as such, (6.9) says nothing about whether the configuration x
is stable or unstable against perturbations. One learns more about this if one linearizes
(6.9) about the point xg. For this purpose we introduce the following definitions.

(1) Linearization in the neighborhood of a critical point. In the terminology of
Sect.6.2.1 the linearization of a vector field at a critical point m is defined to be the
linear mapping

F'(mo) : TyyM — T,,)M |

which assigns to every tangent vector v € T,,, M the derivative
, d
F'(mgy)-v= E(Tquo(t) )|, -

Here @ is the flow of F and T @ is the corresponding tangent mapping.

In the simplified form of (6.9), valid on R", linearization means simply that we
expand about the point x = xg. Thus, take y = x — x( and F(x() = 0. From (6.9)
we obtain the differential equation i

V=2 o5 Yo (6.10a)

k=1 X

or, in more compact notation,
y@0) =DF|[, - y(@). (6.10b)

This is a differential equation of the type studied in Sect.1.21. The symbol DF
denotes the matrix of partial derivatives, very much as in Sect.2.29.1. For an
autonomous system (6.9) this matrix is independent of time. The linear system (6.10)
obtained from it is homogeneous and autonomous.

The following case is more general (see Exercise 1.22 and the example of
Sect. 1.26).

(i1) Linearization in the neighborhood of a given solution. Let @ (¢) be a solution
of (6.1) and let y(¢) = x(t) — @ (¢). Then, from (6.1),
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YO = F(y@) + @(1),1) = D(t) = F(y(t) + (1), 1) — F(P (1), 1) .

Expanding the right-hand side in a Taylor series about the solution @ (¢) yields the
linear and homogenous differential equation

i

. IF
V(1) = Z (=20, 1)y (), 6.11)

where the partial derivatives of ' must be taken along the orbit @ (7). Even if F
has no explicit time dependence, the linearized system (6.11) is not autonomous.
It becomes autonomous only if the specific solution is chosen to be an equilibrium
position, @ () = xo, taking us back to the first case (6.10).

In the simpler case of linearizing an autonomous system about an equilibrium
position we obtain the linear, homogeneous, and autonomous system (6.10), i.e.

y(@) =Ay() (6.12)
with the matrix A being given by

JF!

A= |
k
ax X

The linear system (6.12) can be solved explicitly. The solution that fulfills the initial
condition y(s) =0 is

Y1) = Wy (o) = expl(r — )Alyg (6.13)

with \}IM(})O) = Yo and with

[e¢]

expl(t — s)A] = Z G S)n

n=0

If A is given in diagonal form, this series becomes particularly simple. With «;
denoting the eigenvalues of A the exponential series also has diagonal form, its
eigenvalues being exp(Aw;) with A = ¢ — s. For this reason, the eigenvalues of the
matrix A = DF are called characteristic exponents of the vector field F at the point
X0.

For the sake of illustration we consider two examples. The first is the example of
Sect. 1.21.1, which is understood to be the linearization of the plane pendulum at the
point x = 0. From (1.46)

(0 Um
A_(—mw2 O)'
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The eigenvalues of A are easily found. From the characteristic equation det (a1l —
A) = 0 one finds ¢ = iw, @y = —iw, so that the diagonalized matrix is

0 iw 0
A= (0 _iw) . (6.14)

In the second example we add a friction term to the plane pendulum, proportional
to the velocity of the motion. Thus, in linearized form we obtain the differential
equation

mg +2ymg +mw*q =0, (6.15)

where y is a constant with the dimension of a frequency.
Using the notation of Sect. 1.18, y! = ¢, y*> = mgq, (6.15) becomes

-1 1
'y y . . 0 1/m
(y'z) =A (yz) with A = (—ma)2 _2]/) .

The eigenvalues of A are computed as in the previous example. For y? < ? (this is
the case of weak friction) one finds two, complex conjugate characteristic exponents

0 _ +1/ 2 a2 ()
|J/|<a):A=( Y Ow 4 _y_i\/m (6.16a)

For 2 > ? (this is the aperiodic limit) one finds two real characteristic exponents
both of which have the same sign as y,

0 _ 2 2
|V|>w:A=( V+VOV @ 0 ) (6.16b)

—y =y —a?

In all cases, yo = (y', y?) = 0 is an equilibrium position. In the case of damped
motion, (6.16a) and (6.16b) show that all solutions (6.13) approach the origin expo-
nentially as ¢ goes to infinity. This point is certainly one of stable equilibrium. If, on
the other hand, y < 0, the oscillations are enhanced and every initial configuration
except yo = 0 moves away from the origin, no matter how close to 0 it is chosen. In
this situation the origin is certainly a point of unstable equilibrium.

In the case of purely harmonic oscillations (6.14) the origin is again stable but in a
weaker sense than with positive damping. Indeed, if we perturb the oscillator a little
from its position of rest, it becomes a stationary state of motion with small amplitude.
It neither returns to zero nor moves away from it for large times. The origin is stable
but, obviously, its stability is of a different character than for the damped oscillator.
Let us study these different kinds of stability in more detail.
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6.2.3 Stability of Equilibrium Positions

Let x( be a stable critical point of the vector field F, i.e. F(xo,t) =0 and x¢ is an
equilibrium position of the dynamical system (6.1) or (6.9). The notion of stability
of the critical point is qualified by the following definitions.

S1. The point x¢ is said to be stable (or Liapunov stable) if for every neigh-
borhood U of x there is a further neighborhood V' of x( such that the integral
curve, that, at time r = 0, goes through an arbitrary point x € V, exists in the
limit # — +o00 and never leaves the domain U. Thus, when expressed in sym-
bols, we have for x € V and @,(0) = x, @,(t) € U forallt > 0.

S2. The point x is said to be asymptotically stable if there is a neighborhood
U of x that is such that the integral curve @, (¢) through an arbitrary x € U is
defined for + — +o00 and tends to x( as ¢ goes to infinity. Thus, with @ (x, t)
denoting the flow,

oWU,s) ceWU,t)cU for s>t>0 and
lim &,(t) =x¢, forall x eU .
t—>+00 ~ -

In the first case orbits that belong to initial configurations close to x( stay in the
neighborhood of that point, at all later times. In the second case they move toward
the critical point as time increases. Clearly, S2 contains the situation defined in S1:
a point that is asymptotically stable is also Liapunov stable.

The following proposition gives more precise information on how rapidly the
points of the neighborhood U in S2 move towards x( as time increases.

Proposition I. Let x( be an equilibrium position of the dynamical system (6.1),
which is approximated by the linearization (6.10b) in a neighborhood of x.
Assume that for all eigenvalues «; of DF|x, we have Re{o;} < —c < 0. Then
there is a neighborhood U of x such that the flow of F on U (i.e. which fulfills
@ (U,t =0) = U) is defined for all positive times, as well as a constant d such
that for all x € U and all # > O we have

[P (1) — xoll = de™|lx = xol| . (6.17)

Here || ... || denotes the distance function. The result (6.17) tells us that the orbit
through x € U converges to x( uniformly and at an exponential rate.
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A criterion for instability of an equilibrium position is provided by the following.

Propositionll. Let x( be an equilibrium position of the dynamical system (6.1).
If x is stable then none of the characteristic exponents (i.e. the eigenvalues of
DF|x of the linearization of (6.1)) has a positive real part.

We skip the proofs of these propositions and refer, for example, to Hirsch and
Smale (1974). Instead, we wish to illustrate them by a few examples and to give the
normal forms of the linearization (6.10) for the case of two dimensions.

One should note that definitions S1, S2 and propositions I and II apply to arbitrary
smooth vector fields, and not only to linear systems. In general, the linearization
(6.10) clarifies matters only in the immediate neighborhood of the critical point x.
The question of the actual size of the domain around x from which all integral
curves converge to X, in the case of asymptotic stability, remains open, except for
linear systems. We shall return to this below.

For a system with one degree of freedom, f = 1, the space on which the system
(6.1) is defined has dimension 2. In the linearized form (6.10) it is

y ! _ (41 an y !

y-z azp  ax yz
withay, = (0F'/ 3xb)| Xo- The eigenvalues are obtained from the characteristic poly-
nomial det (¢1l — A) = 0, i.e. from the equation

2
a® —alay +axp) +ajaxp —apay =0,

which may be expressed by means of the trace t = Tr A and the determinantd = det A
as follows:

o —ta+d=0. (6.18)
As is well known, the roots of this equation fulfill the relations
a1ty =t, oajar=d.

If the discriminant D = 1> — 4d is positive or zero, the solutions «; and «; are real.
In this case we must distinguish the following possibilities.

() a; <oy <0,ie.d >0and —24/d <t < 0.For diagonal A the solutions are
y! = exp(a t)yé, y? = exp(azt)yg and we obtain the pattern shown in Fig. 6.2a. The
origin is asymptotically stable: it is a node.

(i1) o) = ap < 0. This is a degenerate case contained in (i) and is shown in
Fig.6.2b.
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y2

LN
N

Fig. 6.2 Typical behavior of a system with one degree of freedom in the neighborhood of an
equilibrium position. In cases a and b the equilibrium is asymptotically stable. In case ¢ it is
unstable and has the structure of a saddle-point

(a)

(iii)) oy < 0 < «ay, i.e. d < 0. Here the origin is unstable. The orbits show the
typical pattern of a saddle point; see Fig.6.2c: some orbits approach the origin,
others leave it.

If the discriminant D is negative, the characteristic exponents are complex con-
jugate numbers

oy =0 +ip, =0 —ip,

with o and o real. Here t = 20, d = o> 4 02. The various cases that are possible
here are illustrated in Fig. 6.3, which shows the examples of the damped, the excited,
and the unperturbed oscillator (6.16a). The figure shows the solution with initial
condition yé =1, yS = 0 of (6.15), viz.

Yy =q(r) = [cos(rm) + (g/m) sin(t@)] e,
Y1) = (1) = — (1/\/1 - g2) sin(t\/l - g2) e (6.19)

Here we have introduced 7 = wt and g = y /w. Curve A corresponds to g = 0, curve
B to g =0.15, and curve C to g = —0.15. In the framework of our analysis these
examples tell us the following.

(iv) Curve A. Here 0 = 0, 0 = w, so that t = 0 and d > 0. The origin is stable
but not asymptotically stable. It is said to be a center.

(v) Curve B.Hereo = —y < 0,0 = \/w? — y2%,sothatt < 0,d > 0. The origin
is now asymptotically stable.

(vi) Curve C. Now o = —y is positive while o is as in (v); therefore ¢ > 0,
d > 0. The orbits move away from the origin like spirals. The origin is unstable for
t — +00.

Our discussion shows the typical cases that occur. Figure 6.4 illustrates the various
domains of stability in the plane of the parameters (¢, d). The discussion is easily
completed by making use of the real normal forms of the matrix A and by considering
all possible cases, including the question of stability or instability as ¢ tends to —oo.
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N

Fig. 6.3 Nature of the equilibrium position (0, 0) for the case of two, complex conjugate, charac-
teristic exponents. All curves start from the initial configuration (1, 0) and belong to the example
of the oscillator (6.15) with the explicit solution (6.19)

Fig. 6.4 For a system with d
f =1 the various stability
regions are determined by the
trace ¢ and the determinant d D=0
of the linearization A. AS S
means asymptotically stable AS 14

(the equilibrium position is a

node). S means stable (2]
(center) and US means AS

unstable (saddle-point)

UsS Us

6.2.4 Critical Points of Hamiltonian Vector Fields

It is instructive to try the stability criteria developed above on canonical systems.
These are governed by the canonical equations (2.99),

i=JH,, (6.20)
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where J is defined as in (2.102), its properties being

detd=1, J'=J0"=-48=-1.
The system (6.20) having an equilibrium position at x, the Hamiltonian vector field
Xy vanishes at that point. As J is regular, also the vector of partial derivatives H ,

vanishes in xo. Linearizing around x, i.e. setting y = x — xo and expanding the
right-hand side of (6.20), we obtain the linear system

y=Ay

with A =JB and B = {BZH/Bxkaxilg_c:)_co}.
The matrix B is symmetric, B = B”. Making use of the properties of J we have

ATJ+JA=0. (6.21)
A matrix that obeys condition (6.21) is said to be infinitesimally symplectic. This
name becomes clear if one considers a symplectic matrix M that differs only a little
from 1I,

M=1+¢A+0(?).

The defining relation (2.113) then indeed yields (6.21), to first order in &.!
The following result applies to matrices which fulfill condition (6.21).

Proposition. If « is an eigenvalue of the infinitesimally symplectic matrix A,
having multiplicity &, then also —« is an eigenvalue of A and has the same
multiplicity. If « = 0 is an eigenvalue then its multiplicity is even.

Proof The proof makes use of the properties of J, of the symmetry of B and of well-
known properties of determinants. The eigenvalues are the zeros of the characteristic
polynomial P («) = det (1l — A). Therefore, it is sufficient to show that det (¢ 1l —
A) = det (a1l + A). This is seen as follows
P(a) = det (a1l — A) = det (—ad* — JB) = det J det (—ad — B)
= det (—ad — B)T = det (¢d — B) = det (¢l — J7'B)
=det (all +JB) = det (wll + A) .

Thus, the proposition is proved. (]

'In Sect.5.5.4 symplectic transformations are defined without reference to coordinates, see defini-
tion SYT. If these are chosen to be infinitesimal, F = id + €A, then to first order in ¢ relation (6.21)
is obtained in the coordinate-free form w(Ae, e’) + w(e, Ae’) = 0.
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This result shows that the assumptions of proposition I (Sect. 6.2.3) can never be
fulfilled for canonical systems. As a consequence, canonical systems cannot have
asymptotically stable equilibria. Proposition II of Sect. 6.2.3, in turn, can be applied
to canonical systems: it tells us that the equilibrium can only be stable if all char-
acteristic exponents are purely imaginary. As an example consider the case of small
oscillations about an absolute minimum g of the potential energy described in Prac-
tical Example 2.1. Expanding the potential energy about g up to second order in
(g — q0), we obtain equations of motion that are linear. After we have transformed
to normal coordinates the Hamiltonian function that follows from the Lagrangian
function (A.8), Practical Example 2.1, reads

H= %éwf +92709) .
Setting Q) = /£2;Q; and P/ = P;//$2;, H takes the form
H= 1i Q:(P*+ 07 . (6.22)
23 l l
We calculate the matrix A = JB from this: A takes the standard form

2, 0

0 2
A= =~ . (6.23)

Generally, one can show that the linearization of a Hamiltonian system has precisely
this standard form if the Hamiltonian function of its linearization is positive-definite.
(Clearly, in the case of small oscillations about an absolute minimum of the potential
energy, H does indeed have this property.) Diagonalizing the matrix (6.23) shows
that the characteristic exponents take the purely imaginary values

+iQ), £y, ..., +i2 .

Therefore, a system for which A has the standard form (6.23) does not contradict the
criterion for stability of proposition II of Sect.6.2.3. The point x( has a chance to be
stable although this is not decided by the above propositions. In order to proceed one
tries to find an auxiliary function V (x) that has the property that it vanishes in x( and
is positive everywhere in a certain open neighborhood U of that point. In the example
(6.22) this could be the energy function (with x' = Q}, x'*/ = P/Ji =1,..., f)
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V({C)zE({C)—ziE=1 i[(x")" 4+ ().

We then take the time derivative of V (x) along orbits of the system. If this derivative
is negative or zero everywhere in U, this means that no solution moves outward,
away from x(. Then the point x is stable.

Remark. An auxiliary function that has these properties is called a Liapunov function.

The test for stability by means of a Liapunov function can also be applied to
systems that are not canonical, and it may even be sharpened there. Indeed, if the
derivative of V (x) along solutions is negative everywhere in U, then all orbits move
inward, towards x(. Therefore this point is asymptotically stable. Let us illustrate
this by the example of the oscillator (6.15) with and without damping. The point
(g =0, g = 0) is an equilibrium position. A suitable Liapunov function is provided
by the energy function,

Vg, ) E 1G> + 0’g®) with V(0,00 =0. (6.24)

Calculate V along solution curves:

1% v
= —¢+—j=0wqq—2yq" —o’q4 = —2y§" . (6.25)
dq g

14

In the second step we have replaced ¢ by ¢ and ¢, using (6.15). Fory = 0, V vanishes
identically. No solution moves outward or inward and therefore (0, 0) is stable: it is
a center. For positive y, V is strictly negative along all orbits. The solutions move
inward and therefore (0, 0) is asymptotically stable.

6.2.5 Stability and Instability of the Free Top

A particularly beautiful example of a nonlinear system with stable and unstable
equilibria is provided by the motion of a free, asymmetric rigid body. Following the
convention of Sect.3.13 (3.60), the principal axes are labeled such that 0 < I} <
I, < I;. We set

jdef

def b — I3
x'=w; and F''E = 2523

5 (with cyclic permutations) .
1

The Eulerian equations (3.59) take the form (6.1), viz.

L1 L1 L—1
e I e R e S LN )
1 2
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Here, we have written the right-hand sides such that all differences I; — I; are posi-
tive. This dynamical system has three critical points (equilibria) whose stability we
wish to investigate, viz.

= (@,0,00, x =000, x5 =(0,00),

@

w being an arbitrary positive constant. We set y = x — {Co) and linearize equations

(6.26). For example, in the neighborhood of the faoint )_C(()l) we obtain the linear system

1 0 0
y I —1
(% 0 0 w21 () _
y= ).)3 = L I, 2| =Ay.
Y 0 —02—"L 0 Y3
I3

The characteristic exponents follow from the equation det (w1l — A) = 0 and are
found to be

o{%l) =0 s (xél) = —O{él) = la)\/(lz — I])(I3 — 11)/1213 . (6273.)

A similar analysis yields the following characteristic exponents at the points )582) and

)5(()3), respectively:

a? =0, o =—a? =05 — L)L —1)/L15, (6.27b)

V=0, o =-af =iwy/(I — L)(I; — 1)/L1 . (6.27¢)

Note that in the case of (6.27b) one of the characteristic exponents has a positive
real part. Proposition IT of Sect. 6.2.3 tells us that )g(()z) cannot be a stable equilibrium.
This confirms our conjecture of Sect.3.14 (ii), which we obtained from Fig.3.22:
rotations about the axis corresponding to the intermediate moment of inertia cannot
be stable.

Regarding the other two equilibria, the characteristic exponents (6.27a) and
(6.27c¢) are either zero or purely imaginary. Therefore, )g(()l) and )563) have a chance
of being stable. This assertion is confirmed by means of the following Liapunov

functions for the points )g(()]) and )563), respectively:

VO E L L(L - 1) + L — 1)),

VO E L1 = 16D + L — (D]

V® vanishes at x = {c(()l); it is positive everywhere in the neighborhood of this point.

Taking the time derivative of V(' along solutions, we obtain, making use of the
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equations of motion (6.26),
VO ) = Ll — I)Dx*%% + (1 — I)x*53
=[(L—1)5— 1) — (s — L) (L — IDx'x*x* =0.

(1)
0

An analogous result is obtained for V@ (x). As a consequence the equilibria x;,’ and

{663) are stable. However, they are not Liapunov stable, in the sense of the definition
(St3) below.

6.3 Long-Term Behavior of Dynamical Flows
and Dependence on External Parameters

In this section we investigate primarily dissipative systems. The example of the
damped oscillator (6.15), illustrated by Fig.6.3 may suggest that the dynamics of
dissipative systems is simple and not very interesting. This impression is misleading.
The behavior of dissipative systems can be more complex by far than the simple
“decay” of the motion whereby all orbits approach exponentially an asymptotically
stable point. This is the case, for instance, if the system also contains a mechanism
that, on average, compensates for the energy loss and thus keeps the system in motion.
Besides points of stability there can be other structures of higher dimension that
certain subsets of orbits will cling to asymptotically. In approaching these attractors
fort — +o0, the orbits will lose practically all memory of their initial condition, even
though the dynamics is strictly deterministic. On the other hand, there are systems
where orbits on an attractor with neighboring initial conditions, for increasing time,
move apart exponentially. This happens in dynamical systems that possess what
are called strange attractors. They exhibit the phenomenon of extreme sensitivity
to initial conditions, which is one of the agents for deterministic chaos: two orbits
whose distance, on average, increases exponentially, pertain to initial conditions that
are indistinguishable from any practical point of view.

For this phenomenon to happen, there must be at least three dynamical variables.
In point mechanics this means that the phase space must have dimensions 4, 6,
or higher. Obviously, there is a problem in representing the flow of a dynamical
system as a whole because of the large number of dimensions. On the other hand,
if we deal with finite motions that stay in the neighborhood of a periodic orbit,
it may be sufficient to study the intersection of the orbits with hypersurfaces of
smaller dimension, perpendicular to the periodic orbit. This is the concept of Poincaré
mapping. It leads to a discretization of the flow: e.g. one records the flow only at
discrete times o, tg + T, o + 27T, etc., where T is the period of the reference orbit, or
else, when it hits a given transversal hypersurface. The mapping of an m-dimensional
flow on a hypersurface of dimension (m — 1), in general, may give a good impression
of its topology. There may even be cases where it is sufficient to study a single variable
at special, discrete points (e.g., maxima of a function). One then obtains a kind of
return mapping in one dimension that one may think of as a stroboscopic observation
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of a one-dimensional system. If this mapping is suitably chosen it may give hints to
the behavior of the flow as a whole.

In general, dynamical systems depend on one or several parameters that control
the strength of external influences. An example is provided by forced oscillations,
the frequency and amplitude of the exciting oscillation being the control parameters.
In varying these parameters one may hit critical values at which the structure of
the flow changes qualitatively. Critical values of this kind are called bifurcations.
Bifurcations, too, play an important role in the development of deterministic chaos.

This section is devoted to a more precise definition of the concepts sketched above.
They are then discussed and illustrated by means of a number of examples.

6.3.1 Flows in Phase Space

Consider a connected domain U, of initial conditions in phase space that has the
oriented volume V.

(i) For Hamiltonian systems Liouville’s theorem tells us that the flow @ carries
this initial set across phase space as if it were a connected part of an incompressible
fluid. Total volume and orientation are preserved; at any time ¢ the image U, of
Uy under the flow has the same volume V, = V. Note, however, that this may be
effected in rather different ways: for a system with f =2 (i.e. four-dimensional
phase space) let Uy be a four-dimensional ball of initial configurations. The flow
of the Hamiltonian vector field may be such that this ball remains unchanged or is
deformed only slightly, as it wanders through phase space. At the other extreme, it
may be such that the flow drives apart, at an exponential rate exp(«t), points of one
direction in Uy, while contracting points in a direction perpendicular to the first, at a
rate exp(—at) so that the total volume is preserved.? Liouville’s theorem is respected
in either situation. In the former case orbits through U possess a certain stability. In
the latter case they are unstable in the sense that there are orbits with arbitrarily close
initial conditions that nevertheless move apart at an exponential rate. Even though the
system is deterministic, it is practically impossible to reconstruct the precise initial
condition from an observation at a time ¢ > 0.

(i) For dissipative systems the volume V; of the initial set Uy is not conserved. If
the system loses energy, the volume will decrease monotonically. This may happen
in such a way, that the initial domain shrinks more or less uniformly along all inde-
pendent directions in Uy. There is also the possibility, however, that one direction
spreads apart while others shrink at an increased rate such that the volume as a whole
decreases.

A measure of constant increase or decrease of volume in phase space is provided
by the Jacobian determinant of the matrix of partial derivatives D@ (2.119). If this
determinant is 1, then Liouville’s theorem applies. If it decreases as a function of

2In systems with f = 1, i.e. with a two-dimensional phase space, and keeping clear from saddle
point equilibria, the deformation can be no more than linear in time, cf. Exercise 6.3.
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time, the phase space volume shrinks. Whenever the Jacobian determinant is different
from zero, the flow is invertible. If it has a zero at a point x of phase space, the flow
is irreversible at this point.

A simple phenomenological method of introducing dissipative terms into Hamil-
tonian systems consists in changing the differential equation for P(¢) in the following

manner:

) = oH R 6.28
Pj—_@_ 4, p). (6.28)

One calculates the time derivative of H along solutions of the equations of motion,

f
dH oH .. oH ,
— = —q' —pi=— 7'Ri(q,P) . 6.29
- Zaqjq +Zap,-p-’ Eq 4. p) (6.29)
Depending on the nature of the dissipative terms R;, the energy decreases either until
the system has come to rest or the flow has reached a submanifold of lower dimension
than dim PP on which the dissipative term > ¢’ R;(¢, P) vanishes.

In the example (6.15) of the damped oscillator we have
H = (p*/m +mw’q*)/2 and R =2ymg ,

so that

dH 2

e ymg=-Tp. (6.30)
dt m

In this example the leakage of energy ceases only when the system has come to rest,
i.e. when it has reached the asymptotically stable critical point (0, 0).

6.3.2 More General Criteria for Stability

In the case of dynamical systems whose flow shows the behavior described above,
the stability criteria of Sect.6.2.3 must be generalized somewhat. Indeed, an orbit
that tends to a periodic orbit, for t — +o00, can do so in different ways. Furthermore,
as this concerns a local property of flows, one might ask whether there are subsets
of phase space that are preserved by the flow, without “dissolving” for large times.
The following definitions collect the concepts relevant to this discussion.

Let F be a complete vector field on R”, or phase space R>/, or, more generally, on
the manifold M, depending on the system one is considering. Let B be a subset of M
whose points are possible initial conditions for the flow of the differential equation
(6.1),
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P,—0(B) =B .

For positive or negative times ¢ this subset moves to @;(B). The image @,(B) can
be contained in B, but it may also have drifted out of B, partially or completely. We
sharpen the first possibility as follows.

(1) If the image of B under the flow is contained in B, for all # > 0,

¢,(B) C B, (6.31)

the set B is said to be positively invariant.

(i1) Similarly, if the condition (6.31) held in the past, i.e. for all # < 0, B is said
to be negatively invariant.

(iii) Finally, B is said to be invariant if its image under the flow is contained in B
for all ¢,

d,(t) C B forallt. (6.32)

(iv) If the flow has several, neighboring domains for which (6.32) holds, obviously,
their union has the same property. For this reason one says that B is a minimal set
if it is closed, nonempty, and invariant in the sense of (6.32), and if it cannot be
decomposed into subsets that have the same properties.

A periodic orbit of a flow @; has the property @;,,(m) = ®,(m), for all points
m on the orbit, 7 being the period. Very much like equilibrium positions, closed,
periodic orbits are generally exceptional in the diversity of integral curves of a given
dynamical system. Furthermore, equilibrium positions may be understood as special,
degenerate examples of periodic orbits. For this reason equilibria and periodic orbits
are called critical elements of the vector field F that defines the dynamical system
(6.1). It is not difficult to verify that critical elements are minimal sets in the sense
of definitions (iii) and (iv) above.

Orbits that move close to each other, for increasing time, or tend towards each
other, can do so in different ways. This kind of “moving stability” leads us to the
following definitions. We consider a reference orbit A, say, the orbit of a mass point
m 4. This may, but need not, be a critical element. Let another mass point 7 5 move
along a neighboring orbit B. At time t = 0 m 4 starts from m% and mp starts from
m%, their initial distance being smaller than a given § > 0,

[m% —mS| <8 (t=0). (6.33)
These orbits are assumed to be complete (or, at least, to be defined for ¢t > 0), i.e.

they should exist in the limit t+ — 400 (or, at least, for # — +00). Then orbit A is
stable if
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Fig. 6.5 Stability of an orbit
(A) for the example of a
system in two dimensions.

a Orbital stability,

b asymptotic stability,

¢ Liapunov stability

(b)
(A)

(c)

Stl. for every test orbit B that fulfills (6.33) there is an ¢ > 0 such that forz > 0
orbit B, as a whole, never leaves the tube with radius ¢ around orbit A (orbital
stability); or

St2. the distance of the actual position of m g (¢) from orbit A tends to zero in
the limit  — +o00 (asymprotic stability); or

St3. the distance of the actual positions of m 4 and m p at time ¢ tends to zero as
t — +oo (Liapunov stability).

In Fig. 6.5 we sketch the three types of stability for the example of a dynamical
system in two dimensions. Clearly, analogous criteria can be applied to the past, i.e.
the limitt — —o0. As a special case, m 4 may be taken to be an equilibrium position
in which case orbit A shrinks to a point. Orbital stability as defined by Stl is the
weakest form and corresponds to case S1 of Sect.6.2.3. The two remaining cases
(St2 and St3) are now equivalent and correspond to S2 of Sect.6.2.3.

Remarks: Matters become particularly simple for vector fields on two-dimensio-
nal manifolds. We quote the following propositions for this case.

Proposition I. Let F be a vector field on the compact, connected manifold M
(with dim M = 2) and let B be a minimal set in the sense of definition (iv) above.
Then B is either a critical point or a periodic orbit, or else B = M and M has the
structure of a two-dimensional torus 72
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Proposition II. If, in addition, M is orientable and if the integral curve @, (m)
contains no critical points for ¢ > 0, then either @, (m) is dense in M (it covers all of
M), which is T2, or @,(m) is a closed orbit.

For the proofs we refer to Abraham and Marsden (1981, Sect.6.1).
As an example for motion on the torus T2, letus consider two uncoupled oscillators

pr+oiq =0, pr+wig=0. (6.34)

Transformation to action and angle coordinates (see Sect.2.37.2, Example (vi)) gives

i = 2Pi/w;sin Q; . p; = 2wiPicosQ;, i=12

with P; = I; = const. The integration constants /;, I, are proportional to the energies
of the individual oscillators, I; = E;/w;. The complete solutions

Pi=1, Po=5L, Qi=wit+010), Qr=awt+ 020 (6.35)

lie on tori 72 in the four-dimensional phase space R* that are fixed by the constants
I, and I,. If the ratio of frequencies is rational,

wr/wy =ny/ny, n; €N,

the combined motion on the torus is periodic, the period being T = 27n;/w; =
2mny/w;. If the ratio wy/w; is irrational, there are no closed orbits and the orbits
cover the torus densely. (Note, however, as the rationals are dense in the real numbers,
the orbits of the former case are dense in the latter.) For another and nonlinear example
we refer to Sect. 6.3.3(ii) below.

6.3.3 Attractors

Let F be a complete vector field on M = R” (or on another smooth manifold M, for
that matter) that defines a dynamic system of the type of (6.1). A subset A of M is
said to be an attractor of the dynamical system if it is closed and invariant (in the
sense of definition 6.3.2(iii)) and if it obeys the following conditions.

(i) A is contained in an open domain Uy of M that is positively invariant itself.
Thus, according to definition 6.3.2(i), Uy has the property

D,(Uy) Uy for t>0.
(i1) For any neighborhood V of A contained entirely in Uy (i.e. which is such that

A C V C Uyp), one can find a positive time 7" > 0 beyond which the image of U by
the flow ¢, of F' is contained in V,
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®,(Uy) CcV forallt >T .

The first condition says that there should exist open domains of M that contain the
attractor and that do not disperse under the action of the flow, for large positive times.
The second condition says that, asymptotically, integral curves within such domains
converge to the attractor. In the case of the damped oscillator, Fig. 6.3, the origin is a
(pointlike) attractor. Here, U can be taken to be the whole of R? because any orbit
is attracted to the point (0,0) like a spiral. It may happen that M contains several
attractors (which need not be isolated points) and therefore that each individual
attractor attracts the flow only in a finite subset of M. For this reason one defines the
basin of an attractor to be the union of all neighborhoods of A that fulfill the two
conditions (i) and (ii). Exercise 6.6 gives a simple example.

Regarding condition (ii) one may ask the question whether, for fixed Uy, one can
choose the neighborhood V such that it does not drift out of Uy under the action of
the flow for positive times, i.e. whether V, = @,(V) C U, for all # > 0. If this latter
condition is fulfilled, the attractor, A, is said to be stable. The following examples
may help to illustrate the concept of attractor in more depth.

Example (i) Forced oscillations (Van der Pol’s equation). The model (6.15) of
a pendulum with damping or external excitation is physically meaningful only in
a small domain, for several reasons. The equation of motion being a linear one,
it tells us that if ¢(¢) is a solution, so is every g(¢) = Ag(¢), with A an arbitrary
real constant. Thus, by this simple rescaling, the amplitude and the velocity can be
made arbitrarily large. The assumption that friction is proportional to ¢ then cannot
be a good approximation. On the other hand, if one chooses y to be negative, then
according to (6.30) the energy that is delivered to the system grows beyond all limits.
It is clear that either extrapolation — rescaling or arbitrarily large energy supply —
must be limited by nonlinear dynamical terms.

In an improved model one will choose the coefficient y to depend on the amplitude
in such a way that the oscillation is stabilized: if the amplitude stays below a certain
critical value, we wish the oscillator to be excited; if it exceeds that value, we wish
the oscillator to be damped. Thus, if u(¢) denotes the deviation from the state of rest,
(6.15) shall be replaced by

mii(t) + 2my w)i(t) + mo*ut) =0, (6.36a)

where () & —yo(1 — 12(1) /ud) (6.36b)

and where yy > 0. uy is the critical amplitude beyond which the motion is damped.
For small amplitudes y (u) is negative, i.e. the motion is enhanced.
We introduce the dimensionless variables

&0, q(r) €/ 20 uov@)ult)
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Fig. 6.6 The dynamical g
system (6.36a) has an
attractor. Orbits that start Be Ty

inside or outside the
attractor, for t — 00, tend
towards the attractor at an
exponential rate, on average.

The control parameter is

& = 0.4. The dashed line 5 %"? ”\
segment is a transverse — L 4 _5 q
section =k -2 &\E}//‘/‘} 4

and set p = ¢ (7). The equation of motion can be written in the form of (6.28), where

def
H=1p*+4¢* and R(q,p)=—(e—q)p. e=2pn/o,

and therefore

g=r.
p=—-q+(E—q)p. (6.36¢)

Figure 6.6 shows three solutions of this model for the choice ¢ = 0.4 that are
obtained by numerically integrating the system (6.36¢) (the reader is invited to repeat
this calculation). The figure shows clearly that the solutions tend rapidly to a limit
curve, which s itself a solution of the system. (In Exercise 6.9 one is invited to find out
empirically at what rate the solutions converge to the attractor.) Point A, which starts
from the initial condition (go = —0.25, pg = 0), initially moves outward and, as
times goes on, clings to the attractor from the inside. Points B (qy = —0.5, po = 4)
and C (g9 = —4, pp = 0) start outside and tend rapidly to the attractor from the
outside. In this example the attractor seems to be a closed, and hence periodic,
orbit. (We can read this from Fig. 6.6 but not what the dimension of the attractor
is.) Figure 6.7 shows the coordinate ¢ (t) of the point A as a function of the time
parameter t. After a time interval of about twenty times the inverse frequency of the
unperturbed oscillator it joins the periodic motion on the attractor. On the attractor the
time average of the oscillator’s energy E = (p* + ¢*)/2 is conserved. This means
that, on average, the driving term proportional to ¢ feeds in as much energy into the
system as the latter loses through damping. From (6.29) we have
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Fig. 6.7 Motion of the point 2k
A of.F.ig. 6.6, with initial alt) att)
condition

(g = —0.25, p = 0) for i
& = 0.4, as a function of i /\ f f
time. It quickly joins the

periodic orbit on the attractor /\ ! ‘ | [
|

-2r

Fig. 6.8 Motion of the point 10f
A, with initial condition
(—0.25, 0) as in Fig. 6.7 but
here with ¢ = 5.0 g

f\ m'} ol T30
U

dE/dt = ep* — ¢*p* .

Taking the time average, we have dE /dt = 0, and hence

2 (6.37)

the left-hand side being the average energy supply, the right-hand side the average

loss through friction.
For ¢ = 0.4 the attractor resembles a circle and the oscillation shown in Fig.6.7

is still approximately a harmonic one. If, instead, we choose ¢ appreciably larger, the
limit curve gets strongly deformed and takes more the shape of a hysteresis curve.
At the same time, g (t) shows a behavior that deviates strongly from a sine curve.
Figure 6.8 shows the example ¢ = 5.0. The time variation of ¢ (t) shows clearly that

it must contain at least two different scales.

Example (ii) Two coupled Van der Pol oscillators. The second example is directly
related to, and makes use of the results of, the first. We consider two identical systems
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of the type (6.36¢) but add to them a linear coupling interaction. In order to avoid
resonances, we introduce an extra term into the equations that serves the purpose of
taking the unperturbed frequencies out of tune. Thus, the equations of motion read

gi=pi, i=12,
Pr=—qi+E—q)pi+ g —q1) . (6.38)
Pr=—q—0q>+ (¢ —g)p>+ A(q1 — q2) .

Here o is the detuning parameter while A describes the coupling. Both are assumed
to be small.

For A = o = 0 we obtain the picture of the first example, shown in Fig. 6.6, for
each variable: two limit curves in two planes of R* that are perpendicular to each
other and whose form is equivalent to a circle. Their direct product defines a torus 72,
embedded in R*. This torus being the attractor, orbits in its neighborhood converge
towards it, at an approximately exponential rate. For small perturbations, i.e. 0, A <
€, one can show that the torus remains stable as an attractor for the coupled system
(see Guckenheimer and Holmes 2001, Sect. 1.8). Note, however, the difference to
the Hamiltonian system (6.35). There, for given energies E;, E,, the torus is the
manifold of motions, i.e. all orbits start and stay on it, for all times. Here, the torus is
the attractor to which the orbits tend in the limit# — +o00. The manifold of motions is
four-dimensional but, as time increases, it “descends” to a submanifold of dimension
two.

6.3.4 The Poincaré Mapping

A particularly clear topological method of studying the flow in the neighborhood of
aclosed orbit is provided by the Poincaré mapping to which we now turn. In essence,
it consists in considering local transverse sections of the flow, rather than the flow as
a whole, i.e. the intersections of integral curves with some local hypersurfaces that
are not tangent to them. For example, if the flow lies in the two-dimensional space
R?, we let it go through local line segments that are chosen in such a way that they
do not contain any integral curve or parts thereof. One then studies the set of points
where the integral curves cross these line segments and tries to analyze the structure
of the flow by means of the pattern that one obtains in this way. Figure 6.6 shows a
transverse section for a flow in two dimensions (dashed line). The set of intersection
points of the orbit starting in A and this line section shows the average exponential
approach to the attractor (see also Exercise 6.10).

A flow in three dimensions is cut locally by planes or other two-dimensional
smooth surfaces that are chosen such that they do not contain any integral curves. An
example is shown in Fig. 6.9: at every turn the periodic orbit I” crosses the transverse
section S at the same point, while a neighboring, nonperiodic orbit cuts the surface S
at a sequence of distinct points. With these examples in mind the following general
definition will be readily plausible.
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Fig. 6.9 Transverse section S
for a periodic orbit in R? o ——

~ O\

Definition. Let F be a vector field on M = R” (or on any other smooth manifold
of dimension n). A local transverse section of F at the point x € M is an open
neighborhood on a hypersurface of dimension dimS =dimM — 1 =n —1 (ie. a
submanifold of M) that contains x and is chosen in such a way that, at none of the
points s € S does the vector field F (s) lie in the tangent space T S.

The last condition makes sure that all flow lines going through points s of S do
indeed intersect with S and that none of them lies in S.

Consider a periodic orbit I with period 7', and let S be a local transverse section
at a point x( on I". Without loss of generality we may take xo(t = 0) = 0. Clearly,
we have xo(nT) = 0, for all integers n. As F does not vanish in x, there is always
a transverse section S that fulfills the conditions of the definition above. Let Sy be a
neighborhood of x that is contained in S. We ask the question at what time 7 (x) an
arbitrary point x € S that follows the flow is taken back to the transverse section S for
the first time. For x = x( the answer is simply 7(xo) = T and @7 (xo) = Po(x9) =
xo. However, points in the neighborhood of x( may return to S later or earlier than
T or else may not return to the transverse section at all. The initial set of Sy, after
one turn, is mapped onto a neighborhood 1, i.e. into the set of points

S1 = {Prx)(X)|x € So} . (6.39)

Note that different points of Sy need different times for returning to S for the first
time (if they escape, this time is infinite). Therefore, S; is not a front of the flow. The
mapping generated in this way,

TS > 81t x> Prxy(X), (6.40)

is said to be the Poincaré mapping. It describes the behavior of the flow, as a func-
tion of discretized time, on a submanifold S whose dimension is one less than the
dimension of the manifold M on which the dynamical system is defined. Figure 6.10
shows a two-dimensional transverse section for a flow on M = R3.

Of course, the mapping (6.40) can be iterated by asking for the image S, of S,
after the next turn of all its points, etc. One obtains a sequence of open neighborhoods
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Fig. 6.10 Poincaré mapping

of an initial domain Sy in the So
neighborhood of a periodic / S,
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I" hits the transverse section,
is a fixed point of the
mapping & /
S

So—=8S51—=8%...—S,,
n n

which may disperse, as time goes to 400, or may stay more or less constant, or
may shrink to the periodic orbit I". This provides us with a useful criterion for the
investigation of the flow’s long-term behavior in the neighborhood of a periodic orbit,
or, more generally, in the neighborhood of an attractor. In particular, the Poincaré
mapping allows for a test of stability of a periodic orbit or of an attractor.

In order to answer the question of stability in the neighborhood of the periodic
orbit I', it suffices to linearize the Poincaré mapping at the point x(. Thus, one
considers the mapping

DIT(0) = {317 /9x* |x—o} . (6.41)

(In the case of a general manifold M this is the tangent map 7'IT at xo € M.) The
eigenvalues of the matrix (6.41) are called characteristic multipliers of the vector
field F at the periodic orbit I". They tell us whether there is stability or instability
in a neighborhood of the closed orbit I". We have the following. Let I" be a closed
orbit of the dynamical system F and let IT be a Poincaré mapping in xo = 0. If
all characteristic multipliers lie strictly inside the unit circle, the flow will tend to I”
smoothlyast — +o00. This orbitis asymptotically stable. In turn, if the absolute value
of one of the characteristic exponents exceeds one, the closed orbit I” is unstable.

We study two examples. The first concerns flows in the plane for which transverse
sections are one-dimensional. The second illustrates flows on the torus 72 in R*, or
in its neighborhood, in which case the transverse section may be taken to be a subset
of planes that cut the torus.

Example (i) Consider the dynamical system

X = pxy —xa — (xF 4+ x)"x;
Xo = uxy + x; — (Xl2 —i—x%)"xz , (6.42a)
where the exponent n takes the values n = 1, 2, or 3 and where p is a real parameter.

Without the coupling terms (—x;) in the first equation and x| in the second, the system
(6.42a) is invariant under rotations in the (x;, x;)-plane. On the other hand, without
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the nonlinearity and with u = 0, we have the system x; = —x,, X, = x; whose
solutions move uniformly about the origin, along concentric circles. One absorbs
this uniform rotation by introducing polar coordinates x| = r cos ¢, x, = r sin ¢.
The system (6.42a) becomes the decoupled system

d
P =t = - U@ )
ar
. il
=l=—-—— . 42b
¢ a9 (6.42b)

The right-hand side of the first equation (6.42b) is a gradient flow (i.e. one whose
vector field is a gradient field, cf. Exercise 6.7), with

1 1
U(r,p) = ——pur’+ ——r"2 _ ¢ . 6.43
(r, ¢) SHrT+ i ¢ (6.43)

The origin r = 0 is a critical point. Orbits in its neighborhood behave like spirals
around (0, 0) with radial dependence r = exp(ut). Thus, for u < 0, the point (0, 0)
is asymptotically stable. For i > O this point is unstable. At the same time, there
appears a periodic solution

Xy = R(u)cost, xp=R(u)sint with R(p) = ¥/u,

which turns out to be an asymptotically stable attractor: solutions starting outside the
circle with radius R(x) move around it like spirals and tend exponentially towards
the circle, for increasing time; likewise, solutions starting inside the circle move
outward like spirals and tend to the circle from the inside. (The reader is invited to
sketch the flow for & > 0.)

In this example it is not difficult to construct a Poincaré mapping explicitly. It is
sufficient to cut the flow in the (xi, x,)-plane with the semi-axis ¢ = ¢y = const.
Starting from (x), x9) on this line, with ro = /(x{)2 + (x2)2, the flow hits the line
again after the time + = 2m. The image of the starting point has the distance r; =
I1(ry), where ry is obtained from the first equation (6.42b). Indeed, if W, denotes the
flow of that equation, r; = W;—», (rp).

Let us take the special case n = 1 and pu > 0. Taking the time variable t = utf,
the system (6.42b) becomes

dr 1, do 1
—=r{l=—=r), —=—. (6.44)
dr u dr u

With r(r) = 1/,/o(r) we obtain the differential equation do/dt = 2(1/u — 0),
which can be integrated analytically. One finds o(c, 7) = 1/ + ¢ exp(—271), c being
an integration constant determined from the initial condition o(t = 0) = g9 = 1/ rg.
Thus, the integral curve of (6.44) starting from (ry, ¢o) reads
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@, (ro, o) = (1/\/Q(c, ), do + t/umodZn) (6.45)

withe =1/ rg — 1/u. Hence, the Poincaré mapping that takes (v, ¢o) to (r1, ¢1 =
@) is given by (6.45) with T = 27, viz.

1 1 —-1/2
I (ro) = [l/u + (—2 - —) e“”} . (6.46)
ro M

This has the fixed point rq = /i, which represents the periodic orbit. Linearizing
in the neighborhood of this fixed point we find

dr1
DIT(ro = Jp) = — S
dr() VOZJﬁ

The characteristic multiplier is A = exp(—4). Its absolute value is smaller than 1
and hence the periodic orbit is an asymptotically stable attractor.

Example (ii) Consider the flow of an autonomous Hamiltonian system with f =2
for which there are two integrals of the motion. Suppose we have already found
a canonical transformation to action and angle coordinates, i.e. one by which both
coordinates are made cyclic, i.e.

{1, q2, p1, 2 HY = {61,605, 11, I, H} (6.47)

and H = w, I, + w>I>. An example is provided by the decoupled oscillators (6.34).
As both 6 are cyclic, we have

Ii(q.p)=0, or Ii(q.P)=const = Ii(qo. Po)

along any orbit. Returning to the old coordinates for the moment, this means that the
Poisson brackets

{(H,I;} and {I;,I;} (,j=1,2) (6.48)
vanish.? In the new coordinates we have

6 =0H/dl; =w; or 6;(t) = wit +67 . (6.49)
From (6.49) we see that the manifold of motions is the torus 72, embedded in the
four-dimensional phase space. For the transversal section of the Poincaré mapping

it is natural to choose a part S of a plane that cuts the torus and is perpendicular
to it. Let 0;(¢) be the angular variable running along the torus, and 6,(¢) the one

3H, I, and I, are in involution, for definitions cf. Sect.2.37.2.
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running along a cross section of the torus. A point s € Sy C S returns to S for the
first time after 7 = (27 /w;). Without loss of generality we measure time in units of
this period 7', t = ¢/ T, and take 9]0 = (. Then we have

01(t) =277, (1) =2mTwr/ew; + 65 . (6.49")

Call C the curve of intersection of the torus and the transverse section of S. The
Poincaré mapping maps points of C on the same curve. The points of intersection of
the orbit (6.49") with S appear, one after the other, at T = 0, 1, 2, ... If the ratio of
frequencies is rational, w, /@ = m/n, the first (n — 1) images of the point 6, = 93
are distinct points on C, while the nth image coincides with the starting point. If, in
turn, the ratio w,/w; is irrational, a point sy on C is shifted, at each iteration of the
Poincaré mapping, by the azimuth 27w, /w;. It never returns to its starting position.
For large times the curve C is covered discontinuously but densely.

6.3.5 Bifurcations of Flows at Critical Points

In Example (i) of the previous section the flow is very different for positive and nega-
tive values of the control parameter. For ;© < 0 the origin is the only critical element.
It turns out to be an asymptotically stable equilibrium. For u > 0 the flow has the
critical elements {0, 0} and { R(t) cost, R(u) sint}. The former is an unstable equi-
librium position, the latter a periodic orbit that is an asymptotically stable attractor.
If we let p vary from negative to positive values, then, at 4 = 0, a stable, periodic
orbit branches off from the previously stable equilibrium point {0, 0}. At the same
time, the equilibrium position becomes unstable as shown in Fig. 6.11. Another way
of expressing the same result is to say that the origin acts like a sink for the flow at
w < 0.For u > 0itacts like a source of the flow, while the periodic orbit with radius
R(w) is asink. The structural change of the flow happens at the point (u = 0, r = 0),
in the case of this specific example. A point of this nature is said to be a bifurcation
point.

Fig. 6.11 For the system !
(6.42a) the point r = 0 is
asymptotically stable for

n < 0. At u = 0 a periodic
solution (circle with radius
R(w)) splits off and becomes
an asymptotically stable
attractor. At the same time
the point » = 0 becomes
unstable
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The general case is that of the dynamical system
i=F(ux). (6.50)

whose vector field depends on a set u = {1, pa, ..., i} of k control parameters.
The critical points {Co(lf) of the system (6.50) are obtained from the equation

F(p,x0) =0. (6.51)

The solutions of this implicit equation, in general, depend on the values of the para-
meters . They are smooth functions of w if and only if the determinant of the matrix
of partial derivatives DF = {0F(u, {6)78xk} does not vanish in x. This is a con-
sequence of the theorem on implicit functions, which guarantees that (6.51) can be
solved for xg, provided that the condition is fulfilled. The points (i, x¢) where this
condition is not fulfilled, i.e. where DF has at least one vanishing eigenvalue, need
special consideration. Here, several branches of differing stability may merge or split
off from each other. By crossing this point, the flow changes its structure in a quali-
tative manner. Therefore, a point (u, x() where the determinant of DF' vanishes, or,
equivalently, where at least one of its eigenvalues vanishes, is said to be a bifurcation
point.

The general discussion of the solutions of (6.51) and the complete classification
of bifurcations is beyond the scope of this book. A good account of what is known
about this is given by Guckenheimer and Holmes (2001). We restrict our discussion to
bifurcations of codimension 1.# Thus, the vector field depends on only one parameter
W, but is still a function of the n-dimensional variable x. If (10, Xo) is a bifurcation
point, the following two forms of the matrix of partial derivatives DF are typical (cf.
Guckenheimer and Holmes 2001):

00
DF(Mv '?)'}L(),)fo = (O A) k] (652)

where Aisa (n — 1) x (n — 1) matrix, as well as

—w

0
DF (i, )lpoxo, = @ 0 (6.53)
0 0

oo

with Ba (n —2) x (n — 2) matrix.

In the first case (6.52) DF has one eigenvalue equal to zero, which is responsible
for the bifurcation. As the remainder, i.e. the matrix A, does not matter, we can take the
dimension of the matrix DF to be n = 1, in the case of (6.52). Furthermore, without
loss of generality, the variable x and the control parameter u can be shifted in such

“4The codimension of a bifurcation is defined to be the smallest dimension of a parameter space
{m1, ..., ux} for which this bifurcation does occur.
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a way that the bifurcation point that we are considering occurs at (u = 0, xo = 0).
Then the following types of bifurcations are contained in the general form (6.52).
(1) The saddle-node bifurcation:

x=pn—x>. (6.54)

For y¢ > 0 the branch xo = ./t is the set of stable equilibria and xo = —,/u the set
of unstable equilibria, as shown in Fig. 6.12. These two branches merge at © = 0 and
compensate each other because, for i < 0, there is no equilibrium position.

(i) The transcritical bifurcation:

X =pux —x°. (6.55)

Here the straight lines xo = 0 and xy = p are equilibrium positions. For ;& < 0 the
former is asymptotically stable and the latter is unstable. For © > 0, on the other hand,
the former is unstable and the latter is asymptotically stable, as shown in Fig.6.13.
The four branches coincide for ;1 = 0, the semi-axes (xo = 0,0r xg = u, # < 0) and
(x0 = m, or xo = 0, u > 0) exchange their character of stability; hence the name of
the bifurcation.

(iii) The pitchfork bifurcation:

X =pux —x>. (6.56)

All the points of the straight line x, = O are critical points. These are asymptotically
stable if u is negative, but become unstable if u is positive. In addition, for u > 0,
the points on the parabola xg = p are asymptotically stable equilibria, as shown in
Fig.6.14. At u = 0, the single line of stability on the left of the figure splits into the
“pitchfork™ of stability (the parabola) and the semi-axis of instability.

In all examples and prototypes considered above the signs of the nonlinear terms
are chosen such that they act against the constant or linear terms for ;© > 0, i.e. in such
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a way that they have a stabilizing effect as one moves from the line xo = 0 to positive
x. The bifurcations obtained in this way are called supercritical. It is instructive to
study the bifurcation pattern (6.54)—(6.56) for the case of the opposite sign of the
nonlinear terms. The reader is invited to sketch the resulting bifurcation diagrams.
The so-obtained bifurcations are called subcritical. In the case of the second normal
form (6.53) the system must have at least two dimensions and D F must have (at least)
two complex conjugate eigenvalues. The prototype for this case is the following.
(iv) The Hopf bifurcation:

¥ = pxy —x — (¢ +x9)x1 ,
(6.57)
Xy = uxy +x1 — ()cl2 +x§)x2 .

This is the same as the example (6.42a), with n = 1. We can take over the results
from there and draw them directly in the bifurcation diagram (u, xo). This yields the
picture shown in Fig.6.15. (Here, again, it is instructive to change the sign of the
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Fig. 6.15 The Hopf
bifurcation in two
dimensions. The lower part
of the figure shows the
behavior of the flow in the
neighborhood of the
asymptotically stable
equilibrium and of the
asymptotically stable
periodic solution

nonlinear term in (6.57), turning the supercritical bifurcation into a subcritical one.
The reader should sketch the bifurcation diagram.) We add the remark that here and in
(6.53) the determinant of DF does not vanish at (19, Xo). It does so, however, once
we have taken out the uniform rotation of the example (6.42a). One then obtains
the system (6.42b) for which the determinant of DF does vanish and whose first
equation (for n = 1) has precisely the form (6.56). Figure 6.15 may be thought of as
being generated from the pitchfork diagram of Fig.6.14 by a rotation in the second
x-dimension.

6.3.6 Bifurcations of Periodic Orbits

We conclude this section with a few remarks on the stability of closed orbits, as a
function of control parameters. Section 6.3.5 was devoted exclusively to the bifur-
cation of points of equilibrium. Like the closed orbits, these points belong to the
critical elements of the vector field. Some of the results obtained there can be trans-
lated directly to the behavior of periodic orbits at bifurcation points, by means of the
Poincaré mapping (6.40) and its linearization (6.41).

A qualitatively new feature, which is important for what follows, is the bifurca-
tion of a periodic orbit leading to period doubling. It may be described as follows.
Stability or instability of flows in the neighborhood of closed orbits is controlled
by the matrix (6.41), that is the linearization of the Poincaré mapping. The specific
bifurcation in which we are interested here occurs whenever one of the characteristic
multipliers (i.e. the eigenvalues of (6.41)) crosses the value —1, as a function of the
control parameter p. Let 5o be the point of intersection of the periodic orbit I” with a
transverse section. Clearly, sy is a fixed point of the Poincaré mapping, 1 (so) = so.
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(a) (b)

Fig. 6.16 Poincaré mapping in the neighborhood of a periodic orbit, for the case where a charac-
teristic multiplier approaches the value —1 from above (a), and for the case where it equals that
value (b)

As long as all eigenvalues of the matrix DIT(sg) (6.41) are inside the unit circle
(i.e. have absolute values smaller than 1), the distance from sy of another point s in
the neighborhood of sy will decrease monotonically by successive iterations of the
Poincaré mapping. Indeed, in linear approximation we have

1" (s) — so = (DI (50))" (s — s0) - (6.58)

Suppose the matrix DIT (sg) to be diagonal. We assume the first eigenvalue to be the
one that, as a function of the control parameter 1, moves outward from somewhere
inside the unit circle, by crossing the value —1 at some value of j. All other eigenval-
ues, for simplicity, are supposed to stay inside the unit circle. In this special situation
it is sufficient to consider the Poincaré mapping only in the 1-direction on the trans-
verse section, i.e. in the direction the eigenvalue A; refers to. Call the coordinate in
that direction u. If we suppose that 1 (1) is real and, initially, lies between 0 and —1,
the orbit that hits the transverse section at the point s; of Fig. 6.16a appears in u, after
one turn, in u3 after two turns, etc. It approaches the point sy asymptotically and the
periodic orbit through sy is seen to be stable. If, on the other hand, 1, () < —1, the
orbit through s; moves outward rapidly and the periodic orbit through s¢, obviously,
is unstable.

A limiting situation occurs if there is a value p( of the control parameter for

which A (up) = —1. Here we obtain the pattern shown in Fig. 6.16b: after one turn
the orbit through s; appears in u, = —uy, after the second turn in u3 = +u;, then
in ug = —uy, then in us = +uy, etc. This applies to each s on the u axis, in a

neighborhood of sy. As a result, the periodic orbit I" through s has only a sort of
saddle-point stability: orbits in directions other than the u-axis are attracted towards
it, but orbits whose intersections with the transverse section lie on the u-axis will
be caused to move away by even a small perturbation. Thus, superficially, the point
(o, s0) seems to be a point of bifurcation having the character of the pitchfork of
Fig.6.14. A closer look shows, however, that there is really a new phenomenon. In a
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system as described by the bifurcation diagram of Fig. 6.14, the integral curve tends
either to the point xo = +./u, or to the point xo = — /1, for positive . In the case
shown in Fig.6.16b, on the contrary, the orbit alternates between u; and —u;. In
other words, it is a periodic orbit I, with the period 7, = 2T, T being the period of
the original reference orbit.

If we take I as the new reference orbit, the Poincaré mapping must be redefined
in such a way that I hits the transverse section for the first time after the time 7>.
One can then study the stability of orbits in the neighborhood of I';. By varying the
control parameter further, it may happen that the phenomenon of period doubling
described above happens once more at, say, & = i1, and that we have to repeat the
analysis given above. In fact, there can be a sequence of bifurcation points (g, So),
(m1, 1), etc. at each of which the period is doubled. We return to this phenomenon
in the next section.

6.4 Deterministic Chaos

This section deals with a particularly impressive and characteristic example for deter-
ministic motion whose long-term behavior shows alternating regimes of chaotic
and ordered structure and from which some surprising empirical regularities can be
extracted. Although the example leaves the domain of mechanics proper, it seems to
be so typical, from all that we know, that it may serve as an illustration for chaotic
behavior even in perturbed Hamiltonian systems. We discuss the concept of iterative
mapping in one dimension. We then give a first and somewhat provisional definition
of chaotic motion and close with the example of the logistic equation. The more
quantitative aspects of deterministic chaos are deferred to Sect.6.5.

6.4.1 Iterative Mappings in One Dimension

In Sect.6.3.6 we made use of the Poincaré mapping of a three-dimensional flow
for investigating the stability of a closed orbit as a function of the control para-
meter ;. We found, in the simplest case, that the phenomenon of period doubling
could be identified in the behavior of a single dimension of the flow, provided one
concentrates on the direction for which the characteristic multiplier A (i) crosses the
value —1 at some critical value of p. The full dimension of the flow of F'(u, x) did
not matter. We can draw two lessons from this. Firstly, it may be sufficient to choose
a single direction within the transverse section S (more generally, a one-dimensional
submanifold of S) and to study the Poincaré mapping along this direction only. The
picture that one obtains on this one-dimensional submanifold may already give a
good impression of the flow’s behavior in the large. Secondly, the restriction of the
Poincaré mapping to one dimension reduces the analysis of the complete flow and
of its full, higher-dimensional complexity, to the analysis of an iterative mapping in
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one dimension,
up = uiyr = f(u;) . (6.59)

In the example of Sect.6.3.6, for instance, this iterative mapping is the sequence
of positions of a point on the transverse section at times 0, T, 27, 3T, ... Here the
behavior of the full system (6.1) at a point of bifurcation is reduced to a difference
equation of the type (6.59).

There is another reason one-dimensional systems of the form (6.59) are of interest.
Strongly dissipative systems usually possess asymptotically stable equilibria and/or
attractors. In this case a set of initial configurations filling a given volume of phase
space will be strongly quenched, by the action of the flow and as time goes by, so
that the Poincaré mapping quickly leads to structures that look like pieces of straight
lines or arcs of curves. This observation may be illustrated by the example (6.38).
Although the flow of this system is four dimensional, it converges to the torus 72,
the attractor, at an exponential rate. Therefore, considering the Poincaré mapping
for large times, we see that the transverse section of the torus will show all points
of intersection lying on a circle. This is also true if the torus is a strange attractor.
In this case the Poincaré mapping shows a chaotic regime in a small strip in the
neighborhood of the circle (see e.g. Bergé, Pomeau, Vidal 1987). Finally, iterative
equations of the type (6.59) describe specific dynamical systems of their own that
are formulated by means of difference equations (see e.g. Devaney 1979; Collet
and Eckmann 1990). In Sect. 6.4.3 below we study a classic example of a discrete
dynamical system (6.59). It belongs to the class of iterative mappings on the unit
interval, which are defined as follows.

Let f(u, x) be a function of the control parameter  and of a real variable x in
the interval [0, 1]. f is continuous, and in general also differentiable, and the range
of u is chosen such that the iterative mapping

Xipr = f(p,x) . x €[0,1], (6.60)

does not lead out of the interval [0, 1]. An equation of this type can be analyzed
graphically, and particularly clearly, by comparing the graph of the function y(x) =
f(u, x) with the straight line z(x) = x. The starting point x; has the image y(x;),
which is then translated to the straight line as shown in Fig.6.17a. This yields the
next value x,, whose image y(x;) is again translated to the straight line, yielding the
next iteration x3, and so on. Depending on the shape of f (i, x) and on the starting
value, this iterative procedure may converge rapidly to the fixed point X shown in
Fig.6.17a. At this point the straight line and the graph of f intersect and we have

%= f(u,X). 6.61)

The iteration x; — x, — ... — X converges if the absolute value of the derivative
of the curve y = f(u, x) in the point y = x is smaller than 1. In this case x is an
equilibrium position of the dynamical system (6.60), which is asymptotically stable.
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Fig. 6.17 The iteration x;] = f(u, x;) converges to x, provided |d f/dx|z < 1 (a). In b both 0
and x» are stable but x; is unstable

If the modulus of the derivative exceeds 1, on the other hand, the point x is unstable.
In the example shown in Fig. 6.17a x = 0 is unstable. Figure 6.17b shows an example
where xo = 0 and X, are stable, while X is unstable. By the iteration (6.60) initial
values x; < x; tend to xg, while those with x; < x; < 1 tend to x».

The nature and the position of the equilibria are determined by the control para-
meter u. If we let  vary within its allowed interval of variation, we may cross certain
critical values at which the stability of points of convergence changes and, hence,
where the structure of the dynamical system changes in an essential and qualitative
way. In particular, there can be bifurcations of the type described in Sects. 6.3.5 and
6.3.6. We do not pursue the general discussion of iterated mappings (6.60) here and
refer to the excellent monographs by Collet and Eckmann (1990) and Guckenheimer
and Holmes (1990). An instructive example is given in Sect.6.4.3 below. Also we
strongly recommend working out the PC-assisted examples of Exercises 6.12-6.14,
which provide good illustrations for iterative mappings and give an initial feeling for
chaotic regimes.

6.4.2 Qualitative Definitions of Deterministic Chaos

Chaos and chaotic motion are intuitive concepts that are not easy to define in a
quantitative and measurable manner. An example taken from daily life may illustrate
the problem. Imagine a disk-shaped square in front of the main railway station of
a large city, say somewhere in southern Europe, during rush hour. At the edges of
the square busses are coming and going, dropping passengers and waiting for new
passengers who commute with the many trains entering and leaving the station.
Looking onto the square from the top, the motion of people in the crowd will seem
to us nearly or completely chaotic. And yet we know that every single passenger
follows a well-defined path: he gets off the train on platform 17 and makes his way
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through the crowd to a target well known to him, say bus no. 42, at the outer edge of
the square.

Now image the same square on a holiday, on the day of a popular annual fair.
People are coming from all sides, wandering between the stands, going here and
there rather erratically and without any special purpose. Again, looking at the square
from the top, the motion of people in the crowd will seem chaotic, at least to our
intuitive conception. Clearly, in the second case, motion is more accidental and
less ordered than in the first. There is more chaoticity in the second situation than
in the first. The question arises whether this difference can be made quantitative.
Can one indicate measurements that answer quantitatively whether a given type of
motion is really unordered or whether it has an intrinsic pattern one did not recognize
immediately?’

We give here two provisional definitions of chaos but return to a more quantitative
one in Sect.6.5 below. Both of them, in essence, define a motion to be chaotic
whenever it cannot be predicted, in any practical sense, from earlier configurations
of the same dynamical system. In other terms, even though the motion is strictly
deterministic, predicting a state of motion from an initial configuration may require
knowledge of the latter to a precision that is far beyond any practical possibility.

(1) The first definition makes use of Fourier analysis of a sequence of values
{x1, x2, ..., x,}, which are taken on at the discrete timest, = 7- A, t =1,2,...,n.
Fourier transformation assigns to this sequence another sequence of complex num-
bers {X;, X2, ..., X} by

n

~ def 1 —i2rot/n
B E =D e L o=12....n. (6.62)
Ji
=1

While the former is defined over the time variable, the latter is defined over a fre-
quency variable, as will be clear from the following. The sequence {x;} is recorded
during the total time

T =t,=nA,

or, if we measure time in units of the interval A, T = n. The sequence {x.} may be
understood as a discretized function x(¢) such that x, = x(7) (with time in units of
A).Then F = 27 /n is the frequency corresponding to time 7', and the sequence {X, }
is the discretization of a function X of the frequency variable with X, = X(o - F).
Thus, time and frequency are conjugate variables.

Although the {x.} are real, the X, of (6.62) are complex numbers. However, they
fulfill the relations X,_, = X and thus do not contain additional degrees of freedom.

SIn early Greek cosmology chaos meant “the primeval emptiness of the universe” or, alternatively,
“the darkness of the underworld”. The modern meaning is derived from Ovid, who defined chaos
as “the original disordered and formless mass from which the maker of the Cosmos produced the
ordered universe” (The New Encyclopedia Britannica). Note that the loan-word gas is derived from
the word chaos. It was introduced by J.B. von Helmont, a 17th-century chemist in Brussels.
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One has the relation

n

n

2 ~ 12
E xIZE |xo|
=1 o=1

and the inverse transformation reads®

| O - orro)
Xp = — Xge e (6.63)

The following correlation function is a good measure of the predictability of a
signal at a later time, from its present value:

1 n
6.5 =D KoXoin . (6.64)

n
o=1

g, 1s a function of time, g, = g, (A - A). If this function tends to zero, for increasing
time, this means that any correlation to the system’s past gets lost. The system ceases
to be predictable and thus enters a regime of irregular motion.

One can prove the following properties of the correlation function g; . It has the
same periodicity as X, i.e. g,4n = g». It is related to the real quantities |X,|? by the
formula

1 n

gk:—Z|ia|zcos(2naA/n), A=1,2,...,n. (6.65)
n o=1

|2

Hence, it is the Fourier transform of |x, |“. Equation (6.65) can be inverted to give

2 E 15,17 =D gicosQuai/n) . (6.66)

A=l

The graph of g, as a function of frequency gives direct information on the sequence
{x.}, i.e. on the signal x(¢). For instance, if {x;} was generated by a stroboscopic
measurement of a simply periodic motion, then g, shows a sharp peak at the corre-
sponding frequency. Similarly, if the signal has a quasiperiodic structure, the graph
of g, contains a series of sharp frequencies, i.e. peaks of various strengths. Examples

SIn proving this formula one makes use of the “orthogonality relation”

1 n
§ i2mmo/n

; € m = 3mo
o=1

m=0,1,...,n—1.

(see also Exercise 6.15).
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Fig. 6.18 Flow in R? that
can be bent and glued such
that it generates a strange
attractor

are given, for instance, by Bergé, Pomeau, and Vidal (1987). If, on the other hand,
the signal is totally aperiodic, the graph of g, will exhibit a practically continuous
spectrum. When inserted in the correlation function (6.65) this means that g, will
go to zero for large times. In this case the long-term behavior of the system becomes
practically unpredictable. Therefore, the correlation function (6.65), or its Fourier
transform (6.66), provides a criterion for the appearance of chaotic behavior: if g,
tends to zero, after a finite time, or, equivalently, if g, has a continuous domain, one
should expect to find irregular, chaotic motion of the system.

(i1) The second definition, which is closer to the continuous systems (6.1), starts
from the strange or hyperbolic attractors. A detailed description of this class of
attractors is beyond the scope of this book (see, however, Devaney 1979, Bergé,
Pomeau, Vidal 1987, and Exercise 6.14), and we must restrict our discussion to a
few qualitative remarks. One of the striking properties of strange attractors is that they
can sustain orbits that, on average, move apart exponentially (without escaping to
infinity and, of course, without intersecting). In 1971 Newhouse, Takens, and Ruelle
made the important discovery that flows in three dimensions can exhibit this kind
of attractors.’” Very qualitatively this may be grasped from Fig.6.18, which shows
a flow that strongly contracts in one direction but disperses strongly in the other
direction. This flow has a kind of hyperbolic behavior. On the plane where the flow
lines drive apart, orbits show extreme sensitivity to initial conditions. By folding this
picture and closing it with itself one obtains a strange attractor on which orbits wind
around each other (without intersecting) and move apart exponentially.®

Whenever there is extreme sensitivity to initial conditions, the long-term behavior
of dynamical systems becomes unpredictable, from a practical viewpoint, so that
the motion appears to be irregular. Indeed, numerical studies show that there is
deterministically chaotic behavior on strange attractors. This provides us with another

7Earlier it was held that chaotic motion would occur only in systems with very many degrees of
freedom, such as gases in macroscopic vessels.

8See R.S. Shaw: “Strange attractors, chaotic behavior and information flow”, Z. Naturforschung
A36, (1981) 80.
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plausible definition of chaos: flows of deterministic dynamical systems will exhibit
chaotic regimes when orbits diverge strongly and, as a consequence, practically
“forget” their initial configurations.

6.4.3 An Example: The Logistic Equation’®

An example of a dynamical system of the type (6.60) is provided by the logistic
equation

Xip1 = pux; (1 —x;) = f(u, x;) (6.67)

withx € [0, 1Tand 1 < pu < 4. This seemingly simple system exhibits an extremely
rich structure if it is studied as a function of the control parameter w. Its structure
is typical for systems of this kind and reveals several surprising and universal regu-
larities. We illustrate this by means of numerical results for the iteration (6.67), as
a function of the control parameter in the interval given above. It turns out that this
model clearly exhibits all the phenomena described so far: bifurcations of equilibrium
positions, period doubling, regimes of chaotic behavior, and attractors.

We analyze the model (6.67) as described in Sect. 6.4.1. The derivative of f (i, x),
taken at the intersection X = (u — 1)/u with the straight line y = x, is f'(u, x) =
2 — w. In order to keep | f'| initially smaller than 1, one must take © > 1. On the
other hand, the iteration (6.67) should not leave the interval [0, 1]. Hence, i must be
chosen smaller than or equal to 4.

Intheinterval 1 < u < 3,|f’| < 1. Therefore, the point of intersection X = (. —
1)/ is one of stable equilibrium. Any initial value x; except O or 1 converges to x
by the iteration. The curve x (1) is shown in Fig.6.19, in the domain 1 < u < 3.

At . = o = 3 this point becomes marginally stable. Choosing x; = X 4+ 6 and
linearizing (6.67), the image of x; is foundinx, = X — §, and vice versa. If we think of
X1, X2, ... as points of intersection of an orbit with a transverse section, then we have
exactly the situation described in Sect. 6.3.6 with one of the characteristic multipliers
crossing the value —1. The orbit oscillates back and forth between x; = x + § and
X, = X — §, i.e. it has acquired twice the period of the original orbit, which goes
through x. Clearly, this tells us that

(o =3, Xo = X (o)) (6.68)

This equation takes its name from its use in modeling the evolution of, e.g., animal population
over time, as a function of fecundity and of the physical limitations of the surroundings. The former
would lead to an exponential growth of the population, the latter limits the growth, the more strongly
the bigger the population. If A, is the population in the year nr, the model calculates the population
the following year by an equation of the form A,4+1 =rA,(1 — A,) where r is the growth rate,
and (1 — A,) takes account of the limitations imposed by the environmental conditions. See e.g.
hypertextbook.com/chaos/42.shtml.
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Fig. 6.19 Numerical results for large number of iterations of the logistic equation (6.67). The first
bifurcation occurs at (g = 3, xo = 2/3), the second at u; = 1+ /6, etc. The range of 1 shown
isl<p<4

is a bifurcation. In order to determine its nature, we investigate the behavior for
W > (o. As we just saw, the point x = (u — 1)/ becomes unstable and there
is period doubling. This means that stable fixed points no longer fulfill the con-
dition x = f(u, x) but instead return only after two steps of the iteration, i.e.
x = f(u, f(u, x)). Thus, we must study the mapping f o f, that is the iteration

Xiv1 = pxi (1= x)[1 — pxi (1= x)], (6.69)

and find its fixed points. Indeed, if one sketches the function g = f o f, one realizes
immediately that it possesses two stable equilibria. This is seen also in Fig.6.19,
in the interval 3 < . < 14 +/6 =~ 3.449. Returning to the function f, this tells us
that the iteration (6.67) alternates between the two fixed points of g = f o f. If we
interpret the observed pattern as described in Sect.6.3.6 above, we realize that the
bifurcation (6.68) is of the “pitchfork” type shown in Fig.6.14.

The situation remains stable until we reach the value i1 = 1 + +/6 of the control
parameter. At this value two new bifurcation points appear:

(m =146, f1p = L4 +v6+ (V3 ﬁ))) . (6.70)
At these points the fixed points of g = f o f become marginally stable, while for

u > w they become unstable. Once more the period is doubled and one enters the
domain where the function

hSgog=fofofof



426 6 Stability and Chaos

possesses four stable fixed points. Returning to the original function f, this means
that the iteration visits these four points alternately, in a well-defined sequence.

This process of period doublings 27,47, 8T, ... and of pitchfork bifurcations
continues like a cascade until u reaches the limit point

Moo = 3.56994 ... . (6.71)

This limit point was discovered numerically (Feigenbaum and Stat 1979). The same
is true for the pattern of successive bifurcation values of the control parameter, for
which the following regularity was found empirically. The sequence

lim L s (6.72)
1200 (i1 — M

has the limit § = 4.669 201 609 . .. (Feigenbaum 1979), which is found to be univer-
sal for sufficiently smooth families of iterative mappings (6.60).

For u > 1o the system shows a structurally new behavior, which can be followed
rather well in Figs.6.21, 6.22, 6.23 and 6.24. The figures show the results of the
iteration (6.67) obtained on a computer. They show the sequence of iterated values
x; for i > i, with i, chosen large enough that transients (i.e. initial, nonasymptotic

states of oscillations) have already died out. The iterations shown in Figs. 6.19, 6.20
and 6.21 pertain to the range 1001 < i < 1200, while in Figs.6.22, 6.23 and 6.24 that

Fig. 6.20 In this figure the
domain of pitchfork
bifurcations and period
doubling up to about 16 T" as
well as the window of period
3 are clearly visible. Range
shown: 2.8 < u <4

Fig. 6.21 Range shown is
37<pu<38ina
somewhat expanded
representation. The window
with period 5 is well visible
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Fig. 6.22 A window of
Fig.6.21, with 0.4 < x < 0.6
and 3.735 < pu < 3.745

Fig. 6.23 The domain of
bifurcations of Fig. 6.22
(itself cut out of Fig.6.21) is
shown in an enlarged
representation with

0.47 <x <0.53 and

3.740 < p <3.745

Fig. 6.24 Here one sees a
magnification of the periodic
window in the right-hand
half of Fig.6.23. The
window shown corresponds
t00.47 < x <0.53 and
3.7440 < pn < 3.7442

427
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range is 1001 < i < 2000. This choice means the following: initial oscillations have
practically died out and the sequence of the x; lie almost entirely on the corresponding
attractor. The density of points reflects approximately the corresponding invariant
measure on the respective attractor. Figure 6.22 is a magnified section of Fig. 6.21 (the
reader should mark in Fig.6.21 the window shown in Fig. 6.22). Similarly, Fig. 6.23
is a magnified section of Fig. 6.22. The number of iterations was chosen such that one
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may compare the average densities on these figures directly with those in Figs.6.19,
6.20 and 6.21.1°

The figures show very clearly that once u exceeds the limit value o, (6.71) there
appear domains of chaotic behavior, which, however, are interrupted repeatedly by
strips with periodic attractors. In contrast to the domain below (4., which shows only
periods of the type 2", these intermediate strips also contain sequences of periods

p2", p3", p5" with p=3,56,....

Figures. 6.22 and 6.23 show the example of the strip of period 5, in the neighborhood
of = 3.74. A comparison of Figs.6.23 and 6.20 reveals a particularly startling
phenomenon: the pattern of the picture in the large is repeated in a sectional window
in the small.

A closer analysis of the irregular domains show that here the sequence of iterations
{x;} never repeats. In particular, initial values x; and x| always drift apart, for large
times, no matter how close they were chosen. These two observations hint clearly
at the chaotic structure of these domains. This is confirmed explicitly, e.g., by the
study of the iteration mapping (6.67) close to = 4. For the sake of simplicity we
only sketch the case . = 4. It is not difficult to verify that the mapping

fu=4x)=4x(1—-x)

has the following properties.

(1) The points x; < x, of the interval [0, Lare mapped onto points x; < xj of the
interval [0, 1]. In other words, the first interval is expanded by a factor 2, the relative
ordering of the preimages remains unchanged. Points x3 < x4 taken from [%, 1] are
mapped onto points x} and x}, of the expanded interval [0, 1]. However, the ordering
is reversed. Indeed, with x3 < x4 one finds x} > x;. The observed dilatation of the
images tells us that the distance é of two starting values increases exponentially, in
the course of the iteration. This in turn tells us that one of the criteria for chaos to
occur is fulfilled: there is extreme sensitivity to initial conditions.

(i1) The change of orientation between the mappings of [0, %] and [%, 1] onto the
interval [0, 1], tells us that an image x;., in general, has two distinct preimages,
x; € [0, %] and x] € [%, 1]. (The reader should make a drawing in order to convince
him or herself.) Thus, if this happens, the mapping ceases to be invertible. x; | has
two preimages, each of which has two preimages too, and so on. It is not possible
to reconstruct the past of the iteration. Thus, we find another criterion for chaotic
pattern to occur.

One can pursue further the discussion of this dynamical system, which seems so
simple and yet which possesses fascinating structures. For instance, a classification
of the periodic attractors is of interest that consists in studying the sequence in
which the stable points are visited, in the course of the iteration. Fourier analysis

101 thank Peter Beckmann for providing these impressive figures and for his advise regarding the
presentation of this system.
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and, specifically, the behavior of the correlation functions (6.65) and (6.66) in the
chaotic zones are particularly instructive. The (few) rigorous results as well as several
conjectures for iterative mappings on the unit interval are found in the book by
Colletand Eckmann (1990). For a qualitative and well-illustrated presentation consult
Bergé, Pomeau, and Vidal (1987).

6.5 Quantitative Measures of Deterministic Chaos

6.5.1 Routes to Chaos

The transition from a regular pattern of the solution manifold of a dynamical system
to regimes of chaotic motion, as a function of control parameters, can happen in
various ways. One distinguishes the following routes to chaos.

(1) Frequency doubling. The phenomenon of frequency doubling is characteristic
for the interval 1 < u < o = 3.56994 of the logistic equation (6.67). Above the
limit value j1 the iterations (6.67) change in a qualitative manner. A more detailed
analysis shows that periodic attractors alternate with domains of genuine chaos,
the chaotic regimes being characterized by the observation that the iteration x,,
Xn+1 = f(u, x,) yields an infinite sequence of points that never repeats and that
depends on the starting value x;. This means, in particular, that sequences starting at
neighboring points x; and x| eventually move away from each other. Our qualitative
analysis of the logistic mapping with u close to 4 in Sect.6.4.3 (i) and (ii) showed
how this happens. The iteration stretches the intervals [0, %] and [%, 1] to larger
subintervals of [0, 1] (for i = 4 this is the full interval). It also changes orientation
by folding back the values that would otherwise fall outside the unit interval. As we
saw earlier, this combination of stretching and back-folding has the consequence that
the mapping becomes irreversible and that neighboring starting points, on average,
move apart exponentially. Let x; and x| be two neighboring starting values for the
mapping (6.67). If one follows their evolution on a calculator, one finds that after n
iterations their distance is given approximately by

x| — x| = eM|x] — x| . (6.73)

The factor A in the argument of the exponential is called the Liapunov characteristic
exponent. Negative A is characteristic for a domain with a periodic attractor: the
points approach each other independently of their starting values. If A is positive,
on the other hand, neighboring points move apart exponentially. There is extreme
sensitivity to initial conditions and one finds a chaotic pattern. Indeed, a numerical
study of (6.67) gives the results (Bergé, Pomeau and Vidal 1987)

fory =28, r2>~-02,
foruy =3.8, Lr>~+404. (6.74)
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Fig. 6.25 Graph of the i

threefold iterated mapping =

(6.67) for r f\ PN N i
| .
|

= pe =1+ +/8.The
functionh = fo fo fis
tangent to the straight line in
three points

(ii) Intermittency. In Sect. 6.3.6 we studied the Poincaré mapping at the transition
from stability to instability for the case where one of the eigenvalues of DIT(sy)
crosses the unit circle at —1. There are other possibilities for the transition from
stability to instability. (a) As a function of the control parameter, an eigenvalue can
leave the interior of the unit circle at +1. (b) Two complex conjugate eigenvalues
c()et® W Jeave the unit circle along the directions ¢ and —¢. All three situations
play their role in the transition to chaos. In case (a) one talks about intermittency of
type 1, in case (b) about intermittency of type I, while the first case above is also
called type-I1I intermittency. We wish to discuss type I in a little more detail.

Figures 6.19 and 6.20 show clearly that at the value 1 = p. = 1 + /8 ~ 3.83
a new cycle with period 3 is born. Therefore, let us consider the triple iteration
h(u,x) = f o fo f.Figure6.25 shows that the graph of h(u = ., x) is tangent to
the straight line y = x in three points ¥, x@, ¥ Thus, at these points, we have

. . d .
h(pe, ¥y =39, —h(u, i) =1.
dx

In a small interval around w. and in a neighborhood of any one of the three fixed
points, 7 must have the form

h(,x) =30+ (x =3 +ale =39 + Bl — o) -
We study the iterative mapping x,+1 = h(u, x,) in this approximate form, i.e. we
register only every third iterate of the original mapping (6.67). We take z = a(x —
x®) and obtain

Zntl =Zn + 22+ (6.75)

with n = aB(u — p.). The expression (6.75) holds in the neighborhood of any of
the three fixed points of &(u, x). For negative n, (6.75) has two fixed points, at
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Fig. 6.26 The iterative 4
mapping (6.75) with small wiz)
positive 1 spends a long time
in the narrow channel
between the curve

w :z+z2—|—nandthe
straight line w = z

7z_ = —+/—n and at z; = /—7, the first of which is stable, while the second is
unstable. For n = 0 the two fixed points coincide and become marginally stable.
For small, but positive 1, a new phenomenon is observed as illustrated in Fig. 6.26.
Iterations with a negative starting value of the variable z, move for a long time within
the narrow channel between the graph of the function z 4+ z> 4+ n and the straight
line w = z. As long as z is small the behavior is oscillatory and has nearly the same
regularity as with negative values of 7. This phase of the motion is said to be the
laminar phase. When |z| increases, the iteration quickly moves on to a chaotic or
turbulent phase. However, the motion can always return to the first domain, i.e. to
the narrow channel of almost regular behavior. Practical models such as the one
by Lorenz (see e.g. Bergé, Pomeau, Vidal 1987) that contain this transition to chaos
indeed show regular oscillatory behavior interrupted by bursts of irregular and chaotic
behavior.

For small |z| the iteration remains in the channel around z = 0 for some finite
time. In this case successive iterates lie close to each other so that we can replace
(6.75) by a differential equation. Replacing z,4+1 — z, by dz/dn, we obtain

dz
— =n+7z.

o (6.76)

[Note that this is our (6.54) with a destabilizing nonlinearity, which describes then a
subcritical saddle-node bifurcation.] Equation (6.76) is integrated at once,

z(n) = /g (Yn(n —ny)) .

ng is the starting value of the iteration and may be taken to zero, without restriction.
This explicit solution tells us that the number of iterations needed for leaving the
channel is of the order of n ~ 7/2,/n. Hence, 1/,/7 is a measure of the time that
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the system spends in the laminar regime. Finally, one can show that the Liapunov
exponent is approximately A ~ /7, for small values of 7.

(>iii) Quasiperiodic motion with nonlinear perturbation. A third route to chaos
may be illustrated by Example (ii) of Sect. 6.3.4. We consider quasiperiodic motion
on the torus 72, choosing the Poincaré section as described in (6.49'), i.e. we register
the points of intersection of the orbit with the transverse section of the torus at
0; = 0 (mod 27r). When understood as an iterative mapping, the second equation
(6.49) reads

Ops1 = (9,, + 271%) mod 27 ,

w1

where we write 0 instead of 0,, for the sake of simplicity.
Let us perturb this quasiperiodic motion on the torus by adding a nonlinearity as
follows:

Ops1 = (9,1 12722 4 kesin 9,,) mod 27 . (6.77)
i

This model, which is due to Arnol’d, contains two parameters: the winding number
B = wy/w;, with 0 < 8 < 1, and the control parameter x, which is taken to be
positive. For 0 < k < 1 the derivative of (6.77), 1 + « cos 6,, has no zero and hence
the mapping is invertible. For k > 1, however, this is no longer true. Therefore, x = 1
is a critical point where the behavior of the flow on 7' changes in a qualitative manner.
Indeed, one finds that the mapping (6.77) exhibits chaotic behavior for ¥ > 1. This
means that in crossing the critical value ¥k = 1 from regular to irregular motion, the
torus is destroyed. As a shorthand let us write (6.77) as follows: 6,11 = f (8, «, 6,).
The winding number is defined by the limit

def

w(B, k) = lim L[f"(ﬁ, k,0) —0]. (6.78)
n—00 21N

Obviously, for k = 0itis given by w(f, 0) = B = w,/w,. The chaotic regime above
k = 1 may be studied as follows. For a given value of ¥ we choose 8 = B, (k) such
that the starting value 6, = 0 is mapped to 2w p,, after g, steps, ¢, and p, being
integers,

ffIn(IB’ K? 0) = 27Tpn .

The winding number is then a rational number. w(8, ) = p,/qn = rn, rn € Q. This
sequence of rationals may be chosen such that 7, tends to a given irrational number 7,
in the limitn — oo. An example of a very irrational number is the Golden Mean. Let
r, = F,/F,41, where the F, are the Fibonacci numbers, defined by the recurrence
relation F,,; = F,, + F,_; and the initial values Fy = 0, F; = 1. Consider
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B
Fui 1471,

Iy =

in the limit n — oco. Hence 7 = 1/(1 + r). The positive solution of this equation is
the Golden Mean 7 = (+/5 — 1)/2.11

With this choice, the winding numbers defined above, w(B,(k), k) = r,, will
converge to w = 7. A numerical study of this system along the lines described above
reveals remarkable regularities and scaling properties that are reminiscent of the
logistic mapping (6.67) (see e.g. Guckenheimer and Holmes 1990, Sect.6.8.3 and
references quoted there).

6.5.2 Liapunov Characteristic Exponents

Chaotic behavior is observed whenever neighboring trajectories, on average, diverge
exponentially on attractors. Clearly, one wishes to have a criterion at hand that allows
one to measure the speed of this divergence. Thus, we consider a solution @ (¢, y) of
the equation of motion (6.1), change its initial condition by the amount 8y, and test
whether, and if yes at what rate, the solutions @ (¢, y) and @ (¢, y + 8y) move apart.
In linear approximation their difference obeys (6.11), i.e. i i

86 =D(t.y+8y) — (1, y) = AD[P (1. y +8y) = (1. y)]
= A(1)89 , (6.79)

the matrix A(7) being given by

At) = (aF")
Ik ) @ ’
Unfortunately, (6.79), in general, cannot be integrated analytically and one must
resort to numerical algorithms, which allow the determination of the distance of

neighboring trajectories as a function of time. Nevertheless, imagine we had solved
(6.79). Att = 0 we have 6@ = @ (0, y+3y) —®(0,y) =8y. Fors >0 let

§@(1) =U@) - oy (6.80)

"'The Golden Mean is a well-known concept in the fine arts, in the theory of proportions. For
example, a column of height H is divided into two segments of heights /11 and ho, with H = h| + h»
such that the proportion of the shorter segment to the longer is the same as that of the longer to the
column as a whole, i.e. h1/hy = hy/H = hy/(hy + hy). The ratio hy/hy =7 = (ﬁ— 1)/2 is
the Golden Mean. This very irrational number has a remarkable continued fraction representation:
r=1/1+1/0+...
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be the solution of the differential equation (6.79). From (6.79) one sees that the matrix
U(z) itself obeys the differential equation

Ut) = A()U@)

and therefore may be written formally as follows:

U(t):exp[/ dt/A(t/)]U(O), with U©) = 1. 6.81)
0

Although this is generally not true, imagine the matrix to be independent of time.
Let {A;} denote its eigenvalues (which may be complex numbers) and use the basis
system of the corresponding eigenvectors. Then U(t) = {exp(A«?)} is also diagonal.
Whether or not neighboring trajectories diverge exponentially depends on whether
or not the real part of one of the eigenvalues Re 1, = %(Ak -+ A}) is positive. This

can be tested by taking the logarithm of the trace of the product u'y,
1 § 1 .
% InTr (U'(HU®)) = % In Tr (exp{(Ax + Ap)t}) ,

and by letting ¢ go to infinity. In this limit only the eigenvalue with the largest positive
real part survives. With this argument in mind one defines

ef 1
" dzf[hm 5 InTr U OU@)) . (6.82)

The real number w; is called the leading Liapunov characteristic exponent. It pro-
vides a quantitative criterion for the nature of the flow: whenever the leading Liapunov
exponent is positive, there is (at least) one direction along which neighboring trajec-
tories move apart, on average, at the rate exp(u;t). There is extreme sensitivity to
initial conditions: the system exhibits chaotic behavior.

The definition (6.82) applies also to the general case where A(f) depends on time.
Although the eigenvalues and eigenvectors of A(7) now depend on time, (6.82) has
a well-defined meaning. Note, however, that the leading exponent depends on the
reference solution @ (¢, y).

The definition (6.82) yields only the leading Liapunov exponent. If one wishes
to determine the next to leading exponent p, < 111, one must take out the direction
pertaining to ©; and repeat the same analysis as above. Continuing this procedure
yields all Liapunov characteristic exponents, ordered according to magnitude,

[ IR T (6.83)

The dynamical system exhibits chaotic behavior if and only if the leading Liapunov
exponent is positive.
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For discrete systems in f dimensions, X, = F(X,),X € R/, the Liapunov expo-
nents are obtained in an analogous fashion. Let v’ be those vectors in the tangent
space at an arbitrary point x that grow at the fastest rate under the action of the
linearization of the mapping F, i.e. those for which [(DF (x))"v'V| is largest. Then

1
pi = lim - In [(DF (x))"vV] . (6.84)

In the next step, one determines the vectors v® that grow at the second fastest
rate, leaving out the subspace of the vectors v(". The same limit as in (6.84) yields
the second exponent p, etc. We consider two simple examples that illustrate this
procedure.

(i) Take F to be two-dimensional and let x° be a fixed point, x* = F(x%). DF (x°)
is diagonalizable,

o= ().

with, say, A; > A,. Choose v from {R2\2-axis}, i.e. in such a way that its 1-
component does not vanish, and choose @ along the 2-axis,

(€] (@)
a a
U(l) = (b(l)) s a(l) # 0 5 U(z) = (b(z)) , a(z) =0.

Then one obtains

L0 0 fa®
“"_,}Lnéo;l“‘( 0 (,\2)") (b@')

o
= lim —In[A;|" = In|A;]
n—»oon

and (1 > wo.
(i1) Consider a mapping in two dimensions, X = ('g), that is defined on the unit
square 0 < u < 1,0 < v < 1, by the equations

Upr1 = 2u,(mod 1) , (6.85a)
av, forO <u, <1

Uyl = . : 2 (6.85b)
av, + 3 forzfunfl

with a < 1. Thus, in the direction of v this mapping is a contraction for u < %
and a contraction and a shift for u > % In the direction of u its effect is stretching

and back-bending whenever the unit interval is exceeded. (It is called the baker’s
transformation because of the obvious analogy to kneading, stretching, and back-
folding of dough.) This dissipative system is strongly chaotic. This will become clear
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empirically if the reader works out the example a = 0.4 on a PC, by following the
fate of the points on the circle with origin (%, %) and radius a, under the action of
successive iterations. The original volume enclosed by the circle is contracted. At the
same time horizontal distances (i.e. parallel to the 1-axis) are stretched exponentially
because of (6.85a). The system possesses a strange attractor, which is stretched and
folded back onto itself and which consists of an infinity of horizontal lines. Its basin
of attraction is the whole unit square. Calculation of the Liapunov characteristic
exponents by means of the formula (6.84) gives the result

ur=1In2, wur=Inlal,

and thus p, < 0 < ;.

6.5.3 Strange Attractors

Example (ii) of the preceding section shows that the system (6.85a) lands on a
strangely diffuse object which is neither an arc of a curve nor a piece of a surface in
the unit square, but somehow “something in between”. This strange attractor does
indeed have zero volume, but its geometric dimension is not an integer. Geometric
structures of this kind are said to be fractals. Although a rigorous discussion of this
concept and a detailed analysis of fractal-like strange attractors is beyond the scope
of this book, we wish at least to give an idea of what such objects are.

Imagine a geometric object of dimension d embedded in a space R”, where d
need not necessarily be an integer. Scaling all its /inear dimensions by a factor A, the
object’s volume will change by a factor k = A<, i.e.

_an
T Ina

Clearly, for points, arcs of curves, surfaces, and volumes in R3 one finds in this way
the familiar dimensions d = 0,d = 1, d = 2 and d = 3, respectively. A somewhat
more precise formulation is the following. A set of points in R”, which is assumed
to lie in a finite volume, is covered by means of a set of elementary cells B whose
diameter is €. These cells may be taken to be little cubes of side length ¢, or little
balls of diameter &, or the like. If N (¢) is the minimal number of cells needed to
cover the set of points completely, the so-called Hausdorff dimension of the set is
defined to be

L In(N(e)

provided this limit exists. To cover a single point, one cell is enough, N(¢) = 1; to
cover an arc of length L one needs at least N(¢) = L/¢ cells; more generally, to
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cover a p-dimensional smooth hypersurface F, N(¢) = F/e? cells will be enough.
In these cases, the definition (6.86) yields the familiar Euclidean dimensions dy = 0
for a point, dy = 1 for an arc, and dy = p for the hypersurface F with p < n.

For fractals, on the other hand, the Hausdorff dimension is found to be noninteger.
A simple example is provided by the Cantor set of the middle third, which is defined
as follows. From a line segment of length 1 one cuts out the middle third. From the
remaining two segments [0, %] and [%, 1] one again cuts out the middle third, etc.
By continuing this process an infinite number of times one obtains the middle third
Cantor set. Taking gy = %, the minimum number of intervals of length ¢y needed
to cover the set is N(gg) = 2. If we take &1 = é instead, we need at least N (g;) =
4 intervals of length &, etc. For ¢, = 1/3" the minimal number is N(e,) = 2".
Therefore,

In2" In2

dyg = lim = — ~0.631.
n—oo In 3% In3

Another simple and yet interesting example is provided by the so-called snowflake
set, which is obtained by the following prescription. One starts from an equilateral
triangle in the plane. To the middle third of each of its sides one adds another equi-
lateral triangle, of one third the dimension of the original one, and keeps only the
outer boundary. One repeats this procedure infinitely many times. The object gen-
erated in this way has infinite circumference. Indeed, take the side length of the
initial triangle to be 1. At the nth step of the construction described above the side
length of the last added triangles is ¢, = 1/3". Adding a triangle to the side of length
&n—1 breaks its up in four segments of length ¢, each. Therefore, the circumference
isC,=3x4"x¢g, = 4”/3"’1. Clearly, in the limit n — oo this diverges, even
though the whole object is contained in a finite portion of the plane. On the other
hand, if one calculates the Hausdorff dimensions in the same way as for the middle
third Cantor set one finds dy = In4/1n3 >~ 1.262.

There are further questions regarding chaotic regimes of dynamical systems, such
as: If strange attractors have the structure of fractals, can one measure their gener-
alized dimension? Is it possible to describe deterministically chaotic motion on the
attractor quantitatively by means of a test quantity (some kind of entropy), which
would tell us whether the chaos is rich or poor? These questions lead us beyond the
range of the tools developed in this book. In fact, they are the subject of present-day
research and no final answers have been given so far. We refer to the literature quoted
in the Appendix for an account of the present state of knowledge.

6.6 Chaotic Motions in Celestial Mechanics

We conclude this chapter on deterministic chaos with a brief account of some fasci-
nating results of recent research on celestial mechanics. These results illustrate in an
impressive way the role of deterministically chaotic motion in our planetary system.
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According to the traditional view, the planets of the solar system move along their
orbits with the regularity of a clockwork. To a very good approximation, the motion
of the planets is strictly periodic, i.e. after one turn each planet returns to the same
position, the planetary orbits are practically fixed in space relative to the fixed stars.
From our terrestrial point of view no motion seems more stable, more uniform over
very long time periods than the motion of the stars in the sky. It is precisely the
regularity of planetary motion that, after a long historical development, led to the
discovery of Kepler’s laws and, eventually, to Newton’s mechanics.

On the other hand, our solar system with its planets, their satellites, and the very
many smaller objects orbiting around the sun is a highly complex dynamical system
whose stability has not been established in a conclusive manner. Therefore, it is
perhaps not surprising that there are domains of deterministically chaotic motion
even in the solar system with observable consequences. It seems, for instance, that
chaotic motion is the main reason for the formation of the Kirkwood gaps (these are
gaps in the asteroid belts between Mars and Jupiter which appear at some rational
ratios of the periods of revolution of the asteroid and Jupiter) and that chaotic motion
also provides an important source for the transport of meteorites to the earth (Wisdom
1987).

In this section we describe an example of chaotic tumbling of planetary satellites
which is simple enough that the reader may reproduce some of the figures on a PC.
We then describe some recent results regarding the topics mentioned above.

6.6.1 Rotational Dynamics of Planetary Satellites

The moon shows us always the same face. This means that the period of its spin (its
intrinsic angular momentum) is equal to the period of its orbital motion and that its
axis of rotation is perpendicular to the plane of the orbit. In fact, this is its final stage,
which was reached after a long-term evolution comprising two phases: a dissipative
phase, or slowing-down phase, and the final, Hamiltonian phase that we observe
today. Indeed, although we ignore the details of the moon’s formation, it probably
had a much faster initial rate of rotation and its axis of rotation was not perpendicular
to the plane of the orbit. Through the action of friction by tidal forces, the rotation
was slowed down, over a time period of the order of the age of the planetary system,
until the period of rotation became equal to the orbital period. At the same time
the axis of rotation turned upright such as to point along the normal to the orbit
plane. These results can be understood on the basis of simple arguments regarding
the action of tidal forces on a deformable body and simple energy considerations. In
the synchronous phase of rotation (i.e. spin period equal to orbital period) the effect
of tidal forces is minimal. Furthermore, for a given frequency of rotation, the energy
is smallest if the rotation takes place about the principal axis with the largest moment
of inertia. Once the satellite has reached this stage, the motion is Hamiltonian, to a
very good approximation.
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Fig. 6.27 A simple model for the asymmetric satellite Hyperion of the planet Saturn

Thus, any satellite close enough to its mother planet that tidal forces can modify
its motion in the way described above and within a time period comparable to the
age of the solar system will enter this synchronous phase, which is stable in the case
of our moon. This is not true, as we shall see below, if the satellite has a strongly
asymmetric shape and if it moves on an ellipse of high eccentricity.

The Voyager 1 and 2 space missions took pictures of Hyperion, one of the farthest
satellites of Saturn, on passing close to Saturn in November 1980 and August 1981.
Hyperion is an asymmetric top whose linear dimensions were determined to be

190km x 145km x 114km

with an uncertainty of about +15 km. The eccentricity of its elliptical orbitise = 0.1;
its orbital period is 21days. The surprising prediction is that Hyperion performs a
chaotic tumbling motion in the sense that its angular velocity and the orientation of
its axis of rotation are subject to strong and erratic changes within a few periods of
revolution. This chaotic dance, which, at some stage, must have also occurred in the
history of other satellites (such as Phobos and Deimos, the companions of Mars),
is a consequence of the asymmetry of Hyperion and of the eccentricity of its orbit.
This is what we wish to show within the framework of a simplified model.

The model is shown in Fig. 6.27. Hyperion H moves around Saturn S on an ellipse
with semimajor axis a and eccentricity €. We simulate its asymmetric shape by means
of four mass points 1 to 4, that have the same mass m and are arranged in the orbital
plane as shown in the figure. The line 2—1 (the distance between 2 and 1 is d) is taken
to be the 1-axis, the line 4-3 (distance e < d) is taken to be the 2-axis. The moments
of inertia are then given by

I =1ime* <L =1imd* < =1imd® +¢) . (6.87)
As we said above, the satellite rotates about the 3-axis, i.e. the axis with the largest
moment of inertia. This axis is perpendicular to the orbit plane (in Fig. 6.27 it points
towards the reader). It is reasonable to assume that Hyperion’s motion has no appre-

ciable effect on Saturn, its mother planet, whose motion is very slow compared to
that of Hyperion.
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The gravitational field at the position of Hyperion is not homogeneous. As I; and
I, are not equal, the satellite is subject to a net torque that depends on its position in
the orbit. We calculate the torque for the pair (1, 2). The result for the pair (3, 4) will
then follow immediately. We have

d
DUV =2 x (Fi1 = F2),

where F; = —GmMTr;/r} is the force acting on the mass point i, M being the mass
of Saturn. The distance d = |d| being small compared to the radial distance r from
Saturn we have, with the notations as in Fig.6.27,

11 lid LAY (34
ris r3 cos o 472 =3 :FerOS(X .

(The upper sign holds for r;, the lower sign for r,.) Inserting this approximation as
well as the cross product r x d = —rd sin « e3, one finds

D12 ~ 3d*mMG /4r?) sin2a &3 = BGM L /2r?) sin 2« &5 .

In the second step we inserted the expression (6.87) for I,. The product GM can be
expressed by the semimajor axis a and the orbital period T, using Kepler’s third law
(1.23). The mass of Hyperion (which in the model is 4m) is small compared to M,
and therefore it is practically equal to the reduced mass. So, from (1.23)

= Qn/T)*a’

The calculation is the same for the pair (3,4). Hence, the total torque D"-? 4+ DG¥
is found to be

D~3(2ZY (h—1) (%) sin2eé 6.88
_E(T)(z—l)()51nae3. (6.88)

This result remains valid if the satellite is described by a more realistic distribution
of mass. It shows that the resulting torque vanishes if I; = I,. With this result the
equation of motion (3.52) for the rotational motion of the satellite reads

1@'—32”21 I “3'2 6.89
3 _5(?)(2—1)(%)sm o . (6.89)

Here, the angle 6 describes the orientation of the satellite’s 1-axis relative to the line
S P (joining Saturn and Hyperion’s perisaturnion) and @ is the usual polar angle of
Keplerian motion. As ¢ = @ — 6, (6.89) reads


http://dx.doi.org/10.1007/978-3-662-55490-6_1
http://dx.doi.org/10.1007/978-3-662-55490-6_1
http://dx.doi.org/10.1007/978-3-662-55490-6_3
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i 3N oo (2 im0 6.89'
=3 (F) @ (555) s - oo, o

This equation contains only one explicit degree of freedom, 6, but its right-hand side
depends on time because the orbital radius » and the polar angle @ are functions of
time. Therefore, in general, the system is not integrable. There is an exception, how-
ever. If the orbit is a circle, € = 0 (cf. Sect. 1.7.2 (ii)) the average circular frequency

2
n Tﬂ (6.90)

is the true angular velocity, i.e. we have @ = nt and with 8’ = 6 — nt the equation
of motion becomes

L' = —3n*(L,—1))sin20', e=0. (6.91)
If we set
L —1
zldéfZG/, a)2d§f3n2—21 L rdéfa)t,
3

Equation (6.91) is recognized to be the equation of motion (1.40) of the plane pen-
dulum, viz. d?z;/dt? = — sin z;, which can be integrated analytically. The energy
is an integral of the motion; it reads

E=116%—3n*(I, — I))cos 20" . (6.92)

If ¢ # 0, the time dependence on the right-hand side of (6.89") cannot be eliminated.
Although the system has only one explicit degree of freedom, it is intrinsically
three-dimensional. The early work of Hénon et al. (1964) on the motion of a star in
a cylindrical galaxy showed that Hamiltonian systems may exhibit chaotic behav-
ior. For some initial conditions they may have regular solutions, but for others the
structure of their flow may be chaotic. A numerical study of the seemingly simple
system (6.89"), which is Hamiltonian, shows that it has solutions pertaining to chaotic
domains (Wisdom 1987, and original references quoted there). One integrates the
equation of motion (6.89’) numerically and studies the result on a transverse section
(cf. the Poincaré mapping introduced in Sect. 6.3.4), which is chosen as follows. At
every passage of the satellite at the point P of closest approach to the mother planet
one records the momentary orientation of the satellite’s 1-axis with respect to the
line S P of Fig.6.27. One then plots the relative change (d6/dt)/n of the orientation
at successive passages through P, for various initial conditions. One obtains figures
of the kind shown in Figs. 6.28, 6.29 and 6.30. We start by commenting on Fig. 6.28.
One-dimensional manifolds, i.e. curves, correspond to quasiperiodic motion. If, on
the other hand, the “measured” points fill a surface, this is a hint that there is chaotic
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Fig. 6.28 Chaotic behavior
of Hyperion, a satellite of
Saturn. The picture shows
the relative change of
orientation of the satellite as
a function of its orientation,
at every passage in P, the
point of closest approach to
Saturn (from Wisdom 1987)

Fig. 6.29 Analogous result
to the one shown in Fig. 6.28,
for Deimos, a satellite of
Mars whose asymmetry
(6.93)is @ = 0.81 and
whose orbital eccentricity is
& = 0.0005 (from Wisdom
1987)

Fig. 6.30 Analogous result
to those in Figs. 6.28 and
6.29 for Phobos, a satellite of
Mars whose asymmetry
(6.93)is @ = 0.83 and
whose orbital eccentricity is
e = 0.015 (from Wisdom
1987)
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motion. The scattered points in the middle part of the figure all pertain to the same,
chaotic orbit. Also, the two orbits forming an “X” at about (%, 2.3) are chaotic, while
the islands in the chaotic zones correspond to states of motion where the ratio of the
spin period and the period of the orbit are rational. For example, the island at (0, 0.5)
is the remnant of the synchronous motion where Hyperion, on average, would always
show the same face to the mother planet. The synchronous orbit at 6 = 7w would be
the one where the satellite shows the opposite face. The curves at the bottom of the
figure and in the neighborhood of & = 7 are quasiperiodic motions with an irrational
ratio of periods. (It is not difficult to see that the range m < 6 < 2 is equivalent to
the one shown in the figure.)

A more detailed analysis shows that both in the chaotic domain and in the syn-
chronous state the orientation of the spin axis perpendicular to the orbit plane is
unstable. One says that the motion is attitude unstable. This means that even a small
deviation of the spin axis from the vertical (the direction perpendicular to the orbit
plane) will grow exponentially, on average. The time scale for the ensuing tumbling
is of the order of a few orbital periods. The final stage of a spherically symmetric
moon, as described above, is completely unstable for the asymmetric satellite Hype-
rion. Note, however, that once the axis of rotation deviates from the vertical, one
has to solve the full set of the nonlinear Eulerian equations (3.52). In doing this one
finds, indeed, that the motion is completely chaotic: all three Liapunov characteristic
exponents are found to be positive (of the order of 0.1). In order to appreciate the
chaoticity of Hyperion’s tumbling the following remark may be helpful. Even if one
had measured the orientation of its axis of rotation to ten decimal places, at the time
of the passage of Voyager 1 in November 1980, it would not have been possible to
predict the orientation at the time of the passage of Voyager 2 in August 1981, only
nine months later.

Up to this point tidal friction has been completely neglected and the system is
exactly Hamiltonian. Tidal friction, although unimportant in the final stage, was
important in the history of Hyperion. Its evolution may be sketched as follows
(Wisdom 1987). In the beginning the spin period presumably was much shorter
and Hyperion probably began its evolution in a domain high above the one shown
in Fig.6.28. Over a time period of the order of the age of our solar system the spin
rotation was slowed down, while the obliquity of the axis of rotation with respect to
the vertical decreased to zero. Once the axis was vertical, the assumptions on which
the model (6.89’) and the results shown in Fig.6.28 are based came close to being
realized. However, as soon as Hyperion entered the chaotic regime, “the work of the
tides over aeons was undone in a matter of days” (Wisdom 1987). It began to tumble
erratically until this day.'?

In order to understand further the rather strange result illustrated by Fig. 6.28 for
the case of Hyperion, we show the results of the same calculation for two satellites
of Mars in Figs. 6.29 and 6.30: Deimos and Phobos. The asymmetry parameter

12The observations of Voyager 2 are consistent with this prediction, since it found Hyperion in a
position clearly out of the vertical. More recently, Hyperion’s tumbling was positively observed
from the earth (J. Klavetter et al., Science 246 (1989) 998, Astron. J. 98 (1989) 1855).
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o = M , (6.93)
\ I

which is the relevant quantity in the equation of motion (6.89") and whose value
is 0.89 in the case of Hyperion, is very similar for Deimos and Phobos: 0.81 and
0.83, respectively. However, the eccentricities of their orbits around Mars are much
smaller than for Hyperion. They are 0.0005 for Deimos and 0.015 for Phobos. The
synchronous phase at (6 = 0, (1/n)d6/dt = 1) that we know from our moon is still
clearly visible in Figs. 6.29 and 6.30, while in the case of Hyperion it has drifted down
in Fig.6.28. Owing to the smallness of the eccentricities, the chaotic domains are
correspondingly less developed. Even though today Deimos and Phobos no longer
tumble, they must have gone through long periods of chaotic tumbling in the course
of their history. One can estimate that Deimos’ chaotic tumbling phase may have
lasted about 100 million years, whereas Phobos’ tumbling phase may have lasted
about 10 million years.

6.6.2 Orbital Dynamics of Asteroids with Chaotic Behavior

As we learnt in Sect.2.37 the manifold of motions of an integrable Hamiltonian
system with f degrees of freedom is A/ x T/, with A/ = Ay x Ay x -+ x Ay
being the range of the action variables Iy, I, ..., I; and T/ the f-dimensional
torus spanned by the angle variables 61, 65, .. ., 6. Depending on whether or not the
corresponding, fundamental frequencies are rationally dependent, one talks about
resonant or nonresonant tori, respectively. These tori (the so-called KAM tori) and
their stability with respect to small perturbations play an important role in perturba-
tion theory of Hamiltonian systems, as explained in Sect.2.39.

In the past it was held that the Kirkwood gaps referred to in the introduction were
due to a breakdown of the KAM tori in the neighborhood of resonances. It seems that
this rather qualitative explanation is not conclusive. Instead, recent investigations of
the dynamics of asteroids, which are based on long-term calculations, seem to indicate
that the Kirkwood gaps are due rather to chaotic behavior in a Hamiltonian system.

Here we wish to describe briefly one of the examples studied, namely the gap
in the asteroid belt between Mars and Jupiter, which occurs at the ratio 3:1 of the
periods of the asteroid and of Jupiter. Clearly, the integration of the equations of
motion over a time span of several millions of years is a difficult problem of applied
mathematics for which dedicated methods had to be designed. We cannot got into
these methods'® and must restrict the discussion to a few characteristic results.

The main result of these calculations is that the orbits of asteroids in the neigh-
borhood of the 3:1 resonance exhibit chaotic behavior in the following sense: the
eccentricity of the asteroid’s elliptic orbit varies in an irregular way, as a function of

13The reader will find hints to the original literature describing these methods in Wisdom’s review
(1987).
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Fig. 6.31 Eccentricity of a 0.4 ) T
typical orbit in the chaotic
domain close to the 3:1
resonance, as a function of
time measured in millions of
years. From periods of small,
though irregular, values of ¢
the orbit makes long-term
excursions to large values of
the eccentricity

Fig. 6.32 Surface of section 0.2 T T
for the orbit shown in - T
Fig.6.31. The radial
coordinate of the points
shown is the eccentricity
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time, such that an asteroid with an initial eccentricity of, say, 0.1 makes long excur-
sions to larger eccentricities. Figure 6.31 shows an example for a time interval of
2.5 million years, which was calculated for the planar system Sun—asteroid—Jupiter.
The problem is formulated in terms of the coordinates (x, y) of the asteroid in the
plane and in terms of the time dependence of the orbit parameters due to the motion
of Jupiter along its orbit. Averaging over the orbital period yields an effective, two-
dimensional system for which one defines effective coordinates

x =¢cos(w—wy), y=esin(w—wy). (6.94)

Here @ and @; are the longitudes of the perihelia for the asteroid and for Jupiter,
respectively. The quantities (6.94) yield a kind of Poincaré section if one records x
and y each time a certain combination of the mean longitudes goes to zero. Figure 6.32
shows the section obtained in this way for the orbit shown in Fig.6.31. These figures
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show clearly that orbits in the neighborhood of the 3:1 resonance are strongly chaotic.
At the same time they provide a simple explanation for the observation that a strip of
orbits in the neighborhood of this resonance is empty: all orbits with & > 0.4 cross
the orbit of Mars. As we know that orbits in the neighborhood of the resonance make
long excursions to larger eccentricities, there is a finite probability for the asteroids
to come close to Mars, or even to hit this planet, and thereby to be scattered out of
their original orbit. Thus, deterministically chaotic motion played an important role
in the formation of the 3:1 Kirkwood gap.'*

Another, very interesting observation, which follows from these investigations, is
that irregular behavior near the 3:1 resonance may play an important role in the trans-
port of meteorites from the asteroid belt to the earth. Indeed, the calculations show
that asteroidal orbits starting at ¢ = 0.15 make long-term excursions to eccentricities
¢ = 0.6 and beyond. In this case they cross the orbit of the earth. Therefore, chaotic
orbits in the neighborhood of the 3:1 gap can carry debris from collisions between
asteroids directly to the surface of earth. In other words, deterministically chaotic
motion may be responsible for an important transport mechanism of meteorites to
earth, i.e. of objects that contain important information about the history of our solar
system.

In this last section we returned to celestial mechanics, the point of departure of all
of mechanics. Here, however, we discovered qualitatively new types of deterministic
motion that are very different from the serene and smooth running of the planetary
clockwork whose construction principles were investigated by Kepler. The solar
system was always perceived as the prime example of a mechanical system evolving
with great regularity and impressive predictability. We have now learnt that it contains
chaotic behavior (tumbling of asymmetric satellites, chaotic variations of orbital
eccentricities of asteroids near resonances, the chaotic motion of Pluto) very different
from the harmony and regularity that, historically, one expected to find. At the same
time, we have learnt that mechanics is not a closed subject that has disappeared in the
dusty archives of physics. On the contrary, it is more than ever a lively and fascinating
field of research, which deals with important and basic questions in many areas of
dynamics.

14 Analogous investigations of the 2:1 and 3:2 resonances indicate that there is chaotic behavior at
the former while there is none at the latter. This is in agreement with the observation that there is a
gap at 2:1 but not at 3:2.



Chapter 7
Continuous Systems

A distinctive feature of the mechanical systems we have discussed so far is that
their number of degrees of freedom is finite and hence countable. The mechanics
of deformable macroscopic media goes beyond this framework. The reaction of
a solid state to external forces, the flow behavior of a liquid in a force field, or
the dynamics of a gas in a vessel cannot be described by means of finitely many
coordinate variables. The coordinates and momenta of point mechanics are replaced
by field quantities, i.e. functions or fields defined over space and time, which describe
the dynamics of the system. The mechanics of continua is an important discipline of
classical physics on its own and goes far beyond the scope of this book. In this epilog
we introduce the important concept of dynamical field, generalize the principles of
canonical mechanics to continuous systems, and illustrate them by means of some
instructive examples. At the same time, this serves as a basis for electrodynamics,
which is a typical and especially important field theory.

7.1 Discrete and Continuous Systems

Earlier we pointed out the asymmetry between the time variable on the one hand and
the space variables on the other, which is characteristic for nonrelativistic physics, cf.
Sects. 1.6 and 4.7. In a Galilei-invariant world, time has an absolute nature while space
does not. In the mechanics of mass points and of rigid bodies there is still another
asymmetry, which we also pointed out in Sect. 1.6 and which is this: time plays the
role of a parameter, whereas the position r(¢) of a particle, or, likewise, the coordi-
nates {r(t), 6, (¢)} of a rigid body, or, even more generally, the flow @ (¢, fy, x¢) in
phase space are the genuine, dynamical variables that obey the mechanical equations
of motion. Geometrically speaking, the latter are the “geometrical curves”, while ¢
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is the orbit parameter (length of arc) that indicates in which way the system moves
along its orbits.

This is different for the case of a continuous system, independent of whether it is to
be described nonrelativistically or relativistically. Here, besides the time coordinate,
also the space coordinates take over the role of parameters. Their previous role as
dynamical variables is taken over by new objects, the fields. It is the fields that
describe the state of motion of the system and obey a set of equations of motion. We
develop this important new concept by means of a simple example.

Example Linear chain and vibrating string. Let n mass points of mass m be joined
by identical, elastic springs in such a way that their equilibrium positions are

x), x9, ..., x%, cf. Fig.7.1. As shown in part (a) of that figure we displace the

mass points along the straight line joining them. The deviations from the equilibrium
positions are denoted by

wit) =x;(t)—x>, i=1,2,...,n.

The kinetic energy is given by
1
T=>> —mi?. 7.1
; St (7.1
The forces being harmonic the potential energy reads

n—1
v-5
i=l

1
ki = u)? + Sk + 7). (72)

N | =
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The last two terms stem from the spring connecting particle 1 with the wall and from
the one connecting particle n with the wall, at the other end of the chain. We ascribe
the coordinate x{ to the left suspension point and x” 41 to the right suspension point
of the chain and we require that their deviations and their velocities be zero at all
times, i.e. uo(t) = u,+1(t) = 0. The potential energy can then be written as

1 n
U=k ; (i) — ui)? (1.2))

and the natural form of the Lagrangian function reads
L=T-U, (7.3)

with T as given by (7.1) and U by (7.2"). This Lagrangian function describes longi-
tudinal motions of the mass points, i.e. motions along their line of connection. We
obtain the same form of the Lagrangian function if we let the mass points move only
transversely to that line, i.e. as shown in Fig.7.1b. Let d be the distance between
the equilibrium positions. The distance between neighboring mass points can be
approximated as follows:

/ 1 (g1 — ;)
42 i —v)rd 4 - Y
+ (Vig1 — Vi) +2 l

provided the differences of transverse amplitudes remain small compared to d. The
force driving the mass points back is approximately transverse, its potential energy
being given by

S < 5
U=ﬁ§<vi+l —u)?, (7.4)

where S is the string constant. As before, we must take into account the condition
vo(t) = v,41(¢) = 0forthe two points of suspension. In reality, the chain can perform
longitudinal and transverse motions simultaneously and the two types of motion will
be coupled. For the sake of simplicity, we restrict the discussion to purely transverse
or purely longitudinal motions and do not consider mixed modes.

In the first case we set wy = /k/m and ¢, (t) = u;(¢). In the second case we set

wo = +/S/md and g;(t) = v;(¢). In either case the Lagrangian function reads
1 - 2
L=3mY i} -of (401 -0} (1.5)
j=0

with the conditions go = ¢o = 0, ¢y+1 = ¢n+1 = 0. The equations of motion, which
follow from (7.5), are
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Gi =g (401 —4;) — @ (@i —gj=1) « J=1....n. (7.6)

We solve these equations by means of the following substitution:
q;(0) = Asin ( j L) éort . 1.7)
n+1

Obviously, we can let j run from O to n 4+ 1 because gy and g, vanish for all
times. In (7.7) p is a positive integer. The quantities w,, are the eigenfrequencies of
the coupled system (7.6) and could be determined by means of the general method
developed in Practical Example 1 of Chap.2. Here they may be obtained directly by
inserting the substitution (7.7) into the equation of motion (7.6). One obtains

P
a)f, =2w] (1 — cos (n n 1))

or

. pr
w, = 2(1)() Sin (m) . (78)

Hence, the normal modes of the system are

(1)) _ P) o3 . pﬂ .
q; () = A" S1n(jn+1)51n(wpt)

with p=1,....,n; j=0,1,...,n+1, (7.9)

and the most general solution reads

n
. . P .
q;(t) =D AP sin (] m) sin (wpf + @) .

p=1

where the amplitudes AP and the phases ¢, are arbitrary integration constants. (As
expected, the most general solution depends on 2n integration constants.)

Let us compare these solutions, for the example of transverse oscillations, to the
normal modes of a vibrating string spanned between the same end points as the chain
(see Fig.7.1c). The length of the string is L = (n 4 1)d. Its state of vibration for the
pth harmonic is described by

0(x, 1) = AP sin (”Lﬂ) sin (wpt) 1w, = pad . (7.10)

Here, w, is the p-fold of a basic frequency @g that we may choose such that it
coincide with the frequency (7.8) of the chain for p = 1, viz.
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Fig. 7.2 Transversely
oscillating chain of 7 mass
points and the second

harmonic of the vibrating
string, for comparison d LK

CZ)() = 2(1)0 sin ( (71 1)

T
2(n+1)) ’

The solution (7.10) is closely related to the solution (7.9); we shall work out the exact
relationship in the next subsection. Here we wish to discuss a direct comparison of
(7.9) and (7.10).,

At a fixed time ¢ the amplitude of the normal mode (7.9), with a given p and with
1 < p < n, has exactly the same shape as the amplitude of the vibration (7.10) at
the points x = jL/(n + 1) on the string. Figure 7.2 shows the example p = 2 for
n =7 mass points. The full curve shows the first harmonic of the vibrating string;
the points indicate the positions of the seven mass points according to the normal
oscillation (7.9) with p = 2. (Note, however, that the frequencies w, and pay are
not the same.)

The discrete system (7.9) has n degrees of freedom which, clearly, are countable.
The dynamical variables are the coordinates q;p ) (#) and the corresponding momenta

pgp (1) = mqu (). Time pays the role of a parameter.

In the continuous system (7.10) we are interested in the local amplitude ¢ (x, 1),
for fixed time and as a function of the continuous variable x € [0, L]. Thus, the
function ¢ over time ¢ and position x on the string takes over the role of a dynamical
variable.

If we suppose that the continuous system was obtained from the discrete system
by letting the number of particles n become very large and their distance d corre-
spondingly small, we realize that the variable x of the former takes over the role of
the counting index j of the latter. This means, firstly, that the number of degrees of
freedom has become infinite and that the degrees of freedom are not even countable.
Secondly, the coordinate x, very much like the time ¢, has become a parameter. For
given t = 1 the function ¢(x, #y) describes the shape of the vibration in the space
x € [0, L]; conversely, for fixed x = x¢, ¢(xo, t) describes the motion of the string
at that point, as a function of time.
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7.2 Transition to the Continuous System

The transition from the discrete chain of mass points to the continuous string can be
performed explicitly for the examples (7.2") and (7.4) of longitudinal or transverse
vibrations. Taking the number of mass points n to be very large and their distance
d to be infinitesimally small (such that (n 4 1)d = L stays finite), we have g;(¢) =
o(x=jL/(n+1),t) and

g d e
i+t =45 = 5y x=jd+dj2 G =49-1= %5 x=jd—d)2
and therefore
9%¢ 5
(@j+1 = ;) = (aj — qj-1) = Pyl x:jdd .

The equation of motion (7.6) becomes the differential equation

~ (7.6)

200

ax2
In the case of longitudinal vibrations, a)gd2 = kd? /m. In the limit n — oo the ratio
m/d becomes the mass density o per unit length, while the product of the string
constant k and the distance d of neighboring points is replaced by the modulus of

elasticity n = kd. With the notation v> = 1/0 equation (7.6') reads

azw(-x» t) _ U2 az(p(x» t) —
912 9x2

0. (7.12)

This differential equation is the wave equation in one spatial dimension.

In the case of transverse motion one obtains the same differential equation, with
v? = §/0. The quantity v has the dimension of velocity. It represents the speed of
propagation of longitudinal or transverse waves.

In anext step let us study the limit of the Lagrangian function obtained in perform-
ing the transition to the continuum. The sum over the mass points is to be replaced by
the integral over x, the mass m by the product od, and the quantity ma)g (qj+1—q j)2
by

od 8—('0 za)zdzzgd 8_<p 2v2
ax 0 dx '

The infinitesimal distance d is nothing but the differential dx. Thus, we obtain

L
L =/ dx L, (7.13)
0
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where

1 AN A

the function £ is called the Lagrangian density. In the general case, it depends on
the field ¢(x, t), its derivatives with respect to space and time, and, possibly, also
explicitly on ¢ and x, i.e. it has the form

Jdp Jdp
c=ce 2% 5 1) 7.15
(‘p ox ar ) (7.15)

The analogy to the Lagrangian function of point mechanics is the following. The
dynamical variable ¢ is replaced by the field ¢, g is replaced by the partial deriva-
tives dp/dx and d¢/d¢, and the time parameter is replaced by the space and time
coordinates x and ¢. The spatial coordinate now plays the same role as the time
coordinate, and therefore a certain symmetry between the two types of coordinates
is restored.

‘We now turn to the question whether the equation of motion (7.12) can be obtained
from the Lagrangian density (7.14) or, in the more general case, from (7.15).

7.3 Hamilton’s Variational Principle for Continuous
Systems

Let L(p, d¢/dx, d¢/dt, x, t) be a Lagrangian density assumed to be at least C! in
the field ¢ and in its derivatives. Let L = [ dx £ be the corresponding Lagrangian
function. For the sake of simpliticity we consider the example of one spatial dimen-
sion. The generalization to three dimensions is straightforward and can be guessed
easily at the end.

As g is the dynamical variable, Hamilton’s variational principle now requires that
the functional

15} t
1[<p]déf/ dr L :/ dt/dx£ (7.16)
n n

assumes an extreme value if ¢ is a physically possible solution. Like in the mechanics
of mass points one embeds the solution with given values ¢(x, #;) and ¢(x, f;) at
the end points in a set of comparative fields. In other words, one varies the field
@ such that its variation vanishes at the times #; and #,, and requires /[¢] to be an
extremum. Let 8¢ denote the variation of the field, ¢ the time derivative and ¢’ the
space derivative of ¢. Then
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BE oL

Clearly, the variation of a derivative is equal to the derivative of the variation,

9 9
8¢ = —(8w), 8¢ = —(5¢).
® at((ﬁ) @ 8x(go)

Furthermore, the field ¢ shall be such that it vanishes at the boundaries of the inte-
gration over x. By partial integration of the second term with respect to ¢ and of the
third term with respect to x, and noting that §¢ vanishes at the boundaries of the
integration, we obtain

oL a (dL
Syl = / dt/dx —_— - — - — 8¢
I 8<p ax \ d¢’
The condition §1[¢] = 0 is to hold for all admissible variations §¢. Therefore, the

expression in the curly brackets of the integrand must vanish. This yields the Euler—
Lagrange equation for continuous systems (here in one space dimension),

L 9 9L 0 9L 4 (7.17)
dp 9t 9(dp/dr)  dx d(dgp/dx)

We illustrate this equation by means of the example (7.14). In this example £ does
not depend on ¢ but only on ¢ and on ¢’. £ does not depend explicitly on x or 7,
either. The variable x is confined to the interval [0, L]. Both ¢ and d¢ vanish at the
end points of this interval. We have

oL dg oL 2 1)
30g/an _ Car g/on) | Cax

and the equation of motion (7.17) yields the wave equation (7.12), as expected,

g 0%
oz U ax2

Its general solutions are ¢, (x, 1) = f(x —vt), ¢_(x,t) = f(x 4+ vt), with f(z)
an arbitrary differentiable function of its argument z = x ¢ vt. The first of these
describes a wave propagating in the positive x direction, the second describes a wave
propagating in the negative x direction. As the wave equation is linear in the field
variable ¢, any linear combination of two independent solutions is also a solution.
As an example we consider two harmonic solutions (i.e. two pure sine waves) with
wavelength A and equal amplitude,

. 27 . {27
¢4+ = Asin T(x—vt) , ¢_ = Asin T(x—kvt) .
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Their sum

4 2
¢ =@+ +¢_ =2Asin 5 F cos Tvt

describes a standing wave. It has precisely the form of the solution (7.10) if

2w pITX 2L
—x = or A=—, p=12,...
A p

The length L of the string must be an integer multiple of half the wavelength. The
frequency of the vibration with wavelength X is given by

2mv _ . _ TV
w, = S = pwy, Wwith @y = T (7.18)

Thus, the transverse oscillations of our original chain of mass points are standing
waves. Note also that their frequency (7.11) takes on the correct continuum value
(7.18). Indeed, when the number n of mass points is very large, the sine in (7.11) can
be replaced by its argument,

T
) .
wo o S1IN (—2(}1 n 1))
T T . TV

~ 2wy ——m— = — =—,

D5+ LT L
where we have set L = (n 4+ 1)d and replaced wod by v.

We conclude this subsection with another example in one time and three space
coordinates. Let ¢(x, ) be a real field and let the Lagrangian density be given by

L1 (o0 [0\
_1! _ 9N _ 7.1
£ 2[v2(3t) ;(axi) e (7.19)

where p has the physical dimension of an inverse length. The generalization of (7.16)
and (7.17) to three spatial dimensions is obvious. It yields the equation of motion

aL 9 oL a oL
—————Z—.—=O (7.20)
dp 0t 9(d¢p/dr) 4= dx' 9(d¢/dx")

In the example defined by (7.19) we obtain
1 3%
—_—F_A 20 =0, 7.21
2 a2 p+ue (7.21)

where A = Z?:] 82/(dx")? is the Laplacian operator.
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For © = 0 (7.21) is the wave equation in three space dimensions. For the case
1 # 0and the velocity v equal to the speed of light ¢, the differential equation (7.21)
is called the Klein—Gordon equation.

7.4 Canonically Conjugate Momentum
and Hamiltonian Density

The continuous field variable ¢ whose equation of motion is derived from the
Lagrangian density £ is the analog of the coordinate variables ¢; of point mechanics.
The canonically conjugate momenta are defined in (2.39) to be the partial derivatives
of the Lagrangian function L with respect to ;. Following that analogy we define

def 0L

For example, with £ as given in (7.14) we find 7 (x) = o¢(x). This is nothing but
the local density of momentum for transverse vibrations of the string (or, likewise,
longitudinal vibrations of a rubber band). Following the pattern of the definition
(2.38) one constructs the function

o ¢L yy
9(dg/0r)

and, by means of Legendre transformation, the Hamiltonian density 7. In the exam-
ple (7.14), for instance, one finds

H= i 72 (x) + szz (3_(,0)2
20 dx '

‘H describes the energy density of the vibrating system. Therefore, H = fOL dx H is
the total energy of the system. For example, inserting the explicit solution (7.10) into
the expression for H, one easily finds that

1
H= ZQA@)Z alp?.

This is the total energy contained in the pth harmonic vibration.
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Fig. 7.3 A chain of
pendulums, which are
coupled by harmonic forces.
While the first three show
small deviations from the
vertical, pendulum number n
has made almost a complete
turn

7.5 Example: The Pendulum Chain

A generalization of the harmonic transverse oscillations of the n-point system of
Sect.7.1 is provided by the chain of pendulums shown in Fig.7.3. It consists of n
identical mathematical pendulums of length / and mass m which are suspended along
a straight line and which swing in planes perpendicular to that line. They are coupled
by means of harmonic forces in such a way that the torque acting between the ith
and the (i 4+ 1)th pendulum is proportional to the difference of their deviations from
the vertical, i.e. is given by —k(g;+1 — ¢;). The line of suspension may be thought
of as being realized by a torsion bar. As the chain is fixed at its ends, we formally
add two more, motionless pendulums at either end of the bar, to which we ascribe
the numbers 0 and (n + 1). This means that the angles ¢y and ¢, are taken to be
zero at all times. The kinetic and potential energies of this system are given by (cf.
Sect. 1.17.2)

1 n+1
_ 2 )
T = Eml E @5
Jj=0

n+1
1

U =mgly (1 =cosgi) + 5k > (g1 = ¢i)’ - (7.23)
i=0 i=0

From the Lagrangian function in its natural form, L = T — U, and the Euler—
Lagrange equations (2.28) we obtain the equations of motion
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G — o [(@iv1 — @) — (@ — @i-1)]
+ wlsing; =0, i=1,...,n. (7.24)

Here we introduced the following constants

k g
With g = 0 (7.24) is identical to (7.6). For k = 0 we recover the equation of motion
of the plane pendulum that we studied in Sect. 1.17.2.

Let the horizontal distance of the pendulums be d so that the length of the chain
is L = (n 4+ 1)d. We consider the transition to the corresponding continuous system
by taking the limit n — oo, d — 0. The countable variables ¢, (), ..., ¢,(t) are
replaced with the continuous variable ¢ (x, ), x taking over the role of the counting
index, which runs from 1 to n. While the discrete system had n degrees of freedom,
the continuous system has an uncountably infinite number of degrees of freedom.
Let o = m/d be the mass density. The constant in the harmonic force is set equal to
k = n/d, n being proportional to the modulus of torsion of the bar. When d tends
to zero, k must formally tend to infinity in such a way that the product n = kd stays
finite. At the same time the quantity

d kd n
2 52 2

stays finite in that limit. In the same way as in Sect. 7.2, (7.24) becomes the equation
of motion

Pe(r,1) 99,1

v T wlsing(x,1) =0. (7.25)

This is the wave equation (7.12), supplemented by the nonlinear term w7 sin ¢. Equa-
tion (7.25) is said to be the Sine—Gordon equation. In contrast to the wave equation
(7.12) or to the Klein—Gordon equation (7.21) it is nonlinear in the field variable ¢.
It is the Euler-Lagrange equation (7.17) corresponding to the following Lagrangian
density:

c—l ? 9 2— 2 (9 2—2 2(1 — cos @) (7.26)
=29 1\%r) TV s @1 o '

The latter may be obtained from (7.23) in the limit described above. Let us discuss
solutions of (7.25) for two special cases.

(1) The case of small deviations from the vertical. In its discrete form (7.24) this
coupled system of nonlinear equations of motions can only be solved in closed
form for the case of small deviations from the vertical. Taking sin ¢; >~ ¢, we
see that (7.24) becomes a linear system which may be solved along the lines of
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Practical Example 1 of Chap. 2, or following Sect. 7.1 above. In analogy to (7.9)
we set

) LW
(pj[’ (f) = A(p) Sin (m) sSin (C()pt) )
i=01,..., n+1 (1.27)

and obtain w, in terms of w; and wy, as follows:

pm
a)f, = wl + 2w} (1 — Cos (n+ l))

. pr
= o] + 4w} sin? (m) . (7.28)

The corresponding solution of the continuous system (7.25), assuming small
deviations from the vertical, is obtained with sin ¢ (x, ) ~ ¢(x, t) and by making
use of the results of Sect.7.2. For large n (7.28) gives

2
pm py?

— 0?4 2 ﬂf
—wl—i—v(L s

so that (7.27) yields the pth harmonic oscillation

pTXxyN .
. ) sin (1)

e (x,1) = AP sin (
with
7T \2 -
=+ (X = ot 4 03

and with &g as in (7.18).

Soliton solutions. For the continuous chain of infinite extension there are inter-
esting and simple exact solutions of the equation of motion (7.25). Introducing
the dimensionless variables

Equation (7.25) takes the form

3%p(z, 1) B ez, 1)

5.2 22 +sing(z,7) =0. (7.25)

Furthermore, we take ¢ = 4 arctan f(z, 7). With f = tan(¢/4) and using the well-
known trigonometric formulae
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2tan x 2tan x

sin(2x) = m y tan(2x) =

1 — tan%x ’
we obtain
sing =4f (1—£2) /(14 7).

From (7.25") follows a differential equation for f

o (2 Of s TAY AN
(1+f)(ﬁ_a_z2)+f[l_f +2(8_z) —2(a—r) =0.

Finally, we set y = (z + a1)/+/1 — a2, with o areal parameter in the interval —1 <
a < 1. If f is understood to be a function of y, the following differential equation
is obtained:

» 2 f ) AN
(1+f)d—y2—f 1—f +2(5) =0.

It is not difficult to guess two simple solutions of the latter. They are fy = e*>. Thus,
the original differential equation (7.25") has the special solutions

( ) ' ( I \/Z — o ]) ( )
Z, T arctan { €x . .
As an example choose the positive sign, take « = —0.5 and consider the time

7 = 0. For sufficiently large negative z the amplitude ¢, is practically zero. For
z=01itis ¢4(0,0) = 7, while for sufficiently large positive z it is almost equal
to 2. In a diagram with z as the abscissa and ¢, (z, 7) the ordinate, this tran-
sition of the field from the value O to the value 2w propagates, with increasing
time, in the positive z-direction and with the (dimensionless) velocity «. One may
visualize the continuous pendulum chain as an infinitely long rubber belt whose
width is / and which is suspended vertically. The process just described is then a
flip-over of a vertical strip of the belt from ¢ = 0 to ¢ = 27 which moves with
constant velocity along the rubber belt. This strange and yet simple motion is char-
acteristic of the nonlinear equation of motion (7.25). It is called a soliton solu-
tion. Expressing the results in terms of the original, dimensionful variables x and ¢,
one sees that the soliton moves with velocity v along the positive or the negative
x-direction.
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7.6 Comments and Outlook

So far we have studied continuous systems by means of examples taken from the
mechanics of finitely many, say n, point particles, by letting n go to infinity. This
limiting procedure is very useful for understanding the role of the fields ¢(x, )
as the new dynamical variables which replace the coordinate functions ¢ (¢) of the
mechanics of point particles. This does not mean, however, that every continuous
system can be obtained by or could be thought of as the limit f — oo of a discrete
system with f degrees of freedom. On the contrary, the set of classical, continuous
systems is much richer than one might expect on the basis of the examples studied
above. Continuous systems form the subject of classical field theory, an important
branch of physics in its own right. Field theory, for which electrodynamics is a
prominent example, goes beyond the scope of this book and we can do no more than
add a few comments and an outlook here.
Let us suppose that the dynamics of N fields

[’ 0)li=12,....,N}

can be described by means of a Lagrange density £ in such a way that the equations
of motion that follow from it satisfy the postulate of special relativity (cf. Sect.4.3),
i.e., that they are form invariant with respect to Lorentz transformations. Assume,
furthermore, that each of the fields ¢’ (x) is invariant under Lorentz transformations
of space—time, viz.

¢ (x' = Ax) = ¢'(x) with A e Ll .

Fields possessing this simple transformation behavior are called scalar fields. The
variational principle (7.16) is independent of the choice of coordinates (x, 7). Indeed,
the hypersurface (x, #; = const.) and (x, #, = const.) can be deformed into an arbi-
trary, smooth, three-dimensional, hypersurface X in space-time. In the action integral
(7.16) one then integrates over the volume enclosed by ¥ and chooses the variations
8¢' of the fields such that they vanish on the hypersurface X. The form of the
equations of motion (7.17) is always the same. This has an important consequence:
Whenever the Lagrange density £ is invariant under Lorentz transformations, the
equations of motion (7.17) which follow from (7.16) are form invariant, i.e., they
have the same form in every frame of reference.

The Lagrange density (7.14) may serve as an example for a Lorentz-invariant
theory, provided we replace the parameter v by the velocity of light c. The equation

of motion which follows from it
1 3% 9%
v _ 7 _ 7.30
c? 0t? ox? ( )

is form invariant. (This equation is the source-free wave equation.) With ¢ a scalar
field it is even fully invariant itself. It is instructive to check this: With x* = A*,x"”
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and x,, = g,,x", and making use of the following simplified notation for the partial
derivatives

0
oxH

3
.= — (7.31)

9, =
. axy,

one sees that (7.30) contains the expression d,, 0" ¢. The transformation behavior of
a, follows from the following calculation

a _oax™ 9 v 0 _ Ak g
VM'

dy = v
oxY axV ox'H ax’m

The transformation behavior of d¥ being the inverse of the above, the differential
operator d,d" is a Lorentz invariant operator. It is often called the Laplace operator
in four dimensions and is denoted by the symbol [],

192 <& 9 1 92
0:=9,0" = — — — = —— — A, 7.32
a2 ; (0x)2 2912 (7.32)

where A is the Laplace operator in three dimensions. Note that the derivative terms
in (7.14) as well as in (7.19) (taking v = c in either example) can be rewritten in the
form of an invariant scalar product (9,,¢)(9"¢) of

1d¢ 1d¢
9,0 = \% d 9%¢p = -V .
o= () e (12

Thus, a Lorentz invariant theory of our fields ¢’ could be designed by means of
a Lagrange density of the form

1

E((pi’aﬂwi) _ _i C (8 i) (3/@5)

3]

N
—> xife' )] —U(go%x))] : (7.33)
i=1

with U(¢") a Lorentz scalar function of the fields. The first term on the right-hand
side of (7.33) is the analog of the kinetic energy in the mechanics of point particles,
the last term is the analog of the potential. The second term, which is new, is called
mass term because in the quantized version of the theory it does indeed contain the
rest masses of the particles which are described by the fields. Of course, it could
equally well be considered as part of the potential U.

In this discussion one recognizes, though in a sketchy manner only, an impor-
tant building principle for classical field theories: Very much like in mechanics of
point particles, symmetries and invariances can be read off, or can be built into,
the Lagrange density £. Above we considered the example of form invariance with
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respect to Lorentz transformations. As the next step in a deeper and more detailed
analysis one would derive the theorem of Emmy Noether, in its form adapted to field
theory, which states that the energy, the momentum, or the angular momentum are
conserved quantities whenever L is invariant under translations in time, translations
in space, or under rotations, respectively. A new feature is the appearence of a local
energy density (cf. the example studied in Sect.7.4), and, analogously, momentum
and angular momentum densities. Noether’s theorem concerns local quantities. If
the energy density changes locally, i.e., if it changes in a finite domain of space and
time, then there must be continuity equation which guarantees that the total energy
(i.e., the integral of the energy density over space) remains unchanged. Analogous
statements apply to momentum and angular momentum densities.

Finally, £ may possess further, inner, symmetries which have to do with transfor-
mations on the fields. In this case there are additional conservation laws, or continuity
equations, as shown by the following simple example.

Given two real scalar fields and a Lagrange density of the form (7.33) which is
such that Ay = A, = A and where U depends on the sum of the squares of the fields
only,

L(¢', 9.9 izzl ') —a Z:: [¢' 0]

2
(Z o' (x)) )} (7.34)
i=1

In addition to being invariant under Lorentz transformations in space and time L is
obviously invariant under orthogonal transformations of the fields as a whole, of the
kind

@' (x) = ' (x) cosa — p*(x) sinar ,

(p’2(x) = (pl(x) sina + <p2(x) cos (7.35)
with o € [0, 27]. Equations (7.35) describe a formal rotation in the two-dimension-

al, inner, space which is spanned by the independent fields ¢! and ¢?. In particular,
if we choose the angle « to be infinitesimal, @ = ¢, then (7.35) becomes

Sp' i=¢" —pl = —sp?, Sp*i=¢? — ¢’ =ep'. (7.36)

As these changes in the fields are special cases of variations, one can calculate the

corresponding change of £. Let us write (7.36) as §¢' = Z,f:l eixg® with &) =
& = 0and —&1» = &; = ¢. Then we find

2
oL . oL .
SL = —8¢" — 80,0
Z( P T ) ‘”")

2
oL .
= au|: Z EYE) Szkwk] = 8/1]“()5) ,
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where we have replaced 3.£/3¢’ in the first term by

oL oL

R [CH))

making use of the equations of motion. The right-hand side of the above equation is
nothing but a divergence in four dimensions, the quantity ¢j* being defined by the
expression in square brackets. The left-hand side vanishes because the change of the
Lagrange density is zero, £ = 0. It is not difficult to show that j* is a four-vector
with respect to Lorentz transformations. In the concrete example considered here
one calculates the explicit form of this vector from the Lagrange density (7.34) and
making use of the formulae (7.36). The result is

Jh) = (3"9* (1) @' (x) — (3"9' (1)) ¢ (x) . (7.37)

The statement that the four-divergence of the quantity j* vanishes, in fact, is a con-
tinuity equation. The time component j and the space components j have the same
physical dimension. Therefore, if j is a current density, that is, if it has dimension,
e.g., charge x velocity per unit of volume, then j° is not yet a density, which, in our
example, should have dimension charge per unit volume. However, p(x, ) = j 0 /c
is a density with the correct physical dimension. Therefore, in a given frame of
reference, we set j* = (cp,j) so that the continuity equation becomes

_Op(x, 1)
Y’

" +V.jx,t)=0. (7.38)
When the density p in a given, finite, space volume increases or decreases, this
change is compensated by a flow of charge into this volume, or out of this volume.
The total charge contained in the fields is given by the integral of the density p over
the entire space. Provided the fields and, therefore, also the current density j vanish
sufficiently fast at infinity, (7.38) implies that the total charge Q := f Bxp(x, 1) is
a constant of the motion,

d

d
EQ=E/&mmg=—/&WJm0=o. (7.39)

Indeed, the right-hand side of this equation vanishes because the volume integral of
the divergence over space equals the surface integral of the radial component of j
over the surface at infinity.'

In the example (7.34) invariance with respect to the transformations (7.35) leads to
the conservation law (7.38), or (7.39), with j*(x) as given by the expression (7.37).
It is useful to replace the real fields ¢' and ¢? by a complex field and its complex

'One shows, furthermore, that the charge Q is a Lorentz invariant quantity, i.e., that its value
does not depend on the frame of reference in which it is calculated. This holds if and only if
9 j*(x) =0.
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conjugate, through the definitions

P(x) = %2 (') +ip*(x) , ¢*(x) = % (0' ) —ip*(x)) .

The Lagrange density (7.34) then takes a simpler form, namely

L= (3,0) (3"¢) —rp*d — U (p*¢) . (7.40)
Similarly, the transformation (7.35) simplifies to

P(x) =¢(x)e”, ¢ (x)=¢*(x)e™, (7.41)
and the quantity (7.37) becomes

JHx) = —i[¢* ()4 (x) — (8" (X)) ()] . (7.42)

In quantum physics one learns that, indeed, this expression is a suitable candidate
for the description of the electric charge and current densities of a scalar particle.



Appendix A
Exercises

Chapter 1: Elementary Newtonian Mechanics

1.1 Under the assumption that the orbital angular momentum! = r x p of a particle
is conserved show that its motion takes place in a plane spanned by r(, the initial
position, and p,, the initial momentum. Which of the orbits of Fig. A.1 are possible
in this case? (O denotes the origin of the coordinate system.)

1.2 In the plane of motion of Exercise 1.1 introduce polar coordinates {r(), o()}.
Calculate the line element (ds)? = (dx)? + (dy)?, as well as v> = %% + y? and 2,
in the polar coordinates. Express the kinetic energy in terms of 7 and I°.

1.3 For the description of motions in R® one may use Cartesian coordinates
r(t) = {x(t), y(t), z(¢)}, or spherical coordinates {r(t), 0(¢), ¢(t)}. Calculate the
infinitesimal line element (ds)? = (dx)? + (dy)? + (dz)2 in spherlcal coordinates.
Use this result to derive the square of the velocity v? = %% 4+ y? + 72 in these coor-
dinates.

1.4 Lete,, ev, ez be Cartesian unit vectors. They then fulfill € e = éi = 62 =1,e,-
éy=¢,-¢,=¢e,-¢,=0,¢, = ex X ey (plus cyclic permutatlons) Introduce three,
mutually orthogonal unit vectors é,, e¢,, ey as indicated in Fig. A.2, Determine é,
and e, from the geometry of this figure. Confirm that é, - &, = 0. Assume &, =
aé, + Bé, + ye, and determine the coefficients «, B, y such that é; =1,¢ -6, =
0 =&y - e,. Calculate v = ¥ = d(ré,)/dt in this basis as well as v

1.5 A particle is assumed to move according to r (¢) = v with v° = {0, v, 0}, with
respect to the inertial system K. Sketch the same motion as seen from another refer-
ence frame K’, which is rotated about the z-axis of K by an angle &,

x' =xcos® + ysin P,

y = —xsin® + ycos®, 7 =z,

for the cases @ = w and @ = wt, were w is a constant.
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Yy

0 0]
2 . o
(8]
(a) (b) (c)
\k_‘_// %
S e R e et e
0 0]
(d) (e) (f)

Fig. A.1 Some of these orbits are impossible if angular momentum is conserved

Fig. A.2 Unit vectors which
are mutually orthogonal and
refer to spherical polar
coordinates

1.6 A particle of mass m is subject to a central force F = F(r)r/r. Show that the
angular momentum I = mr X r is conserved (i.e. its magnitude and direction) and
that the orbit lies in a plane perpendicular to /.

1.7 (i) In an N-particle system that is subject to internal forces only, the potentials
Vir depend only on the vector differences r;z = r; — ry, but not on the individual
vectors r;. Which quantities are conserved in this system?
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(ii) If Vi, depends only on the modulus |r;;| the force acts along the straight line
joining i to k. There is one more integral of the motion.

1.8 Sketch the one-dimensional potential
U(q) =—-5qe""+q*+2/q for ¢ =0

and the corresponding phase portraits for a particle of mass m = 1 as a function
of energy and initial position gg. In particular, find and discuss the two points of
equilibrium. Why are the phase portraits symmetric with respect to the abscissa?

1.9 Study two identical pendula of length / and mass m, coupled by a harmonic
spring, the spring being inactive when both pendulums are at rest. For small deviations
from the vertical the energy reads

1 1 1
E = %(xg +x3) + Emwé(xlz +x3) + Emw%(xl — x3)

with x, = mx|, x4 = mx3. Identify the individual terms of this equation. Derive from
it the equations of motion in phase space,

d
& Mx.
dr

The transformation

x —>u=Ax with A=

()

decouples these equations. Write the equations obtained in this way in dimensionless
form and solve them.

Y d
s\ -1) ™

1.10 The one-dimensional harmonic oscillator satisfies the differential equation
mi(t) = —ix(t), (1.1)

with m the inertial mass, A a positive constant, and x (¢) the deviation from equilib-
rium. Equivalently, (1.1) can be written as

ita’x =0, o*%a/m. (1.2)

Solve the differential equation (1.2) by means of x(t) = a cos(ut) + b sin(ut) for
the initial condition

x(0) =xo and p(0) = mi(0) = po. (1.3)
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Fig. A.3 Trajectory of a
particle in a piecewise
constant potential

X
}/

Let x (¢) be the abscissa and p(¢) the ordinate of a Cartesian coordinate system. Draw
the graph of the solution with @ = 0.8 that goes through the point (xg = 1, pg = 0).

1.11 Adding a weak friction force to the system of Exercise 1.10 yields the equation
of motion

¥4 kx +o’x =0.
“Weak” means that k < 2w. Solve the differential equation by means of
x(t) = e [xg cos @t + (po/mad) sin dt].

Draw the graph (x(z), p(¢)) of the solution with v = 0.8 which goes through (xo =
1, p() = O)

1.12 A mass point of mass m moves in the piecewise constant potential (see Fig. A.3)

U= U, forx <0
| Uy forx > 0.

In crossing from the domain x < 0, where its velocity was vy, to the domain x > 0,
it changes its velocity (modulus and direction). Express U, in terms of the quantities
Ui, vy, aq, and a,. What is the relation of «a; to o, when (i) U; < U, and (ii)
U, > U, ? Work out the relationship to the law of refraction of geometrical optics.

Hint: Make use of the principle of energy conservation and show that one component
of the momentum remains unchanged in crossing from x < 0 to x > 0.

1.13 In a system of three mass points m, m,, ms let i, be the center-of-mass of 1
and 2 and S the center-of-mass of the whole system. Express the coordinates r, r», r3
in terms of ry, §,, and s, as defined in Fig. A.4. Calculate the total kinetic energy
in terms of the new coordinates and interpret the result. Write the total angular
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Fig. A.4 Center-of-mass
coordinates of a system of
three mass points

momentum in terms of the new coordinates and show that >, I; = I, +1, + I,
where [ is the angular momentum of the center-of-mass and I, and /,, are relative
angular momenta. By considering a Galilei transformation ' = r + wt +a,t' =
t + s show that I depends on the choice of the origin, while /,, and I, do not.

1.14 Geometric similarity. Let the potential U (r) be a homogeneous function of
degree « in the coordinates (x, y, 2), i.e. U(Ar) = A*U(r).

(i) Show by making the replacements r — Ar and t — ut, and choosing p =
A17%/2_that the energy is modified by a factor A% and that the equation of motion
remains unchanged.

The consequence is that the equation of motion admits solutions that are geomet-
rically similar, i.e. the time differences (At), and (At), of points that correspond to
each other on geometrically similar orbits (a) and (b) and the corresponding linear
dimensions L, and L, are related by

(a0, (E)lw/z
A,  \L, '

(ii) What are the consequences of this relationship for

— the period of harmonic oscillation?

— the relation between time and height of free fall in the neighborhood of the
earth’s surface?

— the relation between the periods and the semimajor axes of planetary
ellipses?

(iii) What is the relation of the energies of two geometrically similar orbits for

— the harmonic oscillation?
— the Kepler problem?

1.15 The Kepler problem. (i) Show that the differential equation for @(r), in the
case of finite orbits, has the following form:
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do 1
L | ol S— (14)
dr r\V (r —rp)(ra —r)
where rp and ro denote the perihelion and the aphelion, respectively. Calculate rp
and rp and integrate (1.4) with the boundary condition @ (rp) = 0.

(i) Change the potential to U (r) = (—A/r) + (B/r?) with | B| <« [?/2u. Determine
the new perihelion 7}, and the new aphelion r} and write the differential equation for
@ (r) in a form analogous to (1.4). Integrate this equation as in (i) and determine two
successive perihelion positions for B > 0 and for B < 0.

Hint:

o 1

;\/xz(l — B —2aBx —a?

% arccos (% + ,3) =

1.16 The most general solution of the Kepler problem reads, in terms of polar coor-
dinates r and @,

p

M) = e cos@ — o)

The parameters are given by

12
p= An (A = Gmmy),
- 2E]? mimo,
& = _ = —.
,bLA2 H m; + my

What values of the energy are possible if the angular momentum is given? Calculate
the semimajor axis of the earth’s orbit under the assumption mgy, > MEgam;

G =6.672x 107" m¥kg~!s72,
ms = 1.989 x 10°° kg,
mg = 5.97 x 10** kg.
Calculate the semimajor axis of the ellipse along which the sun moves about the

center-of-mass of the sun and the earth and compare the result to the solar radius
(6.96 x 108 m).

1.17 Determine the interaction of two electric dipoles p, and p, (example for non-
central potential force).

Hints: Calculate the potential of a single dipole p,, making use of the following
approximation. The dipole consists of two charges +e; at a distance d;. Let ¢; tend
to infinity and |d | to zero, in such a way that their product p;, = d e stays constant.
Then calculate the potential energy of a finite dipole p, in the field of the first and
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perform the same limit e, — oo, |dy| — 0, with p, = dye, constant, as above.
Calculate the forces that act on the two dipoles.

Answer:
W(1,2) = (py - p2)/r> =3(py - 1) (py - 1)/ 1,
F=—V\W =03, p)/r
—15(p, -r)(py - 1)/ r
+3[pi(py- 1)+ po(py - D)/’ = —Fha.
1.18 Let the motion of a point mass be governed by the law
?»=1v Xxa, a=const. (1.5)

Show that 7 - @ = v(0) - @ holds for all ¢+ and reduce (1.5) to an inhomogeneous
differential equation of the form # 4+ w?r = f(¢). Solve this equation by means of
the substitution rigpom () = ¢t + d. Express the integration constants in terms of the
initial values r(0) and v(0). Describe the curve r(t) = rpom () 4 Finhom (?)-

Hint:
a; X (ax x az) = ax(a; - az) — az(a; - az).

1.19 Aniron ball falls vertically onto a horizontal plane from which it is reflected. At
every bounce it loses the nth fraction of its kinetic energy. Discuss the orbit x = x(¢)
of the bouncing ball and derive the relation between xp,x and #ax.

Hint: Study the orbit between two successive bounces and sum over previous times.

1.20 Consider the following transformations of the coordinate system:
{tvr} _E) {tvr}’ {[,l‘} _P) {t$_r}a {l,r} _T) {—t,r},

as well as the transformation P - T that is generated by performing first T and then P.
Write these transformations in the form of matrices that act on the four-component

vector (i_ ) Show that {E, P, T, PT} form a group.

1.21 Let the potential U (r) of a two-body system be C? (twice continuously differ-
entiable). For fixed relative angular momentum, under which additional condition
on U (r) are there circular orbits? Let Ey be the energy of such an orbit. Discuss the
motion for E = Ey + ¢ for small positive €. Study the special cases

U(r)=r" and U(r)=A/r.

1.22 Following the methods explained in Sect. 1.26 show the following.
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(i) In the northern hemisphere a falling object experiences a southward deviation
of second order (in addition to the first-order eastward deviation).

(ii) A stone thrown vertically upward falls down west of its point of departure, the
deviation being four times the eastward deviation of the falling stone.

1.23 Let a two-body system be subject to the potential
o
U(r) = -3

in the relative coordinate r, with positive «. Calculate the scattering orbits r (®). For
fixed angular momentum what are the values of « for which the particle makes one
(two) revolutions about the center of force? Follow and discuss an orbit that collapses
tor =0.

1.24 A pointlike comet of mass m moves in the gravitational field of a sun with mass
M and radius R. What is the total cross section for the comet to crash on the sun?

1.25 Solve the equations of motion for the example of Sect. 1.21.2 (Lorentz force
with constant fields) for the case

B=Bé, E=Eé..

1.26 Kepler problem and Hodograph: Let p, and p, be the components of the
momentum in the plane of motion of the Kepler problem. Show: In momentum
space, spanned by (p., py), all bound orbits are circles. Give the position and the
radius of these circles. The curve described by the tip of the velocity, or momentum,
vector is called hodograph.

Chapter 2: The Principles of Canonical Mechanics

2.1 The energy E(q, p) is an integral of a finite, one-dimensional, periodic motion.
Why is the portrait symmetric with respect to the g-axis? The surface enclosed by
the periodic orbit is

qﬂ\ﬂX
F(E):%pdq:Z/ pdg.
qmin

Show that the change of F(E) with E equals the period T of the orbit, T =
dF(E)/dE, Calculate F and T for the example

E(q. p) = p*/2m + mw’q*/2.

2.2 A weight glides without friction along a plane inclined by the angle o with
respect to the horizontal. Study this system by means of d’Alembert’s principle.
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Fig. A.5 A particle moving A
along the horizontal straight
line is constarined by a
spring fixed in A
(

2.3 A ball rolls without friction on the inside of a circular annulus. The annulus is
put upright in the earth’s gravitational field. Use d’ Alembert’s principle to derive the
equation of motion and discuss its solutions.

2.4 A mass point m that can only move along a straight line is tied to the point A by
means of a spring. The distance of A to the straight line is / (cf. Fig. A.5). Calculate
(approximately) the frequency of oscillation of the mass point.

2.5 Two equal masses m are connected by means of a (massless) spring with spring
constant x. They move without friction along a rail, their distance being / when
the spring is inactive. Calculate the deviations x;(¢) and x,(¢) from the equilibrium
positions, for the following initial conditions:

x1(0) =0, x1(0) = vy,
x2(0) =1, %(0) = 0.

2.6 Given a function F'(x1, ..., x) that is homogeneous and of degree N in its f
variables, show that

fur,
i=1 8 B
2.7 If in the integral

Ihy] = / dx £y, y)

X1

f does not depend explicitly on x, show that

,of
)’F—f(y y') = const.
Apply this result to L(g, g) = T — U and identify the constant. T is assumed to be
a homogeneous quadratic form in g.
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2.8 Solve the following two problems (whose solutions are well known) by means
of variational calculus:

(i) the shortest connection between two points (x1, y;) and (x,, y») in the Euclidean
plane;

(i) the shape of a homogeneous, fine-grained chain suspended at its end points
(x1, y1) and (x,, y2) in the gravitational field.

Hints: Make use of the result of Exercise2.7. The equilibrium shape of the chain is
determined by the lowest position of its center of mass. The line element is given by

ds = /(dx)? + (dy)? = V1 + y?2dx.
2.9 Two coupled pendula can be described by means of the Lagrangian function

L= ym (] + %) = ymeg (5] +x3) = gm (0] — @) (1 = x2)”,

(i) Show that the Lagrangian function
L' = im( — iwox))? + tm (i — iwpxz)?
1

— Zm (w% — a)g) (x1 — x2)2

leads to the same equations of motion. Why is this so?
(i1) Show that transforming to the eigenmodes of the system leaves the Lagrange
equations form invariant.

2.10 The force acting on a body in three-dimensional space is assumed to be axially
symmetric with respect to the z-axis. Show that

(i) its potential has the form U = U (r, z), where {r, ¢, z} are cylindrical coordi-
nates,

X=rcose, y=rsing, z=z;
(ii) the force always lies in a plane containing the z-axis.
2.11 With respect to an inertial system K the Lagrangian function of a particle is
L() = %mx% - U(X()).

The frame of reference K has the same origin as Ky but rotates about the latter with
constant angular velocity . Show that the Lagrangian with respect to K reads
xZ

m . m 2
L=T+mx~(wxx)+5(coxx) - U(x).

Derive the equations of motion of Sect. 1.25 from this.
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Fig. A.6 Pearl gliding along
a curve in a vertical plane
and subject to gravity s(9)

mg

2.12 A planar pendulum is suspended such that its point of suspension glides without
friction along a horizontal axis. Construct the kinetic and potential energies and a
Lagrangian function for this problem.

2.13 A pearl of mass m glides (without friction) along a planar curve s = s(@®) put
up vertically. s is the length of arc and @ the angle between the tangent to the curve
and the horizontal line (see Fig. A.6).

(i) Derive the equation for s(¢) for harmonic oscillations.

(ii) Whatis the relation between s (1) and @ (¢)? Discuss this relation and the motion
that follows from it. What happens in the limit where s can reach its maximal
amplitude?

(iii) From the explicit solution calculate the force of constraint and the effective
force that acts on the pearl.

2.14 Geometrical interpretation of the Legendre transformation. Given f (x) with
f"(x) > 0. Construct (Lf)(x) =xf'(x) — f(x) =xz— f(x) = F(x, z), where
z = f'(x). The inverse x = x(z) of the latter exists and so does the Legendre trans-
form of f(x), whichis zx(z) — f(x(2)) = Lf(z) = D (2).

(i) Comparing the graphs of the functions y = f(x) and y = zx (for fixed z) one
sees with

aF(x,2)

ax

0

that x = x(z) is the point where the vertical distance between the two graphs is
maximal (see Fig. A.7).

(i) Take the Legendre transform of @ (z), i.e. (LP)(z) = 2D/ (z) — P(2) = zx —
@ (z) = G(z, x) with @'(z) = x. Identify the straight line y = G(z, x) for fixed
z and with x = x(z) and show that one has G(z, x) = f(x). Sketch the picture
that one obtains if one keeps x = x( fixed and varies z.
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Fig. A.7 Two functions of x by y=zx
whose maximal vertical
distance is to be determined
d(z)
f(x) !
1
'
i -X
x(z)

2.15 (i) Let

L(q1,92,41,92,t) =T — U with

2 2
T=" cudige+ Y bide +a.
i,k=1 k=1

Under what condition can one construct H (4, P, t) and what are p, p,, and H ?
Confirm that the Legendre transform of H is again L and that

9L 3’H
det —— ) det =1.
0qx0q; 0pndpm

Hint: Take diy = 2¢11, di2 = dy1 = c12 + ¢a1, dyp = 2¢p0, M3 = pi — b;.

(i) Assume now that L = L(x; =¢q;, X2 =q2, q1, ¢2, t) = L(x,x,u) with
u (g1, g2, t) to be an arbitrary Lagrangian function. We expect the momenta
pi = pi(x1, x2, u) derived from L to be independent functions of x; and x», i.e.
that there is no function F(p;(x;, xa, u), p2(x1, x2, u)) that vanishes identically.
Show that, if p; and p, were dependent, the determinant of the second derivatives
of L with respect to the x; would vanish.

Hint: Consider dF/dx; and dF /dx,.

2.16 A particle of mass m is described by the Lagrangian function

1 ) ) .2 w
L=-mx"+y +2°)+ =1,
2 2
where /3 is the z-component of angular momentum and w is a constant frequency.
Find the equations of motion, write them in terms of the complex variable x + iy and
of z, and solve them. Construct the Hamiltonian function and find the kinematical
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and canonical momenta. Show that the particle has only kinetic energy and that the
latter is conserved.

2.17 Invariance under time translations and Noether’s theorem. The theorem of
E. Noether can be applied to the case of translations in time by means of the following
trick. Make ¢ a coordinate-like variable by parametrizing both ¢ and ¢ by ¢ = ¢(7),
t = t(7) and by defining the following Lagrangian function:

- dg dr 1 d dr
L q’tv_qs_ dﬁd‘L q3—_q1t P
dr dr dt/dr dr dr

(i) Show that Hamilton’s variational principle applied to L yields the same equations
of motion as for L.
(i) Assume L to be invariant under time translations

h(q.t)=(q.t+s). 2.1)

Apply Noether’s theorem to L and find the constant of the motion corresponding to
the invariance (2.1).

2.18 A mass point is scattered elastically on a sphere with center P and radius R
(see Fig. A.8). Show that the physically possible orbit has maximal length.

Hints: Show first that the angles o and S must be equal and construct the action
integral. Show that any other path A B’$2 would be shorter than for those points
where the sum of the distances to A and £2 is constant and equal to the length of the
physical orbit.

2.19 (i) Show that canonical transformations leave the physical dimension of the
product p;q; unchanged, i.e. [P; Q;] = [piq;]. Let @ be the generating function for
a canonical transformation. Show that

[pigil = [P Qr] = [®] = [H - 1],

where H is the Hamiltonian function and ¢ the time.

Fig. A.8 Example of a
physical trajectory inside the
sphere whose length is
maximal
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(ii) In the Hamiltonian function H = p?/2m + mw?q*/2 of the harmonic oscillator
introduce the variables

def def def
X1 = wmq, x; = p/Vm, T = wt,

thus obtaining H = (x> + x3)/2. What is the generating function & (x;, y;) for

the canonical transformation x — y that corresponds to the function @ (g, Q) =
@

(ma)q2 /2) cot Q? Calculate the matrix M;; = dx;/dy; and confirm detM = 1 and
MTJM = J.

2.20 The group Sp is particularly simple for f = 1, i.e. in two dimensions.

(1) Show that every matrix

a a
M= (% 12
ar  ax
is symplectic if and only if ajjaz — ajpaz; = 1.
(i) Therefore, the orthogonal matrices

o ( cos sin o
T\ —sina  cosa
and the symmetric matrices
X .
Sz( y) with xz —y? =1
y <z

belong to Sp, r. Show that every M € Sp,; can be written as a product
M=S-0

of a symmetric matrix S with determinant 1 and an orthogonal matrix O.

2.21 (i) Evaluate the following Poisson brackets for a single particle:
{li’rk}’ {li7 pk}v {li9r}v {li9 PZ}

(ii) If the Hamiltonian function in its natural form H = T + U is invariant under
rotations, what quantities can U depend on?

2.22 Making use of the Poisson brackets show that for the system H =T + U (r)
with U(r) = y/r and y a constant, the vector

A=pxl+xmy/r

is an integral of the motion (Lenz’ vector or Hermann—Bernoulli-Laplace vector).



Appendix A: Exercises 481

2.23 The motion of a particle of mass m is described by

1
H = m (pf + pg) + magq;, o = const.

Construct the solution of the equations of motion for the initial conditions

71(0) =xo, ¢200) = yo, P1(0) = px, p2(0) = py,
making use of Poisson brackets.

2.24 For a three-body system with masses m;, coordinates r;, and momenta p;
introduce the following coordinates (Jacobian coordinates"):

def . . .
01 = ro—r (relative coordinate of particles 1 and 2),

def miry + mor . . .
02 = ry— S (relative coordinate of particle 3
mp + mj
and the center of mass of the first two),

def M1TF| + Maly + m3r3

my +my + ms3
def M Py — M2 P
T =,
mi + mo
def (M1 +mz)ps —m3(p, + py)
P2 = )
my +my +m3

def
73 = pi+ Py + P

©3 (center of mass of the three particles),

(i) What is the physical interpretation of the momenta |, 7, 73?
(ii) How would you define such coordinates for four or more particles?
(iii)) Show in at least two (equivalent) ways that the transformation

{rl’ ry, r3, py, P, p3} - {(plv @3, (p3,7t1,7t2,1t3}
is canonical.

2.25 Given a Lagrangian function L for which 0L /9t = 0, study only those varia-
tions of the orbits g, (¢, ) which belong to a fixed energy E = >, ¢« (dL/9¢x) — L
and whose end points are kept fixed irrespective of the time (z, — #;) that the system
needs to move from the initial to the end point, i.e.
_ M
gi(t, @) with [ (@), @) = U, for all . (2.2)
g (2 (), @) = gy

Thus, initial and final times are also varied, t; = f; («).

1Jacobi, C.G.J., Sur I’élimination des noeuds dans le probléme des trois corps, Crelles Journal fiir
reine und angewandte Mathematik, XX VI (1843) 115.
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(i) Calculate the variation of 7 («),

(o)

da:/ L(ge(t, @), Gi(t, o)) dt. (2.3)
()

d/
ST — (@)
do

a=0

(i) Show that the variational principle

15}
8K =0 with Kdéf/ (L + E)dt
4l

together with the prescriptions (2.2) is equivalent to the Lagrange equations (the
Principle of Euler and Maupertuis).

2.26 The kinetic energy

.o 1
T =2 qudide = L+ E)

f
k=1

l

is assumed to be a positive symmetric quadratic form in the ¢;. The orbit in the space
spanned by the g is described by the length of arc s such that 7 = (ds/d¢)%. With
E =T + U the integral K of Exercise2.25 can be replaced with an integral over
s. Show that the integral principle obtained in this way is equivalent to Fermat’s
principle of geometric optics,

8/_n(x,v)ds=0

(n: index of refraction, v: frequency).

2.27 Let H = p?/2 + U(q), where the potential is such that it has a local minimum
at go. Thus, in an interval ¢; < go < ¢» the potential forms a potential well. Sketch
a potential with this property and show that there is an interval U(qy) < E < Epax
where there are periodic orbits. Consider the characteristic equation of Hamilton
and Jacobi (2.154). If S(g, E) is a complete integral then r — ty = 9.5/9 E. Take the
integral

1
I(E)déf—2 ]{ pdg
T Jry

over the periodic orbit Iy with energy E (this is the surface enclosed by I'g). Write
I (E) as an integral over time and show that

dI  T(E)
dE = 27


http://dx.doi.org/10.1007/978-3-662-55490-6_2
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2_.28 In Exercise 2.27 replace S(gq, E) by S (g, 1) with I = I_(E ) as defined there.
S generates the canonical transformation (g, p, H) — (0, I, H = E(£2)). What are
the canonical equations in the new variables? Can they be integrated?

2.29 Let H* = p?/2 + ¢*/2. Calculate the integral I (E) defined in Exercise2.27.
Solve the characteristic equation of Hamilton and Jacobi (2.154) and write the solu-
tion as S(g, I). Then 6 = 3S/91. Show that (¢, p) and (0, I) are related by the
canonical transformation (2.95) of Sect.2.24 (ii).

2.30 We assume that the Lagrangian of a mechanical system with one degree of
freedom does not depend explicitly on time. In Hamilton’s variational principle we
make a smooth change of the end points ¢g¢ and ¢”, as well as of the running time
t = t, — 11, inthe sense that the solution ¢ (¢) for the values (¢¢, ¢°, t) and the solution
¢ (s, t) which belongs to the values (¢’*, ¢’’, ') are related in a smooth manner:
@(t) — @ (s, t) such that ¢ (s, 7) is differentiable in s and ¢ (s = 0, 1) = ().

Show that the corresponding change of the action integral [ into which the
physical solution is inserted (this function is called Hamilton’s principal function),
is given by the following expression

81y = —E8t + p®8q” — p“8q°.

2.31 The vector A that is introduced in Exercise 2.22 lies in the plane perpendicular
to £. Calculate |A| as a function of the energy. When does this vanish? Let ¢ denote
the angle between x (orbit vector) and A. Calculate x - A and show that this yields
the orbit’s equation in the form r = r(¢). Determine the modulus and the direction
of A, calculate the cross product £ x A and from there the quantity

This calculation yields an alternative solution of Exercise 1.26.

Chapter 3: The Mechanics of Rigid Bodies

3.1 Let two systems of reference K and K be fixed in the center of mass of a rigid
body, the axes of the former being fixed in space, those of the latter fixed in the body.
If J is the _inertia tensor with respect to K and J the one as calculated in I_(, show that
(i) J and J have the same eigenvalues. (Use the characteristic polynomial.)

(ii) K is now assumed to be a system of principal axes of inertia. What is the form
of J? Calculate J for the case of rotation of the body about the 3-axis.

3.2 Two particles with masses m and m, are held by a rigid but massless straight
connection with length /. What are the principal axes and what are the moments of
inertia?


http://dx.doi.org/10.1007/978-3-662-55490-6_2
http://dx.doi.org/10.1007/978-3-662-55490-6_2
http://dx.doi.org/10.1007/978-3-662-55490-6_2
http://dx.doi.org/10.1007/978-3-662-55490-6_3
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3.3 The inertia tensor of a rigid body is found to have the form

Iy I, O
Iin=\1In In 0|, DIy=Ih
0 0 I3

Determine the three moments of inertia and consider the following special cases.
(1) 111 = I, = A, 11> = B. Can I3 be arbitrary?

@) I1; = A, I =4A, I}, = 2A. What can you say about /33?7 What is the shape of
the body in this example?

3.4 Construct the Lagrangian function for general, force-free motion of a conical
top (height 7, mass M, radius of base circle R). What are the equations of motion?
Are there integrals of the motion and what is their physical interpretation?

3.5 Calculate the moments of inertia of a torus filled homogeneously with mass. Its
main radius is R; the radius of its section is r.

3.6 Calculate the moment of inertia /5 for two arrangements of four balls, two heavy
(radius R, mass M) and two light (radius r, mass m) with homogeneous mass density,
as shown in Fig. A.9. As amodel of a dancer’s pirouette compare the angular velocity
for the two arrangements, with L3 fixed and equal in the two cases.

3.7 (i) Let the boundary of a homogeneous body be defined by the formula (in
spherical coordinates)

R(@) = Ry(1 + «acosB),

ie. o(r,0, @) = gy = const for r < R(9) and all 8 and @, and p(r, 0, @) = 0 for
r > R(0). If M is the total mass, calculate py and the moments of inertia.
(ii) Perform the same calculation for a homogeneous body whose shape is given by

Fig. A.9 A model of a O

dancer’s pirouette ]

al3
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R(6) = Ro(1 + BY2(0))

with Y20(0) = +/5/16m (3 cos? @ — 1) being the spherical harmonic with! =2, m =
0. In both examples sketch the body.

3.8 Determine the moments of inertia of a rigid body whose inertia tensor with
respect to a system of reference K; (fixed in the body) is given by

N
8
=/
4

|

oo|§' Bl— 01O
[S8)
|

b% Pl S—
(9%}

u
8

Can one indicate the relative position of the principal inertia system K relative to
K;?

3.9 A ball with radius « is filled homogeneously with mass such that the density is
00. The total mass is M.

(i) Write the mass density ¢ with respect to a body-fixed system centered in the
center of mass and express gg in terms of M. Let the ball rotate about a point
P on its surface (see Fig. A.10).
(i) What is the same density function o(r, t) as seen from a space-fixed system
centered on P?
(iii) Give the inertia tensor in the body-fixed system of (i). What is the moment of
inertia for rotation about a tangent to the ball in P?

Hint: Use the step function ®(x) = 1 forx > 0, ®(x) = 0 forx < 0.

3.10 A homogeneous circular cylinder with length &, radius r, and mass m rolls
along an inclined plane in the earth’s gravitational field.

(1) Construct the full kinetic energy of the cylinder and find the moment of inertia
relevant to the described motion.
(ii) Construct the Lagrangian function and solve the equation of motion.

Fig. A.10 A homogeneous
massive ball rotates about
the point P
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3.11 Manifold of motions of the rigid body. A rotation R € SO(3) can be determined
by a unit vector ¢ (the direction about which the rotation takes place) and an angle

Q.

(i) Why is the interval 0 < ¢ < 7 sufficient for describing every rotation?

(ii) Show that the parameter space (@, ¢) fills the interior of a sphere with radius
7 in R3. This ball is denoted by D?3. Confirm that antipodal points on the ball’s
surface represent the same rotation.

(iii) There are two types of closed orbitin D3, namely those which can be contracted
to a point and those which connect two antipodal points. Show by means of
a sketch that every closed curve can be reduced by continuous deformation to
either the former or the latter type.

3.12 Calculate the Poisson brackets (3.92)—(3.95).

Chapter 4: Relativistic Mechanics

4.1 (i) A neutral w meson (%) has constant velocity vy along the x3-direction. Write
its energy-momentum vector. Construct the special Lorentz transformation that leads
to the particle’s rest system.

(ii) The particle decays isotropically into two photons, i.e. with respect to its rest
system the two photons are emitted in all directions with equal probability. Study
their decay distribution in the laboratory system.

4.2 The decay m — p + v (cf. Example (i) of Sect.4.9.2) is isotropic in the pion’s
rest system. Show that above a certain fixed energy of the pion in the laboratory
system there is a maximal angle beyond which no muons are emitted. Calculate that
energy and the maximal emission angle as a function of m, and m,, (see Fig. A.11).
Where do muons go in the laboratory system that in the pion’s rest system were
emitted forward, backward, or transversely with respect to the pion’s velocity in the
laboratory?

Fig. A.11 A pion two-body decay in the rest system of the pion and in a moving frame, respectively


http://dx.doi.org/10.1007/978-3-662-55490-6_3
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4.3 Consider a two-body reaction A + B — A + B for which the relative velocity
of A (the projectile) and B (the target) is not small compared to the speed of light.
Examples are

e +et—>e +e, v+te—>e+v, p+p—>p+p.

Denoting the four-momenta before and after the scattering by g4, ¢z and ¢/;, g
the following quantities are Lorentz scalars, i.e. they have the same values in every
system of reference,

def def
s = c*ga+aqp)?, = ctga—ah)?

Conservation of energy and momentum requires ¢/, + g = qa + gp. Furthermore,
we have qi = qf = (mac?)?, qlzg = qg = (mpc?)”.

(1) Express s and ¢ in terms of the energies and momenta of the particles in the
center-of-mass frame. Denoting the modulus of the 3-momentum by ¢* and the
scattering angle by 6*, write s and ¢ in terms of these variables.

(i) Define u = c*(qs — q}g)2 and show that

s+t+u:2(m124+m%)c4.

4.4 Calculate the variables s and ¢ (as defined in Exercise 4.3) in the laboratory
system, i.e. in that system where B is at rest before the scattering. What is the relation
between the scattering angle 6 in the laboratory system and 6* in the center-of-mass
frame? Compare to the nonrelativistic expression (1.80).

4.5 In its rest system the electron’s spin is described by the 4-vector s* = (0, ).
What is the form of this vector in a frame where the electron has the momentum p?
Calculate the scalar product (s - p) = s py.

4.6 Show that

(i) every lightlike vector z(z% = 0) can be brought to the form (1,1,0,0) by means
of Lorentz transformations;
(ii) every spacelike vector can be transformed to the form (0, z',0,0), where z! =

—z2.

Indicate the necessary transformations in both cases.

4.7 If J; and K; denote the generators of rotations and boosts, respectively (cf.
Sect.4.5.2 (iii)) define

def 1 . def 1 .
A, = E(JI’-'_IKI’)’ B, = E(Jq —iKy), p.g=123.

Making use of the commutation rules (4.59) calculate [A,, A/, [B,, B,], and
[A,, B,] and compare to (4.59).


http://dx.doi.org/10.1007/978-3-662-55490-6_1
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4.8 Study the behavior of J; and K; with respect to space inversion, i.e. determine
PJ;P~! PK;PL.

4.9 In quantum theory one prefers to use the quantities

n def . def .
J,' = lJ,-, Kj = —lKj.

What are the commutators (4.59) for these matrices? Show that the matrices Ji are
AT N
Hermitian, i.e. that (J; )* = J;.

4.10 A muon decays predominantly into an electron and two nearly massless neu-
trinos, = — e~ + v; + v,. If the muon is at rest, show that the electron assumes
its maximal momentum whenever the neutrinos are emitted parallel to each other.
Calculate the maximal and minimal energies of the electron as functions of m, and
Me.
Answer:

mi + mg 5

2
Enax = m c”,  Epin = mec”.
m

Draw the corresponding momenta in the two cases.

4.11 A particle of mass M is assumed to decay into three particles (1,2,3) with
masses m, my, m3. Determine the maximal energy of particle 1in the rest system
of the decaying particle as follows. Set

pr=—fn, py,=xfxn, p;=>10-x)fxn,

where 7 is a unit vector and x is a number between 0 and 1. Find the maximum of
f(x) from the principle of energy conservation.
Examples:

(i) u~ — e~ 4+ v + vy (cf. Exercise4.10),
(ii)) Neutrondecay:n — p+e+ v.

What is the maximal energy of the electron? What is the value of 8 = |v|/c for the
electron? my, — my = 2.53m., my, = 1836me..

4.12 Pions 7 ¥, 7~ have the mean lifetime 7 ~ 2.6 x 10~%s and decay predom-
inantly into a muon and a neutrino. Over what distance can they fly, on aver-
age, before decaying if their momentum is p, = x - m,c with x = 1, 10, or 1000?
(mz ~ 140MeV/c? = 2.50 x 1078 kg).

4.13 The free neutron is unstable. Its mean lifetime is 7 >~ 900s. How far can a
neutron fly on average if its energy is E = 102mpc? or E = 10'* m,c??
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4.14 Show that a free electron cannot radiate a single photon, i.e. the process
e—~>e+vy

cannot take place because of energy and momentum conservation.

4.15 The following transformation

2
T:x* = it = —xt
X2

implies the relation Vx23/%2 = R2. This is an obvious generalization of the well-
known inversion at the circle of radius R, r -7 = R?. Show that the sequence of
transformations: inversion Z of x*, translation 7 of the image by the vector R%c*,
and another inversion of the result, i.e.,

xX'=ToToD)x

is precisely the special conformal transformation (4.102).

4.16 Consider the following Lagrangian

1 —1)?

which contains the additional, dimensionless, degree of freedom . The parameter ¢,
has the physical dimension of a velocity. Show: The extremum of the action integral
yields a theory obeying special relativity for which ¢y is the maximal velocity, in
other words, one obtains the Lagrangian (4.97) with the velocity of light ¢ replaced
by cp. Consider the limit ¢ — oo.

Chapter 5: Geometric Aspects of Mechanics

k . ! . . .
5.1 Letwbe anexterior k-form, w an exterior /-form. Show that their exterior product
is symmetric if k and/or / are even and antisymmetric if both are odd, i.e.

k ! ! k
oro=D"orw.

5.2 Let x1, x2, x3 be local coordinates in the Euclidean space R*, ds* = Edx] +
Ezdx§ + E3dx32 the square of the line element, and &1, é,, e3 unit vectors along the
coordinate directions. What is the value of dx; (€;), i.e. of the action of the one-form
dx; on the unit vector é;?


http://dx.doi.org/10.1007/978-3-662-55490-6_4
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53 Leta = Z?zl a;(x)e; be a vector field with a;(x) smooth functions on M. To

. 1 2
every such vector field we associate a one-form w, and a two-form w, such that

wuE) = (@-§), uE.m) = (@ & xn)).

Show that
3
1
Wy = Zai(x)\/ E;dx;,
i=1

2
w, = a;(x)\/ E;E3dxy A dxs + cyclic permutations,

5.4 Making use of the results of Exercise 5.3 determine the components of V f in
the basis {e1, e,, €3}
Answer:

3

51 af
Vi=Y> — "¢
f E\/Eiax’

5.5 Determine the functions E; for the case of Cartesian, cylindrical, and spherical
coordinates. In each case give the components of V f.

5.6 To the force F = (F), F3) in the plane we associate the one-form w = Fj dx! +
F>dx?. When we apply w onto a displacement vector, w(§) is the work done by the
force. What is the dual *x® of the form w ? What is its interpretation?

5.7 The Hodge star operator assigns to every k-form w the (n — k)-form *xw. Show
that

*(xw) = (=R,

5.8 LetE = (E|, E, E3) and B = (By, By, B3) be electric and magnetic fields that
in general depend on x and 7. We assign the following exterior forms to them:

3
] déf z Eidxi,
i=1

w def Bldx2 Adx? + Bzd)c3 Adx! + B3dx1 A dx?.

Write the homogeneous Maxwell equation curl E + B /c = Oas anequation between
the forms ¢ and w.

5.9 If d denotes the exterior derivatives and * the Hodge star operator, the codiffer-
ential § is defined by

Bdéf*d*.
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Show that A & d o 8 + 8 o d, when applied to functions, is the Laplacian operator

Z Wiy.iy )dx A A dx

Iy <-<ip

be an exterior k-form over a vector space W. Let F : V — W be a smooth mapping

of the vector space V onto W. Show that the pull-back F *(c]f) A Llo) of the exterior
product of two such forms is equal to the exterior product of the pull-back of the

individual forms (F*®) A (F*®).

5.11 With the same assumptions as in Exercise 5.10 show that the exterior derivative
and the pull-back commute,

d(F*w) = F*(dw).

5.12 Letx and y be Cartesian coordinates in R?, V = yd, and W = xd, two vector
fields on R2. Calculate the Lie bracket [V, W]. Sketch the vector fields V, W, and
[V, W] along circles about the origin.

5.13 Prove the follow assertions.

(i) The set of all tangent vectors to the smooth manifold M at the point p € M
form a real vector space, denoted by T, M, whose dimension is n = dim M.
(ii) If M isR", T, M is isomorphic to that space.

5.14 The canonical two-form for a system with two degrees of freedom reads w =
21'2=1 dg' A dp;. Calculate w A @ and confirm that this product is proportional to the
oriented volume element in phase space.

515 LetH"D = p?/2 + (1 —cosq)and H? = p?/2 + q(q* — 3)/6 be the Hamil-
tonian functions for two systems with one degree of freedom. Construct the corre-
sponding Hamiltonian vector fields and sketch them along some of the solution
curves.

5.16 Let H = H°+ H' with H° = (p*> + ¢*)/2 and H' = ¢q>/3. Construct the
Hamiltonian vector fields X o and Xy and calculate w (X g, X go).

5.17 Let L and L' be two Lagrangian functions on 7 Q for which @; and @ are
regular. The corresponding vector fields and canonical two-forms are Xz, Xg/, @,
and wy . Show that each of the following assertions implies the other:

(i) L'=L + a,where a: TQ — R is a closed one-form, i.e. da = 0;
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(11) Xg=Xgp and W = wy.

Show that in local coordinates this is the result obtained in Sect.2.10.

Chapter 6: Stability and Chaos

6.1 Study the two-dimensional linear system y = Ay, where A has one of the Jordan
normal forms

(i) A:(Aol fz), (i) A:(_“b 2) (i) A:()l‘ g)

In all three cases determine the characteristic exponents and the flow (6.13) with
s = 0. Suppose the system is obtained by linearizing a dynamical system in the
neighborhood of an equilibrium position. (i) corresponds to the situations shown
in Figs.6.2a—c. Draw the analogous pictures for (ii) for (@ =0, b > 0) and (a <
0, b > 0), and for (iii) with A < 0.

6.2 The variables a and S on the torus T> = S' x S' define the dynamical system

& =a/2nr, B=0b2n, 0<a, B<I1,

where a and b are real constants. Cutting the torus at (@ = 1, B) and at (&, 8 = 1)
yields a square of length 1. Draw the solutions with initial condition (ctg, Bp) in this
square for b/a rational and irrational.

6.3 Show that in an autonomous Hamiltonian system with one degree of freedom
(and hence two-dimensional phase space) neighboring trajectories can diverge at
most linearly with increasing time as long as one keeps clear from saddle points.

Hint: Make use of the characteristics (2.154) of Hamilton and Jacobi.
6.4 Study the system

g1 = —nq1 — Aq2 + q19>
G = rqy — ugx + (g7 — 43) /2.

where 0 < u < 1 is a damping term and A with |A| < 1 is a detuning parameter.
Show that if u = 0 the system is Hamiltonian. Find a Hamiltonian function for this
case. Draw the projection of its phase portraits for A > 0 onto the (g1, g»)-plane and
determine the position and the nature of the critical points.

Show that the picture obtained above is structurally unstable when p is chosen to
be different from zero and positive, by studying the change of the critical points for

w # 0.
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6.5 Given the Hamiltonian function on R*

1

1 1
fﬂqhquhpﬁ:=§( ?+P@-+§(Qf+q9'*§(qf+q9

show that this system possesses two independent integrals of the motion and sketch
the structure of its flow.

6.6 Study the flow of the equations of motion p = ¢, p = g — ¢> — p and determine
the position and the nature of its critical points. Two of these are attractors. Determine
their basin of attraction by means of the Liapunov function V = p?/2 — ¢%/2 +

q*/4.

6.7 Dynamical systems of the type

i=-0U/dx=-U,

are called gradient flows. They are quite different from the flows of Hamiltonian
systems. Making use of a Liapunov function show that if U has an isolated minimum
at xo, then x is an asymptotically stable equilibrium position. Study the example

)'Cl = —2)61()61 — 1)(2)61 — 1), )'Cz = —2)(32.

6.8 Consider the equations of motion
. .1 2
q=p. p=5;0-49)

of a system with f = 1. Sketch the phase portrait of typical solutions with given
energy. Study its critical points.

6.9 By numerical integration find the solutions of the Van der Pool equation (6.36) for
initial conditions close to (0,0) and for various values of ¢ in the interval 0 < ¢ < 0.4.
Draw ¢(¢) as a function of time, as in Fig. 6.7. Use the result to find out empirically
at what rate the orbit approaches the attractor.

6.10 Choose the straight line p = ¢ as the transverse section for the system (6.36),
Fig.6.6. Determine numerically the points of intersection of the orbit with initial
condition (0.01,0) with that line and plot the result as a function of time.

6.11 The system in R?
. _ . _ 2
X1 = X1, X2 =—X2+X]

has a critical pointin x; = 0 = x;. Show that for the linearized system the line x; = 0
is a stable submanifold and the line x, = 0 an unstable one. Find the corresponding
manifolds for the exact system by integrating the latter.
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6.12 Study the mapping x;+1 = f(x;) with f(x) =1 — 2x2. Substitute u = (47)
arcsin «/(x + 1)/2 and show that there are no stable fixed points. Calculate numer-
ically 50000 iterations of this mapping for various initial values x; 7% 0 and plot
the histogram of the points that land in one of the intervals [n/100, (n + 1)/100]
with n = —100, —99, ..., 499. Follow the development of two close initial values
x1, x1, and verify that they diverge in the course of the iteration. (For a discussion
see Collet, Eckmann 1990.)

6.13 Study the flow of Roessler’s model
X=—-y—2z, y=x+ay, z=b+xz—cz

fora = b = 0.2, c = 5.7 by numerical integration. The graphs of x, y, z as functions
of time and their projections onto the (x, y)-plane and the (x, x)-plane are particularly
interesting. Consider the Poincaré mapping for the transverse section y 4+ z = 0. As
X = 0, x has an extremum on the section. Plot the value of the extremum x;,; as
a function of the previous extremum x; (see also Bergé, Pomeau, Vidal 1984 and
references therein).

6.14 Although this is more than an exercise, the reader is strongly encouraged to
study the system known as Hénon’s attractor. It provides a good illustration of chaotic
behavior and extreme sensitivity to initial conditions (see also, Bergé, Pomeau, Vidal
1984, Sect. 3.2 and Devaney 1989, Sect. 2.6, Exercise 10).

6.15 Show that

" 2
Zexp [1—am] =ndny, (m=0,...,n—1).
n

o=1
Use this result to prove (6.63), (6.65), and (6.66).

6.16 Show that by a linear substitution y = ax + B the system (6.67) can be trans-
formed to y;.1 =1 — yyl.z. Determine y in terms of u and show that y lies in the
interval (—1, 1] and y in (0, 2] (cf. also Exercise 6.12 above). Making use of this
transformed equation derive the values of the first bifurcation points (6.68) and (6.70).
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Solution of Exercises

Cross-references to a specific section or equation in the main text of the book are
marked with a capital M preceding the number of that section or equation. For
instance, Sect. M3.7 refers to Chap.3, Sect.7, of the main text, while (M4.100)
refers to (4.100) in Chap. 4. Cross references within this set of solutions should be
fairly obvious.

Chapter 1: Elementary Newtonian Mechanics

1.1 The time derivative of angular momentum isl =F x pHrxp=mix¥ixr+
r x F.By assumption this is zero which implies that the force F must be proportional
tor, F = ar,a € R. If we decompose the velocity into a component along r and a
component perpendicular to it, then F will change only the former. Therefore, the
motion takes place in a spatially fixed plane perpendicular to the angular momentum
I =mr(t) x r(t) = mry X vy, itself a constant. Motion along (a), (b), (e), and (f)
is possible. Motion along (c) is not possible because / would vanish at the turning
point but would be different from zero beforeand after passing through that point
(Fig.B.1).

Similarly (d) is not possible because / would vanish in O but not before and after.

1.2 Wenotethatx(z) = r(t) cos@(t), y(t) = r(t) sin ¢(¢) and, hence dx = dr cos ¢
—rdesing,dy = dr sing + rdg cos ¢. Intaking (ds)? = (dx)* + (dy)2 the mixed
terms cancel so that (ds)? = (dr)? + r?(d¢)?*. Thus, the velocity is v*> = 7% + r2¢>.
As neither r nor v have a z-component, the x- and y-components of I = mr x v
vanish. The z-component is

[; =m(xv; — yvy)
= mr(F sin @ cos ¢ + r¢ cos> ¢ — i cos ¢ sin ¢ + r¢ sin® @)
= mr’g.
© Springer-Verlag GmbH Germany 2018 495
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T

(d) (e) (f)

Fig. B.1 Motion along (a), (b), (¢) and (f) is allowed. Motion along (c) and (d) is impossible because
the angular momentum cannot be constant along these trajectories

Thus one finds

2 2
1 l
and T = —mi? +

%)
v=r-+ .
m2r? 2 2mr?

If I is constant this means that the product 2¢ = const., thus correlating the angular
velocity ¢ with the radial distance, cf. the examples (a), (b), (e), and (f), of Exer-
cise 1.1. A motion of type (d) could only be possible if, on approaching O, ¢ were
to go to infinity in such a way that the product r2¢ stays finite. But then the shape of
the orbit would be different, see Exercise 1.23.

1.3 In analogy to the solution of the prev10us exermse one finds (ds)? = (dr)> +
r2(d6)? + r2 sin? 0(dg)?. Thus, v2 = 2 + r262 + r2 sin® 0>

1.4 Having solved Exercise 1.3 one firstreads off é, from Fig. B.2: e, = &, sin 6 cos ¢
+ ¢, sin 6 sin ¢ + €, cos 6. At the point with azimuth ¢, €, is tangent to a great cirlce,
see Fig.B.3. Hence, ¢, = —é, sing + €, cos ¢ (check the special cases ¢ = 0 and
7 /2!). One verifies that

é, - e, = —sinf cos ¢ sin pé, - &, + sin 6 sin ¢ cos e, - &, = 0.

Starting from the given ansatz for é, the coefficients «, 8, y are determined from the
equations

€9 -e. =asinfcosp + Bsinfsing + y cosf =0,
é)-e,=—asing+ Bcosg =0,
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Fig. B.2 Reminder of
angular variables and related
unit vectors needed for the
calculation

Fig. B.3 Detail of previous
figure

497

€

keeping in mind that & has norm 1, i.e. that o> + 2 + y? = 1. Furthermore, from
Fig.B.2andfor6 = 0,¢ = Oonehaséy = é,,for6 =0, ¢ =m/2onehase, = é,,
while for & = /2 one has always ey = —e,. The solution of the above equation

which meets these conditions, reads
o =cosfcosep, B =cosfsing, y = —sinb.
In this basis we find
v=F=ré +ré
= ie, + r((6 cos B cos ¢ — ¢ sin B sin )é,

+ (6 cos 6 sin ¢ + ¢ sin 6 cos e, — 6 sin0é,)
= /e, + r(fég + ¢ sin we,),
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Fig. B.4 Uniform motion Y
along a straight line looks
very different when observed
in an acclerated frame

from which follows the result v2 = 2 + r2(6% + ¢2sin>#) that we found in the
previous exercise.

1.5 With respect to the frame K, r(t) = vtey, i.e., x(r) = 0 = z(¢) and y(t) = vt.
In the rotating frame

% =xcos¢+ ysing + ¢(—xsing + ycose)

V' = —xsing + ycos¢p — p(xcos¢ + ysinep)
=z=0.

In the first case, ¢ = @ = const., the particle moves uniformly along a straight line
with velocity v = (vsinw, v cosw, 0). In the second case, ¢ = wt, ¥’ = vsinwt +
wvt coswt, y = vcoswt — wut sinwt. Integrating over time, x'(¢) = vt sin wt,
¥y (1) = vtcoswt, and z'(tr) = 0. The apparent motion as seen by an observer in
the accelerated frame K’, is sketched in Fig. B.4.

1.6 The equation of motion of the particle reads
. r
mr=F = f(r)-.
r

Take the time derivative of the angular momentum, I = mi x i+ mr x . The first
term is always zero. The second term vanishes because, by the equation of motion,
the acceleration is proportional to r. Hence, I = 0, which means that the magnitude
and the direction of the angular momentum are conserved. As [ is perpendicular to
r and the velocity 7 this proves the assertion.

1.7 (i) By Newton’s third law the forces between two bodies fulfill F;;, = —Fy; or
=V, Vik(ri, i) = Vi Vir(ri, riy. Hence, V can only depend on (r; — ry). Con-
stants of the motion are: total momentum P, energy E; furthermore, we have
for the center-of-mass motion
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rs(t) — P/Mt = rs(0) = const. .
(ii) When V;; depends only on the modulus [r; — r¢|, we have

Fji ==V Vij(Ir =) = =V/;(Iri = re)Vilry — ry|

ri —rg
=V =) ——.

|z_k|

In this case the total angular momentum is another constant of the motion.

1.8 For ¢ — 0 the potential goes to infinity like 1/¢*, while for ¢ — oo it tends
to zero. Between these points it has two extrema as sketched in Fig.B.5. As the
energy E = p?/2 + U(q) is conserved, the phase portraits are given by p = [2(E —
Ug)]" 2. The figure shows a few examples. The minimum at ¢ = 2 is a stable
equilibrium point, the maximum just beyond ¢ = 6 is unstable. The orbits with E ~
0.2603 are separatrices. The phase portraits are symmetric with respect to reflection in
the g-axis because (¢, p = +,/--7) and (¢, p = —,/-~) belong to the same portrait.

1.9 The term (x? + x2)/(2m) is the total kinetic energy while U (x1, x3) = m(w]
(x? 4+ x3) + w?(x; — x3)?)/2 is the potential energy. The forces acting on pendula 1
and 2 are, respectively, —0U /dx;, and —dU/0x3. Thus, the equations of motion are

Ulgr »

08} 16

0408

Fig. B.5 The potential U (¢) as a function of ¢g. Superimposed are a few examples of phase portraits
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)'Cl 0 l/m 0 0 X1
Ll | -m@+ed) 0 mw? 0 X2
x| 0 0 0 1/m x3 |’
X4 ma)% 0 — m(wé + a)f) 0 X4

or, for short, x = Mx. The transformation as given above

1
up = ﬁ(xl +x3), up = E(xz + x4),
1 1
uz = ﬁ(xl —X3), Us = E(xz — X4)

leads to sums and differences of the original coordinates and momenta. We note that
the matrix M has the structure

B|C
u= (&)
where B and C are 2 x 2 matrices. Furthermore the transformation A is invertible
and, in fact, the inverse equals A. Thus

d
d_l; —AMA 'y with A~' = A.

It is useful to note that one can do the calculations in terms of the 2 x 2 submatrices
as if these were (possibly noncommuting) numbers. For example,

AMA™" = AMA = (BJ(;CBEC) with

B+C=( 02 1/m) and
—mawy 0

_ 0 1/m
B-C= (—m(a)g+2wf) 0 )

This system now separates into two independent oscillators that can be solved in the
usual manner. The first has frequency w!’ = @, (the two pendula perform parallel,
in-phase oscillations); the second has frequency w® = (a)g + 2w%)1/ 2 (the pendula
swing in antiphase). The general solution is

uy = aj cos(wVr 4+ @), uz = a; cos(w®t + ¢,).
As an example, consider the initial configuration

x1(0) =a, x(0)=0, x3(0)=0, x4(0)=0,
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which means that, initially, pendulum 1 is at maximal elongation with vanishing
velocity while pendulum 2 is at rest. The initial configuration is realized by taking
a = a; = a2, @1 = ¢ = 0. This gives

oD 4 o® 0@ — oM

x1(t) = acos > t cos > t = acos §2t cos wt,
oW 4@ @ O . .

x3(t) = asin 5 t sin 5 t = asin £2t sin wt,

where 2 := (0P + ©?)/2, 0 :== (@? — 01V)/2. If 2/w = p/q with p,q € Z
and p > g, hence rational, the system returns to its initial configuration after time t =
2np/§2 = 2mwq/w. For earlier times one has t = 7p/(282) : x; = 0, x3 = a (pen-
dulum 1 at rest, pendulum 2 has maximal elongation); t = wp/§2 : x; = —a, x3 =
0;t =3np/(252) : x; =0, x3 = —a. The oscillation moves back and forth between
pendulum 1 and pendulum 2. If £2/w is not rational, the system will come close,
at a later time, to the initial configuration but will never assume it exactly (cf.
Exercise 6.2). In the example considered here, this will happen if ¢ ~ 27n and
wt = 2rm (with m,n € Z), i.e. if £2/w can be approximated by the ratio of two
integers. It may happen that these integers are large so that the “return time” becomes
very large.

1.10 As the differential equation is linear, the two terms are solutions precisely when
W = w; a and b are integration constants which are fixed by the initial condition as
follows

x(t) = acoswt + b sin wt,

p(t) = —amw sin wt + mbw cos wt.
x(0) = xo gives a = xg, p(0) = po gives b = py/(mw). The solution with w =
0.8, x9 = 1, po = O reads x(¢) = cos(0.8¢).

1.11 From the ansatz one has

x(t) = ax(t) 4+ e (—dxo sin @t + po/m cos @t)
¥(1) = ox (1) + 20e™ (—@xg sin @t + po/m cos dt)
— e &7 (x cos Dt + po/ma sin dt)

= —a%x + 2ax — &*x.

Inserting and comparing coefficients one finds

=7, & =vVa? —a? = /o —k2/4.

The special solution x(¢) = e /2 cos(,/0.64 — k2 /4t), approaches the origin in a
spiraling motion as t — 0o.
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1.12 Energy conservation formulated for the two domains yields

m
—0

2 __m,
> 1+U1—E—302+U2.

As the potential energy U depends on x only there can be no force perpendicular to the
x-axis. Therefore, the component of the momentum along the direction perpendicular
to that axis cannot change in going from x < 0 to x > 0: vy, = vy,. The law of
conservation of energy hence reads

2o+ 20 v =20 + 2 U
—v —v 1= =0 —v 5, oOr
5 VL T S 5 V2L T by
" ovu =" 1 U
=0 1 =V 2
2 1] 2 2|
from which follows
v? v?
sin® o) = %, sin® oy = %, directly yielding
v v
1 2
sin o [vs]
Sinot2 |Ul|.

For U; < U, we find |v{| > |v;], hence a; < «p. For U; < U, all inequalities are
reversed.

1.13 Let M = m; + m, + m3bethetotal massand m, = m| + m,. Fromthe figure
one sees thatr, + s, = ry, S12 + 8, = r3, where sy, is the center-of-mass coordinate
of particles 1 and 2. Solving for ry, r,, r3 we find

Fig. B.6 Relative
center-of-mass and overall
center-of-mass in three-body
system
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m3 ma

ry=rs— —S,+ —=5a,
M nmip
ns niy
Fp=Frs— —8p — —58,
M nmip ’
r r +ml2s
3=1rgs g °b-
M

Inserting these into the kinetic energy all mixed terms cancel. The result contains
only terms quadratic in (Fig.B.6) i°s, §4, S

1 1 1 . mypmy mioms
T = —Mi% + — .8 + —jup§7  with = , = )
) s 2/’La a 2:““17 b Ha mi b M

Ts T, T,

Ty is the kinetic energy of the center-of-mass motion, p, is the reduced mass of the
subsystem consisting of particles 1 and 2. p,, is the reduced mass of the subsystem
consisting of particle 3 and the center-of-mass S, of particles 1 and 2, T is the
kinetic energy of the relative motion of particle 3 and Sj,.

In an analogous way, the angular momentum is found to be

L= E l; = Mrs X s+ [4aSq X Sq + UpSp X S,
- —_— ) — — ——
Is I, 1

all mixed terms having cancelled.
By a special (and proper) Galilei transformation, rs — r, =rs +wt +a,is —
i‘g =Fs+w,s, — S,,8, — 8, and, hence,

Iy=1Is+ M(ax (Fs +w) + (rs — ti's) x w),
while I/, =1,,1) = I, remain unchanged.

1.14 (i) With U(Ar) = AU (r) and r’ = Ar the forces from U (+') := U (Ar) and
from U (r), respectively, differ by the factor A%~!. Indeed

~ 1 -~
F =-V,U = —XV,U =2y, U =1*"'F.

Integrating F’ - dr’ over apathinr’ space and comparing with the corresponding
integral over F - dr, the work done in the two cases differs by the factor A%.
Changing ¢ to t' = A'7%/2¢,

d_r/ 2:)\12)\0—2 ﬂ :
dr dt) ’

which means that the kinetic energy
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(i)

(iii)
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1 dr'\?
T=-m\|—
2 dt’
differs from the original one by the same factor A%. Thus, this holds for the
total energy, too, E' = A% E. The indicated relation between time differences
and linear dimensions of geometrically similar orbits follows.
For harmonic oscillation the assumption holds with o = 2. The ratio of the

periods of two geometrically similar orbits is 7,/ T, = 1, independently of the
linear dimensions.

In the homogeneous gravitational field U (z) = mgz and, hence, « = 1. Times
of free fall and initial height H are related by T oc H'/2.

In the case of the Kepler problem U = —A/r and, hence,« = —1. Two geomet-
rically similar ellipses with semimajor axes a, and b; have circumference U,
and Uy, respectivley, such that U, /U, = a,/a;. Therefore the ratio of the peri-
ods T, and T} is T,/ Ty, = (U, /Uy)>? from which follows (7,,/ T},)?> = (as/as)>,
Kepler’s third law.

The general relation is E,/E, = (L,/Lp)*. If A; denotes the amplitude of
harmonic oscillation, E,/E, = Ag / A%, In the case of Kepler motion E,/E;, =
ap/a,: the energy is inversely proportional to the semimajor axis.

1.15 (i) From the equations of Sect. M1.24

p Al-—¢? A
rp=—t— = =———(-e);
1+e¢ 2E 1+¢ 2F
A
rAZ—ﬁ(l-FS).
From these we calculate
b= Ay L
r ra=——, rpra=—(0—-¢")= .
piAT T TPTIAT YR —2uUE

Inserting this into the differential equation we obtain
dp /
dr '
rz\/ZM (E +4 - 2;%)

This is precisely (M1.67) with Ugy = —A/r + 1?/2ur?. Integration of (1.4)
with the boundary condition as indicated implies

_ rl rpra 1/2d
¢(r)_¢(rp)_/rp ;((r_VP)(VA_V)) "
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We make use of the indicated formula with

rarp I"A—I-rp
a=2—7 ﬁ:——’
Fao —rp Fao —rp

and obtain

2rarp — (ra +rp)r

(ra —rp)r

¢ (r) = arccos

(ii) There are two possibilities for solving this equation: (a) the new equations are
obtained by replacing /> with /> = > 4+ 2. B. For the remainder, the solution is
exactly the same as for the Kepler problem. If B > 0(B < 0), then! > I(I <),
i.e., in the case of repulsion (attraction) the orbit becomes larger (smaller). (b)
With U(r) = Uy(r) + B/r?, Uy(r) = —A/r, the differential equation for ¢ (r)
is written in the same form as above

d¢ _ Tarp
dr  r (r—rp)(ry — r)’

where rp, r denote perihelion and aphelion, respectively, for the perturbed
potential. They are obtained from the formula (r —rp)(ra —r) + B/E =
I

(r — rp)(rj — r). Multiplying the differential equation by ((rpry)/(rpra))'/?
and integrating as before

rpr 2rhrh —r(rh + 1}
P(r) = /#arccos ks ; (A, P).
rpta r(ry —rp)
From this solution follows r(¢p) = 2rpry/[rp + 1y + (ry — rp) cos

Vrpra/rerag]. The first passage through perhelion is set to ¢p; = 0. The
second is ¢py = 27 ((rpra)/(rpri)V/? = 271 /\/I> + 2uB ~ 27 (1 — uB/I?).
The perhelion precession is (¢py — 27). It is independent of the energy E. For
B > 0 (additional repulsion) the motion lags behind, and for B < 0 (additional
attraction) the motion advances as compared to the Kepler case.

1.16 For fixed [, the energy must fulfill E > —uA?/(21%). The lower limit is
assumed for circular orbits with radius ro = I>/1A. The semimajor axis (in rela-
tive motion) follows from Kepler’s third law a® = G y(mg + ms)T?/(4m?). This
givesa = 1.495 x 10" m(T = 1y = 3.1536 x 107 s). This is approximately equal
to ag, the semimajor axis of the earth in the center-of-mass system. The sun moves
on an ellipse with semimajor axis

mg

as = a ~ 449 km.

mg + mg

This is far within the sun’s radius Rs ~ 7 x 10° km.
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Fig. B.7 Mutual interaction of two dipoles

1.17 We arrange the two dipoles as sketched in Fig. B.7. The potential created by
the first dipole at a point situated at r is

@ = 1 1 ~ 1+l‘-d1 1 _r~(€1d1)
r=a r—d;| |r| Tany r3 r] 3

Here, we have expanded

o 1
r=dil 2 a2 —or

up to the term linear ind . In the limit we obtain @ = r - p, /r>. The potential energy
of the second dipole in the field of the first reads

W = e (D1(r+d2) — D1(r) = e, (Pl (r+d))  p .,-)'

Ir+d,|? r

Expanding again up to terms linear in d;

. .d .d .
W%eg(pl r(1_3r 2)+p1 3 2 _plgr)'

73

Finally, taking the limit e, — o0, d, — 0, with e,d, = p, finite, this yields

. . r r
W(1,2)=p1 gpz _3(171 )S(Pz )_
73 r
From this expression one calculates the components of F; = — V| W = —F,, mak-

ing use of relations such as
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d aor d X1 —Xxp 0
= —— = — eftc. .
0x1 dxy or r ar

So, for example

oW(1,2) 3x—x

3
o 1P g — 5Py

15 X1 — X2

+ @ -p3)+ @ -rp, "’)r—6

1.18 Take the time derivative of 7 - a,

i a=F-a=1v-a= ca=0.
dtra rra=v-a=(vxa)-a

Thus, 7 - a is constant in time and the indicated relation holds for all times. Taking the
time derivative of (5) and inserting v, we find ¥ = b x @ = (v x @) x @ = —a’v +
(v - @)a. The second term is constant as shown above. Thus, integrating this equation
over ¢ from O to ¢, we have #(t) — F(0) = —w?(r(t) — r(0)) + (v(0) - a@)at, where
? :=a’. By (5) #(0) = v(0) x a, so that we may write

() + o’r(t) = (v(0) - @)at + v(0) x a + w’r(0).

This is the desired form, the general solution of the homogeneous differential equa-
tions is

Fhom (t) = ¢ sin wt + ¢, cos wt.

With the given ansatz for a special solution of the inhomogeneous equation the
constants are found to be

l,, 1
= (@v(0) — (v(0) - @)a) = —5@x @0) xa))
c) = —sz(O) X a
w
c= é(v(O) -a)a
d= év(O) x a +r(0).
The solution therefore reads
r(t) = %a x (v(0) x @) sinwt + %(v(O) -a)at

+ %v(O) x a(l — cos wt) +r(0).
w
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It represents a helix winding around the vector a.

1.19 The ball falls from initial height k. It hits the plane for the first time at #;
/2hy/g, the velocity then being u; = —+/2hog = —gt;. Furthermore, with « :
Ja—1D/n

20,‘
Vi = —0U;,  Uip] = =V, Lig) — L = —.

The first two equations give v; = agt; and v; = o'gt,. The third equation yields

v; :

0 4 0 0 i+1

L' —ti=— =ti+1 — and Ly —liy1=—,
8 8

and, from there, 1, | — 1) = (vi11 + v;)/g = ti(@ + Da’. With 1) = 0 we have at
once

i1
tio =n(+a) Za”.
v=0

From h; = v?/(2g), finally, h; = a* hy.

1.20 The answer is contained in the following table giving the products of the ele-
ments

E P T P.-T
E E P T P.-T
P P E P-T T
T T P.-T E P
P-T P.T T P E

1.21 Let R and E, denote the radius and the energy of a circular orbit, respectively.
The differential equation for the radial motion reads

d 2 r?
or_ \/;\/E——U() V() = U +

2ur?’
From this follows Eq = Ue(R), Ulg|,_p = 0. Ulge| _, > 0 or, for U(r),

, 1 . 307 1
U(R):——3 and U"(R) > ———.
u R i

ItE=E)+s,
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dr 2 1 -
E = ; E — E(V — R) eff(R)'

Setting « := U;(R) we obtain, choosing ¢ = r' — R,

r—R
Vel g = e (- ny3)
t—ty=,— ———— = [—arcsin|(r — R),/]— ).
0 K /ro—R 2e/K — ¢? K 2

Solving for » — R yields

2¢ . K
r—R=,/—sin_|—(t —ty).
K w

Thus, the radial distance oscillates around the value R. More specifically, one finds

() U@)=r",U'(r) =nr""",U"(r) = n(n — 1)r"~2. This yields the equation

Rn_l 12 = R n+2 l2
n = — = —_—,
uR3 un
312 32 2)]2
/<=n(n—1)R”’2+—4>0<:>n(n—1)Rn+2+ =(n+) -0
M“R — w n

12/ (un)

1) Ur)=x1/r,U ) =—1/r?, U"(r) = 21/r3. From this R = —12/(u}), k =
—X/R3. This is greater than zero of X is negative.

1.22 (i) The eastward deviation follows from the formula given in Sect. M1.26,
A~ (232/3)g P H¥ 2w cos p. Withw = 27/(1day) = 7.27 x 1075 s and
g =9.81 ms~2 one finds A ~ 2.2 cm.

(i) We proceed as in Sect. M1.26 (b) and determine the eastward deviation u
from the linearized ansatzr(t) = r () + wu(?), inserting here the unperturbed
solution, r(¢) = gt (T — %t)év.This gives (d'? /dt*)u(t) ~ 2g cos p(t — T)e,.
Integrating twice,

1 3 244
u(t) = gg cosp(t” — 3Tt )ey.

The stone returns to the surface of the earth after time r = 27. The eastward
deviation is found to be negative, A ~ — ‘3—‘ gw cos ¢T3, which means, in reality,
that it is a westward deviation. Its magnitude is four times larger than in case (i).
(iii) Denote the eastward deviation by u as before (directed from west to east), the
southward deviation by s (directed from north to south). A local, earth-bound,
coordinate system is given by (e, €, €,), €1 defining the direction N-S, & and
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¢, being defined as in Sect. M1.26(b). Thus, u = ué, s = sé;. The equation of
motion (M1.74'), together with @ = w(— cos ¢, 0, sin @), implies

§ = 2w’ sin it.

Inserting the approximate solution u ~ % gt3 cos ¢ and integrating over time
twice, one obtains

[ 4
s(t) = ga) gsingcospt”.

1.23 For E > 0 all orbits are scattering orbits. If I* > 2ua,

. r dr’
N2UE Jry /r? — (12 = 2pa)/QuE)

r /

— ,(0>/ dr
=r ,
ro gl [pr2 — r[Z’

where p is the reduced mass, rp = \/ (12 — 2ua) /(2w E) the perihelion and r}go) =
1//2nE. The particle is assumed to come from infinity, traveling parallel to the
x-axis. Then the solution is ¢ (r) = 1//I*> — 2ua arcsin (rp/r). If a = 0, the cor-

responding solution is ¢ (r) = arcsin (rlﬁ‘” /1); the particle moves along a straight

¢ — o

(D

line parallel to the x-axis, at the distance rf(,o). Foroa #0

l

VI2 —=2ua

that is, after the scattering and asymptotically, the particle moves in the direction
1/4/1?2 — 2uam. Before that it travels around the center of force n times if the condi-
tion

¢(r=rp) =

T
2 ’

l . TIp . Fp rE(,O) T
————— fjarcsim — — arcsin — | = — (7‘[ — _) > nw
VP =2pa 00 ) e 2

is fulfilled. The number

(0)
n= |
|:2rpj|

is independent of energy E.
In the case [ < 2ua (1) can also be integrated. With the same initial condition
one obtains
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(0) 2 2
b+ Vb
o(r) = _rl;y In o ,
r

where b = (2ua — 17)/(2uE))'/?. The particle travels around the force center on a
spiral-like orbit, towards the center. As the radial distance tends to zero, the angular
velocity increases in such a way as to respect Kepler’s second law (M1.22).

1.24 Let the comet and the sun approach each other with energy E. Long before the
collision the relative momentum has the magnitude g = /2 E, with p the reduced
mass, the angular momentum has the magnitude ! = gb. The comet crashes when
the perihelion rp of its hyperbola is smaller or equal R, i.e., when b < byax With bpax
following from the condition rp = R, viz.

lZ 2b2 2Eq2bh?
P _R with p— =22 - 1422942
1+e¢ Ap  Ap A2

and A = GmM. One finds bp,x = +/1 + A/(ER) and, hence,

bmax A
2
a=/ 2rbdb =nR (I—I——).
0 ER

For A = 0 this is the area of the sun seen by the comet. With increasing gravitational
attraction (A > 0) this surface increases by the ratio (potential energy at the sun’s
edge)/(energy of relative motion).

1.25 As explained in Sect. M1.21.2 the equation of motion reads
X = Ax +b,

with A as given in (M1.50), and

00 0 I/m O 0 0
000 0 1/m 0 0
o o o0 o 0 1/m 1o
A=10 0 0 o K o | =g
000 —K 0 0 E,
000 0 0 0 E.

The last of the six equations is integrated immediately, giving x¢ = eEt + C;. Insert-
ing this into the third and integrating yields

Z

ek, ,
t° 4+ Cit + Cs.
m

X3 =27 =

The initial conditions z(0) = z?, 2(0) = v® give C; = z@, C; = v{?). The remain-
ing equations are coupled equations. Taking the time derivative of the fourth and
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replacing x5 by the right-hand side of the fifth gives ¥4 = —K%x4 + eK E, which is
integrated to x4 = C3sin Kt + C4cos Kt + eE, /K. Making use of the fifth equa-
tion once more yields x3 = C3cos Kt — Cysin Kt + Cs. Also the fourth equation
yields the condition Cs = —eE, /K. These two expressions are inserted into the first
and second equations so that these can be integrated yielding

G coskit Ssinkie S Eqtc
X1 = —— COS — Sin —
! Km Km Km ~ 6

+C3 in Kt + G4 Kt ¢ Et+C
Xy = — S1n — COS _ .
2 Km Km Km * !

Upon insertion of the initial conditions x (0) = x@, y(0) = y©@, %(0) = v?, y(0) =
v we finally obtain

e e
C; = mv;o) + ?Ex, Cy = mv)(co) — ?Ey,

(O] O]

vL_i_LE C, =0 _ = +LE
K Tmk2oe Y177 K ' mKk2V

Co =x0 +

If the electric field points along the z-direction, E = Ee,, then the motion is the
superposition of a uniformly accelerated motion along the z-direction and a circular
motion in the (x, y)-plane. That is to say the particle runs along a spiral.

1.26 Using Cartesian coordinates in the plane of the motionand allowing for an
arbitrary initial position of the perihelion, the solution (M1.21) reads

p
1+ ecos(¢p — ¢o)
p

1 + ecos(¢p — ¢p)

x(t) =

cos(¢ — ¢o),

(@) = sin(¢p — ¢o).

Differentiate these formulae with respect to the time variable and replace the deriv-
ative ¢ by £/(ur?), by means of (M1.19a). Inserting p = £?/(A) one obtains

pi(t) = pi = — 2L sin(¢ — ¢o),

A
2R (cos(p — o) + ).

(7)) = v —
py() = pny 7

This equation describes a circle with radius Ap/¢ whose center has the coordinates

(0, aAT“) - (0, J AR/ + Z,ME) .

See also Exercise 2.31 below.
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Chapter 2: The Principles of Canonical Mechanics

2.1 We take the derivative of F'(E) with respect to E

Gmax (E) m

dF d Gmax (E)
—_—=2— V2m(E —U(q))dg = 2/ —————dg
dE  dE Jg,. 5 ginE) 2m(E —U(q))

d max d min
42 \/2m (E — U(qmax»% —2 \/2m (E — U (gpn)) —1min
—_— — ——
=0

dE
=0

To find T we must calculate the time integral over one period. In doing so we note
that

d
md—i] =p=+2m(E —U(g)), and hence,
_ mdgq
V2m(E=U(q)
Therefore,

Gmax (E) m
T=2 / . CA—"
amin(E) N 2m(E —U(q))

This, however, is precisely the expression calculated above. For the example of the
oscillator with g = ¢ sin wt, p = mwqq cos wt, one finds F = ma)nqg = Q2n/w)E
and T =27 /w.

2.2 Choose the plane as sketched in Fig. B.8. D’ Alembert’s principle (F — p) - ér =
0, with F = —mge;, admits virtual displacements along the line of intersection
of the inclined plane and the (1,3)-plane as well as long the 2-axis. Denoting the
two independent variables by g1, ¢2, this means that r = §q,e, + 8q,é, with &, =
e cosa — e3 sin «. Inserting this yields the equations of motion §; = gsina, go =0
whose solutions read

NS
q1(t) = (g SIHOI)E +ut+a, @) =vi+a.

Fig. B.8 A massive object 3
gliding without friction on an
inclined plane

ér
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Fig. B.9 Definition of
tangent and normal unit .
vectors on the circle

(=]
L

=1

Fig. B.10 Sketch of the A
set-up for calculation of the c
potential energy

2.3 Choose the (1,3)-plane to coincide with the plane of the annulus and take its
center to be the origin. Choosing the unit vectors # and 7 as shown in Fig. B.9, viz.

{=¢cosg+eysing, n=eé sing —é3cosep

we find
Sr=1R8¢, i = R¢t, ¥= Rot— RP’n,

the force acting on the system being F = —mges. 3
D’Alembert’s principle (F —p) - ér =0 yields the equation of motion ¢ +

gsing/R = 0. This is the equation of motion of the planar pendulum that was
studied in Sect. M1.17.

2.4 Letd be the length of the spring in its rest state and let k be the string constant.
When the mass point is at the position x the length of the string is d = +/x2 + 2.
The corresponding potential energy is (Fig. B.10)

Ux) = %K(d — dp)?.
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Fordy < I the only stable equilibrium positionis x = 0.Fordy > [, x = Oisunstable,
while the points x = =,/d? — I2 are stable equilibrium positions.
As an example we study here the case dy < [. Expanding U (x) around x = 0,

1 2 x\ 1 1 —dy do
Ux)~ -k (l—dy+—=——=) ~ = [ —dy)* + ——x*+ —x*).
W e (1= 5= a5) ~ g (0t 5
From this expression we would conclude that the frequency of oscillation is approx-
imately

Kl—do
=, — .
m

However, this does not hold for all values of dy. For dy =1 the quadratic term
vanishes, and x* is the leading order. In the other extreme, dy = 0, we have U (x) =
k(x> 4 1%)/2, i.e. a purely harmonic potential (the constant terms in the potential are
irrelevant). Thus, the approximation is acceptable only when dj is small compared
tol.

2.5 A suitable Lagrangian function for this system reads

1 1
L = 5m(fc% +i2) — EK(x1 —x)2.

T U

Introduce the following coordinates: u; := x; + x2, u» := x; — x2. Except for a
factor 1/2 these are the center-of-mass and relative coordinates, respectively. The
Lagrangian becomes L = m (17 + 13) /4 — «u3 /2. The equations of motion that fol-
low from it are

iy =0, miip 4+ 2ku; = 0.

The solutions are u; = Cit + Co, u, = C; sinwt + C4 cos wt, with w = /2x/m. It
is not difficult to rewrite the initial conditions in the new coordinates, viz.

u1(0) =+ u,(0) = vy
u(0) = —1 112(0) = vo.

The constants are determined from these so that the final solution is
Vo 1 . l
x1(t) = —t+ —sinwt | — =(1 — coswt)
2 w 2

Vo 1 . [
x2(t) = — (t — —sinwt ) + = (1 + coswt).
2 w 2
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2.6 By hypothesis F(Axy, ..., Ax,) = ANF(x, ..., xy). We take the first deriva-
tive of this equation with respect to A and set A = 1. The left-hand side is
d  IF d(hx;  JF
—F(Ax1, ..., Ax,) = —ﬂ = —X;.
di =1 : 8x,» di =1 > 8)6,‘
i=1 i=1

The same operation on the right-hand side gives N F.

2.7 In the general case the Euler-Lagrange equation reads

of  d of
dy  dx dy’’

Multiply this equation by y" and add the term y”3 /3y’ on both sides. The right-hand
side is combined to

R //3f_i( ,y).

ay 5 T dx ay’

If f does not depend explicitly on x then the left-hand side is df (y, y')/dx. The
whole equation can be integrated directly and yields the desired relation. Applying
this result to L(q, g) = T(q) — U (g) gives

0T (g
Zqi# — T 4+ U = const. .
F qi

If T is a homogeneous, quadratic form in g the solution to Exercise 2.6 tells us that
the first term equals 27'. Therefore, the constant is the energy £ =T + U.

2.8 (i) We must minimize the arc length
X
L:/ds:/ V1+y2dx
X1

i.e. we must choose f(y,y") = +/1+ y2. Applying the result of the preceding
exercise we obtain

y’\/% — 1+ y? = const. ,

or y' = const. Thus, y = ax + b. Inserting the boundary conditions y(x;) =
yi, y(x2) = y» gives

Y2 — )1
X2 — X1

y(x) = (x —x1) + y1.
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(i)

2.9

The position of the center of mass is determined by the equation

Mrg :/rdm,

M denoting the mass of the chain, dm the mass element. If A is the mass per
unit length, dm = Ads. As the x-coordinate of the center of mass is irrelevant,
the problem is to find the shape for which its y-coordinate is lowest. Thus we
have to minimize the functional

x2
/yds =/ v/ 1+ y?2dx.
X1

The result of the preceding exercise leads to

2
W e Y ¢
V1+y? Vit+y?

This equation can be solved for y’,
y =/Cy?—1.

This is a separable differential equation whose general solution is

y(x) = % cosh(+/Cx + C").

The constants C and C’, finally, must be chosen such that the boundary conditions
y(x1) = y1, y(x2) = x; are fulfilled.

(i) In either case the equations of motion read
oo 2 1 2 2
X1 = —mwyx| — zm(a)1 — wp)(x — x2)
e 2 1 2 2
X0 = —mwyxy + Em(a)1 —wy) (X1 — x2).

The reason for this result becomes clear when we calculate the difference L’ — L:

, . ) . i d 5, 2
L — L = —iwgm(x1X1 + X2X2) = —Ewoma(xl + x3).
The two Lagrangian functions differ by the total time derivative of a function
which depends on the coordinates only. By the general considerations of Sects.
M2.9 and M2.10 such an addition does not alter the equations of motion.
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(i) The transformation to eigenmodes reads

1 1
71 = ﬁ()ﬂ +x2), 2 = E(xl _XZ)'

This transformation

(%)= (2)
X2 F 22
is one-to-one. Both F and F~! are differentiable. Thus, F, being a diffeomor-

phism, leaves the Lagrange equations invariant.

2.10 The axial symmetry of the force suggests the use of cylindrical coordinates.
In these coordinates the force must not have a component along the unit vector &.
Furthermore, since

VU ( ) aU , n 10U , aUu .
r, o, = € ———€ ——e€,
¢z ar rog ¥ 9z °

U must not depend on ¢. The unit vectors e, and €, span a plane that contains the
Z-axis.

2.11 By a (passive) infinitesimal rotation we have

XA Xxg— (@ XX0)e or Xo~ X+ (P Xx)e.
Here ¢ is the direction about which the rotation takes place, ¢ is the angle of rotation,
so that @¢ = wdt. Thus Xy = X + (@ x x), the dot denoting the time derivative in
the system of reference that one considers. Inserting this into the kinetic energy one
finds

Y . 2
T_m(x +2x - (@ X x) + (0w X X) )/2.

Meanwhile U (x;) becomes U (x) = U (R~ (t)x). We calculate

JdL .

— =mx; + m(w X x);

Bx,»

dL aU

— =—— 4+ mE x w); + m((® X x) X 0);.
8x,» 8)(,'

This leads to the equation of motion

m¥=—VU —2m(w X x) —m® X (0 X x) — m(® X x).
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2.12 Let the coordinates of the point of suspension be (x4, 0), ¢ the angle between
the pendulum and the vertical, with —m < ¢ < m. The coordinates of the mass point
are

X =x4+Ilsing, y=—lcosgp,

m denoting the mass, / the length of the pendulum. Inserting these into

L="@G24?) - !
=7 K +y7) —mg(y+1)

gives the answer

_m ) 2.2 ..
L = E(xA—H @+ 2l cos px,9) + mgl(cosp — 1).

2.13 (i) If the oscillation is to be harmonic s(¢#) must obey the following equation
§ 4% =0 = s(t) = sosinkt.
(i1) The Lagrangian function reads

L=—5>-U
2

where the potential energy is given by (see Fig.B.11)

U:mgy:mg/ sin ¢ ds.
0

The Euler-Lagrange equation reads m§ + mg sin ¢ = 0. Inserting the above relation
for s(t) we obtain the equation sok? sin k't = g sin ¢.

Since the absolute value of the sine function is always smaller than, or equal to,
1 one has

Fig. B.11 Determination of
potential energy through
integration along the orbit

s(®)

mg
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Fig. B.12 Visualisation of by y=2x
the maximal distance x(z)
between the given curves

d(z)

f(x)

- X

x(z)

Thus we obtain the equation ¢ (¢) = arcsin(X sin k¢) whose derivatives are

Ak cos k't . —Ak*(1 =A%) sinkt

V1= A2sin?kr = (1 — A%sin®k1)3/?

In the limit A — 1, ¢ goes to zero and ¢ goes to «, except if kt = (2n + 1)/27
where they are singular.
(iii) The force of constraint is the one perpendicular to the orbit. It is

Z(¢p) = mgcos¢ (—sin¢) .

cos ¢

The effective force is then

E = —mg ((1)) + Z(¢) = —mgsing (:’nsgf) .

2.14 (i) The condition dF (x, z)/dx = 0 implies z — df/dz =0, i.e., z = f'(x).
Therefore, x = x(z) is the point where the vertical distance between y = zx
(with z fixed) and y = f(x) is largest (see Fig. B.12).

(i) The figure shows that (L®)(z) = zx — @(2) = G(x, z), 7 fixed, is tangent to

f(x) at the point x = x(z) (the derivative being z).
Keeping x = x fixed and varying z yields the picture shown in Fig. B.13. For
fixed z y = G(x, z) is the tangent to f(x) in x(z). G (xo, z) is the ordinate of the
intersection point of that tangent with the straight line x = xy. The maximum
is at xo = x(2), i.e. z(x0) = f'(x)|x=x,- As f” > 0 all tangents are below the
curve. The envelope of this set of straight lines is the curve y = f(x).
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Fig. B.13 Set of tangent y
straight lines and their
envelope
—
r’-’-/.'
a z
=2z

2.15 (i) In afirst step we determine the canonically conjugate momenta

p1 = =2c1141 + (c12 + c21)G2 + by

P2 = = (c12 + c21)q1 + 2¢c20G2 + bs.

L
9q:
oL
qn
Using the given abbreviations this can be written in the form

m =dng +dingy, m =dug +dng.

For this to be solvable in terms of ¢; the determinant

oL
D :=dndy — dipda = det( — ) #0
94 9q
must be different from zero. The ¢; can then be expressed in terms of the 7;:

1 1
q1 = B(dzzﬂl —dpm), ¢ = B(_dzﬂfl —dy1my).

We construct the Hamiltonian function and obtain

1

H = pig1 +pgp— L = D (coomf — (crn + 2)mim +enmy) —a+U.
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(ii)

21
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The above determinant is found to be

OH 0°H
det = det
api dpk d7; Oty

e d»n (di+da)/2| _ 1
D? B

(di2 +dr1)/2 du D

The inverse transformation, the construction of L from H, proceeds along the
same lines.
Assume that there exists a function

F(pi(x1, x2,u), pa(x1, X2, u))

which vanishes identically in the domain of definition of the x;, u fixed. Take
the derivatives

o dF _OF i1 OF iy
dx;  dp; dx;  dpy 0x)
dF  9F dp, OF dp»

T opion | p i

By assumption the partial derivatives of F' with respect to p; do not vanish
(otherwise the system of equations would be trivial). Therefore, the determinant

opi p2 2L

D =det{ 3 3% ) — det ( )
p ap. . .
8x; 8)(; a‘xia‘xk

must be different from zero. This proves the assertion.

6 We introduce the complex variable w := x 4 iy. Then

x=w+w/2, y=—ilw-—w*/2, i*+3y*=uww"

I5 is calculated to be

B . oomo .
l3_m(xy—yx)_5(ww —ww").

Expressed in the new coordinates the Lagrangian function reads

m_ ... .. imo . .
L:E(ww —i—z)—T(ww —ww").
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The equations of motion are

m.., imow. ., imo .
— W —w = —w*, mz=0.

2 4 4

The first of these is written in terms of the variable u := w*. It becomes 11 = iwu, its
solution being u = e'®". w* is the time integral of this function, viz.

from which follow the solutions for x and y

1 1
x = —sinwt +Cy, y=—-coswt+ Cy,
w w

where C; = R{C}, C, = —3J{C}.
The solution for the z coordinate is simple: z = C3t + Cy, i.e., uniform motion
along a straight line. The canonically conjugate momenta are

Px = mx — Ewy’ py=my+ Ea)x’ Pz =mz,

while the kinetic momenta are given by pxi, = mx. In order to construct the Hamil-
tonian function the velocities are expressed in terms of the canonical momenta

1 1 w . 1

. w .
X=—p:+ =y, y=—py— =X, Z=—PD;.
m 2 m 2 m

Then H is found to be

) I,
HZP'x—LZﬁPkm-

2.17 (i) Hamilton’s variational principle, when applied to L, requires

- Tz _
1 :=/ Ldt
13!
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to be an extremum. Now, since

T 5]
/ Ldr:/ Ldt with t;, =t(t;), i=1,2,

7 n

the action integral [ is extremal if and only if the Lagrange equations that follow
from L are fulfilled.
(i) We define g = (g1, ...,qs),t = qr41. From Noether’s theorem the quantity

9L d
= Z__h (511»-~~sQf+1)|s=0

is an integral of the motion provided L is invariant under (¢, ...,q f+1) =
h*(q1,...,qf+1), i.e., in the case considered here, under (qi,...,qg741) —
(G1s.--,qf+1 + ). Here
dh’®
0,...,0,1)
ds ;o
and
- _ f ;
9q f+1 8(df/a’f) “~ 3¢ \ (d1/dv)?) dvdr s 3g; dt

The integral of the motion is

- &agidr

Except for a sign this is the expression for the energy.

2.18 The points for which the sum of their distances to A and to 2 is constant lie
on the ellipsoid with foci A, £2, semi-major axis +/ R% + a?, and semi-minor axis R.
The reflecting sphere lies inside that ellipsoid and is tangent to it in B. Thus, any
other path than the one shown in Fig. B.14 would be shorter than the one through B
for which o = 8.

2.19 (i) Asusual we setxy = (q1,..-,4f; P15--.,Pf)sand yg = (Q1, ..., Or;
Py, ..., Py),aswell as Mg = 9x,/0yg. We have

MUM=d and J=( O/ Lro). )
—Lyxr Opxy
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Fig. B.14 Example of an
orbit inside the sphere

The equation always relates 0 P/dp; to dq;/0Qk, dQ;/dp; to dg;/0P; etc.
From this follows that [P - Ox] = [p; - q;]. Let @ (x, y) be generating function
of the canonical transformation. As H = H + & /91, the function @ has the
dimension of the product H - ¢. The assertion then follows from the canonical
equations.

(i) With the canonical transformation ¢ and using t := wt, H goes over into
H=H+ 0®/0t. Hence [@] = [H] = [x1x2] = [w][pgq]- The new general-
ized coordinate y; = Q has no dimension. As y;y, has the same dimension
as x1xp, y» must have the dimension of H, or H , that is, y, must equal wP.
Therefore,

" 1
D(x1,y1) = lezcotyl.
From this one calculates
9 b x?

Xy = — = Xxjcoty;, y»=—
8x1

E = 2sin? i
or,
X1 =+/2ysiny;, X3 =+/2y;c0sYy;.

Using these formulas one finds

M., — Oxy Qy)'%cosy;  (2y2)"V?siny
P oys - \—@)2siny; (2y) VPeosyr )

One easily verifies the conditions det M = 1 and M7 JM = J.

2.20 (i) For f =1 the condition det M = 1 is necessary and sufficient because,
quite generally,
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01

T —
M JM_(_IO

) (ar1ax — apar) = Jdet M.

(ii) We calculate S - O, set it equal to M, and obtain the equations

xcosa — ysina = ay (D
xsino + ycosa = ap 2)
ycosa — zsina = ay; 3)
ysina + zcosa = axn 4@

From the combination ((2) — (3))/((1) + (4)) of the equations

ajp — az

tana = .
app +axn

This allows us to calculate sin « and cos «, so that the subsystems ((1), (2)) and
((3), (4)) can be solved for x, y, and z. One finds x = a;; cosa + aj; sinw, z =
ay cosa — ay; sina, y?> = xz — 1.

There is a special case, however, that must be studied separately: This is when
ayy + ax = 0.1If a1 # az; we take the reciprocal of the above relation

app +axn
cotry = ———=.
ap — az

If, however, a1, = ay; the matrix M is symmetric and O can be taken to be the
unit matrix, i.e., « = 0.

2.21 (i) Using the product rule one has { fg, h} = f{g, h} + g{f, h}. Hence

{i, i} = {€imntmPn> Tk} = €imnTm{ Pus T} + Eimn Pu

{rms rk} = 8i171nrm8nk = Eimklm

and, in a similar fashion, {/;, pr} = €ixm pm. In calculating the third Poisson
bracket we note that

(i, v} = {&imnTmPn> 1} = EimnTm P, ¥} + Eimn DulTm, 7}
ar 1

= Eimnlm = Simnrmrn; =0.

ory

Finally, we have

{li,Pz} = {€imn"mPns Pk Pk} = EimnTm{Pn, PkPi} + Eimn Pu{Tms PrPr}
= _28imnpnpk8mk = —&mnPnPm = 0.

(i) U can only depend on r.



Appendix B: Solution of Exercises 527

2.22 The vector A is a constant of the motion precisely when the Poisson bracket
of each of its components with the Hamiltonian function vanishes. Therefore, we
calculate

1 4 my
(H, A} = [Z—PZ + =, kmPilm + _rk]
m r r

1
= —ewum P*, Piln} + veum{1/r, piln)
2m

+ 2Ap% e/ r} 4 myA o).
The fourth bracket vanishes. The first three are calculated as follows

{pZ’ pllm} = {p27 pl}lm + {p29 lm}pl =0
{1/r, pilw} = {1/7, p¥lw + {1/ 7, Ly pr = 11/ 71,
{pz’ rk/r} = 1/1' {pzvrk}+rk {sz 1/!‘} =2Pk/r _2rkp'x/r3'

Inserting these results we obtain

{H, A} = yeumr/rln +y (px/r —rp -x/r) = 0.

This vector is often called Lenz vector or, in the German literature, Lenz-Runge
vector, although apparently neither H.F.E. Lenz nor C. Runge claimed priority for it.
Its discovery is due to Jakob Hermann (published in Giornale dei Letterati d’Italia,
vol. 2 (1710) p. 447). The conservation of this vector was also known to Joh. I
Bernoulli and to P.-S. de Laplace, see H. Goldstein, Am. J. Phys. 44 (1976) No. 11.
very much in the spirit of linear algebra.

2.23 Calculation of the Poisson brackets yields differential equations which are
solved taking proper account of the initial conditions as follows:

p1=1{H, p1} = —ma = p; = —mat + p,,
p2={H, p2} = 0= p» = py,

. 1 L 5 px
g ={H,q1} = —p1 = q =—zat” + —t + xo,
m 2 m

) 1 D
G ={H,q2} = —pr = o = =1 + .
m m

2.24 (i) Let puy =mymy/(m1 +my) and wuy = (my +mp)msz/(my + ma + m3)
be the reduced masses of the two two-body systems (1, 2) and ((center-of-mass
of 1 and 2), 3), respectively. Then m; = u;0; and 7, = p,0,. This explains
the meaning of these two momenta. The momentum 3 is the center-of-mass
momentum.
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(il)) We define

J
Mj = E m;,
i=1

i.e., M; is the total mass of particles 1,2, ..., j. We can then write

1 J
= Mp,.i,—m p;), j=1...,.N—1
N
nszpi.
i=1

(iii) We choose the following possibilities:
(a) As the Poisson bracket of r; and p, ist {p,,r;} = 13436;x we must also
have {my, 0;} = 13x36;x. We use this suggestive short hand notation for {(p; ).,
(g:)n} = 6ik8myn with (-),, denoting the mth Cartesian coordinate. Using the
former brackets one calculates the latter brackets from the defining formulas.
For instance, with m, :=m; + my, M := m| + my + ms,

m m
(1,0} = (—1+—2)1L =1,

nmip mip
nms nms
(r0) = (52— ) 1=0. et

(b) In the 18-dimensional phase space introduce the variables x = (r, r2, 73, p;,
Dy, p3)andy = (04, @5, @3, 1, T2, w3), calculate the matrix Myg := 0y, /0xg
and verify that this matrix is symplectic, i.e. that it satisfies (M2.113). This
calculation can be simplified by noting that M has the form

A O
0 B
such that
—BTA 0

T
MTJM=( 0 A B)
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Thus, it suffices to verify that ATB = 1,9. One finds

-1 1 0
A=\ —m/mpl —my/mp1 1 ,
mi /ML my/M1  msy/M1
—mz/mlz]l ml/mlg]l 0
B = —m3/MIL —m3/MIl mlz/M]l .
1 1 1

the entries being themselves 3 x 3 matrices. In a next step one calculates
(ATB);; = >, Ay By For instance, one finds

my niyms n
A'B); = — — =1, etc.
( )11 Mo + oM T M

and verifies, eventually, that ATB = Lg,o.

2.25 (i) In the situation described in the exercise the variation of 7 (&) is

_dl(@)

6l = da
da

a=0

dt (@) Jo
da |,

. dt (o)
— L(gk(11(0), 0), gi (11 (0), O))W

+/l‘2(0) Z oL 0qi(t, @)
no \7 9 O

‘We define, as usual

= L(qx(12(0), 0), 4x(12(0), 0))

da
a=0

oL dq(t,a)
d i L ety
at D de  oa

da )dt.
a=0

a=0 k

a aq
kel da = 6q; and 24k
0 oo

Jo

d
da = 8qy = —dqy,
. o gk dr qk
and, in addition, dt;(«)/da|oda = 8t;,i = 1, 2. The time derivative ddqy /dt,
by partial integration, is shifted onto 9L /dq;. Here, however, the terms at the
boundaries do not vanish because the variations 8¢; do not vanish. One has

/tz(O) 9L d 9L 2(0) 2O d JL
no) 0qk dt 3G 1(0) 1 (0) dr 9y

The end points are kept fixed which means that

dagi(ti(a), o)

=0, i=1,2.
da

a=0
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Taking the derivative with respect to « this implies

dgi(ti(@), @)
do

dg|  dii(@)
0 ot da |,_

= ék(li)ati + 5qk|t=t; =0

0
da + el

— da
0 o

t=t;,a=0

t=t;

Inserting this into 6/ one obtains the result

1 (0)
oL £(0) aL d oL
SI=|0L-> —q s +/ dt (————_)3qk.
(e-ziga)s| [ s (G

11(0)

(ii) One calculates § K in exactly the way, viz.

5]
8K=K/ (L + E)dt
1

5]
JL
=(\L—- D, o
(-25a)]
1

f oL d oL
+/ dtZ(

— = ) dqx + [Edt]2 =
4 & aqk dt aqk) g

Now, by assumption E = >, gx(dL/dqgx) — L is constant. As a consequence
the first and third terms of the equation cancel. As the variations 8¢, are inde-
pendent one finds indeed the implication

2.26 We write
7= gudrin = (2 liim—E-u
= 8ikqiqk = di = =

and obtain 7' dt = (ds/dt)ds = «/ E — Uds. The principle of Euler and Maupertuis,
8K = 0, requires

qZ
8/ VE—-Uds =0.
l{l

On the other hand, Fermat’s principle states the following: A light pulse traverses
the path ds in the time dt = (n(x, v)/c)ds. The path it chooses is such that the
integral [ dr is an extremum, i.e. that§ [ n(x, v)ds = 0. The analogy is established
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Fig. B.15 Example of a 3
potential which has a local
minimum Ulq)
Emu. e T sl ko S
E
q1 Gl*o 92 g

if we associate with the particle an “index of refraction” which is given by the
dimensionless quantity ((E — U)/mc?)'/?; (see also Exercise 1.12).

2.27 For U(qy) < E < Enax the points of intersection g; and g, of the curves y =
U(g) and y = E are turning points, g (¢) oscillates periodically between g; and g,
cf. Fig. B.15. Write the characteristic equation of Hamilton and Jacobi (M2.154) as

0S(qg, P
H (q, %) _ L. (1)

We know that the transformed momentum obeys the differential equation P = 0,
i.e., that P = o = const. We are free to choose this constant to be the energy, P = E.
Taking the derivative of (1) with respectto P = E,

OH 9°S
ap dgoP

IfdH/dp # 0 (this holds locally if E is larger than U (¢y)), then (3%S)/(dgd P) #
0. Thus, the equation Q = 3S(g, P)/d P canbe solved locally forg = ¢(Q, P). This
yields

aS -
From this we conclude
Q_aFI_l b aﬁ_():}Q_t L _ 08
B T T E
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The integral 1 (E) becomes

1 1 to+T (E) .
I(E)=—]{ pdq:—/ p - qdt
2w S, 21 Jy,

sothat dI(E)/d E = T(E)/(2n) = w(E), in agreement with Exercise 2.1.

2.28 The function S (g, I), with I as in Exercise 2.27, generates the transformation
from (g, p) to the action and angle variables (6, I),

38(q, 1 88(q, 1 .

_ e D, 8@ D = e,

aq al

We then have 6 = dE /0l = const., I = 0, which are integrated to 0(¢) = (0E/

al)t + 6y, I = const. Call the circular frequency w(E) := 0E/dI so that 6(t) =
wt + 6y, I = const.

2.29 We calculate the integral I (E) of Exercise 2.27 for the case H = p?/2 + g% /2:

With p = /2E — ¢2

1
I(E)=2—]{pq—— V2E —g%dq
T Jryg
1
= — \/Az—qqu, (A=+V2E).
T J_
Using

2

A
A

/ VA? — x2dx = ki

. 2

one finds I (E) = A2/2 = E,ie., H = I. The characteristic (M2.154) reads in the
present example

35S +12_E
2\ag) T2 T

Its solution can be written as an indefinite integral S = [ /2E — ¢”dq’, or S, 1) =
[ V21 — q”dq’. The angle variable follows from this

dq’ = arcsin a4

3S 1
1 _/W/ZI—q/z VI’
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giving ¢ = /21 sin 6. In a similar fashion one calculates

= \/ﬁ = /21 cosé.
These are identical with the formulas that follow from the canonical transformation
@(q, Q) = (¢*/2) cot Q, cf. (M2.95).

2.30 Following Exercise 2.17 we take the time variable ¢ to be a generalized coor-
dinate t = g4 and introduce in its place a new variable 7 such that

dq dt 1 dq d t
L{g.t, — ) =L
dt’ dt (d t/drt) dt
By assumption f = 1,i.e.,q; = g and ¢ = g4 = t. The action integral (the prin-
cipal function) with the boundary conditions modified accordingly, reads

1= [T, 00 8015, 10,6160 1 5, T,

’
1

the prime denoting the derivative with respect to . We now take the derivative of I
with respect to s, at s = 0,

T2
= / dt
s=0 T

[aL dg, AL dg| L dg;  IL d¢>}~+1] 0

d

I3
ds °

01 ds | 9p) ds | dpsaq ds | ¢, ds

Replacing dL/d¢; in the first term by (d/dt)(dL/ d¢}), through the equations of
motion, the first two terms of the curly brackets in (1) can be combined to a total
derivative with respect to 7. The integral over t can be rewritten as an integral over
t, so that the first two terms give the contribution

/’2 d ( oL d¢1) »dq® .dq°

dt— —_— = p —_— p _

n dt \d¢ ds ds ds

(Note that here the dot means the derivative with respect to 7, as before.) In the third
term we replace 0L /0¢ sy by (d/dt)(OL/ 8¢>}v +1)» (again by virtue of the equation

of motion). In this term and in the last term of the curly brackets in (1) we make use
of the solution to Exercise 2.17, viz.

L 9L AL dy
d@prs1/0T)  9(0t/dT)  dy dr
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so that these terms can also be combined to a total derivative

d oL d d

4 ((p - 2L dorydPrir) )

dt ¢, dt ds
As above, in doing the integral one replaces T by the variable ¢. The inner bracket
in (2) is the energy (to within the sign) so that we obtain the difference of the term
—E(d¢41/ds) at the two boundary points, that is, (—E) times the derivative of the

time t =, — #; by s. Summing up one indeed obtains the result of the assertion.
Finally, the generalization to f > 1 is obvious.

2.31 Start from the Hamiltonian function H = p?/(2m) + U (r) with U (r) = y/r,
and from A =p x £ + mU (r)x. Clearly, A - £ = 0, the vector A is perpendicular to
£ and, hence, lies in the plane of the orbit. Making use of the formulax - (p x £) =
£ - (x x p) = £? one calculates (with £ = |£|)

A= (@ xO*+2mUr)x - (p x £) +m?y?
= 02(p* +2mU (r)) + m*y?
=m?y? +2ml*H = m*y* + 2m0*E.
This vanishes only if the energy E and hence also y are negative. In the case of
the Kepler problem y = —Gmm, = — A (notation as in Sect. 1.7.2), m =  is the
reduced mass. The vector A vanishes for E = —uA?/(2€%) which is the case of the
circular orbit.

Calculate the scalar product x -A =x - (p x £) — wAr = £> — uwAr, set this
equal to r|A| cos ¢ to obtain

r(¢) = €/|A|cos ¢ + pnA
=02/ (nA) /1 + /1 4+2E02/(uA?) cosp = p/1 + e cos p.

This is the solution given in Sect. 1.21, with ¢y = 0. One concludes that A points
along the 1-axis in the orbital plane, from the center of force to the perihelion, its
modulus being [A| = e A.

The cross product is £ x A = £2p — (wA/r)x x £ from which one finds

(p— 1/ xA)" = 2 A1/¢%.

Noting that A = epuAé; and £ x A = lejuAé; x &, = LejuAé,, and decomposing
P = pié) + p»é, one obtains

pi+ (p2 — enA/0? = (LAY /€.

This is the equation of the hodograph of Exercise 1.26.
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Chapter 3: The Mechanics of Rigid Bodies

3.1 (i) As K and K differ by a time-dependent rotation, J is related to J by J =
R()JR™! (), with R(¢) the rotation matrix that describes the relative rotation of
the two coordinate systems. The characteristic polynomial of J is invariant under
similarity transformations. Indeed, by the multiplication law for determinants,

det |J — AT| = det ‘R(I)JR_I (1) — ,\1‘
— det ‘R(t)(.] - u)R*‘(r)‘
= det ‘J - )L]l‘ .
The characteristic polynomials of J and J are the same. Hence, their ei genvalues

are pairwise equal. B
(ii) If K is a principal-axes system, J has the form

/L 0 0
J=(0 b ©
0 0 I

A rotation about the 3-axis reads

cos ¢ (t) sing(t) O
R(#) = | —sing(t) cos¢p() O
0 0 1

This allows us to compute J with the result

Iicos’¢ + Lsin>¢ (I, —I)singcos¢p 0
J=| (L —1I)singcos¢p I sin*>¢p+ Lcos>¢p O
0 0 I

3.2 The straight line connecting the two atoms is a principal axis. The remaining
axes are chosen perpendicular to the first and perpendicular to each other, as sketched
in Fig.B.16. Using the notation of that figure we have ma; = mpay, a1 + ax =1,
and therefore

my mi

a] = —17 a2 = —l’
mp +mj mip + my

with u denoting the reduced mass.

mimy
LI =15 = mlal2 + mzag == ]’= ,ulz.
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Fig. B.16 Model of a rod: oMy
definition of variables and a
parameters TS\‘
1 2
az
® M2

3.3 The moments of inertia are determined from the equation
Iy — X Ip 0
det(d — A1) = b Iy, — A 0 =0,
0 0 Iz — A

whose solutions are

L+ I (I — In)?
Iy = > i\/ ) + Inly, I = Is.

(1) L1, =A = B.Thus it follows that B<Aand A+ B >0.Since I, + I, > I
we also have I5 < 2A,1i.e., A > 0.

(i) [ =5A,, =0. From I + I, > I and I, + I5 > I, follows I3 = 5A. The
body is axially symmetric with respect to the 2-axis.

3.4 The motion being free we choose a principal-axes system attached to the center-
of-mass, letting the 3-axis coincide with the symmetry axis. The moments of inertia
are easily calculated, the result being

3 1 3
L=1L= %M (R2 + th) , L= EMRZ.

A Lagrangian function is

1 _
L="To=32 Lid,

i=1
where @; are the components of the angular velocity in the body fixed system. They
are related to the Eulerian angles and their time derivatives by the formulae (M3.82),

@1 =6 cosy + ¢sin 6 sin Y

@y = —Bsiny + ¢ sind cos ¥

@3 = ¢pcosb + V.
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Inserting these into L and noting that I; = I,, we have
N S LI 1. 5
L(¢,0,%,¢,0,v) = 211 (0> + ¢ sin”0) + 213(w+¢cose) .

The variables ¢ and i are cyclic, hence

oL

Py = % = L sin®> 0 + LY + ¢ cos0) cos b,
8L—1(1/'f+<i5 0)
=== cos6),
Py Y }

are conserved. Furthermore, the energy £ = T, = L is conserved. Note that py =
I (@ sin Y + @, cos ¥) sin @ + L33 cos O. This is the scalar product L - &3, of the
an- gular momentum and the unit vector in the 3-direction of the laboratory system,
i.e. py = L3. Regarding py we have py, = Loz = L3. The equations of motion
read

d d

qug = E(ll@l sin Y + @, cos ) sinf + Iz cosf) =0 (D
Loy =1L+ deost) =0 2
dtpl/f— dt 4 oSt =

4L AL G 1§ sin6cosd + () + ¢ cosB)sind = 0 3)
—_——— = — sSin ¢ Cos COoS sSiIno = u.

dt 96 a0 ! : ’

From the first of these qb = (L; — L;cosf) /(1 sin” 6). Inserting this into the
Lagrangian function gives

1 . 1 - 1 -
L=-16"4+ ——(Ly — Lycos®)?>+ —L? = E = const. 4
2Ot g ke T Lacos T 5 LS @

If, on the other hand, (;5 is inserted into the third equation of motion (3), one obtains

Ls(L; — Lycos®) =0,

- 2
(L3 — Lycos0)” + Isnd

which is nothing but the time derivative of (4).

3.5 We choose the 3-axis to be the symmetry axis of the torus. Let (+', ¢) be polar
coordinates in a section of the torus and ¥ be the azimuth in the plane of the torus
as sketched in Fig. B.17. The coordinates (r/, ¥, ¢) are related to the cartesian coor-
dinates by

x1=(R+r'cosp)cosyr, x=(R+r' cosg)siny, x3=r"sing.
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Fig. B.17 Definition of
radial and angular
coordinates

Fig. B.18 Notations used in
calculation of moments of

inertia a / 3 b

The Jacobian is

3(x1,x2,X3) o 7
—a(r/, 9 =r'(R+r' cos¢).

The volume of the torus is calculated to be
r 2 2
V= / dr// dw/ dr' (R + r' cos ¢) = 27°r*R,
0 0 0

so that the mass density is o9 = M /(27 *r*R). Thus (Fig. B.18)

2 2 r
I :/d3xQo (x7 +x3) :QO/ dw/ d¢>/ dr'v'(R +r' cos ¢)*
0 0 0

3
=M(R2+Zr2),
2 2 r
_ 3 2 2\ __ ’ /
Il—/dxgo(x2+x3)—go/ dlﬂ/ dd)/ dr'r' (R + 1’ cos @)
0 0 0

1 5
- ((R+7r'cos @)?sin® ¢ + 2 sin? ¢) = EM (R2 + Zrz) .
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3.6 In the first position we have I\ = 2(2/5)(M R2 + mr?) and ¢’ = L3/1\”.In
the second position the contribution of the two smaller balls is calculated by means
of Steiner’s theorem, I/ = I; + m(a® — aiz), now with Iy = 2mr?/5,a = +£(b/2)é;:

1P =2(Q2/5/(MR* + mr?®) + mb*/4).
It follows that " = L3/I”, and " /o’ = 1 + mb?/(21{"). One rotates faster
if the arms are close to one’s body than if they are stretched out. Making use of

Steiner’s theorem once more we finally calculate /; = I,. For the two arrangements
one obtains the result

o @, 1 1 4
Il():13()+§a2(M+§m), 1=

5
(MR* +mr?) + §Ma2.
3.7 The relation between density and mass reads

2w k4 0
M :/Q(r)d3r :/ d¢/ sin@d@/ r2dro(r, 0, ¢).
0 0 0

In our case, where ¢ depends on 6 only, this means

2 b4 R(0) 27 T
M:/ d¢/ sinede/ r2droy = —Qo/ sin@ dOR(6)°.
0 0 0 3 0

The moments of inertia /5, I; = I, are calculated from the formulas
I = /d3x or’(1 —cos’0), IL+L+1;= 2/d3xgr2,
(i) Integration gives the results

3 M

T 4T RI(1+a2)
2MR}

}’ 3= 51 +a2)

4 3 2 .
M = ?QQRO(I +a)”, ie., 09

9
14 4a? + —a*

7

2MR}
I =D

=0 {1+2a2+§a4}.
5(14a?) 7

(i1) Substituting z = cos 6 the integrals are easily evaluated. With the abbreviation

y = 4/5/167 B we obtain

o AT e (165,12 5



540 Appendix B: Solution of Exercises

that is
3 M (16 , 12, -
90:@?(? s “) -
== 2M R} 1ty +64y2/7 + 8y3 + 688y* /77 + 2512y° /1001
5 1+ 12y2/5 4+ 16y3/35
I 2MR] 1 =2y +40y?/7 —16y°/7 4 208y*/77 — 32y° /1001
' 5 1+ 12y2/5+16y3/35

3.8 The (principal) moments of inertia are the eigenvalues of the given tensor and,
hence, are the roots of the characteristic polynomial det(A1 — J). Calculating this
determinant we are led to the cubic equation A3 — 4% + 51 — 2 = 0. Its solutions
are A = Ay = 1, A3 = 2. The inertia tensor in diagonal form reads

1 0 0
J={0 1 O
0 0 2

We write J = R/R? and decompose the rotation matrix according to R(y, 6, ¢) =
R;(¥)R,(0)R3(¢). As the factor R3(¢p) leaves J invariant we can choose ¢ = 0.
With

cos@ 0O —sin6 cos Y sinyy 0
R,(0) = 0 1 0 and R3(yv) = | —siny cosy O
sind 0  cosf 0 0 1
we calculate
cos? y sin” @ — sin i cos ¥ sin? @ — cos ¥ cos 6 sin O
RJ/R” =1+ | —siny cos ¢ sin’ @ sin® v sin® @ sin ¥ cos @ sin 6
—cosycosfsinf  siny cosO sinf cos? 6

If this is set equal to J as given, we find cos’>6 = 3/8, and, with the following
choice of signs for6 : cos9 = V3/(2+/2) andsin = \/3/(2ﬁ),theresultcos Y=
1/4/5, siny = —\/4/5.

3.9 (i) o(r) = 0pf(a — |r]). The total mass is equal to the volume integral of o(r),
viz.
M 4 4 N 3M
= —a = ——7.
3 10T s
(i) We choose the 3-axis to be the axis of rotation. Let the coordinate in the body
fixed system be (x, y, z), the coordinates in the space fixed system are
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Fig. B.19 The massive ball
rotates about the point P

x'=xcoswt — (y+a)sinwt, y =xsinwt+ (y+a)coswt, 7 =z.
Inverting these equations we have

x = +x'coswt + y'sinwt, y = —x"sinwt +y coswt — a,
whence

x4+ v =x? 4+ y? +a* + 2a(x' sinwt — y' cos wt).

From this we get

o, 1) = 0ob(a — V2 + a2 + 2a(x' sinwt — y' cos wt)).

(iii) In the case of a homogeneous sphere the inertia tensor is diagonal, all three
moments of inerta are equal, I, = I, = I3 = I. Hence,

6Ma?
5

31=h+h+g=2/ﬁ%mnﬂ=

Making use of Steiner’s theorem (M3.23) we find (Fig. B.19)

TMa?
5

L=15L+M (a3 —a3) =

3.10 (i) The volume of the cylinder is V = mr2h, hence the mass density is oy =
m/(mr*h). The moment of inertia relevant for rotations about the symmetry
axis is best calculated using cylindrical coordinates,

2w h r 1
L= Qo/ d¢/ dz/ o’dp = —mr?.
0 0 0 2

Call g(¢) the projection of the center-of-mass’ orbit onto the inclined plane.
When the center-of-mass moves by an amount dg, the cylinder rotates by an
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(ii)
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angle d¢ = dq/r. Therefore, the total kinetic energy is
1 1 ¢*> 3
T =-mg*>+ -h—= = ~mg>.
Mt =
A Lagrangian function is

L=T—-U=3mg*/4—mg(qo — q) sina,

where q¢ is the length of the inclined plane and « its angle of inclination.
The equation of motion reads 3mg/2 = mg sin «, the general solution being
q(t) = q(0) + v(0)t + (gsina)t?/3.

3.11 (i) The rotation R(¢ - (;S) is a right-handed rotation by an angle ¢ about the

(ii)

(iii)

direction ¢, with 0 < ¢ < . Any desired position is reached by means of
rotations about $ and $

With ¢ an arbitrary direction in R, and with ¢ between 0 and 7, the parameter
space (¢, ¢) is the ball D? (surface and interior of the unit sphere in R3?). Every
point p € D3 represents a rotation, the direction ¢ being given by the polar
coordinates of p, and the angle ¢ being given by its distance from center. Note,
however, that A : (¢ ¢ =m)and B : (— ¢ ¢ = m) represent the same rotation.
There are two types of closed curves in D?: curves of the type of C; as shown in
Fig. B.20, which can be contracted, by a continuous deformation, to a point, and
curves such as C,, which do not have this property. C, connects the antipodes
A and B. As these points represent the same rotation, C, is a closed curve.
Any continuous deformation of C, which shifts A to A’ also shifts B to B’, the
antipodal point of A’.

While C; contains no jumps between antipodes, C, contains one such jump. One
easily convinces oneself, by means of a drawing, that any closed curve with an even
number of antipodal jumps can be deformed continuously into C; or, equivalently,
into a point.

Fig. B.20 Examples of
closed curves in the manifold
of rotations in space
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Fig. B.21 Example of a closed curve that can be deformed such that the jumps between antipodes
disappear

Take the example of a closed curve with two such jumps as shown in Fig. B.21.
One can let A} move to B, in such a way that the arc B} A, goes to zero, the sections
A1 B; and A, B, become equal and opposite so that the curve A B, becomes like
C; in Fig.B.20. In a similar fashion one shows that all closed curves with an odd
number of jumps can be continuously deformed into C,. (One says that the two types
of curves form homotopy classes.)

3.12 We do the calculation for the example of (M3.93). Equations (M3.89) yield
expressions for the components of angular momentum in the body fixed system.

Making use of the relation {p;, f(g;)} = &;; f'(¢;) which follows from the defi-
nition of the Poisson brackets, we calculate readily

- - sin Y
L, Ly} =
{L1, Ly} [P¢ Sing

cos ¥

— Py sin Y cot 6 + py cos ¥,

Py

- —p,/,COSI//cotG—pgsinlﬂ]
s1n9

= pe ( {sinyy, py cos ¥} — {py siny, cosy})

1
+ py (—sm w[ ,pg]—i-coszw[p@,sing])

+ cot? (py sinr, py cos Y} + (siny{py cot @, pg sin Y}

— cos Y¥{py cos ¥, py cot6})

cos cos 6
— Py

=+py pwcot 0+ py——

sin% 0 sin% 6 sin% 0

:pw:l_,:;.
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Chapter 4: Relativistic Mechanics

4.1 (i) Let the neutral pion fly in the 3-direction with velocity v = vges. The full
energy-momentum vector of the pion is

1 .
q= (;Eq, q) = (Yomzc, yomzv) = yomzc(l, Boes),

where By = vo/c, yo = (1 — B3)~1/2. The special Lorentz transformation which
takes us to the rest system of the pion, is

70 0 0 —wbo
L 0 1 0 0
v 0 0 1 0
—YBo 0 O Y0

Indeed, L_,q = ¢* = (myc, 0).

(i) In the rest system (Fig.B.22, left-hand side) the two photons have the four-
momenta k' = (E}/c, k;‘), i =1, 2. Conservation of energy and momentum
requires ¢* = ki + k3, i.e. Ef + E = m,c* and k| + k3 = 0. As photons are
massless, E] = |k}|c, and, ask] = —k;, one has E] = E;. Denote the absolute
value of the spatial momenta by «*. Then |kT| = |k5| = k* = mc/2.

In the rest system the decay is isotropic. In the laboratory system only the direction

3 of the pion’s momentum is singled out. Therefore, in this system the decay distri-

bution is symmetric with respect to the 3-axis. We first study the situation in the (1,

3)-plane and then obtain the complete answer by rotation about the 3-axis. We have

(k)3 = k* cos0* = —(k})3, (k}) = k*sin0* = —(k});, while the 2-components

vanish. In the laboratory system we have k; = Lk}, viz.

ki

k3

Fig. B.22 Kinematics of pion decay at rest and in motion
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1 1
EEI = yor*(1 + By cos 6%), ;Ez = yok*(1 — By cos %)

(k1)1 = (k7)1 = k*sin6*, (kp)1 = (k3)1 = —«* sin0*,
(k1)3 = yok™(Bo + cos0%), (kz)3 = yok™(Bo — cos0%),
(k1) =0 = (ko).

In the laboratory system we then find

(k1) sin9* —sin 6*

tan 0, = = ;o tanfh) = ——.
(k)3 yo(Bo + cos 6*%) vo(Bo — cos 6%)

Examples:

(a) 8 =0 (forward emission of one photon, backward emission of the other):
From the formulas above one finds E| = m,,czyo(l + B0)/2, Ey = myc?y(1 —
Bo)/2. k1 = mzcyo(Bo+ 1)es/2, ks = mycyo(Bo — 1)€3/2, and, as By <1,
0 =0,0, =m.

(b) 6* = 7/2 (transverse emission): In this case E; = Er = m,c?yy/2, ki = mzc
(€1 + y0Bo€3) /2, ky = myc(—&1 + yoPoé.)/2, tan Oy = tan 6 = 1/(yofo).

(¢c) 0* =m/4and By = l/ﬁ,i.e.,yo = +/2: Inthis case one finds E| = 3mzc*y/4,
Ey = m,y/4 ki = mac@) —2v283)/(2V2). ky = —mycé/(2V2), 6, =
arctan(l/(2«/§)) ~ 0.1087, 6, = 7 /2.

In the rest system the decay distribution is isotropic, which means that the differ-
ential probability d I" for kT to lie in the interval d2* = sin 0*d0*d¢* is independent
of 8* and of ¢*. (To see this enclose the decaying pion by a unit sphere. If one con-
siders a large number of decays then photon 1 will hit every surface element d$2*
on that sphere with equal probability.) Thus,

dI' = Iyd$2* with Iy = const.

In the laboratory system the analogous distribution is no longer isotropic. It is dis-
torted in the direction of flight but is still axially symmetric about that axis. We
have

ds* in 6* do*
dS$2 where = St

1
—dI = - .
as? sinf do

Iy

as2*
dsz

The factor sin 6*/ sin @ is calculated from the above formula for tan 6, viz.

tan 6 sin 6*

V1ttan?6  (Bo+cosd*)’

and the derivative df/d60* is obtained from 6 = arctan(sin 6*/y,(By + cos %)) by
making use of the relation y7 82 = y§ — 1. One finds

sinf =
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*

sz _ 2(1 4 Bocos*)?
e N 0 ‘

The cosine of 8* is expressed in terms of the corresponding laboratory angle by the
formula

. cosf — By
cosf* = ———.
1 — Bocos6

The shift of the angular distribution is well illustrated by the graph of the function

F@) = 92— 2 (14 gy 080 = o ?
T o1 = Bycos

for different values of fy. Quite generally we have d F/d6|y—o = 0. For By — 1 the
value F(0) = (1 + Bo)/(1 — Bp) tends to infinity. For small argument 6 = ¢ < 1,
on the other hand,

2
F(s)%1+'80(1 £ )’

-8\ 1-5

which means that for €2 &~ (1 — fy) F becomes very small. Therefore, when 8y — 1
the function F(0) falls off very quickly with increasing 6. Figure B.23 shows the
examples By = 0, Bo = 1/+/2, and By = 11/13.

4.2 Let the energy-momentum four-vectors of w, i, and v be ¢, p, and k, respec-
tively. We have always ¢ = p + k. In the pion’s rest system

1 1
q=(myc,q=0), p= (EE;’I’*) , k= (;E,f, —p*) .
Ifk* := |p*| denotes the magnitude of the momentum of the muon and of the neutrino,
then
2 2

2 2
m- —m m- +m
T T
El =k"c= L E, =  (K*e)? + (mye)? = B
2my 2my

In the laboratory system the situation is as follows: The pion has velocity vy = voé;
and, therefore,

q = (E4/c,q) = (Yomzc, yomzvo) = yomzc(l, fo€3)
with By = vo/c, po=1/,/1 — ,33. It is sufficient to study the kinematics in the (1,

3)-plane. The transformation from the pion’s rest system to the laboratory system
yields
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Fig. B.23 The function
F(9) for three values of B 12

101

1 1 1

EEP =% (;E; + ,3017*3) =% (;E; ~+ Borc* cos@*) ,
pl — p*l’

p’=p?=0,

1 1
P =w (EﬁoE(’; + p*3) =y (E’BOE; + K*COSG*)

and, therefore, the relation between the angles of emission 6* and 6 is (cf. Fig. B.24)

p! K*sin 6*
tanf = — = , (1)
PP v(BoE}/c + k¥ cos %)
or
m% — m?%) sin *
tan 6 = (i W )

Yo(Bo(m2 +m2) + (m2 —m?2) cos %)
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1

P

/6:_0_' 3

Fig. B.24 Angles of emission in center-of-mass and laboratory sytems, respectively

Making use of g* := ck*/E% = (m} —m’,)/(m7; + m) (this is the beta factor of
the muon in the rest system of the pion), (1) is rewritten

B* sin 6*

tanf = .
vo(Bo + B* cos 6%)

3)

There exists a maximal angle 6 if the muons which are emitted backwards in the
pion’s rest system (6* = ), have momenta

P’ =nE;/c(Bo + B* cos0%) = nE}/c(fo — B > 0,

i.e., if Bo > B*. The magnitude of the maximal angle is obtained from the condition
dtan6/d6* = 0 which gives cos f* = —8*/fy and, finally,

R Y
Vo(ﬂg - B*?) Vo\/ﬂg — p*2 \/ﬂé — B2

4.3 The variables s and ¢ are the squared norms of four-vectors and are thus invariant
under Lorentz transformations. The same is true for u = ¢*(g4 — g/3)?. For our cal-
culations it is convenient to choose units such that ¢ = 1. It is not difficult to re-insert
the constant c in the final results. (This is important if we wish to expand in terms of
v/c.) To reconstruct those factors one must keep in mind that terms like (mass times
¢?) and (momentum times c¢) have the physical dimension of energy.

Conservation of energy and momentum means that the four equations

“4)

tan O =

ga+498 =q4 +q5 (D

must be satisfied. This means that the variables s, ¢, u can each be expressed in two
different ways (now setting ¢ = 1):
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s =(qa+qp)* = (g, +qp)? 2)
t=(qa—q))* = (g — q5)* 3)
u=1(qa—qy)* = (g4 —qp)* 4)

(1) In the center-of-mass system we have

ga = (E%, 9%, qs = (Ep, —q),
Q,/q = (E:;:s q/*)s q;; = (E/;a _q/*) (5)

where E} = 1/m124 + (g*)? etc., with ¢g* = |g*|. Like in the nonrelativistic case
energy conservation requires the magnitudes of the three-momenta in the center-
of-mass system to be equal. However, the simple nonrelativistic formula

mpg \ qlab

* —
(61 )n,r. - ma+mgp A

that follows from (M1.79a) no longer holds. This is so because neither the nonrela-
tivistic energy

ma+mp 2
Tr = — *
2mamp @ )nr

nor the quantity

(g4 +495)°
2(ma +mp)

are conserved. We have
s = (E4 + Ep? =m’ +my +2(q")?°

+2,/((g*)? + m) (") + m}). (©)

Thus, s is the square of the total energy in the center-of-mass system. Reintroducing
the velocity of light,

s = mﬁc4 + m%;c4 +2(g")*c* + 2\/((61*)262 +m%et) ()2 + myet).

In a first step we check that s, when expanded in terms of 1/c, gives the correct
nonrelativistic kinetic energy 7; of relative motion (except for the rest masses, of
course)

2 2)2 1 2 2 (¢4*
s%(mAc +ch) 1+ @G /c=+ O Ta ,
maymap mrc
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and, thus,

* \4
V5~ mac +mpc? + AT ME Ty @H*+o0 (—(q %) ) .

2mamp (mc?)*

The magnitude of the center-of-mass momentum is obtained from (6)

1
2/s

Clearly, the reaction can take place only if s is at least equal to the square of the sum
of the rest energies,

q*(5) = =——=+/(s — (ma +mp)?)(s — (ms — mp)?). (7)

s > 50 :=(my +mB)2 ~ (mAc2 +ch2)2.
so is called the threshold of the reaction. For s = sy the momentum vanishes, which
means that at threshold the kinetic energy of relative motion vanishes.
The variable ¢ is expressed in terms of ¢g* and the scattering angle 6* as follows:
t=(g1—q4)’ =qx + 45 —2qa-qy =2m} —2ELE} +2¢" - ¢".
As the magnitudes of ¢* and of ¢™* are equal, E; = E}. Therefore,

t = —2(g%)*(1 — cos 6%). ®)

Except for the sign, 7 is the square of the momentum transfer (¢g* — ¢™*) in the center-
of-mass system. For fixed s > s¢, ¢ varies as follows

—4(¢*)? <1 <0
Examples:
a) e +e —>e +e”
s 2s0=4(mecz)2, —(s —s9) <t <O.

b) v+e  —e +v
2\2 1 2
szsoz(mec) , —— (@ —s9)"<t=<0O.
s

(ii) Calculating s + ¢ + u from the formulas (2)-(4) and making use of (1), we
finds + ¢ + u = 2(m?% + m%)c*. More generally, for the reaction A + B — C + D,
one finds

s+t4+u= (mi—{—m%—l—mzc—l—m%))c“.
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4.4 In the laboratory system

qa = (Ea,q,), qp = (mpc*,0),
gy =(EL\. 4. q5 = (Ep. qp). (1)

The scattering angle 6 is the angle between the three-vectors ¢ 4 and ¢’,. From (3) of
the solution to Exercise 4.3 above (using ¢ = 1),

t=qi+qy —2qaqy =2my —2E4E) +2|q4llq;| cos6. 2

Equation (8) of Exercise 4.3 above gives an alternative expression for ¢. The aim is
now to express the laboratory quantities E4, E’;, |g4], |q’4| in terms of the invariants
sand . Using (1) s is found to be, in the laboratory system, s = m% + m% + 2E smp,
that is,

1
EA:M(s—mi—m%). 3)

From this, using qi = Ei — mi,

1 1
g4l = Z—J(s — (ma+mp)2)(s — (ma —mp)?) = —q*/s (4)
mp mp

with ¢* as given by (7) of Exercise 4.3 above. We now calculate t = (gp — q};)2 in
the laboratory system and find E, = (Zm%9 —1)/(2mp) and from this E), = E, +
mp — E’; to be equal to

’ 1 2 ) t
EAZ%(S—I-[—W[A—W!B):EA*FM, (®))

and, eventually, from ¢ = E'? — m?

1
94l = 5 — V1= (ma+mp))(s +1— (ms —mp)?). (6)
mp

From (2)

1
lgallg,yl

/ 2 !
cosf = (EAEA—mA-I-E)

This is used to calculate sin6 and tan@, replacing all quantities which are not
invariants by the expressions (3)—(6). With the abbreviations ¥ := (m4 +m 5)* and
A= (my —mp)? we find
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2mp/—t(st + (s — X)(s — A))
(s—2X)s—A)+1t(s —m% +m%)'

tanf =

Finally, cos 6* and sin 6* can also be expressed in terms of s and ¢, starting from (8)
and (7) of Exercise 4.3 above,

25t + (s = X)(s — A)

cos0* = )
(s —2X)(s—A)
Sin 0" — 2ﬁ¢—t(st + (s —2)(s — A)).
(s —X)s—4)

Replace the square root in the numerator of tan 6 by sin 6* and insert ¢ in the denom-
inator, as a function of cos 0*, to obtain the final result

2mp/s sin 0*
tan 6 = 5 5 p—— @)
§ =My + My cos* A8
S—my+my

For s ~ (m4 + mp)? one recovers the nonrelativistic result (M1.80). The case of
two equal masses is particularly interesting. Withmy = mpg =m

2m o0*
tanfd = — tan >

/5

As /s > 2m the scattering angle 6 is always smaller than in the nonrelativistic
situation.

4.5 If we wish to go from the rest system of a particle to another system where its
four-momentum is p = (E/c, p), we have to apply a special Lorentz transformation
L(v) with v related to p by p = myv. Solving for v,

pe pc’

V= —— R

JPEtme  E

Insertion into (M4.41) and application to the vector (0, s) gives

2
s =L (0,s) = (%s-v,s—l— #_’_wv-sv).

As s, p® is a Lorentz scalar, and hence is independent of the frame of reference that
one uses, this quantity may be evaluated most simply in the rest system. It is found
to vanish there and, hence, in any frame of reference.

4.6 Ineither case the coordinate system can be chosen such that the y- and z- compo-
nents of the four-vector vanish and the x-component is positive, i.e., z = (z°, z', 0, 0)
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with z! > 0, If 7% is smaller than zero we apply the time reversal operation (M4.30)
so that, from here on, we assume z° > 0, without loss of generality.

(i) A light-like vector has z? = 0 and, hence, z° = z'. We apply a boost with para-
meter A along the x-direction, cf. (M4.39). In order to obtain the desired form
of the four-vector we must have

2coshi —%sinha =1 or e =1,
from which follows A = In z°.

(ii) For a space-like vector z2 = (z°)? — (z1)? < 0, i.e., 0 < z° < z'. Applying a
boost with parameter A it is transformed to

0)2

(z°cosh A — z'sinh A, 2’ cosh A — z%sinh &, 0, 0).

For the time component to vanish, one must have tanh A = z°/z'. Calculating sinh A
and cosh A from this yields the assertion z! = v/—z2.

4.7 The commutation relations (M4.59) can be summarized as follows, making use
of the Levi-Civita symbol:

[Jp’ Jq] = 8pqurs
[Kp’ Kq] = _Spqr‘jh
[Jpa Kq] = 81}qur~

From this one obtains

[Apa Aq] = 8pqrAra
[Bps Bq] = gpqurs
[A,.B,] = 0.

4.8 The explicit calculation gives
PJ,P ! =J;, PKjP’1 = —K;.

This corresponds to the fact that space inversion does not alter the sense of rotation
but reverses the direction of motion.

4.9 The commutators (M4.59) read in this basis
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The matrix J; and K; being real and skew-symmetric, we have for instance

(f.T)* = —(d)* =id = J..

1

4.10 This exercise is a special case of Exercise 4.11. The result is obtained from
there by taking m, = 0 = ms.

4.11 Energy conservation implies (again taking ¢ = 1)

M:El+E2+E3=\/m%+f2+\/m§+x2f2+\/m§+(1—x)2f2
= M(xf(x)).

The maximum of f(x) is found from the equation

Ldf _ 8M/8x XE3—(1—)C)E2

= =-fE 2 2 ’
dx _ aM/af E2Es + x2EE; + (1 — x)2E  Es

or xE3 = (1 — x)E,. Squaring this equation gives x?(m3 + (1 —x)?f?) = (1 —
x)2(m3 + x? £2), and from this the condition

! my
X = ———.
my + ms

Taking into account the condition

1—x ms
E; = Ey = —E>,
X nmyp

one obtains

m m
M—E = %E}
2

The square of this yields

2 2
M2—2ME1+m%+f2= (m2+m3) (m2+ ms fz)

m3 27 (ma + m;3)?

and from this

1
(EDmax = 5 (M? +m} — (my +m3)?) .
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Examples:

@) —e+vi+v:my=m3=0, M =m,,m = me. Thus
M /

1
(Ee)max = m (mi + m?) Cz.

n

With m,, /m¢ =~ 206.8 one finds (E¢)max ~ 104.4m.c?.
(i) n - p+e+v; M =m,, my = me, my = mp, m3 = 0. Therefore one obtains

1 1
(Ee)max = 2_mn (mrzl + mg - ml2)) C2 = zmn ((zmn - A)A + mg) Cz,

where A := m, — m,. Inserting numerical values yields (E¢)max ~ 2.528m,c2.

Thus Ymax = 2.528 and Bmax = +/¥2ax — 1/Vmax = 0.918. The electron is highly
relativistic at the maximal energy.

4.12 The apparent lifetime 7 in the laboratory system is related to the real lifetime
1@ by 1™ = 7@, During this time the particle, on average, travels a distance

L=vt™ =gyt

Now, the product By equals |p|c/(mc?), cf. (M4.83), so that for |[p| = xmc there
follows the relation

L=xt0c.

For pions, for instance, one has téo)c ~ 780 cm.

4.13 From the results of the preceding exercise we obtain 7¥¢ ~ 2.7 x 103 cm.

For E = 10~ 2m,¢? one has x = Vy?—1=0.142, while for E = 10"m,c? one
has x ~ 104,

4.14 Let p;, p, be the energy-momentum four-vectors of the incoming and outgoing
electron, respectively, and k that of the photon. Energy and momentum conservation
in the reaction e — e + y requires p; = p, + k. Squaring this relation and making
use of

p]2 = mec2 = p%, kK= 0,

one deduces p, - k = 0. As k is a light-like four-vector this relation can only hold if
P> is light-like, too, i.e., if p% = 0. This is in contradiction with the outgoing electron
being on its mass shell, p3 = m?. Hence, the reaction cannot take place.

4.15 The first inversion leads from x* to (R?/x?)x*, the translation that follows
leads to R%(x*/x2 4 ¢*), and the second inversion, finally, to
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R*(x* + x2cH)x* xt 4 x2ch

TOX2R4*(x 4+ x2¢)2 T 142(c-x)+c2x2

m

The inversion 7 leaves invariant the two halves of the time-like hyperboloid x> = R?,
but interchanges those of the space-like hyperboloid x> = —R?. The image of the
light-cone by the inversion is at infinity. The light-cone as a whole stays invariant
under the combined transformation J o 7 o J.

4.16 As L does not depend on ¢, the equation of motion for this variable reads

9 iy =0 M
arag  "a V=0

In turn, L is independent of . The condition for the action integral to be extremal
leads to the following equation for ¥,

oL 1 21
—_— = —-m qz — Cé—w = O.
v 2

The solutions of this equations are

€0 €o
V= e Y= e
C(z)—q C(z)—q

Insertion of i, into the Lagrangian function yields

. 1 ) ;
LG =) = 5m (—2c0\/c5 —i+ 2cé) — —mc/1 =/t +mc}.

This is nothing but (M4.97), with ¢ replaced by ¢, to which the constant energy mc}
is added.

If we let ¢y go to infinity, ¥, trends to 1 and the Lagrangian function becomes
L, = mt}2 /2, well-known from nonrelativistic motion. One verifies easily that (1)
is the correct equation of motion in either case.

The second solution 1, must be excluded. Obviously, the additional term

1 -1
Emw—l)(ef—céww )

which is added to the Lagrangian function L., takes care of the requirement that the
velocity ¢ should not exceed the value c.
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Chapter 5: Geometric Aspects of Mechanics

5.1 We make use of the decomposition (M5.52) for c](() and c[o

k 1 . . . .
wA® Z i, i, Z wj. i dx"" A oANdxY ANdx AL AN dx

i< <ig Ji<-<ji

The analogous decomposition of ci) A c’f)k (k and [ interchanged) is obtained from
this by shifting first dx/!, then dx”, and so forth up to dx#, across the product
dx" Adx™ A ... A dx™ from the right to the left. Each one of these operations gives
rise to a factor (—)¥, so that one obtains the total factor (—).

5.2 We calculate

3 3
ds*@;,é;) = Y _ Exdx*(@)dx"@;) = > Eraldl,
k=1 k=1

where we have seta¥ := dx*(¢;). Asds>(é,, ek) = 8;x, we must have a¥ = b¥//Ey,
where {bf-‘ } is an orthogonal matrix. This matrix must be orthogonal because the
coordinate axes were chosen orthogonal. Therefore dx*(é;) = 8{‘ /N E.

5.3 Consider
| 3
w, = Zwi (x)dx'.
i=1

cf)a = by (x)dx* A dx* + cyclicpermutations

whose coefficients, w; (x) and b; (x), are to be determined.

a) We calculate

. ) o1
0u() = D i (0)dx' (€) = Y w;(x)dx’ (Z s"ék) =D o (0§ T
i i k i !
Since, on the other hand,
0§ =a-E= a8

we deduce

wi (x) = a;(x)\/E;.
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b) We calculate
(€, 1) = b1 () (dx>E)dx’ () — dx* () dx’ ) + cyel. perms.
= bi(0)(E™n = 0*E")/VE2Es + cyel. perms.
Comparing this with the scalar product of @ and & x n yields
bi(x) = \/ﬁal(x) (cyclic permutations).

5.4 Denote by (V f); the components of V f with respect to the orthogonal basis
that we consider. We then have, according to the solution of Exercise 5.3,

v = D (Vi Edx'.

With & = > &'¢; aunit vector, the function ci)vf &) = >"(V f):€" is the directional
derivative of f along the direction &. This quantity can be calculated alternatively
from the total differential

af
dfzza—j;dx’
to be
. f o i 1 af
df €)= ehdx' @) =D ——=¢
25 2. 75

Comparing the two expressions yields the result

af
A/ Ei Bxi ’
5.5 For cartesian coordinates we have E; = E; = E; = 1.

For cylindrical coordinates (€,, é,, €;) we have ds? =do®> + 0%*d¢?® +d72,ie.,
E, = E; = 1, E; = ¢ and, therefore,

v _(% Laf %)
f= 90’ 00 9z)°

VHi=

For spherical coordinates (&, &y, 8,) we have ds*> = dr* + r?d6* + r sin® 0d¢?,
which means that E, = 1, E, = r?, E5 = r? sin? # and, hence,
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af 19 1 9
vp= (L 100 LA
dr r 360 rsinf d¢
5.6 The defining equation (M5.58) can be written alternatively as follows
k) @iy - €1,) = Eiy gy @ @iy -, €5).

Here ¢;,.;, is the totally antisymmetric Levi-Civita symbol. It equals +1(—1)
if (i;...i,) is an even (odd) permutation of (1,...,n), and vanishes whenever
two of its indices are equal. Thus, for n =2, *dx' = dx?, *dx> = —dx', and
xw = Fidx?> — F>dx'. Therefore, w(§) = F - &, while xw(§) = F x £.1f & isa dis-
placement vector &€ =r, —rp, F a constant force, w(£) is the work of the force
along that displacement. In turn, *w (&) describes the change of the external torque.

5.7 For any base k-form dx™ A ... Adx™ withi; < -+ < iy
*(dx“ VANPIRVAN dxik) = gil...ikiHl...indxiHl VANPISAAN dxi”.

Here we have assumed the indices on the right-hand side to be ordered, too, viz.
ix+1 < - < i. The dual of this form is again a k-form and is given by

i Yy — o, .. .o L dxh Jk
%k (dX" AL ANAXY) = 8 i i S i i AXT A A dXE

Allindices i . .. i,, must be different. Therefore, the set (j; . . . ji) must be a permuta-
tionof (i . ..i). If we choose the ordering j; < --- < ji,then j; =iy, ..., ji = ik.
In the second e-symbol interchange the group of indices (iy, .. ., ix) with the group
(ik+1, - - -, in). For i this requires exactly (n — k) exchanges of neighbors. The same
holds true for i, up to i;. This gives k times a sign factor (—)" 7. As (g;,.;)* =1
for all indices different, we conclude

sk (dx" AL AdX®) = (5 Pgx A LA dxE.

5.8 The exterior derivative of ¢ is calculated following the rule (CD3) of Sect.
M5.4.4, viz.

aE] aEz 1 2 . .
d¢ = —— + — ) dx’ A dx”~ + cyclic permutations
ox2  ox!
= (curl E)sdx' Adx*+... .

This yields the result d¢ + @w/c = 0.
5.9 With f a smooth function df = > (3f/dx")dx", thus

xdf = (8f/8x1) dx? A dx? + cyclic permutations,

d(xdf) = (azf/(ax")2) dx' Adx®> Adx + cyclic permutations,
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and
3
xd(xdf) = D 0% f/(dx').

Furthermore, * f = fdx' Adx* Adx? and d(xf) = 0.

5.10 If & is a k-form which is applied to k vectors (€1, ...é), then, by the def-
inition of the pull-back (special case, for vector spaces, of (M5.41), Sect.5.4.1)

F*o@,,...6,) = 0(F @), ..., F@&)). Then
kL . koo . .
F'(wnAw)er, ..., eq) = (@Aw)(F(e),..., Fei)),

which, in turn, equals (F*clf)) A (F*clu).
5.11 This exercise is solved in close analogy to the solution of Exercise 5.10 above.

5.12 With V := yd, and W := x0d, we find readily Z := [V, W] = (yd,)(x9,) —
(xay)(yax) = y0y — x0,.

5.13 Let v; and v, be elements of 7, M. Addition of vectors and multiplication by
real numbers being defined as in (M5.20), it is clear that both v; 4+ v, and av; with
a € R belong to T, M, too. The dimension of T,M isn = dim M. T, M is a vector
space. In the case M = R", T, M isomorphic to M.

5.14 We have

2
wro=3
i=1

2
dq' Adp; Adq? Adp; = —2dq" Adq* Adpy A dps.
=1

J

This is so because we interchanged dp; and dq/, and because the terms (i = 1, j = 2)
and (i =2, j = 1) are equal.

515 H®" = p?/2 + 1 — cos q is the Hamiltonian function that describes the planar
mathematical pendulum. The corresponding Hamiltonian vector field reads

oH oH :
——0, — — 0, = pd; —singa,.

X _
) dq

A sketch of this vector field will yield the vectors tangent to the curves of Fig.
M1.10. The neighborhood of the point (p = 0, g = m) is particularly interesting as
this represents an unstable equilibrium. For

1 1
H® = 2p*+2a(q” =3)
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the Hamiltonian vector field is
® L,
Xy = po; — E(q —1Da,.

This vector field has two equilibrium points, (p = 0,9 = +1)and (p =0, g = —1).
A sketch of X §3> will show that the former is a stable equilibrium (center), while the
latter is unstable (saddle point). Linearization in the neighborhood of ¢ = 41 means
that we setu := g — 1 and keep up to linear terms in # only. Then X S) A po, — udp.
This is the vector field of the harmonic oscillator or, equivalently, the vector field
X 2) above, for small values of ¢.

Linearization of the system in the neighborhood of (p = 0,9 = —1), in turn,
means setting u := g + 1sothat X 2) A pd, + ud,. Here the system behaves like the
mathematical pendulum (described by X 2) above) in the neighborhood of its unsta-
ble equilibrium (p = 0, ¢ = ) wheresing = —sin(q — 7) ~ —(q — ). (See also
Exercise 6.8.)

5.16 One finds X0 = pd, — qd,, Xy = pd, — (q + £q*)d,, and, finally
o(Xy, Xpo) = dH(Xpo) = epq” = {H', H).

5.17 For the proof consult for example Sect. 3.5.18 of Abraham and Marsden (1981).

Chapter 6: Stability and Chaos
6.1 (i) A is already diagonal. The flux is
th O

(ii) The characteristic exponents (i.e., the eigenvalues of A) are Ay = a + ib, A, =
a — ib so that in the diagonalized form the flux reads as follows: With

Yyou—uUy A=vAu-t=(2tib 0 )
~ N 0 a—1ib

we have

o et(a+ih) 0
U(t) = exp(rA)4(0) = ( 0 ot (a—ib) ) u(0).

Fora = 0, b > 0 we find a (stable) center. Fora < 0, b > 0 we find an (asymp-
totically stable) node.
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Table B.1 Example - o 3 1 2 9 3
(a=2/3, b = 1) with initial 2w | 3 1 . < '
condition as indicated e 2 1 6 6 ! 2

B 0 2 1 1 : 1

Fig. B.25 Orbits
representing the same
example as in Table B.1

(iii) The characteristic exponents are equal, .; = A, = A. For A < 0 we again find
a node.

6.2 The flux of this system is

(oz(r) —nr + ag( mod 1), B(t) = ir =+ Bo( mod 1)) .

If the ratio b/a is rational, i.e., b/a = m/n with m, n € Z, the system returns to
its initial position after the time t = 7 where T follows from oy +aT/(27) = ag
(mod 1) and By + bT/(2m) = By (mod 1), i.e., T =2nn/a = 2am/b. We study
the example (a = 2/3, b = 1) with initial condition (¢ = 1/2, By = 0). This yields
the results shown in Table B.1 and in Fig. B.25. In the figure the sections of the orbit
are numbered in the order in which they appear (Table B.1).

If the ratio b/a is irrational then the flux will cover the torus, or the square of
Fig.B.25, densely. As an example one may choose a “out of tune” at the value
a = 1/+/2 2~ 0.7071, keeping b = 1 fixed, and plot the flux in the square. A specific
example is provided by two coupled oscillators, cf. Exercises 1.9 and 2.9. The modes
of the system obey the differential equation ii; + @¥?u; = 0,i = 1, 2. These are
rewritten in terms of action and angle variables /; and @;, respectively, by means
of the canonical transformation (M2.95). They become I; = 0, ©; = 0@, i =1, 2.
Embedded in the phase space which is now four-dimensional, we find two two-
dimensional tori which are determined by the given values of I; = I [-0 = const. Each
of these tori carries the flux described above.
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6.3 The Hamiltonian function has the form H = p?/(2m) + U(q). The character-
istic equation

1 (E)So(q,a)

_ %

2
o ) +U(g) = Ep

is integrated by quadrature:

q
So(q. o) = / J2m(Ey = Ulg)dq'-
q0

We have p = mg = 08y/dq = /2m(Eg — U(q)) and hence
, 05

4 m
dg' = —.
aw ~2m(Ey—U(q")) dEy

(This holds away from equilibrium positions, in case the system possesses any
equilibria.) Choose P =« = Ey. Then Q = 9S5y/0Ey =t — ty, or, alternatively,
(P =0, Q0 =1). Thus, we have achieved rectification of the Hamiltonian vector
field: In the coordinates (P, Q) the particle moves on the straight line P = E with
velocity Q = 1.

Consider now an energy in the vicinity of Ey, E = SEj, with 8 not far from 1.
Let the particle travel from g to a point ¢’ in such a way that the time 7 (¢”) — #(qo) is

the same as for Ey. Of course, pj = /2m(E — U(qo)), and p’ = /2m(E — U(q")),

and

t(q) —t(q0) =

f _/q mdx
° 7 V2ZM(E —TU)

The new momentum is chosen to be P = E|) (the energy of the first orbit). Then one
has

_3S(q, B) _ 3S(g, E)

Q= DE, =p—5g =B —1)

ie., (P =0, Q0 = B). In the new coordinates the particle again moves along the
straight line P = E|, this time, however, with velocity 8. The particles on the orbits
to be compared move apart linearly in time. If U(q) is such that in some region
of phase space all orbits are periodic, one should transform to action and angle
variables, I (E) = const., ® = w(E)t + ©y. Also in this situation one sees that the
orbits separate at most linearly in time. In the case of the oscillator, where w is
independent of E or I, their distance remains constant.

The integration described above is possible only if E is larger than the maximum
of U(g). For E = Upnax(q) the running time goes to infinity logarithmically (cf. Sect.
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M1.23). The statement of this exercise does not apply when one of the trajectories
is a separatrix.

6.4 For u = 0 the system becomes ¢, = dH/dq, and g, = —0H/dq;, with H =
_)‘(‘112 + qzz) /24 (qi q22 - q13 /3)/2. The critical points (where the Hamiltonian vec-
tor field vanishes) are obtained from the system of equations —Ag; + q1¢q2 =
0, g1 + (g} — ¢3)/2 = 0. One finds the following solutions: Py = (g1 =0, g2 =
0, Pip=(@1=xr,q2= :I:\/g)»), P; = (q1 = —2A, g» = 0). Linearization in the
neighborhood of Py leads to ¢; =~ —Aq2, g2 =~ Aq;. Thus P, is a center. Lineariza-
tion in the neighborhood of P; is achieved by the transformation u| := g — A, up :=
g» — /3%, whereby the differential equations become.

i = \/g)xu] +ujuy X \/3)\.1,{1;

Uy = 2\uy — \/5)»142 + (u% — u%) /2~ 2huy — \/§ku2.
The flux tends to P; along u; = 0 but tends away from it along u, = 0. Thus P,
is a saddle point. The same is true for P, and P;. One easily verifies that these
three points belong to the same energy E = H(P;) = —2A%/3 and that they are
pairwise connected by separatrices. Indeed, the straight lines g, = £(q; +21)/ V3
and g, = A are curves with constant energy E = —2%/3 and build up the triangle
(P1, Py, P3).

If one switches on the damping terms by means of 1 >3 u > 0, Py is still an
equilibrium point because in the neighborhood of (g; = 0, g, = 0) we have

DY (* A (D)zalD
B A JAX @)’
From the equation det(x1 — A) = 0 one finds the characteristic exponents to be

X1/ = —p £ iA. Thus Py becomes a node (a sink). The points P, P,, and P3, how-
ever, are no longer equilibrium positions. The lines which connect them are broken

up.
6.5 We write H in two equivalent forms

(i) H=1+ LwithI; = (p} +4f) /2+4}/3.
L= (p3+43)/2—43/3,

(i) H=(p{+p3)/2+Uq.q) withU = (¢} +43) /2+ (¢ — a3) /3
= (22 + A% J4+ Z2A/4 + A%)12,

where X :=q| +q, A:=q1 —q.
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Then the equations of motion are

g1 =pi1, 42= p2,
pL=—q1—q}, pr=—q2+q>.

The critical points of this system are Py: (g1 =0,90 =0,p; =0, p, =0), P, :
©0,1,0,0), P,: (—1,0,0,0), Ps: (—1,1,0,0). One easily verifies that dI;/dt =
0,i =1,2,1.e., I, and I, are independent integrals of the motion. The points P,
and P, lie on two equipotential lines, viz. the straight line g; — g» = —1, and the
ellipse 3(q; + g2)> + (q1 — q2)* +2(q1 — q2) — 2 = 0. In either case U = 1/6. As
an example and using these results, one may sketch the projection of the flux onto
the plane (g1, ¢2).

6.6 The critical points of the system ¢ = p, p=q —q> —pare Py: (g =0, p =
0), P, : (1,0), and P, = (—1, 0). Linearization around P, gives

3)~( 1) (5)=~()
(1'7) (0 -1J\r p)
TheeigenvalueofAaredi, = (—1 £ V/5)/2,hence A; > 0and A, < 0whichmeans

that Py is a saddle point. Linearizing in the neighborhood of P; and introducing the
variables u := g — 1, v := p, the system becomes

wy . 0 1 u

()~ D))

The characteristic exponents are 1, = (—1 &+ i7 )/2. The same values are found
for the system linearized in the neighborhood of P,. This means that both P; and P,
are sinks.

The Liapunov function V (g, p) has the value O in Py, and the value —1/4 in P; and
P;. One easily verifies that P; and P, are minima and that V increases monotonically
in a neighborhood of these points. For instance, close to P; takeu := g — 1, v := p.
Then ®;(u,v) :=V(g=u+1,p=0)+ 1/4=v>/2 4+ u?> +u® + u*/4. Indeed,
at the point P; we find @,(0, 0) = 0 while @, is positive in a neighborhood of P;.

Along solutions the function V (g, p), or, equivalently, @, (u, v), decreases
monotonically. Let us check this for V:

dv.dv . vV _ 9V 3 oV 5
Fre 8pp+ g1 = ap(q 9 —p)+ og PP
In order to find out towards which of the two sinks a given initial configuration
will tend, one has to calculate the two separatrices that end in Py. They form the
boundaries of the basins of P; and P, as indicated in Fig. B.26 by the blank and
dotted areas, respectively.
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Fig. B.26 Boundaries of basins of the critical points P; and P>

6.7 As xo, by assumption, is an isolated minimum, a Liapunov function is chosen as
follows: V (x) := U(x) — U (xo).Inacertain neighborhood M of x¢, V (x) is positive
semi-definite and we have

n

d v L (U ?
—V&X) = — X, = — — ) .
ar’ l;axix Z(axi)

i=l1

If we follow a solution in the domain M\{xy}, V(x) decreases, i.e., all solution
curves tend “inwards”, towards xg. Thus, this point is asymptotically stable.

In the example U (x1, x) = x{(x; — 1)? + x3. The points xo = (0, 0) and x/, =
(1, 0) are isolated minima and, hence, are asymptotically stable equilibria.

6.8 This system is Hamiltonian. A Hamiltonian function is H = p?/2 + q(q* —
3)/6. The phase portraits are obtained by drawing the curves H (g, p) = E = const.
The Hamiltonian vector field vy = (p, (1 — qz) /2) has two critical points whose
nature is easily identified by linearizing in their neighborhoods. One finds

P :(g=—-1,p=0)and, withu :=¢g+1,v:=p: (=~ v,0~u). Thus, P is
a saddle point.

P, :(gq=1,p=0)and,withtt := g —1,v:=p: (u~v,v~ —u). Thus, P,isa
center. In the neighborhood of P, there will be harmonic oscillations with period
27 (see also Exercise 5.15).

6.9 The differential equation § = f(q,q), with f(q,q§) = —q + (¢ — ¢*)q, is
solved numerically by means of a Runge—Kutta procedure as follows
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1
dn+1 = qn + h (Qn + g(kl + k2 + k3)) + O(hs)
1
Gn+1 = Gn + g(kl + 2ky + 2k3 + ka),

h being the integration step in the time variable, and the auxiliary quantities k; being
defined by

ki = hf(gn: 4n),

ko = hf +h'+hk '+1k
2=NnJ \4n 2‘171 3 1,Y9n ) 1],

ks = hf it Mg+ Mk
3= Qn 251n 8l5qn 22 ’

. h, .
ky = hf (qn+hqn +§k3,qn +k3).

One lets the dimensionless time variable T = wt run from O to, say, 67, in steps of
0.1, or 0.05, or 0.01. This will produce pictures of the type shown in Figs. (M6.6)—
(M6.8). Alternatively, one may follow the generation of these figures on the screen
of a PC. One will notice that all of them tend quickly to the attractor.

6.10 The program developed in Exercise 6.9 may be used to print out, for a given
initial configuration, the time t and the distance from the origin d, each time the
orbit crosses the line p = ¢g. One finds the following result:

p=¢q>0:1/546 11.87 18.26 24.54 30.80 37.13 43.47
d|0.034 0.121 0.414 1.018 1.334 1.375 1.378
p=¢q>0:7(225 886 15.07 21.42 27.66 33.96 40.30
d|0.018 0.064 0.227 0.701 1.238 1.366 1.378

Plotting In d versus t shows that this function increases approximately linearly (with
slope & 0.1) until it has reached the attractor. Thus, the point of intersection of the
orbit and the straight line p = g wanders towards the attractor at an approximately
exponential rate. One finds a similar result for orbits which approach the attractor
from the outside.

6.11 The motion manifold of this system is R2. For the linearized system (¥, =
X1, X = —x3) the straight line Ug,, = (x; = 0, x») is a stable submanifold. Indeed,
the velocity field points towards the equilibrium point (0, 0) and the characteristic
exponent is —1. The straight line Uy, = (X1, X2 = 0), in turn, is an unstable sub-
manifold: The velocity field points away from (0, 0) and the characteristic exponent
is +1. The full system can be transformed to

. . 2 .
Xo =Xy —2x,=0, x{=x2+x2,
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whose general solution is

X2(t) = aexp(2t) + bexp(—t), x1(t) = \/gexp t,
or, equivalently,

1, 1 1, ¢
Xy = =xy{ +bvV3a— = —x7 + —.
3 X1 X1
Among this set of solutions the orbit with ¢ = 0 goes through the point (0,0) and
is tangent to Uyyg in that point. On the submanifold Vi = (X1, xp = x12/3) the
velocity field moves away from (0, 0).
The corresponding stable submanifold of the full system coincides with Uy
because, with a = 0, x;(z) = 0, x(¢) = b exp(—t) which means that Vi, = (x; =
O, XQ).

6.12 We have x,; = 1 —2x? and y; = 4/m arcsin /(x; + 1)/2 — 1. With —1 <
x; <0also—1 <y; <0,andwith0 < x; < lalso0 < y; < 1. We wish to know the
relation between y, 4 and y, . First, the relation x, — y,4+1 1S y,4+1 = 4/m arcsin(1 —
x,f)l/ 2 — 1. Using the addition theorem arcsin u + arcsin v = arcsin(u+/1 — v2 +
v/ 1 — u?) and setting u = v = (1 + x)/2 one shows

1
arcsin\/l—x2=2arcsin,/% for —1<x<0,
. . Jx+1
arcsiny/ 1 — x2 = 7 — 2 arcsin = for 0<x<1.

In the first case y, < 0 and y,.; = 1 + 2y,, in the second case y, > 0 and y, | =
1 — 2y,. These can be combined to y,+; = 1 — 2|y, |. The derivative of this iterative
mapping is £2; its magnitude is larger than 1. There are no stable fixed points.

6.13 If, for instance, m = 1, then z, := exp(i2wo/n) are the roots of the equa-
tionz" — 1 =(z—2z1)...(z—z,) = 0. They lie on the unit circle in the complex
plane and neighboring roots are separated by the angle 277 /n. Expanding the product
(z—z21)...(z—z)) =7"— 2> _1 % + ..., one sees that, indeed, > _, z, = 0.
For the values m =2,...,n — 1 we renumber the roots and obtain the same
result. For m = 0 and for m = n, however, the sum is equal to 0. Multiplying
Xo = > i_ i xcexp(=2izot/n)//n by 1//nexpRinoi/n) and summing over o
one obtains

1 n 1 n n n
E iqehnak/n — 2 X 2 eZlna(Tf)L)/n — E xr‘sr)\ = x;.
Jn n
o=1 =1 o=1 =1
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This is used to calculate

1 < 1 ,
_ _ &~k 2in/n(o (u+v)+Aiv
gk—_zxaxa+k— szuxn_vze /n(o (utv)+1v)
n n
o=1 v

o

The orthogonality relation implies i 4+ v = O(mod 7), and we have used X/, = X,,.

Furthermore, X;, mod » = X, and, finally, X, and X,_,, have the same modulus. It
followsthatg; = 1/n ZZ:] B |2 cos(2m A /n). The inverse of this formula | X, |2 =
ZK:l g, cos(2ma A /n) is obtained in the same way.

6.14 If wesety = ax + §,1.e., x = y/a — B/«, the relation
1 1
Xipr = uxi(l—x;) = p (—)’i - é) (1 + b —)’i)
o o o

will take the desired form provided « and B are chosen such that they fulfill the equa-
tionsa + 28 =0, B(1 — u(e + B)/a) = 1. These givea = 4/(nu — 2), B = —/2,
and, therefore, y = u(u — 2)/4.From0 < u < 4 follows 0 < y < 2. One then sees
easily that y; € [—1, +1] is mapped onto y;;; in the same interval. Let h(y, y) :=
1 — yy?. The first bifurcation occurs when A(y, y) = y and dh(y, y)/dy = 1, ie.,
when yp = 3/4, yo = 2/3, or, correspondingly, o = 3/4, xo = 2/3. Take then k :=
hoh,ie.,k(y,y)=1—y(l —yy*?. The second bifurcation occurs at y; = 5/4.
The corresponding value y; of y is calculated from the system

5 1 25 125
k , = = —— —2——4:, 1
(y4) 4+8y ar =Y (D
ok 5 25 5
Ay, )=y =292 = -1, 2
8y(y4) 4y( 4y) )

Combining these equations according to y. (2)—(1), one finds the quadratic equa-
tion

2_i _i_o
YUY T s T

whose solutions are y;,, = 2(1 £ ﬁ)/S. From y; =5/4 we have u; =1+ \/5,
from this and from y /5, finally

1
X1 = E(4 +v/6+ (23 —+/2)) =0.8499 and 0.4400.
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A. Some Mathematical Notions

“Order” and ‘“Modulo”. The symbol O(g") stands for terms of the order " and
higher powers thereof that are being neglected.

Example. If in a Taylor series one wishes to take acount only of the first three terms,
one writes

1
fx) = £O)+ £ 0)x + 5f”(0>x2 +0(x?). (A1)

This means that the right-hand side is valid up to terms of order x> and higher.

The notation y = x (mod a) means that x and x + na should be identified, n being
any integer. Equivalently, this means that one should add to x or subtract from it the
number a as many times as are necessary to have y fall in a given interval.

Example. Suppose two angles « and § are defined in the interval [0, 277 ]. The equation
o = f(B) (mod 27) means that one must add to the value of the function f(g8), or
subtract from it, an integer number of terms 27 such that o does not fall outside its
interval of definition.

Mappings. A mapping f that maps a set A onto a set B is denoted as follows:
f:A— B:awb. (A.2)

It assigns to a given element a € A the element b € B. The element b is said to be
the image and a its preimage.

Examples. (i) The real function sin x maps the real x-axis onto the interval [—1, +1],
sin: R — [—1,4+1] : x — y = sinx.
© Springer-Verlag GmbH Germany 2018 571
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(ii) The curve y : x = coswt, y = sinwt in R? is a mapping from the real -axis
onto the unit circle S!' in R2,

y:R — S': 1t (x =coswt, y=sinwt).

A mapping is called surjective if f(A) = B, i.e. if B is covered completely. The
mapping is called injective if two distinct elements in A also have distinct images
in B, in other words, if every b € B has at most one original a € A. If it has both
properties it is said to be bijective. In this case every element of A has exactly one
image in B, and for every element of B there is exactly one preimage in A. In other
words the mapping is then one-to-one.

Examples: (i) The mapping
f:R>R:am b= f(a)=d’

is injective. Indeed, b; = f(a;) = f(ay) = b, implies the equality a; = a,. The
mapping is also surjective: For any b € R the preimage is a = b'/? if b is positive,
and a = —b'/? if b is negative.

(i1) The mapping

fiR>R:ar b= f(a)=d®

is not injective because a; = 1 and a, = —1 have the same image.
The composition f o g of two mappings f and g means that g should be applied first
and then f should be applied to the result of the first mapping, viz.

Ifg:A— B and f:B — C, then fog:A— C. (A3)

Example: Suppose f and g are functions over the reals. Then, with y = g(x) and

z= f(y) wehave z = (f o g)(x) = f(g(x)).
The identical mapping is often denoted by “id”, i.e.

id: A— A:ar a.

Special Properties of Mappings. A mapping f: A — B is said to be continuous
at the point u € A if for every neighborhood V of its image v = f(u) € B there
exists a neighborhood U of u such that f(U) C V. The mapping is continuous if
this property holds at every point of A.

Homeomorphisms are bijective mappings f: A — B that are such that both f
and its inverse f~! are continuous.

Diffeomorphisms are differentiable, bijective mappings f that are such that both
f and f~! are smooth (i.e. differentiable, C*).

Derivatives. Let f(x!, x?, ..., x") be a function over the space R”, {é}, ..., &,}, a
set of orthogonal unit vectors. The partial derivative with respect to the variable x'
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is defined as follows:

8_fzhm f(erhei)—f(X)' (A4)
axt  h—0 h

Thus one takes the derivative with respect to x' while keeping all other arguments
xbo xih i X fixed.
Collecting all partial derivatives yields a vector field called the gradient,

sz(ﬂ...,af). (A.5)

axl’ xn

Since any direction 7 in R" can be decomposed in terms of the basis vectors
ey, ..., e, one can take the directional derivative of f along that direction, viz.

Z il a_f =n-Vf. (A.6)
The total differential of the function f(x', ..., x") is defined as follows:
a a
df = f dx! + fdx2+---+—fdx". (A7)
ax! 0x2 dxn

Examples. (i) Let f(x, y) = %()c2 +y%) and let (x = rcos¢, y =rsing) with
fixed r and 0 < ¢ < 27 be a circle in R?> The normalized vector tangent to the
circle at the point (x, y) is given by v, = (—sin¢, cos¢). Similarly, the nor-
malized normal vector at the same point is given by v, = (cos¢@, sin¢). The
total differential of f is d f = xdx 4 ydy and its directional derivative along v,
isv, - Vf = —xsin¢ + y cos ¢ = 0; the directional derivative along v, is given by
v, - Vf =xcos¢ + ysin¢ = r. For an arbitrary unit vector v = (cos«, sina) we
findv - Vf = r(cos¢ cosa + sin ¢ sin «). For fixed ¢ the absolute value of this real
number becomes maximal if ¢ = ¢ (mod 7). Thus, the gradient defines the direction
along which the function f grows or falls fastest.

(i) Let U(x, y) = xy be a potential in the plane R?. The curves along which the
potential U is constant (they are called equipotential lines) are obtained by taking
U(x, y) = c, with ¢ a constant real number. They are given by y = c/x, i.e. by
hyperbolas whose center of symmetry is the origin. Along these curves dU (x, y) =
ydx + xdy = 0 because dy = —(c¢/x?)dx = —(y/x)dx. The gradient is given by

= (0U/dx, aU/dy) = (y, x) and is perpendicular to the curves U(x, y) = ¢
at any point (x, y). It is the tangent vector field of another set of curves that obey the
differential equation

dy x

dx — y’
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2:

These latter curves are given by y> — x a.

Differentiability of Functions. The function f (x Lo, xh, ., x) issaid to be C”
with respect to x' if it is r-times continuously differentiable in the argument x'. A
function is said to be C* in some or all of its arguments if it is differentiable an
infinite number of times. It is then also said to be smooth.

Variables and Parameters. Physical quantities often depend on two kinds of argu-
ments, the variables and the parameters. This distinction is usually made on the
basis of a physical picture and, therefore, is not canonical. Generally, variables are
dynamical quantities whose time evolution one wishes to study. Parameters, on the
other hand, are given numbers that define the system under consideration. In the
example of a forced and damped oscillator, the deviation x(¢) from the equilibrium
position is taken to be the dynamical variable while the spring constant, the damping
factor, and the frequency of the driving source are parameters.

Lie Groups. The definition assumes that the reader is familiar with the notion of
differentiable manifold, cf. Sect.5.2. A Lie group is a finite dimensional, smooth,

@ 9

manifold G which in addition is a group and for which the product ““-”,
GxG—->G:(g,g)—~g-g,

as well as the transition to the inverse,

G—>G:gr>g!

are smooth operations.

G being a group means that it fulfills the group axioms, cf. e.g., Sect. 1.13: There
exists an associative product; G contains the unit element e; for every g € G there
exists an inverse g~ € G. Loosely speaking, smoothness means that the group ele-
ments depend differentiably on parameters, which may be thought of as angles for
instance, and that group elements can be deformed in a continuous and differentiable
manner.

A simple example is the unitary group

U(l) = {e”la €[0,27]} .

This is an Abelian group (i.e., a commutative group). Further examples are provided
by the rotation group SO(3) in three real dimensions, and the unitary group SU(2)
which are dealt with in Sects.2.21 and 5.2.3 (iv). The Galilei group is defined in
Sect. 1.13, the Lorentz group is discussed in Sects.4.4 and 4.5.


http://dx.doi.org/10.1007/978-3-662-55490-6_5
http://dx.doi.org/10.1007/978-3-662-55490-6_1
http://dx.doi.org/10.1007/978-3-662-55490-6_2
http://dx.doi.org/10.1007/978-3-662-55490-6_5
http://dx.doi.org/10.1007/978-3-662-55490-6_1
http://dx.doi.org/10.1007/978-3-662-55490-6_4
http://dx.doi.org/10.1007/978-3-662-55490-6_4

Appendix C: Appendix 575

B. Historical Notes

There follow some biographical notes on scientists who made important contributions
to mechanics. Some of these are marked by an asterisk and are treated in somewhat
more detail, though without striving for completeness, because their impact on the
understanding and the development of mechanics was particularly important.

*d’Alembert, Jean-Baptiste: born 17 November 1717 in Paris, died 29 October 1783
in Paris. Writer, philosopher, and mathematician. Co-founder of the Encyclopédie.
Important contributions to mathematics, mathematical physics and astronomy. His
principal work “Traité de dynamique” contains the principle which bears his name.

Arnol’d, Vladimir Igorevich: 1937—, Russian mathematician.
Cartan, Elie: 1869-1951, French mathematician.

Coriolis, Gustave-Gaspard: 1792-1843, French mathematician.
Coulomb, Charles Augustin: 1736-1806, French physicist.

“Descartes, René (Cartesius): born 31 March 1596 in La Haye (Touraine), died
11 February 1650 in Stockholm. French philosopher, mathematician and natural
philosopher. In spite of the fact that Descartes’ contributions to mechanics were not
too successful (for instance, he proposed incorrect laws of collision), he contributed
decisively to the development of analytic thinking without which modern natural
science would not be possible. In this regard his book Discours de la Méthode pour
bien conduire sa Raison, published in 1637, was particularly important. Also his
imaginative conceptions — ether whirls carrying the planets around the sun; God
having given eternal motion to the atoms relative to the atoms of the ether which
span our space; the state of motion of atoms being able to change only by collisions
— inspired the amateur researchers of the 17th century considerably. It was in this
community where the real scholars of science found the resonance and support which
they did not obtain from the scholastic and rigid attitude of the universities of their
time.

*Einstein, Albert: born 14 March 1879 in Ulm (Germany), died 18 April 1955 in
Princeton, N.J. (U.S.A.). German-Swiss physicist, 1940 naturalized in the U.S.A. His
most important contribution to mechanics is Special Relativity which he published
between 1905 and 1907. In his General Relativity, published between 1914 and
1916, he succeeded in establishing a (classical) description of gravitation as one of
the fundamental interactions. While Special Relativity is based on the assumption
that space-time is the flat space R*, General Relativity is a dynamical and geometric
field theory which allows one to determine the metric on space-time from the sources,
i.e., from the given distribution of masses in the universe.

*Euler, Leonhard: born 15 April 1707 in Basel (Switzerland), died 18 September
1783 in St. Petersburg (Russia). Swiss mathematician. Professor initially of physics,
then of mathematics at the Academy of Sciences in St. Petersburg (from 1730 until
1741, and again from 1766 onwards), and, at the invitation of Frederick the Great,
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member of the Berlin Academy (1741-1766). Among his gigantic scientific work
particularly relevant for mechanics: development of variational calculus; law of con-
servation of angular momentum as an independent principle; equations of motion
for the top. He also made numerous contributions to continuum mechanics.

Fibonacci, Leonardi: ~ 1175— ~ 1240. Italian mathematician who introduced the
Indian-Arabic system of numbers. See also Fibonacci numbers in Sect.6.5.

*Galilei, Galileo: born 15 February 1564 in Pisa (Italy), died 8 January 1642 in
Arcetri near Florence (Italy). Italian mathematician, natural philosopher, and philoso-
pher, who belongs to the founding-fathers of natural sciences in the modern sense.
Professor in Pisa (1589-1592), in Padua (1592-1610), mathematician and physicist
at the court of the duke of Florence (1610-1633). From 1633 on under confinement
to his house in Arcetri, as a consequence of the conflict with Pope Urban VIII and
the Inquisition, which was caused by his defence of the Copernican, heliocentric,
planetary system. Galilei made important contributions to the mechanics of simple
machines and to observational astronomy. He developed the laws of free fall.

“Hamilton, William Rowan: born 4 August 1805 in Dublin (Ireland), died 2 Sep-
tember 1865 in Dunsink near Dublin. Irish mathematician, physicist, and astronomer.
At barely 22 years of age he became professor at the university of Dublin. Important
contributions to optics and to dynamics. Developed the variational principle which
was cast in its later and more elegant form by C.G.J. Jacobi.

*Huygens, Christiaan: born 14 April 1629 in The Hague (Netherlands), died 8 July
1695 in The Hague. Dutch mathematician, physicist and astronomer. From 1666
until 1681 member of the Academy of Sciences in Paris. Although Huygens is not
mentioned explicitly in this book he made essential contributions to mechanics:
among others the correct laws for elastic, central collisions and, building on Galilei’s
discoveries, the classical principle of relativity.

Jacobi, Carl Gustav Jakob: 1804-1851, German mathematician.

*Kepler, Johannes: born 27 December 1571 in Weil der Stadt (Germany), died 15
November 1630 in Regensburg (Germany). German astronomer and mathematician.
Led a restless live, in part due to numerous misfortunes during the turbulent times
before and during the Thirty Years War, but also for reasons to be found in his charac-
ter. Of greatest importance for him was his acquaintance with the Danish astronomer
Tyge (Tycho) Brahe, in the year 1600 in Prague, whose astronomical data were
the basis for Kepler’s most important works. Succeeding T. Brahe, Kepler became
mathematician and astrologer at the imperial court, first under emperor Rudolf II,
later under Mathias. Finally, from 1628 until his death in 1630, he was astrologer
of the duke of Friedland and Sagan, A. von Wallenstein. Kepler’s first two laws are
contained in his Astronomia nova (1609), the third is contained in his main work
Harmonices Mundi (1619). They were not generally accepted, however, until New-
ton’s work who gave them a new, purely mechanical foundation. Kepler’s essential
achievement was to overcome the ancient opposition between celestial mechanics
(where the circle was believed to be the natural inertial type of movement) on one
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hand and terrestial mechanics on the other (where the straight line is the inertial
motion).

Kolmogorov, Andrei Nikolaevic: 1903—-1987, Russian mathematician.

*Lagrange, Joseph Louis: born 25 January 1736 in Torino, died 10 April 1813 in
Paris. Italian-French mathematician. At the early age of 19 professor for mathematics
at the Royal School of Artillery in Torino, from 1766 member of the Berlin Acad-
emy, succeeding d’Alembert, then from 1786 member of the French Academy of
Sciences, professor at Ecole Normale, Paris, in 1795 and at Ecole Polytechnique in
1797. His major work Mécanique Analytique which appeared in 1788, after New-
ton’s Principia (1688) and Euler’s Mechanica (1736), is the third of the historically
important treatises of mechanics. Of special relevance for mechanics were his com-
pletion of variational calculus which he used to derive the Euler-Lagrange equations
of motion, and his contributions to celestial perturbation theory.

*Laplace, Pierre Simon de: born 28 March 1749 in Beaumont-en-Auge (France),
died 5 March 1827 in Paris. French mathematician and physicist. From 1785 on
member of the Academy, he became professor for mathematics at Ecole Normale
(Paris) in 1794. He must have been rather flexible because he survived four political
systems without harm. Under Napoleon he was for a short time Secretary of the
Interior. Besides important contributions to celestial mechanics on the basis of which
the stability of the planetary system was rendered plausible, he developed potential
theory, along with Gaul} and Poisson. Other important publications of his deal with
the physics of vibrations and with thermodynamics.

Legendre, Adrien Marie: 1752-1833, French mathematician.

Leibniz, Gottfried Wilhelm: 1646—1716, German natural philosopher and philoso-
pher.

Lie, Marius Sophus: 1842-1899, Norwegian mathematician.

Liapunov, Aleksandr Mikhailovich: 1857-1918, Russian mathematician.
Liouville, Joseph: 1809-1882, French mathematician.

Lorentz, Hendrik Antoon: 1853-1928, Dutch physicist.

*Maupertuis, Pierre Louis Moreau de: born 28 September 1698 in St. Malo (Bri-
tanny, France), died 27 July 1759 in Basel (Switzerland). French mathematician and
natural philosopher. From 1731 paid member of the Academy of Sciences of France,
in 1746 he became the first president of the Prussian Académie Royale des Sciences
et Belles Lettres, newly founded by Frederick the Great in Berlin who called many
important scientists to the academy, notably L. Euler. In 1756, seriously ill, Mau-
pertuis returned first to France but then joined his friend Joh. II Bernoulli in Basel
where he died in 1759. Along with Voltaire, Maupertuis was a supporter of Newton’s
theory of gravitation which he had come to know while visiting London in 1728, and
fought against Descartes’ ether whirls. Of decisive importance for the development
of mechanics was his principle of least action, formulated in 1747, although his own
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formulation was still somewhat vague (the principle was formulated in precise form
by Euler and Lagrange). A widely noticed dispute of priority started by the Swiss
mathematician Samuel Konig who attributed the principle to Leibniz, was eventually
decided in favor of Maupertuis. This dispute alienated Maupertuis from the Prussian
Academy and contributed much to his bad state of health.

Minkowski, Hermann: 1864—-1909, German mathematician.
Moser, Jiirgen: 1928—-1999, German mathematician.

*Newton, Isaac: born 24 December 1642 in Whoolsthorpe (Lincolnshire, England),
died 20 March 1726 in Kensington (London), (both dates according to the Julian
calender which was used in England until 1752). Newton, who had studied theology
at Trinity College Cambridge, learnt mathematics and natural sciences essentially
by himself. His first great discoveries, differential calculus, dispersion of light, and
the law of gravity which he communicated to a small circle of experts in 1669,
so impressed Isaac Barrow, then holding the “Lucasian Chair” of mathematics at
Trinity College, that he renounced his chair in favor of Newton. In 1696 N was called
at the Royal Mint and became its director in 1699. The Royal Society of London
elected him president in 1703. Venerated and admired as the greatest English natural
philosopher, Newton was buried in Westminster Abbey.

His principal work, with regard to mechanics, is the three-volume Philosophiae
Naturalis Principia Mathematica (1687) which he wrote at the instigation of his
pupil Halley and which was edited by Halley. Until this day the Principia have been
studied and completely understood only by very few people. The reason for this
is that Newton’s presentation uses a highly geometrical language, divides matters
into “definitions” and “axioms” which mutually complete and explain one another,
following examples from antiquity, in a manner difficult to understand for us, and
because he presupposes notions of scholastic and Cartesian philosophy we are nor-
mally not familiar with. Even during Newton’s lifetime it took a long time before his
contemporaries learned to appreciate this difficult and comprehensive work which, in
addition to Newton’s laws, deals with a wealth of problems in mechanics and celes-
tial mechanics, and which contains Newton’s original ideas about space and time
that have stimulated our thinking ever since. Newton completed a long development
that began during antiquity and was initiated by astronomy, by showing that celestial
mechanics is determined only by the principle of inertia and the gravitational force
and, hence, that it follows the same laws as the mechanics of our everyday world.
At the same time he laid the foundation for a development which to this day is not
concluded.

Noether, Emmy Amalie: 1882-1935, German mathematician. Belongs to the great
scientific personalities in the mathematics of the 20th century. Her seminal work
Invariante Variationsprobleme, published in 1918, contains two theorems which
ever since we refer to as the “Noether theorems” and which provide important keys
to various parts of theoretical physics, notably mechanics and classical field theory.
Barely any other mathematical publication has had such a profound and lasting
impact on theoretical physics in the 20th century.
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“Poincaré, Jules Henri: born 29 April 1854 in Nantes (France), died 17 July 1912
in Paris. French mathematician, professor at Sorbonne university in Paris. Poincaré,
very broad and extraordinarily productive, made important contributions to the many-
body problem in celestial mechanics for which he received a prize donated by King
Oscar IT of Sweden. (Originally the prize was announced for the problem of conver-
gence of the celestial perturbation series, the famous problem of the “small denom-
inators” that was solved much later by Kolmogorov, Arnol’d, and Moser.) Poincaré
may be considered the founder of qualitative dynamics and of the modern theory of
dynamical systems.

Poisson, Siméon Denis: 1781-1840, French mathematician.
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